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Abstract

We apply the methods of statistical mechanics and field theory at finite temperature

to understand phenomena in intermediate and high energy heavy-ion collisions.

In the intermediate energy scenario we concentrate on the pervasive phenomena of

multifragmentation. We introduce various extensions of the recently proposed Recur­

sive Statistical Multifragmentation Model (RSM model). In particular, we devise a

novel Monte-Carlo technique to improve the treatment of the exc1uded volume in the

model. We consider extensions to account for Coulomb effects and inc1usion of isospin

degrees of freedom. We then devise a consistent decay formalism to account for the

change in isotope ratios due to decay of partic1e unstable c1usters produced in such

systems. We demonstrate how, with the above mentioned extensions, populations

of various intermediate mass fragments observed in experiments may be explained.

We then focus on the possible observation of critical phenomena in experiments, and

provide a criticism of the parametrization techniques currently used by practitioners

in the field. We demonstrate how such techniques may lead to misleading interpre­

tations and identifications of critical phenomena.

In high energy heavy-ion collisions, we focus on the ongoing search for the Quark­

Gluon-Plasma (QGP). The QGP is formed for a very short time and hence its presence

is inferred through indirect signatures. In this thesis, we concentrate on the electro­

magnetic signatures of such a plasma. We demonstrate how the explicit breaking of

charge conjugation invariance by the QGP may lead to the appearance of processes

hitherto considered absent due to symmetry considerations. These processes allow for

gluons to fuse to form lepton pairs and turn out to be comparable, in certain regions

of parameter space, to the tree level rate for lepton pair formation from quark anti­

quark annihilation. We then investigate the issue of collinear and infrared divergences

in two-Ioop dilepton production rates. This is done by calculating the imaginary part



of the retarded two-Ioop self-energy of a static vector boson in a plasma of quarks

and gluons. We recombine the various cuts of the self-energy to generate physical

processes. We demonstrate how cuts containing loops may be reinterpreted in terms

of interference between 0(0') tree diagrams and the Born term along with spectators

from the medium. We apply our results to the rate of dilepton production in the

limit of dilepton invariant mass M »T. We find that an infrared and collinear

singularities cancel in the final result obtained in this limit.
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Résumé

Nous appliquons les méthodes du mécanique statistique et de la théorie des champs

à température finie pour comprendre des phénomènes apparaissant lors de collisions

d'ions lourds aux energies intermédiaires et élevées.

Dans le cas des energies intermédiaires, nous poursuivons l'étude des phénomènes

de multifragmentation. Nous présentons plusieurs améliorations du modèle Récursif

de Multifragmentation Statistique (modèle RMS), récemment proposé. En partic­

ulier, nous présentons une nouvelle technique Monte-Carlo permettant d'améliorer

le traitement du volume exclu. Les développements étudiés tiennent compte à la

fois des effets de Coulomb et de l'inclusion des degrés de liberté d'isospin. Nous

proposons alors un formalisme cohérent de désintégration, expliquant le change­

ment des rapports d'isotopes dûs à la désintégration des noyaux instables produits

dans de telles collisions. Nous démontrons comment, avec les développements men­

tionnés ci-haut, les populations de divers fragments de masses intermédiaires ob­

servés dans les expériences peuvent être expliquées. Nous nous concentrons alors

sur l'observation possible des phénomènes critiques dans les expériences, et four­

nissons une analyse des techniques de paramétrisation actuellement employées dans

ce domaine. Nous démontrons comment de telles techniques peuvent mener à des

interprétations trompeuses des phénomènes critiques.

Dans des collisions d'ions lourds aux énergies élevées, nous abordons la recherche

du plasma de quarks et de gluons (PQG). La durée de vie du PQG est court et

par conséquent sa présence est détectée grâce à des signatures indirectes. Dans

cette thèse, nous étudions les signatures électromagnétiques d'un tel plasma. Nous

démontrons comment la rupture explicite de l'invariance de la conjugaison de charge

par le PQG peut mener à l'émergence de processus que l'on croyait jusqu'à présent

absents. Ces processus permettent aux gluons de se fusionner et ainsi de former des



paires de leptons. Ces processus s'avérent comparables, dans certaines régions de

l'espace des paramètres, au taux de formation à niveau d'arbre de paires de leptons

provenant de l'annihilation d'un quark et d'un anti-quark. Nous étudions aussi la

question des divergences collinéaires et infrarouges dans les taux de production de

dileptons à deux boucles. Ceci s'exécute en calculant la partie imaginaire de l'énergie

propre retardée à deux boucles d'un boson vectoriel statique dans un plasma de quarks

et de gluons. Nous combinons les coupures de l'énergie propre pour produire des pro­

cessus physiques. Nous démontrons comment les coupures contenant des boucles

peuvent être réinterprétées en terme d'interférences entre les diagrammes d'arbres

d'ordre Œ et le terme de Born, avec des spectateurs du milieu. Nous appliquons nos

résultats au taux de production de dileptons dans la limite M >> T de la masse

invariante du dilepton. Le résultat final obtenu dans cette limite établit l'absence de

singularités infrarouges et collinéaires.
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1

INTRODUCTION

The behaviour of ordinary matter subjected to extraordinary temperature and den~

sity remains an outstanding question in modern physics. By ordinary matter, we

specifically mean strongly interacting matter composed of nuclei, or protons and

neutrons, or mesons and baryons, or perhaps even quarks and gluons. Such an inves­

tigation, though interesting in its own right, would provide us with the theoretical

toois to obtain a better understanding of a variety of phenomena occurring in such

diverse scenarios as stellar interiors, neutron stars, the vicinity of black holes, and the

early universe. Besides revealing novel, collective phenomena at each energy scale,

it provides us with a deeper understanding of the complicated underlying theory of

strong interactions. A comprehensive understanding of these topics is still greatIy

lacking. The fundamental science that describes these phenomena straddles both nu­

clear and particle physics and forms the background for the investigations reported

in this thesis.

A detailed understanding of the physics of any phenomena would have to involve

both the development of theories and models, and their detailed verification through

a broad range of experiments. However, probing these phenomena experimentally is

a complicated task. The natural occurrences of such behaviour pointed out in the

previous paragraph are either too distant or provide too few and indirect probes of

such physics. The sole Iaboratory tool at our disposaI is that of heavy-ion collisions.

Though such experiments, at present, may not span the entire variety of our queries,

they provide information over a considerable range of parameters. The research

1



1: INTRODUCTION 2

documented in the following pages will be concentrated primarily on the study of the

kinds of hot and dense matter that is, or is expected to be, produced in heavy-ion

collisions.

1.1 Heavy-Ion Collisions

Broadly speaking, heavy-ion collisions coyer a wide range of different experiments:

from high energy pions or protons incident on nuclei like Xe [1], to collisions of

unequally sized nuclei e.g., N on Ag [2], to collisions of very large nuclei e.g., Au on

Au [3]. The experiments also vary over a broad range in energies from tens of MeV in

the c.m. frame at the NSCU, to hundreds of GeV at RHIC2 (or even few TeV at the

forthcoming LHC3). Each experiment provides data on the conditions prevailing in

the very central or head on collisions to the peripheral or just grazing collisions. Thus,

these experiments represent an indispensable tool as they allow the possibility, for

the first time, to study matter at various temperatures and densities in a controlled

laboratory environment. This allows one to make quantitative comparisons between

theory and experiment over a wide range of conditions.

In spite of their broad range, there are certain unifying features of these experi­

ments that allow us to classify them. Consider the collision of two heavy ions at a

given impact parameter. The collision may be caricatured by the sketch in Fig. (1.1).

Consider an imaginary line dividing the nuclei into two pieces A and A', and Band

B'. During the collision, the parts A' and B' meet and form what is referred to as

the participant zone. It is this zone that experiences the maximum compression and

deposition of energy. We expect most of the particle production and the appearance

of exotic phenomena to occur in this region. The pieces A and B are tom of from

IThe National Superconducting Cyclotron Laboratory at Michigan State University, East Lansing,

Michigan.
2The Relativistic Heavy-Ion Collider at Brookhaven National Laboratory, Upton, New York.
3The Large Hadron Collider at the European Centre for Nuclear Research (CERN), Geneva, Switzer-

land.
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the participant region and fly down the beam line. They constitute the spectator re­

gions. In heavy-ion collisions, often enough energy is deposited in the spectators that

they undergo thermalization through compression and expansion, eventually often

fragmenting into various c1usters [4]. Ostensibly, the collisions where the participant

region is much larger than the spectator region constitute the central events; the

opposite case corresponds to the peripheral events.
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•• 0... '
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Figure 1.1: Generic picture of a heavy-ion collision

In a central event, a considerable fraction of the energy of the incoming beams

is dissipated in the participant region through compression and/or multiple particle

collisions. This leads to a thermalization of the constituents of the participant region.

One may now attempt to describe the experimental data from this scenario with the

help of models and theories based on the presence of an equilibrium temperature. In

a peripheral event a lot of the matter and energy may simply 'flow' away from the

central region with, or following, spectator escape; or it may get squeezed out of the



1: INTRODUCTION 4

participant region without being thermally excited. The latter variety of flow may

also occur in central collisions. In such cases, one needs to use models and theories

based on transport considerations in conjunction with the thermal models. In this

thesis we will explicitly concentrate on the thermalized region of the collision. AIl the

calculations that will be presented will assume that in the region under considera­

tion, matter has undergone multiple collisions or compression and expansion and has

reached a certain amount of local thermal equilibrium. It should be noted that these

constraints do not preclude the presence of quasi static or hydrodynamic expansion

of the participant region.

Under the influence of the above mentioned assumptions, we have essentially con­

fined our task within the area of equilibrium statistical mechanics. The general

picture in most cases is the same: we consider a hot system undergoing thermal

expansion. In the course of this expansion, the system cools and may, if the initial

temperature is high enough, undergo a phase transition from one set of degrees of

freedom to another. As the expansion continues the system eventually progresses to

a dilute enough stage that interactions between the various constituents cease and

each then begins to stream freely towards the detectors. This process is termed 'freeze

out'. The time taken for this to occur, from the time when two nuclei impinge on

each other, is called the freeze out time. Up to this point, interactions persist, and

may continually change the composition of the hot expanding system as its temper­

ature and density change with the expansion. Thus, we will essentially consider a

system with a certain set of degrees of freedom in contact with an imaginary heat

reservoir. At low energies, the main degrees of freedom will invariably be nuclei and

nucleons. At intermediate energies, the degrees of freedom will be a cocktail of stable

and unstable mesons and baryons. At very high energies the degrees of freedom may

even be the elementary quarks and gluons that make up aIl hadrons.



1: INTRODUCTION

1.2 Subject Area of the Thesis
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No doubt, these collisions will produce a large number of objects (particles, nucleons

and/or nuclei ) after freeze out. These may be unstable and decay further as they

stream towards the detectors. Thus the spectra of the outgoing objects, not only

the total numbers but also their distributions constitute the experimental data. The

theoretical task will be to explain the various facets of these spectra.

At the very outset, we may distribute the outgoing objects into two broad cate­

gories, depending on the physics used to describe their production: those produced

by strong interaction, and those produced by weak or electro-magnetic interaction.

In the best of cases (central collision, sufficient thermalization) most populations of

the strongly interacting entities can usually be ascertained from a thermal model.

These models become more complicated as we encounter greater particle production.

At low energies the main objects that are detected are essentially nuclei and nucleons.

These nucleons are essentially those that are brought in by the two colliding nuclei.

There is no extra particle production. Any thermal model applied at this stage will

essentially consider nucleons as its degrees of freedom and different partitions of a

partition function will essentially consist in distributing these nucleons in a variety

of clusters.

As one increases energy, one eventually achieves a temperature when the lightest

strongly interacting particles (pions) will begin to appear. As the energy is raised,

various other strongly interacting particles may be produced. As mentioned before:

in the best of cases, one may ascertain these populations from a thermal model with

the various masses of these elementary particles as inputs. At even higher energies,

one may even obtain a thermalized plasma of deconfined quarks and gluons. Here,

once again the populations of the quarks and gluons may be obtained from a partition

function calculation. As the plasma expands and cools, the partons will eventually

reconfine to a gas of hadrons. Thus we note that thermal models may become quite

complicated as the energy is increased. In this thesis we will present a variety of
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results from a thermal model, applied to the simpler case of multifragmentation in

low energy heavy-ion collisions. It should be pointed out that not aIl populations of

the produced particlesjclusters nor their distributions can be explained by thermal

modelling. Often, additional physics has to be invoked such as primordial effects,

pre-equilibrium emission, fiow effects etc. In many cases, the additional physics has

yet to be understood.

In contrast to the strongly interacting particles, the spectra of weak and electro­

magnetically interacting particles is rather different. This is believed to be the case,

due to their different production mechanism. The excited systems that are formed

in the central participant region will live, typically, for a length of time of the order

of the strong interaction time scale ( 1O-24)s. In such a short time, electromagnetic

and weak interactions fail to achieve equilibrium, i.e., states that are formed by elec­

tromagnetic or weak interaction with the constituents in the medium will be formed

in far fewer numbers. The cross section for the interaction of these particles with

the constituents of the hot medium is set by the electromagnetic or weak interaction

scale. This makes the cross section very low and hence the mean free path of these

particles is much larger than the system size. Thus, states that are formed solely

as a result of an electromagnetic or a weak interaction between the various strongly

interacting constituents, will not only be produced in far fewer numbers but will in

most cases escape the hot system. In this thesis we will also present results of calcu­

lations of the production rates of particles produced by electro-magnetic interactions

(dileptons and real photons). These will pertain to the case of heavy-ion collisions at

ultra-relativistic energies, where we expect the formation of a plasma of quarks and

gluons. It will be demonstrated that due to their lack of rescattering in the medium,

these spectra allow us to probe the very early stages of the collisions, a region often

opaque to strongly interacting probes.
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1.3 Structure and Originality of Thesis
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In the following, the thesis will essentially be divided into two parts. In the first

part we will present work on the phenomena of multifragmentation in low-energy

heavy-ion collisions. In chapter 2, we will set up the thermal model that may be used

to describe the production of nuclear clusters in these collisions. Various aspects of

the model will be discussed such as excluded volume, Coulomb interactions; various

inputs will be considered such as mass formulae, exact nuclear level schemes etc. In

this work, I performed the first estimates of the effects of excluded volume and the

Coulomb correction on the equation of state and the nature of the phase transition.

In chapter 3 we will describe in detail the estimation of the excluded volume in

such models, this aspect has up to now been given little attention. We will present

a novel Monte-Carlo technique to estimate this effect. Though a complete closed

expression has not been devised, noticeable effects on the equation of state and the

nuclear phase diagram have been demonstrated, making this an important effect.

Here, I performed the entire Monte-Carlo calculation of the excluded volume effect

and devised the parametrisation of the free volume. This work has been published in

Physical Review C 59 845 (1999).

As mentioned previously, the nuclear clusters produced in such reactions are par­

ticle unstable even at freeze out and may decay multiple times as they stream to the

detectors. In chapter 4, we will describe how such a decay formalism may be set

up. Using this we will estimate the populations of certain selected isotopes produced

in such collisions and compare with experimental data. We demonstrate that such

models coupled with a secondary decay formalism provide a very good fit to the data

on isotope ratios obtained in experiments. Here I devised an entirely new decay for­

malism, based on the Weisskopf theory. Unlike previous formalisms, this method is

completely compatible with the preceding canonical calculation. This work has been

published in Physical Review C 61 034603 (2000).

In chapter 5 we will turn our attention to the subject of critical phenomena ob-
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served in such experiments. Using the predictions from this model, we will demon­

strate how, by measuring a limited set of isotope yields, one may make an incorrect

assessment of the order of the liquid gas phase transition observed in these experi­

ments. We demonstrate this by parametrising the isotope yields from a multifrag­

mentation model which displays an explicit first order phase transition. We show that

if one were to concentrate on a small set of yields, as are measurable in experiments,

it is possible to obtain a very good fit to the data with a formula which suggests that

the disassembling system is nearing a second order phase transition. After reviewing

Fisher's droplet model, 1 devised a parametrisation (based on the droplet model) to

fit the yields from the multifragmentation model described above. 1 then devised,

yet another formalism based on a general thermodynamic model with explicit first

order phase transition. 1 then demonstrated how the two parametrisations (which are

quite dissimilar) can be made to coincide exactly in the range of yields considered.

Thus, proving that a limited fit of the yields with a scaling law may not be ascribed

as evidence for critical behaviour. This work which also involved contributions from

other collaborators has been published in Physical Review C 65 034608 (2002).

In the second part of the thesis we will deal with the production of electromagnet­

ically interacting particles (in particular photons and dileptons) from the hot plasma

of quarks and gluons produced in ultra relativistic heavy-ion collisions. Most calcula­

tions of the number of dileptons and estimates of their observability rely on the rate

of dilepton production at lowest order in the strong and electromagnetic coupling

constant (Born Term). In this thesis we will demonstrate how in most cases this may

not be the leading contribution to the rate of production of these particles. Higher

order corrections may dominate. These corrections may arise from various medium

dependent sources (high temperature, net plasma charge, remnant divergences). We

will demonstrate if and where each of these contributions may become important. We

will start with dilepton production at very low energy of the dilepton pair. In this

region, high temperature effects may become important. Though most of this part

does not constitute the author's own work, it will be presented here for completeness.
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At intermediate energies, finite charge effects may become considerable due to

the breaking of Furry's theorem by a charged medium. We will show that this may

lead to a new channel of dilepton production via two gluon fusion, which may be­

come comparable to the Born term in certain regions of the parameter space. To my

knowledge, I am the first to predict such a possibility. 1 performed the first calcula­

tion of this effect and wrote aH sections of the ensuing paper and related conference

proceedings. This conjecture was first published in Physical Review D 63 114008

(2001). FoHowing that, it also appeared in the proceedings of the International Nu­

clear Physics Conference (INPC 2001) nucl-thjOl0S0ll , and in the proceedings

of the Montreal-Rochester-Syracuse-Toronto meeting (MRST01) nucl-thjOl0S169.

This process may also have important implications leading to the breaking of Yang's

theorem in the medium. The calculation, incorporating this effect, has also been

performed by me. These results will be submitted in the very near future to Physical

Review D.

FinaHy at high invariant mass we will concentrate on the issue of infrared and

collinear divergences arising in the various channels at next-to-leading order in the

strong coupling constant. The topic as whether they cancel or not has led to sorne

controversy in the field. If such divergences were not to cancel in the coherent sum

of the contributions from the different channels then the next-to-leading order rates

would dominate over the Born term. In Chapter 9, we will demonstrate how such

contributions may be calculated both using the rigorous methods of the imaginary

time formalism of finite temperature field theory and by the recently proposed elegant

method of spectator interpretation. Spectators are particles in the medium which

travel along with the reacting particles without taking part in the actual process.

We demonstrate how the various cuts obtained from the imaginary time formalism

may be recombined in terms of interference between order a tree diagrams and the

Born term along with spectators from the medium. Finally we will show how various

infrared and mass divergences which may have lead to the Born term being sub­

dominant actually cancel when aH the contributions to the rate at next-to-leading
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order are summed. Here, l performed the entire calculation and demonstrated, for

the first time, how the spectator interpretation may be explicitly deduced from the

imaginary Ume formalism. This work has been published in Physical Review C 65

055203 (2002).
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MULTIFRAGMENTATION, THE SMM AND THE RSM MODEL.

2.1 Introduction

We begin this part of the thesis with a detailed study of heavy-ion collisions at

intermediate energies. By 'intermediate energies' we specifically mean the phenomena

occurring in the central participant region in heavy-ion collisions at beam energies

from 10MeV to 50MeV [2, 5, 6] per particle. Similar scenarios may also be found in

the spectator regions in heavy-ion collisions at energies up to 600 MeV per particle

[4], where the spectator regions detach from the participant regions and experience

excitation and fragmentation as they stream down the beam line. Such phenomena

have also been noticed in the impinging of small hadrons (pions, protons, antiprotons)

at energies from 10 to 300 GeV on large nuclear targets [1, 7]. In this, and the

following three chapters, we concentrate on the physics of the production of nuclear

clusters in such collisions.

In the collision of heavy ions or the impinging of a light high energy particle on

a heavy target nucleus, it is believed that an excited compound nuclear system is

formed. This will then de-excite. If the excitation energy is ~ 1 MeV/nucleon, then

evaporation of the system by successive emissions of light particles [8, 9] or fission of

the system are the main de-excitation mechanisms. In this regime, there is sufficient

time between successive emissions for the system to relax to a new state of equilib­

rium. At excitation energies ~ 3 MeV/nucleon or higher, the time interval between

emissions becomes comparable to the relaxation time. At excitation energies com-

11
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parable to the binding energy ~ 8 MeV/nucleon, the very existence of a long lived

compound nucleus is unlikely. At such energies it is believed that the compound

system de-excites by an explosion like mechanism producing nuclear clusters of vary­

ing masses [10]. This process is called multifragmentation. It will form the central

subject of our study in this and the next three chapters.

Very early on in the study of heavy-ion collisions, it was noted that the momentum

spectra of the outgoing particles had a Boltzmann like distribution. This led to the

conjecture that the source of these particles must have achieved sorne level of ther­

malization [1, 11]. This immediately led to two different approaches of understanding

these phenomena: the study of infinite nuclear matter through a finite temperature

many-body approach; and that of quantizing the spectra in terms of thermal models.

This thesis will follow the latter approach, as it pertains much more to the exper­

imental situation: allowing one to incorporate various facets of the system such as

finite size, isospin, Coulomb interactions, shell effects of clusters etc.

Many-body approaches however do reveal important information. Various the­

oretical explorations of the thermodynamic behaviour of nuclear matter have been

carried out [12, 13, 14]. Nuclear matter is an idealized infinite system filled with pro­

tons and neutrons, without coulomb interaction. One notices a consistent pattern. At

zero temperature, nuclear matter is a fermi liquid. As the temperature is raised, one

notices that hot nuclear matter displays an equation of state with a Van der Waals

behaviour [12]. This is characteristic of a system which undergoes a liquid-gas-like

phase transition. Considerable experimental evidence for such a transition has also

been surmised from the power law fits to the fragment yields [15, 16), as well as from

attempts to trace out the calorie curve [4, 17].

In heavy ion collisions one does not approach the infinite nuclear matter limit.

Here, one considers the production of large clusters (Z > 30) as the production

of large droplets of the nuclear liquid. In collisions at high energies one observes

the disassembly of the whole colliding system into individual nucleons, and tightly

bound small nuclei: this is considered as the gas phase. During multifragmentation
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one will also observe the production of a large number of fragments which are in

between these two extremes: with charge Z between 3 and 30. These are called

the Intermediate Mass Fragments (IMFs). IMFs are considered to be smaU droplets

of nuclear liquid and thus signify condensation and thus the passage of the system

through the coexistence region. Hence, they constitute a very important experimental

observable to study the nuclear liquid-gas phase transition. Most of the effort in

this thesis will be directed towards understanding the spectrum of IMFs and the

information that they convey.

Multifragmentation in heavy ion collisions is however a complex phenomenon.

The amount of thermalization that has occurred in the system is uncertain; hence it

is unclear as to whether the phenomena observed are thermal or dynamical in their

origin. Besides the two major historical approaches cited previously, a variety of other

approaches have been investigated: evaporative pictures [18], percolation models [19,

20], lattice gas models [21], and dynamical models based on Boltzmann simulations

[22]. As mentioned before, we will consider the thermal model or alternatively the

statistical approach [23, 24, 25, 26]. The model that we will develop is most similar to

that of Ref. [26], where one considers sampling aIl configurations of non-interacting

clusters and constructing a canonical partition function. This model is referred to as

the Statistical Multifragmentation Model (SMFM or SMM). This model is throughly

reviewed in Ref. [26]. To calculate the partition function, however, our model uses the

recently developed recursion relation technique of Ref. [27]. By eliminating the need

for computationally intensive Monte Carlo procedures and associated approximations,

this technique allows a deeper insight into the thermodynamic principles which drive

the statistics of fragmentation.

In the next section we introduce the basic model (This section is mostly based on

Ref. [28]). Here we will treat the nuclear clusters as drops of nuclear liquid admitting

a Bethe-Weizacker mass formula and the excitation spectrum of a Fermi liquid. We

will outline the calculation strategy using the recursion relation technique. In section

2.3 we will present the results of the calculations from this mode!. In section 2.4 we
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(2.2)

summarize and discuss various extensions that will be incorporated in the model in

subsequent chapters. These will serve the purpose of making the model more realistic

and aHow for comparisons with data.

2.2 The R. S. M. model

Assume that the system which breaks up after two heavy ions hit each other can

be described as a hot, equilibrated nuclear system characterised by a temperature T

and a freeze-out volume V within which there are A nucleons. Assume also that the

volume V is much larger than VO, where VO = AIPo is the ground state volume of

a nucleus of A nucleons. The A nucleons can appear as monomers or as composites

of k nucleons. These composites do not interact with each other except through a

Coulomb interaction to be introduced later. The canonical partition function for this

system can be written as (see Ref. [29]),

W
nk

QA = 2.:: IIk~' (2.1)
k nk·

where Wk is the partition function of a single composite of size k, nk is the number of

such composites and the sum goes over aH the partitions which satisfy L: nkk = A.

Note that we have not distinguished between neutrons and protons; this will be in­

troduced later. AH nuclear properties of the clusters are contained in their individual

partition functions Wh, given as

Wk = Vfr (kmT) 3/2
1ï3 27r X qk,int·

The first part is due to the kinetic motion of the centre of mass of the composite in

the volume Vfr and the second part (qk,int) is due to the internaI structure. In the

above m is the mass of a single nucleon. We will have much more to say regarding

the choice of qk,int in subsequent chapters, as we make the model more realistic. For

now we chose the simple form of
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(2.3)

where Fk,int is the internaI free energy of the cluster of size k. The free energy can be

decomposed in terms of the energy and entropy of the cluster as F = E - TB.

We will assume for the moment, that the clusters are drops of nuclear liquid with a

Bethe-Weizacker mass formula and a Fermi excitation spectrum. Hence the internaI

energy of such a drop at a temperature T is

(2.4)

Here Wo is the volume energy per nucleon(=16 MeV), a(T) is the surface tension

which is a function of the temperature T. The entropy is simply the entropy of

a Fermi gas of k nucleons at a temperature T, (here we use the low temperature

expansion) i.e.,

B = 2Tk/EO' (2.5)

Following reference [26] the value of EO is taken to be 16 MeV. Lastly the tempera­

ture dependence of a(T) is taken from Ref. [26] as a(T) = a(ü)[(T;-T2)/(T;+T2)]5/4

with a(ü) = 18 MeV and Tc = 18 MeV. Any other dependence could be used includ­

ing a dependence on the average density. Lastly the quantity Vfr is the free volume

available for motion to each cluster; it is related to V as Vfr = V - ~x, where ~x

is the volume excluded due to finite sizes of clusters. This quantity and its effect

will be explored rigorously in the following chapter. For now Vfr is a variable of the

calculation. We have also not included Coulomb energy or symmetry energy; these

will be discussed later. For now, we attempt to evaluate the partition function with

composites defined by simply these three characteristics (Eq. (2.4)).

A priori this appears to be a horrendously complicated problem; indeed, in pre­

vious calculations, the evaluation of the partition function involves complicated and
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time consuming numerical algorithms [26]. It was noted in Ref. [27] that QA can be

computed recursively via the formula,

1
QA = ALWkQA-k. (2.6)

k

Here Wo is 1. It is this formula and the generalisation of this to a more realistic

case (see Chapter 4) that makes this model so readily soluble. Due to this recursion

relation, we calI this model the Recursive Statistical Multifragmentation Model (in

short, the RSM model). AIl properties of the system are determined by the partition

functions of independent clusters. The recursive formula, above, aIlows a great deal

of freedom in the choice of partition functions for individual fragments, Wk. Any

function of temperature, density and k is allowed. One may even use actual energy

levels. However, explicit dependence on the configuration of the remainder of the

system is outside the scope of this treatment i. e., we cannot include explicit interac­

tions between various clusters. The model is thus valid for low densities. With this

recursion relation, however, the partition function may be computed, readily, in a

matter of minutes.

2.3 The calculation.

Having constructed the partition function for the model, we may now deduce a variety

of properties of the system. We begin by evaluating the free energy F defined as

(2.7)

This is plotted as a function of temperature at constant density in Fig. (2.1) for

three systems of size A = 700,1400,2800. Note the c1ean bend developing as the

system size is increased. The location of the bend shifts towards higher temperature

as the system size (or partic1e number A) is increased. We next evaluate the total

multiplicity, which may be easily derived from Eq. (2.1) as,
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Figure 2.1: Free energy per nucleon and multiplicity as a function of temperature at constant
density. This is plotted for three system sizes: A = 700, the dashed line; A = 1400, dot
dashed line; A = 2800, solid line.

This is also plotted as a function of temperature at constant density in the second

plot of Fig. (2.1). Note the developing discontinuity in the total multiplicity. As

the particle number tends to infinity this will turn into a sharp discontinuity. The

multiplicity can be re-expressed as a first derivative of the free energy with respect to

a chemical potential and a discontinuity in the multiplicity indicates a discontinuity

in the first derivative of the free energy i.e., a first order phase transition. A similar

pattern may also be noted in the behaviour of the energy per particle as a function

of temperature (see Fig. (2.2)), where,

ElA = ~ L (Ek'int + ~T) (nk)' (2.9)
k

Note that the location of the discontinuity precisely matches the location of the

bend of the free energy. We also plot the specifie heat CvlA = ~ ~~ as a function

of temperature. As expected, we find a spike that grows with A. AH these indicate

the presence of a first order phase transition in the model. The transition occurs at
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temperatures which rise with particle number: 6.95 MeV for 700 particles, 7.15 MeV

for 1400 particles and 7.3 MeV for 2800 particles (see Fig. (2.2)).
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Figure 2.2: Energy per nucleon and Cv/A as a function oftemperature at constant density.
This is plotted for three system sizes: A = 700, the dashed Hne; A = 1400, dot dashed Hne;
A = 2800, soHd Hne.

Intrinsic thermodynamic quantities may be calculated in a straightforward man­

ner. For instance the pressure and chemical potentials may be calculated through

the relations,

(2.10)

Calculations of J-l and Pare displayed in Figure 2.3 as a function of density for a

system of size A = 200. Both the pressure and chemical potential remain roughly

constant throughout the region of phase coexistence. Of particular note is that the

pressure actuaIly faIls in the coexistence region due to finite size effects.

We now make some comments about influences ofvarious factors in Eq. (2.4). The

bulk terms, Wo+ T 2
/ fo, do not affect the free energy, thus they may be ignored when

calculating fragmentation observables. Their influence with respect to intrinsic ther­

modynamic quantities is of a trivial character. The surface term S(T) is completely

responsible for determining aIl observables related to fragmentation and therefore aIl
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Figure 2.3: The P - p diagram for A=200 at selected temperatures in the upper panel
shows the f1.attening of the pressure throughout a range of densities, as expected in a first
order phase transition. The dashed Hne shows where Cv is maximized as a function of
temperature. The evolution of the chemical potential is displayed in the lower panel.

aspects of the phase transition. Aside from the system size A, fragmentation is de­

termined by two dimensionless parameters. The first is the entropy associated with

thermal motion, (V/A)(mT/(27f1ï2))3/2 and the second is the surface term S(T)/T.

At a given ternperature, the free energy F = E - T S of A nucleons should be

minimized. With the surface tension term, E is rninimized if the whole system

appears as one composite of A nucleons but the entropy term encourages break up into

clusters. At low ternperatures, the surface term dominates while at high temperatures

entropy prevails and the system breaks into small clusters. The rnass distribution may

be calculated given the partition function, as,

(2.11)

The rnass distribution for a system of size A = 700 is displayed in the left panel of

Fig. 2.4 for three ternperatures, 6.5, 6.9 and 7.3 MeV which are centred about the
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transition temperature of 6.9 MeV. The mass distribution changes dramatically in

this small temperature range. Below the transition temperature we note the hump at

large value of k. This indicates that, as speculated, the system exists mostly as a large

drop (considered the liquid phase) and sorne small clusters. At temperatures above

the transition temperature the system exists solely as small clusters (considered the

gas phase). Note the broad distribution in the vicinity of the transition temperature.

This may also be noted by noting the behaviour of the largest cluster. We plot this

for three systems of size 200, 300 and 500 respectively in the right panel of Fig. (2.4).

Note the sudden disappearance of a large c1uster at the boiling temperature.

---=::.:_-
0.0 1 1 1 1 1 1- ---

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

T (MeV)

1.0
~-"-:-.::::..":. ... -

'-,.'

0.8
,>

'-

\ "/' '\ ,
\ '

\
,

« ,
0.6 \ 1

\ ~
1

\ 1
X 1

\ 0

\ EO.4
J

\

\ 0.2

140 280 420 560 700

k
o

10-10

Figure 2.4: On the left, mass distributions (nk) are displayed for three temperatures for
A = 700. At 6.5 MeV (solid line), most nucleons reside in a single fragment, while at 7.3
MeV (dashed line), most nucleons are part of small fragments. At the critical temperature,
6.9 MeV (dot dashed line), the mass distribution is remarkably broad. On the right, we
show the variation of the size of the largest cluster with increasing temperature for three
systems of sizes 200 (solid Hne), 300 (dot dashed line) and 500 (dashed Hne) particles.

In the above, we have highlighted the various characteristics of a simplified version

of the RSM model that we will use. Each of the facets has been demonstrated for

systems with a variety of sizes and temperatures. In the next section we will describe

a variety of extensions that may be introduced to make the model more realistic.

These include a discussion on the excluded volume, Coulomb force, isospin degrees

of freedom, inclusion of shell efi"ects and secondary decay of fragments. The excluded
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volume is a more complicated topic, and will be discussed in greater detail in the

next chapter. As noted previously, one may evaluate the internaI partition functions

directly from experimental data on nuclear energy levels, instead of using a mass

formula. AIso, the above model describes the situation at freezeout. Considerable

secondary decay takes place in the time from freezeout to detection. Incorporation

of these last two topics will be discussed in greater detail in chapter 4.

2.4 Enbancements, extensions, etc.

The model that we have described in the preceding two sections is a rather rudimen­

tary version of the R8M model that will be used to compare with experiment. It

contains only the most minimal features of hot nuclei: a volume binding energy, a

surface term and a fermi gas excitation. The reason for this is not merely simplicity

of treatment but rather the exposure of the 'primaI' characteristics of the model. In

the following chapters we will invoke various extensions to the model. The reader

will find that they will tend to smooth out many of the sharp features displayed in

the previous section. Here we highlight sorne such extensions.

2.4.1 Exc1uded volume

The volume used to define the partition functions of individual fragments, Wk given

in Eq. (2.4), should refiect only that volume in which the fragments are free to

move. It has been suggested [30], that one replace the full freeze out volume with

V ---t V - AIPo to incorporate the volume taken up by the nuclei. By inspecting

Eq. (2.4) on can see that this affects the partition function by simply changing the

density or volume used to plot observables. More realistically, the excluded volume

could depend upon the multiplicity.

Incorporating a multiplicity dependence into the excluded volume will be the sub­

ject of the next chapter, and hence, we will not report any results here (see also Ref.

[31]). It will, no doubt, require an explicit interaction between fragments. We will

report on only the simplest of interactions: a hard core repulsion. Even this will turn
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out to be a non-trivial correction, as it will add an m-dependence to the volume term

to account for the difficulty of fitting fragments of various sizes into a tight volume.

This might affect the model in a non-trivial fashion.

We like to remind the reader that the parameter b in the Van der Waals EOS:

(p + a/y2) (Y - b) = RT also has its roots in the excluded volume. But there b plays

a crucial role. We could not for example set b=O without creating an instability at

high density. Furthermore, the phase transition disappears when a is set to zero. We

will also point out, in the foHowing chapter, the relationship between the excluded

volume and the Mayer cluster expansion: a classic problem in statistical mechanics.

2.4.2 Coulomb eifects

Nuclei are charged and hence the various clusters formed at freezeout will interact

with one another through the Coulomb force. Far more importantly, each cluster

itself will experience a Coulomb self-interaction due to the protons it contains. It

has been understood that the Coulomb effects alter the phase structure of nuclear

matter [32]. Although explicit Coulomb interactions are outside the scope of this

treatment, they may be approximated by considering a Wigner-Seitz approximation

for the Coulomb energy as has been used in Ref. [26]. The addition to the internaI

free energy given in Eq. (2.4) is

( (
P ) 1/3) k

5/3
Fcou1 = 0.70 1- Po 4 MeV. (2.12)

This form is obtained by first smearing the entire charge of the system over the

freeze-out volume and considering its energy E8. We then identify spherical ceHs in

this volume that contain the charge of a particular fragment k. Now we consider the

excess Coulomb energy obtained by shrinking this large dilute sphere of charge down

to the size of the fragment being considered, f:lEf. Summing over aH k we add the

excess contribution to E8 to obtain Eq. (2.12).

The effects of the Coulomb correction may be most clearly seen in the specifie heat
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Figure 2.5: The peak in the specifie heat of an A = 100 system is smeared by the inclusion
of Coulomb effeets. For large systems, Coulomb destroys the phase transition by making
large drops energetically unfavourable.

near the boiling temperature. We display Cv, both with and without Coulomb terms

for an A = 100 system in Fig. 2.5. Coulomb forces clearly reduce the temperature

at which the transition occurs. They also reduce the height of the spike. This occurs

as larger clusters formed at lower temperatures are now energetically less favourable.

For sufficiently large systems, Coulomb destroys the transition as large drops become

unstable to the Coulomb force.

2.4.3 Isospin

The presence of a Coulomb force implies the existence of protons. This in turn implies

that we now allow for two kinds of particles: in other words we have introduced

isospin. Thus, the partition function of the system will no longer be characterized

by solely A but by Z, N. The system is assumed to break up into various nuclear

clusters with i, j numbers of protons, neutrons respectively. The partition function

is given as
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(2.13)

Here ni,j is the number of composites with proton number i and neutron number j,

and Wi,j is the partition function of a single composite with proton, neutron numbers

i, j respectively. There are two constraints: ~i,j ini,j = Z and ~i,j jni,j = N. The

recursion relation may be easily generalized to include isospin as

(2.14)

One may point out that inclusion of isospin also requires the introduction of a

symmetry energy term in the energy of a cluster. This, along with the Coulomb

energy and extension to isospin, will be incorporated into the model in chapter 4.

2.4.4 Shell eiIects and secondary decay

In the equation for the energy of a cluster of size k (Eq. (2.4)), we ascribed an energy

based on the Bethe-Weizacker mass formula. No shell effects have been discussed.

Such effects, though unimportant for large hot nuclei, are in fact important for small

clusters lying in the valley of stability with well separated shell levels. Such effects

may be naively incorporated into the internaI partition function of each cluster qk as

Emax

q. .. - "" (2Jk + l)eC-Ek/T ) + q..
~,J,~nt - L..t ~,J,cont·

k

(2.15)

Where Emax is the highest energy level that has been resolved for the given nucleus

and is available from data tables; and qi,j,cont is the contribution from the continuum.

