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Abstract 

As wildfire seasons become more extreme and less predictable across Canada and the world, 

satellite imagery and other Earth observations provide vital data for monitoring individual 

wildfires and supporting fire management decision-making. In this thesis, I explore multi-scale 

approaches and data sources used in landscape ecology and remote sensing research, apply data 

fusion methods to map wildfire progressions, and identify future opportunities for using Earth 

observations for wildfire monitoring. In the first research chapter of my thesis, I review and 

thematically analyze over 150 recently published manuscripts from the fields of remote sensing 

and landscape ecology to identify recent and future advances in the realm of multi-scale, multi-

source ecological analyses. In the second chapter of my thesis, I create a prototype for mapping 

the fire progression of a single wildfire, Elephant Hill Fire, from the 2017 fire season in British 

Columbia. This prototype uses a Bayesian synthesis algorithm to fuse multi-sensor, multi-scale 

Earth observations on Google Earth Engine, a high-capacity and cloud-based processing 

platform. The third thesis chapter generates fire progression metrics from fused multi-source, 

multi-scale observations for all large fires from the 2017 fire season in British Columbia. This 

whole-fire-season study advances upon the previous chapter’s fire progression mapping 

technique by integrating an object-based classification approach into the classification protocol. 

In the final chapter of my thesis, Chapter 4, I present a whole-systems conceptual framework to 

identify the data and information needs for all fire monitoring stages and analyze historical 

wildfire case studies. The ultimate target of this dissertation is to advance multi-source, multi-

sensor, and multi-stage fire monitoring research by presenting novel data fusion methods, fire 

progression metric analyses, and conceptual framework development. The findings of this thesis 
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can be used to support wildland fire monitoring to improve our understanding of fires and fire 

seasons over space and time. 

Résumé 

Alors que les saisons des feux de forêt deviennent plus extrêmes et moins prévisibles au Canada 

et dans le monde, l’imagerie satellitaire et d’autres observations terrestres fournissent des 

données vitales pour surveiller les feux de forêt individuels et appuyer la prise de décision en 

matière de gestion des incendies. Dans cette thèse, j’explore les approches multi-échelles et les 

sources de données utilisées dans la recherche en écologie du paysage et en télédétection, 

j’applique des méthodes de fusion de données pour cartographier la progression des feux de forêt 

et j’identifie les futures opportunités d’utilisation des observations terrestres pour la surveillance 

des feux de forêt. Dans le premier chapitre de ma thèse, je passe en revue et analyse 

thématiquement plus de 150 manuscrits récemment publiés dans les domaines de la télédétection 

et de l’écologie du paysage, pour identifier les avancées récentes et futures dans le domaine des 

analyses écologiques multi-échelles et multi-sources. Dans le deuxième chapitre de ma thèse, je 

crée un prototype pour cartographier la progression du feu de forêt, Elephant Hill Fire, de la 

saison des incendies 2017 en Colombie-Britannique. Ce prototype utilise un algorithme de 

synthèse bayésien pour fusionner des observations terrestres multi-capteurs et multi-échelles sur 

Google Earth Engine, une plate-forme de traitement de grande capacité et basée sur le cloud. Le 

troisième chapitre de ma thèse génère des mesures de progression des incendies à partir 

d’observations multi-sources et multi-échelles fusionnées pour tous les grands incendies de la 

saison 2017 en Colombie-Britannique. Cette étude sur l’ensemble de la saison des feux de forêt 

fait avancer la technique de cartographie de la progression des incendies du chapitre précédent, 
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en intégrant une approche de classification basée sur les objets dans le protocole de 

classification. Dans le dernier chapitre de ma thèse, le chapitre 4, je présente un cadre conceptuel 

pour un système forestier complet identifiant les besoins en données et en informations à toutes 

les étapes de surveillance des incendies et pour analyser des études de cas historiques sur les 

incendies de forêt. L’objectif ultime de cette thèse est de faire avancer la recherche multi-

sources, multi-capteurs et multi-étapes pour la surveillance des feux en présentant de nouvelles 

méthodes de fusion de données, d’analyses métriques de progression des incendies et le 

développement d’un cadre conceptuel. Les résultats de cette thèse peuvent être utilisés pour 

soutenir la surveillance des incendies forestiers afin d’améliorer notre compréhension des feux et 

des saisons des feux de forêt dans l’espace et le temps. 
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Contribution to original knowledge 

The four chapters in my dissertation contribute to original knowledge by addressing 

research gaps in landscape ecology, remote sensing, and fire science.  

Chapter 2 identifies advances in the fields of Landscape Ecology and of Remote Sensing 

by synthesizing recently published papers that have integrated Earth observations into their 

research approaches. By reviewing recent advances in these fields, I identify future opportunities 

for multi-scale, multi-source Earth observations to support landscape ecology research. This 

work has been cited more than five times and accessed more than 3,000 times since its 

publication in Current Landscape Ecology Reports in June 2020.  

Chapter 3 presents a prototype for mapping one fire’s progression, using a multi-scale 

synthesis that draws upon the recent advances in landscape ecology and remote sensing 

presented in Chapter 2. Since its publication in Remote Sensing Letters in 2019, Chapter 3 is in 

the top 10 most read articles on the journal’s webpage, and has been frequently cited over 19 

times and accessed over 3,500 times by others in the field of remote sensing.  

