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ABSTRACT

Replicating data across different databases has the potential to provide low response times since data
can be accessed locally, high scalability since load can be distributed, and fault-tolerance since the
data can be accessed as long as one replica is available. A big challenge of database replication is
to handle updates such that the entire replicated database appears as if there is only a single logical
copy of the data.

The standard correctness criterion for database replication is 1-copy-serializability (1-copy-SE)
which guarantees that a replicated database behaves as a non-replicated database with serializability
(SE), the highest isolation level for transaction execution. In this thesis, we propose a new criterion,
1-copy-snapshot-isolation (1-copy-SI), due to the popularity of snapshot isolation (SI) over serial-
izability in major database systems. SI allows some non-serializable executions, but it provides
better concurrency and can be implemented efficiently. However, current definitions of SI allow
for the violation of integrity constraints while commercial implementations of snapshot isolation
maintain them. Hence, we define a new isolation level SI+IC which represents the isolation level
implemented in current systems. From there, we propose a criterion 1-copy-SI+IC that respects
both SI and integrity constraints in a replicated database.

As a second step, we develop a replication solution that provides many features. It provides
1-copy-SI+IC. It is implemented in a middleware between clients and original database system,
and thus, does not require changes to the source code of the database system. Despite being at the
middleware level, it provides concurrency at the record level, and thus, the same concurrency level
as the database system itself. Furthermore, it provides a standard database interface, and thus, is

transparent to the application. It also offers fault-tolerance. Finally, it includes protocols that are

ii



able to handle a wide-area environment. This is achieved by a careful choice of communication
patterns that keep communication across the wide area network at a minimum.

The approach is implemented within a middleware-based framework that allows for an easy
plug-in of replication algorithms. Our solution is carefully evaluated, comparing several design
alternatives. Additionally, it is compared against a traditional replication protocol, that is widely
implemented in current systems. The evaluation shows that our protocols have very good perfor-

mance and compare favourably with existing solutions.
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ABREGE «

La réplication de bases de données réplique les données dans differentes bases de données dans le
but d’offrir des temps de réponse rapides, de meilleures possibilités de croissance et d’extension
future, ainsi qu’une meilleure tolérance aux fautes. La problématique de la réplication de bases de
données est comment répliquer les données correctement de sorte a ce que le systéme complet de
bases de données répliquées se comporte comme s’il y avait une seule copie de la base de données.

Le critére standard d’exactitude est le “one-copy-serializability”. Dans cette thése, nous pro-
posons un nouveau critére, one-copy-snapshot-isolation”, du a la popularité de ’snapshot-isolation”,
comparativement a la “serializability”, dans les principaux systeémes d’admihistration de bases de
données. Le “snapshot-isolation” est une notion plus faible que la “serializability” sur plusieurs
aspects, dont I’un est de ne pas garantir les contraintes d’intégritées. Nous proposons par la suite un
critére qui inclut les notions de “snapshot-isolation™ ainsi que les contraintes d’intégritées. La thése
propose un formalisme basé sur des travaux antérieurs.

Dans un deuxi¢me temps, nous étudions comment déveloper des protocoles de réplication qui
peuvent étre utilisés en practique. Quelques protocoles existants imposent de sévéres limitations a
leurs applications, comme I’identification des transactions en lecture seule a leur commencement.
D’autres protocoles ne fonctionnent pas avec des bases de données avec contraintes d’inégritées,
une caractéristique trés importante des bases de données. Nous proposons une solution qui résoud
toutes ces limitations a ’aide d’un ordonnanceur centralisé.

Troisi¢mement, cette thése étudie les protocoles de réplication qui fonctionnent bien, tant dans
des réseaux locaux que globaux. La plupart des protocoles existants requierent plusieurs étapes

d’échange de message entre differentes bases de données a I’intérieur d’un certain temps de réponse,



et/ou utilisent des messages “multicast” traitées par des systémes de communication de groupe. Ils
ne fonctionnent pas bien dans les réseaux globaux en raison des longs temps d’attentes pour I’envoie
de messages. Nous étendons notre approche en utilisant une approche décentralisée. La nouvelle
solution garde un nombre constant de message a I’intérieur d’une transaction (un allée-retour de
messages). Le probléme de la tolérance aux fautes est aussi discuté.

Pour évaluer notre solution, nous avons developé un ensemble de fonctionnalités qui integre
I'implémentation des différents protocoles avec un systéme de bases de données, PostgreSQL. Les
expérimentations ont été éxecutées sur différents systémes, e€.g., réseaux locaux et globaux. Les
résultats sont satisfaisants.

En somme, cette thése présente une solution pratique au probleme de réplication de bases de
données qui fonctionne bien autant dans des réseaux locaux que globaux. Elle a été implementée
dans un systéme temps réel et les. résultats confirment qu’elle est plus efficace que les protocoles

existants.
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Chapter 1

Introduction

1.1 Why database replication

As the Internet grows at a rapid pace, computer applications transit from desktops to the network.
Network applications target to support users in different geographical locations. The transition
introduces many challenges. For example, how can users access data fast even though they go
through the Internet? As another example, how €an a system scale to accomodate more and more
users, and how can the availability of a system be ensured in case of disasters like 9117

Let’s have a look at a concrete example. An online flight booking system such as Expedia is used
by many clients around the world. Clients browse information such as prices and itineraries, and
make reservations. All information about flights is stored in a database. Suppose there is ohly one
database located in Montreal for the whole system. Although clients in Montreal can enjoy a fast
service when they browse flight information, clients in other cities such as London will complain
about the slow connection, because all information must be transferred from Montreal to London
for display.

Another challenge is to scale the system when more and more clients want to access the service.
A single database can only support a certain number of clients. If the number of clients exceeds the
threshold, the database will be overloaded and the system will respond to clients extremely slowly.

Furthermore, the database might crash due to overload or other reasons. If this occurs the
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system can not respond to client requests until the database is recovered. This can very fast result
in financial losses for the company. More seriously, if the database is physically destroyed, then all
data stored in the server will be completely lost, which is a disaster for the business.

This thesis aims at providing answers to the above challenges by using replicated databases. A
replicated database system is composed of many copies of the database distributed across different
sites. Each database, being called a replica, can accept client requests. The database replicas work
cooperatively as a single global database system to provide database services to clients at all sites.
Database replication can improve both fault-tolerance and performance. In regard to fault-tolerance,
since there exist several copies of the database, if one database crashes, data is still available since
other replicas can be accessed. The client requests submitted to the crashed database can be redi-
rected to replica(s) remaining accessible.

In regard to performance, database replication can increase the throughput of a system and
decrease the response time of individual requests. Many replicaton solutions follow a scheme of
Read-One-Write-All (ROWA) [14, 78]. According to ROWA, write operations that update data
items are performed at all replicas to guarantee data consistency while read operations only need to
be performed at one replica. Since read requests are only executed at one replica, by adding replicas
to the system, the capacity in terms of throughput (i.e., number of requests per time-unit) can be
increased. '

In order to keep response time low, data can be replicated to remote sites so that clients at the
remote sites can access the data just locally. In the online flight booking system example above,
clients in London can then read data from the local database replica in London. Thus, the clients
experience fast response since WAN communication does not occur. With ROWA, reads are as
fast as having a single, local database. However, writes trigger a considerable overhead since all
replicas need to be updated. This is acceptable if the ratio of reads to writes is high, and has shown

to outperform basically all other approaches such as quorums [60].
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1.2 Challenge of database replication

One main challenge of database replication is to keep the data copies consistent in the presence of
updates. If a client updates a data item, the update has to be propagated to all copies. If clients
connected to different replicas submit updates on the same data items, such updates have to be
coordinated to guarantee that the data remains consistent. This task is called replica control. In the
example above, there might be two clients competing for a single flight ticket in a last minute deal.
If they make their reservation in different cities and at the same time, the system must guarantee that
only one of them succeeds in making the reservation. Otherwise, complex reconcilation techniques
are needed, possibly requiring some of the clients to receive some compensation.

Besides data consistency, there are some other challenges that a replicated architecture has to
face. For instance, in an ideal replicated database system replication is transparent to clients. The
system appears as if there is only one single database. This is particular challenging since clients
access the database in the context of transactions [101]. Clients submit their requests in form of
transactions consisting of a sequence of read and write operations on the data items in the system.
The operations in a transaction are considered a logical unit of work. Either all updates of a transac-
tion succeed and the transaction commits, or none of its updates have an effect and the transaction
aborts. Furthermore, although the database system might interleave the execution of different trans-
actions, the concurrency control mechanism of the system isolates them to guarantee there is no
improper interference.

Thus, achieving transparency in a replicated system requires that the global execution of trans-
actions is equivalent to an execution over a single logical database. This means replica control must
always be coupled with the concurrency control mechanisms of the database, in order to prbvide

correct executions.

1.3 Existing work and their shortcomings

Many replication solutions have been proposed so far. Some replication protocols provide strong

consistency meaning that data is consistent at any time. This, however, increases response time
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for update transactions because replicas must coordinate their updates before transactions comnﬁt.
Other protocols only provide weak consistency meaning that data may be inconsistent temporarily
though it will be eventually consistent. This provides fast response for writes but read operations
may access stale data when they read local data which do not yet reflect updates performed on
remote replicas. Some protocols with weak consistency even require to rollback transactions that
have already been committed. This complicates the system and exposes to applications a behavior
non-existent in non-replicated systems. Section 2.2 will discuss in more detail existing replica
control strategies. Many protocols with strong consistency have been recently proposed (e.g., [6, 8,
7, 10, 39, 38, 24, 55, 61, 91]). They guarantee data consistency at any time and provide reasonably
good performance. However, these protocols only work well in Local Area Networks (LANs) but
not in Wide Area Networks (WAN ) because they have a fair amount of message overhead which is
unacceptable in WANS. This thesis proposes replication protocols that offer strong data consistency
with little message overhead.

Moreover, many of the existing replica control protocols ignore how current database systems
implement concurrency control. As mentioned above, although databases allow transactions to
execute concurrently and access data simultaneously, transactions may not arbitrarily interfere with
each other. Instead, different transaction isolation levels have been defined. They refer to the extend
to which concurrent transactions may access the same data items. The strongest transaction isolation
level is serializability (SE) [14, 97, 110]. With SE, although transactions may execute concurrently,
the effect is the same as running the transactions serially one after another. Many databases have
concurrency control mechanisms that guarantee SE. Therefore, most replicated systems provide
I-copy-SE, the extension of SE in a replicated environment. It guarantees that the entire system
behaves as if there were only one logical database (i.e., one-copy) providing SE.

However, recently, Snapshot Isolation (SI) has emerged as a new isolation level [12]. SI is
slightly weaker than SE and has become quite popular. It requires that transactions read data from a
snapshot committed at the time point when they start. Furthermore, if two transactions want to up-
date the same data item at the same time, one will be aborted. SI has been adopted by many database

vendors such as Oracle, PostgreSQL, Interbase 4 and Microsoft SQL Server 2005. Although not
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being as strong as SE as defined in the research literature, SI avoids all isolation anomalies as de-
fined by the industrial ANSI standard [11]. Hence, Oracle and PostgreSQL claim that their SI-based
concurrency control mechanisms actually provide SE. Although SI has become popular in industry,
little has been done on developing replication solution based on SI. Furthermore, many replication
protocols do not consider Integrity Constraints (ICs) which are an important feature of relational
database technology. Ignoring integrity constraints prevents those protocols from working correctly
with databases that have integrity constraints defined. This thesis proposes a new isolation level,
I-copy-SI+IC, and develops a framework to reason about replication protocols that provide SI at
the global level and at the same time respect integrity constraints. The protocols developed in this
thesis all offer this isolation level.

Apart of this, many existing replication protocols have some restrictions such as read-only trans-
actions must be marked in advance [33, 34, 104, 94], or all operations of a transaction must be
known upon submission time [8, 7, 90, 61]. These restrictions on applications hinder the database
replication to be transparent, and make it hard to run legacy applications over the replicated infras-
tructure. The protocols proposed in this thesis do not have any of these restrictions and work with

any database application that uses standard database interfaces.

1.4 Contribution of this thesis

In summary, this thesis makes three main contributions.

e Correctness: The thesis provides a complete framework to reason about SI and SI+IC in a
replicated database system. Two new correctness criteria, 1-copy-SI and 1-copy-SI+IC, are

proposed.

e Practicability: The thesis proposes a replication tool that can be used by any database appli-

cation.

e Performance: The thesis proposes replication protocols with good performance in both LANs

and WANS.
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1.5 Structure of this thesis

The structure of the thesis is as follows. Chapter 2 introduces some background in regard to database
replication. Chapter 3 develops a theoretical framework to reason about SI and IC in a replicated
environment. Chapters 4 and 5 present the replication protocols. Chapter 4 presents protocols which
guarantee l-copy-SI and 1-copy-SI+IC. It does not consider message overhead or fault-tolerance.
Chapter 5 is concerned with performance and fault-tolerance. It takes the high message delay of
WANS into account and extends the protocols of Chapter 4 to work well in WANSs and to be fault-
tolerant. Chapter 6 presents a thorough evaluation of the protocols in LANs and WANs. Chapter 7
concludes the thesis and discusses future work.

Variations of the protocols discussed in Chapter 4 and 5 have been previously published in [73]
and [75]. The protocols of thfs thesis vary in that they consider integrity constraints. Futhermore,

part of the performance evaluation in Chapter 6 has been published in [75].



Chapter 2

Background

This chapter first shortly introduces transactions and their isolation properties since they are fun-
damental to replica control. A more detailed description is given in Chapter 3. Then, we give an
overview of replica control principles and current solutions. Finally, we outline the goals of this

thesis.

2.1 Transactions

2.1.1 Transactions and histories

A database consists of a set of data items. Database clients access the database within the bound-
aries of transactions. A transaction is the basic execution unit in databases [14, 120]. It contains
a collection of read and write operations accessing data items within the database. If a transac-
tion has executed successfully, the transaction commits. All data changes performed by committed
transactions are permanent. If a transaction’s execution is canceled or its results are not made per-
manent when it is finished, the transaction aborts. In this case, none of its changes will remain in
the database.

In this section we use a simple notation for transactions and their execution to illustrate the basic
principles. The notation is slightly different from the one used in the next chapters. We denote a

transaction 7; reading data item x with value a as r;(z, a), writing value b to data item z as w;(z, b),
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committing as c;, and aborting as a;.
For simplicity we assume that within one database the execution of operations is serial. A his-

tory represents the order of execution of transactions over time, e.g.,

Hse'rial : 7'1(.’13, O)a wy (.’E, 1)’ Cly 7‘2(1‘, 1)7 w2 (ya 2)) C2

In history Herial, all of T7°s operations happen before T5’s operations. We call this history a serial
history, with one transaction executed completely before the other.

We say that two operations conflict if they are from two transactions, access the same data item,
and at least one operation is a write. If one operation reads and the other writes the same data item,
the corresponding two transactions have a read/write conflict. If both operations write the same
data item, the corresponding two transactions have a write/write conflict. There is no conflict if
two transactions read the same data item. Two transactions conflict only if they have conflicting

operations. In Hge i1, T1 and T5 have a read/write conflict but no write/write conflict.

2.1.2 Concurrency control and isolation levels

Note that 77 and T5 in H ;4 do not interfere with each other since they execute serially. But oper-
ations of different transactions might interleave. If two transactions overlap their execution in that
neither one starts after the other commits/aborts, we say that these two transactions are concurrent

to each other. For example,
Hsg :ri(z,0),w(z, 1), r2(z, 1), c1, wa(y, 2), c2

Ty and T5 are concurrent in Hgp. If transactions are concurrent to each other, their execution might
interfere and provide users with an incorrect image of the database and the database itself might
become inconsistent.

Concurrency control is the activity of coordinating the execution of transactions that potentially

interfere with each other. Concurrency control is mainly concerned with concurrent conflicting
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transactions since transactions without conflicts will not interfere, and only concurrent transac-
tions interleave their operations. A serial history does not allow any interference between any two
transactions. However, concurrent execution allows better resource utilization and increases system
throughput. Basically all database systems allow concurrent execution.

Database systems typically provide different levels of isolation that restrict the order in which a
non-serial history may interleave the operations of concurrent transactions. The strongest isolation
level is serializability, denoted as SE in the following. There exist various versions of serializability
and we use conflict-serialiability [14]. In here, we say a history H is serializable if there is a serial
history H over the same set of transactions, both histories commit the same transactions, and for
every pair of conflicting operations H and H, order them in the same way.

The most common concurrency control method to provide SE is strict Two-Phase-Locking (2PL)
[120]. Locking requires that a transaction obtains a read (or write) lock on each data item before
it reads (or writes) that data item. There can be several read locks active on the same data item
(allowing‘concurrent reads) but when a write lock is active no other read or write lock may be
granted (exclusive write access). In strict 2PL, a transaction releases all locks only at the time of
commit or abort.

In recent years, a slightly weaker isolation level than SE, Snapshot Isolation (SI), has been
proposed [12]. Weaker means that some anomalies can occur. Nevertheless this isolation level is
offered by many database systems, because the concurrency control mechanism needed to achieve
this level is very efficient. A transaction executing on SI reads data from a snapshot of the commit-
ted data as of the time the transaction started. That is, if a transaction T reads data item x it reads the
version of x created by a transaction 7” which was the last to update x and commit before 7 started.

If two concurrent transactions try to update the same object, one will be aborted. For example,
HSI : 7'1(.’15, 0)’ w1 (ma 1)1 7'2(1:7 0)7 c1, ’UJQ((E, 2)1 ag
is a history allowed under SI. In Hgy, assuming the original value of z is 0, T5 reads value 0 instead

of 1 even though T3 has written value 1 to x before T} reads x. T5 reads the committed version of

x right before T5 starts. T» needs to abort because 77, which is concurrent to 75 and has write/write
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conflict with Ty, has committed earlier.

SI allows some non-serializable schedules. For instance,

HSIZ : 7’1(3770)77‘2(y70)7 wl(ya 1)7 ’U.)Q(.’L', 1), C1,C2

In Hgyo, both transactions read from a snapshot and update different objects. The execution is SI
but not SE because in a serial execution T; before 15, T» reads r9(y, 1). In a serial execution 75
before Ty, T reads 71 (z, 1).

With SI, we only need to worry about write/write but not read/write conflicts when determining
conflicting transactions, because transactions always read committed data from a committed snap-
shot. The beauty of SI is that read-only transactions will never request locks, abort or interfere with
update transactions. Since in database applications the number of read operations is usually much
higher than that of write operations, the SI approach can have less concurrency control overhead and
more concurrency compared to SE requesting locks for both reads and writes. Chapter 3 discusses
SI and its implementations in detail.

In recent years, understanding isolation levels, and in particular SI, has received a lot of at-
tention. [44, 12] provide a detailed discussion on the anomalies allowed and avoided under SI.
[42] discusses how to guarantee SE if the database only provides SI. Some work also investigates
weaker isolation levels than SE and SI. [34] relaxes the notion of SI by combining SI with session
guarantees. The concept of session guarantee has been proposed in [33] and requires that a client
will always see its own previous writes. [51, 13, 104, 45, 4] define a freshness constraint for each

transaction and allow a transaction to read data satisfying its freshness constraints.

2.1.3 Integrity constraints

Data integrity is a very important characteristic of databases [120]. Database designers can specify
integrity constraints and the database system guarantees that these constraints are maintained. If
an update of a transaction violates a constraint, the update will typically not be executed and the
transaction is aborted.

The most common integrity constraints are unique key, primary key, and foreign key constraints.
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A set of attributes is considered a unique key if no two tuples in a table are allowed to have the
same values in these attributes. Primary key is a special unique key which is used as the primary
index of the tuples in a table (e.g., studentID in a student table). A foreign key in a table is a set
of attributes that refer to the primary key of another table (e.g., the supervisorID of a student is a
foreign key refering to the facultyID which is the primary key in the faculty table). The foreign key
constraint refers to the requirement that the value of the foreign key attributes of a tuple must be the
value of the primary key of an existing tuple in the refered table. In our example, the value of the
supervisorID of a student record in the student table must be indeed the value of the facultyID of

one of the faculty members.

2.2 Database replication

In this thesis we consider full database replication. Using full replication, there exist several
instances of a database system and each stores a full copy of the database. An instance together with
its data is also called a database replica. That is, if there are n replicas in the system, then there
exist n physical copies for each data item z in the database. Replication is used for fault-tolerance,
scalability and performance. Replication can provide fault-tolerance since if one replica fails, the
other replicas can sﬁll serve client requests. Replication can be used for scalability, since client
requests can be distributed across the replicas. Ideally, by adding new replicas, more client requests
can be served. Alternatively, by adding new replicas, the load of each server can be reduced, and
thus, the response time of individual requests can be reduced. Finally, if replicas are distributed in
a wide area network, clients can éccess a local replica and thus, avoid wide area communication
which has large message delays.

One of the challenges of replication is replica control, i.e., keeping copies consistent despite
updates. Nearly all replication solutions follow the ROWA(A) approach, i.e., read-one-write-all-
(available) copies approach. This means, a read operation is executed at only one replica while a

write operation on a data item must update all copies of the data item that are available *.

'If some replicas are currently down, then they do not need to be updated; however, once the replica comes up, it must
receive the current versions of all data items.
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2.2.1 Correctness criteria for replicated databases

In a replicated database, each replica executes transactions locally and produces a local history.
The question now is when this distributed execution represents a globally correct execution. For
example, assume two replicas A and B that execute transactions according to the ROWA approach.
There are two transactions 77 and 75 both writing data item x. A possible execution at the both
replicas could be:

HA : wi(z,1),c1,ws(z,2), co

HB : wo(x,2), co, wa(z,1),¢1
Looking at the histories individually, they are both actually serial, and thus serializable. However,
the serialization order is different, H4 serializes T, before Ty, and HP serializes T before T7.
When we look at the two database copies at the end of execution, they are not consistent. x has the
value 2 in replica A, and 1 in replica B. In order to keep data consistent at all replicas, it is typically
required that all replicas execute conflicting write operations in the same order. Thus, the definition
of SE, or any other correctness criteria such as SI, must be extended to be meaningful in a replicated
environment.

| The standard correctness criterion is 1-copy-SE [14]. Despite the existence of multiple copies,

a data item must appear as one logical copy (I-copy-equivalence). Furthermore, the execution of
concurrent transactions must be coordinated such that it is equivalent to a serial execution over the
logical copy (serializability). Most replica control protocols aim in providing 1-copy-SE.

Recent research has started to apply SI in a replicated database system [94, 34, 40, 73, 124, 75].
In [73], we have derived a corresponding isolation level, named 1-copy-SI. Informally, a repli-
cated history provides 1-copy-SI if the concurrent execution of a set of transactions on the different
database replicas is equivalent to executing them in a non-replicated database system under SI. 1-
copy-SI is discussed in detail in Chapter 3, and the replica control protocols in this thesis provide
1-copy-SI. Concurrently to [73], Elnikety et. al. [40] have proposed a similar correctness criterion,
called generalized snapshot isolation. Howeyver, their definitions and reasoning are quite different
to [73]. [34] discusses how different degrees of session guarantees can be combined with snapshot

isolation in a replicated system.
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Figure 2.1: Middleware Architectures

Snapshot isolation has also been analyzed for federated database systems. In a federated system,
data is distributed, not replicated, and a federation layer controls the execution of transactions across
the distributed data. [109] discusses what SI means in such a federation and [108] analyzes how

global SE can be maintained although the local sites only provide SI.

2.2.2 Replication architecture

Before developing replication protocols, one has to decide on the architectural framework, that is,

how the replication protocols are intepreted or compiled with the existing database infrastructure.
Middleware-based replication

Recently, many middleware-based approaches for database replication have been proposed (e.g.,
[24, 61, 90, 40, 94]). A middleware approach implements replica control algorithms within a com-
ponent that resides between the clients and the databases. The client only sees the middleware and
sends all its requests to the middleware. The middleware then forwards these requests to individual
database replicas (DB replicas) according to the replica control algorithm in order to assure the de-
sired correctness such as 1-copy-SE or 1-copy-SI. Figure 2.1 shows three typical architectures for

middleware approaches.
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In the centralized architecture (Figure 2.1.(a)) there is only one middleware component for all
databases. Obviously the middleware component is a single point of failure in such an architecture.
The centralized-replicated architecture (Figure 2.1.(b)) improves over the centralized architecture
by adding a backup middleware component. If the primary middleware fails, all clients are switched
over to the backup. However, failover might be quite complicated because in case of failures the
connections between the primary middleware and the DB replicas are broken. Typically, upon
connection loss, database systems abort the active transactions on the connections. At the time the
primary middleware crashes, a given transaction might be committed at some DB replicas, active
at others, and not even started at some. The backup has to make sure that such transactions are
eventually committed at all replicas. Many replicated systems follow the centralized or centralized-
replicated approach [94, 7, 8, 9, 26, 62, 95, 104, 4, 45]

In the decentralized architecture (Figure 2.1.(c)) there is one middleware replica for each database
replica. Typically the pair of middleware replica and database replica are located at one site. The
middleware replicas coordinate with each other for replica control purposes. A client is connected
to one middleware replica and, in case of crash of this middleware replica, is reconnected to any of

the available replicas. [61, 90, 72, 73, 75, 103, 38, 89, 87, 88, 39] follow this approach.
Kernel-based replication

An alternative to a middleware-based approach would be to implement replica control within the
database kernel, as an extra component that might interact with the transaction manager and the
concurrency control module of the database system. [124, 67] are examples of approaches that are
integrated into the kernel of an open-source database system. Basically all commercial database

systems provide kernel-based replication tools. They are discussed in Section 2.2.11.
Comparison

Both middlware- and kernel-based approaches have their advantages and disadvantages. One dis-
advantage of kernel-based replication is that database systems are huge software systems, and inte-

grating a completely new module into the kernel can be very complex and requires expert software
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developers. Any optimization on the tightly integrated solution will be difficult to change and adjust.
Furthermore, it can only be performed by the database vendor. In contrast, a middleware approach
can be developed and maintained independently of the database systems, and can potentially be
used in heterogeneous environments.

However,mi(.ldleware-based approaches face a series of challenges. Replica control is typically
tightly related with concurrency control. Since the middleware does not have full access to the
concurrency control module of the database systems, it typically has to (partially) reimplement the
concurrency control at the middleware level. However, only limited information is available at the
middlware. |

For example, the middleware does not know exactly which records are accessed by a transaction,
but typically only knows which tables are accessed?. Hence, many middleware-based protocols
(e.g., [61, 8, 7, 24]) restrict the execution of concurrent transactions if they access the same table,
although they might access different records. Thus, the degree of concurrency is typically lower
than with kernel-based replica control.

As another example, many database systems use locking for concurrency control purposes. As a
result, a transaction 7" might be blocked waiting for a transaction 7” to terminate and release a lock.
The lock waiting queues within the kernal are typically not accessible from the middleware level.
Without this blocking information, it is hard for a middleware-based protocol to discover distributed
deadlocks which very possibly happen in data intensive applications.

Finally, a middleware presents an additional level of indirection and thus potentially more mes-
sage overhead. This is not a problem in local area networks but can be very severe in wide area

networks.

2.2.3 Categorizing replica control protocols

The seminal paper of Gray et al. [48] categorizes ROWA replica control strategies according to two
parameters regarding the location of updates and the time of update propagation.

In regard to update location, a primary copy approach only allows data to be updated at a primary

2SQL statements are declaratively indicating the accessed tables while the particular records to be accessed are deter-
mined by predicates.
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replica. Thus, if a client submits updates to a site other than the primary replica, the updates will
be either refused or redirected to the primary site for execution. Different data items might have
different primary sites. In this case, however, transactions that want to update data items with
different primary sites are disallowed. In contrast, in an update everywhere approach the updates
are accepted and executed at the local replica to which the transaction is submitted. In general,
update everywhere approaches are more flexible than primary copy approaches.

Nevertheless, eventually all replicas have to perform all writes. Thus, although an update might
be first executed at one replica, it must eventually be propagated to and applied at the other replicas.
In lazy replication, updates are only propagated after commit. That is, a transaction is first exe-
cuted and committed locally (at the primary in primary copy approaches or at any replica in update
everywhere), and only after commit its updates are propagated to the other replicas. In contrast, us-
ing an eager replication approach update propagation must happen before the transaction commits,
and thus, within the transaction boundaries. An eager approach provides strong data consistency
because a transaction will not commit until it is certain that it will be able to commit at all other
available sites. However, it delays transaction commit, and thus, increases the response time seen by
the client. Transaction response time in a lazy approach is lower than that in an eager approach but it
provides only weak consistency because of the early commit. A further problem of lazy approaches
is that if a replica commits a transaction and then fails before propagating the updates, the other
replicas will not be aware of this transaction until the replica recovers. This can severely affect data

consistency.

2.2.4 Primary copy approach

In a primary copy approach, update transactions are only allowed to execute at the primary site
which performs traditional concurrency control to isolate conflicting transactions. As long as other
sites apply and commit updates in the same order as at the primary site, 1-copy-SE or 1-copy-SI
can be provided, no matter if the changes of transactions are propagated lazily (i.e., after commit)
or eagerly (i.e., before commit). However, if propagation is lazy, read-only transactions at the
secondaries can read stale, i.e., outdated data. Since eager propagation delays transaction execution,

most primary copy approaches are lazy [4, 13, 20, 21, 10, 94, 96, 29, 33, 34, 87, 88, 89, 95, 104].



Chapter 2. Background 17

| client] |client | | ctient | | ctient |

1. submit= == -~ -=--1. submit
scheduler scheduler
2. forward - - - -~ X= - 4.propagate X -~~~ 2. forward
3. exeon SI 5 apply @ 3. exe & commit
- serially -
primary  secondary primary  secondary
(a) Update txn (b) Read-only txn

Figure 2.2: Lazy primary protocol (e.g., Ganymed [94]) |

Figure 2.2 shows the execution model of a typical lazy primary copy protocol (adjusted from
the Ganymed [94] system). There is one central middleware (i.e., scheduler), one primary database
replica, and several secondary database replicas in the system. Transactions can only be submitted
to the scheduler. Figure 2.2.(a) shows how update transactions are handled. The transactions are
forwarded to the primary database replica which executes the transactions using a local concurrency
control mechanism to provide SE or SI locally. Then, after commit, the scheduler propagates the
changes to all secondary database replicas. Secondary database replicas will apply the changes
in the same order as the corresponding transactions are committed at the primary, no matter if they
conflict or not. If a transaction is read-only, the scheduler forwards it to a secondary database replica
for execution as shown in Figure 2.2.(b). Many lazy primary copy protocols follow this approach
[4, 13,94, 95, 96, 104].

Other lazy primary copy protocols work slightly differently. [33, 34, 88] are kernel-based and al-
low clients to submit requests (that represent a transaction) to local database replicas. If a transaction
is read-only, it will execute locally. Otherwise, the local database replica forwards the transaction to
the primary database replica which executes the transaction kusing local concurrency control) and
then propagates the changes to secondary database replicas after commit. The secondary database
replicas work similar to Ganymed. In [34] there are additional constants on start times of update
transactions at the secondaries in order that they read the same data values, and thus, execute iden-
tically to the primary.

[10] uses a global replication graph for conflict resolution. Conflict information must be sent to
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one central site for building the replication graph. The communication overhead is large in WANS.
[29, 20] allow multiple primaries (i.e., assigning different primaries to different data). However, if
primary assignment is not done carefully, this might lead to violation of 1-copy-SE. Thus, restric-
tions are put on which sites can be primaries of which data items, and special update propagation
paths are determined. These assignment protocols can become quite complex. Furthermore, a trans-

action may not update two different data items if they have different primaries.

2.2.5 Update everywhere approach

Update everywhere approaches do not require update transactions to be submitted or forwarded to
a primary site for execution. However, it is more difficult to keep data consistent than in primary
approaches. This is because in a primary approach conflicts between update transactions are de-
tected in a single site (i.e., the primary) while in an update everywhere approach conflicting update
transactions can run concurrently on different sites. Thus, an update everywhere approach requires
additional coordination between different sites for concurrency control purposes, which is not triv-
ial. Gray et al. [48] claim that update everywhere approaches may lead to high deadlock and abort
rates if many transactions run concurrently on different sites.

