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ABSTRACT

Surgical unit costs a high percentage of the hospital budget and represents one of the largest
segments of the healthcare budget. Surgical unit provides direct care to diverse surgical
patients through pre-surgical, operative, post-operative, and recovery steps. Through delivering
the surgical services, surgical units generally face series of operational challenges and lag
behind in efficiency. These challenges are amplified by conflict of interests among different
stakeholders. To address these issues and deliver the best service to the surgical patients,
governments or the health insurers encourage surgical units to be more cost effective. In this
respect, Operations Research techniques can be applied to help hospital managers to better
utilize their resources. The aim of this thesis is to provide an integrated framework for making
effective decisions on the hospital surgical case-mix problem (CMP). This research is inspired by

the managerial challenges at the surgical unit of the Montreal Jewish General Hospital (JGH).

The significance of this research is to mathematically model and simulate the CMP with the
Master Surgical Scheduling and the Advanced Scheduling problems in an Integrated Surgical
Case Mix (ISCM) model. This empowers hospital managers to enhance surgical unit efficiency by
integrating surgical case mix plan, allocating Operating Room (OR) blocks to surgical divisions
and surgeons, and assigning elective surgical cases to the operating rooms, at the strategic,
tactical, and operational levels, respectively. The ISCM model is developed under various
reimbursement mechanisms (e.g., activity based funding, and global budget) and bed
configuration policies (e.g., Semi-pooled, and pooled). The usefulness of ISCM model is boosted

by incorporating emergency and off-service patients into the model. A Surgical Ward Design



(SWD) simulation model is developed to i. validate the ISCM results under various scenarios, ii.
explore the impact of different OR schedules on the surgical unit patient flow, and iii. simulate
different surgical unit bed configurations.

From technical perspective, a stochastic integer model is developed which limits the probability
of the downstream bed shortage through a Chance-Constrained programming approach.
Moreover, it controls the risk of high bed shortage cost in a Conditional Value at Risk
framework. The linear form of the stochastic model is approximated and calibrated with the
full-scale data on 72 surgical procedures, 40 surgeons, and 7 specialties in JGH. Then, the
sample average approximation method is presented to solve the ISCM model.

The results demonstrate that the stochastic ISCM model outperforms deterministic ISCM model
in terms of bed shortage level and OR utilization. The activity based funding policy and the
global budget with incentive policy result in the similar surgical case mix. Semi-pooled bed
configuration increases the daily bed occupancy variance and the number of required beds
versus the pooled bed configuration. Also, off-service patient admission is recommended
mostly on Fridays, Saturdays, and Sundays for at most two patients per day. It is observed that
the stochastic ISCM optimal results are quite robust to a range of bed shortage cost and OR

idle/over-time cost.
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RESUME

L'unité chirurgicale colte un pourcentage élevé du budget de I'h6pital et représente I'un des
plus gros segments du budget des soins de santé. L'unité chirurgicale fournit des soins directs a
divers patients chirurgicaux a travers des étapes pré-chirurgicales, opératoires, post-
opératoires et de récupération. Grace a la prestation des services chirurgicaux, les unités
chirurgicales font généralement face a des séries de défis opérationnels et sont en retard sur
I'efficacité. Ces défis sont amplifiés par les conflits d'intéréts entre les différentes parties
prenantes. Pour répondre a ces problemes et offrir le meilleur service aux patients chirurgicaux,
les gouvernements ou les assureurs de santé encourager les unités chirurgicales pour étre plus
rentable. A cet égard, les techniques de recherche opérationnelle peuvent étre appliquées pour
aider les gestionnaires de I'h6pital a mieux utiliser leurs ressources. Le but de cette these est de
fournir un cadre intégré pour prendre des décisions efficaces sur le cas hopital malade
chirurgical probléme (CMP). Cette recherche s'inspire des défis managériaux de ['unité
chirurgicale de I'Hopital général juif de Montréal (JGH).

L'importance de cette recherche est de modéliser et de simuler mathématiquement le
probleme de CMP avec les programmes Master Surgical Scheduling et Advanced Scheduling
dans un modele intégré de cas de chirurgie (ISCM). Cela permet aux gestionnaires hospitaliers
d'améliorer |'efficacité de I'unité chirurgicale en intégrant le plan de répartition des cas
chirurgicaux, en attribuant le bloc opératoire aux divisions chirurgicales et chirurgienset en
attribuant des cas opératoires aux salles d'opération (OR) aux niveaux stratégique, tactique et
opérationnel respectivement. Le modeéle ISCM est développé sous divers mécanismes de

remboursement (p. Ex., Financement basé sur l'activité et budget global) et les politiques de
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configuration des lits (p. Ex., Semi-regroupées et regroupées). L'utilité du modele ISCM est
renforcée par l'intégration des patients d'urgence et hors service dans le modeéle. Un modele de
simulation de conception de salle chirurgicale (SWD) est développé pour i. Valider les résultats
du ISCM sur divers scénarios, ii. Explorer I'impact de différents calendriers OR sur le débit du
patient de |'unité chirurgicale, et iii. Simuler différentes configurations de lits d'unités
chirurgicales.

Du point de vue technique, un modele stochastique d'entiers est développé qui limite la
probabilité de la pénurie de lit en aval par une approche de programmation Contrainte de
Chance. De plus, il contrdle le risque d'un colt élevé de la pénurie de lits dans un cadre de
valeur conditionnelle a risque. La forme linéaire du modeéle stochastique est approximée et
calibrée avec les données a grande échelle sur 72 interventions chirurgicales, 20 chirurgiens et
7 spécialités en JGH. Ensuite, une méthode d'approximation moyenne d'échantillon modifiée
est présentée pour résoudre le modele ISCM.

Les résultats démontrent que le modele ISCM stochastique surperforme le modele ISCM
déterministe en termes de niveau de pénurie de lit et d'utilisation de OR. La politique de
financement axée sur les activités et le budget global, avec une politique d'incitation, donnent
lieu a un mélange de cas chirurgical similaire. La configuration de lits semi-groupés augmente la
variance d'occupation journaliére du lit et le nombre de lits requis par rapport a la configuration
de lits groupés. En outre, I'admission hors service des patients est recommandée surtout le
vendredi, le samedi et le dimanche pour au plus deux patients par jour. Il est observé que les
résultats optimaux ISCM stochastiques sont assez robustes a une gamme de co(t de pénurie de

lit et de colt d'OR / inoccupation.
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Chapter 1

Introduction, Motivation, and Outline

1.1. Introduction

The annual budget of the healthcare system has been the center of much debate in most
industrialized countries. Healthcare accounts for about 9% of the GDP' among OECD? countries
(Barua & Esmail, 2013). Achieving more value out of that is the main concern for policy makers,
who usually question the efficiency of the healthcare system, every time there is a demand to
increase the healthcare budget. It is important for policy makers to see if they can increase the
efficiency of the current system before investing more on establishing new resources. This
tension presents a clear incentive for researchers to study how to improve the efficiency of the

current healthcare system.

Hospitals play an important role in the healthcare system. Hospitals are publicly funded in
Canada and are largely staffed by surgeons, nurses, and so on. From an economic perspective, a
noticeable proportion of the annual healthcare system budget goes to hospitals. This rate was
30% in Canada in 2012, which means that 3.5% of Canada’s GDP is dedicated to hospitals
annually (Information, 2012). Within hospitals, surgical units are the center of attention. It is
observed that 30% of the total hospital costs and 60% of its revenue derived from surgical units
(Jackson, 2002). This level of expenditure demonstrates that surgical unit performance

significantly affects the healthcare system costs as well as efficiency.

! Gross Domestic Product
? Organisation for Economic Cooperation and Development



Surgical unit efficiency will be even more evident because of the imbalance between surgical
service demands and surgical unit resources (e.g. surgical beds, operating rooms, surgeons and
nurses). On one hand, Canada has been ranked 32 among the OECD countries with respect to
the average medical bed ratio (2.80 beds per 1000 population) while the OECD average is 4.96
beds. On the other hand, the average length of stay (LOS) in Canadian hospitals is 7.7 days,
which is among the top 10 OECD’s longest LOS (the OECD average LOS is 7.2 days) (OECD, 2011,
2013). Therefore, from a medical perspective, patients face huge waiting times for surgical
services (e.g. in Canada waiting time is on average 18.2 weeks, from GP to specialist to
treatment), which might deteriorate their health as well as causing dissatisfaction (Barua &

Esmail, 2013).

This Ph.D. dissertation systematically approaches surgical unit bed management. It focuses on
the current managerial issues to reduce cost of surgical case planning and scheduling by
decreasing the surgical bed shortage rate. This research is done in collaboration with the
Montreal Jewish General Hospital (JGH). This cooperation enabled me to meet and interview
several surgeons, nurses, and patients as well as hospital managers to gather a solid
understanding of the pressing problems in this area. Besides, the JGH provided me with the
surgical unit data to validate our analysis. This study could potentially align the best interests of
hospital administrators, surgeons, and patients, and hence provides an opportunity for

stakeholders to buy-in to the developed solutions.



1.2. Outline

The rest of this study is organized as follows: in the remainder of this chapter, the structure of
the surgical unit patient flow will be described; and then a summary of the current operational
challenges in the JGH surgical unit will be provided. Chapter 2 will provide a comprehensive
literature review, which gives an overview on the surgical unit key operational concerns and
solutions. The articles are classified on the basis of the key problems in the surgical unit
context. Chapter 2 mainly focuses on the managerial insights of these studies; however, it also
points to the key mathematical models and solution techniques, which show the application of
Operations Research techniques in the surgical unit management literature. The chapter
concludes by highlighting emerging new avenues for future research on the surgical unit

operational issues.

Chapter 3 will study a proposed re-configuration of surgical ward beds under various bed
management policies, classified as dedicated policy, pooled policy, and semi-pooled policy. A
simulation model is developed to design the JGH’s surgical ward. The simulation results show
the sensitivity of surgical ward configuration to a range of service levels, which is defined as an
index for surgical bed shortage rate. The chapter is concluded by providing the managerial

insights of the study.

Chapter 4 will develop an optimization model to improve the hospital’s surgical case-mix.
Building a strategic decision-making model without considering the operational feasibility to
implement the strategic decisions makes the results unrealistic and impractical. So, a stochastic

model is developed to integrate the operational, tactical, and strategic decisions in the hospital.



The model is calibrated with the full-scale data on 72 surgical procedures, 40 surgeons, and 7
specialties in JGH. The chance-constraint approach is applied to model bed shortage in the

surgical unit and apply the sample average approximation method to solve the model.

Chapter 5 will extend the proposed Integrated Surgical Case-Mix model. The effect of various
governmental reimbursement policies on the hospital’s surgical case-mix is studied. We analyze
the impact of surgical bed configuration on the surgical unit’s bed occupancy and patient flow.
This chapter studies the impact of emergency patients as well as off-service patients on the
optimal case-mix in JGH. These extensions provide more realistic results and meaningful

insights for various stakeholders such as policy makers, hospital managers, and surgeons.

Chapter 6 will present the conclusion and possible future study. New avenues are developed to

extend our research on surgical unit management.

1.3. Contributions of This Thesis

The significance of this thesis is to address the surgical case mix problem integrated with the
Master Surgical Scheduling and the Advanced Scheduling problem. These problems are
respectively classified into strategic, tactical, and operational decisions and their interaction is
explored in this thesis. For the first time in the literature, the impact of different funding
policies on the Surgical Case-Mix problem is explored. The probability of the downstream bed
shortage is modeled through a Chance-Constrained programming approach and the risk of high
bed shortage cost is controlled within a Conditional Value at Risk framework. Moreover, the
sample average approximation method is presented to solve the ISCM model. The usefulness of

the ISCM model is enhanced by incorporating emergency, off-service patients, as well as



elective patients into the model. Furthermore, a surgical ward simulation model is developed to
explore the impact of JGH OR schedules on the surgical unit patient flow under different
surgical unit bed configurations. Findings of this research were used as valuable input for JGH to

develop and implement solid plans to improve the efficiency of its surgical unit.

1.4. Surgical Unit Process

This section will describe the surgical service process to better understand the relevant
problems in the literature. However, there is not a unique surgical service process for all
hospitals even in the same health authority. In general, there are more than 1000 surgical
procedures grouped under more or less 20 medical divisions. Each division is a formally
organized unit providing similar practices of the hospital’s medical staff such as orthopedic,
cardiac, gynecology, urology, colorectal, general surgery, dental, and so on. While general
hospitals usually provide services for many different types of ailments, specialized hospitals

focus on a limited number of the aforementioned treatments.

There are two main surgical patient types: elective and non-elective patients. Elective or
preplanned patients are categorized as inpatients who have to stay overnight at the hospital
after the surgery, and outpatients who are discharged home on the day of surgery. Non-
elective patients refer to emergency patients and urgent cases. Urgent patients are distinct
from emergency cases since they can wait for the service for a short period of time, while
emergency patients have to be served as soon as possible (Cardoen, Demeulemeester, and

Belién, 2010)



Elective Patients are admitted at the hospital usually on the day of surgery or one day before.
Each surgeon should sequence her patients on the basis of the time allocated by the surgical
specialty chief based on the operating room (OR) block schedule. Each OR block refers to 4 to 5
hours of an operating room working time in a day. The hospital might consider prescheduled
OR blocks for Non-elective patients to stop cancelling elective cases to serve emergency

patients.

Elective
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Figure 1-1: Surgical Unit Patient Flow

After the surgery, patients are usually transferred to the Post Anesthesia Care Unit (PACU) for a
couple of hours. At this level, outpatients are discharged home if the patient’s stable health
condition is confirmed by the surgeon. However, a portion of inpatients, urgent, and

emergency patients needs to stay a couple of days in the Intensive Care Unit (ICU) after the



surgery. The rest are directly sent to the surgical ward for recovery. Patients will be sent to the
other units if they need further medical care, but usually they will be discharged home if their
health condition is stable enough. The patient’s length of stay (LOS) varies either in the ICU or in
the surgical ward depending her health status, yet for similar procedures it is usually within a

typical range. Figure 1-1 illustrates the schematic patient flow diagram in the surgical unit.

1.5. Case Study: Montreal Jewish General Hospital

Montreal Jewish General Hospital (JGH) is an acute care teaching hospital with 637 beds. The
hospital’s surgical unit contains about 15 divisions, which annually serve more than 6000
patients. Surgical case cancellation is one of the main managerial concerns in the hospital. JGH
cancelled more than 20 elective surgeries in June 2011, mainly due to bed unavailability in the

surgical ward.

When the OR runs late, the last patients are most likely to be cancelled since the hospital does
not have budget to pay anesthetists and nurses working overtime. This is not a big concern at
the JGH since the surgeons can accurately predict the length of their operation using an
Operating Room Information System Software (OPERA®). OPERA uses the last 10 similar
procedures to predict the OR required time for the next operation. Moreover, a case
cancellation may happen because of the unavailability of the lab results from other consultants.
Also, when a higher priority case comes up, an elective patient’s surgery can be cancelled.
Despite all these possibilities, the surgical unit chief and the specialty chiefs at the JGH believe

that the surgical bed shortage is the key bottleneck in the surgical unit patient flow.

* JGH implemented a state-of-the-art information system tool in 2002. OPERA supports decision-makers by OR
planning and scheduling guidelines.



To support this statement, it is worth noting that two out of 13 operating rooms at the JGH are
closed because of over utilized surgical ward beds. A highly congested surgical unit not only
results in lots of cancellation and rescheduling problems (bringing huge financial costs to the
hospital), but it also causes severe deterioration of the patient health. Hence, the JGH surgical

unit seeks to gain more control through the use of its resources.

The hospital’s annual budget is the other important concern for the JGH’s managers.
Governmental reimbursement policies as well as changing technology and population
demographics entice the JGH managers to reassess the current surgical case-mix. In other
words, the JGH surgical unit wants to gain more control on the costs and revenues of providing
services by complying with the recent government reimbursement policy. As a publicly funded
hospital the JGH has to serve a certain number of patients on an annual basis, known as RAMQ?
base volume, and get reimbursed for the provided services by the government. RAMQ, base
volume is predefined for each surgical procedure and the hospital will be penalized if it does
not meet this threshold at the end of each fiscal year. The managers try to achieve cost
containment and profitability by practicing some more niche surgical services instead of the
current services. This goal cannot be attained without considering the availability and
integration of vital surgical unit’s resources such as the operating rooms and the surgical ward

beds as well as the potential number of patients for each procedure.

* The Régie de I'assurance maladie du Québec (RAMQ) is the government health insurance board in the province
of Quebec, Canada.



Chapter 2

Structured Review of Surgical Unit Management Problems

2.1. Introduction

This chapter provides a comprehensive review of the essential operational issues in a surgical
unit. Many articles in this area focus on the surgical unit planning to efficiently utilize the unit’s
main resources such as operating rooms, intensive care units and main ward beds. May et al.
presented a comprehensive literature review on Surgical Scheduling problems (May, Spangler,
Strum, & Vargas, 2011). More than 110 manuscripts were classified under the following six
labels: capacity planning, process reengineering, surgical service portfolio, procedure duration,
schedule construction, and schedule execution. They also categorized the literature based on
the time sensitivity of the problems. A time depended framework was developed to review all
types of decisions. For example, capacity planning decisions for building a hospital should be
made between 12 to 60 months before a surgery while emergency case admission decision
must be taken right before the surgery. However, a typical approach is to classify the articles
into the strategic, tactical, and operational problem categories, which refers to long, medium,
and short term decisions. Yet May et al.’s approach is more precise. The authors noted that the
surgical service portfolio area contains unexplored problems for future studies. Guerriero &
Guido presented a detailed review of the scientific articles on surgical unit management
(Guerriero & Guido, 2011). They classified the literature according to the hierarchical decision

levels in this field. Samudra et al. presented the most recent literature review in the operating



room planning and scheduling area (Samudra et al., 2016). They classified the manuscripts
regarding decision type, research methodology, patient type, performance measure, and so on.
These frameworks are useful but a broad review of the literature is not the scope of this
chapter. This chapter develops a detailed, extensive literature review on the key challenges
faced by hospital managers to support, plan, and improve the surgical unit efficiency and
effectiveness. The proposed framework strives to classify the literature into 5 main domains:
The first domain tackles the very initial stage of the surgical unit planning, known as Case-mix
planning, although the literature on this area is relatively scarce. The second domain refers to
those studies, which essentially focus on the operating rooms (ORs) at the tactical and
operational level of decision-making hierarchy. How to schedule the OR blocks, sequence the
patients, manage the OR idle/overtime, and many other problems are reviewed in this
subsection. The third domain highlights the manuscripts on the ICU/ PACU problems. How to
manage a congested ICU, sequence patients in the PACU, discharge/admit the patient in the
ICU, and several other issues are reviewed under this domain. The fourth domain reviews how
the care-providers (i.e. surgeons, nurses, and anaesthetists) could improve the surgical system'’s
efficiency. The fifth domain reviews the manuscripts which study the hospital bed management
issue. However, the main focus of this dissertation is on the studies that integrate the surgical

bed availability into the OR scheduling models.

2.2. Case-Mix Oriented Approach

Surgical Case-Mix problem determines the types and quantities of surgical procedures to be
performed in the hospital. From the early 70s researchers started to study the Surgical Case-

Mix problem by developing simple mathematical models which maximizes hospital’s profits or
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performed cases (Guerriero & Guido, 2011). Parsons et al. Parsons, Howard, Barker, and
Peterson (1992) introduced the CMP as a systematic approach to improve quality and control
costs. Robbins & Tuntiwongpiboon (Robbins W, 1989) developed one of the very first models
on the CMP for diagnosis related groups (DRGs), a standard practice to reimburse hospitals by
classifying the procedures with the same level of the expected usage of resources. Their linear
model considers three capacity constraints: total hours of diagnostic services, total hours of
nursing care, and dollar amount of pharmaceuticals. Moreover, the model’s fourth constraint
on the expected demand for each DRG guarantees that the governments’ minimum expected
healthcare need is satisfied. The model tries to optimally allocate the resources to the DRGs to
maximize the hospital benefit. The authors also developed a sensitivity analysis to evaluate

changes in the relevant costs and marginal benefits for each DRG.

However, a novel approach to the CMP was presented by Blake & Carter (Blake & Carter, 2002).
Their model tackled the CMP from the hospital managers and surgeons perspective. They
developed a goal programming approach to reset the type and volume of the surgeon’s
performed procedures, while the hospital faces an 18% budget cut. The problem was defined in
the Canadian healthcare environment in which hospitals are under the global budget
mechanism and the surgeons are paid on a fee-for-service basis. It was assumed that the
surgeons are profit satisfier rather than profit maximizer, so they strive to maintain a minimum
level of income for each year. Also it was assumed that the hospital managers want to
guarantee that a minimum amount of the hospital resources (i.e. OR time) would be allocated
to each surgeon through the Block Mix alterations. The objective of the model is to minimize

the total weighted penalties when the surgeons desired revenues and the hospitals expected
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level of costs are not satisfied. Authors extended this model in (Blake & Carter, 2003) by
comparing a set of funding policies to the hospitals and surgeons. Global budget and rate-based
funding were assumed as the hospital’s reimbursement method, while the surgeons are funded
under either fee-for-services, or fixed salary structure. They concluded that the combination of
the global budget policy and salaried surgeons increases the risk of under-servicing comparing
to the fee-for-services policy. Also it was noted that under the fee-for-services policy, the

hospital’s reimbursement effect on the case-mix is negligible.

2.3. Operating Room-Oriented Approach

Operating Rooms (OR) are known as the most significant resource in the surgical unit, due to
the huge investments and the key equipment. Hence, the OR has been a long-studied
component of a surgical unit, and there is a growing amount of research addressing it in the
literature. Kim et al. explored the sources of inefficiencies in the OR, measured by wasted OR
time. They showed that more than 30% of the time, the preoperative and postoperative units
bring inefficiency into the ORs. However, 65% of the OR-wasted time is due to surgeon
unavailability, nurse shortage, prolonged turnover time, and anesthetist shortage (S.-C. Kim,
Horowitz, Young, & Buckley, 1999). Table 2-1 shows the detailed results.

To optimize OR utilization, some studies applied scheduling models with different objective
functions: minimizing OR idle/overtime, the risk of surgical case cancelation, patients waiting
time, overcapacity cost, staffing cost, and the expected bed shortage (Beliéen &
Demeulemeester, 2007; Creemers, Belién, & Lambrecht, 2012; Doulabi, Rousseau, & Pesant,
2016; Fugener, Hans, Kolisch, Kortbeek, & Vanberkel, 2014; Hans, Wullink, Van Houdenhoven,

& Kazemier, 2008; Marques, Captivo, & Pato, 2015; Testi, Tanfani, & Torre, 2007).
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Table 2-1: Causes of inefficiency at operating room 1

Units Shared of OR wasted time Causes
Preoperative 17% Unprepared patients
Operating Room 65%  including
10% Surgeon unavailability
30% Nurse shortage
10% Anesthetist shortage
15% Prolonged turnover time
Postoperative 15% Congested PACU
(such as ICU, PACU)
Transport 3% Peak number of patient

The OR scheduling problems are often split into the Master Surgical Scheduling Problem and
the Patient Sequencing problem. Master Surgical Scheduling Problem refers to distributing
operating room blocks among various surgeons. Patient Sequencing problem addresses
patients scheduling with respect to the Master Surgical Schedule (Lee & Yih, 2014). Table 2-2
and figure 2-1 illustrate schematic OR-block schedule and patient schedule at the JGH surgical

unit.

