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Abstract 

River ice plays a pivotal role in biophysical and socio-economic systems in Northern regions and 

significantly impacts climate variability and change in both regional and global scale. Collecting 

information and analyzing characteristics of river ice cover are important aspects to be 

considered in order to address engineering and environmental problems. However, poor 

accessibility and site-specific challenges of many river systems prevent up-to-date monitoring of 

ice cover regime. As a result, in this study, the potential of using easy to measure meteorological 

variables as predictors were investigated for estimation of river ice thickness with extreme 

learning machine (ELM), least squares support vector machine (LSSVM), and their bootstrap 

methodologies (BELM, BLSSVM, respectively). Based on the correlation analysis water level, 

accumulated freezing degree day, and mean temperature are employed to establish the best 

estimating model. Also, two imputation techniques, namely the Kendall–Theil Robust Line (KTRL) 

and the regularized expectation maximization (RegEm) were utilized to impute the missing values 

in the meteorological records. The estimation metrics defined as the correlation coefficient (R), 

Nash-Sutcliffe efficiency (ENS), root-mean-squared error (RMSE), Bias, and mean absolute error 

(MAE) were computed to assess the models’ accuracy. The results indicated that bootstrap ELM 

model outperformed ELM, LSSVM, and BLSSVM models in the testing phase across a number of 

statistical measures. Accordingly, R=0.90, RMSE=0.080 (m), ENS=0.71, MAE=0.072, and 

Bias=0.991 was exhibited from BELM using KTRL imputation technique and R=0.93, RMSE=0.067, 

Nash=0.80, MAE=0.06, Bias=1.003 from BELM using RegEm. Based on the findings of this study, 

presented machine learning techniques using meteorological variables are promising tools for 

river ice thickness estimation. 
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Résumé 

Les glaces fluviales jouent un rôle crucial dans les systèmes biophysiques et socioéconomiques 

des régions septentrionales, et ont une incidence considérable sur la variabilité et le changement 

climatique regional et global. De recueillir des informations sur le couvert de glace fluvial et d’en 

faire l’analyse des caractéristiques sont d’importants aspects à prendre en compte afin de 

s’adresser à la problématique technique et environnementale. Cependant, les difficultés d’acceder 

aux sites fluviaux et d’y travailler empêche une suivie au jour le jour du régime des glaces 

fluviales. En conséquence, la présente étude enquêta sur la possibilité d'employer des variables 

météorologiques faciles à mesurer comme variables explicatives de l’épaisseur des glaces 

fluviales avec des logiciels extreme learning machine (ELM) machine à vecteurs de support par 

moindres carrés (LSSVM), et leurs méthodes bootstrap (BELM, BLSSVM, respectivement). Suite à 

une analyse corrélative du niveau des eaux, des degrés-jours de gel cumulatifs et de la 

température moyenne, ces paramètres furent choisis pour établir le modèle d’estimation le plus 

performant. Deux techniques d'imputation statistique, soit la ligne Kendall-Theil (KT), et 

l’espérance-maximisation régularisée (EMR) servirent à attribuer des valeurs manquantes dans 

les dossiers météorologiques. Le coefficient de corrélation (R), le coefficient d'efficacité Nash-

Sutcliffe (ENS), l'erreur quadratique moyenne (RMSE), le biais (Bias), et l’erreur absolue moyenne 

(MAE) servirent d’indicateurs d’exactitude pour les modèles comparés. Selon plusieurs critères, 

l’exactitude du modèle BELM en phase de validation surpassa celle des modèles  LSSVM et 

BLSSVM. Le modèle BELM avec imputation KT (R=0.90, RMSE = 0.080, ENS=0.71, MAE=0.072, et 

Bias=0.991) fut surclassé par celui avec imputation EMR (R=0.93, RMSE=0.067, ENS=0.80, 

MAE=0.06, Bias=1.003). Selon les résultats de cette étude, les méthodes learning machine offrent 

un outil prometteur pour l’estimation de l’épaisseur des glaces fluviales. 
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Chapter 1: Introduction 

1.1  Introduction 

Representing the frozen part of the terrestrial climate system, the cryosphere is 

comprised of several subsystems: ice sheets, ice shelves, ice caps, glaciers, sea ice, lake 

ice, river ice, ground ice, and snow. Ice sheets are large (exceeding 50,000 km2) ice masses 

on land, whereas ice shelves consist of floating ice nourished by the inflow from an 

adjacent ice sheet, typically stabilized by large bays. In contrast, the smaller (under 50,000 

km2) land-based ice masses termed ice caps or glaciers, and are constrained by 

topographical features (e.g., mountain valley).  In contrast to an ice shelf, sea ice floats 

on the ocean and forms directly by freezing sea water. Similarly, lake ice and river ice form 

directly on the lake and river water, respectively. Ground ice occurs as permafrost: soil 

that stays in a frozen state year-round. Snow is precipitation of crystalline water ice, 

containing a multitude of snowflakes, which accumulate on the ground at a bulk density 

significantly less than that of ice (Greve and Blatter, 2009). 

Freshwater lake and river ice is estimated to cover a total area of 1.7×106 km2 

over the Northern Hemisphere (estimated at peak thickness, north of the January 0°C 

isotherm, and excluding the Greenland ice sheet), and represents a volume of 1.6×103 

km3 (Brooks et al., 2013). The estimated fresh water ice is approximately equal to the 

Greenland ice sheet (the second largest ice body in the world), and its volume to that of 

snow on land (Duguay et al., 2015). Accordingly, it is considered a major component of 

the terrestrial landscape. Majoritarily located in Northern Hemisphere, lakes cover nearly 

2% of the Earth’s land surface. Regional climate and weather events are affected by the 

presence or absence of ice cover on lakes during the winter months (Brown and Duguay, 

2010) . Consequently, monitoring of lake ice is key to forecasting high-latitude weather, 

climate, and river run off. Moreover, modeling the energy and water balance of high-

latitude river basins, in order to improve numerical weather predictions in regions where 

lakes occupy a substantial fraction of the landscape makes the consideration of this 

phenomena even more important (Martynov et al., 2012; Zhao et al., 2012b). In the 

Northern Hemisphere, in addition to the lake ice cover, river ice also affects an extensive 
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portion of the global hydrologic system: significant ice cover develops on 29% and 

seasonal ice affects 58% of the total river length (Prowse et al., 2007). For large rivers in 

cold regions ice cover can persist over the entire river length for over half the year, rivers 

with more temperate headwaters experience the long-term ice on only some reaches 

(Prowse et al., 2011b). For such rivers, ice processes govern the timing and extent of 

extreme hydrological events such as low flows and floods (Prowse et al., 2007). The broad 

ecological and socio-economic significance of river ice raise scientific concerns regarding 

how future changes in climate might affect river ice processes (Strategy, 2007).  

Freshwater ice, a sensitive indicator of climate variability and change, has been 

significantly affected by air temperature changes. Long-term trends observable from 

terrestrial records reveal increasingly later freeze-up, earlier break-up dates, and 

decreased ice thickness, closely corresponding to increasing air temperature trends, but 

with greater sensitivity at the more temperate latitude(Brown and Duguay, 2010; Prowse 

et al., 2011a). Extensive spatial patterns in these trends are also associated with the 

principal atmospheric circulation patterns originating from the Pacific and Atlantic 

oceans: El Nino-La Nina/Southern Oscillation, the Pacific-North American pattern, the 

Pacific Decadal Oscillation, and the North Atlantic Oscillation/Arctic Oscillation (Bonsal et 

al., 2006; Prowse et al., 2011b).  

Although the presence of freshwater ice can pose a significant ecological and 

socio-economic problems in northern regions, the absence of ice-induced hazards, such 

as ice jamming and flooding can decrease the flux of sediments and nutrients to wetlands. 

This process can result in increased soil salinity, along with shifts in flora and fauna which 

can eventually affect the traditional subsistence living of local and aboriginal communities 

along rivers and lakes (Jeffries et al., 2012; Prowse et al., 2011b; Prowse and Culp, 2003). 

