
PRACTICAL AND CONSISTENT

DATABASE REPLICATION

Yi Lin

DOCTOR OF PHILOSOPHY

the School of Computer Science

MCGILL UNIVERSITY

MONTREAL, QUEBEC

DECEMBER 2007

A THESIS SUBMITTED TO MCGILL UNIVERSITY IN PARTIAL FULFILMENT OF THE

REQUIREMENTS OF THE DEGREE OF DOCTOR OF PHILOSOPHY

COPYRIGHT BY YI LIN 200~T

ALL RIGHTS RESERVED

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Bran ch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-50951-7
Our file Notre référence
ISBN: 978-0-494-50951-7

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ACKNOWLEDGEMENTS

I would like to express my greatest gratitude to my supervisor, Dr. Bettina Kemme, for her continued

guidance, financial supports, encouragement and patience through all the phases of this research.

Extended thanks to Dr. Ricardo Jiménez-Peris and Dr. Marta Patifio-Martinez, for their lively

and fruitful discussions regarding this research.

My sincere appreciation to all my friends and colleagues whom I met in Montreal, Beijing, and

Hainan, for their joys and laughs.

Finally, but certainly not least, my deepest appreciation to my family, especially to my mother

and my brother, who have been so supportive and loving. Without them, this report would not be

the same.

11

ABSTRACT

Replicating data across different databases has the potential to pro vide low response times since data

cau be accessed locally, high scalability since load cau be distributed, and fault-tolerance since the

data cau be accessed as long as one replica is available. A big challenge of database replication is

to handle updates such that the en tire replicated database appears as if there is only a single logical

copy of the data.

The standard correctness criterion for database replication is 1-copy-serializability (1-copy-SE)

which guarantees that a replicated database behaves as a non-replicated database with serializability

(SE), the highest isolation level for transaction execution. In this thesis, we propose a new criterion,

1-copy-snapshot-isolation (1-copy-SI), due to the popularity of snapshot isolation (SI) over serial­

izability in major database systems. SI allows sorne non-serializable executions, but it provides

better concurrency and cau be implemented efficiently. However, current definitions of SI allow

for the violation of integrity constraints while commercial implementations of snapshot isolation

maintain them. Renee, we define a new isolation level SI+IC which represents the isolation level

implemented in current systems. From there, we propose a criterion 1-copy-SI+IC that respects

both SI and integrity constraints in a replicated database.

As a second step, we develop a replication solution that provides many features. It provides

1-copy-SI+IC. It is implemented in a middleware between clients and original database system,

and thus, does not require changes to the source code of the database system. Despite being at the

middleware level, it provides concurrency at the record level, and thus, the same concurrency level

as the database system itself. Furthermore, it provides a standard database interface, and thus, is

transparent to the application. It also offers fault-tolerance. Finally, it includes protocols that are

iii

able to handle a wide-area environment. This is achieved by a careful choice of communication

patterns that keep communication across the wide area network at a minimum.

The approach is implemented within a middleware-based framework that allows for an easy

plug-in of replication algorithms. Our solution is carefully evaluated, comparing several design

alternatives. Additionally, it is compared against a traditional replication protocol, that is widely

implemented in current systems. The evaluation shows that our protocols have very good perfor­

mance and compare favourably with existing solutions.

iv

~ ~

ABREGE

La réplication de bases de données réplique les données dans differentes bases de données dans le

but d'offrir des temps de réponse rapides, de meilleures possibilités de croissance et d'extension

future, ainsi qu'une meilleure tolérance aux fautes. La problématique de la réplication de bases de

données est comment répliquer les données correctement de sorte à ce que le système complet de

bases de données répliquées se comporte comme s'il y avait une seule copie de la base de données.

Le critére standard d'exactitude est le "one-copy-serializability". Dans cette thèse, nous pro­

posons un nouveau critère, "one-copy-snapshot-isolation", du à la popularité de "snapshot-isolation",

comparativement à la "serializability", dans les principaux systèmes d'administration de bases de

données. Le "snapshot-isolation" est une notion plus faible que la "serializability" sur plusieurs

aspects, dont l'un est de ne pas garantir les contraintes d'intégritées. Nous proposons par la suite un

critère qui inclut les notions de "snapshot-isolation" ainsi que les contraintes d'intégritées. La thèse

propose un formalisme basé sur des travaux antérieurs.

Dans un deuxième temps, nous étudions comment déveloper des protocoles de réplication qui

peuvent être utilisés en practique. Quelques protocoles existants imposent de sévères limitations à

leurs applications, comme l'identification des transactions en lecture seule à leur commencement.

D'autres protocoles ne fonctionnent pas avec des bases de données avec contraintes d'inégritées,

une caractéristique très importante des bases de données. Nous proposons une solution qui résoud

toutes ces limitations à l'aide d'un ordonnanceur centralisé.

Troisièmement, cette thèse étudie les protocoles de réplication qui fonctionnent bien, tant dans

des réseaux locaux que globaux. La plupart des protocoles existants requièrent plusieurs étapes

d'échange de message entre differentes bases de données à l'intérieur d'un certain temps de réponse,

v

et/ou utilisent des messages "multicast" traitées par des systèmes de communication de groupe. Ils

ne fonctionnent pas bien dans les réseaux globaux en raison des longs temps d'attentes pour l'envoie

de messages. Nous étendons notre approche en utilisant une approche décentralisée. La nouvelle

solution garde un nombre constant de message à l'intérieur d'une transaction (un allée-retour de

messages). Le probléme de la tolérance aux fautes est aussi discuté.

Pour évaluer notre solution, nous avons developé un ensemble de fonctionnalités qui integre

l'implémentation des différents protocoles avec un système de bases de données, PostgreSQL. Les

expérimentations ont été éxecutées sur différents systèmes, e.g., réseaux locaux et globaux. Les

résultats sont satisfaisants.

En somme, cette thèse présente une solution pratique au problème de réplication de bases de

données qui fonctionne bien autant dans des réseaux locaux que globaux. Elle a été implementée

dans un système temps réel et les résultats confirment qu'elle est plus efficace que les protocoles

existants.

vi

Contents

ACKNOWLEDGEMENTS

ABSTRACT

ABRÉGÉ

List of Tables

List of Figures

1 Introduction

1.1 Why database replication

1.2 Challenge of database replication .

1.3 Existing work and their shortcomings

1.4 Contribution of this thesis .

1.5 Structure of this thesis

2 Background

2.1 Transactions .

Transactions and histories 2.1.1

2.1.2

2.1.3

Concurrency control and isolation levels .

Integrity constraints

2.2 Database replication

Vll

ü

iii

v

xi

xiii

1

1

3

3

5

6

7

7

7

8

10

11

2.2.1 Correctness criteria for replicated databases 12

2.2.2 Replication architecture 0 •••••• 13

2.2.3 Categorizing replica control protocols 15

2.2.4 Primary copy approach 16

2.2.5 Update everywhere approach . 18

2.2.6 Update everywhere with centralized scheduler 19

2.2.7 Update everywhere based on group communication . 19

2.2.8 Fault -tolerance 22

2.2.9 Load balancing 22

2.2.10 Partial replication . 23

2.2.11 Commercial approaches 24

2.3 Our approach • 0 •••••••• 26

3 Snapshot isolation and integrity constraints in a replicated system 29

3.1 Snapshot Isolation (SI) •••••••••••• 0 • 0 ••• 0 ••• 31

3.1.1 Transactions and histories in General Isolation Definition (GID) 32

3.1.2 Snapshot isolation in GID 33

3.1.3 Observations 0 •• 0 0 •• 36

3.2 Snapshot isolation in a replicated system . 39

3.2.1 Transactions and histories in a replicated database 39

3.2.2 1-copy-SI 40

3.2.3 Necessary conditions for a replicated history to be 1-copy-SI . 42

3.2.4 Sufficient conditions for a replicated history to be 1-copy-SI 45

3.2.5 Observations ••••••• 0 • 0 0 0 51

3.3 Snapshot isolation and integrity constraints 53

3.3.1 Implementing integrity constraints 53

3.3.2 A new isolation level: SI+IC 55

3.3.3 SI+IC in GID 57

3.3.4 Observations 61

viii

4

3.4 1-copy-SI+IC ..

Replica control basics

4.1 Simple Replication Protocol (SRP) .

4.1.1 Basic idea ...

4.1.2 Protocol details

4.1.3 Example

4.1.4 Correctness

4.2 Problems of SRP due to first-updater-wins strategy

4.2.1 Blocking • 0 •• 0 0

4.2.2 Distributed deadlock

4.3 Problems of SRP due to integrity constraints .

4.4 Simple Replication Protocol with Integrity Constraints (SRP-IC)

4.4.1 Protocol details

4.4.2 Correctness

4.5 Discussion

5 Replica control for performance and fault-tolerance

5.1 Problems of performance and fault-tolerance in SRP-IC .

63

71

72

72

74

76

77

79

79

80

83

88

88

89

92

94

94

5.2 SIMC: a replication protocol based on Group Communication Systems (GCS) . 96

5.2.1 Basic idea .

5.2.2 Example .

5.2.3 Protocol details

5.2.4 Correctness ..

5.2.5 An optimization: early validation

5.2.6 Fault-tolerance

5.3 SEQ: a replication protocol without GCS

5.3.1 Analysis of multicast algorithms

5.3.2 Basic idea .

5.3.3 Example .

ix

96

97

98

100

101

103

106

107

111

112

6

5.3.4 Protocol details

5.3.5 Fault-tolerance

5.4 Hybrid: a replication protocol taking ad van tage of network topologies

5.4.1 Basic idea ...

5.4.2 Protocol details

5.4.3 Fault-tolerance

5.5 Discussion .

Evaluation

6.1

6.2

6.3

6.4

6.5

6.6

Replication framework

Comparison lazy primary copy protocols .

Benchmarks . .

6.3.1 TPC-W

6.3.2 Synthetic benchmark

Experimental setup

Local area network

6.5.1 Base comparison using TPC-W

6.5.2 Stress test using update intensive workload

6.5.3 Effect of timeout values

6.5.4 Scalability

6.5.5 Discussion

Wide area network

6.6.1 Experimental setup

6.6.2 WAN without clusters: SEQ v.s. lazy primary copy

6.6.3 Overhead of GCS in WANs: SEQ v. s. SIMC . . .

6.6.4 Clustered servers: HYBRID v.s. SEQ v.s. lazy primary copy

6.6.5 Discussion . . .

7 Conclusions and future work

7.1 Summary

x

113

113

118

118

120

122

123

126

126

128

129

129

130

130

130

131

134

137

138

139

140

140

140

144

146

151

152

152

7.1.1 New correctness criteria, 1-copy-SI and 1-copy-SI+IC

7.1.2 Performance

7 .1. 3 Practicability

7.2 Future work

7.2.1

7.2.2

7.2.3

Bibliography

Enhancement to the integrity constraint model

Partial replication and peer-to-peer databases

Applying database replication to applications

Xl

152

153

153

154

154

154

155

156

List of Tables

3.1 Dependencies (based on Fig. 2 in [3])

3.2 IC dependencies

4.1 Comparison of SRP and SRP-IC

5.1 Different multicast algorithms (adapted from Table-1 in [36]) .

5.2 Comparison ofprotocols for WANs

Xll

35

58

93

108

125

List of Figures

2.1 Middleware Architectures

2.2 Lazy primary protocol (e.g., Ganymed [94])

2.3 Update everywhere with GCS approach

3.1 SSG(Hnon-SI) in Example 1

3.2 SSG(Hsi) inExample 1 · ..

3.3 Relationship of read-, write-, and anti-dependency edge

3.4 Order requirements for SI-histories

3.5 SSGs ofExample 2 .

3.6 SSGs of Example 3

3.7 ProofofTheorem 1, Part (2), l.(b), USG(RH) ifTk ~ TJ.

3.8 SSG(Hwrite-skew) in Example 4

3.9 SSG(H~rite-skew) in Example 7

3.10 SSGs ofExample 9

3.11 SSG and USG of Example 10 .

SRP: a Simple Replication Protocol

SRP Sample execution

4.1

4.2

4.3

4.4

4.5

4.6

SRP Deadlock example execution with real databases

Example with foreign key constraints executed according to SRP with Adjustments 1 and 2.

Revisit Example 13 with Adjustment 3

SRP-IC: a Simple Replication Protocol with Integrity Constraints .

X111

13

17

21

36

36

37

37

41

43

49

55

61

65

66

74

76

81

85

86

90

5.1 A SIMC example extended from Example 14 in Figure 4.5

5.2 SIMC on Mk: a replication protocol based on total order multicast

5.3 SIMC with the early validation optimization

5.4 Performance of different multicast algorithms with database replication in WAN (Fig. 7 in

[72])

5.5 Revisit Example 15 in Figure 5.1 using SEQ .

5.6 SEQ at middleware replica Mk

5.7 SEQ failover cases (1) .

5. 8 SEQ failover cases (Il)

5. 9 An example of network topologies for HYBRID

5.10 HYBRID protocol on middleware replica Mk

5.11 HYBRID failover cases

6.1 MiddleSIR framework

6.2 Average response time ofread-only transactions, TPC-W shopping workload

6.3 CPU usage, TPC-W shopping workload

6.4 Average response time of update transactions, TPC-W shopping workload

6.5 TPC-W browsing workload .

6.6 TPC-W ordering workload .

6. 7 Overhead of replication, synthetic benchmark, 100% update

6.8 Effects of timeout values, shopping workload (I) .

6.9 Effects of timeout values, shopping workload (Il)

6.10 Scalability of SIMC with TPC-W

6.11 WAN without clusters: read-only transactions in shopping workload

6.12 WANs without clusters: update transactions in shopping workload

6.13 WANs without clusters: bandwith usage in shopping workload ..

6.14 Overhead of GCS, SEQ v.s. SIMC, read-only transactions in shopping workload .

6.15 Overhead ofGCS, SEQ v.s. SIMC, write txns in shopping workload

6.16 WANs with clusters: read-only transactions in primary LAN, shopping workload

xiv

97

99

104

110

112

114

115

116

119

121

122

127

131

132

133

134

135

136

137

138

139

141

143

144

145

146

147

6.17 WAN s with clusters: read-only transactions in secondary LANs, shopping workload 148

6.18 WANs with clusters: Update transactions in primary LAN, shopping workload. . 149

6.19 WANs with clusters: Update transactions in secondary LANs, shopping workload 150

xv

Chapter 1

Introduction

1.1 Why database replication

As the Internet grows at a rapid pace, computer applications transit from desktops to the network.

Network applications target to support users in different geographical locations. The transition

introduces many challenges. For example, how can users access data fast even though they go

through the Internet? As another example, how can a system scale to accomodate more and more

users, and how can the availability of a system be ensured in case of disasters like 911?

Let's have a look at a concrete example. An online flight booking system such as Expediais used

by many clients around the world. Clients browse information such as priees and itineraries, and

make reservations. Ali information about flights is stored in a database. Suppose there is only one

database located in Montreal for the whole system. Although clients in Montreal can enjoy a fast

service when they browse flight information, clients in other cities such as London will complain

about the slow connection, because ali information must be transferred from Montreal to London

for display.

Another challenge is to scale the system when more and more clients want to access the service.

A single database can only support a certain number of clients. If the number of clients exceeds the

threshold, the database will be overloaded and the system will respond to clients extremely slowly.

Furthermore, the database might crash due to overload or other reasons. If this occurs the

1

Chapter 1. Introduction 2

system can not respond to client requests until the database is recovered. This can very fast result

in financiallosses for the company. More seriously, if the database is physically destroyed, then all

data stored in the server will be completely lost, which is a disaster for the business.

This thesis aims at providing answers to the above challenges by using replicated databases. A

replicated database system is composed of many copies of the database distributed across different

sites. Each database, being called a replica, can accept client requests. The database replicas work

cooperatively as a single global database system to provide database services to clients at all sites.

Database replication can improve bath fault-tolerance and performance. In regard to fault-tolerance, ·

since there exist several copies of the database, if one database crashes, data is still available since

other replicas can be accessed. The client requests submitted to the crashed database can be redi­

rected to replica(s) rem~ining accessible.

In regard to performance, database replication can increase the throughput of a system and

decrease the response time of individual requests. Many replicaton solutions follow a scheme of

Read-One-Write-Ali (ROWA) [14, 78]. According to ROWA, write operations that update data

items are performed at ali replicas to guarantee data consistency while read operations only need to

be performed at one replica. Since read requests are only executed at one replica, by adding replicas

to the system, the capacity in terms of throughput (i.e., number of requests per time-unit) can be

increased.

In arder to keep response time law, data can be replicated to remote sites so that clients at the

remote sites can access the data just locally. In the online flight booking system example above,

clients in London can then read data from the local database replica in London. Thus, the clients

experience fast response since WAN communication does not occur. With ROWA, reads are as

fast as having a single, local database. However, writes trigger a considerable overhead since all

replicas need to be updated. This is acceptable if the ratio of reads to writes is high, and has shawn

to outperform basicaliy ali other approaches such as quorums [60].

Chapter 1. Introduction 3

1.2 Challenge of database replication

One main challenge of database replication is to keep the data copies consistent in the presence of

updates. If a client updates a data item, the update bas to be propagated to ali copies. If clients

connected to different replicas submit updates on the same data items, such updates have to be

coordinated to guarantee that the data remains consistent. This task is called replica control. In the

example above, there might be two clients competing for a single flight ticket in a last minute deal.

If they make their reservation in different cities and at the same time, the system must guarantee that

only one of them succeeds in making the reservation. Otherwise, complex reconcilation techniques

are needed, possibly requiring sorne of the clients to receive sorne compensation.

Besides data consistency, there are sorne other challenges that a replicated architecture bas to

face. For instance, in an ideal replicated database system replication is transparent to clients. The

system appears as if there is only one single database. This is particular challenging since clients

access the database in the context of transactions [101]. Clients submit their requests in form of

transactions consisting of a sequence of read and write operations on the data items in the system.

The operations in a transaction are considered a logical unit of work. Either ali updates of a transac­

tion succeed and the transaction commits, or none of its updates have an effect and the transaction

aborts. Furthermore, although the database system might interleave the execution of different trans­

actions, the concurrency control mechanism of the system isolates them to guarantee there is no

improper interference.

Thus, achieving transparency in a replicated system requires that the global execution of trans­

actions is equivalent to an execution over a single logical database. This means replica control must

always be coupled with the concurrency control mechanisms of the database, in order to provide

correct executions.

1.3 Existing work and their shortcomings

Many replication solutions have been proposed so far. Sorne replication protocols provide strong

consistency meaning that data is consistent at any time. This, however, increases response time

Chapter 1. Introduction 4

for update transactions because replicas must coordinate their updates before transactions commit.

Other protocols only provide weak consistency meaning that data may be inconsistent temporarily

though it will be eventually consistent. This provides fast response for writes but read operations

may access stale data when they read local data which do not yet reflect updates performed on

remote replicas. Sorne protocols with weak consistency even require to rollback transactions that

have already been committed. This complicates the system and exposes to applications a behavior

non-existent in non-replicated systems. Section 2.2 will discuss in more detail existing replica

control strategies. Many protocols with strong consistency have been recently proposed (e.g., [6, 8,

7, 10, 39, 38, 24, 55, 61, 91]). They guarantee data consistency at any time and provide reasonably

good performance. However, these protocols only work weil in Local Area Networks (LANs) but

not in Wide Area Networks (WANs) because they have a fair amount of message overhead which is

unacceptable in WANs. This thesis proposes replication protocols that offer strong data consistency

with little message overhead.

Moreover, many of the existing replica control protocols ignore how current database systems

implement concurrency control. As mentioned above, although databases allow transactions to

execute concurrently and access data simultaneously, transactions may not arbitrarily interfere with

each other. Instead, different transaction isolation levels have been defined. They refer to the extend

to which concurrent transactions may access the same data items. The strongest transaction isolation

level is serializability (SE) [14, 97, 110]. With SE, although transactions may execute concurrently,

the effect is the same as running the transactions serially one after another. Many databases have

concurrency control mechanisms that guarantee SE. Therefore, most replicated systems provide

1-copy-SE, the extension of SE in a replicated environment. It guarantees that the entire system

behaves as if there were only one logical database (i.e., one-copy) providing SE.

However, recently, Snapshot Isolation (SI) has emerged as a new isolation level [12]. SI is

slightly weaker than SE and has become quite popular. It requires that transactions read data from a

snapshot committed at the time point when they start. Furthermore, if two transactions want to up­

date the same data item at the same time, one will be aborted. SI has been adopted by many database

vendors such as Oracle, PostgreSQL, Interbase 4 and Microsoft SQL Server 2005. Although not

Chapter 1. Introduction 5

being as strong as SE as defined in the research literature, SI avoids ail isolation anomalies as de­

fined by the industrial ANSI standard [11]. Renee, Oracle and PostgreSQL claim that their SI-based

concurrency control mechanisms actuaily provide SE. Although SI has become popular in industry,

little has been done on developing replication solution based on SI. Furthermore, many replication

protocols do not consider Integrity Constraints (!Cs) which are an important feature of relational

database technology. Ignoring integrity constraints prevents those protocols from working correctly

with databases that have integrity constraints defined. This thesis proposes a new isolation level,

1-copy-Sl+IC, and develops a framework to reason about replication protocols that provide SI at

the global level and at the same time respect integrity constraints. The protocols developed in this

thesis all offer this isolation level.

A part of this, many existing replication protocols have sorne restrictions such as read-only trans­

actions must be marked in advance [33, 34, 104, 94], or ail operations of a transaction must be

known upon submission time [8, 7, 90, 61]. These restrictions on applications hinder the database

replication to be transparent, and make it hard to run legacy applications over the replicated infras­

tructure. The protocols proposed in this thesis do not have any of these restrictions and work with

any database application that uses standard database interfaces.

1.4 Contribution of this thesis

In summary, this thesis makes three main contributions.

• Correctness: The thesis provides a complete framework to reason about SI and SI+IC in a

replicated database system. Two new correctness criteria, 1-copy-SI and 1-copy-SI+IC, are

proposed.

• Practicability: The thesis proposes a replication tool that can be used by any database appli­

cation.

• Performance: The thesis proposes replication protocols with good performance in both LANs

and WANs.

Chapter 1. Introduction 6

1.5 Structure of this thesis

The structure of the thesis is as follows. Chapter 2 introduces sorne background in regard to database

replication. Chapter 3 develops a theoretical framework to reason about SI and IC in a replicated

environment. Chapters 4 and 5 present the replication protocols. Chapter 4 presents protocols which

guarantee 1-copy-SI and 1-copy-SI+IC. It does not consider message overhead or fault-tolerance.

Chapter 5 is concemed with performance and fault-tolerance. It takes the high message delay of

WANs into account and extends the protocols of Chapter 4 to work weil in WANs and to be fault­

tolerant. Chapter 6 presents a thorough evaluation of the protocols in LANs and WANs. Chapter 7

concludes the thesis and discusses future work.

Variations of the protocols discussed in Chapter 4 and 5 have been previously published in [73]

and [75]. The protocols of this thesis vary in that they consider integrity constraints. Futhermore,

part of the performance evaluation in Chapter 6 bas been published in [75].

Chapter 2

Background

This chapter first shortly introduces transactions and their isolation properties since they are fun­

damental to replica control. A more detailed description is given in Chapter 3. Then, we give an

overview of replica control principles and current solutions. Finally, we outline the goals of this

thesis.

2.1 Transactions

2.1.1 Transactions and histories

A database consists of a set of data items. Database clients access the database within the bound­

aries of transactions. A transaction is the basic execution unit in databases [14, 120]. It contains

a collection of read and write operations accessing data items within the database. If a transac­

tion has executed successfully, the transaction commits. All data changes performed by committed

transactions are permanent. If a transaction's execution is canceled or its results are not made per­

manent when it is finished, the transaction aborts. In this case, none of its changes will remain in

the database.

ln this section we use a simple notation for transactions and their execution to illustrate the basic

principles. The notation is slightly different from the one used in the next chapters. We denote a

transaction Ti reading data item x with value a as ri (x, a), writing value b to data item x as Wi (x, b),

7

Chapter 2. Background 8

committing as ci, and aborting as ai.

For simplicity we assume that within one database the execution of operations is seriai. A his­

tory represents the arder of execution of transactions over time, e.g.,

Hserial : r1(x, 0), WI (x, 1), c1, r2(x, 1), w2(y, 2), c2

In history Hserial• all of T1 's operations happen before T2 's operations. We caU this history a seriai

history, with one transaction executed completely before the other.

We say that two operations conflict if they are from two transactions, access the same data item,

and at least one operation is a write. If one operation reads and the other writes the same data item,

the corresponding two transactions have a read/write conflict. If bath operations write the same

data item, the corresponding two transactions have a write/write conflict. There is no conflict if

two transactions read the same data item. Two transactions conflict only if they have conflicting

operations. In Hserial• T1 and T2 have a readlwrite conflict but no write/write conflict.

2.1.2 Concurrency control and isolation levels

Note that T1 and T2 in Hserial do not interfere with each other since they execute serially. But oper­

ations of different transactions might interleave. If two transactions overlap their execution in that

neither one starts after the other commits/aborts, we say that these two transactions are concurrent

to each other. For example,

T1 and T2 are concurrent in HsE· If transactions are concurrent to each other, their execution might

interfere and provide users with an incorrect image of the database and the database itself might

become inconsistent.

Concurrency control is the activity of coordinating the execution of transactions that potentially

interfere with each other. Concurrency control is mainly concerned with concurrent conflicting

Chapter 2. Background 9

transactions since transactions without confiicts will not interfere, and only concurrent transac­

tions interleave their operations. A seriai history does not allow any interference between any two

transactions. However, concurrent execution allows better resource utilization and increases system

throughput. Basically ali database systems allow concurrent execution.

Database systems typically provide different levels of isolation that restrict the arder in which a

non-seriai history may interleave the operations of concurrent transactions. The strongest isolation

leve! is serializability, denoted as SE in the following. There exist varions versions of serializability

and we use confiict-serialiability [14]. In here, we say a history His serializable if there is a seriai

history Hs over the same set of transactions, both histories commit the same transactions, and for

every pair of confiicting operations H and Hs order them in the same way.

The most common concurrency control method to provide SE is strict Two-Phase-Locking (2PL)

[120]. Locking requires that a transaction obtains a read (or write) lock on each data item before

it reads (or writes) that data item. There can be severa! read locks active on the same data item

(allowing concurrent reads) but when a write lock is active no other read or write lock may be

granted (exclusive write access). In strict 2PL, a transaction releases alllocks only at the time of

commit or abort.

In recent years, a slightly weaker. isolation leve! than SE, Snapshot Isolation (SI), has been

proposed [12]. Weaker means that sorne anomalies can occur. Nevertheless this isolation leve! is

offered by many database systems, because the concurrency control mechanism needed to achieve

this leve! is very efficient. A transaction executing on SI reads data from a snapshot of the commit­

ted data as of the time the transaction started. That is, if a transaction T reads data item x it reads the

version of x created by a transaction T' which was the last to update x and commit before T started.

If two concurrent transactions try to update the same abject, one will be aborted. For example,

is a history allowed under SI. In HsJ, assuming the original value of x is 0, T2 reads value 0 instead

of 1 even though T1 has written value 1 to x before T1 reads x. T2 reads the committed version of

x right before T2 starts. T2 needs to abort because T1. which is concurrent to T2 and has write/write

Chapter 2. Background 10

conflict with T2 , has committed earlier.

SI allows sorne non-serializable schedules. For instance,

In HsJ2, both transactions read from a snapshot and update different abjects. The execution is SI

but not SE because in a seriai execution T1 before T2, T2 reads r2(y, 1). In a seriai execution T2

before T1, T1 reads r1(x, 1).

With SI, we only need to worry about write/write but not read/write conflicts when determining

conflicting transactions, because transactions always read committed data from a committed snap­

shot. The beauty of SI is that read-only transactions will never request locks, abort or interfere with

update transactions. Since in database applications the number of read operations is usually rouch

higher than that of write operations, the SI approach can have less concurrency control overhead and

more concurrency compared to SE requesting locks for both reads and writes. Chapter 3 discusses

SI and its implementations in detail.

In recent years, understanding isolation levels, and in particular SI, has received a lot of at­

tention. [44, 12] provide a detailed discussion on the anomalies allowed and avoided under SI.

[42] discusses how to guarantee SE if the database only provides SI. Sorne work also investigates

weaker isolation levels than SE and SI. [34] relaxes the notion of SI by combining SI with session

guarantees. The concept of session guarantee has been proposed in [33] and requires that a client

will always see its own previous writes. [51, 13, 104, 45, 4] define afreshness constraint for each

transaction and allow a transaction to read data satisfying its freshness constraints.

2.1.3 lntegrity constraints

Data integrity is a very important characteristic of databases [120]. Database designers can specify

integrity constraints and the database system guarantees that these constraints are maintained. If

an update of a transaction violates a constraint, the update will typically not be executed and the

transaction is aborted.

The most common integrity constraints are unique key, primary key, and foreign key constraints.

Chapter 2. Background 11

A set of attributes is considered a unique key if no two tuples in a table are allowed to have the

same values in these attributes. Primary key is a special unique key which is used as the primary

index of the tuples in a table (e.g., studentlD in a student table). A foreign key in a table is a set

of attributes that refer to the primary key of another table (e.g., the supervisoriD of a student is a

foreign key refering to the facultyiD which is the primary key in the faculty table). The foreign key

constraint refers to the requirement that the value of the foreign key attributes of a tuple must be the

value of the primary key of an existing tuple in the refered table. In our example, the value of the

supervisoriD of a student record in the student table must be indeed the value of the facultyiD of

one of the faculty members.

2.2 Database replication

In this thesis we consider full database replication. Using full replication, there exist several

instances of a database system and each stores a full copy of the database. An instance together with

its data is also called a database replica. That is, if there are n replicas in the system, then there

exist n physical copies for each data item x in the database. Replication is used for fault-tolerance,

scalability and performance. Replication can provide fault-tolerance since if one replica fails, the

other replicas can still serve client requests. Replication can be used for scalability, since client

requests can be distributed across the replicas. Ideally, by adding new replicas, more client requests

can be served. Altematively, by adding new replicas, the load of each server can be reduced, and

thus, the response time of individual requests can be reduced. Finally, if replicas are distributed in

a wide area network, clients can access a local replica and thus, avoid wide area communication

which has large message delays.

One of the challenges of replication is replica control, i.e., keeping copies consistent despite

updates. Nearly all replication solutions follow the ROWA(A) approach, i.e., read-one-write-all­

(available) copies approach. This means, a read operation is executed at only one replica while a

write operation on a data item must update all copies of the data item that are available 1.

1 If sorne repli cas are currently down, then they do not need to be updated; however, once the repli ca cornes up, it must
receive the current versions of all data items.

Chapter 2. Background 12

2.2.1 Correctness criteria for replicated databases

In a replicated database, each replica executes transactions locally and produces a local history.

The question now is when this distributed execution represents a globally correct execution. For

example, assume two replicas A and B that execute transactions according to the ROWA approach.

There are two transactions T1 and T2 both writing data item x. A possible execution at the both

replicas could be:

HA: wl(x,1),cl,w2(x,2),c2

HB : w2(x, 2), c2, w2(x, 1), c1

Looking at the histories individually, they are both actually seriai, and thus serializable. However,

the serialization order is different, HA serializes T1 before T2, and HB serializes T2 before T1.

When we look at the two database copies at the end of execution, they are not consistent. x bas the

value 2 in replica A, and 1 in replica B. In arder to keep data consistent at all replicas, it is typically

required that all replicas execute confiicting write operations in the same arder. Thus, the definition

of SE, or any other correctness criteria such as SI, must be extended to be meaningful in a replicated

environment.

The standard correctness criterion is 1-copy-SE [14]. Despite the existence of multiple copies,

a data item must appear as one logical copy (1-copy-equivalence). Furthermore, the execution of

concurrent transactions must be coordinated such that it is equivalent to a seriai execution over the

logical copy (serializability). Most replica control protocols aim in providing 1-copy-SE.

Recent research bas started to apply SI in a replicated database system [94, 34, 40, 73, 124, 75].

In [73], we have derived a corresponding isolation level, named 1-copy-SI. I:qformally, a repli­

cated history provides 1-copy-SI if the concurrent execution of a set of transactions on the different

database replicas is equivalent to executing them in a non-replicated database system under SI. 1-

copy-SI is discussed in detail in Chapter 3, and the replica control protocols in this thesis provide

1-copy-SI. Concurrently to [73], Elnikety et. al. [40] have proposed a similar correctness criterion,

called generalized snapshot isolation. However, their definitions and reasoning are quite different

to [73]. [34] discusses how different degrees of session guarantees can be combined with snapshot

isolation in a replicated system.

Chapter 2. Background 13

(a) Centralized

(b) Centralized-Replicated (c) Decentralized

Figure 2.1: Middleware Architectures

Snapshot isolation bas also been analyzed for federated database systems. In a federated system,

data is distributed, not replicated, and a federation layer controls the execution of transactions across

the distributed data. [109] discusses what SI means in such a federation and [108] analyzes how

global SE can be maintained although the local sites only provide SI.

2.2.2 Replication architecture

Before developing replication protocols, one bas to decide on the architectural framework, that is,

how the replication protocols are intepreted or compiled with the existing database infrastructure.

Middleware-based replication

Recently, many middleware-based approaches for database replication have been proposed (e.g.,

[24, 61, 90, 40, 94]). A middleware approach implements replica control algorithms within a corn­

panent that resides between the clients and the databases. The client only sees the middleware and

sends all its requests to the middleware. The middleware then forwards these requests to individual

database replicas (DB replicas) according to the replica control algorithm in arder to assure the de­

sired correctness such as 1-copy-SE or 1-copy-SI. Figure 2.1 shows three typical architectures for

middleware approaches.

Chapter 2. Background 14

In the centralized architecture (Figure 2.l.(a)) there is only one middleware component for all

databases. Obviously the middleware component is a single point of failure in such an architecture.

The centralized-replicated architecture (Figure 2.l.(b)) improves over the centralized architecture

by adding a backup middleware component. If the primary middleware fails, all clients are switched

over to the backup. However, failover might be quite complicated because in case of failures the

connections between the primary middleware and the DB replicas are broken. Typically, upon

connection loss, database systems abort the active transactions on the connections. At the time the

primary middleware crashes, a given transaction might be committed at sorne DB replicas, active

at others, and not even started at sorne. The backup has to make sure that such transactions are

eventually committed at all replicas. Many replicated systems follow the centralized or centralized­

replicated approach [94, 7, 8, 9, 26, 62, 95, 104, 4, 45]

In the decentralized architecture (Figure 2.1.(c)) there is one middleware repli ca for each database

replica. Typically the pair of middleware replica and database replica are located at one site. The

middleware replicas coordinate with each other for replica control purposes. A client is connected

to one middleware replica and, in case of crash of this middleware replica, is reconnected to any of

the available replicas. [61, 90, 72, 73, 75, 103, 38, 89, 87, 88, 39] follow this approach.

Kernel-based replication

An alternative to a middleware-based approach would be to implement replica control within the

database kemel, as an extra component that might interact with the transaction manager and the

concurrency control module of the database system. [124, 67] are examples of approaches that are

integrated into the kemel of an open-source database system. Basically all commercial database

systems provide kemel-based replication tools. They are discussed in Section 2.2.11.

Comparison

Both middlware- and kemel-based approaches have their advantages and disadvantages. One dis­

advantage of kemel-based replication is that database systems are huge software systems, and inte­

grating a completely new module into the kemel can be very complex and requires expert software

Chapter 2. Background 15

developers. Any optimization on the tightly integrated solution will be difficult to change and adjust.

Furthermore, it can only be performed by the database vendor. In contrast, a middleware approach

can be developed and maintained independently of the database systems, and can potentially be

used in heterogeneous environments.

However, middleware-based approaches face a series of challenges. Replica control is typically

tightly related with concurrency control. Since the middleware does not have full access to the

concurrency control module of the database systems, it typically has to (partially) reimplement the

concurrency control at the middleware level. However, only limited information is available at the

middlware.

For example, the middleware does not know exact! y which records are accessed by a transaction,

but typically only knows which tables are accessed2 • Renee, many middleware-based protocols

(e.g., [61, 8, 7, 24]) restrict the execution of concurrent transactions if they access the same table,

although they might access different records. Thus, the degree of concurrency is typically lower

than with kemel-based replica control.

As another example, many database systems use loc king for concurrency control purposes. As a

result, a transaction T might be blocked waiting for a transaction T' to terminate and release a lock.

The lock waiting queues within the kemal are typically not accessible from the middleware level.

Without this blocking information, it is hard for a middleware-based protocol to discover distributed

deadlocks which very possibly happen in data intensive applications.

Finally, a middleware presents an additionallevel of indirection and thus potentially more mes­

sage overhead. This is not a problem in local area networks but can be very severe in wide area

networks.

2.2.3 Categorizing replica control protocols

The seminal paper of Gray et al. [48] categorizes ROWA replica control strategies according to two

parameters regarding the location of updates and the time of update propagation.

In regard to update location, aprimary copy approach only allows data to be updated at a primary

2SQL statements are declaratively indicating the accessed tables while the particular records to be accessed are deter­
mined by predicates.

Chapter 2. Background 16

replica. Thus, if a client submits updates to a site other than the primary replica, the updates will

be either refused or redirected to the primary site for execution. Different data items might have

different primary sites. In this case, however, transactions that want to update data items with

different primary sites are disallowed. In contrast, in an update everywhere approach the updates

are accepted and executed at the local replica to which the transaction is submitted. In general,

update everywhere approaches are more flexible than primary copy approaches.

Nevertheless, eventually all replicas have to perform all writes. Thus, although an update might

be first executed at one replica, it must eventually be propagated to and applied at the other replicas.

In lazy replication, updates are only propagated after commit. That is, a transaction is first exe­

cuted and committed locally (at the primary in primary copy approaches or at any replica in update

everywhere), and only after commit its updates are propagated to the other replicas. In contrast, us­

ing an eager replication approach update propagation must happen before the transaction commits,

and thus, within the transaction boundaries. An eager approach provides strong data consistency

because a transaction will not commit until it is certain that it will be able to commit at all other

available sites. However, it dela ys transaction commit, and thus, increases the response time seen by

the client. Transaction response time in a lazy approach is lower than that in an eager approach but it

provides only weak consistency because of the earl y commit. A further problem of lazy approaches

is that if a replica commits a transaction and then fails before propagating the updates, the other

replicas will not be aware of this transaction until the replica recovers. This can severely affect data

consistency.

2.2.4 Primary copy approach

In a primary copy approach, update transactions are only allowed to execute at the primary site

which performs traditional concurrency control to isolate confiicting transactions. As long as other

sites apply and commit updates in the same order as at the primary site, 1-copy-SE or 1-copy-SI

can be provided, no matter if the changes of transactions are propagated lazily (i.e., after commit)

or eagerly (i.e., before commit). However, if propagation is lazy, read-only transactions at the

secondaries can read stale, i.e., outdated data. Since eager propagation delays transaction execution,

most primary copy approaches are lazy [4, 13, 20, 21, 10, 94, 96, 29, 33, 34, 87, 88, 89, 95, 104].

