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Abstract

In this dissertation, we first introduced the concept of regularized 13-moment (R13) hy-

drodynamics initially developed by Struchtrup and Torrilhon in the non-relativistic sce-

nario. By adopting a similar methodology in the relativistic case, we derived the sec-

ond and third-order R14 hydrodynamics. For both theories, a series of linear stability

and causality analysis was carried out with the assumption of massless particles without

particle number conservation. This is realized by decomposing the linearized evolution

equations into longitudinal and transverse components and then analyzing each of them

independently. As a result, the second-order theory is shown to be linearly stable and

causal. The third-order theory, on the other hand, is forbiddingly analytically complex

but is also shown to be linearly stable and causal using numerical approaches.

Key Words: relativistic viscous hydrodynamics, linear stability, linear causality, second-

order relativistic hydrodynamics, third-order relativistic hydrodynamics, regularized hy-

drodynamics
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Abrégé

Dans cette dissertation, nous avons introduit le concept d’hydrodynamique de 13 mo-

ments régularisés (R13) développé initialement par Struchtrup et Torrilhon dans le scénario

non-relativiste. En adoptant une méthodologie similaire dans le cas relativiste, nous

avons obtenu l’hydrodynamique R14 de deuxième ordre et de troisième ordre. Pour

toutes les deux théories, une série d’analyses de stabilité et causalité linéaires a été ef-

fectuée sur les solutions des équations hydrodynamiques correspondents en supposant

que les particules sont sans masse et que le nombre des particules ne se conserve pas. Cela

est réalisé en décomposant les équations d’évolution linéarisées en composantes longitu-

dinales et transversales, puis en les analysant indépendamment. Comme un résultat, la

théorie de deuxième ordre s’avère linéairement stable et causale. La théorie de troisième

ordre, par contre, est extrêmement compliquée analytiquement, mais s’avère également

linéairement stable et causale en utilisant des approches numériques.
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Abrégé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Contribution of Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1 Introduction 1

2 General Moment Equation and Conservation Laws 11

2.1 Kinetic Theory and Conservation Laws . . . . . . . . . . . . . . . . . . . . . 11

2.2 General Moment Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Second-Order Regularized Hydrodynamics 34

3.1 Second-Order Moment Equations . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Equilibrium Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.2 Power Counting in ϵ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.3 Moment Equations for Π, qµ, and πµν . . . . . . . . . . . . . . . . . . 39

3.2 Linear Stability and Causality Analysis . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Linearized Second-Order R9 Equations . . . . . . . . . . . . . . . . . 43

3.2.2 Transverse Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.3 Longitudinal Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6



4 Third-Order Regularized Hydrodynamics 62

4.1 Third-Order Moment Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Third-Order R25 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Linear Stability and Causality Analysis . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Linearized Third-Order Equations . . . . . . . . . . . . . . . . . . . . 71

4.3.2 Transverse Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.3 Longitudinal Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Conclusion 87

A Useful Mathematical Identities 89

B Evaluating F integrals 92

B.1 Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B.2 F Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7



List of Figures

1.1 The Big Bang and expansion of the universe [1]. This figure shows different

stages of the universe’s evolution, starting from the Big Bang to the present. 2

1.2 This aerial photograph shows the RHIC facility’s layout, highlighting the

locations of major detectors and the accelerator complex. This picture is

taken from Ref. [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The first lead-lead collisions of 2018 send showers of particles through the

ALICE detector [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 QCD Phase Diagram: Experimental Input [4]. This figure shows the phase

diagram of QCD matter along with the common theories (in blue) and ex-

perimental/observational subjects (in red), with the temperature being the

vertical axis and the baryon chemical potential being the horizontal axis. . . 5

3.1 Real and Imaginary parts of the transverse modes of the massless second-

order R9 hydrodynamics, in the case of fluid velocity vector being parallel

to the wave vector. The relaxation time is chosen to be τR = 5 [5, 6]. . . . . . 49

3.2 The imaginary parts of the transverse modes of the massless second-order

R9 hydrodynamics, in the case of fluid velocity vector being parallel to the

wave vector, for V = 0.9 and with relaxation time τR = 5. Note that a large

range of k is chosen to demonstrate the asymptotic behavior of the curves. . 50

3.3 Real and Imaginary parts of the transverse modes of the massless second-

order R9 hydrodynamics, in the case of fluid velocity vector being orthog-

onal to the wave vector. As before, the relaxation time is chosen to be τR = 5. 52

8



3.4 The imaginary parts of the transverse modes of the massless second-order

R9 hydrodynamics plotted for a larger range of k, in the case of fluid ve-

locity vector being orthogonal to the wave vector, for V = 0.9 and with

relaxation time τR = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Real and Imaginary parts of the longitudinal modes of the massless second-

order R9 hydrodynamics, in the case of fluid velocity vector being parallel

to the wave vector and τR = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 The imaginary parts of the longitudinal modes of the massless second-

order R9 hydrodynamics plotted for a larger range of k, in the case of fluid

velocity vector being parallel to the wave vector, for V = 0.9 and with

relaxation time τR = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Real and Imaginary parts of the longitudinal modes of the massless second-

order R9 hydrodynamics, in the case of fluid velocity vector being orthog-

onal to the wave vector and τR = 5. . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 The imaginary parts of the longitudinal modes of the massless second-

order R9 hydrodynamics plotted for a larger range of k, in the case of fluid

velocity vector being orthogonal to the wave vector, for V = 0.9 and with

relaxation time τR = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Real and Imaginary parts of the transverse modes of the massless third-

order R25 hydrodynamics, in the case of fluid velocity vector being parallel

to the wave vector. The relaxation time is chosen to be τR = 5 as usual. . . . 74

4.2 The imaginary parts of the transverse modes of the massless third-order

R25 hydrodynamics plotted for a larger range of k, in the case of fluid ve-

locity vector being parallel to the wave vector, for V = 0.9 and with relax-

ation time τR = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9



4.3 Magnitude of the group velocity for the transverse modes of the massless

third-order R25 hydrodynamics, as a function of the fluid velocity V in the

large k limit and with τR = 5, in the case of fluid velocity vector being

parallel to the wave vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Real and Imaginary parts of the transverse modes of the massless third-

order R25 hydrodynamics, in the case of fluid velocity vector being orthog-

onal to the wave vector and with τR = 5. . . . . . . . . . . . . . . . . . . . . . 77

4.5 The imaginary parts of the transverse modes of the massless third-order

R25 hydrodynamics plotted for a larger range of k, in the case of fluid ve-

locity vector being orthogonal to the wave vector, for V = 0.9 and with

relaxation time τR = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Magnitude of the group velocity for the transverse modes of the massless

third-order R25 hydrodynamics, as a function of the fluid velocity V in the

large k limit and with τR = 5, in the case of fluid velocity vector being

orthogonal to the wave vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Real and Imaginary parts of the longitudinal modes of the massless third-

order R25 hydrodynamics, in the case of fluid velocity vector being parallel

to the wave vector and with τR = 5. . . . . . . . . . . . . . . . . . . . . . . . . 80

4.8 The imaginary parts of the longitudinal modes of the massless third-order

R25 hydrodynamics plotted for a larger range of k, in the case of fluid veloc-

ity vector being parallel to the wave vector, for V = 0.9 and with relaxation

time τR = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.9 Magnitude of the group velocity for the longitudinal modes of the massless

third-order R25 hydrodynamics, as a function of the fluid velocity V in the

large k limit and with τR = 5, in the case of fluid velocity vector being

parallel to the wave vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10



4.10 Real and Imaginary parts of the longitudinal modes of the massless third-

order R25 hydrodynamics, in the case of fluid velocity vector being orthog-

onal to the wave vector and with τR = 5. . . . . . . . . . . . . . . . . . . . . . 83

4.11 The imaginary parts of the longitudinal modes of the massless third-order

R25 hydrodynamics plotted for a larger range of k, in the case of fluid ve-

locity vector being orthogonal to the wave vector, for V = 0.9 and with

relaxation time τR = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.12 Magnitude of the group velocity for the longitudinal modes of the massless

third-order R25 hydrodynamics, as a function of the fluid velocity V in the

large k limit and with τR = 5, in the case of fluid velocity vector being

orthogonal to the wave vector. Notice that there is a stationary mode with

zero group velocity along the direction of the wave’s propagation. . . . . . . 85

11



Chapter 1

Introduction

Quantum Chromodynamics (QCD) is the study of the fundamental processes involving

quarks and gluons. Quarks have two degrees of freedom that are especially interesting,

flavor and color charge. Flavor composes of up, down, strange, charm, top, and bottom. On

the other hand, color charge is the analog of electric charge in QCD, and it has three de-

grees of freedom: red, green, and blue. It is worth noting that singly color-charged hadron

does not exist. In other words, all naturally occurring particles are color-neutral [7], a

phenomenon known as “color confinement”. In a manner similar to photons in Quan-

tum Electrodynamics (QED), the force carrier responsible for exchanging the energy and

momentum of quarks is referred to as a gluon. But unlike photon which is electrically

neutral, gluon actually carries color charges. This makes the interactions between glu-

ons possible, making the QCD calculations much more complicated than those in QED.

In terms of Feynman diagrams, this complexity appears as extra gluon-gluon interaction

vertices in addition to the quark-gluon interaction vertex [7].

Another interesting aspect of QCD is its coupling constant, which indicates the corre-

sponding interaction strength. Although commonly referred to as “constant”, it is actu-

ally not (that’s why it is sometimes also referred to as the “running coupling constant”) and

its value depends on the length scale, or equivalently, the energy scale of the system of

interacting particles. At a low energy scale, this value is relatively large. But at a high
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Figure 1.1: The Big Bang and expansion of the universe [1]. This figure shows different

stages of the universe’s evolution, starting from the Big Bang to the present.

energy scale (short distance), the value becomes small. This phenomenon is referred to

as asymptotic freedom [8–10], which suggests that at extremely high energy scales, quarks

and gluons interact very weakly. Now, let’s imagine that there is a perfect and empty

container with just vacuum inside. As the energy and temperature increase (energy and

temperature are correlated through Boltzmann constant, E ∼ kBT ), hadrons start to be

pair-produced. At kBT ≈ 200 MeV, the number density of hadrons becomes so large that

they start to overlap each other. Along with the increment of elementary particle’s kinetic

energy, this leads to the deconfinement of quarks and gluons which are now free to move

across the interior of hadrons [11], causing the appearance of a new phase of matter called

quark-gluon plasma (QGP), which, according to the theory of asymptotic freedom, should

be weakly-interacting at high energy scale.
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Figure 1.2: This aerial photograph shows the RHIC facility’s layout, highlighting the lo-

cations of major detectors and the accelerator complex. This picture is taken from Ref. [2].

The theory explaining the origin of our universe is the Big Bang theory, which proposes

that our universe expanded from a singularity with almost infinite energy density and

temperature [12, 13] about 13.7 billion years ago (see Fig.1.1 [1]). The temperature of the

universe stayed above 150 MeV (about 2 × 1012 K) during the first 10 microseconds after

the Big Bang [12, 14], and such a condition is sufficient to create QGP. Therefore, it is

believed that QGP exists for a small amount of time after the universe’s birth.

Experimentally, it can also be created via heavy-ion collisions conducted in powerful

colliders such as the Relativistic Heavy Ion Collider (RHIC) in Brookhaven National Lab-

oratory located in Long Island, USA, and the Large Hadron Collider (LHC) at European

Organization for Nuclear Research (CERN), located in Geneva, Switzerland. Specifically,

four detectors are dedicated to studying QGP at RHIC, which are STAR (stands for “The
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Figure 1.3: The first lead-lead collisions of 2018 send showers of particles through the

ALICE detector [3].

Solenoidal Tracker at RHIC”) [15], sPHENIX (an upgrade of the PHENIX detector, which

is now decommissioned. PHENIX stands for “the Pioneering High Energy Nuclear In-

teraction eXperiment”) [16, 17], PHOBOS and BRAHMS [18]. Fig.1.2 shows the locations

of the two major detectors, STAR and sPHENIX, along with the accelerator complex. in-

cluding the two mentioned above. As a powerful collider, RHIC can collide all ion beam

species from protons to uranium, with the primary use of gold ions [19, 20]. On the other

hand, the detector dedicated to the QGP study at LHC is called ALICE (A Large Ion Col-

lider Experiment) [21], Fig.1.3 shows the trajectories of showers of particles detected by

ALICE during the first lead-lead collisions in 2018 [3]. However, unlike RHIC which spe-

cializes in heavy-ion collision experiments, LHC only collides heavy ions one month per

year [20].

Contrary to the study of heavy-ion collisions, which probes the hot and dense system

of QCD, there exists a natural laboratory in the cosmos that enables us to study the cold

and dense QCD: neutron stars and their mergers. Stars that have a similar mass (∼ 1M⊙)
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Figure 1.4: QCD Phase Diagram: Experimental Input [4]. This figure shows the phase

diagram of QCD matter along with the common theories (in blue) and experimen-

tal/observational subjects (in red), with the temperature being the vertical axis and the

baryon chemical potential being the horizontal axis.

to the Sun become white dwarfs at the end of their life. Unlike ordinary stars, in which

the gravitational collapse is offset by thermal pressure produced via nuclear fusion, the

degeneracy pressure due to the Pauli exclusion principle of electrons is responsible for

fighting against the gravity inside a white dwarf. However, there is a limit on the mass

above which the degeneracy pressure becomes inferior to gravity, known as the Chan-

drasekhar limit, which is equal to 1.44M⊙ [22]. For stars with a mass greater than this limit,

their remnants become so dense that the protons and electrons are “squished” together to

form neutrons, and the remnants which are now mostly made of neutrons, are called neu-

tron stars. Neutron stars are extremely dense, according to the NICER mission of NASA,

a typical neutron star with 1.4M⊙ mass has a radius of about 13 km [23]. Furthermore,

the typical temperature for a neutron star is on the order of 100 eV (∼ 106 K) [24]. This
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seems like a very high temperature, but it is in fact negligible when compared to the typ-

ical energy scale of 1 GeV in QCD, that’s why neutron stars are “cold” in the context of

QCD [25]. However, the temperature can reach tens of MeV during the birth of a neutron

star in a supernova and to ∼ 100 MeV in a merger event [26]. It is worth mentioning that

QGP also exists in the interior of neutron stars due to the extremely high density even

though the system is “cold”, unlike the case of heavy-ion collisions in which the temper-

ature is high rather than the density. Fig.1.4 shows a typical QCD phase diagram along

with the positions of different research methods and theories on this diagram. In this dis-

sertation, we will focus on the hot and dense system in the context of heavy-ion collision

and will not discuss the cold and dense part in detail.

Due to the weakly-interacting property of QGP predicted by the theory, it was ex-

pected that the system created by highly energetic heavy-ion collisions should behave like

a gas and expand isotropically before the first RHIC experiment in 2000 [27]. However,

the first results from RHIC actually showed that the system exhibits azimuthal anisotropy

in the form of elliptic flow [28], and QGP turned out to be the most strongly-interacting

system ever observed. Furthermore, the data was shown to be in good agreement with

the description of ideal hydrodynamics [29–31]. Hydrodynamics is chosen because it is

challenging to obtain an analytic or numerical solution to a microscopic many-body QCD

problem such as this using first-principles calculations. What is accessible is the coarse-

grained collective motion of the fluid-like system once the local thermal equilibrium is

achieved [32]. Therefore, it is natural to use hydrodynamics, especially ideal hydrody-

namics in which the fluid is always assumed to be in local thermal equilibrium, as the

theoretical tool for modeling the evolution of QGP. The success of the ideal hydrodynam-

ics further implies that the system is an almost-ideal fluid with small shear viscosity over

entropy density ratio η/s, where η is the shear viscosity and s is the entropy density ratio.

However, a study in 2005 imposed a lower bound of 1/4π on the value of η/s in

a strongly-coupled system using AdS/CFT calculations [33], which raised the question

“How perfect is the QGP?”. The acquisition of the answer relies on using a stronger tool
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than ideal hydrodynamics, the latter is only applicable to systems near local thermal equi-

librium [30]. The lower bound η/s ≥ 1/4π suggests that there are some non-negligible off-

equilibrium viscous effects that must be considered [34]. Therefore, a robust relativistic

viscous hydrodynamics theory is needed to better describe the properties of an evolving

QGP.

The most intuitive and straightforward way of obtaining a relativistic viscous hydro-

dynamics theory is to extend the non-relativistic Navier-Stokes theory to a relativistic one,

and this was done independently by Eckart [35] and by Landau and Lifshitz [36]. These

theories are also commonly referred to as the “first-order theory”, which only includes

terms up to first order in gradients. Historically, such theories were commonly obtained

by using a technique called Chapman-Enskog expansion [37], in which the phase density

function is expanded in powers of Knudsen number. Here, the phase density function

f(x, p) gives the number of particles in an infinitesimal momentum-position space dpdx,

at position x and with momentum p. As for the Knudsen number, it is defined as the ratio

of the particle’s mean free path to the representative length scale of the problem. In partic-

ular, hydrodynamics is a theory with small Knudsen numbers. However, the first-order

theory is unstable and acausal when slightly perturbed around thermal equilibrium in

linear regime [38–41], and it has been shown that this instability is in fact caused by the

acausality of the theory [41–43]. For this reason, the first-order theory is abandoned as

being the standard theory of relativistic viscous hydrodynamics.

The first linearly stable and causal relativistic viscous hydrodynamics theory was

developed by Israel and Stewart [44–46] using the 14-moment approximation, initially

adopted by Grad [47] as the 5- and 9-moment approximation in the non-relativistic case.

In his paper, Grad has considered, for the first time, the transient effects of dissipative

current using the method of moments. In this method, the Boltzmann equation is re-

placed by a set of partial differential equations expressed in terms of the moments of

the phase density function. To make this set of equations closed, a truncation process is

necessary, and this is done by approximating the phase distribution function with a se-
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ries expansion in terms of the Hermite polynomials around the equilibrium distribution,

where the coefficients are determined in terms of moments. Unlike the first-order the-

ories, the Israel-Stewart theory contains terms that are up to second-order in gradients,

thus it is also commonly referred to as the “second-order theory”. However, it has been

shown that even the Israel-Stewart theory is not always linearly stable and causal, their

transport coefficients must satisfy a set of constraints in order to be so [41–43, 48, 49].

