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Abstract

Convolution is the basic operation behind many image processmg algorithms
However, it is a computationally intensive operation  Dedicated hardwate exists
to implement the fixed-point version of this operation. Bul recent developments
such as laser range data processing now require tloating-pomt arithmetic which 15

often performed by so‘tware.

This thesis presents the design of a specialized convolution processor that op-
erates on double precision floating-point data This convolver is based onan array
of systolic cells and may be configured to process both images and umdimen-
sional signals. Support circuttry handles data format conversion as well as data
sequencing for the systolic array. In addition, the processor communicates with
the memory of a host computer viaa DMA (direct memory access) interface to the
VMEDbus. In this thesis, the design of these auxihiary subsystems 1s emphasized and

their implementation in application specific integrated circuits (ASIC) 1s presented.




Résumé

[a convolution est Popération a la base des algorithmes de traitement des images.
Malheureusement, celle-cr exige un nombre énorme de calculs. Dans le but de
redure Te temps de caleul, des processeurs dédics a arithmétique a pomnt fixe
ont ¢té deéveloppés Hors, les progres recents, notamment dans le traitement des
donndées provenanud’un télémetre a laser, requierent 'usage d’une arithmétique a

point flottant quir doit sottvent etre exéculée par logiciel

Ce mémaoire présente la conception d'un processeur spécialisé pour la convolu-
tion de données en format point flottant double précision. Ce processeur s’articule
autour d’une matrice de cellules systoliques et peut étre conhguré de fagon a cpérer
tant sur des signaux unidimenstonnels que des images. Des circuits auxiliaires as-
sument la conversion des données de format pomnt fixe A format point flottant de
méme que Valimentation de la matrice systohque avec une séquence de données
adéquate  De plus, le processeur communique avec la mémoire d’un ordinateur
hote au moyen d'une interface DMA (acces direct a la mémorre) sur le bus VME.
Ce memorre porte une attention particulicre sur la conception des sous-systemes
auxiliarres de méme que sur leur implementation a l'aide de circuits | iégrés a

application spéctfigque (ASIC).

ii



Acknowledgements

The % . ¢f this it esis would have never been possible without the support

of thr foilowin. v . ople.

First, | wawette "bank my parents for their love, understanding and encourage-

ments they gave »« © roughout mv expenence m graduate studies

famas o <o Altied Malowany for hrs patience and his supervision
toward oo e o this long awaited master’s thesis. The financial sup-
portore> "o+ .+ - and Engineering Research Council of Canada is also

gratefully av. owlenys

Thanks are due to |.F. Panisset, }.F Coté and F Larochelle who were also -
volved in this project. They deserve credil for their help and collaboration. T am
also thankfull to all undergraduate students who have contributed in one way or

another to this convolution system.

Finally, particular thanks to the “veterans” Christian, Kathleen, Marco, Mathieu

and Nick for their precious advice and friendship.

11




Table of Contents

Chapter 1  Introduction

11

Thesis Overview . .. ..

Chapter 2 Background .

21
2.2

Convolution e
Architectures for Convolution
2.2.1  Systolic Architecture . .

2.2.2  Other Parallel Architectures

Chapter 3 A Floating-Point Convolution Processor

3.1

3.2

3.3

3.4

3.5

System Architecture
The SystolicArray . . ... . . ...
3.2.1 Data Flow in the Systolic Cell .
3.22 Data Flow in the Systolic Array
The Delay Memory Circuit

3.3.1  Border effects .

3.3.2 Up-sampling . .

The Converiers .

3.4.1 Owverview of the IEEE Floating-Point Standard . . . .

3.4.2 InputConverter . ... ... ..
343 Output Converter . . . ... ..
The VMEDbus Interface .

3.5.1  The DMA Engine

.............

......

iv



‘ Chapter4 The Design of Auxiliary Subsystems

4.1

4.2

4.3

Input Converter

4.1.1  FIFO Orgamzation and Multiplexing
4.1.2 The Conversion

4.1.3 The Pipelined Output

4.14 The Transparent Configuration
Delay Memory Circuit

4.2.1 TheSpecifications .

4.2.2  Functional Description

4.23 Alternate Approaches . .

4.2.4 The Architecture . . . . .

Output Converter

4.3.1 ThePipelined Input . .. . ..
4.32 TheConversion

4.3.3 The Transparent Configuration

Chapter 5 Implementation and Results . . .

Intermetrics VHDL Design Environment
Mentor Graphics [DEA

Xilinx FPGAs and the Development System
5.3.1 Xilinx LCA Architecture .
532 XACT Development System
Input Converter Implementation .
5.41 SchematicEntry . . . ... ..
5.42 Behavioral and Functional Simulations

5.43 Logic Partitioning

5.44 Placementand Routing

A0
A7
Rh
34

41

61
02

Y

HO
08
H¥
70)
70

72



545  Tumng Analysis

J1
3

Output Converter Implementation

)|

6 Delay Memory Circutt Implementation
5.6.1  Behavioral Simulations
562 Schematic Entry
5.6.3  Timing Analysis

.7 System Considerations

57.1 Initialization

5.7.2 Pipeline Delays

5.7.3 Design for Testability .. . .

Chapter6  Conclusion

References .. .. .. )

Appendix A Input Converter Schematics . .

Appendix B Delay Memory Circuit Schematics .

Appendix C PAL 22V10 Description

Appendix D Timing Simulations . .. . ... ... ... .. ... ... ...

D.1 Configuration 1 of Input Converter . .

D.2 Configuration 2 of Input Converter . . . . ... ... ... ... .. ...

D.3 Delay Memory Circuit: Memory Access

D4 Delay Memory Circuit: Control . . . .. . .. ..

....................

....................

vi

..............

75
76
76
78
79
82
82
83
84

86

88

94



List of Figures

2.1 2-D convolution . - 0
22 Comparison between traditional and svstohe architectures 8
3.1 Architecture of the convolution processor to
3.2 Systolic cell architecture . : . 19
3.3 Systolic array for convolution R 20
3.4 Data flow n the systolic array : 21
3.5 Double precision floating-pont representation .25
3.6 Subsystems and their interface to the VMLlibus . 28
4.1 Input converter (Conversion configuration) : ) 33
4.2 Input FIFO organization and multiplexing stage o 35
4.3 Number FEDC BAY8 7654 3210 as stored in FIFO buffers 39
4.4 Timing diagram of input converler (Transparent configuration) 10
4.5 Up-sampled signal (2x) with 1ts border .. : 12
4.6 Up-sampled image (2x) with its border . 42
4.7 Data stream re-organization with shift registers . : 46
4.8 Architeclure of DMC . o R C A8
4.9 Datapath architecture of DMC . . . : 49
4.10 Controller architecture of DMC . 51
4.11 Modified systolic array for operation with DMC h2
4.72 Horizontal up-sampling (HUS) state machine . 53
4.13 Horizontal state machine . . : : . : 54
4.14 Vertical state machine . . . . o : 54
4.15 Pipelined input to output converter . ho

Vi



© e

417

418

51

2

1
.2
D3

124

Output converter architecture
Output converter (Transparent configuration)

Tuming diagram of output converter (Transparent configuration)

The Intermetries VHDL Design Environment (VDE)

Xilinx design flow

Convession of A9E3 imto a 64-bit EP. number
Reordering of the hex number FEDC BA98 7654 3210
PDMC memory access

DMC controller signals (2x up-sampling)

viii

121

122

124

. 126



3.1

4.1

S IS
(NG T

<5
"

List of Tables

Features of the convolution system
Possible exponent values

Input converter partittoning summary
Qutput converter partitioning summary

DMC controller partitioming summary




Chapter 1 Introduction

Our society 15 resolutely moving into the information era. In the past decade,
the demand for extracting, recognizing, understanding and even conveying the
information contamned in 1mages has been increasmg steadily. There is evidence
that this trend will be maintamed as we enter the twenty-first century. Indeed, this

15 a major spur for significant advances 1n the field of digital image processing.

Image processing consists mainly of transformations such as enhancement,
restoration, reconstruction and coding of images. Applications embrace different
spheres of human activity. In robot vision, for example, multiple image process-
ing algorithms are used to perform filtering operations, edge detection and other
low-level tasks behind motion planning {Nelson and Aloimonos, 1989] and object
handhng [Tillett, 1989].  Moreover, with common algorithms such as histogram
equalization and convolution, antomatic visual inspection [Skinner ¢f al., 1990] can
be implemented to discriminate between acceptable and non-conforming images
of parts in a production chain. Automating the visual inspection task improves
speed and reliability sice robots are not susceptible to fatigue or boredom which

lead to judgement errors.

Perhaps the most impressive application of image processing is comput-
crized tomography (CT). In a medical or industrial environment, CT assists
in the reconstruction of density functions (images) derived from the measure-
ments of emanations that have passed through an investigated object or or-
ganINowmski, 19901 Most of the time, image reconstruction is achieved by means
of the convolution back-projection method. Other biomedical applications include
teature extraction for video-endoscopy [Sheblee ef al., 1989] and for blood analy-

sis [Parthenis ef al., 19901,



I Introdudtion

In multimedia applications and telecommunications, image processing 15 otten
used for video compression In this case, the principle 15 to expiont aspects ot the
human visual svstem for the coding of a sequence of images [Gall, 1991, Foy, 1991]
However, image reconstruction of a compressed image may also be achieved by

means of interpolation [Kung, 1988].

Image processing developments also include algorithms to process and filter nn-
ages collected from external devices such as satellites, acoustic sensors and scanning
tunneling microscopes [Stoll, 19911, In any case, applications in the fields of remote
sensing [Stewart, 1991, Barberi ¢t al., 1991] acoustical imaging and, eventually, the
automotive environment [Crisman and Webb, 1991, Kehtarnavar ef al., 19911 de-
pend heavily on the ability of these algorithms to manipulate raw data to obtain as

much meaningful information as possible.

As useful as they can be, image processing algorithms are nevertheless com-
putationally intensive, requiring multiple operations per pixel. Considering, that
a typical image of size 1024 » 1024 with 256 gray levels requires one Mbytes of
computer storage, the throughput required to meet this computational demand s
enormous. This 1s even more the case m real-time applications where a sequence
of image frames must be processed at video rate Uniprocessor computers inspired
from the conventional von Neumann architecture [Neumann, 19871 are simply
overwhelmed with the large amounts of data that they cannot process efficiently.

Therefore, novel computer architectures should be investigated

Several characteristics of image processing make it suitable for parallel pro-
cessing. Many algorithms are mherently parallel because an identical opera-
tion is applied throughout an image either one pixel at a time (eg histogram
equalization) or one region at a time (eg. convolution/correlation).  This 1im-
plies the notion of data locality which may be exploited for concurrent process-
ing [Lee and Aggarwal, 1990]. In fact, an image may be divided into subimages

which can be operated on separately by a set of processing elements working in
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parallel  In addition, these algorithms usually apply sequential functions to an
image. In this case, a pipeline [Hennessy and Patterson, 1990] architecture may

achieve function parallelism to increase throughput significantly.

1.1 Thesis Overview

This thesis presents the design of a specialized parallel system to speed up the com-
putation of the convolution algorithm used in many signal processing applications.
This processor operates on double precision floating-point data which circulate in

a systolic fashion through the processing elernents.

Chapter 2 provides some background information about convolution. Different
compuler architectures developed in the last decade to implement tiis processing

function are reviewed with emphasis on systolic array developmeits.

Chapter 3 gives a high-level description of the floating-point convolution pro-
cessor The system architecture is presented with a focus on data flow in the systolic
cells. Chapter 4 discusses in detail the design of auxiliary units which support op-
eration of the systolic array. These include data converters and a buffering circuit

to feed the array of basic processing elements.

In Chapter 5, a short description of the CAE tools that were used during the
design process is presented. However, the bulk of this chapter concentrates on
the implementation issues of the auxiliary subsystems described in Chapter 4. In
particular, simulation results are provided .nd discussed. Lastly, some board-
level considerations are examined. Chapter 6 concludes this presentation with

suggestions for future work and improvements to the existing system.



Chapter 2 Background

2.1 Convolution

Discrete convolution is a basic operation widely used in low-level signal and image
processing. As opposed to other operations, it can be applied directly to the original
time or spatial domain without need to transform the signal into its trequency
domain representation. When a discrete signal is passed through a linear time
invariant (LTI) system, a moditied discrete time sequence 1s produced at the output.
An LTI system [Proakis and Manolakis, 1988] is completely characterized by its
t.ansfer function, /(n), namely its response to the unit sample sequence d(n) also
known as the discrete impulse function. The response y(1r) of an LTl system as
a function of the input signal »(n) and the unit sample response h{n) is called a

convolution sum and is defined as follows:
+in
y(n) = Z h(k) < ar(n—k) (21)

h=-00

Equation 2.1 may be reformulated as follows:

y(n) = h(n)+r(n) (22)

where » denotes the convolution operator.

In reality, however, we are only concerned with causal signals of finite length.
Therefore, the convolution formula becomes:

N-1

y(n) = hik) » r(n—k) (2.3)

h=0)
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where Vis the length of the transfer function /(1) sequence.

In image processing, by extension, convolution is stated as follows:

+m/2 +Z£2
Y= Y. > Wg)xI=py—q) (2.4)

p= -2 =2

where / is the input image and 11 is a window of width » and height /. The
window, also called kernel, is a 2-1) signal equuvalent to the 1-D impulse response
h(1). By changing the coefficients of the convolution kernel, specific masks can be
created Lo extract features such as edges on an image, to perform linear interpo-
lation or simply to implement various FIR filters. One may see convolution as a
neighborhood operation which performs computations on surrounding pixels. As
shown in Figure 2.1, convolution is computed by sliding a window over an image
in a raster scan pattern. At each pixel location, overlapping pixels are multiplied
with the coethicients of the window and then summed. The pixel underlying the

center of the window is then replaced with the result of the operation.

Convolution has multiple apphcations. In low-level image processing, it is
applied mainly as a filtering technique. For instance, “smart sensing” is a good
practice which aims at using the lowest resolution sufficient for a task so as to reduce
the computation time of higher-level operations. As such, Gaussian-like low-pass
filters provide an efticient smoothing method for controlling the resolution of an
image [Babaud et al., 1986, Deriche, 19901, By reducing the high frequency content,
these Tow-pass filters may also enhance an image corrupted with high-frequency
noise. On the other hand, Marr and Hildreth [Marr and Hildreth, 1980] have shown
that the detection of edges and/or lines can be achieved by convolving the image

with the Laplacian of a Gaussian (Y2(7).

In telecommunication systems where different types of signals (video, speech,
facsimile, etc)  need to be transmitted and received, it is sometimes appro-
priate to decrease the sampling rate before transmission and then perform up-

sampling upon reception to restore the original bandwidth of the digital sig-

5
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Figure 2.1: 2-D convolution

nal. In this case, the up-sampled signal is convolved with an interpolation fil-
ter [Schafer and Rabiner, 1973] to obtain values for the data between samples. In
image processing, different interpolation filters are used for anti-aliasing purposes,
especially on syntheticimages created algorithmically. In another respect, convolu-
tion is also extensively used to reconstruct 3-D images by processing, data obtained
from views of a target object from many different perspectives. In this case, inter-
polation filters mightbe used to reconstruct 3-) objects from their 2-D projection in
a radar image. Convolution is also applicable to matched filtering [Sklar, 1988], a
telecommunication technique which provides the maximum signal-to-noise power
ratio for a given transmitted symbol waveform. In a digital matched filter, the re-

ceived signal is convolved with a filter whose impulse response is the reversed

waveform of the transmitted signal.