Both these contributions will be consistently introduced in chapter 4 (or see Ref.

[33]).

Up to now, our entire discussion has been focused on obtaining the various clusters

at the instant of freezeout. At this point, all clusters contain large populations in
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particle unstable states, these will decay multiple times by emitting a variety of

particles. This willlead to a considerable change in the populations of various isotopes

as they stream towards the detectors. Thus the freeze-out populations will have to

be 'corrected' before comparison with experimental data. This correction will be

introduced in a step by step manner in chapter 4 where we will finally compare the

predictions of the RSM model with experiment.

2.5 Summary

After a brief introduction to the phenomena of multifragmentation in intermediate

energy heavy-ion collisions, we delved into the development of a thermal model to

explain the features of this phenomena. In this chapter we have simply described the

basic building blocks of the model. Primary among these are the recursive techniques

used to evaluate the partition function. These recursive techniques have several

attractive features. They allow exact evaluations of the partition functions, even

with the incorporation of various characteristics of nuclear composites and appear

to endow the model with the standard features of a liquid-gas phase transitions.

In the present form, this model (and may others in its genre) are restricted to low

densities. For modelling nuclear disintegration this is not a serious problem, although

for completeness it would be nice to be able to modify the model so that it can be

extended to higher density.

In this chapter we studied the basic thermal properties of the model, and we

emphasized the importance of the surface term and the entropy of thermal motion

in determining these properties. We explicitly demonstrated (through a number of

extensive and intensive variables) the existence of a first order phase transition in

the model. We associated the sharp change in the variation of the energy density

with temperature with that in the number of clusters. In addition, we have seen

that including Coulomb effects lowers the temperature at which the fragmentation

transition occurs and reduces the sharpness of the phase transition. We have also
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presented a list of extensions to the model. These will he taken up sequentially in

the upcoming chapters.



3

THE EXCLUDED VOLUME CORRECTION

In the preceding chapter we presented a simple model of statistical multifragmen­

tation. In this model, as in many others [26], it is assumed that the disassembly

takes place in a volume larger than the normal nuclear volume (or alternatively at a

lower density than normal nuclear density). Then the laws of equilibrium statistical

mechanics were applied to calculate the populations of nucleons and clusters appear­

ing in this volume. The volume makes an appearance in an overall multiplicative

constant in the partition function, thus determining the phase space available to the

clusters. Nuclei are not point objects but have a finite size, alternatively one may

say that the internuclear force displays a hardcore repulsive component. Thus the

clusters may not ovedap. As a result, the 'free volume' within which particles may

move is reduced. This reduced part is called the excluded volume. We discuss this

facet of statistical models in this chapter.

3.1 Introduction

Imagine n non-interacting particles, enclosed in a volume V at a temperature T. The

partition function (in classical statistical mechanics) may be generically written as,

1
Q = h3n Qkin. Qconf.· (3.1)

Where Qkin. is the kinetic part of the partition function: the portion generated by

motion of the various constituents,

27
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2 3n/2

Q . - II1 -f3p; /2md3 . - 1fm (3.2)km. - i e p~ - f3 .

The portion Qconf. is the configurational part of the partition function: generated

by the interactions between various constituents at various locations. If there are no

interactions and the particles are point partic1es, we have

Qconf. = 1r:.r d3ri = V n
.

~

(3.3)

There may be extra factors of n! if the partic1es are indistinguishable. If we have a

hard core interaction as suggested in the prelude i. e.,

U(lfi - fjl) = 00 for lfi - fjl < (Hï + Rj )

U(lfi - fjl) = 0 for lfi - fjl > (Hï + Rj ),

then we would obtain

Q~onf. =1r:.r d3ri U() (Ifi - fjl- (Ri + R j )) . (3.4)
~ ~<J

Where ()(x) is the Heaviside step function. We will denote Q~onf./Qconf. = CVfr/v)n,

where Vfr is caHed the free volume. Thus ~x = V - Vfr is the exc1uded volume. We

will study the ratio Vfr/V for typical cases as arise in statistical models ofnuc1ear

fragmentation. The radius Ri depends on the c1uster in question. Here, we will take

Ri = roA~/3, where A is the number of nuc1eons in the c1uster, and ro = 1.2fm: a

constant [26].

A variety of different cases may arise. At one extreme, we may have aH the

n partic1es as monomers (=nuc1eons, protons, and neutrons). The opposite limit

is when aU the partic1es form a single large c1uster. In general there will be nI

monomers, n2 dimers, n3 trimers and so on. The total number of partic1es will be

constrained to Li ini = n. In the following, dimers, trimers, etc. will be called

composites or c1usters. The density within each composite or monomer will be taken
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to be a constant Po: the ground state nuclear density of 0.16fm-3
• The volume of

any composite of k nucleons will thus be klpo. Here k can be one.

In our model, as in most models of statistical multifragmentation, one assumes

that on collision of two heavy nuclei, the central participant region expands from its

normal volume to a larger volume. In other words, its central density drops from Po

to a smaller value p. It is at this expanded volume V or reduced density p that the

various clusters are formed. Thus statistical mechanics has to be performed with this

density as input. Previous models have assumed this density to be anywhere between

OApo to 0.167po [21,26,34]. A naive guess would be that a cluster may not occupy

the volume already occupied by another cluster. Thus the excluded volume for n

clusters would be ~x = niPo. This estimate has been used previously by Hahn and

Stocker, and others [30]. One could relax this to ~x = c x niPo, where c is a constant.

This leads to ~'Jr = 1 and aJt' = O. In the following it will be demonstrated that

this simple situation is not the case.

Finally, a study of the excluded volume is important as in nuclear physics problems

~x is of the same order of magnitude as V. In high density multifragmentation, it

may lead to a considerable reduction of the phase space available to various clusters,

and thus change the out state. In many other problems in physics and chemistry this

is a negligible factor. In our calculations of the partition function, as demonstrated

in the preceding chapter, the input variable will be the free volume Vfr' However

the total volume V in which fragmentation occured, is also of importance. Typically

Hanbury-Brown Twiss experiments can provide a measure of V. The total volume

V is required when estimating the expectation values of the residual interactions

between clusters. This refers mostly to the Coulomb force, but could also be a strong

interaction if the clusters are close enough. In the remainder of this chapter we will

study the relationshp between V and Vfr' In Sect. 3.2, we will show how, given a

V, a Vfr may be estimated by a numerical Monte-Carlo routine. In Sect. 3.3, we

will explore the relation of V to Vfr in the simple case when only monomers are

formed. This is related to the historical problem of Mayer cluster expansion and
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experimentaIly relates to the case of multifragmentation at high energies. In Sect.

3.4, we will turn to the generic case of nuc1ear fragments of aIl sizes. In Sect. 3.5,

we will summarize the results of our calculation and demonstrate how the general

relationship deviates from the simple case of Hahn and Stocker.

3.2 Numerial procedure for evaluating Vfr/V
We now approach the central theme of this work: estimating the ratio of VErlV

in a disassembling system. For obvious reasons, we will assume throughout that the

interaction between c1usters is spericaIly symmetric. By extention, the thermalization

volume V is also taken to be spherical. We thus have n partic1es which need to be put

into a sphere of radius R. If there were no mutual hard core interactions to contend

with, the n partic1es would be distributed uniformly within the sphere of radius R.

This is achieved by the foIlowing simple numerical procedure. For each partic1e or

c1uster i, we calI three random numbers between 0 and 1, denoted as Œi, (3i and li,

We then make the assignment ri = R(Œ)I/3, cos(Bi) = 1 - 2(3i and cPi = 27r
'
i' These

quantities give us the Cartesian coordinates of the ith partic1e as Xi = ri sin Bi cos cPi'

Yi = ri sin Bi sin cPi and Zi = ri cos Bi. Each set of n such caIls gives n different positions

for the n c1usters. Each such set is deemed 'successful' if there are no mutual hard

core interactions.

Now, we introduce hard core repulsion among the c1usters. If each c1uster has a

certain radius of this repulsion, not each set may be successful. The first may always

be placed successfuIly at rI as there is no other in its way. To place the second, we

calI the three random numbers Œ2, (32, 12 which give us the position r2 of the second

composite. This may only be placed if (1f1 - f21) > (RI + R2 ), where RI, R2 are

the hard core radii of composite 1 and 2 respectively. To successfully place the third

particle, we again calI three random numbers which generate the position 1'3. This

may be placed successfuIly only if (1f1 - 1'31) > (RI +R3 ) and (11'3 - f21) > (R3 +R2 ).

In this way, we continue placing c1uster after c1uster. If we have managed to place aIl
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n clusters successfully then we have one successful set. Failure at any stage of this

buiding up process will constitute an unsuccessful set. Let the number of successful

sets be denoted Ns ; and the number of unsuccessful sets Nu. Then provided that

both Ns and Nu are large, a good estimate of Vfr/V may be obtained by equating,

(3.5)
Ns

Ns+Nu ·

Several comments are in order. First, the ratio Vfr /V is necessarily less than 1,

therefore, for a very large n the computed quantity (Vfr/v)n is very small and a very

large number of attempts are needed to obtain good statistics. However, for typical

cases of n in nuclear fragmentation this is perfectly feasible i.e., can be computed

within a reasonable time frame. Secondly, we have enforced the requirement that the

centre of each cluster lies between 0 and R the radius of the spherical enclosure. This

has also been followed by Koonin and Randrup [35]. We calI this the first prescription.

A possible alternate prescription (referred to as the second prescription) could be

to allow the centre of the particle to lie between 0 and R - Ri. Although in the

thermodynamic limit both prescriptions will give the same results, for finite number

of particles they will not. The second prescription has the awkward feature that if the

hard core radii of different composites are different (as will be the case for composites

of different mass number), the Vfr factors will be different for different species. This is

due to the hard core interaction with the wall of the spherical enclosure. As a result,

even for a single compound nucleus there will be an excluded volume: the centre of

the nucleus can only move upto R -~. However, our objective is only to find the

excluded volume due to interaction between different clusters. Thus we do not use

the second prescription and will not discuss it any further.

It should also be noted that in the above discussion, we do not worry about the

motion of the centre ofmass i.e., at the end ofthe successful set we do not impose that

the centre of mass of the composites coincide with the centre of the enclosure. Recall

that, eventualIy, we will ca1culate a partition function in the canonical ensemble. The
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movement of the centre of mass is in accord with the basic principle of the canonical

ensemble i. e., there exists a heat bath which can absorb both energy and momentum.

For a large number of composites, the movement will obviously be very small. It will

not be so for n = 3 or 4. The centre of mass motion correction is a separate issue,

with or without the excluded volume correction. It is also obvious that the Monte­

Carlo procedure described above may be easily modified to correct for this motion.

We leave this for a future effort.

In the next section, we consider the case of n monomers whose centres lie within

a sphere of radius R. There are several reasons to consider this first. This is the

simplest. This is appropriate for high energies, where most of the nucleons appear as

monomers and there are very few composites. More interesting is the relation of this

problem to Mayer cluster expansion, which is a classic problem in statistical physics.

3.3 Monomers of one kind: Low density expansion

We want to derive the relationship between the total volume and the free volume in

the case where only monomers are formed. This is related to the equation of state of

such a system. The equation of state of such a system has already been obtained by

Mayer and collaborators [36] in the form a series in density. The equation of state is

written as

(3.6)

In the above,

PV _~ (\3 )1-1

T
- L...J al /\ P .

n 1=1

>. is the thermal wavelength, al = 1 and the coefficients a2, a3, a4

have been analytically obtained and a5, a6 were calculated numerically (the interested

reader may see Ref. [36] for details). Putting in the values for the constants we get

PTV = 1+4~+10 (~) 2 +18.365 (~) 3 +28.237 (~) 4 +39.526 (~) 5 + .,. (3.7)
n Po Po po Po Po

Here P = njV is the density ofparticles in the total volume; Po = 3j47l"rg is the density

within each composite. The power series expansion will obviously enjoy validity in
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the region where P «Po: hence this is called a low density expansion. We define

Vfr in this situation by the equality

:ir
- 1. (3.8)

the ratio of the above two equations gives us the ratio Vfr/V. We evaluate it for three

different densities: plPo = 0.1,0.2, and 0.3. This gives us the ratio of Vfr/V as 0.657,

0.416, and 0.255, respectively.

As we will soon demonstrate, this estimate is not rigourous. This is based on the

assumption that ~'t = 1. We have used the Mayer cluster expansion and the above

assumption to obtain an expression of Vfr/V, which, however, immediately shows that

aVfr1av = 1+ correction. Thus there is an inconsistency. The answers are however,

resonably close to the answer we obtain from the direct calculation of VfrIV. This

direct calculation exploits the numerical technique described in the previous section.

The calculation is performed for a finite number of particles: calculating for very

large numbers is very time consuming. However we note that the results seem to

faH on a smooth curve (see the next section for the parametrization of these results).

We extrapolate this curve to n = 00 to obtain the thermodynamic limit of Vfr/V. It

turns out that this method of obtaining Vfn and using Eqs. (3.7,3.8) gives answers

that are quite close to each other. They become identical if the correction alluded to

above is also incorporated in an iterative fashion.

The results of the numerical calculation of VfrlV are shown in Fig. (3.1). To

obtain these, we pick a value of plPo and n which then defines a value of V which is

then used to find R. The numerical method of the previous section is then carried

out to calculate VfrIV. Note that the results approach the Mayer formula as n -+ 00.

Thus we find that this formula is appropriate at n = 00. However, it provides a

significantly different estimate for finite n relevant for multifragmentation studies.

We are unable to write a closed expression for the curves of Fig. (3.1). However they

can be parametrized quite accurately.
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Figure 3.1: Monte Carlo results for VfrlV for three different densitites for n monomers.
Here P = nlV and Po = 1/(41rr8l3)). The straight line in each frame represents the value
of the inverse of the r.h.s of Eq. (3.7) evaluated for the given value of plPo, The straight
lines can be taken as an approximate answer in the limit n -+ 00. As in many of the
rest of the graphs we show a fit of the Monte Carlo points by a parametrization given by
the inverse of 1 + O2/ 3 (1 - n-2/ 3 ) + C1/ 2 (1 - n-1/ 2 ) + C1/ 3 (1 - n-1/ 3 ) (see text). These
values are C2/ 3 = 0.1122, C1/ 2 = 0.1237, C1/ 3 = 0.3266 for plPo = 0.1; O2/ 3 = 2.6871,
C1/ 2 = -6.6771, C1/ 3 = 6.0805 for plpo = 0.2; and lastly, C2/ 3 = 3.0693, C1/ 2 = -10.7461,
C1/ 3 = 11.8747 for plPo = 0.3.

An interesting feature is the behaviour of the excluded volume with density. Ob­

serving Fig. (3.1), we note that for a fixed n, the quantity V/Vfr = 1 + 1Iex/Vfr

increases as p/Po increases. However, 1Iex decreases as p/Po increases (meaning that

Vfr is decreasing at a faster rate). This sounds slightly counter intuitive. To under­

stand this consider a very dilute system where the particles have been distributed at

distant locations. If there are only two particles then the excluded volume is 8/Po

(as any one particle precludes the other from a sphere with a radius twice that of

the individual partners: call this the exclusion sphere). For n particles the excluded

volume is 4n/Po, where we have divided by 2 to eliminate double counting. This

is the largest possible value of the excluded volume for n particles. As the density

increases, many of the excluding spheres will be forced to occupy locations in the
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vicinity of each other. The excluded zones of one particle may overlap with that of

another. In this case the total volume excluded by both these particles will not be

the sum of their exclusion spheres but a smaller volume. As the density rises the

particles come closer together and the excluded volume decreases.

3.4 Mixture of Many species: The case of nuclear multi­

fragmentation

We now turn the case of excluded volume in nuclear multifragmentation. Here we

may have both nucleons and composites of different sizes appearing in the freeze-out

volume. We denote the total number of objects (monomers and composites) as the

multiplicity m. If nk is the total number of composites of k nucleons, then I: nk = m

and I: knk = n, where n is the total number of nucleons in the system. Specifying

n and m however does not uniquely specify the system since for the same n and m

we can have many partitions, e.g., for n = 10 and m = 3, partitions of 8, 1, 1; 7,

2, 1; 6, 2, 2 etc. are possible. To demonstrate the dependence of Vfr/V on each

separate partion would become a very complicated task. Not only would we have to

demonstrate multidimensional results (dependence on n, m and partition) but the

number of partitions for large m will make this prohibitively difficult. We will thus

present dependence of the ratio on n and m only, i. e., we will chose a single partition.

The choice of partition is not arbitrary, but is close to the average of the range of

values obtained for each m from a thermodynamic calculation. Resonable variations

in the choice of partitions were sometimes studied. This did not cause any major

change in the parametrization used.

To obtain the excluded volume for a particular m we proceed in the following way.

For a given n and temperature T we calculate (nk) and obtain I:(nk) = m. This

is obtained by means of the thermodynamic calculation of chapter 2. To recall, one

defines a cluster partition function Wk for a cluster of k nucleons, drawing on the

Bethe-Weizacker mass formula as,
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(3.9)
( )

3/2
_ Vj kmT (Wok-a{T)k2/3+T2k/EO)/T

Wk - - -- xe.
1i3 27f

Using this, a partition function for the entire disassembling system may be written

down as (see chapter 2 for details),

W~k
QA= L:TIk -,.

k nk·

The partition function is evaluated easily using the recursion relation

(3.10)

(3.11)
1

QA = AL: WkQA-k.
k

From here, one may easily derive the mean number of c1usters of k nuc1eons as

( )
_ WkQA-ak

nk - ,
QA

and as a result the total multiplicity m.
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Figure 3.2: Monte Carlo results for Yfr /V where the total number of nucleons is n = 100
and multiplicity m varies as shawn. The points are Monte-Carlo results and the smooth
Hnes are fits using Eq. (3.13). The fits use C2/ 3 = 8.812, C1/ 2 = -20.341, C1/ 3 = 14.111
for Pfr/Po = 0.3; C2/ 3 = 13.037, C1/ 2 = -30.175, C1/ 3 = 20.927 for Pfr/Po = 0.4545;
C2/ 3 = 29.485, C1/ 2 = -66.753, C1/ 3 = 43.930 for Pfr/Po = 0.6; and lastly, C2/ 3 = 70.452,
C1/ 2 = -160.687, C1/ 3 = 106.298 for Pfr/Po = 1.587.
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This m, will in general be non-integral as it is an average over many partitions.

We fine tune the temperature until an integral value of m results. The values of (nk),

however, are still non-integral and fractional in most cases, as these are averages over

many partitions. This is resolved in the following way: we start the sum over (nk)

from k = 1; everytime the sum crosses an integer we consider the presence of one

particle. Thus if at k = k1 we encounter the integer 1, i. e., E~l (nk) ~ 1, we consider

this as an indication that a single cluster with number of nucleons between 1 and k1

has appeared.

As we continue the sum, we may encounter the next integer at k2 , i.e., E~~ (nk) ~ 1.

We consider this as an indication that a cluster with number of nucleons between k1

and k2 has appeared. We continue in this way with the choice of the last composite

controlled to ensure the conservation of nucleon number i.e., E~ k(nk) = n. No

doubt, this method of sampling the distribution is not unique, and the answer does

depend on the choices made. Resonable variations were tried, and for large m, this

variation turned out to have negligible effect.

In the preceding paragraphs, we have made the tacit assumption of a particular

free volume Vfr' We note, from chapter 2, that this is indeed an input of the ther­

modynamic calculation that provides us with the values of (nk)' Having chosen the

clusters that are to appear, our task will now be to discern what the total volume V

must have been to allow for such a value of Vfr' The reader will recognize that we

are following a reverse line of reasoning from that adopted in the case of monomers

(Sect. 3.3). There we had chosen a total volume V first and then proceded to find

what Vfr it implied. Here it is simpler to choose a Vfr first, perform a thermodynamic

calculation obtaining the numbers and sizes of clusters, and then deduce the value

of V that will produce this value of Vfr' There is no direct method of computing

this. The method will involve making a guess of the possible value of V. We then

distribute the various clusters obtained in this volume and obtain the corresponding

Vfr . The Monte-Carlo sampling described previously is used in this estimation of Vfr'

Usually, the Vfr obtained as such will not coincide with the Vfr chosen as input to the
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thermodynamic calculation. However, an iterative procedure may be readily devised

by which we converge on the correct V which would generate the input Vfr'

Po/Po ~ 1.58

20

po/po ~ 0.6

1

10 15

Multiplicity m
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Figure 3.3: Left plot is same as Fig. (3.2), except this is for n = 50. The parameters for
the fitted curves are 0 2/3 = 6.404, 0 1/2 = -14.313, 0 1/3 = 10.069 for Pfr!Po = 0.3; 0 2/3 =
3.456, C1/2 = -7.890, Cl/3 = 6.687 for Ph/PO = 0.4545; C2/3 = 3.445, 0 1/2 = -7.953,
0 1/3 = 7.214 for Pfr/Po = 0.6; and lastly, C2/3 = 25.951, 0 1/2 = -59.158, Cl/3 = 42.110
for Pfr/Po = 1.587. Right plot is same as Fig. (3.2), except this is for n = 200. The
parameters for the fitted curves are C2/3 = 17.846, Cl /2 = -39.845, C1/3 = 25.567 for
Pfr!Po = 0.3; C2/3 = 26.962, Cl/2 = -59.860, C1/3 = 38.038 for Pfr/Po = 0.4545; and lastly
C2/3 = 63.693, 0 1/2 = -141.909, Cl/3 = 89.299 for Pfr!Po = 0.6.

3.5 Results of calculations

Our results are essentially contained in Figs. (3.2,3.3,3.4). In Fig. (3.2), we show the

variation of Vfr/Và for n = 100 for different inputs of Ph/PO as multiplicity varies. Fig.

(3.3) shows similar curves for the cases of n = 50 and 200, respectively. Qualitatively,

they aIl show similar behaviour as is to be expected. For a given Pfr/Po, Vfr/V de­

creases as the multiplicity increases and appears to converge towards an asymptotic

value for large m. For a fixed value of n and m the ratio of volumes decreases as the

ratio Pfr/Po increases, except for the case of m = 1 where Vfr/V is always 1. The ratio

of volumes Vfr/V is thus a function of three quantities: Vfr/V = j(n, m, Pfr/Po). We
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have been unable to find a simple functional dependence on the three parameters such

that an accurate extrapolation outside of the actual region of investigation becomes

dependable. However, we have managed to provide a simple parametrization for the

dependence on m for a given density and n. This formula may be fitted almost ex­

actly with aIl the three figures by simply varying three parameters, as demonstrated

by the solid line in Figs. (3.2,3.3). We may express it as

Vfr 1 ( )
- - 2 1 1 • 3.13
V 1 + C2/ 3 (1 - m-"3) + C1/ 2 (1 - m- 2 ) + C1/ 3 (1 - m-"3)

The values of C2/ 3 , C1/ 2 , and C1/ 3 are mentioned in the captions of each of the figures.

As may be noted they are different for each density and total particle number. Finding

a parametrization for the three constants in terms of the density and the total particle

number would have achieved our stated goal of a universal closed expression for the

ratio of the free volume to the total volume.

While it would have been satisfying to derive such a formula (Vfr/V = f(n, m, Pfr/Po))

analytically, one soon realizes that this is a complicated task. In the Mayer formula

(Eq. (3.7)) only the first three terms are simple. The l'est are left as integrals with

complicated limits, the evaluation of which requires numerical integration [36]. We

would remind the reader that the case of the Mayer cluster expansion is in fact simpler

than that of nuclear fragmentation. AlI the constituents are monomers. One calcu­

lates in the thermodynamic limit: as a result one has no surface to bother about; and

one may employ various simplifying approximations. A sampIe excercise for calculat­

ing the free volume available to three unequal spheres whose centres are constrained

to move within another sphere will convince the reader to try a phenomenological fit.

The parametrization of Eq. (3.13) works very weIl in aIl the cases that we studied;

however, we do concede that sorne other parametrization may work equally weIl.

We now turn to the plots of Fig. (3.4). Here we plot the full volume V as a

function of Vfr or vice-versa. Both are measured in units of VO, the normal volume of

a nucleus of n nucleons (n = 100 in left plot, n = 50 in right plot). The choice of these
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Figure 3.4: For n = 100 we plot V/Vo against Vfr /Vo where Vo is the normal nuclear volume
for a given n. One might then hope that the plots would be almost independent of n
(compare with right plot). For four values of Vfr/Vo we plot values of VIVo for selected
values of m = 2,6, and 10 and show that the calculated Monte-Carlo values faU nearly on
a straight Hne. The soHd Hne is through m = 2, the dash-dot Hne through m = 6, and
the dotted Hne through m = 10. The top most Hne is our prediction for m = 100. That
line is drawn from an extrapolation of the calculation done in Sec. 3.3. Since for m = 100
aH particles are monomers the calclations of Sec. 3.3 apply. Notice that the lines are weU
represented by VIVo = a(m) x Vfr/Vo + Vex(m)/Vo, where the dependence of a on m is
rather weak and also a ~ 1. The formula of Ref. [30] starts from (0,1) and has a = 1. The
right plot is the same as the left plot expect that it is for n = 50. Note the similarity with
the left plot.

plotting units is obvious: the reader will notice that in these units the two plots are

almost (although not exactly) identical. In the plots, four multiplicities are shown:

m = 2, 6, 10, and 100, where the last one is obtained by extrapolating the formula of

Sect. 3.3. As m = 100 is a case of aH monomers, we essentiaHy revert back to the case

discussed in Sec. 3.3. The surpising point is that aH four points (corresponding to

four different free volumes) for each multiplicity lie almost perfectly on a straight line.

Another important point to note is that if one performs a thermodynamic calculation

where temperature may vary (and as a result multiplicity varies), then one cannot

have a constant volume V and a constant free volume Vir. We may fix one, the other

one is then temperature (or alternatively multiplicity) dependent. For the calculation

of pressure at constant temperature and volume, the former has to be held constant.

For a fixed V, it is clear that Vir decreases as multiplicity increases, which is obvious
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from the preceding discussion. In earlier versions of statistical multifragmentation

models Vfr increased with multiplicity [26]. There, unlike in our case, the volume or

free volume is not a free parameter, but is in fact temperature dependent. In such

models, one cannot hold V constant and vary other quantities such as temperature.

From the curves we note that the approximation of Hahn and Stocker is accu­

rate only for low multiplicities. For multiplicities greater than six is underestimates

the the exc1uded volume ~x. Thus for a given Vfr it underestimates V. A better

approximation will infact be to take

V = V(m) = a(m)Vfr + ~x(m), (3.14)

where a(m) may be set to be 1 and ~x may be read off the intercept with the y axis.

This varies between 0.6 and 2 (in units of VQ). In the actual parametrization, the

slope a(m) is slightly greater than one; the value increasing as m increases.

3.6 Summary and discussion

In this chapter we have performed a realistic calculation to estimate the magnitude

of the exc1uded volume in nuc1ear fragmentation. This calculation was performed

within the outline provided by the Recursive Statistical Multifragmentation Model

(RSM model). In this model one calculates the partition function of a disassem­

bling system at the instant of 'freeze out' i.e., at the point at which c1usters are far

enough away that there is no residual attractive interaction between them. The only

interaction allowed is that of a hard core repulsion. This hard core repulsion pre­

vents the various c1usters from enjoying the entire volume V in which fragmentation

takes place; confining them instead to a small free volume VfI-. A certain volume

~x = V - Vfr is thus excluded. This was a very general calculation in the sense

that the radii of hard core interactions were allowed to vary accoding to the sizes

of c1usters. The disassembling systems considered were ascribed multiplicities that

would be typically encountered in heavy-ion collision experiments.
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Early formulations of the model naively estimated the excluded volume ~x as

simply the volume of the clusters themselves ~Xmîn = 110 = A/po (see chapter 2

or Ref. [28]). We explicitly demonstrate that this is not the case. The excluded

volume ~x can be much greater. The excluded volume tends to the estimate of

~Xmax = 4A/Po in very dilute systems. In most cases of nuclear fragmentation the

excluded volume lies between ~Xmîn and ~Xmax. The answer is multiplicity dependent.

In this calculation we introduced novel Monte-Carlo sampling techniques with

which the excluded volume may be calculated in the R8M model. These techniques

had to be used in tandem with the numerical, recursive, calculations of the R8M

model to estimate this effect. The plots demonstrate how the excluded volume in

typical multifragmentation settings varies with multiplicity (m), density (Pfr/Po), and

total particle number of the system (n). We could not devise an analytic expression

for the dependence of 1-i/V on these parameters. However, we demonstrate that for

a given n and Pfr/Po, the ratio of volumes Vfr/V is a universal function of m and

involves merely three dimensionless constants which depend on n and Pfr/Po.
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SECONDARY DECAY

Our investigation of multifragmentation with the R8M model has led us to contin­

ually develop various additional features of the model; so as to ultimately explain

experimental data. We outlined various extensions in chapter 2 after presenting a

rather simplified base model. In the preceding chapter, we concentrated solely on

only one such extension: excluded volume. In this chapter we will incorporate aH

remaining features highlighted in chapter 2. After the completion of aH extensions

we will achieve the first of our stated goals: comparison with experimental data.

4.1 Introduction

We begin by clearly stating the basic aim of this chapter (and one of the aims of

the thesis in general): to attempt to calculate the populations of various isotopes

of Boron, Carbon and Nitrogen that were measured in a number of experiments at

the N8CL-M8U facility [5, 37]. The reason for concentrating on these isotopes is

manifold. ExperimentaHy such nuclei are large enough that they cannot constitute

pre-equilibrium emission, which is mostly in small tightly bound clusters or nucle­

ons: we are thus definitely observing clusters from the central thermalized region.

Populations of higher mass isotopes are rather small and have considerable errors.

In the interest of simplicity we make approximations that tend to somewhat blur

out discrete shell effects; such approximations are not completely justified for smaller

isotopes of Lithium and Beryllium, where exact shell effects may be important.

The calculation proceeds in two stages. In the first part we will incorporate aIl

43
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but one of the features to be included: isospin effects, Coulomb interaction, symme­

try energy, discrete levels and continuum populations. The populations of isotopes

calculated at this stage will be called the primary populations and will represent

the populations of isotopes at the instant of freeze-out. The calculations in the first

part are exact although numerical. These populations are both in particle stable

and unstable states. In the second stage the particle unstable states are allowed to

decay. Here we introduce the final extension of the RSM model: secondary decay.

This is done in a Weisskopf formalism. Exact calculations are very long and sorne

approximations had to be introduced. These approximations will be discussed. After

the decays, the populations are compared with experiments.

This calculation serves as an application of the RSM model where an exact cal­

culation can be done with recursive techniques. This, therefore, could serve as a

benchmark of how far one can trust the predictions of the model. Here we are es­

sentially referring to the primary populations. In the next chapter these populations

will be subjected to a different study as to the order of the phase transition occur­

ring in such experiments. In reality these populations will be subjected to significant

secondary decay, changing their spectrum considerably. A two step model such as

this, provides us with both the populations at freeze-out and those after secondary

decay. A good fit with experimental data will not only promote the RSM model as

an accurate model, but also boost confidence in its primary populations, allowing us

to make definitive statements regarding the liquid-gas phase transition at freeze out.

The sections are organised as follows. Sect. 4.2 gives a description of the vari­

ous extensions to RSM model. After presenting, in Sect. 4.3, in words and simple

formulae, the overview of the secondary decay calculation, we present in Sect. 4.4

the formalism that we use to model secondary decay. In Sect. 4.5 we present sorne

calculational details, Sect. 4.6 presents the results of the calculation. A summary

and discussions are presented in Sect. 4.7. A short appendix of the more complicated

formulae are presented in Sect. 4.8.
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4.2 The two component R8M model.

45

We begin by presenting the details of the extensions to the RSM model . The one

component base model was described in chapter 2 and in Ref. [28].

We have assumed that the system which breaks up after two heavy ions hit each

other can be described as a hot, equilibrated nuclear system characterised by a tem­

perature T and a freeze-out volume V within which there are A nucleons (A = Z +N).

Here we introduce the distinction between protons and neutrons. Thus, the partition

function of the system will no longer be characterized by solely A but by Z, N. The

system is assumed to break up into various nuclear clusters with i, j numbers of

protons, neutrons respectively. We assume that there is minimal interaction between

clusters. Thus, the partition function is given as

(4.1)

Here ni,j is the number of composites with proton number i and neutron number j,

and Wi,j is the partition function of a single composite with proton, neutron numbers

i, j respectively. There are two constraints: 2:i,j ini,j = Z and 2:i,j jni,j = N. These

constraints would appear to make the computation of QZ,N prohibitively difficult,

but yet another recursion relation can be devised which aUows for the numerical

computation of QZ,N' Three equivalent recursion relations exist, any one of which

could be used. For example, one such relation is

1 .
Qz, n = ; ~ 'tWi,jQz-i,n-j.

~,J

AU nuclear properties are contained in Wi,j' It is, as before, given by

Vfr (mT)3/2(' ')3/2W· . = - -- 't + J x q. .. tt,J 'fi3 21f t,J,tn

(4.2)

(4.3)

Here Vfr is the free volume within which the particles move; Vfr is related to V through

Vfr ::::::' V - ~x where ~x is the excluded volume due to finite sizes of composites. This
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quantity and its relation to the density, multiplicity and total particle number have

been rigorously explored in the previous chapter. Here we take Vfr to be a variable of

the calculation, it is set to be equal to fVo where Vo is the normal volume for (Z + N)

nucleons, f is then varied to obtain the best fit with experimental data. From VfrWith

a knowledge of the multiplicity, we can calculate the total volume V and hence the

freeze out density. This has to be low enough so that the approximation of ignoring

interactions between composites is viable. This becomes a consistency check for our

calculation.

The quantity qi,j,int is the internaI partition function of the composite. In the

previous chapters we ascribed a rather simple form to qi,j,int, based on a simplified

mass formula with only a volume and surface term and a Fermi-gas excitation. In

general, however, for a nuclei which has both discrete energy levels and a continuum,

qi,j,int can be expressed as

Erna",

q. .. - ""' (2Jk + l)e(-Ek/T ) + q..
~,J,~nt - L.....t ~,J,cont·

k

(4.4)

Where the summation on the right hand side is the contribution from the discrete

spectrum(The cut-off Emax is simply the highest energy level that has been resolved

for the given nucleus and is available from data tables); and qi,j,cont is the contribution

from the continuum. Without loss of generality we can write

(4.5)

where we have used the abbreviation A = i + j, to stand for both i and j; PA(E) is

usually partly discrete and partly continuous.

We will need both qA,int and PA(E). Volumes ofwork are available on PA(E). This

is dealt with in detail in appendix 2B of [38]. The saddle-point approximation for

the density of states assuming a Fermi-gas model is (see e.g. 2B-14 in [38])
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PA(E) = p~(E) x exp(lnzgr - aoA + !3oE).
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(4.6)

(4.7)

For explanations of how ao and !30 are to be chosen see Ref. [38] . In the Fermi-gas

model the quantity which is exponentiated is simply the total entropy S = As. Thus

the density of states is given by a familiar expression PA(E) = p~(E) exp(S) where

p~(E) is the pre-factor. Approximate values of p~(E) are known provided one does

not have to concern with very low values of E (which we do need). At temperatures

we will be concerned with, exp(S) in the Fermi-gas model is given quite accurately

by exp[7f( ~:)1/2].

In the bulk of this chapter we adopt this prescription. For up to 20F we write

the density of state as PA(E) = p~ x exp(S), where the low temperature Fermi-gas

expression for S, as written above, is used. The energy independent value of the

pre-factor is fixed from experimentaUy known levels:

E
max 1EmaxL (2JK + l)e-Ek /T = p~ e(S(E)-f3E) dE.

k=O 0

While objections can be raised against this procedure, it achieves three objectives

which we wanted to have: (a) we did not want to lose the information of the ex­

perimentally measured discrete excited states; (b) we did want to take into account

the contribution from the continuum and (c) with this procedure calculations are

fairly simple. Although, we will not report on aU other formulae for density of states

that we also used, our final results for the isotope populations are quite stable within

reasonable variations that were tried. We estimate the continuum contribution as a

similar integral from Emax to infinity i. e.,

qi,j,cont = {OO p~PA(E)e-f3EdE. (4.8)
JEmax

This process is continued up to 20F wherein we can read off energy levels from data

tables. For elements above 20F, a parametrised version had to be used. No doubt,
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any such parametrization will be based on a mass formula. Unlike the case of the

preceding chapters, this parametrization will include isospin dependence, Coulomb

interaction and symmetry energy. This is given as

qi,j,int = exp [ ( Wo(i + j) - a(i + j)2/3 - K(i +i:)1/3 - s (Jj~it + T 2(i + j)/e) /T],

(4.9)

where Wo = 15.8MeV, a - 18.0MeV, K = 0.72MeV, s = 23.5MeV and e =
16.0MeV. The first four terms in the right hand side of Eq. (4.9) arise from a

parametrised version of the binding energy of the ground state. The last term arises

from an approximation to the Fermi-Gas formula for level density. This was also used

in [26]. For protons and neutrons q is 1.

The average number of particles of a composite is given by

( )
_ QZ~i,N-j

ni,j - Wi,j Q .
Z,N

(4.10)

However, this population is partly over particle stable states and partly over particle

unstable states which will decay into other nuclei before reaching the detectors. This

last feature of the model will be introduced in the remaining sections.

4.3 Secondary decay.

In keeping with the way experimental data are presented, we will compute ratios of

yields of different isotopes of Boron, Carbon, and Nitrogen. To lowest order one can

consider the (ni,j) obtained from equation (4.10) above, remove the particle unstable

fractions, and compare them directly with experiment. This is shown in the figures

as the dotted line with a filled triangle plotting symbol. These populations contain

only particle stable states.

Next we consider decay of the particle unstable states. We restrict the secondary

decay to be due to emission of six species: neutron, proton, deuteron, 3He, triton, and
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alpha particles. Any given nucleus (i, j) from a particle unstable state can in principle

go to at most six other nuclei. As the populations are canonically distributed among

the various energy levels, we can calculate the fraction that are in particle stable or

unstable states. If the fraction of nuclei (i, j) at the first stage in unstable states is fi~j'

then the stable population of (i, j) after these have decayed is given by (1- fi~j)(ni,j).

Now of the ones that decayed a fraction r;;b decayed by the channel (a, b) ( where

f a,b is the decay rate by channel (a, b) and fT is the total decay rate ), thus the new

population ofnuclei (i-a,j-b) is given simply as (1- fP-a,j-b) (ni-a,j-b) + r;;b fi~j(ni,j).

Of the newly decayed population again a fraction fl-a,j-b will be unstable and will

decay further. We subtract these and quote only the stable population of the isotope

(i - a, j - b). Thus in our simple formalism, the number of nuclei (i, j) left in particle

stable states at the stage we call 'up to single decay' is given by

(4.11)

where fi~j is the fraction of the once decayed nuclei in unstable states. We will indicate

how to ca1culate fi~j in the next section. The quantity f a,b is the width for emission

of (a, b) from (i + a, j + b) and fT is the total width.