Chapter 4 builds upon Chapter 3’s prototype by integrating object-based image analysis 

into the classification approach, applying the prototype methods to an entire fire season, and 

deriving and analyzing fire and fire season progression metrics. Published in remote sensing’s 

top-rated journal, Remote Sensing of Environment, Chapter 4 has been frequently cited over 11 

times since 2019. By creating novel classification and data-fusion methods to refine burned-area 

mapping in Chapters 3 and 4, my work improves upon previous methods vulnerable to 

atmospheric noise, production delays, observation gaps, and coarse spatial resolution. These 

research articles advance the fields of remote sensing and fire monitoring by implementing 
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highly systematic methods for synthesizing data from multiple sources to improve near-term fire 

disturbance monitoring.  
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and decision-making limitations. I contribute a method for harmonizing these various objectives 
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1. Introduction  

In the past 40 years, fire incidence, size, and severity have been changing due to longer 

fire seasons, increasing fuel loads, and changing climate (Jolly et al., 2015; National Academies 

of Sciences, Engineering, and Medicine et al., 2017; Price et al., 2015). The increasing 

occurrences of extreme wildfires have regional and global implications (Jolly et al., 2015), 

including changes in critical ecosystem services delivered by these forests, including decreases 

in timber supply, wildlife habitat, carbon storage, and air quality, all of which have detrimental 

effects on human health and well-being (Fiore et al., 2015; Reid et al., 2016; Rittmaster et al., 

2006; Thom and Seidl, 2016). “Self-regulating” fire regimes that were previously moderated 

only by fire history and ecozone attributes are becoming more severe due to increasing fuel loads 

from invading forest diseases/pests and changing human activities (Agee, 1999; Collins et al., 

2009; Flannigan et al., 2000; Hanes et al., 2019; McKenzie et al., 2011; Parisien et al., 2014; 

Parks et al., 2016, 2015, 2014; Peterson, 2002). These altered, severe fire regimes create a 

perpetuating global system, where more extreme fire seasons impact climate by disturbing global 

carbon cycles, further exacerbating subsequent years’ fire seasons due to increasing climatic 

variability and global warming (Flannigan et al., 2000). 

In Canada, lengthening fire seasons and changing fuel loads have resulted in more 

extreme fire seasons and active fire regimes with increasingly frequent burn intervals (Flannigan 

et al., 2005; Hanes et al., 2019; Wang et al., 2015). The annual burned area in Canada is 

predicted to escalate due to increasing severities, sizes of individual fires, and lightning ignition 

sources (Flannigan et al., 2005; Hanes et al., 2019; Wang et al., 2015), in contrast with 

decreasing global burned area trends (Andela et al., 2017; Arora and Melton, 2018). For 

example, in British Columbia (BC), the largest fire seasons in the province’s history with respect 
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to area burned occurred in 2017 and 2018, each with more than a million hectares of burned area 

(BC Wildfire Service, 2017). After the 2017 extreme fire season, the BC government issued a 

report describing that fire season as “the new normal” for wildfire conditions and vulnerability 

for future fire seasons within the province (Abbott and Chapman, 2018). BC government 

officials called for increasing real-time, near-term and consistent mapping approaches to aid in 

wildfire planning and response (Abbott and Chapman, 2018), underscoring a need for systematic 

fire monitoring efforts using remote sensing technologies (Bowman, 2018).  

As the need for innovative fire monitoring approaches increases, the field of remote 

sensing is making significant technological advances with increased accessibility of cloud-based 

and cyberinfrastructure platforms that have large processing and storage, such as those from 

Google, Microsoft, Amazon, ESRI and more. One such platform, Google Earth Engine, stores 

data from multiple sources and provides a programming interface for remote-sensing analysis 

(Gorelick et al., 2017). Fire monitoring datasets with large spatial and fine temporal scales are 

made even more attainable using the plethora of freely available data and advanced remote 

sensing algorithms offered by Google Earth Engine. Previously, the accessibility and availability 

of imagery were such that fine-scale near-real-time monitoring of fires was impractical due to 

high financial costs, large processing requirements and sparse frequencies of observations.  

In this thesis, I build upon the recent developments made in the field of Earth observation 

science for cloud-based processing platforms and high-quality, open-access data sources to 

advance the mapping and analysis of fire progressions in Canada. I develop and apply a novel 

approach for reconstructing detailed fire progressions over large areas using observations from 

multiple sources in Google Earth Engine. I demonstrate how combining observations from 
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multiple sensors can be used to map fire growth progressions for actively burning fires to inform 

managers and planners interested in fire risk, spread, and impact.  

1.1 Thesis objectives 

My thesis aims to analyze how fire monitoring using Earth observations can be advanced 

using multi-sensor, multi-scale, open-access data, and cloud-based processing platforms. The 

specific objectives for each of my four research chapters are: 

● Chapter 2: Review recent theoretical and methodological contributions of remote 

sensing to landscape ecology and identify future opportunities for advances using 

Earth observations. 

● Chapter 3: Create a classification approach and prototype for constructing fire 

progression maps using a Bayesian data-fusion algorithm in Google Earth Engine 

applied on a single, large 2017 fire in British Columbia. 

● Chapter 4: Analyze fire characteristics of all stand-replacing 2017 fires in British 

Columbia using newly generated fire progression metrics derived from integrating 

object-based image analysis into the fire mapping methods from Chapter 3. 

● Chapter 5: Conceptualize a whole-systems framework for identifying and 

synthesizing information needs and objectives for fire monitoring. 

