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Abstract

In this dissertation, we first introduced the concept of regularized 13-moment (R13) hy-
drodynamics initially developed by Struchtrup and Torrilhon in the non-relativistic sce-
nario. By adopting a similar methodology in the relativistic case, we derived the sec-
ond and third-order R14 hydrodynamics. For both theories, a series of linear stability
and causality analysis was carried out with the assumption of massless particles without
particle number conservation. This is realized by decomposing the linearized evolution
equations into longitudinal and transverse components and then analyzing each of them
independently. As a result, the second-order theory is shown to be linearly stable and
causal. The third-order theory, on the other hand, is forbiddingly analytically complex

but is also shown to be linearly stable and causal using numerical approaches.

Key Words: relativistic viscous hydrodynamics, linear stability, linear causality, second-
order relativistic hydrodynamics, third-order relativistic hydrodynamics, regularized hy-

drodynamics



Abrégé

Dans cette dissertation, nous avons introduit le concept d’hydrodynamique de 13 mo-
ments régularisés (R13) développé initialement par Struchtrup et Torrilhon dans le scénario
non-relativiste. En adoptant une méthodologie similaire dans le cas relativiste, nous
avons obtenu ’hydrodynamique R14 de deuxiéme ordre et de troisieme ordre. Pour
toutes les deux théories, une série d’analyses de stabilité et causalité linéaires a été ef-
fectuée sur les solutions des équations hydrodynamiques correspondents en supposant
que les particules sont sans masse et que le nombre des particules ne se conserve pas. Cela
est réalisé en décomposant les équations d’évolution linéarisées en composantes longitu-
dinales et transversales, puis en les analysant indépendamment. Comme un résultat, la
théorie de deuxieme ordre s’avere linéairement stable et causale. La théorie de troisieme
ordre, par contre, est extrémement compliquée analytiquement, mais s’avére également

linéairement stable et causale en utilisant des approches numériques.



Acknowledgements

This dissertation is the result of two years of hard work and would not have been
possible without the support of many individuals. Specifically, I would like to express
my gratitude to the following people:

Firstly, I would like to thank my supervisor, Prof. Sangyong Jeon, who has been sup-
porting me for the past two years and introduced me to the field of relativistic viscous
hydrodynamics and high-energy nuclear physics in general. I have learned a great deal
under his guidance, and I am deeply appreciative of that. Thank you very much!

Secondly, I would like to extend my gratitude to all the McGill Nuclear Theory group
members. I have received help from many of them during the past two years, and I am
incredibly grateful for their support. Thank you so much!

Lastly, I want to thank my family and friends, who have continuously encouraged and
supported me throughout the years. Without their support, I would not be the person I

am today. Thank you very much!



Contribution of Authors

Dasen Ye contributed to the writing of all chapters in this dissertation, while Sangyong

Jeon contributed to the revision and verification of the dissertation.



ABEKREH, FHEWSEEE
KRZZEMER, KEBEEZEZEAAT.
J’EZERAR, BFBEM— KA .
fa B A BARN, RRERTWF -

PR AR (RIPF@A = B REA )




Table of Contents

Acknowledgements . . . . ... ... o
Contributionof Authors . . . . .. .. ... ... ... ... .. o

Listof Figures . . . . . . . . .. .. .
Introduction

General Moment Equation and Conservation Laws
2.1 Kinetic Theory and Conservation Laws . . . ... ... .. ..........

2.2 General MomentEquation . . . . . ... ... ... . 0 oL

Second-Order Regularized Hydrodynamics

3.1 Second-Order Moment Equations . . . . . ... .. ...............
3.1.1 EquilibriumTerm . . . .. ... .. ... ... o
312 PowerCountingine ... ... ... ... ... ... .. ...,
3.1.3 Moment Equations for II, ¢#, and ##* . . . . ... ... Lo
3.2 Linear Stability and Causality Analysis . . . .. ... ... ..........
3.21 Linearized Second-Order R9 Equations . . . ... ... ... .....
322 Transverse Modes . ... ... ... ... ...
323 LongitudinalModes . . . .. ... .. ... ... ... ... ...
33 Discussion . . . ... ... e

11
11
19



4 Third-Order Regularized Hydrodynamics

4.1 Third-Order Moment Equations . . . . . .. ... ... ... ........
42 Third-Order R25 Hydrodynamics . . . . .. .. ... .. ............
43 Linear Stability and Causality Analysis . . . .. ... ... ... .......
43.1 Linearized Third-Order Equations . . . . ... ... ... ... ....
432 Transverse Modes . .. .. ... ... ... e
433 LongitudinalModes . . .. ... ............... ...,
44 Discussion . . . . . . ... e

5 Conclusion
A Useful Mathematical Identities

B Evaluating I’ integrals
B.1 Conservationlaws . . ... ... ... . . ...

B2 Flntegrals . . . ... ... .. ... . ..



List of Figures

1.1

1.2

1.3

1.4

3.1

3.2

3.3

The Big Bang and expansion of the universe [1]. This figure shows different

stages of the universe’s evolution, starting from the Big Bang to the present.

This aerial photograph shows the RHIC facility’s layout, highlighting the

locations of major detectors and the accelerator complex. This picture is

taken from Ref. [2]. . . . . . . . ...

The first lead-lead collisions of 2018 send showers of particles through the

ALICE detector [3]. . . . . . . . . . . e

QCD Phase Diagram: Experimental Input [4]. This figure shows the phase
diagram of QCD matter along with the common theories (in blue) and ex-

perimental /observational subjects (in red), with the temperature being the

vertical axis and the baryon chemical potential being the horizontal axis. . .

Real and Imaginary parts of the transverse modes of the massless second-

order R9 hydrodynamics, in the case of fluid velocity vector being parallel

to the wave vector. The relaxation time is chosen tobe 7, =5[5,6]. . . . ..

The imaginary parts of the transverse modes of the massless second-order
R9 hydrodynamics, in the case of fluid velocity vector being parallel to the

wave vector, for V' = 0.9 and with relaxation time 7z = 5. Note that a large

range of k is chosen to demonstrate the asymptotic behavior of the curves. .

Real and Imaginary parts of the transverse modes of the massless second-

order R9 hydrodynamics, in the case of fluid velocity vector being orthog-

2

3

4

49

50

onal to the wave vector. As before, the relaxation time is chosen to be 7 = 5. 52



3.4

3.5

3.6

3.7

3.8

4.1

4.2

The imaginary parts of the transverse modes of the massless second-order
R9 hydrodynamics plotted for a larger range of k, in the case of fluid ve-

locity vector being orthogonal to the wave vector, for V' = 0.9 and with

relaxationtime 7o = 5. . . . . . L e

Real and Imaginary parts of the longitudinal modes of the massless second-

order R9 hydrodynamics, in the case of fluid velocity vector being parallel

tothe wavevectorand 7, =5.. . . . . . . . . .. e

The imaginary parts of the longitudinal modes of the massless second-
order R9 hydrodynamics plotted for a larger range of %, in the case of fluid

velocity vector being parallel to the wave vector, for V' = 0.9 and with

relaxationtime 7o = 5. . . . . . L e

Real and Imaginary parts of the longitudinal modes of the massless second-

order R9 hydrodynamics, in the case of fluid velocity vector being orthog-

onal tothe wavevectorand 7o, = 5. . . . . . . . . ... ... ... ...

The imaginary parts of the longitudinal modes of the massless second-
order R9 hydrodynamics plotted for a larger range of &, in the case of fluid

velocity vector being orthogonal to the wave vector, for V' = 0.9 and with

relaxationtime 7o = 5. . . . . . L e

Real and Imaginary parts of the transverse modes of the massless third-

order R25 hydrodynamics, in the case of fluid velocity vector being parallel

to the wave vector. The relaxation time is chosen to be 7z = 5 asusual. . . .

The imaginary parts of the transverse modes of the massless third-order
R25 hydrodynamics plotted for a larger range of k, in the case of fluid ve-

locity vector being parallel to the wave vector, for V' = 0.9 and with relax-

ationtime 7 = 5. . . . . L L e e e e e

74

75



4.3

4.4

4.5

4.6

4.7

4.8

4.9

Magnitude of the group velocity for the transverse modes of the massless
third-order R25 hydrodynamics, as a function of the fluid velocity V in the

large k limit and with 7z = 5, in the case of fluid velocity vector being

parallel to thewavevector. . . . . ... .. ... .. ... ... L.

Real and Imaginary parts of the transverse modes of the massless third-

order R25 hydrodynamics, in the case of fluid velocity vector being orthog-

onal to the wave vectorand with7p =5. . . . . . ... .. ... ... .....

The imaginary parts of the transverse modes of the massless third-order
R25 hydrodynamics plotted for a larger range of k, in the case of fluid ve-

locity vector being orthogonal to the wave vector, for V' = 0.9 and with

relaxationtime 7o = 5. . . . . . L e

Magnitude of the group velocity for the transverse modes of the massless
third-order R25 hydrodynamics, as a function of the fluid velocity V' in the

large k limit and with 7z = 5, in the case of fluid velocity vector being

orthogonal to the wavevector.. . . . . ... ... ... ... ... . ....

Real and Imaginary parts of the longitudinal modes of the massless third-

order R25 hydrodynamics, in the case of fluid velocity vector being parallel

to the wave vectorand with 7 =5.. . . . . . .. ... .. ... ... .....

The imaginary parts of the longitudinal modes of the massless third-order
R25 hydrodynamics plotted for a larger range of k, in the case of fluid veloc-

ity vector being parallel to the wave vector, for V' = 0.9 and with relaxation

time 7r = 5. . . . . e e e

Magnitude of the group velocity for the longitudinal modes of the massless
third-order R25 hydrodynamics, as a function of the fluid velocity V in the

large k limit and with 7z = 5, in the case of fluid velocity vector being

parallel tothewavevector. . . . . . ... ... ... . L oL

10



4.10

411

4.12

Real and Imaginary parts of the longitudinal modes of the massless third-
order R25 hydrodynamics, in the case of fluid velocity vector being orthog-
onal to the wave vectorand with7z =5. . . . . . . .. .. ... ... .....
The imaginary parts of the longitudinal modes of the massless third-order
R25 hydrodynamics plotted for a larger range of k, in the case of fluid ve-
locity vector being orthogonal to the wave vector, for V = 0.9 and with
relaxationtime 7o = 5. . . . . . L e
Magnitude of the group velocity for the longitudinal modes of the massless
third-order R25 hydrodynamics, as a function of the fluid velocity V in the
large k limit and with 7z = 5, in the case of fluid velocity vector being
orthogonal to the wave vector. Notice that there is a stationary mode with

zero group velocity along the direction of the wave’s propagation. . . . . . .

11



Chapter 1

Introduction

Quantum Chromodynamics (QCD) is the study of the fundamental processes involving
quarks and gluons. Quarks have two degrees of freedom that are especially interesting,
flavor and color charge. Flavor composes of up, down, strange, charm, top, and bottom. On
the other hand, color charge is the analog of electric charge in QCD, and it has three de-
grees of freedom: red, green, and blue. It is worth noting that singly color-charged hadron
does not exist. In other words, all naturally occurring particles are color-neutral [7], a
phenomenon known as “color confinement”. In a manner similar to photons in Quan-
tum Electrodynamics (QED), the force carrier responsible for exchanging the energy and
momentum of quarks is referred to as a gluon. But unlike photon which is electrically
neutral, gluon actually carries color charges. This makes the interactions between glu-
ons possible, making the QCD calculations much more complicated than those in QED.
In terms of Feynman diagrams, this complexity appears as extra gluon-gluon interaction
vertices in addition to the quark-gluon interaction vertex [7].

Another interesting aspect of QCD is its coupling constant, which indicates the corre-
sponding interaction strength. Although commonly referred to as “constant”, it is actu-
ally not (that’s why it is sometimes also referred to as the “running coupling constant”) and
its value depends on the length scale, or equivalently, the energy scale of the system of

interacting particles. At a low energy scale, this value is relatively large. But at a high
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Figure 1.1: The Big Bang and expansion of the universe [1]. This figure shows different

stages of the universe’s evolution, starting from the Big Bang to the present.

energy scale (short distance), the value becomes small. This phenomenon is referred to
as asymptotic freedom [8-10], which suggests that at extremely high energy scales, quarks
and gluons interact very weakly. Now, let’s imagine that there is a perfect and empty
container with just vacuum inside. As the energy and temperature increase (energy and
temperature are correlated through Boltzmann constant, £ ~ kgT'), hadrons start to be
pair-produced. At kT ~ 200 MeV, the number density of hadrons becomes so large that
they start to overlap each other. Along with the increment of elementary particle’s kinetic
energy, this leads to the deconfinement of quarks and gluons which are now free to move
across the interior of hadrons [11], causing the appearance of a new phase of matter called
quark-gluon plasma (QGP), which, according to the theory of asymptotic freedom, should

be weakly-interacting at high energy scale.
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Figure 1.2: This aerial photograph shows the RHIC facility’s layout, highlighting the lo-

cations of major detectors and the accelerator complex. This picture is taken from Ref. [2].

The theory explaining the origin of our universe is the Big Bang theory, which proposes
that our universe expanded from a singularity with almost infinite energy density and
temperature [12,13] about 13.7 billion years ago (see Fig.1.1 [1]). The temperature of the
universe stayed above 150 MeV (about 2 x 10'? K) during the first 10 microseconds after
the Big Bang [12, 14], and such a condition is sufficient to create QGP. Therefore, it is
believed that QGP exists for a small amount of time after the universe’s birth.

Experimentally, it can also be created via heavy-ion collisions conducted in powerful
colliders such as the Relativistic Heavy Ion Collider (RHIC) in Brookhaven National Lab-
oratory located in Long Island, USA, and the Large Hadron Collider (LHC) at European
Organization for Nuclear Research (CERN), located in Geneva, Switzerland. Specifically,

four detectors are dedicated to studying QGP at RHIC, which are STAR (stands for “The
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Figure 1.3: The first lead-lead collisions of 2018 send showers of particles through the
ALICE detector [3].

Solenoidal Tracker at RHIC”) [15], sSPHENIX (an upgrade of the PHENIX detector, which
is now decommissioned. PHENIX stands for “the Pioneering High Energy Nuclear In-
teraction eXperiment”) [16,17], PHOBOS and BRAHMS [18]. Fig.1.2 shows the locations
of the two major detectors, STAR and sPHENIX, along with the accelerator complex. in-
cluding the two mentioned above. As a powerful collider, RHIC can collide all ion beam
species from protons to uranium, with the primary use of gold ions [19,20]. On the other
hand, the detector dedicated to the QGP study at LHC is called ALICE (A Large Ion Col-
lider Experiment) [21], Fig.1.3 shows the trajectories of showers of particles detected by
ALICE during the first lead-lead collisions in 2018 [3]. However, unlike RHIC which spe-
cializes in heavy-ion collision experiments, LHC only collides heavy ions one month per
year [20].

