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ABSTRACT 

By detecting head motion in space, the vestibular system generates reflexes required 

for stabilizing gaze and posture and mediates our subjective sense of self-motion and 

orientation. Previous studies have characterized the neural response and substrates 

underlying the vestibular functions and their environmental adaptations. Yet, how such 

neural populations integrate information to generate reflexes and perception remains 

elusive primarily due to two reasons: firstly, the previous studies have mainly used single-

unit recordings, which ignore the impact of correlated variability in the population coding; 

secondly, these studies have predominantly used artificial stimuli which are not suited for 

the study of the possible adaptation of the vestibular system to natural self-motion stimuli. 

Additionally, the study of simpler animal models such as larval zebrafish is insightful in the 

systematic understanding of principles of the behavior and linking the function of neural 

substrates to the activity of neural populations. Such studies substantially benefit from the 

control system models that have long been used to investigate the vestibular and optokinetic 

system reflexes across species. Thus, in this thesis, I studied population coding of self-motion 

perception in monkeys during naturalistic and artificial self-motion. Furthermore, I 

investigated optokinetic reflex and its adaption in larval zebrafish using control system 

models.  

First, by recording simultaneously from multiple neurons in vestibular nuclei (VN), we 

demonstrated that trial-to-trial variability is remarkably correlated during naturalistic 

stimuli contrary to that during artificial stimuli. Moreover, I show that VN neurons display 

substantial heterogeneity in their response. Using a physiological model incorporating the 

known properties of vestibular neurons in VN, including the correlation structure and 

heterogeneity, we demonstrated that noise correlations benefit information transmission 

when neural populations are heterogeneous. As such, self-motion information was 

transmitted more efficiently during naturalistic stimulation. Furthermore, we recorded from 

vestibular neurons in the parietoinsular vestibular cortex (PIVC), revealing that neural 

variability is decorrelated regardless of the stimuli used. Our model illustrated that 

decorrelation benefited population coding by reducing redundancies, and thus, population 

coding of self-motion is efficient in PIVC.  
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Finally, I propose a control system model that explains the optokinetic response 

observed in larval zebrafish. The model successfully explains the gradual reduction in the 

slow phase velocity of optokinetic response during unidirectional and bidirectional 

optokinetic stimulation as well as the reversal in the eye movement after the stimulus is 

removed. The model also predicts the lack of adaptation during symmetric stimulations. 

When used to simulate the observed data from individual fish, the model predicts that an 

innate bias in the neural substrate of the optokinetic system accounts for an asymmetric 

response during symmetric stimulation.  

Taken together, the results from my thesis provide evidence for efficient population 

coding in the early vestibular pathway. It also signifies the importance of variability and 

heterogeneity in the neural coding of natural self-motion. My modeling study in larval 

zebrafish predicts a leaky neural integrator could account for observed adaptation displayed 

by larval zebrafish during prolonged unilateral and asymmetric bilateral optokinetic 

stimulation. Notably, the modeling study suggests adaptation has functional relevance to the 

adjustment of innate disequilibrium in the optokinetic system. 
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RÉSUMÉ 

En de tectant les mouvements de la te te dans l'espace, le syste me vestibulaire ge ne re 

des re flexes ne cessaires pour stabiliser le regard et la posture, et me die notre sensation de 

deplacement et d'orientation. La re ponse neuronale et les substrats sous-jacents des 

fonctions vestibulaires et de leurs adaptations environnementales ont e te  characterise . 

Cependant, la manie re dont les populations neuronales inte grent l'information pour ge ne rer 

des re flexes et des perceptions reste e nigmatique principalement pour deux raisons: 

premie rement, les e tudes ante rieures ont principalement utilise  des enregistrements de 

neurones individuels, ignorant l'impact des corre lations dans le codage de la population; 

deuxie mement, ces e tudes ont principalement utilise  des stimuli artificiels qui ne 

conviennent pas a  l'e tude de l'adaptation du syste me vestibulaire aux stimuli naturels. De 

plus, l'e tude de mode les animaux plus simples tels que les poissons-ze bres larvaires est 

e clairante pour la compre hension des principes du comportement et pour relier la fonction 

a  l'activite  des populations neuronales. De telles e tudes be ne ficient grandement des mode les 

de syste mes de contro le qui ont longtemps e te  utilise s pour e tudier les re flexes du syste me 

vestibulaire et optokine tique chez diffe rentes espe ces. Ainsi, dans cette the se, j'ai e tudie  le 

codage de la perception de deplacement chez les singes lors de deplacement naturels et 

artificiels. De plus, j'ai e tudie  le re flexe optokine tique et son adaptation chez les poissons-

ze bres larvaires en utilisant des mode les de syste mes de contro le. 

Tout d'abord, en enregistrant simultane ment de multiples neurones dans les noyaux 

vestibulaires (VN), nous avons de montre  que la variabilite  d'essai en essai est corre le e 

pendant les stimuli naturels contrairement a  celle pendant les stimuli artificiels. De plus, je 

montre que les neurones VN affichent une he te roge ne ite  de leur re ponse. En utilisant un 

mode le physiologique incorporant les proprie te s des neurones VN, y compris la structure de 

corre lation et l'he te roge ne ite , nous de montrons que les corre lations du bruit be ne ficient a  la 

transmission de l'information lorsque les populations sont he te roge nes. En tant que tel, 

l'information sur le de placement e tait transmise plus efficacement pendant la stimulation 

naturelle. De plus, nous avons enregistre  les neurones vestibulaires dans le cortex 

vestibulaire parie to-insulaire (PIVC), re ve lant que la variabilite  est de corre le e quel que soit 

le stimulus utilise . Notre mode le a illustre  que la de corre lation be ne ficiait au codage de la 
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population en re duisant les redondances, et ainsi, le codage de la population du 

de placemente est efficace dans le PIVC. 

Enfin, je propose un mode le de syste me de contro le qui explique la re ponse 

optokine tique observe e chez les poissons-ze bres larvaires. Le mode le explique avec succe s 

la re duction graduelle de la vitesse de la phase lente de la re ponse optokine tique lors d'une 

stimulation optokine tique unidirectionnelle et bidirectionnelle. Le mode le pre dit e galement 

l'absence d'adaptation lors de stimulations syme triques. Lorsqu'il est utilise  pour simuler les 

donne es observe es, le mode le pre dit qu'un biais inne  dans le substrat neuronal du syste me 

optokine tique explique une re ponse asyme trique lors d'une stimulation syme trique. 

Dans l'ensemble, les re sultats de ma the se apportent les preuves d'un codage efficace 

de la population dans la voie vestibulaire pre coce. Cela souligne e galement l'importance de 

la variabilite  et de l'he te roge ne ite  dans le codage neuronal du mouvement propre naturel. 

Mon e tude de mode lisation chez les poissons-ze bres larvaires pre dit qu'un inte grateur 

neuronal fuyant pourrait expliquer l'adaptation lors d'une stimulation optokine tique 

unilate rale prolonge e et d'une stimulation bilate rale asyme trique. Notamment, la 

mode lisation sugge re que l'adaptation a une pertinence fonctionnelle pour l'ajustement du 

de se quilibre inne  dans le syste me optokine tique. 
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CONTRIBUTION TO ORIGINAL KNOWLEDGE 

In this thesis, we first investigated the population coding of natural self-motion in the 

vestibular system of rhesus macaque monkeys. We found that in the early vestibular pathway, 

neurons involved in population coding of self-motion demonstrate remarkably correlated 

variability in neural activity during naturalistic self-motion, contrary to that during artificial 

self-motion. Additionally, our findings revealed that the neural activity of these neurons is 

highly heterogeneous. By incorporating the structure of correlation and the heterogeneity 

found in our study in a neural population model, we demonstrated that the observed 

correlation benefit information transmission during naturalistic self-motion. Together, our 

findings revealed population coding of natural self-motion in the early central pathway is 

efficient. Furthermore, we investigated population coding of naturalistic self-motion in the 

cortex. Our findings revealed no correlated variability in the response of these neurons 

despite a high degree of heterogeneity in neural response. Our modeling study revealed that 

decorrelation is beneficial to information transmission in the cortex indicative of efficient 

population coding. 

Next, we investigated the optokinetic response of larval zebrafish and proposed a set-

point adaptation mechanism that underlies the behavior of animals during the stimulation. 

First, we used prolonged unidirectional stimulation which robustly elicited an optokinetic 

response adaptation and negative optokinetic afternystagmus. We incorporated the set-point 

adaptation into a mathematical model and showed, together with habituation mechanism, 

set-point adaption indeed explained our experimental findings. In addition to unidirectional 

stimuli, we exposed the animals to bidirectional stimuli that resembled natural stimuli. Our 

findings showed that bidirectional stimuli that were sufficiently asymmetric robustly elicited 

optokinetic response adaptation and negative afternystagmus. As such, we showed that 

response adaptation and ensuing aftereffects arise in natural settings and are relevant to the 

animals’ physiology. Additionally, we observed some individual larvae may exhibit response 

adaptation and ensuing aftereffects even during symmetric stimulation. Our model predicted 

such behavior arises from innate bias in the animals’ oculomotor system. As such, our 

experimental data and model demonstrated that set-point adaptation plays a key role in 

mitigating such inherent bias and asymmetry in the oculomotor system.   
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1. GENERAL INTRODUCTION AND LITERATURE REVIEW 

 

1.1 General overview 

This thesis investigates how neural responses to sensory stimuli give rise to perception 

and behavior through data analysis and computational modeling. The main focus is on 

understanding how vestibular information is encoded and processed in neural populations, 

particularly in the central vestibular pathway. The vestibular system plays a vital role in 

stabilizing gaze, maintaining balance, and providing spatial orientation. Unlike other primary 

senses, such as seeing and hearing, the vestibular sense often goes unnoticed as its sensory 

apparatus constantly receives stimulus signals (e.g., gravity). However, individuals with 

impaired vestibular systems can experience issues with balance and vision, impacting their 

daily activities.  

Natural and artificial stimuli present fundamental differences in intensity, 

spatiotemporal characteristics, and statistical features. Sensory systems have presumably 

adapted to process natural stimuli more efficiently as they contain inherent redundancies 

and correlations. Recently, natural vestibular stimuli have been characterized. These stimuli 

contain a wide range of frequencies and amplitudes and, as such, differ from the sinusoidal 

head motion stimuli that have been typically used to characterize vestibular processing. 

While recent studies have demonstrated that some vestibular neurons efficiently encode 

natural stimuli through temporal whitening, such studies have considered efficient coding at 

the single-neuron level. As behavior in general results from the activity of neural populations, 

it remains unknown whether population coding is efficient in the vestibular pathway. As 

such, in the first part of the thesis, we address the neural computations and principles 

involved in processing natural stimuli. Using simultaneous recordings from multiple neurons 

in the central vestibular pathway and a physiological computational model, we investigate 

whether, and if so, how populations of neurons efficiently encode naturalistic self-motion 

stimuli and how these population codes contribute to vestibular perception. 

In the next step, we go beyond neural ensembles by considering the neural substrate 

underlying behavior. Specifically, we study how optokinetic response in larval zebrafish 
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during prolonged optokinetic stimulation undergoes adaptation, and a secondary behavior 

emerges after the stimulus is removed. We propose a mathematical model and a mechanism 

that explains the observed behavioral data. Such models have been essential in 

understanding neural circuits involved in eye movements and reflexes.  

In the following, I provide a comprehensive review of the relevant literature. Firstly, I 

review natural stimuli and efficient coding hypotheses across sensory systems. Next, I 

introduce adaptation as well as the peripheral and central vestibular systems. Following this, 

I review signal processing in the vestibular system. Following this section, I provide and 

overview of correlations and their importance in the study of efficient population coding. 

Finally, I determine the scope of the research and declare my contribution to the manuscript 

published or submitted to peer-reviewed journals.  

 

1.2 Efficient coding 

Through natural selection, organisms have developed biological capacities that are 

suited to match the characteristics of their environment. Likewise, it is hypothesized that 

sensory systems have adapted to effectively respond to stimuli naturally occurring in the 

environment, commonly referred to as natural stimuli. Natural stimuli display correlations 

in their attributes and are thus redundant. Given constraints on sensory processing (e.g., 

metabolic costs), it is crucial for neurons and sensory systems, in general, to efficiently and 

parsimoniously use computational resources during the transmission, processing, and 

storage of information. As such, it has been hypothesized that through evolution, sensory 

systems have become adept in processing natural stimuli by removing redundancies in the 

stimuli and thereby maximising information transmission, commonly referred to as the 

efficient coding hypothesis (Attneave, 1954; Barlow, 1961). Therefore, it is important to study 

the statistics of natural stimuli and characterize how it shapes neural coding. 

 

1.2.1. Natural visual stimuli and efficient coding 

The statistics of natural stimuli have been characterized across sensory modalities. For 

example, Laughlin demonstrated that the intensity of visual stimuli seen by flies follows a 
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bell curve and that the response of the first-order neurons in the fly’s compound eye matches 

the cumulative integration of this distribution as predicted by optimal coding theory 

(Laughlin, 1981). Natural images are not random; they demonstrate correlations rendering 

them redundant (reviewed in (Ruderman, 1994; Simoncelli and Olshausen, 2001)). Indeed, 

many studies have shown that the spectral power density of the natural images diminish by 

a power law, 1/𝑓𝑝 and the autocorrelation function of intensity decreases with the relative 

distance of the objects (e.g. pixels) in the scene (Ruderman and Bialek, 1994; Simoncelli and 

Olshausen, 2001). It should be noted that the studies above do not consider the temporal 

dynamics of the stimulus as the retinal image of the environment is not static; Instead, due 

to movements of the animal or the objects in the scene, the local and global features of the 

images changes through time. Although dynamic natural scene (also referred to as natural 

movies in the literature) have been studied extensively for computer vision and artificial 

intelligence applications, its implications in sensory systems have been investigated to lesser 

extent (Cadieu and Olshausen, 2012; Desbordes et al., 2008; Roberts et al., 2022; Vig et al., 

2014; Xia et al., 2021; Zheng et al., 2021). 

Efficient coding by the visual system has been observed ubiquitously across brain areas 

and species (reviewed in (Tesileanu et al., 2022)). As mentioned above, Laughlin was among 

the first to explore the efficient coding in the visual system using electrophysiological 

recordings (Laughlin, 1981). By recording from first order interneurons from fly’s compound 

eye, he showed the contrast-response distribution of the neurons was matched to the 

statistics of the natural scenes. Following upon the same notion, many other studies found 

signatures of efficient coding of natural visual stimuli at single neurons as well as population 

level (see for example (Franke et al., 2016; Gupta et al., 2023; Pitkow and Meister, 2012; 

Simmons et al., 2013); see also (Clifford et al., 2007; Tesileanu et al., 2022) for review).  

 

1.2.2. Natural auditory stimuli and efficient coding 

Similarly, auditory stimuli in natural soundscapes are complex compared to pure tones 

used in earlier studies of the auditory system. Natural sounds are often a blend of sounds 

from different auditory sources that vary in distance and orientation with respect to the 
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receiver and may contain broad or narrow spectral components (Johannesma and Aertsen, 

1982; Nelken et al., 1999). Natural sounds are diverse, yet, the analysis of statistical 

regularities has shown that most natural sounds exhibit power spectra similar to 1/f (Voss 

and Clarke, 1975). Similarly, Attias and Schreiner showed that the power spectra of the 

amplitude of natural sound ensembles decay with frequency and exhibit a power law relation 

(Attias and Schreiner, 1997). Furthermore, sound ensembles displayed remarkable self-

similarity and invariance in the amplitude of the sound differential resolution ranges. As 

such, natural sound stimuli exhibit correlation across frequencies and are redundant 

(reviewed in (Gervain and Geffen, 2019)).  

There is strong evidence that single neurons and neural populations are tuned to 

natural sounds so that their response is optimal (Escabí  et al., 2003; Garcia-Lazaro et al., 

2006; Lewicki, 2002; Machens et al., 2005; Rieke et al., 1995; Woolley et al., 2005). It has been 

shown that models developed to predict neural responses using pure tones cannot reliably 

predict the response to more complex natural auditory stimuli  ((Carruthers et al., 2013; 

Laudanski et al., 2012); see also (Mizrahi et al., 2014)). An intriguing finding was observed 

in a study on zebra finches where their exposure to artificial auditory stimuli after birth 

resulted in atypical vocalization patterns (Amin et al., 2013). Electrophysiological recordings 

from these animals demonstrated dramatically increased redundancy in population coding 

and reduced sensitivity to natural sound features. 

  

1.2.3. Natural somatosensory stimuli and efficient coding 

Natural stimuli have widely been used in the study of somatosensory systems. The 

characterization of vibrations and frictional forces when subjects slide their fingertips over 

smooth and flat surfaces, have shown that the background noise on vibration signal follows 

a 1/f trend, signifying the presence of power law in tactile stimuli (Klo cker et al., 2013; 

Wiertlewski et al., 2011). It is important to note that the tactile signal depends on multiple 

factors, such as surface texture, scanning speed, and active or passive motion. For example, 

Manfredi et al. showed that the biomechanics of the fingertip can filter the tactile stimulus 

and generate vibration stimuli that do not necessarily follow the power law (Manfredi et al., 
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2014). In their study, they used different fabrics with differential levels of regularities with 

surface profiles that followed the power law function. The vibrations generated by sliding 

the fingertip of the surface did not translate on a one-to-one basis; Instead, a pick appeared 

over the background power spectra at a frequency that increased with the scanning speed. 

This study, however, was consistent with the study of Wiertlewski et al. (2011), as the 

background noise resembled that of a power law.  

The efficient coding has been studied in rat and mice barrel somatosensory cortex 

(Adibi et al., 2013; Lee et al., 2020; Panzeri et al., 2001; Petersen et al., 2001). For example, 

Adibi et al. quantified the effects of adaptation in population coding of whisker vibrations in 

the whisker-barrel system and found that despite an increase in noise correlation, the 

adaptation increases information in the population (Adibi et al., 2013). In another study, the 

same authors showed that noise correlations in rat barrel cortex are detrimental to 

information. However, a linear optimal decoder that considers noise correlations performed 

best even when the effect of noise correlations was removed and regardless of the adaptation 

state of the population. This study signifies that whether the information available to the 

downstream neurons decreases or increases not only depends on the noise correlations and 

correlation structure (the relationship between noise and signal correlations; see 1.7) but 

also on how this information is integrated and decoded in the downstream neurons (Adibi et 

al., 2014). Panzeri et al. recorded the activity of pairs of neurons from rat barrel cortex and 

showed that individual spike times accounted for 85% of whisker stimulus location (Panzeri 

et al., 2001; Petersen et al., 2001). They reported that pairs in the same column demonstrated 

redundant population coding, whereas pairs in adjacent columns exhibited decorrelated 

activity.  

 

1.2.4. Natural olfactory stimuli and efficient coding 

Studies exploring natural odor scenes are very few, mainly due to the complex nature 

of the odorants and the diffusion process. Odors are spatially and temporally a function of 

the turbulence in the air and can be emitted passively and actively by animated and 

inanimate odor sources. Natural olfactory stimuli are a combination of diverse chemical 
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structures with concentration profiles varying in order of magnitude in a given odorant 

(Knudsen et al., 1993). The spatiotemporal characteristic of odor plumes, temporal 

fluctuation and diffusion in the medium, the intensity of the odor,  the correlation between 

odorant concentrations, and the ratio of the natural odorants have been studied extensively 

(see (Wright and Thomson, 2005) for a comprehensive review). 

Recent studies have addressed the efficient coding hypothesis in the olfactory system. 

Zwicker et al. used a simple model of olfactory receptors to study how the receptor activity 

encodes the composition of natural odorants and the concentration of the constituents 

(Zwicker et al., 2016). Based on the data from fly and human olfactory receptors (for which 

the sensitivity of the receptors is lognormally distributed), they concluded the olfactory 

system efficiently encodes natural odor stimuli. In another study, Tiberiu et al. leveraged the 

heterogeneity in receptor types and their lognormal distribution to show that receptor 

distribution is tuned to the statistics of natural odor stimuli (Teşileanu et al., 2019). 

Interestingly, their model predicts the change in the distribution of receptors due to exposure 

to various odorants in mice. Together, these studies and others suggest that the distribution 

of receptors is matched to the statistics of the natural odor stimuli and changes as the 

composition of odor stimuli is varied to adapt to the altered stimulus profile. 

 

1.2.5. Natural electrosensory stimuli and efficient coding 

Natural electrosensory stimuli are characterized by sinusoidal variations in the 

amplitude of the fish’s electric organ discharge (EOD). Such modulations of the amplitude 

are referred to as the envelope signal and convey information about the distance and relative 

orientation when fishes move in close proximity to each other. Metzen and Chacron studied 

the statistics of natural electrosensory envelopes and demonstrated that over a wide 

behaviorally relevant range, the statistics of the envelope signal follow a power law relations 

(Metzen and Chacron, 2014). Interestingly, they reported that the animals altered their EOD 

to match that of the envelope stimulus. In another study, Fotowat et al. studied the amplitude 

modulation (first-order statistics) as well as envelope (second-order statistics) of the EOD of 

freely swimming fish while freely exploring the environment or interacting with conspecifics. 



7 
 

They showed that AM modulation and envelope signals displayed power law statistics 

indicating spectral invariance (Fotowat et al., 2013).  

Recent studies have demonstrated evidence of efficient coding in electrosensory 

systems. Huang et al. studied the response of pyramidal neurons in the electrosensory lateral 

line lobe and showed that these neurons response to natural stimuli efficiently through 

temporal whitening (Huang et al., 2016). Particularly, they showed SK channels enable the 

neurons to display high-pass tuning properties, which compensates for the power decrease 

in the frequency domain, thereby whitening the neural response. In another study, Huang et 

al. investigated the effect of feedback pathways in efficient coding (Huang et al., 2018). They 

demonstrated that electrosensory lateral line (ELL) pyramidal cells receive feedback input 

through an indirect pathway that attenuates the response to low-frequency stimuli, thereby 

resulting in the high-pass tuning property and, subsequently, efficient coding via temporal 

whitening. Marquez and Chacron studied the effect of serotonin modulation on neural 

response and found that the application of serotonin increased neural sensitivity due to burst 

firing (Marquez and Chacron, 2020). As such, neural and behavioral responses to second-

order stimuli were optimized. Another study from the same group used multi-unit recording 

and characterized the correlations in the ELL of electric fish. They found that the correlated 

variability decreases the transmitted information; however, its spatial dependence mitigates 

this deleterious effect (Haggard and Chacron, 2023).  

 

1.2.6. Natural vestibular stimuli and efficient coding 

The studies of the vestibular system have mainly used artificial stimuli when 

characterizing the response of the cell to head or eye motion. These stimuli consisted of 

sinusoidal rotations or translations with magnitudes much lower than that of the animal 

experiences (Cullen, 2012). Some studies used filtered white noise with a power spectrum 

resembling that of natural stimuli (Sadeghi et al., 2007a). The latter stimuli resembled 

natural stimuli in the frequency domain; however, whether the distribution of the amplitude 

of stimulus was similar to that of natural stimuli remained to be elucidated. Carriot et al. 

recorded the head movement of human, rhesus macaque monkeys, as well as mice to 
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characterize the statistics of the natural self-motion in these species (Carriot et al., 2014, 

2017a; Carriot et al., 2017b). Unlike natural stimuli in other sensory modalities, the natural 

self-motion stimuli did not exhibit scale invariance characterized by 1/fa power law relation. 

Instead, the power spectra during translation and rotation decrease faster with higher 

frequencies. As an exception, the natural translation stimuli for mice displayed the 

aforementioned scale invariance property. Furthermore, the studies demonstrated that 

natural stimuli experienced by macaques and humans are similar, whereas they are 

qualitatively different than that of mice. 

Recent studies in the vestibular system using single-unit recordings have provided 

evidence of efficient coding in early vestibular pathways. In particular, Mitchell et al. recorded 

from vestibular-only (VO) neurons in vestibular nuclei (VN) of rhesus macaque and reported 

that these neurons displayed temporally whitened responses when naturalistic head rotation 

stimuli were used (Mitchell et al., 2018). The demonstrated that variability, together with the 

high-pass tuning property of the cells, compensated for the decrease in the power of the 

stimulus to provide a whitened representation of naturalistic self-motion in VN. In a follow-

up study, Mackrous et al. recorded the activity of vestibular neurons in VN that mediate 

vestibulo-ocular reflex (VOR) and its adaptation (Mackrous et al., 2020). They investigated 

the relation between the variability of neural response and efficient coding and showed that 

neurons with high variability efficiently encode naturalistic stimuli, whereas neurons with 

lower variability faithfully encode the stimuli. Efficient coding in the vestibular system at the 

population level is understood to a lesser extent. While multiunit recordings have reported 

negligible correlated variability in the early vestibular pathway (Liu et al., 2013; Yu et al., 

2014), it is important to note that such studies used artificial stimuli (sinusoidal stimuli) and 

therefore are not suited for the study of efficient coding of natural self-motion in the 

vestibular system. 

 

1.3 Adaptation 

As stimulus probability distribution varies over time, the neural response properties 

(e.g., tuning functions) may change in order to allocate limited computation resources to the 
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current local distribution of the stimulus (Stanley, 2008; Wark et al., 2007; Weber and 

Fairhall, 2019). Such changes in coding strategies are termed adaptation. Adaptation can also 

refer to a gradual reduction in neural responses following the onset of a stimulus (Wark et 

al., 2007; Weber and Fairhall, 2019). Furthermore, adaptation can modify both temporal and 

input-output characteristics of the neurons and is a signature of efficient coding in the brain 

(Sharpee et al., 2014; Wark et al., 2007; Weber and Fairhall, 2019). 

Adaptation can be viewed as changes in the function of the neurons that occurs in 

different timescales(Whitmire and Stanley, 2016). Gain adaptation, which is the change in 

the input-output characteristic of the neuron to match neurons output to statistics of the 

input, also occurs at different timescales (Wark et al., 2007; Weber and Fairhall, 2019; 

Whitmire and Stanley, 2016). At least in the early visual and auditory system, experiments 

have shown that two mechanisms underlie adaptive gain rescaling: a fast component that 

rescales the gain of the neuron in response to rapid changes in variance or contrast of the 

stimulus (Fairhall et al., 2001; Wark et al., 2009; Weber and Fairhall, 2019) and slower 

component that changes the mean firing rate of the neurons (Wark et al., 2007; Weber and 

Fairhall, 2019).  

 

1.4 The sensory endorgans and afferents in the vestibular periphery 

The vestibular periphery consists of vestibular endoragns that sense the head motion 

as well as the afferents that innervate the sensory apparatus and transmits head motion 

information to the central pathway (Goldberg et al., 2012a, c).  

 

1.4.1 The vestibular sensory organs 

The head motion stimuli are sensed through sensory organs that reside in the 

membranous labyrinth located in the temporal bone near the cochlea (see (Goldberg et al., 

2012c) for a comprehensive description). There are two sets of sensory organs in each of the 

ears: the semicircular canals consisting of anterior, posterior, and horizontal which are 

arranged nearly orthogonally and detect angular head motion in different planes; and the 
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otolith organs comprising the utricle and saccule, which sense linear translation of the head 

motion and the changes in the orientation of our head with respect to gravity (Rabbitt, 1999). 

Within each of these sensory organs lie hair cell structures that move during head motion 

and are the primary receptors in the vestibular system.  

 

1.4.1.1 Semicircular canals 

The semicircular canals are curved structures, each making about two-thirds of a circle, 

which are located within each inner ear and detect head rotation (Lindeman, 1969). There 

are three semicircular canals that lie within three approximately perpendicular planes. Each 

of the semicircular canals detects angular head motion around a specific axis. The horizontal 

(or lateral) semicircular canal lies in a plane that make an approximately 30-degree angle 

with the transverse plane and primarily detects yaw rotations (rotation around the vertical 

axis). The anterior (or superior) semicircular canal makes a roughly 45-degree angle with 

the sagittal plane and mainly detects the rotations in the sagittal plane (around the horizontal 

axis). The posterior semicircular canal is oriented on the frontal plane and mainly detects 

rotation in that plane (i.e., roll). When the head rotates in another plane, all of the canals 

differentially are activated with the ones whose plane is closer to the rotation plane being 

most activated (Lindeman, 1969). 

The semicircular canals are filled with endolymph, a viscous fluid that has a high 

concentration of K+ ions and a low concentration of Na+ and Ca2+ ions (Ghanem et al., 2008; 

Smith et al., 1954). Each of the canals has a dilated segment known as the ampulla, which 

contains crista ampullaris and cupula. Cupula is a gelatinous structure within which lie hair 

cell bundles, each consisting of 20-100 stereocilia associated with a kinocilium. These hair 

bundles are arranged in a staircase pattern and are oriented in a specific direction inside the 

gelatinous membrane. During a head rotation, due to inertia, the endolymph initially lags 

behind and pushes against the cupula. The generated force displaces the cupula and bends 

the hair bundles, thereby opening or closing the mechano-transducer channels carrying a 

transducer current. If the cupula pushes the stereocilia towards the kinocilium, K+ and Ca2+ 

channels open and depolarizes the cell, leading to the release of glutamate in the synaptic 
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cleft where a postsynaptic afferent terminal is present. A sustained glutamate release 

depolarizes the afferent terminal and generates a spike which is then transmitted to the 

central vestibular areas. On the other hand, if the cupula pushes the stereocilia towards the 

short end, this hyperpolarizes the cell and leads to a reduction in glutamate release and, 

consecutively, afferent firing rate.  Although the inertia from the rotation or the angular 

acceleration is responsible for the deflection of the hair bundles, the mechanics of the cupula 

and viscosity of the endolymph act as an integrator, thereby making semicircular canals 

responses in phase with angular velocity rather than acceleration at low frequencies.  

 

1.4.1.2 Otolith organs 

The otolith organs are responsible for the sensation of linear translation of the head as 

well as its relative change with respect to gravity. There are two otolith organs: the utricle, 

which senses the acceleration along the transverse plane, and the saccule, which senses the 

acceleration along the vertical axis (Fernandez et al., 1972; Goldberg et al., 2012a, c; 

Lindeman, 1969). The otolith organs are tiled with hair cells whose stereocilia are embedded 

inside an otolithic membrane, a gelatin membrane covered by calcium carbonate crystals 

known as otoconia. During a linear movement, the otoconia, which is denser than the 

otolithic membrane, lags behind due to the inertia and bends the stereocilia of the hairs cell. 

Similar to the cupula in semicircular canals, depending on the orientation of the deflection of 

the stereocilia of the hair cells, the cell could increase or decrease the activity of the 

innervating afferent neurons. Unlike semicircular canals in which the orientation of the 

stereocilia is similar, in utricle and saccule, the stereocilia are oriented towards an imaginary 

line passing through the otolith organ. Therefore, during the movement of the head, some 

hair cells become depolarized while others become hyperpolarized.  

 

1.4.1.3 Hair cells 

Hair cells are the primary receptors in the vestibular pathway, which convert 

mechanical force due to movement into electrical signals, thereby performing mechano-

electrical transduction.  When the cell is depolarized or hyperpolarized, the amount of 
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glutamate released rises above or dips below the baseline level, leading to an increase or 

decrease of membrane potential in the postsynaptic terminal.  There are two types of hair 

cells in the vestibular system: flask-shaped type 1 hair cells and cylindrical type 2 hair cells. 

Type 1 hair cells are innervated by cup-shaped afferent endings (calyx), while type 2 hair 

cells receive inputs through bouton endings (Eatock and Songer, 2011). Type 1 hair cells have 

input conductance due to large K+ conductance and exhibit fast voltage responses. 

Additionally, type 1 hair cells have more stereocilia than their type 2 counterparts, causing 

differences in the bundle mechanics and peak mechanoelectrical transduction currents 

(Contini et al., 2012). Accumulating evidence shows that type 1 hairs cells are more adept in 

detecting acceleration in high-frequency movements compared to their type 2 counterparts 

owing to their physiological and morphological differences (Curthoys et al., 2021). 

 

1.4.2 The vestibular afferents 

The other main component of the vestibular periphery is the afferent neurons 

innervating the hair cells in sensory endorgans (Goldberg et al., 2012c; Sadeghi and Cullen, 

2015). Vestibular afferents transmit self-motion information via spiking activity to vestibular 

nuclei in the brainstem. There are two types of afferents in terms of their resting discharge 

variability characterized by the coefficient of variation (CV) of their interspike intervals, the 

ratio of the standard deviation of the interval and mean of the intervals: the regular afferents 

which have low variability in their interspike intervals and the irregular afferents which 

exhibit high variability in their interspike intervals (Goldberg, 2000). The variability is 

associated with the morphological and physiological differences between the two types of 

afferents. The regular afferents have axons with smaller diameters and bouton terminals 

preferentially innervating type 2 hair cells. The irregular afferents, on the other hand, have 

axons with large diameters and calyceal endings preferentially innervating type 1 hair cells. 

Such differences have implications for differential information transmission, which will be 

discussed later in section 1.6.1. 
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1.5 The central vestibular pathway 

In the previous section, we focused on the peripheral vestibular pathway, including the 

sensory endorgans and vestibular afferents. In this section, we focus on the central vestibular 

pathway, which is involved in postural and gaze stabilization, self-motion estimation, and 

spatial orientation (see (Cullen, 2016) for a comprehensive review). Vestibular afferents 

project to the vestibular nuclear complex in the brainstem, which consists of four main nuclei 

(Brodal, 1984): medial, lateral, superior, and descending vestibular nuclei. The medial 

vestibular nucleus (MVN) is the largest subdivision within the vestibular nuclei. The rostral 

segment of the MVN is mostly associated with vestibulo-ocular neurons, whereas the caudal 

MVN is primarily linked to vestibulo-spinal and autonomic functions. The neurons in the 

lateral vestibular nuclei (LVN) contribute to the lateral vestibulospinal tract and mediate 

vestibulo-spinal reflex (VSR)(Hernandez and J, 2023; Kheradmand and Zee, 2012). While a 

subset of neurons (magnocellular neurons) in the superior vestibular nucleus (SVN) mainly 

mediate vestibulo-ocular functions as well as the conscious perception of gravity, others 

(parvocellular neurons) mainly contribute to commissural pathways. The neurons in the 

descending vestibular nuclei (DVN) receive information about head tilt and gravity and 

mediate autonomic functions (see also (Goldberg et al., 2012b)).  

There is a topographical division between the five vestibular otolith organs and 

semicircular canals (Beitz and Anderson, 1999; Imagawa et al., 1998; Imagawa et al., 1995). 

The vestibular nerve consists of superior and inferior divisions. While the superior division 

carries fibers innervating horizontal and anterior semicircular canals as well as the utricular 

macula and anterior parts of the saccular macula, the inferior division mainly carries fibers 

from the saccular macula and posterior semicircular canal. Furthermore, the SVN receives 

inputs from all three semicircular canals, while MVN and LVN receive inputs from all five 

sensory endorgans. Additionally, canal inputs are more abundant in the rostral parts of the 

MVN and DVN. Both MVN and DVN receive otolith inputs; the saccular projections are dense 

in DVN, whereas the utricular projections are heavier on the rostral segments. Unlike 

auditory and visual systems, the vestibular nuclei do not have well-defined topographic 

representations of peripheral organs; instead, they have considerable overlap in their 

projections, allowing for multi-organ convergence onto individual neurons. In the next 
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sections, I will overview the reflexes that the vestibular system is involved in and their 

corresponding pathways. 

 

1.5.1 The VOR pathway 

The VOR is a crucial mechanism that enables coordinated eye movements to stabilize 

the image on the retina for clear vision during motion (Cullen et al., 2009; Sadeghi and Cullen, 

2015). The eye movement is equal to that of head motion in magnitude and in the opposite 

direction, thereby effectively canceling the effects of head motion to maintain gaze. Angular 

head motions are canceled by the angular VOR (AVOR), whereas the gaze position during 

head translation is instead canceled by the translational VOR (TVOR) (see also (Goldberg et 

al., 2012d)). 