Update everywhere approaches can be combined with lazy and eager propagation. The small
example to illustrate the challenge of global correctness in Section 2.2.1 is using a lazy update ev-
erywhere approach. Lazy update everywhere approaches allow update transactions to be submitted
and executed at any site, and then commit before their updates are propégated to other replicas.
Lazy update everywhere approaches have serious data inconsistency problems. The inconsistency
has to be detected and reconciled. In the example of Section 2.2.1, either the update of 7} or 15
has to be undone, basically rolling back an already committed transaction. Commercial systems
provide a set of reconcilation strategies (e.g., let the update with the larger value always win). Saito
and Shapiro [106] provide an overview of reconcilation techniques. However, these techniques are
cumbersome, and lazy update everywheré is only recommended if conflict rates are extremely low.

The challenge of eager update everywhere approaches is to combine replica control with con-
currency control to guarantee global transaction isolation. Traditional eager update everywhere

protocols use distributed 2PL [14]. [48] has shown analytically and [67] has shown empirically
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that such an approach does not scale. Recent proposals address the problems of eager update ev-
erywhere with two different approaches, either using a middleware-based scheduler or powerful

communication mechanisms.

2.2.6 Update everywhere with centralized scheduler

[7] proposes a conflict aware replica control protocol, which is a typical example of an update every-
where protocol using a middleware based scheduler. There is a single scheduler in the system. It is
required that all tables to be accessed in a transaction must be indicated at the start of the transaction.
Upon start of a transaction, the scheduler assigns a unique version number to the transaction. Then,
the scheduler requires locks for the tables to be accessed on each database replica in the order of
the version numbers. Thus, all conflicting operations are enforced to execute in an identical order in
all database replicas and 1-copy-SE is obtained. After being successfully scheduled, the client can
submit step-by-step the read and write operations of the transaction. The scheduler forwards each
write to all database replicas and returns to the client once the first database replica has executed
the write. A read is sent to a single database replica. This replica must have executed all previous
update operations of this transaction. Therefore, the approach is called conflict aware scheduling.
The distributed versioning protocol [8] is similar to the conflict aware protocol [7] except that
[8] uses a distributed version number per table instead of a lock. C-JDBC [24] implements a table-
based lock manager and uses strict 2PL. The scheduler waits until it receives responses from all
database replicas involved in the operation (one for reads, all for writes) before it returns a response

to the client.

2.2.7 Update everywhere based on group communication

In recent years many update everywhere protocols have been proposed [61, 90, 66, 67, 69, 103, 6,
68, 91, 90, 55, 56], that take advantage of multicast primitives provided by group communication
systems (GCSs).

GCSs are complex software systems and have been well studied [18, 15, 28]. Examples of group

communication systems include Spread [114], JGroups [49], ISIS [57], Horus [99], Ensemble [41],



Chapter 2. Background 20

Transis [37], and Totem [81]. They provide powerful primitives and have shown to be a useful
abstraction for replicated and fault-toleranct systems [16]. A GCS provides multicast primitives
which multicast a message to all members of a group with two semantics®. Namely, the GCS
delivers messages in a certain order and with a certain reliablility.

The ordering semantics that are interesting in the context of database replication are unordered,
FIFO (messages of one sender are received in sending order by all members), and total (for each
two members receiving message m and m/, both receive them in the same order).

The reliability semantics are unreliable (no guarantee that a message will be received by all
members), reliable (whenever a member receives a message and does not fail for sufficiently long
time, then all other group members will receive the message unless they fail), and uniform reliable
(whenever a member p receives a message, all other members will receive the message unless they
fail, even if p fails immediately after the reception). Additionally, choosing uniform reliable deliv-
ery, even if a member receives a message and then crashes, then all members that do not crash will
not only receive the message but receive it before they are informed about the crash.

[121, 122] summarize database replication protocols using GCSs. A main categorization of pro-
tocols based on GCSs is when multicast takes place and what is multicast. We can either multicast
the whole transaction before execution (see Figure 2.3.(a)) or multicast the changes performed by a
transaction after execution (see Figure 2.3.(b)). Let’s discuss some of the proposals in more detail.

[72, 61, 6, 90, 38] work as Figure 2.3.(a). They are middleware-based approaches. They require
that all operations of a transaction must be known at start time. Read-only transactions are executed
at the replica they are submitted to. A transaction request for an update transaction is multicast
in uniform reliable and fotal order. Since fotal order guarantees transaction requests are received .
in the same order at all replicas, the commit order of transactions can be the same without further
coordination among sites. [6, 5] apply the transactions at each site serially. In [61] transactions
request all necessary locks on tables in the same order at all sites upon receiving the transaction
request. [61] defines different primary sites for different transactions. A transaction is executed
only at its primary after all its locks are granted, then its changes will be multicast to other sites.

Other sites apply these changes again in the correct lock order.

*In here, we only introduce the concepts of GCS that are needed in our context.
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Figure 2.3: Update everywhere with GCS approach

Postgres-R [124] is kernel-based and works as Figure 2.3.(b). All databases are assured to
provide SI. A transaction executes first at the replica it is submitted to. After execution, its writeset
is multicast in total order to all sites for validation. If it conflicts with a concurrent transaction
whose writeset was delivered earlier, it will be aborted. Otherwise, its writeset will be applied
serially at remote sites according to the delivery order which is identical in all sites. Although not
formally shown in [124], the approach guarantees 1-copy-SI. Postgres-R is integrated into the kernel
of PostgreSQL. |

GlobData [103] also performs execution before multicast, as Postgres-R. Each data item has
a version number which will be increased upon a change being committed. Conflict detection is
based on the version number of data accessed by transactions. In order to detect both read/write
and write/write conflicts both the version numbers of data items read and the changes are multicast.
Conflict detection is done upon receiving such message in total order, possibly leading to aborts.
GlobData uses a GCS designed specially for WANs. The Database State Machine [92] works sim-
ilarly to GlobData. However, unlike GlobData, after local execution, only identifiers of the data
items read and written by update transactions and the changed values are multicast to other sites,
and read-only transactions just commit locally and their read sets are not multicast. All sites apply
and commit the changes serially if no conflicts are detected. Both GlobData and Database State

Machine provide 1-copy-SE. [40, 39, 73, 75] also work as Figure 2.3.(b).
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2.2.8 Fault-tolerance

While description above on replication approaches has focused on performance, there exist a wide
range of replication solutions specifically designed for fault-tolerance. A considerable part of early
research, such as [35, 46, 1], use database replication merely for fault-tolerance and/or high avail-
ability. Having more than one replica allows transactions to continue despite individual replicas not
being available.

Fault-tolerance is an important topic within the distributed systems community [58, 17, 25, 50,
52, 98]. Especially in the context of group communication systems, the development of group main-
tenance protocols and multicast primitives with delivery guarantees has received a lot of attention
[99, 81, 17, 37, 43].

Many of the replication protocols based on group communication systems, as described in Sec-
tion 2.2.7, take advantage of the reliability guarantees of the GCS to provide a fault-tolerant solution.
In particular, many exploit uniform reliable message delivery to guarantee that whenever a trans-
action commits at any replica, the transaction commits at all replicas that are currently available.
Recall that uniform reliable delivery guarantees that whenever a node receives a message, all sites
that are up sufficiently long will receive the message. Thus, if a replica receives a message related to
a transaction and commits the corresponding transaction, uniform reliable delivery guarantees that
the other available replicas will also receive the message, and thus, commit the transaction. Only
replicas that have crashed might not receive the message. They have to execute and commit the
transaction upon recovery. In contrast, if only reliable delivery is used, then a site might multicast
a message, receive it locally, commit the corresponding transaction locally, and then crash before
any other site receives the messag;:. Thus, the other sites will not commit the transaction and the

transaction is lost.

2.2.9 Load balancing

In primary copy approaches, all update transactions must be executed at the primary replica. How-
ever, read-only transactions can be executed at any replica. For update everywhere approaches, any

transactions can be executed at any replica. This faciliates load balancing techniques.
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Several lazy primary copy approaches attach a freshness index to secondary replicas [13, 51,

104, 45, 4] that indicate how much the secondary copies lag behind applying the updates from
" the primary copy. Typically, answers can be retrieved faster on staler copies. Thus, one has the
possibility to trade accuracy of the returned data with the speed of receiving answers.

[95, 96] design a multi-instance database to support different applications at the same time.
Each database instance is replicated using a lazy primary copy approach. There are two kinds of
servers for different usage. The servers with reliable hardware support, such as Redundant Arrays
of Independent Drives (RAID) [27], are used ‘as masters, while the severs with lower reliablity
guarantees are used as secondaries. All database instances share the servers. The load can be
distributed among the severs for efficient resource untilization.

In the context of eager, update-everywhere protocols with a central scheduler, [9] exploits sev-
eral load-balancing strategies to distribute the load over a replicated database cluster. The paper
explores strategies that take query type, locality and expected execution time into account. In
[26, 111], the authors explore how database replicas can join or leave a cluster in order to provide

the proper amount of replicas to handle a dynamically changing workload.

2.2.10 Partial replication

So far, we have focused on full replication where each replica has copies of all data items. Using -
partial replication, not each data item is replicated at each site. If there are n instances of the
database system, then each data item has between 1 to n data copies. The advantage is that update
costs can be reduced [85]. Whenever a data item is updated not all replicas have to apply the change
but only those that have a copy of the data item. Thus, more resources are available to execute further
transactions. Furthermore, if data is replicated in a WAN, partial replication can significantly reduce
the message overhead to keep remote replicas up-to-date.

However, partial replication faces its own challenges. Firstly, if no replica has all data items
that a transaction wants to access, then either such transactions cannot be executed or transaction
execution becomes distributed. This is particularly challenging if a read operation such as a complex
SQL statement has to be distributed across several replicas. Furthermore, if a read operation wants

to access a data item where no local copy is available, the read operation requires a remote access
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resulting in high latency.

[54] proposes an epidemic protocol for partially replicated databases. The protocol aims at a
WAN environment. Each data item has one or more permanent sites that always have a copy of the
data item. Other sites may have a temporary cached copy. Read- and writesets are propagated to
maintain consistency. If a data item is not stored at the site where the transaction executes, a request
is sent to one of the permanent sites and propagated with the associated lock table information.

The aforementioned Database State Machine approach has also been extended to partial repli-
cation [112]. Partial replication has also been studied in [23]. Transactions are parsed in order to
determine the sites where the transaction can be executed. This may lead to full replication when
there are complex requests.

In the context of file systems and web severs, there has been considerable work on replica
placement [65, 64, 70, 105, 117]. Many approaches provide heuristics of where to place data in
reasonable way considering parameters such as average network latency, cache and disk capacity,
and hit ratio. These approaches, however, are often not directly applicable to database replication,
because requests typically only access one individual file. Thus, issues such as concurrency control,

distributed queries, etc. can be ignored.

2.2.11 Commercial approaches

Basically éll major database vendors provide their own replication solutions. They all prefer lazy
approaches for performance reasons and primary-copy approaches for consistency reasons. They

are all kernel-based approaches.
Oracle 10g Replication [100]

Oracle Enterprise Edition provides replication functionalities but its standard edition does not. Note
that Oracle Enterprise Edition costs $20,000 USD per license. According to the documentation
of the latest version of Oracle, v10g, Oracle provides two kinds of replication, asynchronous and

synchronous.
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Asynchronous replication is actually lazy replication. Oracle provides two kinds of lazy ap-
proaches, lazy primary copy and lazy update everywhere. Snapshot replication, also called read-
only materialized view replication, is the lazy primary copy approach in Oracle. In snapshot repli-
cation, a snapshot (i.e., materialized view) is created at the unique primary and delivered to other
sites. The materialized view is read-only but is refreshed at regular time interval.

Another option of asynchronous replication is to use updatable materialized views, also referred
to as multi-master approach. This correponds to lazy update everywhere replication. An update
transaction executes and commits at its local replica and then its changes are propagated to other
replicas. Since lazy update everywhere may result in two concurrent transactions update the same
data item at two different replicas, data reconcilation is needed. Thus, the replication tool has
to detect such conflict and make sure that all replicas eventually converge to the same value for
each data item. The Oracle replication management tool resolves conflicting transactions by using
prebuilt conflict resolution methods. The update message contains z’s old and the new value. When
a replicas receives an update message with (x-old, x-new) and its current value of z is not equal
to x-old, it knows that two concurrent transactions updated z. It then uses one of several existing
resolution methods such as taking the maximum of the new value and the local value, or taking the
value from a priority site. These methods do not guarantee data consistency in all cases. They are
only applicable to specific applications and setups.

Oracle also provides synchronous replication which corresponds to eager update everywhere
approaches. It uses a Two-Phase-Commit (2PC) to make sure all replicas commit a transaction.

2PC is expensive in terms of message overhead and latency.
Microsoft SQL Server 2005 Replication [80]

In general, Microsoft SQL Server 2005 provides replication approaches similar to the ones of Ora-
cle. Microsoft SQL server 2005 provides three kinds of replication solutions, i.e., snapshot replica-
tion, transactional replication, and merge replication. Thé first two are for replication from server
to server. The last one is for replication from server to client.

Snapshot replication in SQL server is very similar to that in Oracle. A snapshot is created at a
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primary site and then propagated to secondary sites. Snapshots are usually read-only. In this case,
snapshot replication is a lazy primary copy approach. SQL server also supports snapshots which can
" be updated occasionally. This corresponds to lazy update everywhere. A list of conflict resolution
methods are provided by the replication management tool of SQL server. The methods are also the
same as those in Oracle. Note that snapshot replication propagates snapshots at regular time instead
of for each update transaction.

Transactional replication propagates changes on a per-transaction basis. There are three kinds of
transactional replication, namely, standard, updatable subscriber, and peer-to-peer. Standard trans-
actional replication is a lazy primary copy approach. Updatable subscriber transactional replication
corresponds to update everywhere. It is further categorized into immediate updating and queue
updating. Immediate updating uses 2PC which corresponds to eager update everywhere. Queue
updating corresponds to lazy update everywhere. Conflicts are detected and resolved according to
the conflict resolution policies. Peer-to-peer transactional replication is a multi-master approach
which requires a careful partition of the data. It enables updates at different sites each of which is
the primary of a different partition. Note that foreign key constraints and updatable primary keys
are not supported in SQL server replication environments. Snapshot replication has less overhead"
than transactional replication because there are less data monitoring and propagation.

Merge replication is a lazy update everywhere approach using conflict resolution. It is similar

to updatable snapshot replication but is designed for server to client replication.
Sybase Replication [101]

Sybase has provided replication since 1993. It supports both transactional and non-transactional
replication. In regard to transaction replication, Sybase supports One Primary - Multiple Secondary
(i.e., lazy primary copy in our definition), and Multi-Master. It does not support lazy update every-

where replication.

2.3 Our approach

The goal of our approach is to overcome some of the limitations of existing solutions.
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e We want to have an update everywhere approach because primary copy approaches have
some inherent limitations that cannot be avoided. Firstly, the primary copy might become a
bottleneck because it has to execute all update transactions. The only primary copy approach
that avoids this is one that allows different data items to have different primary copies. How-
ever, that restricts which data items a transaction might update. Secondly, the application
must submit all update transactions to the primary copy, or transactions must be declared as
read-only or update at start of transaction so that they can be automatically redirected to the
primary or secondary copies, or transactions that are submitted to a secondary will be aborted
upon submitting their first write operation. All three options are not desirable. We want to
have the option to submit any transaction to any replica in order to be transparent to the

application and have the potential for load-balancing.

e We want to have an eager approach because only in this way, complex conflict resolution
can be. avoided and complete fault-tolerance can be achieved. If updates are submitted only
after commit and a replica fails after committing but before propagating the updates, data
inconsistencies arise. In contrast, if updates are propagated before commit, all replicas are
aware of such a transaction in the failure case. However, albeit being eager, we want to
keep the delay associated with eager replication as low as possible even in WAN settings. In

particular, we aim at not providing significantly worse response time than lazy approaches.

e We want the replicated system to run under snapshot isolation due to the advantages snapshot
isolation has shown in non-replicated systems compared to traditional serializability. More-
over, most existing update everywhere approaches do not consider integrity constraints so
that they do not work with databases with integrity constraints. Thus, our protocols should be

based on 1-copy-SI and also consider integrity constraints.

e Our protocols should work at the middleware level in order to exist as an independent com-
ponent and work with a heterogeneous environment. At the same time, they should avoid
many disadvantages of existing middleware-based approaches. That is, they should provide
concurrency control at the record level and not at the table level or other “coarser” concur-

rency levels. Furthermore, they should not pose any specific reqhirements at the application.
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Instead, they should work with any legacy application accessing the database through a stan-

dard interface such as JDBC [113].
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Snapshot isolation and integrity

constraints in a replicated system

Up to now, the most common correctness criterion for replicated databases has been 1-copy-serializability
(SE) and most replica control protocols are based on 1-copy-SE. A replicated database system pro-
viding 1-copy-SE behaves as there were only one logical copy of the database providing SE.

However, snapshot isolation (SI) is becoming more and more popular since its implementation
provides more concurrency as protocols implementing SE such as strict 2PL. Although SI is a
weaker isolatioh level than SE, i.e., it allows some anomalies that are not possible under SE [12], it
actually avoids all the ANSI phenomena [11]. Therefore, popular database systems such as Oracle
and PostgreSQL do not provide SE at all but only run SI. Furthermore, they indicate that they
provide SE according to ANSL

Many of the replica control algorithms providing 1-copy-SE assume that the database replicas
provide SE, and, e.g., use strict 2PL as concurrency control mechanism. This assumption is not
valid if systems such as Oracle and PostgreSQL are used. For instance, if the database system runs
ST as its highest isolation level, strict 2PL at the middleware level does not work. In this case, the
system might not provide 1-copy-SE anymore. Let’s look at an example with the initial values of
x=0, y=0, and z=0. There are two transactions 7 and T,. T} wants to read z and y, and then writes

z to 1. T5 wants to read z and z, and then writes y to 2.

29
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Assume locks are acquired subsequently at the middleware level according to strict 2PL but
the underlying database provides only SI. Tj and T can start concurrently in one of the databases
since they only require read locks on z at their first operations respectively. After the execution of
their first operations, let’s assume 73 acquires read lock on ¥ and write lock on z before T5. The
read operation of 75 on z is blocked by T3 since T} is holding a write lock on z. T3 resumes after
T commits. However, 75 does not read the version of z committed by T since the underlying
database only provides SI. Instead it reads the version committed before 77 commits. It will lead to

the following history in the underlying database.

HSI3 : ’/‘1(.’E, 0)77'2(:8’ 0),1"1(y, O)a w1 (Z’ l)a C1, TQ(Z’ 0), w?(y7 2), C2

A serial history equivalent to Hgy3 needs to serialize T} before T3 due to 3 (y, 0) and wo(y, 2).
However, w1(z,1) and ro(z,0) indicate that 77 should be serialized after 75. Obviously Hgy3
is not a serializable history but a SI history. The replicated database systems does not guarantee
1-copy-SE!.

The problems above motivate us to apply SI to a replicated environment and derive a corre-
sponding global transaction isolation level, which we denote as 1-copy-SI. A replicated database
under 1-copy-SI should behave as a non-replicated database that runs under SI. Using 1-copy-SI,
we aim at achieving better performance than 1-copy-SE. Firstly, since SI allows more concurrency
than SE, this increased concurrency should lead to improved throughput in the replicated case. Sec-
ondly, since SI is only concerned with write/write conflicts, we do not have any overhead in regard
to reads at the replica control level. This simplifies the replication tool and can also save communi-
cation overhead compared to some 1~co§y-SE protocols that require to send information about read
operations for concurrency control purposes.

In this chapter, we provide a formal definition of 1-copy-SI, a correctness criterion for replicated
databases. Our definition is based on the formalism introduced in [2, 3], denoted as Generalized

Isolation Definition (GID), to reason about Snapshot Isolation. We then give some necessary and

To achieve 1-copy-SE, the acquisition of locks at middleware levels must be atomic which is not required by strict
2PL. Actually many middleware based protocols follow this strategy such as [7, 61, 90].
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sufficient conditions for a replicated history to be 1-copy-SI. Then, we extend the formalism to
be able to express integrity constraints (IC) in a way that conforms with how they are handled in
existing commercial systems that run under SI. From there, we derive an extended correctness cri-
terion, denoted as 1-copy-SI+IC which provides snapshot isolation and proper handling of integrity
constraints in a replicated environment. Again, we identify conditions that allow us to determine

whether a given replicated history is 1-copy-SI+IC.

3.1 Snapshot Isolation (SI)

[12] gives a first, rather informal description of SI. SI is defined by two properties. The first property,
referred to as Snapshot-Read property by [2], indicates that a transaction 7" on SI reads data from a
snapshot which contains all updates committed before T starts (plus its own updates). The second
property, referred to as Snapshot-Write property by [2], indicates that no two concurrent transaction
may write the same object. That is, if two concurrent transactions both want to write the same data
item only one of them will be allowed to commit. Snapshot isolation avoids the ANSI anomalies
[11] but is not serializable in the strict sense. We gave an example in Section 2.1.2.

Despite not being serializable, SI is attractive because it generally allows for more concurrency
than strict 2PL. Thus, database systems such as Oracle, Microsoft SQL Server, PostgreSQL now
support it. Commercial systems usually implement Snapshot-Read via a multi-version system: a
write of transaction T on data item z creates a new version, a read of transaction 7" on data item
x reads the last version of = that was committed before T started (or its own version if it has
created one). Thus, reads do not set any locks. Snapshot-Write is typically implemented by letting
transactions set long exclusive locks on data items they want to write. When 1" receives the lock on
z, T checks the latest committed version of z. If it was created by a transaction 7" concurrent to T’
(i.e., T' committed after T started), then T aborts, otherwise it performs the update and continues
execution. This is often denoted as first-updater-wins technique. Alternatively, transactions could
perform their updates optimistically and only check at commit time whether a concurrent transaction
that already committed had conflicting updates. This technique is denoted as first-committer-wins

strategy.
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Having no locks for reads can increase concurrency significantly. However, aborting one of two
concurrent transactions having conflicting writes can lead to higher abort rates than standard strict
2-phase-locking.

Our correctness reasoning is based on the formalism introduced in [2, 3], denoted as GID. In his
thesis [2], Adya defines GID and uses it to reason about various isolation levels in a non-replicated
environment, including snapshot isolation. GID is a very powerful tool and allows reasoning about
correctness that is independent of the actual implementation. In the remainder of this section, we
present GID for snapshot isolation. We only slightly modify the notation to adjust it better to our

needs.

3.1.1 Transactions and histories in General Isolation Definition (GID)

A data item z (also referred to as object) of the database has a life time from its initial unborn
version; Tinit, t0 its dead version, x4eqq created by a transaction deleting z. A transaction 7; starts
with a start operation s;, then contains a sequence of read and write operations, and terminates with
a commit operation (i.e., ¢;) or an abort operation (i.e., a;). A transaction 7; creates a version z; of
object z by performing a write operation w;(x;). If T; reads x it reads a specific version x;, denoted
as ri(x;). If T; writes z, then it installs z; when it commits. For simplicity, we assume T; will not
read or write the same object twice, and if it reads and writes an object, it performs the read before
the write.

Let T be a set of transactions. A history H over 7 describes the execution of the transactions
in 7 and consists of two parts. Firstly, it has a partial order?, called time-precedes order <;, over all

operations of transactions of 7 with the following properties:

1. Itincludes the order in which operations within a transaction are executed. That is, for any two
operations o;; and o;, of T; € 7, if 0;; happens before o, in the execution, then 0;; <; 0.

In particular s; <; ¢;.

2. If w; (a:,) and rj(m,;), then ’Ll)z(.’L‘z) =<t Tj (.’L‘z)

?Partial order in this thesis refers to an order < with irreflexivity (i.e., ~(a < a)) and transitivity (i.e., (a < b)) A (b <
¢) = (a <o)
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3. For any two committed transactions T; and T}: either ¢; <; s;j or s; <z ¢;.

Secondly, H provides a version order, <, that is a total order on the versions of each committed
object. For any object x, z;y; is always considered the smallest object version.

For convenience, we will present a history H as a sequence of operations (i.e., start, read, write,
commit, abort) with a total order (from left to right) consistent with <;. Furthermore, we omit that

Zingt 1S smaller than any other version of . For example, consider the history H.,,ite—order:

Hyrite—order: S1, 52, w1(1), wa(x2), wa(y2), €1, 2, $3,3(21), €3, 54, wa(ys), a4 [T2 K 1, Y2]

This history shows how little restrictions are actually in place. In here, xo is ordered before x;
in the version order, although in %t, wi(z1) is ordered before wa(z2), and also the commit order
is c1 before co. Furthermore, 13 reads x; although xo was created later. Furthermore, y4 is not
considered in the version order since it was created by an aborted transaction.

In the following, our example histories often do not start with an empty database but assume that
before the history H over a set of transaction 7 started, there executed transactions, e.g., transaction
Th, that committed before H started. If Ty wrote object version zg, then we assume that zo < z;

for any transaction 7; in 7 that writes « during H.

3.1.2 Snapshot isolation in GID
[2] now formally defines Snapshot-Read and Snapshot-Write as follows:

Definition 1. Snapshot-Read. All read operations performed by a transaction T; occur at its start

point. That is, if ri(x;) occurs in history H, then:
1. ¢; <¢ s;, and
2. if wi(z) also occurs in H(j # k), then either

(a) s; <¢cy, or

(b) ¢k <t siand zp, L zj
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Definition 2. Snapshot-Write. If T; and T; are concurrent and both commit, they can not both
modify the same object. That is, if w;(x;) and w;j(x;) both occur in history H, then either c; <; s;

or c; <t S;.

GID makes use of data-flow graphs to reason about the properties of a history. In the context
of SI, it introduces the notion of a Start-ordered Serialization Graph (SSG), that records the depen-
dencies between transactions for a given history H over 7. In the following, we say T directly
write-depends on T; if both write a common data item x and z; and x; are consecutive versions of =
in H’s version order. T} directly read-depends on T; if it reads a version of an object created by 7.
Tj directly anti-depends on T; if T; reads a version of an object x and T} creates z’s next version in
the version order. T} start-depends on T; if T; commits before T} starts in the time-precedes order.

The dependency definitions are summarized in Table 3.13.

Definition 3. Start-ordered Serialization Graph (SSG). The SSG(H) of a history H over a set
of transaction T is a directed graph where each node in SSG(H) corresponds to a committed
transaction in H, and there is a write-, read-, anti-, or start-dependency edge from T to T} iff T}

directly write-, directly read-, directly anti-, or start-depends on T}, respectively.

In the following, given the SSG(H) of a history H, we denote as T; ww? T; a path in the graph
+
from T; to T; consisting only of write-dependency edges. Similarily, we denote as T; AR T; a path
in SSG(H) with only start-dependency edges.

From there, GID identifies five phenomena that a history must avoid to be SI.

e G-la: Aborted Reads. A history H over 7 exhibits phenomenon G-1a if it contains an
aborted transaction 77 and a committed transaction 75 such that 75 has read some objects

modified by 77.

e G-1b: Intermediate Reads. A history H exhibits phenomenon G-1b if it contains a com-
mitted transaction 7% that has read a version of object x written by transaction 77 that was
not 77’s final modification of x. We do not further consider this phenomena because our

transaction model assumes that each transaction only writes an object at most once.

3GID also considers predicate read and write operations. For simplicity, we do not discuss them but we believe our
definitions and theorems can be easily extended to accomodate them.
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Dependency Type Description SSG Edge name

Directly write-depends | T; installs z; and T} in- | T; A T; | write-dependency edge
stalls z’s next version
Directly read-depends | 7T; installs «; and z; is the | T; — T} | read-dependency edge
same version of x in Tj’s
read

Directly anti-depends | T; reads x and 7} installs | T; 7L T; | anti-dependency edge
Z’s next version

start-depends Tj starts after T; commits | T; 3, T; | start-dependency edge

Table 3.1: Dependencies (based on Fig. 2 in [3])

e G-1c: Circular Information Flow. A history H exhibits phenomenon G-1c if the direct
serialization graph SSG(H ) contains a directed cycle consisting entirely of write-dependency

and read-dependency edges. We refer to such cycle as a G-Ic cycle.

e G-Sla: Interference. A history H exhibits phenomenon G-Sla if SSG(H) contains a read-
or write-dependency edge from T; to T; without there also being a start-dependency edge

from T; to 7.

e G-SIb: Missed Effects. A history H exhibits phenomenon G-SIb if SSG(H) contains a
directed cycle with exactly one anti-dependency edge. We refer to such cycle as a G-SIb

cycle.

GID defines an isolation level PL-SI corresponding to SI as the one in which the Gla, G1b, Glec,
G-SIa, and G-SIb phenomena are disallowed. Roughly, Gla-c capture the essence of dirty read and
dirty write while G-SIa-b capture the essence of violating Snapshot-Read and Snapshot-Write.* For
the convenience of discussion, we refer to a history as a SI-history if it avoids phenomena G-1 and

G-SL.

Example 1. H,,,_ss is not a Sl-history while Hgy is a SI-history. Their SSGs are shown in
Figure 3.1 and 3.2 respectively. We assume that a transaction Ty installs version xo and yg before

the transactions Ty to T3 start.

*We refer to [2, 3] for the proofs that G1 and G-SI are necessary and sufficient conditions for a history to provide
Snapshot Read and Snapshot Write.
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/’/’ ) \‘\
T —"~ T, T3 Ty ="~ T
Figure 3.1: SSG(Hpon—sr1) in Example 1 Figure 3.2: SSG(Hgy) in Example 1

Hpon—sI: 81, $2,83,73(20), w1(21), c1, m2(1), w2 (y2), c2, w3(y3), ez [T1,y2 K ¥3]

Hsr: s1,82,53,73(20), w1(x1), 1, r2(0), wa(ya), c2, w3(ys), as  [z1, Y]
In both H,,,,_s1 and Hgy, T installs the version x1 following xo. In Hy,on—s1, T5 reads the ver-

sion of = created by T (ro(x1)). This violates Snapshot-Read because Ty has not committed at the
time Ty starts. Correspondingly we can see that there is a Ty ~ Ty edge but no Ty 5, T5 edge
in SSG(Hpon—sr1) (Figure 3.1). This means Hyon—gs1 has phenomenon G-Sla. Moreover, Ty and
T3 both write y concurrently and both are allowed to commit. This violdtes Snapshot-Write. Cor-
respondingly we can see that there is a T T edge but no T LN T3 edge in SSG(Hpon—s1)-
Furthermore, there is a G-SIb cycle Ty ~—— Ty == Tj it Ty in SSG(Hpon—sr1) having exactly
one anti-dependency edge. Thus, Hy,—sr also has phenomenon G-SIb.

In Hgy, Ts reads x from Ty instead of Th (r2(zo)). This is correct, because Ty started after
To committed. Although T1 and Ty are concurrent, both are able to commit because they write
different objects. However, T3 is aborted because it writes y, is concurrent to T, and Ts commits
(only one may commit). Figure 3.2 shows SSG(Hgy). It is easy to verify that Hgy avoids phenomena
G-1a, G-1b, and G-Sla. Since SSH(Hgg) is acyclic, G-1c and G-SIb are avoided. Hence, Hgsy is a
SI-history.