Although the second-order theory possesses many advantages that the first-order the-

ory does not and is now considered as the standard theory of relativistic viscous hydrody-

namics, there are still issues with it. When deriving hydrodynamics from the Boltzmann

equation, the Israel-Stewart theory, the Chapman-Enskog expansion, and the method of

moments all give slightly different combinations of terms. The second-order theory is in

fact, not unique. There are two main sources of difference, the first one is the representa-

tion of the non-equilibrium terms in the expansion of the phase density function in terms

of the 14 moments. The second one is the procedure adopted to truncate the expansion in

order to make the equations closed. In this dissertation, we will explore a method that al-

lows us to systematically derive a unique relativistic viscous hydrodynamics to any order

starting from the evolution equations of the energy-momentum moments, followed by a

linear stability and causality analysis for the case of the second-order and third-order the-

ories. This is accomplished by generalizing the non-relativistic 13-moment regularized

hydrodynamics (R13) developed by Struchtrup and Torrilhon [50–53], to the relativistic

second-order regularized 14-moment hydrodynamics (R14). In short, The Regularization

method combines both the method of moments and Chapman-Enskog expansion, by ap-

plying a Chapman-Enskog-like expansion to the energy-momentum moments except for

the moments that are considered as the hydrodynamic variables, instead of the phase

density function. A more detailed elaboration on this method will be presented in the

following chapters.

The second-order theory has been proven to be quite successful in describing the evo-

lution of QGP, but it still has a few limitations. Under the assumption of Bjorken scaling
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solution [54], and for large viscosity or small initial time, the Israel-Stewart theory dis-

plays unphysical effects such as negative effective enthalpy [55] and longitudinal pres-

sure [56]. A straightforward and natural way to improve the theory is to consider the ef-

fects of high-order correction. Therefore, in recent years, the third-order theory has started

to catch people’s attention. These high-order terms significantly improved the agree-

ment with a large value of η/s obtained with kinetic transport calculation [57, 58], and a

few third-order theories of relativistic viscous hydrodynamics have already been devel-

oped [58–60]. In this work, we will also derive a third-order theory using the regulariza-

tion technique, followed by a linear stability and causality analysis. By implementing this

approach, we will obtain a more precise theory by taking into account the higher-order

correction effects.

This dissertation is organized as the following: in Chapter 2 we will begin by introduc-

ing some background knowledge in kinetic theory and deriving the conservation laws of

energy, momentum, and particle number. We will then proceed to derive the evolution

equation for a general rank-n energy-momentum moment of the small perturbation δf in

the phase density function so that the hydrodynamic equations for the specific moments

that we are interested in can be easily obtained in the subsequent chapters. In Chapter

3, we will derive the second-order R14 hydrodynamics using the regularization method,

followed by the linear stability and causality analysis on such theory. In particular, the

R14 equations will be first linearized and then decomposed into longitudinal and trans-

verse parts so that each component can be analyzed independently. We will show that the

second-order R14 theory is linearly stable and causal regardless of the choice of transport

coefficients, with the assumption of massless particles without particle number conserva-

tion. In Chapter 4, we will commence by obtaining the third-order R14 theory, and then

carry out a linear stability and causality analysis on this theory, following the same proce-

dure outlined in Chapter 3. We will demonstrate that this theory is extremely analytically

complex but still linearly stable and causal, proven by numerical approaches. Finally, we

will conclude this dissertation in Chapter 5.
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Throughout the dissertation, we will utilize natural units c = ℏ = kB = 1, and adopt

the mostly-positive Minkowski metric gµν = diag(−1, 1, 1, 1).
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Chapter 2

General Moment Equation and

Conservation Laws

2.1 Kinetic Theory and Conservation Laws

To begin the derivation of the general hydrodynamic equation, we shall start with the

relativistic Boltzmann equation, which describes the dynamical behavior of relativistic

particles. For simplicity, we assume single particle species:

pµ∂µf(x, p) = C[f ] (2.1)

where f is the phase space density function, and C[f ] is the collision term which takes

into account the changes in f due to the collisions of particles. Again for simplicity, we

only consider elastic scatterings. Using Boltzmann statistics, the collision term becomes:

pµ∂µf(x, p) =
1

2

∫
d3p1

(2π)3p01

∫
d3k

(2π)3k0

∫
d3k1

(2π)3k01
|M|2pp1↔kk1

(2π)4δ(p+ p1 − k − k1)

× [f(x, k)f(x, k1)− f(x, p)f(x, p1)]

(2.2)

where p0 =
√

p2 +m2 is the on-shell energy of the particle. In the remainder of this

dissertation, we will not consider quantum statistical effects such as Bose enhancement
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or Pauli blocking for simplicity. One can include these effects by changing the right-hand

side of Eq. (2.2) appropriately [61]. However, doing so will not affect the derivations

below too much. The energy-momentum tensor (or stress-energy tensor) is given by:

T µν =

∫
d3p

(2π)3p0
pµpνf(x, p) (2.3)

Taking the space-time derivative we get:

∂µT
µν =

∫
d3p

(2π)3p0
pµpν∂µf(x, p)

=
1

2

∫
d3p

(2π)3p0

∫
d3p1

(2π)3p01

∫
d3k

(2π)3k0

∫
d3k1

(2π)3k01
|M|2pp1↔kk1

(2π)4δ(p+ p1 − k − k1)

× pν [f(x, k)f(x, k1)− f(x, p)f(x, p1)]

=
1

8

∫
d3p

(2π)3p0

∫
d3p1

(2π)3p01

∫
d3k

(2π)3k0

∫
d3k1

(2π)3k01
|M|2pp1↔kk1

(2π)4δ(p+ p1 − k − k1)

× (pν + pν1 − kν − kν1)[f(x, k)f(x, k1)− f(x, p)f(x, p1)]

= 0

(2.4)

Note that in the third step, we have used the fact that the above expression is symmetric

under the exchange of p and p1 and anti-symmetric under the exchange of (p, p1) and

(k, k1). Also observe that the time component (ν = 0) and the spacial components (ν =

1, 2, 3) of the above equation correspond to the conservation of energy and momentum,

respectively. In a similar manner, we can define the particle number current as:

Jµ =

∫
d3p

(2π)3p0
pµf(x, p) (2.5)
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Taking the space-time derivative, we get:

∂µJ
µ =

∫
d3p

(2π)3p0
pµ∂µf(x, p)

=
1

2

∫
d3p

(2π)3p0

∫
d3p1

(2π)3p01

∫
d3k

(2π)3k0

∫
d3k1

(2π)3k01
|M|2pp1↔kk1

(2π)4δ(p+ p1 − k − k1)

× [f(x, k)f(x, k1)− f(x, p)f(x, p1)]

= 0

(2.6)

where we used the fact that the right-hand side is anti-symmetric under the exchange

of (p, p1) and (k, k1). Therefore, the particle number is conserved as expected since we

consider elastic collisions only.

We further define the fluid-flow velocity uµ = γ(1,V) as being parallel to the energy

density flow, where γ is the Lorentz factor, V is the fluid-flow 3-velocity, and ϵ is the

energy density:

T µνuν = −ϵuµ (2.7)

Similarly, we can define the particle number density ν as:

Jµuµ = −ν (2.8)

Note that in the above definitions, we used the mostly positive Minkowski metric, and

all quantities depend on space-time coordinates x. The flow velocity uµ is normalized to

uµuµ = −1. Now, the phase space density function can be considered as a small fluctua-

tion based on a local equilibrium part:

f(x, p) = f0(x, p) + δf(x, p) (2.9)
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where the local equilibrium part f0 is:

f0(x, p) = eβ(x)uµpµ+α(x) (2.10)

Here, β = 1/T is the inverse of temperature, and α = βµ is the local chemical potential

over temperature. The corresponding energy-momentum tensor and particle number

current at local equilibrium are naturally defined as:

T µν
0 =

∫
d3p

(2π)3p0
pµpνf0(x, p) (2.11)

Jµ
0 =

∫
d3p

(2π)3p0
pµf0(x, p) (2.12)

Observe that in T µν
0 , the only two quantities that are available for us to form a rank-2

tensor are uµuν and gµν . Therefore, T µν
0 must be a linear combination of the two:

T µν
0 = Auµuν +B∆µν (2.13)

where we define the local 3-metric ∆µν to be:

∆µν = gµν + uµuν (2.14)

which satisfies:
∆µνuν = gµνuν + uµuνuν

= uµ − uµ

= 0

(2.15)

Note that for static fluids the time components of ∆µν vanish and ∆µν becomes purely

spacial since gµν = diag(−1, 1, 1, 1) and uµ = (1, 0) for static fluids. Furthermore, ∆µν can

also be considered as the projector which projects the components that are orthogonal to

uµ of an arbitrary 4-vector.
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Similar to T µν
0 , the only vector that is available for us to write Jµ

0 is uµ. Thus,

Jµ
0 = Cuµ (2.16)

We now need to calculate the quantities A,B, and C. To do so, we use the following

matching condition (also known as “Landau condition”):

T µνuν = T µν
0 uν = −ϵuµ (2.17)

Jµuµ = Jµ
0 uµ = −ν (2.18)

It immediately follows that A = ϵ and C = ν, and they can be written as:

ϵ = T µν
0 uµuν =

∫
d3p

(2π)3p0
W 2

p e
−βWpeα =

∫
d3p

(2π)3
p0e−βp0eα (2.19)

ν = −Jµ
0 uµ =

∫
d3p

(2π)3p0
Wpe

−βWpeα =

∫
d3p

(2π)3
e−βp0eα (2.20)

where the quantity Wp = −uµpµ is Lorentz-invariant and therefore can be evaluated in

the fluid cell rest frame, leading to Wp = p0 =
√

p2 +m2, the energy of a particle in the

fluid cell rest frame.

We still need to calculate the coefficient B. This can be done by taking the trace of

the energy-momentum tensor at the local equilibrium using the local 3-metric ∆µν . Once

again, the trace is Lorentz-invariant and we can evaluate it in the fluid rest frame:

∆µνT
µν
0 = 3B (2.21)

Recall that ∆µν is purely spacial in the fluid rest frame. Therefore, only the spacial entries

along the diagonal of T µν
0 , which correspond to the thermal pressure, contribute to the

trace. The factor of 3 in front of B indicates the contribution to the pressure from each

spacial component. Consequently, it follows that B = P0, the thermal pressure at local
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equilibrium. By going to the fluid cell rest frame, we get:

P0 =
1

3
∆µνT

µν
0

=
1

3

∫
d3p

(2π)3p0
pµpν(gµν + uµuν)e

−βp0eα

=
1

3

∫
d3p

(2π)3p0
(pµpµ +W 2

p )e
−βp0eα

=
1

3

∫
d3p

(2π)3p0
(−m2 + p0

2
)e−βp0eα

=
1

3

∫
d3p

(2π)3p0
p2e−βp0eα

(2.22)

Note that P0 = 1
3
ϵ if m = 0. We can now write the full energy-momentum tensor and

particle number current as:

T µν = T µν
0 +

∫
d3p

(2π)3p0
pµpνδf(x, p) (2.23)

Jµ = Jµ
0 +

∫
d3p

(2π)3p0
pµδf(x, p) (2.24)

By the matching conditions Eq. (2.17) and (2.18), we arrive at the following requirements:

∫
d3p

(2π)3p0
Wpp

µδf(x, p) =

∫
d3p

(2π)3p0
Wpδf(x, p) = 0 (2.25)

Before we start calculating δT µν and δJµ, it is convenient to define the projected momen-

tum p⟨µ⟩:

p⟨µ⟩ = ∆µνpν

= (gµν + uµuν)pν

= pµ −Wpu
µ

(2.26)

Notice that by applying the projector ∆ν
µ along with Eq. (2.26) to Eq. (2.25), we get

∫
d3p

(2π)3p0
Wpp

⟨ν⟩δf(x, p) = 0 (2.27)
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which is another useful relationship. Now, with Eq. (2.26) and Eq. (2.27), the small

fluctuation in T µν is given by:

δT µν =

∫
d3p

(2π)3p0
pµpνδf(x, p)

=

∫
d3p

(2π)3p0
(p⟨µ⟩ +Wpu

µ)(p⟨ν⟩ +Wpu
ν)δf(x, p)

=

∫
d3p

(2π)3p0
p⟨µ⟩p⟨ν⟩δf(x, p)

(2.28)

where we have also used the fact that

∫
d3p

(2π)3p0
W 2

p u
µuνδf(x, p) = −uµuνuα

∫
d3p

(2π)3p0
Wpp

αδf(x, p) = 0 (2.29)

with the help of Eq. (2.25). Then

δT µν = ∆µ
α∆

ν
β

∫
d3p

(2π)3p0
pαpβδf(x, p)

=

[
1

2
(∆µ

α∆
ν
β +∆ν

α∆
µ
β)−

1

3
∆µν∆αβ

] ∫
d3p

(2π)3p0
pαpβδf(x, p)

+
1

3
∆µν∆αβ

∫
d3p

(2π)3p0
pαpβδf(x, p)

= ∆µν
αβ

∫
d3p

(2π)3p0
pαpβδf(x, p) +

1

3
∆µν

∫
d3p

(2π)3p0
pαpαδf(x, p)

=

∫
d3p

(2π)3p0
p⟨µpν⟩δf(x, p)− m2

3
∆µν

∫
d3p

(2π)3p0
δf(x, p)

= πµν +Π∆µν

(2.30)

where in the second step, we have used the fact that the expression is symmetric under

the exchange of indices α and β. Here, πµν is the shear-stress tensor, Π is the bulk viscous

pressure which is a measure of the resistance of the fluid to be compressed or expanded,

and

∆µν
αβ =

1

2

(
∆µ

α∆
ν
β +∆µ

β∆
ν
α − 2

3
∆µν∆αβ

)
(2.31)
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is the rank-2 traceless and symmetric projector. Consequently, πµν is also symmetric and

traceless. Similarly, one can show that:

δJµ =

∫
d3p

(2π)3p0
pµδf(x, p)

=

∫
d3p

(2π)3p0
p⟨µ⟩δf(x, p)

= qµ

(2.32)

which turns out to be the diffusion current. Therefore, the full energy-momentum tensor

and particle number current are given by:

T µν = ϵuµuν + (P0 +Π)∆µν + πµν (2.33)

Jµ = νuµ + qµ (2.34)

Observe that Π, qµ, and πµν are scalar, vector, and rank-2 energy-momentum moments of

δf , respectively. One can easily generalize this concept to higher order by defining the

rank-n energy-momentum moments:

ρµ1...µn
r =

∫
d3p

(2π)3p0
δfW r

p p
⟨µ1...pµn⟩ (2.35)

with Π = −m2

3
ρ0, qµ = ρµ0 and πµν = ρµν0 . Here, the integer n is the momentum order, and

W r
p is the energy weight in which the integer r indicates the energy order. The angular

bracket represents the transverse (with respect to uµ, as mentioned previously), symmet-

ric, and traceless combination of Lorentz indices. This is obtained by acting the rank-n

projector (see Eq. (A.1)) which extracts the transverse, symmetric, and traceless part of

any rank-n tensor, on n momenta:

p⟨µ1...µn⟩ = ∆µ1...µn
ν1...νn

pν1 ...pνn (2.36)
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2.2 General Moment Equation

As we will see later in this dissertation, the energy and momentum conservation laws

(Eq. (2.4)), along with the particle number conservation (Eq. (2.6)) serve as the evolution

equations for the energy density ϵ, the fluid flow velocity uµ, and the particle number den-

sity ν, respectively. However, the evolution equations for all the other moments remain

unknown at this point. Therefore, it seems natural to derive the hydrodynamic equations

for these moments as the next step, the corresponding equations will serve as the evolu-

tion equations for these moments. Starting with the general rank-n energy-momentum

moments of δf :

ρµ1...µn
r =

∫
d3p

(2π)3p0
δfW r

p p
⟨µ1pµ2 ...pµn⟩ (2.37)

Taking the comoving derivative D = uµ∂µ, which corresponds to the time derivative in the

fluid rest-frame, and then projecting onto the transverse space, we get

∆µ1...µn
ν1...νn

Dρν1...νnr = ∆µ1...µn
ν1...νn

∫
d3p

(2π)3p0
(Dδf)W r

p p
⟨ν1pν2 ...pνn⟩

+∆µ1...µn
ν1...νn

∫
d3p

(2π)3p0
δfW r

pDp
⟨ν1pν2 ...pνn⟩

+∆µ1...µn
ν1...νn

∫
d3p

(2π)3p0
δf(DW r

p )p
⟨ν1pν2 ...pνn⟩

= ∆µ1...µn
ν1...νn

∫
d3p

(2π)3p0
(Dδf)W r

p p
⟨ν1pν2 ...pνn⟩

− n

∫
d3p

(2π)3p0
δfW r+1

p p⟨µ1pµ2 ...aµn⟩

− r∆µ1...µn
ν1...νn

aσ

∫
d3p

(2π)3p0
δfW r−1

p p⟨σ⟩p⟨ν1pν2 ...pνn⟩

(2.38)

where we defined the fluid acceleration by aµ = Duµ, and used the fact that DWp =

−aµpµ = −aµp⟨µ⟩, along with Eq. (A.8). Now, using Eq. (C.21) in [62]:

p⟨λ⟩p⟨µ1 ...pµn⟩ = p⟨λpµ1 ...pµn⟩ +
n

2n+ 1
(W 2

p −m2)p⟨µ1 ...∆µn⟩λ (2.39)
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we can expand the last term on the right-hand side as the following:

∆µ1...µn
ν1...νn

Dρν1...νnr = ∆µ1...µn
ν1...νn

∫
d3p

(2π)3p0
(Dδf)W r

p p
⟨ν1pν2 ...pνn⟩

− n

∫
d3p

(2π)3p0
δfW r+1

p p⟨µ1pµ2 ...aµn⟩

− raσ

∫
d3p

(2π)3p0
δfW r−1

p p⟨σpµ1pµ2 ...pµn⟩

− r
n

2n+ 1
aσ

∫
d3p

(2π)3p0
δfW r−1

p (W 2
p −m2)p⟨µ1pµ2 ...∆µn⟩σ

(2.40)

To express Dδf in terms of δf , we can use the following form of the Boltzmann equation

pµ∂µf0 +WpDδf + p⟨µ⟩∇µδf = C[f ] (2.41)

in Eq. (2.40), which gives

∆µ1...µn
ν1...νn

Dρν1...νnr = −n
∫

d3p

(2π)3p0
δfW r+1

p p⟨µ1pµ2 ...aµn⟩

− raσ

∫
d3p

(2π)3p0
δfW r−1

p p⟨σpµ1pµ2 ...pµn⟩

− r
n

2n+ 1

∫
d3p

(2π)3p0
δfW r−1

p (W 2
p −m2)p⟨µ1pµ2 ...aµn⟩

+∆µ1...µn
ν1...νn

∫
d3p

(2π)3p0
C[f ]W r−1

p p⟨ν1pν2 ...pνn⟩

−∆µ1...µn
ν1...νn

∫
d3p

(2π)3p0
(∂λf0)W

r−1
p pλp⟨ν1pν2 ...pνn⟩

−∆µ1...µn
ν1...νn

∫
d3p

(2π)3p0
(∇λδf)W

r−1
p p⟨λ⟩p⟨ν1pν2 ...pνn⟩

(2.42)