Despite the wide-ranging influence of freshwater ice, significant gaps exist in our 

knowledge and understanding of lake and ice river characteristics, properties, and 

processes. Additionally, poor accessibility and site-specific challenges of the collection of 

information on freshwater ice regimes add an extra burden to freshwater ice studies. 
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Consequently, different forecasting and simulation tools have been developed and 

applied for up-to-date monitoring of processes and patterns of ice cover. These tools have 

been used to map ice cover extent and characterize ice phenology and timing (e.g., timing 

of ice break up-freeze up, ice thickness, ice jam flooding over large freshwater surfaces, 

particularly large lakes. Since the formation and breakdown of ice cover on rivers (vs. 

lakes) occurs under much more dynamic conditions, river ice monitoring has proven to be 

more difficult (Chu and Lindenschmidt, 2016). In this regard, the reliability of developed 

forecasting tools must be enhanced to achieve the level of accuracy required by 

environmental modeling community (e.g., numerical weather forecasting, and 

hydrological forecasting) or public policy and decision-makers.  

1.2  Thesis objective  

The principal aim of this research was to investigate the accuracy of different machine 

learning techniques and their associated bootstrap methodologies for river ice thickness 

estimation in Alberta Canada. The particular focus of this thesis is as follow: 

• To impute missing values of the presented dataset with two imputations methods namely 

The Kendall–Theil Robust Line (KTRL) and the regularized expectation maximization 

algorithm (RegEm). The performance accuracy of the applied methods will be compared 

based on performance metrics.   

• To compare Artificial Neural Network (ANN) modelling with a relatively newer form of 

machine learning techniques namely Extreme Learning Machine (ELM) and Least Square 

Support Vector Machine (LSSVM) in terms of their performance accuracy for river ice 

thickness estimation. 

• To apply the Bootstrap methodology of the Extreme Learning Machine (ELM) and Least 

Square Support Vector Machine (LSSVM) in river ice thickness estimation in order to 

investigate model precision. 
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Chapter 2: Literature review 

 

Ice formation on lakes and rivers play a pivotal role in shaping water resource 

management and engineering in cold regions. The presence of freshwater ice has many 

implications: ice jams which lead to widespread flooding, reduced hydroelectric power 

generation, navigation and transportation disruption, as well as damage to man-made 

structures, the environment, and ecosystems (Duguay et al., 2015; Shen and Liu, 2003). 

Profoundly affected by river ice through a number of complex interactions with 

hydrological and meteorological conditions, the hydrodynamic, mechanical, and thermal 

processes of global hydrological system, particularly those portions situated in the 

Northern Hemisphere, become altered. The categorization of evolving river ice growth 

into essential phases of formation, evaluation, transport, accumulation, dissipation, and 

deterioration has led to significant advances in the understanding of the physics of river 

ice (Shen, 2010). However, gaps remain in our knowledge of river ice characteristics, 

properties, processes, and consequences that make it difficult to link global change and 

sustainable development with ice phenology (Jeffries et al., 2012).  

Investigating different aspects of ice conditions requires extensive data on break-

up date, freeze-up date, and ice thickness, amongst other parameters. Moreover, in 

northern regions, like Canada, the collection of data on freshwater ice is often challenging 

due to the site-specific nature of such processes (Chu and Lindenschmidt, 2016). Thus, 

different forecasting and simulation models are required.    

Amongst these parameters, ice thickness is particularly useful in river-ice hydraulic 

models (Chokmani et al., 2007), flood routing models (She and Hicks, 2006), 

hydrodynamic modeling of freezing rivers (Shen, 2003) and flow control in regulated 

rivers (Tuthill, 1999). In addition, river ice cover influences biological ecosystems and 

aquatic fauna (Huusko et al., 2007). 

Facing the lack or incompleteness of ice thickness measurements, different 

analytical, mathematical, and numerical models have been used to address this 

inadequacy of data.  
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While all numerical models developed for ice thickness simulation take into 

consideration energy budget components, they differ from each other by the level of 

detail used to compute the ice energy budget (Andres and Van der Vinne, 2001; Hicks et 

al., 1997; Ma and Fukushima, 2002). The one-dimensional numerical model for river ice 

processes, RICE, can simulate the growth and decay of the ice cover along with other 

associated parameters with a close agreement between observed and simulated data 

(Shen et al., 1991). The updated RICEN model provides substantial improvements in ice 

process simulation, including considering the effects of the wind, artificial icebreaking by 

icebreakers and flow resistance due to moving ice (Shen et al., 1995). However, these 

kinds of models require extensive input data (e.g., wind speed, vapor pressure, cloud 

cover), which are not always accessible. In addition, indices that are needed for estimating 

energy fluxes due to shortwave radiation, evaporation, and convection at the air-ice (or 

snow) interface cannot as yet be accurately determined (Shen and Yapa, 1985). 

Consequently, simplified versions of energy budget models can be developed using 

Stefan’s law (SL) or the revised Stefan’s Law (RSL) — detailed description of these 

equations can be found in the theoretical background section.  

The date of the onset of the ice cover is a primary parameter in the Stefan’s law 

equation as it determines the date of onset of the accumulation of freezing degree-days 

for any given winter. As in any one season this date is unknown for most sites, Stefan’s 

law cannot be used; however, the RSL, based on the accumulation of freezing degree-

days from the first day of below-freezing air temperatures can work reasonably well for 

ice thicknesses exceeding 0.10 m. However, for ice thicknesses inferior to 0.10 m, the RSL 

overestimates ice thickness (Ashton, 1989). Based on a theoretical analysis Shen et al. 

(1985) introduced an modified degree-day method capable of continuously simulating 

the variation of the thickness of the river ice cover from formation to break up. The 

method’s application to the upper St. Lawrence River showed simulated ice thicknesses 

to compare well with field observations, but an empirical coefficient was still required to 

judge the ice thickness growth rate at different types of river sites.   
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Geographic Information System (GIS) and remote sensing techniques offer an 

alternative means of monitoring the processes and pattern of ice cover. There are 

different remote sensing system that can be used to map ice cover extent and ice 

phenology (Chu and Lindenschmidt, 2016). Optical sensors with low to medium spatial 

resolution and high temporal resolution, such as the Advanced Very High-Resolution 

Radiometer (AVHRR, 1 km to 4 km spatial resolution) and Moderate Resolution Imaging 

Spectrometer (MODIS, 250 m to 1 km spatial resolution) are two types of ice information 

collection methods used for large freshwater ice surfaces.  Even though high temporal 

resolution data such as MODIS and AVHRR can provide timely information about river ice 

conditions, the low spatial resolution and dependence on atmospheric conditions for the 

obtention of these data can pose significant challenges in monitoring the details of river 

ice cover conditions. Given its higher spatial resolution, capacity to acquiring images 

under all weather and atmospheric conditions (e.g. clouds), as well as its sensitivity to 

water-ice surfaces, ice structure and ice thickness (Duguay et al., 2015; Nghiem and 

Leshkevich, 2007; Unterschultz et al., 2009), microwave remote sensing (e.g., synthetic 

aperture radar — SAR) has proven to be another useful tool in monitoring and studying 

freshwater ice processes). Numerous studies have used SAR imagery to monitor river ice 

thickness, and have reported promising simulation results (Karl-Erich et al., 2010; Mermoz 

et al., 2014; Unterschultz et al., 2009). However, the main drawback of the numerical 

physically-based models is that they are complex and require some degree of user 

experience and expertise with the model.  

This limitation of numerical models has encouraged researchers to develop 

analytical models which have an acceptable level of accuracy along with a simple 

operating procedure (Chokmani et al., 2007; Zaier et al., 2010). Parameters having an 

influence on ice thickness have been identified through single variable regression and 

factor analysis, and can then be used in combination in a multivariable linear regression 

analysis to address the complexity of ice growth and decay (Williams et al., 2004). 