We can then take these revised populations (ni,j)l and again compute the ratios.

We label these 'up to single decay'. These are reported in the plots as the small

dashed line with the diamond plotting symbol. Note: this is just the stable fraction

of the population after one stage of decay, the actual population is possibly greater

and contains unstable states. These would subsequently decay and raise the stable

populations of the different isotopes.

After the first decay there may still be sorne fraction in particle unstable states.

These can decay, thereby, changing the population of (i,j) to (ni,j)2. If we take the

ratios now we get what we call 'up to double decay', this is denoted by the dot-dashed

line and the square plotting symbol. Again at this stage the (nid)2 represent only the

sum of the stable fractions of the populations obtained from the initial distribution,

single decays and double decays.
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It is clear the procedure can be continued. The fraction remaining in particle

unstable states will continue to decrease. We found no significant difference between

the 'up to triple decay' and the 'up to quadruple decay' calculation. Thus we do not

continue beyond. Once again it should be noted that aU the plotted populations,

(ni,j) , (ni,j)l, (ni,j)2, (ni,j)3 etc., quote only the stable fractions at freezeout, after

single, double, and triple decay respectively.

The formalism for the decay calculation is given in the next section, there the

quantities li,j, r a,b will be calculated in somewhat greater detai1. The reader who is

only interested in the final results could skip to Sects. 4.6 and 4.7.

4.4 The decay formalism.

As the heated clusters stream out from the hot source, many of them will be in particle

unstable states, these will decay by particle emission, for example, by emitting a

neutron, proton, Oô particle etc. They will then leave a residue nucleus which may

be particle stable or unstable; if it is unstable then it will decay further into another

isotope and this process will continue till the residue is produced in a particle stable

state.

The primary calculation assumes that thermal equilibrium is achieved at freezeout;

if this is true then the number of composites with i protons and j neutrons with an

energy in the interval E and E + dE is given by the canonical factor

(4.12)

Where, we have abbreviated A to mean (i, j), and PA(E), from Sect. 4.2, is given

as PA(E) = p~ exp(S). The multiplicative constant p~ will, henceforth, be absorbed

into the overall normalization constant Ci,j. Thus from now on the density function

is given simply as

[ (
(i + j)E)1/2]

PA(E) = exp 7r CF . (4.13)
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Ci,j is a normalization constant such that
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(4.14)

Now of the various levels in a particular nucleus, some will be at a very low energy

and as a result will be stable to any form of particle decay. Those that lie above an

energy

(4.15)

will in general be unstable to decay via emission of a particle (x, y) (i.e., a particle

with neutron number y and proton number x) , where Mx,y is the mass of the partic1e,

Mi,j is the mass of the decaying nucleus (i, j), Mi-x,j_y is the mass of the residue

left over after decay and Vx,y is the coulomb barrier for that particle. Note that

(x, y) could represent a variety of partic1es; in this chapter we will consider 'six' such

particles, as mentioned in the introduction.

As is evident from Eq. (4.15), different particle decays have different energy

thresholds. Consider an isotope (i, j), as an example let us take 12C (i = 6, j = 6).

As we start from the ground state level and move upwards, we will encounter different

thresholds. The lowest will be the 4He decay threshold at an energy LI = E 2,2 ( in

12C it is at 9.6MeV approximately) , the next higher threshold is for proton decay at

L2 = E1,a (in 12C it is at 18.14MeV approximately), and so on; we will get different

thresholds one after the other( note: the order of different thresholds is different for

different isotopes ).

AH nuc1ei of type (i, j) which are formed between the ground state and the lowest

threshold LI, will remain as isotopes (i, j), this number is given by

ni,j(Ü H LI) = foLl Ci,jp(E)e-f3E dE. (4.16)

Those that are formed between LI and the next threshold L 2 , will aH completely decay

by 4He emission, and these nuclei will then appear as nuclei of type (i - 2, j - 2) and
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must be added on to the population of isotope (i - 2,j - 2).

Then, those nuclei of type (i, j) which are formed between L 2 and the next thresh­

old L3 , will decay both by 4He emission and by proton emission. In the next zone

there will be three kinds of decay, and so on. We now ask, how many of the initial nu­

c1ei formed in a particular zone will decay by each of the channels that are available,

and how many of the residues formed will be stable or unstable?

To answer the above questions: we start by writing down the number of particles

of type (x,y) with energy between (c,é + dé) that are emitted, in a time interval

between t and t + dt, by nuc1ei of type (i, j), lying between an energy (E, E + dE),

leaving behind a residue nucleus (i - x, j - y) ( we may alternatively refer to (x, y),

(i,j), and (i - x,j - y) by simply their mass numbers a, A and B where a = x + y,

A = i + j and B = i - x + j - y )

d3Na = W(E, é)dédtdN(E, t). (4.17)

Where dN(E, t) is the number of nuc1ei of type (i, j) initially formed at an energy

(E, E + dE) which are stillieft undecayed after a time t, given by

(4.18)

The quantity W(E, c)dé is the Weisskopf decay probability per unit time [8] given

by the expression

PB(E - Ba - é)
W(E,é)dé = 9alaéO"[a+B-+A] PA(E)' (4.19)

In Eq. (4.18), fT(E) is the the total decay probability per unit time from an energy

level E of the isotope A. In Eq. (4.19), 9a is the spin degeneracy factor of the emitted

partic1e, la is a constant of a particular decay [8, 9], given by

mp a(A - a)
la = 7f21i3 X A ' (4.20)
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where mp is the mass of a nucleon. In Eq. (4.19), Ba = Mi-x,j_y + Mx,y - Mi,j, is the

separation energy of the decay; (}[a+B--+A] is the cross-section for the reverse reaction

to OCCUf, ( i.e. a + B ---+ A). It is given semiclassically for uncharged particles as

(4.21)

and for charged particles as

(4.22)

Where Ra is the radius associated with the geometrical cross-section of the formation

of A from Band a. Following the prescription of Friedmann and Lynch [9], Ra is

given by

[(A - a)1/3 + (a)1/3]ro ,for a 2 2

ro(A - 1)1/3 , for a = 1

where ro = 1.2fm

The quantity V in Eq. (4.22), is the Coulomb barrier for the formation of A from

Band a. Again fol1owing [9], this is written in the touching sphere approximation as

{

x(i-x)e2
V = ((A-a)1/3+(a)1/3)Tc

a (i-1)e 2

Tc(A)1/3

, for a 2 2,

, for protons,

where rc = 1.44fm

Aiso in Eq. (4.19), PA(E) , PB(E - Ba - é) are the respective density of states of the

two nuclei. They have the same form as in Eq. (4.13).

We note that d3 Na in Eq. (4.17) is also equal to the number of nuclei that were

initially formed as nuclei of type A at an energy between E and E + dE, and then

decayed into nuclei B with an excitation energy of E - Ba - é. To get the total

number of states that decayed from a level E by emission of a particle of any allowed

energy, we integrate over é from its minimum value ~ to its maximum value E - Ba,

and obtain
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where,

l
E-Ba

fa(E) = W(E, é)dé.
Va

On integration this gives
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(4.23)

(4.24)

(4.25)

The derivation ofthe above equation is given in the appendix, where, C = 7fe+ i - x
- Y)I/2,

CF

'B = JE - Ba - Va , A = O. In the above equation 9a (Eq. (4.19)), and sorne of the

factors of a (Eq. (4.22)) have been absorbed into ')'~, thus,

(4.26)

We may now integrate out the time to get

(4.27)

To get the total number of states that have decayed from nuclei of type A by channel

a we must integrate over E from LI to 00,

(4.28)

This integration is quite involved for as we crossover from one zone of decay

(LI, L2 ) to another zone (L2 , L 3 ), fT(E) changes discontinuously as a new channel of

decay becomes accessible to the nuclei. Thus we break up the integration into 6 zones,
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corresponding to the 6 real decay zones, and integrate within each zone independently.

Note that the last zone extends from L6 to L7 = 00, and is thus considerably larger

than the other zones. However, at the low temperatures that will be encountered, this

zone will be sparsely populated. Thus the following approximation is vaUd. Within

each zone, with an energy from L k to LkH , the integral can be replaced by a mean

value expression,

Na(Lk , LkH ) = Lk ~~a~Lk+l tlni,j(Lk , LkH ). (4.29)
Lk T Lk+l

Where Na(Lk , LkH ) is the mean number of nuclei of type (i,j) (or A) that were

initially formed at an energy between L k and L k+1 , and decayed by the (x, y) (or a)

channel. In the above equation,

_ [Lk+l -(jE
Lk(Pahk+l - lLk Pa(E)Ci,jPA(E)e dE. (4.30)

Of course, the left hand side is zero if channel ais not open in the region L k to LkH .

The mean decay rate over aIl channels is

(4.31)

and

(4.32)

Thus by summing up aIl the contributions from the six different zones, we get the

total number of nuclei that have decayed from isotope A by the a channel as,

6

Na = L Na(Lk , Lk+l)' (4.33)
k=l

To find out how many of these have decayed to stable isotopes, we must first

calculate from Eq. (4.17) the stable decay rate P~ (E). Two cases emerge in this

calculation. If E - Ba - Va ~ EÂ-a' P~(E) is obtained by integrating over E, from
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(4.34)

(E - Ba - EÂ_a) to its maximum value (E - Ba), where EÂ-a is the stable level or

the lowest threshold LI of the residue nucleus B above which B is unstable. The

expression for f~(E) is obtained from that of fa(E) in Eq. (4.25) by replacing

'B = JEÂ-a . If E - Ba - Va < EÂ-a' then f~(E) = f a(E). Then, following a similar

procedure as above for fa, we get the total number of nuclei A (or (i,j)) lying in an

energy range between (Lk , Lk+ I ), that decay by the a channel to a stable state as,

N s (L L ) Lk (f~)Lk+l A (L L )
a k, k+1 = (f) Uni,j k, k+l'

Lk T L k+1

The unstable decay rate from a particular level or zone is the probability of a

decay per unit time from A to an unstable level or levels of B from which further

decay can take place. It is easy to see that they are given simply as the difference of

the total decay rate and the stable decay rate i. e.,

f~ = fa - f~. (4.35)

The derivations and expressions for the full decay rates are given in the appendix.

After a decay has taken place ( A -+ B + a), we ask what is the population

distribution of the residue as a function of its energy ( x = E - Ba - c ). This can,

in principle, be calculated from Eq. (4.17) by integrating over E and c, such that

(x = E - Ba - c), the energy of the residue, is a constant. First we make a change

of variables from (E, c) to (E, x) and then integrate over E only. We get

( (100 1 E - Ba - Va - X () -f3E )
dNa x) = dE'Ya f (E) PB x Ci,je dx.

Ba+Va+x T
(4.36)

This integration is quite involved. We assume that the residue population is canoni­

cally distributed, but with a new temperature 1/(31 i. e.,

(4.37)

There are two unknowns in this formula, the new temperature 1/(31 and the overall

normalization constant 'Di,j-+k,l' To find these two constants we will impose that the
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total population of this interim stage (i. e., Ni,j-+k,l ), and the mean energy of the

distribution (x), be reproduced by this new temperature.

We can obtain formaI expressions for the total population of the residue B as

contributed by the decay of A, as well as its mean energy (x), from Eq. (4.37) as

and,

Na (/3', 'D, C) = 10
00

dNa(x)

= 'Di,j-+k,l [1 +C ~eC2/4fJ' (1- er! (~))]
{3' V4{3' 2v1Y ' (4.38)

(4.39)

1 {oo
(x({3', C)) = Na ({3', 'D, C) Jo xdNa(x)

= 'Di ,j-+k'I[{3\ + 3:;~ {1 + er! (2~) }e
C2

/
4fJ

'

+4~~3 + ~;~ {1 + er! (2~)}e
C2

/
4f3

'].

Where the formaI expression for Na ({3', 'D, C) is used in Eq. (4.39). The numerical

value of Na is taken from Eq. (4.33). The numerical value of (x) is found by explicit

use of Eq. (4.36). From these two equations we obtain the two constants 'Di,j-+k,l and

{3'.

The numerical value of (x) is derived from Eq. (4.36) as follows.

(x) = ~a100

dxx (k::~+x dE,~E - ~~(E~a - x PB (x)Ci,je- fJE
) . (4.40)

In the above equation, the numerical value of Na is taken from Eq. (4.33). We may

now change the order of integration to get

(4.41)

The x integration is now done simply to obtain
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_ 1 1,00 , I(E) -fJE
(x) - -N dEraf (E) Ci,jPA(E)e ,

a Bu+Vu T

where I(E) is given by
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(4.42)

(4.43)

_ 1 [4(E - Ba - Va)2eCVE-Bu- Vu 28(E - Ba - ~)3/2eCvE-Bu-Vu

I(E) - PA(E) C2 - C3

+ 108(E - Ba - Va)eCVE-Bu-Vu _ 240(E - Ba - Va)1/2 eCVE-Bu-Vu
C4 CS

240eCy"IT'<E--B"'"u--V,""-u 12(E - Ba - Va) 240]
+ C6 + C4 - C6 .

In the ensuing integration over E, we, once again, replace the integral with its

mean value expression.

where,

and

( ) _ 1 {OO d ' Bu+Vu(I(E))oo C (E) -fJE
x - N J, Era (f (E)) i,jPA e ,a Ba+Va Ba+Va T 00

Ba+Va(fT(E))oo = L Lk (fT(E)hk+ll
Ek>Ba+Va

(4.44)

(4.45)

(4.46)

Ba+Va(I(E))oo = {OO dEI(E)Ci,jPA(E)e-fJE
lBa +Va

= Ci,je-
fJGa [;4 + 34~~ {1 + er f (2~) }e

C2
/
4fJ

+~25 + ~;~{l+erf (2~) }e
C2

/
4fJ

].

Thus the formaI expressions for Na (j3', 'D, C) (Eq. (4.38)), and (x(f3', C)) (Eq.

(4.39)), are compared to the actual values obtained for Na (Eq. (4.33)), and (x) (Eq.

(4.44)), and the two unknowns of Eq. (4.37) are evaluated. We can now proceed with

further decays following the same procedure as before with decay occurring from a

canonically distributed population at a temperature 1/f3'.
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We can thus model an n-step decay process by assuming that at each intermediate

stage the population is canonically distributed with a new temperature and overall

normalization constant. The decay rates to the next stage are calculated with the

new temperature. Following this, the fraction of the population that decays through

a particular channel, and the mean energy of the resultant residue nucleus, are cal­

culated. These are then used to secure the temperature and normalization constant

of the next stage of decay. This process will continue till the fraction of decay to

particle unstable states becomes negligible.

4.5 The calculation.

From the primary calculation, we obtain that (ni,j) nuclei of type (i, j) ( or A)

are formed from the initial multifragmentation. The population (ni,j) is distributed

canonically among the various energy levels as demonstrated by Eq. (4.12). If a

particular nucleus is at a sufficiently excited state then it will emit a particle (x, y)

(or a) and leave a residue (i - x = k,j - Y = l) (or B), which may again decay by

emitting a particle (u, v) (or b) leaving a nucleus (k - u = m, l - v = n) (or D), and

so on until it finally reaches a nucleus (p, q) (or Z) in a stable state. We ask the

question that if (ni,j) nuclei of type A were initially formed, then how many of these

will finally end up as stable nuclei of type A, B, D ... Z. The contribution of (ni,j)

to the final stable population of A is given simply by Eq. (4.16) as

n~ = IoLl Ci,iPA(E)e-fJEdE = ~ni,j(O, LI)' (4.47)

The number of nuclei initially formed as (i, j) which decay to (i - x, j - y) = (k, l) is

given as

- ~ Lk (fahk+l 1\ (L L )
nA-+B - L.J (f) Uni,j k, k+l'

k=1 Lk T Lk+l

The mean energy of the newly formed residue nucleus is given by

(4.48)
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( ) 1 1 Ba+Va (I(E) )00 A (B V; )
X = --'a (r (E)) Uni,j a+ a,oo.

nA-tB Ba+Va T 00
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(4.49)

We assume that this population is canonically distributed from an excitation en­

ergy of Eo = 0 to 00 with a new temperature 1/{lI (Eq. 4.37). Extraction of the new

temperature 1/{lI and the overall normalization constant 'Di,j-tk,l is done as detailed

in Sect. 4.4. In most cases, where this procedure was implemented, we obtained a

new temperature 1/{lI which was lower than the initial temperature 1/{l; however, in

about 3% of the cases 1/{l' turned out to be higher than 1/{l; this occurs when the

residue of the decay process is far from the valley of stability. We can then calculate

the number of nuclei that initially started out as A's and finally ended up as 'stable'

B's as

(4.50)

(4.52)

Note that in the above equation PB(X) and L l are the density of states and lowest

decay threshold for the nucleus of type (i - x = k,j - Y = l). This number can also

be calculated directly by using the stable decay rates (Eq. (4.34)), as

f _ ~ Lk (r~) Lk+l A (L L ) (4.51)
nA-tB - LJ (r) Uni,j k, k+l'

k=l Lk T Lk+l

The second equation is more correct as it does not depend on the assumption that

the residue is canonically distributed. A comparison of the n~-tB obtained from the

above two equations gives an estimate of the error involved in the assumption of a

canonically distributed residue population. Now we ask, what is the number of nuclei

of the B's just formed which will decay by emitting a particle b to a nucleus of type

D; this is calculated simply as

~ L k (rbhk+l A (L L )
nA-tB-tD = LJ (r) UnA-tB k, k+l'

k=l Lk T LkH

The decay rates in the above equation are calculated with the temperature 1/{lI. We

then calculate the mean energy (y) of the new distribution as
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(4.53)( ) 1 1 BbH'i,(I(X))oo ( )
y = 'Yb (f ()) tlnA-+B Bb + V6, 00 .

nA-+B-+D Bb+Vb T X 00

Using these, we continue the process on, by again calculating the temperature

and norm of a canonical distribution, which when summed from excitation energy

o to 00 is equal to nA-+B-+D, and whose mean energy is equal to (y). We can then

proceed to find how many of these will be in stable states, how many will decay on

further etc. We continue this process till the contribution from this decay chain,

A ---+ B ---+ D ---+ ... , will give numbers of nuclei negligible compared to the already

present number in stable states.

The above mentioned method is easy to understand. However, in this work we

invoke a slightly different procedure. Instead of starting from a nucleus A and cal­

culating its contributions to aU nuclei lying below it, we ask for aU the contributions

to this nucleus A from nuclei lying above it in the periodic table. This is done in a

step-wise manner. First, we calculate the primary populations (ni,j) from Eq. (4.10).

We then subtract off the unstable part of the population and add on contributions

from nuclei which can decay to A by emitting only one particle. Then, we add on the

contributions from two particle decays, three particle decays, and so on. In each of

the contributions from two and more decays, one has to calculate population distri­

butions of the interim isotopes, i.e., elements which are encountered midway through

a decay sequence. Following the discussion from the end of Sect. 4.4, we take these

interim populations to be distributed with a canonical probability, with a temper­

ature and normalization constant that reproduces the interim population and the

mean energy of the interim isotope. Thus we approach the final stable population

of the isotope A in an order by order fashion. This is quite usefuI as it allows us to

terminate the process when higher order contributions bring about negligible change

in the stable population of A. After calculating the final populations for A, we ignore

aU the interim populations that were calculated in the process and start with another

isotope afresh.
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4.6 Comparison with experiment
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Our objective is to calculate the yields of the Boron,Carbon and Nitrogen isotopes

measured in the S + Ag Heavy-Ion collision at an energy of 22.3AMeV [5]. In Figs.

(4.1) to (4.5) the data are shown as empty squares. The method of calculation is

simple, first we calculate the primary populations of the isotopes using Eq. (4.10). We

then remove the unstable fraction of the population, and quote only the stable part.

This is denoted by the dotted Hne and triangle plotting symbol. We then incorporate

secondary decay by adding on aU the populations of nuclei that can reach a stable

level of the isotopes by emitting only one of the six particles considered. We caU

these the 'up to single decay' populations and denote them by the smaU dashed line

and diamond plotting symbol. We then add on an those unstable nuclei which can

reach a stable level of the given isotopes by sequentiaUy emitting any two particles

of the six considered. We caU these the 'up to double decay' populations and denote

them by the dot-dashed Hne and square plotting symbol. We then add on aU those

that can reach the isotopes by three particle emissions, caUed the 'up to triple decay'

population and denoted by the large dashed Hne and star plotting symbol. And finaUy

we add on the 'up to quadruple decay' population denoted by the solid line and circle

plotting symbol. As there is negHgible difference between 'up to triple decay' and 'up

to quadruple decay' we stop after 'quadruple decay'.

To fit with experimental data, we have four parameters to tune, the obvious ones

being the initial temperature /3 or T, the free volume VI of the primary calculation,

the ratio AIZ ( as one does not know how much loss due to pre-equilibrium emission

has taken place) and an overaU multiplicative constant 9{ ( as we do not know how

many nuclei coUided in the experiment). The plots are noted to be most sensitive

to /3 and AIZ. Thus in fitting the data we first set particular values of /3 and AIZ,

and calculate the multiplicities at aU stages of decay ( VI is varied to get the best

possible fit at this temperature and AIZ ) . We then multiply aU the multipHcities

by an appropriate 9{ and take the logarithm. These are then plotted and compared
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Figure 4.1: Log(counts) vs. Neutron number (N) - Proton Number (Z) for the three cases
of Boron,Carbon and Nitrogen. The experimental data are from [1] S+Ag at 22.3AMeV.
The fits show varying stages of decay for a total ZT = 50, AT = 110, T = 3.0MeV,
Vfr /Vo = 3.0 and log 9-C = 6.73. The empty squares are the experimental data. The dotted
Hne with the triangle plotting symbol is the primary calculation. The small dashed Hne with
diamond plotting symbol is the 'up to single decay' calculation. The dot-dashed Hne with
square plotting symbol is the 'up to double decay' calculation. The dashed Hne with star
plotting symbol is the 'up to triple decay' calculation. The soHd Hne with circle plotting
symbol is the 'up to quadruple decay' calculation.

with log(counts) obtained from the experiment. We then vary {J, AIZ and repeat

the above procedure till a good fit is obtained. We present fits for three different

temperatures, and different AIZ for each temperature. Vi and 9{ are set to obtain

the best fit possible for a given {J and AIZ.

We note that the S + Ag system is one with A = 139 and Z = 63 thus AIZ - 2.2.

The authors of [5] state that sorne pre-equilibrium emission may have taken place. As
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Figure 4.2: Same as fig.1 but with ZT = 50, AT = 110, T = 5.0MeV, Vjr/Va = 5.5 and
log9-C = 6.34. The best fit with the data has been obtained with these parameters

we do not know what proportion of neutrons and protons are lost in such a process,

we start the calculation with the same A/Z as the S + Ag system. We start with a

Z = 50 and A/Z = 2.2 i.e., A = 110. We start the calculation with a low temperature

of 3MeV in Fig. (4.1) ( Vj and :J-C are varied to get the best fit ). We note that overall

there is a slight excess of the heavier Nitrogen isotopes as compared to data and a

deficit of the lighter Boron isotopes, this implies that the temperature is too low

and enough of the light isotopes are not being formed. We proceed by raising the

temperature to 5MeV, maintaining the same A/Z. By now varying Vj and :J-C we

find an excellent fit with the data (Fig. (4.2)).

One may ask at this point, if there is more than one set of parameters which fits

the data weIl. To answer this question we increase, first, the temperature to 7MeV,
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Figure 4.3: Saille as fig.! but with ZT = 50, AT = 110, T = 7.0MeV, VIr/Va = 3.0 and
logJ{ = 6.73.

maintain the same A/Z and redo the calculation. We get a very bad fit (Fig. (4.3)).

There is an overall deficit in the Nitrogen population and within a particular Z a

deficit in the neutron rich isotopes. We try to remedy this situation by increasing

the A/Z ratio. The best fit at this temperature is obtained at an A/Z = 2.3 (Fig.

(4.4)), but we still obtain an overall deficit in the Nitrogen population; the Carbon
,

fit is not as good as in Fig. (4.2).

On inspection of the fits (Figs. (4.1) to (4.4)), we note that the best fit is obtained

at Fig. (4.2). In this fit T = 5.0MeV, A/Z = 2.2, VIr/Va = 5.5, and log(9i) = 6.34.

In this figure we note that, for the Boron populations we get an excellent agreement

with the data. In this case there seems to be little change after single decay. For the

Carbon isotopes the agreement is good. For Nitrogen, we have a good fit except for
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Figure 4.4: Saille as fig.1 but with ZT = 50, AT = 115, T = 7.0MeV, Vjr/Va = 3.0 and
logJ( = 6.73.

the case of 13N.

Another property of the fits noticed is that they do not seem to depend on A and

Z independently but rather on the ratio AIZ. As a demonstration of this, we plot

in Fig. (4.5) a fit for A = 140 and Z = 63 ( i.e., AIZ = 2.22 ). We note that we are

able to obtain a fit very similar to Fig. (4.2), with the same temperature and Vjr 1110

as in Fig. (4.2), but with a slightly lower Je. This is very much expected, as in this

case each source has a larger number of nucleons than before.
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Figure 4.5: Saille as fig.2 but with ZT = 63, AT = 140, T = 5.0MeV, Vlr/VO = 5.5 and
log'J{ = 6.30.

4. 7 Summary and discussions

In this chapter, we have presented a variety of extensions to the RSM model and

in particular introduced a complicated secondary decay formalism. We performed

calculations to fit the populations of various isotopes measured in [5]. We obtain

very good fits (Fig. (4.2)) with experiment for the Boron and Carbon isotopes. In

the Nitrogen isotopes, we obtain a good fit except for the case of 13N. No particular

reason could be found for this, but let us go over several approximations (introduced

to keep the calculation at a reasonably simple level) which may have contributed.

Actual energy levels from data tables were used only up to A = 20 (Eq. (4.4)) for

the primary populations. For higher masses, the empirical mass formula (Eq. (4.9))
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was used. The secondary decay is very approximate; instead of calculating decay level

to level, we have blurred out such details by using a smoothed level density. In doing

this we have also ignored the effects of angular momentum degeneracy in the levels.

There is also the problem of the discrete level cutoff, and the ensuing approximation

of the continuum by a simple Fermi-gas like formula.

For the capture cross-section (Eq. (4.22)), we have used a simple semiclassical

formula, assuming that aIl nuclei are spherically symmetric which is definitely not

true. A more precise calculation involving level to level decay would use a more

accurate expression for the cross-sections e.g., the Hauser-Feshbach formalism [39,

40].

Still another problem lies in the assumption made in calculating the effects of

higher order decay, that the interim populations can be taken to be canonically

distributed. This is true only in first order decay, thus making the higher order

contributions subject to sorne erroI.

There is also an experimental problem according to the authors of [5], the angular

distributions were forward peaked, indicating significant emission prior to attainment

of thermodynamic equilibrium. Such an emission could affect the populations of the

various isotopes.

No doubt, incorporating changes to correct the above mentioned problems will

improve the accuracy of the calculation. However, such changes may make the ex­

pressions analytically intractable and one would have to resort to numerical means.

This may slow down the calculation considerably. The calculations presented in this

chapter take minimal computer time. In spite of the shortcomings of the calculation

presented above, this still remains a good test of the RSM model, and shows that such

a model can definitely be used to explain certain experimental data quite accurately.

In the next and final chapter in this topic we use the RSM model to understand the

nature of the liquid-gas phase transition occurring at freeze-out in such collisions.

The accuracy of our statements there will be directly dependent on the accuracy of

our fits to the experimental data here.
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Ci) Derivation of equation 4.25.

The full decay rate from a particular energy level E of a nucleus A (or (i,j)) which

is decaying by emitting a particle a (or (x, y)), is given as Eq. (4.24),

J
E-Ba

ra = W(E,e)de.
Va

Where W(E, e) is the Weisskopf decay probability per unit time given by Eq.

On writing down the full expression for W we get

(4.54)

(4.19).

ra = fv~-Ba PA~~) (e - Va) exp [~ { J(i + j - x - y)(E - Ba - e)}] de. (4.55)

Now we substitute z = (VE -·Ba - e) and integrate over z and let C = (.ftFVi + j - x - y),
then

r,JE-Ba-Va "('
ra(E) = Jo PAtE) 2z(E - Ba - Va - Z2) exp(Cz)dz,

on carrying out this simple integration we get,

(4.56)

(4.57)

with '.B = VE - Ba - Va , A = O. The stable decay rate, i.e., the decay rate from

an energy level E of the nucleus A to any of the allowed stable levels of B is given

simply from the above expression by replacing the upper limit to '.B = JEiJ where

EiJ is the stable threshold of the residue nucleus B. However in the event that

E - Ba - Va :::; EÊ then the above mentioned replacement should not be made. In

this case the total decay rate is the same as the stable decay rate.
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(H) Derivation of the generic expression for Lk (fa) Lk+l

From Eq. (4.30) we obtain the definition of Lk (fahk+l as

70

(4.58)Lk (fa)Lk+l = i:k+l f a(E)Ci ,jp(E)e-f3E dE,

now taking the expression of f aCE) from Eq. (4.57) and substituting z = ~ =

(4.59)

Now we may separate the integration into three parts

(4.60)

where,

(4.61)

(4.62)

(4.63)

The three integrals can be done simply to give

(4.64)
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13 = 4'Y~Ci,j e-,6(Ba+Va)e$- [M2e-,6Mk _ M2 e-,6Mk+l
Lk,L k+l C2 f3 k kH

+ e-,6Mk _ e-,6Mk+l + (3~2 _~) {Mk e-,6Mk _ MkH e-,6Mk+l}

+ (3C
2

_ ~ + 2-) {e-,6Mk _ e-,6Mk+l}
4f32 f3 C2

+ c;t {er f( ftMkH ) - er f( ftMk )} ]. (4.66)

Where Mk = -.jLk - Ba - Va - Cj(2f3) and MkH = -.jLk+l - Ba - Va - Cj(2f3)

and C is the same as in Eq. (4.57).

The calculation of the stable decay rate is a bit more involved in the limits of

integration and three cases emerge. If Lk - Ba - Va < EÊ, and Lk+1 - Ba - Va :::; EÊ,

then

(4.67)

If Lk - Ba - Va < EÊ, but LkH - Ba - Va > EÊ, then the calculation of Lk (r~hk+l

has to be done in two parts

(4.68)

where

[E'B+Ba+Va ,6
1t = JLk ra(E)Ci,jp(E)e- EdE. (4.69)

The expression for this is the same as Eq. (4.59) with the appropriate change of

limits:

l
Lk+1

1~ = r~(E)Ci,jp(E)e-,6EdE;
E'B+Ba+Va

if however, Lk - Ba - ~ 2 EÊ, and LkH - Ba - Va > EÊ, then

(4.70)
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(4.71)



5

CRITICAL PHENOMENA

In this final chapter on intermediate energy heavy-ion collisions, we concentrate exclu­

sively on the liquid-gas phase transition occurring in such collisions. In the preceding

chapters we analysed the phenomenon of multifragmentation in the RSM model. We

invoked various extensions to this model to aIlow for a successful comparison with

experiment. Now we return to the base model to further study the phase transition

encountered in this model.

5.1 Introduction

Up to this point, we have developed a sophisticated thermal model (the RSM model)

that aIlows us to successfuIly explain experimental data on yields of isotopes. We

would like to make it clear that to explain the experimental data, in general, we

require the presence of a surface tension term in the mass formula used (see chapter 2).

Two choices for this term were used with results very close to each other: 0- = 18 MeV,

independent of temperature; o-(T) = 0-(0)[(Tc
2 - T 2)/(T; + T2)]5/4 with 0-(0) = 18

MeV and Tc = 18 MeV. The temperature Tc is the temperature at which the surface

tension vanishes. This is in fact the critical temperature of the RSM model: at

the critical point there exists no distinction between a liquid and a gas and thus no

surface exists. The reader may feel that we have not adequately explored this region.

This is because to reach the critical point one requires a very high density as weIl;

at which the approximation of no interaction between clusters (and as a result the

RSM model) breaks down. AIl experimental data that we encountered (or have been

73
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fitted by other practitioners) may be explained by temperatures (V 3 - 7 MeV. Note

that Tc is much larger than this. Choosing a much lower Tc within the range of 3 - 7

MeV, will not allow us to fit the data, even qualitatively. These characteristics are

also shared by the older SM model [26].

In a sense, we may argue that the agreement of the RSM model predictions with

the data, imposes that the input parameters (including Tc) have been well estimated.

Thus, in the region of interest and its vicinity, the data imply that a first order phase

transition is the status quo. First order phase transitions usually terminate in a second

order point. From all accounts, in intermediate energy heavy-ion collisions where

multifragmentation is seen, this point seems far beyond the realm of the densities

and temperatures deduced. This presence of a clear first order phase transition is

also borne out by the measurements of the calorie curve in Refs. [4, 17]. However,

in a recent experiment [16], a more direct method of obtaining Tc was attempted.

There the yields of various isotopes with mass numbers approximately lying between

10 and 40 were studied. It was noted that the yield of a cluster of k nucleons tended

to display a scaling law, parametrized as

-7 (kD.J.-l COékŒ)(nk) = qok exp T - -----r- ' (5.1)

where, qo is a normalization constant; T is the topological Fisher exponent; D.J.-l is the

difference of chemical potentials between liquid and gas phase; and coékŒ is the surface

tension. The quantity é = (Tc - T)/Tc is called the control parameter, where Tc is

the critical temperature. This parametrization is somewhat similar to the formula for

droplet distribution in the Fisher theory of condensation [41]. Multifragmentation

studies based on Fisher's theory have been attempted before [13]. The authors of

Ref. [16], subject the above parametrization to a best fit to the data and deduce the

various free parameters. They obtain a Tc = 6.7 ± 0.2 MeV, which is much lower

than the value used in the SMM and the RSM model. In fact it is within the range

of temperatures observable in nuclear collisions, indicating that critical phenomena
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may in fact be observable in these experiments. The above two results (ours and

those of Ref. [16]) seem to be in contradiction with each other.

Our method of resolution will be as foIlows. VVe will retrace the steps of Ref.

[16] but subject their analysis not to experimental data but rather to the primary

populations obtained from the RSM model. We begin by first assuming an even more

general scaling formula than that of Eq. (5.1). The foIlowing parametrisation, often

used to fit nuclear multifragmentation data, gives an elegant expression for yields of

composites:

(5.2)

Here a is the mass number of the composite, Tc is the critical temperature, T is the

topological Fisher exponent [41] and the expansion is valid in the neighbourhood of

Tc and for "large" k. Variants of the equation are also used. Note that Eq. (5.1) is

a subset of the scaling form of Eq. (5.2).

How weIl does Eq. (5.2) work for models such as the RSM model or the SMM? Just

by itself, this is a relevant question in view of the fact that there already exist many

applications of such models to fit actual data (see chapter 4 and Refs. [26, 33, 42]).

We take a simplified version of the RSM model, similar to the base model presented in

chapter 2. The story that unfolds is quite interesting. For simplicity, we consider an

RSM model of one kind of particle in the next section, in particular we concentrate

on the grand canonical approach. This is then analysed for parametrisation. The

method of analysis is explained in Sect. 5.3. Results are presented in Sect. 5.4. After

this, we try a fit with a droplet model in Sect. 5.5. A comparison between different

models is presented in Sect. 5.6. Our conclusions are summarised in Sect. 5.7.

5.2 The RSM model: grand canonical approximation

The reader may refer to chapter 2 or Refs. [28, 43] for details of the RSM model.

Summarised here is a grand canonical formulation of the model. We first consider just

one kind of particles as the thermodynamic properties for this model were studied in
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detail in chapter 2 and Refs. [28, 44, 45, 46]. We can have monomers or composites

of k nucleons. The composites have ground state energy - W k + a(T) k2
/

3
• The first

term is the volume energy with W=16 MeV. The second term is the surface tension

term. As mentioned before, the surface tension term is taken to be temperature

dependent as in the SMM [26]: a(T) = ao[(T; - T 2)/(T; + T 2)]5/4 with ao =18 MeV

and Tc - 18 MeV. The internaI partition funetion of a composite of k > 1 nucleons

IS:

(5.3)

where we have, once again used the standard Fermi-gas model for excited states. For

k = 1 we take Zl=l.

The canonical partition function QA(T) of A nucleons is then given by

where Wk is the partition function of one composite of k nucleons:

W = Vi (2nmT)3/2 k3/2 x Z
k h3 k,

(5.4)

(5.5)

(5.6)

and the sum rule must be obeyed:A = "L. knk. As noted before in chapter 2 and

Ref. [28], the partition function QA for A nucleons can be easily generated on the

computer by utilising a recursion relation. Starting with Qo = 1 one can build aH

higher ones using

1 p

Qp = - L kWkQp-k.
P k=l

The expression for the yield of composites is, of course, of primary interest. This is

given by

(5.7)

As mentioned in the introduction, several things are known for this model. The

critical temperature for the model is the temperature at which the surface tension
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vanishes [44] and hence it is at T =Tc =18MeV. The critical volume is at V =Vô. At

temperatures below 18 Mev there is a first order phase transition (see chapter 2 and

Refs. [28, 44]). The temperature of the phase transition depends upon the density.

This temperature signaIs the disappearance of a large cluster and a sudden spike like

behaviour of the specifie heat: as a result it was called the boiling temperature in

Ref. [28]. In the temperature range we are concerned with in this paper, there is

only a first order phase transition. The phase transition temperature is characterised

by a spike in specifie heat. In finite systems we will take boiling temperature to be

the temperature at which the specifie heat maximises.

We will try to fit the yields of Eq. (5.7) by the generic formula (Eq. (5.2)). The

exact expressions (Eqs.(5.4) to (5.7)) give no clue of a simple parametrisation. Pro­

vided V is reasonably bigger than Vo (see however Ref. [44]) and A is also large we

can use the grand canonieal formalism to obtain sorne insight on simple parametri­

sation. Here there is no longer any constraint on the total number of particles in the

sum, Thus we obtain the grand canonical partition function as

00 00 00 (e(3J1.kWk )nk

Q=I:I: ..·I:II l'
nl=O nz=O noo=O k2: 1 nk·

In this ensemble, the mean number of clusters of size a is given as

Substituting the expression for Wk we get the well-known answer of:

(5.8)

(5.9)

There is no exact correspondence between Eq. (5.10) and Eq. (5.2). Thus we may

at best hope to get an approximate fit. How we do it is detailed in the next section.
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5.3 The Etting procedure

78

The scaling function of Eq. (5.2) has been used previously to fit experimental data.

The reader will convince himself that the presence of the unspecified function f allows

for more than one methodology of obtaining a fit. Here we follow the very elegant

methods given in [47]. For later use in the text, we will give adequate details.

The quality of fit is given by the smallness of X2 . If the calculated quantity

y is a function of two parameters Y = Y(ai, bi) and we are trying to fit it to a

function g(ai, bi, a, (3, 'Y...) then X2 = L:i(Y(ai, bi) - g(ai, bi, a, (3, 'Y.... ))2/ L:j y (aj, bj )2.