The proble:n of convolving an .V » N image with an M ~ M kernel has an

order of computation of O(.N21/2). Unfortunately, the usefulness of convolution is
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hampered by a tremendous number of computations that grow quadratically with
both the image and kernel sizes This taxes not only the arithmetic capabilities of
a general-purpose machme performing the computation, but also the bandwidth
of 1ts memory subsystem since computation of a smgle result requires accessing its
M2-1 neighbors and their corresponding kernel coefficients. Thus low-level image
processing has to be performed off-line if computers whose architecture does not

match the computational requirements of convolution are employed.

2.2 Architectures for Convolution

Advances in very large scale integration (VLSI) technology over the last decade
have made possible the realization of various parallel processors which were for-
merly impractical to build because of extravagant size and cost. The following
sections present an overview of those parallel architectures that are particularly

suitable for convolution.

2.2.1 Systolic Architecture

The concept of a systolic array was first introduced in the late seventies by Kung
and Leiserson [Kung and Leiserson, 1978] as an attempt to achieve more efficient
computing from silicon by balancing computation with 1/O bandwidth. In his
excellent paper [Kung, 1982] on the basic principle of systolic architectures, Kung

writes:

“In a systolic system, data flows from the computer memory in a
rhythmic fashion, passing through many processing elements before it

returns to memory, much as blood circulates to and from the heart.”
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Processing N Processing | Processing | Processing | Processing |
Element Flement | Element | Element | Element
Memory Memory
Traditional computation Systolic array computation model
model (SISD)

Figure 2.2: Comparison between traditional and systohic architectures

By performing multiple computations for ecach memory access, the systolic archi-

tecture can speed up execution of compute-bound problems such as convolution

without increasing 1/O requirements. Figure 2.211lustrates this concept

A typical systolic array exhibits the following architectural characteristics.

e Modularity: The structure is made of simple, similar building blocks also
called cells. They connect to each other through regular, well defined in-
terfaces. As such, the array may be extended indefmnitely  From a VLSI
standpoint, modularity and regularity are two attributes that make systolic

arrays very attractive [Mead and Conway, 1980]

Synchronicity: A global clock synchronizes the operation of the cells. How-
ever, one of the limiting factors in binlding large systolic arrays is the dif-
ficulty to achieve proper and rehable synchronization due to clock skews.
Different clock distribution schemes have been proposed to overcome this

problem [Dikaiakos and Steiglitz, 1991, Fisher and Kung, 19841,

Locality: The cells exhibitlocal connections to restrict circulation of the data to
immediate neighbors. Only the boundary cells of the array may perform 1/0)

to and from memory. Contrary to other parallel architectures which suffer

)
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from interprocessor communication overhead when the number of processing
elements increases, a systolic array avoids irregular or long distance data

communication which makes 1t easily expandable

o Concurrency: The processing power of the systohc architecture comes from
pipelining the stages mvolved in the computation. At the array-level, each
cell processes the information in such a way that the output it gener .= is
used as an mput to a neighboring processing element. In order to permit
even higher concurrency and throughput, another level of pipelining may be
introduced, if possible, to allow the operations inside the cells to be pipelined

as well [Kung ef al., 1981, Kung and Webb, 1984].

Various schemes have been proposed to map different image process-
ing algorithms and matrix operations onto systolic topologies [Kung, 1982,
Kwan and Samuel, 1990, Moreno and Lang, 1990 Since systolic arrays are fre-
quently implemented as special-purpose or dedicated devices acting in conjunction
with a host CPU, they offer high performance at a cost which might not always
be justified. For this reason, efforts have been deployed to develop arrays with
programmable processing elements that can be used for multiple compute-bound

problems.

The Warp machine [Annaratone, 1987] for instance, is a systolic array de-
veloped at Carnegie-Mellon University for many applications including signal
and image processing and autonomous navigation for a robot vehicle called
Navlab [Crisman and Webb, 19911. The heart of the Warp computer is a short
linear array consisting of ten celis. Each cell is a 10-MFLOPS processor with a local
program and data memory which can be programmed usirg a high-level language.
The Warp array 1s attached to un external host consisting of MC68020 processors
for transferring data to and from the array. A VMEbus-based workstation provides

the environment for running applications programs.
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The first commercial general-purpose systolic computer, Matrin-1, trom Saxpy
Computer Corporation [Foulser, 1987] was introduced in 1987 It achicves 1000
MFLOPS by means of an array of up to 32 computational zones  Fach zone has
a pipelined 32-bit adder and a multipher with the same characterishies Like ma
single-instruction multiple-data (SIMD) architecture, cach processor receives the
same instructions at a given clock cycle Matrix-1 can tunction in systolic mode
which data are transferred linearly across the zones or in block mode m which all

zones operate independently.

Other non-programmable forms ot systolic hardware have been developed
[Nash and Petrozolin, 1985, Kandle, 1987] to address specific problems.  For in-
stance, Lopresti [Lopresti, 19871 describes an origimal application where a systolic

array is used for comparing nucleic acid sequences

Despite the introduction of alimited number of systolic machmes, this paradigm
has not yet delivered its promised fruits as few machines have found their way to
the marketplace. Manohar and Baudet [Manohar and Baudet, 19901 identify two
major limitations of current systolic designs. The first relates to the fact that sys-
tolic algorithms often require a processor array whose size depends on the size of
the problem to be solved. The second drawback is due to the hmited bandwidth
between the host computer and the array. As a matter of fact, some systolic archi-
tectures require a bandwidth proportional Lo the number of processing elements
in the array. The authors propose some solutions to make systolic sohutions more

practical.

2.2.2 Other Parallel Architectures

Over the last decade, novel computer architectures for parallel processing have
been introduced. In fact, their wide variety is now forcing us to question Flynn’s

taxonomy [Flynn, 1966] of computers based on instruction and data strecams. Flynn

10
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essentially proposed four categories of computers.

I. SISD (single instruction stream, single data stream) which corresponds to the

uniproressor
2. SIMD (single istruction stream, multiple data streams).

3. MISD (multiple mstruction streams, single data stream). This is a rather
theoretical category as it mvolves multiple processors applying different in-

structions to a single datum.

4. MIMD (multiple imstruction streams, multiple data streams).

This is a rather coarse model which does not provide for hybrid architectures
such as pipelined vector computers and systolic arrays. While maintaining the
essential ideas of Flynn’s taxonomy, Duncan [Duncan, 1990] classifies computer

architectures imto three categories: Synchronous, MIMD and MIMD paradigm.

Synchronous computers inchude SIMD and systolic architectures as well as vec-
tor computers such as the Cray X-MP [Robbins and Robbins, 19891'. Processors of
this category perform concurrent operations in lockstep since they are synchronized
with erther central control units, vector unit controllers or global clocks. SIMD ar-
chitectures with an array topology are particularly suited for image processing
since an identical set of operations 1s applied throughout an image either pixel by
prxel or region by region. Therefore an image may be divided into N subimages
which can be processed concurrently by N processing elements. For instance, the
access constrained memory array architecture (ACMAA) [Balsara and Irwin, 1991]
is a SIMD architecture consisting of a linear array of N processors and an N x N
array of memory modules. Each processor has two buses, one to access a row and
one to access a column of memory. With an ACMAA of size N, it is possible to

convolve an image of size N ~ N with a kernel of size M ~ M m O(M2N) time

"The Cray A-MP could arguably be termed MIMD. However, vector processing remains the
tundamental characteristic ot this computer.

11
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compared to O(M*N?) with a SISD machine Another popular SIMD s the Connee-
tion Machine from Thinking Machmes Corporation [Hilhs, 1985] whose massive
parallelism makes 1t pertinent to low-level vision problems The model CM-2 can
be configured with between 16384 and 65536 I-it processors  Although bigand
expensive, the CM-2 15 a key element of the DARDPA Strategie Computimg, Vision
program [Weems ef al , 19911 which has implemented vision algorithms tor this

revolutionary architecture

The second category, MIMD, mvolves architectures that are inherently more
flexible since processors may be mdividually programmed. MIMDs may be tur-
ther divided into shared-memory and distributed-memory processors  Shared-
memory computers accomplish interprocessor coordimation by having, a shared,
global memory addressable by cach processor while distributed-memory com-
puters achieve coordination by sending messages to cach other An exam-
ple of shared-memory MIMD computer is the Sequent Symmetty Multiproces-
sor [Lovett and Thakkar, 19881 One of the major problems with this architecture
turns out to be cache coherency Special mechanisms such as hardware “snooping”
are therefore used to determune when shared memory has been updated On the
other hand, the T414 transputer chip [Whitby-Strevens, 1985] provides hardware
support for concurrency and communication, both of which are essential to any
distributed-memory MIMD machine. With 1ts 32-bit RISC processor, the transputer
may therefore be used as a powerful building block from which new parallel devices
may be built. One of the principal challenges of distnibuted-memory rchitectures
consists in designing a scalable computer which would achieve Tinear speedup as
the number of processors increases  This 1s espectally dificult to achieve because
of fast-grorving communication overhead  Inadentally, an hypercube archited-
ture [Freer, 1987] 15 an attempt to reduce this overhead A hypercube of dimension
n connects together \ = 2" nodes i such a way that only one addiional com-
munication channel must be added to each node m order to double the number of

processors.

12
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The last category, MIMD paradigm, includes architectures based on MIMD
principles but having a fundamentally distinctive working concept.  This group
mdudes MIMD/SIMD hybnids, dataflow and wavefront architectures.  Basi-
willy, dataflow compulers use the flow of data to imtiate the execution of an
operation  Consequently, an operation or instruction may execute as soon as
all of 1ts operands become available. However, these machines require a pow-
erful supervising system which mvolves additional hardware and/or software.
Datawave ISchmidt and Cacesar, 19911 is a good example of a processor which falls
into this category  This 4-GOPS (giga operations per second) processor consists
of 16 mesh-connected cells characterized by a systolic array topology and built-in
dataflow control By mtegrating 16 cells i a 1.2-milhon-transistor chip, Datawave
is currently one of the rare multiprocessors to fit within a single chip. Interestingly,
it can perform real-time image compression/decompression based on the Joint
Photographic Experts Group (JPEC) standard which is vital for many multimedia

applications

13



Chapter 3 A Floating-Point Convolution Processor

Recent advances in computer viston such as laser range data processmy,
[Malowany and Malowany, 1988] have led to the use of larger convolution ker-
nel sizes that accommodate tfloatmg-pomt artthmetic: While vielding, a Larger dy-
namic range and a higher accuracy by mmimizing round-ott nose, floatmg-pomt
arithmetic taxes even more the computational capabilities of any gen e ral-purpose
machine. For mmstance, aconvolution witha9 - 9kernelonatypical 512 512 mape
necessitates over 42 million floating-point operations  Typical workstations such
as SPARCstations currently available at the McGall Research Center tor Intefhgent
Machines (McRCIM) yield a computational capability Iimuted to a few MELOPS
When performed on these machines, the aforementioned convolution tequires i
the order of 10 seconds of CPU time to complete assuming that the tloating-pomt
unit is kept contimuously busy However, this figure is highly optimistic since the
maximum MFLOPS rate cannot be sustained because of the traditional memory

bandwidth bottleneck.

The pursuit of ever faster processors with real-time processing capabihities has
lead engineers to develop high-performance architectures for convolution o far,
most dedicated systems have been limited (o fixed-pomt artthmetic and sinall ker-
nel sizes. For nstance, a system previously designed at McCall University for
robotic applications used 8-bit integer coefticients and a 3 9 window convolu-
tion size [Haule, 1990] With multiple passes, this system would performa 9 - 9
convolution on a 512 - 512 image m about one second  Others have used digital
signal processors (DSPs) to implement both fixed- and floating-point convolu-
tions. For example, the popular TMS320C30 from Texas Instruments yields a 33
MFLOPS performance [Papamichalis and Simar, 1986, Lin et al , 1987] and there-

fore could theoretically complete a convolution in about | 25 second provided that
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3. A Floating-Point Convolution Processor

the pipeline 15 kept continuously busy.

In order to further decrease the time spent for convolution, it was decided
to develop a systolic floating-point convolution processor which could achieve the
aforementioned convolution in under one second. Inaddition, the processor would
beimplemented as an “intelligent” peripheral which would easily integrate into the
research environment, 1n this case, a multiprocessor VMEbus-based system called
the Sensor Computing Environment [McRCIM, 1990]. The SCE includes a number
of single-board computers and peripheral boards such as a laser rangefinder and a
variable-scan camera which communicate through the VMEbus backplane. They
run under VxWorks (WindRiver Software), a real-time “flavor” of the widely used

UNIX operating system.

The following sections present the architecture of the systolic floating-point

convolution processor which has resulted from this effort.

3.1 System Architecture

As shown n Figure 3.1, the core of the system is the systolic array of custom
VLSI processors. Each processor implements the basic multiply and accumulate
operation m 1EEE double precision format. The array is configured in 9 rows of 9
custom chips and allows a 9 by 9 kernel to be applied in a single pass. The array
can also be contigured for 1-D data, in which case an FIR filter with 81 coefficients

can be implemented.

One of the more challenging problems in designing around array processors is
to move data to and from the array efficiently while keeping the processors as busy
as possible  Unlike general-purpose computers with load and store instructions,
dedicated systohe processors need additional circuitry to supply the data sequence
ta the array and to store it after processing. Since most of the image processing

rescarch is done on workstations based on the VMEbus, the system includesa DMA
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3. A Floating-Toint Convolution PProcessor

engine built from an embedded Motorola 68020 microprocessor and a VTC VIC-
068 VMEbus interface controller. The DMA engme 1s responsible for transterring
images (or signals) from a host computer memory and for writing, the convolved

image back to host memory.

Row 1
lann Row 2 OUtpUt
Converter DEIay Row 3 Converter and
Memory Row 4 9by9 Decimation
Crrouit Row 5 Systolic
and Row 6 Convolution !
Interpolatton] Row 7 Array
input Row 8 Output
FIFO Row 9 FIFO
1 1

Local Bus (68020 protocol)

VMEbus Local RAM Local ROM
Interface 686020
Controller

VMEbus

Figure 3.1: Architecture of the convolution processor

The DMA engine reads the source image with 4K transfers into the input FIFO
(first-in, first-out) buffer. As depicted in Figure 3.1, an input converter reads data
from the FIFO and converts it into double precision floating-point numbers suitable
for the systolir array processors. This converter 1s required since image-processing,
data often originates in integer format. For example, most frame grabbers generate
8-bit data; the laser rangefinder used at McRCIM generates 16-bit values  The
input converter can also pass along data already in floating-point format such as
the results of intermediary computations where the full precision of floating-poinu

is desired.

A delay memory circuit (DMC) then takes care of feeding the lines of the image
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3. A Floating-Point Convolution Processor

| Feature | Description ]
Architecture | Systolic
Signal types 1-Dor2-D
Nb of processars | 81
Kernel 19,9 (2-D)
con‘iguration 81 » 1(1-D)
‘Arithmetic |EEE 754
Double Precision EP.
(64 bits)
Bus VME
'nput data 8/16-bit integers or
64-bit EP.
Ourpat data 8-bit integers or
64-bit F.I°.
Interpolation Up-sampling
(2x or 4x)
DMA engine MC68020 with
VTC VIC-068
Estimated 126 MFLOPS
performance with 12.5 MHz clock

Table 3.1: Features of the convolution system

to the convolution array in the proper sequence. Each line is sent to the array 9
times, once for each row in the array. In addition, the DMC handles the border
offects by extending the source image with a border of zero-valued samples. It
may also be used toraise the sampling rate of the data being processed by inserting
sero-valued samples into the original data stream. When combined with the proper
coefticients in the systolic array, different fillers can be implemented to perform

interpolation.