Chapter 2. Background

1. submit- - - - -

3. exe on SI

primary

5 apply
seriai! y

secondary

(a) Update txn

--- -1. submit

- - - - - 2. forward

3. exe & commit

primary secondary

(b) Read-only txn

Figure 2.2: Lazy primary protocol (e.g., Ganymed [94])

17

Figure 2.2 shows the execution model of a typicallazy primary copy protocol (adjusted from

the Ganymed [94] system). There is one central middleware (i.e., scheduler), one primary database

replica, and several secondary database replicas in the system. Transactions can only be submitted

to the scheduler. Figure 2.2.(a) shows how update transactions are handled. The transactions are

forwarded to the primary database replica which executes the transactions using a local concurrency

control mechanism to provide SE or SI locally. Then, after commit, the scheduler propagates the

changes to ali secondary database replicas. Secondary database replicas will apply the changes

in the same order as the corresponding transactions are committed at the primary, no matter if they

conflict or not. If a transaction is read-only, the scheduler forwards it to a secondary database replica

for execution as shown in Figure 2.2.(b). Many lazy primary copy protocols follow this approach

[4, 13, 94, 95, 96, 104].

Other lazy primary copy protocols work slightly differently. [33, 34, 88] are kernel-based and al­

low clients to submit requests (that represent a transaction) to local database replicas. If a transaction

is read-only, it will execute locally. Otherwise, the local database replica forwards the transaction to

the primary database replica which executes the transaction (using local concurrency control) and

then propagates the changes to secondary database replicas after commit. The secondary database

replicas work similar to Ganymed. In [34] there are additional constants on start times of update

transactions at the secondaries in order that they read the same data values, and thus, execute iden­

tically to the primary.

[10] uses a global replication graph for conflict resolution. Conflict information must be sent to

Chapter 2. Background 18

one central site for building the replication graph. The communication overhead is large in WANs.

[29, 20] allow multiple primaries (i.e., assigning different primaries to different data). However, if

primary assignment is not done carefully, this might lead to violation of 1-copy-SE. Thus, restric­

tions are put on which sites can be primaries of which data items, and special update propagation

paths are determined. These assignment protocols can become quite complex. Furthermore, a trans­

action may not update two different data items if they have different primaries.

2.2.5 Update everywhere approach

Update everywhere approaches do not require update transactions to be submitted or forwarded to

a primary site for execution. .However, it is more difficult to keep data consistent than in primary

approaches. This is because in a primary approach confiicts between update transactions are de­

tected in a single site (i.e., the primary) while in an update everywhere approach confiicting update

transactions can run concurrently on different sites. Thus, an update everywhere approach requires

additional coordination between different sites for concurrency control purposes, which is not triv­

ial. Gray et al. [48] claim that update everywhere approaches may lead to high deadlock and abort

rates if many transactions run concurrently on different sites.

Update everywhere approaches can be combined with lazy and eager propagation. The small

example to illustrate the challenge of global correctness in Section 2.2.1 is using a lazy update ev­

erywhere approach. Lazy update everywhere approaches allow update transactions to be submitted

and executed at any site, and then commit before their updates are propagated to other replicas.

Lazy update everywhere approaches have serions data inconsistency problems. The inconsistency

has to be detected and reconciled. In the example of Section 2.2.1, either the update of T1 or T2

has to be undone, basically rolling back an already committed transaction. Commercial systems

provide a set of reconcilation strategies (e.g., let the update with the larger value al ways win). Saito

and Shapiro [106] provide an overview of reconcilation techniques. However, these techniques are

cumbersome, and lazy update everywhere is only recommended if confiict rates are extremely low.

The challenge of eager update everywhere approaches is to combine replica control with con­

currency control to guarantee global transaction isolation. Traditional eager update everywhere

protocols use distributed 2PL [14]. [48] has shawn analytically and [67] has shawn empirically

Chapter 2. Background 19

that such an approach does not scale. Recent proposais address the problems of eager update ev­

erywhere with two different approaches, either using a middleware-based scheduler or powerful

communication mechanisms.

2.2.6 Update everywhere with centralized scheduler

[7] proposes a conflict aware replica control protocol, which is a typical example of an update every­

where protocol using a middleware based scheduler. There is a single scheduler in the system. It is

required that all tables to be accessed in a transaction must be indicated at the start of the transaction.

Upon start of a transaction, the scheduler assigns a unique version number to the transaction. Then,

the scheduler requires locks for the tables to be accessed on each database replica in the arder of

the version numbers. Thus, all conflicting operations are enforced to execute in an identical ordèr in

all database replicas and 1-copy-SE is obtained. After being successfully scheduled, the client can

submit step-by-step the read and write operations of the transaction. The scheduler forwards each

write to all database replicas and returns to the client once the first database replica has executed

the write. A read is sent to a single database replica. This replica must have executed all previous

update operations of this transaction. Therefore, the approach is called conflict aware scheduling.

The distributed versioning protocol [8] is similar to the conflict aware protocol [7] except that

[8] uses a distributed version number per table instead of a lock. C-JDBC [24] implements a table­

based lock manager and uses strict 2PL. The scheduler waits until it receives responses from all

database replicas involved in the operation (one for reads, all for writes) before it returns a response

to the client.

2.2.7 Update everywhere based on group communication

In recent years many update everywhere protocols have been proposed [61, 90, 66, 67, 69, 103, 6,

68, 91, 90, 55, 56], that take advantage of multicast primitives provided by group communication

systems (GCSs).

GCSs are complex software systems and have been well studied [18, 15, 28]. Examples of group

communication systems include Spread [114], JGroups [49], ISIS [57], Horus [99], Ensemble [41],

Chapter 2. Background 20

Transis [37], and Totem [81]. They provide powerful primitives and have shawn to be a useful

abstraction for replicated and fault-toleranct systems [16]. A GCS provides multicast primitives

which multicast a message to all members of a group with two semantics3 . Namely, the GCS

delivers messages in a certain order and with a certain reliablility.

The ordering semantics that are interesting in the context of database replication are unordered,

FIFO (messages of one sender are received in sending arder by ali members), and total (for each

two members receiving message m and m', bath receive them in the same arder).

The reliability semantics are unreliable (no guarantee that a message will be received by all

members), reliable (whenever a member receives a message and does not fail for sufficiently long

time, then all other group members will receive the message unless they fail), and uniform reliable

(whenever a member p receives a message, ali other members will receive the message unless they

fail, even if p fails immediate! y after the reception). Additionally, choosing uniform reliable deliv­

ery, even if a member receives a message and then crashes, then all members that do not crash will

not only receive the message but receive it before they are informed about the crash.

[121, 122] summarize database replication protocols using GCSs. A main categorization of pro­

tocols based on GCSs is when multicast takes place and what is multicast. We can either multicast

the whole transaction before execution (see Figure 2.3.(a)) or multicast the changes performed by a

transaction after execution (see Figure 2.3.(b)). Let's discuss sorne of the proposais in more detail.

[72, 61, 6, 90, 38] work as Figure 2.3.(a). They are middleware-based approaches. They require

that all operations of a transaction must be known at start time. Read-only transactions are executed

at the replica they are submitted to. A transaction request for an update transaction is multicast

in uniform reliable and total arder. Since total arder guarantees transaction requests are received

in the same arder at all replicas, the commit arder of transactions can be the same without further

coordination among sites. [6, 5] apply the transactions at each site serially. In [61] transactions

request all necessary locks on tables in the same arder at all sites upon receiving the transaction

request. [61] defines different primary sites for different transactions. A transaction is executed

only at its primary after all its locks are granted, then its changes will be multicast to other sites.

Other sites apply these changes again in the correct lock arder.

3In here, we only introduce the concepts of GCS that are needed in our context.

Chapter 2. Background

SiteA SiteB

____ 1. multicast in

total order

2. acquire locks
in total order

3. Exe & commit
everywhere

(a) multicast before execuion

SiteA SiteB

- 1. Exe locally

2. multicast in
total order

- 3. conflict detection,
acquire locks in total order

- 4. commit if local
- - exe & commit if remote

(b) multicast after execuion

Figure 2.3: Update everywhere with GCS approach

21

Postgres-R [124] is kernel-based and works as Figure 2.3.(b). All databases are assured to

provide SI. A transaction executes first at the replica it is submitted to. After execution, its writeset

is multicast in total order to all sites for validation. If it conflicts with a concurrent transaction

whose writeset was delivered earlier, it will be aborted. Otherwise, its writeset will be applied

serially at remote sites according to the delivery order which is identical in all sites. Although not

formally shown in [124], the approach guarantees 1-copy-SI. Postgres-R is integrated into the kernel

of PostgreSQL.

GlobData [103] also performs execution before multicast, as Postgres-R. Each data item has

a version number which will be increased upon a change being committed. Conflict detection is

based on the version number of data accessed by transactions. In order to detect both read/write

and write/write conflicts both the version numbers of data items read and the changes are multicast.

Conflict detection is doue upon receiving such message in total order, possibly leading to aborts.

GlobData uses a GCS designed specially for WANs. The Database State Machine [92] works sim­

Harly to GlobData. However, unlike GlobData, after local execution, only identifiers of the data

items read and written by update transactions and the changed values are multicast to other sites,

and read-only transactions just commit locally and their read sets are not multicast. All sites apply

and commit the changes serially if no conflicts are detected. Both GlobData and Database State

Machine provide 1-copy-SE. [40, 39, 73, 75] also work as Figure 2.3.(b).

Chapter 2. Background 22

2.2.8 Fault-tolerance

While description above on replication approaches has focused on performance, there exist a wide

range of replication solutions specifically designed for fault-tolerance. A considerable part of earl y

research, such as [35, 46, 1], use database replication merely for fault-tolerance and/or high avail­

ability. Having more than one replica allows transactions to continue despite individual replicas not

being available.

Fault-tolerance is an important topic within the distributed systems community [58, 17, 25, 50,

52, 98]. Especially in the context of group communication systems, the development of group main­

tenance protocols and multicast primitives with delivery guarantees has received a lot of attention

[99, 81, 17, 37, 43].

Many of the replication protocols based on group communication systems, as described in Sec­

tion 2.2. 7, take advantage of the reliability guarantees of the GCS to pro vide a fault -tolerant solution.

In particular, many exploit uniform reliable message delivery to guarantee that whenever a trans­

action commits at any replica, the transaction commits at ali replicas that are currently available.

Recall that uniform reliable delivery guarantees that whenever a node receives a message, ali sites

that are up sufficiently long will receive the message. Thus, if a replica receives a message related to

a transaction and commits the corresponding transaction, uniform reliable delivery guarantees that

the other available replicas will also receive the message, and thus, commit the transaction. Only

replicas that have crashed might not receive the message. They have to execute and commit the

transaction upon recovery. In contrast, if only reliable delivery is used, then a site might multicast

a message, receive it locally, commit the corresponding transaction locally, and then crash before

any other site receives the message. Thus, the other sites will not commit the transaction and the

transaction is lost.

2.2.9 Load balancing

In primary copy approaches, ali update transactions must be executed at the primary replica. How­

ever, read-only transactions can be executed at any replica. For update everywhere approaches, any

transactions can be executed at any replica. This faciliates load balancing techniques.

Chapter 2. Background 23

Se veral lazy primary copy approaches attach a freshness index to secondary repli cas [13, 51,

104, 45, 4] that indicate how much the secondary copies lag behind applying the updates from

the primary copy. Typically, answers can be retrieved faster on staler copies. Thus, one has the

possibility to trade accuracy of the retumed data with the speed of receiving answers.

[95, 96] design a multi-instance database to support different applications at the same time.

Each database instance is replicated using a lazy primary copy approach. There are two kinds of

servers for different usage. The servers with reliable hardware support, such as Redundant Arrays

of Independent Drives (RAID) [27], are used as masters, while the severs with lower reliablity

guarantees are used as secondaries. All database instances share the servers. The load can be

distributed among the severs for efficient resource untilization.

In the context of eager, update-everywhere protocols with a central scheduler, [9] exploits sev­

eral load-balancing strategies to distribute the load over a replicated database cluster. The paper

explores strategies that take query type, locality and expected execution time into account. In

[26, 111], the au thors explore how data base repli cas can jo in or leave a elus ter in arder to pro vide

the proper amount of replicas to handle a dynamically changing workload.

2.2.10 Partial replication

So far, we have focused on full replication where each replica has copies of all data items. Using

partial replication, not each data item is replicated at each site. If there are n instances of the

database system, then each data item has between 1 to n data copies. The advantage is that update

costs can be reduced [85]. Whenever a data item is updated not all replicas have to apply the change

but only those that have a copy of the data item. Th us, more resources are available to execute further

transactions. Furthermore, if datais replicated in a WAN, partial replication can significantly reduce

the message overhead to keep remote replicas up-to-date.

However, partial replication faces its own challenges. Firstly, if no replica has all data items

that a transaction wants to access, then either such transactions cannat be executed or transaction

execution becomes distributed. This is particularly challenging if a read operation such as a complex

SQL statement has to be distributed across several replicas. Furthermore, if a read operation wants

to access a data item where no local copy is available, the read operation requires a remote access

Chapter 2. Background 24

resulting in high la~ency.

[54] proposes an epidemie protocol for partially replicated databases. The protocol aims at a

WAN environment. Bach data item has one or more permanent sites that always have a copy of the

data item. Other sites may have a temporary cached copy. Read- and writesets are propagated to

maintain consistency. If a data item is not stored at the site where the transaction executes, a request

is sent to one of the permanent sites and propagated with the associated lock table information.

The aforementioned Database State Machine approach has also been extended to partial repli­

cation [112]. Partial replication has also been studied in [23]. Transactions are parsed in order to

determine the sites where the transaction can be executed. This may lead to full replication when

there are complex requests.

In the context of file systems and web severs, there has been considerable work on replica

placement [65, 64, 70, 105, 117]. Many approaches provide heuristics of where to place data in

reasonable way considering parameters such as average network latency, cache and disk capacity,

and hit ratio. These approaches, however, are often not directly applicable to database replication,

because requests typically only access one individual file. Thus, issues such as concurrency control,

distributed queries, etc. can be ignored.

2.2.11 Commercial approaches

Basically ali major database vendors provide their own replication solutions. They ali prefer lazy

approaches for performance reasons and primary-copy approaches for consistency reasons. They

are ali kernel-based approaches.

Oracle lOg Replication [100]

Oracle Enterprise Edition provides replication functionalities but its standard edition does not. Note

that Oracle Enterprise Edition costs $20,000 USD per license. According to the documentation

of the latest version of Oracle, v lOg, Oracle provides two kinds of replication, asynchronous and

synchronous.

Chapter 2. Background 25

Asynchronous replication is actualiy lazy replication. Oracle provides two kinds of lazy ap­

proaches, lazy primary copy and lazy update everywhere. Snapshot replication, also calied read­

only materialized view replication, is the lazy primary copy approach in Oracle. In snapshot repli­

cation, a snapshot (i.e., materialized view) is created at the unique primary and delivered to other

sites. The materialized view is read-only but is refreshed at regular time interval.

Another option of asynchronous replication is to use updatable materialized views, also referred

to as multi-master approach. This correponds to lazy update everywhere replication. An update

transaction executes and commits at its local replica and then its changes are propagated to other

replicas. Since lazy update everywhere may result in two concurrent transactions update the same

data item at two different replicas, data reconcilation is needed. Thus, the replication tool has

to detect such conflict and make sure that ali replicas eventualiy converge to the same value for

each data item. The Oracle replication management tool resolves conflicting transactions by using

prebuilt conflict resolution methods. The update message contains x 's old and the new value. When

a replicas receives an update message with (x-old, x-new) and its current value of x is not equal

to x-old, it knows that two concurrent transactions updated x. It then uses one of several existing

resolution methods such as taking the maximum of the new value and the local value, or taking the

value from a priority site. These methods do not guarantee data consistency in ali cases. They are

only applicable to specifie applications and setups.

Oracle also provides synchronous replication which corresponds to eager update everywhere

approaches. It uses a Two-Phase-Commit (2PC) to make sure ali replicas commit a transaction.

2PC is expensive in terms of message overhead and latency.

Microsoft SQL Server 2005 Replication [80]

In general, Microsoft SQL Server 2005 provides replication approaches similar to the ones of Ora­

cle. Microsoft SQL server 2005 provides three kinds of replication solutions, i.e., snapshot replica­

tion, transactional replication, and merge replication. The first two are for replication from server

to server. The last one is for replication from server to client.

Snapshot replication in SQL server is very similar to that in Oracle. A snapshot is created at a

Chapter 2. Background 26

primary site and then propagated to secondary sites. Snapshots are usually read-only. In this case,

snapshot replication is a lazy primary copy approach. SQL server also supports snapshots which can

be updated occasionally. This corresponds to lazy update everywhere. A list of conflict resolution

methods are provided by the replication management tool of SQL server. The methods are also the

same as those in Oracle. Note that snapshot replication propagates snapshots at regular time instead

of for each update transaction.

Transactional replication propagates changes on a per-transaction basis. There are three kinds of

transactional replication, namely, standard, updatable subscriber, and peer-to-peer. Standard trans­

actional replication is a lazy primary copy approach. Updatable subscriber transactional replication

corresponds to update everywhere. It is further categorized into immediate updating and queue

updating. Immediate updating uses 2PC which corresponds to eager update everywhere. Queue

updating corresponds to lazy update everywhere. Conflicts are detected and resolved according to

the conflict resolution policies. Peer-to-peer transactional replication is a multi-master approach

which requires a careful partition of the data. It enables updates at different sites each of which is

the primary of a different partition. Note that foreign key constraints and updatable primary keys

are not supported in SQL server replication environments. Snapshot replication has less overhead ·

than transactional replication because there are less data monitoring and propagation.

Merge replication is a lazy update everywhere approach using conflict resolution. It is similar

to updatable snapshot replication but is designed for server to client replication.

Sybase Replication [101]

Sybase has provided replication since 1993. It supports both transactional and non-transactional

replication. In regard to transaction replication, Sybase supports One Primary - Multiple Secondary

(i.e., lazy primary copy in our definition), and Multi-Master. It does not support lazy update every­

where replication.

2.3 Our approach

The goal of our approach is to overcome sorne of the limitations of existing solutions.

Chapter 2. Background 27

• We want to have an update everywhere approach because primary copy approaches have

sorne inherent limitations that cannat be avoided. Firstly, the primary copy might become a

bottleneck because it has to execute all update transactions. The only primary copy approach

that avoids this is one that allows different data items to have different primary copies. How­

ever, that restricts. which data items a transaction might update. Secondly, the application

must submit all update transactions to the primary copy, or transactions must be declared as

read-only or update at start of transaction so that they can be automatically redirected to the

primary or secondary copies, or transactions that are submitted to a secondary will be aborted

upon submitting their first write operation. All three options are not desirable. We want to

have the option to submit any transaction to any replica in order to be transparent to the

application and have the potential for load-balancing.

• We want to have an eager approach because only in this way, complex conflict resolution

can be avoided and complete fault-tolerance can be achieved. If updates are submitted only

after commit and a replica fails after committing but before propagating the updates, data

inconsistencies arise. In contrast, if updates are propagated before commit, all replicas are

aware of such a transaction in the failure case. However, albeit being eager, we want to

keep the delay associated with eager replication as low as possible even in WAN settings. In

particular, we aim at not providing significantly worse response time than la~y approaches.

• We want the replicated system to run under snapshot isolation due to the advantages snapshot

isolation has shawn in non-replicated systems compared to traditional serializability. More­

over, most existing update everywhere approaches do not consider integrity constraints so

that they do not work with databases with integrity constraints. Thus, our protocols should be

based on 1-copy-SI and also consider integrity constraints.

• Our protocols should work at the middleware leve! in arder to exist as an independent corn­

panent and work with a heterogeneous environment. At the same time, they should avoid

many disadvantages of existing middleware-based approaches. That is, they should provide

concurrency control at the record leve! and not at the table level or other "coarser" concur­

rency levels. Furthermore, they should not pose any specifie requirements at the application.

Chapter 2. Background 28

Instead, they should work with any legacy application accessing the database through a stan­

dard interface such as JDBC [113].

Chapter 3

Snapshot isolation and integrity

constraints in a replicated system

Up to now, the most common correctness criterion for replicated databases has been 1-copy-serializability

(SE) and most replica control protocols are based on 1-copy-SE. A replicated database system pro­

viding 1-copy-SE behaves as there were only one logical copy of the database providing SE.

However, snapshot isolation (SI) is becoming more and more popular since its implementation

provides more concurrency as protocols implementing SE such as strict 2PL. Although SI is a

weaker isolation level than SE, i.e., it allows sorne anomalies that are not possible under SE [12], it

actually avoids all the ANSI phenomena [11]. Therefore, popular database systems such as Oracle

and PostgreSQL do not provide SE at all but only run SI. Furthermore, they indicate that they

provide SE according to ANSI.

Many of the replica control algorithms providing 1-copy-SE assume that the database replicas

provide SE, and, e.g., use strict 2PL as concurrency control mechanism. This assumption is not

valid if systems such as Oracle and PostgreSQL are used. For instance, if the database system runs

SI as its highest isolation level, strict 2PL at the middleware level does not work. In this case, the

system might not provide 1-copy-SE anymore. Let's look at an example with the initial values of

x=O, y=O, and z=O. There are two transactions T1 and T2. T1 wants to read x and y, and then writes

z to 1. T2 wants to read x and z, and then writes y to 2.

29

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 30

Assume locks are acquired subsequently at the middleware level according to strict 2PL but

the underlying database provides only SI. T1 and T2 can start concurrently in one of the databases

since they only require read locks on x at their first operations respectively. After the execution of

their first operations, let's assume T1 acquires read lock on y and write lock on z before T2. The

read operation of T2 on z is blocked by T1 since T1 is holding a write lock on z. T2 resumes after

T1 commits. However, T2 does not read the version of z committed by T1 since the underlying

database only provides SI. Instead it reads the version committed before T1 commits. It willlead to

the following history in the underlying database.

A seriai history equivalent to Hs13 needs to serialize T1 before T2 due to r1(y, 0) and w2(y, 2).

However, w1(z, 1) and r2(z,O) indicate that T1 should be serialized after T2. Obviously Hs13

is not a serializable history but a SI history. The replicated database systems does not guarantee

1-copy-SE1.

The problems above motivate us to apply SI to a replicated environment and derive a corre­

sponding global transaction isolation level, which we denote as 1-copy-SI. A replicated database

under 1-copy-SI should behave as a non-replicated database that runs under SI. Using 1-copy-SI,

we aim at achieving better performance than 1-copy-SE. Firstly, since SI allows more concurrency

than SE, this increased concurrency should lead to improved throughput in the replicated case. Sec­

ondly, since SI is only concerned with write/write conflicts, we do not have any overhead in regard

to reads at the replica controllevel. This simplifies the replication tool and can also save communi­

cation overhead compared to sorne 1-copy-SE protocols that require to send information about read

operations for concurrency control purposes.

In this chapter, we provide a formai definition of 1-copy-SI, a correctness criterion for replicated

databases. Our definition is based on the formalism introduced in [2, 3], denoted as Generalized

Isolation Definition (GID), to reason about Snapshot Isolation. We then give sorne necessary and

1To achieve 1-copy-SE, the acquisition of locks at middleware levels must be atomic which is not required by strict
2PL. Actually many middleware based protocols follow this strategy such as [7, 61, 90].

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 31

sufficient conditions for a replicated history to be 1-copy-SI. Then, we extend the formalism to

be able to express integrity constraints (IC) in a way that conforms with how they are handled in

existing commercial systems that run under SI. From there, we derive an extended correctness cri­

tenon, denoted as 1-copy-SI+IC which provides snapshot isolation and proper handling of integrity

constraints in a replicated environment. Again, we identify conditions that allow us to determine

whether a given replicated history is 1-copy-SI+IC.

3.1 Snapshot Isolation (SI)

[12] gives a first, rather informai description of SI. SI is defined by two properties. The first property,

referred to as Snapshot-Read property by [2], indicates that a transaction Ton SI reads data from a

snapshot which contains all updates committed before T starts (plus its own updates). The second

property, referred to as Snapshot-Write property by [2], indicates that no two concurrent transaction

may write the same abject. That is, if two concurrent transactions bath want to write the same data

item only one of them will be allowed to commit. Snapshot isolation avoids the ANSI anomalies

[11] but is not serializable in the strict sense. We gave an example in Section 2.1.2.

Despite not being serializable, SI is attractive because it generally allows for more concurrency

than strict 2PL. Thus, database systems such as Oracle, Microsoft SQL Server, PostgreSQL now

support it. Commercial systems usually implement Snapshot-Read via a multi-version system: a

write of transaction T on data item x creates a new version, a read of transaction T on data item

x reads the last version of x that was committed before T started (or its own version if it has

created one). Thus, reads do not set any locks. Snapshot-Write is typically implemented by letting

transactions set long exclusive locks on data items they want to write. When T receives the lock on

x, T checks the latest committed version of x. If it was created by a transaction T'concurrent toT

(i.e., T' committed after T started), then T aborts, otherwise it performs the update and continues

execution. This is often denoted as first-updater-wins technique. Alternatively, transactions could

perform their updates optimistically and only check at commit time whether a concurrent transaction

that already committed had conflicting updates. This technique is denoted as first-committer-wins

strategy.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 32

Having no locks for reads can increase concurrency significantly. However, aborting one of two

concurrent transactions having conflicting writes can lead to higher abort rates than standard strict

2-phase-locking.

Our correctness reasoning is based on the formalism introduced in [2, 3], denoted as GID. In his

thesis [2], Adya defines GID and uses it to reason about varions isolation levels in a non-replicated

environment, including snapshot isolation. GID is a very powerful tool and allows reasoning about

correctness that is independent of the actual implementation. In the remainder of this section, we

present GID for snapshot isolation. We only slightly modify the notation to adjust it better to our

needs.

3.1.1 Transactions and histories in General Isolation Definition (GID)

A data item x (also referred to as abject) of the database has a life time from its initial unborn

version, Xinit• toits dead version, Xdead created by a transaction deleting x. A transaction 1i starts

with a start operation si, then contains a sequence of read and write operations, and terminates with

a commit operation (i.e., ci) or an abort operation (i.e., ai). A transaction 1i creates a version Xi of

abject x by performing a write operation wi (Xi). If Ti reads x it reads a specifie version x j, denoted

as ri(xj)· If Ti writes x, then it installs Xi when it commits. For simplicity, we assume Ti will not

read or write the same abject twice, and if it reads and writes an abject, it performs the read bef ore

the write.

Let T be a set of transactions. A history H over T describes the execution of the transactions

in T and consists of two parts. Firstly, it has a partial orderZ, called time-precedes arder -<t. over all

operations of transactions of T with the following properties:

1. It includes the arder in which operations within a transaction are executed. That is, for any two

operations Dij and oik of Ti E T, if Dij happens before Dik in the execution, then Dij -<t Dik·

In particular Si -<t ci.

2Partial order in this thesis refers to an order < with irrefiexivity (i.e., •(a < a)) and transitivity (i.e., (a < b) 1\ (b <
c) =?(a< c).

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 33

3. For any two committed transactions Ti and Tj: either Ci -<t Sj or Sj -<t ci.

Secondly, H provides a version order, «, that is a total order on the versions of each committed

object. For any object x, Xinit is always considered the smallest abject version.

For conven~ence, we will present a history H as a sequence of operations (i.e., start, read, write,

commit, abort) with a total arder (from left to right) consistent with -<t· Furthermore, we omit that

Xinit is smaller than any other version of x. For example, consider the history Hwrite-order:

This history shows how little restrictions are actually in place. In here, x 2 is ordered before x1

in the version arder, although in -<t. w1(x1) is ordered before w2(x2), and also the commit arder

is c1 before c2. Furthermore, T3 reads x1 although x2 was created later. Furthermore, Y4 is not

considered in the version arder since it was created by an aborted transaction.

In the following, our example histories often do not start with an empty database but assume that

before the history H over a set of transaction T started, there executed transactions, e.g., transaction

To, that committed before H started. If To wrote abject version xo, then we assume that xo « Xi

for any transaction Ti in T that writes x during H.

3.1.2 Snapshot isolation in GID

[2] now formally defines Snapshot-Read and Snapshot-Write as follows:

Definition 1. Snapshot-Read. Ail read operations peiformed by a transaction Ti occur at its start

point. That is, ifri(xj) occurs in history H, then:

1. Cj -<t Si, and

2. ifwk(xk) also occurs in H(j f. k), then either

(a) Si -<t Ck. or

(b) Ck -<t Si and Xk « Xj

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 34

Definition 2. Snapshot-Write. If Ti and Tj are concurrent and both commit, they can not both

modify the same object. That is, ifwi(xi) and wj(xj) both occur in history H, then either Ci -<t Bj

GID makes use of data-flow graphs to reason about the properties of a history. In the context

of SI, it introduces the notion of a Start-ordered Serialization Graph (SSG), that records the depen­

dencies between transactions for a given history H over T. In the following, we say Tj directly

write-depends on Ti if bath write a co mm on data item x and Xi and x j are consecutive versions of x

in H's version arder. Tj directly read-depends on Ti if it reads a version of an abject created by Ti.

Tj directly anti-depends on Ti if Ti reads a version of an abject x and Tj creates x's next version in

the version arder. Tj start-depends on Ti if Ti commits before Tj starts in the time-precedes arder.

The dependency definitions are summarized in Table 3.13.

Definition 3. Start-ordered Serialization Graph (SSG). The SSG(H) of a history H over a set

of transaction T is a directed graph where each node in SSG(H) corresponds to a committed

transaction in H, and there is a write-, read-, anti-, or start-dependency edge from Ti to Tj iffTj

directly write-, directly read-, directly anti-, or start-depends on Ti> respectively.

+
In the following, given the SSG(H) of a history H, we denote as Ti~ Tj a path in the graph

from Ti to Tj consisting only of write-dependency edges. Similarily, we denote as Ti ~ Tj a path

in SSG(H) with only start-dependency edges.

From there, GID identifies five phenomena that a history must avoid to be SI.

• G-la: Aborted Reads. A history H over T exhibits phenomenon G-la if it contains an

aborted transaction T1 and a committed transaction T2 such that T2 bas read sorne abjects

modified by T1.

• G-lb: lntermediate Reads. A history H exhibits phenomenon G-lb if it contains a com­

mitted transaction T2 that bas read a version of abject x written by transaction T1 that was

not T1 's final modification of x. We do not further consider this phenomena because our

transaction madel assumes that each transaction only writes an abject at most once.

3GID also considers predicate read and write operations. For simplicity, we do not discuss them but we believe our
definitions and theorems can be easily extended to accomodate them.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 35

Dependency Type Description SSG Edgename

Directly write-depends Ti installs Xi and Tj in- Ti~Ti write-dependency edge
stalls x' s next version

Directly read-depends Ti installs Xi and Xi is the Ti~Ti read-dependency edge
same version of x in Tj 's
read

TW

Directly anti-depends 7i reads x and Tj installs Ti--7Ti anti-dependency edge
x' s next version

start -depends Tj starts after Ti commits
s

Ti ----t Ti start -dependency edge

Table 3.1: Dependencies (based on Fig. 2 in [3])

• G-lc: Circular Information Flow. A history H exhibits phenomenon G-lc if the direct

serialization graph S S G (H) con tains a directed cycle consisting entirely of write-dependency

and read-dependency edges. We refer to such cycle as a G-Jc cycle.

• G-Sia: Interference. A history H exhibits phenomenon G-Sia if SSG(H) contains a read­

or write-dependency edge from Ti to Tj without there also being a start-dependency edge

from Ti to Tj.

• G-Sib: Missed Effects. A history H exhibits phenomenon G-Sib if SSG(H) contains a

directed cycle with exactly one anti-dependency edge. We refer to such cycle as a G-Slb

cycle.

GID defines an isolation level PL-SI corresponding to SI as the one in which the Gia, Glb, Glc,

G-Sia, and G-Slb phenomena are disallowed. Roughly, G la-c capture the essence of dirty read and

dirty write while G-Sia-b capture the essence of violating Snapshot-Read and Snapshot-Write.4 For

the convenience of discussion, we refer to a history as a SI-history if it avoids phenomena G-1 and

G-SI.

Example 1. Hnon-SI is not a SI-history while Hsr is a SI-history. Their SSGs are shown in

Figure 3.1 and 3.2 respective/y. We assume that a transaction To installs version xo and Yo before

the transactions T1 to T3 start.

4We refer to [2, 3] for the proofs that Gl and G-SI are necessary and sufficient conditions for a history to provide
Snapshot Read and Snapshot Write.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 36

rw

Figure 3.1: SSG(Hnon-SI) in Example 1 Figure 3.2: SSG(Hsi) in Example 1

Hnon-SI: 8t, 82, 83, r3(xo), Wt(xt), ct, r2(xt), w2(Y2), c2, w3(y3), c3 [xt, Y2 « Y3]

Hs1: 8t, 82, 83, r3(xo), Wt (xt), ct, r2(xo), w2(Y2), c2, w3(y3), a3 [xt, Y2]
In both Hnon-SI and HsJ, Tt installs the version Xt following xo. In Hnon-SJ, T2 reads the ver-

sion of x created by Tt (r2(xt)). This violates Snapshot-Read because Tt has not committed at the

time T2 starts. Correspondingly we can see that there is a Tt ~ T2 edge but no Tt _3_. T2 edge

in SSG(Hnon-SI) (Figure 3.1). This means Hnon-SI has phenomenon G-Sia. Moreover, T2 and

T3 bath write y concurrently and bath are allowed to commit. This violat es Snapshot-Write. Cor­

respondingly we can see that there is a T2 ~ T3 edge but no T2 ~ T3 edge in SSG(Hnon-SI).

Furthermore, there is a G-Sib cycle Tt ~ T2 ~ T3 _:~ Tt in SSG(Hnon-SI) having exactly

one anti-dependency edge. Thus, Hnon-SI also has phenomenon G-Sib.

In HsJ, T2 reads x from To instead of Tt (r2(xo)). This is correct, because T2 started after

To committed. Although Tt and T2 are concurrent, both are able to commit because they write

different abjects. However, T3 is aborted because it writes y, is concurrent to T2, and T2 commits

(only one may commit). Figure 3.2 shows SSG(Hsi). It is easy to verify that Hsi avoids phenomena

G-Ia, G-lb, and G-Sia. Since SSH(Hsi) is acyclic, G-lc and G-Sib are avoided. Bence, Hsi is a

SI-history.

3.1.3 Observations

Here we discuss sorne further observations and properties of SI-histories and general histories and

their SSGs. They will be useful when we discuss SI in a replicated system.

First of ali, we want to point out a property that holds in the SSG(H) of any history H. Figure

3.3 shows an illustration of this property.

Proposition 1. Let H be a history over T. Let Ti, Tj E T be two transactions writing x, and

Chapter 3. Snapshot isolation and integrity constraints in a replicated system

Figure 3.3: Relationship of read-, write-,
and anti-dependency edge

Dependency Order Requirement in SI-
his tory

s
Ti~Ti Ci -<t Sj

Ti~Ti Ci -<t Sj

Ti~Ti Ci -<t Sj
rw

Ti----. Tj Si -<t Cj

Figure 3.4: Order requirements for SI-histories

37

Tk E T be a transaction reading x. !fTi ~ Tj and Ti ~ Tk are two edges in SSG(H), then
rw

Tk --~ Tj appears in SSG(H).

Proof. 1i ~ Tj means that Xi and Xj are consecutive versions in x's version arder. Ti ~ Tk

means that n reads version Xi. Since Tj installs the next version of Xi, according to the construction
rw

of direct anti-dependency edges, there must be an - ---.Ti edge in SSG(H). 0

Secondly, we want to look at the relationship between dependencies and the start and commit

arder of transactions. We have shawn with our first example of a history, Hwrite-order• that there

are generally very little restrictions of how operations are -<rordered in a history. However, a

SI-history has quite strong properties in regard to the -<rorder. Every dependency edge in the

SSG(H) of a SI-history H indicates sorne ordering between the start and commit operations of the

involved transactions. Table 3.4 indicates these ordering implications. Clearly, a start-dependency

edge between 1i and Tj means Ci -<t Sj for any history H by definition. Furthermore, in arder to

avoid G-Sla, the SSG(H) of a SI-history H must have a start-dependency edge whenever there is

a write- or read-dependency edge. This means, whenever there is a write- or a read-dependency
rw

edge from Ti to Tj, we have ci -<t Sj in H. Finally, an anti-dependency Ti - ---. Tj implies

si -<t ci in H. Assume that this would not be the case. Then Cj -<t si holds. Thus, there would

be a start-dependency edge Tj ~ Ti resulting in a cycle between Ti and Tj with exactly one

anti-dependency edge. This is phenomenon G-Slb and avoided by SI-histories.

Finally, we can observe that in a SI-history the version arder and -<rorder of commit operations

are highly related.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 38

Lemma 1. Let H be a SI-history over T and let Ti, Tj E T be two transactions writing x. Xi « Xj

if! Ci -<t Cj.

Proof First, one has to note that when an object version Xi appears in the version order, Ti must

have committed according to the definition of a history.

1. Xi « Xj ====} Ci -<t Cj

By the definition of write-dependency edges (as in Table 3.1), if Xi « Xj, then SSG(H)
+

has a path Ti ~ Tj consisting only of write-dependency edges . Sinee H is a SI history, it

avoids G-Sla, and each write-dependency edge is accompanied with a start dependency edge.

Thus, we derive that SSG(H) also contains Ti ~ Tj. This, together with Si -<t Ci results

in Si -<t ci -<t ... -<t Sj -<t Cj. Renee, Ci -<t Cj.

2. Ci -<t Cj ====} Xi « Xj

Assume Xj «Xi. Based on the first part of the proof above, Cj -<t ci. Renee, Cj -<t ci -<t Cj

which is impossible sinee -<t is irreflexive. Thus, Xi « Xj must hold.

D

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 39

3.2 Snapshot isolation in a replicated system

In this section we extend the notion of SI to a replicated environment. In arder for a replicated

database to provide a certain level of isolation, it should behave like a non-replicated database that

runs under this isolation level. The concept of 1-copy-SE is well known and understood ([14]).

It requires the execution in the replicated system to be equivalent to a seriai execution in a non­

replicated system. ln this section, we formally define what it means for a history to be 1-copy­

snapshot-isolation (1-copy-SI), and discuss necessary and sufficient conditions for a history to be

1-copy-SI.

3.2.1 Transactions and histories in a replicated database

A replicated database consists of a set of replicas R each of which keeps a copy of the database.

Our madel follows a Read-One-Write-All (ROWA) approach in which each update transaction bas

one local replica that performs all its operations. The transaction is called local at this replica, and

remote at the other replicas. Only the write operations of a transaction are applied at the remote

replicas. Hence, all replicas execute the same set of update transactions, but an update transaction

Ti bas a readset RSi consisting of all read operations only at one replica while it bas the same

writeset W Si consisting of its write operations at all replicas. Read-only transactions, in contrast,

only exist at the local replica. We express this by using a ROWA mapper function.

Definition 4. Mapper function. A ROWA mapper fonction, rmap, takes a set of transactions T

and a set of replicas Ras input, and transforms Tinto a set of transactions T' = rmap(T, R).

rmap(T, R) transforms each update transaction Ti ET into a set of transactions {I:kJRk ER}.

In this set the re is exactly one local transaction Tl where W S! = W Si and RS! = RSi (Ti is local

at R 1). The rest are remo te transactions T[, where W S[= W Si and RSf =0 (Ti is remo te at Rr).

A read-only transaction Ii is transformed into a single local transaction Tf with RSf = RSi. We

denote as Tk = {TikJTik E T'} the set of transactions executed at replica Rk.