However, while accumulated freezing degree days and mean temperature over a fixed 

period provided the best estimation of maximum ice thickness, freezing degree day is not 
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a viable predictor as it requires knowledge of the date of maximum ice thickness. 

Similarly, the effect of the wind, solar radiation, and snow cover were not considered. 

Accordingly, Dornan (2005) developed a multiple linear regression to determine the best 

model for river ice growth by considering the effect of climate variables such as snow 

cover, snow density, and solar radiation. For 11 hydrometric stations, 11 pairs of models 

were developed (one through Forward Stepwise Regression and one through Backwards 

Stepwise Regression for each pair) and compared to assess their overall ability to predict 

river ice growth. Six of the models performed adequately, and five inadequately. With 

regards to the correlation of climatic variables with ice thickness,  cumulated solar 

radiation was deemed a non-significant parameter in the ice thickness growth models 

given its negative correlation with the most relevant model parameter, cumulative 

freezing degree days. 

Another useful tool for river and lake ice growth modelling is the artificial neural 

network (ANN). Comparing the accuracy of lake ice growth simulation with an ANN 

model, multiple linear regression (MLR) model, revised Stefan’s Law (RSL) model, or the 

Canadian Lake Ice Model (CLIMO), all drawing on data for daily mean air temperature, 

daily rainfall, daily total solar radiation, and daily snow depth, Seidou et al. (2006) 

reported that the ANN model to follow data variations more closely than the RSL. 

Simulating lake ice growth for a site in Fort Reliance, NWT, Canada with CLIMO for the 

years 1990-1997 resulted in an root-mean-square error (RMSE) of 180 mm, only slightly 

higher than that for a RSL model (171 mm) or an ANN model (168 mm). Thus, despite the 

CLIMO model’s much greater complexity, its performance was comparable to that of 

ANN, MLR, and RSL models . Assessing ANN-based river ice thickness estimation methods 

drawing upon cumulative climate input variables such as freezing degree day (CFDD), 

solar radiation (CSR), and snow (CUMS), Chokmani et al. (2007) found that, for sites in 

Alberta, these models provided good estimates, with 90 mm < RMSE < 130 mm. However, 

as the models failed to estimate low and high values correctly, they were not considered 

optimum. In seeking to estimate lake ice thickness Zaier et al. (2010) employed an ANN 

ensemble technique, wherein the use of multiple models can improve the generalization 
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ability of a single model (Shu and Burn, 2004). Drawing on identical data from a number 

of Canadian lakes , Zaier et al. (2010) tested six ANN-based models, five employing 

ensemble modeling techniques, and one (control), a single ANN model developed by 

Seidou et al. (2006). Improvement in generalization ability was achieved by using stacking 

for combining member networks. Moreover, in most cases, boosting was deemed the 

best method for reducing the estimation error. Overall, with 0.74 ≤ ENS ≤ 0.96, the ANN 

ensemble provide satisfactory estimation for lake ice thickness at most stations. 

Besides ANN and MLR, support vector machine (SVM) and fuzzy logic have been 

successfully used in the estimation of other ice characteristics, e.g., ice affected stream 

flow (Chokmani et al., 2008), ice jam occurrence (Massie et al., 2002), water level and ice 

jam thickness (Wang et al., 2010), and date of ice break-up and freeze-up (Mahabir et al., 

2005; Shouyu and Honglan, 2005; Tao et al., 2008; Zhao et al., 2012a). 

Despite the extensive application of ANN in the modeling of hydrological 

processes (and freshwater ice), the forecasts generated still suffer from deficiencies such 

as over-fitting, slow learning speed, and local minima. To overcome these limitations, a 

relatively newer form of machine learning models, extreme learning machine (ELM) and 

least squares support vector machine (LSSVM) have been developed.  ELM models’ faster 

learning algorithms and improved generalization performance have led to their extensive 

use in different modeling processes (Deo and Şahin, 2015). In addition, advanced design 

features of ELM such as analytical output determination by a least squares problem and 

random generation of the parameters of hidden nodes without the need for tuning the 

algorithm makes ELM a proper substitution for traditional forms of machine learning 

models (Yaseen et al., 2016). Likewise, LSSVM models, modified versions of SVM using 

kernel methods, have shown the capacity to estimate output parameters more precisely 

than traditional techniques such as ARIMA, ANN, ANFIS, or neuro-fuzzy systems (Hong 

and Pai, 2006; Wang et al., 2009). The initial motivation for using kernel method for time 

series estimation arises from their greater capability in the modeling of non-linear, non-

stationary, and not characterized phenomena (Sapankevych and Sankar, 2009).  
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In addition to the practice of newer forms of machine learning techniques, 

researchers have started to investigate particular procedures, such as bootstrapping, in 

their modeling processes. The bootstrap (Efron, 1979), an intensive resampling with 

replacement, is a computational technique that has been employed in specific 

applications to reduce uncertainty (Tiwari and Chatterjee, 2010b). This method has been 

successfully applied to hydrological modeling due to it yielding more accurate results, 

especially in the absence of adequate training data (Erdal and Karakurt, 2013).  

 To the best of our knowledge, no studies have been explored the potential of ELM 

and LSSVM coupled with the bootstrap technique in river ice thickness estimation. The 

performance of these models was compared with ANN to evaluate their relative 

estimation accuracy. Several quantitative performance indicators are employed for 

model comparison. In addition, the inherent accuracy of two imputation methods, KTRL 

and the regularized EM algorithm, were evaluated through the applied models’ relative 

accuracy. The imputation of missing values has been considered in this study since 

historical river ice thickness records are minimal and ignoring any observations with 

missing variables would result in a significant loss of information. 
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Chapter 3: Methods 

3.1 Study area 

Arising from snow and glacial meltwater in the Columbia Icefields of the Rocky Mountains 

of southwestern Alberta (Figure 1), the Athabasca River is the second largest river in 

Alberta, and its largest unregulated river. The river initially passes through the rugged 

forested montane landscapes of Jasper National Park and onward through Brule and 

Jasper Lakes into rolling foothills. The Athabasca River travels northward through the 

boreal mixed wood forest and encounters sudden changes in its physical properties near 

Fort McMurray (Figure 1). These changes are responsible for the frequent formation of 

ice jam in this location. The Clearwater River joins the main stream immediately 

downstream of Fort McMurray and then drains into Lake Athabasca. The entire Athabasca 

River basin is approximately 1.59 × 105 km2, which represents about 24% of Alberta's 

landmass (Peters et al., 2013). Socio-economic impacts of river ice have been felt in Fort 

McMurray over its entire history — from its early years as a Hudson Bay Company outpost 

to the modern era as an oil boom municipality (Alberta Environment, 1985). In response 

to these impacts and frequent ice jams, this area was chosen to test the feasibility of 

machine learning techniques in the estimation of ice properties.  
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                       Figure 1. General overview of the study area 

 

In the present study, direct measurements of ice thickness were collected from 

Water Survey of Canada (MSC) winter gaugings at the Clearwater River at Draper 

(07CD001) hydrometric station (Figure 2). The closest meteorological station to the 

hydrometric site, Fort McMurray A (Figure 2), was used for meteorological observation 

records in order to calculate the explanatory variables assumed representative to climate 

conditions at the hydrometric stations. The meteorological variables considered were 

maximum, minimum, and mean daily temperature, total precipitation, and snow on the 
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ground. These were recorded on a daily basis with some missing values. As river ice 

thickness is a function of temporal changes in meteorologic parameters, accumulated 

freezing degree days (AFDD) and accumulated solar radiation (ASR) were also calculated 

(Dornan, 2005). However, the absence of ‘snow on the ground’ data for the period of 

2009-2012 led to its omission and that of cumulative snow (CUMS) as input variables. 

Measurement of ice thickness was limited to one to seven measurements per season.  In 

total, 110 records of ice thickness for station 07CD001 were collected during the period 

from 1979 to 2012.  