Data coming out ot the systolic array is processed by the output converter
which maps the floating-point numbers back into integer format if required. This
proves to be useful when the resulting image is to be displayed on a monitor
(CRT). The output converter may also be bypassed if high accuracy is desired,
especially when performing multiple passes on the image. The output converter

writes to the output FIFO buffer. The DMA engine ensures that no data are lost by
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3. AFloating-Point Convolution Processor

transferring convoived samples back to host memory whenever the FIFO butter

becomes half-full.

Table 3.1 presents some of the chaaracteristics of the convolution system. Further

details are given in the following sections.

3.2 The Systolic Array

The systolic array consists of 81 processing elements also called cells, which com-
municate with two of their neighbors. On the boar-! each cell is physically repre-
sented by a 40-pin chip of which 34 pins arc used. The current version of the cell
implements approximately 49 000 transistors. [COté, 1990, Larochelle of al., 1989
The chip has been designed in the McGill VLSI laboratory in compliance with
the Northern Telecom CMOS3 DLM technology [Can, 19891 The CMOS3 DIM
is a 3-micron P-well CMOS process with single-level polysilicon and double-level
metal. Circuit fabrication is available throvyigh the Canadian Microelectromies Cor-
poration (CMC) which operates an integrated circuit implementation service of-
fered to all majer universities across Canada. At the time of this writing, the chip

had been revised and re-submitted to the CMC for fabrication.

3.21 Data Flow in the Systolic Cell

The systolic cell executes the following operation:

Yout = (X +C)+ Yn (3.1)

Anincoming value (Xin) is multiplied with a coefficient (C) loaded into the cell prior
to convolution. The result is then added to the partial sum (Yin) coming from the

previous processor. Each operand (64-bit floating-puoint number) is serially loaded
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3. A Floating-Point Convolution Processor

by groups of four bits to accommodate the pin packaging constraints. The familiar
multiply and accumulate operation is easily divided into simpler operations which
can beimplemented with three pipeline stages. By allowing the arithmetic opera-
tions mside the cells to be prpelimed, a significant increase in throughput is realized
since the system cycle time becomes equal to the ime of a single pipeline stage in
the cellrather than the whole cell cycle ime. The three processing stages are shown
m Figure 3 2 and execute the multiplication, the addition and the normalization.
ach stage requires 16 clock cycles to complete (this is called a pipeline cycle) and
thus matches the rate at which the operands are loaded into the cell (16 cycles x
4 bits/cycle = 64 bits). The pipeline also implements some shift registers to delay

the data flow for proper coordination of the operands.

i 32 by 4 bit wide shift register
Xin -/f‘ 9 %Xout

74 j

STAGE 1
multiplication

64
15by 4 16by4

Yin 7L. shift Z STAGE 2 shift <. Yout
41 register addition register | ~ 4

/64 64

STAGE 3
normalization

Figure 3.2: Systolic cell architecture

3.2.2 Data Flow in the Systolic Array

A sysitolic cell has the ability to communicate synchronously with other similar
cells. This property allows the realization of various arrays of systolic cells work-

ing concurrently.  Therefore, it is possible to introduce pipelining at the array
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3. A Floating-Pomt Convolution Pocessor

level which will further increase throughput. At this level, each cell becomes a

pipeline stage which circulates a pixel intensity value and a partial result to the

next processor.

In this convolver architecture the interconnection between the cells can be con-
figured to operate on 1-D or 2-D data. In the [-D configuration, the systolic cells
are simply cascaded to form a convolution window of size 81 - 1. In the 2-D
configuration, the cells are interconnected to create a9« Ywindow. The mode of
operation can easily be changed with multiplexers as shown in Figure 33, Due
to space constraints, a smaller array of size 3 ~ 315 illustrated but the concept is

similar for the 9 x 9 array.

Ruwl Xin  Xout Xim  Xout Xin  Nout
Cl Q2 3
0 Y Yout Yin Yot Y Yout
b xm Xout Xmn Xout A Xout
Row2 n
4 5 6
MUX
L i Yin  Yout Yim  Yout Yin  Yout j

tb Xm  Xout Xm  Xout Xin  Xout] o
Rowd D
7 s 9
MUX Result
L ot Yin  Yout Yin  Yout Yin  Yout o

Figure 3.3: Systolic array for convolution

When configured to operate on 1-D data, a sample entering the array will
be circulated systolically through the 81 processors. The convolved sample may
therefore be collected at the output of the last cell after I cycles where £s the
number of pipeline stages inside a cell times the number of cells I thic case,
k = 243 since there are 81 cells implementing 3 arithmetic stages cach. To further
illustrate how data flow through the array, Figure 3.4 shows the contents of two

adjacent systolic cells pre-loaded with coefficients CO and C1 a* four successive
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3. A Floating-Point Convolution Processor

cycles, 10, t1, 12 and t3 It is assumed that these snapshots show the content of
the registers at the end of a pipeline cycle and that blank registers hold garbage.
From this picture, it should be apparent that, when the pipeline is full, a convolved

sample is produced every cycle.
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Figure 3.4: Data flow in the systolic array

The systolic array may also be configured to operate on two-dimensional data
usually represented as images. In this mode, the pixels move through an array of
9 rows of 9 cells cach (i.e. 81 cells), so that the pipeline delay (k = 243) is exactly
the same as in the 1-D mode. However, the data flow differs since the convolution

window will overlap 9 rows of an image at any time. It can be easily inferred from
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3. A Fleating-Point Convolution Processor

‘ Figure 3.3 that, at each cycle, 9 pixels enter the array.

Regarding a raster-scanned image as a 1-D array of pixels, then, at time /, the

following 9 pixels enter the array:

pixel p enters row 1

pixel p + w — d enters row 2

pixel p + 2(w — d) enters row 3

pixel p 4+ (n — 1)(1w — d) entersrow n

where 0 corresponds to the width of the image and « is the delay incurred
traversing one row of the array. Thus, the delay is equal to the number of pipeline
stages in one row. In this design, d = 27 since there are 9 cells of 3 stages each per
row. As the convolution window scans the rows toward the bottom of the imagge,
it can be seen that the pixels will be sent 9 times to the array except for those near

. the top and bottom borders.

3.3 The Delay Memory Circuit

In this convolver architecture, pixels have to be read only once from host memory
even though they are used in 81 multiplications. This data re-use capability greatly
decreases traffic on the VMEbus and further enables the convolution board to use
the bus sporadically so that other master devices may take control of the VMEbus
during a convolution operation. However, this bandwidth reduction 1s realized at
the expense of hardware complexity on the board. In particular, a delay memory
circuit (DMC) stores multiple image rows so that pixels need only be fetched from

memory once although they are sent to the systolic array 9 times.

‘ An 1mage is usually acquired by a raster scan method which produces a 1-D

array of pixels stored in host memory. The DMA engine transfers the image from
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3. A Floating-Point Convolution Processor

host memory to the board in one sequential stream of pixels. Starting from the
upper left corner, each row 15 transferred one after the other down to the lower
right corner of the image When operating in 2-D mode, the DMU must re-organize
the incoming data sequence so as to create 9 streams, one for each row of the array.
Conceptually, all streams are similar but delayed from each other by a constant
factor The “stream delay”, expressed in pixels, is equal to the width of the image
minus the pipeline delay. In order to accommodate this particularity, the DMC
implements 8 arcular RAM buffers through which the incoming pixel sequence
arculates. Rows of the systolic array receive data from their respective circular
buffer except row 9 at the bottom which is fed directly with the incoming pixel

stream  The internal working of the DMC will be presented in chapter 4.

When operating in 1-D mode, the data stream sent to the array by the DMC
will be the same as the sequence in which the signal 1s transferred to the board.
Therefore, the task of the DMC comes down to taking care of the border effects at

the beginning and at the end of the data stream.

3.3.1 Border effects

Special attention should be devoted to the border effects. Figuratively, this problem
occurs only along the borders because the sliding window lies partly outside the
image  As a result, there 1s msufficient data to convolve any border pixel. A
choice must be made on how to compute the intensity value of those virtual pixels.
Many solutions exist to overcome this problem but none is completely satisfactory
[Levine, 1985]. Linear mterpolation and image mirroring along the axes yield good

results but involve computing overhead difficult to implement in hardware.

The solution retained here 1s simple and consists in enlarging the image along
the borders with zero-valued pixels. Since the center of the sliding window is

initially positioned on the upper left corner of the image, it can be seen that a frame
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3. A Floating-Point Cony olution Pocessor

of four zero-valued pixels has to be inserted along the four sides ot the image to fill
the empty slots under the window. This way, the convolved image will be ot the
same size as the source image and no image shift will occur. Image shatt should be
avoided especially if the same image is to be convolved more than once because a

cumulative shift would possibly cause partial loss of information

In the case where the zero-valued pixel solution would yield unsatistactory
results, it is still possible to extend the image with interpolated or mirrored values
in software before transferring the image to the convolver.  As a resull, extra
processing would have to be done on the host computer both before and after the
convolution forinserting and deleting the border. The new size of the image would

also have to be given to the convolution processor at initialization.

3.3.2 Up-sampling

The DMC may also be used for increasing the sampling rate of an image or a signal
for interpolation. This is easily achieved by inserting one or three zero-valued
samples between each sample of the original data depending on the up-sampling
mode (2x or 4x). The new sequence is then pushed to the array whose coefficients
perform interpolation on the up-sampled image. This feature proves to be useful
since many applications of digital image and signal processing necessitate a change

in the sampling rate of a digital signal.

3.4 The Converters

The systolic processor can only operate on double precision floating-point data.
Yet, most source data is only available in integer formats. For this reason, an input
converter transforms the incoming mteger data stream nto a floating-point data

stream which is sent directly to the delay memory circuit. Similarly, at the output,
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3. A Floating-Point Convolution Processor

a floating-point to integer converter restores the data for displaying results on a

‘ monitor (CRT).

3.4.1 Overview of the IEEE Floating-Point Standard

In the past, manufacturers used different proprietary formats to store the numbers
and did not always return the correctly rounded results of common operations
[Ferguson, 19911 As the use of floating-point arithmetic increased, the need for
a standard representation became necessary. In 1985, an IEEE working group
presented the 1EEE 754 standard whose goal is to improve software and hardware

portability. The standard describes:

e The floating-point format (single and double precision).

e The combination (rounding) of floating-point through common operations

' such as addition, multiplication and division.
e The behavior under error conditions (division by zero, overflow...).
Since the on-board converters comply with this standard, an overview of the

double precision floating-point representation is presented. For complete details

about the IEEE 754, the reader is referred to [1EE, 1985].

63 0
high low
l
bit | 11bits 52 bits
Sign| Exponent Mantissa

Figure 3.5: Double precision floating-point representation

As Figure 3.5 shows, a double precision number is 64 bits long; one bit for

‘ the sign (0 = positive, 1 = negative), 11 bits for the exponent and 52 bits for the
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3. A Floating-Pomnt Convolution Processor

mantissa. In order to ensure a unique internal representation tor each Fi” number,
the exponent is adjusted so that the mantissa has an implied 1 betore its binary
point. This normahization means that the 1in front of the binary point need not be
stored since it is always present 5o, althoagh there are 52 bits in the mantissa, a

53-bit precision 1s provided.

The exponent value is represented using the eveess 1023 notation which gives
values in the range -1023 to 1024. In other words, the decimal value () of a number
is:

v=(=1)"4 (Lomant) « 200071029 (32)

where sis the sign, mant and « rpare the decimal equivalent of the mantissa and the
exponentrespectively. In the excess 1023 notation, an exponent with the maximum
value represents infinity (oc) only if the mantissa is zero otherwise it is a NaN (not
anumber). An exponent with the mimimum value represents a zeroaf the mantissa

is null, otherwise it indicates an underflow.

3.4.2 Input Converter

The input converter [Drolet ¢f al., 1990] is the first processing stage of the pipelne
[t reads the integer data from the input FIFO buffer and requires 16 clock cycles to
complete a conversion. Thus, at the end of each pipeline cycle a new floating-point
numberisready to be sent to the delay memory circuit The current implementation
of the converter operates in three modes. In the first two modes, 8-bit and 16-bit
integers can be converted to 64-bit floating-point numbers  Yet, these conversions
only yield positive numbers since 1t is assumed that the mtegers represent pixel
intensity values which are positive. In the transparent mode, the input converter
expects floating-point samples which it passes on to the delay memory ciremnt

without conversion.
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3.4.3 OQutput Converter

The data coming out of the systolic array may be processed by the output converter
which maps the floating-point results back into integer format. Due te the dynamic
range disparity between the two formats, it is impossible to make a one-to-one
mapping. For this reason, an mterval of floating-pomnt values must be mapped to
a single integer by means of a look-up table which supports both linear and non-
linear mappings During conversion, a binary search into the look-up table will
iteratively fmd the mteger which maps to a floating-point mterval. Anappropriate
implementation of the algorithm will allow completion of one conversion every
pipeline cycle  The converted pixels are stored temporarily into an output FIFO

buffer which requests DMA transfers when half full.

In any case when multiple convolutions are to be performed on the same image,
the output converter may be bypassed to allow storage of floating-point interme-
diate results, This mode of operation prevents errors due to repeated conversions
between numeric formats which would otherwise result. However, it also gener-

ates more memory traffic due to its increased storage requirements.

3.5 The VMEDbus Interface

A system such as the Sensor Computing Environment (SCE) of the McGill computer
vision laboratory consists of a set of subsystems that need to be interfaced to each
other. For instance, the SCE mcludes a number of general-purpose computers as
well as a laser rangefinder, a variable-scan camera and eventually, the convolution
processor Obviously, there is a need for communication between the 1 /0O devices
and CP’Us But the devices should also be able to access memory if the information

is to be shared among the subsystems.

The SCErelies on the VMEDbus to establish ashared communication link between
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the subsystems. This standard bus organization otfers low cestand versatility that
allows a breed of new devices to be easily added to the system The VMEbus
specification manual [Mot, 1982] gives the characteristics of modules and protocols
which define the interaction between the bus and devices mtertaced tont Figure 3 o
illustrates how the devices connect to the VMEbus The signals which make up the
bus are divided mto four categories. The data transfer bus (DB contams 32 addiess
lines, 32 data lines as well as their associated control signals. e prority interupt
(PD lines allow devices to mterrupt normal bus activity and can be prioritized ito
amaximum of 7 levels The DTB arbitration{IYT BA) consists ot signals wiich enable
different bus masters to take control of the bus in turn. Finally, the utdaty (UTI1L)

lines provide for system initialization and fatlure detection.
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Figure 3.6: Subsystems and their interface to the VMEbus

In order to take advantage of the features available with the VMEbus, it was

decided todesign an “intelligent” mterface which would hink the convolution board

28



3. A Floating-Point Convolution Processor

to the VMEbus. The advantages of an intelligent interface are numerous:

e Frees the host CPU during convolution operation.

e Added flexibility through software.

Partial control of the convolution processor.

Multiple channel DMA controller (fully programmable).

An intelligent interface unburdens the host CPU. This is highly desirable in
a multitasking environment especially when time-critical operations are pending.
Moreover, a programmable interface adds more flexibility and provide< for future
extensions In addition to taking care ot the 1/O operations, it properly initializes
the processor and handles the pipeline fill and flush delays, respectively at the
beginning and at the end of a convolution operation. The next section presents an

overview of the interface.

3.51 The DMA Engine

The main task of the interface is to move information between the convolution pro-
cessor and memory. Most of these 1/0 operations involve block transfers which
are best handled with direct memory accesses. The solution that was adopted,
as shown in Figures 31 and 3.6, is the use of an embedded Motorola 68020 mi-
croprocessor and a VTC VIC-068 VMEDbus interface controller. The VIC, whose
operation is set up by the 68020, implements the necessary functional modules to
drive directly both the VMEDbus lines and the 68020 local bus. This translates to the

following capabilities:

e Bus master: The VIC can request control of the 68020 local bus and the

VMEDus to perform DMA transfers.
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¢ Busslave: The host computer may access on-board resources of the convolu-

tion processor.