Here, we define ∇µ = ∆ν
µ∂ν as the projected derivative, corresponding to the spatial gradi-

ent in the fluid rest-frame. Eq. (2.41) can be easily obtained using the Boltzmann equation

and by realizing that:

∂µ = gαµ∂α =
(
−uµuα +∆α

µ

)
∂α = −uµD +∇µ (2.43)
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Using the chain rule, we can pull ∇λ in the last term on the right-hand side of Eq. (2.42)

out of the integral:

∆µ1...µn
ν1...νn

Dρν1...νnr = −n
∫

d3p

(2π)3p0
δfW r+1

p p⟨µ1pµ2 ...aµn⟩

− raσ

∫
d3p

(2π)3p0
δfW r−1

p p⟨σpµ1pµ2 ...pµn⟩

− r
n

2n+ 1

∫
d3p

(2π)3p0
δfW r−1

p (W 2
p −m2)p⟨µ1pµ2 ...aµn⟩

+∆µ1...µn
ν1...νn

∫
d3p

(2π)3p0
C[f ]W r−1

p p⟨ν1pν2 ...pνn⟩

−∆µ1...µn
ν1...νn

∫
d3p

(2π)3p0
(∂λf0)W

r−1
p pλp⟨ν1pν2 ...pνn⟩

−∆µ1...µn
ν1...νn

∇λ

∫
d3p

(2π)3p0
δfW r−1

p p⟨λ⟩p⟨ν1pν2 ...pνn⟩

+∆µ1...µn
ν1...νn

∫
d3p

(2π)3p0
δf(∇λW

r−1
p )p⟨λ⟩p⟨ν1pν2 ...pνn⟩

+∆µ1...µn
ν1...νn

∫
d3p

(2π)3p0
δfW r−1

p (∇λp
⟨λ⟩)p⟨ν1pν2 ...pνn⟩

+∆µ1...µn
ν1...νn

∫
d3p

(2π)3p0
δfW r−1

p p⟨λ⟩(∇λp
⟨ν1pν2 ...pνn⟩)

(2.44)

Now, note that the second-last term on the right-hand side can be simplified as

∆µ1...µn
ν1...νn

∫
d3p

(2π)3p0
δfW r−1

p (∇λp
⟨λ⟩)p⟨ν1pν2 ...pνn⟩

= ∆µ1...µn
ν1...νn

∫
d3p

(2π)3p0
δfW r−1

p ∇λ(p
λ −Wpu

λ)p⟨ν1pν2 ...pνn⟩

= −θ
∫

d3p

(2π)3p0
δfW r

p p
⟨µ1pµ2 ...pµn⟩

(2.45)

since ∇λp
λ = 0 and uλ∇λWp = uλ∆α

λ∂αWp = 0. Here, we define θ = ∂µu
µ = ∇µu

µ, which

represents the expansion rate of the fluid.
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To briefly summarize, so far we have:

∆µ1...µn
ν1...νn

Dρν1...νnr = −n
∫

d3p

(2π)3p0
δfW r+1

p p⟨µ1pµ2 ...aµn⟩

− raσ

∫
d3p

(2π)3p0
δfW r−1

p p⟨σpµ1pµ2 ...pµn⟩

− r
n

2n+ 1

∫
d3p

(2π)3p0
δfW r−1

p (W 2
p −m2)p⟨µ1pµ2 ...aµn⟩

+

∫
d3p

(2π)3p0
C[f ]W r−1

p p⟨µ1pµ2 ...pµn⟩

−
∫

d3p

(2π)3p0
(∂λf0)W

r−1
p pλp⟨µ1pµ2 ...pµn⟩

−∆µ1...µn
ν1...νn

∇λ

∫
d3p

(2π)3p0
δfW r−1

p p⟨λ⟩p⟨ν1pν2 ...pνn⟩

+∆µ1...µn
ν1...νn

∫
d3p

(2π)3p0
δfW r−1

p p⟨λ⟩(∇λp
⟨ν1pν2 ...pνn⟩)

− θ

∫
d3p

(2π)3p0
W r

p δfp
⟨µ1pµ2 ...pµn⟩

+

∫
d3p

(2π)3p0
δf(∇λW

r−1
p )p⟨λ⟩p⟨µ1pµ2 ...pµn⟩

(2.46)

We continue to simplify the last two terms by calculating the gradients. Observe that

∇λW
r−1
p = (r − 1)W r−2

p (∇λWp)

= −(r − 1)W r−2
p ∇λ(uαp

α)

= −(r − 1)W r−2
p pα∇λuα

= −(r − 1)W r−2
p (p⟨α⟩ +Wpu

α)∇λuα

= −(r − 1)W r−2
p p⟨α⟩∇λuα

(2.47)
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using the normalization condition uαuα = −1. Plugging this into Eq. (2.46) gives

∆µ1...µn
ν1...νn

Dρν1...νnr = −n
∫

d3p

(2π)3p0
δfW r+1

p p⟨µ1pµ2 ...aµn⟩

− raσ

∫
d3p

(2π)3p0
δfW r−1

p p⟨σpµ1pµ2 ...pµn⟩

− r
n

2n+ 1

∫
d3p

(2π)3p0
δfW r−1

p (W 2
p −m2)p⟨µ1pµ2 ...aµn⟩

+

∫
d3p

(2π)3p0
C[f ]W r−1

p p⟨µ1pµ2 ...pµn⟩

−
∫

d3p

(2π)3p0
(∂λf0)W

r−1
p pλp⟨µ1pµ2 ...pµn⟩

−∆µ1...µn
ν1...νn

∇λ

∫
d3p

(2π)3p0
δfW r−1

p p⟨λ⟩p⟨ν1pν2 ...pνn⟩

+∆µ1...µn
ν1...νn

∫
d3p

(2π)3p0
δfW r−1

p p⟨λ⟩(∇λp
⟨ν1pν2 ...pνn⟩)

− θ

∫
d3p

(2π)3p0
W r

p δfp
⟨µ1pµ2 ...pµn⟩

− (r − 1)

∫
d3p

(2π)3p0
δfW r−2

p (∇λuα)p
⟨α⟩p⟨λ⟩p⟨µ1pµ2 ...pµn⟩

(2.48)

Now, using Eq. (A.11) proven in Appendix A, the third-last term on the right-hand side

can be written as

∆µ1...µn
ν1...νn

∫
d3p

(2π)3p0
δfW r−1

p p⟨λ⟩(∇λp
⟨ν1pν2 ...pνn⟩)

= −n
∫

d3p

(2π)3p0
W r

p δfp
⟨λ⟩p⟨µ1pµ2 ...∇λu

µn⟩
(2.49)
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Eq. (2.48) now becomes

∆µ1...µn
ν1...νn

Dρν1...νnr = −n
∫

d3p

(2π)3p0
δfW r+1

p p⟨µ1pµ2 ...aµn⟩

− raσ

∫
d3p

(2π)3p0
δfW r−1

p p⟨σpµ1pµ2 ...pµn⟩

− r
n

2n+ 1

∫
d3p

(2π)3p0
δfW r−1

p (W 2
p −m2)p⟨µ1pµ2 ...aµn⟩

+

∫
d3p

(2π)3p0
C[f ]W r−1

p p⟨µ1pµ2 ...pµn⟩

−
∫

d3p

(2π)3p0
(∂λf0)W

r−1
p pλp⟨µ1pµ2 ...pµn⟩

−∆µ1...µn
ν1...νn

∇λ

∫
d3p

(2π)3p0
δfW r−1

p p⟨λ⟩p⟨ν1pν2 ...pνn⟩

− n

∫
d3p

(2π)3p0
W r

p δfp
⟨λ⟩p⟨µ1pµ2 ...∇λu

µn⟩

− θ

∫
d3p

(2π)3p0
W r

p δfp
⟨µ1pµ2 ...pµn⟩

− (r − 1)

∫
d3p

(2π)3p0
δfW r−2

p (∇λuα)p
⟨α⟩p⟨λ⟩p⟨µ1pµ2 ...pµn⟩

(2.50)

Applying Eq. (2.39) again to the sixth term on the right-hand side, we get

−∆µ1...µn
ν1...νn

∇λ

∫
d3p

(2π)3p0
δfW r−1

p p⟨λ⟩p⟨ν1pν2 ...pνn⟩

= −∆µ1...µn
ν1...νn

∇λ

∫
d3p

(2π)3p0
δfW r−1

p p⟨λpν1pν2 ...pνn⟩

− n

2n+ 1
∆µ1...µn

ν1...νn
∇λ

∫
d3p

(2π)3p0
δfW r−1

p (W 2
p −m2)p⟨ν1pν2 ...∆νn⟩λ

(2.51)
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Plugging this back into Eq. (2.50) gives us

∆µ1...µn
ν1...νn

Dρν1...νnr =

∫
d3p

(2π)3p0
C[f ]W r−1

p p⟨µ1pµ2 ...pµn⟩

−
∫

d3p

(2π)3p0
(∂λf0)W

r−1
p pλp⟨µ1pµ2 ...pµn⟩

− n

∫
d3p

(2π)3p0
δfW r+1

p p⟨µ1pµ2 ...aµn⟩

− r
n

2n+ 1

∫
d3p

(2π)3p0
δfW r−1

p (W 2
p −m2)p⟨µ1pµ2 ...aµn⟩

− raσ

∫
d3p

(2π)3p0
δfW r−1

p p⟨σpµ1pµ2 ...pµn⟩

−∆µ1...µn
ν1...νn

∇λ

∫
d3p

(2π)3p0
δfW r−1

p p⟨λpν1pν2 ...pνn⟩

− n

2n+ 1
∆µ1...µn

ν1...νn
∇λ

∫
d3p

(2π)3p0
δfW r−1

p (W 2
p −m2)p⟨ν1pν2 ...∆νn⟩λ

− n

∫
d3p

(2π)3p0
W r

p δfp
⟨λ⟩p⟨µ1pµ2 ...∇λu

µn⟩

− θ

∫
d3p

(2π)3p0
W r

p δfp
⟨µ1pµ2 ...pµn⟩

− (r − 1)

∫
d3p

(2π)3p0
δfW r−2

p (∇λuα)p
⟨α⟩p⟨λ⟩p⟨µ1pµ2 ...pµn⟩

(2.52)
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Using the definition of the moments, we get

∆µ1...µn
ν1...νn

Dρν1...νnr =

∫
d3p

(2π)3p0
C[f ]W r−1

p p⟨µ1pµ2 ...pµn⟩

−
∫

d3p

(2π)3p0
(∂λf0)W

r−1
p pλp⟨µ1pµ2 ...pµn⟩

− θρµ1···µn
r

−∆µ1...µn
ν1...νn

∇λρ
λν1···νn
r−1

− n

2n+ 1

(
∇⟨µ1 ρ

µ2···µn⟩
r+1 −m2∇⟨µ1 ρ

µ2···µn⟩
r−1

)
− raαρ

αµ1···µn

r−1

+ r
n

2n+ 1
m2ρ

⟨µ1···µn−1

r−1 aµn⟩

− n(r + 2n+ 1)

2n+ 1
ρ
⟨µ1···µn−1

r+1 aµn⟩

− n

∫
d3p

(2π)3p0
W r

p δfp
⟨λ⟩p⟨µ1pµ2 ...∇λu

µn⟩

− (r − 1)

∫
d3p

(2π)3p0
δfW r−2

p (∇λuα)p
⟨α⟩p⟨λ⟩p⟨µ1pµ2 ...pµn⟩

(2.53)

Now, we can further expand the term −n
∫

d3p
(2π)3p0

W r
p δfp

⟨λ⟩p⟨µ1pµ2 ...∇λu
µn⟩ as the follow-

ing:

− n

∫
d3p

(2π)3p0
W r

p δfp
⟨λ⟩p⟨µ1pµ2 ...∇λu

µn⟩

= −
∫

d3p

(2π)3p0
W r

p δf

( n∑
i=1

(∇λu
µi)p⟨λ⟩p⟨µ1...pµi−1pµi+1...pµn⟩

)
+

2

2n− 1

∫
d3p

(2π)3p0
W r

p δf

( n∑
i ̸=j

∆µiµj(∇λuα)p
⟨λ⟩p⟨αpµ1...pµi−1pµi+1...pµj−1pµj+1...pµn⟩

)
(2.54)
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where we used

p⟨µ1...pµn−1aµn⟩ =
1

n

n∑
i=1

aµip⟨µ1...pµi−1pµi+1...pµn⟩

− 2

n(2n− 1)

n∑
i ̸=j

∆µiµjaλp
⟨λpµ1...pµi−1pµi+1...pµj−1pµj+1...pµn⟩

(2.55)

in which aµ is an arbitrary vector, which can be easily replaced by a rank-2 tensor by

fixing one of the two indices. Using Eq. (2.39) to combine the angular brackets, we can

further expand Eq. (2.54) as

− n

∫
d3p

(2π)3p0
W r

p δfp
⟨λ⟩p⟨µ1pµ2 ...∇λu

µn⟩

= −
∫

d3p

(2π)3p0
W r

p δf
n∑

i=1

(∇λu
µi)p⟨λpµ1...pµi−1pµi+1...pµn⟩

− n− 1

2n− 1

∫
d3p

(2π)3p0
W r

p δf
n∑

i=1

(∇λu
µi)(W 2

p −m2)p⟨µ1...pµi−1pµi+1...∆µn⟩λ

+
2

2n− 1

∫
d3p

(2π)3p0
W r

p δf
n∑

i ̸=j

∆µiµj(∇λuα)p
⟨λpαpµ1...pµi−1pµi+1...pµj−1pµj+1...pµn⟩

+
2(n− 1)

(2n− 1)2

∫
d3p

(2π)3p0
W r

p δf
n∑

i ̸=j

∆µiµj(∇λuα)(W
2
p −m2)p⟨αpµ1...pµi−1pµi+1...pµj−1pµj+1...∆µn⟩λ

(2.56)
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which can be written in terms of the moments:

− n

∫
d3p

(2π)3p0
W r

p δfp
⟨λ⟩p⟨µ1pµ2 ...∇λu

µn⟩

= −
n∑

i=1

(∇λu
µi)ρλµ1...µi−1µi+1...µn

r

+
2

2n− 1

n∑
i ̸=j

∆µiµj(∇λuα)ρ
λαµ1...µi−1µi+1...µj−1µj+1...µn
r

− n− 1

2n− 1

n∑
i=1

ρ
⟨µ1...µi−1µi+1...µn−1

r+2 ∇µn⟩uµi

+
2(n− 1)

(2n− 1)2

n∑
i ̸=j

∆µiµjρ
⟨αµ1...µi−1µi+1...µj−1µj+1...µn−1

r+2 ∇µn⟩uα

+
m2(n− 1)

2n− 1

n∑
i=1

ρ⟨µ1...µi−1µi+1...µn−1
r ∇µn⟩uµi

− 2m2(n− 1)

(2n− 1)2

n∑
i ̸=j

∆µiµjρ⟨αµ1...µi−1µi+1...µj−1µj+1...µn−1
r ∇µn⟩uα

= −
n∑

i=1

∇λu
⟨µiρµ1...µi−1µi+1...µn⟩λ

r

− n− 1

2n− 1

n∑
i=1

ρ
⟨µ1...µi−1µi+1...µn−1

r+2 σµnµi⟩

+
m2(n− 1)

2n− 1

n∑
i=1

ρ⟨µ1...µi−1µi+1...µn−1
r σµnµi⟩

(2.57)

where

σµν = ∇⟨µuν⟩ (2.58)

is the symmetric Navier-Stokes shear tensor. Since the angular bracket represents the

traceless and symmetric combination of the Lorentz indices, all permutations of the Lorentz
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indices inside the bracket give the same term. Thus

− n

∫
d3p

(2π)3p0
W r

p δfp
⟨λ⟩p⟨µ1pµ2 ...∇λu

µn⟩

= −nρλ⟨µ1...µn−1
r ∇λu

µn⟩ − n(n− 1)

2n− 1
ρ
⟨µ1...µn−2

r+2 σµn−1µn⟩

+
m2(n− 1)n

2n− 1
ρ⟨µ1...µn−2
r σµn−1µn⟩

(2.59)

Here, we can replace ∇λu
µn using

∇λuµ = σµν + ωµν +
θ

3
∆µν (2.60)

where

ωµν =
1

2

(
∇µuν −∇νuµ

)
(2.61)

is the anti-symmetric vorticity tensor. Doing so gives us

− n

∫
d3p

(2π)3p0
W r

p δfp
⟨λ⟩p⟨µ1pµ2 ...∇λu

µn⟩

= −nρλ⟨µ1...µn−1
r σ

µn⟩
λ − nρλ⟨µ1...µn−1

r ω
µn⟩
λ − n

3
θρµ1...µn

r

− n(n− 1)

2n− 1
ρ
⟨µ1...µn−2

r+2 σµn−1µn⟩ +
m2(n− 1)n

2n− 1
ρ⟨µ1...µn−2
r σµn−1µn⟩

(2.62)

Now let’s go back to the general moment equation Eq. (2.53) and take a look at the term

−(r − 1)
∫

d3p
(2π)3p0

δfW r−2
p (∇λuα)p

⟨α⟩p⟨λ⟩p⟨µ1pµ2 ...pµn⟩. Using Eq. (2.60), this term can be
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written as

− (r − 1)

∫
d3p

(2π)3p0
δfW r−2

p (∇λuα)p
⟨α⟩p⟨λ⟩p⟨µ1pµ2 ...pµn⟩

= −(r − 1)σλα

∫
d3p

(2π)3p0
δfW r−2

p p⟨α⟩p⟨λ⟩p⟨µ1pµ2 ...pµn⟩

− (r − 1)

3
θ

∫
d3p

(2π)3p0
δfW r−2

p (W 2
p −m2)p⟨µ1pµ2 ...pµn⟩

= −(r − 1)σλα

∫
d3p

(2π)3p0
δfW r−2

p p⟨α⟩p⟨λ⟩p⟨µ1pµ2 ...pµn⟩

− (r − 1)

3
θρµ1...µn

r +
(r − 1)m2

3
θρµ1...µn

r−2

(2.63)

Note that the term with ωλα vanishes due to its anti-symmetric property. We then proceed

to expand the first term on the right-hand side using the following identity analogous to