An important step in machine learning modeling is a selection of proper input variables. 

Irrelevant inputs can significantly influence model accuracy or add unnecessary 

complexity impacting model reliability  (Hejazi and Cai, 2009). In this regard, correlation 

analysis was applied to all predictors to find the best set of input variables for river ice 

thickness estimation. Three predictors, water level (m), accumulated freezing degree 

days, and mean air temperature (°C), showed the greatest correlation with ice thickness, 

and were accordingly selected as inputs.  
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Figure.2 Meteorological and hydrometric stations’ locations 

 

3.2 Theoretical background 

3.2.1 Stefan's law and revised Stefan's law 

Stefan’s law or degree-day method is the most widely used formula which it is driven by 

simplifying the equations obtained using energy balance (Lock, 1990):  

𝐻 = 𝐴0√𝐷𝑑  (1) 

where, 

𝐴0  is an empirical constant that varies with the site, 

𝐷𝑑  is the sum of the degree days below the freezing point, and  

𝐻   is the ice thickness. 
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In practice, 𝐴0is used as an adjustable parameter with a value that is lower than the 

theoretical value to account for varying conditions of exposure and insulation. Michel 

(1971) gives a range of values adapted for a variety of lakes and rivers. As explained in the 

introduction, the date of onset of ice cover, a basic parameter in Stefan’s equation, is not 

known for the majority of sites. The “Revised Stefan's law” (RSL) is a substitute equation 

which is based on 𝐷𝑔, the accumulation of freezing degree-days starting with the first day 

of below freezing air temperatures in any given season. The RSL presents one more 

adjustable parameter, 𝐶, the effective number of degree-days to be subtracted from 𝐷𝑔in 

order to obtain 𝐷𝑑 (Seidou et al., 2006). 

𝐻 = {
𝐴0√𝐷𝑔 − 𝐶  𝑖𝑓 𝐷𝑔 ≥ 𝐶 

0 𝑖𝑓 𝐷𝑔 < 𝐶   
                                        

 

(2) 

 

Since the occurrence of the first day of the freezing daily mean air temperature usually 

arrives several days or weeks before the date of ice onset, the parameter 𝐶 will normally 

take a positive value (Seidou et al., 2006). 

 

3.2.2 Imputation of Missing Values  

Missing or incomplete datasets pose a challenge to hydrologists attempting to model 

processes; however, as machine learning models rely solely on data to learn the 

underlying input-output relationships, they suffer more in comparison to physically-based 

models (Gill et al., 2007). Accordingly, applying imputation techniques instead of ignoring 

observations with any missing variables was implemented for the available data set. The 

total number of missing values for the 07CD001 station during ice thickness measurement 

dates is nine. The imputation techniques applied were the Kendall-Theil robust line (KTRL) 

and the regularized expectation maximization (RegEM). Although these two methods are 

both been suggested for imputation of scattered missing values, they substitute the 

missing records differently: the KTRL employs the correlation between one of the 

complete variables and the variable with missing values, whereas RegEM considers the 
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covariance between all variables to impute missing values in the dataset.  As a result, both 

these methods were considered for substitution of missing records in this data set. 

The KTRL was initially described by Theil (1950), and is based on the Kendall rank 

correlation coefficient (τ) (Theil, 1992). The KTRL robust slope estimator or Sen’s slope is 

computed by comparing each pair of records to all others in a pair-wise manner. 

Considering a data set of (𝑥, 𝑦) of size 𝑁 will result in 𝑁(𝑁 − 1)/2 pair-wise comparisons. 

For each set of comparison, a slope ∆𝑦/∆𝑥 is computed. The slope estimate (𝑏𝑘) is the 

median of all slopes computed (Theil, 1992): 

𝑏𝑘 = 𝑚𝑒𝑑𝑖𝑎𝑛
𝑦𝑗−𝑦𝑡

𝑥𝑗−𝑥𝑡
        ∀𝑡 < 𝑗        𝑡 = 1,2, …𝑁 − 1    𝑎𝑛𝑑      𝑗 = 2,3, … ,𝑁 (3) 

The KTRL intercept ( 𝑎𝑘 ) which is a function of its slope and the median values is defined 

as follow: 

𝑎𝑘 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑦𝑐) − [𝑏𝑘 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥𝑐)]  (4) 

The KTRL technique can be considered as an analogue to ordinary least squares (OLS), 

with the main difference being that the KTRL regression line passes through the point 

representing the median values of the response and predictor (median 𝑥, median 𝑦), 

whereas for OLS it represents the mean values (mean 𝑥, mean 𝑦) (Helsel and Hirsch, 

2002). Based on the KTRL method’s robustness in the presents of outliers, this method 

for substitution of scattered missing values comes highly recommended (Khalil and 

Adamowski, 2014; Khalil et al., 2012) and was therefore implemented for the present 

study’s data set.  

The regularized expectation maximization (RegEm) is based on an iterative 

analysis of linear regression of missing and available values along with estimated 

regression coefficients obtained by ridge regression — a regularized regression method 

in which the filtering of the noise in the data set is controlled by a continuous 

regularization parameter (Schneider, 2001). The conventional EM algorithm and the 

RegEM are only applicable to datasets with scattered missing values, and share the 

advantage of being easy to program, having a low cost per iteration, and providing  an 
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economy of storage (Li et al., 2005). The RegEm for a data set of size 𝑁 is formulated as 

(Schneider, 2001): 

𝑥𝑚 = 𝜇𝑚 + (𝑥𝑎 − 𝜇𝑎)𝐵 + 𝑒  (5) 

where, 

e is the assumed residual with unknown covariance matrix 

B  is a matrix of regression coefficients 

𝑥𝑎 the vector of available values 

𝑥𝑚    is the vector of missing values,  

𝜇𝑎    is the vector of means of the available values, and  

𝜇𝑚  is the vector of means of the missing values. 

 

The conditional maximum likelihood estimate of the regression coefficients can be 

written as: 

�̂� = ∑̂𝑎𝑎
−1∑̂𝑎𝑚   (6) 

where, 

∑̂𝑎𝑎
−1  is the estimated covarinace matrix of the available values, and 

∑̂𝑎𝑚  is the estimated cross covariance of the available and missing values.  

 

The regularization of the regression model in ridge regression is achieved by adjusting the 

inverse matrix ∑̂𝑎𝑎
−1 in Eq. (6) to be:  

(∑̂𝑎𝑎 + ℎ
2�̂�)−1   (7) 

where, 

 �̂�  is the diagonal matrix consisting of the diagonal elements of the covariance 

matrix ∑̂𝑎𝑎, and 

ℎ   is a positive number termed the ridge parameter. 

 

A detailed derivation and discussion of these equations can be found in Schneider (2001).  

3.2.3 Extreme Learning Machine  

The Extreme Learning Machine (ELM)  was first proposed by Huang et al. (2006b) in order 

to overcome the limitation and shortcomings of its counterparts (e.g., ANN and SVM) 



28 
 

(Huang et al., 2006a). The novel single layer feed forward network (SLFN) in ELM operates 

differently than the traditional feed forward backpropagation (FFBP) ANN. This confers 

on ELM a shorter modeling time, which is the main advantage of ELM algorithm. This 

arises because the input weights (and biases) are randomized, and the output weights 

have a unique least-squares solution solved by a Moore-Penrose generalized inverse 

function (Huang et al., 2006a; Huang et al., 2006b; Huang and Xiang, 2015). This process 

prevents iterative training techniques that tend to collapse to local, rather than global 

minima (Deo et al., 2017). Accordingly, three simple steps are employed in ELM 

algorithms: 

(i) random generation of hidden layer weights and biases, 

(ii) generation of the hidden layer output matrix by the inputs variables that passed 

through the hidden layer parameters, and 

(iii) estimation of ELM output weights by inverting the hidden layer output matrix, as 

well as computation of its product with the response variable. 