¢ VMEbus interrupter: The VIC generates an interrupt to indicate the end of a

convolution operation.

¢ Interrupt controller for the local CPU: The VIC prioritizes on-board tnterrupt

requests and forces the local CPU to initiate DMA transters.

¢ Inter-processor communication: The host CPPU and the local CPPU may com-

municate through special registers mapped to the VMEbus address space.

Upon power up, the 68020 processor begins executing the code stored in the local
ROM. Initialization of the VIC registers follows and a program is downloaded into
the local 32K RAM. At this point, the 68020 starts running the program and awaits
further instructions from the host CPU. A host command might request a new set
of coefficients to be downloaded and a new set of values for the look-up table of the
output converter might also be desired. It 1s even possible to reconfigure the on-
board programmable gate arrays by downloading the approprate configuration
files from the host memory. But most importantly, the host, through the inter-
processor communication registers, can initiate a convolution operation. It does
this by sending a message which contains the starting address of the source image
or signal, its length, the address where the results are to be stored, the input and

output data formats and the up-sampling mode.

As convolution is being executed, the 68020 enters a loop which sets up the DMA
registers of the VIC. Although there are no segments in the 68020 architecture, the
VIC transfers blocks of only 256 bytes and therefore must have the content of its
DMA registers incremented repeatedly for larger block moves. The VIC maximizes

bus throughput by using the burst mode and by taking advantage of the full width
of the data bus.
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FIFO buffers (see Figure 3.1) permit asynchronous communication between the
host memory and the convolver. Thus, the DMA can use the bus sporadically at
its highest rate while the convolver works at a much lower but constant rate. Yet,
on average, both devices operate at the same speed. For instance, when using 8-bit
integers both at the input and output (assuming a 12.5 MHz clock), an average of
1.56 Mbytes/second have to be transferred over the VMEbus. On the other hand, if
64-bit floating-point humbers are desired both at the input and output, then a 12.5
Mbytes/second bandwidth is required. For further details on the DMA engine, the

reader 1s referred to [Panisset et al., 1990].
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Chapter 4 The Design of Auxiliary Subsystems

Although the floating-point systolic array represents the core ot the convolution
system, a few auxiliary units provide indispensable help in converting data to the
appropriate format and in feeding the array with the proper data sequence. This
chapter addresses the design of these subsystems namely, an input converter, a
delay memory circuit and an output converter. The architecture of cach subsystem
is presented in greater detail. All along the design phase, different alternatives
have been examined and resourceful solutions have been adopted to meet some

changing requirements.

4.1 Input Converter

The convolution processor only works with double precision floating-point data,
However, most data acquisition systems sample and quantize source information
into an 8- or 16-bit integer format. For this reason, an input converter has been
designed to convert data from integer to double precision floating-point format. In
addition, a transparent configuration allows data already in floating-point format
to pass through without format conversion. The pipeline architecture enables the
converter to complete a conversion every pipeline cycle (16 clock pulses) so as to

match the processing rate of the systolic convolution cells.

The block diagram of Figure 4.1 illustrates the configuration which achieves
the format conversion. A controller assumes the proper coordination of three
datapath blocks which perform multiplexing, conversion and serialization of the
data passing through. The controller is also responsible for reading the input FIFOs

in the proper sequence and for generating two signals which affect the behavior of
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Figure 4.1: Input converter (Conversion configuration)

other subsystems, namely:

o LNDIMAGE . This signal is sent to the delay memory circuit and indicates
that the last sample or pixel has been converted. This signal is active only if
the input signal LASTPXL is already high and both the input FIFO buffer and

the pipeline of the converter are empty.

e HOLD : This signal is active when the input FIFO buffer is empty or when
the output FIFO buffer is full. In these cases, the system pipeline will be
temporarily halted until the DMA controller services the FIFO buffers. In this
way, no garbage will enter the pipeline and no results will be lost because of
a full FIFO buffer.

The operating mode is set with the input signal MODE. When low, input data
are assumed to be 8-bit integers. When high, input data should be 16-bit integers.
In both modes, mtegers are converted to the floating-point format and fed to the

delay memory circuitin chunks of 8 bits starting with the least significant byte of the

33



4 The Design of Auiliary Subsystems

floating-point number. The input sighal HALT is generated by the delay memory
circuit and tells the converter to stop its operation during the next pipeline cycle.
Typically, this will occur only when the delay memory circuit inserts zero-valued

pixels in the data stream.

4.1.1 FIFO Organization and Multiplexing

The input buffer, as shown in Figure 4.2, consists of four parallel 8-bit FIFOs having
a storage capacity of 2K bytes each. Its structure allows 32-bit data transfers which
take advantage of the full bandwidth available on the VMEbus. Built around a
Motorola processor, the DM A engine complies with the Big Endun ' convention for
ordering bytes within a word. In accordance with this model, FIFOs 0 and 2 are
each mapped to an even address and are therefore connected respectively to bits
31:24 and 15:8 of the input data bus. Similarly, FIFOs I and 3 are mapped to odd
addresses and are therefore connected to bits 23:16 and 7:0. Naturally, these four
address locations are consecutive, FIFO 0 having the lowest address and FIFO 3

having the highest.

Inmode 1, 16-bit integers are converted. Thus, at the beginning of each pipeline
cycle a 16-bit integer (a word) is read alternately from FIFOs 0 and | and FIFOs 2
and 3. In Figure 4.2, it can be seen that multiplexer A forwards bits 158 (SELO =
1) of the output data bus to the input converter while multiplexer B forwards the 8
least significant bits (SEL1 = 0). In mode 0, 8-bit integers are converted Unlike the
previous mode, the FIFOs have to be read individually since each holds an 8-bit
sample value tu be converted. Now, multiplexer A routes zero-valued bits to the
upper half input of the converter (SEL0 =0). Multiplexer B selects in turn the upper
and lower 8 bits of the output data bus so that the bits corresponding to the FIFO

being read can be forwarded to the lower half input of the converter.

'In Big Endian addressing, the address of a word 1s the address of the most significant byte
within that word.
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Figure 4.2: Input FIFO organization and multiplexing stage

4.1.2 The Conversion

The schematic of the converter block is included in sheet 5/6 of Appendix A for
reference. This block is composed of a 16-bit parallel load shift register, a 4-bit
counter and some control logic. A conversion starts on cycle 0 when an integer is
latched into the shift register. The binary point is always positioned to the right
o1 the most significant bit (q15) of the register. This means that at the end of the
conversion, the remaining 15 bits will map to bits 37 to 51 of the mantissa (these are
the most signiticant bits of the mantissa). Consequently, bits 0 to 36 of the mantissa
are always set to zero. Note also that the converter assumes positive values and

always sets the sign bit to 0.

[nitially, on clock pulse 0, the 16-bit register is loaded with a new integer. At
the same time, the 4-bit counter is preset with value 14. From Table 4.1, it can be

seen that this value matches the lower four bits of the excess-1023 exponent (see
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Section 3.4.1) because the corresponding decimal exponent value at this instant s
15 (recall that the binary point is positioned to the right of the most signticant bt
of the shift register). Then, for each subsequent clock cycle, the number s shitted
left by one and the counter (exponent) is decremented until a 1 appearsin the most
significant bit (q15) of the register. At this point, the number 1« normalized and both
the register and the counter hold their content unuil the end of the pipeline cyele
The lower four bits of the exponent are given by the output of the counter while
bits 4 to 9 are represented by the carry of the counter As for bit 10, it is tound by a

logic combination of the carry and q15.

In the last two lines of Table 4.1, it is shown that, if the register needs to be
shifted 15 times, then the decimal exponent is necessarily 0, which means that the
number being converted is either 1 or 0. Ifitis 0, at clock cycle 14, both 14 and
q15 are low and the counter is stopped (ts content 15 0000)  On clock cycle 15,
the remaining bits of the exponent are set to zero because the carry and (15 are
low. On the other hand, if the number is 1, then on clock cycle 14, 141 1and the
counter will be decremented one more time. Therefore, on pulse 15 the content of
the counter changes to 1111, and since signal P01s asserted (PO 1s always active on

pulse 15), the carry and the exponent bits 4 to 9 are set high.

4.1.3 The Pipelined Output

The purpose of the pipeline output is to serialize the converted number in such a
way that it can be forwarded to the delay memory circuit over the next pipeline
cycle. The circuit (see schematic in sheet 6/6 of Appendix A) supplics 8 bits at a
time every other clock cycle starting with the lowest significant byte on dock cycle
0. At pulse O, four regisiers load the 32 most significant bits of the floating-point
number (the lower half bits are always zero and they do not need to be latched).
Then, signal CESUP8 disables the registers for the next 6 clock pulses so that no

parallel shift occurs during that period So, on clock cycles 0, 2, 4 and 6, only
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Decimal | Excess-1023 notation clock

exponent exponent cycle

(binary) number

109876543210

15 1100000011110 0
14 110000001101 1
13 11000000|1100 2
12 1100000011011 3
1 1 10000001010 4
10 1 1000000(1001 5
9 11000000/1000 6
8 1100000010111 7
7 11000000|0110 8
6 110000000101 9
5 1100000040100 10
4 10000000011 11
3 11000000(0010 12
2 1/1000000(0001 13
1 1 1000000{0000 14
0 O [1T1111T (1111 15
0 0 1000000(0000 15

Table 4.1: Possible exponent values

zeros are pushed to the delay memory circuit. On the seventh rise of the clock, the
registers are allowed to shift in parallel. Then, on clock cycles 8, 10, 12 and 14, the

32 highest bits are routed to the delay memory circuit 8 bits at a time.

4.14 The Transparent Configuration

Sometimes the pixels of an image or the samples of a signal are already available in
the double precision floating-point format. In this case, no conversion is required,
however the 8 bytes which make up a floating-point value have to be reordered
because the systolic cells process the lower bits of their operands first. Figure 4.2
shows how different format values are stored in the FIFO buffers. Since a floating-

point (FP) number is 64-bit long, it occupies two rows of the FIFOs where bytes
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7, 6,5 and 4 are first stored in FIFOs 0, 1, 2 and 3 respectively, and the remaining
bytes fill up a second row. As a result, the lower half portion ot the number is
not readily available for reading. Thus, the upper 32 bits must be read out first
and temporarily stored into registers. A simple circuit presented in Appendix A
(config 64 -> 64) has been designed to reorder and serialize the data betore sending,

the data to the delay memory circuit.

The behavior of this circuit is best shown with the timing diagram of Figure 4 4
showing two cycles. On the first pipeline cycle, the number is read from the FIEQ
buffers in four chunks of 16 bits and then stored in parallel shift registers where
the bytes are reorganized. On the next pipeline cycle, the bytes are shifted out
(serialized) from the registers and sent to the delay memory circuit every other

clock cycle.

For example, let us assume that the 64-bit hexadeaimal number
FEDC BA98 7654 3210) is stored in the FIFOs as shown in Figure 4.3. First, word
BA98 is read out of FIFOs 2 and 3 and latched into a 16-bit register on clock cydle
0. The remaining bytes of the number will be latched on cycles 4, 8 and 12, Once
latched, the bytes circulate through a set of 8-bit registers (see schematies in Ap-
pendix A) until the end of the first pipeline cycle. Next, a multiplexer selects node
LEAST from which the lower half bytes will be shifted out during clock cycles 14,
0, 2 and 4. The upper half follows when node MOST is selected during cycles 6,
8, 10 and 12. In this way, the bytes of the floating-point number appear at node
FPOUT alternately, starting with byte 10 hex and ending with byte I'l” hex,

4.2 Delay Memory Circuit

Conceptually, the convolution operation can be visualized as a window which
moves over a signal or an image in a regular scan pattern. At ecach step, new

pixels enter the window, others leave it and computations are performed on the
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Figure 4.3: Number FEDC BA98 7654 3210 as stored in FIFO buffers

overlapped pixels. In the systolic design, the array is analogous to the sliding
window. The delay memo:y circuit (DMC) provides “virtual mobility” to the
systolic array by shifting data through it. The following section describes the

design of this auxiliary circuit.

4.2.1 The Specifications

The primary task of the DMC consists in feeding the proper sequence of data to the
systolic array so as to keep the processors as busy as possible. However, additional

features provide an extension of its scope:

o 1-D or 2-D operation. The DMC handles both unidimensional signals and

images. A control line specifies the mode of operation.

o High data transfer rate. In order to facilitate system integration, the DMC

design matches the architecture of the systolic array. Therefore, a 64-bit pixel
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Figure 4.4: Timing diagram of input converter (Transparent configuration)

is serially transferred to the array in one pipeline cycle (16 clock pulses). The
DMC keeps up with the demand for new inputs, and thus during cach cycle,

9 pixels are sent to the array in parallel.

e Low VMEbus utilization. Although this statement seems somewhat contradic-
tory to the previous one, it is possible to conciliate the two by implementing
an efficient buffering strategy. The data re-use capability greatly decreases
traffic on the VMEbus because a pixel 1s read only once from host memory

even if it is used 9 times.

4()



4. The Design of Auxiliary Supsystems

o Vaurible immage/signal size. The convolution processor should not be restricted
to operate on a fixed image size. Thus, a broad range of image/signal sizes

may be handled by the DMC.

o Border ¢ffects. The DMC implements a simple strategy to tackle the border

effect problem inherent to the convolution of finite signals.

o Up-sampling. Depending on the mode of operation, the DMC may alter the
original sequence of data to insert 0, 1 or 3 zero-valued pixels between the
samples to perform 1, 2 or 4 times up-sampling, respectively. The resultant
signal can beinterpolated with an appropriate set of coefficients in the systolic

arr(]y.

4.2.2 Functional Description

Both signals and images require pre-processing in the DMC before being sent to the
systolic array The first alteration consists in adding a frame of 4 zero samples at
the begimning and at the end of a signal. Likewise, images are extended along their
borders with a frame of 4 zero-valued pixels. This is a simple yet efficient method
to overcome the border effect problem since no extra computations are involved.
Morcover, the zero-valued frame eliminates image shifting because it enables the
convolution window to be centzred on every sample of the original image or
signal including those along the borders. The second alteration occurs only when
operating i up-sampling mode. In this case, the DMC doubles or quadruples the
sampling rate ot the signal by inserting 1 or 3 zero-valued samples for each sample
read trom memory. For example, Figure 4.5 shows an original signal and its altered
version  Figure 4.0 illustrates an image which has been enlarged with a frame of
zero-valued pixels and up-sampled (2x) so as to double both its original width and
height. Indeed, with these alterations the image width grows from w to (2w + 8)

pivels.
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Figure 4.5: Up-sampled signal (2x) with its border
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Figure 4.6: Up-sampled image (2x) with its border
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The critical task of the DMC 1s to create the data streams which will feed the
systolic array. When operating in 1-D mode, the incoming data stream is sent
directly to row 1 of the array. The 8 consecutive rows take their inputs from
the nightmost cell of the respective preceding row. On the other hand, the 2-D
operation requires the creation of a stream for each row of the array. In this case,
proper synchromzation is required between the streams. The task is therefore more

arduous than the earlier case.