Variations ofthis criterion are also possible. Eq. (5.2) requires us to find "best" values

for T, (j and Tc' This is done in several steps.

(1) At each temperature (set in the RBM model) we try to fit the yield with the

expression (na) = a-TC, where C is a constant. From this we obtain the best T and

C. This form is obtained from Eq. (5.2) at T = Tc, hence one can argue that if

Eq. (5.2) were exact for yields calculated by Eq. (5.7), we would get null X2 and the

correct T at T = Tc. This would determine both Tc and T. Of course, null X2 is not

found since an "exact" fit is not given by Eq. (5.2) However we can draw a best "T"

vs. T curve for a pure power law. This T as a function of T will have a minimum

which we label Tmin' Bince at Tc, the fit is strictly a power law, one can accept that

temperature as Tc where the X2 of the fit is minimum. However, we will determine

Tc using the method described in step 3.

(2) Let z = a(J(T - Tc); f(z) has a maximum at sorne value of z = z: fmax = f(z).

For each mass number a the yield (na) as a function of temperature has a maximum

at sorne value of temperature, Tmax(a). At this temperature (na)(max) = a-T fmax

where fmax is a constant independent of a. This relationship allows us to choose

"best" values for T and fmax.

(3) The value of T found from step (2) is higher than Tmin found at step (1). This

means that if we look for T appropriate for T, two values of Tare available from the

graph at step (1). The lower value is to be chosen as the value of Tc' The scaling
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property (see steps (4) and (5)) is badly violated for the other choice.

(4) Now that we know Tc and Tmax(a), the temperature at which the yield of

composite a is maximised, we find, by least squares fit the "best" value of (J from the

condition aO"(Tmax(a) - Tc) = const. for all a.

(5) The scaling law can now be tested by plotting (na)aT vs. aO"(T - Tc). Plots for

all a 's should fall on the same graph.

In following steps (1) to (5) the range of ais to be chosen judiciously. It can not

be very small (since Eq.(5.2) applies to "large" a's). But a should also be truncated

on the high side significantly smaller than the size of the dissociating system. This

is so, as in Fisher's theory the scaling refers to the small droplets of the condensed

liquid; a cluster of the size of the dissociating system represents the liquid state itself.

5.4 Scaling results for the RSM model

We present our results in Figs. (5.1) to (5.3). The sizes of the systems are taken to

be A = 174 and A = 240. The upper panels of the figures use the freeze-out volume

V = 3VQ and the lower panels use V = 4VQ. Both are shown here for completeness.

It will suffice here to discuss only the cases with V = 3VQ.

Fig. (5.1) shows T vs. T drawn according to step (1) of Sect. 5.3. The dotted

line is the value of T deduced from step (2). This cuts the curve of step (1) at

two temperatures (step (3)). The lower value of the temperature is taken as Tc'

In the same Fig. we also plot CvlA as a function of T. The peak of this curve

corresponds to the first order phase transition, called "boiling" temperature in [28].

It is remarkable that the Tc of Eq.(5.2) is very close to "boiling temperature" in this

particular example. In Fig. (5.1) we have also plotted the value of X2 as a function

T (step 1).

In Fig. (5.2) we plot ln(na ) vs. Ina. Two graphs are shown for each disintegrating

systems. The graph with higher values of (na) (shown as diamonds) follows from

step (2) of Sect. 5.3. These are the maximum values of (na) for each a obtained at
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Figure 5.1: T, Cv/A (left-hand scale) and X2 (right-hand scale) plotted against temperature
in the model of one kind of particles. The different panels are for different choices of A and
V.

corresponding temperatures Tmax(a). The lower values of (na) (shown as stars) are

aH at the same temperature, namely at Tc which, for example, is 6.32 MeV for A=174

and is 6.54 MeV for A=240. This is how T would be estimated from experiments

[48]. The crucial testing of the scaling law is shown in Fig. (5.3). where we plot

(na)aT vs. alY(T - Tc). For the range of a chosen (10 to 40) the results nearly faH on

the same graph. Since one does not know a priori how much error is due to finite

particle number of the disintegrating system, one might be tempted to to conclude

that the fit to Eq. (5.2) is adequate. The parameters T, a from best fits are 2.72, 1.06

respectively for A=174 and 2.78, 1.23 respectively for A=240. The deduced Tc are

6.32 MeV and 6.54 MeV which are very different from the critical temperature of 18

MeV for the model but compare remarkably weH with the temperatures where the

specifie heats peak and which correspond to first order phase transition temperatures
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Figure 5.2: ln (na) vs. lna. The solid line is the best fit to ln(na) at each Tmax(a) presented
by diamonds. The dotted line joining stars represents the distribution at Tc. The difIerent
panels are for difIerent choices of A and V.

at the given densities.

Here we want to comment that, as seen from Fig. (5.1), X2 has a minimum at a

temperature very close to Tc. So one may conclude that the methods of determining

Tc using step 1 or 3 yield almost the same result.

These then are the two salient features: (1) Numerical fits of Eq. (5.2) are sur­

prisingly close and (2) interpreting Tc as the critical temperature is wrong although

the deduced Tc does correspond to a phase transition temperature.

5.5 Fit ta a Droplet Madel

We will now try to fit the predicted yields given by the model of Sect. 5.2 (one kind

of particles) with a well-known droplet model[41]. An early application of the model,
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Figure 5.3: The scaling behaviour in the mass range (10 :::; a :::; 40)

to heavy-ion collisions, can be found in [13]. The model has been revived recently

[49].

In Fisher's model, the condensation of a real gas into large drops(c1usters) of liquid

is modelled. This shares various similar features with multifragmentation models. For

instance, the potential energy of large c1usters consists entirely of a bulk term and

a term associated with the loss of binding energy at the surface. There is no Fermi

energy term, as the molecules inside the c1uster are assumed to be Boltzmann dis­

tributed. The entropy of large c1usters is, however, more complicated. As c1usters

become large, the dominant effect may be ascribed, once again, to a bulk term, and

the remainder to a surface term. It was pointed out that liquid c1usters may not be

restricted to spherical shapes, as is the case in most multifragmentation models. This

prohibits the use of one form of surface area to parametrize the surface contribution.
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In reference [41] it is argued that, at low temperatures, the most important configura­

tions will be compact and globular. Their surface areas sare not much greater than

the minimum possible, and are assumed to admit the asymptotic condition that,

s(k, (3)/k -+ 0

s(k, (3)/ log k -+ 00

as

as

k -+ 00

k -+ 00.

and

(5.11)

Where, k is the number of molecules occupying the c1uster. If, for finite clusters,

one introduces this surface area to calculate various surface contributions, one must

introduce a correction term which varies as T log k. The sign and magnitude of T is

estimated from various other considerations involving other models.

One may thus, very generally, 0 btain the mean number of c1usters of size k as

(5.12)

Here both Mg and Ml are functions of T. At coexistence and also at the critical

temperature, they become equal to one another. Also C2 is a function of temperature

and at Tc the coefficient C2 goes to zero. Since above Tc there is no distinction between

the liquid and the gas phase, one can not speak of droplets. Thus the theory only

applies to T < Tc. As such the formulation is more limited than the model of Eq.

(5.2) which applies to both sides of Tc. The following fit was tried. We set T = 2.

let a = (Mg - Ml)/T, ry = cdT. We fit the calculated (nk) to Ck-2exp(ak + ryk2/3)

at different temperatures where a, ry values at each temperature are varied for best

fit. The values of a, ry as a function of temperature is shown in Fig. (5.4) where we

also show rather remarkable fit with the values of (nk) obtained from the model of

Sect. 5.2. The values of a and ry both go to zero near temperature T = 6.5 MeV

suggesting that the critical temperature is 6.5 MeV.

In a sense, we have now explained the contradictory results of Ref. [16]. Not only

have we devised a parametrization based on Fisher's droplet model, but also written

down a very general scaling parametrization (Sect. 5.3). Both these formulae seem

to offer excellent fits to the data. In both fits the parameter Tc ;:::: 6 - 6.5 MeV. Does
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Figure 5.4: The parameters of the droplet model Œ and 'Y as a function of temperature for
a system with A = 240 and V = 4Vo. The right panels show the fit of the droplet model
to the yields obtained in the model of one kind of particles described in Sect. 5.2. On the
graph one can not distinguish between fitted points and the actual points from canonical
calculations.

this immediately imply that we are in the vicinity of a critical point? We do not

think this is the case, as the yields emanate from a model undergoing a first order

phase transition with a boiling temperature of .6 - 6.5 MeV (depending on system

size). The yields change dramatically at the boiling temperature (see Fig. (5.5)),

this is the probable cause for this temperature dominating the value of one of the

parameters of the fit. We are left to explain why the fit is so precise. The reader

will note that never is the entire set of yields being fit: in aIl cases the range from

A = 10 - 40 is being fit (see right panel of Fig. (5.5)). This is also the case in Ref.

[16]. We daim that this is a range of yields for system of size rv 200 where a scaling

formula of the type of Eq. (5.2) or Eq. (5.12) fits the yields from a model with a first
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order phase transition. This assertion will be proved in the following section.

5.6 Relationsbip between difIerent models

In the previous Sects. (5.2 through 5.5), we were concerned with fitting the output

from the canonical model with two different parametrizations. Both of these can

be regarded as having origins in critical phenomena. In this section, we attempt to

obtain a better understanding as to why the droplet model fits the data points so

well in the region of interest. Our method will consist of making approximations to

the canonical model of Sect. 5.2 (or chapter 2). The parametrizations obtained will

be motivated with ideas from standard thermodynamics, which in our view leads to

a better understanding of these and other related phenomena. The essential point

will be that parametrizations based on a first order phase transition and those based

on a second order phase transition may coincide precisely in a smaU range of yields.

Parametrizations based on a second order transition provide a value for a critical
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temperature Tc; those based on a first order transition provide a value for a boiling

temperature Tb' As is already evident, from the fits already performed in this chap­

ter, coincidence of the two parametrizations leads to the equivalence of these two

temperatures.

We begin by studying the grand canonical approximation to the RSM model as

done in Sect. 5.2. As in the previous section, this will be concentrated in the region

below the boiling temperature. A different parametrization of the output from the

exact canonical calculation is obtained. Though this parametrization has not been as

throughly investigated as that of the previous section, it will serve to provide a qual­

itative understanding of the behaviour of the yields below the boiling temperature.

The yields (Fig.(5.5), Fig.(5.7)) are, no doubt, obtained from the exact expressions

Eq. (5.7). For the present analysis they can be adequately approximated by Eq.

(5.10). The parametrization offered by Eq. (5.10) is of the form

(5.13)

The above is different from the parametrization of the droplet model where T = 2.

Though the expressions look similar, the fit parameters 6, a,:Y will assume values

different from those of C, a, "/. The interpretation of a is also quite precise in this

approximation.

When using Eq.(5.1O) to estimate the result of a canonical calculation, the free

parameter is the chemical potential JL. It is usually determined by imposing that the

model correctly reproduce the total number of particles composing the system( i.e.,

~k(nk)k = A). This is a complicated problem in general. A clue may be obtained by

observing the behaviour of JL as obtained from the canonically calculated Helmholtz

free energy F = -T log QA. A plot of JL obtained thus, is plotted in Fig. (8.3) (data

points).

The behaviour of this JL may be estimated by the following simple argument. Far

below the boiling temperature the system exists mostly as one large cluster and a
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Figure 5.6: Jl, vs. T for a system with A = 240 and V = 4Vo. Data points represent results
from a canonical calculation (see Sect. 5.2). Solid line represents Jl, for addition to the
largest cluster, dot-dashed Hne is Jl, for addition to a small cluster (see Sect. 5.6 for details).

few small ones (see Fig. (5.5)). The large cluster is considered as the liquid state.

Far above the boiling temperature the system exists mostly as many small clusters:

this is considered as the gas phase. The chemical potential of either system may

be estimated by keeping the system in contact with a heat reservoir, adding one

particle to the system, and noting the change in free energy, i. e., jJ = [l:i.F] =
V,T

F(T, V, A + 1) - F(T, V, A). On entering the system, the new particle, maya priori

attach itself to any of the existing clusters, or simply thermalize as a monomer in

the system. It will attach itself to the cluster that minimises the free energy at

that temperature and density. There may be more than one unique choice. The

resulting change in energy and entropy of the system may be decomposed as the sum

of two parts: a kinetic part(l:i.Ekin , l:i.Skin ), to do with the cluster's motion in the

environment; and an internaI part(l:i.Ein , l:i.Sin) , to do with the internaI motion of the

particles constituting the cluster. If the volume is large, one may assume that the
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c1usters form an almost ideal gas. In this case the average kinetic energy of a c1uster

of size k is (3/2)T. It does not depend on k and thus i::::.Ekin = O. The change in

internaI energy i::::.Ein may be estimated simply as,

(5.14)

The change in internaI entropy is given simply as i::::.Sin = 2T/ EO' The kinetic

entropy of an ideal gas of nk c1usters is given as (see Ref. [50]),

[
3 3 27rm 3 3]

Skin = nk 2" log T + log V + 2" log h,2 + 2" log k + 2" - log nk!. (5.15)

In most cases in nuc1ear fragmentation, nk lies between 0 and 1 (see Fig. (5.5)). Thus

we may ignore the nk! term. Thus we get the total change in entropy for the addition

of one partic1e to a c1uster of size kas,

i::::.S = 2T/ EO + ~ log (1 + 1/k ) .

As a result, the total change in free energy and hence /1, is given as

(5.16)

We note that /1 becomes progressively more negative with rising k. Thus the added

partic1e prefers to attach to large clusters. In a fragmenting system under the boiling

temperature, such a large fragment exists, of about half the size of the system (see

chapter 2 or Ref. [28]). The new partic1e thus preferentially attaches to this c1uster.

To illustrate this point more quantitatively, we calculate this /1 for a system with

A = 240 and a V = 4VQ. We assume the largest c1uster is of size A/2. No doubt, this

size falls gradually with rising temperature [28], with the fall becoming rapid near the

boiling temperature. In Fig. (8.3) we plot the value of this /1 (solid line) assuming
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that the largest c1uster remains of the same size throughout the temperature range.

Above the boiling point the system exists mostly as small c1usters, here we assume

that the added partic1e attaches itself to a c1uster of size k = 2. This J-L is plotted as

the dot-dashed line in Fig. (8.3).

We are interested in obtaining an approximate expression for (nk) underneath the

boiling temperature. Using the expression for J-L as derived in Eq. (5.17), we obtain

the expression for (nk) as

( )
_ (3J1k _ V( 27rmT )3/2k3/2

nk - e Wk-
h2

x exp [{O"(T) ((kmax + 1)2/3 - k;1:x) - ~TIog(l + llkmax )}klT - 0"(T)k2/3/T].

(5.18)

For most systems, in general, the behaviour of kmax with T and V is difficult

to estimate. However, we note that the above equation is precisely of the form of

Eq. (5.13). On fitting the data points obtained from Eq. (5.7) we obtain the fit

parameters as ê = 2.73, a = 0.36/Y = -3.11 (note that, as in the droplet model,

only range of k between 10 to 40, is fitted). A plot of the fit to the values of nk

obtained from a system with A = 240, T = 5MeV and V = 4Vo is shown in Fig.

(5.7). Here the entire region from k = 2 to 240 is plotted. Note that both fits coincide

extremely well in the region of k = 10 to 40. This proves our assertion at the end

of the last section: parametrizations based on a first order transition and those on a

second order transitions can be made to coincide in a limited region of yields.

5.7 Summary and discussions

This investigation started out with the attempt to understand the discrepancy intro­

duced by the experimental fits of Rer. [16]. These fits by a scaling formula, seemed

to indicate that the system was in the vicinity of a second order phase transition.

This was in contradiction to the findings in this thesis, where we had fitted the data

with a model with an explicit first order phase transition.
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Figure 5.7: Fits to (na) vs. a from two different models: open circles are from an exact
canonical calculation; the solid Hne represents the fit by a droplet model; the dotted Hne
represents the fit from the grand canonical approximation

To resolve this strife we posed the the following question: suppose "experimental

data" are given by the predictions of a theoretical model which, we know, does not

conform to Eq. (5.2) exactly. Could we still describe the "data" approximately with

the formula? If the answer is positive then the significances of the parameters T, (J

and Tc is to be determined. We began by trying to fit the primary populations of the

RSM model with Eq. (5.2) and obtained a very good fit if we restricted our attention

only to the yields lying between 10 and 40. The parameter Tc assumed a value very

close to the boiling temperature of the system. Subsequently we tried a fit with the

droplet model and again found a very adequate fit with Tc ~ 6 - 6.5 MeV i.e., close

to the boiling temperature.

Thus, we find that the scaling law is still approximately obeyed, if we restrict
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ourselves to a limited set of yields. While we can not attach much significance to

the extracted values of'T or a (they are different from those given by the percolation

or Ising model, but not terribly so), Tc seems to be a genuinely physical parameter,

namely, it refiects the first order phase transition temperature. We then devised yet

another parametrization, this time based on an explicit first order phase transition.

Once again we obtained a very good fit with the yields from the RSM model. The

two fits coincided almost exactly in the region of yields between la and 40. We have

not been able to find a physical explanation for such a coincidence. As we are merely

dealing with two different fitting formulae no physical reason may exist. This may

solely be a mathematical statement regarding the fitting equations ((5.2), (5.12 and

(5.13))).

We believe that the story does not end here, many different fits can be obtained

because by necessity the mass number of the composites is limited on the lower

as weIl as on the higher side. We have no control over that since the dissociating

systems are extremely finite. This apparently makes even deciding on the order of

phase transition very difficult. If two different models (with different orders of phase

transition) explain the data, the model with a first order transition is by definition the

more general case, as a first order transition will eventuaIly in sorne domain converge

to a second order point. If one depends on theories to decide on what order of phase

transition to expect, one is driven towards expecting a first order phase transition

[51]. To date, aIl the models which used a Hamiltonian [47, 52, 26, 28, 33] suggest a

first order phase transition [la]. No model based on a second arder phase transition

explains the data with the accuracy demonstrated in chapter 4. We thus state, once

again, that the RSM model provides a very good explanation of the phenomenon of

multifragmentation in intermediate energy heavy-ion collisions.
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THE QUARK GLUON PLASMA AND ITS DILEPTON SPECTRUM

6.1 Introduction

In this chapter we turn to the second theme of this thesis 't. e., the production of

electromagnetically interacting particles i. e., real photons and lepton pairs (e+e-,

f.k+ Ir), in heavy-ion collisions. As the title suggests, we will not discuss photon pro­

duction, choosing to concentrate only on dilepton production. This is mainly due

to the larger parameter space of the dilepton spectra as compared to the photon

spectra (dileptons are qualified by both the energy and momenta of the virtual pho­

ton, whereas for real photons, these are identical). One may also point towards the

larger and more accurate data available to dileptons as compared to real photons.

In this part of the thesis, we will shift focus from intermediate to very high energy.

The energies will be high enough that a quark-gluon-plasma may be formed in the

central region. The existence of such astate has long been speculated [54]. Various

experimental signatures have been put forward to detect its fleeting existence in such

collisions: e. g., J/ 'lj; suppression [55], strangeness enhancement [56], and of course,

the electromagnetic spectra of photons and dileptons [57]. In the rest of this thesis,

we will invoke various refinements to the calculation of dilepton spectra.

At lower energies, we presented a picture of heavy-ion collisions which involved

compression and expansion of the central region leading to an explosive fragmentation

of the entire system. There, the nucleons constituted the sole degrees of freedom, and

particle number was strictly conserved. This, along with a small enough number of

92
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participants, led us to cast the system in the canonical ensemble. At very high

energies the physical picture is rather different. At such high energies, the degrees

of freedom, that are invoked are those of the individual nucleons, along with various

mesons and baryons; and, depending on the collision, may also be the quarks and

gluons that make up the nucleons. Also, such collisions may lead to energy densities

high enough that the partons (quarks and gluons) which had hitherto been bound

inside nucleons may become de-confined over a much larger region t'V 10 fm. This

state is called the Quark Gluon Plasma (QGP) or simply the partonic plasma.

If the energy in the central region is not that high, or the system has cooled and

expanded from the partonic stage, one would still find a large number of mesons

and baryons prevalent in the system, forming a hot hadronic plasma. Eventually,

interactions will freeze out and these particles will stream out and may undergo

secondary decay. The large number of particles is mainly due to the fact that the

energy densities are high enough to allow for new particles to be produced, which were

not brought in by the colliding nuclei. The large number of particles, along with the

lack of conservation of particle number, allow us to use the grand canonical ensemble

in these calculations. As mentioned in the introduction, the numbers of many of

these particles may be obtained from thermal models based on such ensembles [58].

In passing, we also point out that deviations form the predictions of such models

have been observed [59, 60].

Our focus, in the following chapters will not be on these thermal models and their

predictions for hadronic observables. We will henceforth concentrate on the spectra

of particles that interact very weakly with the rest of partonic or hadronic plasma.

The main candidates in this category are the particles produced by electomagnetic

interaction between the hadrons in the system. These are the photons and lepton

pairs produced and emitted by the system. As photons and dileptons are produced

by electromagnetic interaction, they are produced far less copiously than hadrons and

partons. Also, the small coupling constant leads to mean free paths much larger than

the system size; as a result, once produced they suffer almost no further rescattering
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and emerge almost unchanged from the hot interiors of the system. As will be pointed

out subsequently, this turns out to be a great advantage, as these turn out to be good

probes of local densities and temperatures. This property is being rigorously exploited

in heavy-ion collisions.

It may be possible, in heavy-ion collisions to produce sufficient energy densities

in the central region, so that the quarks and gluons may become deconfined. Since

its inception, the main drive in ultra-relativistic heavy-ion collisions has been the

production of this exotic state of matter. This form of matter last prevailed in the

early universe a few microseconds after the big bang. If formed in a collision, the

partonic plasma will exist for a very short time(~ 10 - 15 fm/c): as the plasma ex­

pands and cools, it will undoubtedly undergo a change from a partonic to a hadronic

plasma of mesons and baryons [61]. Thus the possible formation of this plasma has

to be inferred from the spectrum of particles arriving at the detectors. Photons and

dileptons naturally become privileged probes of such an investigation as they suffer

minimal rescattering. They, thus convey information from the very interiors, and ear­

liest stages of the hot plasma created in these collisions. They are, however, emitted

throughout the entire history of the collision. Hence, they will contain information,

not merely of the partonic state, but also of the hadronic plasma formed after the

partonic plasma has cooled and undergone a phase transition. The spectrum of dilep­

tons and photons may thus serve as an important signal for the formation of a quark

gluon plasma. A careful study would reveal information regarding the temperatures,

charge and baryon densities, equation of state and the evolution of such facets with

time in a QGP. The main background is the spectrum of dileptons and photons emit­

ted by the later formed hadronic plasma and by the spectrum of dileptons emitted

by primordial Drell-Yan processes. The spectra from the three sectors may be dis­

entangled from each other only by a careful study of each of these processes. In the

following pages, we undertake such a study on the dilepton spectrum emanating from

the partonic sector.
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6.2 An order-by-order approacb.
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In our preceding study involving intermediate energy heavy-ion collisions, we assumed

that the constituents in the participant region had thermalized and this allowed

us to investigate the system using statistical mechanics in the canonical ensemble.

The inputs were nuclei, treated as non-relativistic objects with finite size and an

internaI quantum mechanical excitation spectrum. In this case, we shall again assume

that the system is at least in thermal equilibrium and has achieved this condition

early on in the history of the collision. The large number of constituents involved

will anow us to use the grand canonical ensemble. The degrees of freedom will,

however, not be classical particles. The quarks, gluons, photons, leptons, and even

the composite hadrons will be treated appropriately as particle excitations of the

respective relativistic quantum fields. Our calculations will thus involve the fun

machinery of quantum field theory at finite temperature (in particular that of thermal

QCD). There are various formalisms of this theory used by practitioners in this field;

we will describe our formalism in the next section. In this section we will attempt to

accurately formulate the problem to be explored.

6.2.1 A Space-time picture.

Let us sketch the history of a high energy heavy-ion collision (see Fig. (6.1)). At

these ultrarelativistic energies (~ 200 AGeV in c. m. frame), the incoming nuclei have

been Lorentz-contracted to almost pancake like structures. The largest fraction of the

baryon charge is being carried by the valence quarks. These also constitute the large

momentum excitations in the incoming nuclei. The sea quarks and the gluons, which

don't carry any net baryon number, have large populations in the low momentum

sector. Asymptotic freedom in strong interactions [62, 63] dictates that the strong

coupling constant will decrease for interactions involving large momentum transfer.

This implies that, to a first approximation, processes involving a large momentum

transfer are essentially forbidden and those involving a small momentum transfer

are pervasive. On impact, the valence quarks suffer only small angle scattering; as
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Figure 6.1: Space time picture of a high energy heavy-ion collision

large angle scattering would involve a large momentum transfer. The baryon charge

carrying valence quarks and the sea partons with very high momentum hence pass

through the central region with little or no deflection. The soft sea quarks and

gluons can however undergo large angle scattering with small or medium momentum

transfer. These are thus stopped and will constitute the components of the hot central

interaction region.

These will then scatter multiple times with each other; and after a brief period

of non-equilibrium, produce a hot plasma in thermal equilibrium. As this happens,

the central region will continually keep expanding and cooling and finally begin to

undergo a phase transition. There will most probably be a period in which the

plasma is in a mixed phase of partonic and hadronic components. This state will
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eventually undergo full conversion to an interacting hadron gas. This will continue

to expand and cool. Finally the plasma will have expanded to a density where

interactions between the various hadrons will cease and we achieve what is termed

'freeze out'. The hadrons will now continue to stream freely towards the detectors

while undergoing possible secondary decay into more stable hadrons. The space time

picture of the above scenario is represented in Fig.(6.1).

Dileptons will be emitted from aIl time sectors of the above scenario. At the

earliest point of contact there will be lepton pairs produced via the DreIl-Yan process

between a quark in one nucleus and an antiquark in the other. There will presumably

be dileptons emitted from the pre-equilibrium region, through a mixture of jet and

plasma interactions. These will precede the dileptons emanating from the partonic

plasma, the mixed phase and the hadron gas phase; dileptons from these three sources

are referred to as thermal dileptons.

We will assume that after a smaIl time TO the plasma has attained, local ther­

mal equilibrium, i. e., it is possible to fragment the plasma into space time cells of

arbitrarily small size; each of which may be ascribed a temperature. In the event

that chemical equilibrium is established, a chemical potential may also be ascribed.

At this point, dilepton emission from DreIl-Yan or jet plasma interaction has more

or less ceased to occur and thermal dilepton production begins to dominate. Vnder

this assumption, the total number of dileptons per unit invariant mass M may be

summed up by the formula [64],

dNe+e- = (t! dt (x+Ct) r+(t) (y+(t) d3x! d3q M d
4
R;+e- (qO, if, T(t, x), j.-t(t, x).

dM lro lX_Ct) lz_Ct) lY_Ct) qO d q
(6.1)

where, d4~1;e- is the number of lepton pairs produced per unit space time, per

unit four momentum, from the unit cell at (x, t) in a plasma in local equilibrium.

Ostensibly, this depends on the four momentum of the virtual photon (qO, if) , the

temperature (T), and the relevant chemical potential (j.-t). The temperature and
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relevant chemical potential are, in general, local properties for an expanding plasma

and vary from point to point in the plasma as indicated. FinaIly, the rates from

each space time cell have to be integrated over the entire space time evolution of

the plasma; where, the spatiallimits of the expanding plasma are represented by the

variables x_(t), x+(t), y-(t), y+(t), z_(t), z+(t).

6.2.2 The dilepton production rate.

To theoretically obtain the rate of Eq. (6.1), one assumes that one can represent the

space-time evolution of the plasma size, temperatures, and chemical potentials by

means of sorne dynamical model. Various such models exist: hydrodynamical model

[65], iireball model [64], parton cascade [66], UrQMD 1 model [67]. Each has its

own set of assumptions and calculational techniques. Each provides a set of space­

time and momentum distribution functions for the components of the plasma. The

one used most often is the hydrodynamical model, or its simpler manifestation the

thermal iireball model. In these models, the plasma is respectively in local or global

thermal equilibrium; i.e., the constituents of the plasma have thermal momentum

distribution functions. Each of these also has an inbuilt assumption for the time

during which the plasma is in the partonic phase, the mixed phase, or the hadron

gas phase. The source of dileptons at a given space-time point will vary depending

on the current phase in which the plasma iinds itself at that space-time point.

Without venturing into the applicability of the above models, we instead focus our

attention on the actual inputs to this calculation i. e., the actual processes used to

calculate the rates in each of the three phases of the plasma. In the remaining thesis

we will not return to the question ofwhich space-time model to use, or is applicable in

a given situation. We will ignore this question for the most part; choosing instead to