Executing T' at the replicas R leads to what we denote a replicated history.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 40

Definition 5. Replicated history. Let T be a set of transactions, n a set of replicas and rmap a

ROWA mapper fonction generating T' = rmap(T, n). Let RHk be a local history over Tk at

Rk E n. We denote the union over alllocal histories RHk as a replicated RH over rmap(T, n),

i.e., RH= URHk,Rk En.

3.2.2 1-copy-SI

We now have to define when a replicated history provides 1-copy-SI, i.e., when it is equivalent

to a SI-history over a non-replicated database. We model this by requiring a replicated history

over T =rmap(T, R) to have the same dependencies between read and write operations as a non­

replicated SI-history over T. In GID, any such dependency is captured by the means of a write­

, read- or anti-dependency edge in the SSG. A replicated RH is the union of the subhistories

RHk at the different replicas. Bach RHk bas its own SSG(RHk) reflecting the dependencies that

occurred in this history. The union of all these SSGs reflects the sum of all dependencies. Thus, an

equivalent, non-replicated SI-history bas to have the same dependencies. We first define these set

of dependencies as a graph:

Definition 6. Union Serialization Graph (USG). Let RH= U RHk be a replicated history over

rmap(T, n). We denote as USG(RH) thefollowing graph.

1. For each Rk En, if SSG(RHk) has node Tik E Tk, then USG(RH) has a node Ti.

2. Foreach Rk E Rand each write~, read-, oranti-dependency edgefrom Tf to Tjk in SSG(RHk),

USG(RH) has a corresponding write-, read-, or anti-dependency from 1i to Tj.

3. There are no .further edges or nodes in U SG(RH).

Definition 7. 1-copy-SI. Let RH= U RHk be a replicated history over rmap(T, R). We say RH

is 1-copy-Sl if

1. For each Rk En, RHk is a SI-history.

2. For all update transactions Ti E T and for all Rk, Rl E n : cf ~ c~.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 41

wr,s wr,s wr,s

TI~T3
A

--------------.
TI ww,s T2 14 T~T. 'T' 1 ~2 ------- ~3 J.4

(a) SSG(RHexact-edgJ (b) SSG(RH!act-edge)

~

(C) SSG(Hexact-edge'>

Figure 3.5: SSGs ofExample 2

3. There exists a SI-history H over T such that,

(a) SSG(H) and USG(RH) have the same nodes;

(b) SSG(H) has exactly the same write-, read-, and anti-dependency edges as USG(RH).

(1) means that the histories at ali replicas must be SI-histories. In the following we often refer

to them as the local histories. (2) means ali local histories must commit the same set of update

transactions. Finally, (3) means a SI-history over the original set of transactions must exist with the

same dependencies. We refer to this non-replicated history over T often as a global history.

Example 2. In this example, the re are two replicas RA and RB. Transactions T1, T2, and T3 are

local at RA while T4 is local at RB. The replicated history RHexact-edge is the union of the local

histories RH!act-edge and RH!act-edge

RH!act-edge: 8f, wf(xl), wf(Yl), cf, 81, w1(x2), 81, ct, r1(xl), c1 [xl« x2, Yl]

RH!act-edge: 8f,wf(xl),wf(Yl),cf,8f,wf(x2),8f,cf,rf(yl),cf [xl« X2,Yl]

SSG(RH!act-edge) and SSG(RH!act-edge) are shown in Fig. 3.5. For simplicity, the super­

script A and B at the transactions are omitted. It is easy to verify that both RH A and RH B

are SI-histories. USG(RH) is the union graph of all write-, read- and anti-dependency edges of

SSG(RH!act-edge) and SSG(RH!act-edge)·

We can show that the replicated history RHexact-edge is 1-copy-SI by building the following

global history Hexact-edge over {Tl, T2, T3, T4}:

Hexact-edge.' 81, W1 (xl), w1 (Yl), Ci, 82, w2(x2), 83, 84, c2, r3(x1), c3, r4(y1), C4

[x1 « x2, Yl]

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 42

S S G (H exact-edge) is shown in Fig. 3. 5. (c). ft has exactly the same write-, re ad- and anti-dependency

edges as USG(RHexact-edge)· We can also easily see that H avoids G1 and G-Sl. Renee, RHexact-edge

is 1-copy-S/.

In above example, we have shown that RHexact-edge is 1-copy-SI by constructing a non-replicated

history Hexact-edge that fulfills the conditions of the 1-copy-SI definition. However, constructing

an appropriate non-replicated global SI-history for an arbitrary replicated history that fulfills the

1-copy-SI property is not always trivial. Furthermore, in case a replicated history is not 1-copy-SI,

it is difficult to prove that no global SI-history with the appropriate properties exists. Thus, we need

a more convenient way to determine whether a replicated history is 1-copy-SI.

For 1-copy-serializability and ROWA, [14] simply checked whether the union of the serializa­

tion graphs of the histories at the different replicas are acy clic. The question arises, whether we can

simply check USG(RH) to determine whether the execution is 1-copy-SI or not.

3.2.3 Necessary conditions for a replicated history to be 1-copy-SI

It is clear that if USG(RH) has a G-1c or G-Slb cycle, then RH cannot be 1-copy-SI because it

is not possible for a SI-history H to have a SSG(H) with the same edges. Our first question is

whether any other characteristics of USG(RH) can be determined that make it clear that RH is

not 1-copy-SI. Let's have a look at an example.

Example 3. In this example, there are two replicas RA and RB. Transaction T1 and T2 are local

at RA, T3 and T4 are local at RB. We assume an initial transaction To created xo and Yo and

committed before the following execution starts.

RH/!le: sf, wf(xl), cf, st, rt(xl), r~(yo), ct, sf, wf(Y4), cf [x1, Y4]

RHf!oze : sf, wf (y4), cf, sf, rf (y4), rf(xo), cf, sf, wf (xl), cf [xl, Y4]

SSG(RH,;ale) and SSG(RHf!o1e) are shawn in Figures 3.6.(a) and (b) respective/y. The USG(RH)

shown in Figure 3.6 (c) has no G-1c or G-Slb cycles. Still, RHhale is not 1-copy-S/.

We show by contradiction that RH hale is not 1-copy-S/. Assume RH hale is 1-copy-S/. Then

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 43

s s rw

~ Tl ' T2 -------~ T4 ~ T4 T3 -------~Tl

A
(a) SSG(RHhole) (b) SSG(RH~ole) (c) USG<RHhole)

Figure 3.6: SSGs of Example 3

there must be a global SI-history Hhale which contains the same write-, read-, and anti-dependency
wr rw

edges as USG(RHhale)· Renee, based on T1 ---> T2 --+ T4 in USG(RHhale) and Table 3.4, we

derive for the -<rorder of H:

rw
Similarily, due to T4 ~ T3 - -+ T1 we derive:

This results in c1 -<t c4 -<t c1 which is impossible since -<t is irreflexive. Thus, no SI-history could

have a graph with above edges, and RH hale is not 1-copy-Sl.

The problem of RH hale is that a global SI-history can simply not behave in the same way. T1 and

T4 do not conflict. So their order does not seem to matter. However, T2 reads x and y from a

snapshot after T1 commits but before T4 commits in RA. This indirect! y requires T1 to commit

before T4. In contrast, T3 reads x and y from a snapshot after T4 commits but before T1 commits

in Rk, indirect! y ordering T4 before T1. In a non-replicated history, only one of the snapshots is

possible, that is either T1 commits before T4 or it commits after T4 but not both.

The problem is that USG(RHhale) (see Figure 3.6.(c)) has a cycle with more than one anti­

dependency edge. In principle, this is allowed by the definition of SI. But it turns out that the

particular cycle above is not possible in a non-replicated history.

Thus, we define a further phenomenon.

• G-Sib*: Anti-dependency cycle A history H exhibits phenomenon G-Slb* if SSG(H) has

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 44

a cycle with at least one anti-dependency edge and each anti-dependency edge is prefixed by

a write-, read-, or start-dependency edge. We refer to such a cycle as a G-Slb* cycle.

G-Slb* refers to cycles where there are no consecutive anti-dependency edges5 • Note that G­

Slb* actually includes G-Slb because if there is a cycle with exactly one anti-dependency edge, then

this anti-dependency edge must be prefixed with a non anti-dependency edge, i.e., a write-, read-,

or start-dependency edge. G-Slb* is a derived phenomenon, i.e., if a history avoids G-la-c and

G-Sla-b, then it automatically avoids G-Slb*.

Lemma 2. A (non-replicated) SI-history H over a set of transactions T avoids G-Slb*

Proof Assume there is a SI-history H that has phenomenon G-Slb*. SSG(H) cannat have acy­

cle with only one anti-dependency because it avoids G-Slb. Thus, SSG(H) has a cycle c with

m (m > 1) anti-dependency edges and each anti-dependency edge is prefixed by a write-, read-,

or start-dependency edge. Firstly, we can easily derive that SSG(H) must have a cycle c' with

m (m > 1) anti-dependency edges and ali other edges in the cycle are start-dependency edges. This

is because whenever there is a write- or read-dependency edge between from Tito Tj there is also

a start-dependency edge because of G-Sla. Thus, in the following, we only considera cycle that

consists of m anti-dependency edges, all other edges are start-dependency edges, and each anti­

dependency edge is prefixed by a start-dependency edge. We can break the cycle into m sections.
, 8 + rw ,

Bach sectiOn k E {0, ... , m - 1} has the pattern Tik ----+ Tjk - ---> Ti(k+l)%m. Accordmg to Ta-

b~i:·:+w~;~::ec:v::o::~e -<rorder of H} for each section k due to transitivity:

rw ::::} Cik -<t Ci(k+l)%m
Tjk - -t Ti(k+l)%m ::::} Sjk -<t Ci(k+l)%m

If we now look at ali sections, we obtain: Cio -<t Ci 1 -<t · · · -<t Cik -<t Ci(k+l) · · · -<t ci"" -1 -<t

cio. Since -<t is irreflexive this results in a contradiction. 0

Thus, coming back to Example 3, since U SG(RHhole) has a G-Slb* cycle, we can immediately

see that RH is not 1-copy-SI because there cannat be a global SI-history with the same dependency

edges (and cycle).

5SI allows cycles with two consecutive anti-dependency edges. Interestingly, [42] determines that histories that are SI
but not SE are exactly those that contain cycles with consecutive anti-dependency edges.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 45

In summary we observe the foilowing necessary conditions to be 1-copy-SI: if a replicated

history RH is 1-copy-SI, then USG(RH) has no G-1c or G-Slb* cycles.

3.2.4 Sufficient conditions for a replicated history to be 1-copy-SI

It tums out that avoiding G-1c and G-Slb* is not only necessary but also sufficient for a replicated

RH history to be 1-copy-SI. That is, for a replicated history RH, if ail local histories RHk are SI,

ail Rk commit the same update transactions, and USG(RH) has no G-1c and G-Slb* cycles, then

RH is 1-copy-SI. In particular, we are able to construct a global SI-history H such that SSG(H)

has the same write,- read- and anti-dependency edges as U SG(RH). We start with sorne interesting

properties of a RH whose local histories are SI-histories.

Lemma 3. Let RH be a replicated history over rmap(T, R). At each Rk E n, let RHk be a

SI-history over Tk. Let each update transaction Ti E T commit at either all or none of the replicas.

JfUSG(RH) has no G-Ic cycles, thenfor any Ti, Tj E T writing a common data item x and

for any replicas RA, RB E n: cf -<t cf in RH A if and only if cf -<t c? in RH B. That is, two

conjlicting committed transactions commit in the same order in alllocal histories.

Proof Assume two write transactions Ti and Tj updating the same data object, and two arbitrary

replicas RA and RB. Since ail local histories commit the same set of update transactions, we know

that if cf and cf occur in RHB so do cf and cf in RHA and vice versa. Now assume cf -<t cf in

RHA and cf -<t cf in RHB.

Let x be (one of) the abjects that Ti and Tj both update. RH A defines a total version order

on x. Furthermore, since RHA is a SI-history, based on Lemma 1, Ci -<t Cj implies Xi « Xj.

By the definition of write-dependency edges (as in Table 3.1), if Xi « Xj, then SSG(RHA), and
+

thus USG(RH), have a path Ti ~ Tj consisting of only write-dependency edges . Similarly,
+ cf -<t cf in RH8 wi111ead to Tj ~Ti in USG(RH). This results in USG(RH) having a cycle

consisting only ofwrite-dependency edges. This contradicts the assumption that USG(RH) avoids

G-lc. 0

Lemma 3 indicates that ail replicas must commit conflicting update transactions in the same order.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 46

Furthermore, Lemma 1 indicates that in an SI-history, the commit order of write transactions is

consistent with the version arder of the data items they write. Since each local history RHk is a SI

history, we can derive the foliowing:

Proposition 2. Let RH be a replicated history over rmap(T, 'R). At each Rk E 'R, let RHk be a

S/-history over Tk. Let each update transaction Ti E T commit at either all or none of the replicas.

IfUSG(RH) has no G-1c cycle, thenfor each Rk, R 1 E 'R: Xi« Xj in RHk Ç=} Xi« Xj in

RH1• That is, alllocal histories have the same version orders for all data items, and thus, the same

write-dependency edges in their SSG(RHk).

Based on the discussion above, we can state sufficient and necessary conditions for a replicated

history to be 1-copy-SI as foliows.

Theorem 1. 1-copy-Sl Existence Let RH be a replicated history over rmap(T, 'R). RH is 1-copy­

S/ if and only if the following holds

1. For each Rk E 'R, RHk is a SI-history.

2. For all update transactions Ti E T and for all Rk, R1 E 'R : cf Ç=} ci.

3. USG(RH) has no G-1c or G-Slb* cycles.

Proof. To prove this, according to the definition of 1-copy-SI (Definition 7), it is sufficient to

show that we are able to construct a SI-history H over T with the same write-, read-, and anti­

dependencies as US G (RH).

Part (1): To construct a history H.

To construct H over T, we have to build the -<rorder of operations and the version order for ali

objects. For transactions that abort, we can take any execution order. We will make sure that nobody

reads versions of aborted transactions to avoid G-la. Then, we build a total order between start and

commit operations of ali committed transactions which reflect the -<t order these operations have in

H. This total order is derived from the dependencies in USG(RH).

Step 1: Partially ordering starts and commits. In order to obtain this total order we construct

a Start-Commit-Order Serialization Graph, SCSÇJ(RH), in the foliowing way.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 47

1. The vertices of SCSÇJ(RH) are the start and commit operations of all committed transactions

(i.e., Si and ci for ali Ti in USG(RH)).

2. For each Ti in USG(RH), there is an edge si ~ci in SCSÇJ(RH). This reftects the fact

that the -<rorder requires the start of a transaction to be before its commit, i.e., Si -<t ci.

3. For each Ti, Tj, i -1= jin USG(RH) there is an edge ci ~ Sj in SCSQ(RH) iff7i ~ Tj

in USG(RH) where e E {ww,wr}. This reftects the fact that these dependencies imply

ci -<t Sj in a SI-history6.

4. Foreach Ti, Tj, i -1= jin USG(RH) there is an edge si~ Cj inSCSQ(RH) iffTi ~~ Tj.

This reftects the fact that an anti-dependency implies si -<t Cj 7 .

Now we show there is no cycle in SCSQ(RH), and thus there is a partial arder of start and commit

operations. We do this by contradiction. Assume there is a cycle. It is important to note that ali edges

in SCSÇJ(RH) are placed between start and commit operations (i.e., there are neither si ~ Sj nor

ci ~ Cj edges). Thus, without loss of generality, we can break the cycle into m(m 2:: 1) sections:
~ ~

Cik -----> Sjk -----> Ci(k+l)%m (where 0 ::; k < m)

In section k, the first edge Cik ~ Sjk must be derived from a Tik ~ Tjk (e E { wr, ww}) in

USG(RH). The second edge Sjk ~ Ci(k+l)%m must be derived either by (a) the -<t-arder within

a transaction, i.e., Jk = i(k+l)%m' or by (b) an anti-dependency between different transactions
rw

Tjk - ---t Ti(k+l)%m (jk -1= i(k+l)%m). We discuss ali possibilities.

Assume that ali edges of type Sjk ~ Ci(k+l)%m are derived by (a) (i.e., Jk = i(k+l)%m), i.e.,

no edge was derived by an anti-dependency. Thus, the cycle in SCSQ(RH) is due to a cycle in

USG(RH) that consists only ofwrite- and read-dependency edges. However, USG(RH) does not

have G-lc cycles.

Therefore, there must be at !east one section in the cycle such that Sjk ~ Ci(k+l)%m is due to (b)

(i.e., due to an anti-dependency). Note that Sjk ~ Ci(k+l)%m must be prefixed with a Cik ~ Sjk

in the cycle. Thus,the cycle in SCSÇJ(RH) must be due to a cycle in USG(RH) with one or more

6Note that we assume that a transaction does not read its own writes and only writes an object once, therefore there is
noT; w~r T; edge in USG(RH).

7 rw ~

Note that forT; - -+ T; in U SG(RH) we have already s; ---+ Cj in SCSÇJ(RH) due to step 1.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 48

anti-dependencies where each anti-dependency is prefixed by a write- or read-dependency edge.

This contradicts the fact that USG(RH) has no G-Slb* cycles.

Step 2: Totally ordering starts and commits. SCSÇ(RH) so far defines a partial arder be­

tween start and commit operations. We make this a total arder (that is, connecting any start with any

commit) in the foliowing way: For any ci, sj, i =!= j that are not connected in the graph (i.e., there

is no path from ci to Sj or from Sj to Ci), we set Sj ~ Ci. This will not lead to any new cycles by

construction.

Now we set the -<rorder between start and commit operations in T for our global history H

according to SCSÇ(RH). For any aborted transaction Ti, we just arder the Si at the very beginning

(as sources of SCSÇ(RH)). We simply set ai immediately after its si.

Step 3: Ordering write and read operations. Then we include the read and write operations

of each committed transaction Ti into -<t of H by setting them after si and before ci according to

the execution arder within the transaction.

Step 4: Totally ordering versions of data items. We now have to determine the version arder

of ali versions created by committed transactions. According to Proposition 2, ali local histories

RHk at the different replicas have the same version orders for ali data items. We will use these

version orders for H.

Step 5: Determining the versions of read operations. Finaliy, we have to determine for each

read operation on x, the version that is read. We simply do this in the foliowing way. Let Ti have a

read operation on x. Let Tj have a write operation on x, Cj -<t si and there is no Tko Tk also writes

x, and Cj -<t ck -<si. Then we let Ti read Xj, i.e., we set ri(xj) in H. If no such Ti exists, then we

set ri(xo) where xo is the last committed version of x before any transaction in T started.

Part (2): SSG(H) has exactly the same write-, read- and anti-dependency edges as USG(RH)

Before we show that SSG(H) and USG(RH) have the same dependency edges, we show a useful

property.

Lemma 4. If Xi « Xj in H, then Ci -<t Cj.

Proof Since H bas the same version arder as any local history RHk, we have Xi « x j in RHk and

thus, there is a path Ti, Tk1 , ••• Tkn, Ti in U SG(RH) consisting only of write-dependency edges. As

Chapter 3. Snapshot isolation and integrity constraints in a replicated system

wy 1J ----,r:v
/ -....

Tk ww Ti

(a)k+l=i

ww+

Figure 3.7: Proof of Theorem 1, Part (2), l.(b), USG(RH) if Tk ~ Tj

T,· 1

49

a result of constructing SCSQ(RH) and H, we have Ci -<t Bk1 -<t ck1 ... -<t skn -<t ckn -<t Bj, and

thus ci -<t Sj -<t Cj in H. 0

Write-dependency edges We first show that SSG(H) and USG(RH) have the same write­

dependency edges. This is true, because in Step 3 above we build the version order of each data

item in H to be the same as for any local history RHk. A write-dependency edge is defined as a

directed edge from one transaction installing a version of data item x to another transaction which

installs the next version of x. Renee, SSG(H) and USG(RH) have the same write-dependency

edges.

Read-dependency edges We now show that SSG(H) and USG(RH) have the same read­

dependency edges.

1. We fust show that whenever Ti ~ Tj in SSG(H) due to rj(xi) in H, then Ti ~ Tj in

USG(RH). Let Tj be a transaction local in R1 for RH. We show that in RH1, Tj cannot

read a later version than xi nor an earlier version than Xi. Thus, it bas to read Xi in RH1 and

Ti~ Tj in USG(RH).

(a) Assume Tj reads Xk and Xi« Xk in RH1• Then USG(RH) contains Tk ~ Tj. This

results in ck __!_. Sj, and thus, in ck -<t Sj in H. At the same time, Xi « Xk results in

ci -<t Ck in H according to Lemma 4. Combined, we have Ci -<t ck -<t Sj in H. In this

case, however, when constructing H, according to step 5 of the construction of H, we

would not have chosen Tj to read the version Xi because there is another transaction Tk

that updated x and committed after Tj. Th us, there would be no Ti ~ Tj in S S G (H).

(b) Assume Tj reads xk and Xk «Xi in RH1. Then USG(RH) contains Tk ~ Tj. Let

xk+I be the version that directly cornes after Xk in the version order. At SSG(RH1),

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 50

there is a Tj ~~ Tk+l edge according to Proposition 1. Therefore, USG(RH) has a
rw

Tj - ---+ Tk+l edge (depicted in Figures 3.7.(a) and (b)). By construction, SCSÇJ(RH)
~

has a Sj ---+ Ck+1 edge and H has Sj -<t ck+l·

If k + 1 = i (see Figure 3.7.(a)), this results in Sj -<t ci in H. If Xk+l «Xi (see Figure

3.7.(b)), then we have Ck+1 -<t qin H according to Lemma 4, and thus again Sj -<t ci.

But with Sj -<t ci, it is impossible for Tj to read xi according to construction step 5.

Therefore USG(RH) cannot have Tk .::!!... Tj and Tj cannot read Xk in RH1.

(c) Finally assume that Tj reads a version xo that was committed before any of the transac­

tions in T started. Then USG(RH) will not have any read-dependency edge for Tj due

tox. Let Xk be now the first visible version in the version order for x. Then there would

be a Tj ~~ Tk in the SSG(RH1) of the local RH1 of Tj according to Proposition
rw ~ .

1. Thus, a corresponding edge Tj ----+ Tk occurs in USG(RH) and Sj ---+ ck m

SCSÇJ(RH), which results in Sj -<t ck in H.

Since Xk is the first visible version of x, we have either k = i or Xk « Xi in both

RH1 and H. k = i and Sj -<t Ck imply Sj -<t Ci in H. Xk « Xi and Sj -<t ck imply

Sj -<t Ck -<t Ci in H. In both cases, Sj -<t ci in H. However, we already know that there

is a Ti~ Tj in SSG(H), which implies ci -<t Sj. Therefore, Tj cannot read xo.

As a result Tj must read Xi, leading to Ti .::!!... Tj in USG(RH).

2. Now we have to show that whenever Ti ~ Tj in USG(RH) due to r;(xi) in the local

history RH1 of Tj, then Ti ~ Tj in SSG(H). We have to prove that Tj can neither read

aversion before Xi (including xo) nor a version after Xi in H. Renee, Tj must read Xi. The

reasoning is very similar to above and omitted.

Anti-dependency edges Finally, since SSG(H) and USG(RH) have the same read- and write­

dependency edges, based on Proposition 1, they must have the same anti-dependency edges.

Part (3): H is a SI history

G-la and G-lb are avoided according to how aborted transactions are handled and how read op­

erations are set. G-Sia is avoided by step 3 of constructing SCSÇJ(RH), i.e., there is a Ci ~ Sj

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 51

whenever there is a Ti w::!l:!!;r Tj· Since SSG(H) has the same write- and read-dependency edges as

USG(RH) and USG(RH) has no G-lc cycle (containing only write- andread-dependency edges),

H avoids G-lc.

Now we have to show that H avoids G-Slb. Note that we cannat only rely on USG(RH) hav­

ing no G-Slb* cycle, because SSG(H) has more edges than USG(RH), namely start-dependency

edges, and thus, might still have a cycle containing an anti-dependency and sorne start-dependency

edges. Thus, assume that SSG(H) exhibits G-Slb (i.e., a cycle with one anti-dependency edge).

Since whenever there is a write- or read-dependency edge from Ti to Tj, there is also a start-
S+ rw S+

dependency edge, SSG(H) must have a cycle Ti ---t Tj - ---t Ti. Due to Ti ---t Tj, there
rw

must be ci -<t Sj in H. Due to Tj - ---t Ti, Tj must read a data item x installed by another update

transaction Tk, and Ti installs x right after Tk. Moreover, there must be ck -<t Sj -<t ci in H,

according to how the read operation rj(xk) is ordered at the construction step 5 of H. ci -<t Sj due

to Ti ~ Tj and Sj -<t ci due to Tj __?'~Ti will derive ci -<t ci· This is impossible since we have

totally ordered ali start and commit operations in H at Step 2 above. Hence, H avoids G-Slb.

Thus, RH is 1-copy-SI. D

3.2.5 Observations

Lemma 3 indicates that ali conflicting transactions must commit in the same arder at ali replicas.

However, we have not discussed in what cases a transaction is aliowed to commit. According to

Snapshot-Write property of SI, if two transactions have write/write conflicts and are concurrent, one

of them must be aborted. This rule also needs to hold in a replicated database. But when are two

transactions concurrent in a distributed system? In a non-replicated system, two transactions Ti and

Tj are concurrent if their lifetimes overlap (i.e., si -<t cj A Sj -<t ci). We can define the concurrency

of two transactions in a replicated database according to this rule.

Definition 8. Let RH be a replicated history over rmap(R, T). Two transactions Ti, Tj ET are

concurrent in RH zijf3Rk R 1 ER· s~--< éja~ in RHk and sl. --< c~ja~ in RH1
' ' •ztJJ Jtzz •

It means that Ti and Tj are concurrent if and only if Ti does not always start before Tj com­

mits/aborts at ali replicas (or vice versa). Note that Rk might be the same as R 1• It means that

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 52

if Ti and Tj are concurrent in one local history they are considered concurrent. But they are also

considered concurrent if Ti executes completely before Tj in one history and completely after Tj in

another history. Based on this definition, we can derive another rule for 1-copy-SI.

Theorem 2. Let RH be a replicated history over rmap(R, T), and RH is 1-copy-Sl. Iftwo trans­

actions Ti, Tj ET have write/write conflicts and are concurrent in RH, at least one of them aborts.

Proof Assume both transactions commit.

Let's assume first that both transactions are concurrent at one local history RHk, i.e., sf -<t cj
and sj -<t cf. That is, there is neither a start-dependency edge from 1i to Tj nor from Tj to

Ti in SSG(RHk). Since they both write a common data item, SSG(RHk) must have a write­

dependency edge from either Ti to Tj or vice versa. Thus, RHk would violate G-Sla. But RHk is

a SI-history. Therefore Ti and Tj cannat be concurrent at any local history RHk and commit.

Therefore, Ti and Tj must be concurrent because there are two local histories RHk and RH1,
'

k -=/:- l, and sf -<t cj and s; -<t c~. Furthermore, according to Lemma 3, both RHk and RH1 must

commit Ti and Ti in the same order. Assume without loss of generality, this order is Ci -<t Cj.

This implies Si -<t Cj. Therefore, at RH1 we haves~ -<t c; and s; -<t c~, meaning Ti and Tj are

concurrent at RH1 which is impossible as shawn above.

Therefore, Ti and Tj cannat be concurrent, have write/write conflicts and both commit. D

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 53

3.3 Snapshot isolation and integrity constraints

Database systems allow database designers to define a wh ole range of integrity constraints, such as

primary keys and foreign keys. It is the task of database systems to enforce these constraints. In the

next two sections, we discuss the relationship between snapshot isolation and integrity constraints.

The current section focuses on a non-replicated system while the next extends our notions to a

replicated environment.

3.3.1 Implementing integrity constraints

An integrity constraint puts constraints on the existence and values of data abjects in the system.

During the execution of a transaction these constraints might be violated. However, at the time of

commit, all constraints must be obeyed. Many implementations, however, are pessimistic. That is,

they never allow an update to occur that might violate the integrity constraints of the database.

The most simple constraint is the primary key constraint that disallows the existence of two

records in a table with the same value in the primary key attribute. Before inserting a record,

the system checks whether already a record with the same primary key value exists, and if yes,

disallows the update and aborts the transaction. In the following, we will not further discuss this

kind of constraint, because it is easy to detect and handle, and does not impose any problems in

regard to SI.

The second most common constraint is the foreign key constraint, and we will use it as an

example throughout the thesis8 . Assume a relation Dept(did, dname) with the department identifier

did as primary key, and a relation Emp(eid, ename, did) with the employee identifier eid as primary

key and the attribute did as foreign key referring to the department the employee works in. The

foreign key constraint requires that if there is an employee record with did = x in the Emp table,

then there is a department record in the Dept table with did = x.

In order to guarantee this property, a database system typically performs sorne implicit read

operations upon receiving certain update requests. In above example, whenever a client wants

8More advanced constraints can be maintained via assertion or triggers. The principle is the same and we do not
discuss them further in this thesis.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 54

to insert an employee record or update the did field of an existing employee record, the system

performs an implicit read operation on Dept to check whether a department record exists with the

corresponding value in the did attribute. If it exists, the insert/update on Emp is allowed, otherwise

it is forbidden and the transaction aborted. Similarly, if a client wants to delete a department record

or set the did field of a department record to a different value, the system first looks at the Emp table

and checks whether an employee record exists that has the same did value. If y es, the delete/update

is rejected and the transaction aborted, otherwise the operation is allowed.9

The problem is that if these read operations run under snapshot isolation, integrity constraints

could be violated.

Example 4. Assume above tables Dept(did, dname) and Emp(eid, ename, did). Now assume a de­

partment record ('dl', 'marketing') already exists inserted by transaction T0 and let's denote it with

x. Now assume a transaction T1 inserts an employee and transaction T2 de/etes the department.

T1: insert into Emp values ('el', 'Mike', 'dl'),·

T2: delete from Dept where did= 'dl';

We can denote the new employee as y. Now assume a seriai execution where T1 runs before T2,

s1, r1 (xo), w1 (Yl), c1, s2, r2(yl), a2

That is, T1 reads the department tuple, determines that it exists, and performs the insert. After that

T2 first checks whether an employee exists, finds one, and thus, disallows the delete and aborts. In

contrast, ifT2 runs before T1 we have

That is, T2 does not find any employee tuple and de/etes the department. After that T1 does not find

a department tuple, disallows the insert of the employee and aborts.

Now assume both transactions run concurrent/y and the read operations are performed on a

snapshot:

The read operation of Tl (i.e., r1 (xo)) finds a department with did= 'dl'. Bence, T1 c(ln continue

9Note that SQL offers the definition ON DELETE CASCADE. In this case, if a transaction wants to delete a depart­
ment tuple and there exist corresponding employee tuples, the transaction is not aborted but the employee tuples are also
deleted. Similar semantics holds for ON UPDATE CASCADE. We do not consider this in this thesis.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 55

rw

Figure 3.8: SSG(Hwrite-skew) in Example 4

to insert the employee tuple. Similarly, the read operation ojT2 finds no employee associated with

the department. Renee, T2 can continue to delete the department. After both commit, the employee

('el', 'Mike', 'dl') refers to a non-existing department. Clearly this history does not respect foreign

key constraints. However, Hwrite-skew does not exhibit G-1 and G-Sl. Therefore, Hwrite-skew is

a valid SI-history. Note that the only cycle in SSG(Hwrite-skew) (Figure 3.8) is a cycle with two

adjacent anti-dependency edges.

The problem is that reading from a snapshot is not the right thing to do for checking integrity

constraints because it does not really help if the constraint holds at the beginning of the transaction.

Instead, the constraint needs to hold at the time the transaction commits.

3.3.2 A new isolation level: SI+IC

Database systems that implement snapshot isolation guarantee that integrity constraints are not vi­

olated by distinguishing between standard read operations (that read from a snapshot) and read

operations that are done to check constraint violations (that must geta more up-to-date state of the

database system).

Thus, we modela new isolation level SI+IC that follows this model. It is stronger than the basic

SI that we discussed in the last two sections, because it avoids integrity constraint violations. It is

weaker than serializability because standard read operations continue to read from a snapshot. A

SI+IC history should satisfy the following two requirements.

1. It should provide SI properties to operations not related to integrity constraints;

2. If a transaction commits, its updates do not violate the integrity of the database.

Our model assumes that ail transactions perform, ifnecessary, read operations that check whether

an update would violate the integrity of the database. That is, if a transaction performs a write op­

eration that could potentially lead to the violation of the integrity of the database, the transaction

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 56

performs an integrity read. If the integrity read determines that integrity would be violated by the

write operation, the transaction aborts. We denote an integrity read of Ti reading data item x in­

stalled by Tj as iri(xj)· Of course, we have to rely on transactions to perform the proper actions

upon integrity reads.

Definition 9. We say a transaction T is IC-obeying, if it aborts when its integrity reads determine

that one ofT 's write operations would le ad to a violation of the integrity constraints of the database.

In commercial systems the integrity read typically take place before the corresponding write

operations or just at commit time (using deferred constraint checking). In theory, it could be any

time during the execution of the transaction. The important issue is that the integrity constraint

should hold at the time the transaction commits. That is, while the read takes place sometime before

the commit, it should be still valid at the time of commit. That is, it is useless if a transaction T

performs an integrity read on an abject x, but the abject x is overwritten before T commits. In

Hwrite-skew this is exactly what happens. T2 finds no employee tuple but at its commit timea tuple

exists. Thus, the integrity read of a transaction T should read the version of an abject x, that reflects

the latest committed version of x at the time T commits. We express this in the following way.

Definition 10. IC-Consistency. Let H be a history over a set of transactions T. Let Ti E T

perform an integrity read on x. We say an integrity read iri (Xj) of a committed transaction Ti in H

is IC-consistent, if

2. if Xj « Xk, then Ci -<t Ck.

Property (1) guarantees that the read reflects a committed version at the time Ti commits. Property

(2) guarantees that it is the latest committed version at Ti's commit time.

If all integrity reads of a transaction T are IC-consistent and T is IC-obeying, then it is guaran­

teed that the integrity constraints related to T's write operations hold when T commits.

Example 5. Let's rewrite the Hwrite-skew example above to

Hnot-IC: s1, s2, irl(xo), ir2(Yinit), WI(YI), w2(Xdead), CI, c2, [xdead, yi].

ir2(Yinit) is not IC-consistent, because there is YI, Yinit «YI and c1 -<t c2.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 57

In fact, our definition is somewhat stronger than what is needed. That means, integrity might be

maintained even if the integrity read is not IC-consistent. Nevertheless, we will require all integrity

reads to be IC-consistent because this allows to guarantee integrity constraints in a very simply way

(and in fact that is what current database systems do).

Example 6. As an example of that our definition is stronger than what is needed, assume that the

database has a record ('dl', 'marketing') in the Dept table. Now assume two transactions

T1: insert into Emp values ('el', 'Mike', 'dl');

T2 : update Dept set dname = 'marketing and sales' where did = 'dl';

Let's refer to the department tuple as x, and to the employee tuple as y. Now assume the following

history:

H~ot-IC: Bl,s2,irl(xo),wl(Yl),w2(x2),c2,cl [x2,Yl]

T1 reads the original department tuple and inserts the employee. Now T2 changes the name of

the department and commits (note that it does not need to perform any integrity read since it does

not change the primary key of the department record) before T1 commits. According to our def

inition ir1 (xo) is not IC-consistent, since a new committed version x2 of x exists at the time T1

commits. However, the integrity constraint itself still holds because x2 only changed the name of

the department and not its identifier.

We now derive our new isolation level as follows.

Definition 11. Snapshot Isolation and lntegrity Constraints (Sl+IC). A history H over a set of

IC-obeying transactions T is a Sl+IC-history if it ful.fills the Snapshot-Read and Snapshot-Write

properties (Definitions 1 and 2), and ali integrity reads of committed transactions are IC-consistent.

3.3.3 SI+IC in GID

We have seen in section 3.1 how we can check a set ofphenomena (G-1, G-SI) to determine whether

a his tory runs under SI. In this section, we show how we can extend the list of phenomena to check

whether a history runs under SI+IC.

In order to capture integrity reads and their requirements in regard to the commit order, we

introduce new dependencies and corresponding edges in the SSG of a history. We say Tj directly

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 58

Dependency Type Description SSG Edgename

Directly IC-read-depends Ti installs Xi and Xi is the Ti~Tj IC-read-
same version of x in Tj's dependency
integrity read edge

irw
Directly IC-anti-depends 1i performs an integrity Ti-->Tj IC-anti-

read on x and Tj installs dependency
x's next version edge

commit -depends Tj commits after Ti corn-
c

Ti~Tj commit-
mits (i.e., ci -<t Cj) dependency

edge

Table 3.2: IC dependencies

IC-read-depends on Ti if it performs an integrity read that reads the version of an abject created by

Ti (i.e., irj(xi)). We say Tj directly IC-anti-depends on Ti, if Ti performs an integrity read that

reads a version of an abject x and Tj creates x's next version in the version order. Finally, we say

Tj commit-depends on Ti if Ti commits before Tj commits. These dependencies are summarized

in Table 3.2. We have to extend the definition of SSG to include these new dependencies.

Definition 12. Start-ordered Serialization Graph (SSG). The SSG(H) of a history H over a set

of IC-obeying transactions Tisa directed graph where each node in SSG(H) corresponds to a

committed transaction in H, and there is a write-, read-, anti-, IC-read-, IC-anti-, commit-, or start-

dependency edge from 1i to Tj ifTj directly write-, directly read-, directly anti-, directly IC-read,

directly IC-anti, start-, or commit-depends on Ti. respectively.

Given that the graph now contains more types of edges, the question is how much the phenomena

G-1 and G-SI have to be adjusted to consider the new edges, and whether we have to add new

phenomena. It turns out that we have to adjust very little. G-1 and G-Sla remain as they are. We

only have to adjust G-Slb and add one new phenomenon:

• G-Sib: Missed Effects. A history H over a set of IC-obeying transactions T exhibits phe­

nomenon G-Slb if SSG(H) contains a directed cycle with exactly one anti-dependency edge

that is prefixed by a write-, read-, or start-dependency edge. We refer to such cycle as a G-Slb

cycle.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 59

• G-IC: IC Violation. A history H over a set of IC-obeying transactions T exhibits phe­

nomenon G-IC if SSG(H) contains an IC-read or IC-anti-dependency edge from Tito Ti

without there also being a commit-dependency edge from Tito Tj.

Note that we cannot capture the phenomenon that a transaction might not be IC-obeying. We

have to trust that transactions are IC-obeying during their execution.

We now show that the avoidance of Gl, G-SI and G-IC is sufficient and necessary for a history

to be SI+IC.

Theorem 3. A Sl+IC history H over a set of!C-obeying transactions T avoids G-1, G-SI and G-IC.

Proof. [2] contains the proofs that show that a history that fulfills Snapshot-Read and Snapshot­

Write avoids G-1 and G-Sla. Since their definitions have not changed, we refer to the interested

reader to [2]. Thus, we only need to prove that G-IC and the new definition of G-Slb are avoided.