Consider an image of size w. In section 3.2.2, it was shown that a pixel p
entering row | incurs a delay in traversing the multiple pipeline stages of the
systolic processors. Hence, pixel p + « which is directly beneath pixel p cannot
enter the array simultaneously. Before 1t can enter row 2 of the array, this pixel has
to wart until p has reached the end of row 1. At this point, the partial sum of row
I is available and p + w is allowed to enter row 2 simultaneously with this partial
sum. In other words, for a given delay d, if p enters the array at time / (in pipeline
cycles), then o+ w will enter it at ! + J. As for pixel p + (» — 1) + w0, it will only
enter row i after (1 — 1) + d pipeline cycles. As the convolution operation proceeds,
each of the 9 rows of the array is fed with a new pixel every pipeline cycle until the
last convolved pixel is collected at the output. Consequently, the 9 rows may be
considered as the entry point for 9 similar streams of data but delayed from each
other by a constant factor. From this, one can infer that a pixel will be sent 9 times

to the array; once for each row, starting with row 9 and ending with row 1.

The delay issue as presented above is viewed from a “time” perspective. For
practical matters, a “pixel” perspective seems more appropriate to the develop-
ment of an efficient DMC. The “pixel” perspective aims at finding which pix-
els enter the array simultaneously. In section 3.2.2 it was found that at time ¢,
pixel p + (n - 1)(w — d) enters row n of the array, where ( is the row delay factor
and « is the width of the image. From this expression it can be seen that the
distance between the pixels to be fed to consecutive rows is constant for a given

image width and it is equal to w — d.
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4.2.3 Alternate Approaches

A software implementation is not only the simplest strategy, but also proves to be
the most versatile because it can accommodate different kernel and mmage sizes.
Pre-processing may be performed on the image in memory prior to its transfer to
the convolution processor. Initially, nine equidistant pointers are assigned within
the image and each of them is associated with a row of the array. At cach cycle, the
pointers are incremented and a new set of pixels are sent to the array. Untortunately,
this method requires each pixel to be read 9 times from memory. As a result, a
large percentage of the VMEbus bandwidth is devoted to the convolution board to
the point where other devices may be locked out of the bus for extended periods of
time. In addition, the host computer has to translate image data into floating- point
format before it gets transferred, otherwise an mput converter would be needed
for each stream. Consequently the software implementation was rejected since it is

not congruent with the idea of an efficient and autonomous convolution processor.

Hardware solutions for the efficient storage and access of parallel data streams
have been developed fo: a wide range of applications. An example of this can be
found in [Godon etal., 1990]. In this paper, the authors describe an architecture
for -he de-interleaving of radar pulse data into separate sequences. Each sequence
originates from a single radar device and its content is routed to a particular circular
RAM buffer managed by a global memory controller. The features exhibited in the
paper have influenced the design of the DMC which presents a problem of similar

nature.

Although limited in regard to image size, hardware alternatives contribute to an
efficient use of the VMEbus by reading each pixel only once from memory. How-
ever, this bandwidth reduction is achieved at the expense of hardware complexity
on the board. This is clear since the raster scanned image now reaches the DMC
as one data stream. Hence, the DMC has to re-organize it into 9 delayed streams

before feeding the systolic array. Several methods exist to rearrange an incoming
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data stream. Three of them were investigated for the design of the DMC.

The first method, illustrated in Figure 4.7, uses 8 shift registers through which
data circulate  Their output connects to a row of the array and to the input of
the next buffer. However, no buffer is necessary for row 9 which gets its input
directly from the mcoming data stream. In accordance with the “time” and “pixel”
perspectives that were developed above, a pixel will be first sent to row 9 of the
array. But, at the same time, 1t is copied to the buffer of row 8 where it is stored
temporarily for future re-use. Inside the buffer, a pixelis shifted «— d times at which
point it reaches the output. In this way, each pixel of the image will eventually
circulate through the8 buffersand besent9times to thearray. This method requires
a very simple control buffer strategy for shifiing data. Unfortunately, large shift
registers such as the ones required for this application are not widely used and

thus are expensive.

A second method, which became the fist design version of the DMC
[Drolet ef al., 1991], attempted to go around the above problem by using 8 cus-
tom FIFO buffers. In this method, each buffer has a storage capacity equivalent to
the image width and 1s implemented with a RAM addressed in a circular queue
fashion. Two pointers, a read and a write pointer, are used to control the 8 buffers
which share a common address bus. The distance between the pointers is fixed,
with the write pointer lagging the read pointer by an amount equal to the row
delay factor. Action takes place in two clock cycles. On the first clock cycles, the
read ponter is applied on the address bus, then a set of 8 pixels are fetched from the
RAMs and sent to rows 1 to 8 along with the incoming pixel on row 9. On the next
cycle, the write pointer drives the bus and pixels are shifted up into the next buffer.
Both pointers are then incremented before the next cycle executes. Conceptually,
this scheme works well. The major drawback is that a different address drives the
memories every clock cycle. When working at high clock rates, it presupposes very

fast access memories.

45



4. The Design of Auiliary Subsystems

Row |

r PIw-d)-1 | P-w-d)-2 | P-7(w-d)-3 R O oee PSiw-d)+1 | P-S(w-d)
Row?
F P-b(w-d)-1 | P-b(w-d)-2 | P-6iw-d)-3 S eersesseccsees P-7w-d)+1 P w-d) >
Row 6
|->P-2<wd)-1 PAw-d)-2 | P2Aw-d)3 Paw-dy+1 | P3(w-d) >
Raw?
r P-w-d)-1 | P-(w-d)-2 | P-(w-d)-3 eteressences see PAw-d)+1 | P-2(w-d) >
Row 8
I’ P-1 P2 1 I Mw-d)+1 | P-(w-d) >
b Row Y

Figure 4.7: Data stream re-organization with shift registers
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Thelatest design version of the DMC takes the best of the two previous methods.
Similarly to the two-pointer approach, it makes use of 8 RAM circular buffers but,
in light of the shift register approach, their length is limited to « — « pixels. This
method behaves exactly like the shift register method except that the data shift
is emulated with a single pointer common to all the buffers. The pointer is used
o access memories for two consecutive transactions. On the first clock cycle,
a read operation is performed. On the next cycle, a write operation (using the
same address) shifts up the pixels fed to row « into the buffer associated with
row 1. Although this procedure suffers from the same drawback as the two-
pointer technique, it naturally leads to a smaller, more efficient DMC. Anin-depth

architecture description follows.

4.2.4 The Architecture

The DMC architecture is divided into two blocks as shown in Figure 48. The
incoming data stream circulates through circular RAM buffers in the datapath
block. A controller block, based on three interlocked state machines and a pointer,
guides the flow of data in the datapath block. The operation of the DMC is set with

the following input lines:

e DIM : When DIM =0, the DMC assumes a 2-D signal (image). When DIM =

1,a 1-D signal is expected.

e WIDTH : Specifies the width of the image when operating in 2-D mode. Five
lines yield a possibility of 32 different image sizes ranging from 32 to 1024
pixels. Thefollowing formula describes therelation between the image width
and the WIDTH lines:

Imagandth = (W IDTH = 32) +32 (4.1)
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Figure 4.8: Architecture of DMC

Although the maximum width of the image is restricted to 1024 pixcls, there

is no limitations either for an image height or for the width of a [-1 signal.

o UP-SAMPLING : These two lines set the up-sampling mode according to the

following table:

51 SO | Up-sampling
tode
010 1x
011 2x
110 1x
111 4x

The following signals provide dynamic communication with other units of the

convolution processor:

e HOLD : When asserted, the DMC is temporarily stopped.
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Figure 4.9: Datapath architecture of DMC

e HALT: Whenever a zero-valued pixel is to be inserted in the data stream, this

signal disables the input converter during the next pipeline cycle.

o ENDIMAGE : Indicates that the last sample will be sent to the DMC over the

next pipeline cycle.

Datapath Block

Figure 4.9 illustrates a regular datapath architecture which can be extended
indetinitely to accommodate larger systolic arrays. Except for row 9 which imple-
ments two multiplexers, all rows are similar with one output multiplexer, an octal
latch and an 8K RAM buffer. The size of the memory is the primary limiting factor
tor image width. In this case, an 8K memory buffer can delay 64-bit floating-point

I pixels by as much as 1024 pipeline cycles before their re-use in the next row.
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Similarly to the other subsystems on the board, the DMC transters floating-point

‘ data in one pipeline cycle. Pixels enter the DMC on even clock cycles in chunhks ot
8 bits starting with the least significant byte i cycle 0 and ending with the most

significant byte in cycle 14. However, at the outputs, pixels are sent to the array

in chunks of 4 bits. The 16 clock pulses of a pipeline cycle are therefore needed to

supply a complete 64-bit pixel.
Multiple control lines guide the behavior of the datapath block.

to and from the memory buffers. For 1-D operation, ( "I'1 is set to 0 s0 as to

put memory buffers into power-down mode.

e ZERO_ IN_ B : controls the input multiplexer. When asserted (active low),

zero-valued pixels enter the DMC.

. e ZERO. OUT. B : controls the output multiplexers. When asserted (active

low), zero-valued pixels leave the DMC.

e SEL :selects one of the two inputs of the output multiplexers. On even clock
cycles, the four least significant bits are selected. On odd cycles, the four most

significant bits are selected.
e CE :enables the octal latches so that they latch on even clock cycles.

o OE : enables the tri-state buffers on odd clock cycles o that the previously

latched values can be transferred to memory buffers of the next row.

Controller Block

The controller consists of two major blocks as depicted in Figure 4.10. A third
. block, the pipeline cycle counter, simply generates the 16-pulse sequence (p0,p1,p2

etc.) which is used for synchronization at each pipeline cycle. The pointer block is
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Figure 4.10: Controller architecture of DMC

a 13-bit counter which generates the addresses to access the memory. The counter
is programmable “modulo-n” where n is equivalent to the length of the memory
buffers («w—d) Finally, three interlocked state machines generate the control signals

for the datapath and the address pointer.

Due to the memory buffers, a restricted number of image widths can be accom-
modated. It seems that this limitation is even more severe when operating in 2x
or 4x up-sampling modes because, in these cases, the image width is doubled or
quadrupled. However, it would be possible to operate on the same set of image
widths as in normal mode (1x) if the storage of the up-sampling zeros could be
avoided. In fact, there is no need to store the zeros since their position in the data
stream is known in advance. In this design, the output multiplexer of each row
can be controlled through the ZERO. OUT_ B signal to force zero-valued pixels to
be sent to the array and thus avoid unnecessary storage in the buffers. Since the

ZERO. OUT. B signal controls the 9 output multiplexers, it must be ensured that
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Figure 4.11: Modified systolic array for operation with DMC

all streams will always output zero-valued pixels synchronously. It can be seen
that this will only occur if the distance i — « between image pointers is coen. In
this design, « is the exterided image width (the up-sampled image width plus the
borders) whose value is always even. Unfortunately, the delay factor ¢ which is
the delay incurred in traversing the array is an odd value (27). The value w  d will
be even only if the delay is also even. For this reason, a set of cight 4-bit registers
will be inserted at the partial sum output of the top eight rows of the array so as to
obtain a delay of 28 pipeline cycles. Figure 4.11 illustrates this simple modification

for a3 x 3 systolic array.

Three nested state machines manage the sequence of operations in the DMC. At
the bottom level, the horizontal up-sampling (HUS) state machine (sce Figure 4.12),
generates signal ZERO. OUT. B which acts as a strobe for the output multiplexer
by forcing a zero at the outputs when activated. When operating in normal mode

(1x), the state machine remains 1n state U1 since no zeros need to be inserted 1n
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Figure 4.12: Horizontal up-sampling (HUS) state machine

the streams. However in 2x and 4x modes, the state machine changes state every
pipeline cycle. In state U1, a normal pixel is read from the input converter. In
states U2, U3 and U4, ZERO_OUT_Biis asserted (active low) and one or three zeros
are inserted in the data streams. The end of a cycle is marked by the assertion
of signal EUS (End Up-Sampling) which enables the horizontal state machine to

change state if necessary.

The lorizontal state machine (see Figure 4.13) is responsible for the insertion
of the left and right borders of each image line by asserting signal SIH (Select-In-
Horizontal). * A new line starts with state H1. At this point, at least one zero will
be inserted in the incoming data stream, depending on the mode of operation. In
Ix mode, 4 zeros will be inserted by going through the sequence H1, H2, H3 and
H4. In 2x mode, only 2 zeros will be inserted in sequence H1 and H2 because the
HUS state machine already inserts a zero for each pixel in the stream. Similarly, in
4x mod~, only one zero is inserted because 3 others will be automatically inserted
at the output by the HUS state machine. Once the left border is completed, the
state changes to H5 where input pixels enter the DMC. For each pixel inserted, the
horizontal counter (see Figure 4.10) is incremented until it reaches the end of the
image line. At this point, the right border is ready for insertion and before entering

state HI, a flag is toggled. This flag indicates which border (left or right) is being

“Signal ZERO. IN_ B 1s the result ot an AND operation between SIH and SIV
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Figure 4.14. Vertical state machine
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inserted. At the end of the line, signal ENDLINE is activated and a new cycle may
begin. Signal ENDLINE also enables the vertical state machine to change state if

necessary.

The verlical state machine (see Figure 4.14) is at the top of the nested structure
and can only change state 1f both signals EUS and ENDLINE are set to one. It
controls the msertion of the top and bottom borders as well as the insertion of up-
sampling rows mn the incoming data stream. It should be noted that these all-zero
lines are actually ijected at the input multiplexer and therefore circulate through
the buffers Atthe beginning, states V1, V2, V3and V4 are traversed and 4 null lines
arce injected into the DMC to create the top border. When V5 is entered, signal SIV
(Select-In-Vertical) s activated and normal image lines may be sent to the DMC.
In Ix mode, state V5 remains activated until the end of the image (external signal
ENDIMAGE) is reached. In 2x or 4x modes, 1 or 3 lines, respectively, have to be
inserted for cach input line. This is achieved by cycling through V5 and Vé (2x
mode) or through V5, V&, V7 and V8 (4x mode). When ENDIMAGE is asserted,
state V6 is entered and, at this point, only all-zero lines can be injected into the

DMC.

For more details concerning the DMC, the reader is referred to Appendix B and

Appendix C which include detailed schematics and PAL files.

4.3 Output Converter

The floating-point results coming out of the systolic array will be forwarded to the
last processing stage of the pipeline, namely, the output converter. This converter
performs three operations.  First, it collects the data at the output of the array.
Second, it converts data to integer format and third, it writes the converted values
into the output FIFOs. Thereafter, these values may be sent directly to an image

butter for display on a screen.
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The output converter may also operate i a bansparent mode. In this case, no
conversion takes place to allow the storage of full precision results Indeed, this s
the favored mode ot operation when pertorming muluple passes on an image to

avoid round-off errors.

4.3.1 The Pipelined Input

No conversion can be performed until a full floating-point value has been passed
to the output converter. Since 16 clock cycles are needed to send a single value, a
pipeline stage has been designed to store the 24 most significant bits of the floating-
point value thatare needed for the conversion process  Asillustrated in Figure b 15,
the stage consists of six 4-bit shift registers and a 24-bit regrister which latches the
floating-point result at the rising edge of the first clock pulse (P0) of cach pipeline

cycle. The full content of this register is then forwarded to the conversion stage,

4-bit 4-bit 4-bit 4-bit 4-bit 4-bit
From | register register register register reqgister register
Array
e D Q D Q D QL D Q D Q D Q
4
20-23 16-19 12-15 8-11 4-7 0-3

24 Most significant bits of F P number

24-bit REGISTER

l

TO
CONVERTER

Po —~ CE

Figure 4.15: Pipelined input to output converter
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The conversion of floating-point results into integer format is achieved by means

of a binary search in a look-up table. A mapping is performed from a large set

of 2% possible values to a smaller set of 2% integers. Clearly, this mapping results

in a non negligible loss of precision. However, if the range of the floating-point

results is known or if the values are distributed n clusters, an optimal precision

can be maintained by taking advantage of the non-linear mapping capability of the

look-up table This is accomplished by partitioning the input dynamic range into

non-uniform intervals which are loaded in ascending order into the look-up table

prior to a convolution operation.