Eq. (2.39):

p⟨α⟩p⟨λ⟩p⟨µ1 · · · pµn−1pµn⟩

= p⟨αpλpµ1 · · · pµn−1pµn⟩

+
1

(2n+ 3)

(
W 2

p −m2
)( n∑

i=1

∆µiαp⟨λpµ1 · · · pµi−1pµi+1 · · · pµn⟩

− 2

(2n− 1)

n∑
i ̸=j

∆µiµjp⟨αpλpµ1 · · · pµi−1pµi+1 · · · pµj−1pµj+1 · · · pµn⟩

)

+
1

(2n+ 3)

(
W 2

p −m2
)( n∑

i=1

∆µiλp⟨αpµ1 · · · pµi−1pµi+1 · · · pµn⟩

− 2

(2n− 1)

n∑
i ̸=j

∆µiµjp⟨αpλpµ1 · · · pµi−1pµi+1 · · · pµj−1pµj+1 · · · pµn⟩

)

+
1

(2n+ 3)

(
W 2

p −m2
) (

∆λαp⟨µ1 · · · pµn⟩
)

+
n(n− 1)

(2n+ 1)(2n− 1)

(
W 2

p −m2
)2 (

p⟨µ1 · · · pµn−2∆
µn−1

α′ ∆
µn⟩
λ′

)
∆αα′

∆λλ′

(2.64)
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which is obtained by considering all the possible symmetric combinations of the momenta

and projectors. This leads to

− (r − 1)σλα

∫
d3p

(2π)3p0
δfW r−2

p p⟨α⟩p⟨λ⟩p⟨µ1pµ2 ...pµn⟩

= −(r − 1)σλαρ
αλµ1...µn

r−2

− 2(r − 1)

2n+ 3

n∑
i=1

σµi
α ρ

αµ1...µi−1µi+1...µn
r

+
4(r − 1)

(2n+ 3)(2n− 1)

n∑
i ̸=j

∆µiµjσλαρ
αλµ1...µi−1µi+1...µj−1µj+1...µn
r

+
2m2(r − 1)

2n+ 3

n∑
i=1

σµi
α ρ

αµ1...µi−1µi+1...µn

r−2

− 4m2(r − 1)

(2n+ 3)(2n− 1)

n∑
i ̸=j

∆µiµjσλαρ
αλµ1...µi−1µi+1...µj−1µj+1...µn

r−2

− (r − 1)(n− 1)n

(2n+ 1)(2n− 1)
ρ
⟨µ1...µn−2

r+2 σµn−1µn⟩

+
2m2(r − 1)(n− 1)n

(2n+ 1)(2n− 1)
ρ⟨µ1...µn−2
r σµn−1µn⟩

− m4(r − 1)(n− 1)n

(2n+ 1)(2n− 1)
ρ
⟨µ1...µn−2

r−2 σµn−1µn⟩

(2.65)
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Note that each pair of summations give the traceless and symmetric combination of σµi
α

and ρ
αµ1...µi−1µi+1...µn
r . Thus this reduces to

− (r − 1)σλα

∫
d3p

(2π)3p0
δfW r−2

p p⟨α⟩p⟨λ⟩p⟨µ1pµ2 ...pµn⟩

= −(r − 1)σλαρ
αλµ1...µn

r−2

− 2(r − 1)

2n+ 3

n∑
i=1

σ⟨µi
α ρµ1...µi−1µi+1...µn⟩α

r

+
2m2(r − 1)

2n+ 3

n∑
i=1

σ⟨µi
α ρ

µ1...µi−1µi+1...µn⟩α
r−2

− (r − 1)(n− 1)n

(2n+ 1)(2n− 1)
ρ
⟨µ1...µn−2

r+2 σµn−1µn⟩

+
2m2(r − 1)(n− 1)n

(2n+ 1)(2n− 1)
ρ⟨µ1...µn−2
r σµn−1µn⟩

− m4(r − 1)(n− 1)n

(2n+ 1)(2n− 1)
ρ
⟨µ1...µn−2

r−2 σµn−1µn⟩

(2.66)

Since all permutations of the Lorentz indices inside the angular brackets give the same

term, this can be simplified to

− (r − 1)σλα

∫
d3p

(2π)3p0
δfW r−2

p p⟨α⟩p⟨λ⟩p⟨µ1pµ2 ...pµn⟩

= −(r − 1)σλαρ
αλµ1...µn

r−2

− 2(r − 1)n

2n+ 3
ρα⟨µ1...µn−1
r σµn⟩

α

+
2m2(r − 1)n

2n+ 3
ρ
α⟨µ1...µn−1

r−2 σµn⟩
α

− (r − 1)(n− 1)n

(2n+ 1)(2n− 1)
ρ
⟨µ1...µn−2

r+2 σµn−1µn⟩

+
2m2(r − 1)(n− 1)n

(2n+ 1)(2n− 1)
ρ⟨µ1...µn−2
r σµn−1µn⟩

− m4(r − 1)(n− 1)n

(2n+ 1)(2n− 1)
ρ
⟨µ1...µn−2

r−2 σµn−1µn⟩

(2.67)
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Plugging all the above results back into Eq. (2.53), and expressing everything in terms of

the moments, we arrive at the final form of the general moment equation:

∆µ1...µn
ν1...νn

Dρν1...νnr =

∫
d3p

(2π)3p0
C[f ]W r−1

p p⟨µ1pµ2 ...pµn⟩

−
∫

d3p

(2π)3p0
(∂λf0)W

r−1
p pλp⟨µ1pµ2 ...pµn⟩

− n(2n+ r + 1)

2n+ 1
ρ
⟨µ1...µn−1

r+1 aµn⟩

+ rm2 n

2n+ 1
ρ
⟨µ1...µn−1

r−1 aµn⟩

− raλρ
λµ1...µn

r−1

−∆µ1...µn
ν1...νn

∇λρ
λν1...νn
r−1

− n

2n+ 1
∇⟨µ1ρ

µ2...µn⟩
r+1

+m2 n

2n+ 1
∇⟨µ1ρ

µ2...µn⟩
r−1

− n+ r + 2

3
θρµ1...µn

r

− (r − 1)σλαρ
αλµ1...µn

r−2

+
(r − 1)m2

3
θρµ1...µn

r−2

− n(2n+ 2r + 1)

2n+ 3
ρλ⟨µ1...µn−1
r σ

µn⟩
λ

− nρλ⟨µ1...µn−1
r ω

µn⟩
λ

− (2n+ r)(n− 1)n

(2n− 1)(2n+ 1)
ρ
⟨µ1...µn−2

r+2 σµn−1µn⟩

+ 2m2 (r − 1)n

2n+ 3
ρ
λ⟨µ1...µn−1

r−2 σ
µn⟩
λ

−m4 (r − 1)(n− 1)n

(2n+ 1)(2n− 1)
ρ
⟨µ1...µn−2

r−2 σµn−1µn⟩

+m2 (2n+ 2r − 1)(n− 1)n

(2n+ 1)(2n− 1)
ρ⟨µ1...µn−2
r σµn−1µn⟩

(2.68)

By letting n = 0, 1, 2, this result agrees with the general equations of motion displayed

in [63], in which the local equilibrium term is expanded in terms of the hydrodynamic

variables.
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Chapter 3

Second-Order Regularized

Hydrodynamics

In this chapter, we will extend the non-relativistic regularized 13-moment hydrodynam-

ics to the relativistic regularized second-order 14-moment hydrodynamics (R14). We will

then conduct a series of linear stability and causality analyses on both the longitudi-

nal and transverse components of the evolution equations with some assumptions. The

derivation and analysis of the third-order equations will be addressed in the subsequent

chapter.

3.1 Second-Order Moment Equations

The 14 moments in “R14” encompass energy density ε, particle number density ν, fluid

flow velocity uµ, shear stress tensor πµν , bulk viscous pressure Π, and diffusion current

qµ. Due to the traceless and symmetric properties, the number of independent moments

in a rank-n tensor is 2n + 1. One can verify that the total number of the above moments

is indeed 14. As already mentioned earlier, the evolution equations for ϵ, ν, and uµ are

given by the conservation of energy, particle number, and momentum respectively. The

thermal pressure P0, on the other hand, depends on ε and ν, as specified by the equation
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of state. Thus, at this point, we need to derive the evolution equations for all the other

moments, which are Π, qµ, and πµν , using the general moment equation Eq. (2.68). Upon

closer examination of the general moment equation, it becomes apparent that numerous

energy-momentum moments appear on the right-hand side. Specifically, the equation for

ρµ1···µn
r can include energy orders ranging from r− 2 to r+ 2 and momentum orders from

n − 2 to n + 2. Consequently, the 14-moment equations are not closed, and a means of

linking additional moments to the existing 14 moments (i.e., the closure problem) must

be devised to generate a well-defined set of hydrodynamic equations.

In a series of papers [50–53], Struchtrup and Torrilhon developed a novel method that

combines the method of moments and the Chapman-Enskog expansion. This technique

commences by utilizing the general evolution equations for the energy-momentum mo-

ments (Eq.(2.68)), then applying a Chapman-Enskog-like expansion directly to the mo-

ments instead of δf , excluding the 14 moments that are left intact. This is because, as we

shall see later, the 14 moments are of first-order in the expansion and their corresponding

moment equations do not generate evolution equations at the lowest order. By using this

technique, there is no room for arbitrariness in choosing the closure conditions, and it sys-

tematically produces a unique set of equations at any order in the expansion parameter ϵ.

We will demonstrate this technique in the following sections.

3.1.1 Equilibrium Term

In the general moment equation Eq.(2.68), the leading orderO(1) contribution comes from

the equilibrium density term (the second term on the right-hand side)

F µ1···µn
r =

∫
d3p

(2π)3p0
W r

p p
⟨µ1 · · · pµn−1pµn⟩pλ∂λf0 (3.1)

where f0 = e−βWp+α is the local equilibrium density function. The temperature, chemical

potential, and fluid velocity are all functions of position and time. Following Eq. (2.43),
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the space-time derivative can be decomposed as

pλ∂λ = p⟨λ⟩∇λ +WpD (3.2)

It is then clear that pλ∂λf0 = f0p
λ∂λ(α−Wpβ) can contain only 1, p⟨µ1⟩, p⟨µ1pµ2⟩. Hence the

orthogonality of p⟨µ1 · · · pµn⟩ (i.e. Eq. (16) in [63]) demands that

F µ1···µn
r = 0 for n ≥ 3 (3.3)

For n = 0, 1, 2, we get

Fr = ϕr|0θ + ϕq
r|1∂µq

µ + ϕπΠ
r|1(π

γρσγρ + θΠ) (3.4)

F µ
r = ψr|0∇µα + ψr|1

(
∆µ

γ∂ρπ
ργ + (∇µΠ) + aµΠ

)
(3.5)

F µν
r = φr|0σ

µν (3.6)

where the coefficient functions ϕ, ψ and φ are functions of α and β only. Recall that θ =

∇µu
µ is the expansion rate of the fluid cell. Observe that Fr, F µ

r and F µν
r all involve

gradients and time derivatives of the hydrodynamic variables. Consequently, they can be

physically described as the forces that are driving the evolution of the system. In deriving

the above expressions, we have used the conservation laws Eqs. (2.4) and (2.6) to express

any time derivative in terms of spatial derivatives. Details can be found in Appendix B.

From now on, the index preceded by a vertical bar on any quantity indicates the order

in the formal expansion parameter ϵ. For instance, ψr|0 is the O(1) coefficient of F µ
r . The

notation F µ1···µn

r|0 is for the O(1) part of F µ1···µn
r and F µ1···µn

r|1 is the collective O(ϵ) part. As

we will see in the next section, Π, qµ and πµν are all O(ϵ).
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3.1.2 Power Counting in ϵ

In the Chapman-Enskog method, the collision term is scaled as C[f ] → (1/ϵ)C[f ] and the

non-equilibrium part of the phase space density is expanded as

δf =
∞∑
n=1

ϵnδf|n (3.7)

These are then plugged into the Boltzmann equation. Collecting terms having the same

power of ϵ, the n-th order piece δf|n can be found iteratively at each order of ϵ. This

in turn determines δT µν
|n and qµ|n which are expressed solely in terms of α, β,u and their

derivatives. As such, the Chapman-Enskog procedure does not yield separate evolution

equations for δT µν and qµ. The resulting equations are often acausal and can lead to in-

stability [38–43]. To obtain the evolution equations for δT µν and qµ within the Chapman-

Enskog method, one needs to substitute time derivatives of δT µν
|n and qµ|n with the equiv-

alent time derivatives of δT and qµ without spoiling the ϵ accuracy. For instance, in [60],

this procedure was carried out up to O(ϵ2).

In the R14 method, instead of δf , the energy-momentum moments of δf are expanded

in powers of ϵ

ρµ1···µn
r =

∞∑
n=1

ϵnρµ1···µn

r|n (3.8)

Working out the order-by-order solution by putting Eq.(3.8) in Eq.(2.68) would be com-

pletely equivalent to iteratively finding δf|n. What we would like to do differently, how-

ever, is not to expand the bulk pressure, ρ0 = −Π(3/m2), the dissipative current ρµ0 = qµ

and the shear tensor ρµν0 = πµν whenever they occur while expanding all other moments.

In this way, the evolution equations for these quantities will naturally result in closed

evolution equations for them while all other energy-momentum moments are expressed

in terms of the 14 moments. The purpose of this dissertation is to derive these evolution

equations up to and including the O(ϵ2) terms (the third order). This subsection estab-

lishes the ϵ-order of energy-momentum moments.
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To be concrete, we use the relaxation time approximation for the collision term

C[f ] = −Wp

ϵ τR
δf(x, p) (3.9)

where we have explicitly indicated the expansion parameter ϵ. The relaxation time τR is a

function of β and α only. The parameter ϵ stands for the Knudsen number and at the end

of the calculations, ϵ is set to 1. The relaxation time approximation has a significant physi-

cal meaning: when a system in local thermal equilibrium undergoes slight perturbations,

it will eventually return to its original equilibrium state, with a time scale determined by

the relaxation time τR. Putting Eqs. (3.8) and (3.9) into the general moment equation Eq.

(2.68) and collecting the O(1) terms, we get

ρµ1···µn

r|1 = −τRF µ1···µn

r−1|0 (3.10)

where F µ1···µn

r−1|0 is the O(1) part of F µ1···µn

r−1 . Since F µ1···µn
r = 0 for n ≥ 3 (e.g. Eq.(3.3)), it is

clear that ρµ1···µn

r|1 = 0 for n ≥ 3. Hence

ρr, ρ
µ
r , ρ

µ1µ2
r = O(ϵ) (3.11)

ρµ1···µn
r = O(ϵ2) for n ≥ 3 (3.12)

In fact, only n = 3 and n = 4 moments are O(ϵ2). Note that in Eq.(2.68), the lowest

momentum order on the right-hand side is n − 2. Hence, for n = 5, 6, the lowest mo-

mentum order appearing on the right-hand side is n = 3 and n = 4 respectively. This

implies that the right-hand sides for n = 5, 6 are at most O(ϵ2), which further implies that

ρµ1···µn

r|2 /τR = 0 for n = 5, 6 since there are no O(ϵ) terms in the right hand side of Eq.(2.68).

Equivalently,

ρµ1···µn
r = O(ϵ3) for n = 5, 6 (3.13)
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Continuing this way, it can be established that in general

ρµ1···µn
r = O(ϵ⌈n/2⌉) for n ≥ 1 (3.14)

where ⌈n/2⌉ is the closest integer that is larger than or equal to n/2. Since we have now

established the ϵ-order of the energy-momentum moments, we do not have to carry ϵ

around from here on although we will keep referring to ϵ-order for specific terms. For the

relaxation time approximation, the ϵ-order is the same as the number of τR factors. Note

that the dissipative currents πµν , qµ and the bulk viscous pressure Π are all O(ϵ).

3.1.3 Moment Equations for Π, qµ, and πµν

Equation for Π

We now proceed to derive the second-order moment equations for the bulk viscous pres-

sure Π, diffusion current qµ, and shear-stress tensor πµν . We will start with the equation

for Π first. Taking r = 0 and n = 0 in Eq. (2.68):

Dρ0 =

∫
d3p

(2π)3p0
C[f ]W−1

p −
∫

d3p

(2π)3p0
pλ(∂λf0)W

−1
p

−∇λρ
λ
−1 −

2

3
θρ0 + σλαρ

λα
−2 −

m2

3
θρ−2

(3.15)

Using the definition of Π in Eq. (2.30):

Π = −m
2

3

∫
d3p

(2π)3p0
δf = −m

2

3
ρ0 (3.16)

Eq. (3.15) is equivalent to

DΠ =
m2

3
F−1 −

m2

3

∫
d3p

(2π)3p0
C[f ]W−1

p +
m2

3
∇λρ

λ
−1 −

2

3
θΠ− m2

3
σλαρ

λα
−2

+
m4

9
θρ−2

(3.17)
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To get the second-order equation, we need to know ρ−2, ρ
µ
−1, ρ

µν
−2 up to and includingO(ϵ).

One obvious way to do so is to use Eqs. (3.4) – (3.6) and (3.10), along with the relaxation

time approximation Eq. (3.9):

DΠ =
m2

3

[
ϕ−1|0θ + ϕq

−1|1∂µq
µ + ϕπΠ

−1|1 (θΠ+ πγρσγρ)
]

− Π

τR
− m2

3
τR∇λ

(
ψ−2|0∇λα

)
− 2

3
θΠ+

m2

3
τRφ−3|0σλασ

λα − m4

9
τRϕ−3|0θ

2

(3.18)

This expression poses a problem because the second-order terms on the right-hand side

are all second-order in the spatial derivative, while the left-hand side is first-order in the

time derivative, which is a typical characteristic of parabolic equations. If a Lorentz boost

is applied, terms with second-order time derivatives will be introduced on the right-hand

side, altering the mathematical structure of the equation. This can result in issues such as

instability and acausality in the solutions. However, these problems can be resolved by

using the first-order constitutive relationship

Π|1 =
m2

3
τRϕ−1|0θ (3.19)

qµ|1 = −τRψ−1|0∇µα (3.20)

πµν
|1 = −τRφ−1|0σ

µν (3.21)

obtained using again Eqs. (3.4) – (3.6) and (3.10), to replace the terms with second-order

spatial derivatives. The scalar equation now becomes

DΠ = − Π

τR
− 2

3
θΠ+

m2

3

[
ϕ−1|0θ + ϕq

−1|1∂µq
µ + ϕπΠ

−1|1 (θΠ+ πγρσγρ)
]

+
m2

3
∇λ

(
ψ−2|0

ψ−1|0
qλ
)
− m2

3

(
φ−3|0

φ−1|0

)
σλαπ

λα − m2

3

(
ϕ−3|0

ϕ−1|0

)
θΠ

(3.22)
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Equation for qµ

For n = 1 and r = 0 and with relaxation time approximation, Eq. (2.68) becomes:

∆µ
νDq

ν = − q
µ

τR
− F µ

−1 − ρ1a
µ −∆µ

ν∇λρ
λν
−1 −

1

3
∇µρ1 +

m2

3
∇µρ−1

− θqµ + σλαρ
λαµ
−2 − m2

3
θρµ−2 −

3

5
qλσµ

λ − qλωµ
λ

− 2m2

5
ρλ−2σ

µ
λ

(3.23)

Note that all the ρ1 terms vanish due to Eq. (2.25). The ρλαµ−2 term does not contribute at

the second order since ρλαµ−2 is O(ϵ2). Again using the first-order constitutive relationship

to replace the ρ terms on the right-hand side, we get

∆µ
νDq

ν = − q
µ

τR
− ψ−1|0∇µα− ψ−1|1

(
∆µ

γ∂ρπ
γρ +∇µΠ+ aµΠ

)
−∆µ

ν∇λ

(
φ−2|0

φ−1|0
πλν

)
−∇µ

(
ϕ−2|0

ϕ−1|0
Π

)
− θqµ − m2

3

(
ψ−3|0

ψ−1|0

)
θqµ − 3

5
qλσµ

λ − qλωµ
λ

− 2m2

5
σµ
λ

(
ψ−3|0

ψ−1|0

)
qλ

(3.24)

which is the second-order qµ equation.