1.2 Literature review 

1.2.1 Remote sensing of forests 

Satellite remote sensing platforms provide landscape-level views of forest structure for 

observation, measurement, and inventory (Iverson et al., 1989; Lu, 2006; McRoberts and 
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Tomppo, 2007). Launched in 1972 by the National Aeronautics and Space Administration 

(NASA), the Earth Resources Technological Satellite (ERTS-1, later renamed Landsat-1) was 

the first imaging satellite to focus on analyzing Earth’s resources (Boyd and Danson, 2005). At 

present, there is a growing constellation of imaging satellites orbiting the world, whether 

privately funded (e.g., PLANET Dove microsatellites, DigitalGlobe’s WorldView-3) or publicly 

funded (e.g., NASA’s Landsat program, the European Space Agency’s Copernicus mission). 

Satellite-mounted sensors provide standardized measurements and observations of the earth’s 

surface and different sensors collect observations with varying spatial, temporal, spectral, and 

radiometric resolutions (Boyd and Danson, 2005; Danson et al., 1995; Marceau et al., 1994). 

Once transmitted to Earth, satellite images undergo post-processing such as orbital, atmospheric, 

and orthorectification corrections (Hall et al., 1995). The repeated coverage provided by 

satellites enables large-scale Earth observations, readily available, cost-effective, and easier to 

post-process than imagery from earth-based imaging platforms (Lefsky et al., 2001). Each pixel 

corresponds with the absorption and transmission values of the objects imaged, such as 

vegetation type, structure, and health (Wulder, 1998). Changes in incoming solar radiation 

absorbed by forest vegetation are most prominently imaged in the near-infrared (NIR) band, but 

also can be measured using the visible red, middle infrared (MIR), and short-wave infrared 

(SWIR) wavelengths (Asner and Warner, 2003; Boyd and Danson, 2005; Chen et al., 2018; 

Steininger, 2000).  

Empirical and correlative approaches between satellite imagery and ground-based 

measurements help identify forest structural features and changes, such as biomass, canopy 

cover, height, density etc. (Boyd and Danson, 2005; Cohen et al., 2001, 1995; Danson et al., 

1995; Franklin et al., 2001; Luther et al., 2006; Nelson et al., 2002; Scarth et al., 2001; Wulder, 
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1998; Wulder et al., 2004). Spectral vegetation indices (e.g., normalized differenced vegetation 

index) accentuate spectral features which can be used to estimate features like leaf-area index, 

forest volume/basal area, and photosynthetic activities (Boyd and Danson, 2005; Cohen et al., 

2001, 1995; Cohen and Goward, 2004; Curran, 1980; Danson et al., 1995; Eklundh et al., 2001; 

Gamon et al., 1995; Healey et al., 2006; Horler and Ahern, 1986; Li and Strahler, 1985; Wulder, 

1998). High and very high spectral and spatial resolution satellite imagery can be used to identify 

fine-scale features such as tree crowns, ages, and ecosystem productivity (Franklin et al., 2001; 

Kayitakire et al., 2006; Martin and Aber, 1997; Palace et al., 2008; Wulder, 1998). Multi-

temporal satellite imagery analyses are used to identify forest structure changes over time (Asner 

et al., 2000; Frolking et al., 2009; Garcia Millan and Sanchez-Azofeifa, 2018; Lefsky et al., 

2001).  

 

1.2.2 Canadian forest fires 

Wildland fires are a primary driver of ecosystem services in the boreal regions of Canada 

(Pausas and Keeley, 2019; Pohjanmies et al., 2017). Often a result of natural causes like 

lightning, boreal forest fires are a vital ecological process that clear open space in forests, help 

control pest outbreaks and regulate extreme fires, all while supporting tree species succession 

and structural changes (Helbig et al., 2016; Pausas and Keeley, 2019). Historical fire regimes 

vary across boreal and taiga regions in the world. In North America, the fire regime is dominated 

by fewer but larger (>200 ha) high-intensity crown fires with a mean fire return interval of ~180 

years (de Groot et al., 2013a, 2013b). Despite historical efforts to suppress all fire in some boreal 

regions like Canada, fire management has changed over time to balance natural regime fire 

processes with protecting human lives, infrastructure, and commodity production (Stocks et al., 
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2002). However, due to a changing climate, boreal forest fire regimes are becoming less 

predictable over time and are projected to continue to transform in the future (de Groot et al., 

2013b; Stocks et al., 1998).  

There are a multitude of drivers that impact Canadian boreal fires from the combustion of 

individual fires to overall fire season behaviours. Fire ignition is a product of a source, oxygen 

availability, and fuel load availability and flammability (Aldersley et al., 2011; Gralewicz et al., 

2012b; Huang and Rein, 2016; Malamud et al., 2005; Morgan et al., 2001; Prestemon et al., 

2013). Once ignited, a wildfire’s intensity and spread in space and time is influenced by social 

and biophysical drivers like weather, fuel vegetation, and topography that influence conditions 

like fuel loads, fuel flammability and fuel continuity (Aldersley et al., 2011; Bessie and Johnson, 

1995; Coughlan et al., 2018; Flannigan et al., 2005; Flannigan and Harrington, 1988; Gralewicz 

et al., 2012a; L. M. Johnston et al., 2020; Parisien et al., 2014; Remy et al., 2017; Romme, 1982; 

Turner and Romme, 1994). Drivers that affect fuel load availability include forest and vegetative 

conditions such as structure, age, type, species diversity, and management practices (Aldersley et 

al., 2011; Prestemon et al., 2013). Fuel flammability is caused by weather drivers such as daily 

rainfall, temperature, relative humidity, and climatic variables like drought (Aldersley et al., 