-
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Figure 4.16: Output converter architecture

Figure 4.16 shows a block diagram of the converter. On the first clock pulse of

the cycle, the 8-bit register A is reset and the 8-bit register B is preset with the value

255. The content of these two registers are added in an 8-bit carry lookahead adder.

The sum is then divided by two using a hardwired shift. This resulting index is
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the address to be referenced in the RAM table.

The firstindex points to the middle of the look-up table. The 24-bit floating-point
interval stored in this address is then compared with the number to be converted,
which has already been stored in the 24-bit register ot the pipelined input 1t the
interval in the table is larger than the convolved number then register B is loaded
with the address of the interval, otherwise register A is loaded with the address.
A new iteration begins with the computation of a new index. The operation 1s
repeated until registers A and B hold the same value which means that the best
interval has been found. The result of the conversion corresponds to the index

(address) pointing in the look-up table.

The principle behind the binary search 1s that the area of the search is divided
by two at each 1teration. [t can be easily shown that this algorithm will always

converge towards a solution within » iterations:

n = log(h) (4.2)

In the above equation, b is the number of elements in the table where the scarch is
being performed. In our case, only 8 iterations are needed since the look-up table
stores 256 intervals. Therefore, a conversion can be completed within a pipeline
cycle and allows an iteration to last two clock cycles. The 8-bitinteger is then ready

to be written into one of the output FIFOs.

4.3.3 The Transparent Configuration

The transparent mode of operation provides an independent path which bypasses
both the pipelined input and the converter. Since the systolic array pushes the
results 4 bits at a time beginning with the lowest significant bits, the output con-
verter has to shuffle the incoming data so as to make them compatible with the

Motorola Big Endian byte organization. In this case, the results cannot be written
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in the FIFOs until the most significant bits are output from the array. Therefore, the
lowest bits have to be temporanly stored in registers before they can be written into
the IFIFOs This problem is very similar to the one already explained in section 4.1.4

since both the input and output FIFO buffers are organized similarly.

CONTROLLER
WRFIFOO B] To
WRFIFO1. B| _ ___ FIFOs
Write lines
JHOLD OEL
OEH
«4R-SET CE2
CEY}
. .JcrLock CEO| _
From T T
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. 16-bit 16-bijt 16-bit 16-bit
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Jce J
TP ol 16 ie

- CE /1/6 Y

Dout(15:0)
To FIFOs

Figure 4.17: Output converter (Transparent configuration)

This simple circuit is illustrated in Figure 4.17. A controller generates control
signals such as write Iimes for the FIFOs and latch enable lines for the multiple
registers in the datapath  The operation of the circuit is best explained with the
help of the tiing diagram of Figure 4.18. Assume that the next floating-point
sample to leave the array has a hexadecimal value of FEDC BA98 7654 3210. The
sample comes out in chunks of 4 bits sterting with 0 and ending with F. These
4-bit values are hirst shifted through the four 4-bit input registers where they are
serialized mte To-bit values which, in turn, will be shifted through the four 16-bit
registers over the rest of the pipeline cycle. At the beginning of the next pipeline
cycle, these 4 registers hold the floating-point sample. Node C holds value BA98
and node E holds value 3210. On clock pulse 0, BA98 is written to FIFOs 2 and 3
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Figure 4.18: Timing diagram of output converter (Transparent configura-
tion)

then on pulse 4, FEDC appears at node C and can be written immediately to FIFOs
0 and 1. On pulse 8, value 3210 at node E is stored in FIFOs 2 and 3. Finally, on
pulse 12, value 7654 is shifted to node E and can be stored m FIFOs (0 and 1. In this
way, the upper half (32 bits) of the floating-point sample is always written before

its lower half as required by the Motorola byte order model. Only one pipeline

cycle delay is incurred before the complete floating-point sample is stored in the
FIFO buffer.
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Chapter 5 Implementation and Results

This chapter describes the implementation issues of the auxiliary subsystems pre-
sented in the previous chapter. The first three sections are devoted to the description
of the CAE tools that were used during the design process, namely the VHDL de-
sign environment, the Mentor Graphics IDEA environment and the Xilinx FPGA
development system. Following this, two sections focus on the implementation
of the individual subsystems and provide some simulation results. Lastly, system
considerations are explored with particular attention being paid to the board-level

testing

In this project, a structured approach to design was preferred. In the early
phases, behavioral simulations using both the C programming language and the
Very High Speed Integrated Circuit Hardware Description Language (VHDL) have
been performed. These high-level simulations helped discover potential architec-
tural conflicts and evaluate design alternatives. As a matter of fact, the focus was
seton the input/output specifications and verification of the algorithms rather than

on registers, adders, combinational logic and their interconnections.

The subsequent steps consisted in the gate-level design of the different subsys-
tems. For this matter, the Mentor Graphics” CAD tool offers a complete environ-
ment which supports both schematic capture and simulation. The schematic was
first drawn and checked for electrical errors. Then, the design information was

extracted for complete functional and timing simulations.

Application specific integrated circuits (ASIC) represent a natural choice for
implementing the support circuitry of this convolution system as they help re-
duce power consumption and system size while increasing overall performance.

Among ASIC solutions, the Xilinx XC3000 family of field programmable gate arrays
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(FPGAs) offers an interesting alternative for impleraenting the converters and the
controller of the delay memory circuit. The Xilinx development system translates
designs into programmable gate arrays and provides the intertace with the Mentor

Graphics environment for full timing simulation.

A description of the aforementioned computer-aided engineering (CAL) tools

follows.

5.1 Intermetrics VHDL Design Environment

The Intermetrics VHDL Design Environment (VDE) [Int, 19901 is a software pack-
age which supports the VHDL language as defined by the 1EEE 1076-1987 Stan-
dard [IEE, 1988l. Version 3.0 is currently available at McGill University and runs
under UNIX on SUN 3/60 workstations. The VDE consists of four components:
the VDE interface, the analyzer, the simulator and the design database. Figure 5.1

depicts their relationship.

The VDE interface as its name implies, provides the user with a convenient
means of accessing the resources of the VDE. More specifically, it allows users
to interact with the design database, to create new design librarics, to invoke
the analyzer or the simulator and to see the waveforms of a circuit previously

simulated. The user interface consists of windows, icons and pull-down menus,

The analyzer checks hardware descriptions for syntactic and semantic errors.
It also translates VHDL source text to the intermediate VHDI. attnibuted notation
(IVAN) form and stores it in the working library of the design database. These
descriptions are stored in a structured library which holds the relationships and

attributes relating to the design units.

Simulation involves the use of three programs: the Model Generator, the Build

and the Sim programs. The Model Generator reads a unit in IVAN form and
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Figure 5.1: The Intermetrics VHDL Design Environment (VDE)

translates it to C object code. The Build program then links the object modules
with the Simulation Core library. A simulation kernel is created and stored in
the design database. Finally, the Sim program executes this simulation kernel. A
simulation run will create a signal directory and a signal trace file which, again,
are stored in the database. The simulator is invoked through the VDE interface
and can run either in batch or interactive mode. An interactive simulation is very
convenient for the debugging of source code. Waveforms may be plotted with the
waveform viewer as transition diagrams. A simulation report text file may also be

generated using a “report control language”.

The VDE tools described above communicate through the design database.
Because this is a modular architecture, other tools for synthesis or for automatic

test generation could be easily added to the system.
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‘ 5.2 Mentor Graphics IDEA

Mentor Graphics provides a complete set of application programs to assist i the
electronic design automation (EDA) process. These application programs have
been created to automate schematic entry, design analysis, 1C and PCB layout,
test and manufacturing, packaging and documentation. Communication of design
data is shared among the application programs via the Mentor Graphics Com-
mon Database. Version 7.0 of this package has been installed on Apollo DN3500

workstations running under Domain/OS.

For the purpose of the convolution system, only the schematic entry and the

design analysis tools were used. Two application programs support schematic

entry:

o NetED [Men, 1989b], the network editor, creates schematic sheets of com-

‘ ponents, nets and ports provided by different libraries. A set of propertics
are bound to each network entity and holds information snch as net name,

net delay or pin direction. These properties are then used by downstream

applications. NetED supports top-down hardware development by using

hierarchical sheets of functional blocks. This structured approach usually

produces designs that are more reliable and easier to understand.

o SymED, the symbol editor, lets the designer create or modify component
symbols which can be placed on the schematic sheets  With SymiiD, basic
blocks that represent off-the-shelf or full custom parts can be drawn and

assigned different properties.

Once the design entry is completed, the hierarchical schematic must be ex-
panded to produce a flattened design. The extractor further processes the design by

extracting appropriate information and models to be used by the simulator.

Design analysis is supported by the Quicksim [Men, 1989al logic simulator
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which allows the designer to verify the functionality of the designs produced with
NetED and SymED Quicksim is an interactive simulator which means that the user
may stimulate the inputs with different test vectors and observe the consequences.
Any signal in the design may be traced, listed or monitored. Mentor provides
simulation models which can be altered to accommodate similar components with

different timing characteristics.

5.3 Xilinx FPGAs and the Development System

5.3.1 Xilinx LCA Architecture

Field programmable gate arrays (FPGAs) are high-density ASICs that are pro-
grammed by the end user rather than the semiconductor manufacturer. Xilinx
offers a family of FPGAs with different logic capacities, speed and temperature
ranges. The XC3000 family can implement logic functions that range from 2000
gales (XC3020) to 9000 gates (XC3090).

Xilinx’s proprietary FPGA architecture is called “Logic Cell Array
(LCA)” [Xil, 19911 and is very similar to standard gate arrays. The LCA is made
of three types of configurable elements: a perimeter of 1/0O blocks, a core array
of logic blocks and resources for interconnection between blocks. Much like a
programmable computer peripheral, the functions implemented in an LCA are
determined by a configuration program downloaded during system initialization.
Since volatile SRAM cells hold the configuration, it is possible to change the con-
tiguration of the LCA during operation by loading a new program. This feature,
together with the high-density of the FPGA, contributes to minimize the chip count

on a board.

The array of configurable logic blocks (CLBs) provides the elements from which

the user’s logic is constructed. Each CLB has two flip-flops, a combinatorial section
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and a control section. The combinatorial part is made of a look-up table which can
implement one or two independent functions The propagation delay between the
input and the output is independent of the logic function. Since the table has 32
entries, a single function of 5 variables can be generated although 7 variables (a, b,
¢, d, e, Qx, Qy)areavailable. Variables a, b, ¢, d and e may come from another block
but Qx and Qy are driven by an internal feedback path coming from the output of
the two flip-flops. The two edge-triggered fhp-flops share an asynchronous reset
and they obtain their input either from the output of the combinatorial logic or

from the ‘data-in’ block input.

Each 1/0 block (IOB) provides the interface between the user logic and the
external world. An OB includes both direct and registered input paths. Program-
controlled memory cells configure an 0B for output by setting signal inversion,
tri-state control inversion, direct or registered output as well as control of the slew
rate (fastor slow). The global input buffer threshold of the IOBs can be programmed
to be compatible with either TTL or CMOS levels. A pull-up resistor may also be

selected to prevent unused inputs from floating.

Programmable interconnection resources provide the interconnection of any
blocks (IOBs or CLBs) in the LCA. Three types of resources are available, namely,
the general purpose interconnects, the direct connections and the long lines. The
direct connections can be used to link adjacent blocks only while long lines are
intended primarily for signals that must travel a long distance  Long hnes also
allow multiplexed buses and wide AND gate functions when combined with tri-

state buffers adjacent to CLBs.

5.3.2 XACT Development System

The development system, XACT [Xil, 19891, is a CAE tool which eases the design

implementation process. Two versions are currently available at McGill. Version
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Figure 5.2: Xilinx design flow

3.0 runs on PC-286/386 while version 2.2 runs on Apollo DN3500 computers. A
complete interface with parts library enables the designer to enter LCA designs
with the Mentor Graphics NetED schematic editor. A timing simulation may be

performed with Quicksim before and after the implementation process.

Figure 5.2 depicts the usual design implementation flow. The design method-

ology involves three main steps:

Design ENTRY: LCA designs may be entered by any combination of schematic
capture and boolean equations. Many popular schematic editors such as
NetED can be used. However, the design must be drawn with the symbol
library provided by Xilinx. The boolean equations should be written into a

PALASM2-compatible text file. Each portion of the design is then converted
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’ to anint 'rmediate description called the Xilinx netlist file (A\NF) The separate

XNF files may be merged into a single XNF file subsequently

Design IMPLEMENTATION: Implementing a design i an FPGA entails three
operations: technology mapping, placement and routing and contiguration
generation. From the XNF design tile, the XNF2LCA utility maps the logic
into the CLBs and 1OBs of the LCA architecture  Then, an automatic place-
ment and routing program (AT'R), influenced by the user placement con-
straints, looks foi a suitable block arrangement using an algorithm catled
“simulated annealing” [Huang et al., 1986] The program then routes these
constraint nets to interconnect the blocks. The APR 15 the critical step in the
FPGA design flow since placement and routing choices have a major etfecton
the performance of the resulting implementation  Indeced, Xilinx provides an
interactive editor which can be used to “improve” an unsatisfactory routed
design. The last operation consists in creating the binary configuration pro-

‘ gram to be downloaded into the FPGA. This is analogous to a microprocessor

assembler.

Design VERIFICATION: Design verification can occur at two points in the design
process. Afteradesign is entered, a functional simulation can be run to verify
the operation of the logic. Following implementation, another verification

may include full timing simulation and in-circuit testing.

54 Input Converter Implementation

5.4.1 Schematic Entry

The design of the input converter, as presented in chapter 4, points out three
. different modes of operation which can be divided into two separate configurations.

The first configuration is used to convert either 8- or 16-bit fixed-point numbers
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while the second simply performs bytes reversal on incoming 64-bit floating-point
numbers. In both configurations, the interface with the external world remains
essentially the same despile the internal structural differences. This feature makes
possible the development of two “soft” configurations that can be downloaded into
a RAM-based programmable gate array such as Xihinx. Atany time, the FPGA will
hold cither configuration depending on the mode of operation. Therefore, by using
the reprogrammability feature of the chip, an appreciable circuit size reduction can
be achieved  In the future, 1t will also be possible to upgrade the functions of
the input converter without changing the printed circuit board as long as the new

features fit into the same chip

Schematics of both configurations have been drawn in a top-down fashion
as shown in Appendix A. The top-level sheet of each circuit contains the input
and output ports which connect the chip to the external world. In addition, two
functional blocks, a controller and a data path, lead to the lower levels of the
hierarchy. A functional block may either pomt to a sheet with graphic components
or to a text file which holds boolean equations. In this case, the former is used to
describe the structure of the design using parts from the Xilinx standard library.
The latter option yields a more compact logic description which is sometimes
closer to the way hardware designers think. Most of the signals generated in the
controller have been expressed in PALASM, a PAL description language developed

by Monolithic Memories Inc.

Some portions of the schematics contain frames. Frames are tools provided
by NetED to avoid drawing multiple occurrences of a repetitive portion of the
circuit. An example of this can be found in the third sheet (3/3) of the transparent
contiguration (Contig 64 ->64 m Appendix A) where a unique multiplexer is drawn.
although 1t is instantiated 8 times. An indexed variable is appended to the signals

inside the frame to keep track of the proper connections.
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5.4.2 Behavioral and Functional Simulations

The schematics of both configurations have been simulated at the gate level with
Quicksim. The functional simulation is a unit-delay simulation whose only goal
is to debug logic betore the implementation into the FPGA A set ot stimuh have
been applied to the different nodes in the circuits so as to verity the behavior of the

lower levels of the hierarchy.