A comprehensive literature review on the OR scheduling type of problems is presented by
Cardoen et al. (Cardoen et al., 2010). More than 120 manuscripts are classified on the basis of
various clustering criteria. First, the reviewed articles were clustered based on their problem
setting and technical structure (i.e. elective patients, emergency patients, performance

measures, decision definition, research methodology, uncertainty and application of research).
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Each of these articles targets one or couple of performance measures to evaluate the

contribution of the developed models.

Table 2-2: Schematic OR Block Schedule

OR # Shift Monday Tuesday Wednesday Thursday Friday
AM Cardiac Orthopedics Cardiac Orthopedics Gynecology
OR1
PM - Orthopedics Cardiac Orthopedics
AM
OR2
PM
AM Orthopedics Cardiac Cardiac Gynecology
OR3
AM Gynecology
OR4
PM Gynecology Orthopedics
OR5 AM
PM
Jewish General Hospital Operating Room Schedule = ?:’;m "
Tuesday January 17 2012 : vors
STAT ROOM AND BLOCKS THEATRE 7
Start End Ward Visit Unit# Patient S AQ Procedure Allergy IR: Surgeon
[ TH: 01 Anesthetist- DR. ... Respiratory Therapist 1515
0745 0807 ODS 01132873 M 55 Implantabon slectrods asusomodulator Dr
blagder, STAGE 1
w2 nxn SDS 00442930 F 72 Repar cystoceie'Colporrhaphy Dr
antence, [V MESH
1136 1249 SDS 00914285 M 69 TURBT (Transurethrai resection Dr
biagger tumor)
1304 14:00 ODS 01082723 M 23 Cystoitholapaxy Dr...
1415 1500 0DS 00813169 F 40 Macropiasty mpection colagen Dr...
[TH: 04 Anesthetist: DR_...... Respiratory Therapist 16:15
0745 1539 4NW IP 00260595 F 62 Laryngectomy total or
Free fiapradial forearm Or

Figure 2-1: A Sample Patients Schedule within OR blocks at the JGH Surgical Unit



Cardoen et al. categorized these measures as: waiting time, throughput, utilization, patient
deferral, preference, leveling, makespan and general cost objective. Among these objectives
the authors mostly focused on the waiting time and utilization. Second, the authors clustered
the literature in three groups: studies at the patient level, surgeon level, or administrative level.
The results show that most of the developed models are at the patient level and there are
avenues to conduct future research at surgeon and administrative levels. Third, they
categorized the literature on the basis of the solution technics. Although mathematical
programming approaches have been widely applied to the OR scheduling problems, lots of
studies developed Mote-Carlo and discrete event simulation models. Stochasticity in patient
arrival rate and surgery duration are mainly applied into the simulation models. Cardoen et al.
concluded their study by noting that although most of the reviewed studies used real data for
testing the developed models, none of them provide a detailed implementation of the results.
In the other study, Guerriero & Guido (Guerriero & Guido, 2011) presented a comprehensive
literature review on the applications of operations research’s techniques in surgical planning
and scheduling processes. However, this section will go through the detail of the important
studies rather than clustering the articles within different frameworks.

Lamiri et al. Lamiri, Xie, Dolgui, and Grimaud (2008) presented a stochastic mathematical model
for operating room planning with elective and emergency patients. Combination of
miscellaneous scheduling costs (e.g. over-utilization costs of OR) of these two kinds of patients
is minimized in the objective function and a developed Monte-Carlo optimization technique is
used to evaluate the stochastic model. The model does not assign the patients into their

surgeons’ OR blocks. In other words, they assumed that all patients could be assigned to all OR
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block at any time. Also the problem did not determine the sequence of the patients in an OR
block. Moreover, the authors did not consider the distribution function for some of the
stochastic parameters (e.g. OR time for each procedure) while the estimated amount of the
other stochastic parameter implemented in the model (e.g. required OR time for emergency

patients).

Denton et al. also studied allocating surgeries to the OR blocks in a multi-OR environment,
when the block duration is stochastic (B. T. Denton, Miller, Balasubramanian, & Huschka, 2010).
However, the model did not address the patient sequencing problem. They described the trade-
off between opening a new OR, which brings a fixed set-up cost, and continuing to run the
current open ORs, which impose overtime cost to the model. The OR allocation problem was
formulated as a deterministic, stochastic, and robust model, in which total scheduling costs are
minimized. In the deterministic model all surgical case duration is assumed to be known and
constant, while the stochastic model considers the expected overtime in the formulation. Yet in
the robust approach they considered an upper bound and a lower bound for the duration of
surgical cases. The decision is to determine the total number of open ORs and the assignment
of surgical cases into those ORs. The stochastic model is defined as a two-stage decision
problem, which in the first stage the model finds the total number of open operating rooms
and their assigned surgical cases, and in the second stage the model resolves how to distribute
OR overtime. To solve the model they adapt the integer L-Shaped method. Also a heuristic
method is applied to find a near optimal solution for the robust model. A comparison among all
solution methods and models is done using numerical examples generated out of real data

from a large healthcare provider.
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The patient sequencing problem was modeled by Denton et al., in which the total weighted
expected costs of surgeons waiting, OR idling time, and overtime is minimized (B. Denton,
Viapiano, & Vogl, 2007). They applied sample average approximation method to solve the
model with a real set of data. Gul et al. studied the operating room scheduling when the
surgical demand and operating time is random (Gul, Denton, & Fowler, 2015). Their proposed
mixed-integer model minimized the expected cost of cancelation, patient waiting time, and
operating room overtime. Batun et al. studied the effect of parallel surgeries (i.e. multiple
surgeries operated by the same surgeon at the same time) on patient scheduling (Batun,
Denton, Huschka, & Schaefer, 2011). On the basis of their assumption each surgery could be
split into 3 phases, Preincision, Incision, and Postincision. The surgeon only needs to be present
in the critical phase of the surgery (i.e. Incision), so the last phase of the first surgery could be at
the same time as the first part of the second surgery. Hence, the model tries to find the optimal
patients’ schedule which minimizes the total costs of surgeons’ idle time and the ORs overtime

when surgery duration is stochastic.

Although most hospitals are publicly funded, few articles focus on the specific characteristics of
such environment. These hospitals usually receive a fixed annual budget and must serve a huge
surgical demand. So the problem is a kind of cost containment rather than making more profit.
Vijayakumar et al. presented the patient sequencing problem in which the total number of ORs
is fixed and the hospital managers aim to maximize the total number of served patients with
respect to a given priority (Vijayakumar, Parikh, Scott, Barnes, & Gallimore, 2013). All
parameters in the model are deterministic, including surgical cases duration. All patients are

sorted on the basis of their priorities; in the case that two patients have the same priority the
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patient sequencing rule applies. Three sequencing rules are compared in the study which
contains: (i) Shortest surgery time, (ii) longest surgery time, (iii) random. They developed a
heuristic method, denoted as First Fit Decreasing algorithm (FFD), to solve the model. FFD
assigns the top patient in the priority list to the first open OR with respect to the surgeon’s
availability. The model is run by historical data and the result is compared with a publicly
funded hospital, which follows first in first served discipline, in the Midwest United States on
the basis of two efficiency measures: OR utilization and number of unscheduled surgical cases.

Their proposed model increases the OR utilization by 20% and reduces 20% of OR working days.

Many manuscripts in the literature have focused on the operational decisions on OR
scheduling, while some articles have presented the OR utilization from a strategic perspective.
For example, Lovejoy & Li. focused on a decision making problem about building a new OR, or
extending the working hours of the current ORs (Lovejoy & Li, 2002). The trade-off between
these strategies for increasing OR capacity is investigated on the basis of three performance
criteria and stakeholders’ perspectives: 1. hospital profit form hospital managers perspective, 2.
waiting time from patients’ perspective, and 3. operation’s starting time from surgeons
perspective. The model tries to find an “efficient frontier” of the best solutions by maximizing
the hospital profit with respect to the other two criteria as in the constraints. It is illustrated
that the hospital profit is increasing in patient’s waiting time and is decreasing in operation’s
starting time reliability. The optimal result suggests expanding the existing OR working time
instead of building a new OR, which costs of 6 million dollars. These results are very dependent
on the estimation of OR idle/overtime costs. . Olivares et al. assumed that hospital

administrations rationally schedule the OR blocks (Olivares, Terwiesch, & Cassorla, 2008). In
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other words, administrative decision implicitly reflects the balance between the costs of OR idle
capacity and OR overtime working. Since the final OR schedule (i.e. administrative decision) is
available as an input data, the authors tried to obtain the unobservable cost function behind
that decision. Two econometric methods were applied to solve the problem. The first approach
is a regression analysis which tries to find some dependent variables to predict the final
decision. In the second approach, denoted as structural estimation, a decision model was built
with respect to the managerial concerns in a real surgical unit environment. The results show
that hospital managers mostly care about OR idle time rather than delays and OR overtime

working.

One of the studies which addressed the Master Surgical Scheduling problem is presented by
Day et al. (Day, Garfinkel, & Thompson, 2012). They developed an OR block scheduling model
by considering both the hospital administrator and surgeons’ perspectives simultaneously. The
proposed integrated block scheduling (IBS) model breaks the OR scheduling problem into three
phases. Prior to these phases, the potential set of OR block schedules are defined for each
surgeon, denoted as Dr. i’s package. Each potential OR schedule is valued from surgeon and
hospital perspectives, denoted as hospitals benefit and Dr. i’s benefit. The first phase of the IBS
model selects at most one block schedule from each surgeon’s package. To this goal, an integer
model was developed, in which the hospital and surgeons benefit are combined in a single
objective function and the model tries to maximize it. The authors considered several
parameters including: surgeons profit, hospital profit, capacity costs, inconvenience cost, lost
demand, to present a more realistic model. However, one might challenge the presented

objective function, which is neither from the hospital administrative perspective nor from a
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surgeon’s perspective. By combining the two benefit terms into one objective function, the
model tries to maximize the total revenue which might not be the same as the optimal

equilibrium when the two stakeholders maximizes their own objectives independently.

In the second phase of the proposed IBS model, surgical cases are scheduled into the surgeons’
OR blocks. An Arena simulation model was designed to evaluate the surgical case scheduling
into the surgical blocks. As in the third phase, the operating rooms were dedicated to the
surgeons, who have to share the OR blocks. As a result, most of surgeons with high volume of
cases were assigned a full OR block while rest of the surgeons had to share an OR block. The
model is recommended to the hospitals with OR utilization about 65% and to the hospitals with

a large number of low volume surgeons.

In other study, Agnetis et al. presented an integer model which addresses the surgical unit
master problem and the patient sequencing problem simultaneously (Agnetis et al., 2014). The
objective function considers the patients’ prioritization score and minimizes the overall waiting
time. Agnetis et al. presented a decomposition approach to address Master Surgical Scheduling
and Patient Sequencing problem based on surgery duration, waiting time and priority class of
the operations (Agnetis et al.,, 2014). Also in one of the most recent studies, Visintin et al.
presented a mixed integer programming model to capture the impact of flexible operating
room, surgical team, and surgical unit on the Master Surgical Scheduling problem (Visintin,
Cappanera, & Banditori, 2016). It is concluded that the flexibility of one of these resources
yields significant benefits when the other two are not flexible. Scheduling a flexible operating
room for elective and emergency patients is also addressed by Ferrand et al. (Ferrand,

Magazine, & Rao, 2014)
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2.4, PACU/ ICU-Oriented Approach

Although ORs are presented as the most important component of surgical unit, many
researchers have focused on the function of the other key segments of the surgical unit such as:
Intensive Care Unit (ICU) and Post Anesthesia Care Unit (PACU). After a surgical procedure,
patients are transferred to the PACU to recover from anesthesia. Ideally, there are 1.5 PACU
beds for every OR bed, which are equipped with an airway maintenance kit, monitors, and
skilled nurses. Within the PACU the patients receive oxygen therapy, blood pressure recording,
pain therapy, and so on. Once the PACU discharge criteria have been met, the patients will be
transferred to the ICU, main ward, or will be discharged home. The ICU has limited curtail
resources and the admission and discharge policies in the ICU directly effect on the surgical unit
performance. This effect will be even more stressed in a highly congested ICU. In a crowded ICU
and PACU surgical case cancellation and rescheduling increases, which affects the patient’s

readmission rate, waiting time and dissatisfaction increases.

The impact of surgical case sequencing on the PACU staffing was studied by Marcon & Dexter
(Marcon & Dexter, 2006). Seven sequencing policies for surgical case scheduling are compared
considering the percentage of days with at least one day delay in PACU admission. The rules are

listed as:

e Random sequencing,
e Longest case first,
e Shortest case first,

e Johnson rule,
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According to this rule, all cases are listed based on their actual OR time or
PACU time, then the shortest time in the list is selected. If the time is a
PACU time the procedure will be scheduled as late as possible and if it is
the OR time the case will be scheduled as early as possible.

e Half increase in OR time and half decrease in OR time,
According to this rule, the cases are sorted based on the OR times. The
sequencing starts with the case correspond to the shortest OR time, then
the case with the third shortest OR time, then fifth one, etc. The
sequencing will end by the case with second shortest OR time.

e Half decrease in OR time and half increase in OR time,
This sequencing rule starts with the case corresponding the longest OR
time and it will continue respecting the same pattern as previous rule.

e Mixed OR time,

According to this rule, the sequencing starts with the case corresponding

the shortest OR time, then the case with the Longest OR time, and so on.

A discrete event simulation was developed to evaluate the effect of these sequencing policies
on surgical unit performance. The impact of these policies on the OR utilization, PACU

completion time, delays in PACU admission, and PACU staffing was presented in the study.

Price et al. studied the effect of surgical scheduling on the PACU’s bed occupancy level (Price et
al.,, 2011). To this goal, an integer mathematical model was developed which considered

average patient LOS in the PACU and the ICU. The model’s objective function minimizes the
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differences between the expected number of patient transferred into the PACU and the
expected number of patients discharged from the PACU to the ICU or to the main ward. Kim et
al. studied the process of transferring patient from the OR to the ICU (S. H. Kim, Chan, Olivares,
& Escobar, 2015). Using a large data set of hospitalized patients, they quantified the cost of
several outcomes for denied ICU admission, and then they evaluated the performance of

various admission strategies.

In general, when a new patient arrives into a fully occupied ICU, surgeons/nurses have to either
deny admitting the patient or prematurely discharge the current patients from the ICU.
Premature discharge or demand-driven discharge refers to moving the patients to the main
surgical ward, while they need to spend more time in the ICU. Dobson et al. studied the effect
of ICU’s patient bumping on the ICU performance (Dobson, Lee, & Pinker, 2010). They assumed
that the patient with minimum remaining LOS will be discharged, who can be even the recent
patient. With respect to this policy, they evaluated the ICU performance by measuring two
indices: 1. the probability of bumping an ICU patient, and 2. the expected number of days
remaining for a bumped patient. Each scenario is defined under a specific arrival pattern and

ICU capacity. Each scenario contains both the scheduled and unscheduled patients.

From the methodological perspective, the authors developed a Markov chain model. Set of the
remaining days of stay for the current ICU patients denoted as the state of the system. The
state of the system would be updated at the beginning of each day, when new patients arrive.
For all new arrivals random Length of Stays (LOS) are generated and some ICU patients are
bumped in the case of ICU bed shortage. Since the state of the system is too large in their

Markov chain model, they applied an aggregate-disaggregate method to figure out a stationary
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solution of the model. Then the set of states is redefined to reduce its size, computational
complexity, and storage capacity. It is proved that their method dominates the Gauss-Seidel

method based on computer storage capacity and time.

The study provides a numerical experiment to evaluate the model. The authors considered
three arrival patterns for scheduled patients: a three-day surgical schedule, a five-day surgical
schedule, and a seven-day surgical schedule. For each arrival pattern different scenarios on the
basis of the number of scheduled and unscheduled patients is evaluated. The results show a
significant decrease in patient bumping when the ICU capacity increases. Also, it is illustrated
that the three-day schedule pattern has less bumping rate compared to the other two patterns.
And finally the results reveal that the bumping rate is increasing in proportion of unscheduled

patients.

However, the assumed policy for premature discharge from the ICU is challenged by Chan et al.
(Chan et al., 2011). In general, premature discharge brings some clinical costs such as risk of
physiological deterioration and higher mortality risk and some healthcare system cost such as
an additional load on hospital resources. A comparison among a new family of discharge
policies was presented by the authors, using mortality and readmission rate indices. It is worthy
to note that surgical performance measures and surgeons monitoring issues are subject of huge
debates in the literature which was studied by Treasure et al. (Treasure, Valencia, Sherlaw-
Johnson, & Gallivan, 2002). Furthermore, Dey et al. developed some other performance

measures for ICU operations (Dey, Hariharan, & Clegg, 2006).
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Chan’s model finds the optimal premature discharge policy by minimizing the total costs. It is
assumed that all new patients have to admit to ICU and there is no cancellation or rescheduling
due to ICU bed shortage; in the case that all beds are occupied one of the proposed premature
discharge policies would be applied. In other words, the model would discharge the patient

based on the policy with the least expected cost.

From the methodological perspective, they presented a dynamic programing model to find the
best discharge policy. The state of the system was identified by the type and number of the
current ICU patients as well as the arriving patients. The model deals with a huge state space so
to find a robust discharge policy a greedy policy was proposed, which ignores the effect of
future arrivals and patient’s LOS. With this myopic policy, patients who are in the least cost
class in each state will be discharged. Patients would be categorized in various cost classes
regarding different criteria such as: mortality risk, readmission risk, and lowest remaining LOS.
The readmitted patients will face higher mortality risk and longer LOS. Yet the authors
categorized patients based on a “readmission load ratio” which is the difference of two
fractions; probability of readmission over LOS after and before occurring premature discharge.
The model is empirically validated using the data on more than 5000 patients. It is concluded
that the best proposed policy would protect the patients with high mortality risk from a

premature discharge, while it wisely prioritizes the patients with low mortality risk.

ICU utilization is the other highlighted issue in the literature. Kim et al. analyzed the admission
and discharge policies in a public hospital (S.-C. Kim et al., 1999). They proposed that the ICU
patients potentially arrive from four different sources: surgical ward, accidents and emergency,

operating room (emergency), operating room (Elective). The authors assumed a Poisson
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distribution for patients’ arrival and discharge rate and simulate their model using XCELL
software. Several queueing measures (i.e. ICU bed utilization, average number of patients in
system, average number of patients in queue, average time in system, average time in queue,
probability of all beds empty, and probability of arriving patients waiting) are calculated to
evaluate the operating characteristics of the ICU in a steady state. It is concluded that the
surgical case cancellations are due to an inappropriate patient scheduling rather than the ICU

bed shortage.

In a similar study, Ridge et al. applied a queueing theory and a simulation model for the ICU bed
configuration (Ridge, Jones, Nielsen, & Shahani, 1998). Various types of emergency and elective
patients (with different LOS and arrival rate) were considered as an arrival sources in the
simulation model. They implemented the priority index in the model which is affected by the
patient’s type (i.e. emergency, elective) and the number of her previous case
referral/cancellation. It was assumed that the pre-planned patients are deferred for some
period of time, if the number of free beds is below a minimum level. As the result, the total
number of required beds in the ICU with respect to the various patient arrival patterns was

presented.

Min & Yih implemented ICU capacity constraints into an OR block scheduling model (Min & Yih,
2010). The three parameters of the model, including surgery duration, LOS in ICU, and elective
patient arrival rate were the basis for generating the potential scenarios. The set of scenarios is
finite, and the probability distribution of them is discrete. Due to the large size of scenarios, a
sample average approximation technique was applied to solve the stochastic model. Min & Yih

assumed that the number of emergency patients is stochastic, so the available OR blocks for

26



elective patients is not fixed. The key decision variable of the model denoted by x;;, and y;;, ,

defined as follows.

. - 1 if a petient i | is assigned to a surgical block b € B
® 10 otherwise

it

_|lifapatienieloccupiesa SICU bedatdayte T
" | 0 otherwise

The objective function of the model includes the expected total cost of OR overtime working
and the cost of patient assignment to OR blocks. The model considers a priority score for each
patient, which depends on her urgency status. With respect to this score, a waiting cost is
assigned to each patient. Hence, to minimize the total cost the model expedites scheduling of
the patients with higher priority. The objective function is subject to several constraints such as
availability of the OR block and ICU beds. The results show that when the available ICU beds
increases the OR utilization and the average number of scheduled patients increase as well,

while the total cost of OR overtime and patient assignment decrease.

Furthermore, Litvak et al. studied the effect of pooling the hospitals’ ICU beds (i.e. when the
regional hospitals share their ICU beds) on the surgical case cancellation rate (Litvak, van
Rijsbergen, Boucherie, & van Houdenhoven, 2008). A simulation model was developed to show
that hospitals cooperation on sharing the ICU beds, minimizes the total cancellation rate (i.e.

emergency patient admission maximizes) while the efficiency increases.

2.5. Ward Beds-Oriented Approach

Beside the aforementioned issues, to systematically approach to surgical unit management one

must consider the availability of surgical ward’s bed. Many studies have addressed the hospital
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bed management, yet the integration of downstream bed availability in the OR scheduling
problem has been yet to be fully explored. However, to better differentiate among these topics,
some manuscripts on both the surgical bed management and the hospital bed management are

highlighted.

Queueing techniques, simulation methods, and mathematical programming have been widely
used by researchers to develop an admission/discharge policy for various types of patients.
Meng et al. developed a robust optimization model on the daily bed capacity planning of
elective patients in a public hospital (Meng et al., 2015). The model considers both emergency
and elective cases and enforced quotas for elective patients to diminish downstream bed

shortage.

Adan & Vissers presented an admission planning model to optimize the patient mix. The model
considers the required surgical resources (i.e. ICU beds, nursing staff, OR beds) to find the
optimal mix of admitted patients on each day (Adan & Vissers, 2002; Vissers, Adan, & Bekkers,

2005).

Gorunescu et al. developed a queueing model to manage bed occupancy in a geriatric
department (Gorunescu, McClean, Millard, & Correspondence, 2002). They presented an
M/PH/c queueing model, which considers a Poisson arrival distribution and phase-type service
distribution with a limited number of beds. The objective function maximizes the hospital’s

benefits by calculating an efficient number of beds given a specific probability of lost patients.