Since all integrity reads in H are IC-consistent, SSG(H) clearly avoids G-IC. An IC-read­

dependency edge Ti ~ Ti is derived from an iri(xj) in the history H. Since this read is IC­

consistent, ci -<t Cj must hold in H, which implies a commit-dependency edge from Ti to Tj in
irw

SSG(H). An IC-anti-dependency edge Ti - --+ Tj is derived from iri(xk), and Xj is the version

following xk in the version arder, i.e., Xk « Xj in H. Since the read is IC-consistent, ci -<t Cj must

hold, which implies a commit-dependency edge from Tito Ti.

Assume that G-Slb is not avoided. There will be a cycle in which the anti-dependency edge is

prefixed by a write-, read-, or start-dependency edge. Since G-Sla and G-IC hold, there must also

be a cycle that consists only of start- and commit-dependency edges and a single anti-dependency

edge. That is, the cycle has the form
s• c• s+ rw

(Ii -----+ Ti -----+ Tk)* -----+ Tp - --+ Ti.

This implies (ci -<t Sj -<t Cj -<t Ck) -<t sP -<t Ci in H which is impossible. Hence, G-Slb is

avoided. 0

Theorem 4. If a history H over a set of IC-obeying transactions T avoids G-1, G-SI and G-IC,

then it is a Sl+IC-history.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 60

Proof. To prove this, we have to show that H fulfills the Snapshot-Read and Snapshot-Write prop­

erties and ail its integrity reads are IC-consistent.

Assume there exists an integrity read that is not IC-consistent.

• The integrity read could violate property (1) of Definition 10, i.e., iri(xj) and Ci -<t Cj.

However, then SSG(H) would have a IC-read dependency edge Tj ~ 1i and a commit­

dependency edge Ti ~ Tj in the opposite direction, and thus would not avoid G-IC.

• The integrity read could violate property (2) of Definition 10, i.e., iri(xj) in H, and Xj « Xk

- Let's first assume that Xk is the version following Xj. Thus, in SSG(H) we have edges
irw

Ti - --+ Tk, and Tk ~ Ti in the opposite direction. However, this would mean that

there is an IC-anti-dependency edge from Tito Tk without there also being a commit­

dependency edge from 1i to Tk. thus G-IC is not avoided.

irw
- Now assume that Xj « Xj+I « Xk holds. Then we have edges Ti ---+ Ti+l•

ww+ ,., T S+ ,., ,., c T T S+ ,.,
Tj+l ----t .Lk and thus j+l ----t .Lk because of G-Sla, and .Lk ----t i· j+l ----t .Lk

implies ci+l -<t ck and we assume ck -<t ci. Thus, SSG(H) contains an IC-anti­
irw

dependency edge Ti ---+ Tj+l but the commit-dependency edge goes in the other

direction. Thus G-IC is not avoided.

For Snapshot-Read and Snapshot-Write, we use the proofs similar to those in [2]. Assume

Snapshot-Write is not satisfied, because 1i and Tj both update data item x, they are concurrent and

both commit. Without loss of generality, let's assume 1i commits before Tj. Then there is a write­

dependency edge from Tito Tj without a start-dependency edge in the same direction. It contradicts

the avoidance of G-Sla. Assume Snapshot-Read is not satisfied.

• Snapshot-Read could be violated because Ti reads a data item (e.g., x) written by a con­

current transaction Tj (i.e., ri(xj) and Si -<t cj). But this would mean SSG(H) bas a

read-dependency edge from Tj to Ti without there being also a start-dependency edge, and H

would not avoid G-Sla.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 61

~~!.~
Tt . Tz
~--~---

Figure 3.9: SSG(H~rite-skew) in Example 7

• Snapshot-Read could also be violated because Ti reads data from a old snapshot instead of

the latest snapshot, i.e., ri(xj) and there is a wk(xk), ck -<t si and Xj « Xk.

TW

- Assume Xk is the version directly following Xj. Due to Proposition 1, there is Ti - -.

Tk in SSG(H). According to our assumption ck -<t si, we have Tk !... Ti which leads

to a cycle between Ti and Tk where the anti-dependency edge from Tito Tk is prefixed

by a start-dependency edge from Tk to Ti. Thus H would not avoid G-Slb.

- Assume Xj+l is the version directly following Xj and Xj+l « XF Then, we have
TW ww+/8+ S

Ti - -. TH1, Tj+l ----+ n (due to G-Sia) and Tk -. Ti (according to our as-

sumption) again leading to a cycle with one anti-dependency which is prefixed by a

start-dependency edge. Thus, again H would not avoid G-Sib.

D

Example 7. Let's revisit Example 5.

Hnot-IC: SI, s2, iq(xo), ir2(Yinit), WI(YI), W2(Xdead), CI, C2 [xdead, Yl],

SSG(Hnot-IC) is shown in Figure 3.9. In the figure, the IC-anti-dependency edgefrom T1 to T2 is

associated with a commit-dependency edge, but the other IC-anti-dependency edge is not. Bence,

Hnot-IC exhibits the G-IC phenomenon. As discussed in Example 5, it is not a Sl+IC history

because one of the integrity reads is not IC-consistent.

3.3.4 Observations

Above we have just shawn that it is sufficient to show that if a history avoids G-1, G-SI and G-IC,

then it is a SI+IC-history. Now we show that such a history avoids a further phenomenon:

• A history H over a set of IC-obeying transactions T exhibits phenomenon G-lc* if it con tains

a cycle that consists entirely of read-, write-, IC-read-, and IC-anti-dependency edges. We

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 62

refer to such a cycle as G-lc* cycle.

Lemma 5. A Sl-IC-history H avoids G-lc*.

Proof Assume it has such a cycle. Due to G-Sia and G-IC, there is also a cycle that consists only

of commit- and start-dependency edges. This is impossible since each edge Ti to Tj in the cycle

implies Ci -<t Cj, and thus transitively ci -<t ci. 0

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 63

3.4 1-copy-SI+IC

In this section we extend our definition of 1-copy-SI to cover integrity constraints, denoting the new

correctness criterion as 1-copy-SI+IC, and discuss sufficient conditions for a replicated history to

be l~copy-SI+IC.

A first issue is how to handle integrity reads in a replicated environment. Normal reads are

executed at only one replica. If we do this for integrity reads, we easily end up with incorrect

behavior. Let's revisit Example 5.

Example 8. We let T1 and T2 of Example 5 execute in a replicated database with two replicas RA

and RB. T1 is submitted to RA and T2 is submitted to RB. Recall there is a department record

('dl', 'marketing') and we refer toit as object x, version xo. T1 inserts a new employee (y) for x,

and T2 de let es x. Their integrity reads are only executed at their local replicas while the ir writesets

are propagated to the other replica. We can get a RH with the following sub-histories.

RHA: sf, irf(xo), wf(Yl), cf, s~, w~(x2), c~

RHB : sf, irf (Yinit), wf(x2), cf, sf, wf (Yl), cf

Since integrity reads exist only at the local replica, applying the write is not preceded by a check

whether this write violates a constraint. Consequently, integrity constraints are violated in both

sub-histories. In both histories, at the end of execution there is an employee tuple referring to a

department that does not exist.

The problem is that the integrity read is something tightly related to the write operation. It

checks something that has to hold in arder for the write operation to be aliowed to execute. One

possibility to assure the proper behavior of the write is to perform the integrity read at ali replicas.

Therefore, we extend the ROWA mapper function of Definition 4 to include integrity reads at ali

replicas. We denote at I RSi the set of ali integrity read operations of transaction Ti.

Definition 13. Mapper function. A ROWA mapper junction, rmap, takes a set of IC-obeying

transactions T and a set of replicas R as inputs, and transforms T into a set of transactions

T' = rmap(T, R). rmap(T, R) transforms each update transaction Ti E Tinto a set of trans­

actions {TikjRk E R}. In this set there is exactly one local transaction Tf where WS1 = WSï.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 64

I RSf = I RSi and RSf = RSi (Ti is local at R 1). The rest are remote transactions T[, where W S[

= WSï. IRS[= IRSi and RSj=0 (Ti is remote at Rr). A read-only transaction 1i is transformed

into a single local transaction Tl with RSf = RSi. We denote as Tk = {Tik ITik E T'} the set of

transactions executed at replica Rk.

From there we define 1-copy-SI+IC as below.

Definition 14. 1-copy-Sl+IC. Let RH = U RHk, Rk E n be a replicated history over rmap(T, R).

We say that RH is 1-copy-SI+IC if

1. For each Rk E R, RHk is a Sl+IC history;

2. For ali update transactions Ti E T and for ali Rk, R1 E R: c7 ~ c~;

3. There exists a global SI+IC history H over IC-obeying T such that

(a) SSG(H) and USG(RH) have the same nodes

(b) SSG(H) has exact/y the same read-, write-, and anti-dependency edges as USG(RH).

Note that IC-dependency edges are not considered in USG(RH). Thus, local histories can

have different integrity reads as long as ali integrity reads have the same effect, i.e., either ali local

histories and the global history have integrity reads that allow the write operations to execute, and

thus, the transaction commits, or ali local histories and the global history have integrity reads that

detect a violation, and thus, abort the transaction. Which version of a data item each of the histories

reads is not relevant, as long as it has the same commit/abort effect as in the other histories. Let's

have a look at an example.

Example 9. Again assume a department record ('dl', 'marketing') exists inserted by transaction

To and let's denote it with xo. Now assume a transaction T1 inserts an employee y referring tox

and Tz renames the department.

T1: insert into Emp values ('el', 'Mike', 'dl');

T2: update Dept set dname= 'accounting' where did= 'dl';

Note that T2 does not have any integrity read at ali. T1 is submitted to RA and T2 is submitted to

R 8 . We can get thefollowing replicated history.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 65

(a) SSG(RHA) (b) SSG(RHB)

Figure 3.10: SSGs ofExample 9

T1 performs an integrity read on x0 at RA, and on x 2 at RB. In bath cases, the subsequent write

(insert of employee) can succeed. SSG(RHA) and SSG(RHB) are shawn in Figure 3.10.(a) and

(b), respectively. At the commit time of any of the transactions, no integrity constraint is violated.

The USG(RH) only contains T1 and T2 but no edges. A global history could be equivalent to

either RH A or RH B. Although the two transactions are indirectly ordered in opposite arder in

the two histories due to the integrity read which reads different versions at the different replicas,

from an abstract point of, view, this does not matter, as long as bath integrity reads lead to the same

commit/abort decision for the transaction.

While this definition is very flexible and does not restrict the execution in the histories unneces­

sarily, it makes it very hard to come up with conditions that are bath sufficient and necessary for a

replicated history to be 1-copy-SI+IC. Let's have a look at another example.

Example 10. Assume a database with three tables: Dept(did, dname), Emp(eid, ename, did),

Stats(year, month, numberempl). In the first setting assume a department record ('dl', 'market­

ing') denoted as x already exists and created by transaction Ta. There are the following three

transactions:

T1: insert into Emp values ('el', 'Mike', 'dl');

T2: select count(*)from Emp (into program variable z);

insert into Stats values (2007, 07, z);

T3: select* from Stats;

update Dept set dname = 'accounting' where did= 'dl';

We denote the new employee as y and the new Stats record as z. Now assume that T1 and T2 are

local at RA and T3 is local at RB, and RA executes the transactions serially in order T3, T1 and

Chapter 3. Snapshot isolation and integrity constraints in a replicated system

wir, c, s

~
T1~T2-T3

(a) SSG(RHA)

wir, c, s -------­TJ-!-T2~T3

(b) SSG(RHB)

Figure 3.11: SSG and USG of Example 10

66

(c) USG(RH)

T2, while RB executes them serially in order T2, T3 and T1. More formally the replicated history

is:

RHB : sf, wf (z2), cf, sf, rf (z2), wf (x3), cf, sf, irf (x3), wf (YI), cf

The SSGs of RHA and RHB are shown in Figures 3.11 (a) and (b) respectively. USG(RH),

shown in Figure 3.11 (c), does not have any cycles. Can we find a global history H that has the

same dependency edges? Yes, we can. Since the re are read-dependency edges from T1 to T2, and

from T2 to T3, the only possible global history is a seriai execution ofT1. T2 and T3, i.e.,

H : SI, ir1 (xo), w1 (YI), c1, s2, r2(YI), w2(z2), c2, s3, r3(z2), w3(x3), c3.

In this history, the same standard read operations are performed as in RHA and RHB. How­

ever, the integrity re ad reads a different version (X3 in RH A and RH B while it is xo in H). Having

a different re ad is fine, because the only condition for the integrity re ad is the existence of a depart­

ment record x, independently of the name of the department. That is, although the global history

reads a different version of x than the local histories, the transaction remains IC-obeying.

However, if we change the example slightly, this is no more the case. Assume no department

with did= 'dl' exists at the beginning (i.e., XiniÛ in the database, and T3, instead of renaming the

department, actually inserts the department, i.e., the second operation of T3 is "insert into Dept

values ('dl', 'marketing');". Now assume that the execution at RA and RB is in the same order as

above. In this case, the SSGs and USG(RH) remain the same as in Figures 3.Jl.(a)-(c), requiring

the global history H to execute serially T1 before T2 before T3. However, in this case, T1 would

not be IC-obeying since its integrity re ad is ir1 (Xinit) indicating a violation of integrity constraints,

nevertheless the transaction commits. Thus, in order to be IC-obeying, T1 would need to abort, and

thus SSG(H) would not have the same dependency edges as USG(RH).

The issue with the above examples was that a global history with the same dependencies as

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 67

USG(RH) might require a transaction T to perform the integrity read on a data version that was

different to any data version read in any of the local histories. Sometimes this integrity read can

be valid, but other times it might lead to an abort. But this is very application dependent, and thus,

cannat be captured by the formalism.

Nevertheless, we can give a sufficient condition for a replicated history to be 1-copy-SI+IC. The

example above will not fulfili this condition. The idea is the foliowing. We need to construct a

SI+IC-history H that has the same read, write-, and anti-dependency edges as USG(RH), and for

every committed transaction Ti, there exists at least one replica Rk, such that the integrity reads of

Ti in H read exactly the same data versions than in RHk. That is, if irf(xj) in RHk, then iri(xj)

in H. Since RHk is a SI+IC-history over IC-obeying transactions, we know that this integrity read

irf(xj) indicated that the write that depends on this integrity read does not violate the integrity of

the database. If we can find such a SI+IC history, we know that ali its transactions are IC-obeying,

and thus, RH is 1-copy-SI+IC. Note that we aliow different transactions to have integrity reads

from different replicas, e.g., Ti can have the same integrity reads as in RHk, while Tj has the same

integrity reads as in RH1• But we require ali integrity reads of an individual transaction Ti to be

taken from one local history because they might be related to each other (e.g., the sum of x and y

may not be below 100).

Further note that this condition can only be sufficient but is not necessary. In the first part of

Example 10, RH is 1-copy-SI+IC but the only global history with the same read-, write-, and anti­

dependency edges as USG(RH) performs an integrity read on x that is different from the integrity

read of any local history. The problem is that without application knowledge it is not clear whether

the transaction remains IC-obeying. From here, we define an extended USG of a replicated history.

Definition 15. Union Serialization Graph with Integrity Dependencies (USG-IC). Let RH =

U RHk be a replicated history over rmap(T, R). We denote as USG-IC(RH) thefollowing graph.

1. For each Rk E R, if SSG(RHk) has node Jik E Tk, then USG-IC(RH) has a node Ti.

2. Foreach Rk E Rand each write-, read-, oranti-dependency edgefrom Tik toTjk in SSG(RHk),

USG-IC(RH) has a corresponding write-, read-, or anti-dependency from Tito Tj.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 68

3. For each Ti E T, there exists Rk E R, each IC-anti-dependency edge from Tik to Tik and

each IC-read-dependency edge from Tjk to Tf in SSG(RHk) has a corresponding IC-anti­

dependency edgefrom Tito Ti or IC-read-dependency edgefrom Tito Ti in USG-IC(RH).

4. There are no further edges or nodes in USG-IC(RH).

Note there is no unique USG-IC(RH) since there can be many combinations of choosing a local

history RHk for a transaction Ti. That is, if there are n replicas and t transactions there could be as

many as nt different USG-IC(RH).

Theorem 5. 1-copy-Sl+IC Existence Let RH be a replicated history over rmap(T, R) with the

following properties:

• For each Rk ER, RHk is a Sl+IC-history;

• For all update transactions Ti E T and for all Rk, Rl E R, cf ~ c~;

• There exists a USG-IC(RH) that has no G-lc* or G-Slb* cycles.

Then RH is 1-copy-Sl+IC.

Proof The proof is similar to the one for Theorem 1. We have to construct a SI+IC-history H with

the same nades and the same write-, read-, and anti-dependency edges as USG(RH).

Part (1): To construct a history H.

We first build the same Start-Commit-Order Serialization Graph,SCSÇ(RH), from USG­

IC(RH) as described in the proof of Theorem 1 which provides a partial arder between pairs

of start- and commit operations. However, we add additional edges:

5. For each Ti, Ti (i =!= j) in USG-IC(RH), there is an edge ci ~ ci in SCSÇ(RH) iff 7i ---=--..

Ti in USG-IC(RH) where e E { wir, irw }. This reflects the need that integrity reads need to

be IC-consistent.

Now we show there is no cycle in SCSÇ(RH). Assume that there is a cycle. The cycle in

SCSÇ(R'H) consists either (a) entirely of commit operations or (b) of start and commit operations.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 69

For case (a), there will be a corresponding cycle in USG-IC(RH) that consists entirely of IC­

read- and IC-anti-dependency edges. This contradicts the fact that USG-IC(RH) has no G-1c* cycle.

For case (b), since there is no Si ~ Sj in SCSÇ(RH), we can break the cycle into sections

with either (i) the pattern of ci ~ Cj, or (ii) the pattern of ci ~ Sj ~ ck.

Pattern (i) ci ~ Cj is due to a path of IC-read and IC-anti-dependency edges from Ti to Tj in

USG-IC(RH). In pattern (ii), Ci ~ Sj must be due to Ti w~w Tj. Bj ~ ck might be because
rw

Sj and ck are in the same transaction (i.e., j=k) or because of Tj - -. Tk. If all dependencies

sj ~ ck are due to j=k, we know that there is no anti-dependency edge in the cycle. The cycle

must consist entirely of read-, write-, IC-read-, and IC-anti-dependency edges. It contradicts the
~ rw

fact that USG-IC(RH) has no G-1c* cycles. If sorne dependencies Sj ------> ck are due to Tj - -. Tk.

~ wr,ww
we know that each must be preceded by a ci ------> sj that was due to a Ti ------> Tj. Thus, there must

be a cycle in USG-IC(RH) such that all of its anti-dependency edges are prefixed with a read-, or

write dependency edge. This contradicts the fact that USG-IC(RH) has no G-Sib* cycles.

Thus, our extended SCSQ(RH) does not contain any cycles. We can construct H by using the

four steps in the proof part (1) of Theorem 1. Additionally, we add two steps, i.e., Step 1.5 between

step 1 and 2, and Step 6 after Step 5.

Step 1.5: Totally ordering commits. SCSÇ(RH) defines so far a partial arder between com­

mit operations. We extend this to a total arder in the following way. For any Ci and Cj that are not

connected in SCSÇ(RH), we set either Ci ~ Cj or Cj ~ci.

Step 6: Determining the versions of integrity read operations. We need to determine for

each integrity read operation on x, the version that is read. Let Ti have an integrity read on x. Let

Tj have a write operation on x, Cj -<t ci and there is no Tk, Tk also writes x, and Cj -<t Ck -<t Ci.

Then we let Ti read Xj, i.e., we set iri(xj) in H. If no such Tj exists, then we set iri(x0) where x 0

is the last committed version of x before any transaction in T starts.

Part (2): SSG(H) has exactly the same read-, write-, and anti-dependency edges as USG(RH)

This part of the proof is the same as Theorem 1 proof part (2).

Part (3): His a Sl+IC history

The part of the proof that shows that H is a SI -history is similar to the proof of Theorem 1, part

(3), and thus, is omitted here.

Chapter 3. Snapshot isolation and integrity constraints in a replicated system 70

By construction step 6, it is clear that each integrity read is IC-consistent because the version to

be read has been determined according to the definition of IC-consistency.

What remains to be shown is that in this artificially generated history transactions are actually

IC-obeying. We do this by showing that for each transaction Ti and its integrity reads, there exists a

RHk such that if irf(xj) occurs in RHk, then iri(xj) occurs in H. RHk is a SI+IC history where

the transaction really executed, and thus, we know that it is IC-obeying. Thus, if we take ali the

integrity reads of Ti from this history, we can be sure that Ti's write operations do not cause an

integrity constraint violation.

We show this in the following way. Let Rk be the replica such that USG-IC(RH) took its IC­

read- and IC-anti-dependency edges for Ti from SSG(RHk). Let irf(xj) occur in RHk. We show

that iri(xj) occurs in H.

Ifirf(xj) occurs in RHk, then SSG(RHk), and thus USG-IC(RH), have aiC-read-dependency

edge from Ti~ Ji, and ifthere exists a version Xj+l following Xj, then there is also an IC-anti-
~w R R

dependency edge from Ti ---+ Tj+l· This leads to Cj ---+ Ci ---+ Cj+l in SCSÇ(RH), and thus

Cj -<t Ci -<t Cj+l in H.

Assume now that in H, Ti reads an earlier version, i.e., either xo or a Xk such that Xk « Xj. In

this case, according to the construction of integrity read, we have Ci -<t Cj which is a contradiction

to above requirement of Cj -<t ci. Assume now that in H, Ti reads a later version, i.e., any Xk such

that Xj « Xk which means ck -<t ci. If Xk is the same as Xj+l we have a contradiction to above

requirement ci -<t Cj+l· If Xj+l « Xko then Cj+l -<t ck -<t Ci again leading to a contradiction to

above ci -<t Cj+l· Therefore, Ti mustread iri(xj) in H. D

Chapter 4

Replica control basics

As mentioned at the end of Chapter 2, our replication tool has to fulfill a wide range of properties.

It has to provide 1-copy-SI+IC. It has to work at the middleware level in order to existas an inde­

pendent component and work with a heterogeneous environment. It should not pose any specifie

requirements to the applications but work with any kind of legacy application. That is, it should

not require to mark transactions as read-only or update as in primary copy approaches, or require to

know ali operations of a transaction in ad vance. It should provide concurrency control at the record

level and not the table level or other coarser concurrency levels. It should be fault-tolerant. It should

work weil even if message latencies are high, i.e., in wide-area networks (WANs).

In order to keep the description simple and understandable, the replication solution proposed

in this thesis is developed incrementally. This chapter proposes protocols that guarantee 1-copy­

SI/1-copy-SI+IC. However, it is not concerned with message overhead and fault-tolerance. The

next chapter then extends these protocols in order to reduce the message overhead, and make them

fault-tolerant.

Ali the protocols in this thesis assume that the underlying database systems provide SI+IC as

discussed in Section 3.3. The protocols will not work for database systems that provide standard

serializability and use strict 2PL.

The protocols of this chapter ali assume a centralized middleware architecture as depicted in

Figure 2.l.(a). There is one middleware instance and a set of databae replicas R.

71

Chapter 4. Replica control basics 72

In the following we present a Simple Replication Protocol, SRP, which guarantees 1-copy-SI

and provides a standard database interface to the application. However, SRP has deadlock problems

when used on top of sorne database systems. Besides, SRP only guarantees 1-copy-SI and does not

work for databases with integrity constraints. Renee, we propose SRP-IC. SRP-IC is based on SRP

and guarantees 1-copy-SI+IC. It also handles deadlocks.

4.1 Simple Replication Protocol (SRP)

4.1.1 Basic idea

Our first protocol, SRP, provides 1-copy-SI, i.e., integrity constraints are not considered.

The protocol skeleton

We explain the basic idea of our protocol in terms of the lifetime of a transaction. A client submits

the operations of a transaction T one by one to the middleware. When the middleware receives the

start operation of T, it assigns a database replica R1 E R to T and starts T at R1• R1 is called the

local database replica of T. The middleware then simply forwards all read and write operations of

T to R1• R1 executes the operations locally and retums the results to the middleware that forwards

them to the client that submits T. At the end of the transaction, if the client requests an abort, the

middleware simply asks R 1 to abort T, and then retums the confirmation result to the client. If the

client requests a commit, the middleware extracts the writeset of T from R1• The writeset contains

the physical changes made by T in R1 and the primary keys of all modified tuples 1.

The middleware then performs a validation test for T based on the writeset. A successful vali­

dation test willlead to the commit of T, and an unsuccessful test toits abort. The validation assures

the execution is 1-copy-SI. Validation of transaction T will succeed if no transaction T' that vali­

dated before T and was concurrent to T bad a write/write conflict. If such a transaction exists the

validation of T fails. That is, in our protocol, if any two concurrent transactions have write/write

1Writeset extraction is a standard mechanism in many commerical replication solutions (e.g., [76]) implemented via
triggers or log-sniffing. Although commercial systems usually export writesets only after commit, the functionality per
se exists. We provide a pre-commit extraction similar to the ones developed in other research prototypes [61, 90, 94].

Chapter 4. Replica control basics 73

conflicts, the first to request commit will succeed, the other will abort. That is, we follow the

first-committer-wins strategy. We defer the details of the validation to later.

If the validation fails, the middleware tells Rl to abort the transaction. Otherwise, it applies the

writeset of T at all replicas (except Rl) and mak:es sure that all commit transactions in validation

order.

Let's make sorne observations here. Firstly, we perform validation only after the entire trans­

action bas executed. At this time we know exactly the records the transaction bas updated. Thus,

we a void the limitations of previous middleware-based update everywhere approaches that perform

the synchronization at transaction start time and thus, require to know all operations in advance -

which is difficult if execution is non-deterministic and often only allows conflict detection at the

table level. Furthermore, SRP commits all update transactions at all replicas in the same order.

Thus, all conflicting transactions commit at all replicas in the same order- which is required for

1-copy-SI according to Lemma 3.

Validation

Let's now come back to validation. At the time of validation of transaction Ti. if it bas a write/write

conflict with a concurrent transaction Tj that validated before Ti. then Ti must abort. We can easily

determine whether two transactions conflict by checking whether the sets of primary keys contained

in their writesets overlap.

In order to determine whether a previously validated transaction Tj is concurrent to Ti we use

timestamps. The middleware keeps for each database replica Rk a logical clock. Every time a

transaction commits at Rk its logical clock is incremented by one. The middleware also keeps a

validation clock. When a transaction T is successfullly validated, the value of the validation clock

is assigned to T as tid-timestamp, and then the validation clock is incremented.

Since all database replicas commit transactions in validation arder, the timestamp of a database

replica Rk is the same as the tid of the latest committed transaction at Rk. For example, immediately

after a transaction with tid = 5 commits at Rk, Rkos clock is 5. Transactions have additionally a

start timestamp. If Rk is T's local replica, then T.start is assigned the value of Rkos logical clock

at the time T starts. With this, we know that a previously validated transaction Tj is not concurrent

to Ti, if Tj. tid ~ Ti. start because th en Ti started at its local repli ca only after Tj committed. Th us,

Chapter 4. Replica control basics

Initialization:
nexLtid := 1, ws_list := {}

V Rk: tocommiLqueuek := {}
V Rk: lastcommitted_tid_k := 0
wsmutex,
V Rk: dbmutex_k

1. Upon receiving an operation Opi of Ti

(a) if Opi is start (i.e.,si), then

i. choose Rk at which 1i will be local

n. obtain dbmutex_k

111. Ti.start := lastcommitted_tid_k

tv. begin Tik at Rk

v. release dbmutex_k

vi. retum to client

(b) else if Opi is read or write, then

i. execute at local Rk and retum to client

(c) else if Opi is abort, then

i. abort Tik at Rk and retun to client

(d) else (commit)

i. Ti.WS := getwriteset(Tik) from lo­
cal Rk

ii. ifTi.ws = 0, then

• commit and retum

111. obtain wsmutex

iv. if lJTj E ws_list such that

74

Ti.start < Tj.tid1\Ti.WSnTj.WS =/=

0:
• Ti. tid : = nexLtid + +
• append Ti to wsJist

• V Rk: append Tito tocommit_quew _k

• release wsmutex

v. else

• release wsmutex

• abort Tik at Rk

2. Upon Ti is first in tocommit_queue_k

(a) if 1i is remote at Rk, then

• begin Tik at Rk

• apply Ti.WS to Rk

(b) obtain dbmutex_k

(c) commit at Rk

(d) lastcommitted_tid_k + +
(e) release dbmutex_k

(f) if local, retum to client

(g) remove Ti from tocommiLqueue_k

Figure 4.1: SRP: a Simple Replication Protocol

Tj is concurrent to Ti if Tj .tid > Ti .start.

4.1.2 Protocol details

The details of SRP are shawn in Figure 4.1. We assume n database replicas Rk, 1 ~ k ~

n. We assume all replicas provide SI using the first-committer-wins rule. That is, validation of

write/write conflicts is only done at the commit time of a transaction. Such validation will fail if

any concurrent transactions have been validated successfully and have write/write conflicts with the

current transaction. Otherwise it will succeed. All start, read, write, commit and abort operations are

Chapter 4. Replica control basics 75

submitted to the middleware. next_tid represents the validation clock. The middleware maintains

a list of already validated transactions (ws_list). Although ali successfuliy validated transactions

will be committed at the different database replicas in validation arder the replicas might run at

different speed. Renee, the middleware keeps for each replica Rk a queue tocommit_queue_k which

con tains the writesets to be executed and committed at Rk, and a logical clock lastcommitted_tid...k

indicating the tid of the last committed transaction at Rk. If actions of different transactions need

to be synchronized, appropriate mutexes are acquired.

Upon the start of a new transaction Ti (step la) one database replica is chosen to be the local

replica. Before the start of Ti at the database replica, we get a mutex that avoids that the start

operation is concurrent with any commit operations at the replica. Then we set Ti.start to the

tid-value of the last transaction that committed at Rk. As we discussed earlier, this aliows us to

determine concurrent transactions. We denote as Tf the incarnation of Ti at replica Rk. Read and

write operations are then simply forwarded to the database replica. Since we assume the database

replica to provide SI, Tik reads from a snapshot and writes new abject versions (1 b). If the operation

is abort, the middleware simply forwards it to Rk and let Rk abort the transaction localiy (le). A

confirmation message is retumed to the corresponding client.

If the client requests a commit, actions are more complex. The middleware first retrieves the

writeset from the local replica (ld.i). If it is empty, Ti is a read-only transaction and can sim­

ply be committed locally (ld.ii). Otherwise, the middleware starts a validation phase (ld.iii-v).

Only one transaction can be in validation phase. Therefore we set a mutex, i.e., wsmutex. Ti's

writeset is compared against ali writesets of concurrent transactions that validated before (main­

tained in ws_list). As mentioned before, Ti is concurrent to a previously validated transaction Ti if

Ti.start < Tj.tid, and it confiicts with Ti if their writesets overlap. If there is no concurrent con­

fiicting and validated transaction, transaction Ti receives its tid value, and its writeset is added to

ali queues (tocommit_queue_k and ws_list). Otherwise, Ti aborts (ld.v). Writesets will be applied in

the same arder but at different speeds at individual replicas (step 2). At the local replica, of course,

the writeset does not need to be applied. Still, the commit arder in regard to other transactions

must be maintained. Renee, the local transaction only commits when ali the writesets stored in the

queue at the time of validation have been applied. Whenever a transaction commits at a replica Rk,

Chapter 4. Replica control basics 76

RA
Tl [ii] [iJ Il [g]
T2 ~ ~

Middleware QA~
QB ~~ [;] ; D

Tl [i!JIJI[g]
RB

T2 ~[X] [i][ll ~
T3 ~-~

TP time
[iJ readx Il write x GlJ Tl starts ~Tl commits ~ T3 aborts

Figure 4.2: SRP Sample execution

lastcommitted_tid_k is incremented. As mentioned before, committing a transaction at replica Rk

(steps 2b-e) and starting a transaction (steps la.ii-v) are mutually exclusive. In summary, validation

phase starts when the writeset is retrieved, validation is an atomic process but runs concurrently to

committing and applying the writesets. However, applying writesets by itself occurs again in a seriai

fashion. Note that in arder for clients to read their own writes, a transaction should only be assigned

to a replica if all previous transactions of the same client are already committed at this replica.

4.1.3 Example

Example 11. Figure 4.2 shows an example. The set of transactions is T = {Tl = (s1, r1 (x), w1(x), cl),

T2 = (s2, r2(y), r2(x), w2(y), c2), T3 = (s3, w3(x), c3)}. T1 is local at replica RA, and T2 and T3

are local at replica RB. In the figure, grey boxes reflect writes, and white boxes represent reads,

start, abort, or commit. The middleware keeps tocommiLqueuefor each replica (QA and QB). The

figure shows the temporal evolution of the queues and transaction execution from left to right.

Tt starts at RA and reads and updates x. At RB, T2 starts and reads y. Upon Tt 's commit

request, the middleware retrieves the writeset, validation succeeds, and T1 receives T1. tid = 1. T1

is appended to QA and QB. Since T1 is thefirst in QA, T1 commits at RA and is removedfrom QA

Chapter 4. Replica control basics 77

(lastcommitted_tid_A = 1). T3 now starts at RB. Although T3 begins after T1 commits in RA, it is

concurrent to T1 in RB since T1 's updates are not yet applied in RB. Renee, T3.start =O. When

T3 now submits commit at timepoint TP, T3 's validation at the middleware fails since T3.start =

0 < T1.tid = 1 and the writesets overlap. Renee, T3 is aborted at RB. At the same time, RB

applies T1 's writeset and commits T1. T1 is removed from QB and lastcommitted_tid__B set to 1.

Although T2 's read is after T1 's write it does not read the value written by T1 since the transactions

are concurrent in RB. After T2 's execution its validation succeeds (T2.tid = 2) since it has no

write/write con.flict with T1. T2 is appended to QA and QB and later committed at bath replicas.

4.1.4 Correctness

Theo rem 6. SRP provides 1-copy-SI if the underlying database replicas provide SI using the first­

committer-wins rule.

Proof Based on Theorem 1, we need to prove that for any replicated history RH possible under

SRP, (i) the local history RHk at all replicas are SI-histories, (ii) a write transaction commits at

either none or all replicas, (iii) the corresponding USG(RH) has no G-lc and G-Sib* cycles.

Property (i) is fulfilled since the underlying database replicas provide SI by assumption.

For property (ii), we need to show that, apart of read-only transactions, all replicas commit the

same set of transactions. If validation of a transaction Ti succeeds at the middleware it is appended

to tocommiLqueue_k of each replica Rk. Transactions in tocommit_queue_k are handled one

after the other. Let Ti be the first in the queue. If Ti is a remote transaction, no other transaction

commits between 7i's start and Ti's commit at Rk. Since we assume that the underlying database

uses the first-committer-wins rule, there is no concurrent transaction that validates before Ti. Thus,

Ti's validation within the database Rk will succeed and Ti will commit. If Ti is local at Rk, then

Ti bas already started at Rk. If 1i conflicted with any transaction (local or remote) that committed

at Rk since Ti's start, Rk would abort Ti when the commit request is submitted since Rk provides

SI. But at validation, the middleware had already checked whether there was such a transaction, and

if yes, would have aborted Ti. Hence, once a transaction is added to tocommiLqueue_k, it will

commit at Rk. Since it is the central middleware that makes the decision to add a transaction to

Chapter 4. Replica control basics 78

either ail or none of tocommit_queue_k, the transaction will commit at ail or none of the databases.

For property (iii), we now need to prove that the USG avoids G-lc cycles (i.e., cycles con­

sisting entirely of read- or write-dependency edges) and G-Sib* cycles (i.e., cycles where each

anti-dependency is prefixed by a read- or write-dependency edge).

(1). Assume G-lc exists. Note that all transactions in this cycle must be write transactions, sinee

the source node of a read- or write-dependency edge must be a write transaction, and each node in

the cycle is source node of one edge. Now consider an edge Ti w~w Tj in the cycle. If the edge is

a read-dependency edge, it must appear in the SSG of Tj 's local replica (assume R1). Since alllocal

histories are SI-histories, Ti must commit before Tj at R1. Sinee SRP commits ail write transactions

in the same arder at all replicas, Ti commits bef ore Tj at all replicas (i.e, ci -<t cj). lt will be the

same situation if the edge is a write-dependency edge.

Renee, a G-lc cycle would result in Ci -<t ci at alllocal histories which is impossible. Renee,

there is no such cycle.

(2). Assume G-Sib* exists. We can break the cycle into m sections of
(wrjww)* wrjww rw

Tip ---t Tjp ---t Tkp - ---+ 7i(p+l)%m (where 0 ~ p < m)
rw

In section p, Tip' Tjp' and 7i(p+lJ%m must be write transactions. Tkp - ---+ Ti(p+lJ%m must be caused

by the read operation(s) ofTkp· Since SRP is ROWA, the read operations can only happen at Tkp's

local replica (R1). Renee, this edge occurs in SSG(RH1).

T wrjww 'T' • • h d . d
Jp ---t .L kp 1s e1t er a rea - or a wnte- ependency edge. Let's consider the first case, i.e.,

it is a read-dependency edge. The edge must be caused by the read operation(s) of np. The edge

must appear at np 's local replica R1. We have already shown that this implies Cjp -<t Skp -<t

Ci(p+l)%m ===? Cjp -<t Ci(p+l)%m, which means that Tjp commits before 7i(p+l)%m at Tkp 's local

replica R1•

Let's consider the second case, i.e., Tjp ~ Tkp· According to ROWA, the edge must appear
rw

in all replicas' SSGs, including Tkp 's local replica R1• We have shown that Tkp - ---+ 1i<p+lJ%m

also appears in SSG(RH1). With the same reasoning as in the first case, we know Tjp must commit

before Ti(p+l)%m at Tkp 's local replica R
1 (i.e., Cjp -<t ci(p+l)%m at R 1

).

N 1 ' 'd 'T' (wrjww)* T Ob · 1 h' ' l' . 'T' T ow et s cons1 er .Lip ---t Jp· vtous y t 1s 1mp 1es Cip -<t Cjp· Smce .Lip and Jp are

write transactions, they must commit in the same arder at all replicas (including R1) according to

Chapter 4. Repli ca control basics 79

SRP. Renee, we derive cip -<t ci(p+l)%= at R1 for section p. Let's put all sections together. We

derive Cio -<t Ci1 -<t ... -<t Ci"'_ 1 -<t Cio in RH1 which is impossible.

Renee, G-Sib* can not happen in the USG(RH) of a replicated history RH produced by

SR~ D

4.2 Problems of SRP due to first-updater-wins strategy

SRP is a middleware-based approach. Renee, it has to work properly with the transaction process­

ing mechanisms of the underlying database system. SRP works fine with SI databases that detect

confiicts only at transaction commit time according to the first-committer-wins rule. Rowever, real

databases supporting SI are typically implemented with the first-updater-wins rule, as explained in

Section 3.1.

Let's have a carefullook at such an implementation. Before a transaction Ti updates a data

item x it gets an exclusive lock on x. Once it has the lock, it performs a version check. If the latest

committed version is from a concurrent transaction, Ti immediately aborts, otherwise it continues. If

another transaction Tj holds a lock on x when Ti is requesting it, Ti has to wait un til Tj terminates. If

Tj terminates, Ti will immediately be aborted (since there is a committed version created by Tj that

is concurrent to Ti). If Tj aborts, then Ti gets the lock but still performs the version check (because

there could still be another concurrent transaction Tk that updated x before Tj but committed). This

means, validation is not done at the end of transaction but on a continuous basis, namely always

before an update operation is executed.