Contrary to the study of heavy-ion collisions, which probes the hot and dense system
of QCD, there exists a natural laboratory in the cosmos that enables us to study the cold

and dense QCD: neutron stars and their mergers. Stars that have a similar mass (~ 1M;)
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Figure 1.4: QCD Phase Diagram: Experimental Input [4]. This figure shows the phase
diagram of QCD matter along with the common theories (in blue) and experimen-
tal/observational subjects (in red), with the temperature being the vertical axis and the

baryon chemical potential being the horizontal axis.

to the Sun become white dwarfs at the end of their life. Unlike ordinary stars, in which
the gravitational collapse is offset by thermal pressure produced via nuclear fusion, the
degeneracy pressure due to the Pauli exclusion principle of electrons is responsible for
tighting against the gravity inside a white dwarf. However, there is a limit on the mass
above which the degeneracy pressure becomes inferior to gravity, known as the Chan-
drasekhar limit, which is equal to 1.44M, [22]. For stars with a mass greater than this limit,
their remnants become so dense that the protons and electrons are “squished” together to
form neutrons, and the remnants which are now mostly made of neutrons, are called neu-
tron stars. Neutron stars are extremely dense, according to the NICER mission of NASA,
a typical neutron star with 1.40/; mass has a radius of about 13 km [23]. Furthermore,

the typical temperature for a neutron star is on the order of 100 eV (~ 10° K) [24]. This



seems like a very high temperature, but it is in fact negligible when compared to the typ-
ical energy scale of 1 GeV in QCD, that’s why neutron stars are “cold” in the context of
QCD [25]. However, the temperature can reach tens of MeV during the birth of a neutron
star in a supernova and to ~ 100 MeV in a merger event [26]. It is worth mentioning that
QGP also exists in the interior of neutron stars due to the extremely high density even
though the system is “cold”, unlike the case of heavy-ion collisions in which the temper-
ature is high rather than the density. Fig.1.4 shows a typical QCD phase diagram along
with the positions of different research methods and theories on this diagram. In this dis-
sertation, we will focus on the hot and dense system in the context of heavy-ion collision
and will not discuss the cold and dense part in detail.

Due to the weakly-interacting property of QGP predicted by the theory, it was ex-
pected that the system created by highly energetic heavy-ion collisions should behave like
a gas and expand isotropically before the first RHIC experiment in 2000 [27]. However,
the first results from RHIC actually showed that the system exhibits azimuthal anisotropy
in the form of elliptic flow [28], and QGP turned out to be the most strongly-interacting
system ever observed. Furthermore, the data was shown to be in good agreement with
the description of ideal hydrodynamics [29-31]. Hydrodynamics is chosen because it is
challenging to obtain an analytic or numerical solution to a microscopic many-body QCD
problem such as this using first-principles calculations. What is accessible is the coarse-
grained collective motion of the fluid-like system once the local thermal equilibrium is
achieved [32]. Therefore, it is natural to use hydrodynamics, especially ideal hydrody-
namics in which the fluid is always assumed to be in local thermal equilibrium, as the
theoretical tool for modeling the evolution of QGP. The success of the ideal hydrodynam-
ics further implies that the system is an almost-ideal fluid with small shear viscosity over
entropy density ratio /s, where 7 is the shear viscosity and s is the entropy density ratio.

However, a study in 2005 imposed a lower bound of 1/47 on the value of 7/s in
a strongly-coupled system using AdS/CFT calculations [33], which raised the question

“How perfect is the QGP?”. The acquisition of the answer relies on using a stronger tool



than ideal hydrodynamics, the latter is only applicable to systems near local thermal equi-
librium [30]. The lower bound /s > 1/4w suggests that there are some non-negligible off-
equilibrium viscous effects that must be considered [34]. Therefore, a robust relativistic
viscous hydrodynamics theory is needed to better describe the properties of an evolving
QGP.

The most intuitive and straightforward way of obtaining a relativistic viscous hydro-
dynamics theory is to extend the non-relativistic Navier-Stokes theory to a relativistic one,
and this was done independently by Eckart [35] and by Landau and Lifshitz [36]. These
theories are also commonly referred to as the “first-order theory”, which only includes
terms up to first order in gradients. Historically, such theories were commonly obtained
by using a technique called Chapman-Enskog expansion [37], in which the phase density
function is expanded in powers of Knudsen number. Here, the phase density function
f(x,p) gives the number of particles in an infinitesimal momentum-position space dpdz,
at position x and with momentum p. As for the Knudsen number, it is defined as the ratio
of the particle’s mean free path to the representative length scale of the problem. In partic-
ular, hydrodynamics is a theory with small Knudsen numbers. However, the first-order
theory is unstable and acausal when slightly perturbed around thermal equilibrium in
linear regime [38—41], and it has been shown that this instability is in fact caused by the
acausality of the theory [41-43]. For this reason, the first-order theory is abandoned as
being the standard theory of relativistic viscous hydrodynamics.

The first linearly stable and causal relativistic viscous hydrodynamics theory was
developed by Israel and Stewart [44—46] using the 14-moment approximation, initially
adopted by Grad [47] as the 5- and 9-moment approximation in the non-relativistic case.
In his paper, Grad has considered, for the first time, the transient effects of dissipative
current using the method of moments. In this method, the Boltzmann equation is re-
placed by a set of partial differential equations expressed in terms of the moments of
the phase density function. To make this set of equations closed, a truncation process is

necessary, and this is done by approximating the phase distribution function with a se-



ries expansion in terms of the Hermite polynomials around the equilibrium distribution,
where the coefficients are determined in terms of moments. Unlike the first-order the-
ories, the Israel-Stewart theory contains terms that are up to second-order in gradients,
thus it is also commonly referred to as the “second-order theory”. However, it has been
shown that even the Israel-Stewart theory is not always linearly stable and causal, their
transport coefficients must satisfy a set of constraints in order to be so [41-43,48,49].

Although the second-order theory possesses many advantages that the first-order the-
ory does not and is now considered as the standard theory of relativistic viscous hydrody-
namics, there are still issues with it. When deriving hydrodynamics from the Boltzmann
equation, the Israel-Stewart theory, the Chapman-Enskog expansion, and the method of
moments all give slightly different combinations of terms. The second-order theory is in
fact, not unique. There are two main sources of difference, the first one is the representa-
tion of the non-equilibrium terms in the expansion of the phase density function in terms
of the 14 moments. The second one is the procedure adopted to truncate the expansion in
order to make the equations closed. In this dissertation, we will explore a method that al-
lows us to systematically derive a unique relativistic viscous hydrodynamics to any order
starting from the evolution equations of the energy-momentum moments, followed by a
linear stability and causality analysis for the case of the second-order and third-order the-
ories. This is accomplished by generalizing the non-relativistic 13-moment regularized
hydrodynamics (R13) developed by Struchtrup and Torrilhon [50-53], to the relativistic
second-order regularized 14-moment hydrodynamics (R14). In short, The Regularization
method combines both the method of moments and Chapman-Enskog expansion, by ap-
plying a Chapman-Enskog-like expansion to the energy-momentum moments except for
the moments that are considered as the hydrodynamic variables, instead of the phase
density function. A more detailed elaboration on this method will be presented in the
following chapters.

The second-order theory has been proven to be quite successful in describing the evo-

lution of QGP, but it still has a few limitations. Under the assumption of Bjorken scaling



solution [54], and for large viscosity or small initial time, the Israel-Stewart theory dis-
plays unphysical effects such as negative effective enthalpy [55] and longitudinal pres-
sure [56]. A straightforward and natural way to improve the theory is to consider the ef-
fects of high-order correction. Therefore, in recent years, the third-order theory has started
to catch people’s attention. These high-order terms significantly improved the agree-
ment with a large value of 7/s obtained with kinetic transport calculation [57,58], and a
few third-order theories of relativistic viscous hydrodynamics have already been devel-
oped [58-60]. In this work, we will also derive a third-order theory using the regulariza-
tion technique, followed by a linear stability and causality analysis. By implementing this
approach, we will obtain a more precise theory by taking into account the higher-order
correction effects.

This dissertation is organized as the following: in Chapter 2 we will begin by introduc-
ing some background knowledge in kinetic theory and deriving the conservation laws of
energy, momentum, and particle number. We will then proceed to derive the evolution
equation for a general rank-n energy-momentum moment of the small perturbation ¢ f in
the phase density function so that the hydrodynamic equations for the specific moments
that we are interested in can be easily obtained in the subsequent chapters. In Chapter
3, we will derive the second-order R14 hydrodynamics using the regularization method,
followed by the linear stability and causality analysis on such theory. In particular, the
R14 equations will be first linearized and then decomposed into longitudinal and trans-
verse parts so that each component can be analyzed independently. We will show that the
second-order R14 theory is linearly stable and causal regardless of the choice of transport
coefficients, with the assumption of massless particles without particle number conserva-
tion. In Chapter 4, we will commence by obtaining the third-order R14 theory, and then
carry out a linear stability and causality analysis on this theory, following the same proce-
dure outlined in Chapter 3. We will demonstrate that this theory is extremely analytically
complex but still linearly stable and causal, proven by numerical approaches. Finally, we

will conclude this dissertation in Chapter 5.



Throughout the dissertation, we will utilize natural units c = h = kg = 1, and adopt

the mostly-positive Minkowski metric g, = diag(—1,1,1,1).

10



Chapter 2

General Moment Equation and

Conservation Laws

2.1 Kinetic Theory and Conservation Laws

To begin the derivation of the general hydrodynamic equation, we shall start with the
relativistic Boltzmann equation, which describes the dynamical behavior of relativistic

particles. For simplicity, we assume single particle species:

P*Ouf(x,p) = C[f] (2.1)

where f is the phase space density function, and C|[f] is the collision term which takes
into account the changes in f due to the collisions of particles. Again for simplicity, we

only consider elastic scatterings. Using Boltzmann statistics, the collision term becomes:

1 d3p1 A3k d3k1 5 4
p I 2m)%0 —k—k
P'Opf(x,p) 2/(271')3]?[1)/(271')3]{;0/(27?)3k?|M|Pp1<—>kk1< m)(p + p1 ) o

X [f (@, k) f (2, ka) = f (2, p) f (2, p1)]

where p = /p? + m? is the on-shell energy of the particle. In the remainder of this

dissertation, we will not consider quantum statistical effects such as Bose enhancement

11



or Pauli blocking for simplicity. One can include these effects by changing the right-hand
side of Eq. (2.2) appropriately [61]. However, doing so will not affect the derivations

below too much. The energy-momentum tensor (or stress-energy tensor) is given by:

3
e [ B s o3

Taking the space-time derivative we get:

0, = [ Ly, f(a.p)
12 (27T>3p0p p © ‘T7p

_ 1 d’p d*py d*k A3k, ) ey L

2 / (2m)*p° / (2m)3p} / (2)3k0 / (27)3kY IMppy o, (27)°0(p +p1 — b — Fn)
x p"[f (@, k) f (2, k1) — f(2,p)f (2, p1)]

_ L dp d’p) d*k $r

B §/ (2m)3p° / (27)3pY / (2)3K0 / (2m)3 kY My oty (20) 0P+ p1 =k = K1)
x (p7 + P — k" = KY)[f(z. k) f (%, k1) — [z, p) f(z,p1)]

=0

(2.4)

Note that in the third step, we have used the fact that the above expression is symmetric
under the exchange of p and p; and anti-symmetric under the exchange of (p,p;) and
(k,k1). Also observe that the time component (v = 0) and the spacial components (v =
1,2,3) of the above equation correspond to the conservation of energy and momentum,

respectively. In a similar manner, we can define the particle number current as:

3
7= | Gy ) 25)

12



Taking the space-time derivative, we get:

d3p
auJ“:/Wp“auf(%P)

1 43 d3 1 Bk dSkl ,
B 5/ <2W)€p0 / (27T§93p? / (27)°k° / (27)3 kY Ml e, (2m)'6(p + 1 =k = Fa)
X [f((E, k)f(l‘, kl) - f(I,p)f(x,pl)]
=0

(2.6)

where we used the fact that the right-hand side is anti-symmetric under the exchange
of (p,p1) and (k, k1). Therefore, the particle number is conserved as expected since we
consider elastic collisions only.

We further define the fluid-flow velocity u* = (1, V) as being parallel to the energy
density flow, where v is the Lorentz factor, V is the fluid-flow 3-velocity, and e is the
energy density:

™" u, = —eu” (2.7)

Similarly, we can define the particle number density v as:

J“uu e (28)

Note that in the above definitions, we used the mostly positive Minkowski metric, and
all quantities depend on space-time coordinates z. The flow velocity u* is normalized to
u'u,, = —1. Now, the phase space density function can be considered as a small fluctua-

tion based on a local equilibrium part:

f(x,p) = folx,p) +6f(x,p) (2.9)
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where the local equilibrium part f; is:

fo(a,p) = A o 210)

Here, 5 = 1/T is the inverse of temperature, and o = [y is the local chemical potential
over temperature. The corresponding energy-momentum tensor and particle number

current at local equilibrium are naturally defined as:

d3

11 = [ Gt e 1)
d3

Jo = / (%)gpop"fo(x,p) (2.12)

Observe that in 7§, the only two quantities that are available for us to form a rank-2

tensor are u*u” and ¢g"*. Therefore, T} must be a linear combination of the two:

T = Autu’ + BA™ (2.13)

where we define the local 3-metric A* to be:

A,ul/ — gul/ + u/.tul/ (2].4:)

which satisfies:

A, = g""u, + ufuu,
=yt =yt (2.15)
=0
Note that for static fluids the time components of A*” vanish and A*” becomes purely
spacial since ¢g"* = diag(—1,1,1,1) and u* = (1, 0) for static fluids. Furthermore, A" can
also be considered as the projector which projects the components that are orthogonal to

u of an arbitrary 4-vector.

14



Similar to (", the only vector that is available for us to write J is u*. Thus,

Jb = Cu (2.16)

We now need to calculate the quantities A, B, and C. To do so, we use the following

matching condition (also known as “Landau condition”):

T, = T4 v, = —eu (2.17)

Jru, = Ju, = —v (2.18)

It immediately follows that A = € and C' = v, and they can be written as:

d3p d3p 0
= T u,u, = W2e e a:/— Oe= PP e 2.19
€ 0w / ) e e (27T>3p e "Pe (2.19)
d3p _ a d3p _ B0 «
V= _Jguﬂ = /WWPG 5Wpe = / (27T)36 Br (& (220)
where the quantity W, = —u,p" is Lorentz-invariant and therefore can be evaluated in

the fluid cell rest frame, leading to W, = p° = |/p2 + m?, the energy of a particle in the
fluid cell rest frame.