AVOR is elicited by angular head motions that have negligible translation components. 

The latency of the eye movement relative to the head movement is remarkably short 

(approximately 5 to 7 ms; (Huterer and Cullen, 2002)) owing to a relatively simple three-

neuron arc and fast muscle contractions. During the reflex, mainly the semicircular canals 

are stimulated. This information is transmitted to ipsilateral VN, and from there, to the 

contralateral abducens nucleus. Premotor neurons in the abducens nucleus project to the 

lateral rectus muscles of the eye on the contralateral side, whereas the internuclear neurons 

in the abducens nucleus project to medial rectus premotor neurons on the ipsilateral side. 

Therefore, head rotation leads to the contraction of the medial rectus muscle on the 

ipsilateral side and the lateral rectus muscle on the contralateral side. At the same time, the 

medial rectus muscles on the contralateral side and the lateral rectus muscles on the 

ipsilateral side become relaxed due to increased activity in the afferents of the contralateral 

canals.  

The signal generated by semicircular canals is proportional to the angular head 

velocity, yet, compensatory eye movements are proportional to head position. During 

horizontal head rotations, this computation is done in nucleus propositus hypoglossi by 

integrating the eye velocity signals in the vestibular nucleus (VN) as well as burst neurons 

and generating a sustained position signal (Cannon and Robinson, 1987; Cheron et al., 1986). 



15 
 

For vertical and torsional head rotations, the integration is done in the interstitial nucleus of 

Cajal (Crawford et al., 1991; Glasauer, 2001). Additionally, the head motion signal generated 

by semicircular canals decay in 3 to 5 seconds, whereas corresponding output signals 

neurons in VN decay with a larger time constant of order 12-20 seconds (Raphan et al., 1979). 

This difference is attributed to the velocity storage integrator represented by distributed 

networks in VN in the brainstem as well as nodulus and uvula in the cerebellum which 

integrates vestibular signals helping to prolong and maintain a stable perception of self-

motion (Cohen et al., 1981; Reisine and Raphan, 1992).   

The AVOR has been characterized by linear control systems features, gain, and phase, 

as it displays linear behavior (Raphan et al., 1979; Robinson, 1981). In monkeys, the AVOR 

gain is close to 1, and the phase is small over a wide range of frequencies, whereas for 

humans, the AVOR gain hovers around 0.5-0.8. Interestingly, despite the fact that the 5 ms lag 

translates into 45 deg of phase shift during a 25 Hz AVOR, the behavior’s phase remains close 

to zero. It is hypothesized that the neural signals in VN possess significant phase lead which 

would compensate for the phase lag expected from the delayed response.  

The VOR is also activated during head orientation relative to the gravity or head 

translation evoking otolith-ocular reflexes. Tilt VOR is evoked when the head is tilted and 

functions to stabilize the gaze in space by vertical and torsional eye movements (Angelaki, 

1998; Paige and Seidman, 1999). The translational VOR (TVOR) functions to stabilize gaze 

during head translation and, unlike AVOR, involves a combination of eye movements (i.e., 

activation of multiple eye muscles in synergy) (Paige and Tomko, 1991). TVOR is functionally 

important, primarily in near-target viewing during high-frequency translations (Busettini et 

al., 1991; Paige and Tomko, 1991; Schwarz et al., 1989).  

The signal processing of VOR in VN and the response dynamics of the associated 

neurons are discussed in detail in 1.6. Briefly, there are two types of neurons in VN that 

mediate VOR (see (Cullen, 2012) for review). The primary driver neurons in VOR are the 

position-vestibular-pause (PVP) neurons which respond to head velocity in one direction 

and the eye position in the opposite direction. These neurons project to abducens 

motoneurons which drive the eye muscles. In addition, there are eye-head neurons (EH) that 
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respond to head velocity and eye velocity in the same direction and contribute to calibration 

and adaptation in the VOR pathway. In situations where the head movements displace the 

direction of the head significantly, the VOR is not enough to stabilize the image on the retina, 

and a compensatory reflex mediated by the optokinetic system comes to play, which is 

discussed in further detail below.  

 

1.5.2 The OKN pathway 

The optokinetic reflex (OKN) is an involuntary response that is elicited in response to 

the motion of large visual fields (Cohen et al., 1977). It complements the VOR system by 

matching the velocity of the eye to the visual surround. In laboratory settings, the OKN is 

elicited by rotating a stripped drum while the subject is looking. When the drum begins to 

rotate, the motion of the image on the retina induces an error signal, manifested as the retinal 

slip, causing the eye of the subject to track the movement of the drum. As the rotation of the 

drum continues, the eyes reset their position by quickly moving in the direction opposite the 

rotation of the drum. The phase during which the eyes are following the stimulus is called 

the “slow phase,” and the phase at which the eyes reset their position is called the “quick 

phase.” This behavior is also known as optokinetic nystagmus. If the light is extinguished 

during OKN, the eye movements during the slow phase decrease and gradually decay to zero. 

The latter component is known as optokinetic afternystagmus (OKAN) (Cohen et al., 1977; 

Ter Braak, 1936).  

OKN is most effective when the visual surround is moving at velocities below 60 deg/s 

with a gain close to unity (Mustari and Ono, 2009). However, the gain decreases significantly 

for higher velocity optokinetic stimuli. The neural substrate involved in OKN is well 

understood (Kato et al., 1986; Mustari et al., 1994; Precht and Strata, 1980; Schiff et al., 1990; 

Waespe et al., 1983). In mammals, horizontal OKN involves the pretectum nucleus of the 

optic tract (NOT) and dorsal terminal nucleus (DTN) of the accessory optic system (AOS). For 

vertical OKN, the lateral and medial terminal nuclei (LTN and MTN) of AOS are involved. 

These nuclei comprise neurons that are sensitive to the retinal slip in specific directions. For 

example, neurons in NOT and DTN selectively respond to ipsiversive retinal slip, whereas the 
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neurons in LTN and MTN respond to vertical retinal slip. DTN and NOT receive signals 

directly from retinal ganglion cells through retinofugal projections and indirectly through 

cortical and subcortical areas such as lateral geniculate nuclei and primary visual cortex. The 

retinal slip signals are then projected to various subcortical areas such as dorsolateral 

pontine nucleus (DLPN), nucleus propositus hypoglossi (NPH), inferior olive, nucleus 

reticularis tegmenti pontis (NRTP), which then find their way to vestibular, floccular, and 

abducens nuclei, from which tracking and resetting eye movement commands are executed.  

 

1.5.3 The VCR pathway 

When the head moves in space, the vestibulocollic reflex (VCR) is evoked to stabilize 

the head in space. This reflex is essential for maintaining balance and stabilizing our gaze to 

allow us to achieve optimal motor action as well as accurate perception of visual stimuli by 

dampening unattenuated head motions. Similar to VOR, VCR is mediated by a three-neuron 

arc: the vestibular afferents, the vestibular interneuron, commonly referred to as the 

vestibulocollic neuron, and the neck motoneuron (Wilson et al., 1995a). The main pathways 

of VCR are lateral and medial vestibulospinal tracts which provide direct connections to neck 

motoneurons as well as indirect connections via spinal interneurons.  

While the nature of the vestibulocollic neurons in VN that mediate VCR remains unclear, 

there is evidence suggesting that VO neurons can fulfill this role (reviewed in (Cullen, 2016; 

Goldberg and Cullen, 2011)). Firstly, VO neurons project to the spinal cord, and their 

responses are significantly attenuated during active motion, consistent with the notion that 

VCR is suppressed during voluntary movements (Peterson and Boyle, 2004; Wilson et al., 

1995b). Furthermore, the cancelation signal during active motion arises from the 

comparison between active movement and the neck afferent signal, which further supports 

this suggestion (Roy and Cullen, 2004). 

 

1.5.4 The VSR pathway 

The vestibulospinal reflex (VSR) plays a crucial role in controlling posture. During head 

motion, the vestibular information is used to act on the limb muscles to stabilize the position 
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of the trunk and posture (reviewed in (Cullen, 2016)). There are two types of reflexes that 

act on limb muscles: tonic and phasic reflexes (Manzoni, 2009). The former maintain their 

response to changes in the head position and are originated from stimulation of otolith 

organs. The latter originate from semicircular canals and are essential for high-frequency 

reflexes (Angelaki and Dickman, 2000). A roll tilt would lead to the extension of the ipsilateral 

and the flexion of the contralateral limbs. Similar to the VCR, the VSR pathway is mediated 

via lateral and medial vestibulospinal tracts. As in VCR, VO neurons in VN also project to 

cervical and lumbar levels of the spinal cord and likely contribute to VSR.  

 

1.5.5 The ascending vestibular pathways 

Some of the vestibular neurons in VN further project to thalamus, and from there to the 

cortex. These vestibulo-thalomo-cortical projections mediate our subjective sense of self-

motion and orientation in space. Mainly, there are two ascending pathways from VN to 

cortex: the anterior pathway, which consists of projections from NPH to the head direction 

cell network and contributes to the brain’s representation of the spatial orientation(Cullen 

and Taube, 2017); and the posterior thalamic pathway including projections from VO 

neurons to ventral posterolateral thalamus which in turn project to multiple cortical areas 

and underlies our subjective perception of self-motion(Cullen, 2016). 

 

1.5.5.1 The anterior thalamic pathway and head direction cell network 

NPH receives vestibular signals from VOR neurons to generate a sustained firing rate 

proportional to the position of the eye in orbit by integrating the eye and head velocity signals 

from VN. Additionally, neurons in NPH also project to dorsal tegmental nuclei (DTN), and 

from there to the anterodorsal thalamus (ADN). DTN is considered the input gate of the head 

direction cell network. Head direction cells are sensitive to specific angular positions of the 

head and are found in DTN, ADN, and lateral mammillary nuclei (reviewed in (Cullen and 

Taube, 2017)). ADN and lateral mammillary nucleus, in turn, project to the entorhinal cortex 

and other areas in the limbic system where the head direction signals are modulated by 

visual landmarks as well as vestibular information. The vestibular input to the head direction 



19 
 

network is critical as studies have shown that the abolition of such inputs alters the head 

direction cells’ selectivity and sensitivity to the position (Stackman and Taube, 1997).  

 

1.5.5.2 The posterior thalamic pathway and self-motion perception 

In the posterior thalamic pathway, VO neurons in VN project to the ventral posterior 

lateral nucleus (VPL) thalamus, relaying vestibular sensory information between the 

vestibular nuclei and cortical processing areas (Marlinski and McCrea, 2008a, b; Meng and 

Angelaki, 2010; Meng et al., 2007). Interestingly, unlike most other sensory modalities, 

thalamus lacks nuclei exclusively dedicated to vestibular processing. Instead, vestibular 

sensitive neurons are distributed throughout the posterior lateral thalamic nuclei with a 

notable presence in the ventral posterolateral and ventral posterior nuclei. These areas 

primarily are somatosensory areas but also include neurons that respond to oculomotor, 

visual, and proprioceptive signals (Meng et al., 2007). In addition to these areas, sparse 

vestibular responses have been found in pulvinar. 

Furthermore, studies have found that vestibular neurons responding to head rotation, 

translation, tilt, or a combination of these stimuli are distributed without any discernable 

topographical organization or preference for specific types of movements(Marlinski and 

McCrea, 2008a; Meng and Angelaki, 2010). While there is a coarse organization to the 

structure of VN in terms of projection association with vestibular endorgans and their 

functional differences (i.e., MVN, SVN, DVN, and LVN), vestibular target neurons in VPL are 

functionally intermixed and lack any functional differentiation. Anatomical studies have 

suggested that vestibular target neurons in VPL receive bilateral projections from both 

ipsilateral and contralateral vestibular nuclei(Lopez and Blanke, 2011). The response of VPL 

neurons has been characterized in detail and will be covered in 1.6.1. 

Most vestibular thalamus neurons are multimodal. Indeed, not only do they receive 

convergent vestibular input from multiple vestibular endorgans, but they also receive input 

from other sensory modalities. Specifically, about 50% of vestibular thalamus neurons 

receive proprioceptive inputs from the limb and neck (Deecke et al., 1977). Moreover, many 

vestibular neurons in the vestibular thalamus neurons exhibit eye movement sensitivity in 
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the opposite direction to the vestibular sensitivity (Lopez and Blanke, 2011). In Addition, few 

vestibular neurons in thalamus receive whole-field optic flow signals (Lopez and Blanke, 

2011). It should be noted that during passive motion, neurons that are sensitive to vestibular 

and proprioceptive stimuli but not to oculomotor or visual stimuli resemble that of VO in VN. 

These neurons are believed to contribute to self-motion perception via their projections to 

cortical areas (Wijesinghe et al., 2015). 

The vestibular neurons in thalamus project to multiple cortical areas (reviewed in 

(Lopez and Blanke, 2011)). Although the projection patterns are slightly different across 

different monkey species, the thalamus sends projections to somatosensory areas 2V and 

3aV, as well as the parietoinsular vestibular cortex (PIVC). PIVC is considered to be the 

primary vestibular center in the cortex, as this area primarily receives input from the VPL 

thalamus. Other areas—such as area 3a—instead primarily receive vestibular inputs from 

ventral posteromedial and ventral intermediate nuclei of thalamus (reviewed in (Hitier et al., 

2014)). A study in humans using diffusion tensor imaging has shown that there are five 

projection pathways from VN to PIVC, four of which pass through the thalamus (Kirsch et al., 

2016). Two of these pathways ascend ipsilaterally and do not cross the midline. One of these 

pathways passes through the VPL thalamus, whereas the other pathway includes the 

paramedian thalamus. The two remaining pathways cross the midline at the pons and 

midbrain and pass through the contralateral VPL. Because of the technique used, each of the 

mentioned pathways could originate from the cortex or thalamus and can be involved in the 

corticothalamic loop.  

 

1.5.6 Vestibular cortex  

Unlike other sensory modalities, the “vestibular cortex” is not well defined in the sense 

that, unlike other modalities (e.g., vision, audition, somatosensory), there is no “primary 

vestibular cortex.” This is because vestibular representation in the brain is not only highly 

distributed but also, as mentioned above, multisensory. Multiple areas in the cortex have 

been shown to respond to vestibular stimulation (reviewed in (Cullen, 2016; Lopez and 

Blanke, 2011)). Consistent with anatomical studies showing that PIVC and areas 2V and 3a 
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receive projections from the vestibular thalamus, cells with vestibular sensitivity have been 

identified in these areas. For example, in area 3aNv –which is referred to as the neck-

vestibular region of 3a—about 30-50% of neurons respond to vestibular stimuli. More than 

50% of neurons in PIVC are driven by vestibular stimuli, more than any other area in which 

neurons with vestibular sensitivity have been found (Guldin and Gru sser, 1998). This, 

together with the findings that PIVC receives direct input from the vestibular thalamus and 

convergent inputs from other vestibular areas in the brain, has led to the notion that PIVC is 

the core area in vestibular signal processing. PIVC has been shown to be critical for the 

subjective perception of self-motion. Posterior to PIVC, 30% of the neurons in visual 

posterior sylvian (VPS) area neurons also respond to vestibular stimuli (Guldin and Gru sser, 

1998). In the posterior parietal cortex of the monkey, it has been shown that some neurons 

in area 7, the ventral intraparietal area (VIP), and the medial intraparietal area (MIP) are 

driven by vestibular stimulation. Furthermore, the cingulate cortex is connected to PIVC, VPS, 

and area 3a, where neurons with vestibular sensitivity have been found. Additionally, frontal 

and supplementary eye field areas have been shown to demonstrate vestibular sensitivity 

when the vestibular nerve was stimulated electrically (reviewed in (Lopez and Blanke, 

2011)). Vestibular sensitivity has also been identified in the area of MST, which is involved in 

visual perception as well as self-motion perception based on optic flow signals (DeAngelis 

and Angelaki, 2012).  

 

1.5.7 Corticofugal projections to brainstem and thalamus 

Anatomical studies such as those that have used retrograde tracer injections have 

demonstrated that VN receives corticofugal feedback projections from multiple areas in the 

cortex in monkeys, including PIVC, VPS, 2v, 3aV, 6, and anterior cingulate cortex (Akbarian et 

al., 1994; Akbarian et al., 1993). Interestingly, anatomical feedback projections are found to 

be associated with the functional relevance of the structure in VN. Specifically, areas in VN 

that are mostly associated with VOR (i.e., SVN and MVN) predominantly received feedback 

projections from PIVC, whereas areas involved in VSR and VCR (i.e., LVN and MVN) received 

feedback projections from somatosensory and motor areas 3a and 6 (Akbarian et al., 1994). 

Although generally, the cortical feedback projections are bilateral, projections from PIVC 
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dominated ipsilaterally, whereas the somatosensory and motor areas (2v, 3aV, 6) 

preferentially project to contralateral VN. Corticothalamic feedback projections to the 

thalamus are less known as anatomical studies demonstrating such projections are lacking. 

However, recently, several imaging studies have provided strong evidence that the 

ventroposterior thalamus, and especially VPL, receive ipsilateral cortical feedback 

projections from PIVC (Conrad et al., 2023; Kirsch et al., 2016; Wirth and et al., 2018).  

 

1.5.8 Multisensory integration in the central vestibular pathway 

The self-motion information available for the brain is not solely provided by the 

vestibular input. In fact, in natural settings, visual, somatosensory, and proprioceptive 

information provides significant information about self-motion. This is reflected in the 

response of the neurons in the vestibular pathway by many neurons that respond to other 

sensory modalities or multiple vestibular sensory organs (reviewed in (Cullen, 2012)).  One 

of the unique features of the vestibular systems is that multimodal sensory convergence 

appears as early as in the secondary vestibular neurons. As mentioned earlier (see 1.5.2), 

large-field motion produces an optic flow signal that evokes OKN, which complements VOR 

by stabilizing the gaze in space. The optic flow signal is ultimately delivered to abducens 

nuclei via PVP and EH neurons, which are the secondary vestibular neurons that integrate 

the vestibular and visual information. Note that VO neurons are not involved in vestibular-

visual signal integration, although they contribute to OKN by mediating the velocity storage 

mechanism (Raphan et al., 1979; Yakushin et al., 2017).  

As VN receives projections from cortical areas sensitive to somatosensory and 

proprioceptive signals, it is not surprising that at least some neurons in VN respond to such 

stimuli. For example, VO neurons respond to proprioceptive stimulation in monkeys, with 

the exception of rhesus monkeys (Gdowski and McCrea, 2000; Sadeghi et al., 2009). However, 

even in rhesus monkeys, neck proprioception sensitivity was observed after unilateral 

labyrinthectomy, demonstrating the vestibular-proprioceptive integration in VO neurons in 

VN (Sadeghi et al., 2011). Furthermore, in addition to multimodal sensory integration in VN, 

some neurons in VN respond to convergent inputs from multiple vestibular sensory 
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endorgans. For example, canal-canal convergence, when a neuron responds to stimulation of 

two of the semicircular canals (e.g., rotation around two different axes), or otolith-canal 

convergence, where the neuron is sensitive to both head rotation and translation, are 

important in computing translation and resolving tilt-translation ambiguity. Finally, the 

vestibular sensitive neurons in thalamus and cortex are highly multisensory as many 

vestibular neurons also respond to visual, somatosensory, and proprioceptive neurons. As 

self-motion perception involves the integration of information from all sensory modalities, it 

is believed that such multimodal neuronal sensitivity underlies the integration of 

information about self-motion to give rise to our subjective sense of self-motion and 

orientation. 

 

1.6 Vestibular signal processing 

The characterization of vestibular cells and their signal processing traditionally have 

been done using low-amplitude sinusoidal stimuli and linear control systems analysis. Under 

these conditions, the response of the cell is linear and can be characterized and predicted by 

neural response gain (the ratio of the response modulation to the stimulus modulation) and 

phase (the delay between the stimulus and response) (Robinson, 1968, 1981). Additionally, 

the variability of the neural response plays a key role in information processing done by 

afferents and central vestibular neurons. In the following sections, I will review the 

characteristics of vestibular neurons and information processing in peripheral and central 

pathways.  

 

1.6.1 Vestibular signal processing in vestibular afferents 

The baseline firing rate of the canal afferents is 50-100 spikes/s in monkeys (Goldberg, 

2000). Furthermore, afferents with CV<0.15 are usually considered regular afferents and are 

considered irregular otherwise (Sadeghi et al., 2007b). Both regular and irregular canal 

vestibular afferents demonstrate high-pass tuning properties over the relevant frequency 

range (0-20 Hz) in response to sinusoidal stimuli as their gain increases with the frequency 

of the stimulus (Sadeghi et al., 2007a). Furthermore, the response leads the stimulus, and the 
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phase lead increases with the stimulus frequency (Hullar et al., 2005; Sadeghi et al., 2007b; 

Schneider et al., 2015).  

Regular and irregular afferents have been shown to differentially encode vestibular 

stimuli. Sadeghi et al. (Sadeghi et al., 2007a) used information theoretic measures and 

demonstrated that regular afferents, on average, transmitted two times more information 

than their irregular counterparts during sinusoidal and random stimuli. Additionally, the 

detection threshold calculated from regular afferents was 50% less than that calculated from 

irregular afferents. However, spike jitter analysis which displaced the spikes randomly 

showed a substantial decrease in the information carried by regular afferents but 

insignificant changes in the information encoded by irregular afferents. Similar results were 

obtained when naturalistic stimuli were used in another study (Jamali et al., 2016).  

Interestingly, studying otolith afferents revealed qualitatively different results. In 

contrast to canal afferents, irregular otolith afferents conveyed significantly more 

information compared to their regular counterparts (Jamali et al., 2019). Interestingly, 

however, the detection threshold of both irregular and regular otolith afferents was similar 

to each other across frequencies (Jamali et al., 2013). The latter resulted from higher 

variability for irregular afferents matching higher gains when comparing the detection 

threshold of regular and irregular afferents.  

When canal and otolith afferents were tested for precise spike-timing coding, different 

results were obtained. Irregular canal afferents performed better than regular canal afferents 

through precise spike timing in discriminating the naturalistic stimuli despite carrying less 

information about the stimulus through firing rate (Jamali et al., 2016). However, irregular 

otolith afferents performed better in discriminating naturalistic stimuli through precise 

spike timing and carried more information through firing rate compared to their regular 

counterparts owing to the nonlinearities and phase-locking displayed by the former (Jamali 

et al., 2019; Schneider et al., 2015).  
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1.6.2 Vestibular signal processing in vestibular nuclei 

The response of VO, PVP, and EH neurons in VN has been characterized by a multitude 

of studies (Cullen, 2011, 2012). Here, I focus on the information processing in the first stage 

of the central vestibular system and describe the response of the neurons and the role of 

variability in the neural coding of vestibular stimuli. 

 

1.6.2.1 VO neurons optimally encode natural self-motion stimuli in the temporal domain 

Similar to afferents, VO neurons display high-pass tuning properties with phase leads 

during both sinusoidal and naturalistic stimulation (Massot et al., 2011; Mitchell et al., 2018). 

The baseline firing rate and CV vary from 20-80 spikes/s and 0.1-0.6, respectively (Mackrous 

et al., 2020). Recently, Mitchell et al. studied the neural coding of naturalistic self-motion 

stimuli in VO neurons and demonstrated that the response of VO neurons is adapted to the 

statistics of the natural self-motion stimuli (Mitchell et al., 2018). In particular, they showed 

that the power of the VO neural responses remains relatively constant over the relevant 

stimulus frequency range, whereas the response of the afferents does not. Therefore, 

whitening is not inherited from the afferents and appears in VN. Notably, the high-pass tuning 

property of VO neurons did not account for the whitened response alone. Importantly, VOs 

displayed high levels of variability and heterogeneity in their resting discharge, which, 

together with the high-pass tuning of the VO neurons, matched the power of the stimulus and 

thereby whitened the response.   

The response of VO neurons to low-amplitude sinusoidal stimuli can be effectively 

modeled by linear systems analysis techniques (Sadeghi et al., 2007a). However, when more 

complex stimuli consisting of low- and high-frequency component is presented, the VOs 

display a nonlinear response by attenuating the response to a low-frequency stimulus when 

presented with a high-frequency stimulus (Massot et al., 2012). Notably, afferents’ response 

to a combination of low and high-frequency stimuli is linear and matches that of when each 

stimulus is presented individually, and therefore, the observed nonlinearity cannot be 

attributed to the afferents. Massot et al., using a linear-nonlinear cascade model, 
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demonstrated that such nonlinearities can be accounted for with a static nonlinear 

relationship between their output firing rate and input afferent response.  

Most of the studies of vestibular systems have been done by stimulating vestibular 

organs in a single dimension (e.g., yaw rotation); however, natural stimuli stimulate canals 

and otolith organs simultaneously (Carriot et al., 2013a; Carriot et al., 2014, 2017a). Many 

VO neurons in VN receive convergent input from multiple canals and/or otolith organs, 

raising the question of whether VO neurons integrate information from multiple vestibular 

organs linearly. Previous studies have addressed this question by recording the response of 

VO neurons during active/passive rotation, translation, and combined rotation and 

translation (Carriot et al., 2013a; Carriot et al., 2015; Musallam and Tomlinson, 2001). 

Response of the VO neurons that responded to both rotation and translation were well 

explained by linear models when each stimulus (translation or rotation) was applied in 

isolation. However, when the stimuli were applied simultaneously, the model overestimated 

the response of the VO neuron. Similarly, the response of the VO neurons to combined 

passive/active rotation and translation stimuli is sub-additive and violates the principle of 

superposition (Carriot et al., 2013a).  

 

1.6.2.2 PVP neurons faithfully encode VOR during natural head motion 

Similar to VO neurons and afferents, PVP neurons display high-pass tuning properties 

with phase leads during both sinusoidal and naturalistic stimulation (see (Cullen, 2012) for 

review). The baseline firing rate is higher than that of VOs and comparable to the afferents’ 

baseline firing rate, ranging from 25-100 spikes/s. Compared to VO and EH neurons, the 

response of PVP neurons is more regular, with CV ranging from 0.1-0.45. Mackrous et al. 

investigated the neural coding of VN neurons during naturalistic self-motion (Mackrous et 

al., 2020). They showed that optimal coding (e.g., via whitening) and faithful coding (e.g., via 

transmitting information with higher rates) of the stimulus during slow phases happened on 

a spectrum even for a given subclass of neurons in VN, and that depended on the neural 

variability the neuron exhibited. For PVP, VO, and EH neurons, those displaying high resting 

discharge variability and CV, on average, exhibited optimal coding via whitening, whereas 
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those displaying lower resting discharge variability and CV demonstrated faithful encoding. 

However, on average, PVP neurons displayed lower resting discharge variability and more 

faithful encoding, which had implications for VOR and detailed compensatory eye 

movements to stabilize gaze during natural self-motion.  

 

1.6.2.3 EH neurons optimally encode head motion information 

Unlike afferents, VOs, and PVPs, EH neurons do not exhibit high-pass tuning (see 

(Cullen, 2012) for review). Instead, EH neural gain stayed relatively constant across the 

relevant frequency range, whereas the phase lead decreased with frequency. EH neurons are 

relatively irregular in their resting discharge patterns, with CV values ranging from 0.2-0.8, 

and their baseline firing rate is relatively lower, ranging from 20-70 spike/s (Mackrous et al., 

2020). Similar to PVP and VO neurons, the coding strategy of EH neurons depends on the 

variability displayed by the neuron; EH neurons with high resting discharge variabilities 

optimally encode vestibular information, whereas those with low resting discharge 

variability faithfully encode vestibular signals. As EH neurons display more variability and 

heterogeneity in their response, they preferentially encode vestibular information optimally 

rather than faithfully.  

 

1.6.3 VPL neurons optimally encode naturalistic self-motion stimuli 

Vestibular processing in VPL had long been assumed to be linear over the physiological 

ranges; however, recent studies have shown otherwise. In a study on squirrel monkeys, 

Marlinski and McCrea used 1Hz sinusoidal rotation and translation stimuli with amplitudes 

of 4 to 100 deg/s and demonstrated that the response of the VPL neurons is, in fact, sub-

homogeneous and nonlinear (Marlinski and McCrea, 2008a). Specifically, the average gain of 

the VPL neurons to sinusoidal rotation is near 1 (spk/s)/(deg/s) when the head velocity 

magnitude is 4 deg/s, whereas the sensitivity of the VPL neurons decreases to about 0.1 

(spk/s)/(deg/s) when the head velocity is 100 deg/s Later, Dale and Cullen (Dale and Cullen, 

2019) showed that consistent with the study of Marlinski and McCrea in squirrel monkeys, 

the sensitivity of the VO neurons in thalamus VPL of rhesus monkeys decreases with the 
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amplitude. These studies indicated that the gain of VPL neurons responding to sinusoidal 

and active/passive stimuli decreased. However, whether such nonlinearities are inherited 

from VO neurons in VN, or their observation is due to nonlinearities of thalamus neurons in 

VPL was not clarified.  

Accordingly, Carriot et al. recorded from VPL and VO neurons during naturalistic 

stimulation (Carriot et al., 2022). In response to sinusoidal stimuli, VPL neurons displayed 

high-pass tuning with phase lead increasing with the stimulus frequency, similar to VO 

neurons in VN. In this condition, both VO and VPL neurons displayed ambiguity in the coding 

of artificial self-motion stimuli. However, unlike VO neurons, VPL neurons exhibited 

strikingly different tuning properties during naturalistic stimulation: the gain of VPL neurons 

stays relatively constant across the relevant frequency range. The phase lead disappeared, 

and the response of the VPL neurons was in-phase with the stimulus, thereby eliminating the 

ambiguity in coding. Further analysis revealed that the gain and phase of VPL neurons 

decreased with the stimulus amplitude due to contrast gain control adaptation which 

accounted for the differences between the response of VPL neurons to artificial and 

naturalistic stimuli. Additionally, VPL neurons consistently demonstrated more optimal 

coding during naturalistic stimulation when compared to VO neurons.  

 

1.6.4 Cortical vestibular processing  

Cortical processing of vestibular information is highly distributed (see 1.5.6). As 

mentioned above, amongst the cortical areas containing neurons that respond to vestibular 

stimuli, PIVC is presumed to be the primary vestibular cortical processing area (Guldin and 

Gru sser, 1998; Lopez and Blanke, 2011). Previous studies have characterized the response of 

vestibular neurons in PIVC (Akbarian et al., 1988; Grusser et al., 1990; Guldin and Gru sser, 

1998; Shinder and Newlands, 2014). Akbarian et al. characterized the response of vestibular 

neurons in PIVC of Java and squirrel monkeys (Akbarian et al., 1988). They found that these 

neurons responded to stimulation of horizontal and vertical semicircular canals but not to 

tilt, suggesting that these neurons received primarily input from semicircular canals. Many 

vestibular neurons in their study also responded to optokinetic stimulation, proprioception 
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stimuli (head-on-body stimuli), and somatosensory and visual stimuli. In a follow-up study, 

Grusser et al. characterized the response of the vestibular neurons by obtaining response 

gain and phase of PIVC neurons (Grusser et al., 1990). PIVC neurons displayed a relatively 

low baseline firing rate (10-20 spk/s). These neurons exhibited high-pass tuning properties 

with gain values ranging from 0.05-0.6 (spk/s)/(deg/s) over 0.2-1 Hz sinusoidal stimulation 

with a maximum head velocity of 30 deg/s. The phase values stayed relatively the same over 

the frequency range but varied substantially across the population averaging approximately 

~30 deg. Moreover, Shinder and Newlands investigated the convergence of proprioception, 

vestibular, and visual in PIVC using an extensive battery of stimuli (Shinder and Newlands, 

2014). They demonstrated that most PIVC neurons received convergent input from the head, 

neck, and/or target motion. Additionally, they characterized the response gain and phase 

during vestibular stimulation. Their findings were consistend with that of Grusser et al. The 

average gain at 0.2 Hz was approximately 0.25 (spk/s)/(deg/s) whereas the phase values 

were distributed from -180 to 180 deg. Interestingly, they calculated the gain using sinusoidal 

stimuli with the same frequency (0.2 Hz), but half the maximum amplitude (15 deg/s vs. 30 

deg/s) and showed the gain value increased approximately twice which suggest an 

adaptation mechanism is involved. 

 

1.7 Population coding  

In a seminal paper, Zohary et al. (Zohary et al., 1994) showed that neural activities in 

neural populations can be correlated. Although weak, these correlations can potentially have 

significant and, in some cases, dramatic effects on the coding efficiency of neural large 

populations (Moreno-Bote et al., 2014; Zohary et al., 1994). The following theoretical and 

experimental work illustrated that the study of population coding is incomplete without 

considering correlations and therefore, correlations should be investigated in population 

codes (reviewed in (Averbeck and Lee, 2006); See also (Abbott and Dayan, 1999; Kohn et al., 

2016)). 
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Correlations can be decomposed into two types: signal correlations which are 

correlations between the mean neural responses to different stimuli and quantify the degree 

to which neurons have similar tuning and functional properties; and 2- noise correlations, 

which are correlations between the trial-to-trial variabilities of neural responses to repeated 

presentations of identical stimuli and quantify the extent to which response variability is 

shared between neurons (Cohen and Kohn, 2011; Schneidman et al., 2006). Importantly, 

noise correlations can be affected by various factors, such as stimulus statistics (Chacron and 

Bastian, 2008; de la Rocha et al., 2007; Franke et al., 2016; Haggard and Chacron, 2023; Josic  

et al., 2009; Kohn and Smith, 2005; Lyamzin et al., 2015; Pola et al., 2003), attention (Cohen 

and Maunsell, 2009; Cohen and Newsome, 2008; Srinath et al., 2021), and learning (Gutnisky 

and Dragoi, 2008; Komiyama et al., 2010), and therefore are plastic (i.e., can change with the 

factors). Theoretical and experimental studies have shown that these effects can be either 

detrimental (Cohen and Maunsell, 2009; Moreno-Bote et al., 2014; Pitkow and Meister, 2012; 

Zohary et al., 1994) or beneficial (Chelaru and Dragoi, 2016; Downer et al., 2015; Franke et 

al., 2016) to the coding of the stimulus, and this depends on the structure of the correlation 

(i.e. the relationship between noise and signal correlations) in the population response as 

well as the decoder (Averbeck et al., 2006; Kohn et al., 2016; Moreno-Bote et al., 2014). This 

Figure 1.1. Correlation structure affects information in the population. The joint activity of a pair of 
neurons is illustrated when signal and noise correlations have similar signs (left) and when they have opposite 
signs (right). Each colored dot represents the joint response of the pair to repeated presentation of one of the 
stimulus conditions (stimulus 1 in red and stimulus 2 in blue). Filled block circles demonstrate the mean 
response of the neurons to the stimuli and the ellipses denote a 95 % interval of the response distribution. The 
green lines denote the optimal decoder.  
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is illustrated in Figure 1.1: in this example, if the signal and noise correlations are of the same 

sign, or in general, the correlation eigenvectors are parallel, the response distributions 

overlap, and the optimal linear decoder fails to discriminate stimuli without error (left 

panel); However, if the correlation structure of the pair response is such that noise and signal 

correlations have opposing signs, or in general, the correlation eigenvectors are orthogonal, 

a linear decoder can distinguish the two stimuli reliably (right panel). Therefore, it is of 

paramount importance to take the correlation structure into account in the study of 

population coding and revisit previous findings based on independent neural response 

assumption. 