3.1.3 Observations

Here we discuss some further observations and properties of SI-histories and general histories and
their SSGs. They will be useful when we discuss SI in a replicated system.
First of all, we want to point out a property that holds in the SSG(H) of any history H. Figure

3.3 shows an illustration of this property. -

Proposition 1. Let H be a history over T. Let T;,T; € T be two transactions writing x, and
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Dependency | Order Requirement in SI-
history

5
T —T; |ci=t8;

T
y o T, =5 T,
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Ti——>Tj 8; <t Cj
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Ti. € T be a transaction reading x. If T; = T; and T; =L Ty, are two edges in SSG(H), then
Tk AN T} appears in SSG(H).

ww . . . . wr
Proof. T; — T); means that x; and x; are consecutive versions in z’s version order. T; — Tj,
means that T}, reads version ;. Since Tj installs the next version of x;, according to the construction

of direct anti-dependency edges, there must be a T SN T} edge in SSG(H). O

Secondly, we want to look at the relationship between dependencies and the start and commit
order of transactions. We have shown with our first example of a history, Hy,ite—order» that there
are generally very little restrictions of how operations are <;-ordered in a history. However, a
SI-history has quite strong properties in regard to the <;-order. Every dependency edge in the
SSG(H) of a SI-history H indicates some ordering between the start and commit operations of the
involved transactions. Table 3.4 indicates these ordering implications. Clearly, a start-dependency
edge between T; and T); means ¢; <; s; for any history H by definition. Furthermore, in order to
avoid G-Sla, the SSG(H) of a SI-history H must have a start-dependency edge whenever there is
a write- or read-dependency edge. This means, whenever there is a write- or a read-dependency
edge from T; to T;, we have ¢; <; s; in H. Finally, an anti-dependency T; BN T; implies
8; <¢ c¢; in H. Assume that this would not be the case. Then c¢; <; s; holds. Thus, there would
be a start-dependency edge Tj R T; resulting in a cycle between T; and T; with exactly one
anti-dependency edge. This is phenomenon G-SIb and avoided by SI-histories.

Finally, we caﬁ observe that in a SI-history the version order and <;-order of commit operations

are highly related.



Chapter 3. Snapshot isolation and integrity constraints in a replicated system - 38

Lemma 1. Let H be a SI-history over T and let T;, T; € T be two transactions writing x. x; < x;

iff ¢; <t Cj.

Proof. First, one has to note that when an object version z; appears in the version order, 7; must

have committed according to the definition of a history.

L. z; K< zj = ¢ <z ¢
By the definition of write-dependency edges (as in Table 3.1), if z; <« z;, then SSG(H)
has a path T; wwy Tj consisting only of write-dependency edges . Since H is a SI history, it
avoids G-SIa, and each write-dependency edge is accompanied with a start dependency edge.
Thus, we derive that SSG(H) also contains T; S—+> T;. This, together with s; <; c; results

ins; <¢c; <¢... =<y 85 <¢ Cj. Hence, c; < Cj.

2. ¢ < ¢ = x; L Xy
Assume z; < z;. Based on the first part of the proof above, c; <; ¢;. Hence, ¢; <; ¢; <¢ ¢;

- which is impossible since < is irreflexive. Thus, z; < z; must hold.
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3.2 Snapshot isolation in a replicated system

In this section we extend the notion of SI to a replicated environment. In order for a replicated
database to provide a certain level of isolation, it should behave like a non-replicated database that
runs under this isolation level. The concept of 1-copy-SE is well known and understood ([14]).
It requires the execution in the replicated system to be equivalent to a serial execution in a non-
replicated system. In this section, we formally define what it means for a history to be 1-copy-
snapshot-isolation (1-copy-SI), and discuss necessary and sufficient conditions for a history to be

1-copy-SL

3.2.1 Transactions and histories in a replicated database

A replicated database consists of a set of replicas R each of which keeps a copy of the database.
Our model follows a Read-One-Write-All (ROWA) approach in which each update transaction has
one local replica that performs all its operations. The transaction is called local at this replica, and
remote at the other replicas. Only the write operations of a transaction are applied at the remote
replicas. Hence, all replicas execute the same set of update transactions, but an update transaction
T; has a readset RS; consisting of all read operations only at one replica‘while it has the same
writeset WS, consisting of its write operations at all replicas. Read-only transactions, in contrast,

only exist at the local replica. We express this by using a ROWA mapper function.

Definition 4. Mapper function. A ROWA mapper function, rmap, takes a set of transactions T
and a set of replicas R as input, and transforms T into a set of transactions T' = rmap(T,R).
rmap(T, R) transforms each update transaction T; € T into a set of transactions {T|R* € R}.
In this set there is exactly one local transaction T} where W St = W S; and RS} = RS; (T; is local
at R'). The rest are remote transactions T, where WS = WS, and RS}=® (T; is remote at R").
A read-only transaction T is transformed into a single local transaction. T! with RS} = RS;. We

denote as T* = {TF|TF € T'} the set of transactions executed at replica RF.

Executing 7" at the replicas R leads to what we denote a replicated history.
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Definition 5. Replicated history. Let T be a set of transactions, R a set of replicas and rmap a
ROWA mapper function generating T' = rmap(T,R). Let RH* be a local history over T* at
R* € R. We denote the union over all local histories RH* as a replicated RH over rmap(T,R),
ie, RH=|JRH* RFeR.

3.2.2 1-copy-SI

We now have to define when a replicated history provides 1-copy-SI, i.e., when it is equivalent
to a Sl-history over a non-replicated database. We model this by requiring a replicated history
over T=rmap(7, R) to have the same dependencies between read and write operations as a non-
replicated SI-history over 7. In GID, any such dependency is captured by the means of a write-
, read- or anti-dependency edge in the SSG. A replicated RH is the union of the subhistories
RHP at the different replicas. Each RHF has its own SSG(RH®) reflecting the dependencies that
occurred in this history. The union of all these SSG's reflects the sum of all dependencies. Thus, an
equivalent, non-replicated SI-history has to have the same dependencies. We first define these set

of dependencies as a graph:

Definition 6. Union Serialization Graph (USG). Let RH = | JRH k be a replicated history over
rmap(7T, R). We denote as USG(RH) the following graph.

1. For each R* € R, if SSG(RH¥) has node TF € T*, then USG(RH) has a node T;.

2. Foreach R* € R and each write-, read-, or anti-dependency edge from TF to TJ’c in SSG(RH"),
USG(RH) has a corresponding write-, read-, or anti-dependency from T; to T}.

3. There are no further edges or nodes in USG(RH).

Definition 7. I-copy-SI. Let RH = |J RH* be a replicated history over rmap(T,R). We say RH
is 1-copy-SI if

1. Foreach R* ¢ R, RH* isa SI-history.

2. For all update transactions T; € T and for all R¥,R' € R : ¢f < ¢..
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Figure 3.5: SSGs of Example 2

3. There exists a SI-history H over T such that,

(a) SSG(H) and USG(RH) have the same nodes;

(b) SSG(H) has exactly the same write-, read-, and anti-dependency edges as USG(RH).

(1) means that the histories at all replicas must be SI-histories. In the following we often refer
to them as the local histories. (2) means all local histories must commit the same set of update
transactions. Finally, (3) means a SI-history over the original set of transactions must exist with the

same dependencies. We refer to this non-replicated history over 7 often as a global history.

Example 2. In this example, there are two replicas R* and RE. Transactions Ty, Ty, and Ts are
local at R while Ty is local at RE. The replicated history RH eyact—edge is the union of the local
histories RH* and RHEB

ezact—edge ezact—edge

RHQaacte—edge : Sjlqawf(xl)awiq(yl)ac?ﬁé,w?(xQ)a S?a Cé,?‘?(:ﬂl),cé ["171 < m%yl]
RHeB;:act—edge : SlB’wlB(wl)?wlB(yl)’01B7323’w2B($2), vacé:}»rf(yl),cf [z1 < z9,91]

SSG(RHg}wct_edge) and SSG(RH gmt_edge) are shown in Fig. 3.5. For simplicity, the super-

script A and B at the transactions are omitted. It is easy to verify that both RH4 and RHB

are SI-histories. USG(RH) is the union graph of all write-, read- and anti-dependency edges of
SSG(RHQ:GCt_edge) and SSG(RHgact_edge). _
We can show that the replicated history RHeyact—edge is 1-copy-SI by building the following

global history Hezact—edge over {11, T2, T3,T4}:

Hezact—edge: 81, w1(z1), wi(y1), c1, S2, wao(z2), 83, S4, €2, r3(1), c3,74(y1), ca

[z1 < z2,y1]
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SSG(Hegact—edge) is shown in Fig. 3.5.(c). It has exactly the same write-, read- and anti-dependency
edges as USG(RH ezqct—edge ). We can also easily see that H avoids G1 and G-SI. Hence, RHezoct—edge

is 1-copy-SIL.

In above example, we have shown that RHzqct—edge i 1-copy-SI by constructing a non-replicated
history Hezact—edge that fulfills the conditions of the 1-copy-SI definition. However, constructing
an appropriate non-replicated global SI-history for an arbitrary replicated history that fulfills the
1-copy-SI property is not always trivial. Furthermore, in case a replicated history is not 1-copy-SI,
it is difficult to prove that no global SI-history with the appropriate properties exists. Thus, we need
a more convenient way to determine whether a replicated history is 1-copy-SI.

For 1-copy-serializability and ROWA, [14] simply checked whether the union of the serializa-
tion graphs of the histories at the different replicas are acyclic. The question arises, whether we can

simply check USG(RH) to determine whether the execution is 1-copy-SI or not.

3.2.3 Necessary conditions for a replicated history to be 1-copy-SI

It is clear that if USG(RH) has a G-1c or G-SIb cycle, then RH cannot be 1-copy-SI because it
is not possible for a SI-history H to have a SSG(H) with the same edges. Our first question is
whether any other characteristics of USG(RH) can be determined that make it clear that RH is

not 1-copy-SI. Let’s have a look at an example.

Example 3. In this example, there are two replicas R* and R®. Transaction Ty and Ty are local
at R4, Ty and Ty are local at RE. We assume an initial transaction Ty created xo and Yo and

committed before the following execution starts.

RHII?ole : 31 y W ("El) 014’ 89,7 (ml) (yO) céa Sy, W (y4) C4 [ml,y4]

RHhole 34 ) Wy (y4) CE?SS )T (y4),r3 (.”Co),cs ,SlBa wy (xl)’cl [‘7"1’94]

SSG(RH f:‘ol ) and SSG(RH, ilfol o) are shown in Figures 3.6.(a) and (b) respectively. The USG(RH)
shown in Figure 3.6 (c) has no G-1c or G-SIb cycles. Still, RHy, . is not 1-copy-SI.
We show by contradiction that RHp, is not 1-copy-SI. Assume RHp,e is 1-copy-SI. Then
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Figure 3.6: SSGs of Example 3

there must be a global SI-history Hy,q. which contains the same write-, read-, and anti-dependency
edges as USG(RH},,1). Hence, based on T BNy X i Ty in USG(RHpoie) and Table 3.4, we
derive for the <-order of H:

TlgT2=>c1-<t32
rw = €1 <t C4
TQ-———>T4=>SQ-<tC4

W
Similarily, due to Ty 2 Ty — — Ty we derive:

T4ﬂ>T3==>C4-<t83
= ¢4 <t C1

TW : -
T3—~-—>T1$83 <t C1
This results in c1 <; c4 < ¢1 which is impossible since < is irreflexive. Thus, no Sl-history could

have a graph with above edges, and RH}, . is not 1-copy-SI.

The problem of RH}, is that a global SI-history can simply not behave in the same way. 77 and
T, do not conflict. So their order does not seem to matter. However, T3 reads x and y from a
snapshot after 7; commits but before 7 commits in R4. This indirectly requires T} to commit
before Ty. In contrast, T3 reads z and y froin a snapshot after 74y commits but before 7} commits
in R¥, indirectly ordering T} before T;. In a non-replicated history, only one of the snapshots is
possible, that is either 77 commits before T or it commits after T4 but not both.

The problem is that USG(RHp,.) (see Figure 3.6.(c)) has a cycle with more than one anti-
dependency edge. In principle, this is allowed by the definition of SI. But it turns out that the
particular cycle above is not possible in a non-replicated history.

Thus, we define a further phenomenon.

e G-SIb*: Anti-dependency cycle A history H exhibits phenomenon G-SIb* if SSG(H) has
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a cycle with at least one anti-dependency edge and each anti-dependency edge is prefixed by

a write-, read-, or start-dependency edge. We refer to such a cycle as a G-SIb* cycle.

G-SIb* refers to cycles where there are no consecutive anti-dependency edges®. Note that G-
SIb* actually includes G-SIb because if there is a cycle with exactly one anti-dependency edge, then
this anti-dependency edge must be prefixed with a non anti-dependency edge, i.e., a write-, read-,
or start-dependency edge. G-SIb* is a derived phenomenon, i.e., if a history avoids G-la-c and

G-Sla-b, then it automatically avoids G-SIb*.
Lemma 2. A (non-replicated) SI-history H over a set of transactions T avoids G-SIb*

Proof. Assume there is a SI-history H that has phenomenon G-SIb*. SSG(H) cannot have a cy-
cle with only one anti-dependency because it avoids G-SIb. Thus, SSG(H) has a cycle ¢ with
m (m > 1) anti-dependency edges and each anti-dependency edge is prefixed by a write-, read-,
or start-dependency edge. Firstly, we can easily derive that SSG(H) must have a cycle ¢’ with
m (m > 1) anti-dependency edges and all other edges in the cycle are start-dependency edges. This
is because whenever there is a write- or read-dependency edge between from T; to T} there is also
a start-dependency edge because of G-SIa. Thus, in the following, we only consider a cycle that
consists of m anti-dependency edges, all other edges are start-dependency edges, and each anti-
dependency edge is prefixed by a start-dependency edge. We can break the cycle into m sections.

+
Each section k € {0,...,m — 1} has the pattern T}, ~— Tjj, i T; . According to Ta-

(k+1)%m
ble 3.4, we can derive for the <;-order of H for each section k due to transitivity:
+
8
T, > Tj\, = cij, =4 Sjx
rw = Cig =t Cigey1ymm
T — — Ti(k+1)%m = Sjk =t Cii1ymm

If we now look at all sections, we obtain: c;, <z ¢;; <t * -+ <t ¢, <t Cifyr) " ° =t Cim—1 <t

ciy- Since < is irreflexive this results in a contradiction. O

Thus, coming back to Example 3, since USG(RH}o.) has a G-SIb* cycle, we can immediately
see that RH is not 1-copy-SI because there cannot be a global SI-history with the same dependency

edges (and cycle).

5SI allows cycles with two consecutive anti-dependency edges. Interestingly, [42] determines that histories that are SI
but not SE are exactly those that contain cycles with consecutive anti-dependency edges.
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In summary we observe the following necessary conditions to be 1-copy-SI: if a replicated

history RH is 1-copy-SI, then USG(RH) has no G-1c or G-SIb* cycles.

3.2.4 Sufficient conditions for a replicated history to be 1-copy-SI

It turns out that avoiding G-1c and G-SIb* is not only necessary but also sufficient for a replicated
RH history to be 1-copy-SI. That is, for a replicated history RH, if all local histories RH k are SI,
all R* commit the same update transactions, and U SG(RH) has no G-1c and G-SIb* cycles, then
RH is 1-copy-SI. In particular, we are able to construct a global SI-history H such that SSG(H)
has the same write,- read- and anti-dependency edges as USG(RH ). We start with some interesting

properties of a RH whose local histories are SI-histories.

Lemma 3. Let RH be a replicated history over rmap(T,R). At each RF € R, let RH* be a
SI-history over T*. Let each update transaction T; € T commit at either all or none of the replicas.

IfUSG(RH) has no G-Ic cycles, then for any T;, T; € T writing a common data item x and
for any replicas R4, RB € R: ¢ <, cf in RHA if and only if c? <, cJB in RHB. That is, two

conflicting committed transactions commit in the same order in all local histories.

Proof. Assume two write transactions T; and T; updating the same data object, and two arbitrary
replicas R* and RB. Since all local histories commit the same set of update transactions, we know
that if ¢P and P occur in RH® s0 do ¢f* and cf* in RH and vice versa. Now assume cf* <; cf! in
RH# and c? <; ¢ in RHP.

Let = be (one of) the objects that T; and T; both update. RH 4 defines a total version order
on z. Furthermore, since RH4 is a SI-history, based on Lemma 1, ¢; < c¢; implies z; < ;.
By the definition of write-dependency edges (as in Table 3.1), if z; < x;, then SSG(RH*), and
thus USG(RH), have a path T; wwy T; consisting of only write-dependency edges . Similarly,
cf <¢ cB in RHB will lead to T} vy T; in USG(RH). This results in USG(RH) having a cycle
consisting only of write-dependency edges. This contradicts the assumption that USG(RH) avoids
G-lc. 0

Lemma 3 indicates that all replicas must commit conflicting update transactions in the same order.
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Furthermore, Lemma 1 indicates that in an SI-history, the commit order of write transactions is
consistent with the version order of the data items they write. Since each local history RH* is a SI

history, we can derive the following:

Proposition 2. Let RH be a replicated history over rmap(T,R). At each R* € R, let RH* be a
SI-history over T*. Let each update transaction T, € T commit at either all or none of the replicas.

IfUSG(RH) has no G-1c cycle, then for each R¥, R' € R: z; < zj in RH* <= z; < z; in
RH'. That is, all local histories have the same version orders for all data items, and thus, the same

write-dependency edges in their SSG(RH).

Based on the discussion above, we can state sufficient and necessary conditions for a replicated

history to be 1-copy-SI as follows.

Theorem 1. 1-copy-lSI Existence Let RH be a replicated history over rmap(T,R). RH is I-copy-
SI if and only if the following holds

1. For each R* € R, RH* is a SI-history.
2. For all update transactions T; € T and for all R* R € R : ci-“ > cé.

3. USG(RH) has no G-1c or G-SIb* cycles.

Proof. To prove this, according to the definition of 1-copy-SI (Definition 7), it is sufficient to
show that we are able to construct a SI-history H over 7 with the same write-, read-, and anti-
dependencies as USG(RH).

Part (1): To construct a history H.

To construct H over 7, we have to build the <;-order of operations and the version order for all
objects. For transactions that abort, we can take any execution order. We will make sure that nobody
reads versions of aborted transactions to avoid G-1a. Then, we build a total order between start and
commit operations of all committed transactions which reflect the <; order these operations have in
H. This total order is derived from the dependencies in USG(RH).

Step 1: Partially ordering starts and commits. In order to obtain this total order we construct

a Start-Commit-Order Serialization Graph, SCSG(RH), in the following way.
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1. The vertices of SCSG(RH) are the start and commit operations of all committed transactions

(i.e., s; and ¢; for all T; in USG(RH)).

2. For each T; in USG(RH), there is an edge s; 2, ¢ in SCSG (RH). This reflects the fact

that the <;-order requires the start of a transaction to be before its commit, i.e., s; <; ¢;.

3. For each T}, T}, i # j in USG(RH) there is an edge ¢; — s; in SCSG(RH) iff T; = T;
in USG(RH) where e € {ww,wr}. This reflects the fact that these dependencies imply

ci <t sjina SI-history6.

4. Foreach T}, Tj,1 # jin USG(RH) there is an edge s; =, ¢; in SCSG(RH) iff T; N T;.

This reflects the fact that an anti-dependency implies s; <; cj7.

Now we show there is no cycle in SCSG(RH ), and thus there is a partial order of start and commit
operations. We do this by contradiction. Assume there is a cycle. It is important to note that all edges
in SCSG(RH) are placed between start and commit operations (i.e., there are neither s; &, $; nOr
ci N c; edges). Thus, without loss of generality, we can break the cycle into m(m > 1) sections:

R i
— Sjr — Cijgi1yim (where 0 < k < m)

Ciy,
In section k, the first edge c;, N sj, must be derived from a T;, —— T}, (e € {wr,ww}) in
USG(RH). The second edge s;, =, Ciggy1y%m MUSE be derived either by (a) the <;-order within
a transaction, i.€., jk = %(k4+1)%m» Of by (b) an anti-dependency between different transactions
T; N Ti(k 1)%m Uk # (k+1)%m)- We discuss all possibilities.

Assume that all edges of type s;, &, Ci(hy1)%m ATC derived by (a) (i.e., jk = i(k+1)%m)> 1€,
no edge was derived by an anti-dependency. Thus, the cycle in SCSG(RH) is due to a cycle in
USG(RH) that consists only of write- and read-dependency edges. However, USG(RH) does not
have G-1c cycles.

Therefore, there must be at least one section in the cycle such that s, i» Cigsoy 1y7m 1S due to (b)
(i.e., due to an anti-dependency). Note that s;, 2, Ci(j41)9%m MUSt be prefixed with a ¢;, 2, Sk

in the cycle. Thus, the cycle in SCSG(RH) must be due to a cycle in USG(RH) with one or more

SNote that we assume that a transaction does not read its own writes and only writes an object once, therefore there is
no T; “25" T; edge in USG(RH).
"Note that for T; — —> T; in USG(RH) we have already s; — ¢; in SCSG(RH) due to step 1.
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anti-dependencies where each anti-dependency is prefixed by a write- or read-dependency edge.
This contradicts the fact that USG(RH) has no G-SIb* cycles.

Step 2: Totally ordering starts and commits. SCSG(RH) so far defines a partial order be-
tween start and commit operations. We make this a total order (that is, connecting any start with any
commit) in the following way: For any c;, s;,% # j that are not connected in the graph (i.e., there
is no path from ¢; to s; or from s; to ¢;), we set s; &, ¢;. This will not lead to any new cycles by
construction.

Now we set the <;-order. between start and commit operations in 7 for our global history H
according to SCSG(RH). For any aborted transaction 7;, we just order the s; at the very beginning
(as sources of SCSG(RH)). We simply set a; immediately after its s;.

Step 3: Ordering write and read operations. Then we include the read and write operations
of each committed transaction 7; into <; of H by setting them after s; and before ¢; according to
the execution order within the transaction.

Step 4: Totally ordering versions of data items. We now have to determine the version order
of all versions created by committed transactions. According to Proposition 2, all local histories
RHF at the different replicas have the same version orders for all data items. We will use these
version orders for H.

Step 5: Determining the versions of read operations. Finally, we have to determine for each
read operation on z, the version that is read. We simply do this in the followingbway. Let T; have a
read operation on z. Let T); have a write operation on z, ¢; <; s; and there is no T}, T}, also writes
z,and ¢; <; ¢, < s;. Then we let T; read x;, i.e., we set r;(z;) in H. If no such T} exists, then we
set r;(xo) where x is the last committed version of x before any transaction in 7 started.

Part (2): SSG(H) has exactly the same write-, read- and anti-dependency edges as USG(RH)

Before we show that SSG(H) and USG(RH ) have the same dependency edges, we show a useful

property.

Lemma 4. If z; < zj in H, then c¢; <; c;j.

Proof. Since H has the same version order as any local history RH¥, we have z; < zjin RH k and

thus, there is a path T3, Tk, , ... T%,,, T; in USG(RH) consisting only of write-dependency edges. As
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Figure 3.7: Proof of Theorem 1, Part (2), 1.(b), USG(RH) if T}, == T

a result of constructing SCSG(RH ) and H, we have ¢; <; Sk, <t Ck,... <t Sk, <¢ Ck, <t S;j, and

thus ¢; <; s; <¢ ¢; in H. O

Write-dependency edges We first show that SSG(H) and USG(RH) have the same write-
dependency edges. This is true, because in Step 3 above we build the version order of each data
item in H to be the same as for any local history RH*. A write-dependency edge is defined as a
directed edge from one transaction installing a version of data item z to another transaction which
installs the next version of . Hence, SSG(H) and USG(RH) have the same write-dependency
edges.

Read-dependency edges We now show that SSG(H) and USG(RH) have the same read-
dependency edges.

1. We first show that whenever T; — T in SSG(H) due to r;(z;) in H, then T; =5 Tj in
USG(RH). Let T; be a transaction local in R! for RH. We show that in RHY, TJl cannot

read a later version than z; nor an earlier version than z;. Thus, it has to read z; in RH' and

T; 25 T in USG(RH).

(a) Assume T]l reads zy, and z; < zj in RH'. Then USG(RH) contains T}, Bl T;. This
results in ¢y, LN sj, and thus, in ¢, <; s; in H. At the same time, z; < x results in
¢; <t ¢ in H according to Lemma 4. Combined, we have ¢; <; ¢ <; s; in H. In this
case, however, when constructing H, according to step 5 of the construction of H, we
would not have chosen Tj to read the version z; because there is another transaction T},

that updated z and committed after T;. Thus, there would be no T; — T; in SSG(H).

(b) Assume le reads z, and =, < z; in RH'. Then USG(RH) contains T}, —» T;. Let

Ty+1 be the version that directly comes after xj, in the version order. At SSG(RH l),
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there is a TJl - T} 1 edge according to Proposition 1. Therefore, USG(RH) has a
T; B Ty edge (depicted in Figures 3.7.(a) and (b)). By construction, SCSG(RH)
has a s; N ck+1 edge and H has s; < i1

If k + 1 = i (see Figure 3.7.(a)), this results in s; <; ¢; in H. If 21 < ; (see Figure
3.7.(b)), then we have ciy1 < ¢; in H according to Lemma 4, and thus again s; <; c;.
But with s; < ¢;, it is impossible for T} to read z; according to construction step 5.

Therefore USG(RH) cannot have T}, — T; and T* cannot read xj, in RH'.
J J

(c) Finally assume that TJl reads a version xg that was committed before any of the transac-
tions in 7 started. Then USG(RH) will not have any read-dependeﬁcy edge for T; due
to z. Let x; be now the first visible version in the version order for z. Then there would
be a T}z -5 T} in the SSG(RH') of the local RH' of T} according to Proposition
1. Thus, a corresponding edge T} -5 T}, occurs in USG(RH) and s; &, ¢k in
SCSG(RH), which results in s; <; ¢ in H.

Since z, is the first visible version of z, we have either k = i or z;, < z; in both
RH'and H. k = i and s; <t ¢ imply s; <; ¢; in H. 3 < z; and s; < ¢ imply
8; <t ¢k <¢ ¢; in H. In both cases, s; <; ¢; in H. However, we already know that there

isaT, =5 T; in SSG(H), which implies ¢; <; s;. Therefore, TJ’ cannot read zg.
As a result T} must read z;, leading to T; — T; in USG(RH).

2. Now we have to show that whenever 7; — T; in USG(RH) due to ré- (x;) in the local
history RH' of T}, then T; == T; in SSG(H). We have to prove that T} can neither read
a version before z; (including xg) nor a version after z; in H. Hence, T; must read z;. The

reasoning is very similar to above and omitted.

Anti-dependency edges Finally, since SSG(H) and USG(RH) have the same read- and write-
dependency edges, based on Proposition 1, they must have the same anti-dependency edges.

Part (3): H is a SI history

G-1a and G-1b are avoided according to how aborted transactions are handled and how read op-

erations are set. G-Sla is avoided by step 3 of constructing SCSG(RH), i.e., there is a ¢; N S;
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whenever there is a T; wwfyr T;. Since SSG(H) has the same write- and read-dependency edges as

USG(RH) and USG(RH) has no G-1c cycle (containing only write- and read-dependency edges),
H avoids G-1c.

Now we have to show that H avoids G-SIb. Note that we cannot only rely on USG(RH) hav-
ing no G-SIb* cycle, because SSG(H) has more edges than USG(RH ), namely start-dependency
edges, and thus, might still have a cycle containing an anti-dependency and some start-dependency
edges. Thus, assume that SSG(H) exhibits G-SIb (i.e., a cycle with one anti-dependency edge).
Since whenever there is a write- or read-dependency edge from T; to T, there is also a start-
dependency edge, SSG(H) must have a cycle T; AR T} i T;. Due to T; Ean Tj, there
must be ¢; <; s; in H. Due to T} B T;, T; must read a data item z installed by another update
transaction Tj, and T; installs = right after Ty,. Moreover, there must be ¢y <; s; <¢ ¢; in H,
according to how the read operation r;(zy) is ordered at the construction step 5 of H. ¢; <; s; due
to T; S—+> Tj and s; <; c; due to T} BN T; will derive ¢; <; ¢;. This is impossible since we have
totally ordered all start and commit operations in H at Step 2 above. Hence, H avoids G-SIb.

Thus, RH is 1-copy-SL O

3.2.5 Observations

Lemma 3 indicates that all conflicting transactions must commit in the same order at all replicas.
However, we have not discussed in what cases a transaction is allowed to commit. According to
Snapshot-Write property of SI, if two transactions have write/write conflicts and are concurrent, one
of them must be aborted. This rule also needs to hold in a replicated database. But when are two
transactions concurrent in a distributed system? In a non-replicated system, two transactions 7; and
Tj are concurrent if their lifetimes overlap (i.e., s; <z c; A s; <; ¢;). We can define the concurrency

of two transactions in a replicated database according to this rule.

Definition 8. Let RH be a replicated history over rmap(R,T). Two transactions T;,T; € T are
concurrent in RH, iff AR* R' € R: sk <, c;?/af in RH* and sé- < ct/al in RHY.

It means that T; and 7T} are concurrent if and only if 7; does not always start before T; com-

mits/aborts at all replicas (or vice versa). Note that R* might be the same as R'. It means that
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if T; and T} are concurrent in one local histoyy they are considered concurrent. But they are also
considered concurrent if T; executes completely before T in one history and completely after 7 in

another history. Based on this definition, we can derive another rule for 1-copy-SI.

Theorem 2. Let RH be a replicated history over rmap(R,T), and RH is 1-copy-SL. If two trans-

actions T;,T; € T have write/write conflicts and are concurrent in RH, at least one of them aborts.

Proof. Assume both transactions commit.

Let’s assume first that both transactions are concurrent at one local history RHF, i.e., s¥ <; c;?
and s;? ~¢ ci-“. That is, there is neither a start-dependency edge from 7; to T} nor from 7; to
T; in SSG(RHY). Since they both write a common data item, SSG(RH*) must have a write-
dependency edge from either T} to T} or vice versa. Thus, RH* would violate G-STa. But RH* is
a SI-history. Therefore T; and T; cannot be concurrent at any local history RH k and commit.

Therefore, T; and T; must be concurrent because there are two local histories RH k and RH',
k # 1, and s’f <t cf and sé- < cﬁ. Furthermore, accc/)rding to Lemma 3, both RH* and RH' must
commit T; and 7} in the same order. Assume without loss of generality, this order is ¢; <; c;.
This implies s; <; c;. Therefore, at RH ! we have sﬁ < cg. and sé <t cé, meaning T; and T} are
concurrent at RH' which is impossible as shown above.

Therefore, T; and T); cannot be concurrent, have write/write conflicts and both commit. Od
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3.3 Snapshot isolation and integrity constraints

Database systems allow database designers to define a whole range of integrity constraints, such as
primary keys and foreign keys. It is the task of database systems to enforce these constraints. In the
next two sectibns, we discuss the relationship between snapshot isolation and integrity constraints.
The current section focuses on a non-replicated system while the next extends our notions to a

replicated environment.

3.3.1 Implementing integrity constraints

An integrity constraint puts constraints on the existence and values of data-objects in the system.
During the execution of a transaction these constraints might be violated. However, at the time of
commit, all constraints must be obeyed. Many implementations, however, are pessimistic. That is,
they never allow an update to occur that might violate the integrity constraints of the database.

The most simple constraint is the primary key constraint that disallows the existence of two
records in a table with the same value in the primary key attribute. Before inserting a record,
the system checks whether already a record with the same primary key value exists, and if yes,
disallows the update and aborts the transaction. In the following, we will not further discuss this
kind of constraint, because it is easy to detect and handle, and does not impose any problems in
regard to SL.

The second most common constraint is the foreign key constraint, and we will use it as an
example throughout the thesis®. Assume a relation Dept(did, dname) with the department identifier
did as primary key, and a relation Emp(eid, ename, did) witﬁ the employee identifier eid as primary
key and the attribute did as foreign key referring to the department the employee works in. The
foreign key constraint requires that if there is an employee record with did = x in the Emp table,
then there is a department record in the Dept table with did = x.

In order to guarantee this property, a database system typically performs some implicit read

operations upon receiving certain update requests. In above example, whenever a client wants

8More advanced constraints can be maintained via assertion or triggers. The principle is the same and we do not
discuss them further in this thesis.
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to insert an employee record or update the did field of an existing employee record, the system
performs an implicit read operation on Dept to check whether a department record exists with the
corresponding value in the did attribute. If it ex_ists, the insert/update on Emp is allowed, otherwise
itis forbidden and the transaction aborted. Similarly, if a client wants to delete a department record
or set the did field of a department record to a different value, the system first looks at the Emp table
and checks whether an employee record exists that has the same did value. If yes, the delete/update
is rejected and the transaction aborted, otherwise the operation is allowed.’