Cochran & Bharti developed a queueing network and a comprehensive simulation to study the

patient flow in an obstetrics hospital. With this goal they implemented a very detailed patient
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flow chart into the simulation model (Cochran & Bharti, 2006). Furthermore, a time-dependent
(i.e. weekend, weekday, peak hours) patient arrival pattern was proposed on the basis of the
hospital’s historical data for a 15 year period. This enabled them to evaluate the utilization level
of all the components of the obstetrics hospital. Then an integer mathematical model was
developed to minimize the mean absolute deviation of unit utilization levels. Results show that
a 15% increase in the number of beds results in a 38% increase in the total number of served

patients.

However, simulation is not the only method to address the hospital bed management problem.
Ayvaz & Huh (Ayvaz & Huh, 2010) applied a dynamic programming approach to this problem.
The model allocates a fixed capacity of the hospital beds to the emergency and elective patients
assuming backlogged elective patients and lost emergency ones in the case of fully occupied
beds. The authors discussed various approaches from the field of Inventory Systems and Single
Resource Allocation. They proved that the safety capacity of beds for emergency patients is
decreasing in the number of backlogged elective patients. Also, Best et al. developed a system
dynamic model to find the optimal bed capacity and bed configuration that maximize a
hospital’s utility function (Best, Sandikci, Eisenstein, & Meltzer, 2015). They study the impact of
forming a large unit to pool demand or forming specialized units to focus on niche medical

services.

Over the last decade, one emerging research effort evident is to integrate surgical ward’s bed
availability into the OR scheduling problems. Helm and Van Oyen applied mix integer
programming approach to model the entire hospital as a coordinated system to optimally

schedule elective patients along with emergency cases (Helm & Van Oyen, 2014). The other
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study on integrated surgical unit modeling was presented by Chow et al. (Chow, Puterman,
Salehirad, Huang, & Atkins, 2011). They focused on the OR efficiency and considered
downstream bed utilization to schedule the surgeon blocks and patient types. They developed a
mixed integer optimization model, denoted by Surgical Schedule Optimizer (SSO), and applied a
Monte-Carlo simulation, denoted by Bed Utilization Simulator (BUS), to reduce the peak of bed
occupancy. SSO helps surgical planners to obtain surgical block schedule directly or through
surgical scheduling guidelines derived from it. BUS considers unplanned patients to test the
schedule, obtained from SSO, surgical planners analyze the result and re-adjust the schedule,
and it iterates until reaching an optimum surgical block schedule. In fact, BUS predicts the daily
bed occupancy for each downstream surgical unit, and makes planners capable of seeing the
effect of surgical block schedule. Hence, they reschedule the OR block if the downstream bed
occupancy is not in a desired range. Fig. 2-2 is a copy of the proposed surgical scheduling

diagram, illustrated in their study.

Surgical
Schedule
Optimizer (SSO)

]
1
"’ ¥

Scheduling - Surgical Planner - Bed Utilization - Evaluate Surgical - Finalize Surgical

Guidelines Input Simulator (BUS) Block Schedule Block Schedule

F

Figure 2-2: Proposed Framework for OR Scheduling Presented by Chaw et al.(2011)

The SSO’s mathematical model is briefly review in this chapter to better differentiate it with the

proposed model in chapter 4. The SSO minimizes the maximum number of occupied beds
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within the planning period for each unit. In other words, balancing the maximum number of

required beds across various units is the only objective of this model.

Table 2-3: Notation and Decision Variables

Notation
b surgical blocks
u wards
I weekdays (1, ..., 5)
d surgeons
w weeks of the surgical schedule
D patient types
J days of the surgical schedule (1, . . ., 7.w)
B(d) blocks associated with surgeon d
expected number of bed-nights/days used by one patient
pujiw of type p in ward u on dayj due to surgical block b
Bed, scheduled on day i of week w
NumOR, OR-days required for each surgical block b
ORperDay™ OR-days available on day / of week w

ORperDaySurgeondiW OR-days available on day i of week w for surgeon d

WeekBlocky number of blocks b available in week w
TotalBlock, total number of blocks b in the surgical schedule
NumCases}; number of cases for each patient type p in surgical block b

Decision variables
Xf,w 1if block b is scheduled on day i of week w, O otherwise

maximum number of beds in use in ward u over the

MD, scheduling period
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S$50 Model

Objective Function

S.t.

Daily OR-Day Capacity

Daily OR-Day Capacity per Surgeon
Weekly Surgical Block Capacity

Surgical Block Balance

Maximum Bed Utilization Across the
Scheduling Period in Each Ward

Min ¥, MD,

¥, XW . NumOR, < ORperDay™ Vi,w
YbeB(d) XMW NumOR, < ORperDaySurgeondiW Viw,d
¥, XMW < WeekBlockY vw, b
Y3 XMW = TotalBlock, Vb
ZwZiZprX};W.Bedf,’“ﬁW < MD,, Vju

The SSO considers the average LOS of the elective cases to estimate the bed occupancy level of

the units. However, the Bed Utilization Simulator was developed to evaluate the derived

surgical block schedule. To this goal, the authors assumed that the surgical unit is

uncapacitated, so no surgical case would be cancelled due to the bed shortage.

Create planned arrivals

Py | T ]
ey -

Enter surgical schedule
with surgeons and case

types

Create unplanned arrivals

i

Generate using historical
distributions (by day of the
week and specialty)

Generate patient path
and length of stay

Patient...unit._length of stay...
Patient...unit...length of stay...

Patient..unit._length of stay...
Patient..unit...length of stay...

Random selection of
histarical records containing
patient paths and length of
stays specific to surgeon
and patient type

# Beds
occupied

Generate Output
Surgical Ward X

VAV

Day

Output estimate of true
demand bed occupancy
and other statistics

Figure 2-3: Image of the Proposed Framework for BUS model Presented by Chaw et al. (2011)

The BUS uses empirical LOS of the emergency patients as well as the elective patients, to

calculate the total bed occupancies through all units. The empirical analysis also shows that the
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emergency patients occupy 54% of the surgical unit beds, and this rate does not significantly
change over the planning period. However, this analysis shows that the elective patient’s bed
occupancies fluctuates over this period. An overview of the BUS structure, which is presented in
their study, is illustrated in figure 2-3.

Authors suggested that the surgeons, who has high patient volume with average LOS of 2 days,
should be scheduled on Monday and Wednesday. It was also suggested to group the specialties

with similar ward/OR requirement into the same OR block.

2.6. Care Providers-Oriented Approach

Surgical unit performance is not only a function of quantity of available physical resources (e.g.
OR, ICU, main ward’s beds) or even the planning of these resources, but also it depends on the
efficiency of care providers (e.g. surgeons, anesthetists, nurses). Huckman & Pisanp studied the
performance of cardiac surgeons in multiple hospitals as a case study for the developed model
represented by “firm-specific performance of freelancers” (Huckman & Pisano, 2006). The
model explores whether or not the surgeons’ performance is a hospital-specific issue and if it is,
to some degree, how it can be explained. Three assumptions are the basis of the model: 1. the
surgeons are freelancers who can contract with all hospitals, 2. surgeons should collaborate
with nurses and anesthetist as a team in a particular hospital, 3. risk adjusted mortality rate is
the only measure of the surgeon’s overall performance. The authors proposed three influential
factors on a surgeon's performance: surgeon effect, hospital effect, and surgeon-hospital
effect; and they analyzed the performance of the surgeons who were working in different
hospitals at the same time. The model was calibrated with the empirical data from a hospital in

Pennsylvania. The data represented more than 38500 surgical cases, served by 200 surgeons. A
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logistic regression model was also developed to evaluate how the surgeon’s performance is
affected by the total number of surgical cases served by her. The results show a reduction in
overall mortality rate by increasing surgeon’s volume on a specific procedure across all
hospitals. Also the results support the hypothesis that the effect of the total number of surgical
cases served by a surgeon in a specific hospital on her performance in that hospital is
significantly greater than her performance in the other hospitals. It shows that surgeons’ overall
performance is not completely transferable across the hospitals. It is recommended to the
hospital managers to hire high performance surgeons and try to keep them full time in the

hospital.

KC & Staats studied the effect of surgeon’s previous experiences on her performance (Diwas
Singh Kc & Staats, 2012). These experiences were categorized into the focal (i.e. experience
with the same task) and relevant experience. The authors showed that the focal and related
subtask varieties have opposite, nonlinear effects on the operation’s outcome. In a novel study
by KC & Terwiesch, the effect of focus on hospital operational performance was studied (Diwas
Singh KC & Terwiesch, 2011). They showed that focused hospitals provide faster services with
higher level of quality and lower length of stay. In another study they illustrate the impact of
workload on service time and patient safety (Diwas S Kc & Terwiesch, 2009). Furthermore, and
from a nursing perspective, a study on good nursing level was done by Yankovic & Green
(Yankovic & Green, 2011). A summary of the highlighted articles in the literature is reviewed in

table 2-4.
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Table 2-4: Summary of the Reviewed Articles

Authors (year)

Problem (Issues to be

addressed) Issues to be addressed

Objective (Performance criteria)

Solution Technique Decisions

Assumption

Data (Application)

Lovejoy & Li
(2002)

Huckman &
Pisano (2006)

Olivaresetal.
(2008)

Cardoen et al.
(2009)

May et al.
(2010)

Dobson et al.
(2010)

Denton et al.
(2010)

Min & Yih
(2010)

Chow et al.
(2011)

Batun etal.
(2011)

Day et al.
(2012)

Vijayakumar et al.
(2012)

Chan et al.
(2012)

Capacity Bxpansion: Building Building new OR / Extending
new OR Vs. adding overtime the working hours in current
working ORs

Surgeons” Performance
correction with the volume
of cases in various hospitals

Effective criteria on the
surgeon’s performance:
Volume & Hospital

OR time allocation cost
function in reality/ how to
reserve OR time

Reserving OR: The real
underlying cost function

Literature review: OR classification
scheduling Problems

Literature review: Surgical
Scheduling problems

Create a planning tool to
predict performance under
different arrival rates and
capacity load scenarios

Effects of ICU Bumping on
the performance: Patient
arrival rate & schedule matter

Uncertainty of surgery
duration

Robust OR block scheduling
& Patient scheduling

Patient scheduling:
Auvailability of the ICU bed
matters

Uncertainty of surgery
duration/ Uncertainty of LOS

OR block scheduling &
Patient scheduling:
Auvailability of ward beds
matters

Patient sequencing: Parallel
surgeries

OR block scheduling &
Patient scheduling: From
surgeon & hospital
perspectives

OR block Scheduling and
surgical case allocation to
the blocks

Surgical case scheduling in
public hospitals based on
patients priority

Patient
scheduling/prioritization in a
public hospital

Comparing a family of demand-
driven discharge strategies in

the ICU scenarios on ICU

Maximize the profit Efficient frontier for Multi objective
situation: Patient: Wait to get on schedule Surgeon: Start
time reliability Administration: Hospital profit

The risk adjusted mortality rate

Estimate the cost ratio for OR overtime cost and idle time
cost

Classification on the basis of manuscripts’ features (e.g.
technique, decision, stochasticity)/ Review of previous
studies

Time frame classification/ Context classification/ Review of

previous studies

The probability that a patient is bumped/ The expected
number of days remaining for a patient to get bumped

Min Maxscheduling cost

Minimize the cost of patient waiting and OR overtime
working

Balance the ward congestion/ minimize the peak of bed
occupancies

Minimize the surgeons idle time cost and OR overtime cost

Maximize the total monetary value to the surgeons and
hospital combined

Maximize OR utilization/ Minimize number of unscheduled

cases

Impact of various discharge Optimal demand-driven discharge policy with the least cost/

(mortality rate, readmission rate)

to aggregate the system’s states

Stochastic Integer Programming/

Bulk service Queue/ # of cases to be scheduled per day/
Approximation/ validated with ~ Probability that a Schedule procedure is
Simulation on time

How to increase surgeon’s performance:
Practical guidelines for the hospital
manager/ surgeons

Empirical/ Logistic regression

Howe to reserve OR time for each
cardiac case

Empirical/ Econometrics
methods

- Avenues for the future studies

- Avenues for the future studies

Best capacity load scenario/ Minimize
the ICU bumping

Markov Chain/ New technique

Optimal number of open ORs/ Patients

Robust Optimization/ Heuristic —

solution technique

Sample average approximation .
™ g€ app blocks to patients

Practical guidelines for the hospital
manager/ Optimal OR block schedule

Integer programming/ Monte-
Carlo simulation

L-shaped method for stochastic

A Optimal patient sequence
mixed-integer program P P q

Optimal OR block schedule/ Patients

Int Pi ing/ Simulati
nteger Programing/ Simulation schedule

Mixed Integer Progran/

Heuristic solution technique Optimal patients schedule

Dynamic Programming
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Admission/Discharge policy from ICU

Poisson arrivals/ Same distribution function
on the procedures’ LOS/ Overtime cost

Only the Surgeon-Hospital effect on the
surgeon’s performance is considered

The surgeons and hospital administration’s
decisions on OR block allocation is rational
and optimal

Papers between 1998- 2009

Papers before 2010

Random LOS at ICU/ Fixed ICU capacity/
Randomarrivals/ If necessary to bump k
patient, we remove the k with the least
remaining days

complete set of surgeries is known in advance
/ Opening an OR has fixed cost/ OR time for
each procedure has a lower and upper bound

Number of Open ORs/ Allocation of OR ' Stochastic surgery duration/ Stochastic LOS/

OR block schedule is given

Average LOS/ Uncapacitated surgical unit/ A
fixed number of elective patients should be
scheduled in a multi-week period

Stochastic surgery duration/ A surgeon can
operate on two cases at the same time

OR overtime cost is 50% higher than OR
regular time cost/ Shared OR block

Number of ORs is fixed Parameters are
deterministic (surgery duration, etc)

Random Geometric (memoryless)LOS at ICU
for each type of patient/ specific discharge
cost per patient type/ Fixed ICU capacity/ one
patients arrives in a short time

A client hospital

Pennsylvania Healthcare Council
year 1994-95

258 cardiac surgery cases

Real data from a large healthcare
provider/ Motivated by Mayo
Clinic, Rochester, MN

The admissions/discharge/
transfer systemand the OR
scheduling office system: Royal
Jubilee Hospital, Victoria, BC

Mayo Clinic’s Division of General
Thoracic Surgery at St. Marys
Hospital, Rochester, MN

Real data froma large healthcare

provider/ Motivated by Mayo
Clinic, Rochester, MN

A publicly funded hospital,
Midwest USA

Over 5000 actual ICU patient



Chapter 3

Surgical Ward Design: A Case Study at Montreal Jewish General Hospital

3.1. Problem description

The JGH surgical unit annually serves more than 6000 patients grouped into more than 400
procedures, categorized as 15 main specialties or divisions (e.g. orthopedic, cardiac,
gynecology, urology, colorectal, general surgery). Although JGH does perform some emergency
surgeries, it is not a trauma hospital; therefore, most of its completed surgical cases are elective
cases. The JGH surgical unit has over 130 staffed beds, and runs 13 operating rooms to serve
these patients. Maximum average LOS belongs to vascular specialty, which is 14.3 days. With
more than 1600 operations, “cataract extraction” was ranked first in terms of volume among all
surgical operations in 2013. Required operating room time and LOS in the surgical ward varies
among the patients. However, the patients that undergo the same procedure tend to have

similar LOS distribution.

Surgical case cancellation, because of downstream bed unavailability, is one of the main
managerial concerns in the hospital. The JGH surgical unit is planning to be relocated to a new
building, known as Pavilion K. Hospital managers want to redesign the surgical unit
configuration in Pavilion K to better meet patient demand. Managers are interested in knowing
the risk of surgical case cancellation under various surgical unit configuration policies in the

new surgical unit.
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On the basis of the current surgical unit configuration, a certain number of beds are prioritized
to serve a single specialty (e.g. oncology) or a group of specialties (e.g. colorectal and general
surgery). However, the surgical beds are not completely dedicated to a particular specialty. For
example, if there is no available bed for an oncology patient, she will be admitted to the other
divisions with empty beds. In such a system, nurses must be able to serve all types of patients.
If the beds were dedicated to the divisions separately, nurses are able to focus on a certain type
of patients with similar needs, which tends to increase the quality of care. KC and Terwiesch
showed that focused hospitals have better outcomes in the delivery of care, also they have
lower LOS and mortality rate (Diwas Singh KC & Terwiesch, 2011). The JGH managers are
interested to find out how many beds the surgical unit needs under a complete dedicated bed

configuration.

In the new surgical unit configuration, JGH wants to run a new High Acuity Unit (HAU) to
exclusively serve high-risk patients. High-risk patients are those with high likelihood to develop
complications after the surgery and are selected on the basis of their preoperative test results,
yet the exact distribution of these patients has not been documented. HAU provides a high
level of nursing and monitoring, yet does not require the subspecialists of an ICU. Therefore,
selected high-risk patients get extra care in an equipped HAU which prevents the start of
postoperative complications. JGH’s surgeons believe that HAU does not only mitigates the
patient’s poor outcome, but also may decrease the patient’s length of stay (LOS), since the
quality of care in HAU increases. However, the distribution of this LOS-reduction has not yet
been calculated. Hence, to decide whether or not to open the HAU, JGH managers want to

evaluate the potential effect of HAU on the total number of required surgical beds.
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3.2. Analysis Procedure

3.2.1. Simulation Model

We develop a simulation model, using Arena version 14.5 from Rockwell Automation, to
capture the complexity of surgical unit patient flow. This model is useful to study the impact of
LOS uncertainty on surgical unit bed configuration. Our Surgical Ward Design (SWD) simulation
model is a planning tool, which also helps the hospital managers to understand the impact of
operating room schedule and surgical unit bed configuration on the surgical bed shortage rate.
Any OR schedule can be the input of the SWD simulation model, and the output is the number
of required surgical beds at each day. Note that the total number of beds is assumed to be
unlimited, so, the model can show the total number of required beds to serve surgical patients.
The SWD simulation model furnishes the hospital managers with a range of possible surgical

unit configurations with respect to the desired surgical service level.

Total surgical unit beds are split into two parts: the main ward beds and the HAU beds. HAU
beds are shared among all specialties. However, the main ward beds are distributed among the
eight specialties (i.e. those with more than 100 operations in a year) on the basis of different
policies. The first policy, denoted as Pooled Policy, assumes that all surgical beds are shared
among all patients from all specialties. In the second policy, denoted as Dedicated Policy, all
divisions work independently and admit their own patients. The third policy, denoted as Semi-
Pooled Policy, allows some divisions to share their medical beds while the rest are working

independently, as discussed in more detail in section 3.3.2.

38



After the surgery patients may be transferred either to the main surgical ward or to the HAU. It
is assumed that at most 20 percent of the patients are admitted in the HAU (i.e. at most 20% of
the patients are high-risk cases). If the managers decide not to open HAU all patients would be
transferred to the main ward. In this case the HAU arrival rate will be zero. The third scenario is
also considered in which the HAU’s arrival rate is 10% of the surgical unit’s arrival rate.

A schematic illustration of a sample of possible surgical unit configurations is drawn in figure 3-
1, in which S1 refers to first specialty, S2 refers to the second specialty, and so on. As
mentioned before, 8 specialties are considered in this simulation model. The first raw in figure
3-1 illustrates the dedicated policy whereas the second row is pooled policy.

To find the maximum number of required surgical beds for serving all patients, the total

number of surgical beds is not bounded in the SWD model. Unlimited number of beds enables
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Figure 3-1: Schematic Surgical Unit Bed Configuration

39



us to study the sensitivity of the configuration’s total required beds to the service level. The
length of simulation run is set to 800 days, with a warm-up period of 100 days. The length of
warm-up period is sufficient to have steady state results based on the initial results. Also, 700

days is required to achieve desired statistical precision.

3.2.2. Data Analysis

JGH provided us with the data for 1767 surgical operations Table 3-1: JGH Data Summary
Data Summary
(i.e. elective cases and emergency cases) in 2013. For each
Number of Data Points 639
case, we access to the admission date, surgery date, Min Data Value 1
Max Data Value 64
discharge date, specialty, and the surgical procedure. Also, Sample Mean 6.21
Sample Std Dev 8.36

the average required operating room time is available for

Table 3-2: ARENA Dist. Fitness Result

each procedure. A large amount of time was spent to clean OO DeOEInEon Sq Error
and validate data before generating the SWD input data. Gamma L
Beta 0.00527

Out of more than 15 specialties in the surgical unit, those Koo 0.00592
Erlang 0.0137

Exponential 0.0137

. . . , Weibull 0.0205

: Normal 0.0723

i = 1 Triangular 0.0909
Uniform 0.108

T 1 Poisson

Table 3-3: Fitted Gamma Distribution Info.

Distribution Summary:

Distribution: Gamma
Expression: 0.5 + GAMM(7.35, 0.77)
Square Error:  0.005127Data Summary

Chi Square Test

Number of intervals 19
o Degrees of freedom 16
= = Test Statistic 89.80.115
Corresponding p-value < 0.005

Figure 3-2: General Surgery LOS — Fitted Distribution Functions
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with more than 100 operations in a year are selected in this study. For those specialities with
less than 100 cases (i.e. 1% of the annual hospital’s patient volume) in a year, it is not feasible
to find an accurate distribution function for the patient LOS. Furthermore, specialties with less
than 1% of the hospital’s annual demand is not in the center of attention by the managers,
since the majority of surgical beds should be dedicated to the main specialties. Hence, the
model complexity is mitigated by focusing on the following specialties: Orthopedic, Vascular,
Gynecology, Urology, Colorectal, General Surgery, E.N.T., and Breast Oncology. For each
specialty, the best distribution function is fitted to the patient LOS, using Arena. It evaluates the
goodness of fit to a function using the Chi Square Test. For example, figure 3-2 shows the 3
fitted LOS distribution functions for General surgery patients. Yet the P-value is not greater than
0.05, so the historical data is used in the SWD simulation model. Tables 3-1 to 3-3 summarize
the General surgery LOS data analysis. For those specialties for which the corresponding p-
value to the fitted distribution function is less than 0.05, we randomly selected the LOS from

the empirical data to be assigned to an arriving patient.

Table 3-4: Operating Room Schedule for a Random Week at JGH

Specialty Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Colorectal 2 3 0 2 1 0 0
E.N.T. 0 1 5 0 4 0 0
General surgery 2 1 0 1 2 0 0
Gynecology 1 3 2 1 2 0 0
Plastics 0 0 0 1 0 0 0
Urology 0 2 1 3 1 1 0
Vascular 1 0 1 0 1 0 0
Breast Oncology 1 0 0 1 0 0 0

The JGH’s operating room schedule in winter 2013 is used in our simulation model as the
patient arrival rate for all specialties. This schedule is designed for periods of 6 weeks. So during

a year the OR schedule is repeated 8 times. For example the OR schedule for the first week of
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this period is illustrated in table 3-4. As presented in the last two columns, surgeons choose not

to operate on Saturdays and Sundays unless there is an emergency case.