The number of hidden neuron nodes has typically been identified by trial and error 

processes using the validation data set. Randomisation of the hidden layer by a 

continuous probability distribution such as the uniform distribution, normal distribution, 

or triangular distribution must be generated to complete the process (Deo et al., 2016b).  

Figure 3 illustrates  the basic structure of an ELM model. Considering a data set, with 𝑥𝑡  as 

the predictor and 𝑦𝑡 as the predict, comprised of 𝑁 training data records with 𝑑-

dimentional vectors, where 𝑡 = 1, 2, … ,𝑁  and 𝑥𝑡 ∈ 𝑅
𝑑  and 𝑦𝑡 ∈ 𝑅, the SLFN with 𝐿 

hidden neurons is mathematically expressed as (Huang et al., 2006b): 

∑ 𝛽𝑖𝐺𝑖(𝑎𝑖 ∗ 𝑥𝑡 + 𝑏𝑖)
𝐻
𝑖=1 = 𝑧𝑡  (8) 

where,  

 𝑎𝑖  ∈ 𝑅𝑑   

𝑏𝑖  ∈ 𝑅 

𝛽 ∈ 𝑅𝐻, are the output weights between the hidden layers with H nodes and 

the model output, 

𝐺𝑖(𝑎, 𝑏, 𝑥) is the hidden layer activation function, and 
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𝑧   (𝑧𝑡 ∈ 𝑅) is the model output .                                     

 

 

Figure 3. Basic structure of extreme learning machine model employed in this study. 

There are different activation functions adopted in ELM models, e.g., tangent 

sigmoid, logarithmic sigmoid, hard limit, triangular basis, and radial basis, etc.. Choosing 

a suitable activation function allows the ELM to achieve a more optimal generalization 

than traditional feedforward neural networks in which all parameters are learned (Liu et 

al., 2015). This results in ELM models outperforming traditional learning algorithms such 

as ANN and SVM (Deo et al., 2017). Among the activation functions, the logarithmic 

sigmoid is the one most commonly used in the field of hydrological forecasting 

(Adamowski et al., 2012; Kişi, 2008; Quilty et al., 2016), and is denoted as follow: 

𝐺(𝑎𝑖, 𝑏𝑖, 𝑥) =
1

1+𝑒(−𝑎𝑥+𝑏)
   (9) 

According to Huang et al. (2006), Eq. 8 can approximate 𝑁 training set samples 

with zero error as follows (Huang et al., 2006b): 

∑ ‖𝑂𝑡 − 𝑦𝑡‖ = 0
𝑁
𝑡=1   (10) 

This equation illustrates the point that network parameters (𝑎, 𝑏, 𝛽) can be obtained 

analytically for a given set of training records. In this context, 𝛽 can be estimated directly 
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from the 𝑁 input-output records as a linear system of equations denoted as (Huang et al., 

2006b): 

𝐺𝛽 = 𝑌               𝛽 =

[
 
 
 
 
𝛽1
.
.
.
. 𝛽𝐻]

 
 
 
 

𝐻×1

     and      𝑌 =

[
 
 
 
 
𝑦1
.
.
.
. 𝑦𝑁]

 
 
 
 

𝑁×1

  (11)                                                                                              

where, 

 𝐺   is the hidden layer output matrix. 

In order to compute the output weights of the ELM network the hidden layer matrix is 

inverted using the Moore-Penrose generalized inverse function (+) (Huang et al., 2006b): 

𝛽∗ = 𝐺+𝑌  (12) 

where, 

 𝐺+   is the inverted hidden layer output matrix, 

+   represents the Moore-Penrose generalized inverse function, and 

 𝛽∗  is the estimated output weights from 𝑁 data records.  

 

In the end, the forecasted values can be generated by a new input vector (testing set) 

(Akusok et al., 2015):  

�̂� = ∑ �̂�𝑖𝐺𝑖(𝑎𝑖𝑥𝑛𝑒𝑤 + 𝑏𝑖)
𝐻
𝑖=1  (13) 

 

3.2.4 Least Squares Support Vector Machine  

Originating from support vector machines (SVM), and first proposed by Suykens and 

Vandewalle (1999), the least squares support vector machine’s (LSSVM) compelling 

aspect is its ability to solve problems of  non-linear classification and function estimation 

(Kumar and Kar, 2009). The LSSVM formulation computes a linear system in dual space 

under a least squares cost function, whereas SVM uses a quadratic optimization problem 

approach. The LSSVM has been employed in a variety of subjects (e.g., pattern 

recognition, signal processing, and non-linear regression estimation) due to its more 
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limited computation compared to conventional models such as back propagation neural 

networks (BPNN), and partial least square regression (PLS) (Kisi and Parmar, 2016).  

Figure 4 illustrates the basic structure of an LSSVM model. A data set comprising of, 𝑥𝑡 as 

the predictor, 𝑦𝑡 as the predictand, and  𝑤 as d-dimentional weight vectors, where 𝑥𝑡 ∈

𝑅𝑑  and 𝑦𝑡 ∈ 𝑅, is considered. The LSSVM non-linear function is written as:  

𝑓(𝑋) = 𝑤𝑇∅(𝑋) + 𝑏 (14) 

where, 

𝑏   is the bias term, and 

∅   is the mapping function that maps X into d-dimensional feature vector. 

 

The regression problem can be expressed according to the structural minimization 

principle , considering the complexity of function and fitting error as:  

𝑚𝑖𝑛𝐽(𝑤, 𝑒) =
1

2
𝑤𝑇𝑤 +

𝛾

2
∑ 𝑒𝑡

2𝑑
𝑡=1  (15) 

that has the following constraints: 

𝑦𝑡 = 𝑤
𝑇∅(𝑥𝑡) + 𝑏 + 𝑒𝑡       (𝑡 = 1, 2, … , 𝑑) (16) 

where, 

𝑒𝑡   is the slack variable for 𝑥𝑡. and 

 𝛾   is the margin parameter.  

 

Introducing the Lagrange multipliers 𝛼𝑡 and changing the constraint problem into 

an unconstrained one, the objective function can be gained in order to solve the 

optimization problems in Eq. 15 as: 

𝐿(𝑤, 𝑏, 𝑒, 𝛼 ∝) = 𝐽(𝑤, 𝑒) − ∑ ∝𝑡 {𝑤
𝑇∅(𝑥𝑡) + 𝑏 + 𝑒𝑡 − 𝑦𝑡}

𝑑
𝑡=1   (17) 

By taking the partial derivatives of Eq. 17, the optimal condition can be obtained 

according to the Karush-Kuhn-Tucker (KKT), as follows: 
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{
 

 
𝑤 = ∑ ∝𝑡 ∅(𝑥𝑡)

𝑑
𝑡=1

∑ ∝𝑡
𝑑
𝑡=1

∝𝑡= 𝛾𝑒𝑡
𝑤𝑇∅(𝑥𝑡) + 𝑏 + 𝑒𝑡 − 𝑦𝑡 = 0

  (18) 

Thus, the linear equations are generated as: 

[
0                    −𝑦𝑇

𝑦         𝑍𝑍𝑇 + 𝐼/𝛾
] [
𝑏
∝
] = [

0
1
] (19) 

where, 

𝑡  = 1,… , 𝑑 

𝑦  = 𝑦1, … , 𝑦𝑑 

𝑍   = ∅(𝑥1)
𝑇𝑦𝑡, … , ∅(𝑥𝑑)

𝑇𝑦𝑑, and  

∝  = [∝1, … , ∝𝑖]. 