We still need to calculate the coefficient B. This can be done by taking the trace of
the energy-momentum tensor at the local equilibrium using the local 3-metric A*”. Once

again, the trace is Lorentz-invariant and we can evaluate it in the fluid rest frame:

AT =3B (2.21)

Recall that A*” is purely spacial in the fluid rest frame. Therefore, only the spacial entries
along the diagonal of T, which correspond to the thermal pressure, contribute to the
trace. The factor of 3 in front of B indicates the contribution to the pressure from each

spacial component. Consequently, it follows that B = F;, the thermal pressure at local

15



equilibrium. By going to the fluid cell rest frame, we get:

1
Py = <A, T

3
1 d®p , 50 o
- §/ oyl P G + i )e e
1 d3p — 800 «
=3 / W(ﬁ“pu +Whe e (2.22)
1 d?’p 2. _ o
- 5/ (27r)3po(—m2 +p")e e

Note that Py = %e if m = 0. We can now write the full energy-momentum tensor and

particle number current as:

17 d3 v
™ =Ty +/(27T—)§p()p“p of(z,p) (2.23)
n d’p
Jh=Jy + / Wp“(gf(%p) (2.24)

By the matching conditions Eq. (2.17) and (2.18), we arrive at the following requirements:

3 3
/—(Qi)gpo Wypt's f(z,p) = /%Wﬂ?f(:p,p) =0 (2.25)

Before we start calculating 67" and 6.J#, it is convenient to define the projected momen-

tum pi:
p(m = A"p,

= (g" + u'u”)p, (2.26)
=p"' = Wyut

Notice that by applying the projector A} along with Eq. (2.26) to Eq. (2.25), we get

3
[ oy W) =0 2.27)

16



which is another useful relationship. Now, with Eq. (2.26) and Eq. (2.27), the small

fluctuation in T"" is given by:

d3
s — | Gyt 85 )

3
- / (2i>€p0 (p% + Wout) (p") + Wou)é f(x, p) (2.28)

d®p ,
= /Wp<“>p< 6 f(x,p)

where we have also used the fact that

3

d3p 2, W, vV W dp N
(Qﬂ)gpowpu w’s f(x,p) = —u"u"uq —(27T)3p0pr df(xz,p)=0 (2.29)

with the help of Eq. (2.25). Then

57 = aray [ L5 (e p)
a—=p (27T)3p0 !
1 1 d’
= [poeas v ana - garan [ GEEmore
1 d*p
+ —A“"Aag/ﬁpap%f(%p)
3 . (2m)3p 1 - (2.30)
_ ny p o, B _AMY p &
Aa,@/ P 6f(@.p) + 34 /(QW)gpop Pad f(x,p)
d3p 5 m2 v d3p
:/—(%)%OPWP 16 f(x,p) — ?A“ /W5f($,p)
prmnd 7THV + HA“V

where in the second step, we have used the fact that the expression is symmetric under
the exchange of indices a and 3. Here, 7 is the shear-stress tensor, 11 is the bulk viscous
pressure which is a measure of the resistance of the fluid to be compressed or expanded,

and
A" = 1 AFAY + AEAY QA’“’A 2.31
af § a=p + B=a 5 af ( . )
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is the rank-2 traceless and symmetric projector. Consequently, 7 is also symmetric and
traceless. Similarly, one can show that:
d®p
0J' = | ——=p"d
/ 2nip” f(z,p)

3
_ / (2i )];po P96 (2, p) (2.32)

= q'u'
which turns out to be the diffusion current. Therefore, the full energy-momentum tensor
and particle number current are given by:

T" = eutu” + (Py + IT) A" + 7t (2.33)

J,LL = vut + qﬂ (234:)

Observe that I1, ¢*, and 7" are scalar, vector, and rank-2 energy-momentum moments of
0 f, respectively. One can easily generalize this concept to higher order by defining the

rank-n energy-momentum moments:

3
Hioepn d°p (SfWT (W1 tim) (2 35)
with IT = —%Zpo, ¢" = py and " = pii”. Here, the integer n is the momentum order, and

W, is the energy weight in which the integer r indicates the energy order. The angular
bracket represents the transverse (with respect to u*, as mentioned previously), symmet-
ric, and traceless combination of Lorentz indices. This is obtained by acting the rank-n
projector (see Eq. (A.1)) which extracts the transverse, symmetric, and traceless part of
any rank-n tensor, on n momenta:

pml...un) _ Am..-unplﬂmpl/n (236)

Vi...Un

18



2.2 General Moment Equation

As we will see later in this dissertation, the energy and momentum conservation laws
(Eq. (2.4)), along with the particle number conservation (Eq. (2.6)) serve as the evolution
equations for the energy density ¢, the fluid flow velocity v*, and the particle number den-
sity v, respectively. However, the evolution equations for all the other moments remain
unknown at this point. Therefore, it seems natural to derive the hydrodynamic equations
for these moments as the next step, the corresponding equations will serve as the evolu-
tion equations for these moments. Starting with the general rank-n energy-momentum

moments of J f:

d3

Taking the comoving derivative D = u"0,, which corresponds to the time derivative in the

fluid rest-frame, and then projecting onto the transverse space, we get

d3
At Dt = At / @i (DONWp

V1...Un V1...Un 271’) P

d3
+ AL / 2m)p 5fW”Dp iz | pvn)

)73 1z j £ ITY? 1% 1Z 1Z
Aljl...... . / (2‘1) p 5 (D P )p< 1p 2"'p n>

d3

—n/ dgp 5fWT+1p<u1pu2 k)
(2m)3p°

d3
— A, / itV ppp

where we defined the fluid acceleration by a* = Du*, and used the fact that DWW, =
—a,pt = —aup ), along with Eq. (A.8). Now, using Eq. (C.21) in [62]:

) (A, 1 ) n

= pWpt. ph' + (W2 — m?)pl . ArnI (2.39)

p<>‘>p<ﬂ1 . 'p.“n
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we can expand the last term on the right-hand side as the following:

d3p
n Vi...Un __ cooMm T <V v Vn>
Aty g = At | S (DB

dS
_ 5 WTH (w1 pp2 o mn)
| Gyt P

d3p STWr—lplopuippe  ppn)
—Tras Wf p PP PP

2n+1

d3
- aa/ b (5fW;_1(W;—m2)p<“1p“

(2m)3p°

2 AM)O

(2.40)

To express DJ f in terms of J f, we can use the following form of the Boltzmann equation

POufo+WpDSf +p¥V,8f = Cf]

in Eq. (2.40), which gives

d3
AWt Dplttn — —p / SO St pl iz ghn)
" (2m)3p°
d3p r—1, (o in)
—Taa/—(Qﬂ)Spoépr p\pttph . p
T / o SOSW, T (W) = m?)plp”
m+1) (2m)3p°
+N1~~“"/—d3 CLAw, ~plp.p
Vl...Un (277')3]?0

d3
— Alt-hn / S(Oxfo) W pipe p

(2m)3p°

d3
- Aﬁfﬁf/ (r S(VAS LYW pplpe pte

)3p°

2 gt

(2.41)

(2.42)

Here, we define V, = A7, as the projected derivative, corresponding to the spatial gradi-

ent in the fluid rest-frame. Eq. (2.41) can be easily obtained using the Boltzmann equation

and by realizing that:

Oy = g“a ( u,u” 4 Al‘f) Oq = —u,D+V,

20
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Using the chain rule, we can pull V), in the last term on the right-hand side of Eq. (2.42)

out of the integral:

3
Ayt Dt = —n [ L s

(2m)3p°
d3
—T‘(IU/ (27T)p 5fW7“ 1p pﬂlp#2 .p“”>
n d3p ) )
— r— <M1 Hn)
T2n+1/(2 o S W (W =)t p.
dd - 1% 1% V,
e / o O ppt L p
dS
— AL / W(E)Afo)wr prppte L p) (2.44)
dS
_Affllf.'.'zlffvx/ ) 0 fWypNpipe pn

d3p .
+ Apbn / % S (VAW N pipe

d3
M1 -e-fin r—1 MNpvL e )
+AV1.._VH/(2W)p W, (Vap' )p™ i p™2..p

d3
+ Aﬁ;ﬁ: / (27T) 5fw7" 1 () (v)\p<l/1py2“.pyn>>

Now, note that the second-last term on the right-hand side can be simplified as

d3p r— IZNZ 12
At [ SR W (T g g

(27)3p"
_ ppen [ AP SfWy VA = W )pp™2 . p) (2.45)
V1. Un (27T)3p0 P A p .
d3 T 1 2
_ _9/ O 5fW vz pH _pun>

since Vyp* = 0 and v*V,\W, = v*A%9,W, = 0. Here, we define 6 = 9, u* = V ,u*, which

represents the expansion rate of the fluid.
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To briefly summarize, so far we have:

d3
Apl i Dpyttn = —n/ ﬁéfwgﬂp(“lpm...a“")

d3p STWrLploppiphz  pun)
— Ty ) JW,pppp

. n / dsp 5fW’“_1(W2—m2)p<“1p”2 abn)
2n+1) (2m)3p0 " P NP

+/ o ClLAW, ~tplpt.pt
(277)3]70 p

d3
—/ﬁ(&fg)wg1p’\p<“1p“2...p“”> (2.46)

dgp T— 1% 1% V.
— ALV / W(Sf Wy tpNptap pm)

d3p rT— 1% % V.
A / Gy e PN (Vapip )

0 dgp WS fpltiphz  phn)
0 P

d3p .
=1\ (A) (12 o fin)
+/(27T)3p05f(VAWp )p\ptiph2 p

We continue to simplify the last two terms by calculating the gradients. Observe that

VAW, = (r = W) 3(VaW,)
= —(r = W, 7V (uap®)
=—(r— 1)W;_2pavxua (2.47)
=—(r— 1)1/[/]2,"’2(]9(“> + Wou®) Vg

=—(r— 1)W£’2p<a>v,\ua
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using the normalization condition u,u® = —1. Plugging this into Eq. (2.46) gives

d3
Alszzlj:Dp:lyn == —n/ ﬁéfwgﬂp(mpm...a“")

d3
— mg/ P 5fW;’1p<"p‘“p“2...p“”>

(27r)3p0
. n / d3p (5fWT_1(W2 _ mz)p<l‘1pl‘2 a#“)
2n+1) (2m)3p0 " P P

+/ LD fwy-tpogs. o
(27T)3p0 p

a3 _
—/ﬁ(@fo)wg IpAplipha | phn) (2.48)

d?’p rT— v 1% v,
- Aﬁll.'.'ﬁ:V)\/ (27r)3p05pr Ly pvipra | pn)

d3
+ A;’jlll;j:/ b 5fW;71p<)\>(v/\p<v1pu2'“pun>)

(2m)3p°
d3
_ Q/ (271-)]3?1)0 W;5fp<“1p“2...p“">
d’p . o
—(r— 1)/ (27T)3p05pr 2(V>\Ua)p< >p<)‘>p<“1p“2...p”">

Now, using Eq. (A.11) proven in Appendix A, the third-last term on the right-hand side

can be written as

d3 — 1% % V.,
Aty [ o sy (Vap )
(2m)%p
(2.49)

:—n/ d’p WT(Sfp<)‘>p<.ulpP«2.nv>\u/—Ln>
(2m)3p0 P
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Eq. (2.48) now becomes

AHLHn [) V1V d3p 5 Wr+1 (1 P
e Dpy n ) f pipt.a

d3p SFIW T Iploppiphe  ppn)
— Tag (277‘)3])0 f D p p p-..p

. n / d3p (5fWT_1(W2 _ m2)p<#1pﬂ2 a#?’l)
2n+1) (2m)3p0 " P P

d3p C =1, {12 n)
+/<2W)3p0 [fIW, " p¥p2.p
d’p r—1, A )
~ [ G ORI 250
— Al d33 05f A pigrz gy
&Bp
_ n/ 2n)P W;5fp<A>p<“1p“2.._v>\u“">

d*p 1)
_g/ WIS fpluaphe ppn
(2m)%p

d3
—(r—l)/ 2n)s 5fWr 2(Vwa) >p(>\)p<u1pu2mpun>

Applying Eq. (2.39) again to the sixth term on the right-hand side, we get

d3 V1 1% V.
—Af;;;_-;ﬁ:w/ ) 05fWT 1 < 2. n)

d3
:_Aljl an / 3 OéfWr ! )\pulp p ) (251)

n d3p
- AlLtin —— 5 fW, — mP)pp A
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Plugging this back into Eq. (2.50) gives us

o d*p o
AIV?%LDPTI n :/(QW)BPOC’[‘]C]WP 1p<M1pM2“'pMn>

dsp =1, A (K1 p2 o pn)
- W(a)\f[))wp pptiph.ptn

3
_ n/ d’p 5fW;+1p<“1p“2...a“”>

@)
. / TP s pwr 12— w2yl
2n+1 ) (2r)3p0 7 P VP

d’p S FW T Lploppappe  pim)
— Ty Wfp p\ptipt . p

(2.52)
AH1-Enyy dgp 5fWr—1 (ApViv2  oVn)
- Vi...Un A (27T)3p0 p p p p p

n d3p
. AH1-Hn 5 erl W2 . 2\, (V1 Z/QH.AZ/n>)\
2n + 1 V1...Un V)\/ (277')3]70 f p ( P m )p p

_n/ d’p Wr(gfp(Mp(mp“Q...V)\u“")
2r)3p0 P
d3p
B R I
0 G st

a3 _ o
—(r— 1)/ (2#)];])0 (SfW;; Z(V,\ua)p< >p<>\)p<mpu2”_p#n>
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Using the definition of the moments, we get

V...V, d3p r—
S Do _/ UL S

dgp =1, A (K1 p2 o pn)
— | s (O )W, pip e pht

(2m)3p
Qpllzl ‘HUn
n AV1 - Un
— AR N0
n ) 2 n)
_2n+1(V< P = mV I > 2.53
—?”aapa”i o ( | )
n 2 (p1-pn—1 )
T
n(r+2n+1) (oot
T B T

_ n/ dg—pwré‘pr\)p(ulpuzmv)\uun>
(271-)3])0 p

d3
_(T_l)/(er) =0 fW, 2 (Vaua)p I pNplap pn)

Now, we can further expand the term —n f G )3 s Wy 0 fpMplaphe  V utn) as the follow-

ing:

d3

(2m)2p
dgp T - B\ g (A o (BT e g i — 1 gy it 1o gl )
== | G0t D (Vaut)pNpln-priciprieip
i=1
2 dp T ikt (O L o gy i — 1 g i 1o g —1 gy Mg 41+ g )
t o1/ et ZA 3 (Vaug)pHplopttphi-tphistpliztphisiop
i#]

(2.54)
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where we used

p(ul fin—1ghn) — E atip (p1.. pli—1Lphi+ie pun)

, (2.55)

_n(Qn——lZAmma/\p phephis p’“ﬂ---p“f—lp“fﬂ---pun)

i#]

in which «* is an arbitrary vector, which can be easily replaced by a rank-2 tensor by
tixing one of the two indices. Using Eq. (2.39) to combine the angular brackets, we can

further expand Eq. (2.54) as

d3
. / Dy pppn e )

(2m)*p°
— / d3 WT fz V/\u/“ p pm i puz’+1~~pun>
(2m)3p°
_ n—1 / dp Wr(;fz (Vu') W —m )pm...pm flig 1o A\ Hn) A
2n—1 /) (2m)3p°
+ 2 d3 WrngAuzug v ) Qe i — 1 i 1o oG —1 o g1 o fn)
o —1 (2 )3]70 AU p p-p D pp p

i#]

WT(S AFiti (7 W2 — R L NS W (TR P RS Ry N O
+ (2n — 1)2 / (2m)3p° f; Aa)( p M )PPt ptiip pp

(2.56)
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which can be written in terms of the moments:

&P s e O g )
-n W7o fpi p¥iphs  Vyutn

(2m)3p°
= — Z(V,\u’”)p?”l'””i’l“i“'““"
=1
+ 2 Z APt (V)\ua)p)‘aﬂlwﬂiflﬂwrl~~-Mjflﬂj+1~~-ﬂn
2n —1 "
i#]
n—1 (1o i — 1 i 1 e B — 1T ) b
- Zpr+2 Vi
2n—1 —
(22(71 _11))2 Z Ap,ilu,jpiil»;l---lli—llli-kl---/Lj—l,uj-H---Mnflvyn)U/a
n _
i#j
n 2.57
m2(n — 1) Zp<#1~~#i—1#i+1m#n71 v#n)u#z‘ ( )
2n—1 —
2 n
_ 28 (TL I)i) Z A#i/’«jpélalll--~,U«7;71/Ji+1--~,U«j71llj+1--~,u«n71V,U«n>ua
n —
i#j
—_ _ Z vAu<.U4ipﬁl---ﬂi—lﬂi-&-l---ﬂn))\
i=1
_ n-— 1 (ul"wu'ifllu‘iﬁ*lnwufnfl /.Ln,LL,L>
2n - 1 r—+2 o
=1
m?(n —1) <
Z (1o fhi— 1 i1 i —1 B )
Pr o
2n —1 —
where
ot = Vi) (2.58)

is the symmetric Navier-Stokes shear tensor. Since the angular bracket represents the

traceless and symmetric combination of the Lorentz indices, all permutations of the Lorentz
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indices inside the bracket give the same term. Thus

—n/ﬂWT5fp<’\>p<“1p“2,,_V/\u“">
(27 )3p0 P

= _np?<ﬂl~'~#n—lvAuNn> _ n<n — 1> <H1~--#n—20_un_1un> (259)

om—1 r+42

2
m (n — 1)np(u1-..un—20un—1un)
2n — 1 "

Here, we can replace V,u/" using
A v v 0 v
Viut = o™ + Wt + gA“ (2.60)

where

1
wwzi(vwﬁ—vww) (2.61)

is the anti-symmetric vorticity tensor. Doing so gives us

P s e O (g o)
-n (Q—Wp5fp prphz LV ut

)*p°
= _np?<u1-~un—10f\‘n> _ np?<u1mun—1w§n> _ %gpﬁlmun (2.62)
2
. n(n — 1) <M1-~~Nn—20.ll«n—lun> + m (n _ 1>TL <N1"'“"—20-“"_1M">

om—1 "2 om—1 "

Now let’s go back to the general moment equation Eq. (2.53) and take a look at the term

—(r—=1/ %61‘"1/1/;*2(VAua)p<a>p<*>p<”1p”2...p“”>. Using Eq. (2.60), this term can be
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written as

d3
—r 1)/ (27r)§p SfWy 2 (Vaua)p' W pNplpre. pe)

d3
=—(r— 1>0M/W Wi~ 2pled A plun iz ppin)

-1 d3p
— (r 3 )9/( (5fW;72(WpQ—m2)p<“1p“2._.p“”> (2.63)

d3
= _<T - ]-)O-)\a/W(SfWT 2p<o‘ p( >p< p,UQ”‘pMn)

(r—1) et (r — 1)m?
g o T

M1 - Hn

Op.L

Note that the term with w), vanishes due to its anti-symmetric property. We then proceed
to expand the first term on the right-hand side using the following identity analogous to

Eq. (2.39):

p<a>p<>‘>p<;u'1 .. .pﬁ’l'ﬂ*lpﬂﬂ)

— p<ap)‘p'u'1 .. ,pﬂn—lpﬂn>
1 .
+ (Qn +_3) (Z A,uza ()\ M1, pMH‘I . .pun)
_(2n—2_1) Z APt plopAphit L izt plitt L pli=1 it ,pun>>
i#]
1 2 2 - i (o 1 [i—1 g i1 tn) (2 64)
+(2n+3)(Wp_m) ZA ppTeeeptTiptt e
=1
(2n — 1 Z Aﬂzugp pApm .. .pm—lpm-s-l . e .pﬂj—1pw+1 .. _pun))
17&]
1 2 2 pYe "
+(2n—+3)(W )(A p<l‘1...pu>)
n(n - 1) 2 2\2 e At n) aad A AN
+<2n+1>(2n_1)(Wp—m) (p<#1..,pﬂ A 1A>\’ )A A
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which is obtained by considering all the possible symmetric combinations of the momenta

and projectors. This leads to

d’p 2 (a
_ (7’— 1)0)\a/ (27)3p05pr 2p< >p<)‘>p<“1p“2...p“">

~(r = Dorapi2t

2(r — 1)

_ i QUL ool 1 g 1o fhm

_— E alip
2n+3 — o

1=

n

E A,uz,u] QALY ool 1 i T e b — 141
(27’L + 3)(27’L — 1) oy Aol

2m2(r — 1) « _
- 7 i OHL e g —1 i1 - oy 5
T ;" Pr=2 (2.65)

4m2(r — 1 A ) . .
—_ A,U%llﬂ G /’Ll —1Hi41 Hj—1H541--Hn
(2n+3)(2n —1) Z Tralr—

_ (T - 1)(” - 1) <H‘1 Hn— 20_,LLn 1,un)
(2n +1)(2n — 1)/
2m%(r — 1)(n — 1)n
(2n+1)(2n — 1)
m (T B 1)(” ) Nl~~ﬂnf20_/.1n,1,u,n>
(2n+1)(2n—1) Pr-z

,u1 Hn—2 yhin— 1fn)
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Note that each pair of summations give the traceless and symmetric combination of o’

and p, "ttt -l Thus this reduces to

d3p
7T

—(r— 1)0Aap?>\u1

2<T — 1) o (Hi plite i1 i1 )
2n+ 3 ZZ a'Pr

n

2m?(r — 1) A
(i P fhim 1 it 1o ) O
+ T ; ok phts (2.66)
. (’I" — 1)(7’L — 1)” p(#l Hn=2 pin— 14n)
(2n+1)(2n — 1)
2m%(r — 1)(n — 1)n
(2n+1)(2n — 1)
m4(7” — 1)(77/ ) p lu,l.u,u,nfgo_lunillun>
(2n+1)(2n —1) 72

m Hn—2 yfin— 1Hn)

Since all permutations of the Lorentz indices inside the angular brackets give the same

term, this can be simplified to

d’p -2 (a
= 1oy, / S W, 260N iz o)

_ _(,,, _ 1)0)\ap;l>\u1 -Hn

_ 2020 e )
2n+3 " “
2m2(7“ — 1)” apl...in—1 )
g3 e o =67
_ (7” — 1)(7?, — 1)77/ p(ul...un—zo_un_1un>
(2n+1)(2n —1)""*?
2m?(r — 1)(n — 1)n
(2n+1)(2n —1)
m4(r — 1)<7L ) (1 -epim—2 Hr—1fn)
p'r—2 o
(2n+1)(2n — 1)

/‘Ll M — 20-/—’"n lﬂn)
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Plugging all the above results back into Eq. (2.53), and expressing everything in terms of

the moments, we arrive at the final form of the general moment equation:

d3p
1oy VieVn _ r—1, (u1, p2 )
Am...l/n Dpr / (27T>3poc[f]wp pTpr..p

d3p =1, A (K1 p2 o pn)
- W(@fo)wp pptptp
_n@rArt ) e )

om+1 et

n
+ rm?2 o 1pilili--un—1aun)

ApL -
—raxp,_;""

AVq...
_ ANI an)\perl Un

V]...Un

<u1puz-~~#n>
2n+1 rH

vim pui~i-un>

+m?

2n+1
n+r+2

3

G W

0 pp-n (2.68)

n(2n+2r+1)

A1 pin—1, Hn)
- np; Wy

(2n + 7") (n — 1)np<'u,1...,u,n72o_,un71#n>
(2n — 1)(2n + 1) r+2
T =0 Alicsns e
o +3 "2 ’
L (r=1Dn—-1)n (Hl...,unfza,unfluﬂ
@n+1)(2n—1)"
) (277, o — 1)(77, — 1)71 (1 pim—2 i —1fin)
2n+1)(2n—1) "7

+2m?

By letting n = 0, 1,2, this result agrees with the general equations of motion displayed
in [63], in which the local equilibrium term is expanded in terms of the hydrodynamic

variables.
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Chapter 3

Second-Order Regularized
Hydrodynamics

In this chapter, we will extend the non-relativistic regularized 13-moment hydrodynam-
ics to the relativistic regularized second-order 14-moment hydrodynamics (R14). We will
then conduct a series of linear stability and causality analyses on both the longitudi-
nal and transverse components of the evolution equations with some assumptions. The
derivation and analysis of the third-order equations will be addressed in the subsequent

chapter.

3.1 Second-Order Moment Equations

The 14 moments in “R14” encompass energy density ¢, particle number density v, fluid
flow velocity u*, shear stress tensor 7", bulk viscous pressure 11, and diffusion current
¢". Due to the traceless and symmetric properties, the number of independent moments
in a rank-n tensor is 2n + 1. One can verify that the total number of the above moments
is indeed 14. As already mentioned earlier, the evolution equations for ¢, v, and u* are
given by the conservation of energy, particle number, and momentum respectively. The

thermal pressure F;, on the other hand, depends on € and v, as specified by the equation
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of state. Thus, at this point, we need to derive the evolution equations for all the other
moments, which are II, ¢#, and 7, using the general moment equation Eq. (2.68). Upon
closer examination of the general moment equation, it becomes apparent that numerous
energy-momentum moments appear on the right-hand side. Specifically, the equation for
pkitn can include energy orders ranging from r — 2 to r + 2 and momentum orders from
n — 2 to n + 2. Consequently, the 14-moment equations are not closed, and a means of
linking additional moments to the existing 14 moments (i.e., the closure problem) must
be devised to generate a well-defined set of hydrodynamic equations.

In a series of papers [50-53], Struchtrup and Torrilhon developed a novel method that
combines the method of moments and the Chapman-Enskog expansion. This technique
commences by utilizing the general evolution equations for the energy-momentum mo-
ments (Eq.(2.68)), then applying a Chapman-Enskog-like expansion directly to the mo-
ments instead of J f, excluding the 14 moments that are left intact. This is because, as we
shall see later, the 14 moments are of first-order in the expansion and their corresponding
moment equations do not generate evolution equations at the lowest order. By using this
technique, there is no room for arbitrariness in choosing the closure conditions, and it sys-
tematically produces a unique set of equations at any order in the expansion parameter e.

We will demonstrate this technique in the following sections.

3.1.1 Equilibrium Term

In the general moment equation Eq.(2.68), the leading order O(1) contribution comes from

the equilibrium density term (the second term on the right-hand side)

Ep
Fpi :/ (27r)3p0pr<“1---p“"‘lp“”p*ékfo (3.1)

where fo = e #"»*@ ig the local equilibrium density function. The temperature, chemical

potential, and fluid velocity are all functions of position and time. Following Eq. (2.43),
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the space-time derivative can be decomposed as
p oy = pMV, + W,D (3.2)

It is then clear that p*dy fo = fop*Or(a — W,,3) can contain only 1, p#1), p#1p#2) Hence the
orthogonality of pt! - .- p#») (i.e. Eq. (16) in [63]) demands that

Frbn =0 forn >3 (3.3)
Forn = 0,1, 2, we get
Fy = ool + 671, 0uq" + 71 (7770, + 01T1) (3.4)
Fl' = thpo V' + oy (ALO,m" + (V) + a1I) (3.5)
I = 00" (3.6)

where the coefficient functions ¢, 1) and ¢ are functions of a and 5 only. Recall that § =
V,ut is the expansion rate of the fluid cell. Observe that F,, F* and F}* all involve
gradients and time derivatives of the hydrodynamic variables. Consequently, they can be
physically described as the forces that are driving the evolution of the system. In deriving
the above expressions, we have used the conservation laws Egs. (2.4) and (2.6) to express
any time derivative in terms of spatial derivatives. Details can be found in Appendix B.
From now on, the index preceded by a vertical bar on any quantity indicates the order
in the formal expansion parameter e. For instance, v, is the O(1) coefficient of F*. The
notation £;""" is for the O(1) part of F""#» and F)j;""" is the collective O(e) part. As

we will see in the next section, I1, ¢* and 7 are all O(e).
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3.1.2 Power Countingin ¢

In the Chapman-Enskog method, the collision term is scaled as C[f] — (1/€)C[f] and the

non-equilibrium part of the phase space density is expanded as
0f =Y €"6fm (3.7)
n=1

These are then plugged into the Boltzmann equation. Collecting terms having the same
power of ¢, the n-th order piece ¢f}, can be found iteratively at each order of . This
in turn determines 5T"7‘L Y and q"; which are expressed solely in terms of a, 5, u and their
derivatives. As such, the Chapman-Enskog procedure does not yield separate evolution
equations for d7* and ¢*. The resulting equations are often acausal and can lead to in-
stability [38—43]. To obtain the evolution equations for 67" and ¢* within the Chapman-
Enskog method, one needs to substitute time derivatives of 5T|¢L Y and qﬁl with the equiv-
alent time derivatives of 07" and ¢ without spoiling the e accuracy. For instance, in [60],
this procedure was carried out up to O(e?).

In the R14 method, instead of § f, the energy-momentum moments of § f are expanded

in powers of ¢

P =3 ol (338)
n=1

Working out the order-by-order solution by putting Eq.(3.8) in Eq.(2.68) would be com-
pletely equivalent to iteratively finding 0 f,,. What we would like to do differently, how-
ever, is not to expand the bulk pressure, py = —II(3/m?), the dissipative current pf = ¢*
and the shear tensor pi” = 7 whenever they occur while expanding all other moments.
In this way, the evolution equations for these quantities will naturally result in closed
evolution equations for them while all other energy-momentum moments are expressed
in terms of the 14 moments. The purpose of this dissertation is to derive these evolution
equations up to and including the O(e?) terms (the third order). This subsection estab-

lishes the e-order of energy-momentum moments.
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To be concrete, we use the relaxation time approximation for the collision term

ctf) =~ 55 (a,p) (3.9)

€ETR

where we have explicitly indicated the expansion parameter €. The relaxation time 75 is a
function of 5 and « only. The parameter € stands for the Knudsen number and at the end
of the calculations, € is set to 1. The relaxation time approximation has a significant physi-
cal meaning: when a system in local thermal equilibrium undergoes slight perturbations,
it will eventually return to its original equilibrium state, with a time scale determined by
the relaxation time 7. Putting Egs. (3.8) and (3.9) into the general moment equation Eq.

(2.68) and collecting the O(1) terms, we get
pf‘ll'"”” = —TRFf_l'l‘|'6‘" (3.10)

where [ (" is the O(1) part of F;)"". Since F!""#» = 0 for n > 3 (e.g. Eq.(3.3)), it is

clear that p:f'll'““” = 0 for n > 3. Hence

prs Py Py = O(e) (3.11)

phrbn = O(e?) forn >3 (3.12)

In fact, only n = 3 and n = 4 moments are O(¢?). Note that in Eq.(2.68), the lowest
momentum order on the right-hand side is n — 2. Hence, for n = 5,6, the lowest mo-
mentum order appearing on the right-hand side is n = 3 and n = 4 respectively. This
implies that the right-hand sides for n = 5, 6 are at most O(e?), which further implies that
Jos |12'”“ " /Tr = 0 for n = 5, 6 since there are no O(¢) terms in the right hand side of Eq.(2.68).
Equivalently,

pirtn = O(e®) for n=5,6 (3.13)
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Continuing this way, it can be established that in general
pltn = (™) for n > 1 (3.14)

where [n/2] is the closest integer that is larger than or equal to n/2. Since we have now
established the e-order of the energy-momentum moments, we do not have to carry e
around from here on although we will keep referring to e-order for specific terms. For the
relaxation time approximation, the e-order is the same as the number of 7 factors. Note

that the dissipative currents 7", ¢* and the bulk viscous pressure II are all O(e).