4.2.1 Blocking

Using the first-update-wins rule, transactions can black while waiting for locks to be released. This

can lead to sorne problems using SRP.

Firstly, remote transactions might be blocked by local transactions in a database replica. Assume

a transaction Ti executing locally at Rk and holding a lock on x. A remote transaction Tj has been

validated and now is the first in tocommiLqueue_k. Tj's writeset is applied at Rk and also updates

Chapter 4. Replica control basics 80

x. Tj has to acquire a lock and will be blocked. Ideally, Ti should be aborted since it conflicts

with Tj and has not yet been validated. The middleware will detect this conflict once Ti finishes

execution and validates sin ce Ti. start < Tj. tid. Renee, Ti fails validation and aborts. At this point,

Tj receives the lock and can execute the write. It will not abort since Ti aborted.

Secondly, it is possible to have deadlocks between local transactions that have not yet finished

execution, and remote transactions that apply their writesets. The database detects such deadlock

and aborts any of the transactions. If the local transaction is aborted, the middleware can simply

inform the client (as is usually done with aborts due to deadlock). If the remote transaction is

aborted, the middleware has to reapply the writeset until the remote transaction succeeds. We refer

to this as Adjustment 1. Note that so far it is impossible that a local transaction that has completed

execution and is validated is involved in such a deadlock because this local transaction has already

acquired all necessary locks at the local database replica. Once it is validated, no further operations

except for the commit are performed at the local replica.

Adjustment 1: To solve the blocking problems under the first-updater-wins rule

Upon Ti is fust in tocommiLqueue_k,

if Ti is remote at Rk, loop

• begin Tik at Rk

• apply Ti.W8 to Rk

• if Ti aborted by deadlock, then

• continue the loop

• else (successfully applying Ti. W S)

• same as SRP

• exit the loop

4.2.2 Distributed deadlock

The third problem due to the first-update-wins strategy is the most serious problem. SRP might have

a deadlock involving a cycle across the middleware and the database. Let's look at an example.

Chapter 4. Replica control basics

Tl [ill~
0 T2

Middleware

Tl

T2~[i] ~
T3 ~~~

write X successfully blocked on write X

Figure 4.3: SRP Deadlock example execution with real databases

81

time

Example 12. We extend Example 11 by adding one more operation W3 (y) to T3. We rearrange the

interleaved order of operations as in Figure 4.3. We use polygon boxes to represent actions being

submitted but blocked. White boxes are for read, start, commit, and abort operations, and grey

boxes for write operations.

T1 starts at RA. It reads and updates x. As in Figure 4.2, upon T1 's commit request, validation

succeeds and T1 receives T1.tid = 1. T1 is appended to QA and QB. T1 commits at RA and is

removed from QA.

At RB, T1 's writeset can be applied since T1 is also the first in QB. But two local transactions

have already performed operations at RB. T2 has read x and y, and updated y. Since the database

uses locking for writes, T2 has a lock on y. T3 has updated x and holds a lock on x. T3 is now

blocked on y since it wants to write y but T2 has a lock on y. Upon T2 's commit request, T2 's

validation succeeds and it is appended to QA and QB.

At RA, since T1 has already been committed and removedfrom QA, T2 is thefirst in QA. Renee,

T2 's writeset is successfully applied and T2 commits at RA.

At RB, T2 is not the first in QB so it has to wait for T1 to be committed. However, at RB, T1

is blocked by T3 since it needs a lock on x which is held by T3. T3 is in turn blocked by T2. There

Chapter 4. Repli ca control basics 82

is a deadlock among T1, T2 and T3 at RB (i.e., T1 waits for T3, T3 waits for T2, and T2 waits for

T1). Note that the re is no deadlock in the database. Only be cause T2 waits for T1 at the middleware

layer, there is a distributed deadlock spanning both the middleware and the database.

The deadlock problem in the example above is due to the fact that T1 must commit before T2 even

though they do not have write/write conflicts. In arder to solve this distributed deadlock problem,

we have two options. Firstly, we could avoid such deadlocks by allowing T2 to commit before

T1. At the first view, this should be fine since they do not conftict. However, simply allowing

transactions to commit out of validation arder could lead to the violation of 1-copy-SI. Recall that

Example 3 in Section 3.2.3 shows a replication history RHhole that is not 1-copy-SI due to the fact

that two update transactions commit in different arder at two replicas. USG(RHhole) has a G-Slb*

cycle (i.e., a cycle in which each anti-dependency edge is prefixed with a start-dependency edge).

Thus, a protocol that allows for out-of-arder commits has to be carefully designed to avoid such

phenomenon.

The second option is to detect such deadlocks, e.g., simply by using a timeout and resolve it by

aborting one transaction. Note that such a distributed deadlock always involves a local transaction T

that has finished execution and has validated but waits for a transaction T' in the tocommiLqueue_k

to terminate.

The question now is which transaction to abort. Aborting T' will not help because we have to

reapply it again before T and thus, the deadlock will again occur. Therefore, we abort T, that is, we

abort a local transaction that has already been validated and has been waiting in the queue longer

than a predefined threshold value. In above example, we abort T2 . Thus, the local transaction T3

gets its lock and the deadlock is broken. However, this approach requires us to reexecute T at its

local replica after T' has finished (since in principle, T should succeed). We do this by simply

taking its writeset and apply it as we do at remote replicas. Reapplying the writeset has been done

in Adjustment 1 so we can just reuse it.

We refer to the procedure as Adjustment 2.

Chapter 4. Replica control basics

Adjustment 2: To solve deadlock using timeout

• Add to step l(d)iv in SRP (Upon transaction Ti successfully validates),

• VRk : Ti.timeout := currenLtime

• Upon timeout of transaction Ti local at Rk,

(i.e., current_time-Ti.timeout > timeout_threshold),

• abort Ti at Rk

• Ti .aborted:=true

• Upon Ti is first in tocommit_queue_k,

if Ti is remote at Rk or Ti .aborted=true, loop

Discussion:

• begin Tik at Rk

• apply Ti.W8 to Rk

• if Ti aborted by deadlock, then

• continue the loop

• else (successfully applying Ti.W8)

• same as SRP

• exit the loop

83

Note that the distributed deadlock only spans across the middleware and the underlying database

at one replica. It does not involve any interaction between different replicas, which make it easy

to detect and resolve. [82] suggests to detect the deadlock by querying the lock tables provided by

DBMSs, such as the pg_locks view of the PostgreSQL system catalogue, and similar tables or views

in other databases [82].

4.3 Problems of SRP due to integrity constraints

SRP is based on the assumption that there are no integrity constraints in the database. Renee, it only

guarantees 1-copy-SI and does not work correctly if integrity constraints are considered. At this

Chapter 4. Replica control basics 84

timepoint, it is important to understand how databases that provide SI guarantee IC-consistency.

We have analyzed PostgreSQL. In here, integrity reads do not read from a snapshot. Instead, a

transaction Ti performing an integrity read on x acquires a read lock on x. If an exclusive lock is set

by a transaction Tj writing x (first-updater-wins strategy), 1i has to wait until this lock is released.

If Tj commits, Ti reads Tj 's version. This guarantees that Ti reads the latest committed version.

If the read determines that a constraint would be violated, Ti aborts. Otherwise, Ti continues to

write and then commit. Ti keeps the lock on x until termination. If a further transaction Tk wants

to update x it is blocked by Ti. This guarantees that nobody overrides the value of x and commits

before Ti commits, a requirement for IC-consistency. At the end, the SSG will have an IC-read­

dependency edge and a commit-dependency edge from Tj to Ti and and IC-anti-dependency edge

and a commit-dependency edge from Tito n (assuming that Tk is not concurrent with Tj). That is,

integrity reads basically set long read locks just as in strict 2PL in arder to guarantee IC-consistency.

Example 13. Now let's look at an Example similar to Example 5 but in a replicated environment.

There are tables Dept(did, dname) and Emp(eid, ename, did). A department record ('dl', 'mar­

keting'), referred to as abject x, exists, inserted by transaction To. Now assume a transaction T1

inserts an employee ('el', 'Mike', 'dl'), denoted as y, and a transaction T2 deletes the department.

We assume the re are two replicas RA and RB. T1 is submitted to RA and T2 is submitted to RB.

Let's look at a possible execution in SRP. Execution is also depicted in Figure 4.4.

At RA, T1 performs an integrity read ir1 (xo) and then a write w1 (Yl). At RB, T2 performs

an integrity read ir2(Yinit) and then a write w2(Xdead)· Assume T1 finishes first. The middleware

validates and puts T1 in both queues. Then T2 finishes. The middleware validates T2 and appends

it to both queues. At RA, T1 can commit. However, when the writeset ofT2 is applied, the database

replica will peiform the integrity read, find the employee tuple Yl, and abort T2. Given our Adjust­

ment 1 of Section 4.1.1, we will attempt to apply the writeset ofT2 over and over a gain and run into

an endless loop.

At RB, when T1 is applied, it will perform its integrity read, acquiring a read lock on x. T1 will

be blocked at the database replica since T2 has an exclusive lock on x. T2, in turn, is waiting behind

T1 in Q B waiting for T1 to finish. Thus, we have a distributed deadlock between the middleware and

Chapter 4. Replica control basics

~ [ill ~ [ill

Middleware

~Tl

T2 ~[ill li@ [ill~ [ill

writing X successfully blocked on writing X time

1 Ixl integrity read on X @ blocked on commiting T2

Figure 4.4: Example with foreign key constraints executed according to SRP with Adjustments 1
and2.

85

the database replica. With our Adjustment 2 in Section 4.2.2, T2 will be aborted due to a timeout.

However, when T2 is now reapplied, it's integrity read will now read Yl, and thus, T2 will abort due

to integrity violation. We will again run into an endless loop.

Actually, many of the update everywhere approaches [6, 69, 91, 92, 90, 61, 73, 124] can run

into problems with integrity constraints, no matter if they provide 1-copy-SE or 1-copy-SI.

The issue is that a transaction T, while executing locally, performs integrity reads that do not in­

dicate any violation of integrity constraints. However, T might then be validated by the middleware

after a remote transaction T' whose write operations actually lead to a violation. When T's writes

are applied, the database replica automatically reevaluates the integrity constraints through integrity

reads, detects a violation and aborts T. The problem is that the middleware has no means to check

the integrity constraints since it is not aware of integrity constraints. Considering only foreign keys,

such information could be extracted, e.g., by looking at the database schema, but in the general case,

this is not possible.

Our solution is as follows. We do not check integrity constraints at the middleware but let

the database doit (i.e., perform integrity constraints). The middleware only checks for write/write

Chapter 4. Repli ca control basics

J{ Tl [ill~
T2

Middleware

writing X successfully

1 IXI integrity read on X

D
blocked on writing X time

@ blocked on commiting T2

Figure 4.5: Revisit Example 13 with Adjustment 3

86

conflicts as before. We make sure that at each database replica, integrity reads read the same data

versions, as has been done in the example above. Thus, either at ali replicas the integrity reads will

determine a violation of the constraints and abort, or the write operations will succeed.

When using this approach we have to be aware that a transaction might abort for severa! reasons.

For example, in Section 4.2.1, we have seen that a database replica might abort a transaction because

of a deadlock. Thus, we must be able to determine the reason for an abort and then act appropriately.

Fortunately, using a typical database interfaces such as JDBC, if a transaction aborts, the database

retums an error message and a SQLSTATE code that indicates the reason for the abort. Using the

code, we can decide whether an abort was due to a deadlock or an integrity constraint.

Example 14. Let's now revisit Example 13 with the idea above. The new execution scenario is in

Figure 4.5, when transaction T2 aborts at RA, the error message will indicate that this abort is due

to an integrity violation. Thus, we do not reapply T2. At RB, the first abort oJT2 is induced by the

middleware. The middleware now reapplies T2 after T1 commits. This time, T2 is aborted by the

database replica because of integrity violation. The middleware will detect this by loo king at the

abort exception and not reapply T2. At the end, T1 commits and T2 aborts in both replicas. The

history is 1-copy-Sl+IC.

Chapter 4. Repli ca control basics 87

In the following, we combine our above solution to integrity constraints with Adjustment 1 and

refer to this as Adjustment 3. We use bold letters to highlight the difference to Adjustment 1.

Adjustment 3: To handle deadlocks due to integrity constraints and solve blocking problems due

to first-updater-wins

Upon Ti is first in tocommiLqueue_k,

if Ti is remote at Rk or Ti .aborted=true, loop

• begin T;k at Rk

• apply Ti.WS to Rk

• if Ti aborted by deadlock, then

• continue the loop

• else if Ti aborted by IC, then,

• exit the loop

• else (successfully applying Ti.WS)

• same as SRP

• exit the loop

Chapter 4. Replica control basics 88

4.4 Simple Replication Protocol with Integrity Constraints (SRP-IC)

The SRP-IC protocols extend SRP by integrating the Adjustments 2 and 3. That is, SRP-IC has to

consider aborts due to deadlocks within the database and integrity constraint violations, and imple­

ments its own timeout mechanism in order to handle deadlocks distributed across the middleware

and the database.

4.4.1 Protocol details

Figure 4.6 provides the full description of SRP-IC. Since SRP-IC is mainly based on SRP, we

highlight the adjustments with bold letters for the convenience of reading.

Additionally to what we have indicated in Adjustment 2 and 3 there is an additional timeouLmutex

variable for each transaction. After a transaction Ii local at Rk is validated at the middleware, its

timeout variable is set to the current time (step l(d)iv). Once the difference between the timeout

value and the current time becomes larger than a predefined threshold and the transaction is still not

the first in tocommiLqueue_k, Ti is aborted (step 3). The transaction is marked as aborted so when

it becomes the first in the queue, we know that its writeset has to be applied (usually the writesets

of local transactions do not need to be applied).

Another major change is in handling the first transaction in the tocommit_queue_k. Once the

transaction becomes the first in the queue, if it is local at Rk, its timeout variable is set to 0,

indicating that the transaction should not be aborted (step 2a) anymore. Note that checking the

timeout variable in step 3, and resetting it to 0 in step 2a are done using the timeouLmutex so

that a transaction is not aborted at the same time it is trying to commit. Thus, steps l(d)iv, step 3,

and step 2a are needed for Adjustment 2. Applying a writeset is now needed for remote transactions

and for local transactions that got aborted.

Furthermore, when applying a writeset, the transaction might get aborted due to a database

internai deadlock or due to integrity constraints. If the abort is due to a deadlock, we simply reap­

ply (step 2(b)iii) as required by Adjustment 2. If Ti is aborted due to an integrity constraint (step

2(b)iv), we do not reapply according to Adjustment 3. However, we increase lastcommitted_tid_k

in arder to keep it synchronous with nexLtid (step 2(b)ivC). The remainder of step 2 is the

Chapter 4. Repli ca control basics 89

same as for SRP. Once Ti is successfully applied (step 2(b)ivB), we can commit 7i and increase

lastcommitted_tid_k (step 2(b)ivC).

In any case (i.e., committed or aborted), Ti will be removed from the tocommiLqueue_k (step

2d).

4.4.2 Correctness

Theorem 7. SRP-IC provides 1-copy-Sl+IC if the underlying database replicas provide SI+IC us­

ing the jirst-updater-wins strategy.

Proof. The proof is similar to the proof of Theorem 6.

Based on Theorem 5, we need to show that for any replicated history RH possible under SRP­

IC, (i) the local histories RHk at all replicas are SI+IC histories, (ii) an update transaction commits

at either none or ail replicas, and (iii) there exists a USG-IC(RH) that bas no G-lc* and G-Sib*

cycles.

Property (i) is fulfilled since the underlying database replicas provide SI+IC by assumption. For

property (ii) we need to show that, apart of read-only transactions, all replicas commit the same set

of transactions. If validation of a transaction 7i succeeds at the middleware it is appended to the

tocommiLqueue_k of each replica Rk. Thus, a transaction Ti is either in ail or none of the queues

and the order of transactions in all queues is the same. Transactions in each tocommiLqueue_k are

handled one after the other. That is, they are committed/aborted in the same order at ail replicas.

We now show by induction on the position of the transaction that all database replicas will decide

the same outcome for each individual transaction.

We show first that all replicas will commit the first transaction T1 validated. The transaction is

assigned a tid:=l. At T1 's local replica R 1, when T1 is put in tocommiLqueue_l, it is the first in

the queue. Thus, Tf simply commits. At a remote replica Rk a transaction Tf is started to apply the

writeset. This includes the integrity reads related to the write operations. Tf might be blocked by

local transactions or even abort (due to deadlock) and be restarted. Nevertheless, once it performs

the integrity reads it will read the same versions as Tf bas done at the local replica R 1 because

no transaction will commit after Tf starts, and thus, no violation will be determined and Tf will

Chapter 4. Repli ca control basics

Initialization: next_tid := 1, ws_list := {}

V Rk: tocommiLqueuek := {}
V Rk: lastcommitted_tid_k := 0
wsmutex,
V Rk: dbmutex_k
timeouLthreshold := certain_value
(e.g., SOms)

1. Upon receiving an operation Opi of Ti,

(a) if Opi is start (i.e.,si), then

1. choose Rk at which Ti will be local

11. obtain dbmutex_k
111. Ti.start := lastcommitted_tid_k
iv. begin Tik at Rk
v. release dbmutex_k

vi. retum to client

(b) else if Opi is read or write, then

i. execute at local Rk and retum to client

(c) else if Opi is abort, then

i. abort Tik at Rk and retun to client

(d) else (commit)

i. Ti.W8 := getwriteset(Tik) from lo­
cal Rk

11. ifTi.ws = 0, then
• commit and retum

iii. obtain wsmutex
iv. if /3Tj E wsJist such that

Ti.start < Ti.tid1\Ti.WSnTi.WS #
0:

• Ti.tid := next_tid + +
• append Ti to wsJist
• VRk: Ti.timeout:=current_time
• V Rk: append Ti to tocommit_queue_k
• release wsmutex

v. else (validation fails),
• release wsmutex
• abort Tik at Rk

2. UponTi is first in tocommiLqueue_k.

i. obtain Ti.timeouLmutex

ii. Ti.timeout := 0

iii. release Ti.timeouLmutex

90

(b) if Ti rem ote at Rk or Ti.aborted=true
loop

i. begin Tik at Rk

ii. apply Ti. W S to Rk

111. if Ti aborted by deadlock, then

• continue the loop

IV. else (if Ti aborted by IC or success­
fully applied)

A. obtain dbmutex_k

B. if Ti successfully applied

• commit Ti at Rk

C. lastcornmitted_tid_k++

D. release dbmutex_k

E. exit the loop

(c) if 1i is local at Rk, rétum to client

(d) remove Ti from tocommiLqueue_k

3. Upon a transaction Ti local at
Rk timeout, (i.e., currenLtime -
Ti.timeout > timeout_threshold),

(a) obtain Ti.timeouLmutex

(b) ifTi.timeout =j:. 0, then

i. abort Ti at Rk

11. Ti.aborted:=true

(c) release Ti.timeouLmutex

Figure 4.6: SRP-IC: a Simple Replication Protocol with Integrity Constraints

Chapter 4. Replica control basics 91

eventualiy commit.

We now assume the n(n 2::. 1) transactions have been validated and ali replicas have made the

same commit/abort decision for these transactions.

Now let's have a look at the next validated transaction Tn+l· For any remote replica Rk, when

Tn+l is the first in tocommit_queue_k, ali transactions T1 to Tn have terminated and it is guaranteed

that no further transaction will commit until Tn+l commits or aborts due to integrity constraints.

Thus, Tn+l at each Rr (Rr being a remote replica of Tn+l), will doits integrity reads exactly on

the same data versions, and thus either ali remote replicas will detect an integrity violation and

abort the transaction, or will not detect an integrity violation and commit the transaction eventualiy

(potentialiy after a sequence of aborts due to deadlock). We now have to show that Tn+l performs

exactly the same integrity reads at the local replica R1• We distinguish two cases. First, assume

when Tn+l is the first in the queue it was already aborted due to a timeout (step 3 of the protocol).

In this case T~+l is restarted just as it were a remote transaction. That is when T~+l is restarted

at R1, ail transactions T1 to Tn have terminated at R1, and thus the new Tf will perform the same

integrity reads as at the remote replicas, and thus, make the same decision.

Now assume T~+l was not yet aborted when it is the first in the queue. Let T~+l have performed

an integrity read ir~+l (xi). We have to show that Ti was the last transaction in the sequence

T1, .. . Tn to have written x and commit. Then we can be sure that ali remote transactions at remote

replicas Rr perform the same integrity read ir~+l (xi) since ir~+l (xi) means that Ti was the last

to write x and commit before the read occurred. At R1, bef ore performing the integrity read T~+ 1

acquired a lock on x. At this time Ti was the last to write x and commit. T~+l keeps the lock until

it terminates. Now assume a transaction Tj, i < j ~ n updated x, i.e., Ti is not the last in the

sequence to update x. However, when Tj requests a lock on x at R1 it is blocked on T~+l· Since

T~+l is after Tj in the tocommiLqueue_l, there is a deadlock. Tj waits for T~+l in the database to

release the lock on x, T~+l waits for Tj in the queue to terminate. We have a distributed deadlock.

According to the protocol, T~+l is aborted. Thus, our assumption does not hold that T~+l was not

yet aborted when it is the first in tocommiLqueue_l. Thus, if it is the first in the queue and was not

yet aborted and it has performed ir~+l (xi), we can be sure that Ti was the last transaction in the

sequence T1, ... Tn to update x and commit. Therefore, at ali remote replicas Rr, T~+l will perform

Chapter 4. Replica control basics 92

the same ir~+l (xi) and decide a commit.

For property (iii), we need to show that there exists a USG-IC(RH) avoiding G-lc* cycles

(i.e., cycles consisting entirely of read-, write-, IC-read-, or IC-anti-dependency edges) and G-Slb*

cycles (i.e., cycles where each anti-dependency edge is prefixed by a read- or write-dependency

edge). We have just shawn in our proof of property (ii) that ali replicas commit the same set of

transactions in exactly the same arder, and that ali committed transactions perform their integrity

reads on exactly the same data versions. This means, for any two replicas Rk and R1, if there is

an IC-read- or IC-anti-dependency edge from Tito Tj in SSG(RHk), then there is the same edge

from Tito Tj in SSG(RH1). As a result, there exists actualiy only a single USG-IC(RH), since

independently which replièa Rk we choose for a transaction Ti, its IC-dependency edges are the

same as in other replicas. We now show that this USG-IC(RH) avoids G-lc* and G-Slb* cycles.

Assume a G-lc* cycle exists in USG-IC(RH). There can be four kind of edges in the cycle:

read-, write-, IC-read-, and IC-anti-dependency edges. Note that ali transactions in the cycle must

be write transactions. This is true because each transaction in the cycle is the start node of a read-,

write-, IC-read, or IC-anti-dependency edge. If it is the start node of a read-, write-, or IC-read­

dependency edge it is obviously an update transaction. Being the start node of a IC-anti-dependency

edge means the transaction performed an integrity read which is followed by a successful write

operation. Thus, ali transactions are update transactions, and thus, are executed at ali replicas. Each

edge in the cycle occurs at least in the SSG(RHk) of one local history RHk, and since RHk is

a SI+IC history implies ci -<t Cj in this history. Since ali histories commit write transactions in

the same order, this also implies ci -<t Cj in ali other local histories. Therefore, the G-lc* cycle in

USG-IC(RH) implies ci -<t ci in the local histories, which is impossible.

The proof that no G-Slb* cycle is similar to the proof for correctness of SRP (Theorem 6) and

omitted here. 0

4.5 Discussion

This chapter presents two protocols, SRP and SRP-IC. They bath have the central architecture as in

Figure 2.l.(a) without considering message overhead and fault-tolerance.

Chapter 4. Replica control basics 93

Protocols architecture isolation guarantee works for databases with
SRP centralized (Fig 2.l.(a)) 1-copy-SI first -committer-wins

SRP-IC centralized (Fig 2.l.(a)) 1-copy-SI+IC first-updater-wins

Table 4.1: Comparison of SRP and SRP-IC

SRP addresses the practicability problems of existing protocols. Transactions do not need to

provide information at start time. However, it only guarantees 1-copy-SI. Moreover, it does not

work for database systems with the first-updater-wins rule, where deadlocks can occur. SRP-IC

extends SRP to work with databases using the first-updater-wins rule and provides 1-copy-SI+IC. It

handles the deadlock problem by using a timeout mechanism.

We summarize the differences between SRP and SRP-IC in Table 4.1.

Chapter 5

Replica control for performance and

fault-tolerance

In the last chapter we developed SRP-IC. It provides 1-copy-SI+IC for database systems implement­

ing SI with the first-update-wins strategy. However, the protocol ignores important issues such as

performance and fault-tolerance. In the following, Section 5.1 discusses these problems carefully.

Then, Section 5.2 proposes a new protocol, which we call Snapshot Isolation based on MultiCast

(SIMC), that addresses the problems. SIMC is based on multicast primitives provided by group

communication systems (GCS). However, our analysis shows that these multicast primitives are not

good in wide area networks (WANs). Hence, Section 5.3 develops a protocol, SEQ, that does not

rely on group communication systems but integrates communication more tightly with replica con­

trol. However, SEQ has weaker fault-tolerance than SIMC. Thus, Section 5.4 combines SIMC and

SEQ into a new protocol, HYBRID, that takes advantage of network topologies. Its performance

and fault-tolerance guarantees lie in between those of SIMC and SEQ.

5.1 Problems of performance and fault-tolerance in SRP-IC

While SRP-IC is likely to work wellin a LAN it will not in a WAN. The reason is the centralized

architecture (Figure 2.l.(a)) used in the protocols. Since there is only one middleware component,

94

Chapter 5. Replica control for performance and [ault-tolerance 95

ali requests must go through it. This results in WAN communication between the middleware

and clients if the clients are remote, and between the middleware and the database replicas if the

database replicas are distributed across the WAN. Communication is necessary for each read and

write operation. Recall that there might be more than one operation in one transaction. Thus, the

response time of a transaction will include the time needed for several message rounds across the

WAN.

Regarding fault-tolerance, clearly the single middleware is a single point of failure. Having a

single backup will provide fault-tolerance but is complicated, as discussed in Section 2.2.2. Fur­

thermore, it does not help to handle the performance problem in a WAN.

Actually, many lazy primary approaches and update everywhere approaches with a central

scheduler experience the same problems as SRP-IC, since they follow the centralized architecture.

They have proven to work fairly wellin LANs, but not in WANs.

To reduce the WAN communication overhead, especially the one that occurs within the response

time of a transaction, we should keep the number of WAN messages as low as possible. Section

2.2.7 gave an overview of existing replication protocols based on GCS. They can be categorized into

two categories according to wh en multicast is used, i.e., bef ore or after transaction execution. In

these protocols only one single multicast message is needed within the response time of an update

transaction. AU approaches are either kemel-based or use the decentralized middleware architecture

(Figure 2.l.(c)) in which there is one middleware instance for each database replica. Having a

single message round is, in principle, good for performance. The reliablity guarantees are good for

fault-tolerance. Thus, this chapter explores how the properties of GCS can be used for replication

protocols providing 1-copy-SI+IC.

Chapter 5. Replica control for performance and [ault-tolerance 96

5.2 SIMC: a replication protocol based on Group Communication Sys­

tems (GCS)

5.2.1 Basic idea

ln this section we propose a protocol SIMC that guarantees 1-copy-SI+IC with the cost of one

multicast message per update transaction. It extends SRP-IC and assumes databases using the first­

updater-wins strategy. SIMC uses the decentralized architecture shown in Figure 2.l.(c). Each site

has a middleware replica connecting to a local database replica. Clients submit their transactions to

one of the middleware replicas. In a WAN, this will be the one closest to the client.

As in SRP-IC, a transaction T is executed optimistically in the local database replica. Receiving

the commit request from the client, the middleware retrieves the writeset from its local database.

Recall that SRP-IC depends on the single middleware component to make a unique decision of

commit/abort. Since there are several middleware replicas in SIMC, the middleware replicas need

to synchronize in order to make an unique decision to commit or abort the transaction.

SIMC uses a GCS for communication among the middleware replica, and depends on the total

order multicast provided by GCS to guarantee that a unique decision is made. Recall that total order

multicast guarantees that all sites receive messages m1 and m2 in the same order. SIMC multicasts

the writesets of transactions in total order. Renee, all middleware replicas receive the writesets in

the same order. As long as all middleware replicas perform validation for these transactions in their

delivery order, the decision will be the same at all replicas. The validation itself will be the same as

in SRP-IC. We only need to check if two transactions are concurrent and have write/write confiicts.

Integrity constraints are handled in the same way as in SRP-IC. Each middleware replica ap­

plies remote transactions and commits all transactions in their corresponding local database replicas

according to the order of validation. The databases will finally check integrity constraints and deter­

mine if an update transaction commits or aborts. The transaction will commit in either ali or none

of the replicas since it is applied according to the validation order. Deadlocks are again handled via

timeouts. We defer the discussion of fault-tolerance to Section 5.2.6.

Chapter 5. Replica control for perfonnance and [ault-tolerance

0 Tl [ill~
T2

Tl

~ T2 ~[51 IIIJ
T3 ~~~

Il D
D

~--~
~ [51 a2

~
time

Delivering Tl's writeset and Validation succeeds

Delivering T3' s writeset and Validation fails

Mutlicasting Tl' s writeset in total order

Figure 5.1: A SIMC example extended from Example 14 in Figure 4.5

5.2.2 Example

97

Example 15. Let's consider an example extendedfrom Example 14 shown in Figure 4.5 for SRP-IC.

T1 performs an integrity read on x, a write on y, and additionally a write on z. T2 performs an

integrity read on y, and a write on x. And additional transaction T3 performs a write on z. T1 is

submitted toRA. T2 and T3 are submitted to RB. The execution scenario is shown in Figure 5.1.

Note that we use ellipses to represent the multicast of a writeset and the validation of the transaction

after the writeset delivery. We also separate the middleware replicas at site A and B.

At replica A, T1 is the only local transaction and can finish its execution locally. The middleware

replica MA retrieves the writeset ofT1 and then multicasts it in total order. At the same time, T2

and T3 execute locally at RB. They both succeed in their local execution since they do not block

each other. M B multicasts the writesets ofT2 and T3. The writeset delivery order is T1 then T2 then

T3 at both replicas. Since T1 is the first transaction to deliver and validate, validation succeeds at

both replicas. So T1 is inserted into the tocommiLqueue at both MA and MB.

At replica A, RA simply commits T1 and MA removes T1 from its queue. Upon the delivery

Chapter 5. Replica control for performance and fault-tolerance 98

of T2 's writeset, MA validates T2 and applies the writeset immediately since T2 is the first in the

queue. The integrity read of T2 finds a violation of integrity constraints. Bence, T2 aborts and is

removedfrom the queue. At the same time, MA delivers the writeset ofT3. Bowever, T3 's validation

fails because T3 has write/write conflicts with T1, and T3 and T1 are concurrent. Bence, T3 will be

discarded by MA.

At replica B, RB applies T1 's writeset but the execution is blocked by the integrity read ofT2.

Upon the delivery ofT2 's writeset, MB checks that T1 has no writelwrite conflicts with T2. Bence,

the validation of T2 succeeds and T2 is inserted into the tocommiLqueue. A deadlock occurs.

Upon T2 's timeout, it aborts. Now, T1 can apply its writeset and commit successfully. T1 is removed

from the queue and T2 reapplies its writeset. But it will abort due to the integrity constraint. Upon

the delivery ofT3 's writeset, T3 aborts because of Tl.

Finally at both replicas, T1 commits but T2 and T3 abort. We would like to mention two points.

The first is that read-only transactions do not need to be multicast and validated since they do not

have writesets. The second is that the delivery and validation of a write transaction must be atomic,

or at !east validation must be peiformed according to the delivery order. Otherwise, the validation

outcome will be different at different sites.

5.2.3 Protocol details

Figure 5.2 shows the details of SIMC. SIMC is very similar to SRP-IC shawn in Figure 4.6. It

is implemented at the middleware level and deployed in each middleware instance Mk. SIMC

is different from SRP-IC only in total arder multicast after local execution (step l(d)iii), and in

total arder delivery (step 2). We highlight them in bold letters. Besides, note that there is one

middleware replica Mk for èach database Rk. There is one set of data structures (e.g., ws_list,

wsmutex, dbmutex, tocommiLqueue, lastcommitted_tid, nexLtid) for the middleware replica

at each site.

A client of Mk submits the operations of its transactions only to Mk which executes them in Rk

locally. A local transaction starts immediately when Mk receives its start operation (step la). Note

that we keep track of the last committed transaction before Ti starts (step l(a)ii). The subsequent

read or write operations will be executed in Rk (step lb). Upon the arrivai of the commit request

Chapter 5. Replica control for performance and [ault-tolerance 99

Initialization:
lastcommitted_tid:=O, next_tid:=l
ws_list:={}, tocommiLqueue:={}
wsmutex, dbmutex
timeout_threshold:=certain_value (e.g.,50ms)

1. Upon receiving an operation Opi of Ti

(a) if Opi is start, then

i. obtain dbmutex
ii. Ti.start := lastcommitted_tid

111. begin Ti at Rk

lV. release dbmutex

v. retum to client

(b) else if Opi is read or write

i. execute in local Rk and retum to client

(c) else if Opi is abort, then

i. abort Ti at Rk and retum to client

(d) else (commit),

i. 1i,.WS := getwriteset(Ti) from local
Rk

11. ifTi.ws = 0, then

• commit and retum

iii. multicast the writeset of Ti in total
order

2. Upon delivering Ti in total order

(a) obtain wsmutex

(b) if ~Tj E ws_list such that Ti.start <
Tj.tid 1\ Ti.WS n Tj.WS =f 0

i. Ti.tid:=next_tid++

11. append Ti to ws_list
111. Ti.timeout:= currenLtime
iv. append Ti to tocommit_queue
v. release wsmutex

(c) else

i. release wsmutex

ii. if Ti is local, then abort Ti at Rk and
retum to client

3. Upon Ti is first in tocommit_queue, then

(a) if Ti local at Rk,

1. obtain Ti.timeouLmutex

ii. Ti.timeout := 0

iii. release 1i,.timeout_mutex

(b) if Ti remote at Rk or Ti .aborted=true,
loop

i. begin Tik at Rk

11. apply Ti.WS to Rk

iii. if Ti aborted by deadlock, then

• continue the loop

iv. else (if Ti aborted by IC or successfully
applied)

A. obtain dbmutex

B. if Ti successfully applied

• commit Ti at Rk
C. lastcommitted_tid++

D. release dbmutex

E. exit the loop

(c) retum to client if Ti is local.

(d) remove Ti from tocommit_queue

4. Upon timeout of transaction Ti local at
Rk, (i.e., current_time- Ti.timeout >
timeout_threshold)

(a) obtain 1i,.timeouLmutex

(b) ifTi.timeout =f 0, then

i. abort Ti

ii. Ti.aborted:=true

(c) release Ti.timeouLmutex

Figure 5.2: SIMC on Mk: a replication protocol based on total order multicast

Chapter 5. Replica control for performance and [ault-tolerance 100

(step 1d), Mk retrieves the writeset and checks if the writeset is empty or not. If it is empty, the

transaction will be committed immediately. Otherwise, the writeset will be multicast in total arder

(step 1(d)iii).

While the writeset of Ti is delivered at a middleware replica Mk (step 2), Mk will validate

the writeset transaction against ali other transactions which have been validated successfuliy since

Ti started (i.e., tid > Ti.start) (step 2b). If none of them has write/write confiicts with Ti. the

validation succeeds and Ti is appended to the ws_list and tocommiLqueue. At the same time,

Ti.timeout is set to the current time at Mk. Otherwise, the validation fails and Ti is aborted if local

or simply discarded (step 2c).

Once a validated transaction is the first in tocommiLqueue, it will be applied until success or

until it aborted due to integrity constraints (step 3). A timeout mechanism is applied to solve the

deadlock problems (step 4). These mechanisms are the same as in SRP-IC.

5.2.4 Correctness

In SRP-IC, there is a single middleware making the validation decision and appending transactions

to queues. In SIMC, we have one middleware replica per database replica that performs validation.

We have to show that ali middleware replicas make the same decision on validation as the central

middleware replica in SRP-IC. If we can show this, SIMC provides 1-copy-SI+IC.

We can show this by induction. The first transaction submittedto the replicated database always

succeeds in its validation at ali replicas since there is no transaction in ws_list at ali replicas. The

transaction is assigned a tid := 1 and the next_tid is set to 2.

We now assume that n(n 2: 1) transactions validate successfuliy and reside in ws_list at ali

replicas. Bach transaction has the same tid at ali replicas, and the nexLtid at any replica is set to

(n+ 1). The next transaction Tn+ 1 is multicast in total order and received by ali replicas. At each

replica, Tn+l is validated against ali transactions in ws_list. Note that validation is performed ac­

cording to transaction delivery order. Renee, Tn+l sees the same number of transactions in ws_list

at ail replicas. Recall that Tn+l·start was assigned at Tn+l's local replica soit is the same at any

replica in validation. Thus, Tn+l validates successfuliy either in ali or in none of the replicas.

Renee, ali replicas make the same decision on validation. The remainer of the protocol is

Chapter 5. Replica control for performance and [ault-tolerance 101

basically the same as SRP-IC. Therefore, SIMC provides 1-copy-SI+IC.

5.2.5 An optimization: early validation

So far, we only check if an update transaction Ti is aliowed to commit upon the delivery of its

writeset. However, we can already perform a fair amount of validation earlier. For instance, we

observe that at the end of the transaction, just before Mk multicasts Ti's writeset, Mk might have

already received a concurrent transaction Tj having a write/write conflict with Ti. In the last exam­

ple, before multicasting T3 's writeset, middleware replica MB had already received and validated

T1's writeset. If MB can detect this fact, it does not even need to multicast T3's writeset because

it is clear that T3 will abort. This will reduce the response time of T3 since T3 can be aborted im­

mediately. It also reduces network traffic. We refer to Mk validating before sending the writeset

as early validation. In fact, during this early validation of a transaction Ti, Mk does not even need

to validate against ali transactions that are concurrent to Ti and have validated. Since the database

system uses the first-update-wins strategy, part of the validation has actually already been done in

the database replica.

Let's have a closer look at who should validate what. In principle, a transaction Ti, local at

replica M / Rk, needs to be validated against ali concurrent transactions that validated before Ti. We

can categorize these concurrent transactions as foliows. At the time Mk performs early validation

(just before multicasting the writeset), (i) sorne ofthese concurrent transactions are already commit­

ted at Rk, and (ii) sorne have already arrived at Mk but are still residing in the to_commiLqueue

of Mk. Additionaliy, there are (iii) sorne transactions that will be delivered between the earl y vali­

dation at Mk and the time Ti 's writeset is delivered.

For the transactions in category (i), that is, those concurrent transactions that have already com­

mitted localiy at Rk, the database replica has actually already done the validation due to the first­

update-wins strategy. According to this strategy, if a transaction is concurrent to Ti, has a write/write

conflict, and commits, then Ti aborts when it attempts to perform the conflicting write operation.

However, at the time of early validation, all of T/s operations have executed, and Ti is not yet

aborted. Renee, we can be sure that Ti does not conflict with any transaction that has already

committed at Rk.