By defining the kernel function 𝑘(𝑥, 𝑥𝑡) = ∅(𝑥)𝑇∅(𝑥𝑖), 𝑖 = 1,… , 𝑑 the LSSVM regression 

for new points becomes: 

𝑓(𝑥) = ∑ ∝𝑡 𝑘(𝑥𝑛𝑒𝑤, 𝑥𝑖) + 𝑏
𝑑
𝑡=1   (20) 

Many kernel function such as linear, polynomial, radial basis, and sigmoidal have been 

proposed for LSSVM.  The radial basis function (RBF) kernel is the most commonly used 

function in regression problem (Kisi, 2012), and is denoted as: 

𝑘(𝑥, 𝑥𝑡) = exp (−‖𝑥 − 𝑥𝑡‖
2/2𝜎2)                                                                                    (21) 

where, 

 𝜎2   is the bandwidth of the radial basis kernel function.  
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Figure 4. the basic struct of least square support vector machine in this study. 

3.2.4 Bootstrap Technique 

For each set of bootstrap samples,𝑇𝑠, ELM and LSSVM models were developed and 

trained. The model output were then evaluated using the set of 𝐴𝑠 observation pairs, 𝑡𝑡 =

(𝑥𝑡, 𝑦𝑡), that were not a part of 𝑇𝑠.  The generalization error for the models then 

represents the performances of the models with the validation sets which were 

subsequently averaged. The generalization error, 𝐸0, can then be estimated as (Tiwari 

and Chatterjee, 2010a): 

�̂�0 =
∑ ∑𝑖∈𝐴𝑠(𝑦𝑖−𝑓𝑚𝑜𝑑𝑒𝑙(𝑥𝑡,

𝑤𝑠
𝑇𝑠
))2𝑠

𝑠=1

∑ (#𝐴𝑠)
𝑠
𝑠

  (22) 

where, 

 𝑓𝑚𝑜𝑑𝑒𝑙 (𝑥𝑡,
𝑤𝑠

𝑇𝑠
) is the output of the model (ANN and LSSVM) developed from bootstrap 

sample 𝑇𝑠, 

in which, 

𝑤𝑠  is the weight vector, and 

𝑥𝑡  is a particular input vector. 
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 The bootstrap model estimate �̂�(𝑥) of all developed models is given by the 

mean of the 𝑆 bootstrap estimates (Tiwari and Chatterjee, 2010a): 

�̂�(𝑥) =
1

𝑆
∑ 𝑓𝑚𝑜𝑑𝑒𝑙(𝑥, 𝑤𝑠)
𝑠
𝑠=1  (23)                                                                                                        

and the variance is computed as: 

�̂�2(𝑥) =
∑ ∑𝑖=𝐴𝑠(𝑦𝑖−𝑓𝑚𝑜𝑑𝑒𝑙(𝑥𝑡,

𝑤𝑠
𝑇𝑠
))2𝑠

𝑠=1

𝑆−1
 (24) 
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Chapter 4: model development 

4.1  Model Development 

The river ice thickness data spanned a period of 35 years (1978-2012). For all the applied 

models, the data set was split into training (82%), validation (10%), and test (8%) subsets. 

It is important to note that there is no thumb rule for data division for a predictive dataset 

and it varies with the problem of interest (Deo et al., 2016a). Table 1 shows the univariate 

statistics for each data set. As explained in study area section, the proper input variables 

were chosen based on correlation analysis between river ice thickness and climate 

variables. Cumulated freezing degree days, water level (m), and mean temperature (°𝐶) 

were the input variables chosen. In order to prevent parameters with large numerical 

ranges dominating over of those with smaller numerical ranges in the models, the input 

variables were scaled prior to the modelling processes, as follow:  

𝑥𝑛𝑜𝑟𝑚 =
𝑥𝑡−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
         (25) 

where, 

𝑥𝑖   is the current input variable that is to be normalized, 

𝑥𝑚𝑖𝑛  is the minimum value within the historical dataset, 

𝑥𝑚𝑎𝑥   is the maximum value within the historical dataset, and 

𝑥𝑛𝑜𝑟𝑚   is the normalized value (between 0 and 1) of the input variable,  

 
Table 1. Descriptive statistics for river ice thickness.  

Partition No.records 
River ice thickness (m) 

mean St.Dev. median minimum maximum 

Training 90 
0.5836 0.2001 0.5831 0.2511 1.8440 

Validation 11 
0.5580 0.1495 0.6266 0.3121 0.7396 

Test 9 
0.5460 0.1596 0.5362 0.2884 0.7308 

 

In this study, a Back-propagation Levenberg-Marquardt (LM) algorithm was used in 

training the single layer ANN. In function approximation problems, when training 

moderate size networks with fewer than a few hundred weights, the LM algorithm proves 

to be the fastest and most accurate, generating lower mean square errors than any other 
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training algorithms tested (Demuth and Beale, 2009). The number of hidden neurons in 

the hidden layer was obtained through careful trial and error. The optimum number of 

hidden neurons, based on the lowest RMSE in the validation phase, was found to be 9.  

The maximum number of training epochs was set to 100.  

ANN models are prone to overfitting, that is the model can fit the training data set 

precisely, but cannot necessarily perform accurately with the test set. The ELM model was 

developed to circumvent this flaw. To create an appropriate ELM structure for river ice 

thickness estimation, the optimum number of hidden neurons was investigated by trial 

and error. One to fifty hidden neurons were tested, and the optimal model structure was 

chosen based on the model performance with the validation set. The minimum value of 

RMSE was generated for 39 hidden neurons.  For bootstrap ELM, besides the number of 

hidden neurons, the bootstrap ensemble size must be determined. Ensemble sizes of 10, 

25, 50, 75, 100, 150, 200, 250, and 500 were tested and the best performance achieved 

with an ensemble size of 10. The sigmoid activation function was applied for ELM and 

BELM model development. 

In LSSVM, the Gaussian radial basis function was used as the selected kernel 

function. In order to define the nonlinear function in LSSVM two parameters, 𝛾 and 𝜎2, 

were employed, where  𝛾 is a regulization constant and 𝜎2 is the bandwidth of the radial 

basis kernel function (RBF). Based on the model performance with the validation set, 

 𝛾 = 1.5 and 𝜎2 = 0.5 were the optimal values (trial and error). For the bootstrap LSSVM, 

a trial and error procedure was undertaken to determine the best ensemble size,  𝛾  value 

and 𝜎2 value — values of 100, 5.5, and 0.5, respectively were determined. All the 

predictive models’ algorithms were developed in the MATLAB programming 

environment.  
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4.2 Performance Assessment 

In order to assess the proposed models, several quantitative performance indicators were 

employed. A combination of different metrics is often required for an extensive 

evaluation of a model's performance (Chai and Draxler, 2014). The Root-mean-square 

error (RMSE), Nash-Sutcliffe Efficiency (ENS), correlation coefficient (r), mean absolute 

error (MAE), and bias (BIAS) were considered in assessing the accuracy of river ice 

thickness (RIT). These defined as follow: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑅𝐼𝑇𝑡

𝑜𝑏𝑠 − 𝑅𝐼𝑇𝑡
𝑝𝑟𝑒𝑑

)2
𝑡=𝑁

𝑡=1

 

(26) 

𝑟 =
∑ [(𝑅𝐼𝑇𝑡

𝑜𝑏𝑠 − 𝑅𝐼𝑇𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝑅𝐼𝑇𝑡
𝑝𝑟𝑒𝑑

− 𝑅𝐼𝑇𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )]𝑡=𝑁
𝑡=1

√∑ (𝑅𝐼𝑇𝑡
𝑜𝑏𝑠 − 𝑅𝐼𝑇𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑡=𝑁

𝑡=1 ∙ √∑ (𝑅𝐼𝑇𝑡
𝑝𝑟𝑒𝑑

− 𝑅𝐼𝑇𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2𝑡=𝑁
𝑡=1

 , −1.0 ≤ 𝑟 ≤ 1.0 
(27) 

𝐸𝑁𝑆 = 1 −
∑ (𝑅𝐼𝑇𝑡

𝑜𝑏𝑠−𝑅𝐼𝑇𝑡
𝑝𝑟𝑒𝑑

)
2

𝑡=𝑁
𝑡=1

∑ (𝑅𝐼𝑇𝑡
𝑜𝑏𝑠−𝑅𝐼𝑇 

𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
2

𝑡=𝑁
𝑡=1

 , −∞ ≤ 𝐸𝑁𝑆 ≤ 1.0 ,  
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𝑀𝐴𝐸 =
1