3.1.3 Moment Equations for II, ¢/, and 7"
Equation for II

We now proceed to derive the second-order moment equations for the bulk viscous pres-
sure 1I, diffusion current ¢*, and shear-stress tensor 7. We will start with the equation
for II first. Taking » = 0 and n = 0 in Eq. (2.68):

d3 _ d3 _
D = [ GrfCly ! = [ Gt oW

) > (3.15)
- V)\,Oil - gepo + O'Aapiogl - ?epf2
Using the definition of IT in Eq. (2.30):
m? d3p m?
Eq. (3.15) is equivalent to
m? m? d3p m? 2 m?
DIl=—F - — / == CfIW, "+ —Vapt, — S0Il — — 0™}
3m4 3 (2m)3p 3 3 3 (3.17)
—Op_
+ g VP2
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To get the second-order equation, we need to know p_,, p*,, p% up to and including O(e).
One obvious way to do so is to use Egs. (3.4) — (3.6) and (3.10), along with the relaxation

time approximation Eq. (3.9):

2
m
DIl = " 6108 + 67,00 + 671, (011 + 770,
0 m2 9 m? i (3.18)
— — — —TrV\ ¢—2|0V/\04 — S0l + —TR90—3|00'M0'M - —7'R¢—3|092
TR 3 3 3 9

This expression poses a problem because the second-order terms on the right-hand side
are all second-order in the spatial derivative, while the left-hand side is first-order in the
time derivative, which is a typical characteristic of parabolic equations. If a Lorentz boost
is applied, terms with second-order time derivatives will be introduced on the right-hand
side, altering the mathematical structure of the equation. This can result in issues such as
instability and acausality in the solutions. However, these problems can be resolved by

using the first-order constitutive relationship

2

m
H\l = ?TRQS—HOQ (3.19)
qﬁ = —TrY_10 V"' (3.20)
Tl = —TrP-100"" (3.21)

obtained using again Egs. (3.4) — (3.6) and (3.10), to replace the terms with second-order

spatial derivatives. The scalar equation now becomes

I 2 m? q 7Tl
DIl = - §0H + K [¢71|09 + Cb,mauqu + o (011 + vagw)}
R

3.22
4 ﬁVA(wQOqA) _ 22(9030)0A Ao ﬁ(ﬁbzo)en ( )
3 Y_1po 3 \p-1p/) 3 \o-10
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Equation for ¢

For n = 1 and r = 0 and with relaxation time approximation, Eq. (2.68) becomes:

qﬂ A 1 m2
AyDq” = - FE = pra? — AV — gvuﬂl + ?V“P—l
R

Iz Ao m? % 3 A B A u (3.23)
—0¢" + orap”y — 79p72 L el A :
2m?
- ko)

Note that all the p; terms vanish due to Eq. (2.25). The pi‘é“ term does not contribute at
the second order since p%" is O(¢?). Again using the first-order constitutive relationship

to replace the p terms on the right-hand side, we get

w
ALDg" = —f_— — YooV o — g1 (ALD,m " + VITI + a'TT) — ALV, (SD 20 A”)
R 1/0

2
_ - 3
v ((b—?:z ) — b - m? (Z—?:Z)Qq” B quaf a q/\WK (3.24)

2
_2m o (¢—30)qA
5 Y 1o
which is the second-order ¢* equation.

Equation for 7"

Taking n = 2 and r = 0 along with relaxation time approximation in Eq. (2.68), we get

v 2
ADT =~ — P — 2pla) — ALV, — S0
TR 5
2m? 4 2
+ RV — Z0m 4 ora gy — b

X g 3 ; 3 (3.25)
77r)‘<“az> 27TA<"wK> — 1—5p20“”

4m? s mi V 2

— P55 + T p-a0™ + =m0

Observe that all the p; and p, terms vanish due to matching conditions p; = ps = p}’ = 0.

Just as before, the second-order equation for 7" is obtained using the first-order consti-
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tutive relationship and rejecting all the O(€?) terms:

& 2m? ., (V-2
AP DB — T aot \VAS v)
ap TR P10 ¥ 5 lbfllo E
2

_ ﬁgﬂw _ ﬁg(@) T EWMMU?

3 3 \@-1p 7 (3.26)
o) 4m? (90—3|0)7T>\<M0V> B 2m? <</5—3|0>HUW

A 7 ®Y—-1|0 A 5 ¢71|0

6

_ gHUHV
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3.2 Linear Stability and Causality Analysis

The previous section provided us with the second-order moment equations. However,
it is crucial to ensure that these equations lead to stable and causal solutions since these
properties dictate the usability of the equations in numerical computations. Generally
speaking, analyzing the stability and causality of non-linear partial differential equations
is a challenging task. Therefore, the best course of action in this scenario is to linearize
the equations before conducting any analysis. This is achieved by considering small fluc-
tuations in hydrodynamic variables from the local equilibrium and retaining only the
terms that are linear in these small fluctuations. The analysis of stability and causality
performed on these linearized equations is referred to as linear stability/causality analysis.
To simplify matters, we will assume that the particles are massless (i.e. m = 0), and we
will not assume the conservation of particle number throughout the analysis. As we will

see, these assumptions reduce the R14 theory to the R9 theory.

3.2.1 Linearized Second-Order R9 Equations

Our analysis of second-order moment equations will commence by linearizing them. No-
tably, in the case of massless particles, the bulk viscous pressure II vanishes. Additionally,
since there is no conservation of particle number (i.e., Eq. (2.6) does not hold), ¢* and v
do not contribute to our analysis, therefore, the only relevant dissipative quantity for our
study is the shear-stress tensor 7", reducing the total number of moments from 14 to 9.
Consequently, we only need to linearize the 7" equation, along with the conservation
laws, by considering small fluctuations in the energy density ¢, fluid 4-velocity v*, and

shear-stress tensor m":

€ =€+ 0e, ut =upy + dut, 7 =ort (3.27)
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Setting m = 0 and keeping only terms that are linear in small perturbations, Eq. (3.26)

reduces to

omHY 8
_l’_

Dyomt”
00T+ TR 5234

o =0 (3.28)

where Dy = u;0, and we have used Eq. (B.39) in B.2 to express ¢_1jo. Now, since we are
dealing with only one particle species in this analysis, the chemical potential term in fj

vanishes, and Eq. (2.19) reduces to

__am 3,—Bp 3.29
% J, p e "Pdp ( )
13l
92 G4
3
T2 3t
Thus Eq. (3.28) becomes
omh 8
Dyt 4+ 2 20 (3.30)

which is the linearized 7" equation. Now, we also need to linearize the energy-momentum
conservation laws. To obtain these laws, we can simply take the longitudinal and trans-

verse components of Eq. (2.4) with respect to the fluid velocity u*:

u,0,T" = De + (e + Fp)0 + W“’Baag =0
(3.31)

AD, T = (€ + Py)Du* + V*Py + 7’ Dug + AMV 7" =0

Here, we can replace the thermal pressure P, by the equation of state Py = 3¢ (obtained

from Eq. (2.19) and (2.22)). The linearized conservation laws are straightforward to get:

4
Dygde + geov%oéu“ =0
1
4

(3.32)

VEde + §V)\,057T/\H =0

Do(EO(SU'u) + 4
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where we define Aj” = ¢"” + ufuy and Vi = Aj”0,. It is convenient to express the above

equations in Fourier space. We will use the following format of Fourier transform:

flk) = / "t e f(2)
7(;.2 d4k’ ) - (333)
f(x) = / e )

Here, k" = (w, k) is the wave 4-vector. Therefore, we can express each Fourier component
of the variables in the linearized equations as a plane wave multiplied by a complex
amplitude ¢:

¢ = 5€ikuz” _ ;Z;ei(k-x—wt) (3.34)

Note that since ¢*¥ = diag(—1,1,1,1), we have k,z* = k- x — wt. Furthermore, we
shall rewrite the linearized equations in terms of the Lorentz-covariant variables defined

below:

O =ul'k
o (3.35)

k= Ak,
which correspond to the angular frequency and wave vector in the local rest frame of the

background system, respectively. We also define the covariant wave number « as

K = \/KMEKy (3.36)

In terms of the covariant variables, the linearized conservation laws Eq. (3.32) can now

be rewritten as A
Qe + 560/@1577/“ =0

1 3 (3.37)
Qegout + —KkHI€E+ =Kk oT™ =0
4 4
and the linearized 7 equation becomes
. LY 4 ~ 2w e~
iQ+ — | o + —ieg | KMOU + KVOUM — =AY k0N ) =0 (3.38)
TR 15 3
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From now on, we will assume that all linearized equations are expressed in Fourier space
and will therefore omit the tilde. Furthermore, €2 and « are also assumed to be properly
scaled using the relaxation time to become dimensionless quantities.

The linear stability and causality analysis presented in this dissertation adheres to
the procedure outlined in [5,64]. This involves decomposing the linearized equations in
Fourier space into longitudinal (parallel to x*) and transverse (orthogonal to x*) compo-
nents. This method offers the advantage of decoupling the equations in the linear regime,
allowing them to be solved independently and simplifying the calculations [5]. Thus, it is

beneficial to introduce a projector that is analogous to A*” but with respect to «*:

KM KY

A = g — (3.39)

K2
where r? is introduced to ensure normalization. Then, any 4-vector A* can be decom-

posed into a linear combination of the longitudinal and transverse parts:
KH
Al = AH_ + Alj_ (3.40)
K

where A = r,A"/k and A = Al A,. Similarly, a rank-2 tensor A" can also be decom-

posed as
KFPRY 1 KY
v 17 v

KH
Ay (3.41)

A =4
where A| = k,k, A" K%, A = A A, A = KPAWA,, [k, and A" = AreB A s, Here,

we defined the rank-2 x-projector to be

2
Aped = % (Am:ﬁ + ALPAY - gA’;”A‘:B) (342)

3.2.2 Transverse Modes

In this section, we will analyze the linear stability and causality of the transverse com-

ponents of second-order R9 hydrodynamics. We will discuss two cases: in the first, the
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wave vector k is parallel to the background fluid velocity V, while in the second, the wave

vector is orthogonal to V.

Case 1: k is parallel to V

For simplicity and without loss of generality, we will assume that k and V are both in the

X-axis:
uy = v(1,V,0,0)
° (3.43)
k' = (w, k,0,0)
It immediately follows that
Q=~Vk—-w)
(3.44)

K2 =2 (k — Vw)?
Now, note that the first equation in Eq. (3.37), which corresponds to the energy conserva-
tion law, is a scalar equation. Thus it is purely longitudinal and does not contribute to the
transverse analysis. The transverse component of the momentum conservation law and
the 7" equation can be easily obtained by applying the projector A% and x*. Doing so

gives us

3
9605’&7_ + ZH&?TT_ =0

1 4 (3.45)
(iQ + E) omhl + Bieo/ﬁdu’i =0
This system of equations can be written in the following matrix form:
Q 3k €oou’|
1 T =0 (3.46)
win Q4+ )\ onl

To obtain a non-trivial solution, we require that the determinant of the 2 x 2 matrix M to

be zero:

det(M) = Qi + i) - %MZ =0 (3.47)

TR
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which is the dispersion relation. Note that the dispersion relation implies a quadratic
order for (2, indicating that we should anticipate obtaining two modes. Indeed, the solu-

tions to the dispersion relation are

5i — 8kyTRV /25 + 20tkytRV (V2 — 1) — 20k24273(V2 — 1)2

3.48
2y1r(V?2 —5) (3.48)

W12 =

To determine whether these solutions are linearly stable, we first take a look at the plane

waves formula (Eq. (3.34)):
(b ~ 6i(kz—wt) _ eik:pe—iwrtewit (349)

where w = w, + iw; is complex. Note that the first two exponential terms are simply
oscillating waves, therefore only the third term contributes to the damping, and thus,
stability. To ensure exponential suppression of Eq. (3.49) for ¢t > 0, it is necessary that w;

be less than or equal to zero. Thus, in general, stability requires
w; <0 (3.50)

for all ¢ > 0. In practice, it is sufficient to show that this requirement is satisfied for small
wave number k. This is because hydrodynamics is in essence a macroscopic and large
wavelength theory, and is therefore associated with small wave numbers. In the limit of

small £, we can Taylor-expand Eq. (3.48):

1
w =Vk— ginR(V2 —1)%k* + O(k%)

BY) V(V?+3) 1. 9 9792 3
— — k+ - Ve-1)k" 4+ O(k

(3.51)

Wy =

It is clear that for small &, both w; and w; have non-positive imaginary parts since 0 <
V' < 1. Thus, according to Eq. (3.50), we can conclude that the second-order R9 equations

have linearly stable transverse modes when the fluid velocity vector is parallel to the
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Figure 3.1: Real and Imaginary parts of the transverse modes of the massless second-
order R9 hydrodynamics, in the case of fluid velocity vector being parallel to the wave

vector. The relaxation time is chosen to be 7 = 5 [5, 6].

wave vector. Fig. (3.1) shows the plots of both modes with different values of background
fluid velocity V' and with 7z = 5 [5, 6]. This particular value for the shear relaxation time
7 is calculated from the Boltzmann equation in the ultra-relativistic limit, using the 14
moments approximation. Clearly, one can see that the imaginary parts of both solutions
are non-positive for small k. But in fact, one can show that these imaginary parts are
non-positive for all k > 0. Fig. (3.2) shows the imaginary parts of both modes for V' = 0.9
and 7z = 5, but for a much larger range of k. One can see that the curves demonstrate
asymptotic behavior as k increases. We claim that this result also holds for any other
values of V.

The modes displayed in Eq. (3.48) also encode the physical information of the prop-
agating sound waves. For example, as we will see very soon, dRe(w)/0k is the group

velocity of the sound waves, where w is the temporal frequency and £ is the correspond-
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Figure 3.2: The imaginary parts of the transverse modes of the massless second-order
R9 hydrodynamics, in the case of fluid velocity vector being parallel to the wave vector,
for V.= 0.9 and with relaxation time 7z = 5. Note that a large range of % is chosen to

demonstrate the asymptotic behavior of the curves.

ing wave number. In this particular case, Eq. (3.48) contains information on how the
waves propagate in the transverse direction.
To conduct the causality analysis, we shall first Taylor-expand Eq. (3.48) again but

under the assumption of large £ this time. The results are

2 _ : 1
Cul:_4v+\/25(v 1)k+ ib+v5V) 2¢S Lol
VZ—5 291r(V2 —=5) 8k ra(V2—1) k2

(3.52)
Cu__zu/—\/S(&/Q—l)k_z'(—5+¢5&/)+ V5 Lot
T VZ_5 2yrr(V2 —5) ' 8ky2r3(V2 —1) k2

Observe that the constant imaginary parts of both solutions are still negative in the large-

k limit, since V? < 1. Causality requires that the asymptotic group velocity of the plane
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wave must be subliminal [65]:

k—o00

‘aReliw) ' <1 (3.53)

From Eq. (3.52), we get

ORe(w12)
ok

4V +/5(V? - 1)

TN <1 forall0<V <1. (3.54)

lim
k—o0

Therefore, the transverse modes are also linearly causal.