The problem is that if these read operations run under snapshot isolation, integrity constraints

could be violated.

Example 4. Assume above tables Dept(did, dname) and Emp(eid, ename, did). Now assume a de-
partment record (‘d1’,‘marketing’) already exists inserted by transaction Ty and let’s denote it with
x. Now assume a transaction T} inserts an employee and transaction Tj deletes the department.-
T\: insert into Emp values (‘el’, ‘Mike’, ‘d1’);
T5: delete from Dept where did="d1’;
We can denote the new émployee as y. Now assume a serial execution where Ty runs before T,
s1,71(z0), w1(y1), €1, 2, 72(y1), a2
That is, Ty reads the department tuple, determines that it exists, and performs the insert. After that
Ty, first checks whether an employee exists, finds one, and thus, disallows the delete and aborts. In
contrast, if Ty runs before T we have
32, 72 (Yinit), W2(Tdead); €2, 51, T1(Ldead), 01
That is, T3 does not find any employee tuple and deletes the department. After that T does not find
a department tuple, disallows the insert of the employee and aborts.
Now assume both transactions run concurrently and the read operations are performed on a
snapshot:
Hyrite—skew : 81,52, 71(20), T2 (Yinit ), w1(y1), w2 (Tdead ) €1, €2, [Tdead; Y1

The read operation of Ti (i.e., 1(20)) finds a department with did="‘d1’. Hence, Ty can continue

9Note that SQL offers the definition ON DELETE CASCADE. In this case, if a transaction wants to delete a depart-
ment tuple and there exist corresponding employee tuples, the transaction is not aborted but the employee tuples are also
deleted. Similar semantics holds for ON UPDATE CASCADE. We do not consider this in this thesis.
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Figure 3.8: SSG(H rite—skew) in Example 4

to insert the employee tuple. Similarly, the read operation of Ts finds no employee associated with
the department. Hence, Ty can continue to delete the department. After both commit, the employee
(‘el’, ‘Mike’, ‘d1’) refers to a non-existing department. Clearly this history does not respect foreign
key constraints. However, H , ;te_skew does not exhibit G-1 and G-SI. Therefore, Hyyrite—skew IS
a valid Sl-history. Note that the only cycle in SSG(H yrite—skew) (Figure 3.8) is a cycle with two

adjacent anti-dependency edges.

The problem is that reading from a snapshot is not the right thing to do for checking integrity
constraints because it does not really help if the constraint holds at the beginning of the transaction.

Instead, the constraint needs to hold at the time the transaction commits.

3.3.2 A new isolation level: SI+IC

Database systems that implement snapshot isolation guarantee that integrity constraints are not vi-
olated by distinguishing between standard read operations (that read from a snapshot) and read
operations that are done to check constraint violations (that must get a more up-to-date state of the
database system).

Thus, we model a new isolation level SI+IC that follows this model. It is stronger than the basic
SI that we discussed in the last two sections, because it avoids integrity constraint violations. It is
weaker than serializability because standard read operations continue to read from a snapshot. A

SI+IC history should satisfy the following two requirements.
1. It should provide SI properties to operations not related to integrity constraints;
2. If a transaction commits, its updates do not violate the integrity of the database.

Our model assumes that all transactions perform, if necessary, read operations that check whether
an update would violate the integrity of the database. That is, if a transaction performs a write op-

eration that could potentially lead to the violation of the integrity of the database, the transaction
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performs an integrity read. If the integrity read determines that integrity would be violated by the
write operation, the transaction aborts. We denote an integrity read of 7; reading data item z in-
stalled by T} as ir;(z;). Of course, we have to rely on transactions to perform the proper actions

upon integrity reads.

Definition 9. We say a transaction T is IC-obeying, if it aborts when its integrity reads determine

that one of T"’s write operations would lead to a violation of the integrity constraints of the database.

In commercial systems the integrity read typically take place before the corresponding write
operations or just at commit time (using deferred constraint checking). In theory, it could be any
time during the execution of the transaction. The important issue is that the integrity constraint
should hold at the time the transaction commits. That is, while the read takes place sometime before
the commit, it should be still valid at the time of commit. That is, it is useless if a transaction 7'
performs an integrity read on an object =, but the object x is overwritten before 7' commits. In
H rite—skew this is exactly what happens. 75 finds no employee tuple but at its commit time a tuple
exists. Thus, the integrity read of a transaction 7" should read the version of an object z, that reflects

the latest committed version of z at the time 7" commits. We express this in the following way.

Definition 10. IC-Consistency. Let H be a history over a set of transactions T. Let T; € T
perform an integrity read on x. We say an integrity read ir;(x;) of a committed transaction T; in H

is IC-consistent, if
1. ¢j <t Ci; and
2. ifzj K xy, then ¢; <y .

Property (1) guarantees that the read reflects a committed version at the time 7; commits. Property
(2) guarantees that it is the latest committed version at 7;’s commit time.
If all integrity reads of a transaction 7" are IC-consistent and T is IC-obeying, then it is guaran-

teed that the integrity constraints related to 7”’s write operations hold when 7" commits.

Example 5. Let’s rewrite the Hyite— skew example above to

Hyot—10 : 81, $2,91(20), iT2(Yinit), W1 (Y1), W2(Tdead); €1, €2, [Zdead, Y1)-

1r9(Yinit) is not IC-consistent, because there is y1, Yinit < y1 and c1 < ca.
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In fact, our definition is somewhat stronger than what is needed. That means, integrity might be
maintained even if the integrity read is not IC-consistent. Nevertheless, we will require all integrity
reads to be IC-consistent because this allows to guarantee integrity constraints in a very simply way

(and in fact that is what current database systems do).

Example 6. As an example of that our definition is stronger than what is needed, assume that the
database has a record (‘d1’, ‘marketing’) in the Dept table. Now assume two transactions |

1. insert into Emp values (‘el’, ‘Mike’, ‘d1’);

T5 : update Dept set dname = ‘marketing and sales’ where did = ‘d1’;
Let’s refer to the department tuple as x, and to the employee tuple as y. Now assume the following
history:

H, . 10 :51,52,41(20), w1 (y1), wa(x2), c2, €1 [22,y1]
T} reads the original department tuple and inserts the employee. Now T, changes the name of
the department and commits (note that it does not need to perform any integrity read since it does
not change the primary key of the department record) before T1 commits. According to our def-
inition iri(xo) is not IC-consistent, since a new committed version xo of x exists at the time T}
commits. However, the integrity constraint itself still holds because xo only changed the name of

the department and not its identifier.
We now derive our new isolation level as follows.

Definition 11. Snapshot Isolation and Integrity Constraints (SI+IC). A history H over a set of
IC-obeying transactions T is a SI+IC-history if it fulfills the Snapshot-Read and S‘napshot—Write

properties (Definitions 1 and 2), and all integrity reads of committed transactions are IC-consistent.

3.3.3 SI+ICin GID

We have seen in section 3.1 how we can check a set of phenomena (G-1, G-SI) to determine whether
a history runs under SI. In this section, we show how we can extend the list of phenomena to check
whether a history runs under SI+IC.

In order to capture integrity reads and their requirements in regard to the commit order, we

introduce new dependencies and corresponding edges in the SSG of a history. We say T directly
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Dependency Type Description SSG Edge name
Directly IC-read-depends | 7; installs z; and x; is the | T; LN T; | IC-read-
same version of x in Tj’s dependency
integrity read edge
Directly IC-anti-depénds T; performs an integrity | T; i T; | IC-anti-
read on x and 7} installs dependency
Z’s next version edge
commit-depends T; commits after T; com- | T; < T; | commit-
mits (i.e., ¢; <; ¢;) dependency
edge

Table 3.2: IC dependencies

IC-read-depends on T; if it performs an integrity read that reads the version of an object created by
T; (i.e., irj(x;)). We say T; directly IC-anti-depends on T, if T; performs an integrity read that
reads a version of an object = and T creates x’s next version in the version order. Finally, we say
T; commit-depends on T; if T; commits before T; commits. These dependencies are summarized

in Table 3.2. We have to extend the definition of SSG to include these new dependencies.

Definition 12. Start-ordered Serialization Graph (SSG). The SSG(H) of a history H over a set
of IC-obeying transactions T is a directed graph where each node in SSG(H) corresponds to a
committed transaction in H, and there is a write-, read-, anti-, IC-read-, IC-anti-, commit-, or start-
dependency edge from T; to T if T; directly write-, directly read-, directly anti-, directly IC-read,

directly IC-anti, start-, or commit-depends on T;, respectively.

Given that the graph now contains more types of edges, the question is how much the phenomena
G-1 and G-SI have to be adjusted to consider the new edges, and whether we have to add new
phenomena. It turns out that we have to adjust very little. G-1 and G-Sla remain as they are. We

only have to adjust G-SIb and add one new phenomenon:

e G-SIb: Missed Effects. A history H over a set of IC-obeying transactions 7 exhibits phe-
nomenon G-SIb if SSG(H) contains a directed cycle with exactly one anti-dependency edge
that is prefixed by a write-, read-, or start-dependency edge. We refer to such cycle as a G-SIb

cycle.
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e G-IC: IC Violation. A history H over a set of IC-obeying transactions 7 exhibits phe-
nomenon G-IC if SSG(H) contains an IC-read or IC-anti-dependency edge from 7; to T

without there also being a commit-dependency edge from T; to Tj.

Note that we cannot capture the phenomenon that a transaction might not be IC-obeying. We
have to trust that transactions are IC-obeying during their execution.

We now show that the avoidance of G1, G-SI and G-IC is sufficient and necessary for a history
to be SI+IC.

Theorem 3. A SI+IC history H over a set of IC-obeying transactions T avoids G-1, G-SI and G-IC.

Proof. [2] contains the proofs that show that a history that fulfills Snapshot-Read and Snapshot-
Write avoids G-1 and G-SIa. Since their definitions have not changed, we refer to the interested
reader to [2]. Thus, we only need to prove that G-IC and the new definition of G-SIb are avoided.

Since all integrity reads in H are IC-consistent, SSG(H) clearly avoids G-IC. An IC-read-
dependency edge T; i, Ty is derived from an 4r;(z;) in the history H. Since this read is IC-
consistent, ¢; <; ¢; must hold in H, which implies a commit-dependency edge from 7; to T} in
SSG(H). An IC-anti-dependency edge T; 2, T; is derived from ir;(zy), and z; is the version
following z, in the version order, i.e., zy < z; in H. Since the read is IC-consistent, ¢; <; c; must
hold, which implies a commit-dependency edge from T; to T}.

Assume that G-SIb is not avoided. There will be a cycle in which the anti-dependency edge is
prefixed by a write-, read-, or start-dependency edge. Since G-SIa and G-IC hold, there must also
be a cycle that consists only of start- and commit-dependency edges and a single anti-dependency
edge. That is, the cycle has the form |

PRy A AN RN )

This implies (c; <: s; <¢ ¢j <¢ ck) =<¢ Sp <¢ ¢; in H which is impossible. Hence, G-SIb is
avoided. O

Theorem 4. If a history H over a set of IC-obeying transactions T avoids G-1, G-SI and G-IC,
then it is a SI+IC-history.
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Proof. To prove this, we have to show that H fulfills the Snapshot-Read and Snapshot-Write prop-
erties and all its integrity reads are IC-consistent.

Assume there exists an integrity read that is not IC-consistent.

o The integrity read could violate property (1) of Definition 10, i.e., ir;(z;) and ¢; < c;.
However, then SSG(H) would have a IC-read dependency edge T} 2, T and a commit-

dependency edge T; — T in the opposite direction, and thus would not avoid G-IC.

e The integrity read could violate property (2) of Definition 10, i.e., ir;(z;) in H, and z; < zi,
and ¢, < ¢;.

— Let’s first assume that xj, is the version following x;. Thus, in SSG(H') we have edges

T; —m—ﬂ—> Ty, and T, — T; in the opposite direction. However, this would mean that

there is an IC-anti-dependency edge from 7; to 7}, without there also being a commit-
dependency edge from T; to Tk, thus G-IC is not avoided.

- Now assume that z; < ;11 < i holds. Then we have edges T; —mi» Tjt1s

Tt wwt T}, and thus T} L T}, because of G-Sla, and T}, — T;. Tj+1 Ear Tk

implies cj;1 < ¢, and we assume ¢, ~<; ¢;. Thus, SSG(H) contains an IC-anti-

dependency edge T; 7L T;+1 but the commit-dependency edge goes in the other

direction. Thus G-IC is not avoided.

For Snapshot-Read and Snapshot-Write, we use the proofs similar to those in [2]. Assume
Snapshot-Write is not satisfied, because T; and T); both update data item z, they are concurrent and
both commit. Without loss of generality, let’s assume T} cofnmits before T};. Then there is a write-
dependency edge from T; to T); without a start-dependency edge in the same direction. It contradicts

the avoidance of G-SIa. Assume Snapshot-Read is not satisfied.

e Snapshot-Read could be violated because T; reads a data item (e.g., =) written by a con-
current transaction Tj (i.e., ri(z;) and s; <; ¢;). But this would mean SSG(H) has a
read-dependency edge from T to 7; without there being also a start-dependency edge, and H

would not avoid G-SIa.
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Figure 3.9: SSG(H, ) in Example 7

rite—skew

e Snapshot-Read could also be violated because T; reads data from a old snapshot instead of

the latest snapshot, i.e., ;(z;) and there is a wy(2x), cx < s; and z; K xg.

— Assume zy, is the version directly following x;. Due to Proposition 1, there is T; -
T} in SSG(H). According to our assumption ¢ < s;, we have T}, LA T; which leads
to a cycle between T; and T}, where the anti-dependency edge from T; to T}, is prefixed

by a start-dependency edge from T} to T;. Thus H would not avoid G-SIb.

— Assume ;41 is the version directly following z; and z;41 < z: Then, we have

T; N j+1> Tt wwi/»5+ Ty (due to G-SIa) and T}, 5 T; (according to our as-
sumption) again leading to a cycle with one anti-dependency which is prefixed by a

start-dependency edge. Thus, again H would not avoid G-SIb.

Example 7. Lét’s revisit Example 5.

Hpot—1c : 81, 82,11(20), iT2(Yinit), w1 (Y1), Wa(Tdead); €1, €2 [Tdead, Y1),
SSG(Hpot—1c) is shown in Figure 3.9. In the figure, the IC-anti-dependency edge from Ty 10 T is
associated witﬁ a commit-dependency edge, but the other IC-anti-dependency edge is not. Hence,
Hpot—1c exhibits the G-IC phenomenon. As discussed in Example 5, it is not a SI+IC history

because one of the integrity reads is not IC-consistent.

3.3.4 Observations

Above we have just shown that it is sufficient to show that if a history avoids G-1, G-SI and G-IC,

then it is a SI+IC-history. Now we show that such a history avoids a further phenomenon:

e A history H over a set of IC-obeying transactions 7 exhibits phenomenon G-1c* if it contains

a cycle that consists entirely of read-, write-, IC-read-, and IC-anti-dependency edges. We



Chapter 3. Snapshot isolation and integrity constraints in a replicated system 62

refer to such a cycle as G-1c* cycle.

Lemma 5. A SI-IC-history H avoids G-1c*.

Proof. Assume it has such a cycle. Due to G-SIa and G-IC, there is also a cycle that consists only
of commit- and start-dependency edges. This is impossible since each edge T; to Tj in the cycle

implies ¢; <; c;, and thus transitively ¢; <; ¢;. O
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3.4 1-copy-SI+IC

In this section we extend our definition of 1-copy-SI to cover integrity constraints, denoting the new
correctness criterion as 1-copy-SI+IC, and discuss sufficient conditions for a replicated history to
be 1-copy-SI+IC.

A first issue is how to handle integrity reads in a replicated environment. Normal reads are
executed at only one replica. If we do this for integrity reads, we easily end up with incorrect

behavior. Let’s revisit Example 5.

Example 8. We let Ty and T, of Example 5 execute in a replicated database with two replicas R4
and RB. Ty is submitted to R4 and Ty is submitted to RB. Recall there is a department record
(‘d1’, ‘marketing’) and we refer to it as object x, version xo. T inserts a new employee (y) for ,
and T5 deletes . Their integrity reads are only executed at their local replicas while their writesets
are propagated to the other replica. We can get a RH with the following sub-histories.

RHA: 314’ i’rf"(a:o), wf‘(yl)’ c{l’ Sj24v w§($2)’ 6’24

RHE : SQB,’iT‘QB(yth),wg(mg),CQB,S?,w{;(yl),c‘f
Since integrity reads exist only at the local replica, applying the write is not preceded by a check
whether this write violates a constraint. Consequently, integrity constraints are violated in both
sub-histories. In both histories, at the end of execution there is an employee tuple referring to a

department that does not exist.

The problem is that the integrity read is something tightly related to the write operation. It
checks something that has to hold in order for the write operation to be allowed to execute. One
possibility to assure the proper behavior of the write is to perform the integrity read at all replicas.
Therefore, we extend the ROWA mapper function of Definition 4 to include integrity reads at all

replicas. We denote at I RS, the set of all integrity read opérations of transaction Tj.

Definition 13. Mapper function. A ROWA mapper function, rmap, takes a set of IC-obeying
transactions T and a set of replicas R as inputs, and transforms T into a set of transactions
T' = rmap(T,R). rmap(T,R) transforms each update transaction T; € T into a set of trans-

actions {TF|RF € R}. In this set there is exacﬂy one local transaction T} where WS: = W S;,
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I RSg = IRS; and RS% = RS; (T, is local at R!). The rest are remote transactions T7, where W ST
=WS,;, IRS] = IRS; and RSf=(0 (T; is remote at R"). A read-only transaction T is transformed
into a single local transaction T} with RS} = RS;. We denote as T* = {TF|TF € T'} the set of

transactions executed at replica RF.
From there we define 1-copy-SI+IC as below.

Definition 14. I-copy-SI+IC. Let RH = | RH*, R* € R be a replicated history over rmap(T, R).
We say that RH is 1-copy-SI+IC if

1. For each R* € R, RH* is a SI+IC history;
2. For all update transactions T; € T and for all R*, R € R: cf <= ¢;
3. There exists a global SI+IC history H over IC-obeying T such that

(a) SSG(H) and USG(RH) have the same nodes

(b) SSG(H) has exactly the same read-, write-, and anti-dependency edges as USG(RH).

Note that IC-dependency edges are not considered in USG(RH). Thus, local histories can
have different integrity reads as long as all integrity reads have the same effect, i.e., either all local
histories and the global history have integrity reads that allow the write operations to execute, and
thus, the transaction commits, or all local histories and the global history have integrity reads that
detect a violation, and thus, abort the transaction. Which version of a data item each of the histories
reads is not relevant, as long as it has the same commit/abort effect as in the other histories. Let’s

have a look at an example.

Example 9. Again assume a department record (‘d1’, ‘marketing’) exists inserted by transaction
To and let’s denote it with xg. Now assume a transaction T inserts an employee y referring to x
and Ty renames the department.

Ti: insert into Emp values (‘el’, ‘Mike’, ‘d1’);

Ts: update Dept set dname=‘accounting’ where did="dl’;
Note that Ty does not have any integrity read at all. Ty is submitted to R* and Ty is submitted to

RB. We can get the following replicated history.
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Figure 3.10: SSGs of Example 9
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T performs an integrity read on o at R4, and on x5 at R®. In both cases, the subsequent write
(insert of employee) can succeed. SSG(RH#) and SSG(RH?) are shown in Figure 3.10.(a) and
(b), respectively. At the commit time of any of the transactions, no integrity constraint is violated.
The USG(RH) only contains 77 and T3 but no edges. A global history could be equivalent to
either RHA or RHB. Although the two transactions are indirectly ordered in opposite order in
the two histories due to the integrity read which reads different versions at the different replicas,
from an abstract point of. view, this does not matter, as long as both integrity reads lead to the same
commit/abort decision for the transaction.

While this definition is very flexible and does not restrict the execution in the histories unneces-
sarily, it makes it very hard to come up with conditions that are both sufficient and necessary for a

replicated history to be 1-copy-SI+IC. Let’s have a look at another example.

Example 10. Assume a database with three tables: Dept(did, dname), Emp(eid, ename, did),
Stats(year, month, numberempl). In the first setting assume a department record (‘d1’, ‘market-
ing’) denoted as x already exists and created by transaction Ty. There are the following three
transactions: |
Ty: insert into Emp values (‘el’, ‘Mike’, ‘d1’);
T5: select count(*) from Emp (into program variable z);
insert into Stats values (2007, 07, z);
T;: select * from Stats; |
update Dept set dname = ‘accounting’ where did="d1’;
We denote the new employee as y and the new Stats record as z. Now assume that Ty and T, are

local at R and Ts is local at RB, and R4 executes the transactions serially in order T3, T\ and
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Figure 3.11: SSG and USG of Example 10

Ty, while RE executes them serially in order Ty, T3 and Ti. More formally the replicated history
is:

RHA : 5§, wi!(a3), c§, st irf! (w3), wi (y1), cf, 88,4 (y1), wi! (22), ¢4

RHP : P, wf (z), ¢, 58,8 (22), wf (w3), ¢ , o7, ir{ (w3), wl (1), ef

The SSGs of RH” and RH® are shown in Figures 3.11 (a) and (b) respectively. USG(RH),
shown in Figure 3.11 (c), does not have any cycles. Can we find a global history H that has the
same dependency edges? Yes, we can. Since there are read-dependency edges from 11 to Ty, and
from T to T3, the only possible global history is a serial execution of T1, T and T3, i.e.,

H : sy,ir1(z0), w1(y1), c1, 82, m2(y1), w2 (22), 2, 83, 73(22), w3(z3), 3.

In this history, the same standard read operations are performed as in RH* and RHE. How-
ever, the integrity read reads a different version (x5 in RH* and RH® while it is xo in H). Having
a different read is fine, because the only condition for the integrity read is the existence of a depart-
ment record x, independently of the name of the department. That is, although the global history
reads a different version of x than the local histories, the transaction remains IC-obeying.

However, if we change the example slightly, this is no more the case. Assume no department
with did="‘dl’ exists at the beginning (i.e., Tin;:) in the database, and T3, instead of renaming the
department, actually inserts the department, i.e., the second operation of T3 is "insert into Dept
values (‘d1’, ‘marketing’);”. Now assume that the execution at RA and R® is in the same order as
above. In this case, the SSGs and USG(RH) remain the same as in Figures 3.11.(a)-(c), requiring
the global history H to execute serially T before Ty before T3. However, in this case, 11 would
not be IC-obeying since its integrity read is ir1(Zinit) indicating a violation of integrity constraints,
nevertheless the transaction commits. Thus, in order to be IC-obeying, T would need to abort, and

thus SSG(H) would not have the same dependency edges as USG (RH ).

The issue with the above examples was that a global history with the same dependencies as
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USG(RH) might require a transaction 7" to perform the integrity read on a data version that was
different to any data version read in any of the local histories. Sometimes this integrity read can
be valid, but other times it might lead to an abort. But this is very application dependent, and thus,
cannot be captured by the formalism.

Nevertheless, we can give a sufficient condition for a replicated history to be 1-copy-SI+IC. The
example above will not fulfill this condition. The idea is the following; We need to construct a
SI+IC-history H that has the same read, write-, and anti-dependency edges as USG(RH ), and for
every committed transaction T}, there exists at least one replica R¥, such that the integrity reads of
T, in H read exactly the same data versions than in RH*. That is, if ir*(z;) in RH¥, then ir;(z;)
in H. Since RH* is a SI+IC-history over IC-obeying transactions, we know that this integrity read
irf (x;) indicated that the write that depends on this integrity read does not violate the integrity of
the database. If we can find such a SI+IC history, we know that all its transactions are IC-obeying,
and thus, RH is 1-copy-SI+IC. Note that we allow different transactions to have integrity reads
from different replicas, e.g., T} can have the same integrity reads as in RH*, while T has the same
integrity reads as in RH'. But we require all integrity reads of an individual transaction T} to be
taken from one local history because they might be related to each other (e.g., the sum of x and y
may not be below 100).

Further note that this condition can only be sufficient but is not necessary. In the first part of
Example 10, RH is 1-copy-SI+IC but the only global history with the same read-, write-, and anti-
dependency edges as USG(RH) performs an integrity read on z that is different from the integrity
read of any local history. The problem is that without application knowledge it is not clear whether

the transaction remains IC-obeying. From here, we define an extended USG of a replicated history.

Definition 15. Urion Serialization Graph with Integrity Dependencies (USG-IC). Let RH =
URH k be a replicated history over rmap(7T,R). We denote as USG-IC(RH) the following graph.

1. For each RF ¢ R, ifSSG(RHk) has node Ti’“ € T*, then USG-IC(RH) has a node T;.

2. Foreach R* € R and each write-, read-, or anti-dependency edge from Tf to T]’c in SSG(RHF),

USG-IC(RH) has a corresponding write-, read-, or anti-dependency from T; to Tj.
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3. For each T; € T, there exists R* € R, each IC-anti-dependency edge from Tf to TJk and
each IC-read-dependency edge from T]’C to T in SSG(RH*) has a corresponding IC-anti-
dependency edge from T; to T; or IC-read-dependency edge from T} to T’ in USG-IC(RH).

4. There are no further edges or nodes in USG-IC(RH).

Note there is no unique USG-IC(RH) since there can be many combinations of choosing a local
history RH* for a transaction Tj. That is, if there are n replicas and ¢ transactions there could be as

many as n’ different USG-IC(RH).

Theorem 5. I-copy-SI+IC Existence Let RH be a replicated history over rmap(T ,R) with the

following properties:
e Foreach R* ¢ R, RH* isa SI+IC-history;
e For all update transactions T; € T and for all R*, R € R, cf < cﬁ;

e There exists a USG-IC(RH) that has no G-1c* or G-SIb* cycles.

Then RH is 1-copy-SI+IC.

Proof. The proof is similar to the one for Theorem 1. We have to construct a SI+IC-history H with
the same nodes and the same write-, read-, and anti-dependency edges as USG(RH).
Part (1): To construct a history H.

We first build the same Start-Commit-Order Serialization Graph, SCSG(RH), from USG-

IC(RH) as described in the proof of Theorem 1 which provides a partial order between pairs

of start- and commit operations. However, we add additional edges:

5. Foreach T, T} (i # j) in USG-IC(RH), there is an edge ¢; — c; in SCSG(RH) iff T; -
T; in USG-IC(RH) where e € {wir, z‘rw}. This reflects the need that integrity reads need to

be IC-consistent.

Now we show there is no cycle in SCSG(RH). Assume that there is a cycle. The cycle in

SCSG (’R’H) consists either (a) entirely of commit operations or (b) of start and commit operations.
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For case (a), there will be a corresponding cycle in USG-IC(RH) that consists entirely of IC-
read- and IC-anti-dependency edges. This contradicts the fact that USG-IC(RH) has no G-1c* cycle.

For case (b), since there is no s; =, s; in SCSG(RH), we can break the cycle into sections
with either (i) the pattern of c; 2, c;, or (ii) the pattern of ¢; x, 8; R, Ck-

Pattern (i) ¢; inf—) c; is due to a path of IC-read and IC-anti-dependency edges from T; to T} in
USG-IC(RH). In pattern (ii), ¢; LN s; must be due to T; jpiicA T;. sj Z, ¢, might be because
s; and ¢ are in the same transaction (i.e., j=k) or because of Tj N T}. If all dependencies
85 N ci, are due to j=k, we know that there is no anti-dependency edge in the cycle. The cycle
must consist entirely of read-, write-, IC-read-, and IC-anti-dependency edges. It contradicts the
fact that USG-IC(RH) has no G-1c* cycles. If some dependencies s; N cy, are due to T L Tk,
we know that each must be preceded by a ¢; E, s; that was due to a T; fpikini Tj. Thus, there must
be a cycle in USG-IC(RH) such that all of its anti-dependency edges are prefixed with a read-, or
write dependency edge. This contradicts the fact that USG-IC(RH) has no G-SIb* cycles.

Thus, our extended SCSG(RH ) does not contain any cycles. We can construct H by using the
four steps in the proof part (1) of Theorem 1. Additionally, we add two steps, i.e., Step 1.5 between
step 1 and 2, and Step 6 after Step 5.

Step 1.5: Totally ordering commits. SCSG(RH) defines so far a partial order between com-
mit operations. We extend this to a total order in the following way. For any c; and c; that are not
connected in SCSG(RH), we set either ¢; N cj Or ¢j %, Ci.

Step 6: Dete_rmining the versions of integrity read operations. We need to determine for
each integrity read operation on z, the version that is read. Let 7; have an integrity read on x. Let
T}; have a write operation on z, ¢; <; c; and there is no Ty, T}, also writes x, and ¢; < cx <t ¢i.
Then we let T; read x;, i.e., we set ir;(z;) in H. If no such T} exists, then we set ir;(xo) where o
is the last committed version of = before any transaction in 7 starts.

Part (2): SSG(H) has exactly the same read-, write-, and anti-dependency edges as USG(RH)

This part of the proof is the same as Theorem 1 proof part (2).
Part (3): H is a SI+IC history k

The part of the proof that shows that H is a SI-history is similar to the proof of Theorem 1, part

(3), and thus, is omitted here.
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By construction step 6, it is clear that each integrity read is IC-consistent because the version to
be read has been determined according to the definition of IC-consistency.

What remains to be shown is that in this artificially generated history transactions are actually
IC-obeying. We do this by showing that for each transaction 7; and its integrity reads, there exists a
RHP* such that if ir¥(z;) occurs in RH¥, then ir;(z;) occurs in H. RH* is a SI+IC history where
the transaction really executed, and thus, we know that it is IC-obeying. Thus, if we take all the
integrity reads of T; from this history, we can be sure that 7;’s write operations do not cause an
integrity constraint Violation.

We show this in the following way. Let R* be the replica such that USG-IC(RH) took its IC-
read- and IC-anti-dependency edges for T; from SSG(RHF). Let ir?(z;) occur in RH*. We show
that ir;(z;) occurs in H.

If irf(x;) occurs in RH*, then SSG(RH*), and thus USG-IC(RH), have a IC-read-dependency
edge from T LN T;, and if there exists a version x ;11 following x;, then there is also an IC-anti-
dependency edge from T; rw, Tj+1. This leads to c; LN C; &, ¢j+1 in SCSG(RH), and thus
cj <t ¢i <¢ ¢j+1in H.

Assume now that in H, T; reads an earlier version, i.e., either zg or a xj such that z; < z;. In
this case, according to the construction of integrity read, we have c; <; c; which is a contradiction
to above requirement of c¢j <t ¢;- Assume now that in H, T; reads a later version, i.e., any xj such
that z; < x which means c; <; c;. If xj is the same as x; 1 we have a contradiction to above
requirement ¢; < cjy1. If Tj41 < xg, then ¢j11 <4 ¢ <t’ ¢; again leading to a contradiction to

above ¢; <; cj1. Therefore, T; must read ir;(z;) in H. ' O
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Replica control basics

As mentioned at the end of Chapter 2, our replication tool has to fulfill a wide range of properties.
It has to provide 1-copy-SI+IC. It has to work at the middleware level in order to exist as an inde-
pendent component and work with a heterogeneous environment. It should not pose any specific
requirements to the applications but work with any kind of legacy application. That is, it should
not require to mark transactions as read-only or update as in primary copy approaches, or require to
know all operations of a transaction in advance. It should provide concurrency control at the record
level and not the table level or other coarser concurrency levels. It should be fault-tolerant. It should
work well even if message latencies are high, i.e., in wide-area networks (WANS).

In order to keep the description simple and understandable, the replication solution proposed
in this thesis is developed incrementally. This chapter proposes protocols that guarantee 1-copy-
SI/1-copy-SI+IC. However, it is not concerned with message overhead and fault-tolerance. The
next chapter then ektends these protocols in order to reduce the message overhead, and make them
fault-tolerant.