focus attention on the calculation of the differential dilepton production rate d
4

~~~c

Much work has gone into devising more accurate and detailed space-time models of

the plasma, not as much has been done in exploring what set of processes of dilepton

1Ultra-relativistic Quantum Molecular Dynamics
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production are to be used in computing the rates. In the remaining chapters, we shall

explore precisely this question in the partonic sector.

2

q

;/

q

Il

Figure 6.2: The Born term in dilepton production

In various calculations of the total dilepton signal [64, 65, 68], the process used as

input for the partonic sector has always been the leading order (Lü) term i. e., the

Born term (see upper diagram of Fig.(6.2)). This represents a thermal quark annihi­

lating with an antiquark producing a time-like virtual photon which will eventually

materialize as a lepton pair. The justification for this is the assumption that the

formation of a quark gluon plasma would imply that the strong coupling constant

must be small enough to subdue the contributions from higher order diagrams com­

pared to the leading order term. There is sorne recent theoretical evidence for such

an assumption [69]. It is this assumption which will be subjected to doser scrutiny in

the following chapters. We will explore a variety of medium dependent effects which

may lead to higher order terms being comparable to, or even dominant over the Born
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term in certain regions of parameter space.

To aid our study, we divide up the parameter space of dilepton production into

three regions. The low energy region: where the energy of the lepton pair is much

smaller than the plasma temperature E << T. The intermediate energy region

where energy is of the order of temperature E rv T. The high energy region, where

the energy of the dilepton pair is much higher than the temperature E >> T. The

remaining chapters are organised as follows: in chapter 7 we concentrate on dileptons

with low four momentum, i.e., the soft sector: we point out how high temperature

effects may lead to higher order terms being more dominant over the Born term. In

chapter 8 we focus on intermediate energies, here we demonstrate how a net charge

may lead to various symmetries being broken by the medium. This leads to the onset

of entirely new processes which may become comparable to the Born term at low mass.

Finally in chapter 9, we turn to high energy and high invariant mass dileptons. In this

region the effects discussed in the preceding chapters become negligible. At such high

energies, the quarks masses become negligibly small compared to the other scales in

the problem, and this may lead to the onset of collinear and infrared divergences.

We demonstrate explicitly that at next to leading order aH infrared and collinear

singularities cancel (at high mass) and the Born term is by far the leading thermal

contribution.

6.3 Methodology and formalism

Before concluding this chapter, we discuss our methodology and point out the salient

features of our notation. We intend to calculate the differential production rate of

dilepton pairs i.e., the quantity d4~4;c in Eq. (6.1). Here we present a simple

derivation of the basic formula that will be used repeatedly in the remaining thesis.

This formula will connect the rate to the various many-body processes which lead to

heavy virtual photon production. Most of this section is based on Refs. [70, 71].
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6.3.1 Dilepton rate -+ spectral density.
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(6.2)

(6.3)

Vnder the assumption of local thermal equilibrium, we focus our attention on a given

space-time cell in the plasma of four volume n. Imagine that we have lepton pairs (of

momenta Pl,P2) being emitted from this four volume when it is in a given state li),

leading to the state le+e- f). After emission they are free to leave the source. The

inclusive differential probability for the emission of lepton pairs into dimensionless

cells of phase space is

'" 1 + . 1
2 d

3
Pl d

3
p2'7 (e e-JIMI~) (21T)32E

1
(21T)32E2'

As always, li is set to 1. Integrating over the total phase space, will give us the

number of dileptons emitted from this initial state. As the plasma cell is thermalized,

we average over aIl possible initial states with a thermal weight to get the number of

dileptons emitted into a differential volume in momentum space as

e-fJEi 1 12 d3p d3p
N =~ -z~ (e+e- JIMli) (21T)3~El (21T)3~E2'

Where, Z is the grand canonical partition function, and f3 is the inverse temperature.

We do not explicitly mention a chemical potential p, the tacit assumption being that

it be included in the presence of a finite baryon density.

It should also be pointed out that li) and if) are, in general, eigenstates of the

full interaction Hamiltonian (strong and electromagnetic). The matrix operator M is

merely that part of the interacting electromagnetic Hamiltonian which connects the

photon to the lepton current. This allows for the transformation from the state li) to

the state IJe+e-). As will be imposed, later in this derivation, any photons created

by the electromagnetic interaction will escape the plasma. This is achieved by always

treating the electromagnetic interaction to first order in the coupling (i.e., only one

power of D:EM in the amplitude), and exploring the effect of the strong interaction

corder by order'. Thus, we are essentially focusing on the production of a pair of

leptons from a single photon emanating from a solitary electromagnetic interaction
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between the strongly interacting constituents of li). This is justified as the time scale

and mean free paths calculated on the basis of pure e.m. interaction do not warrant

multiple scattering in a QGP.

We may thus write down the matrix element of the operator ]y( for the production

of two leptons of four momenta Pl = (EI,PI) and P2 = (E2,P2) from a single heavy

photon of four momentum P = (E,jf) as

(6.4)

where AIl(X) is the field in the Heisenberg picture. Substituting Eq. (6.4) into Eq.

(6.3) gives the total number of dileptons as

2 Mill/ d
3
Pl d

3
P2

N = e Lill/ () () .27r 3El 27r 3E2

where the lepton tensor has been averaged over all spins to yield

(6.5)

1
Lill/ = 4" ~ ul1'llv2ih'YI/U I = PI llP21/ + P21lPIl/ - (Pl' P2 + m

2)glll/' (6.6)
sp~ns

while, the photon tensor is

Mill/ = L L Jd4xd4yei (Pl+P2)·(X-Y ) (fIAIl(X) li) X (iIAI/(y) If) e-
f3Ei

• (6.7)
f i Z

Replacing Ei -+ Ef + E, we may perform the sum over the initial states li) by

completeness. We assume that the entire process is translationally invariant inside

the space-time cell of the plasma; thus the matrix element only depends on the

difference of the two space time points x, y. We thus invoke the standard variable

transformation: x' = x - y and x" = (x + y)/2. We then integrate over x" to obtain

the four volume n of the space-time cell. Then we replace x' -+ x to obtain
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In quantum statistical mechanics the quantity Jd4xeip .x L:jUIAJ.t(x)AV(O)IJ) e-~Ef

is referred to as D>J.tV(po,P) (see Refs. [72, 73]). This quantity may be expressed in

terms of the photon spectral density pJ.tv as

(6.9)

where n(pO) = l/(e!3Po
- 1) is the photon distribution function. This relation will be

justified in the following paragraph. Thus, we get the photon tensor as

MJ.tV = n! d4xei (Pl +P2)'Xe-!3E! d
4
p e-ipX (l + n(pO) )p(pO iJ)

(271")4 '

= n! d4p64 (Pl + P2 - p)e-!3E(l + n(pO))pJ.tV(po,iJ) (6.10)

We now have an expression for the dilepton production rate in terms of the spectral

density. The last part of this derivation will attempt to relate the spectral density in

terms of the imaginary part of the retarded photon self-energy.

6.3.2 Spectral density -+ imaginary part of self-energy

To begin, we review sorne of the propagators in quantum statistical mechanics (we

already used one of them in the preceding subsection),

The last propagator is the retarded photon propagator. The two propagators D>J.tv, D<I.!V,

admit an algebraic relation between them due to the KMS condition(see Refs. [72,

73]), i.e.,
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(6.14)

The spectral density may be defined using these two propagators as p = D>I-w - D</-Lv.

Using this definition and the above relation we can easily verify Eq. (6.9). Drawing

from the expression of the theta function in the usual complex representation, i.e.,

. 0

f
oo dw e-zwx

f) xO = lim i --
( ) E-tO -00 (27r)w+ù:'

we may express the retarded propagator in Eq. (6.13) in terms of the spectral density

as

Dret/-LV( ° ;:A -1' .foo dw p/-LV(w,iJ)P ,Pl - Im~ - .E-tO -00 27r pO - w + ~E
(6.15)

Noting that the spectral density is always real, we separate the real and imaginary

parts of the denominator in terms of the principal value and the imaginary part,

hence obtaining

p/-LV(pO, iJ) = Disc [DretlJ.V (po , iJ)] . (6.16)

Expanding the propagator in terms of the Schwinger-Dyson equation, we obtain

the following expressions:

D/-LV(pO,iJ) = Dtt(po,iJ) + Dlr-~(po,iJ)iTIc<{3(po,iJ)D{3V(po,iJ)

= Df{V(po,iJ) + Df{C«pO,iJ)iPc<{3(pO, iJ) Dgv(pO, iJ), (6.17)

where iTI/-LV is the proper retarded self-energy and iP/-LV is the improper retarded self­

energy (we have dropped the superscript ret in the expressions). At lowest order

in the electromagnetic coupling constant, these two quantities are the same. If we

always insist on calculating to lowest order in the electromagnetic coupling constant,
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we note that, the propagators for massive photons are free propagators and have no

discontinuities. Thus the only discontinuity may arise in the self-energies P or II.

This also achieves our previously stated goal of insisting that any heavy photons,

created by electromagnetic interaction in the plasma, materialize as dileptons and

escape. In Ref. [70] the photons were allowed to interact multiple times in the

plasma preceding escape; leading to the occurrence of effective propagators. Thus,

to lowest order in the electromagnetic coupling constant

Substituting the above equations back into Eq. (6.10) gives

In the above equation pO = E is the energy of the photon; using this we may carry

out the integral over p using the delta function. The propagators are essentially (as

p is offsheIl we no longer retain the if in the denominator),

Utilizing the Ward identity satisfied by the self-energy (Le., pJtIIJtv = 0), we may

reduce the numerators of the propagators to simply the factors of the metric. Sub­

stituting these results into Eq. (6.5) for the total number of dileptons emitted by the

space time ceIl, we obtain

2 - Disc[iIIJtV] 1 d3Pl d3
p2

N = ne LJtv (p2)2 efJE -1 (21r)3E1 (21r)3E2' (6.19)

To obtain the number of lepton pairs emitted per unit four volume we divide by the

four volume of the space-time ceIl n. Assuming, once more, translational invariance

of the rate we may write ~ = ~;: = dR. Substituting the expression for the spin

averaged lepton tensor (Eq. (6.6)), we obtain the differential rate of production of
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lepton pairs with four-momenta lying in a smaU segment of momentum space around

Pl and P2 as [71],

The above is the general result and it depends on the directions of Pl and P2.

We are however interested only in the total photon momentum p. Thus we integrate

over the directions with the obvious delta function, and set the mass of the leptons

to zero, we obtain,

Thus the rate of dilepton production per unit four momentum of the pair is

(6.22)

6.4 Notation

In the previous section, we have related the production rate of dileptons to the imag­

inary part of the retarded in-medium photon self-energy. The in-medium self-energy

encodes the entire gamut of strong interaction, medium effects which may lead to

the production of a massive virtual photon from the plasma. This then constitutes

the essential quantity of interest. In the remaining chapters, we will endeavour to

calculate this quantity in a variety of many-body scenarios, to various orders in the

strong coupling constant. To calculate the retarded photon self-energy in a thermal

environment we use the standard method of the imaginary time formalism[73, 74].

This essentially consists of replacing the continuous energies of aU particles in the

self-energy Feynman diagrams by discrete imaginary frequencies caUed Matsubara
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frequencies. The Feynman mIes that characterize our calculations are however some­

what different from the standard literature (it however displays considerable similarity

with the notation of Ref.(72]).

Our notation is categorized by the explicit presence of an apparent Minkowski time

Xo = -iT and a momentum qO - i(2n + l)1rT + J-L. Our metric is (1, -1, ~1, -1). For

the case of zero chemical potential our bosonic propagators have the same appearance

as at zero temperature, i.e.(for the massless case),

. ~

u~(q) = (qO)2 _ Iq12' (6.23)

The Feynman mIes are also the same as at zero temperature, with the understanding

that we replace the zeroth component of the momentum by Eq. (8.7) for a fermion

and by an even frequency in the case of a boson. For the zero temperature Feynman

rules, we utilize those of Ref. [75]. One may, in the case of zero chemical potential,

relate this to the familiar case of reference (76] by noting that

(6.24)

where .6.E (wn , q) is the familiar Euclidean propagator presented in the literature

([76, 74]). One may immediately surmise the form of the non-covariant propaga­

tor .6.(Itï1, XO), the Fourier transform of which is the covariant propagator.

(6.25)

In the presence of a finite chemical potential our full fermionic propagators become

(6.26)



6: THE QUARK GLUON PLASMA AND DILEPTONS

where,
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6.J.L(\q1, XO) = 2~ L fs(Eq - sM)e-iSXO(Eq-SJ.L). (6.27)
q S

In the above two equations qO = i(2n + l)'71-T + M. In each self-energy calculation all

frequencies except that of the photon are summed. Finally the discrete imaginary

'energy' of the photon is analytically continued onto the real axis and its imaginary

part or discontinuity across the real axis is computed. The details of this procedure

will be borne out in the subsequent chapters.
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Low MASS DILEPTONS AND HARD THERMAL Loops

7.1 Introduction

In this chapter, we commence our exploration of higher order effects on the dilepton

spectrum. We begin by focusing on the soft sector, i.e., the region where the energy E

and momentum p of the virtual photon are both much smaller than the temperature T

of the medium. No doubt this willlead to a dilepton invariant mass M = JE2 - p2

also much smaller than the temperature. We would however distinguish this case

from that where E and pare both large but almost equal, where once again M is

very smaIl. Hence, in this situation, the quark, anti-quark pair annihilating to form

the virtual photon will also be soft compared to T. The motion of soft particles in a

hot plasma is greatly modified by the effect of particles with momenta of the order

of the temperature. This will lead to the soft modes achieving various dispersion

relations. The influence of these dispersion relations on the production of timelike

virtual photons will form the topic of discussion in this chapter. The calculations

discussed as weIl as the results quoted or cited in this chapter, do not constitute the

author's own work. This chapter has been included in the thesis merely to achieve

completeness in the general topic presented. Thus no effort will be made towards

discussing technical details; rather the stress will be on motivations, basic physics

ideas used, and on the nature of the results. The interested reader may refer to the

articles cited for further details.

In a typical quark gluon plasma produced in heavy-ion collisions, the temperature

109
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Figure 7.1: The Born term and corresponding imaginary part of the photon self-energy.

in the central region is expected to reach no more than several hundred MeV [66, 77].

The processes we are interested in have energies much smaller than T i. e., imagine

a very soft quark annihilating a very soft antiquark and producing a soft virtual

photon as shown in Fig. (7.1). The presence of a much higher temperature is only

belied by the distribution functions that control the numbers of such soft partons in

the system. As we will be considering higher order corrections to this process, the

calculations will involve the explicit presence of hard particles (momenta of the order

of T). The combination of large phase space factors for such particles coupIed with the

Boltzmann distribution willlead to the dominant prevalence of hard particles. Thus

the maximum influence in loop calculations (that sum over aIl kinds of particles) will

be from these hard components. The scale that drives the strong coupling constant

will thus be the temperature. At such temperatures the strong coupling, fine structure

constant is expected to be a ~ 0.3. The coupling constant is 9 ~ 2. At coupling

constants of this size, perturbation theory may not be strictly valid.

The guiding principle of perturbation expansions in field theories is that the cou-
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pling constant be small enough to subdue large dynamic contributions from higher

order processes. If such is not the case and one still insists on expanding in the

coupling constant, one may obtain nonsensical results. Such an occurrence was first

witnessed in a series of ca1culations of the gluon self-energy and the resulting damp­

ing rate in the medium [78, 79, 80, 81] (see also [82] and references therein). By

aIl accounts, the damping rate is a physical quantity and thus deserves the mantle

of being gauge invariant. The gluon one loop self-energies do not provide this dis­

tinction and the result even seems to change sign in different gauges. Such a result

was seen as a failure of the perturbation expansion. The resolution was sought in a

resummation of higher order diagrams and a different perturbation expansion. This

problem was partially solved by Braaten and Pisarski using a method coined by them

as hard thermalloops (HTL) [82]. This method was also discovered independently

by Frenkel and Taylor [83]. In the rest of this chapter we will follow the analysis of

Braaten and Pisarski expounded by them in a series of papers [76, 82, 84, 85, 86].

7.2 Hard Thermal Loops

In the method of Hard thermalloops one imagines a plasma where the temperature

has been set to an extremely large value T -t 00. In such a situation the coupling

constant must necessarily become very small 9 -t O. The temperature is taken to

be high enough that a clear separation of scales emerges: a hard scale of the order

of the temperature T, a soft scale of the arder gT. It may be easily demonstrated

that tree diagrams with aIl their external momenta soft receive contributions from

higher order corrections that are of the same order of magnitude as the tree diagram.

The simplest example is the boson propagator. The bare propagator with a soft

momentum p t'V gT fiowing through it produces a contribution of order g2~2' The

first higher arder correction is obtained in the form of a loop as shown in the upper

diagram of Fig. (7.2). At very high temperature the dominant contribution in the

loop integral occurs from momenta of the order of the temperature. This allows
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us to neglect aIl other factors of external momenta in the loop that occur in an

additive combination with the thermalloop momenta. This simplifies the calculation

immensely and produces a contribution from the loop of order L = T 2 • The Feynman

rule for the propagator, with a loop or self-energy insertion is

Thus if p rv gT. The one-Ioop corrected propagator is of the same order of magnitude

as the bare propagator. To obtain an the contributions at this order of magnitude, one

must sum over infinitely many such loop insertions to obtain the effective propagator,

1
!:::.eff = 2 ~

P - T

1

q » P

Ç(p)

Figure 7.2: Hard thermalloop resummation for boson propagator and vertex.

The situation for the vertex is more or less the same: in addition to the bare

vertex, one adds on the one loop correction, where the momenta in the loop are very

large compared to the external momenta. In this approximation, one may easily

demonstrate that on expanding the result of the loop in a series in gT, there exist

terms of the order of the tree diagram for external momenta soft. These hard loops are
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the only terms retained in the effective vertex of Fig. (7.2). It should be pointed out

that aIl possible vertices do not contain RTLs, e.g., while the three gluon vertex has

an RTL the two-gluon-one-photon vertex even at finite density does not [98]. With

these resummed propagators and vertices one may demonstrate the gauge invariance

of the gluon damping rate [82, 85]. Thus, in this limit we have managed to compile

the correct effective theory of soft modes propagating in a hot non-abelian plasma.

2

0.5

o 0.5 1.5

p/m
2 2.5 3

Figure 7.3: Quark dispersion relations from Hard thermalloops: m is the thermal mass.
These despersion relations are obtained as poles of the thermal effective propagators (see
Fig. 7.2). The upper branch represents the propagation of ordinary quarks with a thermal
mass. The lower branch represents a collective mode with no analog at zero temperature.
The straight Hne is the Hght cone.

7.3 HTL dilepton production.

In the previous sections we mostly highlighted the motivations and sketched a hand

waving derivation of the effective theory of soft modes in a hot plasma. This involved

resumming an infinite class of hard loops to obtain effective propagators and vertices.

The effective propagators for soft quarks and gluons, do not merely endow these

particles with a thermal mass, but present them will a non-trivial dispersion relation

(see Fig. (7.3)). These soft modes will have an important influence on the dilepton

spectrum.
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lm [ ]
Figure 7.4: One loop RTL resummed dilepton production

The lowest order process, in the effective theory that leads to the production of

a dilepton is the diagram of Fig. (7.4). Here the photon self-energy at one loop is

modified: bare propagators are replaced by effective propagators, bare vertices by

effective vertices. This diagram will contain aIl contributions at leading order to

the process of soft dilepton production. Evaluated in Ref. [86], this leads to a rich

structure in the spectrum (Fig. (7.5)). This is evaluated for the case of exact back­

to-back lepton pairs, i.e., lepton pairs produced with their three rnomenta equal and

opposite. The peaks in the spectrum occur as the dispersion relation of the quark

depends on its helicity and one of these helicities admits a minimum at non-zero three

momentum. Annihilation of two soft quarks with this momentum, or the decay of

a quark from the more energetic mode to a quark with this helicity and momentum

lead to the two peak in the figure. However, this rich structure is completely masked

by the effects of scattering of the soft modes by hard medium particles. Dileptons

from such processes are far more numerous and are represented by the solid curve,

at the top of the figure. The dashed curve represents the contribution from the Born

term at these temperatures and energies (for further details on the exact nature of

these processes see Ref. [86]).

The next to leading order calculation has also been performed in the effective

theory [87], using diagrams such as those of Fig. (7.6). The total rate from these

processes is of the same order of magnitude as the leading order rates. Thus we note

that at lower energies, Born term dilepton production is completely dominated by
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Figure 7.5: DifferentiaI dilepton production rate from one Ioop HTL effective theory
(adapted from Ref. [86]). Dashed Hne is the rate from the Born term. SoHd Hnes are
rates from the HTL effective theory. See text for details.

the effects of the One loop effective theory.

lm [ ]
Figure 7.6: Two Ioop HTL resummed dilepton production.

7.4 Summary and discussions

In this chapter, we have presented a rather terse description of the complicated field

of high temperature plasmas. We argued heuristically as to the need for resummation

in the contribution from soft modes. We presented a method by which an infinite

class of diagrams may be resummed in to the propagators and vertices of a given
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theory. Thus one needs to use these resummed expressions to calculate the effect of

any phenomena that involves the presence of soft modes.

We later focused on dilepton production from soft modes in a hot medium and

enumerated sorne of the diagrams that have to be evaluated to estimate the order

by order contribution to the dilepton spectrum. We noted that these rates from the

resummed calculation dominate over the Born term or tree level rate. The resummed

rates are nothing but a class of higher order effects which in this range of parameters

has become comparable, or in this case much larger than the bare rate. In the previous

chapter we asked the question: is the bare rate always dominant over higher order

contributions? This is dearly not the case in the scenario discussed in this chapter.

The region of applicability of the results of this chapter is in plasmas where the

temperature is extremely high, so that the strong coupling constant is very small.

Such a condition may be achieved only past a temperature of many TeV. The tem­

peratures expected to be achieved in heavy-ion collisions is not more that IGeV.

Applying these high temperature results to such low temperature plasmas represents

an open question. Traces of such large rates in the actual dilepton spectrum in

heavy-ion collisions is under much current investigation.
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INTERMEDIATE ENERGY DILEPTONS AND 8YMMETRY BREAKING

8.1 Introduction

In the previous chapter we concentrated exclusively on the soft sector of dilepton

production. There both energy and momentum of the dileptons were much smaller

than the temperature. We now proceed to the intermediate energy region, here

both the energy and the momenta of the virtual photon (E, p) are of the order

of the temperature T. From the results of the previous chapter we may discern

the following information: even if high temperature (or Rard Thermal Loop) effects

are important at low energies, their effect is completely subdued at energies of the

order of the temperatures. Rence, one may argue that at these energies the Born

term is the most dominant thermal dilepton source. Indeed, early calculations of

the dilepton radiation in the deconfined sector were concerned exclusively with this

process qij -t e+e- [57, 68]. These calculations are carried out assuming that the

plasma is in complete thermal and chemical equilibrium and there is no net local

baryon density.

It has been suggested that there could be a large gluon excess in the early plasma

[88]: that the plasma would achieve thermal equilibrium early and chemical equi­

librium between quarks, antiquarks and gluons would be realised much later, if at

aIl. A recent calculation has estimated the effects of chemical non-equilibrium and

of a large gluon excess on dilepton spectra [89]. There, a fugacity was introduced to

account for chemical non-equilibrium. The function of this fugacity is essentially to
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change the gluon and quark numbers from their equilibrium values. Possible sources

of dileptons, such as q + q annihilation, q + 9 Compton scattering, and 9 + 9 fusion

had been investigated and at chemical and thermal equilibrium the spectrum was

found to be dominated by qq -+ e+e-, followed by qg -+ qge+e- which is an order of

magnitude lower, followed by gg -+ qqe+e- which is lower than the first process by 3

orders of magnitude [89].

It has been experimentally noticed that there exists a net baryon excess in the

central collision region of a heavy-ion collision [90]. The effect of a net baryon density

was also explored in a limited series of works (see Refs. [91, 92]) but these mostly

concentrated on employing the standard channels of dilepton production (Born term,

RTL corrected propagators and vertices), with a chemical potential added to the

quark distribution functions. In this chapter, we propose that, when there is an

asymmetry in the populations of quarks and antiquarks (i.e., a finite baryon chemical

potential) a new set of diagrams actually arise. Using these we calculate a new

contribution to the 3-loop photon self-energy. The various cuts of this self-energy

contain higher loop contributions to the usual processes of qq -+ e+e-, qg -+ qe+e-,

qq -+ qqe+e-, but also an entirely new process: gg -+ e+e-. We calculate the

contribution of this new channel to the differential production rate of dileptons. It is

finally shown that in certain regions of phase space this may be comparable or even

outshine the differential rate from the standard tree level qq -+ e+e- .

Imagine a scenario where the plasma is not just heated vacuum, but actually dis­

plays an asymmetry between quarks and antiquarks. This asymmetry would even­

tually manifest itself as an asymmetry between the baryon antibaryon populations

in the final state: this has been noted experimentally at RRIC1 (90]. In theory cal­

culations, this asymmetry may be achieved by the introduction of a quark chemical

potential/1q. It may be argued that any baryon number asymmetry prevalent in the

QGP must have been introduced by valence quarks, which, having encountered a

hard scattering, failed to exit the central region. We thus provide a /1 for the up and

IThe Relativistic Heavy Ion Collider, at Brookhaven Natl. Lab., Upton, New York.
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the down quark. The strange quarks are brought in by the sea or produced ther­

mally in the medium in equal proportion with anti-strange quarks. Hence, they are

assigned a /-i = O. In most heavy-ion collisions, the nuclei of choice are rather large

and display isospin asymmetry, hence there is an asymmetry in the populations of

neutrons and protons being brought into the central region. If the stranded valence

quarks in the plasma arrive with equal probability from either nucleon, one would

require a higher /-i for down quarks. As a first approximation, we ignore this effect,

and, in the remaining, accept /-iu = /-id, We also assume that the chemical potential

for gluons is zero. We have thus assumed full thermal and chemical equilibrium,

choosing to postpone the question of an early gluon excess for later study.

The rest of the chapter is organised as follows: Sect. 8.2 discusses a class of

diagrams which are non-existent at zero temperature, and also at finite temperature

and zero density. These become finite at finite density. Sect. 8.3 focuses on a specifie

channel which will become a source of dileptons. This is then evaluated using different

regulators: results of a pilot calculation are presented. In Sect. 8.4, yet another

symmetry of this channel is pointed out and discussed. Full symmetry breaking

calculations are presented in Sect. 8.5. In Sect. 8.6 we derive a new contribution to

the photon self-energy at three loops and discuss its various cuts. Finally, in Sect.

8.7 we calculate the production rate of low mass, intermediate energy dileptons. A

summary is presented in Sect. 8.8.

8.2 New diagrams [rom broken charge conjugation invari-

ance

At zero temperature, and at finite temperature and zero charge density, diagrams

in QED that contain a fermion loop with an odd number of photon vertices (e.g.,

Fig. 8.1) are cancelled by an equal and opposite contribution coming from the same

diagram with fermion lines running in the opposite direction, this is the basic content



8: INTERMEDIATE ENERGY DILEPTüNS... 120

of Furry's theorem ([93, 94]). This statement can also be generalized to QCD for

processes with two gluons and an odd number of photon vertices.

Figure 8.1: Diagrams that are zero by Furry's theorem and extensions thereof at finite
temperature. These become non-zero at finite charge density.

A physical perspective is obtained by noting that aIl these diagrams are are en­

countered in the perturbative evaluation of Green's functions with an odd number of

gauge field operators. At zero (finite) temperature, in the weIl defined case of QED we

observe quantities like (0IA/L1A/L2 ...A/L2n+lIO) (Tr[p(ft, ,B)A/L1A/L2 ...A/L2n+l]) under the

action of the charge conjugation operator C. In QED we know that CA/LC-1 = -Aw

In the case of the vacuum 10), we note that CiO) - 10), as the vacuum is uncharged.

As a result

(0IA/L1A/L2 ...A/L2n+l10) = (0IC-1CA/Ll C-1CA/L2 ...A/L2n+l C-1CI0)

= (OIAM A/L2 ...A/L2n+lI0)(-1 )2n+l

= -(OIA/Ll A/L2 ...A/L2n+lI0) = O. (8.1)

At a temperature T, the corresponding quantity to consider is

where ,B = liT and ft is a chemical potential. Here, however, Cln) = éPI - n),

where 1- n) is a state in the ensemble with the same number of antiparticles as there

are particles in ln) and vice-versa. If ft = 0 Le., the ensemble average displays zero

density then inserting the operator C-1C as before, we get
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The sum over aIl states will contain the mirror term (-nIAtt1 Att2 ...A tt2n+1l- n)e- fJEn ,

with the same thermal weight

=? I::(nlAtt1 Att2 ...Att2n+lln)e-fJEn = 0,
n

(8.3)

and Furry's theorem still holds. However, if f-l f. °(=? unequal number of particles

and antiparticles ) then

(niA A A 1 )e-fJ(En-ttQn) - -(- lA A A 1- n) -fJ(En-ttQn) (8 4)
ttl tt2 ." tt2n+l n - n ttl tt2 ... tt2n+l e .

the mirror term this time is (-nIAttlAtt2 ...Att2n+ll- n)e-fJ(En+ttQn), with a different

thermal weight, thus

I::(nlAtt1 Att2 ...A tt2n+1ln)e-,8(En-ttQn) f. 0,
n

(8.5)

and Furry's theorem will now break down.

As an illustration consider the diagrams of Fig. (8.2) for the case of two gluons and

a photon attached to a massless quark loop (the analysis is the same even for QED i.e.,

for three photons connected to an electron loop). In order to obtain the full matrix

element of a process containing the above as a sub-diagram one must coherently sum

contributions from both diagrams which have fermion number running in opposite

directions. The amplitude for TttPV (= cyttpv + cyvPtt ) are :
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(8.6)

At finite temperature (T) and density (chemical potential J1), we have the zeroth

component of the fermion momenta given by,

qo = i(2n + 1)1rT + J1 \In E J. (8.7)

We assume that J1 is the same for both flavours of quarks. Note that the extension

of Furry's theorem to finite temperature does not hold at finite density: as, if we set

n --t -n - 1, we note that qo +- qo and as a result

(8.8)

Of course, If we now let the chemical potential go to zero (J1 --t 0) we note that for the

transformation n --t -n-l, we obtain qo --t -qo and thus TJ.LPV(O, T) --t -TVPJ.L(O, T).

The analysis for fermion loops with larger number of vertices is essentially the same.

Thus we may argue that many such processes may arise in a medium with finite

density, and willlead to additional contributions to the dilepton or photon spectrum.

The appearance of processes that can be related to symmetry-breaking in a medium

has been noted before [95]. In the remaining, we will concentrate on one such diagram

or process and explore its characteristics in greater detail.

8.3 The two-gluon-photon vertex: an exploratory calcula-

tion

In the previous section we have argued that a whole new set of processes may arise

in the presence of a finite baryon density. Let us now focus our attention on the
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Figure 8.2: The two gluon photon effective vertex as the sum of two diagrams with quark
number running in opposite directions.

diagrams of Fig. (8.2). Such a process does not exist at zero temperature or even at

finite temperature and zero density. At finite density this may lead to a new source

of dilepton or photon production. In this section we discuss this diagram in more

detail.

8.3.1 General considerations.

Many points are in order: there is more than one kind of density that may manifest

itself in the plasma. There is the net baryon density which requires that there be a

difference in the populations of quarks and anti-quarks of a given fiavour. There is

the net charge density which simply requires that there be more of one kind (either

positive or negative) of charge carrier in the medium. Note that it is possible to have

a net baryon density and yet no charge density and visa-versa as table (8.1) indicates.

We had deliberately avoided this discussion in the previous section to focus attention

on the mechanism of symmetry breaking. As mentioned in the introduction, we will

assume that there is a net baryon density, which manifests itself solely in the up and

down fiavours of the quarks. As the up quark has a charge of +~ and the down quark

-~; equal densities of both willlead to a plasma with a net electric charge density.

As will become clear during the calculations, the production of a virtual photon, from

the process of Fig. (8.2), depends directly on the electric charge density. The baryon

density merely serves the purpose of generating such a charge density. Hence this
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signal is not present in a plasma with p,u = P,d = P,s, where the net charge is zero.

No. of No. of No. of No. of No. of No. of Baryon Charge

u's u's d's (i's s's s's density density

n n n n n n 0 0

n n 0 0 0 0 0 0

n m 0 0 0 0 (n-m)/3 2(n - m)/3

0 0 n m 0 0 (n-m)/3 (m-n)/3

n m n m 0 0 2(n-m)/3 (n-m)/3

n m n m n m (n-m) 0

n m m n 0 0 0 (n - m)

Table 8.1: Different scenarios of plasmas with different baryon and charge densities.

In the previous section we had treated the diagram (diagrams) almost solely in

QED. In this calculation we will only make the most trivial extension to QCD. It is

to be noted that while the photon is an eigenstate of the charge conjugation operator

C the gluon is not [96]. There are eight gluons, each carrying a colour charge in the

adjoint representation of 8U(3). The sole role played by colour in this calculation

will be to furnish the factor of Tr[tatb] in the Feynman rules. The remaining rule and

subsequent calculation are identical to the case in QED. The reason for considering

this sort of diagram over others is obvious: this is the lowest order effect in the

series, loops with more particles attached will invariably be suppressed by coupling

constants and phase space requirements for may different momenta to sum up to

zero. Also, diagrams with more than two gluons are non-zero in the vacuum itself

and finite density effects may then be a mere excess on top of an already non-zero

contribution.

We will consider cases with almost aH values of the three momentum p of the

photon from zero (maximum timelike) up to almost the energy E of the photon

(almost lightlike). We will consider cases where the quarks will be both massive and

massless. The gluons will, in aH cases, be considered as massless. However, before
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undertaking a complete analysis of the entire parameter space, we feel it wise to

make a swift estimate of the order of magnitude of the dilepton contribution from

this process.

8.3.2 A first estimate.

To calculate the contribution made by the diagram of Fig. (8.2) to the dilepton

spectrum emanating from a quark gluon plasma we calculate the imaginary part of

the photon self-energy containing the above diagram as an effective vertex. As we will

be presenting the complete calculation in the upcoming sections we will not present

calculational details here. The Matsubara sum in this calculation was, however,

performed by an entirely different method to that being presented later. Instead of

the standard technique of contour integration [74], we use the non-covariant method

of Pisarski [76] (see Ref. [97, 98] for complete details).

To simplify the estimate even further, we calculate in the limit of photon three

momentum p = O. The imaginary part of the considered self energy contains various

cuts. We concentrate solely on the cut that represents the process of gluon-gluon to

e+e-. The differential production rate for pairs of massless leptons with total energy

E and and total momentum p = 0 is given in terms of the discontinuity in the photon

self-energy as (see chapter 6, or Refs. [70, 71]),

dR -+ e2 [pf.tPIJ ] - Disc[iTIf.tIJ
] 1

dEd3p (p = 0) = 3(21f)5 p2 - 9f.t1J (p2) ef3E _ 1 (8.9)

The rate of production of a hard lepton pair with total momentum p = 0 at one-Ioop

order in the photon self-energy (i. e., the Born term ) is given, for the three fiavours

as

d~~P(P= 0) = ~~:n(E/2 - Jk)n(E/2 + Jk) + ::4n(E/2)n(E/2), (8.10)

where we have, a five parts in six contribution coming from the up and down quark

sector; and a one part in six contribution from the strange sector.
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As mentioned before, the net baryon imbalance is caused by the valence quarks

brought in by the incoming baryon rich nuclei. The baryon imbalance is thus man­

ifested solely in the up and down quarksector: hence the chemical potential in­

fluences only the distribution function of the up and down quarks. The strange

and anti-strange quarks are produced in equal numbers in the plasma; resulting in a

strangeness chemical potential of zero. The initial temperatures of the plasma formed

at RHIC and LHC have been predicted to lie in the range from 300-800 MeV [64, 77].

For this exploratory calculation we use a conservative estimate of T = 400 MeV. To

evaluate the effect of a finite chemical potential we perform the calculation with two

extreme values of chemical potential J-L = O.IT (lst plot in Fig. 8.3) and J-L = 0.5T(2nd

plot Fig. 8.3) [66]. The calculation, is performed for three massless flavours of quarks.

In this case the strong coupling constant is (see Ref. [99])

61r
Œs(T) = 271n(Tj50MeV)' (8.11)

The differential rate for the production of dileptons with an invariant mass from

0.5 to 2.5 GeV is presented. In the plots, the dashed line is the rate from tree level

qij (Eq. (8.10)); the solid line is that from the process 99 --+ e+e-. We note that in

both cases the gluon-gluon process dominates at low energy and dies out at higher

energy leaving the qij process dominant at higher energy.

8.3.3 A critical review

There are various caveats to the above calculation. Various sections of the calcula­

tion, most notably the quark momentum integrations over each pole configuration

were performed numerically. As the theory considered here is massless, we encounter

various collinear divergences. These were regulated in the numerical integration by

cutting out the offending piece of phase space. This is similar in spirit to the invariant

regulator used in [99,100,101]. The regulating cutoffs have dimensions of energy and

avoid any propagator from acquiring a null denominator. The results from each pole

configuration were calculated independently; with only those containing divergences,
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Figure 8.3: The differential production rate of back to back dileptons from two processes.
Invariant mass mns from 0.5 GeV to 2.5 GeV. The dashed Hne represents the contribution
from the process qij -+ e+e-. The solid line corresponds to the process 99 -+ e+e-.
Temperature is 400 MeV. Quark chemical potential is 0.1T. The second figure is the same
as the first but with I.t = 0.5T

regulated as above. Then the contributions are summed to obtain a regulator de­

pendent result. The calculation is then repeated with ever smaller regulators (i.e.,

smaller pieces of divergent phase space cut out). After a reduction of several orders of