Chapter 5. Replica control for performance and [ault-tolerance 102

Transactions stored in the local tocommiLqueue of Mk at the time of early validation are those

transactions which have been validated but not committed yet (i.e., category (ii)). This means that

Tj.tid > Ti.start for each transaction Tj in the tocommit_queue of Mk. Moreover, if at ali, Ti

will commit after Tj since if Ti is added to the queue it will be appended to the end. Thus, Ti

may not conflict with any of these transactions. Therefore, earl y validation will validate against ali

transactions in the tocommit_queue.

However, early validation cannot include transactions in category (iii), because these transac­

tions have not yet arrived at Mk at the timepoint of early validation. In order to not miss these

transactions, we need to perform a second validation of Ti after the delivery of Ti's writeset. This

validation has to be performed at ali replicas.

Figure 5.3 presents the adjustments of SIMC to handle early validation. We highlight the

changes in bold letters. First of ali, we do not need the variable lastcommitted_tid and the mutex

dbmutex. They were needed to figure out when exactly a transaction started in the database replica.

This is no more needed, because we only validate against transactions in categories (ii) and (iii)

above. That is, steps la and 3(b)iv in SIMC (Figure 5.2) become easier. We do not need to keep

track of lastcommitted_tid at start time. Step 3(b)iv in Figure 5.2 is rewritten to step 3(b)iv and

3(b)v in Figure 5.3.

After step l(d)iii, that is, after retrieving the writeset, we perform the early validation (step

l(d)iii to l(d)vi). The transaction is aborted immediately, if the transaction conflicts with one of

the transactions in the tocommiLqueue. Otherwise, the transaction will keep track of the tid of

the last transaction it was validated against (step l(d)v) with the variable vid and then is multicast.

Upon delivery, the transaction is only validated against transactions with tid > vid (step 2b). The

rest of the protocol remains the same.

Correctness: We only want to outline that the changes in comparison to the original SIMC do

not change the correctness of the system.

The new protocol in Figure 5.3 does not contain lastcommitted_tid and dbmutex compared

to the original SIMC in Figure 5.2. But it still validates an update transaction Ti against the same

concurrent transactions as the original SIMC. We have carefuliy discussed above that ali concurrent

transactions of Ti will be checked either (i) during the execution of Ti within its local database

Chapter 5. Replica control for performance and [ault-tolerance 103

replica, or (ii) during early validation in Step l(d).iii-vi or (iii) at validation after delivery at Step 2.

Renee, the new SIMC and the original SIMC reach the same decision in their validation. Renee,

the new SIMC should also provide 1-copy-SI+IC.

5.2.6 Fault-tolerance

The decentralized architecture does not have a single point of failure. As we have mentioned in

Section 2.3, replication protocols based on group communication can take ad van tage of the delivery

guarantees these systems provide. If a group communication system offers uniform reliable delivery,

then a replication protocol can be assured that any message delivered to any replica will also be

received by the available replicas. Replication protocols such as [61, 67, 90, 6] take advantage of

this to achieve fault-tolerance for the replicated system. That is, they guarantee that whenever a

transaction is committed at one replica, it will be committed at any available replica (while crashed

replicas have to do so upon recovery).

Rowever, in regard to clients, few approaches indicate how a client handles the failure of the

replica it is connected to. [73] describes how failures can be made nearly completely transparent to

clients in a protocol such as the SIMC protocol. We briefly repeat the idea here.

We assume clients are connected via a standard interface, such as the JDBC interface, to the

middleware. A driver is installed at the client. A driver is a software package that provides to the

client the interface, and handles the communication with the server. For fault-tolerance purposes,

the driver software needs to know the set of middleware replicas. This can be implemented via a

directory service or similar. At start time, the driver connects to one of the middleware replicas but is

aware of the other middleware replicas in the system. If there are any changes in the configuration,

the middleware replica can inform the drivers that are connected. We assume that the middleware

replica and co-located database replica fail as one unit. When a middleware replica crashes all its

client connections are lost. The drivers on the clients will detect this and automatically connect to

another replica. At the time of the crash the connection might have been in one of the following

states.

Chapter 5. Replica control for performance and [ault-tolerance 104

Initialization:
nexLtid:=l, ws_list:={}
tocommiLqueue:={}, wsmutex
timeouLthreshold:=certain_value (e.g.,50ms)

1. Upon receiving an operation Opi of Ti

(a) if Opi is start, then

i. begin Ti at Rk

ii. return to client

(b) else if Opi is read or write

i. execute in local Rk and return to client

(c) el se if Opi is abort, th en

i. abort Ti at Rk and return to client

(d) else (commit),

i. Ti.W8 := getwriteset(Tn from lo­
cal Rk

n. ifTi.ws = 0, then

• commit and return

iii. obtain wsrnutex

iv. if 3Tj E tocornrnit_queue/\
Ti.W8 n T3.WS #- 0

• release wsrnutex
• abort Ti at Rk and return to

client
v. Ti.vid:=next_tid-1

v1. release wsrnutex

vii. multicast the writeset of Ti in total or­
der

2. Upon delivering Ti in total order,

iv. append Ti to tocommiLqueue

v. release wsmutex

(c) else

i. release wsmutex

ii. if 1i is local, then abort Ti at Rk and
return to client

3. Upon Ti is the first in tocommit_queue,

(a) if Ti local at Rk,

i. obtain Ti.timeouLmutex

ii. Ti.timeout := 0

iii. release Ti.timeouLmutex

(b) if 1i remote at Rk or Ti.aborted=true,
loop

i. begin Tik at Rk

ii. apply Ti. W S to Rk

m. if Ti aborted by deadlock, then

• continue the loop

iv. else if Ti aborted by IC, then

• exit the loop
v. else,

• commit Ti at Rk

• exit the loop

(c) return to client if Ti is local.

(d) remove Ti from tocommiLqueue

4. Upon timeout of transaction Ti local at
Rk, (i.e., currenLtime -7i.timeout >
timeout_threshold)

(a) obtain wsmutex (a) obtain Ji.timeouLmutex

(b) if ~Tj E ws_list such that (b) ifTi.timeout i= 0, then

Ti.vid < T3.tid/\ Ti.W8 n T3.WS #- 0 i. abort Ti

i. Ti.tid:=nexLtid++
n. append Ti to ws_list

iii. Ti.timeout:= currenLtime

ii. Ti.aborted:=true

(c) release Ti.timeouLmutex

Figure 5.3: SIMC with the earl y validation optimization

Chapter 5. Replica control for performance and [ault-tolerance 105

1. There was currently no transaction active on the connection. In this case, failover is com­

pletely transparent.

2. A transaction T was active and the client bas not yet submitted the commit request. In this

case, T was stilllocal on the middleware/DB replica that crashed, and the other replicas do

not know about the existence of T. Renee, it is lost. The JDBC driver retums an appropriate

exception to the client program. But the connection is not declared lost, and the client can

restart T.

3. A transaction T was active and the client bas already submitted the commit request which

was forwarded to the middleware replica. In this case, the state at the remaining available

replicas might be as follows:

(a) They have not received T's writeset, and bence, do not know about the existence of T,

and T must be considered aborted.

(b) They have received T's writeset. If validation succeeds, they commit T.

Note that uniform reliable delivery guarantees that if the local replica received the writeset

and committed T before the crash, then all (available) remote replicas receive the writeset and

bence, also commit T.

Let's have a doser look at case 3. If clients are directly connected to the database and the

database crashes after a commit request but before retuming the confirmation, clients do not know

whether the transaction aborted or committed. In SIMC, we are able to provide the clients with

the outcome. When a new transaction starts at a middleware replica, the replica assigns a unique

transaction identifier and retums it to the driver. Furthermore, the identifier is forwarded to the

remote middleware replicas together with the writeset. Each replica keeps these identifiers together

with the outcome of the transaction. If now a crash occurs during a commit request, the JDBC driver

connects to a new replica and inquires about the in-doubt transaction by sending the transaction

identifier. If the new replica bad not received the writeset, it does not know about the identifier, and

bence, informs the driver that the transaction did not commit. The driver retums the same exception

to the client as if the commit was not y et submitted at the time of crash. If the new replica bas the

Chapter 5. Replica control for performance and [ault-tolerance 106

identifier, it checks for the outcome and returns the outcome to the driver which forwards it to the

client program. In this case, failover was completely transparent.

Note that due to the asynchrony of message exchange it might be possible that the middleware

receives the inquiry about a transaction from a driver and only after that it receives the writeset

for the transaction. In arder to handle this correctly, the replica does not immediately return to the

JDBC driver if it does not find the transaction identifier. Instead, it waits until the GCS informs it

about the crash of the old replica. According to the properties of the GCS, the new replica can be

sure that it either receives the writeset before being informed about the crash or not at ali. Renee, it

can inform the driver accordingly.

5.3 SEQ: a replication protocol without GCS

[72] shows that in WANs the response of a transaction largely depends on the WAN communication

overhead. SIMC does not require any WAN communication for read-only transaction (as long as a

client bas a replica close by). It requires only one multicast message per update transaction, much

better than the many WAN message rounds SRP-IC and other centralized replication approaches

have per transaction.

However, although the properties of group communication systems are very powerful, there

are sorne disadvantages and problems when using them. First of ali, there exists a whole range of

total arder algorithms each of them having different message overhead and latency. While message

overhead and latency do not play a large role in LANs, considering the performance of the total

arder multicast is extremely important in a WAN.

Furthermore, uniform reliable delivery increases latencies even further, because it typicaliy re­

quires additional acknowledgment rounds before a message is actually delivered to the application.

In a WAN this becomes quickly unacceptable.

Finaliy, there are actualiy not many stable, publicly available group communication systems

available. Indeed, we are only aware of one publicly available system, Spread [114], that provides

total order multicast and uniform reliable delivery. Unfortunately, the particular choice of total order

Chapter 5. Replica control for performance and [ault-tolerance 107

multicast and its implementation of uniform reliability have a very high latency. Most other avail- .

able systems, such as Ensemble [41] or JGroups [59], only provide reliable delivery. As mentioned

in Section 2.2.8, using reliable delivery instead of uniform reliable delivery it might occur that a

site receives a message (and, e.g., commits a transaction), and then fails before anybody else has

received the message.

Based on these observations, this section proposes a replication protocol SEQ, that integrates

the functionality of GCS into the replication architecture. It chooses those techniques developed

for GCS that seem the most promising for replication purposes and merges them with the replica

control functionality.

5.3.1 . Analysis of multicast algorithms

[36] gives a very detailed analysis of different multicast algorithms guaranteeing total arder and/or

uniform reliability. Here we analyze three of them. Among them, only one provides uniform

reliability by default. The others need extra message rounds for uniformity. Table 5.1 shows how

message exchange is done in these protocols.

In principle, ali protocols assume that there exists a point-to-point protocol that sends a message

reliably to the recipient, that is, as long as there are no crashes the receiver receives the message

(implemented, e.g., via TCPIIP). Our performance overhead assumes n processes in the system.

In sequencer-based algorithms, one of the processes has the special role of a sequencer. If a

process wants to multicast a message in total arder, it sends the message to the sequencer. The

sequencer gives the message a sequence number and sends the message on behalf of the original

sender to ali members of the group. Ali processes deliver messages in the arder of their sequence

numbers. There aren messages sent in total for one application message, and the delay from sending

the message to delivering it is two message rounds. To achieve uniform reliability, ali processes,

upon receiving a message, send an acknowledgment back to the sequencer. The sequencer sends

then a confirmation to ali processes. Only upon receiving the confirmation a process can deliver the

message to the application (in order of sequence number). Thus, the number of messages increases

to n+2(n-1) and the message rounds increase to 4. [18, 22, 63, 83] foliow the sequencer approach.

JGroups [59] has a variation on the sequencer approach. A process first fetches a sequence number

Chapter 5. Replica control for performance and [ault-tolerance 108

Algorithms Total order Total order + uniform reliability

Pl Pl

P2 P2
Sequencer-
based P3 P3

P4 P4

Pl Pl

P2 P2
Token-based

P4 P4

Pl Pl

Tmestamp-
P2 P2

based P3 P3

P4 P4

Table 5.1: Different multicast algorithms (adapted from Table-1 in [36])

Chapter 5. Replica control for performance and [ault-tolerance 109

for its message from the sequencer and then sends the message with this sequence number to ali

processes. Thus, the number of messages is 1 + n and the number of message rounds is 3 (for

reliable multicast).

In token-based algorithms, there is a token circulating among ali processes. The token carries

the sequence number of the latest message that has been multicast. If a process wants to multicast

a message, it waits until the token arrives. Then it takes the sequence number from the token,

increases it by one, timestamps the message with this value and sends it to ali processes. It does so

for all messages it wants to send. Then it adds the sequence number of the last message sent to the

token and forwards it to the next process. The number of messages per application message is n (not

considering the token messages), and the delay is on average n/2 because a node has to wait until it

receives the token before it can start sending. To achieve uniform reliability, the token also contains

the sequence number of the last message each process has received. This information is used by

a process to determine when it is safe to deliver a message, namely when it knows that everybody

else bas received it. No extra messages are needed to achieve uniformity, but the message delay is

increased ton+ n/2 on average. Spread [114] and Totem [81] are examples of token-based total

arder algorithms. JGroups [59] provides a total arder implementation based on Totem. But it only

guarantees reliable delivery instead of uniform reliability.

In timestamp-based algorithms, each message m is timestamped with a vector of n counters

showing the number of messages received per process before m is sent to ali processes. Each process

can arder ali incoming messages according to their timestamps. It can also determine with the

help of these timestamps when other processes have received certain messages. That is, successive

messages are implicit acknowledgments for previous messages. This aliows a process to deliver a

message in total arder and when uniform reliability is guaranteed. The number of messages sent

per application message is n - 1. The number of message rounds to achieve total arder and uniform

reliability is in the best case 2. Timestamp-based algorithms were proposed in [71] but we are not

aware of any group communication system implementing it.

We also consider a total arder algorithm which is based on timestamps and does not guarantee

uniform reliability. In the algorithm, each process attaches a local sequence number and its process­

id to a message before sending it to ali processes. Each process delivers messages in round robin

Chapter 5. Replica control for performance and [ault-tolerance

1000

(i) 800
E
'à;"soo
E
F
a.400
(j)
(])

~ 200

0

""*"TOKEN 1 -+- SEQUENCER
..... TS

1 -*-RR

/ 1 -.__ 1
,........ ·-

20 30 40 50
Load (txn/s)

'/
__.Il

60

1

70

Figure 5.4: Performance of different multicast algorithms with database replication in WAN (Fig.
7in[72])

110

mode, i.e., one message from each process in turn. This requires n- 1 messages per application

message, and ideally, if all processes continuously send messages, only 1 message round. For

uniform reliability a similar scheme as for sequencer-based algorithms can be used, increasing the

message number to 3(n- 1) and the message rounds to 3.

To see how these algorithms differ from each other when working with database replication, we

evaluated them in a WAN with 5 sites (in Montreal, Edmonton, Waterloo, Madrid, Zurich) on top of

a protocol similar to SIMC. The nodes had different but similar setup (similar to Pentium(R)-4 CPU

1700MHz, 512MB memory). We only considered reliable, but not uniform reliable delivery since

only one available group communication system (Spread) act~ally provides uniform reliability.

Figure 5.4 shows the average response time of transactions with increasing load submitted to

the system. We used the sequencer-based algorithm (SEQUENCER) and token-based algorithm

(TOKEN) implemented in JGroups [59]. We provided our own implementations for round-robin

(RR) and timestamp-based total order multicast (TS) on top of JGroups. Note that SEQUENCER

and TOKEN provided by JGroups only provide reliable delivery guarantee, so does RR. TS provides

uniform reliable delivery.

The figure shows that TOKEN has the worst response time due to the circulation of the token.

SEQUENCER offers better performance although it requires three messages per application mes­

sage, and has the potential bottleneck of the sequencer site. Furthermore, it leads to stable response

Chapter 5. Replica control for performance and [ault-tolerance 111

times until the sequencer becomes saturated at around 70 transactions per second (tps). TS pro­

vides faster response times than TOKEN and SEQUENCER for low loads up to 40 tps although

this protocol provides additionaliy uniform reliable delivery. Interestingly, response times at 30 tps

are better than at 20 tps because when more messages are sent, the implicit acknowledgments arrive

faster. RR has the lowest response time of ali since there are no additional messages and message

rounds. It saturates only shortly before the sequencer due to CPU overhead. However, RR requires

that ali processes send messages in regular time intervals. If a process stops sending messages, ali

other processes will not be able to deliver messages further.

Our analysis shows that the distributed algorithms TS and RR can achieve slightly better per­

formance, however they cannat achieve the same throughput as the sequencer based algorithm.

Uniform reliability seems infeasible in a WAN. TS provides uniform reliability but it saturates at

very low throughputs. We did not evaluate token-based algoritms with uniform reliablity, since

the reliable token-based algorithm (TOKEN) has the worst response time already. Uniform reli­

able token-based algorithms definitely have much worse response time since they require one more

round of token circulation than reliable token-based algorithms.

5.3.2 Basic idea

Our analysis of the previous section shows that uniform reliable delivery seems infeasible in a WAN.

However, using only reliable delivery will require the replication tool to be particularly careful in the

failure case. Therefore, it makes sense to combine sequencer-based ordering with replica control and

develop independent fault-tolerance mechanisms instead of depending on the group communication

system.

Recali that SIMC needs total arder multicast to guarantee that ali writesets are validated in

the same arder at ali replicas so that ali replicas make the same decision. We can assign one of the

middleware replicas as the unique sequencer in the system. The idea is that instead of multicasting a

writeset with total arder, a middleware replica sends the writeset only to the sequencer middleware.

Only the sequencer middleware performs the validation. If validation succeeds it forwards the

writeset to ali middleware replicas in FIFO arder. If not, it simply sends the abort decision back

to the originator. The other middleware replicas now apply the writesets and commit transactions

Chapter 5. Replica control for performance and [ault-tolerance

(

0 Tl [ill [lli IIJ
T2

~~==============~~v2==========~D
[ill@ ~-~~~ Tl

~ T2~[IT}
T3

@ ~ ~~
~

time
@ Delivering Tl's writeset and Validation succeeds

De li vering T3' s writeset and Validation fails

Figure 5.5: Revisit Example 15 in Figure 5.1 using SEQ

112

in the order they receive them from the sequencer. Integrity constraints and distributed deadlocks

are handled just in the same way as in SRP-IC and SIMC. The early validation optimization is still

applicable. We refer to the new protocol as SEQ.

5.3.3 Example

Example 16. Figure 5.5 revisits the examplefor SIMC (i.e., Example 15). We mainlyfocus on how

validation is performed in SEQfor write transactions.

We let middleware MA be the sequencer. After T1 's execution at RA, T1 is validated imme­

diate/y locally at MA since it is the sequencer. T1 's validation is successful and T1 is appended

to tocommit_queue of MA. T1 's writeset and validation decision are also sent in FJFO order to

MB. Before its delivery, T2 and T3 are executed at RB. Each validation does not checked any

conf/kt and they are sent to MB for validation. Then MB receives T1 's writeset. lt does not need

to validate and immediate/y appends T1 to its tocommit_queue.

In the meantime, T2 is executed locally at RB. After its execution, its writeset is sent to the

sequencer MA for validation. At MA, when MA receives T2, it is successfully validated since it

Chapter 5. Replica control for performance and [ault-tolerance 113

does not have writelwrite conflicts with T1. The decision is sent back to MB. By now both MA and

MB know that Tz has been validated successfully. We use the same technique as in SIMC to apply

T1 and Tz after their validation. T1 will commit while Tz will abort due to integrity constraints.

When MA receives Ta, the validation fails due to the successful validation of Tl. MA discards

Ta and sends the abort decision to MB. MB aborts Ta at RB.

5.3.4 Protocol details

Figure 5.6 shows the details of SEQ which is based on the optimized SIMC in Figure 5.3. It

highlights the difference with bold letters.

In the local execution phase (step 1), SEQ is the same as SIMC except the last step. A replica

sends the writeset of an update transaction to the unique sequencer instead of multicasting it in total

arder.

Validation can only happen at the sequencer site (step 2). If validation fails, the sequencer

only sends the abort decision back to the sender (step 2c). Otherwise, the sequencer multicasts the

commit decision and the writeset to all replicas (step 2b).

Upon receiving a commit decision and the corresponding writeset (step 3), a replica appends

the transaction toits tocommit_queue for execution (step 3b). Upon receiving an abort decision

(step 4), a replica aborts the corresponding transaction (step 4a). Note that the replica does not need

to perform the validation again.

A transaction in tocommit_queue will be applied according to the same rules as in SIMC (step

5). The timeout mechanism is also the same as in SIMC (step 6). We do not repeat them here.

Correctness: Since SEQ has a unique sequencer to make the decision to commit or abort update

transactions, its proof is similar to that of SRP-IC and omitted.

5.3.5 Fault-tolerance

Fault-tolerance needs a detailed analysis because there is no group communication system and no

uniform reliable delivery.

Chapter 5. Replica control for performance and [ault-tolerance 114

Initialization: nexLtid:=l, ws_list:={}
tocommiLqueue:={}, wsmutex
timeouLthreshold:=certain_value (e.g.,50ms)

1. Upon receiving an operation Opi of Ti

(a) if Opi is start, then

i. begin Ti at Rk

ii. return to client

(b) else if Opi is read or write

i. execute in local Rk and return to client

(c) else if Opi is abort, then

i. abort Ti at Rk and return to client

(d) else (commit),

i. Ti.W8 := getwriteset(Tik) from local
Rk

ii. ifTi.ws = 0, then

• commit and retum

iii. obtain wsmutex

iv. if 3Tj E tocommit_queue 1\

7i.WS n Tj.WS-=/= 0
• release wsmutex

• abort Ti at Rk and return to client

v. Ti.vid:=next_tid-1

vi. release wsmutex
vii. send Ti to MSEQ

2. Upon receiving T from Ml (M8 EQ only)

(a) obtain wsmutex

ii. send (ABORT, Ti) back to Ml

3. Upon receiving (COMMIT, Ti) from
MSEQ

(a) Ti.timeout := currenLtime

(b) append Ti to tocommiLqueue

4. Upon receiving (ABORT, Ti) from MSEQ

(a) abort Ti and return to the client

5. Upon Ti is the first in tocommit_queue,

(a) if Ti local at Rk,

1. obtain Ti.timeout_mutex

ii. Ti.timeout := 0

iii. release 7i.timeouLmutex

(b) if Ti remote at Rk or Ti.aborted=true,
loop

i. begin Tf' at Rk

ii. apply Ti. W S to Rk

iii. if Ti aborted by deadlock, then

• continue the loop

1v. else if Ti aborted by IC, then

• exit the loop

v. else (7i successfully applied)

• commit Ti at Rk

• exit the loop

(c) return to client if Ti is local.

(d) remove 7i from tocommiLqueue

(b) if ~Tj E ws_list such that 6. Upon timeout of transaction Ti local at
T 'd < T t 'd 1\ T WS n T WS -t. 0 Rk, (i.e., current_time - TI .timeout > ioV'l. j• 'l, i• j• { : •

1. Ti.tid := nexLtid++
ii. append Tito ws_list

iii. send (COMMIT, Ti) to ali middle­
ware replicas in FIFO order

iv. release wsmutex

(c) else

1. release wsmutex

timeouLthreshold)

(a) obtain Ti.timeouLmutex

(b) if7i.timeout-=/= 0, then

i. abort Ti

ii. Ti.aborted:=true

(c) release Ti.timeouLmutex

Figure 5.6: SEQ at middleware replica Mk

Chapter 5. Replica control for performance and [ault-tolerance

exe

exception

resp aborted

case 1

val

check

case 2

Figure 5.7: SEQ failovercases (1)

115

1few-SEQ M

case 3

The client failover is as in SIMC. The JDBC driver of the client automatically reconnects to

a new middleware replica if it looses the connection to its old replica. If there was no transaction

active on a connection, nothing special has to be done.

Note that the execution of T might be affected by crashes of its local replica Mk and the se­

quencer replica M 8EQ (if Mk is not M 8EQ). The crash of any other replica has no impact on T.

We will analyse the failover according to the crashes of different replicas.

Crash of Mk (sequencer/non-sequencer) during execution of T (Figure 5.7 case 1)

If T's local replica Mk crashes in the middle of execution of T (i.e., before the client submitted

the commit request), then the driver simply returns an abort exception to the cliènt program before

reconnecting to a different replica. This is necessary, because the sequencer does not y et know about

the transaction, and hence it cannot be recovered. Figure 5.7 case 1 shows such a scenario. Note

that an abort exception will be thrown no matter if Mk is M 8EQ or not. In case M 8EQ crashes,

there is a coordination which will be described later.

Crash ofnon-sequencer Mk after submitting T's commit request (Figure 5.7 case 2):

Figure 5.7 case 2 shows such a scenario. In this case, the JDBC driver receives a failure exception as

return to the commit request. The driver resubmits the same commit request to the sequencer replica.

Upon receiving such resubmission, the sequencer checks whether it had received the writeset of the

Chapter 5. Replica control for performance and [ault-tolerance

1\few-SEQ M client

case4

Figure 5.8: SEQ failover cases (Il)

1few-SEQ

, ... ;-~-- ---
i.icoordi
:âL~f~~jr\i~~L <

continue~ 1
without wslt t

case 5

116

corresponding transaction from Mk. If yes, it will retum the outcome (commit or abort) to the

driver/client. If not, it retums an abort decision because the transaction is lost. From there, the

·driver can decide to stay connected with the sequencer, or connect to a replica that is cl oser to the

client. In the latter case, the driver has to be careful that it only sends the next transaction to this

replica once it can be sure that ali previous transactions transmitted through this driver have been

applied at this replica in order to guarantee session consistency (a transaction sees the changes of

committed transactions from the same client).

Crash of sequencer M 8 EQ

Corrdination of new sequencer (Figure 5.7 case 3)

First, when the sequencer MSEQ crashes, we assume there is an election protocol that determines

a new sequencer Mnew-SEQ_ For that, SEQ canuse, e.g., the membership features of GCS. That

is, ali middleware replicas build a GCS group and if a member fails, the GCS automaticaliy informs

the others about the crash. GCS's unfirm reliable multicast primitives could be used to decide on

the next sequencer. We believe using the GCS for this limited purpose is acceptable considering the

properties it provides and the fact that failures occur seldomly. If the membership changes again

while failover is still ongoing, the failover procedure is simply restarted.

Figure 5.7 case 3 shows a detailed example of how the new sequencer coordinates the surviv­

ing replicas. MSEQ validates T1 and T2 successfuliy, sends bath decisions (including writesets)

Chapter 5. Replica control for performance and fault-tolerance 117

to Mk but crashes before sending T2 's decision to Mnew-SEQ_ Recali that ali replicas execute

and commit the same transactions in their tocommiLqueue. Bach replica can inform Mnew-SEQ

about their value of lastcommitted_tid once tocommit_queue is empty. Let tidl be the value

of lastcommitted_tid of Mnew-SEQ and tid2 the largest value of any lastcommitted_tid re­

ceived from the other replicas and let Mk be the replica that sent this value. If tid2 > tidl, then

Mnew-SEQ is missing sorne transactions that were received by other replicas. Mnew-SEQ contacts

Mk to retrieve the missing transactions (e.g., T2 in this case)1. Mnew-SEQ applies these transac­

tions locally and sends them to replicas that miss them. Which transactions to send can be easily

determined by the corresponding lastcommitted_tid values. From there, normal processing re­

sumes on Mnew-SEQ. The drivers that were connected to the old sequencer and had outstanding

commit requests connect to the new sequencer and resubmit the commits.

MSEQ crashes and Mk is not MSEQ (Fig. 5.8 case 4):

Let's consider a case that a client submits its transactions to a non-sequencer replica Mk at the

time M 8 EQ crashes. Mk may have sent a writeset of one of its clients for validation to M 8 EQ

but no replica received the commit/abort decision before the crash, as shawn in Figure 5.8 case 4.

Thus, once a replica Mk has received ali the missing transactions from Mnew-SEQ, Mk resends

the writesets of outstanding transactions to the new sequencer for revalidation. This is transparent

to the client and the JDBC driver. It might happen that Mk is not M 8 EQ and they crash at the same

time. Then the coordination selects a Mnew-SEQ and the client will be redirected to Mnew-SEQ.

MSEQ crashes and Mk is MSEQ (Fig. 5.8 case 5):

Let's consider the other case that a client submits its transactions to M 8 EQ when M 8 EQ crashes.

There are two situations where inconsistencies can occur because we do not have uniform reliable

multicast. First, as shawn in Figure 5.8 case 5, a transaction T1 local to the old sequencer might

have committed but nobody received the decision before the crash. The client might have received

the commit confirmation. Either we black execution until the old sequencer recovers (i.e., no se­

quencer takeover) or the transaction is lost since the other replicas continue execution without this

1 Note that this requires replicas to keep decisions and writesets of committed transactions. Hence, sorne garbage
collection process must be in place to eventually delete writesets once it is assured that ali replicas have received them.

Chapter 5. Replica control for performance and [ault-tolerance 118

transaction.

The second inconsistency might arise when a replica sends a writeset for transaction T for

revalidation to the new sequencer, and the new sequencer decides on one outcome (either commit

or abort) while the old sequencer bad decided on a different outcome. From the client perspective,

there is no problem because it never received the first decision of the old sequencer (it was not

connected to the old sequencer). Renee, this issue is merely a recovery problem. If the old sequencer

decided abort and the new sequencer decided commit, then, upon recovery of the old sequencer, one

must make sure that the updates performed by T are transferred during the recovery process since it

eventually committed. If the old sequencer committed T but the new aborted it, then, upon recovery,

the old sequencer bas to undo the changes.

5.4 Hybrid: a replication protocol taking ad van tage of network topolo­

gies

5.4.1 Basic idea

While optimized on performance, SEQ bas the shortcoming that if the sequencer crashes, sorne

transactions might be lost. SIMC avoids this problem since it uses the uniform reliable delivery of

GCS. However, as we discussed before, this uniform reliable delivery is tao costly in a WAN.

However, we can still take advantage of GCS in sorne configurations. In many applications

there exist different sets of replicas, each set being connected via a LAN, while the different sets are

separated through a WAN. For example, a Chinese news website might have many replicas in the

company's headquarter located in Beijing, a large set of replicas in Shanghai, and then smaller sets

of replicas dispersed around the world. For these kinds of applications, we propose the HYBRID

approach, which addresses bath fault-tolerance and performance issues. An example of its archi­

tecture is depicted in Figure 5.9. We assume the replicas can be split into different subsets, each

of them being located on a different LAN. We assign one LAN with at least two replicas to be the

primary LAN and the others as secondary LANs.

Within the primary LAN, we use SIMC based on GCS. Since communication is fast in a LAN,

Chapter 5. Replica control for performance and [ault-tolerance

0
Secondary LAN
in Edmonton

Secondary LAN
in Madrid

Secondary LAN
in Toronto

Figure 5.9: An example of network topologies for HYBRID

119

the overhead of uniform reliable, total order delivery is acceptable. For the secondary LANs, we

use hierarchical validation. A transaction is first validated by a local sequencer in the secondary

LAN according to the SEQ protocol. Then, if validation succeeds, the local sequencer forwards it

to a replica in the primary LAN for further validation. If validation succeeds in the primary LAN,

the transaction will be sent to the local sequencers of all secondary LANs which forward it to the

other replicas in their LANs. Renee, all replicas apply the writeset. If the global validation fails, the

decision is only sent back to the secondary LAN where the transaction originated.

HYBRID improves over SEQ in several ways. First, since the primary LAN uses uniform

reliable delivery, no transactions will be lost unless all replicas of the primary LAN crash. Secondly,

on the secondary LANs only the local sequencers perform WAN communication, and only these

local sequencers must be known in the primary LAN. This also leads to less WAN messages since

commit decisions are not sent to all remote replicas but only to the local sequencers which forward

them in their local LANs. Moreover, only the sequencer in a LAN will have ports opened on

the firewall for WAN access. It reduces the chances for attacks and the complexity of network

management. Finally, part of the validation is done at the local sequencers, decreasing the validation

load on the primary LAN.

Chapter 5. Replica control for performance and {ault-tolerance 120

5.4.2 Protocol details

For the sake of simplicity we assume a single replica in the primary LAN to take care of commu­

nication with alllocal sequencers. We refer to this replica as global sequencer (note, however, that

validation is done at all replicas in the primary LAN). If this communication overhead becomes too

large, the algorithm can be easily extended such that each replica of the primary LAN maintains the

communication with sorne of the local sequencers.

We show the details of the protocol in Figure 5.10. When a transaction is submitted to a replica

in a secondary LAN, it follows the same procedure as discussed in SEQ (Step 1) until it passes the

validation in the sequencer of the local LAN (Step 2(a)ii). At this time, it can not commit yet be­

cause there may be sorne concurrent conflicting transactions in other LAN s. Renee, its writeset has

to be sent to the global sequencer in the primary LAN for global validation. However, its vidvalue

is adjusted so that it will not be validated against those transactions against which it has been vali­

dated by the local sequencer. When a transaction is submitted to a replica in the primary LAN (Step

3a), it follows the same procedure as in SIMC. When the global sequencer receives a transaction

from a secondary LAN (Step 3b), it multicasts the writeset in uniform reliable and total arder within

the primary LAN. Thus, all writesets (both from the primary LAN and the secondary LANs) are

delivered to all replicas in the primary LAN (Step 3c). They validate transactions according to the

delivery arder. Thus, all decide on the outcome. If a transaction succeeds in its validation it is en­

queued for execution. Moreover, the global sequencer sends in FIFO arder the commit decision and

the writeset to all the local sequencers of secondary LANs (step 3(c)iD) which forward them to the

others replicas of their LANs (Step 2b). Thus all replicas will execute and commit the transaction. If

validation fails (Step 3(c)ii) and it was a transaction of the primary LAN, the corresponding replica

aborts the transation. Otherwise, the global sequencer notifies the local sequencer of the originator

of the transaction about the abort (step 3(c)iiB). This local sequencer forwards this decision to the

originator (Step 2c). Replicas on the primary LAN apply writesets as in SIMC (Step 3d).

Chapter 5. Replica control for performance and [ault-tolerance 121

Initialization: same as SEQ

1. If Mk on secondary LAN:

• Same as SEQ in Figure 5.6

2. If Mk=MlocalSEQ on secondary LANs
(besicles step 1):

(a) Upon receiving Ti from M 1 in the same
LAN

i. obtain wsmutex

ii. if ~Tj E ws_list such that
Ti.vid < Ti.tid1\Ti.WSnTi.WS =/:. 0:

• Ti.vid := next_tid-1

• release wsmutex
• send Ti to MglobalSEQ

iii. else

• release wsmutex

• send (ABORT, Ti) back to M 1

(b) Upon receiving (COMMIT, Ti) from
MglobalSEQ

i. obtain wsmutex
11. next_tid : = Ti. tid+ 1

iii. append Ti to ws_list

iv. send (COMMIT, Ti) to all M 1 in the
same LAN in FIFO arder.

v. release wsmutex

(c) Upon receiving (ABORT, Ti) from
MglobalSEQ

i. send (ABORT, Ti) to the originator of
7i

3. If Mk on the primary LAN:

(a) Upon receiving an operation Op of Ti

• Same as SIMC with optimizqation Fig­
ure5.3

(b) Upon receiving Ti sent by a MlocalSEQ

from a secondary LAN (MglobalSEQ

only)

i. Multicast Ti in primary LAN in uni­
form reliable and total arder.

(c) Upon receiving Ti multicast in the pri­
mary LAN in uniform reliable and total
arder

i. if ~Tj E wsJist such that
Ti.vid < Ti.tid1\T.WSnTi.WS =/:. 0:
A. 7i.tid := next_tid++

B. append Ti to ws_list
C. append 7i to tocommiLqueue
D. if Mk is MglobalSEQ, send

(COMMIT,Ti) to all MlocalSEQ in
FIFO arder

ii. else

A. if Ti local, abort Ti and return

B. el se if Ti originated on secondary
LAN and Mk is MglobalSEQ'

send (ABORT, Ti) back to the
MlocalSEQ of the originator of Ti.

(d) Upon Ti is first in tocommiLqueue

• Same as SIMC with optimization (Fig­
ure 5.3)

(e) Upon a local transaction Ti timeout after
its successful validation,

• Same as SIMC with optimization (Fig­
ure 5.3)

Figure 5.10: HYBRID protocol on rniddleware replica Mk

Chapter 5. Replica control for performance and [ault-tolerance

loca!SEQ newLocalSEQ , .k ,. ,globalSEQ
client M M M 1v1

case 1

' 1

ws:

a ti on

, &oba!SEQ newgloba!SEQ localSEQ
client M M M

coo dination

case 2

Figure 5.11: HYBRID failover cases

5.4.3 Fault-tolerance

122

Similarly to SEQ, HYBRID uses a fault-tolerant driver to handle failover. It is an extension of what

had to be done for SEQ (Section 5.3.5). When a site crashes before a transaction submits its commit,

the driver simply informs the client about an abort exception as shawn in Figure 5.7 case 1 before

reconnecting to another replica. The more interesting case is when the client had already submitted

the commit request for a transaction but not yet received a response when its local site crashes.

Crash of a non-sequencer replica in secondary LAN: It is the same as described for a non­

sequencer replica in the SEQ algorithm (see Figure 5.7 case 2).

Crash of a non-sequencer replica in the primary LAN: It is similar to the actions described for

a non-sequencer replica in the SEQ algorithm (see Figure 5.7 case 2). The driver can reconnect to

any replica in the primary LAN. Uniform reliable multicast guarantees that either ali or none of the

available replicas have received the transaction's writeset, and bence, ali make the same decision. It

is similar to the discussion in Section 5.2.6.

Crash of the local sequencer MlocalSEQ in a secondary LAN: An example of this situation is

shawn in Figure 5.11 case 1. As for SEQ, ali replicas in the secondary LAN first perform sorne

coordination to decide on a new local sequencerMnewLocalSEQ. Ali non-sequencers now inform

Chapter 5. Replica control for performance and [ault-tolerance 123

MnewLocalSEQ about the last writesets they received. Different to SEQ, MnewLocalSEQ now in­

forms the global sequencer MglobalSEQ about the last transaction it has committed (taking the value

of lastcommitted_tid). MglobalSEQ sends MnewLocalSEQ all the transactions the local sequencer

has missed. MnewLocalSEQ provides each non-sequencer replica Mk in the LAN with the trans­

actions Mk has missed. As in SEQ, a driver connected to the crashed MlocalSEQ reconnects to

MnewLocalSEQ and resubmits the commit request if necessary. And a non-sequencer replica Mk re­

submits outstanding writesets to MnewLocalSEQ. Recall that in SEQ, transactions from clients con­

nected to the crashed sequencer might be lost if their writesets were not transmitted to other replicas

before the crash. This problem cannat happen here. Before committing locally, a local sequencer

sends its own writesets to the global sequencer. That is, if MlocalSEQ has committed a transaction

before the crash, so has MglobalSEQ and MnewLocalSEQ will receive it from MglobalSEQ.

Crash of the global sequencer MglobalSEQ in the primary LAN: The global sequencer in the

primary LAN is simply the connection point for secondary LANs but validation is actually done

by all replicas in the primary LAN. Even if the global sequencer has decided on a transaction but

not sent the commit/abort decision to the secondary LANs, all other replicas in the primary LAN

are guaranteed to have received the writeset and decided the same outcome. Thus, as shawn in

Figure 5.11 case 2, local sequencers can reconnect to the new global sequencer (which can be easily

decided on via voting or pre-selection) and retrieve any missing writesets. The client management is

similar to the previous case. As long as one replica survives in the primary LAN, the inconsistency

problem that can occur in SEQ is avoided.