 

1.7.1 Implications of stimulus-dependent correlation plasticity in population coding 

If the correlation structure is a critical factor in determining information that can be 

encoded (decoded) in (from) the neural population, what is (are) its implication(s) in 

population coding? Previous studies have shown that correlation structures depend on 

stimulus features. For instance, Frankie et al. recorded from a population of direction-

selective retinal ganglion cells of rabbits and showed that correlations depend on the 

direction of the stimulus (Franke et al., 2016). Importantly, they demonstrated that the 

stimulus-dependency of the correlation structure is the key: when the correlation structure 

is stimulus-independent (i.e., static), the coding improvement is minimal compared to that 

of independent neural responses. In contrast, and of particular importance and relevance to 

my research, when the correlation structure was stimulus-dependent, they found 

considerable coding improvement (in some experiments, as much as a two-fold increase in 

coding improvement) compared to that of independent neural responses. Using a 

phenomenological model, they demonstrate that the beneficial effect of stimulus-dependent 

correlations arises when variations of response are perpendicular to the informative curve 

defined mean response of the ensemble of neurons to the stimulus (Figure 1.1).  

Correlation plasticity has been characterized in other brain areas and systems. For 

example, Pola et al. provide an information-theoretic approach to distinguish the 

contribution of the static and stimulus-dependent noise correlations (Pola et al., 2003). The 
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authors apply the method to two datasets obtained from rat barrel cortex and macaque area 

MT. They demonstrated that stimulus-dependent noise correlations in the rat barrel cortex 

were synergistic, i.e., they increased overall information, whereas reduced noise correlations 

in both the rat barrel cortex and macaque MT area decreased information via redundancy. 

Kohn and Smith investigated the effect of stimulus orientation and contrast in the primary 

visual cortex (Kohn and Smith, 2005). Indeed, they observed that correlation structure 

depended on stimulus features, and these features differentially modulated the correlation 

structure. By varying the orientation of the stimulus, they observed that noise correlation 

was highest between the neurons that demonstrated similar tuning to the stimulus. This is 

consistent with the redundant correlation structures in which noise and signal correlations 

have similar signs. Additionally, the dependence of the correlation on stimulus orientation 

was specific to low timescales (1-100 ms): the correlation did not depend on the stimulus 

orientation for large timescales (>100 ms). Moreover, by changing the stimulus contrast, they 

demonstrated that noise correlations increase for low timescales with stimulus contrast. 

Interestingly, by decreasing the stimulus contrast, the noise correlation increased on longer 

timescales. This study provided evidence that correlation plasticity was further mosulated 

across timescales.  

Chacron and Bastian investigated the population coding in electrosensory systems of 

weakly electric fish during naturalistic behavior: prey-like and conspecific-like stimuli 

(Chacron and Bastian, 2008). They showed that while prey-like stimuli increase noise 

correlations, conspecific-like stimuli decrease the noise correlations. By investigating the 

neural firing patterns of the neurons, they demonstrated that the differential effect of the 

stimuli on correlations was primarily due to changes in the bursting activity of the neurons. 

In a recent study, Haggard and Chacron explored population coding of stimuli in different 

spatial locations (Haggard and Chacron, 2023). They showed that noise correlations 

depended on stimulus location and were plastic. Additionally, they compared the information 

derived from the population with plastic correlations to that where the correlations were 

independent of the stimulus location. They found that stimulus-dependence of the 

correlation mitigates the deleterious effect of the noise correlations.   
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De la Rocha et al. used a slightly different approach to study stimulus dependence of 

correlation structure and identify the underlying intrinsic mechanism (de la Rocha et al., 

2007). They recorded in vitro from unconnected pairs of neurons in slices from auditory and 

somatosensory neurons in mice. They found that noise correlations were always less than 

input correlations but increased with the firing rate of the neurons. Using a threshold-linear 

model, they illustrated that intrinsic and threshold nonlinearities shaped the correlation-rate 

relationship and underlie the decreased output correlations. In another study, Lyamzin et al. 

adopted a similar approach to study how transformations in correlations are shaped by 

intrinsic mechanisms (Lyamzin et al., 2015). They used in vitro and in vivo recordings to 

investigate whether the correlation structure is affected by the intensity of the stimulus. 

Specifically, they injected current into the pyramidal cells in mice V1 slices in vitro and 

demonstrated that noise correlation increases with signal correlation; however, noise 

correlations decrease with the intensity of the signal (i.e., input signal variance). Moreover, 

they recorded the response of pairs of neurons in gerbil A1 to FM inputs. Their findings in 

vivo agree with that of the in vitro experiment: noise correlations are stimulus-dependent 

(positive correlation) and decrease with signal intensity. Additionally, using a model, they 

showed that the transformation of signal and noise correlations in cortical sensory 

processing arose mainly due to threshold nonlinearities involved in spike generation, as 

observed previously (de la Rocha et al., 2007). Additionally, the observed effects were 

affected by cortical states: under anesthesia, when the cortical activity was synchronized, 

noise correlations, as well as their relation with signal correlations and stimulus intensity, 

were stronger. However, during desynchronized stater, the noise correlations were smaller, 

and the effect of signal correlations and input intensity on noise correlations was diminished.   

Altogether, these studies indicate that variation in the stimuli (Franke et al., 2016; 

Haggard and Chacron, 2023) could change the correlation structure. Additionally, different 

features of the stimulus (Kohn and Smith, 2005) or different behaviors of the animal 

(Chacron and Bastian, 2008) differentially modulate correlations in the population. These 

transformations are not only a representation of network states (Doiron et al., 2016) but also 

due to the inherent mechanism that shapes them. 
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1.7.2. Population coding in the vestibular system 

Population coding in the vestibular system is not well understood, as mainly single-unit 

recordings have been used to date. However, with the advent of neural probes that can record 

the activity of multiple neurons in deep brain structures, we begin to understand how neural 

populations encode self-motion information in the vestibular system. Yu et al. recorded from 

afferents to study the detection threshold before and after unilateral vestibular lesion (Yu et 

al., 2014). Although they did not focus on simultaneous recording from multiple neurons, 

they were able to identify pairs of neurons across their dataset. They reported that noise 

correlations were negligible and close to zero before the lesion (n=5); however, after the 

lesion, the noise correlations became significantly positive (n=9). Note that the number of 

pairs in this study is limited, and the results may not be conclusive. Similarly, Dale et al. 

reported insignificant noise correlations between irregular afferents (Dale et al., 2013). 

To the best of our knowledge, two published studies have performed multiunit 

recordings from vestibular-only (VO) neurons in the central vestibular pathway and have 

characterized the correlation structure in VN. Dale et al. reported negligible noise 

correlations between neural responses in VN during spontaneous activity. However, the 

amount of noise correlation was slightly higher during sinusoidal rotation. Additionally, they 

reported that noise correlations during active and passive stimulation —which resembled 

naturalistic self-motion— were not significant. Similarly, Liu et al. recorded pairs of VO 

neurons in VN during sinusoidal rotation (Liu et al., 2013). The study revealed that noise 

correlations in VN were small but significant during sinusoidal stimulation. The average 

noise correlation was positive, indicative of redundant population coding of natural self-

motion in VN during sinusoidal stimulation. 

 We note that in the studies above, the stimulus profile was either artificial (i.e., 

sinusoidal) or was not representative of natural stimuli observed during typical everyday 

behavior (Carriot et al., 2017a; Carriot et al., 2017b; Carriot et al., 2013b). As such, how 

natural self-motion information is encoded in the vestibular pathway remains elusive to this 

date. In my thesis, I investigated population coding of natural self-motion information in VN 

by characterizing correlations structure between VO pairs. Specifically, I recorded VO pairs 

during artificial as well as naturalistic stimulation and used biologically plausible models to 
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explain how natural self-motion information is encoded in the vestibular pathway. 

Additionally, the neural coding in PIVC remains elusive as all previous studies have used 

single-unit recordings during low-frequency artificial stimulation. In this thesis, I perform 

multiunit recordings in PIVC during sinusoidal rotations over a wide range of frequencies 

(0.5-17 Hz) and naturalistic stimulation to provide insight into population coding in PIVC and 

whether natural self-motion perception is efficiently encoded in PIVC neural populations.  

 

1.8 Scope and organization of the thesis  

The general theme of this thesis is to shed light on how behavior emerges in response 

to sensory stimuli using a combination of data analysis and computational modeling. We 

investigate how vestibular information is encoded and transmitted in neural populations by 

focusing on neural population activities. We use a physiological computational model that 

captures intricate details of neural activities to address how natural self-motion stimuli are 

processed in the central vestibular pathway. In addition to this cellular-level study, we further 

look at the optokinetic system —which shares neural substrates with the vestibular 

system— at the circuit level and use a functional computational model to explain the 

behaviors that emerge during optokinetic stimulation.  

In the study of population coding of natural self-motion, we hypothesize that 

population coding of self-motion is adapted to the statistics of the natural self-motion 

stimuli; That is to say, we believe similar to other sensory systems, population coding of 

vestibular stimuli (and here, natural self-motion) is efficient. To test our hypothesis, we 

address the following questions: 

• Are neural activities, particularly the variability in the population, correlated? If so, 

what is the structure of correlation? 

 

• Does correlation structure depend on whether the head motion stimuli are relevant 

(i.e., whether they are natural)? Do artificial and natural stimuli give rise to different 

correlation structures? 
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• What is the significance of the correlation structure and heterogeneity during 

naturalistic self-motion? 

 

In Chapter 2, I provide a summary of general methods used throughout the thesis. Next, 

in Chapter 3, I present our data gathered in the central vestibular pathway of rhesus 

macaques and report our analysis results. Chapter 4 introduces our computational model 

used in the study of population coding of natural self-motion. By varying key elements in the 

model, the correlation structure, and heterogeneity, we investigate the efficiency of 

population coding in the central vestibular pathway in encoding natural and artificial self-

motion stimuli.  

Next, we studied the optokinetic response in larval zebrafish. We hypothesized whether 

a set-point adaptation mechanism could explain the OKN response and the emergence of the 

following negative OKAN. To test this hypothesis, we addressed the following questions: 

• Does a model incorporating the set-point adaptation mechanism explain the observed 

negative OKAN during prolonged unidirectional stimulation? 

And if so,  

 

• Does the model generalize to observed behavior during bidirectional stimulation? 

 

• Is the model able to explain variations in the response of individual larvae to the 

stimuli? 

 

• What is the functional relevance of set-point adaptation? 

 

To address these questions, we propose a mathematical model in Chapter 5 and present 

the behavioral data gathered during prolonged unidirectional stimulation for comparison.  
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In Chapter 6, we adapt the model to study the behavior of the animals during symmetric and 

asymmetric bidirectional stimulation. We used the model to explain OKN adaptation and 

negative OKAN during bidirectional stimuli. Additionally, the model is used to explain the 

variation in individual larvae’s response. Based on our model, we provide some answers 

regarding the functional significance of set-point adaptation. Finally, in Chapter 7, I present 

a summary of findings from our study and provide a general discussion of our results and 

possible directions for future research. 
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2. GENERAL METHODS 

 

This chapter introduces the methods for gathering the electrophysiology and behavior 

data used in this thesis. Furthermore, I review the methods used to analyze the data. The 

electrophysiology data was collected in Dr. Chacron's lab at McGill University by myself and 

with the assistance of Dr. Jerome Carriot and Dr. Isabelle Mackrous. The behavioral data from 

larval zebrafish was gathered by Dr. Ting Feng Lin in Dr. Melody Huang's lab at the University 

of Zurich.  

 

2.1. Multiunit extracellular recording from behaving rhesus macaque monkeys  

 

2.1.1. Ethics statement  

All procedures, including surgeries, experiments, and housing of the animals, were 

approved by the McGill University Animal Care Committee (protocol #4096) and in 

accordance with the guidelines of the Canadian Council on Animal Care. The animals were 

housed in 10 m2 enclosures and were paired with animals of the opposite sex when possible. 

Animals followed a Teklad diet (2-4% of body weight) and had access to toys as a part of their 

enrichment plan. During the testing days, the animals were moved to play cages which 

consisted of two to four connected 1 m2 cages. The dividers between the cages allowed to 

place the animal in one of the cages before placing them in the chair. 

Experiments were conducted on two male (Monkey D, aged 8 years, 7.1 kg; Monkey O, 

aged 6, years, 6.3 Kg) and one female (Monkey B, aged 10, 11.3 kg) rhesus macaques (Macaca 

Mulatta). The animals were transferred to laboratories where extracellular recordings were 

conducted in a two-hour session for the experiments. After the experiment, the animals were 

returned to their housing units. 

The animals were constantly observed for any changes in physiological or 

psychological state, such as changes in diet, level of aggression, response to people, social 

interaction, and behavioral abnormalities indicative of distress. No such changes were 
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observed for the animals in our experiments. When the animals were required to be 

euthanized, the recommendations of the International Council of Laboratory Animal Science 

(ICLAS). Animals were deeply anesthetized by administering 35mg/kg of pentobarbital, 

were euthanized by intravenous injection of ketamine hydrochloride (15mg/kg), and then 

were perfused.  

 

2.1.2 Surgical Procedure  

In preparation for recording the animals' head motion and eye movement during 

natural self-motion, two male and one female rhesus macaque monkeys underwent MRI-

guided aseptic surgeries (Carriot et al., 2022). Animals were pre-anesthetized using 

ketamine hydrochloride (12-15mg/kg, IM). Additionally, atropine sulfate (0.04 mg/kg, IM) 

and valium (1mg/kg, IM) were administered to decrease salivation. The animals were put 

under anesthesia using 2-3% isoflurane gas and were maintained using surgical levels of 

isoflurane (0.8-1.5%). During the surgery, a custom-made medical-grade titanium head post 

was secured to the animals' skull using titanium screws. The head post allows immobilization 

of the head of the animal by attaching it to the primate which is mounted on the movement 

platform. 

Additionally, a frontal search coil was sutured to animals' sclera to allow online 

measurement of the animals' eye movement (Fuchs and Robinson, 1966). The eye coil 

comprised five turns of coated stainless-steel wire with a diameter of 16-18 mm, depending 

on the size of the animal's eye. Furthermore, we implanted recording chambers on the 

animals' skulls to access the VN, thalamus, and PIVC. The head post and the recording 

chamber were secured on the skull by dental acrylic and were positioned based on the co-

registration of MRI, CT scan, and rhesus brain atlas in Brainsight (Brainsight 2 Vet, Rouge 

Research, Montreal, Canada). After the surgery, the animals were provided with post-

operative analgesics (buprenorphine, 0.01 mg/kg, IM) and antibiotics (Cephazoline, 

25mg/kg, IM for five days). The target locations were confirmed post-surgically by co-

registering of a second CT scan and the recording electrode placed at the center of the 
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recording grid on the recording chamber. The animals recovered for at least two weeks 

before any experimental procedures. 

 

2.1.3. Data acquisition 

During the experiment, animals were head-fixed and seated comfortably on a primate 

chair mounted on a motion platform that delivered head motion stimuli during passive 

whole-body rotation (pWBR). We recorded simultaneously from multiple VO neurons in VN 

and and vestibular neurons in PIVC using neural probes (NeuroNexus vector array, Ann 

Arbor, MI). The probe was inserted in a guide tube and directed toward the VN or PIVC. The 

angular velocity and gaze position signals were measured using a gyroscope and a magnetic 

search coil, respectively, and the signals were sampled at 1000 Hz and low pass filtered at 

125 Hz. Extracellular recording data were sampled at 30 kHz, band-pass filtered at 300 – 

3000 Hz, and collected via Cerebus Neural Signal Processor (Blackrock Systems).  

 

2.1.4. Experimental paradigm 

In addition to co-registration of CT scan and MRI of the animals, we confirmed the 

location of the VN relative to the abducens nucleus based on the characteristic discharge of 

the abducens neurons —the "singing beehive" sound— during spontaneous eye movements. 

PIVC was localized using co-registration of MRI scans, CT scans, stereotaxic coordinates, as 

well as post-operative CT scans. Furthermore, during recordings, we used white/grey matter 

transitions and non-vestibular physiological properties such as sensitivity to visual stimuli, 

somatosensory, and auditory stimuli (Grusser et al., 1990; Lopez and Blanke, 2011). To 

identify vestibular-only (VO) neurons within the VN, isolated cells were tested for vestibular 

sensitivity and lack of eye movement sensitivity. The animals were trained to perform 

smooth pursuit, saccades, and VOR cancellation (VORc), and we recorded the activity of the 

neurons during the behaviors. Specifically, a fixed target was displayed at the center of a 

screen in front of the animal. After the fixation period, saccadic eye movements were elicited 

via the presentation of a target at positions ±10°, ±20°, and ±30°. Smooth pursuit movements 

were elicited by moving a target sinusoidally on the screen with a span of ±30°. The monkeys 
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performed VOR by fixating on a fixed target at the center of the screen during 0.5 Hz 

sinusoidal pWBR. Moreover, the animals performed VORc during 0.5 Hz pWBR while fixating 

on a target on the screen, which moved synchronously with the primate chair and animal. VO 

neurons were modulated during VORc but not during smooth pursuit. Furthermore, the 

resting activity of the VO neurons did not depend on the eye's position during fixation. 

Furthermore, the sensitivity of the neurons was similar during VOR and VORc. To determine 

the sensitivity of vestibular neurons in PIVC, we also performed body-under-head (BUH) 

rotation by rotating the body of the animal while its head was fixed. Vestibular neurons in 

PIVC responded robustly during pWBR. Some of the vestibular neurons also displayed neck 

proprioceptive sensitivity by responding during BUH rotations. Multiunit recordings were 

initiated after isolating at least two VO neurons in VN or two vestibular neurons in PIVC 

based on lack of sensitivity to eye movements. 

 

2.1.5 Stimulus protocol 

Following the characterization of the neurons, an interval of 20 seconds was used to 

record the resting discharge activity of the neurons. Next, sinusoidal stimuli with maximum 

angular velocities of 15 deg/s and frequencies of 0.5, 1, 2, 3, 4, 5, 8, and 17 Hz were delivered 

to the animal. Each stimulus was presented at least for a minimum of 10 cycles. Neural 

responses to sinusoidal stimuli were used for the characterization of VO neurons as well as 

the study of population coding during artificial self-motion. Furthermore, at least four trials 

of naturalistic stimuli with a maximum head velocity of 200 deg/s in each direction were 

delivered. Naturalistic stimuli used here are a 60s snippet of a recording of horizontal angular 

velocity from naturally behaving rhesus macaques (Carriot et al., 2014, 2017). We note that 

the maximum amplitude of the naturalistic stimulus was higher than that of the artificial 

sinusoidal stimuli, irrespective of frequency. However, the actual amplitude of each 

frequency component of the naturalistic self-motion stimulus was lower than that of the 

artificial sinusoids (i.e., 15 deg/s). As such, the effective signal-to-noise ratio for each 

frequency is then expected to be lower during naturalistic as compared to artificial self-

motion stimulation, which would then give rise to lower coherence values overall.  
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2.1.6. Data analysis 

Data was imported into MATLAB (MathWorks, Natick, MA) programming environment 

for analysis. The extracellular recording data was appropriately visualized to match the 

recording sites on the probe. This allowed us to estimate the distance between the neurons 

as well as the drift of the neurons across the channels should that occur. Visual inspection 

and preliminary analysis determined isolated neurons for further analysis. The isolated units 

were then saved and imported to MATLAB coding environment for replaying neuronal 

recordings and sorting action potentials using custom-written scripts. Binary sequences of 

unit activities were then generated by setting the sequences at a given time to 1 if a spike 

happened at that time and to 0 otherwise and were resampled at 1000 Hz. The head position 

signal was calculated by integrating the head velocity signal. The eye position signal was 

computed as the difference between gaze and head position signals. The firing rate of the 

neurons was estimated by applying an optimal lowpass Kaiser filter to unit activities (Cherif 

et al., 2008). A neuron in VN was categorized as a VO neuron if its response to pWBR stimulus 

did not depend on the eye movement (saccade as well as smooth pursuit) and if the response 

to VOR and VORc were identical. Each VO neuron in VN was also characterized as either type 

1 or type 2 if it displayed increased activity in response to head movements towards the 

ipsilateral or contralateral sides, respectively (Massot et al., 2011). A neuron in PIVC was 

characterized as a vestibular neuron if it responded during pWBR but not during smooth 

pursuit (Shinder and Newlands, 2014). Note that some vestibular neurons in PIVC responded 

to neck proprioception during BUH rotation and were included in our dataset. 

 

2.1.7 Linear systems analysis  

Neural response gain and phase values were computed for VO neurons in response to 

sinusoidal stimuli using traditional system identification techniques. VO neurons respond to 

a sinusoidal stimulus, s(t), as 

 fr(t) = g. s(t − td)  +  b (2.1) 
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where fr(t) is the estimated firing rate of the neuron; g is the neural gain; td is latency, the 

time by which the response of the neurons is leading the stimulus; and b is the bias. fr(t) was 

estimated by lowpass filtering the unit activities with a cutoff frequency that exceeded the 

frequency of the stimulus by 0.1 Hz (Cherif et al., 2008). The response of the neuron across 

at least 10 trials was used to estimate b, td, and g. td was estimated as the time at which the 

cross-correlation of s(t) and fr(t) had maximum absolute value; Next, g and b were obtained 

by performing a linear regression between fr(t) and s(t-td). The response phase lead, p, was 

obtained as  

 p = 360° tdf (2.2) 

where f is the frequency of the stimulus. To calculate the gain and phase during naturalistic 

stimulation, I computed the frequency response of the neuron, G(f), as 

 G(f) =
Psr(f)

Pss(f)
 (2.3) 

where Psr(f) is the cross power spectral density between stimulus and firing rate, and Pss(f) 

is the power spectral density of the stimulus. The gain and phase of the neuron in response 

to naturalistic stimulus were characterized as 

 g(f) = √Re(G(f))
2
+ Im(G(f))

2
 (2.4) 

 
p(f) = arctan (

Im(G(f))

Re(G(f))
) 

(2.5) 

where Re(·) and Im(·) denote real and imaginary parts of the complex number. 

 

2.1.8 Quantification of heterogeneity  

I quantified the heterogeneity of the response of neurons across trials and across 

populations by calculating the response-response coherence of the neurons (Jamali et al., 

2016). I computed the response-response coherence for a given neuron across trials as  
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 𝐶𝑅𝑅(𝑓) =
|< 𝑃𝑅𝑖𝑅𝑗

(𝑓) >𝑖≠𝑗|
2

(< 𝑃𝑅𝑖𝑅𝑖
(𝑓) >𝑖)

2     (2.6) 

 

where PRiRj
(f) is the power spectrum between binary sequences Ri and Rj  obtained from the 

response of the neuron in trials i and j, and <.> denotes the average across all possible 

combinations. The response-response coherence of two neurons was calculated as 

 𝐶𝑅𝑅(𝑓) =
|< 𝑃𝑅𝑖𝑅𝑗 

(𝑓) >|
2

(< 𝑃𝑅𝑖𝑅𝑖
(𝑓) >𝑖< 𝑃𝑅𝑗𝑅𝑗

(𝑓) >𝑗)
    (2.7) 

where here, Ri is the response of the first neuron in trial i, and Rj is the response of the second 

neuron in trial j. Heterogeneity, H(f), was quantified as  

H(f) = 1 − CRR(f). (2.7) 

When computing the heterogeneity during naturalistic stimulation, I averaged the 

heterogeneity values over 0-5 Hz since the stimulus power primarily dominated in this 

frequency range. For artificial stimuli, I adopted the heterogeneity value at the stimulus 

frequency (i.e., averaged the heterogeneity over a 1 Hz window centered at the stimulus 

frequency). 

 

2.1.9. Correlation analysis 

The correlation between the activities of a pair of neurons was quantified by computing 

spike count correlations (Cohen and Kohn, 2011). To compute spike-count correlations, I first 

generated the corresponding spike-count sequences. A spike-count sequence is a sequence 

of numbers, each of which denotes the number of spiking activities of the neurons during a 

given temporal window or timescale (Figure 2.1). The temporal window could be 

overlapping or non-overlapping. In our simulations, the temporal windows overlapped by 
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50% to generate smoother graphs. The sequences of spike counts were generated for each 

neuron by counting the spikes within the temporal window. This procedure produced a pair 

of spike-count sequences for a given pair of neurons (Figure 2.1). To study the effect of 

correlations on population coding, I decomposed the correlations to signal and noise 

correlations, as in below. 

 

2.1.9.1 characterization of signal correlations 

Signal correlation refers to the correlation observed between the mean activity of the 

neurons in response to a given stimulus. The computation of signal correlations between the 

response of a pair of neurons has been mainly done using two methods: the first method 

entails averaging the spike counts over trials assuming the variability of the neurons is 

uncorrelated; The second method involves shuffling the response of the second neuron so 

that no response of the second neurons in a trial would match with the response of the first 

neurons in the same trial (Perkel et al., 1967). Therefore, if the variability in the response of 

the neurons is correlated, the shuffling would eliminate such effects when computing signal 

correlations. In this thesis, I computed the signal correlations using the latter methods. 

However, using the former method did not change the result qualitatively. Figure 2.2 is an 

illustration of how signal correlations are computed. The top panel shows four repetitions of 

a one-second segment selected from the naturalistic stimulus for illustration purposes. The 

middle panel displays the spiking activity of a specific pair of neurons, along with the raw 

spike-count sequence. The raw spike-count sequence refers to the computation of the spike 

counts for each neuron individually without any mathematical manipulation applied. Note 

that the temporal window (timescale) of the correlation is T = 250 ms and the windows are 

non-overlapping. In the bottom panel, the unit activity and the spike-count sequence for the 

second neuron are shuffled across trials. Note the change in the color coding of the response 

of the neurons across trials. Finally, the Pearson's correlation coefficient is calculated 

between the first neuron's spike-count sequence and the second neuron's shuffled spike-

count sequence. In my simulations, the shuffling procedure was done at least 20 times. 

Furthermore, I used temporal windows overlapping 50% of the adjacent windows to obtain 

smoother correlation-timescale curves. 
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Figure 2.2. Methodology used to calculate signal correlation between the response of pair of VO 
neurons. The unit activity of cell 1 and cell 2 shown. Top: Four repetitions of a one-second snippet from the 
naturalistic stimulus is shown. Middle: for each cell, the number of spikes is counted for a given timescale 
(e.g., 250 ms) and raw spike-count sequences are generated. Bottom: the spike-count sequence for the 
second neuron is shuffled to exclude the effect noise correlations due to simultaneous common input. The 
signal correlation for the timescale is calculated by computing the latter spike-count sequences. 

Figure 2.1. Schematic of generating spike-count sequence. For a given temporal window of length T 
which may or may not overlap with the adjacent windows, the number of spikes within are counted, 
generating a sequence of non-negative integer numbers referred to as the spike-count sequence. 
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2.1.9.2 characterization of noise correlations 

Noise correlation characterizes the similarity between the response variability of the 

neurons around the mean response. Thus, to calculate noise correlation, I obtained the 

variability of the neural response around the mean response by computing the residual 

spike-count sequence. Initially, the mean spike-count sequence (Figure 2.3; middle row in 

top and bottom panels) of the neurons is calculated by averaging the raw spike-count 

sequence (Figure 2.3; top row in top and bottom panels) across trials. By subtracting the 

mean spike-count sequence from the raw spike-count sequence, I obtained the residual 

spike-count sequence (Figure 2.3; bottom row in top and bottom panels). Finally, I computed 

the Pearson's correlation coefficient between the residual spike counts to obtain noise 

correlation values. Additionally, I used temporal windows with 50% overlap to obtain 

smoother correlation-timescale curves.  

 

Figure 2.3. Methodology used to calculate noise correlation between the response of pair of VO 
neurons. The spike-count sequences for the same cells (cell 1 and cell 2 in figure 2.2) as well as trial 
averaged spike counts using the same temporal window (timescale) is shown. For each cell, the residual 
spike-count is calculated by subtracting the trial-averaged spike counts from raw spike counts. The noise 
correlation coefficient is calculated by computing the Pearson’s correlation coefficient of the residual spike 
count sequences. 



48 
 

2.2. Eye movement measurement of larval zebrafish  

As mentioned earlier, the data collection for the study of the larval zebrafish eye movement 

during and after the prolonged optokinetic stimulus was gathered by Dr. Ting Feng Lin in Dr. 

Melody Huang's lab at the University of Zurich. The methods are briefly mentioned here to 

clarify how the data is collected for the study. 

 

2.2.1 Materials and method 

The study adhered to the ethical guidelines set by the Federal Veterinary Office of 

Switzerland (FVO) for animal welfare. Additionally, all experiments were conducted in 

accordance with the Association for Research in Vision and Ophthalmology (ARVO) 

Statement for the Testing of Animals in Ophthalmic and Vision Research, ensuring the well-

being of the animals and upholding ethical standards throughout the research. 

 

2.2.2 Fish breeding and upkeep 

Zebrafish embryos from the TU and AB wild-type lines were bred and maintained in a 

28°C E3 solution (consisting of 5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, and 0.33 mM 

MgSO4) under a light-dark cycle of 14 hours and 10 hours, respectively. The experiments 

were conducted using 5-day-old post-fertilization (dpf) larvae from both zebrafish lines. The 

breeding and maintenance protocols followed previously established methods (Haffter et al., 

1996; Mullins et al., 1994) to ensure consistency and compliance with ethical guidelines for 

animal welfare in ophthalmic and vision research. 

 

2.2.3 Experimental overview 

The zebrafish larvae were positioned at the center of an optokinetic cylinder, 

surrounded by either moving or stationary visual stimuli (Figure 2.4). The experiments 

consisted of three phases: a baseline period where spontaneous eye movements were 

recorded in darkness or in the presence of illuminated stationary gratings, followed by an 
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optokinetic stimulatory phase, and finally, a post-optokinetic stimulatory phase either in 

darkness or surrounded by illuminated stationary gratings.  

 

2.2.4. stimulation of optokinetic nystagmus 

Experiments were conducted between 8:00 AM to 7:00 PM. Zebrafish larvae were 

immobilized with low-melting agarose and positioned at the center of an optokinetic drum, 

with their eyes left free to move (Arrenberg, 2016). Optokinetic nystagmus (OKN) was 

induced using four digital light projectors (Samsung SP-H03 Pico Projector). The optokinetic 

stimulus consisted of a moving black and white vertical sinusoidal grating pattern with 100% 

contrast, projected onto a transparent screen at a given angular velocity depending on the 

experiment.  

In all experiments, the spatial frequency of the grating was 0.053 cycles per degree, and 

the maximum illumination reached 1524 lux. For unidirectional optokinetic stimulation, the 

Figure 2.4. Experimental setup to elicit optokinetic nystagmus in larval zebrafish. (A) zebrafish larvae 
were fixed in agarose submerged in a water tank surrounded by a cylinder with verstical gratings. A infrared 
camera captured the eye movement of the animal. (B) The schematic of pictures captured by the infrared 
camera. To elicit optokinetic nystagmus (OKN), the cylinder was rotated with a given velocity while the eye 
movement was recorded. Adapted from (Lin et al., 2019). 
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fish were exposed to 10 degrees per second of stimulation for 3, 4, 5, 6, 7, 10, 20, 30, or 40 

minutes, followed by a maximum of 20 minutes of poststimulatory darkness (Figure 2.5A). 

In the case of the alternating stimulation paradigm, the experiment consisted of two sessions 

of stimulatory phases, interspersed with pre-, inter-, and post-stimulatory phases. Each 

A 

B 

C 

D 

Figure 2.5. Schematic illustrations depict various optokinetic stimulations. (A) Unidirectional +10 
deg/sec stimulation. (B) Symmetric alternating stimulation at +/−10 deg/sec (10/10 SA). (C) Asymmetric 
alternating stimulation at +10/−5 deg/sec (10/5 AA). (D) Asymmetric alternating stimulation at +20/−5 
deg/sec (20/5 AA). For all these stimulus conditions, a 5-minute dark period before the stimulation and a 10-
minute dark period after the stimulation were included. The duration of the stimulus was 10 minutes for case 
(i) and twice 20 minutes for cases (ii)-(iv), with a 5-minute dark period between each stimulus. Adapted from 
(Lin et al., 2022). 
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experiment began with 5 minutes of pre-stimulatory eye movement recording in darkness, 

followed by 20 minutes of direction-alternating moving grating (the first stimulatory phase). 

Then, a 5-minute inter-stimulatory phase was introduced, testing the aftereffect in the dark. 

Subsequently, another 20-minute session of alternating stimulation was given (the second 

stimulatory phase), followed by 10 minutes of poststimulatory darkness (Figure 2.5B-D). 

Both symmetric and asymmetric alternating optokinetic stimulations were used. In 

symmetric stimulation (10/10 SA stimulation; Figure 2.5B), the fish experienced 10 degrees 

per second of stimulation in both directions. In asymmetric stimulation (20/5 and 10/5 AA 

stimulations; Figures 2.5C,D), the fish were exposed to 20 degrees or 10 degrees per second 

in one direction and 5 degrees per second in the other direction. Throughout the 20-minute 

stimulatory phases, a cycle of a 15-second stimulus in one direction was followed by a 15-

second stimulus in the other direction, with the starting direction of the stimulus 

randomized. To control all aspects of the experiment, including frame processing, data 

recording, visual stimulus properties, and lighting, a custom-made program written in 

LabVIEW (National Instruments, Austin, Texas, USA) was utilized (Chen et al., 2014b). 

 

2.2.5 Eye movement recording and analysis 

The movements of both eyes were recorded at a sampling rate of 40 frames per second 

by an IR-sensitive charge-coupled device (CCD) camera. The area around the eyes was 

manually selected as the region of interest. Throughout the thesis, both the horizontal eye 

rotation and the rotating optokinetic stimulus in the counterclockwise direction are marked 

as positive. After the stimulus ended, either the light was turned off, or the gratings were 

turned to stationary, and the recording of the OKAN eye movement continued until the larva 

regained its spontaneous eye movements. Data were analyzed using custom-developed 

software written in MATLAB (MathWorks, Natick, MA, USA).  

Eye-position traces were smoothened by applying a Gaussian filter with a cutoff 

frequency of 5.5 Hz. This filtering process aimed to improve the signal-to-noise ratio. To 

determine eye movement velocity, we calculated the derivative of the eye-position traces. 

However, to avoid any distortion of saccades in the data during the smoothing procedure, we 
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implemented a three-step de-saccading process. This process allowed us to identify quick 

and slow phases accurately. During the de-saccading procedure, quick phases and/or 

saccade eye movements were identified based on a velocity threshold of 20 deg/sec. This 

threshold was applied to median velocities within each 0.5-second time window. 

Additionally, an eye dislocation threshold of 1 degree was used in conjunction with manual 

adjustments to ensure precise identification of quick and slow phases. 