Case 2: k is orthogonal to V

We will now discuss the second case in which the wave vector is orthogonal to the fluid
velocity vector. Without loss of generality, we will assume that V is still in the x-axis, but

k is now in the y-axis:

uy =v(1,V,0,0)

(3.55)
k' = (w,0,k,0)
It follows that
N =—yw
(3.56)
KZQ — ,.)/2‘/'20)2 4 k2
Plugging Eq. (3.56) into Eq. (3.47) and solving for w, we obtain
; 2,2 2 _
ra = iz(:l:5 + /25 + 4k27E (V2 - 5)) (3.57)

2y1r(V?2 = 5)

Note that the square-root term is always smaller than 5 since V? -5 < 0 forall0 <V < 1.

In the limit of small wave number £, the solutions can be expanded as

Y} iTRk2 3
Wy = + +O(k
’iTRkQ 3
— O(k
wa 5t (k%)
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Figure 3.3: Real and Imaginary parts of the transverse modes of the massless second-

order R9 hydrodynamics, in the case of fluid velocity vector being orthogonal to the wave

vector. As before, the relaxation time is chosen to be 7 = 5.

Note that the first term in w; is negative since V2> — 5 < 0 for all 0 < V' < 1. Again, one

can see that both solutions have non-positive imaginary parts, and therefore, are linearly

stable. Indeed, we can draw the same conclusion from Fig. (3.3) by noticing that the

imaginary parts of the modes are all non-positive for small k. Similar to case 1, one can

obtain a stronger argument that the modes are linearly stable for all k > 0 by noticing the

asymptotic behavior of the modes for large values of k, shown in Fig. (3.4), with V' = 0.9

and 7 = 5.

To examine the causality of the above modes, we expand them around large values of

k, just as before:

W — _
! W5 —V2Z  2y7R(
k

Wy =

b7}

25

57}

5—V2) * 8y13(V?2 — 5)3/2k

25
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Figure 3.4: The imaginary parts of the transverse modes of the massless second-order R9
hydrodynamics plotted for a larger range of k, in the case of fluid velocity vector being

orthogonal to the wave vector, for V = 0.9 and with relaxation time 75 = 5.

Then, it is straightforward to realize that

= 1 - 1_Vz<1 3.60
“vEovE V5o s (360

forall 0 < V < 1. At this point, we can conclude that the transverse modes are linearly

ORe (wl,g)
ok

lim
k—oo

causal when the fluid velocity vector is orthogonal to the wave vector.

3.2.3 Longitudinal Modes

In this section, we will perform the linear stability and causality analysis on the longitudi-

nal components of the second-order R9 hydrodynamics. Similar to the transverse analysis
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done in the previous section, we will also discuss the two cases in which the fluid velocity

vector is parallel and orthogonal to the wave vector, respectively.

Case 1: k is parallel to V

The first step of the analysis is to obtain the longitudinal components of the conservation
laws and the 7 equation. To do this, we simply apply «, and x,x, to Eq. (3.37) and Eq.
(3.38). Also, note that we need to include the purely-longitudinal energy conservation

law this time. As before, we now have a system of linearized equations:

4
Qde + §€0H5U|| =0
1 3
QGO(SUH + ZH&& + Z/ﬂ57TH =0 (361)

) 1 16 .
(ZQ + —) om| + Ezeo/ﬂm” =0

TR
which can be written in the following matrix form:
Q 3k 0 de

%/i EO(SUH =0 (3-62)
57T||

=
2

=

0 ik iQ+ 2L

45 "

Again, by requiring the determinant of the 3 x 3 matrix M to be zero, we obtain the
dispersion relation:
4.4 2
det(M) = T (kV —w)(k — Vw)
1 1
+ (— + iy (kV — w)) (vz(w —kV)? — 572(1{ - Vw)z) (3.63)

TR

=0

Since w is of cubic order in the dispersion relation, we should expect to get three modes.
We address that the complete analytical expressions of the solutions are exceedingly com-

plex. Nonetheless, for small values of k£, we can utilize a series expansion to simplify the
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solutions and retain solely the O(1) terms:

w1 = O(k)

o 5i(V2=3)
=g gt O (3.64)
W3 = O(k)

Observe that when k = 0, w; and w3 coincide at zero, while w, has strictly negative imag-
inary parts for all 0 < V' < 1. It is then clear that they are all linearly stable solutions.
Indeed, Fig. (3.5) shows that all modes have non-positive imaginary parts for small %,
and we can extend this result to all £ > 0 using Fig. (3.6), which guarantees linearly sta-
bility of the modes by demonstrating the asymptotic behavior of the modes for a larger
range of k. As usual, we chose 7z = 5 for the numerical computation. Also, note that two
of the modes have identical imaginary parts in the case of static fluids.

To confirm the causality of the modes, it seems natural to adopt the previous proce-
dure of expanding the solutions in a series, assuming large values of k. However, even the
zeroth-order term in such an expansion is forbiddingly complex to display when V' # 0.
Nevertheless, it suffices to demonstrate the causal nature of the modes for V' = 0 since
one can always shift to another reference frame with non-zero V' through Lorentz boosts,

which do not affect the causality of a solution. For V = 0, the large-k expansions of the

51 1
“1__%+O(E)
3 21 1
= — —]{/’—— - .
=5 g0 (7) .69
3 21 1
Y e P -
ws \/; 9’7’R+O(/€>

solutions are

It then follows that ORe(wn)
. e\wy)|
fim [ o<1
ORe(wy) 3 (3.66)
. e\wW2 3
5 — _ <
o ‘ ok \/; =1
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Figure 3.5: Real and Imaginary parts of the longitudinal modes of the massless second-

order R9 hydrodynamics, in the case of fluid velocity vector being parallel to the wave
vector and 7 = 5.

Thus, all the modes are causal when V' = 0, and therefore, forall 0 < V' < 1. In particular,

wy corresponds to a static mode in the fluid rest frame since its group velocity is zero.

Case 2: k is orthogonal to V

With Eq. (3.56), the dispersion relation becomes

k2(9iyTrw — 5) + Y w?(15 — 15iyTrw 4+ V2(9iyTRw — 5)) = 0 (3.67)
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Figure 3.6: The imaginary parts of the longitudinal modes of the massless second-order
R9 hydrodynamics plotted for a larger range of k, in the case of fluid velocity vector being

parallel to the wave vector, for V' = 0.9 and with relaxation time 75 = 5.

In the limit of small £, the O(1) terms in the series expansion of the modes are

w1 = O(k)

iV —3)
=g O(k) (3.68)
W3 = O(k)

Note that these terms are the same as those in Case 1 (Eq. (3.64)). This is expected because
when £ ~ 0, it is irrelevant whether the wave vector is parallel or orthogonal to the fluid
velocity vector, resulting in the same outcome. As a result, the solutions remain linearly
stable, as in the previous case. The same conclusion can also be inferred from Fig. (3.7), as

the numerically-computed imaginary parts of the modes are all non-positive for small .
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Figure 3.7: Real and Imaginary parts of the longitudinal modes of the massless second-

order R9 hydrodynamics, in the case of fluid velocity vector being orthogonal to the wave

vector and 7 = 5.

The asymptotic behavior of the modes for a larger range of k in Fig. (3.8) further extends

the linear stability of the modes to all £ > 0. Also observe that the imaginary components

of two out of the three modes are identical, regardless of the background fluid velocity.

For the causality analysis, we will follow the same procedure as in Case 1, in which

we restrict the fluid velocity V' to zero. The large-k expansion then gives

“omg

Wo = /\//E;
2 5
W ___/\//E;
3 5

of3)

21

k- —+

9TR

k—31+0(

97—R
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Figure 3.8: The imaginary parts of the longitudinal modes of the massless second-order
R9 hydrodynamics plotted for a larger range of k, in the case of fluid velocity vector being

orthogonal to the wave vector, for V = 0.9 and with relaxation time 7 = 5.

As expected, this is again identical to Case 1 (Eq. (3.65)) because V' = 0 has no impact
in either scenario. Therefore, we can deduce that the solutions are also causal in this

instance.

3.3 Discussion

The previous sections have demonstrated the linear stability and causality of both the lon-
gitudinal and transverse components of the second-order R9 theory, the massless second-
order R14 theory without particle number conservation. However, there remains a ques-
tion as to whether this theory is compatible with the Israel-Stewart theory, which is also

a second-order theory. According to [43], there are various ways to derive second-order

59



relativistic viscous hydrodynamics, but their disparities lie only in the non-linear terms.
Such differences arise from the way d f is represented in terms of the 14 moments in each
theory, as well as the truncation process used to close the set of evolution equations.
Nonetheless, the R9/R14 theory does not suffer from this issue. Its hydrodynamic equa-
tions are derived systematically and uniquely, without any arbitrariness involved in the
process. For the purpose of linear stability analysis, however, all second-order theories
should yield the same set of linearized hydrodynamic equations. Indeed, the linearized

T equation for the Israel-Stewart theory is given by Eq. (2.58) in [66]:

oz
Dosrt + oL gm — (3.70)

Tr Tr

where 7, is the relaxation time associated with the shear-stress tensor 7 and 7 is the
shear viscosity. It is evident that this equation takes on a similar form to Eq. (3.30), with
differences appearing in the transport coefficients and the sign in front of the last terms,
which can be attributed to the choice of the Minkowski metric. Because of the similarities
between these two equations, it is reasonable to expect that the IS and R9 theories will
demonstrate similar properties in linear stability and causality analysis. In fact, when
7, = 5, both theories produce almost identical curves for transverse and longitudinal
modes if not the same (see Fig. (3) and (5) in [66]).

Another issue worth mentioning is that although the regularization technique pro-
vides a set of systematically and uniquely derived hydrodynamic equations, it is not
clear whether this theory is more “correct” than the others using arguments based on first
principles. However, since we just showed that the R9/R14 theory has linearly stable and
causal modes, we can at least conclude that this theory leads to more physically reason-
able results than other approaches such as Chapman-Enskog expansion, which results in
linearly unstable modes [5].

To conclude this section, we have established the linear stability and causality of the

longitudinal and transverse components of the second-order R9 hydrodynamics in both
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parallel and orthogonal cases of wave vector k and fluid velocity vector V. Subsequently,
we will derive the equations for the third-order regularized hydrodynamics, which is an-
ticipated to be more complex yet more intriguing. Following this, we will conduct a series
of linear stability and causality analyses akin to the second-order scenario presented in

this section.
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Chapter 4

Third-Order Regularized

Hydrodynamics

In this chapter, we will proceed to the derivation and analysis of the third-order R14 hy-
drodynamics. To get the third-order equations, we need to obtain the O(e?) components
of the energy-momentum moments with n = 0,1, 2, 3,4 except 11, ¢#, and 7", then plug
them back into Egs. (3.17), (3.23), and (3.25). Similar to the second-order scenario, a series
of linear stability and causality analysis on the longitudinal and transverse components
of the third-order theory will be presented, following the derivation of the third-order

R14 equations.

4.1 Third-Order Moment Equations

Setting n = 0 in Eq. (2.68), we get the general moment equation for scalar moments:

Dpr:_&_ r—1
TR
247 0
- Op, +m*(r — 1)=p,_
5 0p (r=1)3pr— a1

A A
- V)\pr—l —Traxpr_q

= (r = Dorapy
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Collecting all the O(e) terms, the O(e?) components of the scalar moments can be ex-

pressed as
Pr
B2 DPr\l - Fr—1|1
TR
(r+2) (r — 5
— ————0p, Om=p,_
3 Pri 3 m-pr—2n (4.2)

- m/\ﬂi\—m - V/\P;}—m
—(r— 1)0/\04:0;\22|1
Once again, we emphasize that II, ¢*, and 7 should not be expanded if they appear in

the expression. The time derivative can be calculated as the following;:

—Dpyp =D (TRFr71|O)

_ (3 (T¢r-10)

0 (TR¢r71|D) (4.3)

0
X0 + 86

Oav Xﬂ|09) 0+ (TR¢T—1|O) (Vva?o + al“{)am)

where we have used F,_1g = ¢,_100, D8 = Vya[g + aroam,y, (Da)jo = Xalot, and (Df)jo =
Xspo0. The leading order acceleration ay, is given by

V7P
e+ P

v
alo—

(4.4)

Details are included in Appendix B. In summary, the scalar moments up to O(e?) are given

by:
Pr = _TRFr—l

. {(3 (TR;arlO) Yool + 0 (TR@QZIO) Xﬁ|09) 0

+ (TR¢r71|O) <v’ya,|)6 + CL&)CL|07>
(r+2)
3

(4.5)

r—1
9pr|1 + ( 3 )9m2pr72\1

A A
— rajoaPr_1p — VaPro1p

— (7" - 1)0_)\Oép322|1:| + O (63)

63



Similarly, for the vector moments, setting n = 1 in Eq. (2.68) gives us

T

v P
AfDpyt = — —— — FI'Yy

TR
=g e - 1300,
— ALV — raap)?y
- é (Vﬂlﬂrﬂ - mzvmpr—l)
Y ;— 3),0r+1a“1 + T%mzprla‘“

- (T‘ - 1)0-)\ozp?igl
2r+3) .,
Cred) o

2
Fm(r = 1)Zof s

Bl
— Wy PO

Collecting all the terms up to O(€?) , we have

rn { N

0
+ 3 <m2(r —)pf oy — (r+ B)pffH)
34 2r 2
I Uf\iﬂi\u + g(r - 1)U§m20;}—2|l - WfP;\u
(r+3)
+ 7"577%207;1\1@?0 - Tprﬂuaﬁ)

1
3 (Vﬂpr+1\1 - m2vupr—1|1)

— mmpjﬁm - Afjvwﬁim +0 (¢%)
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where the time derivative is given by

0 (TR¢r71|O)

0 —
—ALDpyy = ( O Xajo + —(TRw 1IO)

op

+ (TR¢r71|O) &%XMOH + (TRwT*”O) % (Xa|09)

Xﬁ|09> (VFa)
(4.8)

in which we have used ALDV”a = V#(Da) + a*Da. Using the same methodology, the

rank-2 general moment equation is

Am H2 me vy

1282 T
— _ﬂ _ F#ULQ
TR r—1
447 0
= Lo (- 1)t

_ AMIH2 Avivy Ccfi1 f2
Amug v)\pr—l TQafr_y

2
_z (v(m Pﬁﬂ — 2y pﬁ)l)

5
+ T%mzpﬁ’fla”2> - —2(r5+ o) v qre)
— (r = Doraps (4.9)

. 2(2T7+ 5) 0‘§\H1 p#2>>‘
YA

4
+m(r =)o p
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Collecting all the terms up to O(€?) , we have
pve = = Pl
6
i | ~AlzDo = 5 ({4 e = (= Ol

2
+ = (—(27" + 5)a/<\“Qp“|i> + (2r — 2)m2o p;“>2|1> — 2w quﬁ”\

72 (4.10)
+ 50" (@ )prpop + 2 £ 3)mpr — (r = m*prop)

2 2
+5 <rm pi 11 |0 ne —(r+ 5)/)7(5:1'1 \%2>) 5 <V<H1 p:?m —m*Vi Pfﬁl)}
+ 0 (€%

with the time derivative being
MG =N D (TeEY,)
O (TrRYr—10 9 (TrPr-10
= (—( B | )Xa|09+ —( 86 | )XB\OH oghth2 (411)
H2) (H1 p2)

+ 7'BSKJT—HOV(“1 Qo + TR¥Pr-1)0q) A|g
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where we have used Al1#2Dg"172 = Vi gr2) 4 gl gr2). We also need the rank-3 and

rank-4 moment equations:

Aﬁfﬁ;ﬁ? DpVIVZVS
ﬁwzm
= -
6(6 + T) p</“ H2ps)
35 r42
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—mt——=p" 0
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3
— (VO v pre )
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21 "
(r—1)4
- mt e o
4
_ = (v(m p#j;fsu@ _ m2yim pﬁﬁm#O)

9
4(T + 9) (H1p2p13  pag)
g Prer 0 (4.13)

o H3ha)

+ Tilm2p<M11;L2#3 alt —
9 "

B 4(27’ + 9)(7(#
11 A

8
+ mZ(T . 1)ﬁ0§\#1 pru_zgsww\

_ 4w/<\”1 pfzusmxw\

6 0
_ —z'))_repﬁl/@#?)ﬂn + mZ(r o 1)§pfﬂ’§2“3“4

_ AMBIH2H3HN Avivovzvs Qupiy p2 L3 fha
AI/1V2V3I/4 V)\prfl TGaPr_1

1 pop3pa)A
Pr

QAL L2 43 e
- (T - 1)0->\Oépr—2

As before, collecting all the terms up to O(€?) gives us:
3
plkzis — o [ _ ? (V(/m pfilltfl) — m2yim p;tflfﬁ))

3 3 7
brSmge g - SCED e

7 7

6 6
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35 r+2|
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4 4
prakebshs — o | —(8 + T)—lefff;ﬁ oHska) (7 + 27‘)—21m2p1<ﬂ"‘11”2 o Mk
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Note that the time derivatives vanish at O(¢) for n = 3, 4. Inserting all the previous results
back into Egs. (3.17), (3.23), and (3.25) to replace all the moments except II, ¢, and 7

gives us the third-order R14 theory.