When the verification of the individual blocks was completed, another set of
stimuli was applied to the primary inputs of the converter. Different integer num-
bers, especially those at the boundaries were then converted and the results were
compared with those of a software routine written m the C language, which ex-
ecutes conversions using the same algorithm. The validity of the algorthm was
also checked for full compliance with the IEEE standard by means of the mternal
integer to floating-point conversion routines provided by an I[EEE-754-compatible

C compiler.

5.4.3 Logic Partitioning

C 1ce the designs proved to be functional, the schematics were flattened Gie. the
hierarchy was removed) and each configuration was partitioned. Partiioning con-
sists in mapping the logic to LCA elements such as the [/O blocks and configurable
logic blocks (CLBs). This usually results in a drastic transformation of the logie. In
particular, the boolean equations are optimized for an efficient implementation in

the CLBs and the unused logic is removed. The final design file 15 called an LCA
file.

Table 5.1 summarizes the partitioning results for each configuration and give the
percent chip utilization of two FPCGAs of the Xilinx XC3000 family. As mentioned

earlier, the number of IOBs used is aimost the same; the difference 1s due to the non-
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Configuration | L.CA resources used Percent utilization
. CLB XC3030PC84 | XC3042PC84
CLBs | 1OBs | Flip-flops | Nets | CLBs | IOBs || CLBs | IOBs
~ Config 1 _ _Th T
(converter) 86 36 65 134 || 86/ | 49% 60% | 49%
~ Config 2 1
(transparent) ;?_,J_ 3? 83 99 57% | 479% || 40% | 47%

Table 5.1: Input converter partitioning summary

utilization of the MODL input in configuration 2. The largest circuit, configuration
[, requires 86 CLBs even though the other one uses more flip-flops. As a result, both
configurations seem to fit well in either FPGA. Nevertheless, the larger FFGA . the
XC3042PC84, was selected to ease the placement and routing process. This decision
stems from experience gained with previous FPGA experiments and analysis of
other FIPGA designs which have shown that a CLB utilization of 70% or less usually

yiclds the bestimplementation results.

For many circuits, the designer has to trade off between integration and speed.
A circuit which takes most of the FPGA configurable blocks will be usually more
difficult to route because of the scarce interconnect resources provided in the LCA
architecture. Consequently, non-negligible net delays should be expected and the

speed performance will decrease accordingly.

Knowledge of the internal architecture of the FPGAs helps design a circuit which
will be easier to implement. This usually resu!:s in an improved performance both
in speed and logic density. FPGAs are es:« 1ally suited for synchronous designs
that mix boolean functions and registers. h-ieed, the pipeline architecture of the

input converter fits into this category.
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54.4 Placementand Routing

The designer can exercise some control over the automatic placement and route
(APR) process by specifying a set of constraints either n the schemuatic or in a sep-
arate file. For mstance, constraints may predeternune the placementof 170 blocks,
prohibit usage of certain pins or assign weights to critical nets for which delays
should be minimized. In regard to the two input converter contigurations, a set of
19 pins which have dual functions were prohibited. These special function pins are
used to control the downloading of the configuration program wpon chip ininal-
ization; they become normal user 1/O pins afterwards. In order to avoid msertion
of supplementary external circuitry to prevent potential contlicts and circuit dam-
age during configuration, the usage of these pins as 170 pins was forbidden The
designer should also avoid the temptation to predetermine /O block placement
before implementing the logic to ease printed board design. Such practice may
result in routing congestion near the perimeter of the device. 1lence the necessity
to rely on the APR program to find the most appropriate 10B placement based on
circuit topology. Lastly, crucial nets, especially those which drive a large number
of CLBs, were flagged as “critical”. The APR usually routes these nets first when
most of the interconnect resources are sull available. Other nets that must travel o
long distance or must have minimum skew were flagged as “longline”. Some of

these flags may be observed on the schematics included in Appendix A,

The two designs were routed with the APR Version 30 It took close to 50
minutes on a PC/386 computer to route configuration I while configuration 2
required half an hour. Two reasons explain the APR time difference  First, the
transparent configuration, as shown in table 5.1, fits into less CLBs. Second, the
/0 block placement set up by the APR for configuration 1 was also used for
configuration 2 since they are both destined to the same physical chip. The APR
program was executed multiple times until satisfactory results were obtained.
Nevertheless, the final implementation of configuration 2 had to be improved

manually using the XACT interactive design editor.
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54.5 Timing Analysis

The final stcp consisted in the verification of dynamic timing violations with Men-
tor’s Quicksim.  Mentor Graphics also provides an application program called
“Quick path” which automatically analyses critical path timings. Unfortunately,
this tool 1s otill not available at McGill. Therefore, a manual static timing analysis
had to be performed on selected critical paths. In particular, the simulations have
pomnted out that the input converterimplementation has notlived up to the initial
expectations. Careful analysis has revealed a maximum operating frequency of 12
Mtiz for configuration 1; the target frequency was 12.5 MHz. As for configuration
2, it presented no timing violations at the target clock rate. It should be noted,
however, that these are worst-case figures valid for a wide range of physical (tem-
perature, manufacturing) conditions. Operation in a typical environment would
probably work faster. Additional tests on the prototype board shall support this

statement.

Figure D.1 of appendix D presents a simulation run illustrating a typical
conversion as performed by configuration 1. In this diagram, the 16-bit in-
teger A9E3 is converted into the 64-bit double precision floating-point number
40ES BCo0 0000 0000. Initially, a conversion cycle begins with the reading of the
mleger. Two of the read FIFO signals RDFIFO_ B are first driven low for two clock
cycles. The 65 ns access time of the input FIFOs (CY7C429-65) combined with the
35 ns set-up time of DIN make it impossible to read within one clock cycle. Thus,
arcad cycle1s started at clock pulse D of the previous pipeline cycle so as to latch
the integer al clock pulse 0 of the subsequent pipeline cycle. From this point on,
the conversion proceeds and lasts one pipeline cycle. The results are available at
the output (FPOUT) in chunks of 8 bits shortly after clock pulse D. The first four
bytes are always 00 (least significant bits of the mantissa). The remaining bytes 60,

BC, E5 and 40 appear on clock pulses 5, 8, Aand C, respectively.

It was computed that the worst case delay for FPOUT occurs at clock cycle 5.
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In this case, the signal FPOUT appears at the output pin 60 ns atter the riving, edge
of the clock. However, this 1. .g delay causes no problem sinee the delay memory
circuit will only latchthis value on clock cvele 7. This lTeaves more than enough time
for the signal to propagate to the DMC The other by tes will be latched at pulses 9,
B and D respectively (in the DMC, they are referred as pulses 8, A and O). It should
be noted that the DMC has its own pipeline cycle counter whuch is leading by one
clock pulse the cycle counter of the mput converter In other words, a pipeline
cycle in the DMC starts one clock pulse earlier than in the input converter. This

makes for proper pipeline synchronization.

A simulation example for configuration 2 is presented in section D.2 of ap-
pendix D. For evaluation purposes, the timing diagram may be compared to the
unit-delay diagram of tigure 44 since they share the same mput vectors. In this
case, the 64-bit value FEDC BAY8 7654 3210 is to be reorganized and sent to the
DMC. The number isread in chunks of 16 bits according to the follow ing sequence:
BAGO98 is read out of the FIFO first, then FEDC, 3210 and 7654 follow at imtervals
of 4 clock pulses. Then, it takes one pipeline cycle to reverse the data order. The
first byte (10) appears at FPOUT on clock pulse K. Subsequently, the remaining
bytes will appear every other pulse. The worst case propagation delay for FPOUT
occurs on clock pulses 6 and E whensignal SELT toggles. A 63 ns delay has been
computed from the simulation. Thisleaves only 17 ns for the signal toset up atthe

input of the DMC before the next rising edge of the clock.

Simulation also reveals some glitches which can be observed on signal SELL
However, these have no effecton the FPOUT and thus, can be safely ignored. The
traditional method used to elimmate glitches which consists in adding redundant
logic to a boolean equation 15 not applicable in this casesince, in the Xilinx FPGAs,
the combinaticnal logic is implemented with look-up tables. The outputs will be

glitch-free only when all inputs change simultaneously.
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55 Output Converter Implementation

The output converter, like the input converter, has two configurations which shall
be irnplemented in a Xilinx XC3042PC84-100. Configuration 1 (the converter) was
implemented in 1990 before the installation of the interface between Mentor and
the Xilinx development system on the Apollo computers. A schematic has been
drawn with OrCAD and implemented using the version 2.23 of the APR on a
PC /286 computer. It should be pointed out that the design has notbeen simulated
at the gate-level yet. Nevertheless, the whole design will be transferred to the
Apollo platform soon for full simulation and improved implementation. At the
time of this writing, configuration 2 (transparent) is being implemented on the

Apollo platform. Preliminary results are shown in table 5.2. The analysis of the

Configuration LCA resources used Percent utilization
CLB XC3042rC84
CLBs | IOBs | Flip-flops | Nets || CLBs | 10Bs
Config 1
(converter) 76 39 69 165 || 53% 53%
Config 2
(transparent) | 49 27 88 86 | 34% 36%

Table 5.2: Output converter partitioning summary

APR report file has revealed that a signal needs 155 ns to propagate along the

critical path of the converter (config 1). This delay breaks up into 5 components:

Trcgtatcra : 7 ns
Taddcr . 56 ns

Tcomparator : 35ns

Tact—up :7ns
Thet : 50ns
Total : 155ns
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Provided that a binary search iteration lasts two clock cycles (recall section 4.3.2)
and that the target clock period is 80 ns, only 5ns (2x 80 - 155 = 5) are left to read
the look-up table. At best, a very fast but expensive static RAM with 15 ns access
time could be used. This would yield a total delay of 170 ns and a clock rate of 1.8

MHz.

it can be stated with enough confidence that the performance ot the circuit
would improve if it were re-routed with the latest version of the APR program.
Another alternative would be to implement the circuit into the new Xilinx XC4000
family of FPGAs which offers on-chip RAM and fast carry logic. In this case, the
on-chip RAM could replace the look-up table and speed-up the operating rate of

the output converter.

5.6 Delay Memory Circuit Implementation

5.6.1 Behavioral Simulations

A thorough understanding of the data flow in the systolic array was prerequisite to
the development of the DMC. For this reason, a shorl program was written to sim-
ulate the systolic flow of datain the arrav. In this program, the multiple stages and
registers of a systolic cell are embodied into & simple C structure [1orspool, 1986]
which can be further instantiated into an Al + A/ array to simulate the behavior of
the convolver. A simple routine generates an image whose pixels are sent to the
M rows of the array. By monitoring the content of selected pipeline stages, data

streams timing and pipeline delays were evaluated precisely.

The next step consisted in the development of an algorithm that would provide

for the features (up-sampling, borders etc..) desired in the DMC. In this regard,
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a second C program was written to assess the performance and validity of the
algorithm. The program emulates the behavior of the DMC according to a set of
parameters such as kernel size, sampling mode, image width and row pipeline

delay which are entered by the user.
y y

Different simulations have clearly shown that the adopted algorithm is valid
for some restricted cases only. In particular, the pipeline delay of a single row of
the systolic array must be even (odd) if the total image width (image + borders) is
cven (odd). In addition, the algorithm works properly when the ratio 2= js an
even integer where Al is the size of the array and » is the up-sampling rate. As a
result, this algorithm does not scale well; only a restricted set of array sizes can be

accommodated. However, these rather theoretical limitations should have no real

consequence on this project since the array size i: fixed at 9 x 9.

Subsequently, a VHDL description of the DMC was written to evaluate different
circuit architectures. In this case, the behavior of the DMC is defined at two levels.
First, the DMC is divided into a set of processes whose behavior is described using
sequential VHDL programming. Examples of processes include state machines,
memory and multiplexers. Second, the relationship between those processes is
defined using the concurrent programming possibilities of VHDL. More specifi-
cally, each process description starts with a process statement [Lipsett et al., 1989] to
which is attached a sensitivity list. During simulation, the change of a signal state

triggers a concurrent execution of all the processes which are sensitive to it.

The VHDL description was mostly used as an intermediary step to alleviate the
gate-level design of the DMC. Besides, it enabled the author to focus on potential
architectural conflicts without having to worry about the details of a particular

implementation.
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5.6.2 Schematic Entry

The schematics of the delay memory circuit presented in Appendix B show that the
controller block is implemented in a Xilinx XC3030IPC84-100 programmable gate
array while the data path consists of [2 TIBPAL22V10-15BC from Texas Instruments
and 8 SRAMs CY7C186 from Cypress Senmiconductor Corporation. These high-
performance RAMs have a maximum access time of 35 ns and are orgamized as 8K
words of 8 bits each. During 1-D operation, the memory chips are deselected and
enter a power-down feature which reduces power consumption by 734 . However,
during 2-D operation, they are continuously selected so as to minimize read and

write cycle times.

The schematics of the controller present a hierarchical structure from which
two major blocks stand out. The firstblock, the pointer, consists of a 13-bit modulo
counter which generates the address lines to access the RAMs. In Lhis case a com-
parator implements the modulo feature by resetting the counter at the appropriate
time based on the current counter value, the up-sampling mode and the image
width. The second block points to a PALASM file that describes in a compact
format the behavior of the three state machines. Such a representation improves
schematic intelligibility but, contrary to a traditional gate representation, results in
a slightly less efficient implementation due to the lack of control over the partition-
ing process. In fact, during logic synthesis, most boolean equations are oplimized
for the LCA architecture and some internal signals are buried into the CLBs. The
designer who aims at a better partitioning and routing 15 given little influence over

this “technology mapping” by the development system.

As shown in table 5.3, the configuration fills 72% of the CLBs of the XC3030
FPGA. This high resource utilization combined with the weak control over the
partitioning phase have macle the circuit very difficult toroute  Indeed, Version2.24
of the APR has never managed to route all the nets of this arcutt  The final

implementation has been completed only when Version 3.0 became available at the
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Configuration
| -onfiguration

‘LCA resources used Percent utilization
CLB XC30301PC84

] CLBs I IOBs | Fip-flops | Nets || CLBs | 10Bs

oMeT T
~(controller) | 72 | 35 40 103 | 72¢% 46%

Table 5.3: DMC controller partittoning summary

end of 1991,

With the carly unsuccessful attempts at implementing the controller, it was de-
cided not to use field programmable gate arrays for the data path section of the
DMC. The data path, although very regular in nature, is also I/O intensive and
time critical. This makes it a good candidate for implementation in programmable
logic devices (PLDs) which offer lower density but have net delays known in ad-
vance. The regular structure permits the 12 PALs necessary for this circuit to be
programmed with only one standard JEDEC file. The targetdevice, the PAL 22V10,
was selected for its wide availability although there exist more suitable PALs with
additional user 1/0 pins which would reduce chip count. A gate-equivalent de-
scription of the PAL circuit is presented in Appendix C. This appendixalso includes
the design file processed by the Texas Instruments’ ProLogic compiler [Tex, 19911
to obtain a JEDEC fuse map. This standard file will be used by a logic programmer

to customize the device to a specific function by “blowing” selected fuses.

5.6.3 Timing Analysis

Preparing for timing simulation entails modifying the simulation model of the
generic parts which have been instantiated in the schematic. In fact, Mentor
Graphics hbraries usually provide a single generic model for a part even if differ-
ent speed versions of this part are commercially available. So, prior to simulation,

the CY7C 186 SRAM and PAL 22V10 timing models were changed to match the
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characteristics specified in the data books. These include set-up and hold times,

propagation delays and memory access time.