Following de-saccading, the slow-phase velocity (SPV) was estimated as the median 

velocity in the first second of each slow phase. Similarly, we also computed the median eye 

position and used both data to draw the V-P (SPV versus Position) plot. The linear regression 

of velocity on the position was estimated with ordinary least squares by applying the fitlm 

function in MATLAB. We categorized the quick phases according to the velocity sign into 

positive and negative groups, followed by computing the quick-phase frequency (QPF) by 

counting the number of quick-phase eye movements in a time window of every 10 sec. To 

estimate the kinetics of the OKN adaptation, we fitted both the SPV and the change in quick-

phase frequency (∆QPF), which was obtained by subtracting the positive QPF from the 

negative QPF with a second-order exponential decay function: 

After removing the saccade, we proceeded with the estimation of slow-phase velocity 

(SPV) by calculating the median velocity during the initial second of each slow phase. The 

median eye position was obtained using the same smoothening process and was used to 

create the V-P (SPV versus Position) plot. Furthermore, we used ordinary least squares using 

the MATLAB fitlm function to determine the linear regression of velocity on position. For 

categorizing quick phases, we separated them into positive and negative groups based on the 

velocity sign. Subsequently, we determined the quick-phase frequency (QPF) by counting the 

number of quick-phase eye movements in successive 10-second time windows. To assess the 

kinetics of the OKN (optokinetic nystagmus) adaptation, we fitted both the SPV and the 

change in quick-phase frequency (∆QPF) — which was obtained by subtracting the positive 

QPF from the negative QPF— with a second-order exponential decay function:  
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f(t) = g1 ∙ e
−

t−t0
τ1 + g2 ∙ e

−
t−t0
τ2 + b  (2.8) 

where f(t) represents SPV or ∆QPF function of time (t), g1 is the gain of the first decay phase, 

t0 is the onset of optokinetic simulation, τ1 is the time constant of the first decay phase, g2 is 

the gain of the second decay phase, and τ2 is the time constant of the second decay phase. To 

estimate the decay kinetics of negative OKAN, we fitted both the SPV and ∆QPF with a first-

order exponential decay function: 

f(t) = g ∙ e−
t−t𝑐

τ   (2.9) 

where f(t) represents the SPV or ∆QPF function of time (t), g is the gain, tc is the cessation of 

optokinetic simulation, τ is the time constant of decay, and "offset" is not considered because 

SPV and ∆QPF are assumed to return to 0 gradually after the stimulation. 
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3.  POPULATION CODING OF NATURAL SELF-MOTION STIMULI 

IN SUBCORTICAL AND CORTICAL AREAS 

  

In this chapter, we investigate the population coding of natural self-motion in 

subcortical and cortical areas. Despite a myriad of studies, how information is represented 

in neural ensembles and, in general, population coding, is not well understood. Notably, 

individual neurons within a population exhibit difference in their spiking activities in 

response to a given stimulus, which is known as response heterogeneity (Bannister and 

Larkman, 1995a, b; Gjorgjieva et al., 2016). Theoretical studies have demonstrated that such 

heterogeneity can be beneficial for information transmission under certain conditions, as it 

increases the coding range (Berry Ii et al., 2019; Ecker et al., 2011; Hunsberger et al., 2014; 

Marsat and Maler, 2010; Mejias and Longtin, 2012; Montijn et al., 2015; Osborne et al., 2008; 

Perez-Nieves et al., 2021b; Shamir and Sompolinsky, 2006; Tripathy et al., 2013; Zeldenrust 

et al., 2021). Additionally, correlations between neural activities can either enhance or 

reduce information transmission depending on their specific structure (Kohn et al., 2016; 

Panzeri et al., 2022; Wilke and Eurich, 2002). The influence of correlations on information 

transmission becomes more complex due to their high plasticity. Various factors, such as 

attention (Cohen and Kohn, 2011; Cohen and Maunsell, 2009), single neuron firing 

properties such as firing rate and response nonlinearities (de la Rocha et al., 2007; Hong et 

al., 2012; Lyamzin et al., 2015) and stimulus attributes such as spatial extent, frequency 

content, and intensity (Chacron and Bastian, 2008; deCharms and Merzenich, 1996; Lyamzin 

et al., 2015; Usrey and Reid, 1999) can regulate correlations (see (Doiron et al., 2016) for 

review).  

Herein, I present here the results we obtained from multiunit recordings performed in 

vestibular nuclei (VN) and parieto-insular vestibular cortex (PIVC) during naturalistic and 

artificial self-motion stimulation. The chapter is organized as follows. First, I present the data 

obtained from multiunit recordings from vestibular-only (VO) neurons in VN. I go over the 

characteristics of the individual neurons (neural gain, phase, and heterogeneity) as well as 

their ensemble features (i.e., correlation structure). Next, I present the results obtained from 
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vestibular neurons in PIVC. Similarly, I characterize the response of neurons and correlation 

structure for the vestibular neurons in PIVC.  

 

3.1. Multiunit recordings in vestibular nucleus 

 

The goal of this study was to investigate how neural populations within the vestibular 

nuclei encode naturalistic self-motion stimuli. To address this question, we delivered self-

motion stimuli to head-fixed Macaca mulatta that were comfortably seated on a turntable 

while recording multiunit activity from vestibular-only neurons within the vestibular nuclei 

(Figure 3.1). Our dataset comprised of neurons recorded from three awake behaving animals 

for which we were able to maintain isolation from multiple neurons during the highly 

dynamic self-motion stimuli described below (49 neurons in total: 11 from monkey D; 34 

neurons from monkey B; 4 neurons from monkey O; see section 2.1). Neurons were classified 

as either type 1 or 2 (33 type 1 and 16 type 2 neurons) depending on whether they 

responded with excitation to rotations towards the ipsilateral or contralateral sides, 

respectively. We note that these correspond to ON and OFF-type cells in other systems.  

Figure 3.1. Schematic of recording setup and experiment. (A) A schematic of the animals 
positioned on a motion platform. During the experiments, the animal is head-fixed and seated 
comfortably on a turntable. (B)  A schematic of early stages of the neural circuits involved in 
self-motion perception. Vestibular afferents transmit head motion information to VO neurons 
in vestibular nuclei which in turn project to spinal cord as well as thalamus and cortical areas 
and mediate postural reflexes and self-motion perception, respectively. A vector array probe 
was used to record neural activity of multiple VOs simultaneously in vestibular nuclei. 
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Self-motion stimuli consisted of rotations whose timecourse closely mimicked that 

recorded while the animal performed natural behaviors such as walking and jumping (Figure 

3.2) (Carriot et al., 2017a). These stimuli are henceforth referred to as naturalistic. For 

comparison, artificial self-motion stimuli consisting of sinusoids with an amplitude of 15 

deg/s at frequencies 0.5, 1, 2, 3, 4, 5, 8, and 17 Hz were also used (Figure 3.3). While 

naturalistic self-motion stimuli contain a spectrum of frequencies and can reach large 

amplitudes (200 deg/s) and, as such, strongly differ from sinusoids in that each sinusoidal 

stimulus contains only one frequency and reaches lower amplitudes (compare panels A and 

B in Figure 3.3).  

 

 

Figure 3.2. Schematic of stimulus delivery in our experiments. The head motion of the animal 
was recorded while freely moving in a natural environment using accelerometer and gyroscope 
sensor across three axes of rotation and three axes of translation (shown in green). The yaw 
rotation component of this signal then was replayed to animal using rotation platform (shown in 
black). The middle panels compare the original yaw head rotation and the head rotation recorded 
during naturalistic stimulation. As seen above, the semicircular canals are being stimulated with 
the same statistics as in during natural self-motion. 
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3.2. Characterization of VO neural response to artificial and naturalistic stimuli 

in VN 

First, we investigated the response of individual VO neurons in VN and characterized 

their response by calculating their response gain and phase (see section 2.1.7 for more 

details). The response profiles of VO neurons in VN in our dataset to sinusoidal were similar 

to those previously reported during both artificial and naturalistic stimulation as quantified 

by neural gain and phase (Carriot et al., 2022; Mackrous et al., 2020; Massot et al., 2011; 

Mitchell et al., 2018). Figure 3.4 demonstrates the population-averaged gain and phase lead 

of the VO neurons in response to naturalistic stimulus (depicted in solid red lines) and 

artificial stimuli (shown with filled circles and color-coded for different stimuli, similar to 

Figure 3.3B, bottom panel). The response dynamics of the neurons to artificial as well as 

naturalistic stimuli are similar. The response gain of the neurons increases from 0.5 to 2.5 

(spk/s)/(deg/s) with frequency in the frequency range of 0-20Hz, rendering these neurons 

a high-pass neural filter. VO neurons in VN demonstrate phase lead in response to both 

artificial and naturalistic stimuli, which, similar to the gain, increases with frequency. For low 

Figure 3.3. Comparing the stimuli used in the study. (A) Top: A 6-second segment of the naturalistic 
stimulus; Bottom: the power spectra of the naturalistic stimulus. (B) Top: A 6-second segment of the 
artificial (i.e., sinusoidal) stimulus, f = 4Hz; Bottom: the power spectra of the artificial stimuli used in the 
studies. The stimuli are color coded from light to dark blue for f=0.5, 1, 2, 3, 4, 5, 8, and 17 Hz stimuli. 
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frequencies, the phase lead is approximately 25 degrees, whereas, for high frequencies (e.g., 

20Hz), the phase lead increases to 80 degrees.  In our dataset, VO neurons were not 

modulated with neck proprioceptive input, consistent with previous studies in rhesus 

macaque monkeys. 

 

3.3. VO neural response heterogeneity in VN 

We then investigated how neural populations within the vestibular nuclei responded 

to naturalistic vs. artificial stimulation. Our results demonstrated that the neural activity of 

VO neural populations is highly heterogenous, as discussed below. 

 

3.3.1 Heterogeneity during naturalistic stimulus arises across neural variability. 

We characterized the variability and heterogeneity during naturalistic and artificial 

stimuli. Specifically, during naturalistic stimulation (Figure 3.5A), we found that spiking  

Figure 3.4. The response dynamic of VO neurons in VN during artificial and naturalistic stimuli. (A) 
Population-averaged gain for VO neurons during artificial stimuli (shown in shades of blue, similar to bottom 
panel in Figure 3.3B; N=42, f=0.5 HZ; N=42, f=1 HZ; N=40, f=2 HZ; N=41, f=3 HZ; N=40, f=4 HZ; N=41, f=5 HZ; 
N=39, f=8 HZ; N=37, f=17 HZ) and naturalistic stimulus (Shown in red; N=41). Error bars and the error band 
show 1 SEM for artificial and naturalistic stimuli, respectively. (B) Population-averaged phase for VO neurons 
during artificial (shown in shades of blue, similar to bottom panel in Figure 3.3B; N=42, f=0.5 HZ; N=42, f=1 HZ; 
N=40, f=2 HZ; N=41, f=3 HZ; N=40, f=4 HZ; N=41, f=5 HZ; N=39, f=8 HZ; N=37, f=17 HZ) and naturalistic 
stimulation (Shown in red; N=41). Error bars and the error band each show 1 SEM. 
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Figure 3.5.  VO neural response in VN is highly heterogeneous across neurons in the population during 
naturalistic stimulus. (A) Right: the entire waveform of naturalistic head velocity stimulus used in the study; 
Left: a 1 second snippet of the stimulus magnified to demonstrate the detailed temporal dynamics of the 
stimulus. (B) Raster plots for 3 exemplar type 1 and 3 exemplar type 2 VO neurons during the same stimulus 
snippet in panel A. The temporal scale bar is shared between panels A and B. (C) The population-averaged 
response-response coherence across neurons (magenta) and trials (turquoise) (N=41). The error band show 
1 SEM. (D) The population-averaged heterogeneity in VOs is significantly higher across neurons than across 
trials (Wilcoxon rank sum test, N=41, p=5.610-12). 
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responses were heterogeneous. This response heterogeneity resulted not only from different 

neurons displaying different spiking patterns (i.e., across neuron variability) but also from a 

given neuron displaying different spiking patterns to repeated stimulus presentations (i.e., 

trial-to-trial or within neuron variability; Figure 3.5B). To quantify the degree of 

heterogeneity, we computed the response-response coherence in two cases (Roddey et al., 

2000): response coherence across the VO population or across-neurons coherence; And the 

coherence within the neural response of given neurons across trials or within-neuron 

coherence (see section 2.1.8 for more details). We note that the coherence is insensitive to 

phase differences between spike trains. Overall, we found higher response-response 

coherence values when considering spiking responses from a given neuron to repeated 

stimulus presentations (i.e., within-neuron coherence; Figure 3.5C, turquoise) than when 

considering spiking responses from different neurons (i.e., across-neurons coherence; Figure 

3.5C, magenta). We next quantified the contributions of across- and within-neuron variability 

to response heterogeneity. We defined heterogeneity as the complement of the coherence 

values to one (see section 2.1.8, Eq. 2.7). Overall, we found significantly higher values across 

neurons Wilcoxon rank sum test, N=41 neurons, p=5.610-12; Figure 3.5D), indicating that 

heterogeneity primarily results from across-neuron variability. 

 

3.3.2 Heterogeneity during artificial stimulation in VO neural population primarily arises 

from across neural variability 

We next investigated heterogeneity under artificial stimulation (Figure 3.6A) and 

obtained markedly different results. Specifically, neural spiking activities were 

heterogeneous but to a lesser extent than what was observed under naturalistic stimulation 

(compare Figures 3.5B and 3.6B). Quantification of across- and within-neuron variability 

revealed higher values than during naturalistic stimulation (compare Figures 3.5B and 3.6B, 

3.7). Interestingly, both within and across neuron variability made contributions to 

heterogeneity that were not significantly different from one another (Wilcoxon rank sum 

test, N=40 neurons, p=0.099; Figure 3.6C). Qualitatively similar results were observed for all 

frequencies (Figure 3.7) and when all frequencies were considered together (Wilcoxon rank  



61 
 

 

Figure 3.6.  VO neural response in VN is heterogenous during artificial stimulation. (A) Right: Example artificial 
sinusoidal ¬¬head velocity stimulus (f=4 Hz) used in the study; Left: a 3-cycle snippet of the stimulus. (B) Raster plot 
of 3 exemplar type 1 and 3 exemplar type 2 VO neurons during the same stimulus snippet in panel A. The temporal 
scale bar is shared between panels A and B. (C) The population-averaged response-response coherence across 
neurons (magenta) and trials (turquoise) during 4 Hz artificial stimulation. Inset: Boxplots showing within and 
across neuron variability during 4 Hz artificial stimulation (Wilcoxon rank sum test, N=40, p=0.099). The error band 
indicates 1 SEM. The error band show 1 SEM. (D) The population-averaged heterogeneity in VOs is not significantly 
different across neurons and across trials (Wilcoxon rank sum test, N=322, p=0.26). 
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sum test, N=322, p=0.26, Figure 3.6D), showing that differences in the source of 

heterogeneity observed during naturalistic and artificial self-motion were robust.   

 

A 

D E F 

C B 

G 

Figure 3.7.  VO neural activity in VN is heterogenous in response to sinusoidal stimulation with 
differential frequency. The population-averaged response-response coherence, as well as the corresponding 
heterogeneity (inset), is shown across trials (turquoise) and neurons (magenta) for stimulation sinusoidal 
stimuli with the frequency of (A) 0.5 Hz (N=42 neurons), (B) 1 Hz (N=42 neurons), (C) 2 Hz (N=40 neurons), (D) 
3 Hz (N=41 neurons), (E) 5 Hz (N=41 neurons), (F) 8 Hz (N=39 neurons), and (G) 17 Hz (N=37 neurons). Across 
all frequencies, the contribution of trial-to-trail variability and the variability across neurons to heterogeneity 
was not significantly different from each other (Wilcoxon rank sum test, insets: (A): p=0.86, N=42; (B): p=0.59, 
N=42; (C): p=0.62, N=40; (D): p=0.23, N=41; (E): p=0.25, N=41; (F): p=0.39, N=39; (G): p=0.49, N=37). 
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3.4. Correlation structure of VO neural populations in VN is plastic. 

We next investigated correlations between vestibular nuclei neural activities. As 

mentioned above, correlations can be separated between those that are due to the common 

stimulus (i.e., signal correlations) and correlations between the trial-to-trial variabilities of 

neural responses to repeated stimulus presentations (i.e., noise correlations). It is important 

to consider both signal and noise correlations since the relationship between these two 

measures (i.e., the correlation structure) is important for determining the effects of 

correlations on information transmission (Kohn et al., 2016; Panzeri et al., 2022).  

 

3.4.1 Quantification of signal correlations in VO populations in VN 

To quantify signal correlations in VN, we computed spike count sequences of pairs of 

VO neurons in VN over trials, shuffled the response across trials, and calculated Pearson’s 

correlation coefficients (see section 2.1.9.1 and Figure 2.2 for more details) (Perkel et al., 

1967), while systematically varying the timescale (1-1000 ms). Figures 3.8.A and 3.8.B show 

signal correlations obtained during naturalistic and 4 Hz artificial stimulation, respectively. 

In both cases, signal correlations tended to be positive for the same type (i.e., type 1-type 1 

and type 2-type 2) pairs and negative for opposite (i.e., type 1-type 2) pairs. This is expected 

since type 1 and type 2 VO neurons in VN respond with excitation to rotations towards the 

ipsilateral and contralateral sides, respectively. In the case of naturalistic stimulation, the 

signal correlation magnitude was maximal for a timescale of 100 ms, which corresponds to 

the correlation time of the stimulus (Mitchell et al., 2018). In the case of 4 Hz artificial 

stimulation, signal correlation magnitude was maximal for a timescale of 125 ms, which 

corresponds to the stimulus half-period. These results were expected as signal correlation 

magnitude will be maximal on timescales for which the stimulus varies the most. 

Qualitatively similar results were obtained for other frequencies (Figure 3.9). The magnitude 

of signal correlations in either group (same-type and opposite-type pairs) increased with 
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frequency while the mean value across groups remained close to zero. This is expected as the 

neural gain response increases with stimulus frequency (Figure 3.4A). Since average signal 

correlations were close to zero across all conditions, we pooled the signal correlation value 

on stimulus timescales across all frequencies and compared the mean correlation coefficient 

to that of naturalistic stimulus. Overall, signal correlations were similar during both 

naturalistic and artificial stimulation (Figure 3.10; Two-sample t-test, N=861 pairs, p=0.83). 

Additionally, we systematically varied the naturalistic stimulus magnitude below which the 

signal correlation was calculated. Signal correlations in all cases were qualitatively similar 

and no significant difference was found when compared to correlations calculated from the 

whole stimulus. 

 

Figure 3.8.  VO neurons in VN demonstrate wide range of signal correlations in VN. (A) Signal 
correlations as a function of timescale during naturalistic stimulus (N= 820 pairs). The solid and dashed 
lines represent the correlations for the same-type and opposite-type pairs, respectively. The thick solid 
and dashed lines are the average values of the correlations for the same-type and opposite-type pairs, 
respectively. (B) Same as in A except it was calculated for an artificial stimulus (f=4 Hz; N=780 pairs). 
For better visualization, we randomly selected 75 same-type and 75 opposite-type pairs. The mean 
traces are computed over all same-type and opposite-type pairs. 
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Figure 3.9.  Signal correlation as a function of timescale during sinusoidal stimuli with different 
frequencies.  (A): 0.5 Hz, N=861 pairs; (B): 1 Hz, N=861 pairs; (C): 2 Hz, N=780 pairs; (D): 3 Hz, N=820 pairs; 
(E): 5 Hz, N=820 pairs; (F): 8 Hz, N=741 pairs; and (G): 17 Hz, N=666 pairs. The solid and dashed lines in each 
panel represent the correlations for the same-type and opposite-type pairs, respectively. The thick solid and 
dashed lines are the average values of the correlations for the same-type and opposite-type pairs, respectively. 
While the average values were calculated using all the pairs, only 75 traces of same and opposite-type pairs 
were shown for visualization purposes. 
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Figure 3.10.  Signal correlations are similar 
during artificial and naturalistic 
stimulation in VN. Boxplots showing the 
signal correlation values during artificial (all 
frequencies) and naturalistic stimuli. Signal 
correlations during artificial and naturalistic 
stimuli are not significantly different (Two-
sample t-test, N=861 pairs, p=0.83). For 
artificial stimuli, the timescale was chosen to be 
a quarter to a half-period of the sinewave 
period, where the signal correlations were 
maximum in magnitude on average. For 
naturalistic stimulus, the signal correlations 
were calculated for a 100 ms timescale that was 
consistent with the time scale of the stimulus 
and where signal correlations were highest in 
magnitude.). 
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3.4.2 Quantification of noise correlations in VO populations in VN 

In the next step, we quantified noise correlations by computing the Pearson’s 

correlation coefficient between the residual spike counts (i.e., the sequences obtained by 

subtracting the mean spike count across stimulus trials (see section 2.1.9.2 and Figure 2.3 

for more details). Figures 3.11A and 3.11B demonstrate noise correlations obtained during 

naturalistic and 4 Hz artificial stimulation, respectively. We did not find a significant 

difference between the noise correlations obtained from same- or opposite-type pairs. 

Furthermore, qualitatively different results were obtained: while noise correlations tended 

to be positive during naturalistic stimulation and were thus on average positive (Figure 

3.11A), they instead tended to be both positive and negative during 4 Hz artificial stimulation, 

such that their average was zero (Figure 3.11B). Additionally, we computed the noise 

correlation for the remaining artificial stimuli with differential frequencies and found that 

noise correlations were close to zero during artificial stimuli across all frequencies. To 

Figure 3.11.  VO neurons in VN demonstrate wide range of noise correlations in VN. (A) Noise 
correlations as a function of timescale during naturalistic stimulus (N=35 pairs). The solid and dashed 
lines represent the correlations for the same-type and opposite-type pairs, respectively. The thick 
solid and dashed lines are the average values of the correlations for the same-type and opposite-type 
pairs, respectively. (B) Same as in A except during 4 Hz artificial stimulation (N=35 pairs). 
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compare the noise correlations between artificial and naturalist ic stimuli, we pooled noise 

correlation values computed at half of the stimulus period for all frequencies —as they were 

not significantly different than zero— and compared them to that of during naturalistic 

stimulus (Figure 3.13). Thus, overall noise correlations were significantly more positive 

during naturalistic than during artificial stimulation (Two-sample t-test, N=35, p=3.210-5; 

Figure 3.12.  Noise correlation as a function of timescale during sinusoidal stimuli with different 
frequencies.  (A): N=28 pairs, 0.5 Hz; (B): 1 Hz, N=29 pairs; (C): 2 Hz, N=35 pairs; (D): 3 Hz, N=35 pairs; (E): 
5 Hz, N=34 pairs; (F): 8 Hz, N=33 pairs; and (G): 17 Hz, N=33 pairs. The thick solid lines are the average values 
of the correlations for all pairs. 
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Figure 3.13). Similar to signal correlations, we systematically varied the naturalistic stimulus 

magnitude below which the noise correlation was calculated. Noise correlations in all cases 

were qualitatively similar and no significant difference was found when compared to 

correlations calculated from the whole stimulus. 
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Figure 3.13.  Noise correlations are 
significantly higher during naturalistic 
stimulus than during artificial stimulation. 
Boxplots showing noise correlation values 
during artificial (all frequencies) and naturalistic 
stimuli. Noise correlations during naturalistic 
stimuli are significantly higher than that of 
during artificial stimuli (Two-sample t-test, 
N=35 pairs, p=3.210-5). The timescales at 
which the noise correlations were computed 
were the same as those used above for signal 
correlations. 
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3.5. Characterization of vestibular neural response to artificial and naturalistic 

stimuli in PIVC 

As mentioned in Chapter 1, the PIVC is the primary cortical area involved in the 

processing of natural self-motion information (see sections 1.5.6 and 1.6.1). Next, we studied 

how self-motion information during natural and artificial self-motion are encoded in PIVC 

vestibular populations. Accordingly, we recorded from PIVC during the same naturalistic and 

artificial stimuli used in our study of population coding in VN. Our dataset comprises 13-14 

vestibular cells obtained from one animal (monkey O; see section 2.1 for more details).  

First, we characterized the response of the vestibular neurons in PIVC. Consistent with 

previous literature, we found neurons in PIVC responded to head motion during pWBR, head-

on-body rotation (proprioceptive stimuli), and visual stimuli (Akbarian et al., 1988; Chen et 

al., 2010, 2011; Chen et al., 2016; Chen et al., 2013b; Shinder and Newlands, 2014). Our 

stimulation protocol consisted of pWBR stimuli, and therefore, vestibular neurons with neck 

proprioceptive sensitivity only responded to vestibular stimuli. It is noteworthy to mention 

that we compared the gain and phase response of the vestibular neurons that only responded 

to vestibular stimuli with those that also had neck proprioceptive sensitivity and found no 

significant difference during pWBR. As such, we included vestibular neurons with 

proprioceptive sensitivity in our dataset. Furthermore, vestibular neurons with visual 

sensitivity (characterized by their response to pWBR and smooth pursuit) were excluded 

from our analysis. Hereafter, by vestibular neurons, we refer only to those neurons with 

proprioceptive sensitivity or lacking response to any other sensory modalities but vestibular 

stimuli.  

We calculated the response gain and phase of the vestibular neurons in PIVC. Our 

results are consistent with previous reports of gain and phase values for vestibular neurons 

in PIVC during low-frequency sinusoidal stimulation (Shinder and Newlands, 2014). 

Specifically, Shinder and Newlands reported the gain and phase of vestibular neurons in PIVC 

to horizontal sinusoidal head rotation with a frequency of 0.2 Hz and maximum head velocity 

of 15 or 30 deg/s. The response gain of the vestibular neurons in their study was 0.44±0.10 

and 0.25±0.04 (spk/s)/(deg/s) in response to later stimuli, respectively. The phase values 
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ranged from -180 to 180 deg with no pattern, suggesting an average phase value near zero. 

In our study, we used sinusoidal stimulation with a maximum head velocity of 15 deg/s and 

the lowest stimulation frequency of 0.5 Hz. The values of gain and phase we obtained were 

0.60±0.10 (spk/s)/(deg/s) and 32±13 (deg), which is consistent with values obtained by 

Shinder and Newlands. To the best of our knowledge, we are the first to characterize the 

response of vestibular neurons in PIVC during higher-frequency artificial stimuli as well as 

naturalistic stimuli. Overall, during both artificial and naturalistic stimuli, the vestibular 

neurons demonstrate high pass tuning to the stimulus. During sinusoidal stimuli, the gain 

varies between 0.6-3.4 (spk/s)/(deg/s). Interestingly, during naturalistic stimulation, the 

gain decreases markedly to 0.08-1.06 (spk/s)/(deg/s). Such decrease in gain during 

naturalistic stimulation may be due to, but not limited to, the adaptation of the neural 

response to the stimulus amplitude (as reported in (Shinder and Newlands, 2014)) as the 

envelope of the naturalistic stimuli are much larger than that of the artificial stimuli. The 

response phase demonstrated large variability during both artificial and naturalistic 

stimulation (Figure 3.14B). Specifically, during low-frequency artificial stimulation (f≤3Hz), 

Figure 3.14. The response dynamic of vestibular neurons in PIVC during artificial and naturalistic 
stimuli. (A) Population-averaged gain for vestibular neurons during artificial stimuli (shown in shades of blue, 
similar to bottom panel in Figure 3.3B; N=5, f=0.5 HZ; N=7, f=1 HZ; N=13, f=2 HZ; N=13, f=3 HZ; N=13, f=4 HZ; 
N=13, f=5 HZ; N=13, f=8 HZ; N=12, f=17 HZ) and naturalistic stimulus (Shown in red; N=14). Error bars and the 
error band show 1 SEM for artificial and naturalistic stimuli, respectively. (B) Population-averaged phase for 
VO neurons during artificial (shown in shades of blue, similar to bottom panel in Figure 3.3B; =5, f=0.5 HZ; N=7, 
f=1 HZ; N=13, f=2 HZ; N=13, f=3 HZ; N=13, f=4 HZ; N=13, f=5 HZ; N=13, f=8 HZ; N=12, f=17 HZ) and naturalistic 
stimulation (Shown in red; N=14). Error bars and the error band each show 1 SEM. 
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the response of the neurons, on average, slightly leads the stimulus, whereas for middle 

frequencies (4Hz≤f≤8Hz), the response slightly lags the stimulus, and finally, for high-

frequency stimulation (f=17Hz) the response is in phase with the stimulus. During 

naturalistic stimulation, the response of the neuron was in phase during low frequencies 

(f≤3Hz); however, it lagged for higher frequencies. Notably, the variability in phase values 

was markedly larger than during artificial stimuli. Additionally, the response during high 

frequencies becomes antiphase, a dramatic contrast to that of low-frequency components of 

the stimulus.  

We attempted to classify the vestibular neurons as type 1 and type 2. Our results 

demonstrated a wide range of variability in the phase of the neural response across 

frequencies, as mentioned above (Figure 3.15B). Traditionally, the vestibular neurons in the 

peripheral or early central vestibular pathway are classified into type 1 or type 2 neurons 

based on the increased response to ipsilateral and contralateral stimulation at low-frequency 

stimulation, such as sinusoidal stimulation at 1 Hz. The phase lead in such neurons is positive 

and increases with frequency, and thereby, the response of such neurons consistently leads 

Figure 3.15. The vestibular neurons in PIVC exhibit high degrees of variability in their neural gain and 
phase. Characterization of an exemplar neuron to sinusoidal stimuli with frequencies of 1, 2, 3, 4, 5, 8, and 17 
Hz. (A) Gain as a function of frequency. (B) Phase as a function of frequency. The vertical lines denote 1 SEM.  

 

A B 
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the stimulus. However, in general, the phase in PIVC neurons does not consistently lead or 

lag across the relevant frequency range (i.e., 0-20 Hz) due to high variability in the response. 

Figures 3.15A and 3.15B demonstrate the variability in the gain and phase of the neuron’s 

response, respectively. As illustrated in Figure 3.15B, the response leads stimulus at low 

frequencies, thereby making them type 1 according to the traditional way of classifying 

neuronal types. However, the response of the same neurons lags the stimulus in higher 

frequencies which is not consistent with a type 1 response. All neurons in our dataset (N=14) 

exhibited both response lead and lag across frequencies. For this reason, we did not classify 

neurons in PIVC as type 1 or type 2 neurons. Furthermore, these neurons cannot be classified 

as type 3 neurons—in which the neurons respond to stimulation in both directions—as in 

stimulation with a given frequency, the peak response consistently appeared in one phase of 

the cycle and was not biphasic.  

 

3.6. Neural response heterogeneity of vestibular neurons in PIVC 

Given the high degree of variability in the response phase during both artificial and 

naturalistic stimulation, we hypothesized that the neural response in PIVC is highly 

heterogeneous. To test this hypothesis, we characterized the response heterogeneity in 

vestibular populations in PIVC during both artificial and naturalistic stimulation.  

 

3.6.1 Heterogeneity in vestibular neural population in PIVC arises from within and across 

neural variability during naturalistic stimulus 

We characterized the variability and heterogeneity during naturalistic stimuli (Figure 

3.16A) and found that spiking responses were highly heterogeneous (Figure 3.16B). This 

response heterogeneity resulted from both across-neuron as well as trial-to-trial or within-

neuron variability (Figure 3.16B). To quantify the degree of heterogeneity, we computed the 

response-response coherence across the response of the neurons in the population as well 

as the between the trial-to-trial responses. Overall, we found that response-response 

coherence was low in both cases. Additionally, the within-neuron coherence (Figure 3.16C, 

turquoise) was consistently higher than that of across-neuron coherence (Figure 3.16C,  
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Figure 3.16.  Vestibular neural response in PIVC is highly heterogeneous across neurons in the 
population during naturalistic stimulus. (A) Right: the entire waveform of naturalistic head velocity 
stimulus used in the study; Left: a one-second snippet of the stimulus magnified to demonstrate the detailed 
temporal dynamics of the stimulus. (B) Raster plots for 4 vestibular neurons during the same stimulus snippet 
in panel A. The temporal scale bar is shared between panels A and B. (C) The population-averaged response-
response coherence across neurons (magenta) and trials (turquoise) (N=14). The error band show 1 SEM. (D) 
The population-averaged heterogeneity in vestibular neurons in PIVC is higher across neurons than across 
trials (Wilcoxon rank sum test, N=14, p=0.0012). 
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magenta) over the entire relevant frequency range (0-20 Hz). Interestingly, both within-

neuron and across-neuron coherence initially decreased with frequency (i.e., between 0-3 

Hz; Figure 3.16C) but started increasing with frequency and exhibited a peak in the 5-10 Hz 

frequency range. Next, we quantified the heterogeneity using the method used previously. 

The neural response exhibited high within-neuron and across-neuron heterogeneity with 

median values close to one (Figure 3.16D). However, the neural response demonstrated 

slightly higher, but significant, across-neuron heterogeneity than within-neuron 

heterogeneity (Wilcoxon rank sum test, N=14 neurons, p=0.0012). Overall, our results 

indicate that the neural response of vestibular neural populations in PIVC is highly 

heterogeneous during naturalistic stimuli resulting from both within-neuron and across-

neuron variability, with the latter contributing more to the heterogeneity.  

 

3.6.2 The heterogeneity in vestibular neural population in PIVC primarily arises from 

across neural variability during artificial stimulation 

We next quantified the heterogeneity during artificial stimulation (Figure 3.17A). 

Overall, neural spiking activities were heterogeneous during artificial stimuli (Figure 3.17B). 

We computed the within-neuron and across-neuron coherence for artificial stimuli across 

frequencies. Both within-neuron and across-neuron coherence values were close to zero 

during low-frequency artificial stimulation (i.e., 0.5 Hz and 1 Hz; Figure 3.18A and 3.18B) 

and were comparable to that during naturalistic stimulation. For higher-frequency artificial 

stimulation, the values of coherence were significantly higher than zero and peaked at the 

stimulus frequency and its harmonics (Figure 3.17C and Figure 3.18C-F). To quantify the 

response heterogeneity, we computed the within-neuron and across-neuron heterogeneity 

during artificial stimulation and found significant heterogeneity in both within- and across-

neural response. Additionally, we found that except for sinusoidal stimulation at 4, 5, and 8 

Hz, within-neuron and across-neuron heterogeneity values were not significantly different 

from each other at stimulus frequency (0.5 Hz: p=0.43, N=12; 1 Hz: p=0.48, N=13; 2 Hz: p=1, 

N=13; 3 Hz: p=0.27, N=11; 4 Hz, p=0.033, N=13; 5 Hz: p=0.044, N=13; 8 Hz: p=0.018, N=13; 

17 Hz: p=0.22, N=12; insets in Figure 3.17C and Figure 3.18A-F). However, when 

heterogeneity across all frequencies was pooled, across-neuron variability contributed  
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Figure 3.17. Vestibular neural response in PIVC is heterogenous during artificial stimulation. (A) Right: 
Example artificial sinusoidal head velocity stimulus (f=4 Hz) used in the study; Left: a 3-cycle snippet of the stimulus. 
(B) Raster plot of 4 exemplar vestibular neurons during the same stimulus snippet in panel A. The temporal scale 
bar is shared between panels A and B. (C) The population-averaged response-response coherence across neurons 
(magenta) and trials (turquoise) during 4 Hz artificial stimulation. Inset: Boxplots showing within and across neuron 
variability during 4 Hz artificial stimulation (Wilcoxon rank sum test, N=13, p=0.033). The error band indicates 1 
SEM. The error band show 1 SEM. (D) The population-averaged heterogeneity in vestibular is significantly higher 
across neurons than across trials (Wilcoxon rank sum test, N=113, p=0.0076). 
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Figure 3.18.  Vestibular neural activity in PIVC is heterogenous in response to sinusoidal stimulation with 
differential frequency. The population-averaged response-response coherence, as well as the corresponding 
heterogeneity (inset), is shown across trials (turquoise) and neurons (magenta) for stimulation sinusoidal 
stimuli with the frequency of (A) 0.5 Hz (N=14 neurons), (B) 1 Hz (N=13 neurons), (C) 2 Hz (N=13 neurons), (D) 
3 Hz (N=11 neurons), (E) 5 Hz (N=13 neurons), (F) 8 Hz (N=13 neurons), and (G) 17 Hz (N=12 neurons). Across 
all frequencies, the contribution of trial-to-trail variability and the variability across neurons to heterogeneity 
was not significantly different from each other (Wilcoxon rank sum test, insets: (A): p=0.43, N=12; (B): p=0.48, 
N=13; (C): p=1.00, N=13; (D): p=0.27, N=11; (E): p=0.044, N=13; (F): p=0.018, N=13; (G): p=0.22, N=12). 
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significantly more to the response heterogeneity than within-neuron variability (Wilcoxon 

rank sum test, N=113, p=0.0076, Figure 3.18D). Overall, our results showed that neural 

responses during artificial stimuli are heterogeneous, albeit to a lesser degree than that 

during naturalistic stimulation.  