4.2 Third-Order R25 Hydrodynamics

Analogous to the second-order case, for simplicity, we will assume massless particles
without particle number conservation throughout the linear stability and causality anal-
ysis that will be presented in the next section. In this section, we will derive the corre-
sponding reduced third-order theory based on the R14 theory, so that they can be used
in the next section. With m = 0, the only dissipative quantity left is the shear-stress ten-
sor ", as already mentioned in the previous chapter. Therefore, the total number of

moments reduces to 9, akin to the second-order case. Setting m = 0 in Eq. (3.25) gives

T A
— 10t — ALV

A" Drf = —
af TR

4 10 (4.16)
— §9WW F orap Y — 77T)\(MJK> _ 27T)‘<’“‘wi>

At this point, it seems natural to insert the results in Section 4.1 back into Eq. (4.16) to
replace p™* and p™5"* in order to get the third-order 7 equations. However, careful
observation reveals that doing this results in second-order spatial gradients in the third-
order equations. For example, the first term in Eq. (4.14) will become ~ 2V©*7r#) for
r = —1, when being plugged back into Eq. (4.16), the corresponding term will become
second-order in gradient. Under a Lorentz boost, this term produces second-order time
derivatives and turns the original parabolic equation into a hyperbolic one. This usually
introduces extra modes in Fourier space, which are often linearly unstable and acausal.
To solve this problem, we need to promote p*” and p*5"* to hydrodynamic variables with

their own equations of evolution given by Egs. (4.12) and (4.13) withr = —1 and r = -2,

respectively. All the moments with order n > 4 are also rejected since they are O(¢€?).
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Doing this raises the total number of moments from 9 to 25. Now, let

M = p
(4.17)
§aﬁuy — p(ig,ul/
Setting m = 0 and r = —1 in Eq. (4.12) along with relaxation time approximation, we
obtain the £&** equation:
AAMVDgpaﬂ — _15)\#’/ _ Eﬂkuaw 4 oaq P ANy wpaf
po‘ﬁ o 7—5 7 pg poéﬁ wS
3 (A _uv) 4 Apv afipy (4.18)
- ?V T — §0§ + 20,pp5 -
5 6
_ gga(ku(jg) _ 3§a(kuwg) _ ?pyam

where 7¢ is the relaxation time associated with £*, and the p{’o) term vanishes due to

the matching conditions. Note that we have used Eq. (3.3) to eliminate Ff‘; ”. We will also

reject the p“3*" term since it is O(e®).
To get the equation for ¢**, we set m = 0 and r = —2 in Eq. (4.13) along with

relaxation time approximation:

v w 1 appy 28 « v v v w
Do — Lo - Btotng g i _ et
S
4 4
_ §V<a§BuV> _ gggaﬁuv + 30/\ppizaﬂw (4.19)
20 Ma v Ma v) 8 « v
_ ﬁg ( Bua/\> — AN 5%})\ _ ?W< B ghv)

where we reject all the p“3* and p*}*** terms since they are O(é?).

4.3 Linear Stability and Causality Analysis

In this section, we will examine the linear stability and causality of the third-order R25

theory derived in the previous section. Similar to the analyses done in the previous chap-
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ter, we will decompose the evolution equations into longitudinal and transverse parts,

and then analyze them independently.

4.3.1 Linearized Third-Order Equations

Akin to the second-order analysis, we reject all the higher-order terms in Eq. (4.16) and
keep only the terms that are linear in small fluctuations to obtain the linearized 7" equa-
tion:

1 ’
Ao Dom® + — 7 4+ 9 100" + AL (Va0 =0 (4.20)

Again, using Eq. (3.29) and (B.39), and expressing the hydrodynamic variables in Fourier

space lead us to the following;:

| 4i 2
<¢Q n —> S 4 1’—? (muv +RVOu — gmaéuaAg“/) L iRaEM =0 (4.21)
7—71"

Similarly, the linearized equation for £ is:

v 1 3 v o v wo
A0 Dog™ 4+ —€M 4+ A (V5o 4+ A (Vi 0s**™ =0 (4.22)
3
which becomes

1 .
<iQ + —) M 4 ; (/ﬁ’\&r‘“’ + kMO + /<a”67r“’\)

N Te (4.23)
-3 (Ag‘“mwéﬂi’) + A KO 4 Ag'ﬁ#&ﬁ) + kM =0

in the Fourier space after taking the derivatives Dy and V, . To derive the above expres-

sion, we have used the following explicit expression of the rank-3 projector [66]:

HUN
ALsy, =

[Ax (A,’gAg + AZAQ) + A% (AZA; + AZAQ) + A (ALAL + AAY) ]

|

1
T (A (AN A, + AjAap + A Aug) + A (AL Ag, + AGAL, + AVA)  (424)

FA (AL Ag, + AfAL, + ALA )]
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The linearized equation for ¢®?* is also straightforward to obtain:

which becomes

1 4
apuv afuv afuv
AR Do+ - Buv 4 §AM;,70vggw€ —0 (4.25)
) 1 4i By
(zQ + T—) ¢BHv 4 gA)\fg@’O/i)\{me =0 (4.26)
S

in the Fourier space after taking the derivatives. Using Eq. (A.1), one can show that

A

afuv

Aypb

of

)\é-vpﬂ —

(HafﬁﬂV4+,Hﬁ€aMV4+,KM505V4+,KVSQM5)

| =

1
_ 2_0 <Aguﬁ>\§a”>‘ + AguﬁkgauA + Agl//{)\gaﬁk
AT R 4 A Aﬁﬂmfw) 427)

3 6 v (67 v av
~ 1 (Ao‘%w AP 4 A

—|—Ag’u/<;/\f>‘a” —|—A§V/f,\§>\ua —{—ASV/{)\S’\aﬂ)

Plugging this back into Eq. (4.26) gives the complete linearized evolution equation for

gaﬂuu'

4.3.2 Transverse Modes

Case 1: k is parallel to V

As before, the background fluid velocity and the wave vector are given by Eq. (3.43), and

it follows that the covariant variables are then given by Eq. (3.44). The energy conserva-

tion law is purely longitudinal and therefore will not contribute to the transverse analysis.

The transverse components of the equations for 7+, £ M o and the momentum con-
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servation law can be obtained by applying A#” and " to the linearized equations:

3
QGO(SUT_ + Z—l/‘ié"ﬂi =0

1 4

(iQ + —) omhl + Ei/iegéu’i + ik =0
Tr

(4.28)

, 1 8 .
(ZQ + T—g) &+ ﬁméwi +irch =0

1 5
Q+— )+ =ik =0
(z +T§)§l+21m§l

where we defined & = kar AL, £ /K2 and ¢} = KakgraAL,¢*P /K3, This can be writ-

ten in the following matrix form:

Q %/{ 0 0 €oou'}

4. 1 - Iz

=ik 1+ = K 0 om

15 ™ =0 (4.29)
0 gin Q4L ik ¢
0 0 ain i+ L o

For simplicity, from now on we will assume that the corresponding relaxation time for

each moment is the same throughout the analysis:

TR="Tr =T¢ = T¢ (4.30)

We require that the determinant of the 4 x 4 matrix be zero to obtain non-trivial solutions,
the resulting equation is the dispersion relation, just as before. However, we should note
that the dispersion relation is extremely complicated, even displaying the leading-order
terms is not feasible. Therefore, we will only present the numerical solutions to the dis-
persion relation shown in Fig. (4.1), assuming 7z = 5 as always.

Since the M matrix is 4 x 4, and entries with w are situated along the diagonal only,
we can conclude that the dispersion relation is of fourth-order in w and thus we should

expect to obtain four solutions. Recall that in the second-order case, only two modes were
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Figure 4.1: Real and Imaginary parts of the transverse modes of the massless third-order
R25 hydrodynamics, in the case of fluid velocity vector being parallel to the wave vector.

The relaxation time is chosen to be 7z = 5 as usual.

obtained (see Eq. (3.48)). The presence of additional modes can be attributed to the extra
degrees of freedom in the hydrodynamic variables, which are ¢/ and ¢/'. Indeed, Fig. (4.1)
shows four distinct curves, two of which have the same imaginary parts for static fluids,
ie. V = 0. As one can easily see, all the modes have non-positive imaginary parts for
small £ and therefore are linearly stable. Similar to the second-order R14 theory, we can
show that the modes are in fact linearly stable for all £ > 0, proven by the asymptotic
behavior of the modes for V' = 0.9 and 7z = 5 shown in Fig. (4.2). We claim that the same
conclusion can be obtained for any other values of V.

As for the causality analysis, similar problems arise when we try to expand the so-
lutions in the limit of large wave number £: writing down the leading-order terms is
not feasible. Therefore, taking the numerical approach is more practical. In the large w

and k limit, solving the dispersion relation is equivalent to solving the following series
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Figure 4.2: The imaginary parts of the transverse modes of the massless third-order R25
hydrodynamics plotted for a larger range of k, in the case of fluid velocity vector being

parallel to the wave vector, for V' = 0.9 and with relaxation time 75 = 5.

expansion:

—5ik* (1 — 14V2 + 21V — 5ird Vit + O(F*) + O(w?) = 0 (4.31)

where we omit the terms under O(k*) and O(w?) for display, but they are included in
the actual numerical computation. The corresponding large-% solutions are obtained by
solving the above equation numerically. Figure (4.3) displays the magnitude of the group
velocities corresponding to these modes, as a function of the fluid velocity V. As we can
see, in the large-k limit, the group velocity for each mode is subliminal, and thus causal.

Furthermore, One can verify that the curves in Fig. (4.3) obey the relativistic velocity
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Figure 4.3: Magnitude of the group velocity for the transverse modes of the massless
third-order R25 hydrodynamics, as a function of the fluid velocity V' in the large k limit

and with 7z = 5, in the case of fluid velocity vector being parallel to the wave vector.

addition formula:

v4+u
Y, (4:32)

S
|

Case 2: k is orthogonal to V

It is straightforward to obtain the solutions for this case by substituting Eq. (3.56) into the
dispersion relation and then solving it numerically. The results are shown in Fig. (4.4).
From the figure, we can again see that all the modes are linearly stable as their imaginary
parts are always non-positive for small %, regardless of the background fluid velocity. Just
as before,c we can further extend the linear stability of the modes to all £ > 0 from the

asymptotic behavior of the modes in Fig. (4.5), for V = 0.9 and 75 = 5.
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Figure 4.4: Real and Imaginary parts of the transverse modes of the massless third-order
R25 hydrodynamics, in the case of fluid velocity vector being orthogonal to the wave

vector and with 7z = 5.

Now, in the large-£ limit, the dispersion relation can be expanded as

5iV 4w?

) 5 B
5] TEESE +

O(k*) + O(w*) =0 (4.33)
Again, we should emphasize that although the O(k?) and O(w?) terms are not displayed,
they are included in the numerical computation. Fig. (4.6) shows the corresponding
group velocity as a function of V. Note that there are only two curves for four solutions.
This is because the group velocities for each pair of solutions are only off by a sign. Since
the y-axis is the absolute value of the group velocity, both solutions coincide in this case.
Also, note that both curves approach zero when the fluid velocity reaches the speed of
light. This is expected since the plane wave propagates in the orthogonal direction with
respect to the fluid flow. As the fluid moves faster and faster, the wave is eventually
“dragged” by the fluid flow under the effect of shear viscosity and moves in the fluid

flow direction eventually, resulting in zero group velocity in the orthogonal direction.
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Figure 4.5: The imaginary parts of the transverse modes of the massless third-order R25
hydrodynamics plotted for a larger range of k, in the case of fluid velocity vector being

orthogonal to the wave vector, for V = 0.9 and with relaxation time 75 = 5.

4.3.3 Longitudinal Modes
Case 1: k is parallel to V

Similar to the second-order case, the first step is to obtain the longitudinal components of

the conservation laws and the equations for 7, £}, and ¢*#*. Applying xk” and k" to
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Figure 4.6: Magnitude of the group velocity for the transverse modes of the massless

third-order R25 hydrodynamics, as a function of the fluid velocity V' in the large k limit

and with 7z = 5, in the case of fluid velocity vector being orthogonal to the wave vector.
the corresponding equations, we get

4
Qde + geoﬁaéun =0

1 3
QGO(SUH + 1:‘%56 + ZH(S?TH =0

1 1
(iQ—i— —> (57TH + 0

TR

452'60/'15UH +ik§ =0

] 1 9 . )
(ZQ + a) §|| + £ZI€57T|| +IRQ)| = 0

(4.34)
1 16
Q+ — —ik)| =0
G‘+m>w+6y%|
where we defined §| = kakpr ™ /k® and g = Kakghk,s® /K% Note that we have
included the purely-longitudinal energy conservation law in this system of equations.
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Written in the matrix form, this is equivalent to

Q 3k 0 0 0 d€

% Q %/ﬂ; 0 0 605UH

0 ik iQ+ = ik 0 om [ =0 (4.35)
TR

0 O ik i+ % K &)l

0 0 0 LI VS S

Since (2 is of fifth-order in the determinant, we should expect to obtain five modes. In-
deed, Fig. (4.7) shows that all five solutions are linearly stable since their imaginary parts
are all non-positive for various background fluid velocities, with small £. We can further
generalize this result to all £ > 0 by noticing the asymptotic behavior of all the five modes
for V.= 0.9 and 7z = 5, shown in Fig. (4.8). The same conclusion can be drawn for any

other values of V.

00~ j 1 : :
—0.2{—= = ; ; = ;
3 —
3—04 d /’_
£
_06 4 4
~0.8 /
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3 1]
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Figure 4.7: Real and Imaginary parts of the longitudinal modes of the massless third-
order R25 hydrodynamics, in the case of fluid velocity vector being parallel to the wave

vector and with 7z = 5.
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Figure 4.8: The imaginary parts of the longitudinal modes of the massless third-order R25
hydrodynamics plotted for a larger range of k, in the case of fluid velocity vector being

parallel to the wave vector, for V' = 0.9 and with relaxation time 75 = 5.