𝑁
∑|𝑅𝐼𝑇𝑡

𝑜𝑏𝑠 − 𝑅𝐼𝑇𝑡
𝑝𝑟𝑒𝑑|

𝑡=𝑁

𝑡=1

 
(29) 

𝐵𝐼𝐴𝑆 =
1

𝑁
∑(𝑅𝐼𝑇𝑡

𝑜𝑏𝑠 − 𝑅𝐼𝑇𝑡
𝑝𝑟𝑒𝑑)

𝑡=𝑁

𝑡=1

 
(30) 

 

where, 

N   is the sample size, 

𝑅𝐼𝑇𝑡
𝑜𝑏𝑠  is the tth observed RIT value, 

𝑅𝐼𝑇 
𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅  is the mean observed RIT value, 

𝑅𝐼𝑇𝑡
𝑝𝑟𝑒𝑑 is the tth predicted RIT value, and 

𝑅𝐼𝑇𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean predicted RIT value. 
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Chapter 5: Results and Discussion 

 

The goals of this study were to investigate the feasibility of using ELM and LSSVM, and 

their bootstrap enhanced equivalents in the river ice thickness estimation in comparison 

to an ANN model benchmark. Also, the performance of applied imputation techniques 

were compared by various performance metrics which were computed to assess the 

models’ accuracy. A direct comparison of the models is presented in Table 2 and 3 for 

each partitioning method.  

 

Table 2. Performance indicators for the ANN, ELM, BELM, LSSVM, and BLSSVM models evaluated for each 

modelling phase — KTRL imputation technique. 
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ANN 0.76 0.096 0.56 0.071 1.002  0.67 0.103 0.35 0.082 0.953  0.60 0.147 0.32 0.126 1.02 

ELM 0.81 0.116 0.65 0.093 1.000  0.81 0.089 0.60 0.068 0.944  0.80 0.091 0.63 0.079 0.993 

BELM 0.46 0.177 0.21 0.107 0.993  0.70 0.101 0.50 0.084 1.012  0.90 0.080 0.71 0.072 0.991 

LSSVM 0.85 0.116 0.66 0.077 1.000  0.69 0.086 0.63 0.070 0.983  0.72 0.103 0.52 0.083 0.990 

BLSSVM 0.85 0.117 0.67 0.071 1.003  0.80 0.088 0.61 0.071 0.970  0.71 0.105 0.51 0.081 0.997 

 

 

Table 3. Performance indicators for the ANN, ELM, BELM, LSSVM, and BLSSVM models evaluated for each 

modelling phase — RegEm imputation technique. 
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ANN 0.73 0.103 0.52 0.083 0.980  0.75 0.110 0.49 0.077 1.056  0.46 0.091 0.30 0.086 1.002 

ELM 0.88 0.068 0.78 0.047 1.000  0.76 0.090 0.57 0.068 0.9742  0.73 0.1143 0.43 0.082 0.988 

BELM 0.66 0.1140 0.40 0.090 0.970  0.54 0.117 0.27 0.098 0.978  0.93 0.067 0.80 0.060 1.003 
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LSSVM 0.86 0.0797 0.71 0.065 1.000  0.68 0.103 0.43 0.085 0.957  0.80 0.090 0.64 0.074 1.025 

BLSSVM 0.87 0.075 0.73 0.060 1.004  0.68 0.104 0.42 0.087 0.946  0.78 0.095 0.64 0.074 0.074 

 

 

In general, the correlation coefficient, r, represents the strength of the linear regression 

between observed and predicted river ice thickness and compares them directly. 

However, for the observed vs. predicted linear relationship, an ‘ideal’ r = 1.0 can occur 

even if the slope and ordinate intercept differ from 1.0 and zero, respectively, so scatter 

plots and other metrics must be consulted. The ENS measures the model’s overall 

prediction skill, and it is sensitive to differences in the observed and estimated means and 

variances. An ENS > 0.5 is considered good; ENS = 0, represents predicted values no better 

than using 𝑅𝐼𝑇 
𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅ for all predicted values, and ENS < 0 to −∞ represents increasingly 

poorer predictions. The ENS therefore represents a better assessment of model accuracy 

than simply r (Govindaraju, 2000). The MAE gives the same weight to all errors, whilst the 

RMSE squares errors, thereby giving greater weights to errors with larger absolute values. 

Based on Table 2, the ANN model performed acceptably in the training phase 

(r=0.76, RMSE=0.096 m, ENS=0.56, MAE=0.071 m, and BIAS=1.002 m), but performed 

poorly in the validation and test phases (r=0.60, RMSE=0.147 m, ENS=0.32, MAE=0.126 m, 

and BIAS=1.02 m for test phase). In contrast, the performance of the LSSVM and BLSSVM 

models only differed slightly (0.01 to 0.02 m difference in RMSE) between training, 

validation, and test phases (for each partitioning), indicating that these two models did 

not privilege any particular set of river ice thickness values and both performed 

satisfactorily. On the other hand, the ELM and BELM models’ performances in different 

modelling phases behaved differently (Table 2), with the ELM model producing 

acceptable results in training, validation, and test phases (ENS= 0.65, 0.60, 0.63, 

respectively), whereas the BELM model only generated satisfactory results for the 

validation and test phases (ENS= 0.46, 0.50, 0.71  for training, validation, and test phases, 

respectively).  

It is therefore evident that the bootstrap ELM model can generate a satisfactory 

performance even though the model is not sufficiently trained. A similar conclusion can 
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be drawn based on the RMSE, i.e., the lowest RMSE value (≈ 0.080 𝑚) was obtained for 

the BELM model in the testing phase, although, in the training phase, the ELM and LSSVM 

models performed better in terms of RMSE. Considering model performance based on 

the evaluation metrics oresented for the test phase, the BELM outperformed the ELM, 

LSSVM, and BLSSVM in river ice thickness estimation, indicating that the BELM model had 

a slightly better ability to estimate river ice thickness for out-of-sample records. 

The better performance of the BELM model over the LSSVM and BLSSVM can be 

attributed to the fact that, for this study:  

(i) the parameterization of BELM better fits the given dataset and,  

(ii) the trained network in BELM is more robust to a training dataset that 

contains input patterns that are drastically different than of other input 

sets.  

Comparing the KTRL and RegEm imputation techniques (Table 2 vs. Table 3) it is 

evident that with RegEm method, and similarly with the KTRL method, the BELM model 

performs best in the test phase (R=0.93, RMSE= 0.067 m, ENS=0.80, MAE=0.060 m, and 

BIAS=1.003 m. However, the overall performance of KTRL in different modelling phases 

outperformed the RegEm method, since for the latter at least one of the subsets 

generated a performance metric outside the acceptable range.   

Time series graphs provided a closer examination of model performance with 

respect to their ability to capture minimum and maximum values of river ice thickness.   
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Figure 5. Performance of various machine learning models developed with KTRL imputation technique for 

river ice thickness estimation. (a) ELM, (b) BELM, (c) LSSVM, (d) BLSSVM.  

 

The ELM model clearly showed its greater capacity to capture minimum and maximum 

values of river ice thickness. Confirming model performance metrics, the LSSVM and 

BLSSVM performed equally well in catching peak values. In contrast, the BELM model 

underestimated the maximum value of the dataset, while mid-range values (0.3-0.8 m) 

were more precisely estimated with this technique. 

With the RegEm imputation technique, the ELM model could estimate the peak 

value with better accuracy than the ELM model with the KTRL imputation technique. Also, 

although the performance of BALM in catching the peak value was still very poor with 

both imputation techniques, the BELM with RegEm technique generated better results. 