2011; Meyn et al., 2007). Fuel loads and flammability together influence a fire’s intensity, and 

the continued availability of flammable fuel primarily impacts fire spread and behaviour 

(Aldersley et al., 2011). Biophysical drivers like topography, wind speed and direction, and land 

cover pattern direct the fire to continue burning new and flammable fuel loads (Aldersley et al., 

2011; Prestemon et al., 2013). Boreal fire regimes and fire seasons are becoming more variable 

and unpredictable due to the impacts of climate change and fire suppression on these drivers that 

influence fire combustion and behaviour (Gralewicz et al., 2012a; McCarty et al., 2021; Parks et 

https://paperpile.com/c/RQHHqK/N6FVu+hyFdU
https://paperpile.com/c/RQHHqK/N6FVu+hyFdU
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al., 2012). As these drivers continue to be impacted by climate change, so do the ignition 

conditions and behaviours of individual fires, fire seasons, and long-term fire regimes.  

 

1.2.3 Forest fire monitoring and change assessment using remote sensing data 

To monitor conditions and changes across millions of square kilometers of fire-prone 

landscapes in Canada and the United States, agencies often rely on Earth observation data 

(Chuvieco et al., 2020, 2019; Giglio et al., 2018; J. M. Johnston et al., 2020; O’Connor, 2021; 

Schroeder et al., 2008; Wooster et al., 2021). Pre-fire conditions, including fuel load and 

vegetation type mapping, are primarily derived from optical sensors (e.g., Landsat, Sentinel-2, 

MODIS) and are available in monthly or annual data layers (Chuvieco et al., 2020; Gale et al., 

2021). Once a fire occurs, satellite systems like GOES, VIIRS, MODIS and SLSTR provide 

large-area imagery with a moderate spatial resolution (375m to 2km) and sub-daily collection 

rates, beneficial for detecting ignitions across large regions (Roy et al., 2005).  Fire impact 

assessments often rely on premade fire monitoring datasets readily available for monitoring 

global fire locations, extents, and progressions (Andela et al., 2019; Chuvieco et al., 2016; Giglio 

et al., 2016; Humber et al., 2018). Other research evaluates multi-scale components of fires and 

their impacts, such as a landscape’s wildland fire risk or a fire’s burn severity with spectral 

indices like the differenced normalized burn ratio (dNBR). These studies often integrate ground-

based ecological data with remote sensing data to account for landscape changes due to fire 

impact (Bernier et al., 2016; L. M. Johnston et al., 2020; Parks et al., 2018, 2015; Whitman et al., 

2018). Fire severity, for example, can be mapped from satellite-based imagery by estimating 

organic matter change using spectral indices after a fire has passed through to describe how that 
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fire impacted the ecosystem where it occurred (Keeley, 2009; Parks et al., 2018, 2015; Whitman 

et al., 2018). 

Remote-sensing derived fire datasets are used to reconstruct fire progressions and final 

burned areas because of their large-scale coverage and open-access availability. There are 

multiple datasets and mapping protocols available for monitoring fire occurrence and 

progressions in Canada, in particular. The National Burned Area Composite (NBAC) dataset 

identifies refined fire perimeters with unburned islands and water bodies removed from multiple 

sources, including the jurisdictionally produced Canadian National Fire Database (CNFDB) and 

satellite imagery from Landsat (Amiro et al., 2001; Burton et al., 2009; de Groot et al., 2007; 

Fraser et al., 2004; Parisien et al., 2006; Stinson et al., 2011; Stocks et al., 2002). The 

Composite-to-Change (C2C) protocol automates the monitoring and inventorying of forest 

disturbances like burned areas using the annual proxy best-available pixel (BAP) for the 30m 

Landsat record (Hermosilla et al., 2017, 2016; White et al., 2017, 2014). Satellite imagery from 

AVHRR, MODIS, and VIIRS is used by the Canadian Forest Service in the Fire Monitoring, 

Mapping and Modeling daily hotspot map used by fire agencies across Canada (Fraser et al., 

2000). Additional spatial interpolation and data fusion methods have been used to downscale and 

refine MODIS active fire and burned area datasets with additional sources such as Landsat and 

Sentinel-2 (Crowley et al., 2019a, 2019b; de Groot et al., 2009, 2007; Hilker et al., 2009a, 

2009b; Parks, 2014; Parks et al., 2012).  

 

1.2.4 Advances in remote sensing 

There have been major advances made in cloud-based computing in the last ten years that 

support large-scale ecological monitoring. For example, the development of the Google Earth 
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Engine (GEE) platform (https://earthengine.google.com) makes multi-temporal and large-scale 

analyses more feasible for the global land change research community (Hansen et al., 2013). 

GEE is a cloud-based platform used to access, process, and analyze satellite imagery and 

geospatial data at a global scale (Gorelick et al., 2017). In GEE, users can apply their algorithms 

to a multi-petabyte catalogue of open-access data on Google servers using parallel processing to 

increase processing time (Gorelick et al., 2017; Hansen and Loveland, 2012). Using a freely 

available platform for processing and classification of open-access imagery reduces computing 

costs, while dataset creation speeds can dramatically increase for disaster response (Hansen and 

Loveland, 2012).  