If a whole secondary LAN crashes, clients can reconnect to the primary LAN without any Joss

of transactions. Loosing the full primary LAN would be a catastrophic failure. A secondary LAN

should take over but sorne transactions submitted on the primary LAN might be lost.

5.5 Discussion

In this chapter, we presented three protocols (i.e., SIMC, SEQ, and HYBRID) that are able to

execute in WANs and provide fault-tolerance.

SRP-IC does not perform wellin WANs due to the centralized middleware architecture it uses.

Chapter 5. Replica control for perfonnance and [ault-tolerance 124

It requires severa! message rounds within the response time of a transaction. We solve the problem

by using a decentralized middleware architecture (Figure 2.l.(c)). The decentralized architecture

introduces additional challenges for validation. SIMC overcomes the problem by using total arder

multicast provided by GCS. Additionally, unifonn reliablity multicast provides fault-tolerance for

SIMC. SIMC only requires one multicast message per transaction through the WAN. However,

GCS is costly in WANs. Renee, we derive SEQ by discarding the usage of GCS in SIMC. There

is a sequencer site in SEQ. The middleware replica at the sequencer site is responsible for ali the

validation. SEQ only requires two message rounds through the WAN.

We also discuss the fault-tolerance issues in SIMC and SEQ. SIMC can take advantage of uni­

form reliable multicast semantics provided by GCS. Since SEQ does not rely on GCS, it needs its

own fault-tolerance tool. Since this does not provide uniform reliable delivery, there might be a case

which might lead to lost transactions.

HYBRID is proposed to overcome this problem as optimization on cluster-based WAN config­

urations. It is a mixture of SIMC and SEQ. It groups replicas into severa! groups depending on their

network distance (e.g., replicas in one LAN can be one group). A group is designated as primary

LAN and SIMC is applied. The remaining clusters are considered as secondary LANs and SEQ

is applied. Between primary and secondary LANs, an adjusted SEQ is used. HYBRID can take

advantage of uniform reliable multicast to improve the fault-tolerance in the primary LAN. At the

same time, it does not experience long message delay incurred by uniform reliable and total arder

multicast across different LANs.

SEQ and HYBRID bath count on their centralized components, i.e., sequencer or primary LAN

respectively, to make a final decision of validation. In WAN s, network partitioning might sometimes

happen and the centralized components might temporarily not be accessible. To avoid secondaries

to wait forever, we should set a threshold waiting time at secondaries. The threshold value can be

adaptive to empirical data. After timeout, secondaries can either stop execution pessimistically or

select a new primary to continue if they can get a quorum of ali replicas. In the latter case, the old

primary should be discarded.

Chapter 5. Replica control for performance and [ault-tolerance 125

Protocols architecture communication WAN overhead
SIMC purely decentralized total arder and uniform reli- one multicast mes-

able multicast sage
SEQ decentralized with one se- TCP/IP two message

quencer rounds
HYBRID SIMC in primary LAN, SEQ total arder and uniform reli- two WAN message

in secondary LANs, SEQ be- able multicast within primary rounds and one
tween primary and secondary LAN, TCP/IP within sec- LAN multicast
sequencers ondary LANs and between message

primary and secondary LANs

Table 5.2: Comparison of protocols for WANs

The characteristics of SIMC, SEQ, and HYBRID are summarized in Table 5.2.

Chapter 6

Evaluation

This chapter provides a detailed evaluation of the protocols of Chapter 5, namely SIMC, SEQ and

HYBRID. We do not consider the protocols SRP, SRP-IC of Chapter 4 since they do not consider

fault-tolerance. However, we compare against two variations of a lazy primary copy approach. They

represent typical execution scenarios of existing protocols in terms of execution flow between client

and middleware, and middleware and underlying database systems, and thus, allow us to compare

our protocols against existing ones in terms of performance.

The remainder of the chapter is structured as follows. First, Section 6.1 describes our replica­

tion framework into which we plugged the various replication algorithms. Section 6.2 describes

the comparison protocols. Section 6.3 presents two benchmark applications that are used in the

experiments. Section 6.6.1 discusses the experimental setup. In Section 6.5, the protocols are eval­

uated in a LAN environment. Section 6.6 evaluates the performance in a WAN. All experiments are

conducted in real networks.

6.1 Replication framework

We have built a middleware-based framework, MiddleSIR (Middleware-based Snapshot Isolation

Replication), which accomodates the implementation of different replication protocols. The frame­

work follows the decentralized architecture of Figure 2.1.(c). The inner structure of one middleWare

126

Chapter 6. Evaluation 127

other comm Mgr

DBreplica

Figure 6.1: MiddleSIR framework

replica is shown in Figure 6.1. A middleware replica is divided into three components, namely, com­

muncation manager, transaction manager, and connection manager.

The communication manager is in charge of any kind of communication, including (i) com­

munication between client and niiddleware, and middleware and database; and (ii) communication

between different middleware replicas. Clients submit their requests to the middleware through

sorne standard database interface such as Java Database Connectivity (JDBC). The communication

manager interacts with the transaction manager for replica control. The transaction manager takes

charge of transaction synchronization. The main part of the replication protocols are implemented in

this component. It will detect concurrency and conflicts between transactions and decide whether to

commit transactions or abort them. A transaction manager will contact its local connection manager

for physically executing, committing or aborting a transaction.

Note that each componenent has different versions of implementation. For example, there are

different communication managers according to different communication paradigms, e.g., socket

or multicast with group communication. There are different transaction managers corresponding

to different replica control algorithms. There are different connection managers corresponding to

different underlying DBMSs1.

In our experiments, we use severa! kinds of communication paradigms. We use TCPIIP socket

communications in SEQ, lazy primary copy approaches, and HYBRID. We use the group commu­

nication systems Spread [114] and JGroups [59] in SIMC and HYBRID.

1Currently we only implementa connection manager for PostgreSQL

Chapter 6. Evaluation 128

6.2 Comparison lazy primary copy protocols

Our comparison protocols are also implemented in the replication framework, thus relying on one

middleware replica for each database replica.

Recall that in a lazy primary copy approach, an update transaction T must be submitted or

forwarded to the primary replica for execution which propagates then the changes made by T to the

secondary replicas lazily, that is, after committing T. Read-only transactions can be executed at any

repli ca.

We consider two lazy primary copy protocols. LPnMsg is more suitable for a LAN since it bas a

considerable message overhead. LPlMsg has only two message rounds per transaction between the

middleware replicas and thus, is more suitable for a WAN. However, in this case, the middleware

does not provide a standard JDBC interface to the application. Instead, the middleware must know

all transactions, and receives from the client a request to execute a certain transaction with a specifie

set of input parameters. Thus, LPlMsg only works if the middleware instance and the application

environment are actually collocated. Bath protocols require that a transaction indicates at its start

time whether it is an update or a read-only transaction.

LPnMsg

When a transaction (read-only or update) is submitted to the middleware replica of the primary

replica, the middleware instance simply forwards all requests to the local database replica. When

the client submits the commit request, the middleware replica first retrieves the writeset from the

database replica, then commits the transaction locally, and finally multicasts the writeset in FIFO

arder to the secondary replicas.

Secondary replicas simply apply writesets in the arder they receive them from the primary

replica. For a read-only transaction submitted to a secondary replica, the middleware simply for­

wards ali operations to the local database replica and commits the transaction locally. For an update

transaction, the middleware forwards each operation submitted by the client to the primary replica.

Note that also read operations have to be forwarded in arder for them to read from the proper snap­

shot. The primary middleware submits it to its local replica and returns the result to the secondary

Chapter 6. Evaluation 129

middleware which forwards it to the client. At commit time, the primary middleware commits

the transaction locally and forwards the writeset to all secondaries as it does for writesets of local

transactions.

LPlMsg

For transactions submitted to the primary replica, and for read-only transactions submitted to sec­

ondary replicas, the protocol works the same as LPnMsg. Also, secondary replicas apply writesets

received from the primary sequentially as in LP1Msg.

When an update transaction is submitted to a secondary replica, it is assumed that the entire

transaction is submitted by the client in one message. This could be simply a transaction identifier

with sorne parameter values (and the code for the transaction is actually integrated into the mid­

dleware itself) or a set of SQL statements. The secondary then forwards the request to the primary

middleware which initiates the execution of the transaction at its local database replica, commits the

transaction locally, and then forwards the writesets to all secondary replicas where they are applied.

6.3 Benchmarks

6.3.1 1LJl<:-~

TPC-W [118] is a standard benchmark proposed by the Transactional Processing Performance

Council (TPC) [119] forE-commerce applications that require a transactional persistent storage.

The benchmark simulates an online bookstore. Clients can browse, shop, and arder books on­

line. There are three kinds of workloads that vary in the ratio of update vs. read-only transactions

(Browsing: 5%, Shopping:20%, Ordering:50%). The TPC-W database consists of 8 tables. The size

of each table is determined by the number of items and emulated browsers (clients) in the system.

The experiments use a standard setup of 100,000 items and 100 emulated browsers which leads to

a database with 650 MByte. The evaluation uses a Java implementation of the benchmark from the

University of Wisconsin-Madison [123].

The TPC-W evaluates both web- and database server. Since we are only interested in the behav­

ior of the database, we first generated transaction traces by running the TPC-W using a single web

Chapter 6. Evaluation 130

server, single database server configuration. These traces were then used as input for the evaluation

of the replication protocols. In all experiments, the load was evenly distributed to all replicas.

6.3.2 Synthetic benchmark

The second benchmark is a synthetic benchmark. It is used to simulate update intensive workloads

(i.e., 100% updates). The evaluation of such a benchmark is useful since replica control is mainly

concemed with synchronization of update operations. There are ten tables in the database, each

with 10,000 records. Each table has five attributes (two integers, one 50-character string, one fioat,

and one date). The overall tuple size was slightly over 100 bytes, which yielded a database size of

just more than 10 MBytes. An update transaction has ten update operations, each of which updates

a tuple indexed by a random primary key. Each operation has the form

UPDATE table-i SET attrl="randomtext", attr2=attr2+4 WHERE t-id=random(l-10000).

6.4 Experimental setup

In each test run, each replica has the same number of clients connected to it. Within a transaction,

each client submits the next SQL statement immediately after receiving the previous one, but it

sleeps between two different transactions. Each client submits 1000 transactions at the rate of 1

transaction per second in LANs and 0.5 transaction per second in WANs. The number of clients

determines the system-wide load. All tests achieved a confidence interval of 95% +- 2.5%. Unless

otherwise stated, the timeout value to detect distributed deadlocks was set to 100 ms.

6.5 Local area network

This section analyzes the behavior of the protocols in a LAN. HYBRID is not considered since it is

designed for WAN setups in which there are several inter-connected LANs. In our experiments each

computer in the cluster hasan Intel Pentium-IV CPU with 2.66GHz and 512KB cache, 512 MByte

memory, and 30 GB hard disk. Each computer runs the Linux operating system with the kemel of

2.6.17-gentoo-r4. All computers are connected by a 100Mbps Ethemet.

Chapter 6. Evaluation

(a) Sequencer/primary
1400

1200

î 1000

~ 800

~ 600
U)

~ 400

200

0

r-- -+-SIMC

r-- SEO

"'*'"LP

5

/
/

/ ~
~//

~

10 15 20
Load (txn/s)

1400

1200

Ë 1000

~ 800
.-::::; 600
~
~ 400

200

0

-
-

(b} Non-sequencer/secondary

-+-SIMC
...... SEO

""*"LP

5

/

10 15
Load {txn/s)

A

20

Figure 6.2: Average response time ofread-only transactions, TPC-W shopping workload

6.5.1 Base comparison using TPC-W

131

In this section, we provide a first comparison of SIMC and SEQ with LPnMsg using five replicas.

We chose LPnMsg over LPlMsg because it represents the more flexible protocol allowing for a

standard JDBC interface. In this section we refer to LPnMsg as LP for simplicity. Recall that SIMC

provides purely distributed synchronization, while SEQ and LP bath have a node with special tasks

(the sequencer in SEQ, and the primary in LP). The workload of the sequencer/primary is different

from the other replicas. Thus, the figures separate the results for this special node from the results

obtained at the other nades. Of course, for SIMC, the results are always the same for bath node

types. SIMC uses Spread providing total order and uniform reliable delivery.

We first use the TPC-W shopping workload with 20% updates. Figures 6.2.(a) and 6.2.(b) show

the average response time of read-only transactions at the sequencer/primary replica and the non­

sequencer/secondary replicas, respectively, with increasing load. All response times increase with

increasing load. At low loads all the protocols behave the same. When the load is increasing, LP

is significant worse than SIMC and SEQ at the primary; at the secondaries it is worse only at very

high load.

Since a read-only transaction executes only locally and does not trigger any communication,

the response time is solely determined by the CPU usage at the local replica. The CPU usage is

shown in Figures 6.3.(a) and (b). The figures indicate that SIMC has almost the same CPU usage

as SEQ which increases linearly with the load. Correspondingly Figures 6.2.(a) and (b) show the

Chapter 6. Evaluation 132

(a) Sequencer/primary (b) Non-sequencer/Secondary
100% 100%

"ô' 80%
~

~ 80%
~

~ 60% ~ 60%
al al
(/) (/)

::::l 40% ~ 40% :::> a. a.
ü 20% ü 20%

0% 0%

5 10 15 20 5 10 15 20
Load (txn/s) Load (txn/s)

Figure 6.3: CPU usage, TPC-W shopping workload

same average response times for ali settings. This means the GCS overhead is similar to the one

of TPCIIP socket communication in a LAN, and the asymmetric load of SEQ has no effect on its

performance.

Figures 6.3.(a) and (b) also show that LP has higher CPU usage than SIMC and SEQ at the pri­

mary replica and slightly lower load at the secondary replicas. This is because SIMC and SEQ have

a better load balancing potential than LP. Recall that in LP the primary has to execute all operations

(read and write) of all update transactions while secondary replicas only apply the writesets. Fur­

thermore, executing the SQL update statements is more expensive than applying the writeset. In our

implementation, applying the writesets at the secondary takes only around 20% of the time it takes

to execute the entire transaction at the primary. In contrast, using SIMC or SEQ, update transactions

can be executed anywhere, distributing the cast of executing the read and update SQL statements

within update transactions across all replicas. Therefore, LP has a much higher load at its primary

due to the accumulated load of update transactions, and slightly less load at the secondaries. This

leads to observed average response times in Figures 6.2.(a) and (b).

Let's now look at update transactions. Figures 6.4.(a) and (b) show the average response times

of update transactions with increasing load for primary/sequencer and secondary/non-sequencer

replicas, respectively. In bath figures, SIMC and SEQ have law response time up to the saturation

point. SIMC has slightly larger response time than SEQ at the sequencer. This is due to the fact

that there is no communication delay for the update transactions at the sequencer in SEQ because

Chapter 6. Evaluation

(a) Sequencer/primary
250

.--..200
~
-; 150
E
~ 100
~
a: 50

0

-+-SI MC
·"'··SEQ
-LP

5

/
/
/~

.4 ,../' --~
.. .. ~---

10 15 20
Load (txn/s)

250

......_200
Il)

E
';150
E

:;:::; 100
6}·
Q)

a: 50

0

r-

{b) Non-seqeuencer/Secondary

-+-SI MC /'
·*··SEQ / -LP

/
~ ~

-~-......

5 1 ~oad (txn}~ 20

Figure 6.4: Average response time of update transactions, TPC-W shopping workload

133

they are validated locally. SIMC, however, includes a total arder message round. But even at the

non-sequencer nades SIMC is slightly worse although also SEQ includes two message rounds. The

reason is that SIMC also provides uniform reliable delivery, not provided by SEQ, that leads to

further delay.

At the primary replica, LP's response time is the same as SEQ's response time for a law load

but then increases and is significant worse at the saturation point. At law loads LP behaves very

similarly to SEQ since the execution pattern is similar and LP is not yet highly loaded. At higher

loads LP is simply more loaded leading to worse response times. At the secondaries, LP is signifi­

cantly worse than the other two protocols. This is because each operation of an update transaction

needs to be sent to the primary leading to several message rounds per transaction. A typical TPC-W

update transaction has on average four operations, which results in four round trip messages within

the response time of the transaction.

We also conducted experiments using the browsing and ordering workloads of the TPC-W

benchmark. The results are shawn in Figures 6.5 and 6.6. The results show the same tenden­

cies as the shopping workload and thus, will not be discussed in more detail. The behavior of LP

compared to the other two is less extreme for the browsing workload since it has mainly read-only

transactions, and more extreme for the ordering workload since it has more updates that have to be

executed at the LP.

Chapter 6. Evaluation

Ci)

600

500

.s 400
(])

:É 300
c.
8l 200
a:

100

0

;g 90%
~

~ 80%
al en
:::1

70% ::>
a..
(.) 60%

120

(jj' 90 .s
(J)

~ 60
0..
Ill
(J)

30 a:

0

{a) Sequencer/primary, read-only txns

-+-SIMC
.. ,. .. SEO

--.-LP

10

/

/A
_/'~

12.5
Load {txn/s)

15

{c) Sequencer/primary, CPU usage

10 12.5
Load (txn/s)

15

{e) Sequencer/primary, update txns

-+-SIMC
1-- ..,...SEO

"*'LP

..... ..

10

/
.. ---....-·

12.5
Load {txn/s)

..

15

600

500

î 400
(J)

~ 300
0..
gJ 200
a:

100

0

134

{b) Non-sequencer/secondary, read-only txns

- -+-SIMC

--seo
- LP

,..

10

__/'

12.5
Load {txn/s)

./

15

{d) Non-seqencer/secondary, CPU usage
100%.---------------------------.

--. 90% -+-SIMC
~ ··SEO
~ 80% LP
al
Ill
:::1 70% ::>
a..
ü 60%

50%+---------.--------,--------~

120

(jj'

.s 90

(J)

~ 60
c.
gJ
a: 30

0

10 12.5
Load (txn/s)

15

{f) Non-sequencer/secondary, update txns

-+-SIMC

...... seo
--LP

r.

10

/
/
~ -

12.5
Load {txn/s)

15

Figure 6.5: TPC-W browsing workload

6.5.2 Stress test using update intensive workload

For ali TPC-W workloads the percentage of read operations is fairly high. In this section, we want

to stress test the system by using the update intensive synthetic benchmark consisting of 100%

updates. This helps to analyze how the replica control component can handle peak situations.

Chapter 6. Evaluation

600

500
(jj'
§. 400
<Il
E 300 .,
c.
Ul 200 <Il
a:

100

0

(a) Sequencer/primary, read-only txns

10 12.5 15 17.5 20 22.5 25
Load (txn/s)

(c) Sequencer/primary, CPU usge

~ 80% -1-------,;?L------,.. =----j

Q) m 60%

~ 40o/ot-~---------r=--~
0:: -+-SIMC
ü 20% +----------~_,._SEO

(jj'
§.
<Il
E. .,
c.
Ul
<Il
a:

...-LP
oo!o+--.---.--.--.--.~~==~

180

150

120

90

60

30

0

10 12.5 15 17.5 20 22.5 25

Load (txn/s)

(e) Sequencer/primary, update txns

!- -+-SIMC
!- ·*·SEQ

...-LP

...... ~
~ ~,_./
..... -·111!·······-4-··~~

10 12.5 15 17.5 20 22.5 25

Load (txn/s)

600

500
(jj'
§. 400
<Il
E 300 .,
c.
Ul 200 <Il
a:

100

0

100%

~ 80%

135

(b) Non-sequencer/secondary, read-only txns

-+-SIMC
r- +SEQ A.

...-LP _/"
~

10 12.5 15 17.5 20 22.5 25
Load (txn/s)

(d) Non-sequencer/secondary, CPU usage

~ 60% +----~~~-------~
Ul
~

:::>
a..
ü

,........
tl)

§.
<Il
E
"" c.
Ul
<Il a::

180

150

120

90

60

30

0

10 12.5 15 17.5 20 22.5 25

Load (txn/s)

(f) Non-sequencer/secondary, update txns

-+-SIMC /
.... ·SEO L
...-LP L
___./ ~

~--------
~

... _

10 12.5 15 17.5 20 22.5 25
Load (txn/s)

Figure 6.6: TPC-W ordering workload

In this experiment, additionally to SIMC, SEQ and LP with 5 replicas, we also considera single­

node, non-replicated system. Figure 6.7.(a) shows the average response time of the protocols with

increasing load. For LP, the figure shows average response times for bath the primary and the sec­

ondaries. The figure shows that at law load (less than 50 transactions per second) the non-replicated

Chapter 6. Evaluation

(a) Transaction response time
200~~~----~~~----------~

-+-SIMC

Î160
Q)

:§ 120
Q)

~ 80+-----------~---+----~+---~
0
c..
~ 40+-------~~--~-=~~~----~ a:

0 50 100 150 200
Load (txn/sec)

100

80
~
~
Q) 60
Cl
Cil
U)

~ 40
c.
ü

20

0

136

-+-SIMC
..-sEO

+---::7"0;..s,...:;_-----l LP primary
....r LP seconda

0 50 100 150
Load (txn/s)

200

Figure 6.7: Overhead of replication, synthetic benchmark, 100% update

system provides the best performance. This is the expected behavior since a non-replicated system

has no CPU or message overhead for replica control. Surprisingly, as the load increases, SIMC and

SEQ have lower response times than the non-replicated system. This is surprising since in ROWA

all replicas have to execute all updates, and thus, we would not expect any performance gain with

replication. However, recall that in Section 6.5.1 we noted that applying the writeset has less cost

than executing the SQL update statements. Thus, by having more replicas, instead of each replica

executing all SQL update statements, only a subset of them is executed and the rest of updates

cornes in form of writesets. This observation was already made in [67].

In contrast to SIMC and SEQ, LP is worse than the non-replicated system. Since all transactions

are update transactions, the primary is the only one executing transactions. Additionally, it has to

forward writesets to the secondaries and handle the operation requests sent by the secondaries to

the primary. This raises the overhead well over a non-replicated system and it saturates very fast.

The response time at secondaries is even worse than at the primary because they have to send the

requests to the primary, let it execute at the overloaded primary and then wait for the response.

Thus, additional communication delay is added to the response time. This behavior is confirmed by

looking at the CPU overhead in Figure 6.7.(b). The primary replica in LP has the highest CPU load

because it has to execute all transactions, and the secondary replicas in LP have the lowest CPU load

because they only apply writesets. SIMC and SEQ are in between because each replica executes

sorne transactions and applies the writesets of the others. SIMC has slightly higher CPU load than

Chapter 6. Evaluation 137

(a) response time of write txns
250

-+-25ms
200

(il -&-200ms
.s 150
Q)

E
:;::>
a. 100
!/)
Q)

a::
50

0
10 20 30 40

Load (txn/s)

Figure 6.8: Effects of timeout values, shopping workload (I)

SEQ because of the GCS used in SIMC.

The different CPU usage for SIMC and SEQ explains the difference in response time seen in

Figure 6.7.(a). At higher loads, SEQ is slightly better than SIMC because its CPU is less loaded.

6.5.3 Effect of timeout values

SIMC and SEQ depend on timeout to detect deadlocks. It is interesting to see how different timeout

values affect the performance of the protocol. Recall that the timeout does not span the entire

transaction execution but it measures the time interval between the time point a transaction is put

into the tocorr:miLqueue of a replica until it is the tint in the queue.

Figure 6.8 shows the average response time of updates transactions in the TPC-W shopping

benchmark with two different timeout values (25 and 200 milliseconds) with increasing load for

SIMC. Ali experiments in this section are carried out at 10 replicas. At low load the performance

is the same for both values because basically no transactions wait longer than 25 milliseconds. At

higher load, however, the response time for the 25 ms timeout value increases much more sharply

than for 200 ms. The reason is that the value is too low !etting the middleware assume that there

is a deadlock although there is none. This leads to unnecessary aborts and reapplication of the

transaction, and thus, longer response times.

Figure 6.9.(b) shows the timeout rate as the percentage of update transactions experiencing

timeout with increasing load. Using 200 ms timeout, there are basically no timeouts before the

Chapter 6. Evaluation 138

(b) Timeout rate (c) Timeout rate
100% 16%

80%
-+-25ms

2 -tr 200 ms ~
12%

«l
60% a:

'5 :;
8% 0 0

Q) 40% Q)
E E i= i=

20% 4%

~ 1-+-SIMC-Ici

\
\

\
0% 0%

10 20 30 40
25 50 100 200

Load (txn/s) Timeout value (ms)

Figure 6.9: Effects of timeout values, shopping workload (II)

saturation point at 40 txn/s. This means, there are, in fact, very few deadlocks in the system. In

contrast, with 25 ms there are many timeouts, all of them being false alarms since by choosing

a higher timeout value the transactions can actually succeed. Thus, 25 ms is simply a tao short

timeout interval since it aborts transactions that are not involved in a deadlock. The question is what

is the right timeout value so that one has not tao many false alarms but one also does not wait tao

long when actually a deadlock occurs. Figure 6.9.(c) shows the timeout rate with increasing timeout

value at a load of 20 txn/s. One can see that the timeout rate drops significantly from 25 ms to 50 ms

and then levels off. This shows, that more than 15% of transactions wait in the tocommiLqueue

longer than 25 ms while only around 1% wait for more than 50 ms. 50 ms is around the average

response time at this load. Thus, a guideline might be to choose as timeout value according to the

average response time for transactions.

6.5.4 Scalability

This section analyzes how SIMC scales in a LAN environment. Figure 6.10 shows the maximum

achievable throughput for the three different TPC-W workloads when the number of nodes increases

from one to 40. The throughput is generally the highest for ordering, slightly lower for shopping,

and the lowest for browsing. The reason is that the read-only transactions in the TPC-W benchmark

are more complex and require more resources than the update transactions. Therefore, the more

read intensive the workload is, the less transactions can be executed per time unit.

Chapter 6. Evaluation 139

160 -~ c: -+-shopping e 120 -::J c.
..c: 80 Cl
::J e
:5 40
>< co
E 0

10 20 30 40
number of replicas

Figure 6.10: Scalability of SIMC with TPC-W

Scalability for browsing and shopping is basically linear up to 40 nades. We only bad 40 servers

and therefore we do not have data beyond 40 replicas. For the ordering workload, the throughput

increases linearly up to 30 replicas. However it starts to level off at this time point. At 30 replicas,

the throughput is around 4.3 txn/s per replica, at 40 replicas, it is only 3.75 txn/s per replica. The

reason is that updates have to be applied at ali replicas. Although writeset application is faster than

executing the entire SQL statement it takes resources from each replica that are no more available

to execute further transactions.

6.5.5 Discussion

As a summary, SEQ and SIMC perform consistently better for update transactions than LP which

suffers from an uneven distribution of requests. For read-only transactions, the performance is

nearly the same for ali protocols. SEQ performs slightly better than SIMC. However, this cornes

at the cast of less fault-tolerance since SIMC's usage of uniform reliable delivery assures that no

transaction is lost. SIMC scales basically linearly in LANs. Considering that the performance

difference between SEQ and SIMC is quite small, we would suggest that in a LAN SIMC is the best

choice.

Chapter 6. Evaluation 140

6.6 Wide area network

The previous section has shawn that SIMC and SEQ perform better than LPnMsg in a LAN. Sorne

of it is due to that LPnMsg has two message rounds for each operation in an update transaction.

Most, however, is due to the uneven execution of transactions in LPnMsg. In a WAN, however,

the extra message overhead of LPnMsg will likely have an extremely negative effect. Recall that

SIMC and SEQ only require a constant number of messages per transactions. Thus, in this section

we compare SIMC, SEQ and HYBRID not only against LPnMsg but also against LPlMsg which

requires only two message rounds per transaction.

6.6.1 Experimental setup

We choose the shopping workload which has 20% write transactions in arder to show the perfor­

mance of bath read-only and update transactions. For HYBRID, we used Spread [114] as group

communication system.

We conducted our experiments in a WAN with 1-4 sites in Montreal (Canada), 1-3 sites in

Madrid (Spain), 2 sites in Toronto (Canada), and 1 site in Edmonton (Canada).

Ali machines are PCs with similar computing power (e.g., AMD 1.5-3.0GHZ/0.5-2GB mem­

ory!Linux). The round trip times between machines in different clusters varies from 40 to 150 ms

depending on the distances.

6.6.2 WAN without clusters: SEQ v.s. lazy primary copy

In this first scenario we compare SEQ against the two lazy primary copy approaches using 4 servers

in 4 different cities. We show the results at the sequencer (Montreal) and at the non-sequencer that

has the longest network distance from the sequencer (Madrid). We delay the analysis of SIMC to

the next section.

We fust analyze the CPU usage at the different servers since it has a quite large effect on the re­

sponse time of the different algorithms. Fig 6.ll.(a) shows the CPU usage at the primary server for

LP1Msg and LPnMsg, and the sequencer for SEQ. As we have discussed in the LAN section, SEQ

has a significant lower CPU usage than the lazy primary copy approaches, especially at high loads.

Chapter 6. Evaluation

100%

80%
Q)
Cl

60% C1l

"' :::l

::J 40% a.
u

20%

0%

300

250

0 200
E
-; 150

~ 100

50

0

300

250

0200
E
-; 150
E
i= 100

50

0

(a) Sequencer/primary, CPU usage

16 32 48 64
Load (txn/s)

(c) Sequencer/primary, response time

"*"LPnMsg

..... LP1Msg

-seo A ~---~----

~---' ~

~---... ,....

16 32 48 64
Load (txn/s)

(e) Sequencer/primary, DB time

"*"LPnMsg

--LP1Msg

·•·SEO
A

/'_ ---'10•"''"' ____

--
~------· -

~

16 32 48 64
Load (txn/s)

141

(b) Non-sequencer/secondary, CPU usage
100%

80%
Q)
Cl 60% C1l
Ul
:::l

::J 40% a.
u

20%

0%

·•·SEO

..... LP1Msg

"*"LPnMsg _;rk----------
~__:;:;:;:--
~

~"""'"

16 32 48
Load (txn/s)

64

(d) Non-sequencer/secondary, response time
300

250

0200

g 150
Q)

~ 100

50

0

300

250

0 200

g 150
Q)

~ 100

50

0

..._SEO

---LP1Msg

-~o-LPnMsg

....-......... ---______--::;;2 ..
16 32 48 64

Load (txn/s)

(f) Non-sequencer/secondary, DB lime

·•·SEO

..._LP1Msg

-~o-LPnMsg

.-Iii __ ...at-___

___ .. ----;;;2
-..

16 32 48 64
Load (txn/s)

Figure 6.11: WAN without clusters: read-only transactions in shopping workload

With primary copy, both read and write operations of ali write transactions are executed at the pri­

mary. In contrast, with SEQ, the read operations of write transactions submitted to non-sequencers

are processed only at the non-sequencers, keeping the load at the sequencer lower, and LPnMsg

has slightly higher CPU usage than LP1Msg because LPnMsg has to process more messages than

LP1Msg. At the non-sequencers (Fig 6.1l.(b)), SEQ has higher CPU usage than lazy primary copy

for exactly the same reason that it distributes the load more evenly across the servers.

Chapter 6. Evaluation 142

We now look at the average response times of read-only transactions submitted to either the

sequencer/primary (Figure 6.1l.(c)) or the non-sequencers/secondaries (Figure 6.1l.(d)), and the

time spent within the database (Figures 6.1l.(e) and (f)). We can observe that these times are di­

rectly correlated with the CPU usage because read-only transactions do not have any communication

overhead. Thus, SEQ bas lower response at the sequencer than lazy primary copy at the primary

(Fig. 6.11.(c)) and higher response time at the non-sequencers (Fig. 6.11.(d)). Furthermore, most of

this response time is due to time spent in the database.

Let us now examine the behaviour of write transactions at the sequencer/primary. Figure 6.12.(a)

and (c) show the average response time of update transactions and the time spent at the database,

respectively. Write transactions submitted to the sequencer/primary are mainly affected by the time

spent at the DB since there is no WAN communication. The DB time is directly correlated with

the CPU usage (Figure 6.1l.(a)). Thus, since the SEQ bas the lowest CPU usage, it provides the

shortest response times. LPnMsg and LP1Msg have similar response times since they have similar

CPUusage.

Write transactions submitted to the non-sequencers/secondaries show a different picture. Figure

6.12.(b), (d), and (e) show average response time, time at the databases, and network time, respec­

tively. Note that the y-axis scales to 1000 ms compared to 250 ms for the other figures. The response

time of LPnMsg is four times higher than for LP1Msg and SEQ. The reason is that LPnMsg needs

one WAN message round per operation (and in TPC-W an update transaction bas on average four

operations) while SEQ and LP1Msg only need one per transaction. Figure 6.12.(e) shows the time

spent in the network. LPnMsg clearly bas higher communication overhead than LP1Msg and SEQ.

Figure 6.12.(d) shows that both LP1Msg and LPnMsg have higher DB overhead than SEQ. This

is because the update transactions are executed at the primary database. We have seen before that

the primary server in the lazy primary approaches bas a higher CPU usage than the non-sequencers

with SEQ, leading to longer execution times. Therefore, also LPlMsg has larger response times

than SEQ at the non-sequencers.

We have also evaluated the bandwidth consumption since bandwidth usage is another crucial

factor that has to be considered. At the primary, LPnMsg bas the highest outgoing (Fig. 6.13.(a))and

incoming (Fig. 6.13.(c)) bandwidth consumption because of the large number of messages needed.

Chapter 6. Evaluation

rn

{a) Sequencer/primary, response time
250T,=====~---------------,

200
...o-LPnMsg

~----------~~~
..... LP1Msg

§. 150 ,..SEO
CJ)

.5 100+-----------~~~--------~
1-

50+-----~~~~~------------~

0+------.----~------~----~

16 32 48 64
Load {txn/s)

{c) Sequencer/primary, DB lime
250.-------------------------,

200

î 150

...o-LPnMsgr-------------~
--LP1Msg
.... SEO f-----,~----.....,.-----1

... .?~
(])

~ 100+-----------~~~~----~
...--

50+-------~~~----------~

16 32 48 64
Load (txn/s)

(b) Non-sequencer/secondary, response time
1000

800

î 600
(])

E 400
i=

200

0

1000

800

rn
600 §.

(])

E 400
i=

200

0

...... __...- ..._LP1Msg --- -.-LPnMsg
_.SEO

~ -a
01"= ••..

16 32 48
Load {txn/s)

64

{d) Non-sequencer/secondary, DB time

...o-LPnMsg

..._LP1Msg

..,..SEO

~--·····-
16 t~ad (txnt~f 64

(e) Non-sequencer/secondary, NW time

143

1000 ,------;:=====:::1,
800 +-----------------1 -:t- LPnMsg --• rn §. 600 +---------------~

..... LP1Msg

·#·SEO CJ)

E 400+---------------~------~
i=

200 +----..li==o===.-.... -... -... jit-.. -.... --.•. =::::.::t ..• b. :::: ... :::: ... :-::: :::: ... ::::,...------1

0+------.----~------~---

16 32 48
Load {txn/s)

64

Figure 6.12: WANs without clusters: update transactions in shopping workload

LP1Msg bas higher bandwidth consumption at the primary than SEQ at the sequencer because the

primary must return query results of update transactions in LP1Msg but SEQ does not need to do so.

The non-sequencer/secondary (Fig. 6.13.(b) and (d)) bas similar tendency as the sequencer/primary.

Thus, we can summarize that SEQ by far outperforms LPnMsg, mainly because of message

overhead. But it also outperforms LP1Msg. This is due to the more even distribution of load.

Additionally, note that SEQ is more flexible than LP1Msg since it allows a standard JDBC interface

Chapter 6. Evaluation 144

(a) Sequencer/primary, Outgoing bandwidth (b) Non-sequencer/secondary, outgoing BW

120 70

~ 100 iil
~ 80
"' Cl ca

60 (/)
:::l
.s::
ü 40
"3:
"0 20 c: ca
ID

0

.........

~,..
/~--·-11!
~ _,...........-_.....

"*"LPnMsg ------ -LP1Msg

*'SEQ

~ 60
iil 50 ~ .,

40 ~
"' :::> 30
j 20
"0

ffi 10 ID

0

"*"LPnMsg

...,.LP1Msg

·•·SEO

.....---·-·--.. ..

16 32 48 64 16 32 48 64
Load (txn/s) Load (txn/s)

(c) Sequencer/primary, incoming bandwidth (d) Non-sequencer/secondary, incoming BW

70

~ 60
iil
~ 50

"' Cl 40 gj
:::> 30 .s::
ü

20 "3:
"0
c: 10 ca
ID

..... LP1Msg

"*"LPnMsg

"" -lii-SEQ

~ ..
/ __..-.::::; ,...M-····..........-.-88 - --

:::::::-·-·---"'·

70

~ 60

~ 50

"' 40 Cl ca
(/)
:::> 30

~ 20
"0
c: 10 ca
ID

~
~-....... ·-·-·-.....

?----

*"LPnMsg

-LP1Msg

··•·SEO
0 0

16 32 48 64 16 32 48 64
Load (txn/s) Load (txn/s)

Figure 6.13: WANs without clusters: bandwith usage in shopping workload

without any further restrictions.

6.6.3 Overhead of GCS in WANs: SEQ v.s. SIMC

The previous section shows that SEQ is better than LPnMsg in WANs because of less communi­

cation overhead. SEQ only needs a constant number of message (i.e., one round trip) for a write

transaction while LPnMsg needs severa! round trip messages. As SEQ, SIMC requires a constant

number of message (i.e., one multicast message). It should have similar behaviour as SEQ just as

in the LAN environment.

We know that SIMC requires total arder multicast provided by GCSs. In Section 5.3.1 severa!

total arder algorithms have been discussed, such as the token-based algorithm in Spread [114], and

the sequencer-based algorthm in JGroups [49]. They have different message latency which can have

a tremendous effect on the performance in a WAN. In arder to be fair to SIMC, we use the sequencer­

based total arder algorithm provided in JGroups. SEQ is actually derived from a sequencer-based

Chapter 6. Evaluation

400

300
Cil
E
-; 200
E
i=

100

0

(a) Sequencer

-+-SIMC

_..SEO

15

..

30 45
Load (txn/s)

....

60

400

~300
(/)

E
-; 200
E

i= 100

0

145

(b) Non-sequencer

-+-SIMC

·•·SEO
/..l

~
IIJ:::='" ---

15 30 45 60
Load (txn/s)

Figure 6.14: Overhead of GCS, SEQ v.s. SIMC, read-only transactions in shopping workload

total arder algorithm. We would -like to note that the sequencer-based total arder algorithm of

JGroups requires one and a half roundtrip messages per multicast, as has been discussed in Section

5.3.1. However, it does not provide uniform reliable delivery.

Figure 6.14.(a) and (b) show the average response times of read-only transactions at sequencer

and non-sequencer replicas respectively. Response times are basically identical.

Figure 6.15.(a) and (b) show the average response times of write transactions at sequencer and

non-sequencer replicas, respectively. At the sequencer replica (see Figure 6.15.(a)), SIMC has

slightly larger response time than SEQ due to overhead of GCS. Additionally, SIMC requires a

small network delivery time even at the sequencer replica (see Figure 6.15.(c)). Hence, SIMC has

higher response time for write transactions at the sequencer replica.