Equation for πµν

Taking n = 2 and r = 0 along with relaxation time approximation in Eq. (2.68), we get

∆µν
αβDπ

αβ = −π
µν

τR
− F µν

−1 − 2ρ
⟨µ
1 a

ν⟩ −∆µν
αβ∇λρ

λαβ
−1 − 2

5
∇⟨µρ

ν⟩
1

+
2m2

5
∇⟨µρ

ν⟩
−1 −

4

3
θπµν + σλαρ

αλµν
−2 − m2

3
θρµν−2

− 10

7
πλ⟨µσ

ν⟩
λ − 2πλ⟨µω

ν⟩
λ − 8

15
ρ2σ

µν

− 4m2

7
ρ
λ⟨µ
−2 σ

ν⟩
λ +

2m4

15
ρ−2σ

µν +
2m2

5
ρ0σ

µν

(3.25)

Observe that all the ρ1 and ρ2 terms vanish due to matching conditions ρ1 = ρ2 = ρµ1 = 0.

Just as before, the second-order equation for πµν is obtained using the first-order consti-
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tutive relationship and rejecting all the O(ϵ2) terms:

∆µν
αβDπ

αβ = −π
µν

τR
− φ−1|0σ

µν +
2m2

5
∇⟨µ
(
ψ−2|0

ψ−1|0

)
qν⟩

− 4

3
θπµν − m2

3
θ

(
φ−3|0

φ−1|0

)
πµν − 10

7
πλ⟨µσ

ν⟩
λ

− 2πλ⟨µω
ν⟩
λ − 4m2

7

(
φ−3|0

φ−1|0

)
πλ⟨µσ

ν⟩
λ − 2m2

5

(
ϕ−3|0

ϕ−1|0

)
Πσµν

− 6

5
Πσµν

(3.26)
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3.2 Linear Stability and Causality Analysis

The previous section provided us with the second-order moment equations. However,

it is crucial to ensure that these equations lead to stable and causal solutions since these

properties dictate the usability of the equations in numerical computations. Generally

speaking, analyzing the stability and causality of non-linear partial differential equations

is a challenging task. Therefore, the best course of action in this scenario is to linearize

the equations before conducting any analysis. This is achieved by considering small fluc-

tuations in hydrodynamic variables from the local equilibrium and retaining only the

terms that are linear in these small fluctuations. The analysis of stability and causality

performed on these linearized equations is referred to as linear stability/causality analysis.

To simplify matters, we will assume that the particles are massless (i.e. m = 0), and we

will not assume the conservation of particle number throughout the analysis. As we will

see, these assumptions reduce the R14 theory to the R9 theory.

3.2.1 Linearized Second-Order R9 Equations

Our analysis of second-order moment equations will commence by linearizing them. No-

tably, in the case of massless particles, the bulk viscous pressure Π vanishes. Additionally,

since there is no conservation of particle number (i.e., Eq. (2.6) does not hold), qµ and ν

do not contribute to our analysis, therefore, the only relevant dissipative quantity for our

study is the shear-stress tensor πµν , reducing the total number of moments from 14 to 9.

Consequently, we only need to linearize the πµν equation, along with the conservation

laws, by considering small fluctuations in the energy density ϵ, fluid 4-velocity uµ, and

shear-stress tensor πµν :

ϵ = ϵ0 + δϵ, uµ = uµ0 + δuµ, πµν = δπµν (3.27)
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Setting m = 0 and keeping only terms that are linear in small perturbations, Eq. (3.26)

reduces to

D0δπ
µν +

δπµν

τR
+

8

5π2β4
σµν = 0 (3.28)

where D0 = uµ0∂µ and we have used Eq. (B.39) in B.2 to express φ−1|0. Now, since we are

dealing with only one particle species in this analysis, the chemical potential term in f0

vanishes, and Eq. (2.19) reduces to

ϵ =

∫
d3p

(2π)3
p0e−βp0

=

∫
d3p

(2π)3
|p|e−β|p|

=
4π

(2π)3

∫ ∞

0

p3e−βpdp

=
1

2π2

3!

β4

=
3

π2β4

(3.29)

Thus Eq. (3.28) becomes

D0δπ
µν +

δπµν

τR
+

8ϵ0
15
σµν = 0 (3.30)

which is the linearized πµν equation. Now, we also need to linearize the energy-momentum

conservation laws. To obtain these laws, we can simply take the longitudinal and trans-

verse components of Eq. (2.4) with respect to the fluid velocity uµ:

uν∂µT
µν = Dϵ+ (ϵ+ P0)θ + παβσαβ = 0

∆λ
ν∂µT

µν = (ϵ+ P0)Du
λ +∇λP0 + πλβDuβ +∆λ

ν∇µπ
µν = 0

(3.31)

Here, we can replace the thermal pressure P0 by the equation of state P0 = 1
3
ϵ (obtained

from Eq. (2.19) and (2.22)). The linearized conservation laws are straightforward to get:

D0δϵ+
4

3
ϵ0∇µ,0δu

µ = 0

D0(ϵ0δu
µ) +

1

4
∇µ

0δϵ+
3

4
∇λ,0δπ

λµ = 0

(3.32)
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where we define ∆µν
0 = gµν + uµ0u

ν
0 and ∇µ

0 = ∆µν
0 ∂ν . It is convenient to express the above

equations in Fourier space. We will use the following format of Fourier transform:

f̃(k) =

∫ ∞

−∞
d4x e−ikµxµ

f(x)

f(x) =

∫ ∞

−∞

d4k

(2π)4
eikµx

µ

f̃(k)

(3.33)

Here, kµ = (ω,k) is the wave 4-vector. Therefore, we can express each Fourier component

of the variables in the linearized equations as a plane wave multiplied by a complex

amplitude ϕ̃:

ϕ = ϕ̃eikµx
µ

= ϕ̃ei(k·x−ωt) (3.34)

Note that since gµν = diag(−1, 1, 1, 1), we have kµx
µ = k · x − ωt. Furthermore, we

shall rewrite the linearized equations in terms of the Lorentz-covariant variables defined

below:
Ω ≡ uµ0kµ

κµ ≡ ∆µν
0 kν

(3.35)

which correspond to the angular frequency and wave vector in the local rest frame of the

background system, respectively. We also define the covariant wave number κ as

κ ≡
√
κµκµ (3.36)

In terms of the covariant variables, the linearized conservation laws Eq. (3.32) can now

be rewritten as
Ωδϵ̃+

4

3
ϵ0κµδũ

µ = 0

Ωϵ0δũ
µ +

1

4
κµδϵ̃+

3

4
καδπ̃

αµ = 0

(3.37)

and the linearized πµν equation becomes

(
iΩ +

1

τR

)
δπ̃µν +

4

15
iϵ0

(
κµδũν + κνδũµ − 2

3
∆µν

0 καδũ
α

)
= 0 (3.38)
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From now on, we will assume that all linearized equations are expressed in Fourier space

and will therefore omit the tilde. Furthermore, Ω and κ are also assumed to be properly

scaled using the relaxation time to become dimensionless quantities.

The linear stability and causality analysis presented in this dissertation adheres to

the procedure outlined in [5, 64]. This involves decomposing the linearized equations in

Fourier space into longitudinal (parallel to κµ) and transverse (orthogonal to κµ) compo-

nents. This method offers the advantage of decoupling the equations in the linear regime,

allowing them to be solved independently and simplifying the calculations [5]. Thus, it is

beneficial to introduce a projector that is analogous to ∆µν but with respect to κµ:

∆µν
κ = gµν − κµκν

κ2
(3.39)

where κ2 is introduced to ensure normalization. Then, any 4-vector Aµ can be decom-

posed into a linear combination of the longitudinal and transverse parts:

Aµ = A||
κµ

κ
+ Aµ

⊥ (3.40)

where A|| = κµA
µ/κ and Aµ

⊥ = ∆µν
κ Aν . Similarly, a rank-2 tensor Aµν can also be decom-

posed as

Aµν = A||
κµκν

κ2
+

1

3
A⊥∆

µν
κ + Aµ

⊥
κν

κ
++Aν

⊥
κµ

κ
+ Aµν

⊥ (3.41)

where A|| = κµκνA
µν/κ2, A⊥ = ∆µν

κ Aµν , Aµ
⊥ = κλ∆µν

κ Aλν/κ, and Aµν
⊥ = ∆µναβ

κ Aαβ . Here,

we defined the rank-2 κ-projector to be

∆µναβ
κ =

1

2

(
∆µα

κ ∆νβ
κ +∆µβ

κ ∆να
κ − 2

3
∆µν

κ ∆αβ
κ

)
(3.42)

3.2.2 Transverse Modes

In this section, we will analyze the linear stability and causality of the transverse com-

ponents of second-order R9 hydrodynamics. We will discuss two cases: in the first, the
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wave vector k is parallel to the background fluid velocity V, while in the second, the wave

vector is orthogonal to V.

Case 1: k is parallel to V

For simplicity and without loss of generality, we will assume that k and V are both in the

x-axis:
uµ0 = γ(1, V, 0, 0)

kµ = (ω, k, 0, 0)
(3.43)

It immediately follows that

Ω = γ(V k − ω)

κ2 = γ2(k − V ω)2
(3.44)

Now, note that the first equation in Eq. (3.37), which corresponds to the energy conserva-

tion law, is a scalar equation. Thus it is purely longitudinal and does not contribute to the

transverse analysis. The transverse component of the momentum conservation law and

the πµν equation can be easily obtained by applying the projector ∆µν
κ and κµ. Doing so

gives us

Ωϵ0δu
µ
⊥ +

3

4
κδπµ

⊥ = 0(
iΩ +

1

τR

)
δπµ

⊥ +
4

15
iϵ0κδu

µ
⊥ = 0

(3.45)

This system of equations can be written in the following matrix form:

 Ω 3
4
κ

4
15
iκ iΩ + 1

τR

ϵ0δuµ⊥
δπµ

⊥

 = 0 (3.46)

To obtain a non-trivial solution, we require that the determinant of the 2× 2 matrix M to

be zero:

det(M) = Ω(iΩ +
1

τR
)− 1

5
iκ2 = 0 (3.47)
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which is the dispersion relation. Note that the dispersion relation implies a quadratic

order for Ω, indicating that we should anticipate obtaining two modes. Indeed, the solu-

tions to the dispersion relation are

ω1,2 =
5i− 8kγτRV ± i

√
25 + 20ikγτRV (V 2 − 1)− 20k2γ2τ 2R(V

2 − 1)2

2γτR(V 2 − 5)
(3.48)

To determine whether these solutions are linearly stable, we first take a look at the plane

waves formula (Eq. (3.34)):

ϕ ∼ ei(kx−ωt) = eikxe−iωrteωit (3.49)

where ω = ωr + iωi is complex. Note that the first two exponential terms are simply

oscillating waves, therefore only the third term contributes to the damping, and thus,

stability. To ensure exponential suppression of Eq. (3.49) for t ≥ 0, it is necessary that ωi

be less than or equal to zero. Thus, in general, stability requires

ωi ≤ 0 (3.50)

for all t ≥ 0. In practice, it is sufficient to show that this requirement is satisfied for small

wave number k. This is because hydrodynamics is in essence a macroscopic and large

wavelength theory, and is therefore associated with small wave numbers. In the limit of

small k, we can Taylor-expand Eq. (3.48):

ω1 = V k − 1

5
iγτR(V

2 − 1)2k2 +O(k3)

ω2 = − 5i

γτR(5− V 2)
− V (V 2 + 3)

V 2 − 5
k +

1

5
iγτR(V

2 − 1)2k2 +O(k3)
(3.51)

It is clear that for small k, both ω1 and ω2 have non-positive imaginary parts since 0 ≤

V ≤ 1. Thus, according to Eq. (3.50), we can conclude that the second-order R9 equations

have linearly stable transverse modes when the fluid velocity vector is parallel to the
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Figure 3.1: Real and Imaginary parts of the transverse modes of the massless second-

order R9 hydrodynamics, in the case of fluid velocity vector being parallel to the wave

vector. The relaxation time is chosen to be τR = 5 [5, 6].

wave vector. Fig. (3.1) shows the plots of both modes with different values of background

fluid velocity V and with τR = 5 [5, 6]. This particular value for the shear relaxation time

τR is calculated from the Boltzmann equation in the ultra-relativistic limit, using the 14

moments approximation. Clearly, one can see that the imaginary parts of both solutions

are non-positive for small k. But in fact, one can show that these imaginary parts are

non-positive for all k ≥ 0. Fig. (3.2) shows the imaginary parts of both modes for V = 0.9

and τR = 5, but for a much larger range of k. One can see that the curves demonstrate

asymptotic behavior as k increases. We claim that this result also holds for any other

values of V .

The modes displayed in Eq. (3.48) also encode the physical information of the prop-

agating sound waves. For example, as we will see very soon, ∂Re(ω)/∂k is the group

velocity of the sound waves, where ω is the temporal frequency and k is the correspond-
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Figure 3.2: The imaginary parts of the transverse modes of the massless second-order

R9 hydrodynamics, in the case of fluid velocity vector being parallel to the wave vector,

for V = 0.9 and with relaxation time τR = 5. Note that a large range of k is chosen to

demonstrate the asymptotic behavior of the curves.

ing wave number. In this particular case, Eq. (3.48) contains information on how the

waves propagate in the transverse direction.

To conduct the causality analysis, we shall first Taylor-expand Eq. (3.48) again but

under the assumption of large k this time. The results are

ω1 = −4V +
√
5(V 2 − 1)

V 2 − 5
k +

i(5 +
√
5V )

2γτR(V 2 − 5)
−

√
5

8kγ2τ 2R(V
2 − 1)

+O

(
1

k2

)
ω2 = −4V −

√
5(V 2 − 1)

V 2 − 5
k − i(−5 +

√
5V )

2γτR(V 2 − 5)
+

√
5

8kγ2τ 2R(V
2 − 1)

+O

(
1

k2

) (3.52)

Observe that the constant imaginary parts of both solutions are still negative in the large-

k limit, since V 2 ≤ 1. Causality requires that the asymptotic group velocity of the plane
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wave must be subliminal [65]:

lim
k→∞

∣∣∣∣∂Re(ω)∂k

∣∣∣∣ ≤ 1 (3.53)

From Eq. (3.52), we get

lim
k→∞

∣∣∣∣∂Re(ω1,2)

∂k

∣∣∣∣ =
∣∣∣∣∣4V ±

√
5(V 2 − 1)

V 2 − 5

∣∣∣∣∣ ≤ 1 for all 0 ≤ V ≤ 1. (3.54)

Therefore, the transverse modes are also linearly causal.

Case 2: k is orthogonal to V

We will now discuss the second case in which the wave vector is orthogonal to the fluid

velocity vector. Without loss of generality, we will assume that V is still in the x-axis, but

k is now in the y-axis:

uµ0 = γ(1, V, 0, 0)

kµ = (ω, 0, k, 0)
(3.55)

It follows that
Ω = −γω

κ2 = γ2V 2ω2 + k2
(3.56)

Plugging Eq. (3.56) into Eq. (3.47) and solving for ω, we obtain

ω1,2 = ±
i(±5 +

√
25 + 4k2τ 2R(V

2 − 5))

2γτR(V 2 − 5)
(3.57)

Note that the square-root term is always smaller than 5 since V 2− 5 < 0 for all 0 ≤ V ≤ 1.

In the limit of small wave number k, the solutions can be expanded as

ω1 =
5i

γτR(V 2 − 5)
+
iτRk

2

5γ
+O(k3)

ω2 = −iτRk
2

5γ
+O(k3)

(3.58)
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Figure 3.3: Real and Imaginary parts of the transverse modes of the massless second-

order R9 hydrodynamics, in the case of fluid velocity vector being orthogonal to the wave

vector. As before, the relaxation time is chosen to be τR = 5.

Note that the first term in ω1 is negative since V 2 − 5 < 0 for all 0 ≤ V ≤ 1. Again, one

can see that both solutions have non-positive imaginary parts, and therefore, are linearly

stable. Indeed, we can draw the same conclusion from Fig. (3.3) by noticing that the

imaginary parts of the modes are all non-positive for small k. Similar to case 1, one can

obtain a stronger argument that the modes are linearly stable for all k ≥ 0 by noticing the

asymptotic behavior of the modes for large values of k, shown in Fig. (3.4), with V = 0.9

and τR = 5.

To examine the causality of the above modes, we expand them around large values of

k, just as before:

ω1 =
k

γ
√
5− V 2

− 5i

2γτR(5− V 2)
+

25i

8γτ 2R(V
2 − 5)3/2k

+O

(
1

k3

)
ω2 = − k

γ
√
5− V 2

− 5i

2γτR(5− V 2)
+

25

8γτ 2R(5− V 2)3/2k
+O

(
1

k3

) (3.59)
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Figure 3.4: The imaginary parts of the transverse modes of the massless second-order R9

hydrodynamics plotted for a larger range of k, in the case of fluid velocity vector being

orthogonal to the wave vector, for V = 0.9 and with relaxation time τR = 5.