 

 3.7. Correlation structure of vestibular neural populations in PIVC in plastic. 

To characterize the correlation structure in vestibular neural populations in PIVC, we 

computed signal and noise correlations as mentioned above (Kohn et al., 2016; Panzeri et al., 

2022). We note that since we refrained from classifying vestibular neurons in PIVC into type 

1 and type 2 neurons, we did not label correlation curves as a function of timescale to 

opposite- or same-type pairs.  

 

3.7.1 Quantification of signal correlations in vestibular neural populations in PIVC 

To quantify signal correlations in PIVC, we computed spike count sequences of pairs of 

vestibular neurons in PIVC over trials, shuffled the response across trials, and calculated 

Pearson’s correlation coefficients (Perkel et al., 1967), while systematically varying the 

timescale (1-1000 ms). Figures 3.19A and 3.19B show signal correlations obtained during 

naturalistic and 4 Hz artificial stimulation, respectively. Signal correlation magnitude is 

expected to be maximal on timescales for which the stimulus varies the most. Interestingly, 

however, signal correlations peaked at timescales much larger than the stimulus timescale 

(i.e., ~600 ms compared to 100 ms; (Mitchell et al., 2018)). On the other hand, during 4 Hz 

artificial stimulation, signal correlation magnitude was maximal for a timescale of 125 ms, 

which corresponds to the stimulus half-period. As expected, similar results were obtained 

across artificial stimulation with differential frequencies (Figure 3.20 panels A-G). The 

magnitude of signal correlations increased with frequency, while the average value across 

the population remained close to zero. This is expected as the PIVC neural gain response, on 
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average, increases with stimulus frequency (Figure 3.14A). Considering that the average 

signal correlations were nearly zero across all artificial stimulation conditions, we combined 

the signal correlation values for stimulus timescales across all frequencies and compared the 

mean correlation coefficient to that observed during the naturalistic stimulus and compared 

to that during naturalistic stimulation. We found that signal correlations were significantly 

higher during naturalistic stimulation when compared to artificial stimulation (Figure 3.21; 

Wilcoxon rank sum test, N=624 pairs, p=4.510-17) and, thus, were plastic. 

 

Figure 3.19. Vestibular PIVC neurons demonstrate wide range of signal correlations and are 
plastic. (A) Signal correlations as a function of timescale during naturalistic stimulus (N= 91 pairs). 
The thick solid lines are the average values of the correlations as a function of timescale. (B) Same as 
in panel A except it was calculated for an artificial stimulus (f=4 Hz; N=78 pairs). Note that the 
pairwise correlations in the case of signal correlations do not require simultaneous recordings and 
we calculated the correlation values over all possible pairs of neurons in our dataset.  
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Figure 3.20.  Signal correlation in PIVC as a function of timescale during sinusoidal stimuli with different 
frequencies.  (A): 0.5 Hz, N=78 pairs; (B): 1 Hz, N=78 pairs; (C): 2 Hz, N=78 pairs; (D): 3 Hz, N=78 pairs; (E): 
5 Hz, N=78 pairs; (F): 8 Hz, N=78 pairs; and (G): 17 Hz, N=78 pairs. The thick lines are the average values of the 
correlations as the function of timescale. As is the case with Figure 3.19, we calculated the correlation values 
over all possible pairs of neurons in our dataset.  
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Figure 3.21.  Signal correlations are similar 
during artificial and naturalistic 
stimulation in PIVC. Boxplots showing the 
signal correlation values during artificial (all 
frequencies) and naturalistic stimuli. Signal 
correlations during naturalistic stimulation is 
significantly higher than during artificial 
stimulation (Wilcoxon rank sum test, N=624 
pairs, p=4.510-17). For artificial stimuli, the 
timescale was chosen to be a quarter to a half-
period of the sinewave period, where the signal 
correlations were maximum in magnitude on 
average. For naturalistic stimulus, the signal 
correlations were calculated for a 100 ms 
timescale that was consistent with the time 
scale of the stimulus and where signal 
correlations were highest in magnitude.). 
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3.7.2 Quantification of noise correlations in vestibular neural populations in PIVC. 

In the next step, we quantified noise correlations in vestibular neural populations in 

PIVC. Figures 3.22A and 3.22B demonstrate noise correlations obtained during naturalistic 

and 4 Hz artificial stimulation, respectively. Similar to the characterization of signal 

correlation, we did not attempt to classify noise correlations into groups of same- and 

opposite-type pairs due to a lack of clear definition of response type 1n PIVC. For both 

conditions, noise correlation magnitude increased with timescale, but was close to zero on 

average (Figure 3.22). Additionally, we computed the noise correlation for the remaining 

artificial stimuli with differential frequencies and found that noise correlations were close to 

zero during artificial stimuli across all frequencies (Figure 3.23). To compare the noise 

correlations between artificial and naturalistic stimuli, we pooled noise correlation values  

Figure 3.22.  Vestibular neuronal activity in PIVC demonstrate wide range of noise correlation 
coefficient (A) Noise correlations as a function of timescale during naturalistic stimulus (N=16 pairs). The 
thick lines represent the mean correlations curve as the function of timescale (B) Same as in A except during 4 
Hz artificial stimulation (N=12 pairs). Note that each curve denotes noise correlations calculated from a 1 
second segment of simultaneous pairwise recording and therefore, for each pair, there are 10 curves plotted on 
the panels above. 
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computed at half of the stimulus period for all frequencies —as they were not significantly 

different than zero— and compared them to that of during naturalistic stimulus (Figure 

3.24). Thus, overall noise correlations were slightly higher during artificial stimuli 

Figure 3.23.  Noise correlation as a function of timescale during sinusoidal stimuli with different 
frequencies.  (A): N=11 pairs, 0.5 Hz; (B): 1 Hz, N=12 pairs; (C): 2 Hz, N=12 pairs; (D): 3 Hz, N=12 pairs; (E): 
5 Hz, N=12 pairs; (F): 8 Hz, N=12 pairs; and (G): 17 Hz, N=12 pairs. The thick solid lines are the average values 
of the correlations for all pairs. Note that each curve denotes noise correlations calculated from a 1 second 
segment of simultaneous pairwise recording and therefore, for each pair, there are 10 curves plotted on the 
panels above. 
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(ρart=0.040, ρnat=0.028; Wilcoxon rank sum test, p=0.0044; Figure 3.24) but were close to 

zero, suggesting that neural activities in PIVC become decorrelated.   

 

3.8 Summary of results 

In this chapter, we recorded vestibular neural populations in VN and PIVC that mediate 

self-motion perception and characterized single-unit and population characteristics of the 

neural activity, including correlation structure and heterogeneity. We found the neural 

activities were highly heterogenous in both VN and PIVC regardless of the stimuli condition 

used. Additionally, we showed while signal correlations in VN, on average, are close to zero 

across the neural population during artificial and naturalistic stimulation, noise correlations 

are significantly positive during naturalistic stimulation but not during artificial stimulation. 

Additionally, we found that noise correlation in PIVC was negligible regardless of the stimuli 

used. However, signal correlations were significantly positive during naturalistic stimuli but 

Figure 3.24.  Noise correlations are close to 
zero during artificial and naturalistic 
stimulation. Boxplots showing noise correlation 
values during artificial (all frequencies) and 
naturalistic stimuli. Noise correlations during 
naturalistic and artificial stimuli are close to zero. 
Noise correlation values are slightly higher 
during artificial stimuli (i.e., ρart=0.040) 
compared to that of naturalistic stimulus i.e., 
ρart=0.028; Wilcoxon rank sum test, N=16 pairs, 
p=0.0044). The timescales at which the noise 
correlations were computed were the same as 
those used above for signal correlations. 
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not during artificial stimulation. As such, our results indicate that correlation structures in 

VN and PIVC are plastic and have implications for efficient coding neural populations therein 

which will be investigated and discussed in the following chapter. 
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4.  POPULATION CODING OF SELF-MOTION PERCEPTION: 

INSIGHTS FROM COMPUTATIONAL MODELING 

 

In the previous chapter, we explored the response of the vestibular neurons in the 

central vestibular pathway and characterized their response to naturalistic and artificial self-

motion stimuli. Our results so far show that the spiking activities of vestibular nuclei neurons 

are more heterogeneous during naturalistic than during artificial stimulation. Such changes 

were accompanied by changes in noise correlations, which were more positive during 

naturalistic stimulation. Such a change in noise correlations might seem surprising at first 

glance, as previous studies have shown that this can increase redundancy and thus impair 

information transmission (Zohary et al., 1994). It should be, however, noted that these 

assumed a homogeneous population, whereas our results show that this is not the case for 

vestibular nuclei neurons. 

Understanding the implications of the observed heterogeneity and plastic correlation 

structure requires data from a large number of simultaneously recorded neurons (Kohn et 

al., 2016; Urai et al., 2022; Zohary et al., 1994). As in our dataset, the number of 

simultaneously recorded neurons did not exceed five neurons, we used biologically plausible 

computational models to build larger neural populations and study the effect of correlation 

structure and heterogeneity on self-motion information. In this chapter, first, I introduce the 

model, and then, I present the simulation results and its implication on self-motion 

information processing.  

 

4.1. Model introduction 

Our model consists of three main components: firstly, the stimulus is modulated via 

linear systems properties associated with the early vestibular pathway, including the linear 

dynamics of afferents and VO neurons in VN (Figure 4.1). Secondly, the generated signal is 

used to produce a set of signals that are correlated with a given magnitude and heterogeneity 

(i.e., the mean and standard deviation of the correlation coefficients; see below). 
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Additionally, a set of correlated Gaussian noise signals with a given magnitude and 

heterogeneity are generated. Together, the correlated signal and noise are used in a leaky-

integrate-and-fire (LIF) model to generate a neural population with correlated spiking 

activity. So far, the head velocity stimulus is encoded in the population activity. Next, we use 

a stimulus reconstruction unit, which effectively is a set of optimal kernel functions, to 

decode the stimulus from spiking neural activity. In the following sections, I introduce the 
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Figure 4.1. Schematic of the computational model. The model encodes the head velocity stimulus, generates 
correlated spiking neural activity, and decodes the stimulus velocity from the spiking activity. A set of stimuli is 
generated with power spectra similar to that of the naturalistic stimulus used in the study (light red box). 
Additionally, appropriate input signal (light brown box) and noise correlation (light blue box) matrices are 
generated so that the distribution of the resulting output correlation matrices satisfy input mean and variance 
requirements of the correlation coefficient distributions. The resulting correlated signal and noise vectors are 
used in a Spike Generator module to produce correlated spiking activity with the desired correlation structure 
and heterogeneity. This module is comprised of a transfer function, addressing the linear dynamics of the early 
vestibular pathway, and an LIF model to generate spiking activity of N neurons (light grey box; the encoded 
signal). The population activity is then convolved with a set of optimal kernels (yellow circles) to generate an 
estimation of the stimulus (grey box; the decoded signal). The error from the estimation is used to calculate the 
mutual information in the population. μsignal and μnoise denote mean input signal and noise correlations; RMSE: 
root mean squared error. 
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components of the model and provide the mathematical descriptions and/or computational 

implementations.  

 

4.1.1. Head velocity stimuli  

The stimulus used in the modeling study was a set of stimuli with power spectra 

resembling that of the naturalistic stimulus used in the experiments. This was to ensure the 

linear dynamics of neural substrates were not affected by the otherwise artificial temporal 

profile of the stimuli. Note that the stimulus used in the experiment is not sufficient for our 

modeling study for two reasons: first, it is unlikely that VO neurons receive the same synaptic 

currents across the populations; Secondly, a single stimulus vector would technically not be 

suitable as any correlation matrix multiplication would result in a set of identical set of 

stimulus vectors. To generate a set of stimuli displaying a power spectrum similar to that of 

the naturalistic stimulus, we calculated the Fourier transform of the signal. We calculated the 

magnitude and the phase of the signal in the frequency domain. To generate a new signal 

with the desired characteristic, we generated a new frequency domain signal with the same 

magnitude as in the original signal but with random values for the phase. The time domain 

signal was then obtained by taking the inverse Fourier transform and keeping the real part 

of the resulting signal.  

 

4.1.2. The linear-nonlinear model 

Understanding the implications of correlations and heterogeneity observed in our 

dataset required further investigation using computational modeling. Specifically, I 

simulated a population of VO neurons using linear-nonlinear cascade models (Chichilnisky, 

2001; Schneider et al., 2015). In this model, the firing rate response of the neuron is given 

by: 

r(t) = T(rlin (t)) (4.1) 
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in which rlin(t) is the linear estimation of the neural response, and T(∙) is the nonlinear 

relation that relates rlin(t) to the actual firing rate calculated from data. Note that I did not 

estimate the nonlinear function explicitly, as the nonlinearity was accounted for by a leaky 

integrate-and-fire (LIF) model in the following module of the cascade model, and its effect is 

reflected in the parameters of LIF model. Additionally, the nonlineairy included the 

rectification and saturation of response for both afferents and VO neurons. To obtain the 

linear estimation of the neural response, rlin(t), I used the following estimation: 

rlin(t) = h(t) ∗ s(t) + r0.   (4.2) 

r0 is the baseline firing rate, which was calculated during baseline activity for each neuron, 

and s(t) denotes the stimulus. Here, h(∙) is the linear kernel of the model and the impulse 

response of the transfer function, HVO(f) as 

HVO(f) =
Psr(f)

Pss(f)
  (4.3) 

where Pss(f) is the power spectrum of the stimulus, and Psr(f) is the cross-spectrum between 

the stimulus and binary sequence obtained from the neural response. HVO(f) was 

approximated with a transfer function similar to that of canal afferents with two poles and 

two zeros for each neuron as  

HVO,est(s) =
ks (s + 1

T1
⁄  )

(s + 1
Tc

⁄  ) (s + 1
T2

⁄  )
   (4.4) 

where s=2πif and k, Tc, T1, and T2 are parameters of the model (Schneider et al., 2015). Power 

spectra and cross-spectrum quantities are computed using pwelch and cpsd functions in 

MATLAB. In practice, since I used inputs with naturalistic statistics, I fit the transfer function 

to the population-averaged bode plot obtained for gain and phase during naturalistic stimuli. 
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For controlled simulations, I kept the transfer functions similar across the population and 

used the following parameters: T1=0.0175 s; T2=0.027 s; Tc=5.7 s; k=2.1 (spk/s)/(deg/s).  

 

4.1.3. Leaky Integrate-and-Fire model 

To generate spiking activity, the output of the linear transfer function was fed to an LIF 

model (Lapicque, 1907). The membrane potential, V(t), of the simulated neurons is 

calculated by solving the following equation: 

Cm

d𝐕(t)

dt
= −g𝐕(t) + Ibias + k 𝐬𝐜(t) + σ 𝐧𝐜(t) 

if V(t0 ) ≥ θ → V(t) = 0  (t0 ≤ t ≤ t + tref).   

(4.5) 

Cm, g, Ibias, k, σ, θ, and tref are membrane capacitance, membrane conductance, the bias 

current, input gain in the model, standard deviation of the noise, spike threshold, and 

refractory period, respectively. sc(t) denotes the input to the LIF model, and nc(t) denotes 

the noise term.  

I obtained the distribution of signal and noise correlation coefficients and populated 

positive definite covariance matrices accordingly. The distribution of signal and noise 

correlation coefficients was approximated with normal distributions. Thereafter, the 

covariance matrices, Csig and Cnoi were populated so that the distribution of the correlation 

coefficients followed the normal distributions. The input signal to the LIF model was 

correlated as follows: 

𝐬𝐜(t) = Lsig𝐬𝐟(t) (4.6) 

𝐬𝒇(t) = [s1(t),… , sN(t)] (4.7) 
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where sf(t) is the output of the transfer function, HVO(f), and Lsig is the Cholesky factor of the 

signal covariance matrix, Csig (Benoit, 1924). Moreover, the correlated noise at the input was 

simulated as follows: 

𝐧(t) = Lnoi𝛏(t) (4.8) 

𝛏(t) = [𝜉1(𝑡)… 𝜉𝑛(𝑡)] (4.9) 

where Lnoi is the Cholesky decomposition of the noise covariance matrix, Cnoi, and ξi (t) for 

i=1, …, N are white Gaussian noise with mean zero and unit variance. For my simulations, I 

used Cm=1 nF, g=0.4 μS, Ibias=7.3 nA, k=0.025 nA (deg/s)/(spk/s), σ=2 nA,  θ=0, and tref=2 ms 

with which the resting discharge, coefficient of variation, variability, neural gain and phase 

of the simulated neurons matched that of population average values. These values were 

found by fminsearch function in MATLAB where the parameters were input to the parameter 

estimation algorithm. The algorithm generated 20 seconds of activity during rest and during 

artificial stimulation from which the resting discharge, coefficient of variation, variability, 

neural gain, and phase of the simulated neurons were used to evaluate a mean squared error 

objective function of the estimated parameters. The correlated signal input was used as the 

signal component of the LIF model, whereas the correlated noise input was used as the noise 

component of the LIF model. The mean of the off-diagonal correlation coefficients of 

covariance matrices as well as their standard deviations, could vary systematically. Higher 

mean values corresponded to higher levels of noise and signal correlations. For homogenous 

population activity, I assumed σhmg=0.03 whereas for heterogenous population activity 

σhtg=0.15 was assumed, where σhmg and σhtg are the standard deviation of the correlation 

coeffcients in homogenous and heterogenous populations, respectively. These choices of 

parameters were consistent with our hypothesis (for homogenous population) and data (for 

heterogenous population). For populating large correlation matrices with values drawn 

from a normal distribution with a given standard deviation (i.e., heterogeneity vs. 

homogeneity) and mean value (mean value of signal and noise correlations), I used an 

algorithm based on vines and extended onion method (Lewandowski et al., 2009). This 

method was used because populating the off-diagonal elements of the covariance matrices 
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with values randomly driven from a given normal distribution resulted in non-positive 

definite covariance matrices for large populations (e.g., N>10 neurons). 

 

4.1.4. Decoding and calculating mutual information 

Here, we used the stimulus reconstruction method to decode stimulus from the 

population activity of simulated VO neurons (Dan et al., 1998; Warland et al., 1997). Our 

choice of decoder is consistent with recent findings in the posterior ventrolateral thalamus, 

in which the vestibular target neurons —which receive input from VO neurons in VN and 

decode the vestibular self-motion information in the thalamus— faithfully encode self-

motion information (Carriot et al., 2022). The estimated stimulus is obtained by convolving 

each neural activity with a kernel:  

sest(t) = ∑(ki ∗ ri)(t)

N

i=1

.  (4.10) 

Here ri(t) is the firing rate, and ki(t) is the optimal kernel of the neuron i. The kernels 

are obtained from the following equation:  

(
K1(f)

⋮
KN(f)

) = (

Pr1r1
(f) ⋯ Pr1rN

(f)

⋮ ⋱ ⋮
PrNr1

(f) ⋯ PrNrN
(f)

)

−1

(

Psr1
(−f)

⋮
PsrN

(−f)
) (4.11) 

where Ki(f) is the Fourier transform of ki(t), Prirj
(f) is the cross-spectrum between ri(t) and 

rj(t), and Psri
(f) is the cross-spectrum stimulus, s(t), and ri(t). The noise in the reconstruction 

and mean squared error (MSE) is characterized as 

n(t) = sest(t) − s(t) (4.12) 

and 
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ε =< n2(t) >t, (4.13) 

respectively, where 〈…〉t denotes an average over time. The signal-to-noise ratio (SNR) is 

computed as  

SNR(f) =
Pss(f)

Pnn(f)
   (4.14) 

in which Pss(f) and Pnn(f) are the power spectrum of stimulus and reconstruction noise, 

respectively. The mutual information rate is then given by: 

MI(f) = ∫ log2(1 + SNR(f) ) df
20

0

   (4.15) 

where the limits of integration correspond to the frequency range of natural self-

motion(Rieke et al., 1996). Information rate values were normalized by the lowest value 

obtained, which was for a homogeneous population with zero mean signal and highest mean 

noise correlations.  

 

4.1.5. Covariance analysis 

To gain intuition as to how noise correlations benefit population coding for neuronal 

populations with heterogenous signal and noise correlation structures, I looked at the 

contributions of individual terms towards determining the mean square error. Specifically, 

one can write an expression for the MSE as: 
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ε2 = 〈(∑σi

N

i=1

)

2

〉 = ∑〈σi
2〉 + 2∑∑〈σiσj〉

i−1

j=1

N

i=2

N

i=1

   (4.16) 

where N is the population size, σ𝑖is the contribution of neuron i to the error, which is given 

by 

σi =
s(t)

N
− (ki ∗ ri)(t).   (4.17) 

It can be easily seen that the equation above is then a sum of variance and covariance terms.  

 

4.1.6. Double-power law fitting function 

MSE was fit with double power law function defined as  

𝜀(𝑛) = 𝑐1𝑛
𝑎 [1 + (

𝑐2

𝑐1
𝑛𝑏−𝑎 − 1)𝑢(𝑛 − 𝑛𝑐)]  (4.18) 

 

where n is the population size, u(n) is the Heaviside function, c1 and c2 are scaling factors, nc 

is the critical (knee) population size, and a and b are power exponents for small and large 

populations, respectively. To find the parameters of the model, I fit a piecewise linear model 

to logarithmic values of n and ε. 

 

4.2. Simulation results 

The model was implemented in MATLAB ((R2020a), Natick, Massachusetts: The 

MathWorks Inc.; 2020). The results were robust for the simulation time steps chosen to solve 

the differential equations. Additionally, sufficient time was provided to allow the transient 

dynamics to dissipate.  
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4.2.1. Heterogeneity dramatically influences the effect of correlation structure on 

population coding 

In order to gain an understanding of how heterogeneity and correlations influence 

population coding, we built a computational model of the vestibular nuclei neural population 

that incorporated their known tuning properties (Figure 4.1; see section 4.1 for the model 

description). We then considered both homogeneous and heterogeneous populations and 

systematically varied both signal and noise correlations. For the homogenous population, 

the correlation coefficient distribution had a standard deviation of 0.03, whereas the 

heterogenous population led to a correlation coefficient distribution of 0.15 (similar to the 

observed distribution of correlation coefficients in data from VN). We varied the mean of the 

correlation coefficient distribution from 0 to 0.6 by increments of 0.1 for both signal and 

noise correlations. Each condition was characterized by three factors: heterogeneity or 

homogeneity of the neural response and the mean value of signal and noise correlations. 

Each condition was simulated 40 times, and the results were averaged across the 

simulations.  
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The result of the simulations is shown in Figure 4.2. We quantified the information 

rates for homogenous (Figure 4.2A) and heterogenous (Figure 4.2B) conditions and 

normalized them to the lowest value in both graphs —which corresponded to the 

homogenous condition with mean signal and noise correlation values of 0 and 0.6, 

respectively— to provide a better comparison between the homogenous and heterogenous 

populations. Our simulation results demonstrated a dramatic difference between the 

homogenous and heterogenous conditions: for homogeneous populations, the highest 

information was obtained when signal correlations were maximal, and noise correlations 

were near zero (Figure 4.2A). Increasing noise correlations led to a decrease in mutual 

information irrespective of signal correlations by increasing redundancy. This result is 

consistent with those of previous studies (Zohary et al., 1994). In contrast, for heterogeneous 

populations, the highest information was obtained when signal correlations were near zero, 

and noise correlations were highest (Figure 4.2B). Additionally, the information decreased 

with either increase in signal correlation or a decrease in noise correlations.  

Figure 4.2. The effect of heterogeneity and correlation structure on population coding naturalistic self-
motion. (A) Mutual information rate gain as a function of mean signal and noise correlation for homogenous 
population coding. The information rate gain is calculated by comparing the information in a given condition to 
the minimum information decoded across all simulated conditions (i.e., μnoise = 0.6, μsignal = 0 under 

homogenous conditions) (N=40 simulations). (B) Same as in A, except the simulations are done for a 
heterogenous population activity (N=40 simulations). 
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We wanted to compare the relationship between the populations (homogeneous 

versus heterogeneous population) as a function of the correlation structure. We fixed the 

amount of the signal correlation so that maximum information was obtained from each 

condition and varied the amount of mean noise correlation for both conditions. This 

corresponded to the conditions with μsignal=0.6 for homogenous and μsignal=0 for 

heterogeneous populations. Overall, our simulation results demonstrate that for given signal 

correlations, increasing noise correlations led to increased information for heterogeneous 

populations but instead led to decreased information for homogeneous populations. (Figure 

4.3). Furthermore, the information gain was consistently higher in heterogenous 

populations than in homogenous populations.  

 

4.2.2. Increased noise correlations during naturalistic stimulation benefits population 

coding by heterogeneous vestibular neural populations 

Next, we plotted the reconstructed stimulus for homogenous and heterogenous 

populations (N=128 neurons). The reconstructed stimulus is more similar to the original 

Figure 4.3. Correlation structures differentially affect 
population coding in heterogeneous and homogeneous 
neural population. Information rate gains were calculated for 
homogenous (green line; μsignal=0.6) and heterogenous (orange 
line; μsignal=0) conditions. The solid lines illustrate the average 
information gain rate and the shaded error bands denote 1SEM 
computed from 40 simulations for each condition. For 
homogenous populations, information gain decreases with 
noise correlations whereas for heterogenous information, the 
information increases. The information gain is higher for 
heterogenous population across all noise correlation levels. 
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stimulus for the heterogeneous population and therefore provides a better estimation of the 

stimulus (Figure 4.4A). Thus, an important question is why increased noise correlations 

benefit information transmission for heterogeneous but not homogeneous neural 

populations. To answer this important question, we calculated the reconstruction error by 

subtracting the estimated stimulus from the original stimulus and plotted the error as the 

function of the population size (Figure 4.4B). Overall, in both cases, reconstruction error 

decreased initially more slowly and then faster with increasing population (Figure 4.4B). The 

reconstruction error was higher for small homogenous populations but was lower for large 

homogenous populations when compared to heterogenous populations as the information 

decreased faster for large heterogenous populations. To quantify the effect of population size 

on information in the populations, the error curves were fitted using two different power 

laws for low and high population sizes. Overall, the power law exponent for high and low 

population sizes was significantly more negative for a heterogeneous than for a 

homogeneous population (Figures 4.4C and 4.4D). Moreover, the “critical population size” at 

which this transition occurred was lower for heterogeneous populations (Figure 4.4E).  

4.2.3. Covariance structure decreases the estimation error in heterogeneous populations 

To understand why the reconstruction error is smaller for heterogeneous populations, 

we considered the respective contributions of individual model neurons. Specifically, the 

reconstruction error can be written as a sum of variance and covariance terms between the 
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Figure 4.4. Heterogenous populations predict stimulus timecourse more accurately than homogenous 
populations. (A) Stimulus and reconstructed stimulus from populations with optimum correlation structure 
for heterogenous (μnoise=0.6, μsignal=0) and homogenous (μnoise=0, μsignal=0.6) conditions (N=128). The black, 
green and orange solid lines display the timecourse of the stimulus, reconstructed stimulus from homogeneous 
and heterogenous population activities, respectively. (B) Estimation error as a function population size for the 
same populations as in panel A. Error bands indicate 1 SEM. Each curve is fitted with a double power law 
functions over the low and high population sizes, indicated with dashed lines. (C) The magnitude of power law 
exponents above the knee population sizes is significantly higher in heterogenous condition (Wilcoxon rank 
sum test, N=1000 simulations, p=2.510-33). (D) The magnitude of power law exponents below the knee 
population sizes is significantly lower in heterogenous condition (Wilcoxon rank sum test, N=1000 simulations, 
p=2.510-33). (E) Upper right inset: the knee populations size for heterogenous conditions is significantly 
lower than that of homogenous condition (Wilcoxon rank sum test, N=1000 simulations, p=4.910-33).  
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errors of individual model neurons (Eq. (4.16)). While variance terms are positive by 

definition, the cross-covariance terms can be negative and thus contribute to reducing the 

overall error. Our results show that the distribution of cross-covariance terms was more 

skewed towards negative values for heterogeneous populations and was thus negative on 

average (Figure 4.5A and insets). In contrast, the distribution of covariance terms for the 

homogeneous population was more symmetric and displayed an average that was closer to 

zero (same figure). Quantification of the mean variance terms revealed overall higher 

variances for heterogeneous as compared to homogeneous populations (p=2.110-8, 

Kruskal-Wallis test; Figure 4.5B). However, the more negative cross-covariance terms help 

more to reduce the overall error for heterogeneous populations than for homogeneous 

populations (p=2.110-8, Kruskal-Wallis test; Figure 4.5B). 

 

Figure 4.5. Covariance structure favors population coding in heterogenous populations. (A) The distribution 
of covariance terms of the covariance matrices computed from reconstruction error signals during the same 
heterogenous and homogenous conditions as in Figure 4.4A.  Insets. Left: Mean of the covariance terms for 
heterogenous condition is significantly lower than that of homogenous condition (Wilcoxon rank sum test, N=1000 
simulations, p=2.110-8). Right: The skewness of the distribution for the heterogenous and homogenous 
conditions (Wilcoxon rank sum test, N=1000 simulations, p=2.110-8). The heterogenous population is skewed 
towards negative values and therefore has negative mean value. (B) Summed variance terms (Var.), summed 
covariance terms (Cov.), and mean squared error (MSE) for covariance matrices computed from reconstruction 
error signals for heterogenous and homogenous conditions. All quantities compared are significantly different than 
each other (Wilcoxon rank sum test, N=1000 simulations, p=2.110-8). 
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4.3 Summary of results 

In this chapter, we used computational modeling to expand on the role of correlation 

plasticity and heterogeneity on efficient population coding. We simulated large neural 

populations which included known properties of VO neurons in VN. The parameters of the 

model were varied to simulate neural population with different correlation magnitudes 

which either exhibited homogenous or heterogenous activity. Remarkably, our model 

demonstrated that efficient coding strategies employed by neural populations depended on 

the correlations and their heterogeneity/homogeneity. Strikingly, contrary to homogenous 

populations where efficient population codes had lowest noise correlation and highest signal 

correlation, efficient coding in heterogenous populations was obtained when the noise 

correlations were maximized, and signal correlations were minimized. Additionally, 

sufficiently large (N>50 neurons) heterogenous neural populations consistently transmitted 

more information. By characterizing the covariance structure in heterogenous and 

homogenous populations, we observed estimation error of the decoder depended on the 

variance and covariance of neurons’ prediction errors, increasing with the magnitude of the 

former and decreasing with magnitude of the latter due to its negative sign. Importantly, 

while the heterogenous neural population demonstrated larger variance terms compared to 

homogenous populations, its covariance terms were higher in magnitude and closer to that 

of variance terms compared to the homogenous population, which ultimately resulted in 

smaller stimulus estimation errors. Our results revealed important property of heterogenous 

neural populations in which high noise correlation benefit information in the population. Our 

results were used to interpret our findings in VN and PIVC (see 7.1.3).  
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5. A SET-POINT ADAPTATION MECHANISM ACCOUNTS FOR THE 

EMERGENCE OF NEGATIVE OPTOKINETIC AFTERNYSTAGMUS 

IN LARVAL ZEBRAFISH 

 

In this chapter, I present a mathematical model which introduces a set-point adaptation 

mechanism that explains adaptation during prolonged stimulation and negative optokinetic 

afternystagmus after prolonged unidirectional optokinetic stimulation. I use the data 

gathered by our collaborators, Dr. Ting Feng Lin and Dr. Melody Ying-Yu Huang, at the 

University of Zurich, in order to estimate the parameters of the model. At the beginning of 

the chapter, I present the behavioral data. Next, I introduce the model, and finally, I present 

the simulation results.   

 

5.1 Introduction to larval zebrafish model 

5.1.1 Larval zebrafish -an ideal model to study neural substrates of behavior 

One of the most fundamental functions of the brain is to make behavioral choices. To 

do so, the brain integrates sensory information and produces motor signals accordingly. 

Much is known about how the retina extracts visual features and relays this information to 

downstream areas. Similarly, how specific motor patterns are encoded in the response of 

neural populations in motor areas as well as the brainstem and spinal cord is abundantly 

studied. By far, the most challenging question in understanding how the brain generates 

behavior is forming a comprehensive view of how visual and motor information are 

integrated at visual and motor areas to give rise to the behavior. The problem, in part, arises 

from the high level of complexity in large animals such as primates. A promising way to 

approach this problem is to study the principles of neural computation and sensorimotor 

integration in simpler animal models and apply them to the study of larger animal models.  

The larval zebrafish offers unique advantages among the vertebrate models for 

studying the neural basis of behavior at the molecular, cellular, circuit, and whole brain 

network level (Bilotta and Saszik, 2001; Bollmann, 2019; Friedrich et al., 2010). These 
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advantages have made the larval zebrafish an ideal model for studying of development, 

structure, and function of neural circuits. The neural circuits range from simple reflex 

pathways to complex distributed circuits, which might represent an ancestral form of the 

subcortical pathways involved in selective attention (Krauzlis et al., 2018). The larval 

zebrafish's small brain volume and translucent skin present opportunities for combining 

genetic tools with whole-brain functional imaging techniques and targeted 

electrophysiological recordings in the intact nervous system (Neuhauss, 2003). Additionally, 

the transparent nature of the larva's skin allows researchers to simultaneously track its 

behavior in response to intricate visual stimuli. Recent efforts have been directed towards 

integrating genetic, anatomical, and functional data from various experiments into 

standardized atlases, further enhancing the power of the zebrafish model for neuroscientific 

research. 

 

5.1.2 Using larval zebrafish as a model to investigate optokinetic response and aftereffects  

Sensory-motor learning is essential for precise performance and motor coordination in 

animals during both reflex and voluntary behaviors (Bastian, 2008; Della-Maggiore et al., 

2015). Various factors, such as environmental changes, injuries to peripheral or central 

motor systems, and inherent motor command variations, can affect movement accuracy. To 

enhance movement control, the brain employs mechanisms such as neural adaptation 

(Thoroughman et al., 2007; Wolpert et al., 2001) and habituation (Hall and Cox, 2009; 

Shepard et al., 1990). The optokinetic system, responsible for reflexive eye tracking in 

response to visual motion, serves as a valuable model for studying sensorimotor learning. It 

stabilizes the visual image on the retina, enabling high-resolution vision.  

The optokinetic system is a highly conserved behavior among vertebrates (Masseck 

and Hoffmann, 2009). The 5-day post-fertilization (5-dpf) zebrafish larvae demonstrate a 

wide range of behaviors, including optokinetic response (OKR) to whole-field visual motion. 

As mentioned in the introduction, the vestibular and visual systems share the same velocity 

storage neural substrate, and therefore, the study of the neural circuit in one system is 

affected by stimuli from the other modality. 5-dpf larvae lack fully developed and functional 
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semicircular canals, which allows us to study the neural substrate underlying the optokinetic 

reflex in response to horizontal optokinetic stimuli without the influence of the vestibular 

signals (Bever and Fekete, 2002; Lambert et al., 2008). Note that at this stage, although the 

otolith organs are developed (same reference), their effect on the larvae behavior is minimal 

due to animal immobilization. 

Following the offset of the optokinetic stimulus, the subjects continue to produce 

persistent eye movements in the dark. The eye movements generated after the optokinetic 

stimulation are referred to as optokinetic afternystagmus (OKAN) and are attributed to the 

velocity storage mechanism, integrating visual and head velocity information (Cohen et al., 

1981). OKAN is classified as positive or negative OKAN if the eyes persist in moving in the 

same or in the opposite direction of the stimulus, respectively, after the stimulus is removed 

(Brandt et al., 1974; Waespe and Henn, 1978). Researchers have observed both positive and 

negative OKAN responses in various species, with the longer-lasting negative OKAN initially 

masked by the shorter-lasting positive OKAN (Bu ttner et al., 1976). These responses exhibit 

a reciprocal relationship, with stronger negative OKAN following weaker positive OKAN as 

optokinetic stimulation persists.  