All the protocols in this thesis assume that the underlying database systems provide SI+IC as
discussed in Section 3.3. The protocols will not work for database systems that provide standard
serializability and use strict 2PL.

The protocols of this chapter all assume a centralized middleware architecture as depicted in

Figure 2.1.(a). There is one middleware instance and a set of databae replicas R.

71
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In the following we present a Simple Replication Protocol, SRP, which guarantees 1-copy-SI
and provides a standard database interface to the application. However, SRP has deadlock problems
when used on top of some database systems. Besides, SRP only guarantees 1-copy-SI and does not
work for databases with integrity constraints. Hence, we propose SRP-IC. SRP-IC is based on SRP

and guarantees 1-copy-SI+IC. It also handles deadlocks.

4.1 Simple Replication Protocol (SRP)

4.1.1 Basicidea

Our first protocol, SRP, provides 1-copy-SI, i.e., integrity constraints are not considered.

The protocol skeleton

We explain the basic idea of our protocol in terms of the lifetime of a transaction. A client submits
the operations of a transaction 7" one by one to the middleware. When the middleware receives the
start operation of 7T, it assigns a database replica R' € R to T and starts T at R!. R’ is called the
local database replica of 7T'. The middleware then simply forwards all read and write operations of
T to R'. R executes the operations locally and returns the results to the middleware that forwards
them to the client that submits 7". At the end of the transaction, if the client requests an abort, the
middleware simply asks R! to abort T, and then returns the confirmation result to the client. If the
client requests a commit, the middleware extracts the writeset of T" from R!. The writeset contains
the physical changes made by T in R! and the primary keys of all modified tuples!.

The middleware then performs a validation test for 7" based on the writeset. A successful vali-
dation test will lead to the commit of 7', and an unsuccessful test to its abort. The validation assures
the execution is 1-copy-SI. Validation of transaction 7" will succeed if no transaction 7" that vali-
dated before T' and was concurrent to 7" had a write/write conflict. If such a transaction exists the

validation of T fails. That is, in our protocol, if any two concurrent transactions have write/write

'Writeset extraction is a standard mechanism in many commerical replication solutions (e.g., [76]) implemented via
triggers or log-sniffing. Although commercial systems usually export writesets only after commit, the functionality per
se exists. We provide a pre-commit extraction similar to the ones developed in other research prototypes [61, 90, 94].
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conflicts, the first to request commit will succeed, the other will abort. That is, we follow the
first-committer-wins strategy. We defer the details of the validation to later.

If the validation fails, the middleware tells R! to abort the transaction. Otherwise, it applies the
writeset of T at all replicas (except R') and makes sure that all commit transactions in validation
order.

Let’s make some observations here. Firstly, we perform validation only after the entire trans-
action has executed. At this time we know exactly the records the transaction has updated. Thus,
we avoid the limitations of previous middleware-based update everywhere approaches that perform
the synchronization at transaction start time and thus, require to know all operations in advance —
which is difficult if execution is non-deterministic and often only allows conflict detection at the
table level. Furthermore, SRP commits all update transactions at all replicas in the same order.
Thus, all conflicting transactions commit at all replicas in the same order — which is required for
1-copy-SI according to Lemma 3.

Validation

Let’s now come back to validation. At the time of validation of transaction T}, if it has a write/write
conflict with a concurrent transaction 77 that validated before T;, then 7; must abort. We can easily
determine whether two transactions conflict by checking whether the sets of brimary keys contained
in their writesets overlap.

In order to determine whether a previously validated transaction T is concurrent to T; we use
timestamps. The middleware keeps for each database replica R* a logical clock. Every time a
transaction commits at R” its logical clock is incremented by one. The middleware also keeps a
validation clock. When a transaction 7 is successfullly validated, the value of the validation clock
is assigned to T’ as tid-timestamp, and then the validation clock is incremented.

Since all database replicas commit transactions in validation order, the timestamp of a database
replica R is the same as the tid of the latest committed transaction at R¥. For example, immediately
after a transaction with tid = 5 commits at R*, R¥’s clock is 5. Transactions have additionally a
start timestamp. If R* is T"s local replica, then T'.start is assigned the value of R*’s logical clock
at the time 7" starts. With this, we know that a previously validated transaction Tj is not concurrent

to T3, if T;.tid < T;.start because then T; started at its local replica only after T; committed. Thus,
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Initialization:

next_tid := 1, ws_list := {}

V RE: tocommit_queuey, := {}
V RF: lastcommitted_tid_k := 0
wsmutex,

V RF: dbmutex_k

1. Upon receiving an operation Op; of T;

(a) if Op; is start (i.e.,s;), then
i. choose RF at which T} will be local
ii. obtain dbmutex_k
ili. T;.start := lastcommitted_tid_k
iv. begin TF at R¥
v. release dbmutex_k
vi. return to client

(b) else if Op; is read or write, then

(c) else if Op; is abort, then
i abort TF at R¥ and retun to client

(d) else (commit)

cal R*
ii. if T;.W.S = {, then

i. execute at local R¥ and return to client

i. T,.WS := getwriteset(TF) from lo-

e commit and return
iil. obtain wsmutex
iv. if AT; € ws_list such that
Ti.start < T; tid NT;, WSNT; WS #
0:
o T;.tid := next_tid + +
e append T; to ws_list
e VR*: append T} to tocommit_queus
e release wsmutex
v. else

e release wsmutex
e abort TF at R*

2. Upon T; is first in tocommit_queue.k

(a) if T} is remote at R¥, then
e begin TF at RF
o apply T;.W S to R*

(b) obtain dbmutex_k

(c) commit at R*

(d) lastcommitted_tid_k + +

(e) release dbmutex_k

(f) if local, return to client

(g) remove T; from tocommit_queue_k.

Figure 4.1: SRP: a Simple Replication Protocol

Tj is concurrent to T; if T);.tid > T;.start.

4.1.2 Protocol details

The details of SRP are shown in Figure 4.1. We assume n database replicas Rk, 1 <k <

n. We assume all replicas provide SI using the first-committer-wins rule. That is, validation of

write/write conflicts is only done at the commit time of a transaction. Such validation will fail if

any concurrent transactions have been validated successfully and have write/write conflicts with the

current transaction. Otherwise it will succeed. All start, read, write, commit and abort operations are

k
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submitted to the middleware. next.tid represents the validation clock. The middleware maintains
a list of already validated transactions (ws_list). Although all succeésfully validated transactions
will be committed at the different database replicas in validation order the replicas might run at
different speed. Hence, the middleware keeps for each replica R* a queue tocommit_queue_k which
contains the writesets to be executed and committed at R¥, and a logical clock lastcommitted_tid_k
indicating the tid of the last committed transaction at R. If actions of different transactions need
to be synchronized, appropriate mutexes are acquired.

Upon the start of a new transaction 7 (step la) one database replica is chosen to be the local
replica. Before the start of 7; at the database replica, we get a mutex that avoids that the start
operation is concurrent with any commit operations at the replica. Then we set T;.start to the
tid-value of the last transaction that committed at R*. As we discussed earlier, this allows us to
determine concurrent transactions. We denote as Ti"c the incarnation of 7; at replica RF. Read and
write operations are then simply forwarded to the database replica. Since we assume the database
replica to provide S1, Tik reads from a snapshot and writes new object versions (1b). If the operation
is abort, the middleware simply forwards it to R* and let R* abort the transaction locally (Ic). A
confirmation message is returned to the corresponding client.

If the client requests a commit, actions are more complex. The middleware first retrieves the
writeset from the local replica (1d.i). If it is empty, 7; is a read-only transaction and can sim-
ply be committed locally (1d.ii). Otherwise, the middleware starts a validation phase (1d.iii-v).
Only one transaction can be in validation phase. Therefore we set a mutex, i.e., wsmutez. T;’s
writeset is compared against all writesets of concurrent transactions that validated before (main-
tained in ws_list). As mentioned before, T} is concurrent to a previously validated transaction T} if
T;.start < Tj.tid, and it conflicts with T} if their writesets overlap. If there is no concurrent con-
flicting and validated transaction, transaction 7; receives its tid value, and its writeset is added to
all queues (focommit_queue_k and ws_list). Otherwise, T; aborts (1d.v). Writesets will be applied in
the same order but at different speeds at individual replicas (step 2). At the local replica, of course,
the writeset does not need to be applied. Still, the commit order in regard to other transactions
must be maintained. Hence, the local transaction only commits when all the writesets stored in the

queue at the time of validation have been applied. Whenever a transaction commits at a replica R¥,
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Figure 4.2: SRP Sample execution

read x

lastcommitted_tid_k is incremented. As mentioned before, committing a transaction at replica R*
(steps 2b-e) and starting a transaction (steps la.ii-v) are mutually exclusive. In summary, validation
phase starts when the writeset is retrieved, validation is an atomic process but runs concurrently to
committing and applying the writesets. However, applying writesets by itself occurs again in a serial
fashion. Note that in order for clients to read their own writes, a transaction should only be assigned

- to areplica if all previous transactions of the same client are already committed at this replica.

4.1.3 Example

Example 11. Figure 4.2 shows an example. The set of transactions is T = {T1 = (s1,r1(z), wi(z),c1),
Ty = (s2,72(y), r2(z), w2(y), c2), T3 = (s3,ws(x),c3)}. Th is local at replica R4, and Ty and T
are local at replica RB. In the figure, grey boxes reflect writes, and white boxes represent reads,
start, abort, or commit. The middleware keeps tocommit_queue for each replica (Q* and Q). The
figure shows the temporal evolution of the queues and transaction execution from left to~right.

Ty starts at R4 and reads and updates x. At RB, Ty starts and reads y. Upon T\’s commit
request, the middleware retrieves the writeset, validation succeeds, and T receives T1.tid = 1. Ty

is appended to Q* and QP. Since Ty is the first in Q4, Ty commits at R* and is removed from Q4
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(lastcommitted_tid_A = 1). T3 now starts at RB. Although Tj begins after T, commits in R, it is
concurrent to Ty in RB since Ty’s updates are not yet applied in RE. Hence, Ts.start = 0. When
T3 now submits commit at timepoint TP, T3’s validation at the middleware fails since Ts.start =
0 < Ty.tid = 1 and the writesets overlap. Hence, T is aborted at RE. At the same time, RP
applies Ty ’s writeset and commits Ty. Ty is removed from QP and lastcommitted_tid_B set to I.
Although T3’s read is after T} ’s write it does not read the value written by T since the transactions
are concurrent in RB. After Ty’s execution its validation succeeds (Ty.tid = 2) since it has no

write/write conflict with Ty. Ty is appended to Q4 and QF and later committed at both replicas.

4.1.4 Correctness

Theorem 6. SRP provides 1-copy-SI if the underlying database replicas provide SI using the first-

committer-wins rule.

Proof. Based on Theorem 1, we need to prove that for any replicated history RH possible under
SRP, (i) the local history RH k at all replicas are Sl-histories, (ii) a write transaction commits at
either none or all replicas, (iii) the corresponding USG(RH) has no G-1c and G-SIb* cycles.

Property (i) is fulfilled since the underlying database replicas provide SI by assumption.

For property (ii), we need to show that, apart of read-only transactions, all replicas commit the
same set of transactions. If validation of a transaction 7} succeeds at the middleware it is appended
to tocommit_queue_k of each replica R*. Transactions in tocommit;queue_k are handled one
after the other. Let T; be the first in the queue. If T; is a remote transaction, no other transaction
commits between 7’s start and T}’s commit at R*. Since we assume that the underlying database
uses the ﬁrst-committér—wins rule, there is no concurrent transaction that validates before 7;. Thus,
Ty’s validation within the database R* will succeed and T} will commit. If 7} is local at R¥, then
T; has already started at R*. If T; conflicted with any transaction (local or remote) that committed
at R since T}’s start, R* would abort 7; when the commit requeét is submitted since R* provides
SI. But at validation, the middleware had already checked whether there was such a transaction, and
if yes, would have aborted 7;. Hence, once a transaction is added to tocommit_queue_k, it will

commit at R*. Since it is the central middleware that makes the decision to add a transaction to
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either all or none of tocommit_queue_k, the transaction will commit at all or none of the databases.

For property (iii), we now need to prove that the USG avoids G-1c cycles (i.e., cycles con-
sisting entirely of read- or write-dependency edges) and G-SIb* cycles (i.e., cycles where each
anti-dependency is prefixed by a read- or write-dependency edge).

(1). Assume G-1c exists. Note that all transactions in this cycle must be write transactions, since
the source node of a read- or write-dependency edge must be a write transaction, and each node in
the cycle is source node of one edge. Now consider an edge 7; wﬂw Tj; in the cycle. If the edge is
aread-dependency edge, it must appear in the SSG of T}’s local replica (assume R?). Since all local
histories are SI-histories, 7; must commit before 7T at R!. Since SRP commits all write transactions
in the same order at all replicas, T; commits before T} at all replicas (i.e, ¢; <; ¢;). It will be the
same situation if the edge is a write-dependency edge.

Hence, a G-1c cycle would result in ¢; <, ¢; at all local histories which is impossible. Hence,
there is no such cycle.

(2). Assume G-SIb* exists. We can break the cycle into m sections of

T, WL e
T; ,and T;

p> “Jp? Yp+1)%m

(p+1)%m (where 0 < p < m)

TWw
In section p, T; must be write transactions. Tkp - =T o MUSt be caused

(p+1)
by the read operation(s) of Tj,,. Since SRP is ROWA, the read operations can only happen at Tj,’s
local replica (R!). Hence, this edge occurs in SSG(RH?).

15, wﬂw Ty, is either a read- or a write-dependency edge. Let’s consider the first case, i.e.,

it is a read-dependency edge. The edge must be caused by the read operation(s) of Tj,. The edge
must appear at Tkp ’s local replica R'. We have already shown that this implies c;, < Skp, <t

Citpsnysim == Cip =t Cigpy1yoem which means that T, commits before T; at Ty,’s local

(p+1)%m

replica R'.
Let’s consider the second case, i.e., T}, 22 Tj,. According to ROWA, the edge must appear

in all replicas’ SSGs, including Tx,’s local replica R!. We have shown that T}, Ny (o 1)t

also appears in SSG(RH 1). With the same reasoning as in the first case, we know T};, must commit

before T; at Ty, ’s local replica R! (i.e., cj, <: Citpy1yem AL R

(wr /ww)*

(p+1)%m
Now let’s consider Tip ij. Obviously this implies ¢, <t cj,. Since EP and ij are

write transactions, they must commit in the same order at all replicas (including R') according to



Chapter 4. Replica control basics 79

SRP. Hence, we derive ¢;, <t Citpr1yzom At R! for section p. Let’s put all sections together. We
derive c;y, <t Ci; <t ... <t Ci,,_; <t Cio in RH' ! which is impossible.

Hence, G-SIb* can not happen in the USG(RH) of a replicated history RH produced by
SRP. O

4.2 Problems of SRP due to first-updater-wins strategy

SRP is a middleware-based approach. Hence, it has to work properly with the transaction process-
ing mechanisms of the underlying database system. SRP works fine with SI databases that detect
conflicts only at transaction commit time according to the first-committer-wins rule. However, real
databases supporting SI are typically impleniented with the first-updater-wins rule, as explained in
Section 3.1.

Let’s have a careful look at such an implementation. Before a transaction 7; updates a data
item « it gets an exclusive lock on z. Once it has the lock, it performs a version check. If the latest
committed version is from a concurrent transaction, 7; immediately aborts, otherwise it continues. If
another transaction T}j holds a lock on = when T; is requesting it, T; has to wait until T} terminates. If
T terminates, T; will immediately be aborted (since there is a committed version created by Tj that
is concurrent to T3). If T} aborts, then T; gets the lock but still performs the version check (because
there could still be another concurrent transaction T}, that updated = before T; but committed). This
means, validation is not done at the end of transaction but on a continuous basis, namely always

before an update operation is executed.

4.2.1 Blocking

Using the first-update-wins rule, transactions can block while waiting for locks to be released. This
can lead to some problems using SRP.

Firstly, remote transactions might be blocked by local transactions in a database’replica. Assume
a transaction T} executing locally at R* and holding a lock on z. A remote transaction T has been

validated and now is the first in tocommit_queue_k. T};’s writeset is applied at R* and also updates
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z. T; has to acquire a lock and will be blocked. Ideally, T; should be aborted since it conflicts
with T} and has not yet been validated. The middleware will detect this conflict once T; finishes
execution and validates since T;.start < Tj.tid. Hence, T; fails validation and aborts. At this point,
T} receives the lock and can execute the write. It will not abort since T; aborted.

Secondly, it is possible to have deadlocks between local transactions that have not yet finished
execution, and remote transactions that apply their writesets. The database detects such deadlock
and aborts any of the transactions. If the local transaction is aborted, the middleware can simply
inform the client (as is usually done with aborts due to deadlock). If the remote transaction is
aborted, the middleware has to reapply the writeset until the remote transaction succeeds. We refer
to this as Adjustment 1. Note that so far it is impossible that a local transaction that has completed
execution and is validated is involved in such a deadlock because this local transaction has already
acquired all necessary locks at tﬁe local database replica. Once it is validated, no further operations

except for the commit are performed at the local replica.

Adjustment 1: To solve the blocking problems under the first-updater-wins rule

Upon T; is first in tocommit_queue_k,
if T; is remote at R¥, loop
e begin TF at RF
e apply T;.W S to R*
¢ if T} aborted by deadlock, then
e continue the loop

o clse (successfully applying 7;.W.5)

e same as SRP

e exit the loop

4.2.2 Distributed deadlock

The third problem due to the first-update-wins strategy is the most serious problem. SRP might have

a deadlock involving a cycle across the middleware and the database. Let’s look at an example.
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T1 [s1] [x]

T2

R

A
Middleware <
QB

T1
® | m2fs2)ly] [x]
T3

time

write X successfully blocked on write X

Figure 4.3: SRP Deadlock example execution with real databases

Example 12. We extend Example 11 by adding one more operation w3(y) to T3. We rearrange the
interleaved order of operations as in Figure 4.3. We use polygon boxes to represent actions being
submitted but blocked. White boxes are for read, start, commit, and abort operations, and grey
boxes for write operations.

T, starts at RA. It reads and updates x. As in Figure 4.2, upon T\ ’s commit request, validation
succeeds and Ty receives Ty .tid = 1. T is appended to Q* and QB. T\ commits at R and is
removed from QA

At RB, T\ ’s writeset can be applied since T} is also the first in QB. But two local transactions
have already performed opérations at RB. Ty has read x and vy, and updated y. Since the database
uses locking for writes, Ty has a lock on y. T3 has updated x and holds a lock on . T3 is now
blocked on y since it wants to write y but T5 has a lock on y. Upon Ty’s commit request, Ty’s
validation succeeds and it is appended to Q* and QP.

At R4, since Ty has already been committed and removed from Q4; Ty is the first in Q4. Hence,
Ty’s writeset is successfully applied and Ty commits at RA.

At RB, T, is not the first in QB so it has to wait for T to be committed. waever, at RBE, T,

is blocked by T3 since it needs a lock on x which is held by Ts. T3 is in turn blocked by Ty. There
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is a deadlock among Ty, Ty and Tz at RP (i.e., T\ waits for Ts, T3 waits for Ty, and Ty waits for
T1). Note that there is no deadlock in the database. Only because Ty waits for T at the middleware

layer, there is a distributed deadlock spanning both the middleware and the database.

The deadlock problem in the example above is due to the fact that 77 must commit before 75 even
though they do not have write/write conflicts. In order to solve this distributed deadlock problem,
we have two options. Firstly, we could avoid such deadlocks by allowing 75 to commit before
Ti. At the first view, this should be fine since they do not conflict. However, simply allowing
transactions to commit out of validation order could lead to the violation of 1-copy-SI. Recall that
Example 3 in Section 3.2.3 shows a replication history R Hpe that is not 1-copy-SI due to the fact
that two update transactions commit in different order at two replicas. USG(RH}poi) has a G-SIb*
cycle (i.e., a cycle in which each anti-dependency edge is prefixed with a start-dependency edge).
Thus, a protocol that allows for out-of-order commits has to be carefully designed to avoid such
phenomenon.

The second option is to detect such deadlocks, e.g., simply by using a timeout and resolve it by
aborting one transaction. Note that such a distributed deadlock always involves a local transaction 7"
that has finished execution and has validated but waits for a transaction 7" in the tocommit_queue_k
to terminate.

The question now is which transaction to abort. Aborting 7" will not help because we have to
reapply it again before 7" and thus, the deadlock will again occur. Therefore, we abort T', that is, we
abort a local transaction that has already been validated and has been waiting in the queue longer
than a predefined threshold value. In above example, we abort 7. Thus, the local transaction 73
gets its lock and the deadlock is broken. However, this approach requires us to reexecute 7" at its
local replica after 7" has finished (since in principle, T' should succeed). We do this by simply
taking its writeset and apply it as we do at remote replicas. Reapplying the writeset has been done
in Adjustment 1 so we can just reuse it.

We refer to the procedure as Adjustment 2.
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Adjustment 2: To solve deadlock using timeout

e Add to step 1(d)iv in SRP (Upon transaction 7T; successfully validates),
o VR* . T, timeout := current_time
¢ Upon timeout of transaction 7T; local at RF,
(i.e., current_time-T; timeout > timeout.threshold),
e abort T} ét RF
e T;.aborted:=true
e Upon T; is first in tocommit_queue_k,
if T} is remote at R¥ or T}.aborted=true, loop
e begin TF at R*
e apply T;. WS to R*
o if T; aborted by deadlock, then
e continue the loop
o clse (successfully applying 7;.W.5)

e same as SRP

o exit the loop

Discussion:

Note that the distributed deadlock only spans across the middleware and the underlying database
at one repliéa. It does not involve any interaction between different replicas, which make it easy
to detect and resolve. [82] suggests to detect the deadlock by querying the lock tables provided by
DBMSs, such as the pg_locks view of the PostgreSQL system catalogue, and similar tables or views

in other databases [82].

4.3 Problems of SRP due to integrity constraints

SRP is based on the assumption that there are no integrity constraints in the database. Hence, it only

guarantees 1-copy-SI and does not work correctly if integrity constraints are considered. At this
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timepoint, it is important to understand how databases that provide SI guarantee IC-consistency.
We have analyzed PostgreSQL. In here, integrity reads do not read from a snapshot. Instead, a
transaction 7; performing an integrity read on x acquires a read lock on . If an exclusive lock is set
by a transaction T} writing x (first-updater-wins strategy), T; has to wait until this lock is released.
If T; commits, T; reads T;’s version. This guarantees that T; reads the latest committed version.
If the read determines that a constraint would be violated, T} aborts. Otherwise, T; continues to
write and then commit. 7; keeps the lock on z until termination. If a further transaction 7} wants
to update z it is blocked by T;. This guarantees that nobody overrides the value of z and commits
before T; commits, a requirement for IC-consistency. At the end, the SSG will have an IC-read-
dependency edge and a commit-dependency edge from T to T; and and IC-anti-dependency edge
and a commit-dependency edge from T; to T} (assuming that T} is not concurrent with T}). That is,

integrity reads basically set long read locks just as in strict 2PL in order to guarantee IC-consistency.

Example 13. Now let’s look at an Example similar to Example 5 but in a replicated environment.
There are tables Dept(did, dname) and Emp(eid, ename, did). A department record (‘d1’, ‘mar-
keting’), referred to as object x, exists, inserted by transaction Ty. Now assume a transaction T}
inserts an employee (‘el’, ‘Mike’, ‘d1’), denoted as y, and a transaction Ty deletes the department.
We assume there are two replicas R4 and RB. T\ is submitted to R* and T, is submitted to R5.
Let’s look at a possible execution in SRP. Execution is also depicted in Figure 4.4.

At RA, Ty performs an integrity read ir1(xo) and then a write wi(yy). At RB, Ty performs
an ihtegrity read ir9(Yinit) and then a write w2(Zdead). Assume Ty finishes first. The middleware
validates and puts T in both queues. Then Ty finishes. The middleware validates Ty and appends
it to both queues. At R4, Ty can commit. However, when the writeset of Ty is applied, the database
replica will perform the integrity read, find the employee tuple y1, and abort Ts. Given our Adjust-
ment 1 of Section 4.1.1, we will attempt to apply the writeset of Ts over and over again and run into
an endless loop.

At RB, when Ty is applied, it will perform its integrity read, acquiring a read lock on z. T will
be blocked at the database replica since Ty has an exclusive lock on x. Ty, in turn, is waiting behind

T} in Qg waiting for T} to finish. Thus, we have a distributed deadlock between the middleware and
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writing X successfully

.......

blocked on writing X time

integrity read on X @ blocked on commiting T2

Figure 4.4: Example with foreign key constraints executed according to SRP with Adjustments 1
and 2.

the database replica. With our Adjustment 2 in Section 4.2.2, Ty will be aborted due to a timeout.
However, when T5 is now reapplied, it’s integrity read will now read vy, and thus, Ty will abort due

to integrity violation. We will again run into an endless loop.

Actually, many of the update everywhere approaches [6, 69, 91, 92, 90, 61, 73, 124] can run
into problems with integrity constraints, no matter if they provide 1-copy-SE or 1-copy-SL

The issue is that a transaction T°, while executing locally, performs integrity reads that do not in-
dicate any violation of integrity constraints. However, T might then be validated by the middleware
after a remote transaction 7" whose write operations actually lead to a violation. When T”s writes
are applied, the database replica automatically reevaluates the integrity constraints through integrity
reads, detects a violation and aborts 7'. The problem is that the middleware has no means to check
the integrity constraints since it is not aware of integrity constraints. Considering only foreign keys,
such information could be extracted, e.g., by looking at the database schema, but in the general case,
this is not possible.

Our solution is as follows. We do not check integrity constraints at the middleware but let

the database do it (i.e., perform integrity constraints). The middleware only checks for write/write
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Figure 4.5: Revisit Example 13 with Adjustment 3

conflicts as before. We make sure that at each database replica, integrity reads read the same data
versions, as has been done in the example above. Thus, either at all replicas the integrity reads will
determine a violation of the constraints and abort, or the write operations will succeed.

When using this approach we have to be aware that a transaction might abort for several reasons.
For example, in Section 4.2.1, we have seen that a database replica might abort a transaction because
of a deadlock. Thus, we must be able to determine the reason for an abort and then act appropriately.
Fortunately, using a typical database interfaces such as JDBC, if a transaction aborts, the database
returns an error message and a SQLSTATE code that indicates the reason for the abort. Using the

code, we can decide whether an abort was due to a deadlock or an integrity constraint.

Example 14. Let’s now revisit Example 13 with the idea above. The new execution scenario is in
Figure 4.5, when transaction Ty aborts at R4, the error message will indicate that this abort is due
to an integrity violation. Thus, we do not reapply Ty. At RB, the first abort of Tj is induced by the
middleware. The middleware now reapplies Ty after Ty commits. This time, Ty is aborted by the
database replica because of integrity violation. The middleware will detect this by looking at the
abort exception and not reapply T,. At the end, Ty commits and Ty aborts in both replicas. The

history is 1-copy-SI+IC.
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In the following, we combine our above solution to integrity constraints with Adjustment 1 and

refer to this as Adjustment 3. We use bold letters to highlight the difference to Adjustment 1.

Adjustment 3: To handle deadlocks due to integrity constraints and solve blocking problems due

to first-updater-wins

Upon T; is first in tocommit_queue_k,
if T} is remote at R* or T}.aborted=true, loop
e begin TF at R*
e apply T;.W S to R*
o if T; aborted by deadlock, then
e continue the loop

o else if T; aborted by IC, then,

e exit the loop
e else (successfully applying 7;.W.S)

e same as SRP

o exit the loop
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4.4 Simple Replication Protocol with Integrity Constraints (SRP-IC)

The SRP-IC protocols extend SRP by integrating the Adjustments 2 and 3. That is, SRP-IC has to
consider aborts due to deadlocks within the database and integrity constraint violations, and imple-
ments its own timeout mechanism in order to handle deadlocks distributed across the middleware

and the database.

4.4.1 Protocol details

Figure 4.6 provides the full description of SRP-IC. Since SRP-IC is mainly based on SRP, we
highlight the adjustments with bold letters for the convenience of reading.

Additionally to what we have indicated in Adjustment 2 and 3 there is an additional timeout_mutex
variable for each transaction. After a transaction 7T} local at R* is validated at the middleware, its
timeout variable is set to the current time (step 1(d)iv). Once the difference between the timeout
value and the current time becomes larger than a predefined threshold and the transaction is still not
the first in focommit_queue_k, T; is aborted (step 3). The transaction is marked as aborted so when
it becomes the first in the queue, we know that its writeset has to be applied (usually the writesets
of local transactions do not need to be applied).

Another major change is in handling the first transaction in the tocommit_queue_k. Once the
transaction becomes the first in the queue, if it is local at R*, its timeout variable is set to 0,
indicating that the transaction should not be aborted (step 2a) anymore.. Note that checking the
timeout variable in step 3, and resetting it to O in step 2a are done using the timeout.mutex so
that a transaction is not aborted at the same time it is trying to commit. Thus, steps 1(d)iv, step 3,
and step 2a are needed for Adjustment 2. Applying a writeset is now needed for remote transactions
and for lécal transactions that got aborted.

Furthermore, when applying a writeset, the transaction might get aborted due to a database
internal deadlock or due to integrity constraints. If the abort is due to a deadlock, we simply reap-
ply (step 2(b)iii) as required by Adjustment 2. If T; is aborted due to an integrity constraint (step
2(b)iv), we do not reapply according to Adjustment 3. However, we increase lastcommitted_tid_k

in order to keep it synchronous with next_tid (step 2(b)ivC). The remainder of step 2 is the
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same as for SRP. Once T; is successfully applied (step 2(b)ivB), we can commit 7; and increase
lastcommitted._tid_k (step 2(b)ivC).
In any case (i.e., committed or aborted), 7; will be removed from the tocommit_queue k (step

2d).

4.4.2 Correctness

Theorem 7. SRP-IC provides 1-copy-SI+IC if the underlying database replicas provide SI+IC us-

ing the first-updater-wins strategy.

Proof. The proof is similar to the proof of Theorem 6.

Based on Theorem 5, we need to show that for any replicated history RH possible under SRP-
IC, (i) the local histories RH* at all replicas are SI+IC histories, (ii) an update transaction commits
at either none or all replicas, and (iii) there exists a USG-IC(RH) that has no G-1c* and G-SIb*
cycles.

Property (i) is fulfilled since the underlying database replicas provide SI+IC by assumption. For
property (ii) we need to show that, apart of read-only transactions, all replicas commit the same set
of transactions. If validation of a transaction 7; succeeds at the middleware it is appended to the
tocommit_queue_k of each replica R*. Thus, a transaction T} is either in all or none of the queues
and the order of transactions in all queues is the same. Transactions in each tocommit_queue_k are
handled one after the other. That is, they are committed/aborted in the same order at all replicas.
We now show by induction on the position of the transaction that all database replicas will decide
the same outcome for each individual transaction.