3.3. Results

First it is assumed that the HAU has not been opened yet, and the surgical ward configuration is
illustrated under pooled and dedicated policies in the following section. Second, subsection
3.3.2 comments on the effect of HAU on the pooled and dedicated policies in the main ward

configuration. The semi-Pooled policy results are illustrated in subsection 3.3.3.

3.3.1. Pooled Policy vs. Dedicated Policy

Service Level Index (SLI) presents a quantitative measure of the surgical bed shortage rate. SLI
shows the percentage of the staffed required bed-days in the surgical unit. As a result of SWD
simulation model, the maximum number of beds occupied at any single day presents the total
number of required beds to serve all surgical patients (e.g. 86 beds under pooled policy), so if
the hospital managers decide to allocate 86 beds to the main surgical ward the SLI will be 100%.
In the case that the managers decide to allocate a lower number of beds to the main ward, the
SLI decreases as is shown in figure 3-3. This plot illustrates the required number of surgical beds
under pooled policy, when there is no HAU in the surgical unit. For example, the black bar is
depicted in the plot, which shows that exactly 49 beds are occupied for 34 days out of 700 days
(simulation period). Also this example shows that the SLI is 42.4% if the surgical unit managers
decide to assign 49 beds to the main ward. It means that with 49 beds in total, only 42.2% of
the days the hospital would have a sufficient number of beds to serve its patients. As the green

bar in the chart shows, configuring the main ward with 64 beds guarantees a 90% SLI, yet to
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increase it to 100% the surgical unit needs to staff 22 more beds. The marginal gain of each bed
decreases while the SLI approaches to 100%.

Figure 3-4 illustrates the required number of surgical beds under dedicated policy. The red bar
in this plot shows that 79 beds are sufficient for 90% SLI for each specialty, and 50 more beds
are required to achieve 100% SLI. Service Level Index under the dedicated policy guarantees the
minimum service rate by each specialty. For example, a 90% SLI here means that the service
level index for each division is at least 90%, so the total surgical SLI is at least 90%. Hence, in the
dedicated scenario, a more strict service level constraint is applied that increases the minimum
required number of beds. However, this is part of the dedicated policy’s setting and the JGH

managers are willing to apply 90% SLI to each specialty when they operate separately.

In comparison, it is observed that the pooled policy results in saving 15 beds at the 90% SLI and
43 beds at the 100% SLI, which is expected as per the fundamentals of operations
management. However, this was deemed useful by the project team since it estimated the
extent of the savings due to pooling the beds. It is worthy to note that in both policies
increasing the SLI from 90% to 100% exponentially increases the required surgical beds.

However, this increase is almost linear when the LSI changes from 30% to 90%.

Figure 3-5 reports on each division’s bed configuration separately. So the required number of
beds for each division with respect to the desired SLI (i.e. in the range of 80% to 100%) is

plotted.

It is observed that Colorectal, General and Vascular specialties consume the majority of surgical

beds to serve their patients. At 80% SLI, Breast Oncology, E.N.T., Gynecology, Urology, and
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Figure 3-5: Required Beds for Each Division — Dedicated Policy

Plastic divisions require 16 beds in total, while this number is: 16 beds for Vascular, 17 beds for
Colorectal, and 19 beds for General surgery divisions. For example, for E.N.T division, the
surgical unit does not need any beds while keeping the SLI under 87%, since most of the
patients in this specialty are discharged from JGH on the day of surgery. One should analyze the
cost-effectiveness of the various procedures, to see whether or not the surgical unit resources

are optimally utilized.

3.3.2. High Acuity Unit

This section will study the effect of the HAU on the surgical unit bed configuration. The HAU will
be equipped with the skilled nurses as well as monitoring machines. Also, allied health
professionals such as rehabilitation will be available. The patients in the HAU also have priority

for diagnostic imaging and lab tests.
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Hence, the JGH’s surgeons believe that the high-risk patients get higher quality of care here,
which also might reduce their length of stay at the surgical unit. Yet the amount of this LOS-
reduction remains an unresolved matter among the project team members. In fact the LOS-
reduction for each patient during her stay at the HAU is subjective and highly depended on the
patients’ surgical procedure, age, and some other medical pre-operational tests. To capture all
potential LOS-reduction hypothesises, the SWD simulation model considers 3 LOS-reduction
scenarios: 1. If the LOS-reduction is uniformly distributed in [0, 1] days. 2. If the LOS-reduction
is uniformly distributed in [0, 2] days. 3. If the LOS-reduction is uniformly distributed in [1, 3]

days.

For each scenario the surgical unit bed configuration is evaluated under two arrival rates: 10%
and 20% of the total surgical patients. Figure 3-6 illustrates the number of required surgical
beds that satisfies following conditions: 1. when 20% of the surgical cases are high-risk patients,
2. these patients will save between 1 to 3 days in the HAU, and 3. the surgical beds in the main
ward are organized on the basis of pooled policy. The graph covers the SLI range of 80% to
100%. For instance, if 90% SLI is depicted, the surgical unit requires 62 beds in total: 12 beds in
the HAU, and 50 beds in the main ward. The total number of required beds increases to 89 beds
at 100% SLI: 19 beds in the HAU, and 70 beds in the main ward. In comparison to the surgical
unit bed configuration under the pooled policy, the surgical unit can save 2 beds at 90% SLI, but
it needs 3 more beds to achieve 100% SLI.

Table 3-5 summarizes the SWD simulation model results for 90% SLI. Final required surgical bed
depends on the HAU arrival rate, pooled/dedicated policy, and LOS-reduction interval. If JGH

managers choose to open HAU and the arrival rate to this unit is 10% the surgical unit requires
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between 67 to 65 beds under pooled policy, and 78 to 80 beds under dedicated policy. But if

the HAU arrival rate is 20% the surgical unit requires 74 to 77 beds under dedicated policy, and

62 to 65 beds under pooled policy. Hence, given the percentage of patients going to the HAU

and the configuration policy, total number of required beds is robust. Also, the surgical unit can

save up to 3 HAU beds if the LOS-reduction interval increases from [0, 1] to [1, 3] days.

Table 3-5: Required HAU & Main Ward Bed — 90% SLI

HAU Arrival LOS-Reduction

Main Ward Beds

Total Surgical Unit Beds

Rate at HAU (days) AU Beds Dedicated Pooled  Dedicated + HAU  Pooled + HAU
[0, 1] 9 80 67
10% [0, 2] 8 71 58 79 66
(1, 3] 7 78 65
[0, 1] 15 77 65
20% [0, 2] 14 62 50 76 64
[1, 3] 12 74 62
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3.3.3. Semi-Pooled Policy

Pooling all hospital beds is not usually feasible. Patients from different specialties might need
specific post-operative care, provided by skilled nurses. In practice all nurses could not be
trained to serve all types of patients. Moreover, part of surgical beds must be equipped with
certain standard equipment (e.g. monitoring or respiratory devices) to serve particular patients.
It is not cost-efficient to equip all beds with these kind of machines. In fact, although pooled
policy gives us the minimum number of required of beds to serve all patients, regular staffed
beds are not suitable to serve all patients. Yet JGH managers and surgeons do believe that
certain divisions provide similar types of post-operative care to their patients. Hence, it is
practical to group those divisions to share their surgical beds. To this aim, the SWD simulation
model is run considering these three shared units: 1. Colorectal and general, 2. gynecology and
urology, and 3. Vascular and E.N.T. The other two units work independently. It is assumed that
there is no HAU under the semi-pooled policy. Table 3-6 depicts the number of required

surgical beds at 90% and 100% SLI levels.

Table 3-6: Semi-Pooled Policy

Shared Units Dedicated Units
SERVICE LEVEL Total Surgical
INDEX Colorectal Gynecology Vascular Plastic Breast Unit Beds
& General & Urology & E.N.T. Oncology
90% 38 13 17 4 2 74
100% 52 23 23 8 8 114

In comparison with the dedicated policy at 90% SLI, by grouping colorectal and general divisions
2 beds are saved. Grouping gynecology and urology divisions also saves 2 beds, and the third

group of divisions saves only one bed. In total, under semi-pooled policy JGH surgical unit
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requires 74 beds at 90% SLI, while this number is 64 and 79 under pooled and dedicated policy
respectively. However, the same amount of beds is required under the semi-pooled policy and

dedicated policy when 20% of the patients would be admitted to the HAU.

3.4. Conclusion

This chapter has studied the surgical unit beds configuration problem. The main objective of the
developed SWD simulation model was to provide a framework to evaluate the effect of various
strategies in such a problem in order to make recommendations on how to utilize surgical beds
efficiently. Furthermore, later on this study will use the SWD simulation model to validate the
result of the optimization model. Different policies have been compared to answer all the

“what if” questions raised by JGH’s managers. The main outcomes are classified as follows:

1. The minimum number of required beds is 62, which occurs under pooled policy while
20% of the patients would be transferred to the HAU (assuming that the LOS-reduction
is uniformly distributed in [1, 3] days).

2. Opening the HAU does not typically increase the total number of required beds. The
first underlying reason is the LOS-reduction in this unit. Second, the HAU beds are
shared among all specialties which increase the HAU utilization. However, the lower
bed-to-nurse ratio is expected from nurse staffing perspective.

3. Given the configuration policy (i.e. pooled or dedicated) total number of required beds
is in a tight bound at the 90% service level index. In other words, the effect of uncertain
parameters (i.e. the portion of high-risk patients and the potential LOS-reduction in the

HAU) on the total number of required beds is small.
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Total required surgical unit beds decrease when the LOS-reduction in the HAU increases.
This reduction is more visible when a higher percentage (i.e. 20%) of the surgical
patients would be admitted in the HAU.

The relation between SLI and number of required beds is more or less linear from 60%
to 90% SLI. However, this behavior is roughly exponential form 90% SLI to 100% SLI.

The most important determinant of the bed - reduction is pooled policy, which
significantly increases the surgical unit bed utilization. The JGH is able to save up to 19%
on the total number of required beds under pooled policy in comparison with the
dedicated policy.

JGH saves up to 5 beds in total under the semi-pooled policy in comparison with the

dedicated policy at 90% SLI.
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Chapter 4

Integrated Surgical Case-Mix Management

4.1. Introduction, Motivation, and Literature Review

The surgical ward is composed of several divisions. Each division is a formally organized unit
providing specialized practices of the hospital’s medical staff (e.g. colorectal, gynecology,
orthopedic, etc). Tertiary hospitals often perform a wide range of these services. The types and
guantities of surgical procedures to be performed in the hospital is the subject of the Surgical
Case-Mix problem. This chapter aims to develop an integrated CMP model as a decision-making
tool, which provides an opportunity for stakeholders (i.e. policy makers, hospital administrators,

and surgeons) to buy-in to the developed solutions.

Surgical unit decisions are hierarchically classified into strategic, tactical, and operational
decisions. The case-mix decision is a complex strategic problem that depends on several factors:
the reimbursement policies enforced by the payer (i.e., the government or insurer), hospital
resources (e.g. surgeons, operating rooms, equipment, and staffed beds), and the hospital’s

catchment area (as an indicator for patient demand) (May et al., 2011).

In the early 1970s, researchers started to study the CMP by developing simple mathematical
models (Guerriero & Guido, 2011). However, the literature in this area is relatively scarce.
Parsons et al. introduced the CMP as a systematic approach to improve quality and control costs

(Parsons et al., 1992). Robbins developed one of the very first CMP models, which allocates the
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hospital resources to the diagnosis related groups (DRGs’ - a standard practice to reimburse
hospitals by classifying the procedures with the same level of the expected usage of resources)
to maximize the hospital’s benefit (Robbins W, 1989). Blake & Carter developed a goal
programming approach to reset the type and volume of the surgeon’s performed procedures
(Blake & Carter, 2002). The authors assumed that the surgeons are profit satisfiers rather than
profit maximizers, and there is complete cooperation between the hospital administrator and
surgeons on the hospital’s case-mix decision. It was not mentioned, however, why the hospital
administrator should cooperate with the surgeons. The model minimizes the total weighted
penalties when the surgeons’ desired revenues and the hospitals’ expected level of costs are not
satisfied. The authors extended this model in (Blake & Carter, 2003) by comparing a set of
funding policies to the hospitals and surgeons. Global budget and rate-based funding were
proposed as the hospital’s reimbursement method, while surgeons are funded under either a
fee-for-service or fixed salary structure. Despite the fact that the proposed fixed salary structure
for the surgeons might not be pragmatic, it was concluded that the combination of the global
budget policy and salaried surgeons’ method increases the risk of under-servicing compared to
the fee-for-services policy. Since the models were presented under the assumption of budget
cuts as well as complete cooperation between surgeons and administrators, the obtained

solutions are rather questionable and cannot be generalized.

At the tactical level, manuscripts target the Master Surgical Scheduling Problem (MSS), which
refers to distributing the operating room (OR) among various surgeons. They try to improve the

surgical unit performance (e.g. measured by utilization, equity, staff costs, bed leveling), with

> Analogues to Canadian Case-Mix Groups’s (CMG)
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respect to several constraints: minimum/ maximum OR time to be allotted to each specialty (this
is the CMP output as an input to the MSS), surgeon’s minimum/ maximum OR time, surgeon’s
priority/ flexibility of the dates/times, required specialized equipment in the OR, and so on

(Guerriero & Guido, 2011).

At the operational level, the dedicated OR date and time of each operation are the center of
attention by authors. They divide this problem into two categories: the first is known as
Advanced Scheduling, which determines the dedicated OR and date. The second category,
Allocation Scheduling, is primarily concerned with the patient sequence on the day of surgery
(Cardoen et al., 2010; Lee & Yih, 2014). The Advanced and Allocation Scheduling problem’s (AAS)
objective copes with OR utilization, OR idle/overtime cost, patient waiting time, Post-Operative
bed level, and so on. The limitations with such a model include resource capacity (e.g. OR, post-
operative beds, nurses), patient’s priority based on the waiting list, patient health condition (i.e.
emergency and urgent), and so on (Cardoen et al.,, 2010). A schematic mechanism on these

essential decisions is illustrated in figure 4-1.

Tuesday,
Policymakers Hospital Surgical Unit Division Head/ Surgeon/ February-17-
Administrator Head Nurse Chief Nurse Chief 15
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Figure 4-1: Essential Decisions that Affect the Final OR schedule

Various objective functions are studied in the structure of Master Surgical Scheduling and
Advanced Scheduling models: minimizing OR idle/overtime, patients waiting time, and the

expected surgical case cancellation; (Belién & Demeulemeester, 2007; Creemers et al., 2012;
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Hans et al., 2008; Testi et al., 2007) some other objectives are also highlighted in the literature.
Day et al. developed a 3 stage OR block scheduling model in which a combination of the

surgeons’ profit and the hospital revenue was maximized simultaneously (Day et al., 2012).

In addition to the precise objective functions, the stochastic models are required to adequately
capture the dynamics of the OR planning process. Denton et al. studied OR planning when the
block duration is stochastic (B. T. Denton et al., 2010). They described the trade-off between
opening a new OR, which brings a fixed set-up cost, and continuing to run the current open ORs,
which impose overtime cost to the model. To calibrate the models with rational OR costs,
Olivares et al. assumed that administrative decisions implicitly reflect the balance between the
costs of OR idle time and overtime (Olivares et al., 2008). So, the authors ascertained the

unobservable cost function behind the administrative decision.

Beyond the importance of the objective functions and the stochastic environment, one has to
capture the combination of the required resources as a system. An emerging research effort is to
integrate the availability of downstream resources (e.g. PACU, ICU, and ward’s bed) into the
Master Surgical Scheduling and Advanced Scheduling problems. Chow et al. focused on OR
efficiency as well as downstream bed utilization to schedule the surgeon blocks and patient types
(Chow et al., 2011). They developed a mixed integer model on the basis of the patients’ average
LOS to schedule the OR blocks. Then a simulation model was applied to evaluate the obtained OR
block schedule by using the historical LOS. The simulation model calculates the peak of bed
occupancy for a given OR block schedule and provides suggestions to improve it. This cycle

repeats till the target level for the peak of bed occupancy is achieved. However, there is no
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guarantee that the optimal OR block schedule is obtained since the stochastic LOS is not part of
the optimization model.

Downstream bed impact is not limited to the main ward beds. Price et al. studied the effect of
surgical scheduling on the PACU’s bed occupancy level (Price et al., 2011). When a new patient
arrives into a fully occupied PACU/ICU, surgeons/nurses have to prematurely discharge the
current patients due to downstream bed unavailability. Dobson et al. studied the effect of a
specific ICU’s patient bumping policy on the ICU performance (Dobson et al., 2010). However, the
assumed discharging policy was challenged by Chan (Chan et al., 2011). Their model found the

optimal premature discharge policy which causes the lowest mortality rate and readmission rate.

4.2. ISCM Model Approach

As illustrated in figure 4-1, the results of the CMP would be the input for the MSS problem, and
the output of the MSS directly affects the AAS problem’s outcomes. Despite the hierarchal
classification of decisions in the surgical unit, it should be noted that, without a systematic
approach to the surgical unit planning the target performance could not be achieved. In many
studies the tactical and operational levels are combined in a single model or presented as
hierarchical stages of the OR planning process (Chow et al., 2011; Day et al., 2012). However, the
incorporation of the strategic decisions with the tactical/operational decisions has yet to be

studied.

To tackle this gap, this study draws attention to an integrated approach to the case-mix problem that
results in practical outcomes even from the tactical and operational perspectives. In other words,

a deterministic Integrated Surgical Case-Mix (ISCM) model is developed that copes with the
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functionality of the derived case-mix in the following Master Surgical Scheduling and Advanced
Scheduling problems. The proposed ISCM model presents a three dimensional objective function
to tackle the main concerns faced by the hospital administrator: the reimbursement mechanism,
the ORs’ utilization, and downstream bed impact.

Since the patient LOS at the surgical unit is stochastic, the deterministic model is extended to
incorporate this uncertainty. The stochastic ISCM model limits the probability of downstream bed
shortage through a chance-constrained programming approach. To the best of our knowledge,
for the first time in the literature, this study develops a chance-constrained programming
technique for optimizing the CMP model. Note that Shylo et al. used a chance-constrained
approach, based on normal approximation for surgery duration, to the OR scheduling problem
(Shylo, Prokopyev, & Schaefer, 2012). Deng et al. also tackled the Advanced and Allocation
Scheduling problem using a chance-constrained approach, based on an empirical probability

function for surgery duration (Deng, Shen, & Denton, 2014).

In the ISCM model, the Conditional Value at Risk (CVaR) approach is also applied to control the
risk of high bed shortage cost. From the modeling perspective, the interaction of chance-
constraints and the proposed CVaR approach is investigated to find the impact of each one
separately on the downstream bed shortage thresholds. This may enable us to reduce the size of

the ISCM model for further extensions.

Furthermore, the Sample Average Approximation (SAA) technique is applied to solve the
stochastic model. To this end, a linear approximation of the ISCM model is presented. The rest of
the chapter is organized as follows. The next section provides a precise presentation on the

mathematical model of the CMP. Section 4.4 presents the SAA solution algorithm, and the last
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section presents the results of the stochastic model calibrated with the full scale data. All the

examples in this chapter are based on the data collected at Montreal Jewish General Hospital.

4.3. ISCM Model Definition

In this section, the Integrated Surgical Case-Mix model (ISCM) is described. A feasible set of
surgical procedures, which a surgeon can schedule within an OR block is denoted as Block Mix
(e.g. an orthopaedic surgeon can do either two Knee Arthroplasty, Block Mix 1 in figure 4-2, or

one Knee Arthroplasty and one Hip Arthroplasty procedures, Block Mix 2 in figure 4-2, in an OR

block).
Hip Arthroplasty  Knee Arthroplasty Knee Arthroplasty  Knee Arthroplasty
> o > @ L
2.09 Hrs 2.34 Hrs 2.34 Hrs 2.34 Hrs
<  JU < >
4 hour OR Block 0.43 Hrs 4 hour OR Block 0.68 Hrs
(OR overtime) (OR overtime)
Block Mix 1 Block Mix 2

Figure 4-2: Block Mix Examples

The Block Mix is built on the basis of the average required OR time for each procedure. It is
worthy to note that the Block Mix is not the sequence of the patients. The patients will be
scheduled to the OR with respect to their surgeon’s Block Mix and their priority in the waiting list.
Also, each Block Mix represents the combination of the procedures while the sequence of them is
not addressed in this study. Let M denote the set of all possible Block Mixes for all surgeons. In
accordance with the current practice, it is assumed that the hospital has access to a set of S
surgeons to serve a set of K procedures. Let the integer decision variable x,,; denote the

number of OR blocks dedicated to surgeon s at day t with respect to Block Mix m, and the
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parameter Ny, indicates the number of procedure k’s cases scheduled at each Block Mix m. It is
assumed that the surgeons do not share the same OR block and at most two OR blocks could be
assigned to a surgeon each day, so x.,,; € {0,1,2}.
(2 iftwo OR blocks are assigned to surgeon s with Block Mix m in day t
Xome = 1 if one OR block is assigned to surgeon s with Block Mix m in day t

0 otherwise

4.3.1. Objective Function

The ISCM’s objective function refers to the main concerns faced by the hospital administrator.
The first component targets the surgical unit reimbursement. The second term represents OR

utilization and the last element tackles the downstream bed impact of the case-mix decision.

4.3.1.1. Financial Component

The hospital payment mechanism is the subject of significant debates and changes in countries
with publicly funded healthcare systems (Mayes, 2007). Activity Based Funding (ABF) method is
one of the most common alternate methods to be contemplated by the governments of the
industrialized countries (Pink, Information, McKillop, & Johnson, 2001). Governments incentivize
hospitals to optimally utilize their resources by imposing ABF policy (J. Sutherland, Crump, Repin,

& Hellsten, 2013).

Under the ABF approach the hospital gets reimbursed on the basis of the type and volume of
cases. It is assumed that hospitals are completely flexible on the type and number of procedures
they practice each year. Based on the ABF policy, surgical patients with a similar cost of

hospitalization are identified under the same diagnosis-related-group (DRG). Each DRG is
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associated with a fixed reimbursement amount. However, this amount may not reflect costs in
small hospitals (i.e. hospitals with huge fixed costs) or specialized hospitals (i.e. hospitals which
serve complex surgical cases with high tech equipment). Yet, our main focus is on the tertiary
hospitals. Let R, be the reimbursement amount for procedure k, so formula (4.1) shows the

surgical unit reimbursement.