Then, it is straightforward to realize that

lim
k→∞

∣∣∣∣∂Re(ω1,2)

∂k

∣∣∣∣ = 1

γ
√
5− V 2

=

√
1− V 2

5− V 2
≤ 1 (3.60)

for all 0 ≤ V ≤ 1. At this point, we can conclude that the transverse modes are linearly

causal when the fluid velocity vector is orthogonal to the wave vector.

3.2.3 Longitudinal Modes

In this section, we will perform the linear stability and causality analysis on the longitudi-

nal components of the second-order R9 hydrodynamics. Similar to the transverse analysis
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done in the previous section, we will also discuss the two cases in which the fluid velocity

vector is parallel and orthogonal to the wave vector, respectively.

Case 1: k is parallel to V

The first step of the analysis is to obtain the longitudinal components of the conservation

laws and the πµν equation. To do this, we simply apply κµ and κµκν to Eq. (3.37) and Eq.

(3.38). Also, note that we need to include the purely-longitudinal energy conservation

law this time. As before, we now have a system of linearized equations:

Ωδϵ+
4

3
ϵ0κδu|| = 0

Ωϵ0δu|| +
1

4
κδϵ+

3

4
κδπ|| = 0(

iΩ +
1

τR

)
δπ|| +

16

45
iϵ0κδu|| = 0

(3.61)

which can be written in the following matrix form:


Ω 4

3
κ 0

1
4
κ Ω 3

4
κ

0 16
45
iκ iΩ + 1

τR




δϵ

ϵ0δu||

δπ||

 = 0 (3.62)

Again, by requiring the determinant of the 3 × 3 matrix M to be zero, we obtain the

dispersion relation:

det(M) = − 4

15
iγ3(kV − ω)(k − V ω)2

+

(
1

τR
+ iγ(kV − ω)

)(
γ2(ω − kV )2 − 1

3
γ2(k − V ω)2

)
= 0

(3.63)

Since ω is of cubic order in the dispersion relation, we should expect to get three modes.

We address that the complete analytical expressions of the solutions are exceedingly com-

plex. Nonetheless, for small values of k, we can utilize a series expansion to simplify the

54



solutions and retain solely the O(1) terms:

ω1 = O(k)

ω2 = − 5i(V 2 − 3)

3γτR(3V 2 − 5)
+O(k)

ω3 = O(k)

(3.64)

Observe that when k = 0, ω1 and ω3 coincide at zero, while ω2 has strictly negative imag-

inary parts for all 0 ≤ V ≤ 1. It is then clear that they are all linearly stable solutions.

Indeed, Fig. (3.5) shows that all modes have non-positive imaginary parts for small k,

and we can extend this result to all k ≥ 0 using Fig. (3.6), which guarantees linearly sta-

bility of the modes by demonstrating the asymptotic behavior of the modes for a larger

range of k. As usual, we chose τR = 5 for the numerical computation. Also, note that two

of the modes have identical imaginary parts in the case of static fluids.

To confirm the causality of the modes, it seems natural to adopt the previous proce-

dure of expanding the solutions in a series, assuming large values of k. However, even the

zeroth-order term in such an expansion is forbiddingly complex to display when V ̸= 0.

Nevertheless, it suffices to demonstrate the causal nature of the modes for V = 0 since

one can always shift to another reference frame with non-zero V through Lorentz boosts,

which do not affect the causality of a solution. For V = 0, the large-k expansions of the

solutions are

ω1 = − 5i

9τR
+O

(
1

k

)
ω2 = −

√
3

5
k − 2i

9τR
+O

(
1

k

)
ω3 =

√
3

5
k − 2i

9τR
+O

(
1

k

) (3.65)

It then follows that

lim
k→∞

∣∣∣∣∂Re(ω1)

∂k

∣∣∣∣ = 0 ≤ 1

lim
k→∞

∣∣∣∣∂Re(ω2,3)

∂k

∣∣∣∣ =
√

3

5
≤ 1

(3.66)
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Figure 3.5: Real and Imaginary parts of the longitudinal modes of the massless second-

order R9 hydrodynamics, in the case of fluid velocity vector being parallel to the wave

vector and τR = 5.

Thus, all the modes are causal when V = 0, and therefore, for all 0 ≤ V ≤ 1. In particular,

ω1 corresponds to a static mode in the fluid rest frame since its group velocity is zero.

Case 2: k is orthogonal to V

With Eq. (3.56), the dispersion relation becomes

k2(9iγτRω − 5) + γ2ω2(15− 15iγτRω + V 2(9iγτRω − 5)) = 0 (3.67)
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Figure 3.6: The imaginary parts of the longitudinal modes of the massless second-order

R9 hydrodynamics plotted for a larger range of k, in the case of fluid velocity vector being

parallel to the wave vector, for V = 0.9 and with relaxation time τR = 5.

In the limit of small k, the O(1) terms in the series expansion of the modes are

ω1 = O(k)

ω2 = − 5i(V 2 − 3)

3γτR(3V 2 − 5)
+O(k)

ω3 = O(k)

(3.68)

Note that these terms are the same as those in Case 1 (Eq. (3.64)). This is expected because

when k ≈ 0, it is irrelevant whether the wave vector is parallel or orthogonal to the fluid

velocity vector, resulting in the same outcome. As a result, the solutions remain linearly

stable, as in the previous case. The same conclusion can also be inferred from Fig. (3.7), as

the numerically-computed imaginary parts of the modes are all non-positive for small k.
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Figure 3.7: Real and Imaginary parts of the longitudinal modes of the massless second-

order R9 hydrodynamics, in the case of fluid velocity vector being orthogonal to the wave

vector and τR = 5.

The asymptotic behavior of the modes for a larger range of k in Fig. (3.8) further extends

the linear stability of the modes to all k ≥ 0. Also observe that the imaginary components

of two out of the three modes are identical, regardless of the background fluid velocity.

For the causality analysis, we will follow the same procedure as in Case 1, in which

we restrict the fluid velocity V to zero. The large-k expansion then gives

ω1 = − 5i

9τR
+O

(
1

k

)
ω2 = −

√
3

5
k − 2i

9τR
+O

(
1

k

)
ω3 =

√
3

5
k − 2i

9τR
+O

(
1

k

) (3.69)
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Figure 3.8: The imaginary parts of the longitudinal modes of the massless second-order

R9 hydrodynamics plotted for a larger range of k, in the case of fluid velocity vector being

orthogonal to the wave vector, for V = 0.9 and with relaxation time τR = 5.

As expected, this is again identical to Case 1 (Eq. (3.65)) because V = 0 has no impact

in either scenario. Therefore, we can deduce that the solutions are also causal in this

instance.

3.3 Discussion

The previous sections have demonstrated the linear stability and causality of both the lon-

gitudinal and transverse components of the second-order R9 theory, the massless second-

order R14 theory without particle number conservation. However, there remains a ques-

tion as to whether this theory is compatible with the Israel-Stewart theory, which is also

a second-order theory. According to [43], there are various ways to derive second-order
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relativistic viscous hydrodynamics, but their disparities lie only in the non-linear terms.

Such differences arise from the way δf is represented in terms of the 14 moments in each

theory, as well as the truncation process used to close the set of evolution equations.

Nonetheless, the R9/R14 theory does not suffer from this issue. Its hydrodynamic equa-

tions are derived systematically and uniquely, without any arbitrariness involved in the

process. For the purpose of linear stability analysis, however, all second-order theories

should yield the same set of linearized hydrodynamic equations. Indeed, the linearized

πµν equation for the Israel-Stewart theory is given by Eq. (2.58) in [66]:

D0δπ
µν +

πµν

τπ
− 2

η

τπ
σµν = 0 (3.70)

where τπ is the relaxation time associated with the shear-stress tensor πµν and η is the

shear viscosity. It is evident that this equation takes on a similar form to Eq. (3.30), with

differences appearing in the transport coefficients and the sign in front of the last terms,

which can be attributed to the choice of the Minkowski metric. Because of the similarities

between these two equations, it is reasonable to expect that the IS and R9 theories will

demonstrate similar properties in linear stability and causality analysis. In fact, when

τπ = 5, both theories produce almost identical curves for transverse and longitudinal

modes if not the same (see Fig. (3) and (5) in [66]).

Another issue worth mentioning is that although the regularization technique pro-

vides a set of systematically and uniquely derived hydrodynamic equations, it is not

clear whether this theory is more “correct” than the others using arguments based on first

principles. However, since we just showed that the R9/R14 theory has linearly stable and

causal modes, we can at least conclude that this theory leads to more physically reason-

able results than other approaches such as Chapman-Enskog expansion, which results in

linearly unstable modes [5].

To conclude this section, we have established the linear stability and causality of the

longitudinal and transverse components of the second-order R9 hydrodynamics in both
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parallel and orthogonal cases of wave vector k and fluid velocity vector V. Subsequently,

we will derive the equations for the third-order regularized hydrodynamics, which is an-

ticipated to be more complex yet more intriguing. Following this, we will conduct a series

of linear stability and causality analyses akin to the second-order scenario presented in

this section.
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Chapter 4

Third-Order Regularized

Hydrodynamics

In this chapter, we will proceed to the derivation and analysis of the third-order R14 hy-

drodynamics. To get the third-order equations, we need to obtain the O(ϵ2) components

of the energy-momentum moments with n = 0, 1, 2, 3, 4 except Π, qµ, and πµν , then plug

them back into Eqs. (3.17), (3.23), and (3.25). Similar to the second-order scenario, a series

of linear stability and causality analysis on the longitudinal and transverse components

of the third-order theory will be presented, following the derivation of the third-order

R14 equations.

4.1 Third-Order Moment Equations

Setting n = 0 in Eq. (2.68), we get the general moment equation for scalar moments:

Dρr =− ρr
τR

− Fr−1

− 2 + r

3
θρr +m2(r − 1)

θ

3
ρr−2

−∇λρ
λ
r−1 − raλρ

λ
r−1

− (r − 1)σλαρ
αλ
r−2

(4.1)
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Collecting all the O(ϵ) terms, the O(ϵ2) components of the scalar moments can be ex-

pressed as
ρr|2
τR

=−Dρr|1 − Fr−1|1

− (r + 2)

3
θρr|1 +

(r − 1)

3
θm2ρr−2|1

− raλρ
λ
r−1|1 −∇λρ

λ
r−1|1

− (r − 1)σλαρ
λα
r−2|1

(4.2)

Once again, we emphasize that Π, qµ, and πµν should not be expanded if they appear in

the expression. The time derivative can be calculated as the following:

−Dρr|1 = D
(
τRFr−1|0

)
=

(
∂
(
τRϕr−1|0

)
∂α

χα|0θ +
∂
(
τRϕr−1|0

)
∂β

χβ|0θ

)
θ +

(
τRϕr−1|0

) (
∇γa

γ
|0 + aγ|0a|0γ

) (4.3)

where we have used Fr−1|0 = ϕr−1|0θ,Dθ = ∇γa
γ
|0 + aγ|0a|0γ, (Dα)|0 = χα|0θ, and (Dβ)|0 =

χβ|0θ. The leading order acceleration aγ|0 is given by

aγ|0 = − ∇γP

ε+ P
(4.4)

Details are included in Appendix B. In summary, the scalar moments up toO(ϵ2) are given

by:

ρr = −τRFr−1

+τR

[(
∂
(
τRϕr−1|0

)
∂α

χα|0θ +
∂
(
τRϕr−1|0

)
∂β

χβ|0θ

)
θ

+
(
τRϕr−1|0

) (
∇γa

γ
|0 + aγ|0a|0γ

)
− (r + 2)

3
θρr|1 +

(r − 1)

3
θm2ρr−2|1

− ra|0λρ
λ
r−1|1 −∇λρ

λ
r−1|1

− (r − 1)σλαρ
λα
r−2|1

]
+O

(
ϵ3
)

(4.5)
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Similarly, for the vector moments, setting n = 1 in Eq. (2.68) gives us

∆µ1
ν1
Dρν1r =− ρµ1

r

τR
− F µ1

r−1

− 3 + r

3
θρµ1

r +m2(r − 1)
θ

3
ρµ1

r−2

−∆µ1
ν1
∇λρ

λν1
r−1 − raαρ

αµ1

r−1

− 1

3

(
∇µ1ρr+1 −m2∇µ1ρr−1

)
− (r + 3)

3
ρr+1a

µ1 + r
1

3
m2ρr−1a

µ1

− (r − 1)σλαρ
αλµ1

r−2

− (2r + 3)

5
σµ1

λ ρ
λ
r

+m2(r − 1)
2

5
σµ1

λ ρ
λ
r−2

− ωµ1

λ ρ
λ
r

(4.6)

Collecting all the terms up to O(ϵ2) , we have

ρµr = −τRF µ
r−1

+τR

[
−∆µ

νDρ
ν
r|1

+
θ

3

(
m2(r − 1)ρµr−2|1 − (r + 3)ρµr|1

)
− 3 + 2r

5
σµ
λρ

λ
r|1 +

2

5
(r − 1)σµ

λm
2ρλr−2|1 − ωµ

λρ
λ
r|1

+ r
1

3
m2ρr−1|1a

µ
|0 −

(r + 3)

3
ρr+1|1a

µ
|0

− 1

3

(
∇µρr+1|1 −m2∇µρr−1|1

)
− ra|0λρ

λµ
r−1|1 −∆µ

ν∇λρ
λν
r−1|1

]
+O

(
ϵ3
)

(4.7)
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where the time derivative is given by

−∆µ
νDρ

ν
r|1 =

(
∂
(
τRψr−1|0

)
∂α

χα|0θ +
∂
(
τRψr−1|0

)
∂β

χβ|0θ

)
(∇µα)

+
(
τRψr−1|0

)
aµ|0χα|0θ +

(
τRψr−1|0

)
∇µ
(
χα|0θ

) (4.8)

in which we have used ∆µ
νD∇να = ∇µ(Dα) + aµDα. Using the same methodology, the

rank-2 general moment equation is

∆µ1µ2
ν1ν2

Dρν1ν2r

= −ρ
µ1µ2
r

τR
− F µ1µ2

r−1

− 4 + r

3
θρµ1µ2

r +m2(r − 1)
θ

3
ρµ1µ2

r−2

−∆µ1µ2
ν1ν2

∇λρ
λν1ν2
r−1 − raαρ

αµ1µ2

r−1

− 2

5

(
∇⟨µ1 ρ

µ2⟩
r+1 −m2∇⟨µ1 ρ

µ2⟩
r−1

)
+ r

2

5
m2ρ

⟨µ1

r−1a
µ2⟩ − 2(r + 5)

5
ρ
⟨µ1

r+1a
µ2⟩

− (r − 1)σλαρ
αλµ1µ2

r−2

− 2(2r + 5)

7
σ
⟨µ1

λ ρµ2⟩λ
r

+m2(r − 1)
4

7
σ
⟨µ1

λ ρ
µ2⟩λ
r−2

− 2(4 + r)

15
ρr+2σ

µ1µ2

+m22(2r + 3)

15
ρrσ

µ1µn

−m4 (r − 1)2

15
ρr−2σ

µ1µ2

− 2ω
⟨µ1

λ ρµ2⟩λ
r

(4.9)
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Collecting all the terms up to O(ϵ2) , we have

ρµ1µ2
r =− τRF

µ1µ2

r−1

+ τR

[
−∆µ1µ2

ν1ν2
Dρν1ν2r|1 − θ

3

(
(4 + r)ρµ1µ2

r|1 − (r − 1)m2ρµ1µ2

r−2|1

)
+

2

7

(
−(2r + 5)σ

⟨µ2

λ ρ
µ1⟩λ
r|1 + (2r − 2)m2σ

⟨µ2

λ ρ
µ1⟩λ
r−2|1

)
− 2ω

⟨µ2

λ ρ
µ1⟩λ
r|1

+
2

15
σµ1µ2

(
−(4 + r)ρr+2|1 + (2r + 3)m2ρr|1 − (r − 1)m4ρr−2|1

)
+
2

5

(
rm2ρ

⟨µ1

r−1|1a
µ2⟩
|0 − (r + 5)ρ

⟨µ1

r+1|1a
µ2⟩
|0

)
− 2

5

(
∇⟨µ1 ρ

µ2⟩
r+1|1 −m2∇⟨µ1 ρ

µ2⟩
r−1|1

)]
+O

(
ϵ3
)

(4.10)

with the time derivative being

−∆µ1µ2
ν1ν2

Dρν1ν2r|1 =∆µ1µ2
ν1ν2

D
(
τRF

ν1ν2
r−1|0

)
=

(
∂
(
τRφr−1|0

)
∂α

χα|0θ +
∂
(
τRφr−1|0

)
∂β

χβ|0θ

)
σµ1µ2

+ τRφr−1|0∇⟨µ1 a
µ2⟩
|0 + τRφr−1|0a

⟨µ1

|0 a
µ2⟩
|0

(4.11)
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where we have used ∆µ1µ2
ν1ν2

Dσν1ν2 = ∇⟨µ1 aµ2⟩ + a⟨µ1 aµ2⟩. We also need the rank-3 and

rank-4 moment equations:

∆µ1µ2µ3
ν1ν2ν3

Dρν1ν2ν3r

= −ρ
µ1µ2µ3
r

τR

− 6(6 + r)

35
ρ
⟨µ1

r+2σ
µ2µ3⟩

+m26(2r + 5)

35
ρ⟨µ1
r σ µ2µ3⟩

−m4 (r − 1)6

35
ρ
⟨µ1

r−2σ
µ2µ3⟩

− 3

7

(
∇⟨µ1 ρ

µ2µ3⟩
r+1 −m2∇⟨µ1 ρ

µ2µ3⟩
r−1

)
+ r

3

7
m2ρ

⟨µ1µ2

r−1 aµ3⟩ − 3(r + 7)

7
ρ
⟨µ1µ2

r+1 aµ3⟩

− 5 + r

3
θρµ1µ2µ3

r +m2(r − 1)
θ

3
ρµ1µ2µ3

r−2

− 3(2r + 7)

9
σ
⟨µ1

λ ρµ2µ3⟩λ
r

+m2(r − 1)
2

3
σ
⟨µ1

λ ρ
µ2µ3⟩λ
r−2

− 3ω
⟨µ1

λ ρµ2µ3⟩λ
r

−∆µ1µ2µ3
ν1ν2ν3

∇λρ
λν1ν2ν3
r−1 − raαρ

αµ1µ2µ3

r−1

− (r − 1)σλαρ
αλµ1µ2µ3

r−2

(4.12)
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∆µ1µ2µ3µ4
ν1ν2ν3ν4

Dρν1ν2ν3ν4r =− ρµ1µ2µ3µ4
r

τR

− 4(8 + r)

21
ρ
⟨µ1µ2

r+2 σ µ3µ4⟩

+m24(2r + 7)

21
ρ⟨µ1µ2
r σ µ3µ4⟩

−m4 (r − 1)4

21
ρ
⟨µ1µ2

r−2 σ µ3µ4⟩

− 4

9

(
∇⟨µ1 ρ

µ2µ3µ4⟩
r+1 −m2∇⟨µ1 ρ

µ2µ3µ4⟩
r−1

)
+ r

4

9
m2ρ

⟨µ1µ2µ3

r−1 aµ4⟩ − 4(r + 9)

9
ρ
⟨µ1µ2µ3

r+1 aµ4⟩

− 4(2r + 9)

11
σ
⟨µ1

λ ρµ2µ3µ4⟩λ
r

+m2(r − 1)
8

11
σ
⟨µ1

λ ρ
µ2µ3µ4⟩λ
r−2

− 4ω
⟨µ1

λ ρµ2µ3µ4⟩λ
r

− 6 + r

3
θρµ1µ2µ3µn

r +m2(r − 1)
θ

3
ρµ1µ2µ3µ4

r−2

−∆µ1µ2µ3µλ
ν1ν2ν3ν4

∇λρ
λν1ν2ν3ν4
r−1 − raαρ

αµ1µ2µ3µ4

r−1

− (r − 1)σλαρ
αλµ1µ2µ3µ4

r−2

(4.13)

As before, collecting all the terms up to O(ϵ2) gives us:

ρµ1µ2µ3
r = τR

[
− 3

7

(
∇⟨µ1 ρ

µ2µ3⟩
r+1|1 −m2∇⟨µ1 ρ

µ2µ3⟩
r−1|1

)
+ r

3

7
m2ρ

⟨µ1µ2

r−1|1 a
µ3⟩ − 3(r + 7)

7
ρ
⟨µ1µ2

r+1|1 a
µ3⟩

− (r + 6)
6

35
ρ
⟨µ1

r+2|1σ
µ2µ3⟩ + (5 + 2r)

6

35
m2ρ

⟨µ1

r|1 σ
µ2µ3⟩

− (r − 1)m4 6

35
ρ
⟨µ1

r+2|1σ
µ2µ3⟩

]
+O

(
ϵ3
)

(4.14)

and

ρµ1µ2µ3µ4
r = τR

[
−(8 + r)

4

21
ρ
⟨µ1µ2

r+2|1 σ
µ3µ4⟩ + (7 + 2r)

4

21
m2ρ

⟨µ1µ2

r|1 σ µ3µ4⟩

−(r − 1)
4

21
m4ρ

⟨µ1µ2

r−2|1 σ
µ3µ4⟩

]
+O

(
ϵ3
) (4.15)
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Note that the time derivatives vanish atO(ϵ) for n = 3, 4. Inserting all the previous results

back into Eqs. (3.17), (3.23), and (3.25) to replace all the moments except Π, qµ, and πµν

gives us the third-order R14 theory.