We show first that all replicas will commit the first transaction 7} validated. The transaction is
assigned a tid:=1. At T}’s local replica R', when T} is put in tocommit_queue_l, it is the first in
the queue. Thus, T} simply commits. At a remote replica R* a transaction T¥ is started to apply the
writeset. This includes the integrity reads related to the write operations. T might be blocked by
local transactions or even abort (due to deadlock) and be restarted. Nevertheleés, once it performs
the integrity reads it will read the same versions as 7} has done at the local replica R because

no transaction will commit after 7% starts, and thus, no violation will be determined and TF will
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Initialization: next_tid := 1, wslist := {}
Y RF: tocommit_queuey, := {}

V R*: lastcommitted_tid_k := 0
wsmutex,

V Rk: dbmutez_k

timeout_threshold := certain_value
(e.g., S0ms)

1. Upon receiving an operation Op; of T;,

(a) if Op; is start (i.e.,s;), then
i. choose RF at which T} will be local
ii. obtain dbmutex_k
iii. T;.start := lastcommitted_tid_k
iv. begin TF at R*
v. release dbmutez_k
vi. return to client
(b) else if Op; is read or write, then
i. execute at local R* and return to client
(c) else if Op; is abort, then
i. abort T} at R* and retun to client
(d) else (commit)
i. T,.WS = getwriteset(TF) from lo-
cal RF
1. if T;.WS = 0, then
e commit and return
iii. obtain wsmutex
iv. if AT; € ws_list such that
T;.start < T; tidAN;EWSNT; WS #
0:

[
=

o T;.tid := next.tid + +
e append T; to ws_list

e release wsmutex

v. else (validation fails),
e release wsmutex
e abort TF at R¥

o VRF: Ti.timeout:=current_time () if T.timeout # 0, then
i
e VRF: append T to tocommit_queue_k ’

2. Upon T; is first in tocommit_queue_k.

(a) if T} local at R¥,

i. obtain T;.timeout_mutex
ii. T;.timeout := 0
iii. release T;.timeout_mutex
(b) if T; remote at R* or T;.aborted=true
loop
i. begin TF at R*
ii. apply T;.W S to R*
iii. if T; aborted by deadlock, then
e continue the loop
iv. else (if 7T; aborted by IC or success-
fully applied)
A. obtain dbmutez_ k
B. if T; successfully applied
e commit 7} at R*
C. lastcommitted_tid_k++
D. release dbmutez_k

E. exit the loop
(c) if T} is local at RF, réturn to client
(d) remove T; from tocommit_queue_k
3. Upon a transaction 7T; local at

RF timeout, (i.e., current_time -
T;.timeout > timeout_threshold),

(a) obtain T;.timeout_mutex

i. abort T; at R*
ii. T;.aborted:=true

(c) release T;.timeout_mutex

Figure 4.6: SRP-IC: a Simple Replication Protocol with Integrity Constraints
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eventually commit.

We now assume the n(n > 1) transactions have been validated and all replicas have made the
same commit/abort decision for these transactions.

Now let’s have a look at the next validated transaction 7}, ;. For any remote replica R*, when
T+1 is the first in tocommit_queue_k, all transactions T to T, have terminated and it is guaranteed
that no further transaction will commit until 7,1 commits or aborts due to integrity constraints.
Thus, T,,+1 at each R™ (R" being a remote replica of 7,,+1), will do its integrity reads exactly on
the same data versions, and thus either all remote replicas will detect an integrity violation and
abort the transaction, or will not detect an integrity violation and commit the transaction eventually
(potentially after a sequence of aborts due to deadlock). We now have to show that T, performs
exactly the same integrity reads at the local replica R!. We distinguish two cases. First, assume
when 7,1, is the first in the queue it was already aborted due to a timeout (step 3 of the protocol).
In this case T} 41 1s restarted jﬁst as it were a remote transaction. That is when T 41 is restarted
at R, all transactions 7T} to T}, have terminated at R, and thus the new Tf will perform the same
integrity reads as at the remote replicas, and thus, make the same decision.

Now assume T 41 Was not yet aborted when it is the first in the queue. Let T, ki +1 have performed
an integrity read irl;(z;). We have to show that T} was the last transaction in the sequence
T3, ...T,, to have written z and commit. Then we can be sure that all remote transactions at remote
replicas R™ perform the same integrity read ir;, ;(z;) since iry, ,;(;) means that T; was the last
to write 2 and commit before the read occurred. At R!, before performing the integrity read 77, +1
acquired a lock on z. At this time T; was the last to write z and commit. T, ; keeps the lock until
it terminates. Now assume a transaction TJ’ 1 < j < nupdated z, i.e., T; is not the last in the
sequence to update . However, when T} requests a lock on z at R' it is blocked on T} ;. Since
T} 1 is after T} in the tocommit_queue.l, there is a deadlock. T} waits for T, ; in the database to
release the lock on z, T, waits for T]l in the queue to terminate. We have a distributed deadlock.
According to the protocol, T, is aborted. Thus, our assumption does not hold that T, ; was not
yet aborted when it is the first in tocommit_queue_l. Thus, if it is the first in the queue and was not
yet aborted and it has performed irl +1(zi), we can be sure that T; was the last transaction in the

sequence 71, ...T), to update z and commit. Therefore, at all remote replicas R", T, ; will perform
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the same 4],  ; (%;) and decide a commit.

For property (iii), we need to show that there exists a USG-IC(RH) avoiding G-1c* cycles
(i.e., cycles consisting entirely of read-, write-, IC-read-, or IC-anti-dependency edges) and G-SIb*
cycles (i.e., cycles where each anti-dependency edge is prefixed by a read- or write-dependency
edge). We have just shown in our proof of property (ii) that all replicas commit the same set of
transactions in exactly the same order, and that all committed transactions perform their integrity
reads on exactly the same data versions. This means, for any two replicas R* and R!, if there is
an IC-read- or IC-anti-dependency edge from T; to T; in SSG(RH k), then there is the same edgé
from T; to T in SSG(RH'). As a result, there exists actually only a single USG-IC(RH), since
independently which replica R* we choose for a transaction T}, its IC-dependency edges are the
same as in other replicas. We now show that this USG-IC(RH) avoids G-1c* and G-SIb* cycles.

Assume a G-1c* cycle exists in USG-IC(RH). There can be four kind of edges in the cycle:
read-, write-, IC-read-, and IC-anti-dependency edges. Note that all transactions in the cycle must
be write transactions. This is true because each transaction in the cycle is the start node of a read-,
write-, IC-read, or IC-anti-dependency edge. If it is the start node of a read-, write-, or IC-read-
dependency edge it is obviously an update transaction. Being the start node of a IC-anti-dependency
edge means the transaction performed an integrity read which is followed by a successful write
operation. Thus, all transactions are update transactions, and thus, are executed at all replicas. Each
edge in the cycle occurs at least in the SSG(RH®) of one local history RH*, and since RH* is
a SI+IC history implies ¢; <; c; in this history. Since all histories commit write transactions in
the same order, this also implies c; <; c; in all other local histories. Therefore, the G-1c* cycle in
USG-IC(RH) implies ¢; <; ¢; in the local histories, which is impossible.

The proof that no G-SIb* cycle is similar to the proof for correctness of SRP (Theorem 6) and

omitted here. 0

4.5 Discussion

This chapter presents two protocols, SRP and SRP-IC. They both have the central architecture as in

Figure 2.1.(a) without considering message overhead and fault-tolerance.
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Protocols architecture isolation guarantee | works for databases with
SRP centralized (Fig 2.1.(a)) 1-copy-SI first-committer-wins
SRP-IC | centralized (Fig 2.1.(a)) 1-copy-SI+IC first-updater-wins

Table 4.1: Comparison of SRP and SRP-IC

SRP addresses the practicability problems of existing protocols. Transactions do not need to
provide information at start time. However, it only guarantees 1-copy-SI. Moreover, it does not
work for database systems with the first-updater-wins rule, where deadlocks can occur. SRP-IC
extends SRP to work with databases using the first-updater-wins rule and provides 1-copy-SI+IC. It
handles the deadlock problem by using a timeout mechanism.

We summarize the differences between SRP and SRP-IC in Table 4.1.



Chapter 5

Replica control for performance and

fault-tolerance

In the last chapter we developed SRP-IC. It provides 1-copy—SI+IC‘ for database systems implement-
ing SI With the first-update-wins strategy. However, the protocol ignores important issues such as
performance and fault-tolerance. In the following, Section 5.1 discusses these problems carefully.
Then, Section 5.2 proposes a new protocol, which we call Snapshot Isolation based on MultiCast
(SIMC), that addresses the problems. SIMC is based on multicast primitives provided by group
communication systems (GCS). However, our analysis shows that these multicast primitives are not
good in wide area networks (WANs). Hence, Section 5.3 develops a protocol, SEQ, that does not
rely on group communication systems but integrates communication more tightly with replica con-
trol. However, SEQ has weaker fault-tolerance than SIMC. Thus, Section 5.4 combines SIMC and
SEQ into a new protocol, HYBRID, that takes advantage of network topologies. Its performance

and fault-tolerance guaranteeé lie in between those of SIMC and SEQ.

5.1 Problems of performance and fault-tolerance in SRP-IC

While SRP-IC is ‘likely to work well in a LAN it will not in a WAN. The reason is the centralized

architecture (Figure 2.1.(a)) used in the protocols. Since there is only one middleware component,
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all requests must go through it. This results in WAN communication between the middleware
and clients if the clients are remote, and between the middleware and the database replicas if the
database replicas are distributed across the WAN. Communication is necessary for each read and
write operation. Recall that there might be more than one operation in one transaction. Thus, the
response time of a transaction will include the time needed for several message rounds across the
WAN.

Regarding fault-tolerance, clearly the single middleware is a single point of failure. Having a '
single backup will provide fault-tolerance but is complicated, as discussed in Section 2.2.2. Fur-
thermore, it does not help to handle the performance problem in a WAN.

Actually, many lazy primary approaches and update everywhere approaches with a central
scheduler experience the same problems as SRP-IC, since they follow the centralized architecture.
They have proven to work fairly well in LANS, but not in WANSs.

To reduce the WAN communication overhead, especially the one that occurs within the response
time of a transaction, we should keep the number of WAN messages as low as possible. Section
2.2.7 gave an overview of existing replication protocols based on GCS. They can be categorized into
two categories according to when multicast is used, i.e., before or after transaction executioh. In
these protocols only one single multicast message is needed within the response time of an update
transaction. All approaches are either kernel-based or use the decentralized middleware architecture
(Figure 2.1.(c)) in which there is one middleware instance for each database replica. Having a
single message round is, in principle, good for performance. The reliablity guarantees are good for
fault-tolerance. Thus, this chapter explores how the properties of GCS can be used for replication

protocols providing 1-copy-SI+IC.
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5.2 SIMC: areplication protocol based on Group Communication Sys-

tems (GCS)

5.2.1 Basicidea

In this section we propose a protocol SIMC that guarantees 1-copy-SI+IC with the cost of one
multicast message per update transaction. It extends SRP-IC and assumes databases using the first-
updater-wins strategy. SIMC uses the decentralized architecture shown in Figure 2.1.(c). Each site
has a middleware replica connecting to a local database replica. Clients submit their transactions to
one of the middleware replicas. In a WAN, this will be the one closest to the client.

As in SRP-IC, a transaction T is executed optimistically in the local database replica. Receiving
the commit request from the client, the middleware retrieves the writeset from its local database.
Recall that SRP-IC depends on the single middleware component to make a unique decision of
commit/abort. Since there are several middleware replicas in SIMC, the middleware replicas need
to synchronize in order to make an unique decision to commit or abort the transaction.

SIMC uses a GCS for communication among the middleware replica, and depends on the total
order multicast provided by GCS to guarantee that a unique decision is made. Recall that total order
multicast guarantees that all sites receive messages m and myo in the same order. SIMC multicasts
the writesets of transactions in total order. Hence, all middleware replicas receive the writesets in
the same order. As long as all middleware replicas perform validation for these transactions in their
delivery order, the decision will be the same at all replicas. The validation itself will be the same as
in SRP-IC. We only need to check if two transactions are concurrent and have write/write conflicts.

Integrity constraints are handled in the same way as in SRP-IC. Each middleware replica ap-
plies remote transactions and commits all transactions in their corresponding local database replicas
according to the order of validation. The databases will finally check integrity constraints and deter-
mine if an update transaction commits or aborts. The transaction will commit in either all or none
of the replicas since it is applied according to the validation order. Deadlocks are again handled via

timeouts. We defer the discussion of fault-tolerance to Section 5.2.6.
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Figure 5.1: A SIMC example extended from Example 14 in Figure 4.5

5.2.2 Example

Example 15. Let’s consider an example extended from Example 14 shown in Figure 4.5 for SRP-IC.
T1 performs an integrity read on x, a write on vy, and additionally a write on z. Ty performs an
integrity read on vy, and a write on x. And additional transaction T3 performs a write on z. T3 is
submitted to RA. Ty and Ty are submitted to RB. The execution scenario is shown in Figure 5.1.
Note that we use ellipses to represent the multicast of a writeset and the validation of the transaction
after the writeset delivery. We also separate the middleware replicas at site A and B.

Atreplica A, T is the only local transaction and can finish its execution locally. The middleware
replica M A retrieves the writeset of T and then multicasts it in total order. At the same time, Th
and T3 execute locally at RB. They both succeed in their local execution since they do not block
each other. M'B multicasts the writesets of Ty and Ts. The writeset delivery order is T\ then T’ then
T3 at both replicas. Since T} is the first transaction to deliver and validate, validation succeeds at
both replicas. So T} is inserted into the tocommit_queue at both M* and MB.

At replica A, R? simply commits Ty and M# removes Ty from its queue. Upon the delivery
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of Ty’s writeset, M validates Ty and applies the writeset immediately since Ty is the first in the
queue. The integrity read of Ty finds a violation of integrity constraints. Hence, Ty aborts and is
removed from the queue. At the same time, M4 delivers the writeset of Ts. However, T3’s validation
fails because T3 has write/write conflicts with 11, and T3 and T are concurrent. Hence, T3 will be
discarded by M4,

At replica B, RP applies T\’s writeset but the execution is blocked by the integrity read of Ts.
Upon the delivery of Tg ’s writeset, MB checks that Ty has no write/write conflicts with Ty. Hence,
the validation of Ty succeeds and T} is inserted into the tocommit_queue. A deadlock occurs.
Upon T3’s timeout, it aborts. Now, T can apply its writeset and commit successfully. T is removed
from the queue and T’ reapplies its writeset. But it will abort due to the integrity constraint. Upon
the delivery of T3’s writeset, T3 aborts because of T7.

Finally at both replicas, Ty commits but T and T35 abort. We would like to mention two points.
The first is that read-only transactions do not need to be multicast and validated since they do not
have writesets. The second is that the delivery and validation of a write transaction must be atomic,
or at léast validation must be performed according to the delivery order. Otherwise, the validation

outcome will be different at different sites.

5.2.3 Protocol details

Figure 5.2 shows the details of SIMC. SIMC is very similar to SRP-IC shown in Figure 4.6. It
is implemented at the middleware level and deployed in each middleware instance M*. SIMC
is different from SRP-IC only in total order multicast after local execution (step 1(d)iii), and in
total order delivery (step 2). We highlight them in bold letters. Besides, note that there is one
middleware replica M* for each database R*. There is one set of data structures (e.g., ws_list,
wsmutez, dbmutex, tocommit_queue, lastcommitted_tid, next_tid) for the middleware replica
at each site.

A client of M* submits the operations of its transactions only to M* which executes them in R¥
locally. A local transactioﬂ starts immediately when M* receives its start operation (step 1a). Note
that we keep track of the last committed transaction before T; starts (step 1(a)ii). The subsequent

read or write operations will be executed in R* (step 1b). Upon the arrival of the commit request
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i. release wsmutex

ii. if T} is local, then abort T} at R* and
return to client

Initialization:
lastcommitted_tid:=0, next_tid:=1
ws_list:={}, tocommit_queue:={}
wsmutex, dbmutex

timeout_threshold:=certain_value (e.g.,50ms) 3. Upon T; is first in tocommait_queue, then

(a) if T; local at R¥,

i. obtain T;.témeout_mutex

1. Upon receiving an operation Op; of T;

(a) if Op; is start, then

- ii. T;.timeout := 0
i. obtain dbmutex 1. 1;.timeou

iii. release T;.timeout_mutex

(b) if T; remote at R* or T;.aborted=true,
loop
i. begin TF at R*
ii. apply T;.W S to R¥
iii. if 7; aborted by deadlock, then
e continue the loop
iv. else (if T; aborted by IC or successfully

ii. T;.start := lastcommitted_tid
iii. begin T; at R*
iv. release dbmutex
v. return to client
(b) else if Op; is read or write
i. execute in local R and return to client

(c) else if Op; is abort, then

i. abort T} at R* and return to client applied)
(d) else (commit), A. obtain dbmutex
i. T, WS := getwriteset(T;) from local B. if T; successfully applied
Rk e commit 7} at R¥
ii. if T;,WS = 0, then C. lastcommitted_tid++
e commit and return D. release dbmutex
iii. multicast the writeset of 77 in total E. exit the loop
order

(c) return to client if T; is local.

2. Upon delivering T’; in total order

(a) obtain wsmutex

(b) if T} € ws.list such that T}.start <
T tid NGWSNT; WS # 0
i. T;.tid:=next_tid++
ii. append T; to ws_list
iii. T;.timeout:= current_time
iv. append T; to tocommit_queue
v. release wsmutex

(c) else

(d) remove T; from tocommit_queue

4. Upon timeout of transaction 7; local at
RF, (ie., current_time - T,.timeout >
timeout_threshold)

(a) obtain T;.timeout_mutex
(b) if T;.timeout # 0, then

i. abort T;
ii. T;.aborted:=true

(c) release T;.timeout_mutex

Figure 5.2: SIMC on M*: a replication protocol based on total order multicast
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(step 1d), M* retrieves the writeset and checks if the writeset is empty or not. If it is empty, the
transaction will be committed immediately. Otherwise, the writeset will be multicast in total order
(step 1(d)iii).

While the writeset of 7T} is delivered at a middleware replica M* (step 2), M* will validate
the writeset transaction against all other transactions which have been validated successfully since
T; started (i.e., tid > T;.start) (step 2b). If none of them has write/write conflicts with T3, the
validation succeeds and T; is appended to the ws_list and tocommit_queue. At the same time,
T;.timeout is set to the current time at M*. Otherwise, the validation fails and T} is aborted if local
or simply discarded (step 2c).

Once a validated transaction is the first in tocommit.queue, it will be applied until success or
until it aborted due to integrity constraints (step 3). A timeout mechanism is applied to solve the

deadlock problems (step 4). These mechanisms are the same as in SRP-IC.

5.2.4 Correctness

In SRP-IC, there is a single middleware making the validation decision and appending transactions
to queues. In SIMC, we have one middleware replica per database replica that performs validation.
We have to show that all middleware replicas make the same decision on validation as the central
middleware replica in SRP-IC. If we can show this, SIMC provides 1-copy-SI+IC.

We can show this by induction. The first transaction submitted to the replicated database always
succeeds in its validation at all replicas since there is no transaction in ws_list at all replicas. The
transaction is assigned a tid := 1 and the nezt_tid is set to 2.

We now assume that n(n > 1) transactions validate successfully and reside in ws_list at all
replicas. Each transaction has the same tid at all replicas, and the next_tid at any replica is set to
(n+1). The next transaction 7,1 is multicast in total order and received by all replicas. At each
replica, T}, is validated against all transactions in ws_list. Note that validation is performed ac-
cording to transaction delivery order. Hence, 7,41 sees the same number of transactions in ws_list
at all replicas. Recall that T, 1.start was assigned at T}, 1’s local replica so it is the same at any
replica in validation. Thus, T, validates successfully either in all or in none of the replicas.

Hence, all replicas make the same decision on validation. The remainer of the protocol is
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basically the same as SRP-IC. Therefore, SIMC provides 1-copy-SI+IC.

5.2.5 An optimization: early validation

So far, we only check if an update transaction 7; is allowed to commit upon the delivery of its
writeset. However, we can already perform a fair amount of validation earlier. For instance, we
observe that at the end of the transaction, just before M k multicasts 7;’s writeset, M k might have
already received a concurrent transaction T} having a write/write conflict with T;. In the last exam-
ple, before multicasting T3’s writeset, middleware replica M P had already received and validated
T7’s writeset. If M B can detect this fact, it does not even need to multicast T3’s writeset because
it is clear that 73 will abort. This will reduce the response time of 73 since 73 can be aborted im-
mediately. It also reduces network traffic. We refer to M* validating before sending the writeset
as early validation. In fact, during this early validation of a transaction T;, M* does not even need
to validate against all transactions that are concurrent to 7; and have validated. Since the database
system uses the first-update-wins strategy, part of the validation has actually already been done in
the database replica.

Let’s have a closer look at who should validate what. In principle, a transaction T;, local at
replica M/ R¥, needs to be validated against all concurrent transactions that validated before T}. We
can categorize these concurrent transactions as follows. At the time M* performs early validation
(just before multicasting the writeset), (i) some of these concurrent transactions are already commit-
ted at R*, and (ii) some have already arrived at M* but are still residing in the to_commit_queue
of M*. Additionally, there are (iii) some transactions that will be delivered between the early vali-
dation at M* and the time T}’s writeset is delivered.

For the transactions in category (i), that is, those concurrent transactions that have already com-
mitted locally at R*, the database replica has actually already done the validation due to the first-
update-wins strategy. According to this strategy, if a transaction is concurrent to T3, has a write/write
conflict, and commits, then 7T; aborts when it attempts to perform the conflicting write operation.
However, at the time of early validation, all of T;’s operations have executed, and T; is not yet
aborted. Hence, we can be sure that 7; does not conflict with any transaction that has already

committed at R¥.
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Transactions stored in the local tocommit_queue of M* at the time of early validation are those
transactions which have been validated but not committed yet (i.e., category (ii)). This means that
T;.tid > T;.start for each transaction T} in the tocommit_queue of M*. Moreover, if at all, T;
will commit after T} since if T; is added to the queue it will be appended to the end. Thus, T;
may not conflict with any of these transactions. Therefore, early validation will validate against all
transactions in the tocommit_queue.

However, early validation cannot include transactions in category (iii), because these transac-
tions have not yet arrived at M* at the timepoint of early validation. In order to not miss these
transactions, we need to perform a second validation of 7; after the delivery of 7;’s writeset. This
validation has to be performed at all replicas.

Figure 5.3 presenté the adjustments of SIMC to handle early validation. We highlight the
changes in bold letters. First of all, we do not need the variable lastcommitted_tid and the mutex
dbmutezx. They were needed to figure out when exactly a transaction started in the database replica.
This is no more needed, because we only validate against transactions in categories (ii) and (iii)
above. That is, steps la and 3(b)iv in SIMC (Figure 5.2) become easier. We do not need to keep
track of lastcommitted_tid at start time. Step 3(b)iv in Figure 5.2 is rewritten to step 3(b)iv and
3(b)v in Figure 5.3.

After step 1(d)iii, that is, after retrieving the writeset, we perform the early validation (step
1(d)iii to 1(d)vi). The transaction is aborted immediately, if the transaction conflicts with one of
the transactions in the tocommit_queue. Otherwise, the transaction will keep track of the tid of
the last transaction it was validated against (step 1(d)v) with the variable vid and then is multicast.
Upon delivery, the transaction is only validated against transactions with tid > vid (step 2b). The
rest of the protocol remains the.same.

Correctness: We only want to outline that the changes in comparison to the original SIMC do
not change the correctness of the system.

The new protocol in Figure 5.3 does not contain lastcommitted_tid and dbmutex compared
to the original SIMC in Figure 5.2. But it still validates an update transaction 7; against the same
concurrent transactions as the original SIMC. We have carefully discussed above that all concurrent

transactions of 7; will be checked either (i) during the execution of 7; within its local database
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replica, or (ii) during early validation in Step 1(d).iii-vi or (iii) at validation after delivery at Step 2.
Hence, the new SIMC and the original SIMC reach the same decision in their validation. Hence,

the new SIMC should also provide 1-copy-SI+IC.

5.2.6 Fault-tolerance

The decentralized architecture does not have a single point of failure. As we have mentioned in
Section 2.3, replication protocols based on group communication can take advantage of the delivery
guarantees these systems provide. If a group communication system offers uniform reliable delivery,
then a replication protocol can be assured that any message delivered to any replica will also be
received by the available replicas. Replication protocols such as [61, 67, 90, 6] take advantage of
this to achieve fault-tolerance for the replicated system. That is, they guarantee that whenever a
transaction is committed at one replica, it will be committed at any available replica (while crashed
replicas have to do so upon recovery). 4

However, in regard to clients, few approaches indicate how a client handles the failure of the
replica it is connected to. [73] describes how failures can be made nearly completely transparent to
clients in a protocol such as the SIMC protocol. We briefly repeat the idea here. ‘

We assume clients are connected via a standard interface, such as the JDBC interface, to the
middleware. A driver is installed at the client. A driver is a software package that provides to the .
client the interface, and handles the communication with the server. For fault-tolerance purposes, |
the driver software needs to know the set of middleware replicas. This can be implemented via a
directory service or similar. At start time, the driver connects to one of the middleware replicas but is
aware of the other middleware replicas in the system. If there are any changes in the configuration,
the middleware replica can inform the drivers that are connected. We assume that the middleware
replica and co-located database replica fail as one unit. When a middleware replica crashes all its
client connections are lost. The drivers on the clients will detect this and automatically connect to
another replica. At the time of the crash the connection might have been in one of the following

states.
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Initialization: :

next_tid:=1, ws_list:={}
tocommit_queue:={}, wsmutex
timeout_threshold:=certain_value (e.g.,50ms)

1. Upon receiving an operation Op; of T;

(a) if Op; is start, then
i. begin T} at R*
ii. return to client
(b) else if Op; is read or write
i. execute in local R* and return to client
(c) else if Op; is abort, then
i. abort T; at R* and return to client
(d) else (commit),
i. T,WS := getwriteset(T}) from lo-
cal RF
ii. if T,.WS = 0, then
e commit and return
iii. obtain wsmutex
iv. if 3T; € tocommit_queueN
T,WSNT; WS # 0
e release wsmutex

e abort T; at R* and return to
client

v. T;wid:=next_tid-1
vi. release wsmutex

vii. multicast the writeset of T} in total or-
der

2. Upon delivering T; in total order,

(a) obtain wsmutex

(b) if PT; € wslist such that

i. T;.tid:=next_tid++
ii. append T; to ws_list

iii. T;.timeout:= current_time

iv. append T; to tocommit_queue
v. release wsmutex

(c) else

1. release wsmutex

ii. if T} is local, then abort 7} at R* and
return to client

3. Upon T; is the first in tocommit_queue,

(a) if T; local at R,
i. obtain T;.timeout_mutex
ii. T;.timeout :=0
iii. release T;.timeout_mutex
(b) if T; remote at R* or T}.aborted=true,
loop
i. begin T at R*
ii. apply T;.W S to R*
iii. if 7; aborted by deadlock, then
e continue the loop
iv. else if T; aborted by IC, then
e exit the loop
v. else,
e commit T} at R*
e exit the loop
(c) return to client if T; is local.

(d) remove T; from tocommit_queue

4. Upon timeout of transaction 7; local at
RF, (i.e., current_time - T;.timeout >
timeout_threshold)

(a) obtain T;.timeout_mutex
(b) if T;.timeout # 0, then

T;vid < T tidANT; WS NT; WS # 1] i. abort T;

ii. T;.aborted:=true

(¢) release T;.timeout_mutex

Figure 5.3: SIMC with the early validation optimization
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1. There was currently no transaction active on the connection. In this case, failover is com-

pletely transparent.

2. A transaction T was active and the client has not yet submitted the commit request. In this
case, T' was still local on the middleware/DB replica that crashed, and the other replicas do
not know about the existence of 7". Hence, it is lost. The JDBC driver returns an appropriate
exception to the client program. But the connection is not declared lost, and the client can

restart 7.

3. A transaction T was active and the client has already submitted the commit request which
was forwarded to the middleware replica. In this case, the state at the remaining available

replicas might be as follows:

(a) They have not received 1”’s writeset, and hence, do not know about the existence of T',

and T must be considered aborted.

(b) They have received Ts writeset. If validation succeeds, they commit 7.

Note that uniform reliable delivery guarantees that if the local replica received the writeset
and committed 7" before the crash, then all (available) remote replicas receive the writeset and

hence, also commit 7.

Let’s have a closer look at case 3. If clients are directly connected to the database and the
database crashes after a commit request but before returning the confirmation, clients do not know
whether the transaction aborted or committed. In SIMC, we are able to provide the clients with
the outcome. When a new transaction starts at a middleware replica, the replica assigns a unique
transaction identifier and returns it to the driver. Furthermore, the identifier is forwarded to the
remote middleware replicas together with the writeset. Each replica keeps these identifiers together
with the outcome of the transaction. If now a crash occurs during a commit request, the JDBC driver
connects to a new replica and inquires about the in-doubt transactioh by sending the transaction
identifier. If the new replica had not received the writeset, it does not know about the identifier, and
hence, informs the driver that the transaction did not commit. The driver returns the same exception

to the client as if the commit was not yet submitted at the time of crash. If the new replica has the
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identifier, it checks for the outcome and returns the outcome to the driver which forwards it to the
client program. In this case, failover was completely transparent.

Note that due to the asynchrony of message exchange it might be possible that the middleware
receives the inquiry about a transaction from a driver and only after that it receives the writeset
for the transaction. In order to handle this correctly, the replica does not immediately return to the
JDBC driver if it does not find the transaction identifier. Instead, it waits until the GCS informs it
about the crash of the old replica. According to the properties of the GCS, the new replica can be
sure that it either receives the writeset before being informed about the crash or not at all. Hence, it

can inform the driver accordingly.

5.3 SEQ: a replication protocol without GCS

[72] shows that in WANSs the response of a transaction largely depends on the WAN communication
overhead. SIMC does not require any WAN communication for read-only transaction (as long as a
client has a replica close by). It requires only one multicast message per update transaction, much
better than the many WAN message rounds SRP-IC and other centralized replication approaches
have per transaction.

However, although the properties of group communication systems are very powerful, there
are some disadvantages and problems when using them. First of all, there exists a whole range of
total order algorithms each of them having different message overhead and latency. While message
overhead and latency do not play a large role in LANSs, considering the performance of the total
order multicast is extremely important in a WAN.

Furthermore, uniform reliable delivery increases latencies even further, because it typically re-
quires additional acknowledgment rounds before a message is actually delivered to the application.
In a WAN this becomes quickly unacceptable.

Finally, there are actually not many stable, publicly available group communication systems
available. Indeed, we are only aware of one publicly available system, Spread [114], that provides

total order multicast and uniform reliable delivery. Unfortunately, the particular choice of total order
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multicast and its implementation of uniform reliability have a very high latency. Most other avail- .
able systems, such as Ensemble [41] or JGroups [59], only provide reliable delivery. As mentioned
in Section 2.2.8, using reliable delivery instead of uniform reliable delivery it might occur that a
site receives a message (and, e.g., commits a transaction), and then fails before anybody else has
received the message.

Based on these observations, this section proposes a replication protocol SEQ, that integrates
the functionality of GCS into the replication architecture. It chooses those techniques developed
for GCS that seem the most promising for replication purposes and merges them with the replica

control functionality.

5.3.1 . Analysis of multicast algorithms

[36] gives a very detailed analysis of different multicast algorithms guaranteeing total order and/or
uniform reliability. Here we analyze three of them. Among them, only one provides uniform
reliability by default. The others need extra message rounds for uniformity. Table 5.1 shows how
message exchange is done in these protocols.

In principle, all protocols assume that there exists a point-to-point protocol that sends a message
reliably to the recipient, that is, as long as there are no crashes the receiver receives the message
(implemented, e.g., via TCP/IP). Our performance overhead assumes n processes in the system.

In sequencer-based algorithms, one of the processes has the special role of a sequencer. If a
process wants to multicast a message in total order, it sends the message to the sequencer. The
sequencer gives the message a sequence number and sends the message on behalf of the original
sender to all members of the group. All processes deliver messages in the order of their sequence
numbers. There are n messages sent in total for one application message, and the delay from sending
the message to delivering it is two message rounds. To achieve uniform reliability, all processes,
upon receiving a message, send an acknowledgment back to the sequencer. The sequencer sends
then a confirmation to all processes. Only upon receiving the confirmation a process can deliver the
message to the application (in order of sequence number). Thus, the number of messages increases
to n+2(n—1) and the message rounds increase to 4. [18, 22, 63, 83] follow the sequencer approach.

JGroups [59] has a variation on the sequencer approach. A process first fetches a sequence number
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for its message from the sequencer and then sends the message with this sequence number to all
processes. Thus, the number of messages is 1 + n and the number of message rounds is 3 (for
reliable multicast).