Reimbursement(ABF) = Y K_ Ry = [XI_ XM _ 35| Nem * Xsme] (4.1)

The basic ISCM model considers ABF policy in the objective function. This approach is the basis
for all of the analysis in this chapter. However, in chapter 5 other funding policies (i.e. Global
Budget with Incentive, and Global Budget with Incentive and Penalty) are studied to help
policymakers to discover how these policies affect hospitals’ responses to better assess the
trade-offs among them. (i) Under Global Budget with Incentive (GBI), this study assumes that the
hospital receives a fixed budget and has to complete a certain number of surgical cases for each
procedure, yet the government will reimburse any extra cases. (ii) Under Global Budget with
Incentive and Penalty (GBIP), a base volume for each procedure is recommended to the
managers, and the government can impose financial penalties on the hospital if it is not

committed to this threshold.

4.3.1.2. Utilization Component

Operating Room (OR) utilization is the second component of the ISCM’s objective function. ORs
are the most important resource at the surgical unit, and their utilization has an enormous effect
on surgical unit performance. This study assumes that the OR duration is deterministic since the

JGH managers and surgeons believed that the OR duration for a specific procedure is more or less
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predictable before the surgery. The JGH provided us with the expected OR duration for each
procedure. It is assumed that a surgeon’s Block Mix is typically defined as a regular 4 hour OR
block. Each Block Mix represents the possible combination of surgical procedures in a 4 hour time
slot. However, for us, the length of an OR block is flexible; in such a case, the hospital would face
idle/overtime OR costs. So, the model tries to minimize this cost by selecting those Block Mixes
that are close to 4 hours. Besides the OR idle/Overtime costs, each Block Mix imposes a fixed cost
to the hospital (i.e. opening the OR, required resources that depend on the procedure type, and
so on). Let M denote set of feasible Block Mixes for surgeon s and 10,,, denote the expected cost

of the OR utilization for the Block Mix m. The objective function considers the OR’s expected

costs as:
Zgzl ZmeMs Z’{:l[lam * xsmt] (4-2)
4.3.1.3. Downstream Bed Impact Component

Utilizing surgical unit resources such as operating rooms, regardless of their integration with the
availability of other resources like surgical unit beds, results in cancellation and rescheduling of
new elective patients or the premature discharge of current patients. Premature discharge refers
to patients who require more recovery time in the surgical ward, but are discharged to make
room for new patients (i.e. as a temporary solution to stop the cancellation of surgical cases).
Chan et al. (Chan et al., 2011) evaluated various premature discharge policies on the basis of the
mortality risk and readmission load. Eapen et al. also showed that the patients with longer LOS
have significantly lower readmission rates (Eapen et al., 2013). Hence, improving surgical unit

scheduling directly affects the quality of surgical service (Lucas & Pawlik, 2014).
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The ISCM model tries to minimize the expected bed shortage costs, which affects the reduction
of surgical case cancellations as well as premature discharges, which increase the hospital care
quality and patient satisfaction. To this goal, the ISCM model accounts for the expected amount
of bed shortage during the planning horizon to minimize the risk of high down stream bed
shortage. This approach is similar to the Conditional Value-at-Risk (CVaR) framework, presented
by Rockafellar & Stanislav (Rockafellar & Uryasev, 2000) to minimize the financial risk to

portfolios. This approach will be explained later on this chapter under the stochastic ISCM model.

4.3.2. Deterministic ISCM Model

This section describes the problem settings, notations, and formulations of the deterministic
Integrated Surgical Case-Mix model in which the patients’ LOS is assumed to be constant. Since
the LOS'’s stochasticity is the main source of bed shortage and case cancelation (i.e. total number
of required beds is constant if the LOS is deterministic), this assumption results in an optimal
case-mix which provides no downstream bed shortage. Hence, in the deterministic ISCM, the
third component of the objective function, which copes with the downstream bed impact, is
excluded. So, the objective function strives to maximize hospital reimbursements and minimize

the OR idle/overtime costs.

Table 4-1: Set: the ISCM Model

T : Planning horizon S : Surgeons
K : Procedure types D : Divisions
M : Surgeons surgical mix X : Surgeons availability/preference

Table 4-2: Notation: the ISCM Model

OR; : Total available OR blocks at day t

OR; : Minimum number of OR blocks reserved for division d
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OR; : Minimum number of OR blocks reserved for surgeon s

Nim @ Number of procedure k scheduled in Block Mix m

B :  Total number of medical beds in the ward

Ly, :  Maximum LOS among the procedures in Block Mix m

R, :  Reimbursement for procedure type k

M :  Setof feasible Block Mixes for surgeon s

Cy : Base level for procedure k (imposed by the government)
10,, : Expected cost of the OR utilization for Block Mix m

N4 : Bed shortage cost at each day

n . Acceptable probability of bed shortage

Vi : Maximum number of possible procedure type k
asme + Required number of bed t days after the date that Block Mix m is scheduled for surgeon s

Let ag,,; denote the total number of required beds t days after Block Mix m is performed by
surgeon s. Since the LOS for Block Mix m’s procedures is assumed to be deterministic, ag,,; is also
deterministic. Also, L,, denotes the latest day that at least one downstream bed is required by
the procedures in Block Mix m. So, constraint 4.4 limits the total number of occupied beds in a
day with respect to the total number of surgical ward’s beds, denoted by B. As a resource
limitation constraint, 4.5 keeps the total number of scheduled OR blocks fewer than the total
available OR blocks at each day. Constraint 4.6 guarantees a minimum number of OR blocks over
the planning horizon for each division. This limitation is imposed to the model, since hospital
administrators might desire to keep a certain level of service for some divisions regardless of
their financial impact on the objective function. This happens when the admins tend to gradually
reset the current case-mix because of the managerial discretion, surgeons’ contracts, and so on.
Constraint 4.7 guarantees a minimum number of OR Blocks for each surgeon. In constraint 4.8,

an upper bound on the total number of dedicated OR Blocks to each procedure is imposed. This
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upper bound depends on the hospital’s catchment area and its population size (i.e. with respect
to the maximum possible demand for each procedure). So, the model has to schedule at most
Vi procedures of type k within the planning horizon. The last constraint considers surgeons’
availability over the planning period. For example, most surgeons prefer not to work during the
weekends or they might have to teach on the other weekdays. Tables 4-1 and 4-2 summarize the
notations used in the deterministic ISCM model, which is also common to the stochastic version

that will be introduced later.

Max: Yie=1 Ric * [X{=1 Zi=1 Z§=1 Nim * Xsme] - Z§=1 ZmEMS Yt=110p * Xgme]  (4.3)
S.t.

Y1 ZmeMsZLt—Lm Asm(t—i+1)Xsmi = B vVt eT (4.4)

Yio1 Ymem, Xsme < ORy vVt €T (4.5)

Yt=12Ysed Lmem, Xsme = ORg vd eDb (4.6)

Yto1 Ymem, Xsme = ORg Vs €S (47)

s=1 ZmeM, 2t=1[Nim * Xeme] < Vi Vk €K (4.8)

Xemt € X (4.9)

4.3.3. Stochastic ISCM Model

To capture the intrinsic uncertainty associated with the LOS, the stochastic ISCM is developed.
The goal of this model is to guarantee that the optimal case-mix would not impose a dire bed

shortage on the system. A set of chance-constraints is proposed on the expected occupied beds
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each day. Let n denote a specified maximum probability of bed shortage over the planning
horizon, 0 < n < 1. Hence, the probabilistic counterpart of the (4.4) is modeled as the following
joint chance-constraint:

P{Y,> B VteT}<n (4.10)
Where P means probability. This constraint guarantees that the total occupied beds would not
exceed the total number of available beds with the probability of (1 — 7n) through the planning
horizon. In other words, the bed capacity constraint may be violated for at most n percent of the
time. The chance-constraint is nonlinear and its deterministic approximation is presented in

section 4.2.4.

However, the resulting case-mix may impose a high level of bed shortage, [Y; — B]*, for n
percent of the time. This issue is important to hospital administrators, because surplus patients
might be transferred to the other units (or other hospitals) rather than the surgical ward. So, if
the gap between the number of required beds and the available beds is small, the risk of case
cancellation would be negligible. With this goal in mind, the stochastic ISCM model benefits from

the Conditional Value-at-Risk approach to minimize the risk of a high level of bed shortage.

Let Y be the total number of occupied beds with cumulative distribution function Fy(B) =

P{Y < B}, Sarykalin (Sarykalin, 2014) showed that the Value at Risk (VaR) is,
VaR;_,(Y) = Min {B|Fy(B) = (1 —n)} (4.11)
And for a general distribution of Y, Sarykalin (Sarykalin, 2014) defined the CVaR as,

CVaR,_,(Y) = E[Y|Y > VaR;_, (V)] (4.12)

64



Since the ISCM model tries to schedule the surgical cases using B beds and the chance constraint
limits the probability of bed shortage to 7, so the VaR in the ISCM model is B, and the

CVaR;_,(Y) = E[Y|Y > B] = B + E[(Y — B)|Y > B].

Let E[Y —B]* show E[(Y-B)|Y>B], so CVaR;_,(Y) —B=E[Y—B]*; and the term
SC * Y, E[Y, — B]* shows the expected bed shortage costs, where SCdenotes the cost
associated with one day bed shortage, Y; is a stochastic variable referring to the total number of

required beds on day t. This term of the ISCM’s objective function is called CVaR term hereafter.

Max Occupied
Beds

CDF

Number of Occupied (Required) Beds at Day (t) / o
Amount of Bed
Shortage at Day (t)

Number of
Staffed Beds, B

Figure 4-3: A Schematic Bed Shortage Distribution
To the best of our knowledge, the CVaR approach has not been applied at any stage of the OR
planning process. A detailed definition of Y;, in terms of x¢,,,¢, and the CVaR approach are
presented in section 4.3.4. Figure 4-3 illustrates a schematic distribution function of bed shortage

each day.
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So, by considering the chance constraint and the CVaR term, the model simultaneously controls
incident of bed shortage and minimizes the cost of expected bed shortage over the planning

horizon. The interaction of these components is investigated later on this chapter.

The other constraints in the stochastic model are the same as the ones described in the

deterministic model. So, the stochastic ISM model is,

K T M
Max ZRR*[ZZNkm*xsmt Z Z Z[IO * Xome) SC*ZE —B]* (4.13)

k=1 t=1m=1 s=1meM; t

S.t.

(4.5)—-(4.6) - (4.7)—(4.8) - (4.9) - (4.10)
4.3.4. Approximation Model

The proposed stochastic model is not linear because of the chance-constraints and the last term
of the objective function. To reformulate the model, one has to ascertain the LOS distribution
function. Marazzi et al. developed a statistical analysis to find an accurate distribution function
that describes the patients’ LOS. They evaluated the Lognormal, Weibull, and Gamma distribution
functions on a large database and concluded that the Lognormal distribution could accurately fit
with the LOS distribution in the majority of the samples (Marazzi, Paccaud, Ruffieux, & Beguin,

1998).

However, as noted in section 3.2.2, several distribution functions on the JGH database are
evaluated; yet, none of them could accurately fit the data. Furthermore, even if such an accurate

LOS distribution function did exist for each procedure, it would be too complex to consider all
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these distributions in the ISCM model. Hence, the historical data is used rather than any
predetermined distribution function to describe the patients’ LOS.

The primary analysis of the JGH data illustrates that more than 90% of the patients’ LOSs for each
procedure is in the range of 3 days. As table 4-3 displays, LOS for 94% of the patients who
underwent a Thyroidectomy procedure in 2013 was 1, 2, or 3 days. However, for some procedure
this rage is wider (i.e. 4 days or more), so the top LOSs are selected, under each procedure, for at
least 90% of the patients.

Therefore, it is assumed that the LOS for each procedure follows a discrete distribution function;
and, a truncate rule is applied to find the LOS distribution based on the relative frequencies for
the most common LOSs per procedure. Later on this study, the effect of this assumption on the
model’s outcomes will be evaluated. The LOS for a K-type patient is assumed to fall in [L,,y, ,

Lmaxl- Let P (t) denote the probability that a k-type patient is discharged home exactly t days

Lmax

after the surgery. So, Y., 7%, Px(2z) is the probability that a K-type patient stays in the hospital
more than t days. Let F,(b,t) denote the probability that all of the Block Mix m’s procedures

require b beds on day t (i.e. t days after the scheduling date of the Block Mix m). Assume that the

Table 4-3: Sample Primary Analysis Results on the Patients’ LOS

LOS Distribution Ton 3
Division Procedure No. of Dave | LZPSS
o. of Days in _
the Hospital (t) 1 2 3 4 > 6 7 8=
. No. of Patients 0 58 20 9 1 3 1 1 0 87
Thyroidectomy
E.N.T. total
Probability 0.00 0.62 0.22 0.10 0.01 0.03 0.01 0.01 0.00 0.94
No. of Patients 2 67 15 0 1 0 1 0 0 82
Hysterectomy
Gynecology

total robotic
Probability 0.02 0.78 0.17 0.00 0.01 0.00 0.01 0.00 0.00 0.98
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Block Mix m contains a sequence of Q procedures, and let W, = {wl,..,w™ } be the set of all

n= (g) combinations of its procedures. Hence,

En(D,8) = Swew, | (Meew[Zome, Pe@ ) MkemwlZico P(@)])] YV mEM, t €T (4.14)

Set hfn = {hfno, ...,hfanax} denotes a realization of the downstream bed occupation resulting

the Block Mix m (e.g. hfno is the number of required beds for Block Mix m at the day of surgery

for (th realization). Let Z be the finite set of all potential realizations, so, the probability of hfn is,

mo0’ mt’

B, = Fn(hy0 0) * T | Fun (s ) 1Sy V(EZ mEM (415

Now, the expected total number of occupied beds at day t is defined as follows:

Yt = Z(EZ ZSES ZmeMs PTSL Zf:t—Lmax hfn(t—i+1)x5mi VteT (4-16)

Let Ef be a binary variable that equals one iff Yf > B. Hence, the deterministic approximation of

the joint chance-constraint (4.10), P{Y, > B Vt €T} < n,isas follows:
Yses ZmeMSZ§=t—Lmax hfn(t_i+1)xsmi < B + BigM * Et( V{EZ VtET (4.17)

Z(EZ(HSES HmEMS Prft)ZtET Ef < nx*|T| (4.18)

And the deterministic approximation of the CVaR term in the objective function, Y:F_; E[Y, —

B]%,is:

+
SC * Z(EZ Z{=1(HSES HmEMS Prg) * [ZSES ZmEMS Zf:t—Lmax hfn(t_i+1)xsmi - B] (4-19)
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To linearize equation (4.19), it is assumed that YesYmenm, H RS —B =

i=t—Lmax ''m(t—i+1)*smi

+ - + -
Uf - Uf , While Uf and Uf are non-negative variables that at most one of them can be
greater than zero for scenario { at time t. Hence, the linearized CVaR term in the objective

function is:

+
SC * Yoz X1 (Mses [menm, BS) * US (4.20)

4.4. Solution Procedure

Although the deterministic approximation of the stochastic ISCM is available, size of Z increases
exponentially with the dimension of the divisions, surgeons, and procedures; as a result, the
expected value of (4.18) and (4.20) for a given decision X is intractable. To overcome this
problem, a scenario-based method is used to optimize the model. The Sample Average
Approximation (SAA) method is applied that was first presented by Verweij et al. (Verweij,
Ahmed, Kleywegt, Nemhauser, & Shapiro, 2003). A set of W independent samples is randomly

selected. Each sample is of size Vrealization of downstream bed occupancy denoted as
hfl‘l’ ,whileV.c Z. Then, the probability of {,th realization is[]ses[Imem, Prfl", and

Zzez(nses [Tmem, Prfl) = 1. So, the probability of {,th realization is updated as follows:

plv — [Tses IImemg PEX
Z(VEZ(HSGS [Tmems PEX)

(4.21)

For example, if all realizations are assumed to have the same probability, then, P%v = % . Hence,

it enables us to calculate the weighted average objective function depending on the probabilities

of V realizations. Let f* and x"respectively denote the optimal objective function and the optimal
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solution of the stochastic ISCM model corresponding to the sample w. Then F = %Zwewfw

denotes the average of the optimal objective functions for W SAA problems that estimates the

objective function.

To select the best solution, denoted as x* € {x',x?,...,x"}, a sample of size V' realization of
downstream bed occupancy is randomly selected; and V'should be quite larger than V. Let
F denote the corresponding objective function to this sample. So, x* is the one that has the

smallest objective value, that is:

x* € argmin{F (x): x € {x',x2, ..., x"}} (4.22)
4.5. Validate the Basic Model on the Full-Scale ISCM

To achieve the main goal of this study, the ISCM model should be validated with the complete set
of data. JGH provided us with the data for 1767 surgical cases (i.e. elective and emergency cases)
performed as 87 surgical procedures, grouped in 7 specialties (i.e. General Surgery, Breast
Oncology, Colorectal, E.N.T., Gynecology, Urology, Vascular) in 2013. For each surgical case, we
have the admission date, surgery date, discharge date, specialty, and the surgical procedure type.
As the first step, the data preparation process to calibrate the ISCM model is presented. And
then, the SWD simulation model is extended to verify and validate the ISCM results. As the next
step, the value of stochastic ISCM model and the importance of its components are studied. At
the end of this section a sensitivity analysis is performed on the parameters of ISCM. But, the
detailed numerical results of the ISCM model, calibrated with the full set of data, are presented in

chapter 5, section 5.2.3. This enables me to better visualize the comparison among various
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funding policies proposed in the objective function of the ISCM model. The results are presented

from strategic, tactical, and operational perspectives for each scenario.

4.5.1. Data Preparation

As illustrated in section 4.2., an increase in the number of surgical procedures exponentially
increases the number of possible combinations of Block Mixes, which negatively impacts the
solution method’s effectiveness. To decrease this impact, a clustering method is developed to
lessen the number of procedure types and Block Mix sets. For clustering categorical data, K-Mean
clustering is a common approach in the literature (Costa & Cesar Jr., 2000). This approach
clusters available objects into K number of groups on the basis of one or more criteria. It
minimizes the sum of squares of distances between data and the corresponding cluster centroid.
However, we are not able to fully apply this approach to our data since it is mainly interested in a
certain number of clusters - K - regardless of homogeneity of specialties, medical features, and so
on. Also, the study has to consider a limited number of procedures under each specialty while
seeing multiple other clustering attributes/features. A new algorithm is proposed to group 2 or
more procedures in the same cluster when i. the same surgeon can operate both of them (i.e. the
same specialty); ii. they have the same reimbursement rate; iii. the difference in their average OR
times is less than 30 minutes; and iv. the difference in their mean expected LOS is less than 2
days. We also consulted with the surgeons, specialists, and nurses to see if specific procedures
cannot be grouped due to medical reasons. Applying our clustering algorithm resulted in 47
procedure groups as illustrated in Appendix |. The idea of clustering the procedures is also used in

developing diagnosis related groups (DRG)(J. M. Sutherland & Foundation, 2011); however, DRG
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mostly considers medical features to cluster procedures and most of the aforementioned surgical
attributes were ignored.

Although various procedures within each cluster have similar OR times and LOS distribution, yet
these attributes are not exactly the same since each Block Mix is built on the basis of the required
OR time for each cluster. So, a precise OR time must be calculated for each cluster. To this end,
the weighted average OR time is calculated for all procedures within each cluster on the basis of
the total number of patients historically served under these procedures. For example, “Repair
hernia paraesophageal” and “Adrenalectomy” are grouped in the same cluster, while the average
OR time for each procedure is 3.6 and 4.2 hours respectively, and the number of completed

patients under each procedure is 6 and 9 respectively. So, the weighted average OR time

(6%3.6+9%4.2)

assigned to the cluster is = 3.9 hours. Also, since the reimbursement rate is the

same for all procedures grouped as a cluster, that rate is considered as the cluster
reimbursement rate. The rest of the process to build all possible Block Mixes is as explained in
section 4.3. Appendix Il illustrates the table of all 72 Block Mixes for this study, which cover all
feasible combinations of 47 surgical clusters that are performed by 40 surgeons in 7 divisions. To
simplify calculations, it is assumed that all surgeons within a division are able to perform or
operate all procedures within that division. Obviously, one can run the model with the updated
surgeon expertise and preferences when the accurate data is available. Based on the given JGH
data, there are 7 surgeons for the General surgery division, 3 surgeons for the Breast Oncology
division, 4 surgeons for the Colorectal division, 8 surgeons for the E.N.T. division, 8 surgeons for
the Gynecology division, 7 surgeons for the Urology division, and 3 surgeons for the Vascular

division in the hospital.
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It is assumed that the length of an OR block can be between 3.4 and 5 hours; however, the model
imposes overtime cost when the Block Mix’s OR hours is greater than 4 hours, and idle-time cost
when it is less than 4 hours. It is assumed that he Block Mixes with the overtime OR hours impose
a higher cost to model. For example, Block Mix 1 sequences 2 procedures “Laparotomy
exploratory” and “Repair hernia incisional”. The length of this Block Mix is 4.67 hours, which causes
a 0.67 hour overtime cost to the model.

Block Mix 3 includes ”Repair hernia Table 4-4: Sample LOS Probabilities

Procedure (k)

. ” P . . Discharge at the Probability
incisional complex” and “Repair hernia
end of Day (t) P (t)
incisional incarcerated”, which requires 1 041
3.89 OR hours on average. This increases 2 0.27
. . Chol tect .
the objective function by 0.11 hours OR clecystectomy 3 0.14
4 0.10
Idle-time cost, if this mix is part of the
5 0.08
optimal solution. 1 0.35
Repair hernia
Also, the LOS distribution must be inguinal 2 0.35
3 0.30
investigated for each cluster. First, as
6 0.50
explained in 4.2.4, the truncate rule is Laparotomy 7 0.25
exploratory )
applied to find the LOS probabilities for 8 0.25
each procedure, denoted as P (t). Table 2 0.50
Dllé\tatltc;n and 3 030
4-4 llustrates a sample of these urettage
4 0.20
probabilities based on JGH data. It shows 1 0.80
Hysterectomy :
that for the procedure total robotic 2 0.20

“Cholecystectomy” for more than 90% of
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the patients, LOS is between 1 to 5 days, or for “Hysterectomy total robotic” procedure the LOSs
of the patients are either 1 or 2 days. Hence, on the basis of the formula (4.14), the conditional
probabilities of the total number of required beds are calculated for each Block Mix, t day after
the surgery, E, (b, t). All these probabilities are calculated for all 72 Block Mixes; but, as an
example, table 4-5 illustrates F3(b, t) for Block Mix 3. So, if the model schedule Block Mix 3 at day
t (i.e. t = 1), itis observed that the probability of occupying 2 beds at the day of surgery (t = 1)
is 1 and this probability is 0.872 for day (t + 1). It is also shown that there will be no bed

occupied at day (t + 6).