In this study, larval zebrafish served as a model to investigate negative optokinetic 

afternystagmus (OKAN). Leveraging their inconspicuous positive OKAN, we induced robust 

negative OKAN by subjecting 5-dpf larvae to sustained optokinetic stimulation. During the 

stimulation, we observed a gradual decrease in the slow-phase velocity (SPV) of the 

optokinetic nystagmus (OKN), followed by the emergence of negative OKAN with various 

timescales after the stimulation ceased. We propose that this SPV decay results from both 

sensory habituation and set-point adaptation of the retinal slip velocity (as explained below), 

which leads to the occurrence of negative OKAN. To support our hypothesis, we proposed a 

mathematical model and simulated SPV using the same stimuli used in the study. Our 

simulation results aligned well with the experimental data, incorporating both sensory 

habituation and set-point adaptation mechanisms. In summary, the larval zebrafish offers a 

unique and valuable model for studying sensorimotor learning and gaining deeper insights 

into the neurophysiological mechanisms underlying negative OKAN. 
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5.2 Description of the behavioral data 

5.2.1. Negative OKN in larval zebrafish 

The aim of this study was to investigate set-point adaptation in the ocular motor system 

by observing optokinetic nystagmus (OKN) and the resulting optokinetic afternystagmus 

(OKAN) under various stimulus conditions in larval zebrafish. We recorded the eye 

movements during three phases (Figure 5.1A, top black strip; see sections 2.2.3, 2.2.4, and 

2.2.5): a 5-minute baseline period in darkness, followed by 20 minutes of continuous 

unidirectional 10 deg/s optokinetic stimulation, and finally, another 20 minutes in darkness. 

Representative eye-position traces are illustrated in Figure 5.1. We identified quick-phase 

eye movements in both positive and negative directions for the recorded eye movement 

(denoted by red and green circles in Figure 5.1A). We further magnified the transitions 

between each phase in Figure 5.1A, showcasing the transition period from pre-stimulation 

Figure 5.1. Negative OKAN manifests after prolonged unidirectional optokinetic stimulation. The visual 
stimulus was presented over three time periods: 5 minutes of darkness, followed by 20 minutes of visual 
stimulation with vertical gratings rotating horizontally at a constant 10 deg/s in one direction, which in turn 
was followed with 20 minutes of darkness. An exemplar eye-position trace of a larva during the dark period, 
the 20-minute optokinetic stimulation, and the negative OKAN in the dark is shown, with positive and negative 
quick-phase velocity peaks marked in red and green, respectively. Magnifications of the transition phases from 
pre-stimulation to optokinetic nystagmus (OKN) and from OKN to negative OKAN are presented for clarity. 
Figure adapted from (Lin et al., 2019).  
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to stimulation (Figure 5.1B) and the transition period from stimulation to post-stimulation 

(Figure 5.1C). Prior to optokinetic stimulation, the animal spontaneously saccades in both 

directions, which is followed by slow drifts toward the center of the visual field (Figure 5.1B). 

Following sustained optokinetic stimulation, we observed that the animal's eye started 

beating in the opposite direction to the prior stimulus, characterized by a transition from 

negatively directed to positively directed quick phases during the transition from stimulation 

to darkness (note the transition from green to red circles in Figure 5.1A). The eye movements 

in the opposite direction to the stimulus in the post-stimulation phase constitute the negative 

OKAN, which here lasted approximately 7 minutes after extinguishing the stimulus (Figures 

5.1A and 5.1C). Intriguingly, during the negative OKAN, the beating field deviated toward the 

side of the previous stimulus direction (0 to 15 degrees, Figure 5.1A). In contrast, during 

spontaneous eye movements in both the pre- and post-stimulatory phases, the eyes moved 

across a broader range (±15 degrees, Figure 5.1A).  

 

5.2.2. Quantification of OKN and negative OKN 

To quantify the negative OKAN, we analyzed the slow-phase velocities (SPVs) between 

each consecutive pair of quick-phases. The average SPVs were calculated in 10-second 

intervals over the entire 45-minute recording period (Figures 5.2A and 5.2C; see section 2.2.5 

for more details). Moreover, we computed the quick-phase frequency (QPF) by counting the 

number of quick-phases during 10-second temporal intervals. QFP was obtained separately 

for positive and negative quick phases (Figure 5.1A). The difference (∆QPF) was obtained by 

subtracting the positive QPF from the negative QPF (Figures 5.2B and 5.2D). Overall, 

quantification of SPV and ∆QPF revealed adaptation during OKN and negative OKN build-up 

and decay during the post-stimulatory darkness period. Before the onset of the stimulus, the 

eye movements spontaneously moved to either direction resulting in average SPV and ∆QPF 

values close to zero (Figure 5.2, panels A-D, pre-stimulatory darkness period denoted by the 

black bar on top of the panels). Upon the stimulus onset, the SPV and ∆QPF increase quickly 

to a maximum value and then decay gradually to a steady-state value as the stimulation is 

continued (Figure 5.2, panels A-D, OKN period). Upon the offset of the stimulus, SPV and 

∆QPF decrease and change signs as the magnitude of these quantities build up and reach a 
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plateau, after which they slowly decay to zero (Figure 5.2, panels A-D, post-stimulatory 

darkness period denoted on the black bar on top of the panels). Additionally, due to the 

temporal-to-nasal asymmetry in lateral-eyed animals (Qian et al., 2005; Wallman and Velez, 

1985), the right eyes exhibited faster SPV than the left eyes in response to counterclockwise-

rotating optokinetic stimulation.  

We estimated the dynamics of OKN adaptation during the stimulation phase by fitting 

with a second-order exponential decay function as in Eq. (2.8). The time constants of SPV 

adaptation during OKN for the right and left eyes were τ1=0.54 ± 0.23 min, τ2=6.15 ± 4.66 

min, and τ1=0.35 ± 0.36 min, τ2=1.93 ± 0.82 min, respectively. Additionally, we estimated the 

time constants of negative OKAN dissipation using a first-order exponential function as in 

Figure 5.2. Quantification of OKN and negative OKAN in Larval Zebrafish. The slow-phase velocity 
(SPV) and ∆QPF (difference in quick-phase frequency) were analyzed during the entire 45-minute 
recording period, which included 5 minutes in the dark, followed by 20 minutes of optokinetic stimulation 
at a constant velocity of 10 deg/s in one direction, and another 20 minutes in the dark. The average SPV 
data from a single subject (Figure 5.1A) and the average values of 15 subjects are shown in (A) and (C), 
respectively, with the stimulus velocity depicted by the gray line. The ∆QPF data for each 10-second interval 
throughout the recording are presented in (B) and (D), with separate lines for the right eye (red) and left 
eye (blue) data. Cyan and dark red lines represent the fitting curves for the OKN adaptation and negative 
OKAN decay in the dark, respectively. To minimize the masking effect of the velocity-storage components 
during the build-up phase of the absolute OKAN velocity, the first 2 minutes of OKAN velocity data were 
excluded from the fitting process. The shaded areas indicate the standard deviation. Figure adapted from 
(Lin et al., 2019).   
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Eq. (2.9). For right and left eyes, we obtained τ3=5.02 ± 0.81 min and τ3=7.03 ± 0.79 min, 

respectively. Furthermore, we calculated the time constants for ∆QPF during OKN adaption 

and negative OKAN dissipation. For the right eye, during OKN adaptation, we obtained 

τ1=0.39 ± 0.17min, τ2=8.86 ± 1.28 min, and τ3=3.94 ± 0.55 min during negative OKAN decay. 

For the left eye, during OKN adaptation, we obtained τ1=0.41 ± 0.21 min, τ2=8.86 ± 1.28 min, 

and τ3=4.22 ± 0.60 min during negative OKAN decay. 

These findings align with previous results observed in human and mouse subjects, 

indicating that both SPV and QPF analyses provide comparable estimates of the negative 

OKAN (Cahill and Nathans, 2008; Waddington and Harris, 2013). In summary, our study 

demonstrates that quantifying negative OKAN through both SPV and QPF analyses yields 

consistent and comparable results in larval zebrafish. 

 

5.2.3. Dependence of negative OKAN dynamics on stimulus duration 

We studied the dynamics of negative OKAN by subjecting the animals to differential 

stimulus durations for 4, 5, 7, 10, 20, and 40 minutes with the same unidirectional 10 deg/s 

stimulation. Zebrafish larvae exhibited robust negative OKAN in response to the stimuli 

reflected both in SPV (Figures 5.3A, B) and ∆QPF (Figures 5.3G, H) obtained from both eyes. 

To estimate the time constant of negative OKAN for different stimulus durations, we used the 

same method used above (Eq. (2.9)) and fitted a first-order exponential decay function to the 

SPV and ∆QPF data. Note that the relatively low negative OKAN amplitude resulted in 

decreased signal-to-noise ratio, and as such, the data for 3 and 4 minutes were not fitted. The 

normalized fit traces of SPV (Figures 5.3C, D) and ∆QPF (Figures 5.3I, J) decay were plotted 

for both left and right eyes, respectively, which revealed that overall, the negative OKAN 

decay time constant increases with stimulus duration. To quantify this result, we plotted the 

decay time constate as the function of stimulus duration (SPV: Figures 5.3E, F; ∆QPF: 5.3K, L) 

and calculated Pearson's correlation coefficient between the two quantities. The analysis of 

SPV and ∆QPF revealed increased decay time constant during negative OKAN with the 

stimulus duration for both eyes (SPV: r = 0.87, p = 0.023, n = 6 in left eye and r = 0.93,  
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Figure 5.3. Negative OKAN dynamics depend on the stimulus duration. (A, B, G, H) The mean ± standard 
deviation of slow-phase velocity (SPV) (A, B) and quick-phase frequency difference (∆QPF) (G, H) obtained 
from 10-second windows during the whole stimulation protocol. The durations of optokinetic stimulation 
varied, including 5 minutes in the dark, followed by 3, 4, 5, 6, 7, 10, 20, and 40 minutes of continuous 
stimulation at a constant velocity of 10 deg/s in one direction. After each stimulation period, there were 
subsequent dark periods lasting for 5, 6, 10, 10, 10, 10, 20, and 20 minutes, respectively. The sample size for 
the stimuli were N = 7, 12, 23, 17, 21, 23, 15, and 8, respectively. (C, D, I, J) The normalized fitting curves 
depicted the decay of negative OKAN after 5, 6, 7, 10, 20, and 40 minutes of optokinetic stimulation, which 
were estimated from SPV (C, D) and ∆QPF (I, J). (E, K) The decay time constants, estimated from SPV (E) and 
∆QPF (K), were then plotted against the stimulus duration. (F, L) The negative OKAN amplitudes were 
evaluated after 3, 4, 5, 6, 7, 10, 20, and 40 minutes of optokinetic stimulation, estimated from SPV (F) and 
∆QPF (L), and were plotted against the estimated OKN adaptation. The data for the left-eye were represented 
by blue circles, while red circles represented the right-eye data. Figure adapted from (Lin et al., 2019). 
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p = 0.007, n = 6 in right eye; ∆QPF: r = 0.95, p = 0.004, n = 6 in left eye and r = 0.89, p = 0.017, 

n = 6 in right eye; Pearson correlation analysis).  

 

5.3 Conceptual and mathematical model of negative OKAN 

So far, our behavioral data (SPV and QPF) have established that prolonged 

unidirectional stimulation leads to a decrease in OKN gain during stimulation and robust 

negative OKAN during post-stimulation darkness, which eventually decays to zeros if 

remained unperturbed. Based on the observation and previous literature, we proposed a 

mathematical model and a set-point adaptation mechanism that accounted for adaptation 

during OKN and subsequent negative OKAN.  

 

5.3.1 Intuition behind the mathematical model 

We hypothesized the reversal in eye velocity sign and the subsequent decay to zero is 

indicative of a leaky integrator component which directly contributes and has an opposing 

effect to the oculomotor command during stimulation. On the offset of the stimulus, the 

visual input to the oculomotor plant disappears, and the only input to the plant would come 

from the leaky integrator component. As such, we assumed the output of the leaky integrator 

is subtracted from the visual input to the oculomotor command, which could explain the 

reversal in the eye velocity sign upon the offset of the stimulus. This idea is consistent with 

previous models proposed for optokinetic response and VOR adaptation (Furman et al., 

1989; Jareonsettasin et al., 2016; Leigh et al., 1981). Additionally, our observation from our 

data suggests differential time constants of OKN adaptation and negative OKAN dynamics. 

The lack of systematic relation between the time constants of OKN adaptation and negative 

OKAN dynamics across stimulus conditions suggests additional dynamics (at least one first-

order transfer function) would be required to explain both OKN adaptation and negative 

OKAN during the onset and after the offset of the stimulus, respectively. 
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5.3.2 Conceptual model of set-point adaptation 

To investigate our proposed model, we used a conceptual model illustrated in Figure 

5.4A. In this model, the control system delivers a motor command to the eyes based on the 

error signal, which reflects the difference between the retinal slip velocity and its "internal" 

set point. Ordinarily, the set-point for the retinal slip velocity is maintained at 0 to stabilize 

the visual image on the retinae, as intended by the optokinetic system. The motor command 

also activates the adaptation operator, denoted by a leaky velocity integrator (the red 

component in Figure 5.4A), which redefines the set-point. Consequently, during sustained 

optokinetic stimulation, the change in the set-point enables the optokinetic system to slow 

down its eye tracking without increasing the error signal despite an increase in actual retinal 

slip. The habituation transfer function serves as a sensory filter, reducing the sensory input 

(i.e., the retinal slip velocity) over time. When the light is turned off, the current set-point is 

subtracted from the sensory input of 0 (no visual input in the dark), generating an error 

signal with the set-point value but opposite in sign. This error signal drives the eyes to move 

in the opposite direction, resulting in a negative OKAN. The decay of negative OKAN 

represents the discharge of the set-point adaptation operator.  

 

Figure 5.4. The proposed Conceptual model of negative OKAN. The diagram illustrates the optokinetic 
negative feedback control of the retinal slip velocity, incorporating the velocity storage mechanism and 
oculomotor plant (represented in black).  The set-point adaptation is depicted in red, with an adaptation 
operator composed of a leaky velocity integrator. The time constant, Ta, and the reciprocal of ka, indicate the 
adaptation intensity. The sensory habituation is shown in blue, consisting of a gain and a leaky integrator. This 
mechanism adjusts the efficiency of converting initial sensory input into electrochemical signals. The time 
constant, Th, and the reciprocal of kh, determine the dynamic and intensity of habituation.  
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5.3.3 Mathematical description of the model 

In order to gain insight into the experimentally observed set-point adaptation, we 

employed a nonlinear model consisting of adaptation and habituation leaky integrators 

(depicted in Figure 5.4A). This model is characterized by different sets of equations during 

the presentation of the stimulus and after the stimulus is turned off (i.e., in darkness). 

Specifically, during the stimulation phase, the model is governed by the following set of 

differential equations: 
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where X = [A, Q, H]T, Ve denotes the eye velocity, and Vs is the stimulus velocity. The 

parameters A, Q, and H correspond to the outputs of the respective leaky integrators. 

Furthermore, we have g as the oculomotor gain; kVSM and TVSM representing velocity storage 

gain and time constant; ka as the adaptation gain, and Ta as the adaptation time constant; h 

as the habituation gain; kh as the habituation gain, and Th as the habituation time constant. 

Finally, Vr signifies the retinal slip velocity. 

After stimulus offset (extinguishing the stimulus), the model is described by the 

following set of differential equations:  
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Ẏ =

[
 
 
 
 −

1 + gka

Ta
  
ka

Ta

−
kVSM

TVSM
−

1

TVSM]
 
 
 
 

Y (5.3) 

Ve = [−g, 1] Y 

 

(5.4) 

where Y = [A, Q]T and A and Q are defined as mentioned before. The model was implemented 

using Simulink in MATLAB (Mathworks, Natick, MA). For estimation purposes, we employed 

global optimization (globalSearch function in MATLAB) to maximize the variance-accounted-

for (VAF) as per the definition:  

VAF = 1 −
var(Ve − Ve,measured)

var(Ve,measured)
 (5.5) 

where Ve,est and Ve,measured are the simulated and experimentally measured values of eye 

velocity, respectively, and var(.) denotes the variance. We used the nonlinear least squares 

method and trust-region-reflective algorithm to optimize the parameters of the model. 

 

5.3.3 Simulation results 

Figure 5.5 illustrates the model simulations alongside the empirical slow-phase 

velocities (SPVs). A comprehensive list of all estimated parameters is provided in Table 5.1. 

Additionally, we demonstrate the simulation results of the partial models, which included 

only the set-point adaptation or the habituation component. Notably, a partial model with 

only a set-point adaptation mechanism (Figure 5.6A) and or one with only a habituation 

mechanism (Figure 5.6B) is not sufficient to explain both OKN adaptation and negative 

OKAN. While the partial model with the adaptation component explained the negative OKAN, 

it underestimated OKN (Figure 5.6C). Additionally, the partial model with only the 

habituation component failed to exhibit negative OKAN (Figure 5.6D). Together, our 

simulation results indicate that the set-point adaptation mechanism is crucial for the 

emergence of negative OKAN and therefore is a necessary condition to explain the behavior  
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Figure 5.5. Comparing the simulation results with the empirical data. (SPV; Figures 5.3A, B). 
Simulated SPVs and empirical SPV data are shown under 5- (A, B), 6- (C, D), 7- (E, F), 10- (G, H), 20- (I, J), 
and 40- (K, L) minute optokinetic stimulation at 10 deg/s. The SPVs from the left eye and right eye are 
depicted in blue and red traces, respectively (refer to Fig. 5A, B), and the simulation results are shown in 
black. The optimized parameters used in the simulations are provided in Table 5.1. 
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Table 5.1. The parameter list for simulation of the model in Figure 5.4. SD: Stimulus duration in minutes; 
VAF: variance-accounted-for (%). See the definition of the parameters of the model in the caption of Figure 
5.4. 

 Left Eye Right eye 

SD 5 6 7 10 20 40 5 6 7 10 20 40 

Ta 1300 1300 1300 1300 1300 1300 700 700 700 700 700 700 

Tvsm 30 30 30 30 30 30 30 30 30 30 30 30 

Th 10 10 10 10 10 10 10 10 10 10 10 10 

g 0.9 0.7 0.9 0.9 0.5 0.9 1.6 0.9 1.7 1.5 0.7 0.3 

kvsm 0.5 0.8 0.5 0.7 0.7 0.5 1 0.6 0.7 0.55 0.3 1.2 

ka 2.2 2 1.8 1.4 0.6 1.4 0.5 1.1 0.45 0.45 0.85 0.4 

h 3.5 4 4.5 5 5 5.1 9 7.2 7.2 7 7 8 

kh 2.9 3.5 3.9 4.35 4.25 4.2 8 6.3 6.4 6.2 5.6 7.2 

VAF 0.98 0.97 0.98 0.98 0.97 0.96 0.98 0.98 0.99 0.99 0.98 0.97 

 

 A 

B 

C 

D 

Figure 5.6. Partial models fail to explain observed behavioral data. (A) A partial model derived from 
our proposed model only comprising the adaptation component. (B) A partial model derived from our 
proposed model with only habituation component.  The definition of parameters in panels A and B are 
same as in Figure 5.4. (C, D) Data and simulations of partial model with adaptation component and 
partial model with habituation component, respectively. The data is the population averaged SPV 
recorded from the right eye of the animals for 10-minutes stimulation condition and is depicted in red in 
all panels. The simulation results are illustrated by black solid traces. The parameters were optimized 
for each model. See table 5.2 for the description of parameters.  
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of the animal during prolonged optokinetic stimulation. However, it is not sufficient; A 

habituation mechanism is required to account for the decrease in OKN gain during 

stimulations.  

 

5.4 Summary of results 

Here, we investigated OKN response of larval zebrafish in response to prolonged 

unidirectional stimulation. The unidirectional stimuli elicit robust OKN, which diminished to 

a steady state value. Upon offset of the stimulus, a robust negative OKAN was evoked, which 

then decayed to zero. We proposed that a set-point adaptation together with  habituation 

mechanism could explain the OKN adaptation and the negative OKAN ensuing the offset of 

the stimulus. Using a mathematical model incorporating set-point adaptation and 

habituation mechanisms, we tested this hypothesis and demonstrated that a set-point 

adaptation mechanism is in play in larval zebrafish by which a negative OKAN is elicited upon 

the offset of the stimulus.  

  

Table 5.2. The parameter list for 
simulation of the partial models in 
Figure 5.6. All parameters are 
defined similarly as in Table 5.1. 

 Right eye  

SD Habituation Set-point  

adaptation 

Ta  438 

Tvsm 30 30 

Th 32  

g 1.5 1.5 

kvsm 0.55 0.55 

ka  0.45 

h 3.6  

kh 3.1  
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6. OPTOKINETIC SET-POINT ADAPTATION: AN INTERNAL 

DYNAMIC CALIBRATION MECHANISM FOR OCULOMOTOR 

DISEQUILIBRIUM 

 

Advancement in technology has made larval zebrafish an excellent model for the study 

of visuomotor learning and control. In the previous chapter, we proposed a novel set-point 

adaptation mechanism in larval zebrafish, by which the animal adjust the eye movement 

based on visual experience. Using a mathematical model, we demonstrated that the set-point 

adaptation mechanism allows the animal to decrease the eye tracking velocity during 

prolonged unidirectional stimulation by decreasing the error signal input to the oculomotor 

system. However, the specific physiological and functional relevance of this mechanism 

remains elusive. Additionally, the unidirectional stimulation used in the previous study does 

not represent the natural visual stimulation in larval zebrafish. Here, I present our findings 

on the physiological relevance of set-point adaptation during more natural bidirectional 

stimulation. The behavioral data for this study was gathered by our collaborators, Dr. Ting 

Feng Lin and Dr. Melody Ying-Yu Huang, at the University of Zurich. 

 

6.1. Advantages of using sustained bidirectional over unidirectional 

optokinetic stimulation  

During early development and before the onset of vestibular functions (<7-dpf), larval 

zebrafish mainly rely on the visual system for swimming (Beck et al., 2004; Bever and Fekete, 

2002; Lambert et al., 2008). Previous studies of negative OKAN have mostly used prolonged 

unidirectional stimulation to elicit the behavior (Brandt et al., 1974; Maioli, 1988; Pe rez-

Schuster et al., 2016; Wu et al., 2020b). The study designs are far from the animals' natural 

exploratory behavior; Freely-swimming larval zebrafish exhibit spontaneous turns, 

alternating between one direction (Figure 6.1A) and the other, which is more consistent with 

a direction-alternating stimulation paradigm (Figure 6.1B). Thus, to understand the 

significance of the set-point adaptation mechanism, we used a direction-alternating 
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optokinetic stimulation paradigm that more resembles the natural swimming patterns of the 

animal.  

For this study, we used a simplified form of the direction-alternating stimulus: the 

bidirectional stimulation protocol, which during the simulation phase consists of a rotating 

drum changing rotation direction every 15 seconds. The stimulus velocity may or may not be 

the same for the directions (referred to as symmetric and asymmetric stimulation, 

respectively; see section 2.2.4). Our modeling results from the previous study predicted an 

asymmetric direction-alternating stimulus could elicit adaptation and negative OKAN. 

Accordingly, we investigated OKN and negative OKAN using the bidirectional optokinetic 

stimulation paradigm to understand the functional significance of the set-point adaptation 

mechanism in animals.  

 

6.2. Zebrafish behavior during bidirectional optokinetic stimulation 

To investigate how the differences in the visual experience may affect the optokinetic 

set-point and the oculomotor behavior, we measured the eye position of the animal before, 

during, and after symmetric direction-alternating (SA) and asymmetric direction-alternating 

(AA) stimulation. The eye position and corresponding slow phase eye velocity (SPV) of an  

A B 

Figure 6.1. Schematic comparing visual experience of the animal during natural 
exploration and bidirectional stimulation in experimental settings. (A) The animal 
swimming freely and exploring in natural environment. The direction of the animal 
movement, and so the retinal image of whole visual field, changes spontaneously. (B) The 
animal viewing a bidirectional rotating drum consistently changing direction after a fixed 
amount of time. Adapted from (Lin et al., 2022). 
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Figure 6.2. Comparison of larval OKN and negative OKAN during unidirectional and SA stimuli. (A) 
Unidirectional stimulus induces OKN adaptation and negative OKAN in larval zebrafish. Top panel: The stimulus 
image pattern (darkness or gratings) and the stimulus velocity are shown on the top as horizontal bars and lines, 
respectively. The eye position of the animal is show at bottom. Middle panel: magnification of eye position during 
the transition from pre-stimulation darkness to optokinetic nystagmus (OKN) on left and the transition from OKN 
to post-stimulation darkness on right.  The SPV was estimated as the median velocity in the first second of each 
slow phase (shaded area) after discarding the quick-phase eye movement (triangle). At the bottom, the magnified 
SPV traces are shown to better demonstrate the transition phases from pre-stimulatory darkness to OKN on left 
and from OKN to post-stimulatory darkness on right. Positive values represent movements to the left 
(counterclockwise), and negative values represent movements to the right (clockwise). (B) Same as in A, except 
the stimulus was 10/10 symmetric direction-alternating (SA) stimulation. Adapted from (Lin et al., 2022). 

A 

B 
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exemplar animal during SA, AA, and unidirectional stimulation (for comparison) are shown 

in Figures 6.2 and 6.3. During the darkness before the onset of the stimulation, the animal's 

eye spontaneously makes saccade movements in either direction (Figures 6.2A-B, 6.3A-B, left 

middle, and bottom panels with corresponding windows on the left top panel). After each 

saccade, the eye drifts back to the center of the visual field due to the velocity storage 

integrator (Figures 6.2A, 6.3A, left middle panels) (Chen et al., 2014b). During this period, 

the direction of the eye movement was not biased towards either direction across all 

conditions (i.e., stimulus paradigms). During unidirectional stimulation, the SPV decreased 

over time, suggesting an ongoing adjustment of the oculomotor input signal through set-

point adaptation (Figure 6.2A, bottom left panel) consistent with our observation in the 

previous study (see Chapter 5 for more details). Upon the offset of the stimulus, the direction 

of the eye movement reversed, and the eye started to beat in the direction of the stimulus, 

manifesting as negative OKAN (Figure 6.2A, middle and bottom left panels). Unlike the 

unidirectional stimulation, the symmetric direction-alternating stimulation —where 10 

deg/s stimuli were presented with direction alternating every 15 seconds— did not elicit 

noticeable negative OKAN, and SPV velocity was close to zero during post-stimulation 

darkness (Figure 6.2B, middle, bottom, and top right panels).  

Next, we investigated whether an asymmetric direction-alternating (AA) stimulus can 

induce OKN adaptation and negative OKAN based on the prediction from our modeling study. 

We used two AA stimuli: 10/5 AA stimulus (Figure 6.3A) and 20/5 AA stimulus (Figure 6.3B). 

10/5 AA stimulus is generated by rotating the drum with a velocity of 10 deg/s in one 

direction and 5 deg/s in the other direction and by alternating between the two every 15 

seconds. 20/5 AA stimulus is similar to 10/5 AA stimulus, except the drum rotates with the 

velocity of 20 deg/s in the faster direction. Our results revealed that most larvae did not 

exhibit negative OKAN during 10/5 AA stimulation (Figure 6.3A, bottom left). However, 

during 20/5 AA stimulation, SPV magnitude decreased in the faster direction, and negative 

OKAN manifested with SPV directing opposite to the faster stimulation (Figure 6.3B, bottom 

left). Together, our result showed that given sufficient contrast in asymmetric stimulation, 

negative OKAN can be elicited in 5-pfd larval zebrafish. 
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Figure 6.3. Asymmetric optokinetic stimulation can elicit negative OKAN. (A) 20/5 asymmetric 
alternating-direction (AA) stimulus induces OKN adaptation and negative OKAN in larval zebrafish. Top panel: 
The stimulus image pattern (darkness or gratings) and the stimulus velocity are shown on the top as horizontal 
bars and lines, respectively. The eye position of the animal is show at bottom. Middle panel: magnification of 
eye position during the transition from pre-stimulation darkness to optokinetic nystagmus (OKN) on left and 
the transition from OKN to post-stimulation darkness on right.  The SPV was estimated as the median velocity 
in the first second of each slow phase (shaded area) after discarding the quick-phase eye movement (triangle). 
At the bottom, the magnified SPV traces are shown to better demonstrate the transition phases from pre-
stimulatory darkness to OKN on left and from OKN to post-stimulatory darkness on right. Positive values 
represent movements to the left (counterclockwise), and negative values represent movements to the right 
(clockwise). (B) Same as in A, except the stimulus was 10/5 (AA) stimulation. Adapted from (Lin et al., 2022). 

B 

A 
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6.3. Mathematical model of set-point adaptation during asymmetric direction-

alternating stimulation 

We adapted our proposed model in the previous study (See Chapter 5) to bidirectional 

stimulation and simulated the behavior of larval zebrafish. The previous model (Figure 5.4) 

was adapted for unidirectional stimulation; however, for bidirectional stimulation, the 

habituation model needed to be modified. Here, I initially describe the modified model and 

how the parameters of the model were estimated, and next, I present the population-median 

data and the simulation results.  

 

6.3.1. Model description 

The schematic of the adapted model is shown in Figure 6.4. When the stimulus is 

presented, the retinal slip signal, Vr, is calculated by subtracting the eye velocity, Ve, from the 

stimulus velocity, Vs (Eq. (6.1)). The retinal slip velocity is rectified and integrated by leaky 

integrator with a time constant of Th and gain of kh (Eq. 6.2). Additionally, the retinal velocity 

is scaled with a gain of h from which the output of the integrator, H(t), is subtracted with an 

appropriate sign. Together, the integrator and the habituation gain, h, constitute the 

habituation mechanism in retinal ganglion cells and downstream areas (Pe rez-Schuster et 

al., 2016) (See Eq. 6.3). Since the previous model was designed for unidirectional stimulation, 

we made adjustments to preserve the functionality of each operator under direction-

alternating stimuli. Specifically, we included an absolute value function and corrected the 

sign of the habituated retinal slip velocity signal, as the habituation of the signal remains 

consistent regardless of the direction of the stimulus (See Figure 4Ai in (Pe rez-Schuster et 

al., 2016)). 

Vr(t) = Vs(t) − Ve(t) (6.1) 

dH(t)

dt
= −

1

Th
H(t) +

kh

Th

|Vr(t)| 
(6.2) 
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Our behavioral data showed that nasal and temporal gains are different, which is 

consistent with findings from previous studies (Huang and Neuhauss, 2008a; Mueller and 

Neuhauss, 2010; Qian et al., 2005). These gains are modeled using a piecewise linear function 

that varies based on the direction of eye movement, whether it is nasalward or 

temporalward. The nasal and temporal gains are obtained by averaging and scaling the eye 

velocity during corresponding movements (see Table 6.1). Subsequently, the filtered retinal 

slip signal, denoted as Vf(t), is derived as 

Vf(t) = gT/N [h Vr(t) − sign(Vr(t)) H(t)] (6.3) 

Figure 6.4. Schematic of the mathematical model of set-point adaptation. The retinal slip velocity (Vr), 
which is the difference between the stimulus velocity (Vs) and the eye velocity (Ve), undergoes several 
processing steps. During habituation, Vr is rectified and integrated by a time constant of Th and a gain of kh 
(depicted in the blue shaded area). Here, |u| is used to calculate the absolute value of the input (shown in the 
orange shaded area), and together with a sign switch at the output, it leads to a continuous habituation effect 
when subtracted from Vr, irrespective of the stimulus direction. Note that the habituation gain, h, with the 
habituation integrator gain, kh, determine the efficacy of the habituation. The habituated (or filtered) Vr is then 
processed through a nonlinear gain (T-N gain) to capture the T-N asymmetry. The error between the filtered Vr 
and the set point is scaled by the oculomotor gain (g) and combined with the velocity storage mechanism (VSM) 
to control the eye velocity (Ve). The VSM contains a leaky integrator with a time constant of Tvsm and a gain of 
kvsm, contributing to the eye velocity. Finally, Ve is integrated with a time constant of Ta and a gain of ka to adjust 
the set-point. Adapted from (Lin et al., 2022). 
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where sign(.) is the sign function, h is the habituation gain, and gT/N is the temporal/nasal 

asymmetry. As the eyes move, the adaptation integrator —denoted by the red box in Figure 

6.4— is charged, which in turn defines the internal set-point of the oculomotor system as 

E(t) = Vf(t) − A(t) (6.4) 

where A(t) is the output of the adaptation integrator and E(t) is the error signal input to the 

oculomotor system. This signal drives the oculomotor system and generates eye movement, 

described in the following equation: 

Ve(t) = gE(t) + Q(t) (6.5) 

g is the oculomotor gain, and Q(t) is the output of the velocity storage integrator. The 

description of A(t) and Q(t) are given using the following system of equations: 

dQ(t)

dt
= −

1

Tvsm
Q(t) +

kvsm

Tvsm
E(t) (6.6) 

dA(t)

dt
= −

1

Ta
A(t) +

ka

Ta
Ve(t) 

(6.7) 

 

Table 6.1. Temporal-Nasal asymmetry gain was 
calculated for all stimulus conditions.  

Stimulus 

condition 

20/5 

AA 

10/10 

SA 

10/5 

AA 

gN 0.9 1.6 1.8 

gT 0.77 1.27 1.46 
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where Tvsm and Ta are the velocity storage and adaptation time constants, and kvsm and ka are 

the velocity storage and adaptation gains, respectively. Upon offset of the stimulus, Vf(t)=0, 

and therefore, E(t) = -A(t), signifying a change in the direction of the eye movement. During 

the post-stimulation phase, the integrator is discharged, which manifests as negative OKAN. 

The differential equations above were solved using ode45 function in MATLAB for a given set 

of parameters.  

 

6.3.2. Estimation of the model parameters  

We estimated the model parameters (ka, Ta, kh, Th, kvsm, Tvsm, h, and g) using the system 

identification toolbox in MATLAB. Specifically, we used the nonlinear least square method 

and trust-region algorithm with fixed time steps of 0.1 second to find a plausible set of 

parameters that maximized the variance-accounted-for (VAF) defined as: 

VAF = [1 −
var(Vdata − Vest) 

Vdata
 ] × 100% (6.8) 

where Vdata and Vest are the measured and estimated eye velocity, and var(.) denotes the 

variance. A model that perfectly estimates the eye velocity would give a VAF of 100%, and 

any deviation from the data would result in a VAF value less than 100%.  

 For the median population behavior, we used data from the 10/10 SA stimulus 

condition to estimate the parameters of the model. Each stimulation protocol consisted of a 

5-minute period of darkness, followed by the first stimulatory phase with 20 minutes of 

stimulus presentation, then 5 minutes of darkness, and finally, the second stimulatory phase 

consisting of 20 minutes of stimulus followed by 10 minutes of darkness. We estimated the 

model's parameters using data from one stimulatory phase and evaluated its performance 

using data from the other stimulatory phase. We built the first model using data from the 

first stimulatory phase and validated it with data from the second stimulatory phase, and 

vice versa for the second model. Both models exhibited similar qualitative and quantitative 

performance and resulted in similar parameter sets (refer to Table 6.2). For all the 

representative simulations, we only used the predictions from the first model. 
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For model validation, we used the same parameter set for all conditions except for the 

temporal/nasal gain (gT/N); gT/N was estimated during each condition separately (see Table 

6.1). After obtaining the parameter estimates using data from a specific stimulus condition, 

we assessed the goodness of fit for each condition. In this study, we present the parameters 

estimated and tested using 10/10 SA stimulus and validated with 20/5 SA and 10/5 SA 

stimulus conditions (refer to Table 6.2). Remarkably, qualitatively similar results were 

observed when employing other stimulus conditions for parameter estimation (results not 

shown). 