In token-based algorithms, there is a token circulating among all processes. The token carries
the sequence number of the latest message that has been multicast. If a process wants to multicast
a message, it waits until the token arrives. Then it takes the sequence number from the token,
increases it by one, timestamps the message with this value and sends it to all processes. It does so
for all messages it wants to send. Then it adds the sequence number of the last message sent to the
token and forwards it to the next process. The number of messages per application message is n (not
considering the token messages), and the delay is on average n/2 because a node has to wait until it
receives the token before it can start sending. To achieve uniform reliability, the token also contains
the sequence number of the last message each process has received. This information is used by
a process to determine when it is safe to deliver a message, namely when it knows that everybody
else has recei‘ved it. No extra messages are needed to achieve uniformity, but the message delay is
increased to n + n/2 on average. Spread [114] and Totem [81] are examples of token-based total
order algorithms. JGroups [59] provides a total order implementation based on Totem. But it only
guarantees reliable delivery instead of uniform reliability.

In timestamp-based algorithms, each message m is timestamped with a vector of n counters
showing the number of messages received per process before m is sent to all processes. Each process
can order all incoming messages according to their timestamps. It can also determine with the
help of these timestamps when other processes have received certain messages. That is, successive
messages are implicit acknowledgments for previous messages. This allows a process to deliver a
message in total order and when uniform reliability is guaranteed. The number of messages sent
per application message is n — 1. The number of message rounds to achieve total order and uniform
reliability is in the best case 2. Timestamp-based algorithms were proposed in [71] but we are not
aware of any group communication system implementing it.

We also consider a total order algorithm which is based on timestamps and does not guarantee
uniform reliability. In the algorithm, each process attaches a local sequence number and its process-

id to a message before sending it to all processes. Each process delivers messages in round robin
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Figure 5.4: Performance of different multicast algorithms with database replication in WAN (Fig.
7in [72))

mode, i.e., one message from each process in turn. This requires n — 1 messages per application
message, and ideally, if all processes continuously send messages, only 1 message round. For
uniform reliability a similar scheme as for sequencer-based algorithms can be used, increasing the
message number to 3(n — 1) and the message rounds to 3.

To see how these algorithms differ from each other when working with database replication, we
evaluated them in a WAN with S sites (in Montreal, Edmonton, Waterloo, Madrid, Zurich) on top of
a protocol similar to SIMC. The nodes had different but similar setup (similar to Pentium(R)-4 CPU
1700MHz, 512MB memory). We only considered reliable, but not uniform reliable delivery since
only one available group communication system (Spread) actually provides uniform reliability.

Figure 5.4 shows the average response time of transactions with increasing load submitted to
the system. We used the sequencer-based algorithm (SEQUENCER) and token-based algorithm
(TOKEN) implémented in JGroups [59]. We provided our own implementations for round-robin
(RR) and timestamp-based total order multicast (TS) on top of JGroups. Note that SEQUENCER
and TOKEN provided by JGroups only provide reliable delivery guarantee, so does RR. TS provides
uniform reliable delivery. ’

The figure shows that TOKEN has the worst response time due to the circulation of the token.
SEQUENCER offers better performance although it requires three messages per application mes-

sage, and has the potential bottleneck of the sequencer site. Furthermore, it leads to stable response
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times until the sequencer becomes saturated at around 70 transactions per second (tps). TS pro-
vides faster response times than TOKEN and SEQUENCER for low loads up to 40 tps although
this protocol provides additionally uniform reliable delivery. Interestingly, response times at 30 tps
are better than at 20 tps because when more messages are sent, the implicit acknowledgments arrive
faster. RR has the lowest response time of all since there are no additional messages and message
rounds. It saturates only shortly before the sequencer due to CPU overhead. However, RR requires
that all processes send messages in regular time intervals. If a process stops sending messages, all
other processes will not be able to deliver messages further.

Our analysis shows that the distributed algorithms TS and RR can achieve slightly better per-
formance, however they cannot achieve the same throughput as the sequencer based algorithm.
Uniform reliability seems infeasible in a WAN. TS provides uniform reliability but it saturates at
very low throughputs. We did not evaluate token-based algoritms with uniform reliablity, since
the reliable token-based algorithm (TOKEN) has the worst response time already. Uniform reli-
able token-based algorithms definitely have much worse response time since they require one more

round of token circulation than reliable token-based algorithms.

5.3.2 Basic idea

Our analysis of the previous section shows that uniform reliable delivery seems infeasible in a WAN.
However, using only reliable delivery will require the replication tool to be particularly careful in the
failure case. Therefore, it makes sense to combine sequencer-based ordering with replica control and
develop independent fault-tolerance mechanisms instead of depending on the group communication
system.

Recall that SIMC needs total order multicast to guarantee that all writesets are validated in
the same order at all replicas so that all replicas make the same decision. We can assign one of the
middleware replicas as the unique sequencer in the system. The idea is that instead of multicasting a
writeset with total order, a middleware replica sends the writeset only to the sequencer middleware.
Only the sequencer middleware performs the validation. \If validation succeeds it forwards the
writeset to all middleware replicas in FIFO order. If not, it simply sends the abort decision back

to the originator. The other middleware replicas now apply the writesets and commit transactions
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Figure 5.5: Revisit Example 15 in Figure 5.1 using SEQ

in the order they receive them from the sequencer. Integrity constraints and distributed deadlocks
are handled just in the same way as in SRP-IC and SIMC. The early validation optimization is still

applicable. We refer to the new protocol as SEQ.

5.3.3 Example

Example 16. Figure 5.5 revisits the example for SIMC (i.e., Example 15). We mainly focus on how
validation is performed in SEQ for write transactions.

We let middleware M? be the sequencer. After Ty’s execution at R4, Ty is validated imme-
diately locally at M4 since it is the sequencer. 11’s validation is successful and Ty is appended
to tocommit_queue of M A T\ ’s writeset and validation decision are also sent in FIFO order to
MB. Before its delivery, Ty and T3 are executed at RB. Each validation does not checked any
conflict and they are sent to MB for validation. Then MB receives Ty’s writeset. It does not need
to validate and immediately appends T to its tocommit_queue.

In the meantime, T, is executed locally at RB, After its execution, its writeset is sent to the

sequencer M4 for validation. At M4, when M4 receives Ty, it is successfully validated since it
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does not have write/write conflicts with T1. The decision is sent back to M B, By now both M A and

MB know that Ty has been validated successfully. We use the same technique as in SIMC to apply

T\ and Ty after their validation. T\ will commit while T, will abort due to integrity constraints.
When M4 receives Ts, the validation fails due to the successful validation of Ty. M# discards

T and sends the abort decision to ME. MPB aborts Ts at RB.

5.3.4 Protocol details

Figure 5.6 shows the details of SEQ which is based on the optimized SIMC in Figure 5.3. It
highlights the difference with bold letters.

In the local execution phase (step 1), SEQ is the same as SIMC except the last step. A replica
sends the writeset of an update transaction to the unique sequencer instead of multicasting it in total
order.

Validation can only happen at the sequencer site (step 2). If validation fails, the sequencer
only sends the abort decision back to the sender (step 2c). Otherwise, the sequencer multicasts the
commit decision and the writeset to all replicas (step 2b).

Upon receiving a commit decision and the corresponding writeset (step 3), a replica appends
the transaction to its tocommit_queue for execution (step 3b). Upon receiving an abort decision
(step 4), a replica aborts the corresponding transaction (step 4a). Note that the replica does not need
to perform the validation again.

A transaction in tocommit_queue will be applied according to the same rules as in SIMC (step

5). The timeout mechanism is also the same as in SIMC (step 6). We do not repeat them here.

Correctness: Since SEQ has a unique sequencer to make the decision to commit or abort update
transactions, its proof is similar to that of SRP-IC and omitted.
5.3.5 Fault-tolerance

Fault-tolerance needs a detailed analysis because there is no group communication system and no

uniform reliable delivery.
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Initialization: next_tid:=1, ws_list:={}
tocommit_queue:={}, wsmutex
timeout_threshold:=certain.value (e.g.,50ms)

1. Upon receiving an operation Op; of T;

(a) if Op; is start, then
i. begin T; at RE
ii. return to client
(b) else if Op; is read or write
i. execute in local R* and return to client
(c) else if Ops; is abort, then
i. abort T} at R* and return to client
(d) else (commit),
i. T,.WS := getwriteset(TF) from local
Rk
ii. if T,.WS = 0, then
e commit and return
iii. obtain wsmutex
iv. if 3T; € tocommit_queue A
LWSNT; WS #0
e release wsmutex
e abort T} at R* and return to client
v. T;.vid:=next_tid-1
vi. release wsmutex
vii. send T} to MSEQ

2. Upon receiving T from M' (MSE® only)

(a) obtain wsmutex
(b) if 391’3 € ws_list such that

i. T;.tid := next_tid++
ii. append T; to ws_list
iii. send (COMMIT, T;) to all middle-
ware replicas in FIFO order

iv. release wsmutex
(c) else

i. release wsmutex

ii. send (ABORT, T3) back to M

3. Upon receiving (COMMIT, T;) from
MSEQ
(a) T;.timeout := current_time

(b) append T; to tocommit_queue

4. Upon receiving (ABORT, T;) from M SEQ
(a) abort T; and return to the client

5. Upon 7T is the first in tocommit_queue,

(a) if T} local at R¥,
1. obtain T;.timeout_mutex
ii. T;.timeout :=0
iii. release T;.timeout_mutex
(b) if T; remote at R* or T}.aborted=true,
loop
i. begin TF at R*
ii. apply T;.W S to R*
iii. if T; aborted by deadlock, then
e continue the loop
iv. else if T; aborted by IC, then
o exit the loop
v. else (7} successfully applied)
e commit 7} at R*
e exit the loop
(c) return to client if 7} is local.

(d) remove T; from tocommit_queue

6. Upon timeout of transaction T; local at

Tiwvid < Tj.tid AT, WS NT;. WS # 0 Rk, (ie., current_time - T;.timeout >

timeout_threshold)

(a) obtain T;.timeout_mutex
(b) if T;.timeout # 0, then

i. abort T}

ii. T;.aborted:=true

(c) release T;.timeout_mutex

Figure 5.6: SEQ at middleware replica M*
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Figure 5.7: SEQ failover cases (I)

The client failover is as in SIMC. The JDBC driver of the client automatically reconnects to
a new middleware replica if it looses the connection to its old replica. If there was no transaction
active on a connection, nothing special has to be done.

Note that the execution of 7" might be affected by crashes of its local replica M* and the se-
quencer replica MSEQ (if M* is not MSE?). The crash of any other replica has no impact on 7.

We will analyse the failover according to the crashes of different replicas.

Crash of M* (sequencer/non-sequencer) during execution of 7' (Figure 5.7 case 1)

If T7s local replica M* crashes in the middle of execution of T (i.e., before the client submitted
the commit request), then the driver simply returns an abort exception to the client program before
reconnecting to a different replica. This is necessary, because the sequencer does not yet know about
the transaction, and hence it cannot be recovered. Figure 5.7 case I shows such a scenario. Note
that an abort exception will be thrown no matter if M* is MSE? or not. In case MSE? crashes,

there is a coordination which will be described later.

Crash of non-sequencer M* after submitting 7°s commit request (Figure 5.7 case 2):
Figure 5.7 case 2 shows such a scenario. In this case, the JDBC driver receives a failure exception as
return to the commit request. The driver resubmits the same commit request to the sequencer replica.

Upon receiving such resubmission, the sequencer checks whether it had received the writeset of the
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Figure 5.8: SEQ failover cases (II)

corresponding transaction from M*. If yes, it will return the outcome (commit or abort) to the
driver/client. If not, it returns an abort decision because the transaction is lost. From there, the
driver can decide to stay connected with the sequencer, or connect to a replica that is closer to the
client. In the latter case, the driver has to be careful that it only sends the next transaction to this
replica once it can be sure that all previous transactions transmitted through this driver have been
applied at this replica in order to guarantee session consistency (a transaction sees the changes of

committed transactions from the same client).

Crash of sequencer M SEQ

Corrdination of new sequencer (Figure 5.7 case 3)

First, when the sequencer MSF@ crashes, we assume there is an election protocol that determines
a new sequencer M™*¥~SEQ_ For that, SEQ can use, e. g., the membership features of GCS. That
is, all middleware replicas build a GCS group and if a member fails, the GCS automatically informs
the others about the crash. GCS’s unfirm reliable multicast primitives could be used to decide on
the next sequencer. We believe using the GCS for this limited purpose is acceptable considering the
properties it provides and the fact that failures occur seldomly. If the membership changes again
while failover is still ongoing, the failover procedure is simply restarted.

Figure 5.7 case 3 shows a detailed example of how the new sequencer coordinates the surviv-

ing replicas. MSEQ validates T} and T} successfully, sends both decisions (including writesets)
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to M but crashes before sending T5’s decision to M new—SEQ  Recall that all replicas execute
and commit the same transactions in their tocommit_queue. Each replica can inform M"ev—SEQ
about their value of lastcommitted_tid once tocommit_queue is empty. Let tidl be the value
of lastcommitted_tid of M"™*~SEQ and tid2 the largest value of any lastcommitted_tid re-
ceived from the other replicas and let M* be the replica that sent this value. If tid2 > tid1, then
Mnew—SEQ js missing some transactions that were received by other replicas. M™¢*~SE® contacts
MF to retrieve the missing transactions (e.g., T} in this case)!. M"*w=SEQ applies these transac-
tiohs locally and sends them to replicas that miss them. Which transactions to send can be easily
determined by the corresponding lastcommitted_tid values. From there, normal processing re-
sumes on M™% ~5EQ  The drivers that were connected to the old sequencer and had outstanding

commit requests connect to the new sequencer and resubmit the commits.

M5EQ crashes and M is not MSEQ (Fig. 5.8 case 4):

Let’s consider a case that a client submits its transactions to a non-sequencer replica M* at the
time M5EQ crashes. M* may have sent a writeset of one of its clients for validation to MSEQ
but no replica received the commit/abort decision before the crash, as shown in Figure 5.8 case 4.
Thus, once a replica M* has received all the missing transactions from M"e¥~SEQ Nf* resends
the writesets of outstanding transactions to the new sequencer for revalidation. This is transparent
to the client and the JDBC driver. It might happen that M* is not M5E® and they crash at the same

time. Then the coordination selects a M™e*~5EQ ap(d the client will be redirected to M™ew—SEQ,

M?SEQR crashes and M* is MSE® (Fig. 5.8 case 5):

Let’s consider the other case that a client submits its transactions to M>E® when MSE@ crashes.
There are two situations where inconsistencies can occur because we do not have uniform reliable
multicast. First, as shown in Figure 5.8 case 5, a transaction 7} local to the old sequencer might
have committed but nobody received the decision before the crash. The client might have received
the commit confirmation. Either we block execution until the old sequencer recovers (i.e., no se-

quencer takeover) or the transaction is lost since the other replicas continue execution without this

!Note that this requires replicas to keep decisions and writesets of committed transactions. Hence, some garbage
collection process must be in place to eventually delete writesets once it is assured that all replicas have received them.
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transaction.

The second inconsistency might arise when a replica sends a writeset for transaction T for
revalidation to the new sequencer, and the new sequencer decides on one outcome (either commit
or abort) while the old sequencer had decided on a different outcome. From the client perspective,
there is no problem because it never received the first decision of the old sequencer (it was not
connected to the old sequencer). Hence, this issue is merely a recovery problem. If the old sequencer
decided abort and the new sequencer decided commit, then, upon recovery of the old sequencer, one
must make sure that the updates performed by 7" are transferred during the recovery process since it
eventually committed. If the old sequencer committed 7" but the new aborted it, then, upon recovery,

the old sequencer has to undo the changes.

5.4 Hybrid: areplication protocol taking advantage of network topolo-
gies
5.4.1 Basicidea

While optimized on performance, SEQ has the shortcoming that if the sequencer crashes, some
transactions might be lost. SIMC avoids this problem since it uses the uniform reliable delivery of
GCS. However, as we discussed before, this uniform reliable delivery is too costly in a WAN.

However, we can still take advantage of GCS in some configurations. In many applications
there exist different sets of replicas, each set being connected via a LAN, while the different sets are
separated through a WAN. For example, a Chinese news website might have many replicas in the
company’s headquarter located in Beijing, a large set of replicas in Shanghai, and then smaller sets
of replicas dispersed around the world. For these kinds of applications, we propose the HYBRID
approach, which addresses both fault-tolerance and performance issues. An example of its archi-
tecture is depicted in Figure 5.9. We assume the replicas can be split into different subsets, each
of them being located on a different LAN. We assign one LAN with at least two replicas to be the
primary LAN and the others as secondary LANS.

Within the primary LAN, we use SIMC based on GCS. Since communication is fast in a LAN,
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Figure 5.9: An example of network topologies for HYBRID

the overhead of uniform reliable, total order delivery is acceptable. For the secondary LANs, we
use hierarchical validation. A transaction is first validated by a local sequencer in the sécondary
LAN according to the SEQ protocol. Then, if validation succeeds, the local sequencer forwards it
to a replica in the primary LAN for further validation. If validation succeeds in the primary LAN,
the transaction will be sent to the local sequencers of all secondary LANs which forward it to the
other replicas in their LANs. Hence, all replicas apply the writeset. If the global validation fails, the
decision is only sent back to the secondary LAN where the transaction originated.

HYBRID improves over SEQ in several ways. First, since the primary LAN uses uniform -
reliable delivery, no transactions will be lost unless all replicas of the primary LAN crash. Secondly,
on the secondary LANSs only the local sequencers perform WAN communication, and only these
local seqﬁencers must be known in the primary LAN. This also leads to less WAN messages since
commit decisions are not sent to all remote replicas but only to the local sequencers which forward
them in their local LANs. Moreover, only the sequencer in a LAN will have ports opened on
the firewall for WAN access. It reduces the chances for attacks and the complexity of network
management. Finally, part of the validation is done at the local sequencers, decreasing the validation

load on the primary LAN.
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5.4.2 Protocol details

For the sake of simplicity we assume a single replica in the primary LAN to take care of commu-
nication with all local sequencers. We refer to this replica as global sequencer (note, however, that
validation is done at all replicas in the primary LAN). If this communication overhead becomes too
large, the algorithm can be easily extended such that each replica of the primary LAN maintains the
communication with some of the local sequencers. ‘

We show the details of the protocol in Figure 5.10. When a transaction is submitted to a replica
in a secondary LAN, it follows the same procedure as discussed in SEQ (Step 1) until it passes the
validation in the sequencer of the local LAN (Step 2(a)ii). At this time, it can not commit yet be-
cause there may be some concurrent conflicting transactions in other LANs. Hence, its writeset has
to be sent to the global sequencer in the primary LAN for global validation. However, its vid value
is adjusted so that it will not be validated against those transactions against which it has been vali-
dated by the local sequencer. When a transaction is submitted to a replica in the primary LAN (Step
3a), it follows the same procedure as in SIMC. When the global sequencer receives a transaction
from a secondary LAN (Step 3b),b it multicasts the writeset in uniform reliable and total order within
the primary LAN. Thus, all writesets (both from the primary LAN and the secondary LANS) are
delivered to all replicas in the primary LAN (Step 3c). They validate transactions according to the
delivery order. Thus, all decide on the outcome. If a transaction succeeds in its validation it is en-
queued for execution. Moreover, the global sequencer sends in FIFO order the commit decision and
the writeset to all the local sequencers of secondary LANS (step 3(c)iD) which forward them to the
others replicas of their LANs (Step 2b). Thus all replicas will execute and commit the transaction. If
validation fails (Step 3(c)ii) and it was a transaction of the primary LAN, the corresponding replica
aborts the transation. Otherwise, the global sequencer notifies the local sequencer of the originator
of the transaction about the abort (step 3(c)iiB). This local sequencer forwards this decision to the

originator (Step 2c). Replicas on the primary LAN apply writesets as in SIMC (Step 3d).
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Initialization: same as SEQ

1. If M* on secondary LAN:
e Same as SEQ in Figure 5.6

2. If M*=MlocelSEQ o secondary LANs
(besides step 1):

(a) Upon receiving T; from M! in the same
LAN
i. obtain wsmutex
ii. if #T; € ws_list such that
Tiwid < T tidNT; WSNT; WS # 0:
o T;.vid := next_tid-1
o release wsmutex
e send 7 to MYlobalSEQ
iii. else
e release wsmutex
e send (ABORT,T;) back to M*

(b) Upon receiving (COMMIT, T;) from
D[ 9lobalSEQ
1. obtain wsmutex
il. next_tid := T;.tid+1
iii. append 7} to ws_list
iv. send (COMMIT, T;) to all M’ in the
same LAN in FIFO order.
v. release wsmutex
(c) Upon receiving (ABORT, T;) from
M 9lobalSEQ

i. send (ABORT, T;) to the originator of
T;

3. If M* on the primary LAN:

(a) Upon receiving an operation Op of T;

e Same as SIMC with optimizqation Fig-
ure 5.3

(b) Upon receiving T; sent by a MlocalSEQ
from a secondary LAN (Mf90balSEQ
only) .

i. Multicast 7; in primary LAN in uni-
form reliable and total order.

(c) Upon receiving T; multicast in the pri-
mary LAN in uniform reliable and total
order

i. if #T; € ws_list such that
Tiwvid < Ty tid N\T.WSNT; WS # 0
A. T, .tid := next_tid++

. append T; to ws_list

. append T; to tocommit_queue

if Mk s M9balSEQ  gend

(COMMIT,T;) to all McalSEQ jn

FIFO order

ii. else
A. if T; local, abort T} and return

B. else if T} originated on secondary
LAN and Mk is M90balSEQ
send (ABORT, T;) back to the
MlocalSEQ of the originator of 7.

(d) Upon T; is first in tocommit_queue

o9nw

o Same as SIMC with optimization (Fig-
ure 5.3)

(e) Upon alocal transaction T; timeout after
its successful validation,

e Same as SIMC with optimization (Fig-
ure 5.3)

Figure 5.10: HYBRID protocol on middleware replica M*
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Figure 5.11: HYBRID failover cases

5.4.3 Fault-tolerance

Similarly to SEQ, HYBRID uses a fault-tolerant driver to handle failover. It is an extension of what
had to be done for SEQ (Section 5.3.5). When a site crashes before a transaction submits its commit,
the driver simply informs the client about an abort exception as shown in Figure 5.7 case I before
reconnecting to another replica. The more interesting case is when the client had already submitted
the commit request for a transaction but not yet received a response when its local site crashes.
Crash of a non-sequencer replica in secondary LAN: It is the same as described for a non-
sequencer replica in the SEQ algorithm (see Figure 5.7 case 2).

Crash of a non-sequencer replica in the primary LAN: It is similar to the actions described for -
a non-sequencer replica in the SEQ algorithm (see Figure 5.7 case 2). The driver can reconﬁect to
any replica in the primary LAN. Uniform reliable multicast guarantees that either all or none of the
available replicas have received the transaction’s writeset, and hence, all make the same decision. It
is similar to the discussion in Section 5.2.6.

Crash of the local sequencer M°¢!SEQ jn a secondary LAN: An example of this situation is
shown in Figure 5.11 casé 1. As for SEQ, all replicas in the secondary LAN first perform some

coordination to decide on a new local sequencerM ™% LocalSEQ = A] non-sequencers now inform
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Mnewlocal SEQ about the last writesets they received. Different to SEQ, MnewLocalSEQ poy jn-
forms the global sequencer M9/°0a!SEQ ahout the last transaction it has committed (taking the value
of lastcommitted_tid). M9'aISEQ gends NfrewLocalSEQ g)] the transactions the local sequencer
has missed. MmewLocalSEQ provides each non-sequencer replica M* in the LAN with the trans-
actions M* has missed. As in SEQ, a driver connected to the crashed M c4SEQ reconnects to
MrewLocalSEQ and resubmits the commit request if necessary. And a non-sequencer replica M* re-
submits outstanding writesets to M™ewLocalSEQ Recall that in SEQ, transactions from clients con-
nected to the crashed sequencer might be lost if their writesets were not transmitted to other replicas
before the crash. This problem cannot happen here. Before committing locally, a local sequencer
sends its own writesets to the global sequencer. That is, if M°°#SEQ has committed a transaction
before the crash, so has M9/0balSEQ apg pfrewlocalSEQ il receive it from M9lobalSEQ
Crash of the global sequencer M9'9%4SEQ jn the primary LAN: The global sequencer in the
primary LAN is simply the connection point for secondary LANs but validation is actually done
by all replicas in the primary LAN. Even if the global sequencer has decided on a transaction but
not sent the commit/abort decision to the secondary LANS, all other replicas in the primary LAN
are guaranteed to have received the writeset and decided the same outcome. Thus, as shown in
Figure 5.11 case 2, local sequencers can reconnect to the new global sequencer (which can be easily
decided on via voting or pre-selection) and retrieve any missing writesets. The client management is
similar to the previous case. As long as one replica survives in the primary LAN, the inconsistency
problem that can occur in SEQ is avoided.

If a whole secondary LAN crashes, clients can reconnect to the primary LAN without any loss
of transactions. Lodsing the full primary LAN would be a catastrophic failure. A secondary LAN

should take over but some transactions submitted on the primary LAN might be lost.

5.5 Discussion

In this chapter, we presented three protocols (i.e., SIMC, SEQ, and HYBRID) that are able to
execute in WANSs and provide fault-tolerance.

SRP-IC does not perform well in WANSs due to the centralized middleware architecture it uses.
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It requires several message rounds within the response time of a transaction. We solve the problem
by using a decentralized middleware architecture (Figure 2.1.(c)). The decentralized architecture
introduces additional challenges for validation. SIMC overcomes the problem by using total order
multicast provided by GCS. Additionally, uniform reliablity multicast provides fault-tolerance for
SIMC. SIMC only requires one multicast message per transaction through the WAN. However,
GCS is costly in WANs. Hence, we derive SEQ by discarding the usage of GCS in SIMC. There
is a sequencer site in SEQ. The middleware replica at the sequencer site is responsible for all the
validation. SEQ only requires two message rounds through the WAN.

We also discuss the fault-tolerance issues in SIMC and SEQ. SIMC can take advantage of uni-
form reliable multicast semantics provided by GCS. Since SEQ does not rely on GCS, it needs its
own fault-tolerance tool. Since this does not provide uniform reliable delivery, there might be a case
which might lead to lost transactions.

HYBRID is proposed to overcome this problem as optimization on cluster-based WAN config-
urations. It is a mixture of SIMC and SEQ. It groups replicas into several groups depending on their
network distance (e.g., replicas in one LAN can be one group). A group is designated as primary
LAN and SIMC is applied. The remaining clusters are considered as secondary LANs and SEQ
is applied. Between primary and secondary LLANs, an adjusted SEQ is used. HYBRID can take
advantage of uniform reliable multicast to improve the fault-tolerance in the primary LAN. At the
same time, it does not experience long message delay incurred by uniform reliable and total order
multicast across different LANS.

SEQ and HYBRID both count on their centralized components, i.e., sequencer or primary LAN
respectively, to make a final decision of validation. In WANS, network partitioning might sometimes
happen and the centralized components might temporarily not be accessible. To avoid secondaries
to wait forever, we should set a threshold waiting time at secondaries. The threshold value can be
adaptive to empirical data. After timeout, secondaries can either stop execution pessimistically or
select a new primary to continue if they can get a quorum of all replicas. In the latter case, the old

primary should be discarded.
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Protocols | architecture communication WAN overhead
SIMC | purely decentralized total order and uniform reli- | one multicast mes-
able multicast sage
SEQ decentralized with one se- | TCP/IP two message
quencer rounds
HYBRID | SIMC in primary LAN, SEQ | total order and uniform reli- | two WAN message
in secondary LANs, SEQ be- | able multicast within primary | rounds and one
tween primary and secondary | LAN, TCP/IP within sec- | LAN multicast
sequencers ondary LANs and between | message

primary and secondary LANs

Table 5.2: Comparison of protocols for WANs

The characteristics of SIMC, SEQ, and HYBRID are summarized in Table 5.2.



Chapter 6

Evaluation

This chapter provides a detailed evaluation of the protocols of Chapter 5, namely SIMC, SEQ and
HYBRID. We do not consider the protocols SRP, SRP-IC of Chapter 4 since they do not consider
fault-tolerance. However, we compare against two variations of a lazy primary copy approach. They
represent typical execution scenarios of existing protocols in terms of execution flow between client
and middleware, and middleware and underlying database systems, and thus, allow us to compare
our protocols against existing ones in terms of performance.

The remainder of the chapter is structured as follows. First, Section 6.1 describes our replica-
tion framework into which we plugged the various replication algorithms. Section 6.2 describes
the comparison protocols. Section 6.3 presents two benchmark applications that are used in the
experiments. Section 6.6.1 discusses the experimental setup. In Section 6.5, the protocols are eval-
uated in a LAN environment. Section 6.6 evaluates the performance in a WAN. All experiments are

conducted in real networks.

6.1 Replication framework

We have built a middleware-based framework, MiddleSIR (Middleware-based Snapshot Isolation
Replication), which accomodates the implementation of different replication protocols. The frame-

work follows the decentralized architecture of Figure 2.1.(c). The inner structure of one middleware

126
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Figure 6.1: MiddleSIR framework

replica is shown in Figure 6.1. A middleware replica is divided into three components, namely, com-
muncation manager, transaction manager, and connection manager.

The communication manager is in charge of any kind of communication, including (i) com-
munication between client and middleware, and middleware and database; and (ii) communication
between different middleware replicas. Clients submit their requests to the middleware through
some standard database interface such as Java Database Connectivity (JDBC). The communication
manager interacts with the transaction manager for replica control. The transaction manager takes
charge of transaction synchronization. The main part of the replication protocols are implemented in
this component. It will detect concurrency and conflicts between transactions and decide whether to
commit transactions or abort them. A transaction manager will contact its local connection manager
for physically executing, committing or aborting a transaction.

Note that each componenent has different versions of implementation. For example, there are
different communication managers according to different communication paradigms, e.g., socket
or multicast with group communication. There are different transaction managers corresponding
to different replica control algorithms. There are different connection managers corresponding to
different underlying DBMSs!.

In our experiments, we use several kinds of communication paradigms. We use TCP/IP socket
communications in SEQ, lazy primary copy approaches, and HYBRID. We use the group commu-
nication systems Spread [114] and JGroups [59] i1_1 SIMC and HYBRID.

!Currently we only implement a connection manager for PostgreSQL
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6.2 Comparison lazy primary copy protocols

Our comparison protocols are also implemented in the replication framework, thus relying on oné
middleware replica for each database replica.

Recall that in a lazy primary copy approach, an update transaction 7' must be submitted or
forwarded to the primary replica for execution which propagates then the changes made by 7 to the
secondary replicas lazily, that is, after committing 7. Read-only transactions can be executed at any'
replica.

We consider two lazy primary copy protocols. LPnMsg is more suitable for a LAN since it has a
considerable message overhead. LP1Msg has only two message rounds per transaction between the
middleware replicas and thus, is more suitable for a WAN. However, in this case, the middleware
does not provide a standard JDBC interface to the application. Instead, the middleware must know
all transactions, and receives from the client a request to execute a certain transaction with a specific
set of input parameters. Thus, LP1Msg only works if the middleware instance and the application
environment are actually collocated. Both protocols require that a transaction indicates at its start

time whether it is an update or a read-only transaction.

LPnMsg

When a transaction (read-only or update) is submitted to the middleware replica of the primary
replica, the middleware instance simply forwards all requests to the local database replica. When
the client submits the commit request, the middleware replica first retrieves the writeset from the
database replica, then commits the transaction locally, and finally multicasts the writeset in FIFO
order to the secondary replicas.

Secondary replicas simply apply writesets in the order they receive them from the primary
replica. For a read-only transaction submitted to a secondary replica, the middleware simply for-
wards all operations to the local database replica and commits the transaction locally. For an update
transaction, the middleware forwards each operation submitted by the client to the primary replica.
Note that also read operations have to be forwarded in order for them to read from the proper snap-

shot. The primary middleware submits it to its local replica and returns the result to the secondary
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middleware which forwards it to the client. At commit time, the primary middleware commits
the transaction locally and forwards the writeset to all secondaries as it does for writesets of local

transactions.