Table 4-5: Distribution of Number of Required Beds for Block Mix 3, F5(b, t)

Number of Day (t).
required beds (b) 1 2 3 4 5 6 7
0 0.000 0.000 0.000 0.256 0.333 0.667 1.000
1 0.000 0.128 0.590 0.590 0.667 0.333 0.000
2 1.000 0.872 0.410 0.154 0.000 0.000 0.000

Table 4-6: All Possible Realizations of Required Beds for Block Mix 3

Block Mix 3: Day (t). Probability
No. of Occupied Beds 1 2 3 4 5 6 of the

Realization
Realization 1 2 2 2 2 1 1 0.051
Realization 2 2 2 2 2 1 0 0.051
Realization 3 2 2 2 2 0 0 0.051
Realization 4 2 2 2 1 1 1 0.084
Realization 5 2 2 2 1 1 0 0.084
Realization 6 2 2 2 1 0 0 0.084
Realization 7 2 2 2 0 0 0 0.105
Realization 8 2 2 1 1 1 1 0.095
Realization 9 2 2 1 1 1 0 0.095
Realization 10 2 2 1 1 0 0 0.095
Realization 11 2 2 1 0 0 0 0.118
Realization 12 2 1 1 1 1 1 0.026
Realization 13 2 1 1 1 0 0 0.026
Realization 14 2 1 1 0 0 0 0.033
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To solve the problem with the Sample Average Approximation method, one needs to randomly
generate different bed occupancy scenarios for all 72 Block Mixes. To build the scenarios, first, all
possible bed occupancy realizations of each Block Mix are generated. Then, one realization per
Block Mix is randomly selected to create a scenario. For instance, all possible realizations for
Block Mix 3 are presented in table 4-6. So, “Realization 1” could potentially be part of a scenario
with the probability of 0.051. Each scenario determines the number of occupied beds at each day
with respect to a Block Mix. A scenario has 10 columns (i.e., maximum LOS) and 2160 rows (i.e.,
72 Block Mixes * 30 days — as JGH plans its elective surgical cases only on 30 week-days in a
period of 6 weeks). Let R; denotes the total number of realizations for Block Mix i,

(T172, R)3°, shows the size of full set of scenarios.

For these seven surgical specialties, it is assumed that the hospital allocated 15 staffed beds in
the surgical unit, and runs three ORs (i.e. 6 OR Block) per day. Also, it is assumed thatn = 0.15
which means that for any given period time (e.g. T = 6 weeks), the surgical unit is allowed to
face a bed shortfall for at most 15% (i.e. on average 6.3 days within 6 weeks). It is assumed that
an operating room’s overtime /idle-time cost is $250 per hour and a bed shortage cost is

estimated to be $400 per bed day.

To find the most appropriate number of scenarios to be fed into the model, the code is calibrated
with V' number of scenarios, V € [80,60,40,20]. The ISCM model is coded in ILOG CPLEX
Optimization Studio (Version 12.6.1.0) and run on a machine with 24 GB RAM and 16 threads
working in parallel each with 2.6 GHz (2 processor) CPU. A comparison of the final results on the
basis of running time, local optimality gap, number of constraints and variables is presented in

table 4-7. The CPLEX is set to stop running when the local gap is less than 5%, so there is no
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scientific interpretation on any local gap trend from 20 to 80 scenario. Also, the objective
function values are near optimal regarding to the local optimal gap. It is expected to observe that
the objective function value is monotone decreasing with the number of scenarios, yet because of
different local gap, the results cannot show that. Since a) the objective value does not change
significantly considering the set of these scenarios, b) the running time of the code is reasonable
for 20 scenarios, and c) the optimality gap is also negligible, the study uses 20 scenarios to

develop the rest of the study.

Table 4-7: Comparison of ISCM results with respect to 4 set of LOS scenarios

Number of Scenarios 20 40 60 80
Objective (in $1000) 1212.98 1171.06 1162.42 1166.87
Run Time (Sec) 583 1079 2321 23567
Objective Local Gap 1.44% 4.24% 4.70% 3.78%
Constraints 15600 17274 18954 20634
Total Variables 11977 14450 16970 19490
Binary Variables 840 1680 2520 3360
Integer Variables 9455 9408 9408 9408
Other Variables 1682 3362 5042 6722

4.5.2. Extended SWD Simulation

Since the stochastic ISCM model is simplified by approximating patients’ LOS distribution and a
limited number of scenarios are used in the SAA algorithm to solve the model, a simulation
model is deployed to validate our stochastic ISCM model’s optimal results.

The basic SWD simulation model was built in chapter 3, given the current JGH OR schedule. That

model considered the LOS distributions of eight specialties regardless of downstream
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procedures; in this chapter, the basic SWD simulation model is extended to validate the ISCM
model’s outputs and evaluate various OR schedules on the basis of the daily bed shortage. A
schematic interface of the SWD model is illustrated in figure 4-4. The Arena model read the
optimal OR block schedule from an excel file, and then it allocates staffed surgical beds to each
patient based on a LOS distribution. The model discharges the patient when the LOS is completed
and records the total number of occupied beds per division per day in the excel file. The run time
of the model is 42 days and no warm-up period is required in the model. It is assumed that the
patients, who need to stay in the surgical unit after day 42, occupy beds at the beginning of the
planning period. For example, if a patient’s LOS is 5 days and she is scheduled on day 40, the
model assumes that she occupies one bed on days 40, 41, 42, 1, and 2.

Historical data was analyzed to find the LOS distribution for all 47 procedures within 7 divisions.
The SWD simulation model is calibrated with these LOS distributions and used the optimal OR
schedule from the ISCM model to find the bed occupancy histogram. The SWD simulation model
is run for 50 replications. The results show that his number of replication was enough to
converge to a steady state occupied beds per division and to diminish simulation error.

The SWD simulation model is able to be run for all optimal OR schedules regarding various
scenarios that was discussed in section 4.4.3 and 4.4.4. However, for the sake of space and time,
only one OR schedule is depicted as an example to feed and run the SWD simulation model in
this chapter. From the ISCM results, it is expected to observe at most 15% bed shortage during
the whole planning horizon (this is an initial setting of the model). However, figure 4-5 shows that

16 beds are required for a service level index (SLI) of 85%.
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Read OR Block Schedule from Excel

2= =8 =

Figure 4-4: A schematic interface of the extended SWD Simulation Model

It was anticipated that more beds would be required to reach 85% SLI; since the truncate rule
was applied to calculate LOS distributions for the ISCM model and it was assumed that LOS is
always fewer than 10 days, although less than 5% of LOS is greater than 10 days based on JGH
data. However, the SWD simulation model results prove that the ISCM model result is not far
from reality for this specific OR schedule. Figure 4-5 also illustrates that the surgical unit needs at

least 18 surgical beds to reach 95% SLI.

[ % of days in all iterations e ®Service Level Index

12 = =T 100
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Figure 4-5:Required Bed Frequencies — As a Result of Extended SWD Simulation Model
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Furthermore, Figure 4-6 illustrates further information on the required number of beds for this
OR schedule among various specialties. It is observed that on average 10.9 beds are busy each
day while the bed occupancy pattern is quite smooth when the 6-weeks OR schedule is repeated
for 50 replications. It is also discovered that on weekends fewer beds are required to meet the

demand (It is assumed that day 1 is Monday, so day 6 & 7 is weekend and so on).

Division [ Breast Oncology [l Colorectal BEenT B General B Gynecology I urology B vascular
Day
12
N0

1 32 o _ _ = = i

10

Average Number of Occupied Beds - All Iterations
(=]

12 3 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Figure 4-6: Average Occupied Surgical Beds - All Specialties

Figure 4-7 illustrates the distribution of the required number of surgical beds per day using a
Whisker-Box plot. Simulation results also demonstrate that the surgical unit should expect 22.8

bed-days shortage on average over the course of 6 weeks.
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4.5.3. Deterministic Vs. Stochastic ISCM
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To show the impact of the stochastic parameters on the optimal solution of the ISCM model, the

model is first run using the median of all stochastic parameters (M1). Second, the model is run

using the average patient LOS for each procedure (M2). Then, the results are compared with the

result from the stochastic model (M3). For this comparison, the ISCM model with the ABF (i.e.

Activity Based Funding Policy) objective function is chosen. First these stochastic ISCM models

are solved, and then the SWD simulation model is run to evaluate the final OR schedules. Table 4-

8 presents the results for both the deterministic problems and the stochastic ISCM models.

For most of surgical Block Mixes, the LOS data is right-skewed. So, the average of the patients’
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Table 4-8: Deterministic Vs. Stochastic ISCM

Deterministic Deterministic Stochastic
ISCM Problem Problem (M1) Problem (M2) Problem (M3)
(Median LOS) (Average LOS) (Probabilistic LOS)
Objective ( in $1000) 1246.94 953.07 1212.98
Run Time (Sec) 1.9 0.84 583
Objective Local Gap 0.53% 1.66% 1.44%
No. of Assigned OR Block 178 154 179
Expected No. of Bed
Shortage over 6 weeks 0 0 12
Bed Shortage Probability
38.239 5.909 17.49
(SWD Simulation Results) 7 4 %
Constraints 1404 1404 15600
Total Variables 9583 9583 11977
Binary Variables 42 42 840
Integer Variables 9455 9455 9455
Other Variables 86 86 1682

LOSs (who will be planned) in the Block Mixes is greater than their medians. This negatively
impacts on an accurate estimation of the required resources or the value of objective function.
For example, the objective values of the M1 and the M3 are close to each other, however, the
value decreases by around $250,000 for M2. This shows that the use of the average LOS might be
misleading because it underestimates the objective value. Also, M2 underestimates the surgical
ward workload by only using 154 OR blocks out of 180 available OR blocks. This demonstrates
that JGH needs more than 15 surgical beds to be able to utilize more than 154 OR blocks, which is
not true. Consequently, the SWD model shows that in reality the beds shortage under M2 is less

than 5.9% since it overestimated the number of required beds by considering the average LOS.

However, when the SWD simulation model runs using the optimal OR schedule of M2, it is
observed that on only 5.9% of the days the number of required surgical beds exceed the total

number of available surgical beds. Figure 4-8 illustrates the distribution of required surgical beds
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based on the M2’s optimal OR schedule. On the other hand, M1’s objective value is very close to
the stochastic ISCM’s objective value, and it utilizes 178 OR blocks within the period of 6-week.
On one hand, the running time is much less for the M2 than for M3. On the other hand, the
optimal OR schedule of the M1 generates more than 38% bed shortage over the course of 6
weeks. In other words, a key difference between M1, M2 versus M3 is that the stochastic model
has an accurate estimation of bed shortages, whereas the deterministic models ignore this. It
shows that although M1’s results seem to be appropriate for a strategic decision, one cannot
validate them at the tactical or operational levels. Figure 4-9 illustrates the distribution of

required surgical beds based on the M1’s optimal OR schedule.
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Figure 4-8: Required Surgical Beds for M2 OR Block Schedule
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Figure 4-9: Required Surgical Beds for M1 OR Block Schedule

Table 4-9 presents dedicated OR Blocks to each division as a result of these models. It is observed
that for all divisions except E.N.T. and Vascular these models dedicate the same number of OR
blocks forced by the minimum number of required OR block constraints in the model. Yet, the
final OR schedules of these models are completely different. The result of the SWD simulation
model is illustrated based on the M3’s optimal schedule in section 4.5.2. So, it is simply observed
the impact of the stochastic model on the accuracy of final results. It should be noted that the
“ISCM model” refers to the stochastic version of the model throughout this dissertation, unless

otherwise indicated.
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Table 4-9: Deterministic Vs. Stochastic ISCM — Divisions” OR Block

Specialty

Reimbursement

i Breast General
Policy | I E.NT | | V I
Oncology Colorecta Surgery Gynecology Urology Vascular

ABF 3 13 106 12 16 14 13

ABF 3 13 77 12 16 14 19

Deterministic | Deterministic
Problem (M2) |Problem (M1)
(Average LOS) | (Median LOS)

ABF 3 13 105 12 16 14 16

Stochastic
Problem (M3)
(Probabilistic

LOS)

4.5.4. CVaR and Chance-Constraint Interaction

To limit the bed shortage level as a result of a surgical mix decision, the chance-constraints are
incorporated in the ISCM model. To this end, an acceptable bed shortage level (e.g. n = 15%) is
determined by the surgical unit managers, and the model is banned from exceeding this
threshold. In addition, a CVaR term is embedded in the objective function of the ISCM model to
control the amount of bed shortage when a surgical unit is fully occupied. This section separately

studies the impact of each term on the final ISM results.

First, the CVaR term (i.e. SC * XI_; E[Y, — B]*) is removed in the objective function to run the
stochastic ISCM problem. It is assumed that there is no bed shortage cost when the model

requires more than B beds. However, the chance-constraints still bound the bed shortage days
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at n%. The final results show the average expected bed shortage increases from 9.05 to 12.9
bed-days within the 6-week planning period. Nevertheless, this change does not impact the
optimal case-mix. Also, the SWD simulation model is run with respect to the optimal OR

schedule. The results do not show a significant increase in the average required number of beds.

As explained in section 4.4.2, the SAA algorithm was applied to solve the stochastic ISCM
problem and implemented an estimation of real patient LOS in the model; consequently, it is not
expected that in reality the surgical unit meets 85% SLI precisely. By removing CVaR term, the SLI
decreases to 82%. The CVaR term helps the stochastic ISCM model to keep the bed shortage
probability around 15%. Figure 4-10 illustrates the distribution of the required number of surgical
beds per day using a Whisker-Box plot when there is no CVaR term in the model. It shows that
the median of occupied beds varies from 11 to 13 beds per day, while the average number of
occupied beds is 10.93. The standard deviation of occupied beds increases to 4.46, which brings
less smooth patient flow to the surgical unit compared to the complete stochastic ISCM. The
SWD simulation results show that at most 24 beds might be required to serve all patients under

the optimal OR schedule from the ISCM without a CVaR term.

Now the chance-constraint is removed and the CVaR term is kept in the ISCM to analyze how the
CVaR term would resist the bed shortage increase. Final results show that this setting does not
impact the optimal case-mix, but the average expected bed shortage increases to 55.3 bed-days
and the average number of required beds rises to 12.04 beds. In addition, the outcomes of the
SWD simulation model demonstrate that the OR schedule results in a significant decrease in the
SLI from 85% to 62%. In other words, in 38% of the 6-week period the hospital would face a bed

shortage. The median of occupied beds varies from 12 to 14 beds per day, which means more
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congestion due to the OR mix scheduling. Figure 4.11 illustrates the distribution of the required
number of surgical beds per day using a Whisker-Box plot when there is no chance-constraint in

the ISCM model.
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Figure 4-10: Whisker - Box Plot on the Number of Required Surgical Beds per Day — No CVaR term
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Figure 4-11: Whisker - Box Plot on the Number of Required Surgical Beds per Day — No Chance-Constraint

Furthermore, at this point a sensitivity analysis is performed on the bed shortage cost to find its
impact on the average expected bed shortage when there is no chance-constraint in the ISCM
model. Figure 4.12 illustrates that the average expected shortage in the number of bed

negatively correlates with the bed shortage cost. This concave-up curve shows if the bed
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shortage cost is $2000 instead of $400 (i.e. the initial value), the CVaR term controls the bed

shortage level at 12.3. The SWD simulation results also prove that SLI will be 84% for this setting.

Also a sensitivity analysis is performed on the bed shortage cost when both the CVaR term and
the chance-constraint are available in the ISCM model. In figure 5.4 a concave-down curve
illustrates that a bed shortage cost less than $2000 does not significantly impact the bed shortage

level. In other words, the complete ISCM model is not sensitive to bed shortage cost.
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Figure 4-12: Sensitivity Analysis on the Bed Shortage Cost— No Chance-Constraint
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Table 4-10: Summary of ISCM and SWD simulation model results

ISCM Setting Performance of the ISCM Optimal Solution
CVaR  Chance Expected Bed- Maximum daily Average Number  Standard Deviation = SWD Service

Term Constraint = Shortage Days Bed Shortage of Occupied Beds of Occupied Beds Level Index

YES YES 9.05 8 10.88 4.40 84%
NO YES 12.9 10 10.93 4.46 82%
YES NO 55.3 10 12.04 4.62 62%

It is concluded that the combination of the CVaR term and the chance-constraint brings the most
reliability to keep the SLI at 85%, while the model is quite robust to bed shortage cost. This
combination also has the least standard deviation of occupied beds, which results in a smooth
patient flow in the surgical unit. Table 4-10 summarizes the final results of the stochastic ISCM

and the SWD simulation model under the aforementioned settings.

4.5.5. Sensitivity Analysis of ISCM

The prevailing literature is not helpful pertaining to a reliable estimate of the OR Idle/overtime
costs. JGH was unable to provide us with this information. To calibrate the ISCM model, this cost
is approximated at $500 per hour. In this section a sensitivity analysis is performed on this
parameter to explore how robust the final results are when the OR Over/Idle time cost changes.
In this sensitivity analysis, the ABF policy is considered in the ISCM objective function. As

illustrated in Figure 4-14, the hospital’s revenue decreases as OR Idle/Overtime cost increases.
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Figure 4-14: Optimal Value of the ISCM Objective Function Regarding the OR Idle/Over Time Cost

However, the optimal case-mix does not change too much when the cost is less than $2000.
Table 4-11 shows a considerable reduction in the E.N.T. cases and a significant increase in
Vascular procedures when the cost is $5000 or more. It is observed that the optimal number of
dedicated OR blocks to surgical-mix number 72 jumps to 50. This number was 5 when the OR
Idle/Overtime cost was $400. Mix number 72 contains only one Vascular procedure,”Repair AAA -

I"

aneurysm aorta abdominal”. This procedure has 0.02 hours OR idle-time on average, while its
reimbursement rate is $7215. However, this surgical mix was not initially part of the optimal
solution due to large LOS. Also, it is observed that the optimal number of dedicated OR blocks to
surgical-mix number 46 drops to 5. This number was 52 when the OR Idle/Overtime cost was
$400. Mix number 46 contains “Thyroidectomy”, an E.N.T. procedure with an average of 0.37
hours as Idle OR time, and $3758 as the reimbursement rate.

In general, it is concluded that the ISCM optimal results are quite robust if the OR Idle/Overtime

cost is less than $2000 per hour.
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Table 4-11: Optimal Surgical-Mix Regarding the OR Idle/Over Time Cost

OR Ol Number of Dedicated OR Blocks to each Specialty
Cost ($) Breast Oncology Colorectal E.N.-T  General Gynecology Urology Vascular
500 3 13 106 12 16 14 15
1000 3 13 107 12 16 14 14
2000 3 13 103 12 16 14 18
5000 3 13 77 12 16 14 44
10000 3 13 60 12 16 14 61

4.6. Conclusion

The Integrated Case Mix (ISCM) model was developed and evaluated in this chapter. The model
simultaneously addresses i. the types and quantities of surgical procedures to be performed in
the surgical unit, ii. the efficient distribution of the operating rooms among various divisions and
surgeons, and iii. the optimal OR schedule. For the first time in the literature, the ISCM model
developed shows how to integrate strategic, tactical, and operational decisions in the surgical

unit within a single model.

To tackle the key concerns faced by the hospital administrator, the ISCM model strives to
optimize the dollar amount of the hospital reimbursement, operating room utilization costs, and
downstream bed shortage expenses. It also captures uncertainty in patients LOS, controls the

service level, addresses surgeons’ priority, and division chiefs’ concerns.

The linear approximation of the ISCM model is presented and the model is calibrated and
validated with the full set of real data, provided by JGH. Then, to the best of author’s knowledge
for the first time in the literature, the Sample Average Approximation technique was applied to

solve a Surgical Case-Mix problem. Moreover, the SWD simulation model, introduced in chapter
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3, was extended in this chapter to verify the ISCM results and to evaluate various OR schedules

under different scenarios.

To explore the impact of LOS uncertainty on the Surgical Case-Mix problem, the deterministic
and stochastic ISCM models are developed and compared using the SWD simulation model. The
results demonstrate that the deterministic ISCM model, calibrated with the average LOS,
overestimates the required number of beds for utilizing all available OR blocks, and
underestimates the objective value. Also it is illustrated that the deterministic ISCM model,

calibrated with the mean LOS, results in huge bed shortage (i.e., 38%) in the surgical unit.

From the modelling perspective, the chance-constraints limit the maximum number of days the
surgical unit faces bed shortage. Moreover, the CVaR term controls the risk of high bed shortage
within each day. This chapter showed that the incorporation of these terms in the ISCM model is
required to meet the model’s objectives (e.g., 85% SLI) and to experience a smooth patient flow.
Also, the sensitivity analysis on the bed shortage cost is performed to investigate its impact on
the aforementioned incorporation. The results demonstrate that when both the CVaR term and
the chance-constraint are incorporated in the ISCM model, for the bed shortage cost less than
$2000 the complete ISCM model is not sensitive to bed shortage cost. Furthermore, a sensitivity
analysis on the OR Idle/Overtime cost (less than $2000 per hour) demonstrates that the ISCM

optimal results are quite robust.

In the next chapter the ISCM model is extended to capture some external factors such as
emergency and off-service patients that influence the ISCM model. Also, the ISCM model is

presented under different reimbursement policies.
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Chapter 5
Extensions on the Basic ISCM Model

5.1. Introduction, Motivation, and Literature Review

In chapter 4 the ISCM model was developed that integrates the surgical case mix problem with
the OR block scheduling problem. The model considers all possible Block Mixes (i.e. feasible
sequence of procedures within an OR block) for each surgeon to discover a realistic case-mix
decision. Then the model was calibrated and run with the full set of data from JGH. And then, a

sensitivity analysis was performed on the ISCM components.

Chapter 5 presents the extend ISCM model to capture its interaction with external factors:
reimbursement policy, configuration policy, emergency patients, and off-service patients. To
this aim, the effect of three reimbursement policies is presented on the surgical case mix
problem outcomes, which helps policy makers to evaluate the consequences of the hospital

funding policies on the surgical case mix.

The ISCM model considers a fully pooled bed configuration in the surgical ward. However, lots
of hospitals prefer to follow semi-pooled or dedicated bed configuration policies. Less nursing
training effort is required under these policies and they enable divisions’ managers to easily
manage their resources. To address this concern, the ISCM model is extended on the basis of
the semi-pooled bed configuration policy, and the ISCM model and the SWD simulation model

results are compared with the fully pooled bed configuration setting.
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Although the ISCM model integrates the operational, tactical, and strategic aspects of a surgical
unit case-mix problem, it does not address its cooperation with other units such as Emergency
Department (ED) or Medicine. To have a comprehensive model, the study not only has to target
preplanned surgical patients in the ISCM but also incorporate the emergency and medicine
patients using surgical unit resources. Emergency patients might get admitted to the acute care
unit through the ED when they need surgery to complete their treatment. The arrival rate of
emergency patients is stochastic and makes the ISCM even more complex. This section will
discuss expansion of the ISCM to capture the impact of emergency patients on the surgical unit

case-mix problem and downstream bed utilization.