Table 6.2. Estimated parameters for 
population-median data for all conditions as 
well as goodness-of-fit (GoF) characterized by 
VAF for each stimulus condition. In model 1, 
parameters are estimated using the first 
stimulatory phase from 10/10 SA condition 
whereas for model 2, the parameters are estimated 
from the second stimulatory phase and valid. Both 
models are validated using the data from the other 
conditions (i.e., 20/5 and 10/5 AA stimulation). 

Parameter/GoF Model 1 Model 2 

ka 1.8 1.8 

kh 0.43 0.64 

kvsm 0.45 0.45 

Ta (s) 583 735 

Th (s) 120 95 

Tvsm (s) 3 2.5 

g 0.042 0.07 

h 3.2 4.3 

VAF20/5 (%) 90 89 

VAF10/10 (%) 95 95 

VAF10/5 (%) 93 92 
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6.4. Model predictions closely match population-median SPV data across 

stimulus conditions. 

To investigate and compare the oculomotor responses to both symmetric and 

asymmetric stimulation, we calculated the population-median slow-phase velocity (SPV) for 

both 10/10 SA (Figures 6.5A-C) and 20/5 AA (Figures 6.5D-F) stimuli. Under 10/10 SA 

stimulation, the SPV decreased equally in both directions over time (Figures 3A, B), and no 

negative OKAN was observed after the stimulation (Figures 6.5C). In contrast, during 20/5 

AA stimulation, the SPV gradually decreased in the faster stimulus direction while remaining 

largely unaffected in the other direction, which mitigated the temporal-nasal (T-N) 

asymmetry in OKN over time (Figure 6.5D, E), despite the sustained velocity difference in 

both directions. Additionally, negative OKAN emerged after the 20/5 AA stimulation (Figure 

6.5F). However, such asymmetric SPV adaptation and subsequent negative OKAN were less 

prominent in the milder 10/5 AA stimulation group (Figure 6.6A-C).  

In order to understand the mechanisms underlying negative OKAN under different 

stimulation conditions, we used the mathematical model incorporating sensory habituation 

and set-point adaptation introduced above. Overall, our model effectively reproduced the 

observed eye movements during direction-alternating stimulation. For instance, the 

predicted slow-phase velocity (SPV) from the model was compared with empirical data for 

both 10/10 SA (Figure 6.5A-C) and 20/5 AA (Figure 6.6D-F) stimulations. Under SA 

stimulation, the model's set-point adaptation operator exhibited opposite charging cycles, 

leading to a relatively constant set-point. In contrast, under AA stimulation, the adaptation 

integrator was charged more in the faster-stimulus direction, resulting in the gradual build-

up of a set-point over time. Conceptually, adjusting the set-point alone should decrease the 

SPV in the direction of the faster stimulus and increase it by the same amount in the opposite 

direction. However, when we consider sensory habituation in our model, it predicts a 

relatively consistent SPV in the slower-stimulus direction while showing a significant 

decrease in SPV in the faster-stimulus direction. Furthermore, during the post-stimulation 

period following the 20/5 AA stimulus, the non-zero set-point contributed to negative OKAN 

(Figure 6.5F). The model also demonstrated SPV similar to experimental data during 10/5 

AA stimulation (Figures 6.6A-C), although the negative OKAN was less pronounced compared 
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to the 20/5 AA condition and was not evident in the experimental data (compare Figures 

6.5F and 6.6C). 

Figure 6.5. Optokinetic set-point adaptation model predicts the observed SPV in larval zebrafish. Panels 
(A–F) display the model-predicted population-median slow-phase velocity (SPV) represented by colored lines, 
overlaid on the median ± median absolute deviation (black line with gray shadow) of empirical SPVs during 
10/10 symmetric alternating stimulations (SA, n = 29) (A–C) and 20/5 asymmetric alternating stimulations 
(AA, n = 18) (D–F). To ensure consistency, we aligned the first stimulus direction as positive rather than 
specifying it as left or right. Hence, the plots exhibit one eye starting with a nasalward movement (blue trace) 
and the other eye starting with a temporalward movement (red trace). The stimulus image pattern (darkness 
or gratings) and stimulus velocity are indicated at the top as horizontal bars and lines, respectively. Adapted 
from (Lin et al., 2022). 

A 

B C 

D 

F E 
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Figure 6.6. Low-contrast SA stimulation is not sufficient to elicit 
significant negative OKAN consistent with the prediction of the 
mathematical model. The predicted SPV (colored lines) is 
superimposed on the median ± median absolute deviation of 
empirical SPVs during 10/5 asymmetric alternating (AA, n = 21) 
stimulation. To maintain consistency, we aligned the first stimulus 
direction as positive, irrespective of whether it was left or right. 
Consequently, the plots display one eye initiating with a nasalward 
movement (blue trace) and the other eye starting with a 
temporalward movement (red trace). The stimulus image pattern 
(darkness or gratings) and stimulus velocity are illustrated at the top 
as horizontal bars and lines, respectively. Adapted from (Lin et al., 
2022). 
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6.5. Behavioral asymmetry was observed during symmetric stimulation in 

individual larvae. 

Based on the population SPV median, only the asymmetric stimulation induced set-

point adaptation and resulted in negative OKAN (Figure 6.5). Surprisingly, some individual 

larvae displayed negative OKAN under symmetric stimulation. A representative larva 

showed robust negative OKAN following 10/10 SA stimulation, suggesting a potential bias in 

the preceding SPV. To address this, we calculated the population SPV median (n = 29) as the 

standard response curve and compared it to single larva behavior (Figure 6.7B). Results 

confirmed that the representative larva had a faster SPV in the positive direction during early 

OKN (Figure 6.7B; left magnified panel), followed by negative OKAN in the negative direction 

(Figure 6.7B; right magnified panel). To visualize the SPV difference, we calculated ΔSPV, 

indicating the variation in the SPV of individual larvae, by subtracting the population median 

from the individual's SPV (Figures 6.7C). The ΔSPV of the representative individual exhibited 

an asymmetric positive bias during early OKN (Figure 6.7C; left magnified panel), which was 

mitigated towards the late phase of the OKN (Figure 6.7C; right magnified panel). 

To quantify the asymmetric responses and adaptation under symmetric stimulation 

across individuals, we calculated average ΔSPVs for each individual larva during specific time 

windows: 4 minutes before the stimulus onset (denoted by "pre"), 4 minutes after the onset 

of the stimulus in the first stimulatory phase (depicted by "early"), the last 4 minutes of the 

second stimulatory phase (shown as "late"), and the duration from 1 to 5 minutes after offset 

of the stimulus at the end of the second stimulatory phase (denoted by "post") (bottom 

panels of Figures 6.7B, C). The probability distribution plots showed normal distributions 

centered around 0 deg/s for both early and late OKN, with the late OKN distribution being 

narrower and taller, indicating mitigated behavioral asymmetry over prolonged stimulation 

(Figure 6.8A). We plotted late ΔSPV against early ΔSPV, revealing a significant positive 

correlation with a slope smaller than one, consistent with the reduced variance in late ΔSPV 

distribution (Figure 6.8B). This means that fewer larvae exhibited asymmetric responses 

after prolonged stimulation. Note that the observed correlations did not arise from 

regression towards the mean (Furrow, 2019), as the slope of the null expectation derived 

from temporally shuffled data was significantly different than the slope obtained from the 
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data. Moreover, the changes in ΔSPV across stimulus phases (ΔΔSPV) plotted over early ΔSPV 

showed a negative correlation, suggesting that greater inherent behavioral asymmetry (i.e., 

early ΔSPV) led to more optokinetic set-point adaptation (Figure 6.8C). Furthermore, a 

significant negative correlation was observed between changes in eye movements in the dark 

A 

B 

  

C 

  

Figure 6.7. Individual larval zebrafish display negative OKAN during symmetric stimulation.  (A) A 
representative eye-position trace of a single larva exhibiting OKN during 10/10 SA stimulation, followed by 
negative OKAN. The bottom plots provide magnifications to illustrate the transition phases from OKN to inter-
stimulatory and post-stimulatory periods, respectively. (B) Magnifications comparing SPV of the exemplar larva 
to the median SPV for nasalward (blue; middle panel) and temporalward (red; bottom panel) at 
abovementioned transition phases. Top panel exhibits the stimulus image pattern and velocity are shown using 
a horizontal bar and a line. The magnified windows indicate the pre-stimulatory (pre), early/later stimulatory 
(early/late), and post-stimulatory (post) phases. (C) Same as in (B) except the difference between the larva’s 
SPV and the median SPV is shown.  Adapted from (Lin et al., 2022). 
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before and after OKN (ΔΔSPV) and early ΔSPV, indicating a dependence of negative OKAN on 

inherent OKN asymmetry and inherent bias (Figure 6.8D). Overall, the behavior suggests that 

some individual larvae demonstrate inherent asymmetry in their response which manifests 

as OKN adaptation and negative OKAN. Additionally, the asymmetry in the response is 

mitigated gradually during prolonged stimulation.  

 

6.6. Inter-individual variations and behavioral asymmetries can be explained 

by innate bias in the optokinetic system. 

Based on the observed data, we propose that individual larvae showing set-point 

adaptation and negative OKAN under symmetric stimulation might possess an inherent 

directional bias in their optokinetic system. To test this idea, we introduced a constant "bias" 

value in our conceptual model (Figure 6.9). The model predictions demonstrate that varying 

this bias can either predict no asymmetry in SPV (Figures 6.10A-C) or significant asymmetry 

with resulting negative OKAN (Figures 6.10D-F) under symmetric stimulation. Specifically, 

we estimated the innate bias value of each individual larva by using the parameters of the 

A B C D 

Figure 6.8. Response asymmetry during early phase of stimulation predicts OKN adaptation and 
negative OKAN. (A) The probability distribution of ΔSPV for 29 fish during the early and late periods is 
shown. Two lines indicate the fitting of the distributions with a Gaussian function. (B) The late ΔSPV plotted 
against the early ΔSPV. The slope of the solid line representing the linear regression is significantly smaller 
than 1 and the dashed line (representing temporally shuffled data; p=1.810-8 and p=4.210-6, 
respectively; interactive analysis of covariance). (C) Changes in ΔSPV across stimulus phases (late ΔSPV – 
early ΔSPV, ΔΔSPV) plotted against the early ΔSPV. The slope pf the solid line representing the linear 
regression is significantly smaller than the slope of the dashed line (representing temporally shuffled data; 
p=4.210-6, respectively; interactive analysis of covariance). (D) Changes in the eye movements before and 
after OKN (post-ΔSPV – pre-ΔSPV, ΔΔSPV) plotted against the early ΔSPV. Data from the animal is depicted 
in (A) as filled circles, and linear regression fit of the empirical data is represented by black solid lines. The 
plots align the first stimulus direction as positive, showing one eye with nasalward movement (blue trace) 
and the other with temporalward movement (red trace). "p" represents p-values, and "R" represents 
correlation coefficients obtained through Pearson correlation. Adapted from (Lin et al., 2022). 
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model obtained from the population (i.e., median data). Here, the SPV traces of two exemplar 

larval zebrafish and the model predictions are shown (Figures 6.10A-F). Individual fish 1 

exhibited no significant asymmetric response (Figure 6.10B), OKN adaptation (Figure 

6.10A), or negative OKAN (Figure 6.10C). Regardless, the model was able to explain most of 

the variance in data (B=3.5, VAF=90%). On the other hand, individual neuron 2 demonstrated 

a clear asymmetric response (Figure 6.10E) and OKN adaptation (Figure 6.10D) which later 

manifested as negative OKAN (6.10F). Additionally, our model successfully explains the 

asymmetry in SPV, OKN adaptation, and negative OKAN (B=13.5, VAF=87%). 

The distribution of the estimated innate bias is shown in Figure 6.10G. The distribution 

is roughly symmetric and centered around 0 deg/s, with a few outliers biased in either 

direction and as such, population median SPV does not exhibit asymmetric OKN or negative 

OKAN. Moreover, the innate bias predicts the ΔSPV during the early and later phases of the 

stimulation (Figures 6.10H, I, respectively). Interestingly, the correlation between the 

estimated bias values and empirical data during the early phase of the estimation is higher 

than that between the estimated bias values and empirical data during the late phase of the 

stimulation, indicating that set-point adaptation can compensate for the ocular motor 

asymmetry caused by the innate bias (R=0.673, p=6.9810-9, Figure 6.10H; R=0.355, 

p=0.006, Figure 6.10I). Furthermore, the bias also predicts the change in eye movements in 

the dark (post-ΔSPV – pre-ΔSPV, ΔΔSPV; Figure 6.10J), suggesting that the manifestation of  

Figure 6.9. Conceptual model with innate bias. The bias is a constant value that simulates 
the OKN adaptation and negative OKAN observed in some individual larvae across dataset. 
All other parameters are defined and termed same as in Figure 6.4. Adapted from (Lin et al., 
2022). 
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Figure 6.10.  Asymmetric OKN and the corresponding set-point adaptation under the symmetric stimulus 
are accounted for with an inherent bias in the optokinetic system. (A) SPV traces of an exemplar larval 
zebrafish (in black) and the prediction of the modified model with inherent bias (blue and red traces for 
nasalward and temporalward SPV simulation). (B) and (C) depict the magnifications of the transition from pre-
stimulatory to stimulatory phase and from stimulatory to post-stimulatory phase, respectively. The larva does 
not exhibit significant OKN set-point adaptation and negative OKN, with an estimated bias value of 3.5.  (D, E, F) 
are same as in (A-C) for an exemplar larval zebrafish that demonstrate significant asymmetric response, OKN 
adaptation and negative OKAN. The model with an estimated bias of 13.4 predicts the asymmetric response, OKN 
adaptation, and negative OKAN. Through (A-F), the stimulus and its pattern are shown at top. (G) Distribution of 
estimated bias values across population (N=29). (H-J) Early, late, and the changes of the eye movements in 
darkness before and after OKN (post-ΔSPV – pre-ΔSPV, ΔΔSPV) as a function of bias across the population (N=29). 
The data points illustrated by filled circles correspond to simulation for the animal shown in (A-F).  Adapted from 
(Lin et al., 2022). 
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the negative OKAN depends on the inherent bias. In conclusion, adjusting the innate 

bias in the model allows us to predict the extent of behavioral asymmetry, the resulting set-

point adaptation, and the manifestation of negative OKAN. 

Additionally, we asked whether the model could predict the experimentally observed 

relation between different phases of the stimulation protocol (Figures 6.7 and 6.8). Thus, we 

employed the estimated biases to simulate ΔSPV (Figure 6.11) for all the animals used in the 

A B 

C D E F 

Figure 6.11.  The mathematical model predicts the relationship between asymmetric response, OKN 
adaptation, and negative OKAN observed experimentally across all population. (A) Comparing the 
model estimations of median SPV (across the population) and individual fish 2 in Figure 6.9D-F. “Pre”, “Early”, 
“Late”, and “Post” are defined same as in Figure 6.6. The gray shadow represents the median absolute deviation 
obtained over the estimates for all individual larvae across the population. The stimulus and its image pattern 
are shown at the top. (B) ΔSPV calculated from the panel A with the estimates for the same Larva. (C) 
Distribution of early and late ΔSPV calculated over the SPV estimation of all larvae obtained as in panels A and 
B (N=29). (D, E, F) The late ΔSPV (D), the changes in ΔSPV across stimulus phases (late ΔSPV – early ΔSPV, 
ΔΔSPV) (E), and the changes of the eye movements in the dark before and after optokinetic nystagmus (post-
ΔSPV – pre-ΔSPV, ΔΔSPV) (F) plotted as a function of the early ΔSPV. The data points illustrated by filled circles 
correspond to simulation for the animal shown in (A, B); N=29. Adapted from (Lin et al., 2022). 
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study and compared it to the simulation obtained for the median population data. The model 

simulations successfully capture all key features observed in the empirical data (compare 

Figures 6.7 and 6.8 to Figure 6.11). Specifically, the variance of the ΔSPV distribution 

decreases consistently throughout the stimulation (Figures 6.11C-E). Additionally, we 

observed a significant negative correlation between the change in eye movements in the dark 

(post-ΔSPV – pre-ΔSPV, ΔΔSPV) and the early ΔSPV (Figure 6.11F). This confirms that the 

model is generalizable across individual larvae, and the innate biases are responsible for the 

inter-individual variation. 

Lastly, as part of our investigation, we also explored an alternative model where we 

introduced an innate bias at the motor level (Figure 6.12A). We estimated the bias values 

using the parameters estimated for the median population data in an attempt to simulate the 

SPV across the population and predict the variation in response asymmetry across individual 

larvae. Our simulations demonstrated that the alternative model resulted in behavioral 

asymmetry even before the optokinetic stimulus (Figure 6.12F), which contradicts our 

empirical observations. Moreover, while the alternative model could predict the relation 

between the innate bias and response asymmetry (Figures 6.12I; also see Figures 6.12B, C, 

E, F) as well as negative OKAN (Figures 6.12K; also see Figures 6.12D, G), it failed to replicate 

the compensation of behavioral asymmetry observed during symmetric stimulation (Figures 

6.12H, J). Thus, the proposed model remains more consistent with our experimental findings. 

 

6.7 Summary of results 

OKN during bidirectional stimulation. Our mathematical model predicted OKN during 

bidirectional stimulation. Furthermore, the model predicted asymmetric bidirectional 

stimuli lead to OKN adaptation and elicit negative OKAN. Indeed, our experimental data 

confirmed this prediction. While, on average, the animals did not exhibit negative OKAN 

during darkness after symmetric stimulation, a stimulus with sufficient asymmetry elicited 

OKN adaptation and ensuing negative OKAN after the offset of the stimulus. Furthermore, we 

looked at the response of individual larvae across the population and observed some 

individual larvae demonstrate asymmetric response and negative OKAN even during  
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Figure 6.12.  The mathematical model comprising an innate bias at motor level fails to 
predict observed SPV across the population and the inter-individual variations. Caption 
continued on the next page ¬ 
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symmetric stimulation. We hypothesized this could be due to an innate bias in the 

oculomotor system. By including a bias constant in the model, our model predicted a bias in 

the oculomotor system would lead to an asymmetric response and negative OKAN, thereby 

confirming our hypothesis. Our results indicated that set-point adaptation serves to mitigate 

response asymmetry in larvae exhibiting innate bias. 

  

Figure 6.12. Caption continued: (A) A modified mathematical model similar to that in Figure 
6.8, with a bias constant input at the motor level (yellow box). (B-D) Model prediction of the data 
from individual fish 1 (same as in Figures 6.6, 6.7, and 6.9). (E-G) Same as in (B-D) except the 
simulation were done for individual fish 2. For (B-G), “Pre”, “Early”, “Late”, and “Post” are defined 
same as in Figure 6.6. The gray shadow represents the median absolute deviation obtained over 
the estimates for all individual larvae across the population. The stimulus and its image pattern 
are shown at the top. (H) The probability distribution of ΔSPV for 29 fish during the early and 
late periods is shown. Two lines indicate the fitting of the distributions with a Gaussian function. 
(I) The late ΔSPV plotted against the early ΔSPV. The slope of the solid line representing the linear 
regression close to 1; (R=0.965, p=3.010-35). (J) Changes in ΔSPV across stimulus phases (late 
ΔSPV – early ΔSPV, ΔΔSPV) plotted against the early ΔSPV.  The correlation is not significant (R=-
0.095, p=0.470). (K) Changes in the eye movements before and after OKN (post-ΔSPV – pre-ΔSPV, 
ΔΔSPV) plotted against the early ΔSPV (R=-0.527, p=1.5310-5). Data from the individual larvae 
is depicted in as filled circles, and linear regression fit of the empirical data is represented by 
black solid lines. The plots align the first stimulus direction as positive, showing one eye with 
nasalward movement (blue trace) and the other with temporalward movement (red trace). "p" 
represents p-values, and "R" represents correlation coefficients obtained through Pearson 
correlation. Adapted from (Lin et al., 2022). 
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7. GENERAL SUMMARY AND DISCUSSION 

 

Growing evidence suggests that behavior and perception depend on the distributed 

and coordinated activity of neural populations within local (i.e., within a given brain area) 

and long-range (i.e., across different brain areas) networks. Multiunit recordings have 

provided insight into how neural populations' heterogeneity, spike time, correlations, 

intrinsic mechanisms, and internal states shape activity and sensory representation. On the 

other hand, functional imaging and anatomical studies have demonstrated the neural 

substrates and the integration of sensory information in distributed networks. These two 

approaches constitute different scales at which sensory systems are studied. The former 

studies neural ensemble in a brain region and its impact on local information processing, and 

the latter investigates how different brain regions coordinate activities to generate a 

behavioral outcome. Accordingly, the models used to understand our question of interest and 

make valid predictions should be adapted to the scales at which the sensory system is 

studied. In my thesis, we used a combination of data analysis and computational modeling at 

neural population and neural circuit levels to study how neural populations and circuits 

underlie behavior and perception. 

The first question in this thesis was how self-motion information is encoded in neural 

populations in the central pathway. In chapter 3, we first investigated how vestibular-only 

(VO) neural populations responded to artificial and naturalistic head motion stimuli within 

the vestibular nuclei (VN). We considered neuronal dynamics and tuning properties and 

found that, despite displaying similar tuning during artificial and naturalistic stimuli, 

responses were highly heterogenous. Upon a closer look at the spike trains during 

naturalistic stimulation, we showed that neural responses varied significantly from one 

neuron to another but also from one trial to another trial for a given neuron. However, most 

of the heterogeneity in response to naturalistic stimuli was attributed to variability across 

neural responses in the population. During artificial stimuli, the neural activity was 

heterogenous, albeit to a lesser degree than the response during naturalistic stimuli, and was 

attributed to both variability across the population and trial-to-trial variability. Next, we 
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characterized the correlation between the activity of VO neurons in VN by computing signal 

and noise correlations during artificial and naturalistic stimuli. We found that the correlation 

structure in VN was plastic. Specifically, while signal correlations during natural and artificial 

correlation were not significantly different than each other, noise correlations during 

naturalistic stimulation were significantly higher.  

Additionally, we investigated the neural response of vestibular neurons in PIVC to 

naturalistic and vestibular stimuli. Our analysis revealed that neural activity was 

heterogenous during artificial and naturalistic stimuli, with response to the latter stimuli 

demonstrating more heterogeneity. Although both neural variability across the population 

and trial-to-trial variability contributed to the heterogeneity, most of the heterogeneity was 

associated with the former. Next, we characterized the correlation structure in the vestibular 

neural population in PIVC. While signal correlation during artificial stimuli on average was 

close to zero, during naturalistic stimulation, the signal correlation was positive and 

significantly higher than that of during artificial stimulation. Moreover, although noise 

correlations were significantly different during naturalistic and artificial stimulation, they 

were close to zero on average indicative of decorrelation in neural populations. 

To understand the implications of correlations and heterogeneity observed in our 

dataset, in chapter 4, we used computational modeling that incorporated the known 

neurophysiological properties of vestibular neurons. Interestingly, the information decoded 

from the population activity depended on both heterogeneity and noise correlation. Our 

simulation revealed that in a homogenous population, the most information is obtained 

when the correlation structure maximizes signal correlation and minimizes the noise 

correlation. However, in a heterogeneous population, similar to the neural activity in the VN 

population, the decoded information was maximized when noise correlations were the 

highest and signal correlations were the lowest. Thus, our model demonstrated that both 

noise correlations and heterogeneity benefited population coding in VN during naturalistic 

stimulation. As such, our study, for the first time, showed that the population coding of 

natural self-motion in the early vestibular pathway is efficient and adapted to the statistics 

of the naturalistic stimuli.  
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In chapters 5 and 6, we investigate the optokinetic response (OKN) to prolonged 

stimulation. In chapter 5, we demonstrated that OKN adaptation and negative OKAN could 

robustly be elicited using prolonged unidirectional stimulation followed by a darkness 

period. Furthermore, we proposed a mathematical model that explained the observed 

negative OKAN at the circuit level. Specifically, we proposed a set-point adaptation 

mechanism that accounted for the manifestation of negative OKAN upon the offset of the 

stimulus. Additionally, the set-point adaptation was not sufficient to explain both OKN 

adaptation and negative OKAN. We included a habituation integrator in the model, which, 

together with the set-point adaptation mechanism, successfully explained both OKN 

adaptation and negative OKAN.  

In chapter 6, we further investigated OKN and negative OKAN using bidirectional 

stimuli that resembled naturalistic stimuli more than that of unidirectional stimuli. Our 

empirical data showed that while the symmetric bidirectional stimulation did not elicit 

negative OKAN, a bidirectional stimulus by sufficiently large asymmetry was sufficient to 

induce OKN adaptation and negative OKAN. We adapted our proposed model to bidirectional 

stimuli and showed that our model successfully predicted the OKN adaptation and negative 

OKAN during and after the stimulation, respectively. Additionally, we observed that some 

individual fish exhibited asymmetric responses even during symmetric stimulation. 

Interestingly, the response became less asymmetric during the stimulation and then, upon 

the offset of the stimulus, manifested as negative OKAN. We hypothesized the asymmetric 

response was due to innate bias in the optokinetic system. When our model included an 

innate bias, it successfully explained the asymmetric OKN response, OKN adaptation, as well 

as the following negative OKAN. Together, this result highlighted the significance and 

physiological relevance of the set-point adaptation mechanism, which mitigates asymmetric 

response in individuals with innate OKN bias.  

In addition to addressing the specific questions posited in the thesis, the results from 

this thesis provide important insights into several areas of research, medicine, and 

technology. Neuroscience models aid our understanding of the underlying mechanism of 

neurological and psychiatric disorders, which have important implications for treatments. 

Additionally, insights from these models contribute to the development of artificial neural 
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networks and deep learning algorithms, which have implications in various artificial 

intelligence fields. Finally, understanding the brain at population and circuit levels helps us 

to gain insight into how the brain processes information, generates behavior, and perceives 

the world around us. Such insights are crucial for the development of brain-computer 

interfaces, which help individuals with paralysis and sensory and motor disabilities to 

interact with the world.  

 

7.1. Population coding of self-motion in the central vestibular pathway 

7.1.1. Stimulus-dependent noise correlations in VN neural populations: implications for 

coding 

Our findings reveal distinct correlation structures within neural populations of VN 

when subjected to naturalistic versus artificial stimuli. Particularly, during naturalistic 

stimulation, positive noise correlations benefit information transmission by taking the 

diversity of responses among VN neurons into account. In contrast, artificial stimulation 

yields noise correlations that are, on average, close to zero and minimally affect information 

transmission. This aligns with the only previous investigation of population coding in 

ascending central vestibular pathway, which exclusively examined population coding using 

low-frequency artificial stimuli (Liu et al., 2013). Taken together, our findings firmly establish 

the stimulus-dependent nature of noise correlations among VN neural activities.  

The effect of noise correlations on population coding in response to natural versus 

artificial stimuli has been explored across sensory systems, such as visual (Brackbill et al., 

2020; Montijn et al., 2016; Simmons et al., 2013; Yoshida and Ohki, 2020), auditory (Heller 

et al., 2020; Mizrahi et al., 2014; Robin et al., 2013), somatosensory system (Bale et al., 2015), 

olfactory system (Iurilli and Datta, 2017), electrosensory systems (Metzen and Chacron, 

2021; Wang and Chacron, 2021), and gustatory system (Levitan et al., 2019) (see (Averbeck 

et al., 2006; Hofmann and Chacron, 2018; Kohn et al., 2016; Moreno-Bote et al., 2014; Panzeri 

et al., 2022) for review). Unlike the distinct coding properties exhibited by individual neurons 

across different conditions, previous studies in these systems have demonstrated a general 

similarity in the distribution of noise correlations and their impact on population coding. 
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Particularly, noise correlations, on average, tend to be close to zero and have, at most, 

minimal effects on information transmission during naturalistic stimulation. Initially, these 

findings might seem contradictory to our current results, where we have established 

significant positive noise correlations during naturalistic self-motion stimulation led to 

improved information transmission. However, it is essential to note that the conditions under 

which these previous studies were conducted did not elicit fully natural forms of stimulation. 

For instance, in the case of the visual system, earlier investigations used stimuli that were 

natural with respect to spatial attributes but lacked natural temporal characteristics. This 

was due to the fact that sequences of natural images were introduced in a pseudorandom 

manner, with each image being displayed for a brief duration (100-200 ms) (Brackbill et al., 

2020; Montijn et al., 2016; Yoshida and Ohki, 2020). Consequently, the temporal dynamics of 

the stimuli used were different from those encountered in everyday natural behaviors, which 

could account for the disparities between the findings of previous studies and our current 

results. Additionally, in the context of the auditory and electrosensory systems, the natural 

stimuli employed exhibited significantly higher frequency components compared to the 

natural self-motion stimuli used in our present study (ranging from 0 to 20 Hz) (refer to 

(Cullen, 2019) for an overview), which could potentially contribute to the observed 

differences. Further investigations are required to validate these hypotheses. 

Furthermore, it is important to note that a distinctive feature of natural auditory and 

electrosensory stimuli, the time-varying amplitude or envelope that carries important 

information (Metzen and Chacron, 2019; Shannon et al., 1998), tends to contain significantly 

lower temporal frequencies (<100 Hz) (Fotowat et al., 2013; Heil, 2003), consistent with the 

temporal frequency range of natural self-motion stimuli. This leads us to speculate that 

similar results will be obtained when investigating population coding of natural sound 

envelopes within the ascending auditory and electrosensory pathways. Further studies are 

needed to test these predictions as our current understanding of natural envelope coding in 

the auditory and electrosensory systems is based on single-unit recordings (see, e.g., (Metzen 

and Chacron, 2019; Zhou and Wang, 2010)).  
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7.1.2. What is the origin of noise correlations amongst VN neurons during naturalistic vs. 

artificial stimulation? 

Our findings indicate that noise correlations are significantly positive under 

naturalistic self-motion stimulation conditions but not during artificial stimulation. This 

raises an intriguing question: what accounts for the stimulus-dependent nature of noise 

correlations in the early vestibular pathways? Previous research has demonstrated that 

correlation magnitude is markedly affected by the nonlinearity in neural responses (de la 

Rocha et al., 2007). Therefore, a possible explanation is that the stimulus-dependent noise 

correlations emerge from response nonlinearities in VN neurons elicited differentially by 

naturalistic versus artificial stimuli. However, it is worth noting that naturalistic self-motion 

stimuli contain higher amplitudes when compared to their artificial counterparts (for a 

comprehensive overview, refer to (Cullen, 2019)) and, as a result, are expected to decrease 

the noise correlation rather than increase in during naturalistic. Consequently, the 

proposition that the observed stimulus-dependent noise correlation magnitude arises from 

response nonlinearities fails to explain our experimental findings.  

An alternative explanation for the observed stimulus-dependence of noise correlations 

in the early vestibular pathways could be related to the neurons receiving differential 

synaptic input during naturalistic and artificial stimulation. It is conceivable that the balance 

between excitation and inhibition, a key factor in determining correlation magnitude (as 

detailed in (Doiron et al., 2016)), differs across these two stimulation conditions. Within this 

context, the elevated noise correlation magnitude during naturalistic stimulation might 

potentially arise from an increased level of excitation, attributed to a more effective activation 

of gap junctions among neighboring VN neurons (Beraneck et al., 2009; Condorelli et al., 

2000), consequently promoting synchrony. However, the similarity in response dynamics 

exhibited by VN neurons in response to both artificial and naturalistic self-motion stimuli 

(Carriot et al., 2022; Mitchell et al., 2018) (Figure 3.4) suggests otherwise. 

Alternatively, the differential synaptic input might arise from the activation of feedback 

from cortical areas onto VN neurons (Lopez and Blanke, 2011) during naturalistic 

stimulation. This alternate supposition is supported by recent findings that highlight the 

varying response dynamics of vestibular-sensitive neurons in the posterior ventral lateral 
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(VPL) area of the thalamus, which project to the cortex. These results indicate that these 

neurons display differential response dynamics to naturalistic and artificial self-motion 

stimuli (Carriot et al., 2022). Specifically, the activities of these neurons faithfully follow the 

time course of the naturalistic stimuli but not during artificial stimuli. Further investigations 

are required to gain a comprehensive understanding of the mechanisms underlying the 

changes in noise correlations within the neural populations of VN during naturalistic and 

artificial self-motion stimulation. 

 

7.1.3. Coding of self-motion by VN and PIVC neural populations: implications for self-

motion perception. 

Besides the observed differences in noise correlation, our results revealed that neurons 

in VN exhibit heterogeneity in their spiking activity. Heterogeneity has been widely observed 

across systems and species (Hubel and Wiesel, 1962; Kilgard and Merzenich, 1999; Ringach 

et al., 2002; Staiger et al., 2004) and is thought to be beneficial tin information transmission 

(Berry Ii et al., 2019; Chelaru and Dragoi, 2008; Ecker et al., 2011; Marsat and Maler, 2010; 

Marsat and Pollack, 2010; Mejias and Longtin, 2012; Panzeri et al., 2015; Perez-Nieves et al., 

2021a; Tripathy et al., 2013). Computational modeling studies have consistently 

demonstrated that heterogenous populations of neurons exhibit enhanced information 

transmission rates regardless of the correlation structure. This enhancement occurs in 

addition to the beneficial impact of positive noise correlations mentioned earlier. Hence, the 

increased noise correlations manifesting during naturalistic self-motion stimulation 

constitute an adaptation to the statistical characteristics of natural stimuli. This adaptation 

effectively increases information transmission by leveraging the combined effects of 

neuronal heterogeneity and increased noise correlations within the neural populations of 

the VN. Consequently, our results, for the first time, provide evidence that coding in the early 

vestibular pathway is adapted to the natural stimulus statistics through the synergistic 

interplay of heterogeneity and noise correlations contributing to increased information 

transmission. 
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We note that similar results were obtained in the rat whisker-barrel system (Adibi et 

al., 2013). Specifically, Adibi et al. (2013) recorded from pairs of neurons in the rat barrel 

cortex during sinusoidal stimulation of the whiskers. They employed three adaptor stimuli 

with increasing amplitude which correspondingly induced stronger adaptation in neural 

response. Notably, they observed that adaptation transferred the response state of the 

neurons to lower rates and higher noise correlations and Fano factor. Thus, following 

adaptation, noise correlations were significantly positive, and response heterogeneity was 

increased. Next, using a linear decoder to estimate the information in the population, they 

demonstrated that the overall information increased with adaptation. The authors attributed 

the increase in the information to the increase in single-neuron level information, 

outweighing the decrease in information due to redundant correlation structure. 

Nevertheless, we predict that the synergy between noise correlations and heterogeneity, at 

least in part, is responsible for the observed beneficial effect of positive noise correlation in 

population coding.  