According to simulations, the DMC works properly at the target speed
(125 MHz) if 35 ns access time SRAMs are used along with 15 ns propagation
delay PALs. Memory accesses have proved to be critical because only one clock
period is allowed for a read or write cycle. When no up-sampling is performed on
the image, reads and writes occur alternately. In this case, memories are continu-
ously selected so as to minimize access time. Even so, the address should never
be allowed to change when the write enable line is asserted as this could result
in spurious writes. As it stands now, address changes occur immediately after a
write operation, leaving only a few nanoseconds for the write enable signal to be
deactivated. Inorder to guarantee proper operation in “the real world”, one has to
take into account some extra delays not handled by the simulator. These include
off-chip delays which are due to capacitive loading on memory control lines and
on the address bus. They are usually proportional to wire length and signal fan
out. Consequently, there is a non negligible probability that, on the prototype, the
write enable signal will be skewed enough to cause spurious writes during address

changes. This will have to be verified very carefully on the prototype.

Different solutions exist to solve this problem. One would consist in delaying
the address lines further in the FPGA with additional buffers. However, this
simple trick is defeated because the Xilinx development software usually removes
all unnecessary logic including additional buffers. Another solution, whichimphes
extra circuitry on the board, would be to add a delay-type IC to delay the address
lines at the output of the FPGA. Another option would be to have an alternate
clock running at a multiple frequency of the main clock. The extra rising and
falling edges provided by the clock during memory access would permit better

synchronization control.

Further simulations have shown that a read operation always occur during odd
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pipehne cycles and start at most 24 ns after the rising edge of the clock when the
address bus has settled. Then, it takes 35 ns before the data appear on the bus.
At this point, 13 ns are needed for the data to propagate to the flip-flops < f the
PAL, leaving only 8 ns of slack before the next clock cycle. On the other hand, a
wrile cycle always occurs immediately after a read operation without changing the
address lines A write is completed when the write enable line is deactivated at the
next rising edge of the clock. However, only 54 ns are necessary, including 39 ns to
enable the tri-state buffers and 15 ns for data to set-up before disabling the write

control line.

Ateach clock cycle, adelay of 35 ns has been noticed before the new 4-bit values
appear at the 9 output rows of the DMC. Of these 35 ns, 20 ns are taken for the
generation of the SEL signal which selects the proper multiplexer inputs in the
PALs, and 15 ns are needed for the data to propagate through the multiplexers to
the row outputs. This leaves 45 ns before the next clock cycle, at which point the
data is latched into the systolic array. A simulation run showing memory cycles

and two rows of the DMC is included in Section D.3 of Appendix D for reference.

Particular attention has been devoted to the control signals generated inside the
FPGA. Signals such as those which set up the operating mode (DIM, WIDTH, S0 and
S1)havebeen flagged “non critical” prior to APR because they never change during
a convolution operation. As a result, delays as high a 29 ns are not uncommon
on these nets. Whenever these parameters change, it is important to wait at least
two complete clock cycles before starting a new convolution. Analysis of the APR
report file has also revealed that it takes at most 37 ns to propagate the HALT signal
to the output pin. This leaves more than enough time (45 ns) for the signal to travel
to the input converter and set up before the next clock tick. Additional information

concerning control signals is presented in Section D4 of Appendix D.

81



5. Implementation and Results

5.7 System Considerations

5.7.1 Initialization

At power-up or upon system reset, the convolution system enters an initialization
cycle before any computations may take place. This procedure consists mainly in
downloading configuration files to the FPGAs, loading the systolic array with a
set of 81 coefficients and transferring a new set of values to the look-up table of
the output converter if integer outputs are desired. These tasks are handled by
the DMA engine (recall Section 3.5.1) which also sets up the various board signals
(up-sampling, 1-D/2-D signal, image width, 8/16-bit conversion etc.) according

to the specifications entered on the host computer by the user.

The choice of a configuration mode for the FPGAs 15 mfluenced by the actual
operating environment. Since the FPGAs are being used with a 68020 microproces-
sor (DMA engine), itis natural that the FPGAs be considered as peripheral devices
accessed by the 68020 through its data bus and a few control lines In the periph-
eral mode, an FPGA is mapped to a single byte location i the address space of
the 68020. The 68020 simply downloads the configuration tile by writing the bytes

successively to the same location.

In case of a board with multiple FPGAs, it is possible to ease the configuration
procedure by connecting the devices in a daisy chain and then downioad a com-
posite configuration program. In respect to the convolution system, two FPGAs
out of three, namely, the input converter and the DMC are daisy chained. The lead
device (the input converter) is set to the peripheral mode and is directly wrnitten to
by the 68020. When it has received 1ts configuration program, the remaming bytes
are passed on to the last device in the chain (DMC) which 1s set to the slave mode.
The last device (output converter) stands alone and can be configured using the
peripheral mode. This way, it will be possible to reconfigure the output converter

freely without interfering with the other FPGAs. However, a reconfiguration of
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the input converter also implies a reconfiguration of the DMC, both devices being

tied in a daisy chain.

The configuration program is approximately 22 KBytes long for an XC3030
device and 30 Kbyteslong foran XC3042. Downloading the configuration files into
the three FPGAs will require close to 100 ms. The reader is referred to [Xil, 19911

for further information concerning FPGA programming.

5.7.2 Pipeline Delays

The key contribution of pipelining 1s that it provides a way to increase throughput
by starling a new task before a previous one has been completed [Stone, 19871. This
is achieved by splitting the processes into steps of equal duration. Then the steps,
or stages, work in parallel but on different operands. In this way, a task can be
completed every cycle provided that all the stages are filled with data. But when
a pipelme s reset, a transient of \cycles is incurred before the first valid result

comes out because data have to be pumped along the \ stages of the pipeline.

In like manner, the convolution system completes the convolution of a sample
or pixel every 16 clock ticks, that is one pipeline cycle. However, the first N results
produced by the convolver have to be rejected since the pipeline is filling up. This
N-cycle transient is computed by summing up the delays in the DMC, the systolic
array and the output converter. Note that the input converter does not influence
the transient since the first samples to be sent to the array are zero-valued pixels
generated i the DMC. The total delay in the systolic array is 252 pipeline cycles (9
rows -~ 28 stages/row) but only 2 cycles in the output converter, 1 if 1t is operating
in transparent mode. The total delay in the DMC depends on multiple parameters
suchasimage width, 1-D or 2-D operation and up-sampling mode. In 1-D operation

the delay 1s null because data do not circulate through row memories, but in 2-D
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operation, the delay is expressed as follows:
Dy =81+ (117 =20/s)

where W is the original image width and < 1s the up-sampling rate (Ix, 2x or 4x).
In summary, the total pipeline delay (V) for 1-Dis 253 i output transparent mode
and 254 in output conversion mode. The same delay applies for 2-1) operation to

which 1),,,. is added.

Practically, upon system reset, .\ transient results will have to be discarded
before the pipeline becomes full. At this point, a result is available every pipehne
cycle. For a typical 512 « 512 image non up-sampled, this transient represents only
1.6% of the total convolution time but, for smaller images, it becomes increasingly

important.

5.7.3 Design for Testability

With the ever increasing circuit density, a new trend has been observed m chip
and board testing: Design for testability. DFT techniques aim at decreasing test
costs while improving fault coverage. At the chip and board levels, DET makes for
easily controllable and observable nodes with the addition of extra logic or with

the adoption of novel architectures.

One of the many advantages of Xilinx’s FPGA reprogrammability is that dif-
ferent test configurations can be developed to implement sclf-diaghostics  For -
stance, some contiguirations already exist to test the mternal clements of an FPGA
and guarantee 100% fault coverage In addition, cach FPGA provides a readback
mode which may be used for verification of configuration or as a method of de-
termining the state of internal logic nodes during in-crcuit debugging. In spite
of that, an easier method to probe internal nodes would be to connect unised

FPGA [/0O pins to selected internal nodes during the testing phasce of the design,
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[Fawcett, 1989].

PALs may also beeasily verttied by specifving a setot vectors i the Prol ogic de-
scription. Upon compilation, these vectors will be inserted m the standard JTEDEC
file and be used by the device programmer to tunctionally test the PAL 22V 0 As
for the static RAMs, a test configuration can be developed in the FPGA that umple-

ments the DMC to perform reads and writes of all storage Dits v the memories,

To facilitate board-level testing, the |TAG/IFEE boundary-scan stoandard
[Maunder and Tulloss, 1992] has been established and s currently picking up the
attention of many integrated circuit vendors. A boundary-scan-compatible chp
provides a 5-pin interface that gives access to the mput and output pins of a chip
via a shift-register path between the pins. By shifting in test vectors and commands
into the device to control the driving of their outputs and then by shitung out the
results, it is possible to find PCB shorts/opens and 1/0 faults and even perform

functional testing,.

In regard to this recent technique, the FPGAs used in the convolution system
could be replaced with the more recent XC4000 family of gate arrays which imple-
ments the JTAG standard. This upgrade would not only provide a framework for

efficient and complete testing but also an improved circuit speed performance.

85




Chapter 6 Conclusion

Several convolution processor boards have been developed in the past to speed
up image processing computations, but those offering appreciable performance
only support integer arithmetic. However, recent advances in image processing
research have led to the use of floating-point arithmetic which allows a larger

dynamic range and higher accuracy.

After a brief review of the relevant literature, this thesis presented the design of
a double precision floating-point system for convolution. The core of the system is
the systolic array of custom VLSI processors which implement the basic multiply-
and-accumulate operation. The systolicarray systemisreconfigurable;that is, itcan
apply eithera9 x 9 kernel onanimageor a 81 x 1 kernelon a unidimensional signal.
Aninput converter was designed to efficiently convertinteger format data to double
precision floating-point format. Similarly, atthe output, a converter translates the
floating-point convolved data to integer format for display purposes. A delay
memory circuit re-organizes the incoming data sequence to create 9 streams, one
for each row of the systolic array. It also solves the border effect problem by
extending the image with a frame of zero-valued pixels and performs 1, 2 or 4

times up-sampling on the data as desired.

Since the designis completed and simulated, the nextstepistobuild a prototype
which should achieve a performance of 126 MFLOPS at a target clock rate of 12.5
MHz. The convolver will be integrated into the Sensor Computing Environment
of the McGill Research Center for Intelligent Machines and will be able to perform

a 9 x 9 convolution ona 512 x 512 frame in about one-third of a second.

Eventually, the custom VLSI cells should be re-implemented using a 0.8 micron

process. Such a process would allow the circuit to operate at a higher clock rate
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and should allow multiple cells to fit within asingle chip. Sinularly, the auxihary
subsystems should beimplemented with the Xilinx XCH000 tamuly ot FPGAS which

offers high performance and better resource utihzation.
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Appendix A Input Converter Schematics

Schematics included in this appendix:

s Configuration 1 (8/16->64) of input converter. This configuration perfcrms
the conversion from 8- or 16-bit integers to 64-bit floating-point numbers. The
schematics consist of 6 sheets plus 1 text sheet describing boolean equations

referred o by the ctrlpal block in sheet 2/6.

e Configuration 2 (64->64) of input converter. This is the transparent configura-
tion which rearranges the incoming floating-point numbers. The schematics
consist of 3 sheets plus 1 text sheet that describes boolean equations referred

to by the ctripal2 block in sheet 1/3 of the schematics.

Both configurations fit into the same XC3042PC84-100 field programmable gate

array.
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Appendix B Delay Memory Circuit Schematics

Schematics included in this appendix:

e The delay memory circuit (DMC) top sheet (FullD4C).

e Thedata path section. Includes 3 sheets (same level of hierarchy) showing 12

PALs 22V10 (see also appendix C) and 8 SRAMs.

e The controller section. Includes 4 sheets plus 1 text file which describes the

boolean eqguations referred to by the st_nach block in sheet 2/4.
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B. Delay Memory Circuit Schematics
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Appendix C PAL 22V10 Description

This appendix includes:

e A schematic of the equivalent gate description.

e The ProLogic description file (dmc.pld) with test vectors.

There are 12 PALs TIBPAL22V10 in the delay memory circuit datapath section.
Each PAL implements 6 flip-flops, 3 2tol multiplexers, a tew AND gates and 6
tri-state lines. In addition, one PAL provides a maximum of 3 outputs hnes (Y0, Y1
and Y2) to be connected to the systolic array. Since one row of the systolic array
is 4 bits wide, it takas 1 1/3 PALs to implement a complete row. Six tri-state lines
o

also provide a connection to the data bus of the SRAM in the previous row.
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Appendix D Timing Simulations

This appendix presents some simulation traces from Mentor Graphics” Quicksim.
Selected cases have been included for the input converter and the delay memory

circuit

D.1 Configuration 1 of Input Converter

Figure D.1 illustrates an example of conversion. In this case, a 16-bit hexadeci-
mal number, A9E3, is converted into a 64-bit floating-point number. First, A9E3
appears on bus DIN at pipeline cycle F (330 ns). The conversion takes place dur-
ing the next 16 clock cycles. Then, on the subsequent pipeline cycles, the result
appears in chunks of 8 bits on bus FPOUT The first four bytes are always zero,
but the remaining 4 bytes, 60, BC, E5 and 40, appear on clock cycles 5, 8, A and
C, respectively Note that the DMC latches the content of bus FPOUT every other
clock cycle starting with the least significant by tes first. The result of the conversion

is therefore 4015 BCa0 0000 0000.

D.2 Configuration 2 of Input Converter

Figure D.2 shows the behavior of the transparent configuration. In this case, the
64-bit floating-point number FEDC BA98 7654 3210 is read 16 bits at a time during
the tist pipeline cycle in the following order : BA98, FEDC, 3210 and 7654. In
the next pipeline cycle, the same number appears on bus FPOUT byte after byte

starting with the least significant.
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D Tinung Simulations

D.3 Delay Memory Circuit: Memory Access

This simulation run illustrates how data arculate in the DMC (2-D mode). As
shown in figure D 3, value 32, which 15 a partial result conung from the input
converter, appears on bus DATA9 during cycle B. At the same time, a read cyele s
taking place. During memory access, an unknown valiie XX appears temporarily
on bus DATAS until the number FF is retrieved from memory  Upon rismg; edge
of the clock (cycle C), value 32 1s latched mto the flip-tlops and propagated to bus
DATAS for storage into the memory of row & Itshould be clear that, on odd clock
cycles, bus DATAS is driven by the output of memory and, on even dlock cycles,
this bus is driven by the output of the latches in row 9 Signals ROWY and ROWS
are 4-bit buses connected to the systolic array inputs. Durmg even clock cycles
they hold the lower 4 bits of the bytes just latched and, during odd clock cycles,

they hold the upper 4-bits.

D.4 Delay Memory Circuit: Control

Figure D.4 shows the trace of a few controller signals when the DMC operates in
2x up-sampling mode. In the first half of the simulation run, signal ZIRO IN B is
activated to insert two zero-valued pixels for the left border in the incoming data
stream. The first zero is stored in memory locations 0 to 7 while the second s
stored in locations 8 to E The two remaining zcro-valued pixels are not stored 1
memory since they will be automatically inserted in the outgoing streams by the

up-sampler.

Signals V, Hand U represent the current state of each of the three state machines
already described in chapter 4. Notice that the U (horizontal up-sampling) state
machine alternates between state ) (insert normal pixel) and state 1 (msert null

pixel for up-sampling). When U =1, the HALT signal 15 driven high to stop the
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inputconverter during up-sampling and signal ZERO . OUT Bis drivenlow totorce
insertion of null pixels in the ontgoeing streams. When U = 0, the ADDRESS bus
is incremented 8 times to store in the delay memory the incoming tloating-pomt

value.
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