Fusing Earth observations from multiple satellite sources further advances the possibility 

of monitoring near-real-time fire progressions (Li and Roy, 2017; Wulder et al., 2018). Recent 

developments suggest that information from multiple satellites can be combined at an increased 

temporal resolution for retrospective mapping and estimating fire growth while the fire is still 

active (Crowley et al., 2019a, 2019b). The Bayesian Updating of Land Cover (BULC) algorithm, 

for example, synthesizes classifications of individual images through time by weighing evidence 

from multiple classifications to produce a time series of land undergoing rapid change (Cardille 

et al., 2022; Cardille and Fortin, 2016; Crowley et al., 2019a, 2019b; Deines et al., 2019; Fortin 

et al., 2020; Lee et al., 2020, 2018). Data fusion algorithms like BULC combine complementary 

strengths of multiple data streams to map fire progressions retrospectively and eventually map 

fire progressions in near-real-time (Boschetti et al., 2015; Hilker et al., 2009a, 2009b; Korhonen 

et al., 2017; Mora et al., 2013; Roy et al., 2014; Wulder et al., 2010). 
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Preface to Chapter 2 

As illustrated in the introduction and literature review in Chapter 1, Earth observations 

provide valuable insights for monitoring landscape changes and disturbances like forest fires. 

Recent advances have been made in remote sensing to support large-area disturbance 

monitoring, such as cloud-based processing, open data accessibility, increased data sources, and 

multi-source data fusion. In Chapter 2, I apply a systematic review to synthesize recent advances 

in remote sensing. By doing so, I identify how landscape ecologists use remote sensing 

techniques and project future opportunities for them to employ remote sensing in their research 

approaches based on recent and expected innovations being made in remote sensing. This study 

is a significant contribution to science because it provides a path forward for innovations in 

landscape ecology using remote sensing.  

Chapter 2 was published in 2020 in Current Landscape Ecology Reports and uses the 

Springer Basic (numeric) citation style.  
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Abstract  

Purpose of Review: The purpose of this article is to review landscape ecology research from the 

past five years to identify past and future contributions from remote sensing to landscape 

ecology. 

Recent Findings: Recent studies in landscape ecology have employed advances made in remote 

sensing. These include the use of reliable and open datasets derived from remote sensing, the 

availability of new sources for freely available satellite imagery, and machine-learning image 

classification techniques for classifying land cover types. Remote sensing data sources and 

methods have been used in landscape ecology to examine landscape structure. Additionally, 

these data sources and methods have been used to analyze landscape function including the 

effects of landscape structure and landscape change on biodiversity and population dynamics. 

Lastly, remote sensing data sources and methods have been used to analyze historical landscape 

changes and to simulate future landscape changes. 

Summary: The ongoing integration of remote sensing analyses in landscape ecology will 

depend on continued accessibility of free imagery from satellite sources and open-access data-

analysis software, analyses spanning multiple spatial and temporal scales, and novel land cover 

classification techniques that produce accurate and reliable land cover data. Continuing advances 

in remote sensing can help to address new landscape ecology research questions, enabling 

analyses that incorporate information that ranges from ground-based field samples of organisms 

to satellite-collected remote sensing data. 
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2.1 Introduction 

In the last five years, landscape ecologists have continued their seminal focus on the 

relationships of pattern and process [1], addressing questions of landscape structure, landscape 

function, and landscape change [2]. For example, recent studies have analyzed landscape 

structure by examining urban green cover, rangeland distribution, wetland extent [3–6], 

fragmentation of forests [7], land cover and land use [8–10], and heterogeneity of urban and 

agricultural landscapes [11– 14]. For relating landscape structure to ecological processes, studies 

have focused on habitat and resource selection by plants and animals [15–18], forest dynamics 

and structure [19], and pollination on agricultural lands [20, 21]. For analyzing the movement 

across landscapes, analyses have explored movement related to corridors and connectivity [22–

27] and movement of species populations related to metapopulation dynamics using genetics to 

track reproduction and population dispersal across generations [28, 29]. For quantifying 

landscape change, recent studies have used landscape history to analyze disturbances such as fire 

and their impacts on landscape structure over time [30–33]. By analyzing prior landscape 

changes, other landscape ecologists have also worked towards predicting changes in landscape 

structure and evaluating potential impacts through system feedbacks and potential changes in 

land planning by using simulation models [34–56]. 

Many of these studies in landscape ecology have relied on contributions from the field of 

remote sensing. Since the launch of the satellite Landsat-1 MSS in 1972, a variety of remote 

sensing platforms (e.g., satellite, aerial) have collected data in the form of image observations. 

Each sensor gathers imagery at a pre-defined spatial resolution, which denotes the ground 

measurement that each pixel represents in an image. Spectral resolutions vary based on the 

wavelength intervals that the sensors are collecting reflectance of the sun on the earth’s surface. 
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The temporal resolution of a given remote sensing platform is derived from its orbital path and 

speed, which determines the satellite’s revisit rate for collecting a new image in the same 

location. Sensors currently in operation include optical sensors from NASA’s Landsat program, 

optical and synthetic-aperture radar (SAR) sensors from the European Space Agency Copernicus 

constellation, and many other public and privately owned airborne and spaceborne systems. 