the magnitude the results seem to stabilize to a particular value. Beyond this point

numerical noise ensues: the regulators cannot be made smaller. The results quoted

in the figures above are thus regulator-dependent.

No doubt, the results are encouraging and definitely warrant further study. In the

above calculation, we greatly simplified our task by considering the virtual photon to

be produced at rest and the quarks in the loop to be massless. This inevitably led to

various divergences, which were regulated numerically by simply removing that piece

of phase space. We now make the simplest extension: performing the calculation with

massive quarks. AlI collinear divergences vanish and we are dealing with strictly finite

quantities. The analytic effort may now be extended further (details in the following

sections). We still insist that the virtual photon be produced at rest. In this limit we

obtain the surprising new result of a vanishing contribution. The contributions from

different pole configurations aIl cancel exactly to yield zero.

Arguably, we are witnessing a situation where the calculation of a particular pro-
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cess by two different regulators seems to be inconsistent (one should point out here

that the pilot calculation was mostly numerical, thereby requiring constraints on the

regulators). Such an occurrence is not without precedent: the calculation of the one

loop self-energy of the photon in QED gives different results depending upon the

regulators used. The resolution, in that case, was the observation that there existed

a symmetry in the process that was being respected by one regulator, but not by an­

other. We note that such a symmetry may exist in this case as well. It is weIl know

that Lorentz invariance is broken by a heat bath. In the process we have considered:

that of a virtual photon produced at rest, we note that only boost invariance is bro­

ken, rotational invariance is still manifest. A through examination of the constraints

imposed on this process by rotational invariance will be carried out in the subsequent

section.

8.4 Rotational invariance and Yang's theorem.

The vacuum analogue of the two-gluon-photon process does not exist due to Furry's

theorem. If it did, it would represent an instance of two identical massless vectors

fusing to form a massive spin one object; or alternatively a massive spin one object

decaying into two massless vectors. There exist other such processes not protected by

Furry's theorem, e.g., p -+ '''l''y. Such a process though not blocked by Furry's theorem

is still vanishing in the vacuum. We effectively have a situation where there are two

massless spin one particles in the in state and a spin one particle in the out state,

or vice versa. In such circumstances another symmetry principle is invoked. This

symmetry principle, due to C. N. Yang [102], is based on the parity and rotational

symmetries of the in and out states and will, henceforth, be referred to as Yang's

theorem.

8.4.1 Yang's theorem in vacuum

The basic statement of Yang's theorem, as far as it relates to this calculation, is

that it is impossible for a spin one particle in vacuum to decay into two massless
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vector particles. This statement is obviously also true for the reverse process of two

massless vectors fusing to produce a spin one object and as a result a fermion and

an antifermion combination in the triplet state. This may be understood through

the following simple observation. Imagine that we boost to the frame where the

two incoming vectors (in this case gluons) are exactly back-to-back with their three

momenta equal and opposite. The outgoing vector (the virtual photon in this case)

is produced at rest and eventually disintegrates into a lepton pair. We will now

apply various symmetry operators (parity, rotation, etc.) on both the incoming and

outgoing states. Note that, as we are only interested in strong and electromagnetic

interaction, parity is a good quantum number. If both incoming and outgoing states

are found to be eigenstates of the symmetry operator then they must be eigenstates

with exactly the same eigenvalues, else this transition is not allowed.

We begin the discussion with the parity operator P. We align the z axis along the

direction of one of the incoming gluons. The outgoing or final state is parity odd,

as we know that our final state is the photon, or astate composed of a lepton and

anti-Iepton in the 3 S state. The gluons, on-shell in this calculation, are each parity

odd. We may still construct a parity odd in state via the following method: we label

the possible instates as

IR+;R-), IL+i L-), IL+;R-), IR+;L-).

Where, the IR+; R-) is the state where both gluons are right handed. The IL+; R-)

state indicates that the gluon moving in the positive z direction is left-handed while

that moving in the negative z direction is right handed (we have used the notation

that the + sign indicates the gluon moving in the positive z direction). The parity

operation interchanges the momenta of the two gluons but leaves the direction of their

spins intact. Renee the state IR + R-) - IL + L-) is odd under parity operation.

This implies that only this combination of incoming gluons is allowed by parity to

fuse to form the virtual photon and hence the lepton pair.

We next turn to the rotation operator, 1<. The in state is the state of two gluons;
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the out state may be considered to be either the temporary virtual photon, or the

finally produced pair of lepton anti-Iepton. One may chose either for this analysis;

we decide on the photon as it is simpler. For the in state we use the only state that

is allowed by parity i.e., IR + R-) -IL + L-). This state may be reexpressed as the

action of creation and annihilation operators on the vacuum state as,

(8.12)

Where 10) is the vacuum state. The creation operator ak+ creates a right handed

gluon travelling in the positive z direction. The remaining creation operators have

obvious meanings. The outstate is the photon at rest and thus has the rotation

properties of the spherical harmonies Yi,m(l},4». As the in state has both gluons

either right handed or left handed, the z component of the net angular momentum

is zero. Hence m = 0 in the outstate of the photon.

We will rotate the in-state and the out-state by angle 7r about the z axis and then

about the x axis. The outstate of the photon, mimicking the rotation properties of

Y1,o (e, 4», is an eigenstate of either rotation with eigenvalues +1 and -1 respectively.

Focusing on the in state, we note that rotation by an angle 4> about the axis fi is

achieved by the action of the appropriate operator U(RJJ on the state in question,

U(R~)IR+; R+) = U(R~)ak+ak+IO)

= U(R~)ak+U-l(R~)U(R~)ak+U-l(R~)U(R~)IO). (8.13)

Recalling the action of the rotation operators on creation operators (see Ref. [94]),

i.e.,

U(R~)ak+U-l(R~) = L '])(R~)Rha~,p' (8.14)
h

Where '])(R~)Rh = (RleiJzcPlh) is the rotation matrix for the rotation of the state (in

this case vector). The index h runs over all the possible z components of the spin
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of the particle. The vector p represents the new direction of motion of the particle

after rotation. The action of any unitary operator, such as a rotation, on the vacuum

will result in the vacuum again. Betting <p = 7r we obtain the simple relation for the

action of the rotation operator on the gluon creation operator,

U(RZ)at U- 1(RZ) = ei7rat
7r R+ 7r R+

U(RZ)at U- 1(RZ) = e-i7r at
7r R- 7r R- (8.15)

Using the above it is not difficult to demonstrate that the in state of two gluons is an

eigenstate of R~ with eigenvalue +1. Thus, there is no restriction to this transition,

on the basis of this symmetry.

We now concentrate on rotation by 7r about the x axis. The outstate is an eigen­

state of this operation with eigenvalue -1. Using Eq. (8.14) we note that,

U(RX)at U- 1(RX) = at
7r R+ 7r R-

U(RX)a t U- 1(RX) = at
7r R- 7r R+

U(RX)at U- 1(RX) = at
7r L+ 7r L-

U(RX)at U-1(RX) = at
7r L- 7r L+ (8.16)

One may, thus, demonstrate that the two gluon in state is an eigenstate of the above

rotation with eigenvalue +1,

U(R~) (lR+; R-) -IL+; L-)) = [U(R~)ak+U-l(R~)U(R~)ak_U-l(R~)

- U(R~)al+U-l (R~)U(R~)al_U-l (R~)] U(R~) 10)

= [ak~ak+ - al-al+] 10)

= IR-;R+) -IL-;L+). (8.17)

Thus the in state rotates back to itself. This implies that this transition is not
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allowed by any interaction. Thus, we demonstrate Yang's theorem in the vacuum:

this transition is not allowed

8.4.2 Yang's theorem in media

The above argument for no transition has been formulated for two massless vectors

fusing to a spin one final state in the vacuum. We now intend to extend this to a

transition in the medium. One may argue at this point that the correct method of

analysing this situation would be to start from a particular many body state; invoke

the matrix element of the transition (this would give us the requisite creation and

annihilation operators) and end up in a particular final many body state, i. e.,

(8.18)

(8.19)

This has to be followed by squaring the matrix element and weighting it by the

Boltzmann factor e- f3Ei , where Ei is the total energy of the in state, j3 is the inverse

temperature. Then this quantity must be summed over aIl initial and final states to

obtain the total transition probability per unit phase space for this process as

:P = ~~e-PE'I(n{,n~ .. n!:01 (f d"xH1(xJr In\,n; ...n:,,)!'

The above method though comprehensive, does not allow a simple amplitude analysis

as the case for the vacuum. Such an analysis may be constructed by drawing on

the spectator analysis of loop diagrams. This method is explained in detail in the

subsequent chapter.

The following analysis with spectators may appear to be rather heuristic at times.

The reader not interested in such a discussion may consider the fact that the intro­

duction of the medium formally involves the introduction of a new four vector n into

the problem. If we were to consider the case of dileptons produced back-to-back in

the rest frame of the medium, the results from the vacuum should still hold as in this

case the only new ingredient is a new four vector of the bath (n = (1,0,0,0)). This
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four vector is obviously rotationaHy invariant and cannot in any way introduce rota­

tional non-invariance via dot or cross products with any three vector in the problem.

However, if the two gluons are not exactly back-to-back or equivalently the medium

has a net three momentum, then rotational invariance is explicitly broken. Even if

we were to boost to the frame where the gluons are exactly back-to-back, we would

find the medium streaming across the reaction. The above argument for the valid­

ity of the theorem for static dileptons will now be demonstrated via the spectator

interpretation.

The spectator interpretation of loop diagrams, allows one to reexpress the results

of Feynman diagrams with loops in terms of tree diagrams where one of the legs of

the loops have been opened up to indicate a particle coming in along with the in

state and an identical particle leaving with the out state (see Sect. 9.7). For this

example, the effect of the medium on the transition (to next-to-lowest order) may be

understood as a change in the in-state to include an incoming quark from a particular

quantum state (J. Where, the index (J will be used to indicate aH the characteristics

of the quark in question such as the momenta, spin or helicity, colour etc. The out­

state will also be suitably modified to include a quark emanating from the transition

and re-entering the medium in the same quantum state (J vacated by the incoming

extra quark. That this method indeed represents the process will be borne out by

the actual calculation presented in the next section. In the discussion that follows,

we will keep referring to the original state of two incoming gluons as the in-state,

and the outgoing dilepton as the outstate. The extra particles from the medium that

enter the reaction from the medium or exit the reaction and go back into the medium

will be referred to as 'medium particles'. The full effect of the medium will only

be incorporated on summation of the transition rates obtained by including all such

states (J weighting the entire process (incoming particles --+ reaction --+ outgoing

particles) by appropriate thermal factors for the incoming and out going medium

particles. No doubt, there must also appear thermal factors for the incoming gluons:

but, as for the entire discussion, we will constrain the two gluons to have the same
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momenta, the distribution functions will play no role, and hence have been ignored.

The new total in-states and out-states will now be given by state vectors that look

like,

L (IR+; R-) 10-) - IL+; L-) 10-) -+ IJ*) 10-)) (1 - 2n(Eu )).

In the above equation, we have taken the incoming and outgoing particle from the

medium to be a fermion, as is appropriate in this case. Each state may once again

be obtained by the action of the corresponding creation operators on the vacuum

state. The new additional factors n(Eu) are the appropriate distribution functions,

used in the expressions to indicate particles leaving and entering the medium. The

factor of 1 - 2n(Eu ) may be broken up into two parts as [1 - n(Eu )] - [n(Eu )]. The

first factor represents the distribution function for the case where emission of the

medium-particle into the medium has occurred before its absorption by the process

from the medium. The second process represents the reverse possibility. In contrast

to the states of two gluons and a photon which have been designated as the in and

out states, these particles from the medium are treated rather differently. Unlike the

in and out states, the contributions from these medium states are added coherently,

i.e., one does not square the amplitude and then sum over spins and momenta but

rather the procedure is carried out in reverse. The sum 'Eu, represents integration

over all momenta, sum over spins and colours etc.

Our method of extending Yang's symmetry will involve identifying certain subsets

of the entire sum to be performed, which will turn out to be eigenstates of the rotation

and parity operations to be carried out once more on these states. The argument

will essentially be the following: if we can decompose the entire in and out state into

certain subsets, with each subset being an eigenstate of the symmetry operator with

the same eigenvalue, then the entire in and out states will also be eigenstates with the

same eigenvalues. Then, as for the vacuum process, we will compare the eigenvalues

for the in state and outstate.

To illustrate, we focus on a subset of four terms in the full sum in which one of the
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incoming medium-fermions has a three momentum if. To keep the discussion simple

we pick if to be in the yz plane (the discussion may be easily generalized to include

if in an arbitrary direction). The four processes under consideration are:

[ (IR+; R-) - iL+; L-)) 1if; t) -7 h*) 1cT; t)] (1 - 2ii(Eq,t)) (8.20)

+ [(IR+;R-) -IL+;L-)) 19t~if;t) -7 hr*)I9t~cT;t)](l-2ii(E~iq,t))

+ [(IR+; R~) - IL+; L-)) 19t~if;·!-) -7 11'*) 19t~if;~)] (1 - 2ii(E~~q,.d)

+ [(lR+; R-) - IL+; L-)) 19t~9t~if;~) -7 h*) 19t~9t~if;~)] (1 - 2ii(E~i~~q,+))'

Where, 9t~if represents the three momentum if rotated by an angle 1r about the z

axis, 9t~if represents if rotated about by an angle 1r about the x axis. The arrows

t, ~ represent the z component of the spin of the medium-fermion. As we are in the

centre of mass of the thermal bath we have

(8.21)

Thus we may completely factor out the distribution functions. Without loss of gen­

erality we may combine aU four in states and out states to give,

(IR+; R-) - IL+; L-)) [ 1if; t) + 19t~if; t) + 19t~if;~) + 19t~9t~if;~) ]

-7 11'*) [ 1if; t) + 19t~cT; t) + 19t~if; ~) + 19t~9t~if;~) ] (8.22)

Now, it is simple to demonstrate using the methods of rotation of creation operators

outlined in the vacuum case, that both the in and out states are eigenstates of 9t~.

Concentrating on the rotation of the in state we obtain

U(R~) (IR+; R-) - IL+; L-)) [ 1if; t) + 19t~if; t) + 19t~q;~) + 19t~9t~if;~) ]

= U(R~) (a1;+a1;_ - aÎ;+aÎ;_) U-l(R~)



8: INTERMEDIATE ENERGY DILEPTONS... 136

[ U(R~)a~;tU-l (R~)U(R~ )ak;,ij;tU- 1(R~)U(R~ )akiij;~U- 1(R~)U(R~)ak;j(N;~U- 1(R~) ]

= -i (IR+; R-) - IL+; L-)) [ 19(~q; t) + 19(~9(~q; t) + Iq; t) + 19(~q; t) ] (8.23)

Note that the medium-fermionsjust mix into each other, but the over aH state remains

the same. Following the above method one can show that the outstate is also an

eigenstate of 9(i but with an eigenvalue of i. Thus, we can decompose the entire sum

over spins and integration over the three momenta of the medium-fermions into sets

of states as indicated, each will result in an in state and an out state between which

no transition is allowed. For the rotation 9(~ we note that the eigenstates are in fact

a subset of two states: in this case, the sum of the first two states of Eq. (8.20) are

eigenstates of 9(~; as is the sum of the third and fourth state.

This would imply that such a transition, as implied by the Feynman diagrams of

Fig. (8.2), can not occur. There is however a caveat to the above discussion. Note

that in the vacuum case we expressly boosted to the frame where the two gluons

would be exactly back-to-back with their three momenta equal and opposite. Then,

rotational symmetry was invoked to demonstrate the impossibility of this transition.

In the case of the processes occurring in medium, we tacitly began the analysis with

the two gluon once again exactly back-to-back in the rest frame of the bath. It is

perhaps no surprise that our results from the vacuum still hold as in this case the

only new ingredient is a new four vector of the bath (1,0,0,0). This four vector

is obviously rotationaHy invariant and cannot in any way introduce rotational non­

invariance via dot or cross products with any three vector in the problem. However,

if the two gluons are not exactly back-to-back or equivalently the medium has a net

three momentum, then rotational invariance is explicitly broken. Even if we were

to boost to the frame where the gluons are exactly back-to-back, we would find the

medium streaming across the reaction. This would make the distribution functions of

the two gluons different (even though in this frame they have the same energy), Eq.

(8.21) would no longer hold. As a result it will not be possible to construct eigenstates

of the rotation operators 9(~ and 9(~ as done previously. As the in and out states
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will no longer be eigenstates of ~~ and ~~ with different eigenvalues, transitions will,

now, be aHowed between them.

In the above discussion, we have demonstrated how the medium may, once again,

break another symmetry of the vacuum; in this case rotational symmetry. This

aHows the transition of Fig. (8.2) to take place in the medium. This process is

strictly forbidden, in the vacuum, by two different symmetries (charge conjugation

and rotation). It is forbidden in the exact back to back case by rotational symmetry

in a C broken medium. We thus resolve the inconsistency at the end of the previous

section. The results derived using the numerical regulator, which leads to the plots is

incorrect. The effect is zero for il = O. To obtain a non-zero contribution, rotational

symmetry has to be broken by a net p. The magnitude of the signal from such a

symmetry breaking effect may only be deduced via detailed calculation. In the next

section we shaH outline just such a calculation.

8.5 The two-gluon-photon vertex at J1 -=1- 0 and fi -=1- 0

We begin by first writing down the Feynman mIes for the two-gluon-photon vertex.

We use a slightly different momentum routing from that illustrated in Fig. (8.2).

The two vertices for the general case of massive quarks is:

(8.24)

(8.25)

rr/LpV_ -1/ d
3
q ~T [. s:. /L i(~+ p+m). G P

j - f3 ()3 L,; r 'leu~kl ( )2 2'lgtkJ127f n q + P - m

i(~+ Jé+m). t b vi(~+m) ]x 'lg "1(q+k)2-m2 J~ q2_ m2

Where the trace is implied over both colour and spin indices. Though not explicitly

elucidated above the zeroth components of each four momentum is a discrete even or
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odd frequency, i.e.,
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where n, m, j are integers, J-l is the quark chemical potential. The overall minus

sign is due to the fermion loop. The sum over n runs over aH integers from -00 to

+00. This sum may be performed by two distinct methods: the method of contour

integration [74], the method of non-covariant propagators [73]. Each method is more

advantageous in certain cases. We will evaluate the above and other expressions by

both these methods. Presently, we use the method of contour integration to evaluate

Eq. (8.24).

We separate the momentum dependent and mass dependent parts of the numer­

ators of Eqs. (8.24,8.25) i.e.,

(q2 _ m2)((q _ k)2 _ m2)((q _ p)2 - m2)

+ 2 2!/LOVPqo + 2!/Lv{3P(q - k){3 + 2!/LVfYY(q - p)"{ ]
m (q2 _ m2)((q _ k)2 _ m2)((q _ p)2 _ m2 ) (8.26)

(q2 _ m2)((q+ k)2 _ m2)((q +p)2 - m2)

+ m2 2!/LOPV(q + p)o + 2!/Lp{3V(q + k){3 + 2!/LPV"{q"{ ]
(q2 _ m2)((q + k)2 _ m2)((q + p)2 _ m 2 ) (8.27)

Where 2!/LVfYY represents the trace of four ry matrices and ryJ/Lov{3fYY represents the trace

of six ry matrices. Employing the methods of residue calculus, the sum over n may be

formally rewritten as a contour integration over the infinite set of contours Cl (See

Fig. (8.4) )i.e.,
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(8.28)

O} ni(3)1' +~l

O.J ni(l)1'W

O} ni(-1)1'#
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Figure 8.4: The contours used to evaluate the Matsubara sum with a finite chemical po­
tentia1. See text for details.

The contours Cl may indeed be deformed to those of C2 (see Fig. (8.4)). These

are a set of two linear contours meeting at ±ioo, one from qO = -ioo + J-L + E -+ qO =

ioo + J-L + E, and another from ioo + J-L - E -+ -ioo + J-L - E. Here, and henceforth

in aH discussions of contours, residues and analytic continuations, E will represent a
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vanishingly small quantity. We can now proceed by the method of [74] and separate

a vacuum part, thermal part and a pure density contribution. Instead, we introduce

another set of contours along the y axis from qO = -ioo + E -7 qO = ioo + E and

from ioo - E -7 -ioo - E. Admittedly, as E -7 0 this contour will produce a vanishing

contribution. The integrand in Eq. (8.24) has six powers of qO in the denominator

and only three in the numerator. Hence it vanishes faster than a linear term as

qO -7 00. This quantity thus obeys Jordan's Lemma and we may connect the two

integration contours around 0 and /1 by line segments at ±ioo. These line segments

shown as curved lines in the third contour of Fig. (8.4) will have zero contribution

to the entire integral. The total contour thus obtained is referred to as C3 . We now

split the integrand into two, one piece for all the contours on the positive of the x

axis denoted as Cg, one piece for the sole contour on the negative side of the x axis

denoted as cg, i.e.,

T 1 1 (1 ) 1 r-
iOO

-
E

( 1 1)
2Jri lC

i
dqo f(qO)"2f3tanh "2 f3 (qO - /1) = 2Jri JiOO-EOb dqo f(qO) -"2 + e(3(J.t-qO) + 1

3

+~ (jiOO+E + r-iOO+/.l-
E+ jiOO+/.l+E) dqo f(qO) (~ _ 0-

1 ) . (8.29)
2Jr~ -iOO+E JiOO+/.l-E -iOO+/.l+E ca 2 e(3(q /.l) + 1

3

We now separate the terms into a vacuum piece and a matter piece, note the

similarity between this and the zero density separation. In this procedure, we differ

from the standard method [74] in not extracting an explicit finite density piece. The

main reason for the extra contour deformation is to obtain the final answer in a form

from whence the special situation of zero density will be obvious. In this spirit, we

now reverse the direction of integration in cg and note that the vacuum piece has no

poles at i(2n + 1)JrT + /1. Thus the contours in the vacuum term may be allowed to

overlap by setting E = O. We obtain
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(8.30)

We now let E -t 0 on the contours on the positive side of the x axis. This procedure

will deform the two linear contours at fJ ± E back to the small circ1es around the

points i(2n + l)1TT, this part will become similar to the initial contour Cl' The rest

of the contour can be closed by including the infinite arc in the qO = +00 direction

in the clockwise sense. This multiply connected contour is indicated as C4- Cl and

displayed on the right of the fourth plot in Fig. (8.4). The linear contour on the

negative side may be c10sed off as always by the infinite arc extending to qO = -00.

This is indicated as cg and shown as the left contour in the fourth plot of the figure.

The contour integration over either contour may be replaced by the sum over all

the residues at aU the poles enclosed by the contour. We note that the poles at

i(2n + l)1rT + fJ, exc1uded by the multiply connected contour, are not to be included

in the sum over residues. Thus our final, formai result is,

2

T
. 1 dqo f(qO)-2

1
(3 tanh (-2

1
(3(qO - fJ)) = -2

1
.jiOO dqo f(qO)

1r'l JC1 1r'l -tOO

- L B(-wi)Res.[f(qO)] {3( O~) t
. e -q Jl + 1 °
~ q =Wi

+~ 8(Wi)ReS. [f (qO)] eI'(q"-~) + 1L=.. (8.31)

We may substitute the full integrand in Eq. (8.24) to obtain the result of contour

integration as

<JJlVP _ {_1 jiOO dO,", [B(Wi) B(-Wi) ] }
- 21ri -ioo q + 7 e{3(qO-Jl) + 1 e{3( -qo+Jl) + 1

eg2c5bC! d3q [ œJlVP qa(q _ k){3(q _ ppx -- --Res Tt -:--:__~..:.:ac:....{3'Y!...--__~c:-:-.,--...:.--.,..-_---:c:-
2(3 (21r)3 . (q2 - m2)((q - k)2 - m2)((q - p)2 - m 2)

gJlV(q _ P _ k)P + gJlP(q _ k + p)V + gVP(q + k _ p)Jl ] 1

+ 4 (q2 _ m2)((q _ k)2 _ m2)((q _ p)2 _ m2) qO=Wi' (8.32)

A similar contour analysis as above may be performed for Eq. (8.25), with the

added extra step of setting qO -t _qO, il -t -if. This procedure will produce a
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final contour of integration which is a mirror image of 0 4 . There will, once again,

be an infinite semicircle extending to +00 connected with the line running from

-ioo+E -+ ioo+E. There will also be an infinite semicirle extending to -00 connected

to the vertical line running on the negative side of the x axis. This contour will

however be multiply connected with the poles at -i(2n + l)7rT - J.1 excluded from

the region bounded by the infinite semicircle. As before these poles shall be excluded

from the sum over residues. Following this procedure, we obtain the result of the

contour integration for Eq. (8.25) as,

(8.33)

Note, that the vacuum term is at least naively linearly divergent and thus the shift

in momentum integrations may not be performed as above. However, from Furry's

theorem we know that the sum of the vacuum terms from Eqs. (8.32) and (8.33) must

be identically zero. Aiso note that the presence of the thermal distribution functions

over quark momenta renders these integrals ultra-violet finite. Quark momentum

shifts are thus definitely allowed for the thermal parts of Eqs. (8.32,8.33). Hence,

We ignore the vacuum pieces and combine the matter pieces of both terms to obtain
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We find, as wouid have been expected, that the entire contribution is proportional

to the difference of the quark and anti-quark distribution functions. We denote these

as D..n(qO, J1.)(= e!3(qo':")+l - e!3(qO~")+l)' The residues will be evaluated at the various

poles of the integrand. A close inspection of Eq. (8.34) indicates that there are three

poles on the positive x axis at,

qO = Jq2 + m 2 = Eq

qO = Jlif - kl 2 + m2 + kO= Eq- k + kO

qO = Jlif - 151 2 + m 2 + pO = Eq_ p + pO.

and three on the negative x axis,

qO = _Jq2 + m2 = -Eq

qO = -Jlif - kl 2 + m 2 + kO= -Eq- k + kO

qO = -Jlif - 151 2 + m 2 + pO = -Eq_ p + pO.

(8.35)

(8.36)

(8.37)

(8.38)

(8.39)

(8.40)

We denote the residue at each of these poles as Residues (1-6). Before evaluating the

function at each of these residues, we consider the fate of the remaining imaginary

frequencies in the expressions kO,pO. The even frequency kOalso has to be summed in

similar fashion as qO. The external photon frequency pO will have to be analytically

continued to a general complex value and finally the discontinuity of the full self­

energy across the real axis of pO will be considered. We perform this procedure in the

next section.

8.6 The photon self-energy and its imaginary part

We are now in a position to calculate the contribution made by the diagram of Fig.

8.2 to the dilepton spectrum emanating from a quark gluon plasma. To achieve this

aim we choose to calculate the discontinuity of the photon self-energy as represented
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by the diagram of Fig. 8.5 across the real axis of pO. In the previous section we wrote

down expressions for T/oWP(p, k,p - k) i.e., the vertex with the the two gluon energies

entering and the photon energy leaving. To write down the expression for the full

self-energy we also need expressions for T'/.LVP( -p, -k, k - p) i.e., the vertex with the

photon energy entering and the gluon energies leaving. This vertex also admits a

decomposition into two pieces for quark number running in opposite directions,

The Feynman rule for T'/.LVP is given as

(q2 - m2)((q + k)2 - m2)((q + p)2 - m2 )

+ 2(w'(vPq-y + 2(ltvj3P(q + k)j3 + 2(ltvPO(q + p)o ]
(q2 _ m2)((q + k)2 - m2)((q + p)2 - m 2)

(8.41)

(8.42)

A close inspection of the traces of four and six 1 matrices allows us to derive the

following identities:

(8.43)

(8.44)

(8.45)

(8.46)

In each equation above the first equality uses the fact that the trace of n 1 matrices in

a particular order is the same if the order is fully reversed (or alternatively if mirror

image of the order is used). The second equality uses the cyclic properties of the trace

to put ,it at the start in each case. Substituting the above identities in Eq. (8.42),

we may easily demonstrate that 'J'ltVP = 'JIJ.pv. We may also easily demonstrate that



8: INTERMEDIATE ENERGY DILEPTüNS... 145

'J'fJ.PV = 'JfJ.vP. Thus we obtain the simple relation that the expression for either vertex

is the same,

T'fJ.VP( -p, -k, k - p) = TfJ.VP(p, k, p - k) (8.47)

Implementing the above simplifications we may, formally, write down the full

expression for the photon self-energy as,

. d3k
iIlfJ.V(p) = ~ t:J(2n)3 iT'/WY(-p, -k, k - p)'Dp«(k)iTv({j(p, k,p - k)'D{j"((p - k)

= ~ t:1(~:j3 iT""'(P, k,p - k)1)p«(k)iTv
(' (p, k,p - k)1),,(p - k). (8.48)

The diagram that we are considering is that of the upper figure in Fig. (8.5). We

2

Figure 8.5: The Full photon self-energy at three Ioop and the cut that is evaluated.

perform this calculation in the Feynman gauge for the gluons, thus

(8.49)
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In order to calculate the differential rate of back to back dileptons we need to evaluate

the discontinuity of the photon self-energy, as was elucidated in the preceding chapter.

This involves, first, converting the surn over discrete kO frequencies into a contour

integral over a cornplex continuous kO, as was done for qO. This would be followed by

the evaluation of the contour integral by surnrning over the residues of the integrand

at each .of the poles of kO. Finally we look for poles and branch cuts in this expression

in terrns of pO by analytically continuing pO onto the real axis. There are rnany poles in

kO for which we have to evaluate residues. Sorne of these poles are in the denorninators

of the gluon propagators, while sorne are in the vertices TJ.!vp, T'J.!vP. As the residues at

each of these poles is analytically continued in pO frorn a discrete irnaginary frequency

to a cornplex nurnber and finally to a real continuous energy, various branch cuts in

will appear. These are branch cuts of the self-energy as a funetion of pO on the real

line of pO. Evaluating the residue of a function at a particular kO, essentially rneans

rernoving the pole and substituting that value of kO in the rernaining expression.

This changes the analytic structure of the entire function in terrns of kO. When we

are looking for discontinuities in pO, we will essentially return to the residues that

we evaluated, recall that we have not perforrned the d3k or d3q integrations, at this

stage the branch cuts on the real pO axis are rnanifested in the expressions which will

encounter poles in the d3k or d3q integrations as pO -+ E + if. The presence of the

if will allow each integrand to be unarnbiguously broken up into a set of principle

values and irnaginary parts. Twice the integral over the irnaginary parts will give us

the required discontinuity.

This procedure is throughly expanded upon in the next chapter for two-loop self­

energies. For our present purposes, we note that to obtain the diseontinuity we have

essentially chosen a pair of poles in the expression, and evaluated the residue at the

pole in the dko integration and twice the irnaginary part at the pole in the d3k, d3q

integration as pO -+ E + if. Eaeh sueh eornbination constitutes a 'eut' of the self

energy or a part of a eut of a self-energy. A cut is represented as a hne drawn

aeross the self-energy, through the objeets (propagators, vertices) whose poles were
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(8.50)

chosen to constitute the cuts. Which exact propagators inside a vertex, the cut line

passes through will be set by the energy momentum delta functions obtained from

the residue and discontinuity procedure. Suffice to say that a cut line necessarily

cuts a self energy diagram into two disjoint pieces. If we denote the feynman rule

for one of the pieces as Ml and the other by M2 then this particular discontinuity of

the self-energy gives the Feynman rule for M2M I or MiM2. If the cut is symmetric

i.e., Ml = M2 , then we obtain the square of the amplitude for the process IM1 1
2 . For

this calculation we are solely interested in the square of the amplitude of the process

shown in the lower diagram in Fig. (8.5). Our preceding discussion indicates that this

will be given by the cut line indicated in the upper diagram. This is a new process

of gluon gluon fusion to produce a heavy photon resulting in a dilepton. This is an

entirely new process which has never been discussed before. The other cuts represent

extra finite density contributions to processes already non-vanishing at zero density.

The above discussion indicates that we merely have to look for poles in the de­

nominators of the gluon propagators. The denominators are

1 1 1 1
k 2 p2 (kO- k)(kO+ k) (kO- pO - Ep_k)(kO- pO + Ep- k)

Where Ep - k = If - fi· The kO integration will encounter four possible poles at

kO = ±k, and kO = pO ± Ep- k Where the discontinuity in pO will result will depend

on which pole of kO is chosen. AU choices will not lead to the desired process.

We begin evaluating the residue of the remaining integrand at the pole kO = k.

At this pole the remaining denominators are

1 1 1
2k po - k + Ep-kPo - k - Ep- k '

On analyticaUy continuing pO we will obtain two possibilities: pO = E = k + Ep- k or

pO = k - Ep - k . The second pole willlead to the photon invariant mass E2 - p2 < 0

i. e.a space like photon, we ignore this cut. Substituting the first value for pO, we

obtain the discontinuity of the self energy at E = k + Ep- k . This turns the gluon

denominators into
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1 1
-i1ro(E - k - Ep - k )---.

2k Ep - k

Evaluating the residue at kO = -k, we obtain the remaining denominators as
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1 1 1
-2k _po - k - Ep - k _po -.k + Ep - k '

This leads to possible values for pO = -k - Ep - k or Ep- k - k, one leads to a nega­

tive energy and the other to a spacelike invariant mass, thus we ignore this kO pole

altogether.

Evaluating the residue at kO = pO + Ep- k , we once again obtain a negative energy

or space like photon and thus this residue is ignored as weIl. The final residue is at

kO = pO - Ep - k . This leads to possible discontinuities at pO = E = k + Ep - k and

Ep- k - k. The second possibility leads to a spacelike photon and is ignored. The

first gives a time like photon with positive energy and thus is included in the cuts

considered. This set of choires turns the gluon denominators into

1 1
-i1ro(E - k - Ep- k )---­

2k -2Ep- k

Thus, in performing the sum over the Matsubara frequencies kO we will only confine

our selves to two poles: one on the positive side of the real axis at kO = k, this will

be a residue of the semicircular contour on the right hand side; one on the negative

side at kO = pO - Ep - k , this will be a residue of the semicircular contour on the left

hand side. As would have been noted, we are now precisely following the method

prescribed in chapter 3 of Ref. [74]. In the first pole we will analytically continue pO

to E = k +Ep- k ; in the second pole we will analytically continue pO to E = k +Ep- k

leading to a

Thus in the rest of the expression we will simply replace kO --t k and use the appro­

priate distribution functions in each case depending on whether the initial kO pole
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was on the positive or negative side. Then we will use the delta function to set the

value of k. The results of this procedure as well as the final expressions and their

properties will be discussed in the next section.

8.7 The calculation

In this section we evaluate the particular cut of Fig. (8.5) of the three loop photon

self-energy. Focusing on the two poles of kO highlighted in the preceding section and

performing the associated analytic continuation of pO we obtain the discontinuity in

the photon self-energy as

D· IIJ.!v - J d
3
k TJ.!P'Y(E k E )9p(TV (b(E k E ) 9b'Y

ISC - (21r)3 ' , p-k 2k ' , p-k 2E
p

-
k

X [~+ e
f3
/-1] (-1)( - 21rib(E - k - Ep - k ))

J d3k TJ.!P'Y(E k E )9p(TV (b(E k E ) 9b'Y
- (21r)3 ' , p-k 2k ' , p-k 2E

p
-

k

X [~+ e/3(-Ep~k) _ J(-1)( - 21rib(E - k - Ep- k ))

(8.51)

Combining the gluon distribution functions and using the relation Ep - k + k = E, we

obtain

D· IIJ.!v - J d
3
k TJ.!P'Y(E k E )9p(Tv(b(E k E ) 90'Y

ISC - -()3 ' , p-k -k ' , p-k E21r 2 2 p-k

X (e f3E
- l)n(k)n(Ep _ k ) (21rib(E - k - Ep- k )) (8.52)

To obtain the difIerential rate for dilepton production we need the quantity

r = [pp;v - 9J.!v] Disc[-iIIJ.!V]. We substitute the expression for Disc[IIJ.!V] and note

that the intervening factors of the metric as well the factor Pp;v - 9J.!v may be obtained

from the sum over the polarizations of the gluons and the photon i. e.,
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I>:p(k)CiÇ(k) -+ -gp(
i

:E clp; (p)cÎ)p) = Pp;~v - gp,v
1 p

Substituting the above relations into r, we obtain
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(8.53)

(8.54)

(8.55)

Introducing factors of 21T and extra delta functions we may formally write the above

as a straightforward kinetic theory equation,

(8.56)

Where Mi,j,l is the matrix element for two gluons in polarization states i, j to make

a transition into a photon in a polarization state 1. The entire process is weighted

by the appropriate thermal gluon distribution functions and has the usual energy

momentum conserving delta function.

In this ca1culation both gluons are massless; thus they have only two physical

polarizations. For a gluon travelling in the positive z direction, these are,

0 0

1 1 1 1
é"-- c~ = J2+ - V2

'/, -'/,

0 0

The photon being massive has an extra polarization c~. For a massive photon with

energy E and three momentum p travelling in the positive z direction this is ,
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p

o
o
E

151

Using these polarization vectors, the matrix elements may be easily expressed.

Recall that in the evaluation of TJLVP we had performed a contour integration over qO

an obtained six residues. We did not elucidate the residues at the time, as we still

had two complex frequencies, kO and pO, in the expressions. Before we provide the

expressions for these quantities we note the following relations between them, noted

during the calculation and subsequent contraction with the polarization vectors,

MiJ'+ = MiJ'- = 0" , ,

i. e., there is no contribution to the transverse modes of the photon.

M+,_,j = M_,+,j = 0

(8.57)

(8.58)

as expected (and pointed out before), both gluons have to arrive with the same

polarization, i. e., either both must be right handed or both left handed.

We are now in a position to write down the various matrix elements M. Recall

that in the initial qO contour integration, there were six poles at which residues were

calculated. As a result we have six matrix elements one from each residue. We

did not present the results of the contour iritegration at that point as many angular

integrations, and imaginary frequencies remained. Thus, performing aIl the angular

integrations, frequency sums and contractions with polarization vectors, the results

are:
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_1 dqq2.6.n(Eq , p,) [32 7r m2p (4 q2 - p2 + E2+ 4 m2) In(l-vq2 + m 2 + ql)
- (27r)3Eqlpl [(E - p)2 - 4(q2 + m2)] [(E + p)2 - 4(q2 + m2)] q

_ 32 -:-;7r-:-:m_
2
_p_(:-::4_q_2_--;-p-;:-2_+_E_2::-:-+-;;-:-:-4_m_

2
:.-)-:ln.."..(:.-v_q_2;-+:::--m_2 -:+:-:-cq-:--...)

[(E - p)2 - 4(q2 + m2)] [(E + p)2 - 4(q2 + m2)] q

7r m 2 (E - 2V q2 + m2) In(I-1/2 E2+ 1/2 p2+ EVq2+ m 2 - qpl)
- 16 -----'---r~--,::-~;;:::::=:::;;'\1::-;~==:;;----:::::-_:_~--"'­

q (E + P - 2J q2 + m2) (2 Vq2 + m2 - E + p)

7r m 2 (2 Vq2 + m 2 + E) In(I-1/2 E2+ 1/2 p2 - EJq2 + m 2 - qpl)
+ 16 ------'-----r-=-~==~~:--~r:--;:::;:==::::;-----==__~---'­

q (-2 Vq2 + m 2 - E + p) (2 Vq2 + m2 + E + p)

7r m2 (E - 2Vq2 + m2) In(\-1/2 E2+ 1/2 p2+ EJq2+ m2 + qpl)
+ 16 -----'---r~--,::-~;;:::::=:::;;'\1::-;~==:;;----:::::--~--"'­

q (E +P - 2Vq2 + m2) (2 V q2 + m 2 - E + p)

_ 16 1f m' (2 Jq2 + m' + E) ln(!-1/2 E' + 1/2p' - EJq' +m' + qplJ]
q(-2Jq2+ m2_E+p) (2Jq2+ m2+E+p)
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(8.60)

(8.59)

Where, for obvious reasons we have chosen p in the z direction. In the interest of

simplicity, we have limited the k to also be only along the z direction. Thus we will

not be performing the angular integration on d3k. Thus we will be concentrating on

the virtual photon produced only by back to back gluons of unequal momenta, and

will eventually compare with the rate of production from only back-to-back quarks of

unequal momenta. We are thus breaking Yang's symmetry by the introduction of a

net three momentum p. The above expression gives the appearance of being plagued

with singularities, however, on expanding around each of the singularities, we note

that aIl of them cancel between the six terms. There is still the dq integration to be

performed, this is done numericaIly.

The differential production rate for pairs of massless leptons with total energy E

and and total momentum p = (0, O,p) is given in terms of the discontinuity in the

photon self-energy as (see chapter 6)

dR e2 r 1
d4p 3(27r)5 (p2) e(3E - 1

As we have limited the gluons to be back-to-back with one of them parallel to the
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direction of the virtual photon, we are not performing the incoming angular integra­

tion. Thus we calculate the derivative of the above mentioned rate with respect to

the incoming gluon angle, i.e.,

e2 dr

3(21r)5(p2) [e~E - 1] drtk
(8.61)

Where r = [PI':;u - gtw ] Disc [-iTII-lII]. The three momentum p, chosen in the z

direction.

As mentioned before, temperatures in the plasma formed at RHIC and LHC have

been predicted to lie in the range from 300-800 MeV [64, 77]. For this calculation,

we use a T = 400 MeV and 800 MeV. To evaluate the effect of a finite chemical

potential we perform the calculation with two extreme values of chemical potential

jj = O.lT (left plot in Fig. 8.6) and jj = 0.5T (Right plot in Fig. 8.6) [66]. This

calculation, is performed for two flavours of quarks, with current masses.
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C 10-7 C 10-1 l-0 -0