4.2 Third-Order R25 Hydrodynamics

Analogous to the second-order case, for simplicity, we will assume massless particles

without particle number conservation throughout the linear stability and causality anal-

ysis that will be presented in the next section. In this section, we will derive the corre-

sponding reduced third-order theory based on the R14 theory, so that they can be used

in the next section. With m = 0, the only dissipative quantity left is the shear-stress ten-

sor πµν , as already mentioned in the previous chapter. Therefore, the total number of

moments reduces to 9, akin to the second-order case. Setting m = 0 in Eq. (3.25) gives

∆µν
αβDπ

αβ = −π
µν

τR
− φ−1|0σ

µν −∆µν
αβ∇λρ

λαβ
−1

− 4

3
θπµν + σλαρ

αλµν
−2 − 10

7
πλ⟨µσ

ν⟩
λ − 2πλ⟨µω

ν⟩
λ

(4.16)

At this point, it seems natural to insert the results in Section 4.1 back into Eq. (4.16) to

replace ρλµν−1 and ραβµν−2 in order to get the third-order πµν equations. However, careful

observation reveals that doing this results in second-order spatial gradients in the third-

order equations. For example, the first term in Eq. (4.14) will become ∼ 3
7
∇⟨λπαβ⟩ for

r = −1, when being plugged back into Eq. (4.16), the corresponding term will become

second-order in gradient. Under a Lorentz boost, this term produces second-order time

derivatives and turns the original parabolic equation into a hyperbolic one. This usually

introduces extra modes in Fourier space, which are often linearly unstable and acausal.

To solve this problem, we need to promote ρλµν−1 and ραβµν−2 to hydrodynamic variables with

their own equations of evolution given by Eqs. (4.12) and (4.13) with r = −1 and r = −2,

respectively. All the moments with order n > 4 are also rejected since they are O(ϵ3).
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Doing this raises the total number of moments from 9 to 25. Now, let

ξλµν = ρλµν−1

ςαβµν = ραβµν−2

(4.17)

Setting m = 0 and r = −1 in Eq. (4.12) along with relaxation time approximation, we

obtain the ξλµν equation:

∆λµν
ραβDξ

ραβ = − 1

τξ
ξλµν − 18

7
π⟨λµaν⟩ + aρς

ρλµν −∆λµν
ραβ∇ως

ωραβ

− 3

7
∇⟨λπµν⟩ − 4

3
θξλµν + 2σαβρ

αβλµν
−3

− 5

3
ξα⟨λµσν⟩

α − 3ξα⟨λµων⟩
α − 6

7
ρ
⟨λ
1 σ

µν⟩

(4.18)

where τξ is the relaxation time associated with ξλµν , and the ρ⟨λ1 σµν⟩ term vanishes due to

the matching conditions. Note that we have used Eq. (3.3) to eliminate F λµν
−2 . We will also

reject the ρωαλµν−3 term since it is O(ϵ3).

To get the equation for ςαβµν , we set m = 0 and r = −2 in Eq. (4.13) along with

relaxation time approximation:

∆αβµν
ρλωγDς

ρλωγ = − 1

τς
ςαβµν − 28

9
ξ⟨αβµaν⟩ + 2aλρ

λαβµν
−3 −∆αβµν

ρλωγ∇θρ
θρλωγ
−3

− 4

9
∇⟨αξβµν⟩ − 4

3
θςαβµν + 3σλρρ

λραβµν
−4

− 20

11
ςλ⟨αβµσ

ν⟩
λ − 4ςλ⟨αβµω

ν⟩
λ − 8

7
π⟨αβσµν⟩

(4.19)

where we reject all the ρωαλµν−3 and ρωλαβµν−4 terms since they are O(ϵ3).

4.3 Linear Stability and Causality Analysis

In this section, we will examine the linear stability and causality of the third-order R25

theory derived in the previous section. Similar to the analyses done in the previous chap-
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ter, we will decompose the evolution equations into longitudinal and transverse parts,

and then analyze them independently.

4.3.1 Linearized Third-Order Equations

Akin to the second-order analysis, we reject all the higher-order terms in Eq. (4.16) and

keep only the terms that are linear in small fluctuations to obtain the linearized πµν equa-

tion:

∆µν
αβ,0D0π

αβ +
1

τπ
πµν + φ−1|0σ

µν +∆µν
αβ,0∇λ,0ξ

λαβ = 0 (4.20)

Again, using Eq. (3.29) and (B.39), and expressing the hydrodynamic variables in Fourier

space lead us to the following:

(
iΩ +

1

τπ

)
δπµν +

4iϵ0
15

(
κµδuν + κνδuµ − 2

3
καδu

α∆µν
0

)
+ iκλξ

λµν = 0 (4.21)

Similarly, the linearized equation for ξλµν is:

∆λµν
αβγ,0D0ξ

αβγ +
1

τξ
ξλµν +

3

7
∆λµν

αβγ,0∇
α
0 δπ

βγ +∆λµν
αβγ,0∇ω,0ς

ωαβγ = 0 (4.22)

which becomes(
iΩ +

1

τξ

)
ξλµν +

i

7

(
κλδπµν + κµδπνλ + κνδπµλ

)
− 2i

35

(
∆λµ

0 κωδπν
ω +∆λν

0 κ
ωδπµ

ω +∆µν
0 κ

ωδπλ
ω

)
+ iκως

ωλµν = 0

(4.23)

in the Fourier space after taking the derivatives D0 and ∇λ,0. To derive the above expres-

sion, we have used the following explicit expression of the rank-3 projector [66]:

∆µνλ
αβρ ≡

1

6

[
∆µ

α

(
∆ν

β∆
λ
ρ +∆ν

ρ∆
λ
β

)
+∆µ

β

(
∆ν

α∆
λ
ρ +∆ν

ρ∆
λ
α

)
+∆µ

ρ

(
∆ν

α∆
λ
β +∆ν

β∆
λ
α

)]
− 1

15

[
∆µν

(
∆λ

α∆βρ +∆λ
β∆αρ +∆λ

ρ∆αβ

)
+∆µλ

(
∆ν

α∆βρ +∆ν
β∆αρ +∆ν

ρ∆αβ

)
+∆νλ

(
∆µ

α∆βρ +∆µ
β∆αρ +∆µ

ρ∆αβ

)] (4.24)
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The linearized equation for ςαβµν is also straightforward to obtain:

∆αβµν
λγρθ,0D0ς

λγρθ +
1

τς
ςαβµν +

4

9
∆αβµν

λγρθ,0∇
λ
0ξ

γρθ = 0 (4.25)

which becomes (
iΩ +

1

τς

)
ςαβµν +

4i

9
∆αβµν

λγρθ,0κ
λξγρθ = 0 (4.26)

in the Fourier space after taking the derivatives. Using Eq. (A.1), one can show that

∆αβµν
λγρθ,0κ

λξγρθ =
1

4

(
καξβµν + κβξαµν + κµξαβν + κνξαµβ

)
− 1

20

(
∆βµ

0 κλξ
ανλ +∆βν

0 κλξ
αµλ +∆µν

0 κλξ
αβλ

+∆αµ
0 κλξ

βνλ +∆αν
0 κλξ

βµλ +∆αβ
0 κλξ

µνλ

)

− 3

140

(
∆αβ

0 κλξ
λµν +∆αµ

0 κλξ
λβν +∆αν

0 κλξ
λβµ

+∆βµ
0 κλξ

λαν +∆βν
0 κλξ

λµα +∆µν
0 κλξ

λαβ

)
(4.27)

Plugging this back into Eq. (4.26) gives the complete linearized evolution equation for

ςαβµν .

4.3.2 Transverse Modes

Case 1: k is parallel to V

As before, the background fluid velocity and the wave vector are given by Eq. (3.43), and

it follows that the covariant variables are then given by Eq. (3.44). The energy conserva-

tion law is purely longitudinal and therefore will not contribute to the transverse analysis.

The transverse components of the equations for πµν , ξλµν , ςαβµν , and the momentum con-
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servation law can be obtained by applying ∆µν
κ and κµ to the linearized equations:

Ωϵ0δu
µ
⊥ +

3

4
κδπµ

⊥ = 0(
iΩ +

1

τπ

)
δπµ

⊥ +
4

15
iκϵ0δu

µ
⊥ + iκξµ⊥ = 0(

iΩ +
1

τξ

)
ξµ⊥ +

8

35
iκδπµ

⊥ + iκςµ⊥ = 0(
iΩ +

1

τς

)
ςµ⊥ +

5

21
iκξµ⊥ = 0

(4.28)

where we defined ξµ⊥ = κακλ∆
µ
ν,κξ

αλν/κ2 and ςµ⊥ = κακβκλ∆
µ
ν,κς

αβλν/κ3. This can be writ-

ten in the following matrix form:


Ω 3

4
κ 0 0

4
15
iκ iΩ + 1

τπ
iκ 0

0 8
35
iκ iΩ + 1

τξ
iκ

0 0 5
21
iκ iΩ + 1

τς




ϵ0δu

µ
⊥

δπµ
⊥

ξµ⊥

ςµ⊥


= 0 (4.29)

For simplicity, from now on we will assume that the corresponding relaxation time for

each moment is the same throughout the analysis:

τR = τπ = τξ = τς (4.30)

We require that the determinant of the 4×4 matrix be zero to obtain non-trivial solutions,

the resulting equation is the dispersion relation, just as before. However, we should note

that the dispersion relation is extremely complicated, even displaying the leading-order

terms is not feasible. Therefore, we will only present the numerical solutions to the dis-

persion relation shown in Fig. (4.1), assuming τR = 5 as always.

Since the M matrix is 4 × 4, and entries with ω are situated along the diagonal only,

we can conclude that the dispersion relation is of fourth-order in ω and thus we should

expect to obtain four solutions. Recall that in the second-order case, only two modes were
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Figure 4.1: Real and Imaginary parts of the transverse modes of the massless third-order

R25 hydrodynamics, in the case of fluid velocity vector being parallel to the wave vector.

The relaxation time is chosen to be τR = 5 as usual.

obtained (see Eq. (3.48)). The presence of additional modes can be attributed to the extra

degrees of freedom in the hydrodynamic variables, which are ξµ⊥ and ςµ⊥. Indeed, Fig. (4.1)

shows four distinct curves, two of which have the same imaginary parts for static fluids,

i.e. V = 0. As one can easily see, all the modes have non-positive imaginary parts for

small k and therefore are linearly stable. Similar to the second-order R14 theory, we can

show that the modes are in fact linearly stable for all k ≥ 0, proven by the asymptotic

behavior of the modes for V = 0.9 and τR = 5 shown in Fig. (4.2). We claim that the same

conclusion can be obtained for any other values of V .

As for the causality analysis, similar problems arise when we try to expand the so-

lutions in the limit of large wave number k: writing down the leading-order terms is

not feasible. Therefore, taking the numerical approach is more practical. In the large ω

and k limit, solving the dispersion relation is equivalent to solving the following series
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Figure 4.2: The imaginary parts of the transverse modes of the massless third-order R25

hydrodynamics plotted for a larger range of k, in the case of fluid velocity vector being

parallel to the wave vector, for V = 0.9 and with relaxation time τR = 5.

expansion:

−5ik4τ 3R(1− 14V 2 + 21V 4)− 5iτ 3RV
4ω4 +O(k3) +O(ω3) = 0 (4.31)

where we omit the terms under O(k3) and O(ω3) for display, but they are included in

the actual numerical computation. The corresponding large-k solutions are obtained by

solving the above equation numerically. Figure (4.3) displays the magnitude of the group

velocities corresponding to these modes, as a function of the fluid velocity V . As we can

see, in the large-k limit, the group velocity for each mode is subliminal, and thus causal.

Furthermore, One can verify that the curves in Fig. (4.3) obey the relativistic velocity
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Figure 4.3: Magnitude of the group velocity for the transverse modes of the massless

third-order R25 hydrodynamics, as a function of the fluid velocity V in the large k limit

and with τR = 5, in the case of fluid velocity vector being parallel to the wave vector.

addition formula:

u =
v + u′

1 + vu′
(4.32)

Case 2: k is orthogonal to V

It is straightforward to obtain the solutions for this case by substituting Eq. (3.56) into the

dispersion relation and then solving it numerically. The results are shown in Fig. (4.4).

From the figure, we can again see that all the modes are linearly stable as their imaginary

parts are always non-positive for small k, regardless of the background fluid velocity. Just

as before,c we can further extend the linear stability of the modes to all k ≥ 0 from the

asymptotic behavior of the modes in Fig. (4.5), for V = 0.9 and τR = 5.
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Figure 4.4: Real and Imaginary parts of the transverse modes of the massless third-order

R25 hydrodynamics, in the case of fluid velocity vector being orthogonal to the wave

vector and with τR = 5.

Now, in the large-k limit, the dispersion relation can be expanded as

−5ik4 − 5iV 4ω4

(V 2 − 1)2
+O(k2) +O(ω3) = 0 (4.33)

Again, we should emphasize that although the O(k2) and O(ω3) terms are not displayed,

they are included in the numerical computation. Fig. (4.6) shows the corresponding

group velocity as a function of V . Note that there are only two curves for four solutions.

This is because the group velocities for each pair of solutions are only off by a sign. Since

the y-axis is the absolute value of the group velocity, both solutions coincide in this case.

Also, note that both curves approach zero when the fluid velocity reaches the speed of

light. This is expected since the plane wave propagates in the orthogonal direction with

respect to the fluid flow. As the fluid moves faster and faster, the wave is eventually

“dragged” by the fluid flow under the effect of shear viscosity and moves in the fluid

flow direction eventually, resulting in zero group velocity in the orthogonal direction.
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Figure 4.5: The imaginary parts of the transverse modes of the massless third-order R25

hydrodynamics plotted for a larger range of k, in the case of fluid velocity vector being

orthogonal to the wave vector, for V = 0.9 and with relaxation time τR = 5.

4.3.3 Longitudinal Modes

Case 1: k is parallel to V

Similar to the second-order case, the first step is to obtain the longitudinal components of

the conservation laws and the equations for πµν , ξλµν , and ςαβµν . Applying κµκν and κµ to
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Figure 4.6: Magnitude of the group velocity for the transverse modes of the massless

third-order R25 hydrodynamics, as a function of the fluid velocity V in the large k limit

and with τR = 5, in the case of fluid velocity vector being orthogonal to the wave vector.

the corresponding equations, we get

Ωδϵ+
4

3
ϵ0κδu|| = 0

Ωϵ0δu|| +
1

4
κδϵ+

3

4
κδπ|| = 0(

iΩ +
1

τR

)
δπ|| +

16

45
iϵ0κδu|| + iκξ|| = 0(

iΩ +
1

τR

)
ξ|| +

9

35
iκδπ|| + iκς|| = 0(

iΩ +
1

τR

)
ς|| +

16

63
iκξ|| = 0

(4.34)

where we defined ξ|| = κακβκλξ
αβλ/κ3 and ς|| = κακβκµκνς

αβµν/κ4. Note that we have

included the purely-longitudinal energy conservation law in this system of equations.
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Written in the matrix form, this is equivalent to



Ω 4
3
κ 0 0 0

κ
4

Ω 3
4
κ 0 0

0 16
45
iκ iΩ + 1

τR
iκ 0

0 0 9
35
iκ iΩ + 1

τR
iκ

0 0 0 16
63
iκ iΩ + 1

τR





δϵ

ϵ0δu||

δπ||

ξ||

ς||


= 0 (4.35)

Since Ω is of fifth-order in the determinant, we should expect to obtain five modes. In-

deed, Fig. (4.7) shows that all five solutions are linearly stable since their imaginary parts

are all non-positive for various background fluid velocities, with small k. We can further

generalize this result to all k ≥ 0 by noticing the asymptotic behavior of all the five modes

for V = 0.9 and τR = 5, shown in Fig. (4.8). The same conclusion can be drawn for any

other values of V .
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Figure 4.7: Real and Imaginary parts of the longitudinal modes of the massless third-

order R25 hydrodynamics, in the case of fluid velocity vector being parallel to the wave

vector and with τR = 5.
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Figure 4.8: The imaginary parts of the longitudinal modes of the massless third-order R25

hydrodynamics plotted for a larger range of k, in the case of fluid velocity vector being

parallel to the wave vector, for V = 0.9 and with relaxation time τR = 5.