Now, in the large-£ limit, the dispersion relation can be expanded as

V(15 = 70V +63V) . iw®
63(1 — V2)5/2 (1—V2)5/2

+O(k*) + O(w*) =0 (4.36)

Again, since the full expression is complex, we will only show the leading-order term.
However, all the terms are included when performing numerical calculations. The cor-
responding group velocities of the solutions to the dispersion relation are shown in Fig.
(4.9), as a function of the fluid flow velocity V. One can see that all solutions are linearly
causal since the magnitude of the group velocity is less than 1 for all of them, in the large-
k limit. Also, note that the line in the middle of the figure corresponds to a stationary

mode in the fluid rest frame since its group velocity is simply the fluid flow velocity.
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Figure 4.9: Magnitude of the group velocity for the longitudinal modes of the massless
third-order R25 hydrodynamics, as a function of the fluid velocity V' in the large k limit

and with 7z = 5, in the case of fluid velocity vector being parallel to the wave vector.

Case 2: k is orthogonal to V
As before, we insert Eq. (3.56) into the dispersion relation and solve numerically for the

solutions. Fig. (4.10) shows the result. Note that two out of the five solutions have the

same imaginary parts, and we can see that all solutions are linearly stable since they all
have non-positive imaginary parts for small k. As before, Fig. (4.11) shows the asymptotic

behavior of all the modes as k increases, for V' = 0 and 7z = 5. This proves that the modes

are actually linearly stable for all £ > 0.
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Figure 4.10: Real and Imaginary parts of the longitudinal modes of the massless third-
order R25 hydrodynamics, in the case of fluid velocity vector being orthogonal to the

wave vector and with 7 = 5.

To verify the causality of these solutions, we repeat the process from the previous

sections. In the large-k limit, the dispersion relation is expanded as

5

V(15 =70V + 63V4)k5 N Jiw

S4(1— 2y 10 _vepe TOR) +0W) =0 (4.37)

where all the terms under O(k*) and O(w?) are included in the actual numerical compu-
tations. The corresponding group velocities of the solutions are shown in Fig. (4.12) as a
function of the fluid flow velocity. Note that there are three curves in this figure, one of

them lies on the x-axis and corresponds to the stationary mode with zero group velocity.

4.4 Discussion

Similar to the second-order case, we would like to compare the third-order R14/R25 the-

ory to other third-order theories and see whether they agree with each other. In [60],
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Figure 4.11: The imaginary parts of the longitudinal modes of the massless third-order
R25 hydrodynamics plotted for a larger range of %, in the case of fluid velocity vector

being orthogonal to the wave vector, for V' = 0.9 and with relaxation time 7z = 5.

relativistic third-order viscous hydrodynamics is derived from the Boltzmann equation
using Chapman-Enskog expansion. However, similar to the procedure outlined in Sec-
tion. (4.2), the evolution equation for the shear-stress tensor 7 derived in this work
contains second-order gradients of 7/ in the expression and is therefore expected to be
linearly unstable and acausal. Indeed, the linear stability and causality analysis carried
out in [5] shows that this third-order formulation of relativistic viscous hydrodynamics
violates linear stability and causality, and this issue cannot be fixed by tuning the trans-
port coefficients.

Consequently, also in [5], Brito and Denicol proposed a modified version of the pre-

vious theory. In particular, they promoted the gradient of 7 to a new hydrodynamic
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Figure 4.12: Magnitude of the group velocity for the longitudinal modes of the massless
third-order R25 hydrodynamics, as a function of the fluid velocity V' in the large k limit

and with 7z = 5, in the case of fluid velocity vector being orthogonal to the wave vector.

Notice that there is a stationary mode with zero group velocity along the direction of the
wave’s propagation.

variable

V(oa,n_,uu) — pauu

(4.38)
to eliminate the second-order gradients in the evolution equation of 7#”. This is analo-

gous to £ and ¢“?* that we defined in the third-order R25 theory. Furthermore, this
new variable p** not only is defined to be proportional to the gradient of 7# but also
relaxes to it exponentially, within a time scale associated with the corresponding relax-
ation time 7, (see Eq. (56) in [5]). This additional requirement serves as the evolution
equation for p*. All these equations, along with the conservation laws, form a closed

set of equations. However, just like the second-order Israel-Stewart theory, such modified
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third-order theory is not always linearly stable and causal, as their transport coefficients
must satisfy a set of constraints in order to be so.

The third-order R25 theory, on the other hand, possesses many advantages over the
modified third-order theory. For instance, the full hydrodynamic equations are used for
M and ¢*P1 as the evolution equations, instead of the simplified requirement of expo-
nential relaxation. One of the consequences is that the rank-3 tensor not only is propor-
tional to the gradient of the shear-stress tensor but is also proportional to the product of
the acceleration and the shear-stress tensor when m = 0 (see Eq. (4.14)). This provides
more complete evolution equations.

However, as we have already seen, the third-order R25 theory is extremely analytically-
complex. Even extracting the leading-order terms in a series expansion of the modes is
not a realistic approach. At this point, properties of the third-order R25 theory can only
be examined using numerical approaches. A further investigation of the theory should

be carried on in the future to search for a solution to this problem.
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Chapter 5

Conclusion

In this dissertation, we introduced the relativistic regularized hydrodynamics initially
developed by Struchtrup and Torrilhon in the non-relativistic case [50-53]. In particu-
lar, using the regularization method, we derived the second and third-order R14 hydro-
dynamics and showed that they are linearly stable and causal with the assumption of
massless particles without particle number conservation. This result is independent of
the choice of transport coefficients. Next, we will briefly summarize the main results in
each chapter.

In Chapter 2, we provided some background knowledge of kinetic theory and derived
the corresponding equations for energy, momentum, and particle number conservation.
We then proceeded to derive the general moment equation so that the relevant moment
equations can be derived in the following chapters.

In Chapter 3, using the regularization method, we obtained the second-order R14 hy-
drodynamics. In particular, the evolution equations for the bulk viscous pressure II, the
diffusion current ¢, and the shear-stress tensor 7" were derived. This was achieved
by directly Chapman-Enskog expanding the moments of § f, small perturbations in the
phase density function, instead of expanding the phase density function. A series of
linear stability and causality analysis was then performed on the longitudinal and trans-

verse components of the second-order R9 theory by considering two separate cases. In
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the first one the wave vector is parallel to the background fluid velocity vector, while in
the second, they are orthogonal to each other. As a result, the longitudinal and transverse
parts of the second-order R9 hydrodynamics are demonstrated to have linearly stable and
causal modes in both cases.

In Chapter 4, we derived the third-order R14 hydrodynamics using a similar method-
ology of regularization as in Chapter 3. With the assumption of massless particles without
particle number conservation, we showed that by including the O(e?) terms of the mo-
ments in the equations for 7, terms with second-order gradients were introduced, and
these terms will result in linear instability and acausality in the modes. This problem was
then fixed by promoting the O(e?) moments (¢ and ¢** to hydrodynamic variables,
raising the total number of moments from 9 to 25. Analogous to the second-order case,
a series of linear stability and causality analysis was performed on the third-order R25
theory. However, the R25 theory is extremely analytically complicated. Therefore, the
analysis was carried out using only the numerical approach. As a result, all the modes of
the R25 equations are linearly stable and causal, for both the longitudinal and transverse
components and for both cases where the wave vector is parallel and orthogonal to the
background fluid velocity.

The second and third-order regularized hydrodynamics presented in this dissertation
offer a systematically and uniquely derived, stable, and causal framework for modeling
the evolution of quark-gluon plasma in the context of heavy-ion collisions. However,
since third-order regularized hydrodynamics is analytically inaccessible, the application
of such theory in the actual research problems might be restricted. Further investiga-
tion into this issue should be conducted in the future in order to make this theory more

sophisticated.
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Appendix A

Useful Mathematical Identities

The general rank-n projector is

JAN G S L —

1 n
2
2n—1 (

ViUn

i=1

Z i AIVLZ AHLHi

k=1

1M1

Now consider the following rank-n tensor:

1M1 n
Vi Vg—1Vk+1'"Vn

§ § § L Qb g —1 M1 oy —
AM”AukaAm Vk 11’k+1 ‘Vn

i=1 j=i+1 k=1

AMtebn — AP unDp<V1~-an>

14

1.--Un

1/»‘j+1"'/14n>

Following Eq. C.8 and C.9 in [62], for any symmetric tensor II we have:

where

I

11...0n

y =11

11...0n

+ (0791 (Azlzg Hz;z,

Linkk + permutation)

+ anZ(Azllg A1314Hz5 Linkk + permutation)

(A1)

(A.2)

(A.3)

(A.4)



Now, if we let

1L, i = Py ---Phn) (A.5)

then all terms in Eq. A.3 except the first one vanish under A;ll‘_:'.zijD due to the present of

u;,, and A

Tmin*

Consequently, we arrive at the following useful identity:

Am...unDp(m...an) — A“l"'“”Dp<V1>...p<V”> (A.6)

V1...Un V1...Un
Note that

Dp<”> = DAMp,
= D(g“y +uNuV)pV
= (u"Du” + u”Du")p,
(A7)
= uf'p,a” — Wya"

= u'(p" + Wu")a, — Wa"

= u'pWa, — W,a"

where the term with u* vanishes when being projected. With some simple algebraic ma-

nipulations, we arrive at the following identity:
APt — _anp</—Ll~..p,Mn71a#n> (A.8)

Similarly, one can also argue for the same reasons:

AMlmMHV)\ (p(mpyn)) _ AML"NHV)\ (p<V1> p<’/n>) (A9)

Vi...Un Vi...Un
and

VAP<V> — v)\(pl/ _ Wpulj> (A 10)

= —u"V, )W, — W,(V, u")
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once again, the first term vanishes when being projected. After some manipulations, we

get:

AP Y7 (p<u1...pvn)) _ _anp(Ml Lt V)\UW (A.11)

V1...Un
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Appendix B

Evaluating [ integrals

B.1 Conservation laws

To evaluate the F' integrals, we first need to know the conservation laws. The stress-

energy tensor is

43
™ = / Gy TIA (B.1)

and the particle number current

d3
J“:/(Z—];pofopﬂ+qu (B.2)

m)

The energy-momentum conservation law is

0=0,T"
d3p (B3)
_ v puv v v v
In the time direction «, 0, 7" = 0 yields
0= —W“VUW, — 011 + [370Dﬁ - ]270DOZ - 291371 (B4)
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where we defined

I _ d3p Wn—meZ 2\m B.5
n,m = Wfop (p_m) (B.5)

which can be evaluated in the local rest frame. In the spatial direction A9, 7" = 0 yields

VPp VP Ba”

0= AP0, 7" + (V*II) + a1l — I3, 3 + 3 I, + — s (B.6)
The particle number conservation 0 = 9, J* yields
Io
0= @Lq’* + ?.1271 — Dﬁ]&o + DOKILO (B7)
Using integration by part, it can be shown that
] _ d3p 0\r, 2 —Bpo—l—a
B r+2,1 — /6 (27T)3p0 (p ) pe
Ep v Bp°
=— p)" " pOpe e
/ (27)3170( ) P (B.8)

d’p —Bp°+a 0y\r+1 0\r—1, 2
= | @ BE) ™ +r@")p?)

=3l 410+ 7Lt

In particular

Bls1 =310+ I3

(B.9)
=3(e+ P)
and
Blay = 311
— 3 (B.10)
=36P
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Solving for the time derivatives D3, Do and a” = Du”, we obtain

Dj = xgot + X%Ha“q“ + Xgﬁ (m"0,, + 110)

where
X . [1,()(5 -+ P) — [270[170 - [170P
0= —
4 Lol — I3, Lol — I3,
¢« _ I
Yo T Tl - 13,
I
all 1,0
X Tyohho — 12,
and
Da = Xa|00 + Xi|1auqu + Xg\l_{ (ﬂ-’ypO-’YP + HQ)
where

Yalo = Loe +P)— I3l
al0 —
| Isolio — I3,

The acceleration is given by

1
P — —VPP — Tla” — VPII — AP ny
a g—i—P( \Y a’ — VII — ALQ, )
1 1
= VPP — VPIL — AP ) —
p VPV Our™) (c + P)?

where we used

\V4 Va
VP = —?ﬁ 3,1 +? 2,1
The 0-th order acceleration is
o VPP
all = —
10 e+ P
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and the 1st order one is

1 , 1
a|p = (—va — Aﬁ@,ﬂr” ) — m

= 11 (—V*P) (B.22)

B.2 [ Integrals

The only non-zero F integrals are the spin 0, 1, and 2 integrals. For n = 0, we have

dp
fr= / Gy Vo (o)

= / ﬂwrf W,Da — W?2Dgj + 5Q(W2 —m?) (B.23)
- (27)3p0 P 0 p p g\"p

= ¢ppf + ¢Z|18uq” + qzﬁjfﬂ} (7770 ,, + O11)

upon using Eqs.(B.11) and (B.15) for D and Da. The coefficient

Liolivoo — Irp10l20 B B I 10030 — Irpo0l20
, , — ) ) ) ) _I _IT _ ) ) ) ) I B.24
o \o(oz B) Toolio — 12270 3181 + 32 Toolro — ]22’0 1,0 ( )
is for the O(1) (or fy) piece and the coefficients
I I30—1 I
q r+1,043,0 r+2,042,0
a, ) = — B.25
Lioolio— 1410l
a, B) = -2 020 (B.26)

I3l — [2270
are for the O(e) (or ¢ f) pieces. For the Boltzmann statistics, ¢? and ¢7'" do not depend on

a. In the massless limit, we have

d3p Tr+2
I, = r=le=p/T — — 1! B.27
= [ e = S ) (8.27)

For the 14 moments, we need F_; whose coefficients are

2
G190 = —4T— (B.28)
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¢Zl|1 = _B
and
1
71111“ = ——52

The vector integral is

o d3p oA (o)
FY = WWPP (Oxfo)p

d3
- / (2ﬂ)€po Wy fo (=Wyp VB + pVVaa + W, Bp™ay)

= Yo Voa + Yy (A0, 7 + VI 4 a”11)
where we used a slight different form of Eq.(B.19)

3 5 Vi
pa’ —V*rp = 7 ALO, ' + (VPII) 4 a’T1 + 3 I,
3,1

to cleanly separate the O(1) piece and the O(¢) piece. The coefficients are

Brio = Ir+2,113,1 - Ir+3,1-[2,1
L=
" 313,

for the O(1) piece and

w o Ir+3,1
r|ll — —
I3,

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

for the O(¢) piece. Here, I3, = 3(¢+P)T and I ; = 3P can be used if needed. Withr = —1

and m = 0,
173
Vol = G
1
Yo = —Zﬁ
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(B.36)



The spin-2 integral is relatively simple since it does not have the O(¢) part

d3
For = / Iy @, fo)p

(2m)*p°
_ [ P O ) (o (B.37)
=] @ " fo (B Vaua) pp :
— 901“|00-U’Y
where
2
807"|0 = 1_55[r+4,2 (B38)

is obtained with the help of the normalization condition (Eq.(16) in [63]). With r = —1

and m = 0,
16 T*
P—10 = Eﬁ (B.39)
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