w -1 w ---1
-0 -0
0-

10-5 1 nO- 10-B 1U Cl

"'- 1 "'- 1 "Cl: 1 Cl: 1

1
-0 10-9 -0 10-9

1 1
1 1
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1 10-10

1
1 1

10-11 1 10-11 1
1 1

10-12 1
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1

480 485 490 495 500 480 485 490 495 500
P (MeV) p (MeV)

Figure 8.6: The difIerential production rate of low mass dileptons from two back-to-back
processes. Invariant mass runs from 30 MeV to 0 MeV. The energy of the dilepton is
E = 500MeV, and the abscissa is the three momentum p. The dashed Hne represents
the contribution from the process qij -t e+e-. The solid Hne corresponds to the process
gg -t e+e-. Temperature is 400 MeV. Quark chemical potential is 0.1T. The second figure
is the same as the first but with jj = 0.5T

In Fig. (8.6), the differential rate (Eq. (8.61)) for the production of dileptons

with an invariant mass from 0 to 140 MeV is presented. The energy is held fixed at

500 MeV and the three momentum p of the dilepton is varied. In the figures, the
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dashed line is the rate from tree level qij (Eq. (8.10)); the solid line is that from the

process 99 -+ e+e-. We note that in both cases the gluon-gluon process dominates

at very low mass and dies out at higher mass leaving the qij process dominant at

higher mass or lower momentum. The Born term displays a sharp cutoff at photon

invariant massl\!! = V2mE. The back-to-back annihilation of two massive quarks

(of mass m.) to form the virtual photon of energy E and invariant mass M is no

longer kinematically allowed. AIso, the annihilation of a quark anti-quark pair to

form a dilepton is not allowed for any incoming angle for dileptons with an invariant

mass M < 2m. The gluons being massless, continue to contribute in this region:

this contribution is shown in the right panel of Fig. (8.7). They are thus the main

signal at very low invariant mass and intermediate dilepton energy. In Fig. (8.7), we

indicate the influence of a higher plasma temperature on the rates. Here, a plasma

temperature of 800 MeV and p, = 0.5T is used; the left panel displays the rates below

the Born term threshold and the right panel displays the rates above threshold. We

note in the left panel of Fig. (8.7), as expected, that the gluon fusion term rises

further due to thermal loop enhancement. In the right panel we note that the rates

for 99 -+ e+e- continue to rise due to the growing distribution functions for soft

gluons.

480 485 490 495
P (MeV)

500 499.6 499.7 499.8 499.9
P (MeV)

500.0

Figure 8.7: Left panel is same as Fig. (8.6) but with a temperature of 800 MeV. Quark
chemical potential is 0.5T. Right panel is the rate of 99 --+ ée- beyond the Born term
threshold.
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However, the overall magnitude of the gluon gluon fusion term is rather small

compared to the Born term at comparable invariant masses. Thus, this process

may be completely masked at large invariant mass by the Born term in equilibrium

plasmas, but it is certainly worth additional scrutiny.

8.8 Summary and discussions

In this chapter we have performed a calculation to estimate the effects of a non-zero

quark chemical potential on the intermediate mass dilepton spectra. We have found

that a new set of diagrams may become important at finite temperature and finite

density. These diagrams lead to a new contribution to the photon self-energy at the

3-loop order. There are various cuts to this diagram. Most of these result in finite

density contributions, and/or higher order excess contributions to weIl known pro­

cesses. One of the cuts however represents an entirely new process. The contribution

of this diagram to the differential production rate of back-to-back (1P1 = ato 1P1 -+ E)

dileptons is estimated. This is then compared with the contribution emanating from

the tree level process of qij annihilation. The rate from this new process is found to

be comparable and even larger than the simple tree level rate at low invariant mass.

One possible reason for this large magnitude could be that the gluon-gluon diagram

is enhanced by the Bose-Einstein distribution function of the gluons. AIso, due to

the Born term threshold at twice the quark mass, there is no contribution from the

Born term for invariant masses below this limit. The finite density contribution from

two gluon fusion may become the most dominant contribution in this regime.

These results demonstrate the importance of these finite J1, processes on the dilep­

ton spectra emanating from a quark gluon plasma with a quark-antiquark asymmetry.

It is simple to note that this diagram is most sensitive to gluon number. The early

stages of the plasma have been predicted to be gluon dominated [103]. The contri­

bution from this diagram should clearly shine in such an environment.

The treatment in this thesis is rather exploratory, and will be improved upon. Our
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goal here was simply to estabHsh the existence of a signal. One may have desired, for

example, that the calculation be extended to arbitrary p. Rowever, similar extensions,

even in the RTL approximation, are known to be rather involved (1041. There are

also the other cuts which have yet to be computed. Most of these diagrams also

suffer from the defect of having an internaI Hne which may go on shell. The bare

propagators will have to replaced by resumed RTL propagators, in the event that

the momentum flowing through it becomes very small, or close to on shell. These

aspects, along with others, will be addressed in upcoming work.
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HIGH MASS DILEPTONS AND MASS DIVERGENCES

9.1 Introduction

In the final chapter of this thesis, we move our attention to high energy dilepton

production i.e., the energy of the virtual photon E »T. Far enough in this

regime, the hard thermal loop effects of chapter 7 and the finite density effects of

chapter 8 have become negligible. By now, one might expect, that the Born term has

achieved the stature as the most dominant, thermal contribution from the plasma

by far. This picture may be upset by yet another possibility. The energy of the

dilepton and as a result the scale of the processes under consideration is much higher

than the temperature, which in turn, is much higher than the mass of the quarks m

involved. If, in the expressions for higher order contributions, m were to appear in a

denominator or as the argument of a log, higher order contributions would be greatly

enhanced. If m were set to zero in such an expression, one would, no doubt, obtain

an infinite expression. This is referred to as a mass divergence.

Physically, such a condition is realised in a collinear emission or absorption pro­

cess involving only massless particles. This is to be distinguished from the infrared

divergence, encountered in the emission or absorption of massless gauge particles

(photons, gluons) from massive or massless fermions. Such divergences are present in

most individual diagrams that together constitute the contribution to a process at a

given order. In vacuum processes in QED, with or without electron mass, such diver­

gences are present in individual diagrams. They however cancel order by order, when

157
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all the different diagrams at a given order in the coupling constant are summed. This

may be demonstrated by explicit proof [106, 107, 108]. A general theorem has also

been deduced, that indicates the cancellation of such divergences in the evaluation

of physically measurable quantities (the Kinoshita, Lee, Nauenberg (KLN) theorem

[109, 110)).

The question of whether these results may be generalized from QED to QCD,

from vacuum to thermal calculations; and if so how such a generalization may be

realised, has led to a lot of theoretical activity. It may even be true that thermal field

theories introduce an entirely new brand of divergences not present in the vacuum

theory [111] (see also Ref. [74)). The explicit diagramatic cancellation fails for a

class of NNL01 processes in QCD [112]. However, the NL02 (and obviously LO)

e+e- annihilation to hadrons has been shown to be both collinear and infrared safe

(see Ref. [113)). Note that this vacuum process is very similar to just the reverse of

dilepton production from a QGP. The difference lies in the mere absence of thermal

factors. The infrared and collinear singularity, behaviour of dilepton production at

NLO or two loops will involve our attention in this chapter.

There is also another reason for exploring this problem. The reader may have

sensed a rather sudden transition to three loops or NNLO dilepton production in the

previous chapter. This became necessary to allow one to traverse the, dilepton, energy

spectrum, in ascending order. There we chose to concentrate on only one cut of the

entire self-energy and stified discussion regarding the variety of other cuts. Such will

not be the case here: the massive vector self-energies at two loops will be throughly

examined. Each cut will be ascribed a physical interpretation. The imaginary parts

of these retarded self-energies represent extremely important quantities in thermal

field theory. They provide information about various quantities of physical interest

in the medium. Primary among these are the decay and formation rates of particles

[114]. Boson self-energies provide information about quantities like Z decay rates

1 Next ta Next ta Leading Order
2 Next ta Leading Order
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[101], and as is the case in this thesis, the production rates of dileptons and real

photons [115] from a quark-gluon-plasma (QGP). Thus a physical understanding of

the various cuts may aid in our understanding of these processes.

The possibility that a divergence may arise in NLû dilepton production was ex­

plored previously using various methods. First, among these was the calculation by

Baier et al. [116]. This included reactions like three particle fusion (qijg -+ ')'*), Comp­

ton scattering (qg -+ q')'* or ijg -+ ij')'*), pair annihilation (qij -+ g')'*), Born term with

vertex correction, and Born term with quark or antiquark self-energy correction. This

calculation was performed in the real time formalism, both in a Feynman diagram

approach in thermo-field dynamics, and by taking the imaginary part of the two loop

photon self-energy. In the case of massless QCD, each of the contributions mentioned

above contain infrared or collinear singularities. These were regulated at intermediate

stages of the calculation by giving masses to the quarks and gluons. The combined

rate from aH these processes was then found to be free of aH divergences in the limit

of vanishing masses. This calculation was also performed simultaneously by another

group [117], who dimensionaHy regularized the singularities at intermediate stages of

the calculation. The end result remained the same: when aH the different processes

were summed, the divergences canceHed and dilepton rate at next-to-Ieading order

remained finite.

However, recently, the calculation was repeated yet again [99, 101]. This time

employing a multiple scattering expansion obtained by reorganizing cuts with loops

in terms of incoming and outgoing particles with the same quantum numbers [118].

In the foHowing, we will show how such an expansion may result in sorne cuts of the

two-Ioop photon self-energy. These authors found the surprising new result that the

divergences do not cancel when the various physical contributions to the NLû rate

are summed. A remnant collinear divergence remained. The regulator, in this case,

was a minimum virtuality of internaI propagators, which tended to become singular.

The virtuality may be time-like or space-like depending on the process in question.

A number of observations are in order here. The processes are limited to the region
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where the dilepton mass is much larger than the temperature i.e., E » T. The decay

or formation of such a virtual photon always requires at least two real hard partons

(where hard indicates energy or momentum far greater than the temperature). In

the interest of simplicity, these authors focus attention on a smaH part of the phase

space of the processes, where they daim the most dominant contribution may reside.

These are processes containing two real hard and at .least one soft parton (where soft

indicates energy or momentum of the order of the temperature). AH other kinematic

regions, designated as sub-dominant, are neglected. In this limit one may obtain

simple analytical relations for the various processes; the expressions for each of the

processes were truncated at order T 2 / E2 . As their final answer remains divergent,

the remaining parts of phase space and parts of the expressions truncated do not

make any further appearance. This observation of a remnant collinear divergence

is a result of extreme importance: on a theoretical level it signaIs a failure of the

KLN theorem [109, 110] for dilepton production even in the presence of a large mass

scale; on an phenomenologicallevel it indicates that higher order processes may not

be negligible compared to the Born term even for large mass dilepton production.

This result has been commented upon [119], and the issue of divergences remained

unresolved [120]. In the wake ofthis strife, we revisit this problem in a systematic cal­

culation. AIso, to the best of our knowledge, a complete calculation of the imaginary

part of a heavy vector boson retarded self-energy in the imaginary time formalism has

yet to be performed. This is the subject of this chapter. The scalar boson self-energy

was examined recently [121]. There are various advantages to such a calculation: the

basic Feynman rules are easily generalized from zero-temperature; there is no dou­

bling of degrees of freedom and no matrix structure of propagators; multiple poles

which lead to ill-defined products of delta functions in the real-time formalism are

easily and naturally handled both in the Matsubara sums and in the analytic continu­

ation. The purpose of this calculation is thus many-fold. A first goal is to enumerate

and interpret the various physical contributions contained in the imaginary part of

the two-Ioop self-energies. In doing this, it shaH then be shown that cuts containing
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loops may be re-expressed as interference between tree diagrams and Born term with

a thermal medium spectator. Importantly, we also demonstrate how double poles

may be simply and elegantly dealt with, in the Matsubara sum and in the analytic

continuation to real energies. We finally concentrate on eventual collinear and in­

frared divergences in the ensuing rates. In this study, we focus on the singularity

structure in the region of phase space investigated by the authors of Refs. [99, 101].

Even though we explicitly calculate the self-energies of static virtual photons, the

results may be easily applied to other vector bosons in-medium, with the exception

of the gluon which admits other self-energies in a QGP.

The various sections are organized as follows: in Sect. 9.2 we begin by evaluat­

ing one of the self-energy diagrams of a static photon with an imaginary energy at

two loops (the impatient reader may skip ahead to Sect. 9.6 where the various cuts

of the self-energy are recombined to provide physical interpretations of the various

terms obtained; following which the infra-red behaviour of heavy photon production

will be discussed); in Sect. 9.3 we analytically continue the photon energy to real

values and obtain the imaginary part of the corresponding retarded self-energy; in

Sect. 9.4 we evaluate the other self-energy topology; in Sect. 9.5 we analytically

continue this self-energy to real values of photon energy and find the retarded imag­

inary self-energy; in Sect. 9.6 we combine the tree-like cuts and reinterpret them as

physical processes with thermal distributions on the phase space factors; in Sect. 9.7

we attempt to interpret cuts containing loops in terms of the recently proposed spec­

tator interpretation [118]; in Sect. 9.8 we take the limit of heavy-photon production

(E » T), and evaluate the various contributions; in Sect. 9.9 we combine aIl cuts,

demonstrate the cancellation of the collinear and infrared divergences, and present

our results; we present our conclusions and brief discussions in Sect. 9.10. A few short

appendices follow. In the interest of quantitative accuracy and repeatability, we have

presented many calculational details: the issue being addressed here is technical, and

thus demands a rigorous treatment.
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9.2 The self-energy: Topology l

k-p

162

k

Figure 9.1: The first topology for the self-energy.

We evaluate the photon self-energy with a gluon running across as shown in

Fig. 9.1. To begin with, we derive the expression for the effective quark photon

vertex corrected by a gluon running across, i.e.,

iefll = ie'yll + ie8fll.

Where e may be taken to be the electric charge of the quark. In standard notation,

the expression for the effective vertex in Feynman gauge may be written down as

. fil - i "f d
3
q -igpCT8

ab
(' a P) i(K- i- rJ) (' Il) i(K- fi) (' b CT) (91)

~e - 73 "1 (211')3 q2 2ti ,jgry (k _ q _ p)2 wry (k _ q)2 ~tj,kgry· .

The Matsubara sum in the effective vertex may be simply evaluated using the

method of Pisarski [76]. In our notation (see chapter VI, see also [97]), this is given

in the static limit (iJ = 0) as,
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Where SI, S2, S3 are sign factors which are summed over the values of ±1. We may

now use the above result to write the full self-energy of the photon in the static limit

as

Where, ks stands for the four component quantity:

{
kx ky kz } { }s'k'k'k = s,0,0,1 .

We note that the effective vertex may be written as

to highlight the structure of ry matrices contained within it. The trace of the ry

matrices is given simply as,

This gives the full self-energy as

TIlt = -42:J d
3
k '" e2 [ ska,s b'r13a S4

kl3,s4 ]. (9.4)
It f3 k O (27f)3 'fs: kO - sk kO - pO - s4k

For convenience we change S2 -+ -S3 and S3 -+ -S2' To evaluate the Matsubara

sum we follow the method of reference [74]. This method converts the Matsubara

sum into a contour integration in the complex plane of kO, i. e.,

(9.5)
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-Where, (q - k)s stands for the four component quantity:

{
qx - kx qy - ky qz - kz }

8, Iq - kl ' Iq - kl ' Iq - k\

{
q sin () cos cP q sin () sin cP q cos () - k }

= 8, Jk2 + q2 _ 2kqcos()' JP + q2 - 2kqcos()' Jk2 + q2 - 2kq cos () .

The kO integration is from -00 -+ 00 on the positive side of the real axis. We

may thus close the contour on the positive side. Note that the function is vanishing

as kO -+ 00. The result of this integration will simply be the sum of the residues

at the corresponding poles. Looking at the above expression we note that the pole

structure is different depending on whether the term being considered is the first or

the second one in the curly brackets. We note the following poles:

i) lst order pole: at kO = k, requires 85 = 8 (in both terms).

ii) lst order pole: at kO = k + 85PO, requires 85 = 84 (in both terms).

iii) 1st order pole: at kO = 8581q - 8583Eq-k' requires 8581q - 8583Eq-k > 0 (only

in the first term).

iv) 1st order pole: at kO = 85po - 8582Eq-k + 8581q (only in the second term).

In the following, each of the poles are evaluated in a separate subsection and then

summed up. The conditions and phrases in brackets will be expanded upon.

lst arder pole at kO = k

This is the pole of the first outer propagator (i. e., not a propagator in the effective

vertex), it is a pole for the entire self-energy expression. It has the obvious residue of
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(9.6)

(9.7)

Note that there is an extra negative sign in the residue as the contour is being taken

in the clockwise sense.

lst arder pole at kO = k + S5pO

This is the pole of the second outer propagator, it is a pole for the entire self-energy

expression. It gives the residue,

/-l _ 2 2Jd
3
kd3q [ / -( ska,s

TI /-l (B) - 4e 9 ()6 1 2 - n k)] ° k k21r P + S4 - S
- Q - f3

[
(q - k)S2(q - k)S3 { (SI - s3)/2 - sln (Eq- k) - S3 n (q)x S2~--=--,~--~~-'----'---'-

q(pO - (S2 - s3)Eq- k ) pO + S4k - Slq + S3 Eq-k

(SI ~ s2)/2 - sln(Eq-k) - S2n (q) }] S4k(3,s4
+~ .

-S4k + Slq - S2 Eq-k S4

Note that the pO in the distribution function has been dropped. This may be done

as ePo (3 = 1 (pO is a discrete even frequency), and, secondly, as we are eventually

going to analytically continue the self-energy to complex values of pO. The correct

analytic continuation is given by that function which has no non-analytic behaviour

off the real axis [122]. One may easily check that the above function with a pO in the

distribution function will have poles at pO = -k+i2(n+ 1)1rT. Note that in this pole

we may switch

and noting that k-s(q-=-k) -S2 = ks(q-=-k)S2' we find

TI~(B) = TI~(A).

lst arder pole at kO = SSSlq - S5S3Eq-k

In the expression for the effective vertex (Eq. (9.2) or Eq. (9.5)), we note the presence

of two terms inside the curly brackets with different pole structures. This is a pole

of the first term, and is realized only if S5S1Q - S5S3Eq-k > O. Thus the residue is
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(9.8)

(9.9)

This is the pole of the second term in the curly bracket mentioned in the previous

section. It is realized only if S5S1q - S5S2Eq-k > O. The residue is

J.!( ) _ 2 21 d
3
kd

3q
[ / -( )] sko:,sIIJ.! D - 4e 9 (2)6 1 2 - n S5 S1Q - SSS2Eq-k 0 E k

1r P + SIQ- S2 q-k - S
--0: --(3

X [ (q - k)S2(q - k)S3 {S3 (SI - s2)/2 - sl'n(Eq_k) - S2n (q)}]
q(pO - (S2 - s3)Eq- k) -S5

x S4 k(3,S4 8 (SSSlq - SSS2Eq-k).
SIQ - S2Eq-k - S4 k

Note that in this pole we may switch

With this operation, we find

II~(D) = II~(C).

Thus the full photon self-energy to second order in the coupling constant for

the diagram of Fig. 9.1 is given by summing up the results of the preceding four

subsections, i. e.,

II~ = 2II~(A) + 2II~(C).
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9.3 Imaginary part of the first self-energy topology

167

We now proceed with evaluating the discontinuity in the first self-energy as pO is

analytically continued towards the positive real axis from above i.e., pO -+ E + iE.

Analytically continuing pO will give us the retarded self-energy of the photon in real

time in terms of a real continuous energy pO = E. The expressions to be continued

are I1~(A) and I1~(D), i.e.,

(9.10)

and

I1IL(D) = _4e2g2f d3kd3q sS4[ks ' (q-=-kL2][ks4 • (q-=-k)S3]
IL (21f)6 q(pO - (S2 - s3)Eq- k)(pO + Slq - S2Eq-k - sk)

x {S3 (SI - s2)/2 - SI~(Eq-k) - S2n (q) }

x [1/2 - ii(SSSlq - SSS2 Eq_k)]8(sSSlq - SSS2 Eq-k). (9.11)
Slq - S2Eq-k - S4 k

The presence of the theta function in I1~(D) complicates the pole structure that

one would obtain during analytic continuation of this expression. The theta function

may be realized with the following set of delta and theta functions:

Incorporating the above equation into Eq. (9.11), we obtain
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{
[ks . (q-=-kLss][ks4 . (q-=-k)s3][1 - n(Eq_k) + n(q)][1/2 - n(Eq_k + q)]

x [pO _ (sk - S5Eq-k - S5q)][PO - (-S5 - s3)Eq- k][S5(Eq- k + q) - S4 k]

_ [ks · (q-=-k)ss][ks4 .(q-=-k)S3][n(Eq_k) + n(q)][1/2 - n(q - Eq- k)] } (9.13)
[po - (sk + S5Eq-k - S5q)][P0 - (S5 - s3)Eq- k][S5(q - Eq- k) - S4k] .

Analysing the expressions for II~(A) and rr~(D), we note the following disconti­

nuities:

Pales of type pO = 2k:

i) lst arder pole in II~(A): at pO = 2k, requires s = -S4 - 1 (in bath terms that

make up rr~(A)).

Pales of type pO = 2Eq- k :

ii) lst arder pole in II~(A): at pO = 2Eq_kl requires S2 = -S3 = 1 (in bath terms

that make up II~(A)).

iii) lst arder pole in II~(D): at pO = 2Eq_k, requires S5 = S3 = -1 (only in first

term of II~(D)).

iv) lst arder pole in II~(D): at pO = 2Eq_kl requires S5 = -S3 = 1 (only in second

term of II~(D)).

v) lst arder pole in II~(A): at pO = sk-s1Q+S2Eq_k, requires sk-s1Q+S2Eq-k > 0

(only in the second term of II~ (A) ).

vi) lst arder pole in II~(B): at pO = sk-s5q-S5Eq-k, requires sk-s5q-S5Eq-k > 0

(only in the first term of II~ (B)).

vii) lst arder pole in II~(B): at pO = sk-s5q+S5Eq_k, requires sk-s5Q+S5Eq-k > 0

(only in the second term of II~(B)).
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We may write down the expression for 2II~(A) highlighting its real and imaginary

parts as pO --t E + if. as

2IItl(A)] = _8e2g2Jd3kd3q s4[ks . (q -=-k)S2][ks4 . (q -=-k)ss]
tl (2n)6 Eq+k

X [p (E _ (S2 ~ S3)Eq- k) - in6(E - (S2 - S3)Eq-k)]

{
(Sl - s3)/2 - sl'fi(Eq- k ) - S3n(q) (( )/2 - (E) ( ))

X S2 k E + S3 Sl - S2 - Sln q-k - S2n q
8 - Slq + S3 q-k

x [P(E k 1 E) - in6(E - sk + slq - S2 Eq-k)] }[1/2 -n(k)]
- S + Slq - S2 q-k

X [p (E _ (8
1
_ S4)k) - in6(E - (8 - 84)k)]. (9.14)

We now write down the varions discontinuities as enumerated above (Note: we

are now looking at 2II~(A) and 2II~(D), so the overall factors have doubled):
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We now proceed to the evaluations of the discontinuities of the type pO = sk +

S2Eq-k + Slq. We first change SI -t -SI in 2n~(A), and S5 -t -S5 in the first part

of 2n~(D). Hence the discontinuity occurs in 2n~(A) at pO = sk + S2Eq-k + Slq

only when sk + S2Eq-k + Slq > O. This may happen in only one of four instances:

S = +, S2 = +, SI = +; S = -, S2 = +, SI = +, S = +, S2 = -, SI = +; S = +, S2 =

+, SI = -. In 2n~(D) the discontinuity occurs in the first term when S = +, S5 = + or

when S = -, S5 = +; in the second term when S = +, S5 = + or when S = +, S5 = -.
Thus the discontinuity in 2n~(A) occurs in four parts:

Disc[2n~(A)]c= (+27ri)8e2
g

2 J~~:~:: [1/2 - n(k)]

x { 83 8 ,[1<+. (q-=-k)+][I<" . (q-=-k),,][-l + n(Eq_ k ) - n(q)16(E _ k _ E
q
-

k
_ q)

[k + q + S3Eq-k][q + Eq- k + S4k]

S3 S4[k- . (q--=-k)+][ks4 • (q--=-kL
3
][-1 + n(Eq_k) - n(q)]!« )+ u E + k - E q- k - q

[-k + q + S3Eq-k][q + Eq- k + S4k]

+ S3 S4[k+ . (q--=-k)J[ks4 • (q--=-kLJ[n(Eq_k) + n(q)] 5(E _ k + E
q
-
k

_ q)
[k + q + S3Eq-k][-Eq-k + q+ S4k]

+ S3 S4[k+ . (q--=-k)+][ks4 • (q--=-kLJ[-n(Eq_k) - n(q)] 5(E _ k _ E
q
-
k
+ q)}.

[k - q + S3Eq-d[Eq-k - q + S4k]
(9.18)

The discontinuity in 2n~(D) also occurs in four parts:
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9.4 The self-energy: Topology II

k-p

k-q

Figure 9.2: The second topology for the self-energy.

We begin by evaluating the photon self-energy with one quark line containing a

gluon loop. The quark self-energy may be written as:

. d3 ri 'oa b

-i~(k)i,k = (ie?i~ f (21r~3 tf,{t q2 t~,(Y1l (;~ ~)2' (9.20)

Using the identity ,Il ,hll = -2 11, q being the momentum of the gluon, the

Matsubara sum in the quark self-energy is evaluated using the method of Pisarski

[76]. It is given in our notation as

Where, the self-energy has been written in the final form to highlight its matrix

structure. We may use this to write the full self-energy of the photon in the static

limit as



9: HIGH MASS DILEPTONS AND MASS DIVERGENCES 172

this gives the numerator as,

We choose the z direction to be defined by the direction of k. Note that kS4 • kS5 =
-20S4 ,-S5' Note also that the 84 and 83 dependence of the photon self-energy is

identical. This allows us to write down the self-energy as,

2(-85)~·· . k ]11 S5

Where summation is implied over aH the sign variables present i.e., 81,82,83,84,85'

Note that the double pole is only present in the first term.

We now need to evaluate the Matsubara sum over kO. For this we follow the

method of reference [74]. This method converts the Matsubara sum into a contour

integration in the complex plane of kO. An example of this method applied to fermions

at finite density was presented in the preceding chapter. The colour factor from

the quark self-energy combined with that from the rest of the diagram becomes

tr[ta, tb]oab = 4. Using this we obtain the self-energy of the photon as:
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The kO integration is from -00 -+ 00 on the positive side of the real axis. We may

thus close the contour on the positive side. Note that the function is vanishing as

kO -+ 00. The result of this integration will simply be the sum of the residues at the

corresponding poles. Looking at the above expression we note the following poles:

i) 2nd order pole: at kO - k, requires 83 = 84 = 8 (only in the first term).

ii) lst order pole: at kO = k, no requirement (only in the second term); requires

83 - -84 = 8 or -83 = 84 = 8 (only in the first term).

iii) lst order pole: at kO = k + 8po, requires 84 = - 8 (only in first term); requires

85 = 8 (only in second term).

In the following each of these poles will be evaluated in a separate subsection and

then summed up.

2nd arder pole at kO = k

We begin by evaluating the 2nd order pole. The origin of this pole can be traced

back to the two propagators which may go on-shell simultaneously. In the real time

formalism this leads to the ill-defined square of the Dirac delta function. In imaginary

time, however, this pole is easily dealt with: the residue of a function f(kO) at a second

order pole at kO = k is simply given as d%o(kO - k)2f(kO)lkO=k' Using this we get the

residue of il at this pole as



9: HIGH MASS DILEPTONS AND MASS DIVERGENCES

1/2 - n(k) }

174

(9.25)

Note that as in the case of the first self-energy topology there is an extra negative

sign in the residue as the contour is closed in the clockwise sense.

lst arder pole at kO = k

This obvious residue may be easily evaluated using the methods outlined in the

previous section,

(9.26)

In the above, we sum over the two possibilities of 85 = ±8 to get the factor in the

bracket as

Hence, n~(B) = o.

lst arder pole at kO = k + spa

This gives the residue

(9.27)

Switching 8 -+ -8, and summing over 83 = ±8 we get,
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IIJ.t(C) = 8e2g2Jd3kd3q [(SI + s2)/2- sln (Ek- q) + s2n (q)][1/2 - n(k)]
J.t (21f)6 q[p0 - (S2 Ek-q + Slq + sk)] [pO - 2sk]

{
(k-=:qL2 oks }

X (pO _ 2sk) .

lst arder pole at kO = SS2Ek-q + SS! q

175

(9.28)

This pole is realized only if SS2Ek-q + SSI q > O. This condition may be enforced with

the following set of delta and theta functions:

We start with the second and third terms:

IIJ.t(D 2) = 2 2 Jd3kd3q [1/2 - n(Ek_q - q)][n(Ek_q) + n(q)]
J.t' 8e 9 (21f)6 q

{
s3(k-=:q)s . kS3

X [sEk_q - sq - S3 k][sEk- q - sq - S4 k][po - (S4k + sEk - q - sq)]

_ ss(k-=:q)s . kss }e(E -) (9.30)
[po - (sEk- q - sq - ssk)][(Ek- q - q)2 - k2] k-q q.

Similarly we find for the third term
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Note the absence of the theta functions in the above equation. Now we may also

write down the residue from the first set of delta functions in Eq. (9.29) as,

The total expression obtained by summing up the results from the preceding 4

subsections will give us the full self-energy of the photon to second order in the

coupling constant for the diagram of Fig. 9.2, i.e.,

n~ = n~(A) + n~(B) + n~(C) + n~(D, 1) + n~(D, 2 + 3).

9.5 Imaginary part of the second self-energy topology

We now proceed with evaluating the discontinuity in the second self-energy as pO

is analytically continued to a positive real value i. e., pO -+ E + Ù:. Analysing the

expressions derived in the above sections we note the following discontinuities:

a) Poles of type pO = 2k:

i) lst order pole in n~(A): at pO = 2k, requires s ---: 1 (only in first and second

terms).

ii) 2st order pole in n~(A): at pO = 2k. This occurs in the third term in the

bracket and requires s = 1.
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Hi) 2nd order pole in II~ (C): at pO = 2k, requires S = 1 and 83 = 1 (only in first

term).

b) Poles of type pO = 8k + 81q + S2Ek-q:

iv) lst order pole in IIt(C): at pO = 8k + 81q + 82Ek-q, requires S = SI = 82 = 1,

or -8 = 81 = 82 = 1, or 8 = -81 = S2 = 1, or 8 = 81 = -S2 = 1 (in both terms ).

v) lst order pole in II~(D, 2 + 3): at pO = 84k + 8Ek- q - 8q, requires 84 = 8 = 1

or 84 = -8 = 1 (only infirst term); at pO = -85k + sEk- q- sq, requires -85 = 8 = 1

or 85 = 8 = -1 (only in second term).

vi) lst order pole in II~(D, 1): at pO = 84k + 8Ek_q+ sq, requires 84 = 8 = 1 or

-84 = 8 = 1 (only in first term), at pO = -85k + 8Ek_q+ sq, requires -85 = 8 = 1 or

85 = S = 1 (only in second term).

The discontinuity across a second order pole is derived in Appendix B. We now

write down the various discontinuities as enumerated above:

Di8c[II~(A)]a = (-21ri)8e2l JdkdB~~~~~Bd
3

q8(E - 2k)

x {PNS[l j 2 - n(k)]' _ k2NS[lj2 - n(k)]
[k - 82Ek-q - 81q] [k - S2Ek-q - 81q]2
1 2kNS[lj2 - n(k)] 1 k2(NSY[lj2 - n(k)]

-- --
2 [k - S2Ek-q - Slq] 2 [k - S2Ek-q - Slq]

1 k2NS[lj2 - n(k)]' _ ~ k2NS[1/2 - n(k)][-l + S2Ek_q]}
2 [k - S2Ek-q - 81q] 2 [k - S2Ek-q - Slq]2 .

(9.34)

Where, the prime "A'" denotes derivation only with respect to k. The symbol N

stands for the factor [(SI + s2)/2 - 81n(Ek-q) + S2n(q)), while the factor (k-=-qL
2

• k+
is represented by the symbol S.
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Disc[Il~(C)]a = (211"i)8e2l f dkde~t:;~ed3q6(E - 2k)

x {~ 2kNS[1/2 - n(k)] + ~ k2(NS)'[1/2 - n(k)]
2 [E - S2Ek-q - S1q - k] 2 [E - S2Ek-q - S1q - k]

+~ k2NS[1/2 - n(k)]' + ~_k2---,,-N_S[_1/_2_-_n_(k_)_][1_+_s2_E_L-=-q] }
2 [E - S2Ek-q - S1q - k] 2 [E - S2Ek-q - S1Q - k]2 .

(9.35)

The two terms above are the result of the discontinuities at pO -+ E = 2k. In the

foIlowing we shaIl enumerate those terms that result as we take the discontinuities at

pO -+ E = sk + S1Q + S2Ek-q'

Recall that even though not explicitly mentioned there is an implied summation over

aIl sign factors. We may now perform the sum over S3 = ±s to get

Disc[IlJ.L(C)]c = (-211"i)8e2g2f d
3
kd

3
Q[(S1 + s2)/2 - s1n (Ek- q) + s2n (Q)][1/2 - n(k)]

J.L (211")6 Q[S2Ek-q + s1Q - sk]2

x (k--=-Q)S2 . ks6(E - sk - s1Q - S2Ek-q)

X [6s,+6s1,+6s2'+ + 6s,_6s1,+6s2,+ + 6s,+6s1,_6s2,+ + 6s,+6s1,+6s2,-]' (9.37)

FinaIly, the discontinuity in parts D of the second self-energy is given as

(9.38)
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We may now sum over 83 = ±1 to get

179

We may sum over 83 = ±1 to obtain

9.6 Physical interpretation: tree-like cuts

We now begin the process of combining terms from the discontinuities of the two

self energies to obtain the square of amplitudes of physical processes. Essentially we

shall follow the method outlined by H. A. Weldon [114]. Our method is a three step

process:

i) collect together terms that have the same energy conserving delta functions.

ii) reorganize the thermal distribution functions to express them as a difference of

the thermal weights for particle emission and absorption.

iii) reorganize the remaining momentum dependent part as the square of the ampli­

tude of the process hinted at by the previous two steps.

(9.41
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For easy identification we indicate the contribution from the first self-energy topol­

ogy by nI and from the second topology by n2. We begin with the discontinuities

where no loops are left in the final result. These are the discontinuities given by

Eqs. (9.18,9.19) for the first self-energy topology, and Eqs. (9.37,9.39,9.41) for the

second self-energy topology. These discontinuities will result in physical amplitudes

for three kinds of processes: photon decay, Compton scattering and pair creation.

9.6.1 Photon Decay and Formation.

We begin by analysing the terms which containing the delta function o(E - k - q ­

Ek - q ). The contributions to this from nI are

and

Note that

n(Eq_k + q) [1 - n(Eq_k ) + n(q)] = n(Eq_k)n(q)

using the above identity we may combine the two terms and rewrite the distribution

functions to give,
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d3kd3q
Disc[II1](E - k - Eq- k - q) = (-27fi)8e2g2 j (21f)6

q

x {[1 - ii(k)][l + n(q)][l - ii(Eq_k)] - ii(k)n(q)ii(Eq_k )}

x S3 S4[k+. (q-=-k)+][k s4 ' (q-=-kLg]6(E - k - Eq- k
_ q).

[k + q + S3Eq-k][q + Eq- k + S4k]
(9.44)

We may combine the coefficients of the same delta function from the second self­

energy to get

j d3kd3q
Disc[II2](E - k - q - Ek- q) = 2 x (-27fi)8e2

g
2 (21f)6

q

x {lI - ii(k)][l + n(q)][l - ii(Eq- k)] - ii(k)n(q)ii(Eq_k )}

(k-=-q)+ . k+
x [E _ k]26(E - k - Ek- q - q). (9.45)

k-q + q

The overaH factor of 2 is the ratio of the symmetry factor of this diagram to

the denominator obtained from perturbation theory. Note that we obtain the same

form of the distribution functions, this indicates the generic structure of heavy photon

decay and reformation. In the distribution function factor, terms like l+n(q) indicate

Bose-Einstein enhancement in the emission of a gluon. The 1 is from spontaneous

emission, and the n(q) represents stimulated emission of a boson into a thermal bath.

Terms like 1-ii(k) represents the "Pauli blocked" emission of a quark of momentum k

into the thermal bath. The product of the three factors [l-ii(k)][l+n(q)][l-ii(Eq_k)]

(along with the phase space integral and delta function) can thus be interpreted as the

statistical factor associated with a heavy photon outside a thermal bath decaying by

emitting a quark, antiquark, and a gluon into a thermal bath. Subtracted from this

is the factor ii(k)n(q)ii(Eq_k); this represents the formation of a heavy photon from

a quark, antiquark and a gluon, aH three emitted from the thermal bath (Fig. 9.3).

The photon subsequently escapes from the bath without further interaction.
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Figure 9.3: Heavy photon decay and formation.

To convert the above expressions into cross sections for heavy photon decay and

reformation, we start by first defining a new four-vector w = (w, 'Iii), such that

w = E - k - q(in order to avoid confusion we introduce the notation of four-vectors

as bold face characters). This relation is indicated by the one dimensional delta

function. To obtain the probability of photon decay, we need to generalize the delta

function to a four-delta function. We thus need to generalize the definition of w:

w =p -k-q.

Where, p = (E, 0, 0, 0) is the mass of the off-shen photon. As denoted by Fig. 9.3.

k, q and w are an on shen. The above relation also implies 'Iii = -k - if We may

set kO = k = Ikl and qO = q = 1l}1. Now, requiring that w be on shen imposes the

condition that

(E - k - q)2 = k2+ q2 + 2kqcosO

"* E(E - 2k - 2q) = -k . q.

Where 0 is the angle between the three vectors if and k. Using the above relations

we many now rewrite the discontinuity obtained from n2 . In the numerator of the

integrand we notice the factor (k~q)+ . k+, this may be changed appropriately by

setting k +-+ -k in the integrand. Noting that (=1)s = -k-s we get the above factor
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as -w+ . k_. Introducing the standard denominators 2k,2w and factors of 27f we

obtain Eq.(9.45) as

We now split the above integrand into two parts and in one of them switch w +-+ k.

Note that -w+ . k_ = wk + w· k = (E - 2k)(E - 2w)/2, finally gives the above

discontinuity as

. [ 2]( ) of d
3
kd

3
qd

3
w 4 4(Dzsc II E - k - q - E k - = -1, (27f) 8 P - k - q - w)

q (27f)92q2k2w

x {[1 - n(k)][1 + n(q)][l - n(w)] - n(k)n(q)n(w)}

[
E - 2k E - 2W]

x 32e
2l E _ 2w + E _ 2k . (9.47)

We now perform the same procedure on the corresponding discontinuity from III , to

get

The part of the integrand besides the distribution function part (depends on the angle

between k and if, will be denoted as the matrix part) may be expanded by summing
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Using the relations

k+ . w_ = k_ . w+ = -(1/2)[E - 2k][E - 2w],

184

and the relation imposed by the delta function (i. e. ,E = k + q + w) we can simplify

the matrix part to give

E(E - 2q)
[E - 2w][E - 2k]'

substituting the above into the expression for nI and then combining the results from

nI and n2we get

J
d3kd3qd3w

Disc[n](E - k - q - Ek - q ) = -i ( )9 k2 (21f)4c54(p - k - q - w)
21f 2q2 w

x {[1 - ii(k)][l + n(q)][l - ii(w)] - ii(k)n(q)ii(w)}

2 2 [E - 2k E - 2w E(E - 2q) ]
x 32e 9 E _ 2w + E _ 2k + 2 [E - 2w][E - 2k] .

(9.49)

E

Figure 9.4: Heavy photon decay at first order in Œ and Œs '

Photon decay into a quark, antiquark and a gluon at first order in the electro­

magnetic and strong coupling constant can occur by two types of Feynman diagrams
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[113] as shown in Fig. 9.4. The matrix element for the first diagram may be written

as Ml = MiEJ..I(p), where

for the second diagram

Taking the product MiJ..lMIJ..l and summing over the spins and colours of the quark,

antiquark and the gluon gives

Similarly

*J..IM 2 2 E - 2w
Ml IJ..l = -32e 9 E _ 2k .

M*tlM = -32e2g2 E - 2k
2 2J..1 E - 2w

(9.50)

(9.51)

Notice that as the three 3-vectors h, if, wform a triangle, E - 2k = w + q - k is

always positive. By the same argument E - 2w and E - 2q are also positive. We thus

note that MiJ..lMIJ..l' M~J..IM2J..1 are negative. This is to be expected as the square of the

full matrix element IMI2 is positive, where from the sum over the photon's spin we

get

The cross term is

*J..I _ 2 2 2E(E - 2q)
M2 MIJ..l - -32e 9 [E _ 2w][E - 2k]' (9.52)

Comparing the above three equations with the result from the loop calculation

(Eq.9.49, 9.47) gives us the relations:
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. [ 21-"]( ) . / d
3
kd

3
qd

3
w )4 4 )D1,SC TI 1-" E - k - q - Ek - q = 1, ( )9 k (27f 8 (p - k - q - W

27f 2q2 2w

x {lI - n(k)][1 + n(q)][1 - n(w)] - n(k)n(q)n(w)}

x [Mil-"Ml 1-" + M~I-"M2/-L]' (9.53)

/
d3kd3qd3w

Disc[TIl~](E - k - q - Ek - q) = i ()9 (27f)484(p - k - q - w)
27f 2q2k2w

X {lI - n(k)][1 + n(q)][1 - n(w)] - n(k)n(q)n(w)}

X [M~/-LMl/-L + Mi/-LM2/-L]' (9.54)

and hence we get the relation written down by Weldon [114]

. [ ] ./ d
3
kd

3
qd

3
w 4 4( )D1,sc TI/-L (E - k - q - Ek - ) = 1, (27f) 8 P - k - q - W

/-L q (27f)92q2k2w

X {lI - n(k)][1 + n(q)][1 - n(w)] ~ n(k)n(q)n(w)}

x [M*/-LM/-L]' (9.55)

where M = M/-LE/-L(p) = Ml + M2 is the full matrix element of heavy photon decay.

9.6.2 Compton Scattering.

The analysis for Compton scattering is slightly more tricky. Note that there are

two sets of terms from Eqs. (9.18,9.19) and Eqs. (9.37,9.39,9.41) that may lead to

Compton scattering. One appears with the delta function 8(E+k-q-Ek _ q ) and the

other with the delta function 8(E + E k - q - k - q). The delta functions can be turned

into one another simply by replacing k --+ k+ if, followed by if --+ -if. One notes

on performing this operation that the rest of the integrand looks rather different.

This happens as there are 4 topologicaIly distinct diagrams that may faIl under the

category of Compton scattering ( it is weIl known that that for a given in state there

are two diagrams that lead to Compton scattering; there are four here as we sum
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over the possibilities of the incoming fermion being a quark or antiquark). Let us

consider the contribution from nI :

. [1]( ( . 22Jd
3
kd3q

D~sc n E + k - E q- k - q) = 21l'~)8e 9 (21l')6q

X {fi(k)[l - fi(Eq_k)][l + n(q)] - [1 - fi(k)]fi(Eq_k)n(q)}

x S3S4[k_. (q-=-k)+][ks4 . (q-=-k)sJ 8(E + k - Eq- k
_ q).

[~k + q+ S3Eq-k][q + Eq- k+ S4k]
(9.56)

For the contribution from n2
, recall that we have an overall factor of two on each

of the results of Eqs. (9.37,9.39,9.41) coming from the overall symmetry factor of

n2being double that of nI. We take half of the contribution from the 8(E + k ­

Ek- q - q) term, and half from the 8(E + Ek- q - k - q) term, and in the second

contribution change k -+ k+ if, followed by if -+ -if. This gives the total contribution

from n2 as

Notice that the combination of distribution functions appearing in the curly brack­

ets are identical. The product of the three factors fi(k)[l - fi(Eq_k)][l + n(q)] has

the interpretation of an incoming quark(or an antiquark) from the medium fusing

with the photon coming in from outside the bath, resulting in an gluon and a

quark(or antiquark) going into the medium. Subtracted from this is the product

[1- fi(k)]fi(Eq_k)n(q), which has the interpretation of an incoming quark(antiquark)

from the medium fusing with an incoming gluon from the medium, resulting in a