Occupying surgical beds might happen by medicine patients too. They might need surgery as
part of their treatment, so they get transferred to the surgical unit. Also, they might get placed
in the surgical unit due to bed shortage in the medicine unit. These patients are denoted as off-
service patients in the literature. To the best of our knowledge, there is no study to address the

impact of off-service patients on the surgical case mix problem.

5.2.  Reimbursement Policy’s Impact on the ISCM

5.2.1. Introduction

The hospital funding mechanism is the subject of significant debates and changes in most
countries with publicly funded healthcare systems (Mayes, 2007). The ISCM model was
developed based on the activity based funding (ABF) policy. ABF policy is based on the type and
volume of procedures provided at each hospital. In addition to the ABF policy, Global Budgeting

(GB) and a combination of ABF and GB methods are other common alternate methods to be
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contemplated by the provincial governments in Canada and other industrialized countries (Pink
et al., 2001). This section will evaluate the impact of each policy on the strategy of hospitals

administrators on the Surgical Case Mix problem.

Each policy has its own incentives and disincentives influencing quality, type, and volume of
hospital services. Dafny studied hospital’s response to the price change (Dafny, 2005). He found
that the main response of the hospitals to change in reimbursement policy is coding patients to
diagnosis codes (DRGs) with the largest price increases. However in the long-term, he
concluded that hospitals would increase the volume of profitable surgical procedures and
specialize in admissions in which they are relatively cost efficient. At the strategic level, building
the ISCM model on the basis of the proposed funding policies helps the policymakers to
discover how these policies affect hospitals’ response to better assess the trade-offs among
proposed alternatives. Also it helps hospital administrators to discover the possible utilization

by contemplating case-mix reform efforts.

5.2.1.1. Global Budget with Incentive

Hospital’s Global Budget (GB) refers to a fixed annual lump-sum distributed among each
hospital to cover their operating costs independent of the volume or type of service provided.
Global budget policy is easy to implement since it provides a stable and predictable plan for the
hospitals and the government. Also, it is a suitable policy for small hospitals to cover their fixed

costs.

Let GBI denote the surgical unit revenue under the global budget funding policy with incentive.

Global budget is usually based on the hospital services, capacity, and historical expenditures. It
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does not incentivize the hospitals to utilize their unused capacity to increase the surgical case
volume, resulting in lengthy waiting lists. Therefore, depending on the hospital capacity, the
government defines a certain number of cases for each procedure type, Cj, and if the hospital
practice more than this threshold, it will get reimbursed for the extra cases, denoted as
X M Nem * Xsme — Ci]*, in addition to the hospital’s GB. In other words, the

government buys increased volume of surgical cases from the hospital. Hence,

Reimbursement(GBI) = GB + YK _ Ry [ X i XM _ 38 Nim * Xgme — Ci] T (5.1)

And then the objective function 4.13 must be updated to:

Max (5.2)
T M S S T
GB+ZRk*ZZZ N * Xz — Ca]* ZZZ[O * Xem] SC*ZE — BJ*
= t=1m=1 s=1meM, t=1 t=1
5.2.1.2. Global Budget with Incentive and Penalty

To decrease the waiting lists, government can impose financial penalties on the hospital if it is
not committed to the Cj threshold. Note that GB is usually calculated on the basis of the
procedure cost rate which is lower than Ry, hence GB < YK _ Ry + [XT_  3M_ S | Ny *
Xsme]- However, at the end of the year if the number of patients with procedure k deviates
from Cj, the hospital will payback or get reimbursed with the rate of Rj per patient depending
on whether it falls short or exceeds the threshold Cj, respectively. Therefore, the financial term

is defined as:

Reimbursement(GBIP) = GB + ¥ K _ R * [Xr_ XM _ 351 Nim * Xsme — Ck] (5.3)
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Hence, the objective function of the ISCM model is:

Max (5.4)

T T

T M S
N
GB + E Ry * § E E 1Nkm*xsmt — Gkl - § E ]0 *xsmt —SC* § E[Y; B]+
s=
k=1 t=1m=

m=1 s=1meM, t=1 t=1
5.2.2. Evaluating Reimbursement Policies

To compare these policies, two settings for the ISCM model are considered. First, it is assumed
that the manager might face some restrictions due to the minimum number of OR Blocks
dedicated to each division or surgeon. This setting is denoted as “Constrained Problem”.
Second, it is assumed that there is no such restriction in front of the managers. This setting is
denoted as “Relaxed Problem”. Under both settings, it is assumed that the total number of
procedures cannot exceed a fixed number since there is a finite number of patients that require
a specific surgery. This threshold is assumed to be 2 times the average completed cases for
each procedure annually on the basis of historical data. Also, the same parameter that is used
in different models is assumed to have the same value in all models. Table 5-1 illustrates the
results of all three policies under both settings. It is observed that for both the ABF and GBIP
funding policies, the ISCM model results in similar optimal solution under both the Relaxed and
the constrained scenarios, which is interesting. In other words, hospital managers should make
similar strategic decision on the Surgical Case Mix problem under both policies. From a
mathematical point of view it is proved that these objective functions must result in the same

optimal surgical case-mix:

Proof:
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Reimbursement(GBIP) = GB + YK _ R * (X XM _ 35 Nim * Xsme — Ck]
= GB — Xj=1 Ric * C + Xi=1 Ry * [X1=1 Xih=1 23=1 Niem * Xsme
= GB — YX_, Ry * C + Reimbursement(ABF) O

And the GB — Y K_, Ry = Cy term is a constant number. The ABF and GBIP objective functions
are maximized when surgical procedures with the highest marginal benefit stand in the final
solution. Under the GBIP policy, if these procedures do not satisfy the base volume threshold,
the hospital is penalized but still makes more money by operating the most beneficial
procedures using limited available resources. The objective function value, however, might be
different for these two funding policies. Table 5-1 shows that the objective function value is
$1212980 for the ABF policy while this value is “Global Budget +$10850”. If the hospital’s global
budget is less than $1202130, the government saves on the total reimbursement amount to the

hospital by applying the GBIP policy.

Regarding the relaxed setting, it is observed that the Colorectal Surgery, the General Surgery,
the Gynecology, and the Urology are not among the most attractive divisions. E.N.T. procedures
use minimum resources, yet bring the highest funding to the hospital. Also, the Vascular Surgery

is ranked as the second most important division for the hospital.

The story is different for GBI funding since the managers have to plan for the base volumes
regardless of their marginal benefits. So, under both constrained and relaxed settings the
priority goes to those procedures listed under the hospitals’ commitment to the government.

Then, the remaining resources are dedicated to the E.N.T division to optimize the objective
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function of the ISCM model. In general, it is obvious that the objective functions are greater in

relaxed settings compared to the constrained setting.

Table 5-1 illustrates that the ISCM model results in a higher optimal objective function value
under the GBIP compared to the GBI policy for the same setting. From the mathematical view,
the GBIP is a more flexible policy comparing to the GBI policy, and any feasible solution under
the GBI policy setting is also a feasible solution under the GBIP policy setting. Hence, the ISCM
model with GBIP policy must has an optimal objective function value that is at least equal (and

likely larger) than the optimal value of the ISCM model with GBI policy.

Table 5-1: Funding Policies Comparison

Fundin Objective Specialty
PoIicyg Function B . : : IG I' - -
Value ($1000) °"€@%" cqjorectal EINT S e Gynecology Urology Vascular
Oncology Surgery
- ABF 1212.98 3 13 105 12 16 14 16
Q
c £
= Global Budget
o 9
E _8 GBI +6.30 2 6 87 10 30 22 13
5 & Global Budget
©  Gap g 3 13 108 16 16 14 13
+10.85

Min OR Block-ISCM Constraint 2 0 20 10 30 16 12

ABF 1399.80 2 0 160 0 0 0 16
- E Global Budget
% % GBI +7.80 3 0 96 16 32 19 14
v ©
o o

Gpip ©lobal Budget 0 160 O 0 0 16

+181.80

It is important to note that since a limited number of procedures under each division is studied

in the ISCM (due to data unavailability), the model might result in different outcomes if the mix
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of procedures changes under each division or if a complete set of hospital resources such as

available ORs and surgical beds are considered.

5.2.3. Strategic, Tactical, and Operational Outcomes of Stochastic ISCM

This section presents outcomes of the stochastic ISCM model based on three different settings
denoted as alternative A, B, and C. The results are compared from strategic, tactical, and
operational perspectives. Alternative A applies the constrained setting, described in previous
section, to the ISCM model with the ABF objective function. Alternative B imposes the relaxed
setting to the ISCM model with the ABF objective function. Alternative C also explains the
results of ISCM with respect to the relaxed setting under the GBI funding policy. Figures 5-1, 5-
2, and 5-3 illustrate OR Block allocation among all divisions. Boxes with the same colour
represent the same specialty, while each box is split into several smaller boxes representing
surgeons. For example, figure 5-1 shows that more than half of available OR blocks are
dedicated to the E.N.T. division. Depending on the minimum number of required OR blocks for
each E.N.T. surgeon, the ISM model decided to allocate 32 OR blocks to surgeon no.15 and only
1 OR Block to surgeon no. 19. It is observed that surgeon no. 15’s share from available OR Blocks
is greater than all the other 6 divisions. So, to have a more realistic model a maximum number
of OR Blocks must be imposed to each surgeon. Also we are able to figure out if the hospital
managers need to have more surgeons within each division. However, this does not change the
strategic guideline to focus on the E.N.T. division. The importance of the E.N.T. division is even
more significant based on figure 5-2 when there is no commitment to dedicate some OR Blocks

to the other divisions.
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Figure 5-4 illustrates the Block Mix schedules for all three alternatives. Out of 72 Block Mixes,
33 Block Mixes are not part of the optimal OR schedules for any of the alternatives. This means
that 17 surgical procedures out of all 47 procedures are not part of the final solution. 6 of these
17 procedures are among the top 10% of procedures with the longest LOS. It was predictable
that procedures such as the “Hartmann's procedure” and the “Resection sigmoid”, which are
considered in Block Mix 19 and Block Mix 20, have an average 4.5 hours OR time and 10 days
LOS, and are not the most attractive procedures for the managers. However, the “Resection
abdomino-perineal with colostomy” is part of the optimal solution since the reimbursement
rate is $7215, while the average OR time is 6.7 hours, and the average LOS is almost 10 days. In
general, it is observed that the ISCM model tries to avoid scheduling any Block Mix with a high

LOS and OR time. Figure 5-5 shows that Block Mixes 46 & 47 are the most attractive ones for
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alternatives A and B. These Block Mixes cover a group of “Thyroidectomy” procedures. The
median LOS for these procedures is 1 day, and the average OR time is less than 1.4 hours. Its
reimbursement rate is $3973, and there is a sufficient number of patients waiting for this
service. This gives us an approximation of the marginal value of hospital resources such as ORs
and surgical beds. Figure 5-6 illustrates the number of dedicated OR blocks for all procedures.
And figure 5-7 presents the surgeons’ schedule for the first two weeks of the 6 week planning

horizon for alternative A.
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Specialty M Breast Oncology [l Colorectal B ENT B General Surgery [l Gynecology B Urology [ vascular

Mix / Alternative

1.2 4 6 9 11 16 22 24 25 28 30 31 33 36 38 41 42 43 45 46 47 51 52 54 57 58 59 60 62 64 65 67 68 m 72
Day C A C AABCAAACCCCCCCCACCABCABCABT CABT CCCACCACAAAACACABTCA®BTC
1 < 1 44 1 1 2
2 1 B 1 4 2 2 3 1
3 1 4 1 3 2 2 1 1 1 1
4 2 1 < 2 2 1 2 2 1 1
5 1 1 3 1 1 5§ 3 3
8 1 2 1 4 5 1 11 1 2
9 1 11 2 3 2 3 3 1 1
10 1 1 3 1 2 3 1 3 2 1
1 1 2 1 2 4 1 1 1 1 1 1 1
12 1 1 3 5 2 1 1 1 1
15 3 1 1 5 2 2 1 2 1
16 1 2 3 311 3 1
17 1 1 1 1 3 1 1 2 3 3 1 1
18 1 1 S 3 1 2 3 1 1 1
19 1 2 1 2 6 2 11 2
22 1 2 1 1 1 1 3 3 1 1 3
23 2 2 1 2 1 3 1 2 3 1
24 5 5 4 1 1 1 1
25 2 < 2 1 1 2 3 1 1 1
26 1 1 1 2 6 2 1 1 1| 2
29 2 1 1 4 1 1 2 4 1
30 1 2 2 2 3 1 2 1 1
M1 1 2 2 3 1 1 1 3 1 1 1 1 1
32 1 2 1 2 3 4 2 1 1 1
33 2 1 2 6 2 1 1 1 1
36 1 1 3 1 3 3 3 1 1 1
37 1 1 2 5 3 2 1 1 2
38 1 1 1 3 2 21 2 1 1 1 1
39 1 B 2 3 2 2 1 1 2
40 2 2 4 6 2 2

Figure 5-4: Block Mix Schedule for Alternative A, B, and C
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Figure 5-5: Total OR Blocks Dedicated to Each Mix for Alternative A, B, and C
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Figure 5-7: Surgeons’ Schedule for the First 2 Week, Alternative A
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5.3. Pooled Vs. Semi-Pooled Divisions

In the ISCM model, surgical beds are assumed to be shared among all patients from all
specialties. This assumption is defined as pooled policy in chapter 3. Although many hospitals
aspire to a pooled bed configuration, in reality certain divisions share their beds among
themselves. This section studies the impact of a semi-pooled bed configuration policy on the
ISCM problem. This approach results in a more realistic outcome from various stakeholders’

perspectives.

JGH surgical beds are divided mainly into two segments. General Surgery and Colorectal
divisions share surgical beds, denoted as “Group 1”, and the rest of the beds are shared among
other divisions, denoted as “Group 2”. To apply the semi-pooled bed configuration policy on
the ISCM model, the chance-constraint 4.10 is split into two chance-constraint sets. Each
chance-constraint limits the probability of bed shortage for those divisions that share available
beds. The total number of main ward beds, B = 15, is split between them with respect to each
groups’ demand distribution. Let B; = 5 and B, = 10 denote the total number of dedicated
beds in groups 1 and 2 respectively, and Y;* and Y,? be the total number of beds occupied by the

patients in these groups. So, the chance-constraint (4-10) is split into two chance-constraints as

follows:
Pri{y} > B; VteET}< 7 (5.5)
Pr{Y? = B, VteET}< 7 (5.6)

The final ISCM results demonstrate that the optimal value of the objective function does not

significantly change under the semi-pooled bed configuration. Table 5-2 shows that the optimal
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OR blocks dedicated to each specialty also remain the same under both bed configurations.

Hence, it is necessary to know the impact of each bed configuration on surgical bed utilization.

Table 5-2: Optimal OR Block Distribution under Pooled and Semi-Pooled Bed Configurations

No. of Allocated OR Block to each Specialty

Bed
. . Breast
Configuration Colorectal E.N.T General Gynecology Urology Vascular
Oncology
Semi-Pooled 3 13 104 12 16 14 17
Pooled 3 13 105 12 16 14 16

Also, the SWD simulation model results show that the patients in groups 1 and 2 occupy 4.23
and 7.18 beds on average, respectively (Figures 5-8, 5-9). In total 11.42 beds are occupied on
average, while this number is 10.88 under a pooled bed configuration. Figures 5-10 and 5-11
illustrate that the JGH needs 5 and 12 beds for groups 1 and 2 to reach 85% SLI. In other words,
17 beds are needed in total to serve 85% of the required bed-days. Also, the standard deviation
of occupied beds for semi-pooled bed configuration is 4.55, while this number is 4.46 for
pooled bed configuration. Further details on the distribution of the required number of surgical
beds per day for groups 1 and 2 are illustrated in Figure 5-12 and 5-13 using a Whisker-Box plot.
Our analysis demonstrates that, as expected, fewer beds are required under the pooled versus
the semi-pooled bed configuration for the same service level. However, note that within the
semi-pooled bed configuration, nurses with similar expertise are serving appropriate patients.
In reality, all nurses are not trained for all specialties. So, our analysis shows that at most one

more bed is required under the semi-pooled bed configuration. To compare these two bed
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configurations economically, one must study the cost and feasibility of training nurses to be

able to serve all types of patients, and the cost and feasibility of adding a bed into the system.

B colorectal B General
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Average Number of Occupied General - Colorectal Beds (50 Iterations)
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Figure 5-8: Average Occupied Surgical Beds — Group 1
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Figure 5-9: Average Occupied Surgical Beds — Group 2
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Figure 5-10: Required Bed Frequencies —Extended SWD Simulation Model for Group 1
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Figure 5-11: Required Bed Frequencies —Extended SWD Simulation Model for Group 2
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Figure 5-12: Whisker - Box Plot on the Number of Required Surgical Beds per Day — Group 1
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5.4.  Emergency Patients

The ISCM model tried to find the best surgical mix for the elective patients. It was assumed that
the total number of beds is fixed for these patients. However, many hospitals serve emergency
patients as well as elective cases. To build a realistic model, the impact of emergency patients
on the hospital’s surgical mix must be considered. Serving emergency patients results in
uncertainty in the available inpatient beds for elective patients each day. So, total number of
surgical ward beds for elective patients, denoted as B,, has to be a stochastic variable in the

ISCM model, which makes the model even more complex.

Emergency patients also affect the availability of other resources such as ORs, nurses, and
surgeons. When there is no trauma service (as in our case, JGH), a significant majority of the
emergency patients do not need to go to OR immediately after getting admitted to the hospital.
Such hospitals often reserve a certain number of OR blocks only for emergency patients. Also,
nurse ratio mostly depends on the total number of beds not the type of patient’s entry,
emergency or elective. So, this section only focuses on the impact of emergency patients on the

surgical ward beds and elective patient scheduling.

This study only focuses on 72 main surgical procedures operated in JGH. So, only emergency
cases for the same set of procedures are considered. On the basis of historical data it is
observed that 34 emergency patients on average are admitted to the hospital in 6-week under
these 72 procedures. Since the number of emergency patients is not large enough to study

each procedure individually, all emergency patients are considered as a single group.
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Figure 5-14 illustrates the arrival rate and pattern of the emergency patients. Almost all of
these patients are operated during the week. On Tuesdays the least number of emergency
cases transfer from the ED to the surgical unit, while the surgical unit experiences the highest
rate on Wednesdays and Thursdays. Also, historical data shows that almost always less than
three emergency patients are operated on per day. This histogram is used to generate 20

Arrival Scenarios for emergency patients during the planning horizon of six weeks.
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Figure 5-14: Emergency Patients Arrival Pattern

Then emergency patients LOS distribution is explored. As illustrated in Figure 5-15, less than
20% of patients have LOS greater than 15 days, so the truncate rule is applied here while it is

assumed that all these 20% of emergency patients stay at the hospital for 16 days.

To include emergency patients into the ISCM model two OR Block Mixes are added to the
model, the first one considers one emergency patient and the second one considers two
emergency patients. For each emergency OR Block Mix, different bed occupancy scenarios are

generated. To build the scenarios, first, all possible bed occupancy realizations of each
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emergency Block Mix are generated. Then, one realization per Arrival Scenario of the

emergency patients is randomly selected.
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Figure 5-15: Emergency Patients Length of Stay Histogram

To run the ISCM model constraint 4.4 must be replaced with:
Vo1 XmeMs Lizt-i,, Esmet—i+)Xsmi < B — Bet Vt €T (5.7)

While B,;denotes number of occupied beds by emergency patients on day t. Now the ISCM
model is run with 15 beds, shared between elective and emergency patients. Given the optimal
OR schedule, the SWD simulation model is used to find its impact on the surgical bed
occupancy. It is observed that the average number of occupied beds is 4.6 for emergency
patients and 8.0 for elective cases. Note that, not all of the OR blocks are used when only 15
beds are dedicated to the emergency and elective cases, so the ISCM schedules fewer elective

patients than the elective-only base model, hence, fewer number of beds are required to serve
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them. Figure 5-16 and 5-17 illustrate more details on the average occupied bed by each surgical

specialty.
Specialty B Breast Oncology [l Colorectal [ General HENT B Gynecology B urology B vascular
Day
Pt (. L S G S
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Figure 5-16: Average Occupied Surgical Beds — Elective Patients
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Figure 5-17: Average Occupied Surgical Beds — Emergency Patients
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Furthermore, figures 5-18 and 5-19 present the SLI for elective and emergency patients. To
reach 85% SLI, 11 surgical beds must be equiped for elective patients and 5 surgical beds for
emergency patients. As explained in section 4.5.2, note that the truncate rule was applied to
calculate LOS distributions for the ISCM model and the LOS was assumed to be always fewer
than 10 days, so the SWD simulation model results shows that 16 beds are required in total

instead of 15 beds.

The optimal result of the ISCM shows that only 144 out of 180 OR blocks were utilized, and the
objective function decreased from $1212980 to $847800. We increase the total number of
available beds, denoted as B, and rerun the ISCM to analyze the marginal value of each bed.
Results show that 23 more OR blocks are utilized when B shifts from 15 to 17 beds. Yet, only 10
more OR Blocks are scheduled when B shifts from 17 to 19 beds. And finally, the surgical unit is
able to use 2 more OR blocks if it opens one more bed. The results show that the marginal value
of each bed is zero when there is 21 beds. Table 5-3 presents further information on the ISCM
optimal results under various scenarios on B. It is observed that the dedicated OR Blocks to

almost all divisions except E.N.T. and Vascular do not change when B shifts from 15 to 20 beds.

Table 5-3: Surgical Ward Bed Sensitivity Analysis — ISCM with emergency Patients

Dedicate OR Blocks L
No.Of | No.of Objective

Available | Utilized Breast Value
Beds OR Blocks Oncology Colorectal  ENN.T  General Gynecology Urology Vascular  (10009)
15 144 3 13 66 12 17 14 19 847.8
17 167 3 13 86 12 16 14 23 1030.1
19 177 3 13 100 12 16 14 19 1159.5
20 179 3 13 105 12 16 14 16 1202.0
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This occurs since the model has to dedicate a certain number of OR Blocks to each specialty.
But, the ISCM dedicates any unutilized OR Blocks to the most profitable Block Mixes, which are

under E.N.T. and Vascular surgery, when there are some extra surgical beds available in the

ward.
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Figure 5-18: Required Bed Frequencies —Extended SWD Simulation Model for Elective Patients
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Figure 5-19: Required Bed Frequencies — Extended SWD Simulation Model for Emergency Patients
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5.5. Off-Service Patients

The bed shortage problem is not limited to the surgical unit. Patients might admit or transfer to
an inpatient bed regardless of their main service group (e.g. surgical, medicine). As explained in
the ISCM model, it is assumed that the surgical patients might use other units’ beds for n% (e.g.
1 =15%) of the planning days. However, the opposite usually happens to the surgical unit. In
other words, for example the medicine unit transfers its patients to the surgical unit when
there are not enough beds in that unit and some beds are free in the surgical unit. This section

will study the impact of these patients on the surgical unit bed management.