Now, in the large-k limit, the dispersion relation can be expanded as

−iV (15− 70V 2 + 63V 4)

63(1− V 2)5/2
k5 +

iω5

(1− V 2)5/2
+O(k4) +O(ω4) = 0 (4.36)

Again, since the full expression is complex, we will only show the leading-order term.

However, all the terms are included when performing numerical calculations. The cor-

responding group velocities of the solutions to the dispersion relation are shown in Fig.

(4.9), as a function of the fluid flow velocity V . One can see that all solutions are linearly

causal since the magnitude of the group velocity is less than 1 for all of them, in the large-

k limit. Also, note that the line in the middle of the figure corresponds to a stationary

mode in the fluid rest frame since its group velocity is simply the fluid flow velocity.
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Figure 4.9: Magnitude of the group velocity for the longitudinal modes of the massless

third-order R25 hydrodynamics, as a function of the fluid velocity V in the large k limit

and with τR = 5, in the case of fluid velocity vector being parallel to the wave vector.

Case 2: k is orthogonal to V

As before, we insert Eq. (3.56) into the dispersion relation and solve numerically for the

solutions. Fig. (4.10) shows the result. Note that two out of the five solutions have the

same imaginary parts, and we can see that all solutions are linearly stable since they all

have non-positive imaginary parts for small k. As before, Fig. (4.11) shows the asymptotic

behavior of all the modes as k increases, for V = 0 and τR = 5. This proves that the modes

are actually linearly stable for all k ≥ 0.

82



0.8

0.6

0.4

0.2

0.0
Im

(
)

0 1
k

1

0

1

Re
(

)

V = 0

0 1
k

V = 0.3

0 1
k

V = 0.5

0 1
k

V = 0.7

0 2
k

V = 0.9

Figure 4.10: Real and Imaginary parts of the longitudinal modes of the massless third-

order R25 hydrodynamics, in the case of fluid velocity vector being orthogonal to the

wave vector and with τR = 5.

To verify the causality of these solutions, we repeat the process from the previous

sections. In the large-k limit, the dispersion relation is expanded as

−iV (15− 70V 2 + 63V 4)

84(1− V 2)5/2
k5 +

3iω5

4(1− V 2)5/2
+O(k4) +O(ω4) = 0 (4.37)

where all the terms under O(k4) and O(ω4) are included in the actual numerical compu-

tations. The corresponding group velocities of the solutions are shown in Fig. (4.12) as a

function of the fluid flow velocity. Note that there are three curves in this figure, one of

them lies on the x-axis and corresponds to the stationary mode with zero group velocity.

4.4 Discussion

Similar to the second-order case, we would like to compare the third-order R14/R25 the-

ory to other third-order theories and see whether they agree with each other. In [60],
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Figure 4.11: The imaginary parts of the longitudinal modes of the massless third-order

R25 hydrodynamics plotted for a larger range of k, in the case of fluid velocity vector

being orthogonal to the wave vector, for V = 0.9 and with relaxation time τR = 5.

relativistic third-order viscous hydrodynamics is derived from the Boltzmann equation

using Chapman-Enskog expansion. However, similar to the procedure outlined in Sec-

tion. (4.2), the evolution equation for the shear-stress tensor πµν derived in this work

contains second-order gradients of πµν in the expression and is therefore expected to be

linearly unstable and acausal. Indeed, the linear stability and causality analysis carried

out in [5] shows that this third-order formulation of relativistic viscous hydrodynamics

violates linear stability and causality, and this issue cannot be fixed by tuning the trans-

port coefficients.

Consequently, also in [5], Brito and Denicol proposed a modified version of the pre-

vious theory. In particular, they promoted the gradient of πµν to a new hydrodynamic
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Figure 4.12: Magnitude of the group velocity for the longitudinal modes of the massless

third-order R25 hydrodynamics, as a function of the fluid velocity V in the large k limit

and with τR = 5, in the case of fluid velocity vector being orthogonal to the wave vector.

Notice that there is a stationary mode with zero group velocity along the direction of the

wave’s propagation.

variable

∇⟨απµν⟩ → ραµν (4.38)

to eliminate the second-order gradients in the evolution equation of πµν . This is analo-

gous to ξλµν and ςαβµν that we defined in the third-order R25 theory. Furthermore, this

new variable ραµν not only is defined to be proportional to the gradient of πµν but also

relaxes to it exponentially, within a time scale associated with the corresponding relax-

ation time τρ (see Eq. (56) in [5]). This additional requirement serves as the evolution

equation for ραµν . All these equations, along with the conservation laws, form a closed

set of equations. However, just like the second-order Israel-Stewart theory, such modified
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third-order theory is not always linearly stable and causal, as their transport coefficients

must satisfy a set of constraints in order to be so.

The third-order R25 theory, on the other hand, possesses many advantages over the

modified third-order theory. For instance, the full hydrodynamic equations are used for

ξλµν and ςαβµν as the evolution equations, instead of the simplified requirement of expo-

nential relaxation. One of the consequences is that the rank-3 tensor not only is propor-

tional to the gradient of the shear-stress tensor but is also proportional to the product of

the acceleration and the shear-stress tensor when m = 0 (see Eq. (4.14)). This provides

more complete evolution equations.

However, as we have already seen, the third-order R25 theory is extremely analytically-

complex. Even extracting the leading-order terms in a series expansion of the modes is

not a realistic approach. At this point, properties of the third-order R25 theory can only

be examined using numerical approaches. A further investigation of the theory should

be carried on in the future to search for a solution to this problem.
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Chapter 5

Conclusion

In this dissertation, we introduced the relativistic regularized hydrodynamics initially

developed by Struchtrup and Torrilhon in the non-relativistic case [50–53]. In particu-

lar, using the regularization method, we derived the second and third-order R14 hydro-

dynamics and showed that they are linearly stable and causal with the assumption of

massless particles without particle number conservation. This result is independent of

the choice of transport coefficients. Next, we will briefly summarize the main results in

each chapter.

In Chapter 2, we provided some background knowledge of kinetic theory and derived

the corresponding equations for energy, momentum, and particle number conservation.

We then proceeded to derive the general moment equation so that the relevant moment

equations can be derived in the following chapters.

In Chapter 3, using the regularization method, we obtained the second-order R14 hy-

drodynamics. In particular, the evolution equations for the bulk viscous pressure Π, the

diffusion current qµ, and the shear-stress tensor πµν were derived. This was achieved

by directly Chapman-Enskog expanding the moments of δf , small perturbations in the

phase density function, instead of expanding the phase density function. A series of

linear stability and causality analysis was then performed on the longitudinal and trans-

verse components of the second-order R9 theory by considering two separate cases. In
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the first one the wave vector is parallel to the background fluid velocity vector, while in

the second, they are orthogonal to each other. As a result, the longitudinal and transverse

parts of the second-order R9 hydrodynamics are demonstrated to have linearly stable and

causal modes in both cases.

In Chapter 4, we derived the third-order R14 hydrodynamics using a similar method-

ology of regularization as in Chapter 3. With the assumption of massless particles without

particle number conservation, we showed that by including the O(ϵ2) terms of the mo-

ments in the equations for πµν , terms with second-order gradients were introduced, and

these terms will result in linear instability and acausality in the modes. This problem was

then fixed by promoting the O(ϵ2) moments ξλµν and ςαβµν to hydrodynamic variables,

raising the total number of moments from 9 to 25. Analogous to the second-order case,

a series of linear stability and causality analysis was performed on the third-order R25

theory. However, the R25 theory is extremely analytically complicated. Therefore, the

analysis was carried out using only the numerical approach. As a result, all the modes of

the R25 equations are linearly stable and causal, for both the longitudinal and transverse

components and for both cases where the wave vector is parallel and orthogonal to the

background fluid velocity.

The second and third-order regularized hydrodynamics presented in this dissertation

offer a systematically and uniquely derived, stable, and causal framework for modeling

the evolution of quark-gluon plasma in the context of heavy-ion collisions. However,

since third-order regularized hydrodynamics is analytically inaccessible, the application

of such theory in the actual research problems might be restricted. Further investiga-

tion into this issue should be conducted in the future in order to make this theory more

sophisticated.
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Appendix A

Useful Mathematical Identities

The general rank-n projector is

∆µ1···µn
ν1···νn =

1

n2

(
n∑

i=1

n∑
k=1

∆µi
νk
∆µ1···µi−1µi+1···µn

ν1···νk−1νk+1···νn

)

− 2

n2(2n− 1)

(
n∑

i=1

n∑
j=i+1

n∑
k=1

∆µiµj∆νkα∆
αµ1···µi−1µi+1···µj−1µj+1···µn
ν1···νk−1νk+1···νn

) (A.1)

Now consider the following rank-n tensor:

Aµ1...µn = ∆µ1...µn
ν1...νn

Dp⟨ν1...pνn⟩ (A.2)

Following Eq. C.8 and C.9 in [62], for any symmetric tensor Π we have:

Π⟨i1...in⟩ = Πi1...in

+ αn1(∆i1i2Πi3...inkk + permutation)

+ αn2(∆i1i2∆i3i4Πi5...inkk + permutation)

+ ...

(A.3)

where

αnk =
(−1)k

Πk−1
j=0(2n− 2j − 1)

(A.4)
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Now, if we let

Πi1...in = p⟨ı1⟩...p⟨ın⟩ (A.5)

then all terms in Eq. A.3 except the first one vanish under ∆i1...in
j1...jn

D due to the present of

uim and ∆imin . Consequently, we arrive at the following useful identity:

∆µ1...µn
ν1...νn

Dp⟨ν1...pνn⟩ = ∆µ1...µn
ν1...νn

Dp⟨ν1⟩...p⟨νn⟩ (A.6)

Note that

Dp⟨µ⟩ = D∆µνpν

= D(gµν + uµuν)pν

= (uµDuν + uνDuµ)pν

= uµpνa
ν −Wpa

µ

= uµ(p⟨ν⟩ +Wpu
ν)aν −Wpa

µ

= uµp⟨ν⟩aν −Wpa
µ

(A.7)

where the term with uµ vanishes when being projected. With some simple algebraic ma-

nipulations, we arrive at the following identity:

Aµ1...µn = −nWpp
⟨µ1...pµn−1aµn⟩ (A.8)

Similarly, one can also argue for the same reasons:

∆µ1...µn
ν1...νn

∇λ(p
⟨ν1...pνn⟩) = ∆µ1...µn

ν1...νn
∇λ(p

⟨ν1⟩...p⟨νn⟩) (A.9)

and

∇λp
⟨ν⟩ = ∇λ(p

ν −Wpu
ν)

= −uν∇λWp −Wp(∇λu
ν)

(A.10)
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once again, the first term vanishes when being projected. After some manipulations, we

get:

∆µ1...µn
ν1...νn

∇λ(p
⟨ν1...pνn⟩) = −nWpp

⟨µ1 ...pµn−1∇λu
ν⟩ (A.11)
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Appendix B

Evaluating F integrals

B.1 Conservation laws

To evaluate the F integrals, we first need to know the conservation laws. The stress-

energy tensor is

T µν =

∫
d3p

(2π)3p0
f0p

µpν + πµν +Π∆µν (B.1)

and the particle number current

Jµ =

∫
d3p

(2π)3p0
f0p

µ + qµ (B.2)

The energy-momentum conservation law is

0 = ∂µT
µν

=

∫
d3p

(2π)3p0
(∂µf0)p

µpν + ∂µπ
µν + (∇νΠ) + Π(uνθ + aν)

(B.3)

In the time direction uν∂µT µν = 0 yields

0 = −πµνσµν − θΠ+ I3,0Dβ − I2,0Dα− β

3
θI3,1 (B.4)
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where we defined

In,m =

∫
d3p

(2π)3p0
f0W

n−2m
p (W 2

p −m2)m (B.5)

which can be evaluated in the local rest frame. In the spatial direction ∆ρ
ν∂µT

µν = 0 yields

0 = ∆ρ
ν∂µπ

µν + (∇ρΠ) + aρΠ− I3,1
∇ρβ

3
+

∇ρα

3
I2,1 +

βaρ

3
I3,1 (B.6)

The particle number conservation 0 = ∂µJ
µ yields

0 = ∂µq
µ +

βθ

3
I2,1 −DβI2,0 +DαI1,0 (B.7)

Using integration by part, it can be shown that

βIr+2,1 = β

∫
d3p

(2π)3p0
(p0)rp2e−βp0+α

= −
∫

d3p

(2π)3p0
(p0)r+1p∂pe

−βp0+α

=

∫
d3p

(2π)3p0
e−βp0+α

(
3(p0)r+1 + r(p0)r−1p2

)
= 3Ir+1,0 + rIr+1,1

(B.8)

In particular

βI3,1 = 3I2,0 + I2,1

= 3(ε+ P )
(B.9)

and

βI2,1 = 3I1,0

= 3ν

= 3βP

(B.10)

93



Solving for the time derivatives Dβ,Dα and aρ = Duρ, we obtain

Dβ = χβ|0θ + χq
β|1∂µq

µ + χπΠ
β|1 (π

γρσγρ +Πθ) (B.11)

where

χβ|0 =
I1,0(ε+ P )− I2,0I1,0

I3,0I1,0 − I22,0
=

I1,0P

I3,0I1,0 − I22,0
(B.12)

χq
β|1 = − I2,0

I3,0I1,0 − I22,0
(B.13)

χπΠ
β|1 =

I1,0
I3,0I1,0 − I22,0

(B.14)

and

Dα = χα|0θ + χq
α|1∂µq

µ + χπΠ
α|1 (π

γρσγρ +Πθ) (B.15)

where

χα|0 =
I2,0(ε+ P )− I3,0I1,0

I3,0I1,0 − I22,0
(B.16)

χq
β|1 = − I3,0

I3,0I1,0 − I22,0
(B.17)

χπΠ
β|1 =

I2,0
I3,0I1,0 − I22,0

(B.18)

The acceleration is given by

aρ =
1

ε+ P
(−∇ρP − Πaρ −∇ρΠ−∆ρ

ν∂µπ
µν)

≈ 1

ε+ P
(−∇ρP −∇ρΠ−∆ρ

ν∂µπ
µν)− 1

(ε+ P )2
Π(−∇ρP )

(B.19)

where we used

∇P = −∇β
3
I3,1 +

∇α
3
I2,1 (B.20)

The 0-th order acceleration is

aρ|0 = − ∇ρP

ε+ P
(B.21)
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and the 1st order one is

aρ|1 =
1

ε+ P
(−∇ρΠ−∆ρ

ν∂µπ
µν)− 1

(ε+ P )2
Π(−∇ρP ) (B.22)

B.2 F Integrals

The only non-zero F integrals are the spin 0, 1, and 2 integrals. For n = 0, we have

Fr =

∫
d3p

(2π)3p0
W r

p p
λ(∂λf0)

=

∫
d3p

(2π)3p0
W r

p f0

(
WpDα−W 2

pDβ + β
θ

3
(W 2

p −m2)

)
= ϕr|0θ + ϕq

r|1∂µq
µ + ϕπΠ

r|1 (π
ργσργ + θΠ)

(B.23)

upon using Eqs.(B.11) and (B.15) for Dβ and Dα. The coefficient

ϕr|0(α, β) =
I1,0Ir+2,0 − Ir+1,0I2,0

I3,0I1,0 − I22,0

β

3
I3,1 +

β

3
Ir+2,1 −

Ir+1,0I3,0 − Ir+2,0I2,0
I3,0I1,0 − I22,0

I1,0 (B.24)

is for the O(1) (or f0) piece and the coefficients

ϕq
r|1(α, β) = −Ir+1,0I3,0 − Ir+2,0I2,0

I3,0I1,0 − I22,0
(B.25)

ϕπΠ
r|1(α, β) = −Ir+2,0I1,0 − Ir+1,0I2,0

I3,0I1,0 − I22,0
(B.26)

are for the O(ϵ) (or δf ) pieces. For the Boltzmann statistics, ϕq
r and ϕπΠ

r do not depend on

α. In the massless limit, we have

Ir,k =

∫
d3p

(2π)3
pr−1e−p/T =

T r+2

2π2
(r + 1)! (B.27)

For the 14 moments, we need F−1 whose coefficients are

ϕ−1|0 = −4
T 2

2π2
(B.28)

95



ϕq
−1|1 = −β (B.29)

and

ϕπΠ
−1|1 = −1

6
β2 (B.30)

The vector integral is

F σ
r =

∫
d3p

(2π)3p0
W r

p p
λ(∂λf0)p

⟨σ⟩

=

∫
d3p

(2π)3p0
W r

p f0
(
−Wpp

⟨λ⟩∇λβ + p⟨λ⟩∇λα +Wpβp
⟨λ⟩aλ

)
p⟨σ⟩

= ψr|0∇σα + ψr|1 (∆
ρ
ν∂µπ

µν +∇σΠ+ aσΠ)

(B.31)

where we used a slight different form of Eq.(B.19)

βaρ −∇ρβ = − 3

I3,1

(
∆ρ

ν∂µπ
µν + (∇ρΠ) + aρΠ+

∇ρα

3
I2,1

)
(B.32)

to cleanly separate the O(1) piece and the O(ϵ) piece. The coefficients are

ψr|0 =
Ir+2,1I3,1 − Ir+3,1I2,1

3I3,1
(B.33)

for the O(1) piece and

ψr|1 = −Ir+3,1

I3,1
(B.34)

for theO(ϵ) piece. Here, I3,1 = 3(ε+P )T and I2,1 = 3P can be used if needed. With r = −1

and m = 0,

ψ−1|0 =
1

6

T 3

2π2
(B.35)

ψ−1|1 = −1

4
β (B.36)
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The spin-2 integral is relatively simple since it does not have the O(ϵ) part

F σγ
r =

∫
d3p

(2π)3p0
W r

p p
λ(∂λf0)p

⟨σpγ⟩

=

∫
d3p

(2π)3p0
W r

p f0
(
βp⟨λpα⟩∇λuα

)
p⟨σpγ⟩

= φr|0σ
σγ

(B.37)

where

φr|0 =
2

15
βIr+4,2 (B.38)

is obtained with the help of the normalization condition (Eq.(16) in [63]). With r = −1

and m = 0,

φ−1|0 =
16

5

T 4

2π2
(B.39)
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