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quark(antiquark) going back into the medium, and a virtual photon which leaves the

medium (Fig. 9.5).

Figure 9.5: Quark Compton scattering.

To convert the above expressions into cross sections for Compton scattering, we

again define the new four-vector w = (w, w), such that w = E + k - q. This is

generalized to

w=p+k-q.

as a result w= k- if. Now, requiring that w be on shell imposes the condition that

(E + k - q)2 = k2+ q2 - 2kqcosB

=} E(E + 2k - 2q) = k· q.

Using the above relations we many now rewrite the discontinuity obtained from

n2
. In the numerators of the integrand we notice the factor (k~q)+ . k_, which may

be written as w+.k_ = (E+2k)(E-2w)/2. We introduce the standard denominators

2k, 2w and factors of 21r and perform a similar set of operations as for photon decay

to obtain the full result for Compton scattering as

J
d3kd3qd3w

Disc[n](E + k - q - Ek - q ) = i ( )9 2k (21r)4J4(p + k - q - w)
21r 2q 2w

x {n(k)[l + n(q)][l - n(w)] - [1 - n(k)]n(q)n(w)}

32 2 2 [E + 2k E - 2w 2 E(E - 2q) ]
x e 9 E _ 2w + E + 2k + [E - 2w][E + 2k] .

(9.58)
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w

w

w

k

Figure 9.6: Compton scattering at first order in a and as.

Recall that in rF there is another term, the coefficient of the delta function o(E +
E q- k - k - q), that leads to Compton scattering. Also, in the Compton scattering

contributions from n2 , we only used a half of both the terms. Following almost the

same method as above, one can demonstrate that the form of the contribution from

these terms is almost the same as above with k and w interchanged. In it, one may

interchange. w-+ k to get the same contribution as Eq. (9.58); hence doubling the

total contribution from Compton scattering.

Compton scattering by an incoming photon of a thermal medium of quarks and

antiquarks, at first order in the electromagnetic and strong coupling constant can

occur as a result of four processes as shown in Fig. 9.6. The matrix element for the

diagrams may be written as Mn = M~EJL(p), where
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The amplitude for the third and fourth diagram can be obtained from the two am­

plitudes above simply changing u ---+ v. Taking the products and summing over spins

and colours (remember diagrams 1 and 2 interfere with each other, and so do 3 and

4), we get

M*J-lM 2 2 E - 2w
l IJ-l = 32e g E + 2k '

M*J-lM - 32 2 2E + 2k
2 2J-l - e g E _ 2w'

(9.59)

(9.60)

Once again, note that MiJ-lMIJ-l' M;J-lM2J-l are negative. This is because E - 2w =
q - k - w is always negative due to the triangle condition mentioned in the previous

subsection. The cross term is

*J-l _ 2 2 2E(E - 2q)
M2 MIJ-l - 32e g [E _ 2w][E + 2k]' (9.61)

Comparing the above three equations with the result from the loop calculation

(Eq. (9.58)) gives us the relation:

J
d3kd3qd3w

Disc[rr~](E + k - q - Ek - q) = i ( )9 2k (211")\54(p + k - q - w)
211" 2q 2w

x {n(k)[l + n(q)][l- n(w)] - [1- n(k)]n(q)n(w)}

x [MiJ-lMIJ-l + M;J-lM2J-l + 2M;J-lMIJ-l]' (9.62)

Once again we note the interesting fact that in this gauge the mixed terms

M2J-lMIJ-l +MiJ-lM2J-l are always given by TIl and the square terms MiJ-lMIJ-l +M;J-lM2J-l

are furnished by TI2 .

9.6.3 Pair Creation

The analysis for pair creation(often referred to as photon-gluon fusion) is almost iden­

tical to the two previous sections. Its contribution is furnished by the only remaining

delta functions in Eqs. (9.18,9.19) in the first self-energy, and Eqs. (9.37,9.39,9.41) in
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E E

Figure 9.7: Pair creation at first order in a and as.

the second self-energy, i.e., b(E + q - k - Ek - q ). We simply state the results here:

pair creation can occur through two types of processes, and has the discontinuity in

the total self-energy as

. [ 2] )'J d
3
kd

3
qd

3
w ( )4 4(Dzsc rr (E + q - k - Ek - q = -z (27r)92q2k2w 27r b P - k + q - w)

x {lI - n(k)]n(q)[l - n(w)] - [1 + n(q)]n(k)n(w)}

2 2 [E - 2k E - 2w E(E + 2q) ]
x 32e 9 E _ 2w + E _ 2k + 2 [E - 2w][E - 2k] .

(9.63)

9. 7 Physical interpretation: loop-containing cuts

We now analyse the various discontinuities of rr l and rr2 which contain loops. We

start with the discontinuities of IP. These are given by Eqs. (9.15,9.16,9.17). We

note that there are two terms with the delta function b(E - 2Ek - q ) these correspond

to the cut of Fig. 9.8. There is, also, one term with the cut b(E-2k), this corresponds

to the cut of Fig. 9.9.

One may be satisfied with this interpretation of the cut diagrams and not proceed

further. A recent paper [118], however, has drawn attention to the fact that one can

obtain a somewhat different interpretation of these diagrams, in terms of interference

between simple tree like diagrams and diagrams containing particles called "specta­

tors". Spectators are essentially on-shell particles from the heat bath that enter with
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E

k

k

Figure 9.8: Photon deeay at one loop eorresponding to the eut 8(E - 2Ek_q).

the in-state and leave with the out-state without having interacted with the the rest

of the "participants".

E

k

k

E

k

k

Figure 9.9: Photon deeay at one loop eorresponding to the eut 8(E - k).

We start by summing over the variable 81 in Eq. 9.15. This immediately gives two

terms, distinguished by the combination of distribution functions they carry:

and

In Eq.9.64, if we replace 82 ~ -84,83 ~ -8, followed by k~ if - k we get
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(9.66)

The above is exactly the same as Eq.(9.16). This is to be expected as the two cuts

should in principle represent the same diagram up to a shift in momenta. We thus

double this contribution and focus on it. It represents photon decay into two quarks

with quark emission and absorption from the final state quarks. The other part from

Eq. (9.65) along with Eq. (9.17) will represent photon decay with gluon emission and

absorption off the external quarks.

9.7.1 Photon decay with quark emission-absorption off vertex and

final state.

We begin by summing over the remaining sign variables 82,83 in Di8C[2n~(A)]al to

get

Di8C[2n~]4 = 2 x (-21ri)8e2l ! ~3:~36q [1 - 2n(k)][1 - 2n(Eq_ k )]8(E - 2k)

x [[k+' (q-=-k)+][k_ . (q-=-k)+] _ [k+' (q-=-k)J[k- . (q-=-k)+J
E[(k + Ek _ q )2 - q2] (E + 2Eq_ k )[(k + Ek _ q )2 _ q2]

+ [k+. (q-=-k)+Hk- . (q-=-k)J _ [k+ . (q-=-k)J[k- . (q-=-k)J]
(E - 2Eq_ k )[(k - Ek _ q )2 - q2J E[(k - Ek _ q )2 - q2J .

(9.67)

As in the previous section, the distribution functions will be reorganized to allow

for an interpretation in terms of thermal weights for particle emission and absorption.

In the first two terms we define the new lightlike four-vector w such that w= if - k.
In the last two terms we define w such that w= -if+ k. This allows us to change

the variable of integration as d3q ---+ d3w, as k is a constant as far as the q integration

is concerned. We may also redefine the distribution functions as
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[1- 2n(k)][1- 2n(w)] = [[1- n(k)][l- n(k)] - n(k)n(k)] [[1- n(w)] - [n(w)]].

The first set of factors in the larger square brackets has the usual interpretation

[114] of the thermal factors that are associated with the probability of particle emis­

sion into a heat bath or particle absorption from a heat bath. In this case they

carry the obvious meaning of: remit fermion of energy k][emit fermion of energy k] ­

[absorb fermion of energy k][absorb fermion of energy k]. The reader will note that

unlike the self-energy cuts considered in [114] or those of the previous section, the

two cut diagrams that will result from this imaginary part of the self-energy will not

be symmetric, in the sense that it will be the interference between a diagram with

a loop and a simple tree diagram. The thermal factors discussed above will be the

same for either diagram as they pertain to the quark and anti-quark that emanate

from the decay of the photon (or those that combine to form the photon). Both

amplitudes that result from this imaginary part contain this process and thus have

identical thermal factors.

The second set of thermal factors has a new interpretation. These thermal factors

pertain to the particles in the remaining loop and thus are germane to only one of the.

two interfering amplitudes. We will demonstrate that these signal the difference of

two amplitudes: that for the emission of a quark or anti-quark into the bath and its

subsequent absorption from the bath, and vice-versa. Thus the second set of distri­

bution functions is to be understood as: remit fermion of four-momentum w][absorb

the same fermion of four-momentum w] - [absorb fermion of four-momentum w] remit

the same fermion of four-momentum w].

The process of emission of a fermion of four-momentum w into a bath followed

by its reabsorption is formally achieved by the action of creation and annihilation

operators on the bath state Inw ) i.e,

(9.68)
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---------------
li{, ltl.

E

Figure 9.10: Interference between diagrams of different order in as. The diagrams on the
left indicate 2 -+ 3 reactions like 'YQ -+ qijQ (where the Q indicates that the incoming and
outgoing quarks are identical). The diagrams on the right indicate the complex conjugate
of Born term photon decay with a comoving quark spectator i.e., b -+ qij) 0 (Q -+ Q).

The reverse process, Le., the absorption of a fermion from the bath and it subse­

quent re-emission into the bath is formally achieved by the action of annihilation and

creation operators on the bath state Le.,

(9.69)

The discontinuity of the self-energy will represent the amplitude of a particular

process muitiplied with the complex conjugate of another. In one of these processes

the above mentioned fermion will perform the emission and absorption procedure

referred to above. In the other amplitude, as we will show shortly, it will simply

enter and leave without having interacted with the rest of the particles. Due to this

reason, it has been referred to previously (see [118, 99]) as a spectator.

We introduce the usual denominators of 2w, 2k to get
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J d3kd3W
Disc[n~]4 = 2 x (-27ri)8e2

g
2 (27r)6kwkw 8(E - 2k)

x [[1 - n(k)][l - n(k)] - n(k)n(k)]

x ([1 - n(w)] - [n(w)J]

[
[k+ . w+][k_ . w+] [k+· w_][k_ . w+]

X E[(k + w)2 - q2] - (E + 2w)[(k + W)2 _ q2]

+ [k+ . W_][k_ . w+] _ -=-[k--,::-+-:--'W_+..;...:.]-=-[k~__. w--:+7-]]
(E - 2w)[(k - w)2 - q2] E[(k - W)2 - q2] .
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(9.70)

We now introduce the new four-vector k b = (k, -k), and generalize the delta

function to a four delta function. We then combine the first two terms and the last

two terms to write

d3kd3wd3k
Disc[n~]4 = i8e2l J(27r)98kwk: 16(27r)48

4(p + w - k - kb - w)

x [[1 - n(k)][l - n(kb)] - n(k)n(kb)]

x [[1 - n(w)] - [n(w)J]

[
[kb . w][ka . (p + w)]

x [(E + W)2 _ w2][(k + w)2 _ q2]

[ka' w][kb • (w - p)] ]
+ [(w - E)2 - w2][(k - w)2 - q2] .

(9.71)

The above, has the interpretation of Fig. 9.10. This indicates the interference be­

tween two diagrams of different order in coupling constants. Let the matrix elements

of the two tree-Ievel diagrams with two propagators be denoted as Ml = MiEp,(p)

and M2 = M~ Ep, (p). The matrix element of the term in brackets is simply denoted

as mP,Ep, (p). Where the dotted line caHed the spectator is simply a product of Dirac

delta functions over four momenta and Kronecker delta functions over the spins and

colours of the incoming and outgoing fermions denoted by W a and Wb (here, for brevity

we indicate aH the different quantum numbers, both continuous and discreet, of the

incoming and outgoing particles by a single label).
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It is now simple to verify that the result obtained in Eq. (9.71) can be written as

J
d3kd3wd3k

Disc[TI~]4 = i (27r)98kwk~ (27r)464
(p + w - k - k b - w)

x [[1 - fi(k)][1 - fi(kb)] - fi(k)fi(kb)]

x [(1-fi(w)}-fi(w)]

x [2~~*~i +2~~*~~]. (9.72)

Where the Kronecker and Dirac delta functions over the fermions W a and Wb have

been used to set W a = Wb = w. The factor of 2 preceding the interference matrix

elements is due to the fact that a similar process may be obtained by replacing an

incoming quark spectator with an anti-quark spectator.

9.7.2 Photon decay with gluon emission-absorption from final state

quarks.

This term receives contributions from Disc[2TIt(A)]a2 and Disc[2TIt(D)]b' The fate

of this discontinuity is essentially similar to the previous section and results once

again in the interference of tree level diagrams of different order. There are two

sets of diagrams with two propagators here as weIl, the difference being that the

incoming, outgoing particle with the same set of quantum numbers or in other words

the spectator is a gluon. We once again introduce the on-shell four-vector w, such

that w= k - q. We use this to change the variable of integration in Disc[2TIt(D)]b.

Disc[2TIt(A)]a2 we relabel the dummy variable k -+ w. Both discontinuities give

essentially the same contribution thus the total discontinuity from such processes

(Fig. 9.11) is given as
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Figure 9.11: Photon decay with spectator gluon (the Born term with spectator gluon is
implied, see Fig. 9.10).

x [[1 +n(q)] + [n(q)J]

[
[Wb' (q - W)][Wa . (q - Wb)] ]

X [(q _ w)2 _ k2][(q + W)2 _ k2] .

Which is once again equal to

(9.73)

. [] .Jd3wd3qd3Wb ( )4 4( )
D~sc TI~ 5 = ~ (27r)98kwk

b
27r 8 p + q - W - Wb - q

X [[1- n(w)][l- n(wb)] - n(w)n(wb)]

X [[1 + n(q)] + [n(q)J]

x [m{.t*Mr+m{.t*M~]. (9.74)

Where m represents the same process as in the previous subsection. The ampli­

tudes Ml and M2 represent the processes of Fig. 9.11. The interpretation of the first

set of distribution functions is the same as before i.e., emission and absorption of two

particles of energy k. The second term has the interpretation of a gluon spectator

exactly identical to that of the quark spectator in the earlier subsection, but with

Pauli factors replaced with Bose factors. Note that, unlike in the previous section,

there is no factor of 2 preceding the matrix elements as the spectators are gluons.
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9.7.3 Photon decay with quark and gluon emission-absorption off the

same quark line

We, now, begin the analysis of the last loop-containing eut. This is essentially given

by the discontinuities of Eqs. (9.34,9.35). Combining these two discontinuities, and

writing k = E - k in the denominators of the terms from Disc[I1~(A)]a (note that we

have to double this contribution as it emanates from the second self-energy diagram

which has a symmetry factor of 2 more than the first self-energy diagram), we get

(9.75)

The above term does not readily admit a physical interpretation, however, the

infrared limit will be evaluated with the above expression as the starting point as it

is formally correct. To try and obtain a physical interpretation from the expression

given above, an integration by parts is performed to obtain the discontinuity as

Where, we have used the property that
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d5(E - 2k) = 2d5(E - 2k) = _2 d5(E - 2k) = -25'(E _ 2k)
dk d(2k) d(E) .
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Interestingly, as an aside, we note that one may still obtain a physical interpreta­

tion of the above term in terms of spectators with retarded propagators. To obtain

this, we expand the factor [k-S2E~~q-Slq] by summing over SI and S2. Here, as ex­

pected, we will obtain a part dependent on Bose distribution functions and a part

dependent on Fermi distribution functions. We will illustrate the physical interpreta­

tion using the part containing the Bose distribution functions. We begin by writing

the delta function in Eq. (9.76) using the following representation:

1 E
5(x) = lim- 2 2·

E-tO 1r x + E

In this representation scheme, we obtain

5'(x) = -2 [5(x~ + i1r52(x)] .
x + ZE

Substituting the above relation in Eq. (9.76) we get

(9.77)

(9.78)

/

. d3kd3q
Disc[II~]6 = (21ri)16e2g2 (21r)6 q(-2)5(E - 2k)[1 - 2fi(E/2)]

x NS {l + i1r5(E - 2k)}. (9.79)
[E - S2Ek-q - SIQ - k] (E - 2k) + if

We now write unity in the form of an integral as

(9.80)

Substituting Eq. (9.80) in Eq. (9.79), we obtain
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Disc[II~)6 = (21ri) 16e2g2JdwO(E/2)6(w0
2

- (E /2)2) J~~:~:~ (-2)6(E - 2k)

[1 - 2fi(E/2))NS {1 ._ °
x [E E k) (E k) . + 21rm(w )6(E - 2k)- S2 k-q - SIq - - 2 + 'lé

- 21ri(fi(wO) - 1/2)6(E - 2k)J
= (21ri) (-16e2g2)JdwO J~~:~:~6(W02 - (E/2)2)6(E - 2k)[1- 2fi(E/2))

ENS {1 .x + 21r'lfi(wO)6(E - 2k)
[E - S2Ek-q - SIQ - k) (E - 2k) + if.

- 21ri(fi(wO) - O(-wO))6(E - 2k) J. (9.81)

In the above we have simply added and subtracted the factor 21rifi(wO)6(E - 2k)

inside the curly brackets and rewritten 1/2 as O( -wO), as the rest of the integrand is

an even function of WO .

We now introduce the three vector part of w as

6(w02 - (E /2)2)6(E - k - k) = Jd3w6(w02 - (E /2)2)6(E - k - k)63
( -k - w)

=Jd3w6(w0
2

- IwI 2)6(E - k - Iw1)63
( -k - w).

(9.82)

As stated previously we now concentrate on the part of NS/[k - S2Ek-q - SIQ]

which depends on the Bose distribution function. This gives
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.J d
4

w J d
3

kd
3

q (°2 '---1 2)( )4 4 )
=1, (21r)4 (21r)62q2k 2m)W - w 21r 6 (p-k-w

x [{1 - n(kO)Hl - n(wO)} - n(kO)n(wO)] [{1 + n(q)} + n(q)]

x [mM*MI'M + mM*M2,M]'
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(9.83)
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K K

K

Figure 9.12: Photon decay into a qij pair. The quark then emits or absorbs a quark or a
gluon.

Where i p0.6.R (w) is the retarded propagator. One may note that the integrand

in the above equation is simply the interference matrix elements of the first (Ml =
EM(p)MI,M) and second diagram (M2 = EM(p)M2,M)of Fig. 9.12 and the Born term

(m - EM(p)mM) with a gluon spectator. A similar interpretation may be obtained for

the the third and fourth diagrams of Fig. 9.12 in terms quark spectators. However,

as the above equation is not mathematically well defined; it will not be used in

evaluating the infrared limit. Eq. (9.75) will be used instead.
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9.8 Infrared behaviour
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We now examine closely the infra-red and collinear singularity structure of the terms

enumerated in the two sections above. We will examine the infra-red behaviour in the

limit of heavy dilepton production from a plasma of massless quarks i.e., E » T.

There are essentially five terms:

F: Photon Gluon production denotes the reaction q + ij -+ 9 +1

C: Compton like reaction between a gluon and quark/anti-quark 9 + q -+ ij + 1

D: denotes the three body fusion to form the photon 9 + q + ij -+ 1

V: denotes photon formation from vertex corrected quark, antiquark.

S: denotes photon formation from self-energy corrected quark, anti-quark.

The full imaginary part of the two loop self-energy may be schematically written

as

8e
2
g

2 J2ImII~ = - (27r)3 dw{n(w)[F(w) + Dg(w) + Vg(w) + Sg(w)]

+ n(w)[C(w) + Dq(w) + Vq(w) + Sq(w)J}. (9.84)

The first four terms represent the part of the terms mentioned above which are

proportional to the gluon distribution function. The last four terms are those pro­

portional to the quark/antiquark distribution function. This is essentially the same

notation as used by the authors of [101]. We now compute these contributions in

turn.

9.8.1 Self-Energy correction 5g & 5q

The self-energy correction is essentially given by Eq. (9.75), i. e.,
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We concentrate, first, on the sum S = 2:s1,s2 [E-S2i2~~S1q-k]" This may be ex­

panded as

S = 15-[[1/2 - fi(w) + 1/2 + n(q)]w+ . k+ + [1/2 - fi(w) - (1/2 + n(q))]w+ . k_ +
w E-k-w-q E-k+w-q

e:.-[--c(1--..:.../_2_-_fi...e.-(w--..:...)-c)+----'-1/_2_+_n--..:...(q..:...;:)]_w_+_.k........c..+ + [- (1/2 - fie w)) - (1/2 + n (q) )]w+ . k_] .
E-k-w+q E-k+w+q

(9.86)

We now concentrate on the terms proportional to 1/2 + n(q), i.e.,

S = k [~ + n(q)] [2k(E - k - q) - 2iV· k+ 2k(E - k + q) - 2iV· k]. (9.87)
9 2 (E - k - q)2 - W2 (E - k + q)2 - w2

Introducing the variables a = E - 2k - 2q, f3 = E - 2k + 2q and y = cos e( where

e is the angle between k and if), we obtain

[
1 ] [ (2k - E)a (2k - E)f3 ]

Sg = k '2 + n(q) 2+ Ea + 2kq(1 + y) + Ef3 - 2kq(1 _ y) . (9.88)

Dropping the ~ ahead of the gluon distribution function we obtain the matter part

of Sg. Using only this part we obtain (performing the unimportant angle integrations)

8e
2

g2 ! 8e
2

g2 ! _ ! ! d- (21r)3 dqn(q)Sg(q) = (21r)3 dk[l - 2n(k)]6(k - E/2) dqq dy dk Sg,mat.

(9.89)

The limits of the y integration are the locations for the onset of collinear singulari­

ties, these are shielded by removing a small part of phase space E i.e., the y integration

is performed within the limits -1 + E -+ 1 - E. The results will now depend on E.

This gives the result as

8e
2g2 ! -8e

2
g

2 ! [ (2) ]- (21r)3 dqn(q)Sg(q) = (21r)3 dqn(q) - 4q - 4qlog ~ . (9.90)
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In the above, the term 2ii(E /2) has been dropped, as we are interested in the

heavy dilepton limit where E »T and as a result ii(E/2) -+ o. Thus, we get

S9(W) = -4w - 4wlog (;) . (9.91 )

We now concentrate on the terms, in Eq. (9.86), which are proportional to the

factor 1/2 - ii(w). FoHowing a similar procedure as above we obtain

8e
2g2 j -8e

2g2 j [ (2) ]- (21r)3 dwii(w)Sq(w) = (21r)3 dwii(w) - 4w - 4w log ~

Thus, giving us the relation

(9.92)

Sq(w) = -4w - 4w log (;) . (9.93)

Note that in both the expressions for Sq and S9 there is a log (~) term which

blows up as E -+ O. This is a collinear singularity. We shaH aHow E to vanish only

when aH the different contributions to the dilepton rate have been added together.

9.8.2 Vertex correction ~ &~

We concentrate first on the term proportional to the fermionic frequency i.e., Vq. This

vertex correction is essentiaHy given by Eqs. (9.64, 9.66, 9.67). The first two need to

be doubled, as mentioned before in Sect. 9.6. Extracting only the part proportional

to the fermionic distribution function ii(w), we obtain the ~ integral as

Performing the sum on 82,83 and setting y = cos O(where 0 is the angle between k
and 'Iii), we can perform one of the integrations with the help of one of delta function

to get
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Note, once again, that the limits of the final angular integration y signal the onset

of collinear singularities. These are, once again, regulated by removing the small part

of phase space E. At this point we introduce the condition that the limit of interest

is for dilepton mass much larger than the temperature i.e., E »T. The presence

of the distribution function ii(w) on the energy w severely restricts the contribution

from regions where w >> T to the integral. Thus, the dominant contribution to the

integral is from the regions where w << T or w '" T. Hence, in the integral we may

make the approximation that w << E and expand the factors in the square brackets

to linear power in wiE. This finally gives

8e
2g2 ! _ 8e

2g2 ! _ [ (2) ]- (211")3 dwn(w)1I;z(w) = - (211")3 dwn(w) - 8w + 8w log ~ .

Thus we obtain that

Vq(w) = -8w + 8wlog (~) .

(9.96)

(9.97)

Following almost a similar method as above we may obtain Vg from Eq. (9.65) (with

an overall factor of 2 as there is another cut which gives an identical contribution)

as,

2E2 (2)~(w) = 4w - -;;;-log ~ . (9.98)

Once again, note that both expressions demonstrate a collinear divergence as

t -7 O. The term Vg also displays an infrared divergence as w -7 O.
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9.8.3 Pboton formation from quark, antiquark and gluon Dg & Dq

The reverse reaction to this process represents heavy photon "decay" into a qq"(.

Due to this reason, the process is denoted by the letter D [101]. The full decay

contribution is given by Eq. (9.49) as,

. 2 .J d
3
kd

3
qd

3
w 4 4(

D~sc[TI ](E - k - q - Ek- ) = -~ (27r) 8 P - k - q - w)
q (27r)92q2k2w

x ([1 - ii(k)][l + n(q)][l - ii(w)] - ii(k)n(q)ii(w)}

22[E-2k E-2w E(E-2q)]
x 32e 9 E _ 2w + E _ 2k + 2 [E - 2w][E - 2k] .

(9.99)

In the above equation, note that if three of the delta functions are used to set

iD = -k - if, then the remaining delta function imposes the condition that

E = k + q +Jk2+ q2 + 2kq cos ()

As mentioned before, we work in the limit E >> T, in this case the delta function

can be satisfied by the following regions of phase space:

a) k rv E, q rv E and hence w rv E; in this case aIl the distribution functions

n(q), ii(k), ii(w) -+ 0, and, thus, so do products of distribution functions.

b) k rv T « E, q rv E and hence w rv E; in this case ii(k) rv 1. However

n(q), ii(w) -+ 0, and so do products of distribution functions.

c) w rv T « E, q rv E and hence k rv E; in this case ii(w) rv 1. However

n(q), ii(k) -+ 0, and so do products of distribution functions.

d) q rv T « E, k rv E and hence w rv E; in this case n(q) rv 1. However

ii(w), ii(k) -+ 0, and so do products of distribution functions.

Contributions from b) and c) will give us Dq , d) will give us Dg, while the con­

tribution from a) is negligible in comparison. We begin by calculating Dq from the

regions b) and c) of phase space. Here we can ignore aIl combinations of distribution

functions containing n(q). As before, we also ignore the vacuum term, concentrating
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only on the matter contribution. Noting the symmetry in the matrix element under

interchange of k and w, we may change variables w --+ k in the part of the integrand

proportional to the distribution function n(w) to get

Se
2
g

2 J - J d
3
kd

3
q -

- (21T)3 dkn(k)Dq(k) = (21T)52q2k2w b(E - k - q - w){2n(k)}

32 22 [E-2k E-2w E(E-2q)]
eg + +2 .

E - 2w E - 2k (E - 2w][E - 2k]
(9.100)

The argument of the delta function is the equation g(q) = k + q+ w(q) - E = O.

The solution of this equation is at q = qs(k, E):

1 E(E-2k)
qs = - .

2 E - k(l - y)
The delta function can be written as

(9.101)

b(g(q)) = b~'03Î)
Substituting this back into the equation for Dq , we can do the dq integration

with the above mentioned delta function. We can then perform the remaining an­

gular integration by removing the small part of phase space é to shield the collinear

singularities. Now expanding up to linear order in k as k « E, we get

Se
2

g
2 J Se

2

g
2 J [ (2) ]- (21T)3 dkn(k)Dq(k) = - (21T)3 dkn(k) 2k + ( - 2k - E) log ~ .

Thus we get

(9.102)

(9.103)

We can now obtain Dg by concentrating on region d) of phase space and ignoring

aH combinations of distribution functions containing n(k) or n(w), this gives us,

Dg(w) = -2w + (2W _ 2E + ~2) log (~) . (9.104)
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9.8.4 Pair annihilation F & Compton scattering C

The procedure to obtain these is almost exactly identical to the two terms of the

previous section. The total Compton scattering contribution can be obtained from

Eq. (9.58) by doubling it as mentioned in the paragraph immediately following

Eq. (9.58). We may, once again, from phase space considerations show that the dom­

inant contribution to Compton scattering occurs from a region where k "" T << E(k

is the incoming quark or antiquark energy). The leading term of Compton scattering

is, thus, proportional to the quark or antiquark distribution function. From similar

considerations the leading term of pair annihilation can be demonstrated to be pro­

portional to the outgoing gluon distribution function. Expanding them up to linear

order in the quark or gluon energy w, we get:

and

9.9 Results

C(W) = 2w + ( - 2w + E) log (~) .

F(w) = -2w + (2W + 2E + ~2) log (~) .

(9.105)

(9.106)

In the previous seven sections we evaluated the two different self-energies of the pho­

ton at two loops; then evaluated the various cuts of the self-energies which constituted

its imaginary part; we then recombined the various cuts and reinterpreted them as

physical processes; finaHy we evaluated these terms in the limit of heavy photon emis­

sion. In the last section we have concentrated solely on the thermal or matter part

of these expressions. The vacuum part is weH known. AH the expressions contain

collinear singularities(as E -+ 0), which for the moment have been shielded by re­

moving the small part of phase space(E) where these singularities occur. Sorne of the

expressions also display infrared singularities as w -+ O. Henee, the final integrations

over W are yet to be performed. In the following we will combine aH these terms and
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perform this integration.

We now re-substitute the terms P, C, D, V, and S back in Eq. (9.84) to get the

coefficients of the bosonic and fermionic distribution functions as

(9.107)

(9.108)

Thus, we find that when aIl the cuts are summed, the collinear and infrared

singularities cancel. This is in contradistinction with the results of Refs. [99, 101],

where the infrared singularities cancel but the collinear singularities persist. With

these, we get the full imaginary part of the self-energy as

4e2
g2 [ 47r2T2]

ImII~21oop,thermal = - (27r)3 - 3

8e2a sT2

3
(9.109)

We may also derive the Born term and quote the two-loop vacuum contribu­

tion(from [113]) as

-3e
2

( a )ImIIJL + ImIIJL = __E 2 1 + _s .
JLlloop JL2loop,vacuum 47r 1f

9.10 Summary and discussions

(9.110)

In this chapter, we have calculated the imaginary part of the two-loop heavy boson

retarded self-energy in the imaginary time formalism. We also elucidated the analytic

structure of the self-energy by recombining and reinterpreting various cuts of the self­

energy as physical processes which occur in the the medium. Cuts with loops have

been interpreted as interference terms between O(a) tree scattering amplitudes and

the Born term with spectators. At each stage the results from the self-energy cuts was
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matched by re-deriving the amplitudes of the tree level diagrams. This constitutes

an important check of each of the contributions from the self-energy.

Each of the contributions contain infrared and collinear singularities. In accord

with our stated goals, we analysed this singular behaviour in the region where the

dilepton mass is far greater than the temperature. This allowed us to neglect a series

of terms which appear sub-dominant. In each case we retained terms only up to

order T 2
/ E2

• One might argue that this represents a considerable approximation of

the result. However the resulting simplification allows us to analyse far simpler and

analytically integrable expressions. We would point out that this was precisely the

approximation used in [101, 99] where a remnant collinear divergence was deduced

at O(T2/ E2). When all the contributions were summed, all infrared and collinear

divergences cancelled; leaving a finite result of O(T2 / E 2
). This is consistent with

the KLN theorem [109, 110], even though a formaI proof of the theorem at finite

temperature is still elusive.

In light of the above, one may conclude that for very high invariant mass M

dileptons, the Born term or LO contribution is the most dominant, thermal contri­

bution from the plasma. As the energy of the incoming particles scales with the

dilepton energy E » T, there are no high temperature enhancements to speak of

here. The finite density effects are mostly driven by the difference of the quark and

antiquark distribution functions. These differences are negligible for quark energies

much greater than the temperature. Thus, the finite density enhancements from two

gluon fusion are miniscule here. The solitary higher order effect that may outshine

the Lü contribution, would have been one born of divergences in the NLO rates.

This has turned out to be not the case.

9.11 Appendix

Discontinuity across a second order pole.
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Imagine we have a function of a complex variable F(z), and it is given to be in the

form

F(z) =Jdxf(z, x) + g(z, x) ,
z - x (z - X)2

(9.111)

where x is a real variable, integrated on the real axis. Most of the discontinuities

that we evaluate can be cast in this general form. This can be rewritten as

-F(z) = Jdxf(z, x) _ g(z, x) , (9.112)
x - z (x - Z)2

The functions f(z,x) and g(z,x) are analytic in x and hence admit a Taylor

expansion.

df 1 d2f 2
f(z, x) = f(z, x = z) + dx (z, x = z)[x - z] + "2 dx2(z, X = z)[x - z] +... (9.113)

Substituting Eq.(9.113) in Eq.(9.112) we get

J f (z, x = z) df d2f
- F (z) = dx + -d(z, x = z) + d 2 (z, X = z)[x - z] + ...

x - z x x
g(z, x = z) dg 1 1 d2g 1

- ( )2 --d(z,x=z)----d 2(Z,X=Z)( )2x-z X x-z 2 x x-z
(9.114)

Recalling that only the pure first order poles develop a discontinuity or imaginary

part at the pole we get the imaginary part of Eq.(9.114) as

Disc[-F(z)] - Jdx2rrib(x - z) [f(Z, x) - ~~ (z, x)]. (9.115)
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CONCLUSION

In this thesis, we initiated a two pronged study of highly excited, strongly interacting

matter, produced in heavy-ion collisions. One endeavour was at intermediate energies

characterized by energy densities of rv 1 - 10 MeV/nucleon, in the central region.

Another was at ultra-relativistic energies, with energy densities of about rv 1 - 10

GeV/nucleon. In each region we focused on the spectra of various particles and

nuclear clusters emanating from such collisions. No doubt the degrees of freedom

and their interplay, in other words the physics involved in each scenario is quite

different. As a result, we employed different theoretical formalisms in the study of

each phenomena.

10.1 Intermediate energy and multifragmentation

At intermediate energies, we focused on the pervasive phenomena ofmulti-fragmentation.

This constitutes the explosive decomposition of the highly excited systems produced

in heavy ion collisions into a large variety of nuclear clusters. As the energy densities

involved are below the particle production threshold, no new particles are produced.

We studied these phenomena in a thermal model approach i.e., we assumed full ther­

mal and chemicalequilibrium being reached in the system. We then modelled the

system in terms of the relevant degrees of freedom.

The degrees of freedom were nucleons and nuclei, treated as non-relativistic hard

spheres with a quantum mechanical excitation spectrum. These were considered as

non-interacting (except for a Coulomb force) and enclosed in a box of volume V.

213
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The volume V is the volume of the system at at the time when interactions between

various clusters cease and we achieve freezeout. We applied the methods of standard

statistical mechanics in the canonical ensemble, to this system. The various partitions

of the partition function consisted of the different ways of distributing A nucleons in

monomeric and/or polymerie clusters.

As a 'base' or starting point we adopted the recently developed RSM model.

After a cursory introduction to the model (see chapter 2), we invoked a variety of

refinements to this simple model. We began with a detailed analysis of the excluded

volume correction (see Chapter 3). Here we introduced a novel Monte-Carlo technique

to estimate the excluded volume in such systems. We demonstrated how this may

vary with multiplicity and be quite different at higher densities from previous nalve

estimates. In a subset of situations we rrianaged to parametrize this effect with an

analytical expression (though a complete general expression evaded us). We also

demonstrated the effect of the excluded volume correction on the equation of state.

In Chapter 4, we demonstrated how this model may be used to perform realistic

calculations. We introduced isospin dependence in the calculation of the partition

function. For isotopes up to 2°F, exact energy levels obtained from experiment were

used. For isotopes above 2°F, an empirical mass formula was used. We devised a new

secondary decay mechanism based on the Weisskopf formalism. Instead of calculating

decay level to level, we have blurred out such details by using a smooth level density.

Though approximate, this method enjoys the advantage of being a natural extension

of the canonical ensemble calculations performed previously. As demonstrated in the

plots, we obtain very good agreement with the data (see Sect. 4.6-4.7). We may,

thus, claim that our two step model provides a realistic interpretation of the physics

involved in such multifragmentation processes.

With this confidence, we begin the study of the critical phenomena observed in

such experiments. A first order liquid-gas-phase transition has been seen in exper­

iments [4]. There have also been recent daims of the excited system disintegrating

in the vicinity of a second order point [16]. The latter are based on the observation
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of a scaling behaviour in a certain subset of the yields. Using the Fisher scaling

formula a critical temperature was also deduced. We demonstrate that the same

subset of yields obtained from the above mentioned model also demonstrate a similar

scaling behaviour. This is observed even when the calculations are performed near

a clear first order phase transition. The scaling behaviour is observed not only in

our explicit model, but also in a general thermodynamic model with explicit first

order phase transition. This scaling behaviour is only apparent in that small subset

of yields and is no longer observed if the range of yields is increased. The so called

critical temperature that is deduced is nothing other than the boiling temperature of

a first order phase transition. We thus refute the claim of Ref. [16] of the observation

of critical phenomena.

10.2 High energy and dilepton production

At high energies, we focused on the phenomena of dilepton production. Due to their

small rescattering cross section electromagnetic probes provide a window into the

hot and dense matter created early in the history of a heavy-ion collision. They are

thus privileged probes for detecting the possible formation of a quark-gluon-plasma

in these collisions.

In the majority of calculations of the dilepton spectrum from such systems, the

LO or Born term (see Fig. (6.2)) has been used as the sole channel of dilepton

production. The argument provided for neglecting higher order contributions has

been that the formation of a large region of deconfined quarks and gluons testifies

to the fact that the strong coupling constant must be small enough to subdue these

contributions. This statement has been subjected to close scrutiny in the second part

of the thesis. We explore a variety of higher order effects which may lead to the NLO

contributions becoming dominant over the Born term. We divide up the parameter

space of dileptons (based on the energy of the virtual photon E and the temperature

T) into soft (E « T), hard (E l'V T) and very hard (E » T); and look at higher
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order effects characteristic to each region.

In the soft sector, much work preceded the author's own efforts. The main results

are listed in chapter 7. Most of these calculations are performed in the limit of

asymptotically high temperature T -t 00. In this limit, the strong coupling constant

is, in fact, very small 9 -t O. However, one notes that, even in such a situation, the

one loop resummed rates which contain higher order contributions, completely over

shadow the Born term in the very soft sector. As the energy increases, the Born term

eventually achieves dominance (see Fig. (7.5)). It is believed that the spectrum at

realistic temperatures may look qualitatively similar to that at high temperatures.

If this is so, then the soft spectrum is completely dominated by higher order effects.

As a result, the LO or Born term is, most possibly, not the dominant contribution in

this sector.

In the hard sector (chapter 8), the high temperature effects mentioned in the

preceding paragraph have waned away leaving the Born term dominant. This is true

for plasmas with zero charge densities. It has been noticed in recent experiments

at RHIC, that there is a remnant baryon density and hence a charge density in the

central region [90]. In such a medium, Furry's theorem is explicitly broken and a new

set of diagrams arise. After highlighting the general class of diagrams, we focus on

the lowest order process in this class. This turned out to contribute to the photon

self energy at three loops. Different cuts of the self energy lead to different channels

of dilepton production. Most of the cuts lead to finite density contributions on

preexisting processes. There also arose an entirely new channel of dilepton production

from two gluon fusion. Such a channel has never been explored previously. We focused

our efforts solely on the contributions from this process. Besides charge conjugation

invariance, this diagram is also protected by rotational invariance. On breaking each

of these symmetries in turn, we obtain a non-zero contribution from this process (see

chapter 8 for details). We focused on the subset of configurations where the gluons

were confined to be back-to-back and compared it to the Born term where the quarks

are also confined to be back to back. Within reasonable values of baryon density,
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this contribution turns out to be much smaller than the Born term at large invariant

mass. However, it becomes comparable to the Born term at low invariant mass (see

Fig. (8.6)). In our calculation the quarks are endowed with current masses m and the

gluons are massless. In this situation the back to back Born term suffers from having

a threshold at dilepton mass V2mE. The overall Born term has a threshold at 2m.

The back-to-back Born term and the overall Born term are zero below the respective

thresholds. As the gluons are massless, the 99 -+ e+e- continues to contribute beyond

both thresholds. It thus may become the dominant source of dileptons at very low

invariant mass. Though much work remains to be done in this scenario, we have

clearly demonstrated the existence of an important new channel. Its full effect may

only be realised on a full three momentum integration of the signal, summing the

contribution of aIl the cuts, and folding this rate with a realistic model of plasma

evolution which explicitly includes a high gluon density phase. As the mandate of

this thesis has been to stipulate the set of higher order processes that may become

comparable to the Born term, we leave such extensions for a future effort.

Having enumerated important higher order effects in the soft and hard sector, we

finally turned to the very hard sector (E >> T) in chapter 9. In this regime, both

high temperature effects and finite density effects have become negligible. At such

high energies the current quark masses are negligible compared to the energy scale

of the problem. Such a situation may lead to the NLO contributions displaying mass

divergences. The presence of this smaIl mass would lead to large logarithms and

we would have the NLO contributions larger than the Born term. Such a situation

was suggested in Refs. [99, 101] for dilepton production at NLO. We calculate the

imaginary part of the retarded self-energy of a heavy vector boson in the imaginary

time formalism, The vector boson was taken to be static with a very large invariant

mass. We then elucidated the analytic structure of the self-energy by recombining

and reinterpreting various cuts as physical processes which occur in the medium. This

calculation was performed for the massless theory. Each of the contributions was, as

expected, in possession of a collinear and/or an infrared divergence. However, when
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all the different contributions were summed, all collinear and infrared divergences

cancelled and we obtained a finite contribution. This is consistent with the KLN

theorem. This result implies that at very large invariant mass, the Born term is

dominant over the NLü contribution. This however may not be the situation for the

NNLü contribution. This contribution, yet to be estimated, is left for future analysis.
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