Researchers are able to choose their remote sensing sources based on their research questions, 

whether they use sources such as unmanned aerial vehicles (UAVs), active sensors like light 

detection and ranging (lidar), field-based spectroscopy, cross-boundary satellites [38–41]. Users 

can pre-process images to correct for atmospheric interferences caused by haze, clouds, or angle 

of the sun [42–44]. By comparing imagery and ground-based measurements, users can classify 

land cover types (e.g., forests, wetlands, development) to analyze the landscape structure [45–

48]. Freely available remote sensing data from satellite sensors with large spatial coverage has 

become available in the last ten years [49–53, 54•]. For example, in 2008, the free and open 

Landsat data policy was implemented and in 2014 the first sensor from the European Space 

Agency’s open-access Copernicus mission was launched [49–53, 55]. With increasing data 

availability for large-area coverage and medium-spatial resolution sensors like Landsat and 

Sentinel, there has been a dramatic increase in research using satellite data in the last five years 

[52]. 

2.2 Literature Review 

In this review, we examine recently published manuscripts from landscape ecology that 

have been made possible through advances in remote sensing. We outline recent developments in 

remote sensing and landscape ecology, highlighting important developments from each field to 
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illuminate their current and approaching potential. To achieve this, we employed a systematic 

review of highly cited literature related to landscape ecology and remote sensing for the last five 

years, from 2014 to 2019. We identified recently published manuscripts that apply remote 

sensing methods in landscape ecology using Web of Science. We sorted the manuscripts by 

overall citation count in order to identify the most prominent contributions made within this 

field. We terminated our exhaustive literature search after identifying all 172 manuscripts 

meeting the search criteria (e.g., “landscape ecology” & “remote sensing”). The 172 manuscripts 

were categorized by landscape ecology research themes: landscape structure, landscape change, 

landscape function. For each landscape ecology theme, we identified remote sensing data sources 

and analyses most frequently used in landscape ecology by analyzing the author keywords 

(Table 2.1). Eleven publications were removed that were unrelated to landscape ecology or 

remote sensing. Additional recently published manuscripts were also incorporated into the 

review. Once we identified recent contributions of landscape ecology, we projected future 

research opportunities for landscape ecology by identifying other advances in remote sensing 

that might also be relevant to landscape ecology, as determined from the most frequently cited 

manuscripts from remote sensing in Web of Science from 2014 to 2019. 
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Table 2.1 The thematic coding structure of this literature review. Each manuscript was 

categorized by landscape ecology theme and example keywords were extracted that related to 

remote sensing data sources and methods. In this table, the keywords are ordered by most 

frequently used for each landscape ecology theme. Landscape structure is the spatial 

arrangement of landscape elements, such as land cover types and forest patches. Landscape 

change refers to the changes in the landscape structure over time and space. Landscape function 

is the interactions between landscape structural elements, whether through ecological processes 

or energy flows, such as the interactions between animal migration routes and forest 

connectivity. 

Theme 
(# of manuscripts) 

Data Sources 
(# of manuscripts) 

Remote Sensing Methods 
(# of manuscripts) 

Structure (88) lidar (15) 

Landsat (14) 

citizen science (6) 

airborne laser scanning (ALS) (4) 

hyperspectral data (4) 

Unmanned aerial vehicle (UAV) (4) 

aerial photography (2) 

airborne remote sensing (2) 

AVIRIS (2) 

GeoEye-1 (2) 

Google Street View (2) 

high-resolution satellite data (2) 

historical imagery (2) 

IKONOS (2) 
land surface temperature (2) 

MODIS (2) 

PhenoCam dataset (2) 

RapidEye (2) 

participatory science (2) 

TerraSAR-X (2) 

Shuttle Radar Topography Mission (SRTM) (1) 

canopy-height model (8) 

classification and regression tree (8) 

digital elevation model (6) 

normalized difference vegetation index    

     (NDVI) (6) 

clustering (4) 

random forest machine learning (4) 

segmentation (4) 

spatiotemporal (4) 

support vector machine (SVM) (4) 

3D urban form (2) 

aggregation (2) 

image processing (2) 

land cover classification (2) 
maximum entropy classifier (2) 

multi-scale (2) 

object-based image analysis (OBIA) (2) 

spectral unmixing (2) 

spectral variable selection (2) 

structure-from-motion (SFM) (2) 

tree species classification (2) 

Change (42) Landsat (7) 

MODIS (2) 

participatory mapping (2) 

historical map (1) 

lidar (1) 

multi-source satellite images (1) 

PhenoCam (1) 

time series (1) 

spatiotemporal (3) 

change detection (1) 

landscape accuracy metric (1) 

NDVI (1) 

OBIA (1) 

random forest machine learning (1) 

segmentation (1) 
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Function (46) lidar (4) 

land surface temperature (2) 

airborne remote sensing (1) 

AVIRIS (1) 

citizen science (1) 

microsatellites (1) 

MODIS (1) 

National Land Cover Dataset (NLCD) (1) 

participatory mapping (1) 

WorldView-2 (1) 

enhanced vegetation index (EVI) (2) 

NDVI (2) 

change detection (1) 

differenced normalized burn ratio (1) 

digital elevation model (1) 

downscaling (1) 

maximum entropy classifier (1) 

random forest machine learning (1) 

radar (1) 

VIIRS (1) 

 