Previous studies have shown that noise correlations can increase information via 

several mechanisms  (Adibi et al., 2013; Franke et al., 2016; Kohn et al., 2016; Metzen et al., 

2015; Stefanini et al., 2020). For example, Stefanini et al. recorded simultaneously from tens 

of neurons in CA1 of the hippocampus in freely moving mice and estimated the animal's 

position from the neural population's activity (Stefanini et al., 2020). They showed that 

eliminating noise correlations in their data decreased information decoded from the 

population. Further analysis revealed that the CA1 population encodes multiple sensory 

variables other than the animal's position, which explains the noise variance, and as such, 

removing noise correlations removed information about other sensory variables from the 

data. We note that this is not the case in the VO neural populations of the VN. In rhesus 

macaques, these neurons only respond to vestibular stimuli as they lack both eye movement 

and neck proprioceptive sensitivity (Sadeghi et al., 2009), and as such, their response does 

not encode other sensory variables such as eye position or eye velocity. Additionally, 

consistent with previous studies (Cullen, 2012), our data (Figure 3.4) shows that vestibular 

neural populations exhibit similar dynamical properties in VN. This suggests that contrary to 

the hippocampus —in which the population coding is distributed, and multiple sensory 
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variables are encoded in the population activity— the population coding in VN is not 

distributed as different neurons would not be encoding various degrees of head acceleration, 

velocity, and position. Our model employed neurons with similar dynamical tuning 

properties across the population and predicted increased information rate with noise 

correlation in heterogenous neural populations. As such, we further predict that the increase 

in the information is attributed to the plastic nature of the correlation structure and the 

observed heterogeneity in the population, as discussed above, rather than encoding multiple 

sensory variables. 

Furthermore, Metzen et al. recorded simultaneously from the electrosensory lateral 

line lobe of electric fish and canal afferents of rhesus macaque during naturalistic stimuli 

(Metzen et al., 2015). This study revealed that the slow-frequency envelope of the stimulus 

was encoded by the magnitude of noise correlations, and single-neuron activity did not 

provide information about the envelope of the stimulus. A question arises regarding whether 

the increased information predicted by the model could be linked to the noise correlation 

carrying information about the envelope of the naturalistic stimulus. We note that decoding 

information by calculating the noise correlation coefficient involves nonlinear 

transformations. The decoder in our model, however, consisted only of linear 

transformations, and therefore, such information could not be decoded from the neural 

activity in the population in our simulations. Nevertheless, it does not rule out the possibility 

that noise correlation in VN carries information about the envelope of the naturalistic stimuli. 

Further investigation is needed to test this hypothesis. The data collection for the envelope 

encoding in the central vestibular pathway from VN, thalamus, and PIVC has begun in our 

lab, and conclusive results are pending further data collection and analysis.  

VO neurons within the VN project directly to the VPL area of the thalamus (VPL) and 

are a key input to the posterior corticothalamic vestibular pathway (Marlinski and McCrea, 

2009). As mentioned above, VPL neural activity faithfully follows the detailed timecourse of 

naturalistic but not artificial self-motion stimuli (Carriot et al., 2022). This finding implies 

that information transmitted about the stimulus' detailed timecourse by VN neural 

populations is likely decoded by target neurons in the VPL. Additionally, VPL neurons 

demonstrate gain control adaptation and decrease their gain in response to higher amplitude 
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stimuli, such as during naturalistic stimulation (Carriot et al., 2022; Marlinski and McCrea, 

2008a). Studies of population coding have shown that adaptation can increase (Adibi et al., 

2013) or decrease (Gutnisky and Dragoi, 2008; Nigam et al., 2023) noise correlations which 

depend on the mechanism by which the adaptation occurs. For example, using a modeling 

study, Cortes et al. showed that spike-frequency adaptation would increase noise 

correlations, whereas adaptation in the form of short-term synaptic depression can increase 

the noise correlation (Cortes et al., 2012). However, recent studies suggest that gain control 

adaptation would lead to decorrelation (Duong et al., 2023a; Duong et al., 2023b), and as 

such, we predict that noise correlations decrease in the VPL thalamus. Further investigations 

are needed to investigate this hypothesis. The data collection to address this question has 

started in our lab, and so far, our preliminary data and analysis are consistent with the 

hypothesis (unpublished data). 

Furthermore, neurons in VPL project to multiple cortical areas such as the 

parietoinsular vestibular cortex (PIVC), the ventral intraparietal cortex (VIP), area 2v of the 

intraparietal sulcus, and area 3a in the sulcus centralis (Akbarian et al., 1994; Dieterich et al., 

2005; Lopez and Blanke, 2011; Matsuzaki et al., 2004). We recorded from PIVC pairs and 

demonstrated that neural activities are decorrelated in PIVC during both artificial and 

naturalistic stimuli, which is a signature of efficient coding. This is further supported by 

markedly decreased signal and noise correlation coefficient distribution in PIVC compared 

to VN during naturalistic stimulation (compare Figures 3.10 and 3.21 for signal correlations 

and Figures 3.13 and 3.24 for noise correlations). The correlation structure in PIVC becomes 

more homogenous compared to VN during naturalistic stimulation, and therefore, our model 

predicts neural population in PIVC benefits from the decorrelation. Furthermore, Benucci et 

al. recorded from the primary visual cortex of cats while many stimuli were presented over 

time across different orientations. When a biased stimulus was presented, they showed that 

the tuning of neurons in the V1 neural population adapts over time so that the activity of the 

population is equalized for all the neurons in the population (Benucci et al., 2013). Notably, 

for an unbiased stimulus, the tuning of the neurons in the population is homogenous; 

however, when the biased is introduced, the neural population becomes heterogeneous. 

Interestingly, noise correlations were not affected by the adaptation. Based on our 
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experimental data from PIVC, we predict that PIVC neurons may employ a similar coding 

strategy to optimize coding. PIVC neurons share several features with V1, which supports 

this hypothesis: Firstly, PIVC neurons seem to adapt to stimulus amplitude. The dynamic 

tuning of the PIVC neurons was different during artificial and naturalistic stimulation; the 

response gain demonstrated high pass tuning during both artificial and naturalistic 

stimulation and was dramatically reduced during naturalistic stimulation compared to 

artificial stimulation. Secondly, the spiking activity of the neurons in PIVC is highly 

heterogenous during both artificial and naturalistic stimuli. Thirdly, noise correlations 

during artificial and naturalistic stimuli are close to zero and did not change significantly 

with the stimulus. As such, it is possible that PIVC neurons equalize their response over time 

by adapting to high amplitude stimulus. Nevertheless, the fact that neural activity in PIVC is 

decorrelated is a signature of efficient coding. Further studies are required to investigate 

adaptation and efficient coding in PIVC during naturalistic versus artificial self-motion. 

 Integration of vestibular with extra-vestibular information in both PIVC and VIP plays 

a key role in our perception of self-motion and spatial orientation (Brandt et al., 1994; Chen 

et al., 2013a; Penfield, 1957). It is possible that the extra-vestibular information 

synergistically shapes and alters intrinsic neural- and population-level properties such as the 

correlation structure and adaptation. Except for this study, there has been a lack of 

investigation into population coding related to natural self-motion within the PIVC, and no 

such investigations have been conducted within the VIP as these areas were studies mainly 

using artificial stimuli (Bremmer et al., 2002; Klam and Graf, 2003; Schlack et al., 2002; 

Shinder and Newlands, 2014). Further neurophysiological and behavioral studies are 

required to investigate efficient coding in PIVC and VIP. Specifically, suppose the increased 

vestibular information transmitted by VN is decoded in vestibular cortical areas. In that case, 

we expect to observe a decrease in perceptual detection (i.e., the minimum stimulus 

amplitude that can be detected) and discrimination (i.e., the minimum change in stimulus 

amplitude that can be detected) thresholds during naturalistic than during artificial self-

motion stimulation. Further work is needed to test these predictions as all previous studies 

of vestibular perception have used artificial stimuli (see, e.g., (Grabherr et al., 2008; Mallery 

et al., 2010; Nesti et al., 2015; Nouri and Karmali, 2018; Valko et al., 2012)) 
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7.1.4. Noise correlation and heterogeneity in VN: implications for population coding of 

vestibulo-ocular reflex 

Besides VO neurons, position-vestibular-pause (PVP) neurons and eye-head (EH) 

neurons receive vestibular input and mediate vestibulo-occular reflex (VOR). In VN, PVP 

neurons are the primary premotor neurons driving VOR, while EH neurons contribute to the 

adaptation and calibration of VOR when the vestibular input does not match the visual input 

or following vestibular lesion (Boyden et al., 2004; Curthoys and Halmagyi, 1995). Previous 

studies have investigated the coding strategies employed by vestibular neurons in VN during 

artificial and naturalistic (Mackrous et al., 2020; Mitchell et al., 2018). One of the key findings 

in these studies was the role of variability in establishing coding strategies by single neurons. 

Specifically, neurons displaying high resting discharge heterogeneities demonstrated 

efficient coding via temporal whitening of their response. Neurons with low heterogeneity in 

their resting discharge did not whiten their response, rather, they faithfully represented the 

detailed time course of the stimuli. Faithfull and efficient coding was observed across a 

spectrum in each group of neurons; Interestingly, however, PVP neurons, on average, 

demonstrated less heterogeneity in the resting discharge and faithfully encoded stimuli 

which was essential for generating reliable compensatory VOR eye movements.   

To the best of our knowledge, noise correlations have not been studied among eye-

sensitive vestibular neurons in VN (i.e., PVP and EH neural populations). Our modeling study, 

however, predicts that if PVP neural populations efficiently encode natural stimuli, noise 

correlations would be required to be small as PVP neurons display lower response 

heterogeneities. This is consistent with previous modeling studies which characterized the 

VOR function using neural population (Hospedales et al., 2008) and cascade (Minor et al., 

1999) models. On the other hand, it is possible that PVP neural populations exhibit 

significant noise correlations. Indeed, studies in areas involved in VOR display high levels of 

noise correlations manifested as excess synchrony (Dale and Cullen, 2015). Specifically, Dale 

and Cullen showed that neurons in nucleus propositus hypoglossi (NPH) exhibited excess 

synchrony when the animal fixated on a visual target positioned contralaterally. Similarly, 

they showed that abducens motoneuron displayed excess synchrony. Although gap junctions 
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are unlikely to play a role in the manifestation of noise correlation in VO populations, they 

could potentially synchronize the activity of PVP neurons (Beraneck et al., 2009)  as PVP 

neurons already employ differential coding strategy in single-neuron level as mentioned 

earlier. In this case, we speculate that PVP neural populations employ other encoding 

schemes, such as redundancy reduction, to efficiently encode eye movements during VOR.  

We note that while VO neurons do not encode multiple sensory variables, PVP and EH 

neurons indeed encode oculomotor variables such as eye position and velocity during VOR 

and OKN. Specifically, PVP neurons encode head velocity and eye position, whereas EH 

neurons encode head and eye velocity. If noise correlations are significant in PVP and EH 

neural populations, it is possible that such neural populations benefit from noise 

correlations. For example, noise correlations, when the signal input is considered to be the 

activation of vestibular afferents, could arise from eye movements. Indeed, Dale and Cullen 

showed that noise correlation magnitude in NPH changed with the eye position, whereas it 

was relatively constant in abducens nuclei (Dale and Cullen, 2015). Likewise, it is possible 

that noise correlations would be affected by eye position or velocity in eye-sensitive 

vestibular populations in VN, providing an additional channel to transmit information about 

sensory variables (e.g., in this case, eye velocity and position). Further investigation is 

required to characterize the structure of noise correlation in PVP and EH neural populations 

in VN. 

As mentioned above, VN receive feedback projections from PIVC and other cortical 

areas (Akbarian et al., 1994; Akbarian et al., 1993; Fukushima, 1997). It is generally assumed 

that these feedback projections terminate on VO neurons in VN as these neurons mediate 

and transmit information about self-motion (Akbarian et al., 1988; Akbarian et al., 1993; 

Chen et al., 2010; Chen et al., 2016). However, as illustrated in (Akbarian et al., 1993), all 

subnuclear structures in VN receive a diverse range of feedback projections from PIVC and 

other vestibular cortical areas. As such, although speculative, it is possible that PVP and EH 

neurons also receive vestibular feedback input from cortical areas. Feedback projections are 

key modulatory and driving projections (Bastos et al., 2012; Hupe  et al., 1998) and have been 

shown to mediate efficient coding via attentional mechanism (Cohen and Maunsell, 2009; 

Cohen and Newsome, 2008; Ruff and Cohen, 2019; Srinath et al., 2021). As such, it is possible 
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that feedback projections provide the VOR and OKN pathways with self-motion information. 

Alternatively, feedback projections could enhance information in PVP populations by 

reducing noise correlations (Cohen and Maunsell, 2009). Further studies are needed to 

address these questions. Specifically, this can be tested by recording from vestibular neurons 

in VN while deactivating the neural populations in cortical areas such as PIVC using chemical 

injections (e.g., muscimol injection (Chen et al., 2016)), cryoloops (Lomber, 1999), or 

optogenetic stimulation (Mattis et al., 2012) of the vestibular cortical areas. Modulation of 

neural activity in these conditions or lack thereof would demonstrate the relevance and 

functional role of feedback on vestibular neurons in VN.  

 

7.2. Set-point adaptation underlies optokinetic response adaptation and 

negative optokinetic after nystagmus. 

7.2.1. Velocity storage mechanism and negative optokinetic afternystagmus in larval 

zebrafish 

Vestibular and optokinetic systems share common structures related to velocity 

storage mechanism (Demer and Robinson, 1983). In humans and nonhuman primates, 

positive optokinetic and post-rotatory after-nystagmus are ubiquitously observed following 

optokinetic and vestibular nystagmus, respectively, which arise from the velocity storage 

networks (Raphan et al., 1979; Ter Braak, 1936). Furthermore, following labyrinthectomy, 

positive OKAN is diminished (Ireland and Jell, 1982; Tomlinson et al., 1984). As such, the 

vestibular system plays a key role in the manifestation of positive OKAN. Accordingly, the lack 

of positive OKAN in larval zebrafish has been attributed to underdeveloped vestibular 

endorgans (Beck et al., 2004; Lambert et al., 2008). Another explanation for the lack of 

positive OKAN in larval zebrafish is provided by Chen et al., which demonstrated that the 

neural substrates underlying velocity-to-position integrator are not fully developed (Chen et 

al., 2014a). Consequently, the position signals decay quickly to zero, thereby not exhibiting 

positive OKAN.  

Our experimental data and predictions from the proposed mathematical model provide 

a new perspective consistent with the explanations above. Notably, following the offset of the 
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stimulus, a build-up phase is evident as the negative OKAN manifests (Figures 5.2B, C). We 

hypothesized this arose due to the presence of, at least partially developed, velocity storage 

mechanism. Our mathematical model incorporating a velocity storage mechanism predicted 

an eye velocity decay to zero with a time constant that is less than one minute following the 

offset of the stimulus (Figure 5.6D). If the velocity storage was not present in them model, 

the eye velocity would fall to zero immediately following the offset of the stimulus in the 

partial model. When the set-point adaptation integrator is added to the partial model, the 

decay in the velocity storage model, together with the output of the integrator, constitutes 

the build-up phase observed in the data. As such, based on experimental data, our 

mathematical model suggests that the velocity storage mechanism is present in 5pdf larval 

zebrafish.  

 

7.2.2 Larval zebrafish as a novel model to study negative OKAN 

 We argue that larval zebrafish is an ideal model for studying negative OKAN as it takes 

advantage of the absence of masking mechanisms observed across species. Notably, one such 

mechanism is the smooth pursuit afternystagmus mechanism (Lisberger et al., 1981; Marti 

et al., 2005; Muratore and Zee, 1979) which manifests following tracking of a moving target 

in human and nonhuman primates and obscures the negative OKAN (Lin et al., 2018). 

Interestingly, following labyrinthectomy, human subjects rarely exhibit positive OKAN, and 

the offset of the stimulus is often followed by negative OKAN (Zee et al., 1976). Moreover, 

contrary to human and nonhuman primates, afoveate animals do not exhibit pursuit after 

nystagmus; however, even after brief optokinetic stimulation can induce positive OKAN 

(Evinger and Fuchs, 1978; Stahl, 2004), which dominates the negative OKAN. Larval 

zebrafish, on the other hand, do not exhibit pursuit afternystagmus and rarely manifest 

positive OKAN which becomes obsecured as the animal ages (Huang and Neuhauss, 2008a). 

As such, larval zebrafish are suitable for eliciting robust negative OKAN and studying its 

dynamics. Based on our data, the time constant of negative OKAN increases with stimulus 

presentation, which suggests that motor learning and adaptation occur in multiple 

timescales. Our results are consistent with a recent investigation on set-point adaption in the 

vestibular system, where more than one timescale was used in the mathematical model to 
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account for optokinetic adaptation and its post-rotatory aftereffect (Jareonsettasin et al., 

2016).  

7.2.3 Negative OKAN demonstrates a set-point adaptation in the optokinetic system 

Based on our experimental data, we proposed that a set-point adaptation mechanism 

underlies OKN adaptation during optokinetic stimulation and negative OKAN after stimulus 

removal. Specifically, the retinal image slip during unidirectional stimulation produces 

sustained nystagmus, which shifts the null position to a value above zero (in the direction of 

the stimulus). An adaptive process is manifested to mitigate the shift in the null positions. 

Upon the removal of the adaptive stimulus, an aftereffect emerges, characterized by slow 

phases moving in the opposite direction, thereby revealing the preceding adaptation.  

Our model is the first to apply set-point adaptation of retinal slip velocity to explain 

OKN adaptation and negative OKAN. Leigh et al. previously suggested that negative OKAN 

arises from an adaptive mechanism similar to set-point adaptation (Leigh et al., 1981). 

Nevertheless, a significant aspect of optokinetic set-point adaptation —specifically, the 

reduction in slow-phase velocities during sustained OKN— has not been previously 

addressed, except for a recent study in zebrafish larvae (Pe rez-Schuster et al., 2016). We 

speculate that the decrease in OKN gain has not been observed in rodent or primate models 

due to cerebellar learning behavior, which instead would increase the OKN gain during 

sustained optokinetic stimulation (Inoshita and Hirano, 2018; Wada et al., 2014). Conversely, 

zebrafish larvae do not exhibit a gain-increase adaptation during OKN, rendering them a 

suitable model to investigate the set-point adaptation hypothesis for negative OKAN. 

We note that our model with only set-point adaptation mechanism predicted the 

negative OKAN and the decrease in OKN gain; however, it did not accurately predict the 

amplitude of OKN and timescales at which OKN gain decreased (Figure 5.6C). Therefore, we 

introduced a sensory habituation mechanism in addition to the set-point adaptation during 

optokinetic stimulation. This additional mechanism modulates sensitivity to sustained 

optokinetic stimuli over time (Figure 5.6D) and is well supported by neurophysiological data 

from retinal ganglion cells in larval zebrafish, which illustrate a reduced response to visual 

stimuli over time (Pe rez-Schuster et al., 2016). In our conceptual framework, sustained 
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optokinetic stimulation reduces the sensitivity at the initial stage (for instance, within the 

retina) before the signal is propagated downstream areas. Altogether, our empirical data and 

the results of model simulations suggest that set-point adaptation and sensory habituation 

collectively contribute to the reduction in SPV during OKN. However, it is important to 

emphasize that mainly set-point adaptation contributes to the generation of negative OKAN. 

The precise implementation of these dual mechanisms at the circuit level remains a topic of 

future investigation. 

 

7.2.4 Set-point adaptation emerges from temporal integration of visual experience 

It is not common for zebrafish larvae to consistently turn themselves in a manner that 

perceives rotation consistently in the same direction, except in pathological conditions. 

Naturally, as the animal navigates in the environment, it turns in either direction so that over 

large timescales, the animal's movement is not biased toward one direction (Dunn et al., 

2016; Le Goc et al., 2021). As such, the brain is expected to be capable of adjusting set-point 

amid dynamic visual conditions. This would enable the brain to extract and approximate the 

net sensory asymmetry over an extended temporal span. Our findings indeed demonstrated 

that direction-alternating stimulation can elicit OKAN by temporally integrating a set-point 

adaptation signal. This revelation highlights the distinct attributes of set-point adaptation 

and the subsequent emergence of negative OKAN, setting them apart from velocity storage 

mechanisms (VSM) and the resulting positive OKAN (Waespe and Henn, 1978; Waespe et al., 

1978; Waespe and Wolfensberger, 1985). 

 

7.2.5 An innate bias in the oculomotor system may lead to asymmetric OKN and negative 

OKAN 

As mentioned above, the exploratory behavior of the animal displays a symmetric 

distribution of right and left turning angles. Since the visual experience of the animal is 

generally symmetric, we asked what the physiological and functional implications of the 

underlying set-point adaptation mechanism are. We found that while most animals in the 

population displayed symmetric or near symmetric behavior before, during, and after 
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stimulation, some induvial larvae demonstrated asymmetric behavior during similar 

stimulation protocol and exhibited negative OKAN following the offset of the stimulus 

(Figures 6.9A-G). We note that individuals with manifest latent nystagmus (MLN) and those 

affected by infantile nystagmus syndrome (INS) (Fatima et al., 2001) and even the zebrafish 

INS models known as belladonna strain (Huang and Neuhauss, 2008b; Huber-Reggi et al., 

2012) exhibit similar response asymmetry and negative OKAN observed in individual larvae 

with the asymmetric response. 

We modified the model by including a constant "innate" directional bias factor in the 

mathematical model incorporating sensory habituation and set-point adaptation. Indeed, the 

modified model predicted the response asymmetry and the subsequent negative OKAN 

across larvae in the dataset (Figure 6.9), which correlated with the magnitude of the innate 

bias constant. Importantly, the model also predicted mitigated OKN asymmetry over the 

stimulation period and reproduced the results obtained from empirical data (Figures 6.9G-J 

and Figures 6.10C-F). As such, set-point adaption serves to mitigate response asymmetry 

observed in individuals with an innate bias.  

The animals used in the study were wild-type and did not carry artificial factors that 

would cause behavioral asymmetry. Thus, a question arises as to how innate bias might 

emerge in the oculomotor systems of the induvial animals. During developmental stages, 

coarse neural wiring and fine-tuning remain in effect via molecular guidance and experience, 

respectively (Cline, 2003). It is possible that before undergoing experience-dependent fine-

tuning, inherent structural and functional asymmetry could spontaneously emerge as a 

result of natural stochastic processes. In fact, the occurrence of unintended developmental 

asymmetry during the initial stages of development is quite common. For instance, during 

the embryonic stage of zebrafish development, the initial formation of somites frequently 

exhibits differences in length and positioning between the left and right sides. After, as the 

process advances to the fine-tuning stage, this initial asymmetry can be rectified through 

molecular signaling mechanisms that respond to surface tension (Naganathan et al., 2022). 

It is likely that the set-point adaptation mechanism plays a similar role in fine-tuning the 

optokinetic system aiming to attain equilibrium through symmetric visual experience. Innate 
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bias can further emerge from unilateral or asymmetric physical conditions associated with 

injuries and medical conditions.  

Similar mechanisms have been suggested to exist in the vestibular system. Vestibular 

signals from both endorgans are constantly compared for estimation of head rotation on the 

horizontal plane, and an imbalance in the vestibular signals from both sides due to unilateral 

stimulation or vestibular loss can lead to a behavioral asymmetry, namely the vestibular 

nystagmus (Fetter and Zee, 1988; Fetter et al., 1988). It has been suggested that the recovery 

process involves set-point adaptation (Jareonsettasin et al., 2016). In this study, we used a 

similar mathematical model to simulation the adaptation process under optokinetic 

asymmetry (Jareonsettasin et al., 2016; Leigh et al., 1981; Zee et al., 2017), and our results 

extend the prediction of the model to explain experimental findings.  

 

7.2.6 Multiple underlying mechanisms of set-point adaptation in the oculomotor system 

In addition to behavioral aspects of optokinetic set-point adaptation, numerous studies 

have employed molecular markers and neurophysiological recordings to address its 

underlying mechanisms. These findings have identified the brain areas involved in set-point 

adaptation suggesting the process involves multiple stages. Wu et al. identified direction-

selective neurons in larval zebrafish brains using imaging studies and, in combination with 

optogenetic techniques, demonstrated that direction-selective neurons in pretectal areas are 

crucial for the manifestation of negative OKAN following OKN (Wu et al., 2020a). Additionally, 

multiple studies have demonstrated that unidirectional stimulation alters the molecular 

expression profile of the floccular Purkinje cells involved in neural plasticity (Barmack and 

Qian, 2002; Barmack et al., 2010; Qian et al., 2012). It is possible that similar molecular 

signaling cascades could be responsible for adjusting the dynamic calibration process within 

oculomotor control. 

Negative OKAN has been previously identified and studied in the vestibular system 

(Waespe and Henn, 1977, 1978). Such studies may be insightful in understanding the 

underlying mechanisms involved in optokinetic set-point adaptation. To investigate the long-

term vestibular imbalance and the ensuing recovery of the vestibular functions, many studies 
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have used unilateral labyrinthectomy (Darlington and Smith, 2000) to study the plasticity in 

VN (Johnston et al., 2001; Lim et al., 2010; Nelson et al., 2017; Vibert et al., 2000). 

Interestingly, while the ipsilateral VN neurons exhibited increased excitability following the 

labyrinthectomy within the first 24 hours, their activity returned to baseline levels as 

behavioral restoration remained intact (Nelson et al., 2017). This suggests that besides 

plasticity in VN, additional mechanisms are involved in the restoration of vestibular 

functions. Further studies are required for a comprehensive understanding of mechanisms 

underlying set-point adaptation. As larval zebrafish allow whole-brain imaging and 

screening neural activity in large functional networks, it provides a unique opportunity to 

study dynamic set-point adaptation mechanistically. 

 

7.3. Efficient population coding in optokinetic system 

7.3.1. Implications of population coding of self-motion perception in optokinetic system 

The stabilization of gaze in orbit during natural behavior involves the coordination of 

two complementary reflexes, VOR and OKN, which stabilize gaze in space. VOR reflex is 

driven by the mechanics of semicircular canals and otolith endorgans as well as the afferents 

innervating them and, thus, has high-pass tuning properties with a corner frequency of 0.02 

to 0.05 Hz in primates (Fernandez and Goldberg, 1971). As such, VOR gain is very close to 

unity in high frequencies (f>0.1 Hz)(Huterer and Cullen, 2002) and drops below unity (down 

to 0.5 in darkness) for lower frequencies. OKN complements VOR by compensating for the 

decrease in gain for low frequencies (f<0.1 Hz) to increase its dynamical range and stabilize 

the retinal image in response to the motion of the large visual fields. OKN gain is near unity 

for stimulus velocities less than 40 to 60 deg/s in primates and decreases with higher 

velocity stimuli (Cohen et al., 1977). 

Although the population coding OKN in subcortical neural substrates is not studied, it 

is possible to make predictions based on the data from VO neural populations in VN. As OKN 

mainly tracks low-frequency stimuli during whole field motion (f<0.1Hz), the timescale in 

which such computations are performed should be large (i.e., t>10s), and therefore, we 

predict that during OKN, eye-sensitive neurons in VN encode the optokinetic information on 
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large timescales. Additionally, our data from VN suggests that noise correlation on a large 

timescale might be substantial (See Figures 3.11 and 3.12). Even for the pairs whose noise 

correlation is negligible in low timescales (e.g., t<500 ms), correlations can be large at 

timescales greater than 1 second. That is because by increasing the timescale, the integral 

bellow the residual cross-correlation function extends over larger ranges. Therefore, even if 

the noise correlations in PVP or EH neural populations are negligible, due to the large 

timescale at which OKN functions, the noise correlations might be substantial. Additionally, 

the abducens premotor neurons send command signals to extraocular muscles to accurately 

track the stimulus during slow phases and thus should be able to reconstruct the detailed 

time course of the stimulus (Mackrous et al., 2020). However, since PVP neural populations, 

on average, exhibit less heterogeneity compared to EH neurons, the population coding of 

optokinetic stimuli may be less efficient when compared to population coding in EH neural 

populations. Further investigation is required to test these hypotheses by recording from 

PVP and EH neural populations during optokinetic stimulation.  

 

7.3.2 Optokinetic response adaptation: implications for efficient coding in optokinetic 

system 

Our experimental data from larval zebrafish showed that the optokinetic response gain 

gradually decreases overtime and reaches a steady state gain. A question then arises as to 

whether such adaptation affects population coding in the optokinetic system. Indeed, 

previous studies have shown adaptation benefits population coding regardless of its effect 

on noise correlations (Adibi et al., 2013; Benucci et al., 2013; Gutnisky and Dragoi, 2008). As 

such, it is important to investigate the neural substrates at which adaptation appears as well 

as its effect on heterogeneity and correlation structure. For example, Gutnisky and Dragoi 

showed that efficient coding of the V1 following the adaptation was achieved by a decrease 

in mean and variability of noise correlation. Adibi et al. reported increased noise correlation 

and increased information with adaptation. Benucci et al. observed that mean noise 

correlation did not change in the population; instead, adaptation mediated efficient coding 

by introducing heterogeneity in response to biased stimuli. These results suggest that 

population coding of optokinetic sensory variables is likely to benefit from such adaptation. 
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However, one needs to investigate population coding across optokinetic neural pathways and 

characterize single neurons and population-level attributes (e.g., heterogeneity, adaptation, 

correlation structure, decoding) to arrive at definitive conclusions.  

 

7.3.3 Population coding in VN provides insight into understanding the velocity storage 

mechanism and its implications in the optokinetic system 

As mentioned above, vestibular and optokinetic systems share a common premotor 

and velocity storage structure which includes VN, NPH, and abducens nuclei (Cullen et al., 

2009; Demer and Robinson, 1983; Mustari et al., 1994). As such, the study of the vestibular 

system is beneficial in understanding how optokinetic stimuli are encoded. For example, the 

VO neurons studied in this thesis are crucial elements of the velocity storage mechanism 

(Yakushin et al., 2017), and as such, understanding how populations of VO neurons 

contribute to velocity storage would be beneficial in the study of velocity storage mechanism 

in the optokinetic system (Demer and Robinson, 1983). Indeed, population coding in the 

optokinetic system, at least to some degree, has been studied by characterizing correlation 

structure in NPH and abducens nuclei, as the optokinetic system shares such structures (Dale 

and Cullen, 2015), as mentioned previously.  

We add that understanding the velocity storage mechanism in neural populations 

further requires investigating population coding in PVP and EH neural populations. A 

previous study provides evidence that plasticity in the velocity storage mechanism is 

mediated by floccular target neurons (FTN), a subset of EH neurons that receive projections 

for flocculus (Blazquez et al., 2007). Additionally, previous studies have shown that 

adaptation during VOR can be implemented using the cerebellar pathway (floccular 

projections from the cerebellum), or it can be due to the plasticity in projections to PVP 

neurons in VN (Beraneck and Cullen, 2007; Mitchell et al., 2016). It is likely that similar 

mechanisms, at least in part, are involved in the adaptation of OKN during prolonged 

stimulation. Future studies are required to test this hypothesis.  

 



161 
 

7.4 Future directions 

7.4.1. Population-wide coverability: exploring beyond pairwise correlation  

In the study of population coding, we characterized the correlations in the population 

by measuring the correlation between two neurons, referred to as pairwise correlations. 

However, in practice, neural populations and correlation structures extend beyond two 

neurons and their pairwise correlations. A critical question is how well pairwise correlations 

represent the correlation structure with higher-order correlations. Schneidmann et al., 

Investigated this question by measuring the weak pairwise correlations in the retina of 

salamanders and demonstrated that strongly correlated networks could be predicted by 

models that only captured pairwise correlations and ignored higher-order correlations 

(Schneidman et al., 2006). As such, it is possible the infer the consequences of correlations 

in neural populations without the need to record simultaneously from large populations and 

calculate higher-order correlations, which grow exponentially with the number of neurons 

in the population. Indeed, in this study, recording from more than two neurons in VN proved 

to be difficult as VN was located in deep subcortical structures and possessed a nuclear 

structure rather than a layered one. Moreover, recording from PIVC yielded more neurons 

and more simultaneously recorded cells compared to VN despite being a deep cortical 

structure; however, likewise, we were not able to record from a large number of neurons 

simultaneously.  

In a recent study, Umakantha et al. established a mathematical and empirical relation 

between pairwise correlations and population metrics and applied it to data from large 

populations of V4 neurons in macaques and mice (Umakantha et al., 2021). They reported 

that attentional states could be predicted from pairwise correlations and reduced population 

metrics using dimensionality reduction. Importantly, however, when they considered 

population-wide covariability—which extended beyond pairwise correlations—they 

observed a change in pairwise correlation that could be explained by multiple ways the 

covariance matrix changed. For example, in their dataset, they observed that attention 

decreased mean pairwise correlations. However, in some cases, this corresponded with a 

somewhat uniform decrease in pairwise correlations, and hence, being decorrelated. In 

another case, this corresponded with the strength of pairwise correlations becoming 
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stronger. Finally, in the third case, different subsets of neurons exhibited independent or a 

mix of changes mentioned above. They concluded although reducing the dimensionality of 

neural activity and correlations may preserve the main state of the population activity, it may 

fail to reflect the mechanism by which such states are manifested. In our dataset, we could 

not investigate the covariance matrix in large populations as our dataset mainly consisted of 

pairwise correlations. However, with the advent of high-density probes for deep brain 

structures, it will be possible to look beyond pairwise correlations to gain further insight into 

population activities.  

 

7.4.2. Naturalistic stimulus: a reduced form of complex natural stimuli 

In the study of population coding, we used naturalistic stimuli which were obtained 

from the horizontal yaw rotation of naturally behaving macaques. We note, however, that 

natural stimuli also consist of animal's movement in other dimensions (rotations in the pitch 

and roll axes as well as translations along all three axes) (Carriot et al., 2017a; Carriot et al., 

2017b; Carriot et al., 2013b). Carriot et al. investigated neural coding in convergent VO 

neurons in VN that received both canal and otolith input (Carriot et al., 2015). By applying 

passive rotation and translation stimuli in isolation and in combination, they demonstrated 

the response of convergent VO neurons to the combined stimuli was nonlinear and sub-

additive and did not follow the principle of superposition. Such nonlinearities and 

multivariate responses can have important implications in neural coding (Angelaki et al., 

2009; Cullen, 2012; de la Rocha et al., 2007; Gu et al., 2008; Oude Lohuis et al., 2022). Our 

dataset mainly consisted of neurons that did not exhibit convergence. However, it did not 

address the relevance of convergence in natural self-motion perception. It is important to 

investigate population coding in VN using multidimensional natural stimuli as the perception 

of self-motion and reflexes generally involve the integration of information from multiple 

vestibular endorgans.  
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7.4.3. Natural optokinetic stimuli are more complex than unidirectional and bidirectional 

optokinetic stimuli used in the study 

In our study of the optokinetic system in larval zebrafish, we demonstrated the 

presence of a refined sensory adaptation mechanism within the optokinetic system aimed at 

mitigating the inherent neurobehavioral asymmetry. Nevertheless, it is important to note 

that the alternating duration of stimuli in the natural environment is dynamic and averages 

around 6 seconds (Dunn et al., 2016), a pattern not perfectly replicated by our optokinetic 

stimulus paradigm. Additionally, we delivered a relatively robust visual stimulus—

characterized by high contrast and stimulus velocity—over a relatively short recording 

period of one hour. To stimulate the natural conditions more accurately, it might be beneficial 

to conduct experiments with milder stimuli, albeit over extended recording times, or through 

repeated exposures. This approach could potentially elicit a more prolonged adaptation 

response. While our current experimental procedure effectively demonstrates the role of set-

point adaptation as an internal calibration mechanism for oculomotor imbalance in 

zebrafish, a comprehensive understanding of its significance in neural development 

necessitates further investigation is required on cross-age comparisons of innate biases in 

zebrafish raised within relatively natural environments. 

 

7.5 Conclusion  

This thesis provides insights into the efficient coding of natural self-motion information 

in the central vestibular pathway. It signifies the role of correlations, heterogeneity, and their 

synergy in shaping efficient population codes. Additionally, this thesis provides insights into 

mechanisms underlying the observed adaption in the optokinetic system and the ensuing 

aftereffect. It also highlights the functional role of the observed adaptation in mitigating 

inherent and developmental deficits in the optokinetic system. As both vestibular and 

optokinetic systems are highly preserved across species and share similarities with other 

sensory systems, the results obtained here will be applicable in the study of other sensory 

systems and species.  
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