Likewise, with the KTRL imputation technique, LSSVM, and BLSSVM generated similar 

results in capturing the maximum and minimum values.  
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Figure 6. Performance of various machine learning models developed with RegEm imputation technique 

for river ice thickness estimation. (a) ELM, (b) BELM, (c) LSSVM, (d) BLSSVM.  
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Figure 7. Performance of various machine learning models developed with KTRL imputation technique for 

river ice thickness estimation. (a) ELM, (b) BELM, (c) LSSVM, (d) BLSSVM.  

For further examination of model performances, the scatter plots of ELM, BELM, 

LSSVM, and BLSSVM are shown in Figures 7 and 8. Although none of the applied models 

could estimate the peak value of river ice thickness, there appears to be a good 

agreement between the estimated river ice thickness and observed values. Despite some 

degree of scattering, LSSVM and BLSSVM generated the closest estimations to a 1:1 

perfect fit line (Figure 7). This concurred with the results of the correlation coefficient for 

the overall performance of the LSSVM and BLSSVM models (R=0.84 and 0.85, 

respectively).  

For the RegEm imputation technique, compared to LSSVM and BLSSVM, the ELM 

model provided similar overall estimations in regards to 1:1 perfect fit line (R=0.86, 0.84, 

and 0.85, respectively). 
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Figure 8. Performance of various machine learning models developed with RegEm imputation technique 

for river ice thickness estimation. (a) ELM, (b) BELM, (c) LSSVM, (d) BLSSVM.  
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Chapter 6: summary and conclusion 

 

Accurate Freshwater ice estimation is increasingly important in the light of growing 

demand for water resource management and engineering in cold regions. Given the high 

importance of the Fort McMurray community on the effect of various river ice processes, 

the importance of accurate estimation is highlighted. This study attempts to compare 

different machine learning techniques and their bootstrap methodologies to estimate 

river ice thickness in Alberta, Canada. Extreme learning machine and least squares 

support vector machine were used for the estimation of river ice thickness. To date, these 

methods have not been explored for river ice thickness estimation until the present study.  

The Athabasca River is the second largest river in Alberta, and its largest 

unregulated river which travels northward through the boreal mixed wood forest and 

encounters sudden changes in its physical properties near the Fort McMurray. These 

changes are responsible for the frequent formation of an ice jam in this location. The 

Clearwater River joins the main stream immediately downstream of Fort McMurray and 

then drains into Lake Athabasca. Direct measurements of ice thickness were collected 

from Water Survey of Canada (MSC) winter gaugings at the Clearwater River at Draper 

(07CD001) hydrometric station. The closest meteorological station to the hydrometric 

site, Fort McMurray A, was used for meteorological observation records in order to 

calculate the explanatory variables assumed representative to climate conditions at the 

hydrometric stations. The meteorological variables considered were maximum, 

minimum, and mean daily temperature, total precipitation, and snow on the ground 

were. These were recorded on a daily basis with some missing values. As river ice 

thickness is a function of temporal changes in meteorologic parameters, accumulated 

freezing degree days (AFDD) and accumulated solar radiation (ASR) were also calculated. 

However, the absence of ‘snow on the ground’ data for the period of 2009-2012 led to its 

omission and that of cumulative snow (CUMS) as input variables. Measurement of ice 

thickness was limited to one to seven measurements per season.  In total, 110 records of 

ice thickness for station 07CD001 were collected during the period from 1979 to 2012. 
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Correlation analysis was applied to all predictors to find the best set of input variables for 

river ice thickness estimation. Accordingly, three predictors, water level (m), accumulated 

freezing degree day, and mean temperature (°C), which has the maximum correlation 

with ice thickness, were selected as inputs. 

Since machine learning models solely rely on data to learn the underlying input-

output relationships, imputation of missing values in the available data set instead of 

ignoring the observations with any missing values has been considered. The Kendall-Theil 

robust line (KTRL) and the regularized expectation maximization (RegEM) methods were 

applied for data imputation. Although these two methods are both been suggested for 

imputation of scattered missing values, they substitute the missing records differently: 

the KTRL employs the correlation between one of the complete variables and the variable 

with missing values, whereas RegEM considers the covariance between all variables to 

impute missing values in the dataset.  

Extreme learning machine and least square support vector machine were utilized 

as the newer form of machine learning models because they have shown improved 

generalization performance when compared to the traditional form of such techniques 

(ANN and MLR). In addition, bootstrapping were employed in order to improve the result 

of single model output. In order to prevent the data patterns and attributes with large 

numerical ranges dominating the role of the smaller numerical ranges the scaling of input 

variables, prior to the modeling processes, was taken into consideration. For ANN model, 

Back-propagation Levenberg-Marquardt algorithm trained a single layer network with 9 

hidden layer and 100 epochs size. The sigmoid activation function was applied for ELM 

and BELM model development, and the number of hidden neurons and ensemble size 

were acquired by careful trial and error. In LSSVM and BLSSVM, the Gaussian radial basis 

function was used as the selected kernel function. Besides the gamma and sigma values 

for kernel bandwidth, the number of ensemble BLSSVM were obtained via trial and error 

and best on the best performance in the validation set.  
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The primary objective of this study was to demonstrate the use of a machine 

learning algorithms (Extreme Learning Machine and Least Square Support Vector 

Machine), and their bootstrap versions, for the estimation of Athabasca River (Alberta, 

Canada) river ice thickness, using “easy to measure” meteorological variables. The 

performance of the applied models was compared to that of an artificial neural network. 

The secondary object was to evaluate the performance accuracy of two imputation 

methods (KTRL and RegEm) implemented in machine learning models, when applied to 

the same scenario. Gathered over a period of 35 years, the predictive variables 

considered were accumulated freezing degree days, water level (m), and mean 

temperature (°C) for. The dataset were divided into 82% (training), 11% (validation), and 

8% (testing) subsets. While the ANN model was not sufficiently accurate in estimating 

river ice thickness in this study area, the newer form of machine learning techniques 

(ELM, LSSVM, and their bootstrap versions) were able to perform acceptably.  The testing 

phase indicated that the BELM model could potentially improve the predictive accuracy 

of the modeling process compared to the ELM, LSSVM, and BLSSVM models. According to 

the evaluation metrics, RMSE and MAE were decreased by about 12%-24% and 8%-15%, 

respectively when the BELM model with KTRL imputation technique was evaluated in 

comparison with the ELM, LSSVM, and BLSSVM models. Moreover, for the BELM model 

employing the RegEm imputation technique, RMSE and MAE were reduced by about 25%-

41% and 19%-27% compared to the other applied models in this study. Finally, the 

machine learning models developed in this study appear to be promising techniques for 

the estimation of river ice thickness. However, the potential of machine learning models 

in river ice thickness estimation requires further investigation in regions where sufficient 

historical climate data are available, and there is more frequent ice thickness 

measurements across each year.  
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Chapter 7:  contribution to knowledge and future work 

 

The use of Extreme Learning Machine, Least Square Learning Machine, and their 

bootstrap equivalent contributes significantly to the existing literature on the rive ice 

properties estimation. With regards to the rive ice thickness estimation, to date, the 

presented study is the only study that explored the aforementioned methodolgy to 

estimate river ice thickness. The results of this study confirms that bootstrap methodolgy 

help improve the results of ELM and LSSVM for river ice thickness estimation. The results 

also show that ELM and LSSVM and their bootstrap methodologies are effective 

estimation tools in the Athabasca river in Alberta, and should be explored in other areas.  

While this study contribute new research to the field of river ice properties 

estimation there are still areas that need to be expanded upon. For instance, this study 

estimate the river ice thickness with limited number of data records. Future studies could 

attempt to investigate river ice thickness estimation in regions inwhere sufficient 

historical data and ice thickness measurement exists.  

With respect to modeling techniques, this study apply two machine learning 

models and their bootstrap equivalents. Future studies could experiment different 

ensemble techniques to see wheter they are effective in improving the estimation 

accuracy in the region. In addition, other machine learning techniques could be tested.  
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