2.3 Recent advances in remote sensing 

2.3.1 Explosion of data diversity and availability 

The first decades of landscape ecology were characterized by a relatively data-poor 

setting, with only a few satellites potentially providing data and practical limits to analysis. For 

example, early studies in the 1970-80s typically analyzed only one Landsat image at a time 

because they were expensive, had to be shipped on tapes from receiving stations, and took weeks 

to analyze on computers of the time period. In the last ten years, this framework has been 

overturned, with hundreds of thousands of images freely available for analysis from multiple 

public and free remote sensing platforms [49, 51–55, 56•, 57•, 58]. These new or improved 

platforms include those on large satellites like Landsat-8 and Sentinel-2, on airplanes, on 

unmanned aerial vehicles (UAVs), via small/micro/nanosatellites, and through ground-based 

sensor systems. Some example sensors include passive multispectral optical (i.e., collecting 

ground reflectance along the optical light spectrum divided into three to ten segments), actively 

collected synthetic aperture radar (SAR) (collecting return rates of wavelengths from multiple, 

pulsating microwave beams), thermal sensors (i.e., heat detection), hyperspectral sensors (i.e., 

collecting ground reflectance of the sun at ten or more segments of the light spectrum), and 

actively collected lidar (i.e., collecting return rates of wavelengths from a single, pulsating laser) 
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[59–59]. Meanwhile, atmospheric noise in data is decreasing. For example, “analysis-ready” 

imagery and data cubes are now available for Landsat imagery, which enables users to spend less 

time preprocessing imagery [70, 71]. Whether launched by private companies or public agencies, 

remote sensing sources are increasing in spatial, spectral, and temporal resolutions of the 

observations [72, 73].  

2.3.2 Emergence of massive-throughput analysis platforms 

Open and free high-capacity analysis software and programs have greatly altered the 

potential for accessing and analyzing time series of imagery and combining data from different 

remote sensing sources to better understand landscape structure [51, 52, 56•, 57•]. Most notably, 

the cloud-based storage and processing platform, Google Earth Engine, was first released in 

2010 to increase accessibility to remote sensing and geospatial data using Google servers. Prior 

to this, the only option for many landscape ecologists wishing to use remotely sensed data was to 

download individual images and analyze them on local computers or networked clusters [54••, 

56•]. Cloud-based platforms facilitate aggregation of remotely sensed observations of a 

landscape collected on different dates into a temporally ordered data “stack” or “cube”. Changes 

in landscape structures due to natural and human disturbances can then be quantified over time 

[74–78]. Combining remote sensing observations from different sensors can also provide multi-

scale views (i.e., varying spatial and temporal resolutions and extents in time and space) (Table 

2.2) [54••, 56•, 79–81]. Recent studies have combined observations from multiple remote 

sensing sources such as the USGS’s Landsat satellite and NASA’s MODIS satellite [82–85]; 

Landsat and synthetic aperture radar (SAR) [86]; airborne laser scanning (e.g., lidar) and digital 

aerial photogrammetric data (e.g., aerial photographs) [87, 88]; unmanned aerial vehicles 
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(UAVs) and digital aerial photogrammetric data [89]; UAV, aerial, and satellite [90]; lidar and 

Landsat [91, 92].  

Table 2.2 In the first column, we identified possible scale requirements (both spatial and 

temporal grain and extents) for landscape ecology research. In the second column, we named 

presently available remote-sensing sources that meet those scale requirements. In the third 

column, we present example studies that use those sources in their analyses. Landsat is a satellite 

mission from the USGS consisting of multiple sensors that have been launched since 1972, 

including the Multispectral Scanner System (MSS), Thematic Mapper (TM), Enhanced Thematic 

Mapper Plus (ETM+) and Operational Land Imager (OLI). MODIS (Moderate Resolution 

Imaging Spectroradiometer) is a sensor from NASA that is mounted on two satellites, Terra and 

Aqua. Sentinel-2 is a European Space Agency mission consisting of two satellites, Sentinel-2A 

and Sentinel-2B. Planet Labs is a satellite company that has multiple satellites in orbit, including 

Dove, RapidEye, and SkySat. Unmanned aerial vehicles (UAVs or drones) are useful for 

mapping small extents at a fine resolution with a mounted sensor on board.     

 

Scale required Best sensors at required scale Example studies 

Fine spatial grain 10cm-1m (“Planet Labs” satellites, 

UAV, airplane) 

[38, 45, 48, 93, 183] 

Fine temporal grain Every ~5 days at 10-60m  (Sentinel-2), 

and daily at 250m (MODIS) 

[67, 69, 78, 95, 112] 

Large spatial extent Global and daily at 250m (MODIS) [69, 78, 83, 95] 

Long temporal extent 1972 to present, every 16 days at 30-

60m (Landsat MSS, TM, ETM+, OLI) 

[53, 91, 106, 122, 132] 

2.3.3 Development of algorithms for large-scale image classifications 

A primary focus of remote sensing research is to develop methods for converting 

remotely sensed data into a meaningful description or picture of what is actually on the ground. 

This is referred to as "classification" of the remotely sensed data. Several recent advances have 

greatly improved algorithms used in classification [54••, 56•, 93]. For example, object-based 

image classifications group neighboring pixels into objects and classify the objects based on their 
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shape, size, color, texture (spatial variation), and context (neighboring or ancillary information) 

[94, 95]. Machine/deep learning approaches (e.g., convolutional neural networks, random 

forests) are automated classification algorithms that rely on minimal user interference when 

classifying imagery [59, 63, 72, 96–101]. Additionally, time-series analyses have been used to 

map land cover changes by stacking images from multiple sources and identifying disturbance 

patterns and deviations from expected values [69, 74, 102–113]. This allows the rapid detection 

of landscape change and disturbances like forest loss and fires. Time-series analyses have created 

reliable global-scale landscape change datasets that are freely available for subsequent analyses 

[114–118]. For example, a regularly updated forest cover dataset including landscape changes 

and drivers of changes is available annually for the entire globe [119, 120]. Additionally, the 

World Resources Institute’s Global Forest Watch initiative detects forest changes globally in 

near-real time [121]. Other recent studies have used time-series analyses, machine learning, and 

object-based image analyses to analyze land surface temperatures and identify urban heat islands 

[122], to provide increased data to support forest inventory efforts [66], to map landscape 

changes related to climate change [123], to inform precision agriculture [124], to monitor air 

pollution [125], to quantify colored dissolved organic matter in lakes [126], to quantify 

aboveground biomass [127], and to track urbanization [128]. 