It is assumed that there are always 3 non-surgical patients ready to transfer to the surgical unit
if there are unoccupied beds. Let 0 (0 < 3) show the number of off-service patients transferred
to the surgical unit, and Y,; = 1 if o off-service patients are transferred to the surgical unit at
day t. Also, b,; denotes the required number of beds t days after the date that o number of off-
service patients are transferred to the surgical unit. It is assumed that the surgical unit charges
other units for each day per off-service patient. Let 9 represent this rate, and 9 is assumed to

be equal to the bed shortage cost.

In addition, three off-service admission policies are considered. The first policy allows the off-
service patients to stay one day at the surgical unit. The second and third policies extend this
number to 2 and 3 days at most. So, let g show the maximum number of days that an off-
service patient is allowed to stay in the surgical unit. To consider off-service patients in the

ISCM model, constraints (5.9) and (5.10) must be added to the model and replace constraint
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(4.4) with constraint (5.8). This constraint counts the occupied beds by all off-service and

surgical patients.

Yo=1 ZmeMy Dizt—L,, Esm(t—i+1)Xsmi T Dizt—q 20=0 Dot—i+1) *Yor < B Vit €T (5.8)
oV <1 vVt eT (5.9)
v, € {01} Vto €T  (5.10)

Also, the objective function must be extended by adding the off-service bed charges, so:

Max (5.11)
Zlk(=1 Rk * [Z{=1 2%:1 Z§=1 Nkm * xsmt] - Zgzl ZmEMS 2?:1[10m * xsmt] -
SC* N1 E[Yy = BI* + 9% Xl q X0=0Dboct—it1) * Yor

Since the length of stay of an off-service patient is stochastic, it is assumed that each off-service
patient will either discharge home or transfer to his origin unit with a daily probability of {3 (e.g.
B = 0.1). The surgical unit admits at most 3 off-service patients per day, so, 4 Arrival Scenarios
must be considered. Different bed occupancy scenarios need to be generated for each Arrival
Scenario. To this aim, first, all possible bed occupancy realizations of each state are generated,
and then one realization is randomly selected per Arrival Scenario of the off-service patients.

Then the proposed SAA methodology is applied, to solve the ISCM model.

Final results do not show a significant change in the objective value of the ISCM model. In other
words, it is observed that the off-service admission policy does not negatively impact the
surgical unit reimbursement amount (as long as they can charge the sending unit an
appropriate amount). Figures 5-20, 5-21, and 5-22 illustrate the volume of off-service patients,

transferred to the surgical unit under 3 different admission policies during a 6-week planning
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horizon. With respect to the first off-service admission policy, figure 5-20 shows that the
surgical unit usually admits one off-service patient each day. However, there are three days
that the surgical unit beds are fully occupied by the surgical patients, so no off-service patient is
admitted on those days. As the model allows off-service patients to stay more than one day in

the surgical unit, the number of admitted patients decreases under the second and third

policies.

No. of Admitted Off-
Service Pts

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
Day

Figure 5-20: Off-Service Patients Arrival Schedule under Admission Policy No. 1
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Figure 5-21: Off-Service Patients Arrival Schedule under Admission Policy No. 2

I

11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
Day

No. of Admitted Off-
Service Pts

Figure 5-22: Off-Service Patients Arrival Schedule under Admission Policy No. 3
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Figures 5-23, 5-24, and 5-25 illustrate the daily distribution of off-service patients’ admission
under all admission policies. These figures aggregate the admission schedule of off-service
patients within a six-week planning horizon. For example, Figure 5-23 shows that for four
Mondays in the period of six weeks the surgical unit should admit one (colored in orange) off-
service patient and for the rest two Mondays it admits two (colored in red) off-service patients.
It is also observed that under Admission Policy No. 1, for all six Saturdays and six Sundays in our
planning horizon, two off-service patients are admitted. In all policies, admission rate is higher
on the weekends rather than weekdays. On Tuesdays, Wednesdays and Thursdays the results
suggest to admit no off-service patients under second and third policies, and at most one off-

service patient under the first policy.

The surgical unit should admit 39, 23, and 17 off-service patients under first, second and third
policy respectively. The ISCM model expects 54, 58.9, and 46.7 bed-days to serve these off-
service patients respectively. Although the surgical unit allows off-service patients to stay 3
days under the third policy, it requires the least number of bed-days among all policies. This
policy stops the model to admit off-service patients on weekdays even if there is a free bed,

since the surgical unit needs that bed for future surgical patients.
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Figure 5-23: Daily Distribution of Off-Service Patients Arrival under Admission Policy No. 1
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Figure 5-24: Daily Distribution of Off-Service Patients Arrival under Admission Policy No. 2
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Figure 5-25: Daily Distribution of Off-Service Patients Arrival under Admission Policy No. 3
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5.6. Conclusion

In this chapter the ISCM model is extended to address the impact of external factors on the
surgical case mix problem. To help the policy makers to respond governmental funding
policy in a long term, trade-offs analysis are performed among three funding alternatives i)
activity based funding (ABF), ii) global budget with incentive (GBI), and iii) global budget
with incentive and penalty (GBIP). Two scenarios were assumed, either the policy makers
are completely flexible (i.e., Relaxed Problem) or they have to apply a lower bound (i.e.,
Constrained Problem) on the OR allocation among various divisions and surgeons. Also, it is
assumed that the total demand for each surgical procedure cannot go beyond a threshold.
The results demonstrate that the hospital managers would similarly respond to the ABF and
GBIP policies under both scenarios. Furthermore, from the government perspective, a
global budget range is found which results in the same surgical case-mix under the GBIP
policy compared to the ABF policy. The ISCM results (e.g., OR Block allocation among all
divisions and the Block Mix schedules at the strategic, technical, and operational levels)
under all aforementioned settings were illustrated in this chapter. It was observed that 33
out of 72 Block Mixes are not part of the optimal OR schedules for any of the funding
policies. This translates to 17 surgical procedures out of all 47 procedures. Yet, only 6 of
these 17 procedures are among the top 10% of procedures with the longest LOS. In
general, it was found that more than 50% of the OR blocks are assigned to the E.N.T.
procedures under the constrained scenario. This was because they bring the highest
funding to the surgical unit. The Colorectal Surgery, the General Surgery, the Gynecology,

and the Urology are not very attractive divisions from a financial perspective. However, not
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all surgical procedures are addressed in this study since there was no access to the full data
on them, and this might bias the results presented.

As the second factor, the impact of bed configuration policy on the ISCM model was
evaluated. The results demonstrate that the semi-pooled bed configuration increases the
daily bed occupancy variance. That also slightly increases the number of required beds for
the same SLI under pooled bed configuration. However, a minor impact was observed on
the value of the objective function and the optimal surgical mix. So, it is recommended to
extend this study to explore all advantages and disadvantages of various bed configuration
policies from managerial and medical perspectives.

The ISCM model was also extended to address emergency patients which brought
uncertainty in the availability of the surgical beds. The results showed that about one third
of the surgical beds are occupied by these patients who prevent all OR blocks to be utilized.
Hence, it is concluded that the surgical unit has to add 5 more beds to fully utilize OR blocks
and serve the elective patients at 85% SLI.

At the end, off-service patients were incorporated in the ISCM model. To smooth patient
flow across all units (e.g. medical unit), different off-service patient admission policies were
proposed. In all policies, the optimal results suggest a higher off-service patient admission
on weekends and Fridays rather than the rest of the week since the off-service patient LOS

is stochastic and they might stay more than one day in the surgical unit.
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Chapter 6

Conclusion & Future Study

6.1.  Conclusion

This study systematically approaches surgical unit management. The surgical case-mix problem
is addressed at the strategic level while we control its impacts on the surgical unit’s patient flow
at the operational level. The study was initiated after lots of meetings with surgical unit
managers, surgeons, and nurses at the Montreal Jewish General hospital, talking about their
main operational concerns there. A comprehensive literature review was conducted on the key
challenges faced by hospital managers to support, plan, and improve the surgical unit efficiency
and efficacy. The literature was classified into five main domains: Case-Mix Planning problems,
Operating Room oriented problems, ICU/ PACU oriented problems, bed management problems
in the main ward, and care providers-oriented issues. To the best of our knowledge the main

concerns of the stakeholders at JGH are not studied as an integrated model in the literature.

Chapter 3 presented the Surgical Ward Design (SWD) simulation model, a planning tool to study
the impact of different bed configuration approaches, OR schedules, and actual LOS of the
patients on the surgical unit occupancy rate. The Service Level Index (SLI) was defined to
capture the ratio of downstream surgical beds unavailability. Using SLI, we compare pooled,
semi-pooled, and dedicated bed configuration policies. It is concluded that the JGH is able to
save up to 19% on the total number of required beds under the pooled policy in comparison

with the dedicated policy at 90% SLI. Furthermore, the impact of the High Acuity Care Unit on
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the surgical unit patient flow was studied. Several scenarios were developed on high-risk
patients’ arrival rate to visualize the patient flow under various possible circumstances.

In chapter 4, an integrated approach to the surgical case-mix problem was developed. In the
Integrated Surgical Case-Mix (ISCM) model, the operational and tactical details are imbedded in
a strategic decision. In other words, the developed model copes with the functionality of the
derived strategic case-mix in the following Operating Room Scheduling problem. This novel
approach helps hospital managers to make strategic decisions that are indeed feasible at the
operational level.

At the operational level, we defined the Operating Rooms’ Block Mix, a feasible set of surgical
procedures one specific surgeon can schedule within a 4-hour OR block. At the tactical level, we
decided how to allocate divisions’ resources to these predefined Block Mix; and at the strategic
level, the ISCM decided on how to dedicate surgical unit resources to the divisions within a 6-
week planning horizon. To this end, a multi-dimensional objective function was defined to
tackle the reimbursement mechanism of the surgical unit, the ORs’ utilization, and downstream
bed utilization. The ISCM was calibrated with JGH data on 40 surgeons, and 87 surgical
procedures under 7 specialties (i.e. General Surgery, Breast Oncology, Colorectal, E.N.T.,
Gynecology, Urology, Vascular). Figure 6-1 illustrates more detail on the main components of
the ISCM model.

In chapter 5, the ISCM is extended based on three reimbursement policies: Activity-Based
Funding (ABF), Global Budget with Incentive (GBI), and Global Budget with Incentive and
Penalty (GBIP). It is logical that the ISCM resulted in the same surgical case-mix under ABF and

GBIP. We observed that the selected surgical procedures in the colorectal surgery, the General
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Surgery, the Gynecology, and the Urology are not among the most attractive ones. E.N.T.
procedures bring the highest funding to the hospital and using the least portion of resources.
Also, the Vascular Surgery is ranked as the second most important division of the hospital.
However, under GBI funding the priority goes to those procedures listed under the hospital’s
commitment to the government. However, the study focused on the procedures’
reimbursement rates and the cost of each procedure is not considered since JGH was not able
to provide us with the data. As the main limitation of this study, that might impact on the
marginal revenue of the optimal surgical case-mix. However, the ISCM model is completely

capable of considering procedures’ costs in future studies.
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Figure 6-1: Key Components of the Integrated Surgical Case-Mix Model
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The ISCM model was extended to address other key levers of the surgical unit bed shortage. We
studied the impact of semi-pooled bed configuration, emergency patients, and off-service
patients on the ISCM model’s outcomes. The results demonstrated that the optimal value of
the objective function as well as the optimal case-mix do not significantly change under semi-
pooled versus pooled bed configuration. However, fewer beds were required under pooled
versus semi-pooled bed configuration for the same SLI. Also, the bed shortage level and the
standard deviation of occupied beds increased under semi-pooled bed configuration policy.
Furthermore, to address emergency patients, the ISCM model was developed by considering
their arrival pattern, LOS distribution, and OR schedules based on JGH historical data. It was
assumed that some OR blocks are reserved for the emergency patients and they just share
surgical beds with elective patients. The final results confirmed that the surgical unit requires
five more beds (i.e. in total 20 beds) to serve all emergency and elective cases. When the
number of surgical unit beds was 15 beds in total, JGH could not utilize 36 out of 180 available
OR Blocks due to the emergency patients. These 36 OR Blocks were mostly occupied by the
most profitable patients from E.N.T. and Vascular divisions when emergency patients are not
considered in the ISCM model.

The study was completed by considering the impact of off-service patients on the surgical unit’s
patient flow. Since the LOS of an off-service patient is stochastic, three admission policies were
defined, which limit the maximum number of their stay in the surgical unit to 3, 2, and 1 days.
The impact of these three admission policies was evaluated on the ISCM outcomes. The results
show that the off-service admission policy does not have a significant negative impact on the

surgical unit reimbursement amount. However, it was observed the admission of more off-
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service patients per day under the 1 and 2-day admission policies versus the 3-day policy. Also,
the 3-day admission policy has the least amount of occupied bed-days among all policies. So, it
was recommended to the surgical unit managers to take the 2-day admission policy.

From modeling perspective, the application of chance-constraint programming on the surgical
case-mix problem is developed in this study for the first time to the best of our knowledge. This
approach could explain and illustrate the required amount of surgical beds as well as the real
probability of bed shortage. So, the stochastic ISCM model limited the probability of
downstream bed shortage through a set of chance-constraints. The model was calibrated with
patients’ real LOS distribution pulled out from JGH historical data.

Furthermore, we implemented the concept of CVaR in the ISCM model to minimize the risk of
high downstream bed shortage. It was concluded that the integration of the CVaR term (in the
objective function) and the chance-constraints results in robust ISCM’s outcomes regardless of
the actual bed shortage cost.

Furthermore, the stochastic ISCM model was linearized and the Sample Average Approximation
(SAA) technique was applied to solve the model. Then the SWD simulation model was extended
(on the basis of empirical probability functions for each procedure LOS distribution and the
patient flow framework for 7 specialties and 72 procedures) to validate and verify the final
results of the ISCM. The SWD simulation model was fed by the optimal case-mix and OR

schedule to illustrate the surgical unit’s 6-week bed occupancy pattern.
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6.2.  Future Study

In this study, we demonstrated that the main reason for cancelation of surgical procedures is
the downstream bed unavailability. We believe that neither capacity expansion nor early
discharge of patients is the best approach to manage surgical bed unavailability. We propose
that the underlying problem can be studied from three perspectives: First, it is related to the
integration of two important decisions: a. allocation of operating room time blocks to surgical
specialties and individual surgeons (at the operational level), and b. planning on the surgical

case-mix (at the strategic level). This has been studied in this dissertation.

The second perspective is the poor cooperation of surgical/ medicine units with other care
provider centers such as residential care sites. Surgical patients, who are assessed and
approved for either residential care services or home support services, have to spend lots of
days waiting for a free space. They occupy surgical beds while they do not need that service
anymore. We need to investigate the impact of such collaboration on surgical unit patient flow

in the future.

The third perspective, which is the incorporation of various incompatible stakeholders’ (i.e.
hospital administrators, and surgeons) incentives and actions in the planning process, is yet to
be explored. Although the quality of care is the main goal of all stakeholders, we must
consider conflicts of interest in the surgical unit planning. To be realistic, hospital managers
aim to smooth patient flow in the surgical department and maximize the expected financial
surplus of the hospital, as surgeons are concerned with their levels of income and effort. The
key point is that the surgeons have better information on their patients’ health status and
illness severity than any other stakeholder. On the other hand, hospital managers decide on

the surgical unit resources to make available to surgeons.
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Appendix |

|Cluster # Procedure
1 Laparotomy exploratory
2 Whipple's operation
Repair hernia paraesophageal
Adrenalectomy
Hepatectomy
Hepatectomy partial
5 Pancreatectomy subtotal
Repair hernia incisional simple
6 Repair hernia incisional complex

Repair hernia incisional recurrent

7 Repair hernia incisional incarcerated

8 Mastectomy total and dissection lymph node axillary

9 Mastectomy segmental and dissection lymph node axillary
Thyroidectomy total with unilateral central neck dissection
Thyroidectomy total

10 Parotidectomy superficial
Parathyroidectomy
Completion hemithyroidectomy
Parathyroidectomy (1 gland with intra-operative PTH)

0 Completion thyroidectomy

Thyroidectomy subtotal

Tympanoplasty

Stapedectomy
Hemithyroidectomy

Excision cyst branchial cleft

13
Laryngoscopy
Transfer submandibular gland
Transfer salivary gland

14 Ve

ESS Wizard (endoscopic sinus surgery)
ESS complet (endoscopic sinus surgery)
15  Dissection neck functional
ESS partial (endoscopic sinus surgery)
ESS removal tumor (endoscopic sinus surgery)

17 Excision wide lesion skin

18  Excision gland submandibular

Specialty
General surgery
General surgery
General surgery
General surgery
General surgery
General surgery
General surgery
General surgery
General surgery
General surgery
General surgery
Breast Oncology
Breast Oncology
E.N.T.

E.N.T.

E.N.T.

E.N.T.

E.N.T.

E.N.T.

E.N.T.

E.N.T.

E.N.T.

E.N.T.

E.N.T.

E.N.T.

E.N.T.

E.N.T.

E.N.T.

E.N.T.

E.N.T.

E.N.T.

E.N.T.

E.N.T.

E.N.T.

E.N.T.
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19

20

21

24

25

26

27
28
29

30

31
32
33

34

36

37

39

Septorhinoplasty partial
Tympanomastoidectomy

Laryngectomy partial

Dissection neck radical
Lymphadenectomy

Salpingo oophorectomy robotic
Hysterectomy total robotic
Myomectomy

LTH ( Laparoscopic total hysterectomy )
LAVH (Laparoscopic assisted vaginal hysterectomy)
Excision wide local lesion vulva
Vulvectomy simple / partial

Repair cystocele/Colporrhaphy anterior
TAH (Total abdominal hysterectomy)
Oophorectomy

Hysterectomy vaginal total
Hysterectomy supracervical

TAHBSO (Total abdominal hysterectomy with bilateral salpingo-

oophorectomy)
Hysterectomy radical robotic
Salpingectomy
Salpingo-oophorectomy
Dissection lymph node pelvis
Debulking robotic

Interval debulking TAHBSO
Urethroplasty stage 1
Urethroplasty

Nephrectomy partial
Prostatectomy radical

TURP (Transurethral resection prostate)

Endarterectomy carotid

Angioplasty and stenting iliac artery endovascular

Angioplasty and stenting femoral artery endovascular

Repair AAA (aneurysm aorta abdominal)

Repair aneurysm popliteal

TURP (Transurethral resection prostate) Holmium laser

Repair AAA (aneurysm aorta abdominal) endovascular

Repair AAA (aneurysm aorta abdominal) fenestrated endovascular

Repair AAT ( aneurysm aorta thoracic) endovascular

E.N.T.

E.N.T.

E.N.T.

E.N.T.

Gynecology
Gynecology
Gynecology
Gynecology
Gynecology
Gynecology
Gynecology
Gynecology
Gynecology
Gynecology
Gynecology
Gynecology
Gynecology

Gynecology
Gynecology
Gynecology
Gynecology
Gynecology
Gynecology
Gynecology
Urology
Urology
Urology
Urology
Urology
Urology
Vascular
Vascular
Vascular
Vascular
Vascular
Vascular
Vascular
Vascular
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40
41
42
43

44

45
46
47

Closure ileostomy

Colectomy abdominal total

Excision lesion rectum transanal
Hartmann's procedure
Hemicolectomy left

Resection sigmoid

Anterior resection (without ileostomy)
Low anterior resection rectum (without ileostomy)
Low anterior resection with ileostomy
Hemicolectomy right

Repair fistula in ano

Resection abdomino-perineal with colostomy

Colorectal
Colorectal
Colorectal
Colorectal
Colorectal
Colorectal
Colorectal
Colorectal
Colorectal
Colorectal
Colorectal

Colorectal
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Appendix Il

Possible Block Mixes

Specialty:

Cluster Sequence Weighted Average OR Time (hours) Reimbursement Rate (S)
General surgery

Mix1 1,6 4.67 3243
Mix2 3 3.93 3973
Mix3 6,7 3.89 5852
Mix4 6,6 3.44 3758
Mix5 7,7 4.34 7946
Mix6 2 11.92 7215
Mix7 4 7.78 3973
Mix8 6 5.02 1879

IBreast Oncology

Mix9 8,8 4.07 7946
Mix10 8,9 3.56 5852
Mix11 9,9,9 4.72 5637
Mix12 9,9 3.06 3758

Colorectal
Mix13 40,40 4.43 14430
Mix14 40,42 4.54 14430
Mix15 40,46 3.17 14430
Mix16 41 4.47 7215
Mix17 42,42 4.65 14430
Mix18 42,46 3.28 14430
Mix19 43 4.65 7215
Mix20 44 4.92 7215
Mix21 45 3.14 7215
Mix22 45,46 4.22 14430
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|E.N.T.

Mix23

Mix24

Mix25
Mix26
Mix27
Mix28
Mix29
Mix30
Mix31
Mix32
Mix33
Mix34
Mix35
Mix36
Mix37
Mix38
Mix39
Mix40
Mix41
Mix42
Mix43
Mix44
Mix45
Mix46
Mix47
Mix48
Mix49

Mix50

46,46,46,46

47

16,16,16
16,15
16,16,13
16,13,13
14,14
14,15
14,18
14,12
14,11
14,10
18,15
18,12
18,10
13,13,13
13,10
13,15
12,12
12,11
12,10
12,15
11,15
11,10
10,10
10,15
15,15

19

135

4.08

6.68

4.43

3.66

4.43

4.43

4.01

4.22

3.67

3.93

3.56

4.01

3.88

3.60

3.74

4.41

3.50

3.65

3.86

3.49

4.00

4.15

3.77

3.63

4.14

4.29

4.44

4.07

28860

7215

2847

2828

3777

4707

3758

3758

5852

3758

3758

3758

5852

5852

5852

5637

3758

3758

3758

3758

3758

3758

3758

3758

3758

3758

3758

3973




Mix51
Gynecology
Mix52
Mix53
Mix54
Mix55
Mix56
Mix57
Mix58
Mix59
Mix60
Mix61
Mix62
Mix63

Mix64
|Urology

Mix65
Mix66
Mix67
Mix68
\Vascular
Mix69
Mix70
Mix71

Mix72

17

21,21
21,24
21,28
21,29
21,25
22,28
24,29
28,29
28,25
20
30
27

31

35,35
35,32
34

33

36,37
39
37,37

38

3.87

4.18

4.17

3.63

4.28

4.50

4.40

4.28

3.74

3.96

4.96

3.97

5.63

6.26

3.58

3.51

4.78

5.28

4.89

3.58

4.13

3.98

3973

1898

2313

4922

4922

4922

5852

5337

7946

7946

7215

3973

3973

7215

3758

9094

1879

1879

3758

7215

3758

7215
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