LP1Msg

For transactions submitted to the primary replica, and for read—ohly transactions submitted to sec-
ondary replicas, the protocol works the same as LPnMsg. Also, secondary replicas apply writesets
received from the primary sequentially as in LP1Msg.

When an update transaction is submitted to a secondary replica, it is assumed that the entire
transaction is submitted by the client in one message. This could be simply a transaction identifier
with some parameter values (and the code for the transaction is actually integrated into the mid-
dleware itself) or a set of SQL statements. The secondary then forwards the request to the primary
middleware which initiates the execution of the transaction at its local database replica, commits the

transaction locally, and then forwards the writesets to all secondary replicas where they are applied.

6.3 Benchmarks

6.3.1 TPC-W

TPC-W [118] is a standard benchmark proposed by the Transactional Processing Performance
Council (TPC) [119] for E-commerce applications that require a transactional persistent storage.
The benchmark simulates an online bookstore. Clients can browse, shop, and order books on-
line. There are three kinds of workloads that vary in the ratio of update vs. read-only transactions
(Browsing: 5%, Shopping:20%, Ordering:50%). The TPC-W database consists of 8 tables. The size
of each table is determined by the number of items and emulated browsers (clients) in the system.
The experiments use a standard setup of 100,000 items and 100 emulated browsers which leads to
a database with 650 MByte. The evaluation uses a Java implementation of the benchmark from the
University of Wisconsin-Madison [123]. '

The TPC-W evaluates both web- and database server. Since we are only interested in the behav-

ior of the database, we first generated transaction traces by running the TPC-W using a single web
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server, single database server configuration. These traces were then used as input for the evaluation

of the replication protocols. In all experiments, the load was evenly distributed to all replicas.

6.3.2 Synthetic benchmark

The second benchmark is a synthetic benchmark. It is used to simulate update intensive workloads
(i.e., 100% updates). The evaluation of such a benchmark is useful since replica control is mainly
concerned with synchronization of update operations. There are ten tables in the database, each
with 10,000 records. Each table has five attributes (two integers, one 50-character string, one float,
and one date). The overall tuple size was slightly over 100 bytes, which yielded a database size of
just more than 10 MBytes. An update transaction has ten update operations, each of which updates
a tuple indexed by a random primary kéy. Each operation has the form

UPDATE table-i SET attrl="randomtext", attr2=attr2+4 WHERE t-id=random(1-10000).

6.4 Experimental setup

In each test run, each replica has the same number of clients connected to it. Within a transaction,
each client submits the next SQL statement immediately after receiving the previous one, but it
sleeps between two different transactions. Fach client submits 1000 transactions at the rate of 1
transaction per second in LANs and 0.5 transaction per second in WANs. The number of clients
determines the system-wide load. All tests achieved a confidence interval of 95% +- 2.5%. Unless

otherwise stated, the timeout value to detect distributed deadlocks was set to 100 ms.

6.5 Local area network

This section analyzes the behavior of the protocols in a LAN. HYBRID is not considered since it is
designed for WAN setups in which there are several inter-connected LANs. In our experiments each
computer in the cluster has an Intel Pentium-IV CPU with 2.66GHz and 512KB cache, 512 MByte
memory, and 30 GB hard disk. Each computer runs the Linux operating system with the kernel of

2.6.17-gentoo-r4. All computers are connected by a 100Mbps Ethernet.
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Figure 6.2: Average response time of read-only transactions, TPC-W shopping workload

6.5.1 Base comparison using TPC-W

In this section, we provide a first comparison of SIMC and SEQ with LPnMsg using five replicas.
We chose LPnMsg over LP1Msg because it represents the more flexible protocol allowing for a
standard JDBC interface. In this section we refer to LPnMsg as LP for simplicity. Recall that SIMC
provides purely distributed synchronization, while SEQ and LP both have a node with special tasks
(the sequencer in SEQ, and the primary in LP). The workload of the sequencer/primary is different
from the other replicas. Thus, the figures separate the results for this special node from the results
obtained at the other nodes. Of course, for SIMC, the results are always the same for both node
types. SIMC uses Spread providing total order and uniform reliable delivery.

We first use the TPC-W shopping workload with 20% updates. Figures 6.2.(a) and 6.2.(b) show
the average response time of read-only transactions at the sequencer/primary replica and the non-
sequencer/secondary replicas, respectively, with increasing load. All response times increase with
increasing load. At low loads all the protocols behave the same. When the load is increasing, LP
is significant worse than SIMC and SEQ at the primary; at the secondaries it is worse only at very
high load.

Since a read-only transaction executes only locally and does not trigger any communication,
the response time is solely determined by the CPU usage at the local replica. The CPU usage is
shown in Figures 6.3.(a) and (b). The figures indicate that SIMC has almost the same CPU usage
as SEQ which increasgs linearly with the load. Correspondingly Figures 6.2.(a) and (b) show the
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Figure 6.3: CPU usage, TPC-W shopping workload

same average response times for all settings. This means the GCS overhead is similar to the one
of TPC/IP socket communication in a LAN, and the asymmetric load of SEQ has no effect on its
performance.

Figures 6.3.(a) and (b) also show that LP has higher CPU usage than SIMC and SEQ at the pri-
mary replica and slightly lower load at the secondary replicas. This is because SIMC and SEQ have
a better load balancing potential than LP. Recall that in LP the primary has to execute all operations
(read and write) of all update transactions while secondary replicas only apply the writesets. Fur-
thermore, executing the SQL update statements is more expensive than applying the writeset. In our
implementation, applying the writesets at the secondary takes only around 20% of the time it takes
to execute the entire transaction at the primary. In contrast, using SIMC or SEQ, update transactions
can be executed anywhere, distributing the cost of executing the read and update SQL statements
within update transactions across all replicas. Therefore, LP has a much higher load at its primary
due to the accumulated load of update transactions, and slightly less load at the secondaries. This
leads to observed average response times in Figures 6.2.(a) and (b).

Let’s now look at update transactions. Figures 6.4.(a) and (b) show the average response times
of update transactions with increasing load for primary/sequencer and secondary/non-sequencer
replicas, respectively. In both figures, SIMC and SEQ have low response time up to the saturation
point. SIMC has slightly larger response time than SEQ at the sequencer. This is due to the fact

that there is no communication delay for the update transactions at the sequencer in SEQ because
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Figure 6.4: Average response time of update transactions, TPC-W shopping workload

they are validated locally. SIMC, however, includes a total order message round. But even at the
non-sequencer nodes SIMC is slightly worse although also SEQ includes two message rounds. The
reason is that SIMC also provides uniform reliable delivery, not provided by SEQ, that leads to
further delay.

At the primary replica, LP’s response time is the same as SEQ’s response time for a low load
but then increases and is significant worse at the saturation point. At low loads LP behaves very
similarly to SEQ since the execution pattern is similar and LP is not yet highly loaded. At higher
loads LP is simply more loaded leading to worse response times. At the secondaries, LP is signifi-
cantly worse than the other two protocols. This is because each operation of an update transaction
needs to be sent to the primary leading to several message rounds per transaction. A typical TPC-W
update transaction has on average four operations, which results in four round trip messages within
the response time of the transaction.

We also conducted experiments using the browsing and ordering workloads of the TPC-W
benchmark. The results are shown in Figures 6.5 and 6.6. The results show the same tenden-
cies as the shopping workload and thus, will not be discussed in more detail. The behavior of LP
compared to the other two is less extreme for the browsing workload since it has mainly read-only

transactions, and more extreme for the ordering workload since it has more updates that have to be

executed at the LP.
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(b) Non-sequencer/secondary, read-only txns
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Figure 6.5: TPC-W browsing workload

6.5.2 Stress test using update intensive workload

Load (txn/s)

For all TPC-W workloads the percentage of read operations is fairly high. In this section, we want

to stress test the system by using the update intensive synthetic benchmark consisting of 100%

updates. This helps to analyze how the replica control component can handle peak situations.
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(b) Non-sequencer/secondary, read-only txns
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Figure 6.6: TPC-W ordering workload

In this experiment, additionally to SIMC, SEQ and LP with 5 replicas, we also consider a single-

node, non-replicated system. Figure 6.7.(a) shows the average response time of the protocols with

increasing load. For LP, the figure shows average response times for both the primary and the sec-

ondaries. The figure shows that at low load (less than 50 transactions per second) the non-replicated
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Figure 6.7: Overhead of replication, synthetic benchmark, 100% update

system provides the best performance. This is the expected behavior since a non-replicated system
has no CPU or message overhead for replica control. Surprisingly, as the load increases, SIMC and
SEQ have lower response times than the non-replicated system. This is surprising since in ROWA
all replicas have to execute all updates, and thus, we would not expect any performance gain with
replication. However, recall that in Section 6.5.1 we noted that applying the writeset has less cost
than executing the SQL update statements. Thus, by having more replicas, instead of each replica
executing all SQL update statements, only a subset of them is executed and the rest of updates
comes in form of writesets. This observation was already made in [67].

In contrast to SIMC and SEQ, LP is worse than the non-replicated system. Since all transactions
are update transactions, the primary is the only one executing transactions. Additionally, it has to
forward writesets to the secondaries and handle the operation requests sent by the secondaries to
the primary. This raises the overhead well over a non-replicated system and it saturates very fast.
The response time at secondaries is even worse than at the primary because they have to send the
requests to the primary, let it execute at the overloaded primary and then wait for the response.
Thus, additional communication delay is added to the response time. This behavior is confirmed by
looking at the CPU overhead in Figure 6.7.(b). The primary replica in LP has the highest CPU load
because it has to execute all transactions, and the secondary replicas in LP have the lowest CPU load
because they only apply writesets. SIMC and SEQ are in between because each replica executes

some transactions and applies the writesets of the others. SIMC has slightly higher CPU load than
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Figure 6.8: Effects of timeout values, shopping workload (I)

SEQ because of the GCS used in SIMC.
The different CPU usage for SIMC and SEQ explains the difference in response time seen in
Figure 6.7.(a). At higher loads, SEQ is slightly better than SIMC because its CPU is less loaded.

6.5.3 Effect of timeout values

SIMC and SEQ depend on timeout to detect deadlocks. It is interesting to see how different timeout
values affect the performance of the protocol. Recall that the timeout does not span the entire
transaction execution but it measures the time interval between the time point a transaction is put
into the tocommiit_queue of a replica until it is the first in the queue.

Figure 6.8 shows the average response time of updates transactions in the TPC-W shopping
benchmark with two different timeout values (25 and 200 milliseconds) with increasing load for
SIMC. All experiments in this section are carried out at 10 replicas. At low load the performance
is the same for both values because basically no transactions wait longer than 25 milliseconds. At
higher load, however, the response time for the 25 ms timeout value increases much more sharply
than for 200 ms. The reason is that the value is too low letting the middleware assume that there
is a deadlock although there is none. This leads to unnecessary aborts and reapplication of the
transaction, and thus, longer response times.

Figure 6.9.(b) shows the timeout rate as the percentage of update transactions experiencing

timeout with increasing load. Using 200 ms timeout, there are basically no timeouts before the
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saturation point at 40 txn/s. This means, there are, in fact, very few deadlocks in the system. In
contrast, with 25 ms there are many timeouts, all of them being false alarms since by choosing
a higher timeout value the transactions can actually succeed. Thus, 25 ms is simply a too short
timeout interval since it aborts transactions that are not involved in a deadlock. The question is what
is the right timeout value so that one has not too many false alarms but one also does not wait too
long when actually a deadlock occurs. Figure 6.9.(c) shows the timeout rate with increasing timeout
value at a load of 20 txn/s. One can see that the timeout rate drops significantly from 25 ms to 50 ms
and then levels off. This shows, that more than 15% of transactions wait in the tocommit_queue
longer than 25 ms while only around 1% wait for more than 50 ms. 50 ms is around the average
response time at this load. Thus, a guideline might be to choose as timeout value according to the

average response time for transactions.

6.5.4 Scalability

This section analyzes how SIMC scales in a LAN environment. Figure 6.10 shows the maximum
achievable throughput for the three different TPC-W workloads when the number of nodes increases
from one to 40. The throughput is generally the highest for ordering, slightly lower for shopping,
and the lowest for browsing. The reason is that the read-only transactions in the TPC-W benchmark
are more complex and require more resources than the update transactions. Therefore, the more

read intensive the workload is, the less transactions can be executed per time unit.
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| Scalability for browsing and shopping is basically linear up to 40 nodes. We only had 40 servers
and therefore we do not have data beyond 40 replicas. For the ordering workload, the throughput
increases linearly up to 30 replicas. However it starts to level off at this time point. At 30 replicas,
the throughput is around 4.3 txn/s per replica, at 40 replicas, it is only 3.75 txn/s per replica. The
reason is that updates have to be applied at all replicas. Although writeset application is faster than
executing the entire SQL statement it takes resources from each replica that are no more available

to execute further transactions.

6.5.5 Discussion

As a summary, SEQ and SIMC perform consistently better for update transactions than LP which
suffers from an uneven distribution of requests. For read-only transactions, the performance is
nearly the same for all protocols. SEQ performs slightly better than SIMC. However, this comes
at the cost of less fault-tolerance since SIMC’s usage of uniform reliable delivery assures that no
transaction is lost. SIMC scales basically linearly in LANs. Considering that the performance

difference between SEQ and SIMC is quite small, we would suggest that in a LAN SIMC is the best

choice.
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6.6 Wide area network

The previous section has shown that SIMC and SEQ perform better than LPnMsg in a LAN. Some
of it is due to that LPnMsg has two message rounds for each operation in an update transaction.
Most, however, is due to the uneven execution of transactions in LPnMsg. In a WAN, however,
the extra message overhead of LPnMsg will likely have an extremely negative effect. Recall that
SIMC and SEQ only require a constant number of messages per transactions. Thus, in this section
we compare SIMC, SEQ and HYBRID not only against LPnMsg but also against LP1Msg which

requires only two message rounds per transaction.

6.6.1 Experimental setup

We choose the shopping workload which has 20% write transactions in order to show the perfor-
mance of both read-only and update transactions. For HYBRID, we used Spread [114] as group
communication system.

We conducted our experiments in a WAN with 1-4 sites in Montreal (Canada), 1-3 sites in
Madrid (Spain), 2 sites in Toronto (Canada), and 1 site in Edmonton (Canada).

All machines are PCs with similar computing power (e.g., AMD 1.5-3.0GHZ/0.5-2GB mem-
ory/Linux). The round trip times between machines in different clusters varies from 40 to 150 ms

depending on the distances.

6.6.2 WAN without clusters: SEQ v.s. lazy primary copy
(

In this first scenario we compare SEQ against the two lazy primary Copy approaches using 4 servers
in 4 different cities. We show the results at the sequencer (Montreal) and at the non-sequencer that
has the longest network distance from the sequencer (Madrid). We delay the analysis of SIMC to
the next section.

We first analyze the CPU usage at the different servers since it has a quite large effect on the re-
sponse time of the different algorithms. Fig 6.11.(a) shows the CPU usage at the primary server for
LP1Msg and LPnMsg, and the sequencer for SEQ. As we have discussed in the LAN section, SEQ

has a significant lower CPU usage than the lazy primary copy approaches, especially at high loads.
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Figure 6.11: WAN without clusters: read-only transactions in shopping workload

With primary copy, both read and write operations of all write transactions are executed at the pri-

mary. In contrast, with SEQ, the read operations of write transactions submitted to non-sequencers

are processed only at the non-sequencers, keeping the load at the sequencer lower, and LPnMsg

has slightly higher CPU usage than LP1Msg because LPnMsg has to process more messages than

LP1Msg. At the non-sequencers (Fig 6.11.(b)), SEQ has higher CPU usage than lazy primary copy

for exactly the same reason that it distributes the load more evenly across the servers.
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We now look at the average response times of read-only transactions submitted to either the
sequencer/primary (Figure 6.11.(c)) or the non-sequencers/secondaries (Figure 6.11.(d)), and the
time spent within the database (Figures 6.11.(e) and (f)). We can observe that these times are di-
rectly correlated with the CPU usage because read-only transactions do not have any communication
overhead. Thus, SEQ has lower response at the sequencer than lazy primary copy at the primary
(Fig. 6.11.(c)) and higher response time at the non-sequencers (Fig. 6.11.(d)). Furthermore, most of
this response time is due to time spent in the database.

Let us now examine the behaviour of write transactions at the sequencer/primary. Figure 6.12.(a)
and (c) show the average response time of update transactions and the time spent at the database,
respectively. Write transactions submitted to the sequencer/primary are mainly affected by the time
spent at the DB since there is no WAN communication. The DB time is directly correlated with
the CPU usage (Figure 6.11.(a)). Thus, since the SEQ has the lowest CPU usage, it provides the
shortest response times. LPnMsg and LP1Msg have similar response times since they have similar
CPU usage.

~ Write transactions submitted to the non-sequencers/secondaries show a different picture. Figure
6.12.(b), (d), and (e) show average response time, time at the databases, and network time, respec-
tively. Note that the y-axis scales to 1000 ms compared to 250 ms for the other figures. The response
time of LPnMsg is four times higher than for LP1Msg and SEQ. The reason is that LPnMsg needs
one WAN message round per operation (and in TPC-W an update transaction has on average four
operations) while SEQ and LLP1Msg only need one per transaction. Figure 6.12.(¢) shows the tiﬁe
spent in the network. LPnMsg clearly has higher communication overhead than LP1Msg and SEQ.
Figure 6.12.(d) shows that both LP1Msg and LPnMsg have higher DB overhead than SEQ. This
is because the update transactions are executed at the primary database. We have seen before that
the primary server in the lazy primary approaches has a higher CPU usage than the non-sequencers
with SEQ, leading to longer execution times. Therefore, also LP1Msg has larger response times
than SEQ at the non-sequencers.

We have also evaluated the bandwidth consumption since bandwidth usage is another crucial
factor that has to be considered. At the primary , LPnMsg has the highest outgoing (Fig. 6.13.(a))and

incoming (Fig. 6.13.(c)) bandwidth consumption because of the large number of messages needed.
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Figure 6.12: WANSs without clusters: update transactions in shopping workload
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LP1Msg has higher bandwidth consumption at the primary than SEQ at the sequencer because the

primary must return query results of update transactions in LP1Msg but SEQ does not need to do so.

The non-sequencer/secondary (Fig. 6.13.(b) and (d)) has similar tendency as the sequencer/primary.

Thus, we can summarize that SEQ by far outperforms LPnMsg, mainly because of message

overhead. But it also outperforms LP1Msg. This is due to the more even distribution of load.

Additionally, note that SEQ is more flexible than LP1Msg since it allows a standard JDBC interface
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Figure 6.13: WANs without clusters: bandwith usage in shopping workload

without any further restrictions.

6.6.3 Overhead of GCS in WANs: SEQ v.s. SIMC

The previous section shows that SEQ is better than LPnMsg in WANSs because of less communi-
cation overhead. SEQ only needs a constant number of message (i.e., one round trip) for a write
transaction while LPnMsg needs several round trip messages. As SEQ, SIMC requires a constant
number of message (i.e., one multicast message). It should have similar behaviour as SEQ just as
in the LAN environment.

We know that SIMC requires total order multicast provided by GCSs. In Section 5.3.1 several
total order algorithms have been discussed, such as the token-based algorithm in Spread [114], and
the sequencer-based algorthm in JGroups [49]. They have different message latency which can have
a tremendous effect on the performance in a WAN. In order to be fair to SIMC, we use the sequencer-

based total order algorithm provided in JGroups. SEQ is actually derived from a sequencer-based
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Figure 6.14: Overhead of GCS, SEQ v.s. SIMC, read-only transactions in shopping workload

total order algorithm. We would like to note that the sequencer-based total order algorithm of
JGroups requires one and a half roundtrip messages per multicast, as has been discussed in Section
5.3.1. However, it does not provide uniform reliable delivery.

Figure 6.14.(a) and (b) show the average response times of read-only transactions at sequencer
and non-sequencer replicas respectively. Response times are basically identical.

Figure 6.15.(a) and (b) show the average response times of write transactions at sequencer and
non-sequencer replicas, respectively. At the sequencer replica (see Figure 6.15.(a)), SIMC has
slightly larger response time than SEQ due to overhead of GCS. Additionally, SIMC requires a
small network delivery time even at the sequencer replica (see Figure 6.15.(c)). Hence, SIMC has
higher response time for write transactions at the sequencer replica.

At non-sequencer replicas (see Figure 6.15.(b)), SIMC also has larger response time than SEQ,
mainly because of rﬁessage delay. The difference of message delay between SIMC and SEQ is
shown in Figure 6.15.(d). Moreover, not shown in the figures, SIMC has also higher CPU overhead,
because the GCS is more CPU intensive than the socket communication in SEQ. The higher CPU
load leads to larger DB time for SIMC compared to SEQ, which leads to the larger response time in
SIMC.

We also conducted experiments using Spread which provides uniform reliable delivery. How-

ever, response times were always above 500 ms and clearly unacceptable.
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Figure 6.15: Overhead of GCS, SEQ v.s. SIMC, write txns in shopping workload

6.6.4 Clustered servers: HYBRID v.s. SEQ v.s. lazy primary copy

In this scenario we compare HYBRID against LP1Msg (being the better of the lazy primary copy
protocols) and SEQ in the network topology shown in Fig 5.9. Recall that HYBRID provides
a higher level of fault-tolerance than SEQ and LP1Msg. We study the results (1) at the global
sequencer in the primary LAN, (2) at other replicas in the primary LAN, (‘3) at a local sequencer
and (4) at other replicas in the secondary LANS.

Figure 6.16 shows the CPU usage ((a) and (b)), the average response time of read only transac-
tions ((c) and (d)), and the time spent in the database ((e) and (f)) for sequencer and non-sequencers
in the primary LAN. Figure 6.16 (c)-(f) show that the DB overhead is the main contributer to the
response time of read-only transactions in the primary LAN. Figure 6.16.(a) shows that LP1Msg has
the highest CPU usage at the primary in the primary LAN. Thus, LP1Msg has the largest response

time for read-only transactions (see Figure 6.16.(c)). However, at the other replicas in the primary
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Figure 6.16: WANs with clusters: read-only transactions in primary LAN, shopping workload

LAN, Figure 6.16.(b) shows that LP1Msg has slightly lower CPU usage than HYBRID and SEQ,

and thus slightly lower response times (see Figure 6.16.(d)). Comparing HYBRID with SEQ in
‘Figure 6.16, HYBRID has slightly higher CPU usage due to the overhead of the GCS, but response

times remain similar for read-only transactions.

Figure 6.17 shows the results of read-only transactions submitted to the replicas in secondary

LANs. Figure 6.17 (a), (c), and (e) show CPU usage, average response time, and average DB

time at a local sequencer, Figure 6.17 (b), (d), and (f) at a non-sequencer in a secondary LAN.
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Figure 6.17: WANSs with clusters: read-only transactions in secondary LANs, shopping workload

Although HYBRID has slightly larger CPU overhead at the sequencers, all protocols have very

similar response times at all replicas. LP1Msg has slightly lower CPU overhead, and less response

time at non-sequencers due to less load.

Figure 6.18 and 6.19 show the behavior of update transactions submitted to replicas in the

primary and secondary LANS, respectively. There are figures for the average response time ((a) and

(b)), the time at the DB ((c) and (d)), and at the network ((e) and (f)). Independently to which replica

an update transaction is submitted, LP1Msg has the worst DB time and thus response times except



Chapter 6. Evaluation

(a) Sequencer/primary, response time

149

(b) Non-sequencer/secondary, response time

800
-+~ P1Msg
600 +H —* Hybrid
)
£ -# SEQ
o 400 al
£ /
F A L
200
ﬂﬂﬂﬂﬂﬂﬂ pil
0 - ; .
40 80 120 160
Load (txn/s)
(c) Sequencer/primary, DB time
800
-*-| P1Msg
. 600 1 -—eHybrid
g -»SEQ
o 400
E
'_
> W
0 e ,
40 80 120 160
Load (txn/s)
(e) Sequencer/primary, network time
800
-~ Hybrid
__ 600
[%2]
E
o 400
E
|-
200
o
40 80 120 160

Load (txn/s)

800

600 41— —*+ Hybrid

-»-LP1Msg

-#- SEQ

Time (ms)
-
o
o

N
[«
(=]

o

40 80 120
Load (txn/s)

(d) Non-sequencer/secondary, DB time

800 T

600 1T

- LP1Msg
-~ Hybrid
-&- SEQ

Time (ms)
-
o
(=]

200
0 5//"‘“/“ . —
40 80 120 160
Load (txn/s)
(f) Non-sequencer/secondary, network time
800
-+~ Hybrid
__ 600 11 - LP1Msg
)
£ & SEQ
o 400
E
|_
200
0 —bFem =
40 80 120 160
Load (txn/s)

Figure 6.18: WANSs with clusters: Update transactions in primary LAN, shopping workload

for transactions submitted to the primary replica at very low loads. The reason is that all operations

of update transaction must be executed at the primary database. Comparing HYBRID with SEQ,

both spend similar time in the DB. However, HYBRID has the additional cost of the GCS resulting

in higher response times. However, the difference is relatively small (20-50 milliseconds or 15% in
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Figure 6.19: WANs with clusters: Update transactions in secondary LANs, shopping workload

most cases). This is the cost of stronger fault tolerance provided by HYBRID.
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6.6.5 Discussion

In WANs, LPnMsg is much worse than SEQ because it requires two WAN message rounds per
operation instead of two per transaction as in SEQ. Even with two WAN message rounds per trans-
action, LP1Msg is still worse than SEQ because of uneven read load distribution. Additionally, it
has a much more resticted interface than SEQ.

SIMC provides more fault tolerance than SEQ. But uniform reliable multicast in WANSs is very
costly. Even without uniform reliable multicast, SIMC is still worse than SEQ because of the
overhead of GCS. But in this case they have similar guarantee of fault tolerance. We conclude that
SEQ outperforms SIMC in WANS.

HYBRID provides more fault tolerance than SEQ in WANs with clusters, with slightly higher
cost than SEQ. It is because uniform reliable multicast in LANs is not as costly as in WANs. We

suggest to use HYBRID in such an environment.



Chapter 7

Conclusions and future work

7.1 Summary

This thesis studies database replication in terms of correctness, performance, and practicability. It
is motivated by the newly emerged isolation level SI used in commercial systems, and the fact that
existing replica control algorithms perform badly in WANs and have many restrictions that make

them difficult to use in practise.

7.1.1 New correctness criteria, 1-copy-SI and 1-copy-SI+IC

Snapshot Isolation (SI) is a new isolation level for transactions. It is weaker than serializabilty but
more attractive because read and write operations do not block each other. There exist several replica
control protocols based on SI for replicated systems. However, little has been done to formally
describe what SI means in a replicated system. In Chapter 3, we propose a new isolation level,
1-copy-SI, based on Generalized Isolation Definition (GID) [3, 2]. Our formalism is convenient and
straightforward to use. Moreover, it provides an implementation independent definition of 1-copy-
SI. We discuss a set of necessary and sufficient conditions that make it easy to determine whether a
history is 1-copy-SI and to show that a replica control mechanism provides 1-copy-SI.
Furthermore, we note that most existing protocols do not consider integrity constraints and thus,

they do not work for databases with integrity constraints. In particular, we are not aware of any work
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that considers integrity constraints in combination with SI. Hence, we propose a new isolation level
SI+IC stronger than SI but weaker than Serializability (SE). A SI+IC history provides SI guarantees
for read and write operations. Additionally, it respects integrity constraints. Based on SI+IC, we
propose the corresponding correctness criterion, 1-copy-SI+IC, for replicated histories. We also
discuss necessary and sufficient conditions that make it easy to determine whether a replicated

history is 1-copy-SI+IC.

7.1.2 Performance

We analyze carefully the existing replica control protocols and find that most of them do not work
well in WANs because of excessive number of messages within one transaction. Some of them
require one roundtrip message in WANS for one operation. We propose a decentralied architecture
and two protocols, SIMC and SEQ, that reduce the number of messages in WANs to be one multicast
or one roundtrip per transaction. SIMC provides better fault-tolérance than SEQ by using uniform
reliable multicast provided by GCS. However, SEQ has better response time. We also carefully
discuss the fail-over procedure in SEQ. Both SEQ and SIMC have better load distribution potentials
than lazy primary copy approaches, the most commonly used approach in commercial systems. This
is because all update transactions must be performed at the primary replica. In constrast, in SIMC
and SEQ, they are executed at the replica to which they are submitted.

To better utilize the network configuration, we propose a protocol HYBRID which combines
SIMC and SEQ. HYBRID is designed for WANs with several clusters. It uses SIMC in its primary
cluster but SEQ in its secondary clusters and in between primary and secondary clusters. HYBRID
provides better fault tolerance guarantee than SEQ and better performance than SIMC. It is a tradeoff

between SIMC and SEQ, and a practical choice from an engineering point of view.

7.1.3 Practicability

Many existing protocols have certain restrictions, allowing for a less flexible interface. Some update
everywhere approaches require the knowledge of all tables to access in a transaction at start time.

Our protocols do not have these restriction because they first execute the transaction at any replica
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and then multicast the writeset to other replicas.

Additionally, many update everywhere approaches do not work for databases with integrity
constraints. Integrity constraints are very important in databases. Our protocols handle integrity
constraints by using the concurrency control module of the database system. Our protocols are also

compatible to databases that implement SI using the first-updater-wins rule.

7.2 Future work

7.2.1 Enhancement to the integrity constraint model

We see two issues in regard to integrity constraints that could deserve more attention. Firstly, so
far, we ignore that many database systems allow a CASCADE option. For instance, if a transaction
wants to delete a department for which there are employees, instead of aborting, it also deletes the
employees. Our integrity model needs to be enhanced to capture this behaviour.

Secondary, our protocols so far leave the checking of integrity constraints to the database repli-
cas. This might result in executions at all replicas that will lead to abort. If we are able to check

integrity constraints at the middleware layer, we might be able to develop a series of optimizations.

7.2.2 Partial replication and peer-to-peer databases

We have seen that SIMC can scale up to 40 replicas which is quite good already for enterprise
applications. However, it is not suitable for peer-to-peer applications which require the support
of thousands of nodes. This is a problem inherent to ROWA approaches because writes must be
executed everywhere. To scale up to thousands of nodes, partial replication has to be considered.
Partial replication is an essential functionablity in peer-to-peer systems. [77, 47, 32, 93, 30] study
the replication problems in peer-to-peer systems but they mainly focus on replication at the granu-
larity of files and put little focus on updates. Database replication in peer-to-peer systems is more
challenging because it might require semantic interaction of data residing at different replicas. There
exist several peer-to-peer databases such as PeerDB [86, 84], Piazza [53], and AmbientDB [19]. It

would be interesting to see whether we could apply 1-copy-SI to partial replication in peer-to-peer
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databases.

Furthemore, since WANSs are getting faster and have larger bandwidth, it might make sense to
retrieve data from the memory of other replicas over the network instead of from the local disk. In
a peer-to-peer setup, we could fit a huge database into memories of thousands of replicas. Thus, we
can reduce the I/O time of queries by visiting nearby replicas which have the data in their memories.
[39] actually discusses the possiblity of achieving better scalability by reading data from memories

at other replicas. However, consistency will play a huge role in this context.

7.2.3 Applying database replication to applications

Another option of future work is to apply database replication to existing distributed applications.
There are many distributed applications requiring strong data consistency guarantee. [115, 107, 116]
describe the benefits of applying database replication to web services. [74] discusses the possibility
of applying database replication to Massive Multi-player Online Game (MMOG). [79] discusses
how to apply distributed versioning, a replica control algorithm, to transactional memory. [102, 31]
discuss how to apply snapshot isolation to transactional memory. As a strong consistency level in

replicated systems, 1-copy-SI could bring interesting properties and benefits to transactional mem-

ory.
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