At non-sequencer replicas (see Figure 6.15.(b)), SIMC also has larger response time than SEQ,

mainly because of message delay. The difference of message delay between SIMC and SEQ is

shawn in Figure 6.15.(d). Moreover, not shawn in the figures, SIMC has also higher CPU overhead,

because the GCS is more CPU intensive than the socket communication in SEQ. The higher CPU

load leads to larger DB time for SIMC compared to SEQ, which leads to the larger response time in

SIMC.

We also conducted experiments using Spread which provides uniform reliable delivery. How­

ever, response times were always above 500 ms and clearly unacceptable.

Chapter 6. Evaluation

(j)
E

800

600

-; 400
E
i=

200

0

800

600
(j)

s.
IJ) 400
E
i=

200

0

(a) Sequencer, response ti me

-+-SI MC

·"'"··SEO

...

·-·· ,__,. --
15 30 45

Load (txn/s)

(c) Sequencer, Network time

1-- -+-SIMC

15 30 45
Load (txn/s)

"W

60

60

(b) Non-sequencer, response time
800

600
(j)

s. 400 IJ)

E
i= 200

-+-SIMC /
·•·SEO //~

//

__...-- ~-...r/
r.. ----.............

0
15 30 45 60

Load (txn/s)

(d) Non-sequencer, network time

800
-+-SIMC

600 -88-SEO (j)
E
-; 400 ------E
i= 200 _ lllf

0
15 30 45 60

Load (txn/s)

Figure 6.15: Overhead ofGCS, SEQ v.s. SIMC, write txns in shopping workload

6.6.4 Clustered servers: HYBRID v.s. SEQ v.s. lazy primary copy

146

In this scenario we compare HYBRID against LP1Msg (being the better of the lazy primary copy

protocols) and SEQ in the network topology shown in Fig 5.9. Recall that HYBRID provides

a higher level of fault-tolerance than SEQ and LP1Msg. We study the results (1) at the global

sequencer in the primary LAN, (2) at other replicas in the primary LAN, (3) at a local sequencer

and (4) at other replicas in the secondary LANs.

Figure 6.16 shows the CPU usage ((a) and (b)), the average response time of read only transac­

tions ((c) and (d)), and the time spent in the database ((e) and (f)) for sequencer and non-sequencers

in the primary LAN. Figure 6.16 (c)-(f) show that the DB overhead is the main contributer to the

response time ofread-only transactions in the primary LAN. Figure 6.16.(a) shows thatLP1Msg has

the highest CPU usage at the primary in the primary LAN. Thus, LP1Msg has the largest response

time for read-only transactions (see Figure 6.16.(c)). However, at the other replicas in the primary

Chapter 6. Evaluation

(a) Sequencer/primary, CPU usage
100%

80%
Q)
Ol

"' 60% rn
::J

:::> 40%
...... LP1Msg

a.
0 Hybrid

20% ·•·SEO

0%

40 80 120 160
Load(txn/s)

(c) Sequencer/primary, response time
400

...... LP1Msg

300 _.SEO
(j) -+-H brid .s
Q) 200
E
F

100

0

40 80 120 160
Load(txn/s)

400
(e) Sequencer/primary, DB time

...... LP1Msg
300 ...,..SEO

(j)
E -+-Hybrid
"Q;'200
E
F

100

0

40 80 120 160

Load{txn/s)

{b) Non-sequencer/secondary, CPU usage
100% ..,--~~-r-----------,

-+- Hybrid
80% .. •·SEO

Q)

m 60% tL-..... ---=L.___P1~M~s"'=g'-~--_---::~""'------J
::J

~ 40% +-----:oell'5...::;;_--------l
0

0%+---~---r---.--~

éi)
E

400

300

-; 200
E
F

100

0

400

~300
rn
E
"a;'200
E
F

100

0

40 80 120 160
Load (txn/s)

(d) Non·sequencer/secondary, response lime

·• .. SEO

-+-Hybrid

-+-LP1Msg

----::::::! -
40 80 120 160

Load (txn/s)

(f) Non-sequencer/secondary, DB time

·• .. SEO
-+-Hybrid
...... LP1Msg

t .. .,
..... •

40 80 120 160
Load (txn/s)

147

Figure 6.16: WANs with clusters: read-only transactions in primary LAN, shopping workload

LAN, Figure 6.16.(b) shows that LP1Msg has slightly lower CPU usage than HYBRID and SEQ,

and thus slightly lower response times (see Figure 6.16.(d)). Comparing HYBRID with SEQ in

Figure 6.16, HYBRID has slightly higher CPU usage due to the overhead of the GCS, but response

times remain similar for read-only transactions.

Figure 6.17 shows the results of read-only transactions submitted to the replicas in secondary

LANs. Figure 6.17 (a), (c), and (e) show CPU usage, average response time, and average DB

time at a local sequencer, Figure 6.17 (b), (d), and (f) at a non-sequencer in a secondary LAN.

Chapter 6. Evaluation

Q)
Cl
~60%~==~~~~~~----------~
::::1

ir 40% +----"'--::>'"S~------------------i
()

tl)

0% +------r-----.------.------4

40 80 120 160
Load (lxn/s)

(c) Local sequencer/secondary, response lime
400Tr=======~------------~

-+-Hybrid

300 -a-SEO

E --LP1Msg
~200+6------~--------~~----~
E
i=
100+-----------~~~------__,

0+--------r-------r------....------1

40 80 120 160
Load (txn/s)

(e) Local sequencer/secondary, DB lime
400

-+- Hybrid

300 -a- SEQ
00
.§.
Q) 200

-+-LP1Msg

E
i=

100
~----

.-==--....
0

40 80 120 160
Load (lxn/s)

CD
Cl
(!J
tl)
::::1

:::>
a.
()

tl)

E

(b) Non-sequencer/secondary, CPU usage
100%Tr========,-------------~

80%
-+-Hybrid

··•·SEQ
60% -+-LP1Msg

40%

20%

0%

40 80 120 160
Load (txn/s)

(d) Non-sequencer/secondary, response lime

400
-+-Hybrid

300 ·•·SEQ

~ 200
E

-+-LP1Msg

i= ----..§ --· 100
0

40 80 120 160
Load (lxn/s)

(f) Non-sequencer/secondary, DB lime
400Tr--------r---------------~

·•·SEQ

300 -+-Hybrid
00
E -+-LP1Msg
~ 200 +====::::::_ ________ -!
E
i=

100r-~====~~~~~~~~~
0 +----.. --..------.-------,-------1

40 80 120 160
Load (txn/s)

148

Figure 6.17: WANs with clusters: read-only transactions in secondary LANs, shopping workload

Although HYBRID has slightly larger CPU overhead at the sequencers, ali protocols have very

similar response times at ali replicas. LP1Msg has slightly lower CPU overhead, and less response

time at non-sequencers due to Jess Joad.

Figure 6.18 and 6.19 show the behavior of update transactions submitted to replicas in the

primary and secondary LANs, respectively. There are figures for the average response time ((a) and

(b)), the time at the DB ((c) and (d)), and at the network ((e) and (f)). Independently to which replica

an update transaction is submitted, LP1Msg has the worst DB time and thus response times except

Chapter 6. Evaluation

(a) Sequencer/primary, response time
800

..._LP1Msg

600 Hybrid
til ·•·SEO E
-; 400
E
i=-Al

200

0

40 80 120 160
Load (txn/s)

(c) Sequencer/primary, DB time
800

-e-LP1Msg

600-Hybrid
til s ·• .. SEO
(J) 400
E
i=

200

0

40 80 120 160
Load (txn/s)

(e) Sequencer/primary, network time
800T,=====~-----------------,

I Hybridl
600

til s
400 (J)

E
i=

200

0

40 80 120 160
Load (txn/s)

800

~600
(/)

E
-; 400
E

i= 200

0

800

600
til
E
-;400
E
i=

200

0

800

600
(/)

E
-; 400
E
i=

200

0

149

(b) Non-sequencer/secondary, response time

-e-LP1Msg

- -+- Hybrid
---sEo

/
L

--:::::! .. -w-
Il"~ . --·

40 80 120 160

Load (txn/s)

(d) Non-sequencer/secondary, DB time

_...LP1Msg

t--- Hybrid

··• .. SEO
~

/
~- Ill --~·

40 80 120 160
Load (txn/s)

(f) Non-sequencer/secondary, network time

.....- Hybrid

..... LP1Msg

-~~t-SEO

............

40 80 120 160
Load (txn/s)

Figure 6.18: WANs with clusters: Update transactions in primary LAN, shopping workload

for transactions submitted to the primary replica at very low loads. The reason is that all operations

of update transaction must be executed at the primary database. Comparing HYBRID with SEQ,

both spend similar time in the DB. However, HYBRID has the additional cast of the GCS resulting

in higher response times. However, the difference is relatively small (20-50 milliseconds or 15% in

Chapter 6. Evaluation

(a) Local sequencer/secondary, response time
800 --n---------------7''-------.

"'*-LP1Msg

600 ..._ Hybrid
Vi E .._SEO
~4oo+=======~~-~~--~
E

~200~~~==~~~----~

Vi

0+----,------,------,------1

40 80 120 160
Load (txn/s)

(c) Local sequencer/secondary, DB time
800T;=========,--------------,

"'*-LP1Msg

600 -+- Hybrid

E -!li- SEO
~ 400 -t'-------L----T--------j
E

~ 200 +-------r----~7""'"----i

40 80 120 160
Load (txnls)

(e) Local sequencer/secondary, network time
800

"'*- LP1Msg

600 -+- Hybrid
Vi
,§_
(J) 400

·•··SEO

E
~ ------=!.

200 .: lill 188·-· -
0

40 80 120
Load (txn/s)

160

Vi
,§_
(J)

E
~

150

(b) Non-sequencer, response time
800..=-======~--~----,

600

..._ LP1Msg

..._ Hybrid

-œ-SEO

0+----.---~---r--~

40 80 120 160
Load (txn/s)

(d) Non-sequencer/secondary, DB time

800

600 "'*-LP1Msg

400

200

..._ Hybrid 1

..,._SEO

1
~ • ...

0
40 80 120 160

Load (txn/s)

(f) Non-sequencer, network ti me
800Tr=======~------------~

600
"'*-Hybrid

...... LP1Msg

·•·SEO
Vi
,§_
(J) 400~========~-------~
E
~

200+-~._~-.... ~. ==~.~ ... = ... ~ ~ ... = = ~ .. ~ ... = ... ====~ • .-~
0+----.---.----.------1

40 80 120 160
Load (txn/s)

Figure 6.19: WANs with clusters: Update transactions in secondary LANs, shopping workload

most cases). This is the cost of stronger fault tolerance provided by HYBRID.

Chapter 6. Evaluation 151

6.6.5 Discussion

In WANs, LPnMsg is much worse than SEQ because it requires two WAN message rounds per

operation instead of two per transaction as in SEQ. Even with two WAN message rounds per trans­

action, LPlMsg is still worse than SEQ because of uneven read load distribution. Additionally, it

has a much more resticted interface than SEQ.

SIMC provides more fault tolerance than SEQ. But uniform reliable multicast in WANs is very

costly. Even without uniform reliable multicast, SIMC is still worse than SEQ because of the

overhead of GCS. But in this case they have similar guarantee of fault tolerance. We conclude that

SEQ outperforms SIMC in WANs.

HYBRID provides more fault tolerance than SEQ in WANs with clusters, with slightly higher

cast than SEQ. It is because uniform reliable multicast in LANs is not as costly as in WANs. We

suggest to use HYBRID in such an environment.

Chapter 7

Conclusions and future work

7.1 Summary

This thesis studies database replication in terms of correctness, performance, and practicability. It

is motivated by the newly emerged isolation level SI used in commercial systems, and the fact that

existing replica control algorithms perform badly in WANs and have many restrictions that make

them difficult to use in practise.

7.1.1 New correctness criteria, 1-copy-SI and 1-copy-SI+IC

Snapshot Isolation (SI) is a new isolation level for transactions. It is weaker than serializabilty but

more attractive because read and write operations do not black each other. There exist several replica

control protocols based on SI for replicated systems. However, little has been done to formally

describe what SI means in a replicated system. In Chapter 3, we propose a new isolation level,

1-copy-SI, based on Generalized Isolation Definition (GID) [3, 2]. Our formalism is convenient and

straightforward to use. Moreover, it provides an implementation independent definition of 1-copy­

SI. We discuss a set of necessary and sufficient conditions that make it easy to determine whether a

history is 1-copy-SI and to show that a replica control mechanism provides 1-copy-SI.

Furthermore, we note that most existing protocols do not consider integrity constraints and thus,

they do not work for databases with integrity constraints. In particular, we are not aware of any work

152

Chapter 7. Conclusions and future work 153

that considers integrity constraints in combination with SI. Renee, we propose a new isolation level

SI+IC stronger than SI but weaker than Serializability (SE). A SI+IC history provides SI guarantees

for read and write operations. Additionally, it respects integrity constraints. Based on SI+IC, we

propose the corresponding correctness criterion, 1-copy-SI+IC, for replicated histories. We also

discuss necessary and sufficient conditions that make it easy to determine whether a replicated

history is 1-copy-SI+IC.

7.1.2 Performance

We analyze carefully the existing replica control protocols and find that most of them do not work

well in WANs because of excessive number of messages within one transaction. Sorne of them

require one roundtrip message in WANs for one operation. We propose a decentralied architecture

and two protocols, SIMC and SEQ, that reduce the number of messages in WAN s to be one multicast

or one roundtrip per transaction. SIMC provides better fault-tolerance than SEQ by using uniform

reliable multicast provided by GCS. However, SEQ has better response time. We also carefully

discuss the fail-over procedure in SEQ. Both SEQ and SIMC have better load distribution potentials

than lazy primary copy approaches, the most commonly used approach in commercial systems. This

is because all update transactions must be performed at the primary replica. In constrast, in SIMC

and SEQ, they are executed at the replica to which they are submitted.

To better utilize the network configuration, we propose a protocol HYBRID which combines

SIMC and SEQ. HYBRID is designed for WANs with several clusters. It uses SIMC in its primary

cluster but SEQ in its secondary clusters and in between primary and secondary clusters. HYBRID

provides better fault tolerance guarantee than SEQ and better performance than SIMC. It is a tradeoff

between SIMC and SEQ, and a practical choice from an engineering point of view.

7.1.3 Practicability

Many existing protocols have certain restrictions, allowing for a less flexible interface. Sorne update

everywhere approaches require the knowledge of ali tables to access in a transaction at start time.

Our protocols do not have these restriction because they first execute the transaction at any replica

Chapter 7. Conclusions and future work 154

and then multicast the writeset to other replicas.

Additionally, many update everywhere approaches do not work for databases with integrity

constraints. Integrity constraints are very important in databases. Our protocols handle integrity

constraints by using the concurrency control module of the database system. Our protocols are also

compatible to databases that implement SI using the first-updater-wins rule.

7.2 Future work

7.2.1 Enhancement to the integrity constraint model

We see two issues in regard to integrity constraints that could deserve more attention. Firstly, so

far, we ignore that many database systems allow a CASCADE option. For instance, if a transaction

wants to delete a department for which there are employees, instead of aborting, it also deletes the

employees. Our integrity model needs to be enhanced to capture this behaviour.

Secondary, our protocols so far leave the checking of integrity constraints to the database repli­

cas. This might result in executions at ail replicas that will lead to abort. If we are able to check

integrity constraints at the middleware layer, we might be able to develop a series of optimizations.

7.2.2 Partial replication and peer-to-peer databases

We have seen that SIMC can scale up to 40 replicas which is quite good already for enterprise

applications. However, it is not suitable for peer-to-peer applications which require the support

of thousands of nodes. This is a problem inherent to ROWA approaches because writes must be

executed everywhere. To scale up to thousands of nodes, partial replication bas to be considered.

Partial replication is an essential functionablity in peer-to-peer systems. [77, 47, 32, 93, 30] study

the replication problems in peer~to-peer systems but they mainly focus on replication at the granu­

larity of files and put little focus on updates. Database replication in peer-to-peer systems is more

challenging because it might require semantic interaction of data residing at different replicas. There

exist severa! peer-to-peer databases such as PeerDB [86, 84], Piazza [53], and AmbientDB [19]. It

would be interesting to see whether we could apply 1-copy-SI to partial replication in peer-to-peer

Chapter 7. Conclusions and future work 155

databases.

Furthemore, since WANs are getting faster and have larger bandwidth, it might make sense to

retrieve data from the memory of other repli cas over the network instead of from the local disk. In

a peer-ta-peer setup, we could fit a huge database into memories of thousands of replicas. Thus, we

can reduce the I/0 time of queries by visiting nearby replicas which have the data in their memories.

[39] actually discusses the possiblity of achieving better scalability by reading data from memories

at other replicas. However, consistency will play a huge role in this context.

7.2.3 Applying database replication to applications

Another option of future work is to apply database replication to existing distributed applications.

There are many distributed applications requiring strong data consistency guarantee. [115, 107, 116]

describe the benefits of applying database replication to web services. [74] discusses the possibility

of applying database replication to Massive Multi-player Online Game (MMOG). [79] discusses

how to apply distributed versioning, a replica control algorithm, to transactional memory. [102, 31]

discuss how to apply snapshot isolation to transactional memory. As a strong consistency leve! in

replicated systems, 1-copy-SI could bring interesting properties and benefits to transactional mem­

ory.

Bibliography

[1] A. E. Abbadi, D. Skeen, and C. Cristian. An efficient fault-tolerant protocol for replicated

data management. In Proc. of the ACM Symp. on Principles of Database Systems (PODS),

1985.

[2] A. Adya. Weak Consistency: A Generalized Themy and Optimistic Implementations for

Distributed Transactions. PhD thesis, MIT, Cambridge, 1999.

[3] A. Adya, B. Liskov, and P. O'Neil. Generalized isolation level definitions. In Proc. of the

IEEE Int. Conf on Data Engineering (ICDE), 2000.

[4] F. Akal, C. Turker, H. J. Schek, T. Grabs, and Y. Breitbart. Fine-grained lazy replication with

strict freshness and correctness guarantees. In Proc. of the /nt. Conf on Very Large Data

Bases (VLDB), 2005.

[5] Y. Amir, C. Danilov, M. Miskin-Amir, J. Stanton, and C. Tutu. On the performance of

consistent wide-area database replication. Technical Report CNDS-2003-3, CNDS, John

Hopkins University, 2003.

[6] Y. Amir and C. Tutu. From total order to database replication. In Proc. of the IEEE Int. Conf

on Distributed Computing Systems (ICDCS), 2002.

[7] C. Amza, A. L. Cox, and W. Zwaenepoel. Conflict-aware scheduling for dynamic content

applications. In Proc. of USENIX Annual Technical Conference, 2003.

156

BIBLIOGRAPHY 157

[8] C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed versioning: Consistent replication for

scaling back-end databases of dynamic content web sites. In Int. Middleware Conference

(Middleware), 2003.

[9] C. Amza, A. L. Cox, and W. Zwaenepoel. A comparative evaluation of transparent scaling

techniques for dynamic content servers. In Proc. of the IEEE !nt. Conf on Data Engineering

(ICDE), pages 230-241, 2005.

[10] T. Anderson, Y. Breitbart, H.F. Korth, and A. Wool. Replication, consistency, and practical­

ity: Are these mutually exclusive? In Proc. of the ACM SIGMOD !nt. Conf on Management

of Data (SIGMOD), 1998.

[11] ANSI. ANSI X3.135-1992, American National Standard for Information Systems Database

Language SQL, November 1992.

[12] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, and P. O'Neil. A critique of ANSI

SQL isolation levels. In Proc. of the ACM SIGMOD !nt. Conf on Management of Data

(SIGMOD), 1995.

[13] P. A. Bernstein, A. Fekete, H. Guo, R. Ramakrishnan, and P. Tamma. Relaxed-currency

serializability for middle-tier caching and replication. In Proc. of the ACM SIGMOD !nt.

Conf on Management of Data (SIGMOD), 2006.

[14] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in

Database Systems. Addison Wesley, 1987.

[15] K. P. Birman. The process group approach to reliable distributed computing. Communica­

tions of the ACM, 36(12), December 1993.

[16] K. P. Birman. Building Secure and Reliable Network Applications. Prentice Hall, 1996.

[17] K. P. Birman and R. Van Renesse. Reliable Distributed Computing with the ISIS Toolkit.

IEEE Computer Society Press, Los Alamitos, CA, 1993.

BIBLIOGRAPHY 158

[18] K. P. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group multicast.

ACM Transactions on Computer Systems (TOCS), 9(3):272-314, August 1991.

[19] P. A. Boncz and C. Treijtel. AmbientDB: Relational query processing in a P2P network.

In Proc. of !nt. Workshop on Databases, Information Systems and Peer-to-Peer Computing

(DBISP2P), pages 153-168, 2003.

[20] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and A. Silberschatz. Update propagation

protocols for replicated databases. In Proc. of the ACM SIGMOD !nt. Conf on Management

of Data (SIGMOD), 1999.

[21] Y. Breitbart and H.F. Korth. Replication and consistency: Being lazy helps sometimes. In

Proc. of the ACM Symp. on Principles of Database Systems (PODS), 1997.

[22] R. Carr. The tandem global update protocol. In Tandem Systems Review, June 1985.

[23] E. Cecchet, J. Marguerite, and W. Zwaenepoel. RAIDb: redundant array of inexpensive

databases. In Technical Report 4921 INRIA, 2003.

[24] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible database clustering mid­

dleware. In Proc. of USENIX Annual Technical Conference, 2004.

[25] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.

Journal of the ACM (JACM), 43(2), 1996.

[26] J. Chen, G. Soundararajan, and C. Amza. Autonomie provisioning of backend databases

in dynamic content web servers. In Proc. of the IEEE !nt. Conf on Autonomie Computing

(!CAC), Dublin, Ireland, June 2006.

[27] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: high­

performance, reliable secondary storage. ACM Computer Surveys, 26(2):145-185, 1994.

[28] G. V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: A com­

prehensive study. ACM Computer Surveys, 33(4):427-469, December 2001.

BIBLIOGRAPHY 159

[29] P. Chundi, D. J. Rosenkrantz, and S. S. Ravi. Deferred updates and data placement in dis­

tributed databases. In Proc. of the IEEE !nt. Conf on Data Engineering (ICDE), 1996.

[30] E. Cohen and S. Shenker. Replication strategies in unstructured peer-ta-peer networks. In

Proc. of Conf. on applications, technologies, architectures, and protocols for computer com­

munications, 2002.

[31] C. Cole and M. Herlihy. Snapshots and software transactional memory. Science of Computer

Programming, 58(3), December 2005.

[32] F. M. Cuenca-Acuna, R. P. Martin, and T. D. Nguyen. Autonomous replication for high

availability in unstructured P2P systems. In Proc. of the !nt. Symp. on Reliable Distributed

Systems (SRDS), 2003.

[33] K. Daudjee and K. Salem. Lazy database replication with ordering guarantees. In Proc. of

the IEEE !nt. Conf. on Data Engineering (ICDE), 2004.

[34] K. Daudjee and K. Salem. Lazy database replication with snapshot isolation. In Proc. of the

!nt. Conf. on Very Large Data Bases (VLDB), 2006.

[35] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in a partitioned network: a

survey. ACM Computer Surveys, 17(3):341-370, 1985.

[36] X. Defago, A. Schiper, and P. Urban. Comparative performance analysis of ordering strate­

gies in atomic broadcast algorithms. IEICE Transactions on Information and Systems, E86-

D(12), December 2003.

[37] A.Y. Dolev, D. Krameer, and S. Malki. Transis: A communication sub-system for high

availability. In Proc. of the IEEE !nt. Conf on Fault-Tolerant Computing Systems (FTCS),

1992.

[38] E. Pacitti and T. Ôzsu and C. Coulon. Preventive multi-master replication in a cluster of

autonomous databases. In Proc. ofthe European Conf on Parallel Computing (Euro-Par),

2003.

BIBLIOGRAPHY 160

[39] S. Elnikety, S. G. Dropsho, and F. Pedone. Tashkent: uniting durability with transaction

ordering for high-performance scalable database replication. In Proc. of European Conf on

Systems (EuroSys), 2006.

[40] S. Elnikety, W. Zwaenepoel, and F. Pedone. Database replication using generalized snapshot

isolation. In Proc. of the !nt. Symp. on Reliable Distributed Systems (SRDS), 2005.

[41] Ensemble. Group communication systems, http://dsl.cs.technion.ac.il/projects/ensemble/.

[42] A. Fekete, D. Liarokapis, E. O'Neil, P. O'Neil, and D. Shasha. Making snapshot isolation

serializable. ACM Transactions on Database Systems (TODS), 30(2):492-528, 2005.

[43] A. Fekete, N. A. Lynch, and A. A. Shvartsman. Specifying and using a partitionable group

communication service. ACM Computer Surveys, 19(2), 2001.

[44] A. Fekete~ E. O'Neil, and P. O'Neil. A read-only transaction anomaly under snapshot isola­

tion. SIGMOD Record, 33:12-14, 2004.

[45] S. Gançarski, H. Naacke, E. Pacitti, and P. Valduriez. The Leganet system: Freshness-aware

transaction routing in a database cluster. Information Systems, 32(2):320-343, 2007.

[46] D. K. Gifford. Weighted voting for replicated data. In Proc. of ACM Symp. on Operating

Systems Principles, 1979.

[47] V. Gopalakrishnanand, B. Silaghi, B. Bhattacharjee, and P. Keleher. Adaptive replication

in peer-to-peer systems. In Proc. of the IEEE !nt. Conf on Distributed Computing Systems

(ICDCS), 2004.

[48] J. Gray, P. Helland, P. O'Neil, and D. Shasha. The dangers of replication and a solution. In

Proc. of the ACM SIGMOD !nt. Conf on Management of Data (SIGMOD), 1996.

[49] Java Groups. homepage: http://www.jgroups.org/.

[50] R. Guerraoui and L. Rodrigues. Introduction to Reliable Distributed Programming. Springer,

2006.

BIBLIOGRAPHY 161

[51] H. Guo, P. Larson, R. Ramakrishnan, and J. Goldstein. Relaxed currency and consistency:

how to say Good Enough in SQL. In Proc. of the ACM SIGMOD !nt. Conf on Management

of Data (SIGMOD), 2004.

[52] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In Distributed

Systems. Addison Wesley, 1993.

[53] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Suciu, and I. Tatarinov. The Piazza peer

data management system. IEEE Transactions on Knowledge and Data Engineering (TKDE),

16(7):787-798, 2004.

[54] J. Holliday, D. Agrawal, and A. E. Abbadi. Partial database replication using epidemie com­

munication. In Proc. of the IEEE !nt. Conf on Distributed Computing Systems (ICDCS),

2002.

[55] J. Holliday, D. Agrawal, and A. El Abbadi. The performance of database replication with

group communication. In Proc. of the IEEE !nt. Conf on Fault-Tolerant Computing Systems

(FTCS), 1999.

[56] J. Holliday, D. Agrawal, and A. El Abbadi. Using multicast communication to reduce dead­

lock in replicated databases. In Proc. of the !nt. Symp. on Reliable Distributed Systems

(SRDS), pages 196-205, October 2000.

[57] ISIS. Group communication systems, http://www.cs.cornell.edu/Info/Projects/ISIS/.

[58] P. Jalote. Fault tolerance in distributed systems. Prentice Hall, 1994.

[59] JavaGroups. homepage: http://www.jgroups.org/.

[60] R. Jiménez-Peris, M. Patifio-Martfnez, G. Alonso, and B. Kemme. Are quorums an alterna­

tive for data replication? ACM Transactions on Database Systems (TODS), 28(3):257-294,

September 2003.

BIBLIOGRAPHY 162

[61] R. Jiménez-Peris, M. Patifio-Martfnez, B. Kemme, and G. Alonso. Improving scalability of

fault tolerant database clusters. In Proc. of the IEEE /nt. Conf on Distributed Computing

Systems (ICDCS), 2002.

[62] K. Bohm and T. Grabs and U. Rohm and H. J. Schek. Evaluating the coordination overhead

of replica maintenance in a elus ter of databases. In Proc. of the European Conf on Parallel

Computing (Euro-Par), 2000.

[63] M.F. Kaashoek and A. S. Tanenbaum. Group communication in the Amoeba distributed op­

erating system. In Proc. of the IEEE /nt. Conf on Distributed Computing Systems (ICDCS),

1991.

[64] J. Kangasharju, J. Roberts, and K. Ross. Object replication strategies in content distribution

networks. In Computer Communications, 2002.

[65] C. Karlsson, M. Karamanolis. Choosing replica placement heuristics for wide-area systems.

In Proc. of the IEEE /nt. Conf on Distributed Computing Systems (ICDCS), 2004.

[66] B. Kemme and G. Alonso. A suite of database replication protocols based on group com­

munication primitives. In Proc. of the IEEE /nt. Conf on Distributed Computing Systems

(ICDCS), pages 156-163, 1998.

[67] B. Kemme and G. Alonso. Don't be lazy, be consistent: Postgres-R, a new way to implement

database replication. In Proc. of the /nt. Conf on Very Large Data Bases (VLDB), 2000.

[68] B. Kemme, A. Bartoli, and O. Babaoglu. Online reconfiguration in replicated databases based

on group communication. In Proc. of the /nt. Conf on Dependable Systems and Networks

(DSN), Goteborg, Sweden, June 2001.

[69] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wiesmann. Using optimistic atomic

broadcast in transaction processing systems. IEEE Transactions on Knowledge and Data

Engineering (TKDE), 15(4):1018-1032, 2003.

[70] G. M. Voelker L. Qiu, V. N. Padmanabhan. On the placement of web server replicas. In Proc.

of the IEEE /nt. Conf on Computer Communications (INFOCOM), 2001.

BIBLIOGRAPHY 163

[71] L. Lamport. Time, clocks and the ordering of events in a distributed system. Communications

of the ACM, 21(7):558-565, July 1978.

[72] Y. Lin, B. Kemme, R. Jiménez-Peris, and M. Patiîio-Martinez. Consistent data replication:

Is it feasible in WANs? In Proc. of the European Conf on Parallel Computing (Euro-Par),

2005.

[73] Y. Lin, B. Kemme, R. Jiménez-Peris, and M. Patiîio-Martinez. Middleware based data repli­

cation providing snapshot isolation. In Proc. of the ACM SIGMOD !nt. Conf on Management

of Data (SIGMOD), 2005.

[74] Y. Lin, B. Kemme, R. Jiménez-Peris, and M. Patiîio-Martinez. Applying database replication

to multi-player online games. In Proc. of Annual Workshop on Network and Systems Support

for Games (Netgames), 2006.

[75] Y. Lin, B. Kemme, R. Jiménez-Peris, and M. Patiîio-Martinez. Enhencing edge computing

with database replication. In Proc. of the !nt. Symp. on Reliable Distributed Systems (SRDS),

2007.

[76] C. Liu, B. G. Lindsay, S. Bourbonnais, E. Hamel, T. C. Truong, and J. Stankiewitz. Capturing

global transactions from multiple recovery log files in a partitioned database system. In Proc.

of the !nt. Conf on Very Large Data Bases (VLDB), 2003.

[77] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstructured

peer-to-peer networks. In Proc. of the !nt. Conf on Supercomputing, 2002.

[78] M. T. Ôzsu and P. Valduriez. Princip/es of Distributed Database Systems (2nd edition).

Prentice Hall, 1999.

[79] K. Manassiev, M. Mihailescu, and C. Amza. Exploiting distributed version concurrency in

a transactional memory cluster. In Proc. of the ACM Symp. on Principles and Practice of

Parallel Programming (PPoPP), 2006.

[80] Microsoft SQL Server 2005 Replication.

us/library/ms151198.aspx, 2007.

http://msdn2.microsoft.com/en-

BIBLIOGRAPHY 164

[81] L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal, R.K. Budhia, and C.A. Lingley­

Papadopoulos. Totem: A fault-tolerant multicast group communication system. Commu­

nications of the ACM, 39(4):54-63, Apri11996.

[82] F. D. Munoz-Esco, J. Pla-Civera, M. 1. Ruiz-Fuertes, L. Irun-Briz, H. Decker, J. E.

Armendariz-Inigo, and J. R. Gonzalez de Mendivil. Managing transaction conflicts in

middleware-based database replication architectures. srds, 00:401-420, 2006.

[83] S. Navaratnam, S. T. Chanson, and G.W. Neufeld. Reliable group communication in dis­

tributed systems. In Proc. of the IEEE /nt. Conf. on Distributed Computing Systems (/CDCS),

1988.

[84] W. S. Ng, B. C. Ooi, K. L. Tan, and A. Zhou. PeerDB: A P2P-based system for distributed

data sharing. In Proc. of the IEEE /nt. Conf. on Data Engineering (ICDE), 2003.

[85] M. Nicola and M. Jarke. Performance modeling of distributed and replicated databases. IEEE

Transactions on Knowledge and Data Engineering (TKDE), pages 645-672, 2000.

[86] B. C. Ooi, K. L. Tan, A. Zhou, C. H. Goh, Y. Li, C. Y. Liau, B. L., W. S. Ng, Y. Shu, X. Wang,

and M. Zhang. PeerDB: Peering into persona! databases. In Proc. of the ACM SIGMOD /nt.

Conf. on Management of Data (SIGMOD), 2003.

[87] E. Pacitti, P. Minet, and E. Simon. Fast algorithm for maintaining replica consistency in lazy

master replicated databases. In Proc. of the /nt. Conf. on Very Large Data Bases (VLDB),

1999.

[88] E. Pacitti, P. Minet, and E. Simon. Replica consistency in lazy master replicated databases.

Distributed and Parallel Databases, 9(3):237-267, 2001.

[89] E. Pacitti, E. Simon, and R. N. Melo. Improving data freshness in lazy master schemes. In

Proc. of the IEEE /nt. Conf. on Distributed Computing Systems (ICDCS), 1998.

[90] M. Patifio-Martinez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Consistent database repli­

cation at the middleware level. ACM Transactions on Computer Systems (TOCS), 23(4),

November 2005.

BIBLIOGRAPHY 165

[91] F. Pedone, R. Guerraoui, and A. Schiper. Exploiting atomic broadcast in replicated databases.

In Proc. of the European Conf on Parallel Computing (Euro-Par), 1998.

[92] F. Pedone, R. Guerraoui, and A. Schiper. The database state machine approach. Distributed

and Parallel Databases, 14:71-98, 2003.

[93] T. Pitoura, N. Ntarmos, and P. Triantafillou. Replication, load balancing and efficient range

query processing in DHTs. In Proc of !nt. Conf on Extending Database Technology (EDBT),

2006.

[94] C. Plattner and G. Alonso. Ganymed: Scalable replication for transactional web applications.

In !nt. Middleware Conference (Middleware), 2004.

[95] C. Plattner, G. Alonso, and M. T; Ozsu. Dbfarm: A scalable cluster for multiple databases.

In !nt. Middleware Conference (Middleware), 2006.

[96] C. Plattner, G. Alonso, and M. T. Ozsu. Extending DBMSs with satellite databases. VLDB

Journal, To appear, 2007.

[97] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw Hill, 2003.

[98] S. Rangarajan, S. Setia, and S. K. Tripathi. A fault-tolerant algorithm for replicated data

management. IEEE Transactions on Parallel and Distributed Systems, 6(12):1271-1282,

1995.

[99] R. V. Renesse, K.P. Birman, and S. Maffeis. Horus: A flexible group communication system.

Communications of the ACM, 39(4):76-83, April1996.

[100] Oracle Replication. Oracle database advanced replication, lOg release 2 (10.2), 2005.

http://download-east.oracle.com/docs/cd/B19306_01/server.102/b14226/toc.htm.

[101] Sybase Replication. Replication strategies: data migration, distribution, and syncrhonization,

2003. A Sybased White Paper. http://www.sybase.com.

BIBLIOGRAPHY 166

[102] T. Riegel, C. Fetzer, and P. Felber. Snapshot isolation for software transactional memory. In

ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Support for Transac­

tional Computing (TRANSACT), 2006.

[103] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vicente. Strong replication in the

GlobData middleware. In Workshop on Dependable Middleware-Based Systems, 2002.

[104] U. Rohm, K. Bohm, H-J. Schek, and H. Schuldt. FAS- a freshness-sensitive coordination

middleware for a cluster of OLAP components. In Proc. of the /nt. Conf. on Very Large Data

Bases (VLDB), 2002.

[105] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam. Taming aggressive replication

in the Pangaea wide-area file system. SIGOPS Oper. Syst. Rev., 36(SI):15-30, 2002.

[106] Y. Saito and M. Shapiro. Optimistic replication. ACM Computer Surveys, 37(1), 2005.

[107] J. Salas, F. Perez-Sorrosal, M. Patino-Martinez, and Ricardo Jiménez-Peris. WS-replication:

a framework for highly available web services. In Proc. of the /nt. Conf. on World Wide Web

(WWW), 2006.

[108] R. Schenkel and G. Weikum. Integrating snapshot isolation into transactional federations. In

Proc. of the /nt. Conf. on Cooperative Information Systems (Coopis), September 2000.

[109] R. Schenkel, G. Weikum, N. Weissenberg, and X. Wu. Federated transaction management

with snapshot isolation. In Proc. of the /nt. Workshop on Foundations of Models and Lan­

guages for Data and Objects, 1999.

[110] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts. McGraw Hill,

2006.

[111] G. Soundararajan, C. Amza, and A. Goel. Database replication policies for dynamic content

applications. In Proc. of European Conf. on Systems (EuroSys), 2006.

[112] A. Sousa, F. Pedone, R. Oliveira, and F. Moura. Partial replication in the database state

machine. In Network Computing and Applications, 2001.

BIBLIOGRAPHY 167

[113] JDBC specification. http://java.sun.com/products/jdbc, 2007.

[114] Spread. homepage: http://www.spread.org/.

[115] C. L. Sun, Yi Lin, and B. Kemme. Comparison of UDDI registry replication strategies. In

Proc. of /nt. Conf on Web Services (ICWS), 2004.

[116] M. Surgihalli and K. Vidyasankar. A lazy replication scheme for loosely synchronized UDDI

registries. In Proc of !nt. Conf on Parallel and Distributed Computing Systems (PDCS),

pages 477-482, 2005.

[117] M. Szymaniak, G. Pierre, and M. V. Steen. Latency-driven replica placement. In Proc. of the

/nt. Symp. on Applications a'!d the Internet (SAINT), 2005.

[118] Transaction Processing Performance Council. TPC-W Benchmark.

http://www.tpc.org/tpcw.

[119] Transaction Processing Performance Counil. homepage: http://www.tpc.org/.

homepage:

[120] G. Weikum and G. Vossen. Transactional Information Systems: Theofy, Algorithms, and the

Practice ofConcurrency Control and Recovery. Morgan Kaufmann Publishers, 2001.

[121] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Understanding replication

in database and distributed systems. In Proc. of the IEEE /nt. Conf on Distributed Computing

Systems (ICDCS), 2000.

[122] M. Wiesmann and A. Schiper. Comparison of database replication techniques based on

total order broadcast. IEEE Transactions on Knowledge and Data Engineering (TkDE),

17(4):551-566, April2005.

[123] WISC. PHARM, TPC-W Java implementation. homepage:

http://mitglied.lycos.de/jankiefer/tpcw /index.html.

[124] S. Wu and B. Kemme. Postges-R(SI): Combining replica control with concurrency control

based on snapshot isolation. In Proc. of the IEEE !nt. Conf on Data Engineering (ICDE),

2005.