2.4 Advances in landscape ecology using remote sensing 

Landscape ecologists use remote sensing for three principal reasons: (1) to quantify 

landscape structure based on classified imagery; (2) to identify landscape change and its impact 

and make future predictions using statistical models; and (3) to quantify landscape function. 

Landscape structure is the spatial arrangement of landscape elements, such as land cover types 
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and forest patches. Landscape change refers to the changes in the landscape structure over time 

and space. Landscape function is the interactions between landscape structural elements, whether 

through ecological processes or energy flows, such as the interactions between animal migration 

routes and forest connectivity.   

2.4.1 Quantifying landscape structure 

Remote sensing observations provide the potential to map and analyze landscape 

structure at a variety of spatial and temporal grains and extents. Landscape ecologists analyze 

both raw remote sensing data and remote sensing-derived maps to quantify landscape structure. 

For example, by harmonizing airborne lidar and satellite imagery, researchers were able to 

quantify structural connectivity and identify patches that were most important for landscape-

level conservation in Alberta, Canada [129]. Landscape ecologists have extracted landscape-

based information using a variety of remote sensing spectral vegetation indices (e.g., tasselled 

cap, leaf area index, normalized-difference of vegetation index NDVI) [130–132]. In Finland, 

researchers combined data collected by citizen scientists (e.g., landowners, students, 

recreationalists) with lidar-derived forest measurements to quantify landscape structure [133]. 

Additionally, landscape structure has frequently been quantified using open-source toolboxes 

designed to process remote sensing data [134–137]. The wide range of applications employing 

landscape-scale analyses has been made possible from the increasing availability of remote 

sensing sources and advances in imagery analyses (Table 2.3). 
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Table 2.3 A review of novel remote sensing techniques that were applied in landscape ecology 

studies and some results that contributed to the field of landscape ecology. 

  

Remote 

Sensing 

Advance 

Use in Landscape 

Ecology 
Research Finding Reference 

Regional 

airborne 

lidar data 

Quantified structural 

habitat connectivity 

and simulate changes 

Identified most important patches for 

landscape conservation in Alberta, 

Canada 

[129] 

Multiple data 

sources with 

varying 

spatial and 

thematic 

resolution 

Predicted seasonal land 

surface temperatures 

Determined strong predictors of land 

surface temperatures to include 

percent of impervious surfaces, 

percent of tree canopy from spring to 

fall, and vegetative-based indices 

from summer to fall 

[131] 

Multiple data 

sources from 

ground 

observations 

and airborne 

lidar 

Quantified above-

ground forest biomass 

and vegetation 

structure 

Identified spatially explicit 

biodiversity indicators for bird 

habitats for 41 different species in 

boreal forest regions 

[133] 

Refining 

spatial 

resolution 

from remote 

sensing 

sources 

Examined landscape 

surface metrics at a 

higher spatial 

resolution to assess 

scale-dependent 

relationships 

Found that map accuracy for data 

aggregation of sub-pixel remote 

sensing classifications were 

dependent on spatial heterogeneity 

of the landscape 

[136] 

Synthetic 

Aperture 

Radar (SAR) 

data sources 

Calculated resistance 

maps for habitat 

connectivity 

Found that SAR-based maps 

explained more of the species 

abundance for forest beetles than 

aerial photograph-based maps 

[141] 

Active (lidar) 

and passive 

(AVIRIS) 

aerial sensors 

Modeled vegetation 

structure and historical 

land use 

Determined that topography and 

substrate type impacted vegetation 

distribution, and grazing 

intensity/ranges predicted vegetation 

patterns on Santa Cruz Island, USA 

[142] 
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2.4.1.1 Future Prospects 

Advances in methods for quantifying landscape structure will mirror advances made in 

remote sensing for image classification due to the direct relationship between a landscape’s 

surface cover and its structure. As data diversity and availability continue to grow, information 

from remote sensing data seems poised to make novel advances within landscape ecology in the 

near future. For example, opportunities exist for increasing landscape-scale analyses focusing on 

biomass analyses and vegetation structure using data from the recently launched and future 

active-sensors (e.g., NISAR, GEDI, BIOMASS, MOLI, SAOCOM1A, ICESat-2, ALOS-4, 

TanDEM-L, RADARSAT Constellation Mission) [138]. Additional opportunities will be created 

to use the finer spatial and temporal resolutions that will be provided by future optical satellites 

that are being built (e.g., Landsat 9, Sentinel constellation). While many landscape ecology 

studies take advantage of remote sensing observations collected by aerial and satellite sources, 

future studies can use observations from novel data sources like UAVs and microsatellites (i.e., 

small satellites from companies like DigitalGlobe and Planet) for very-high spatial resolution 

observations of fine-scale landscape features [139], hyperspectral sensors for greater spectral 

sensitivity when using raw remote sensing values in landscape ecology models [140], and 

synthetic aperture radar (SAR) sensors and lidar sensors for reconstructing three-dimensional 

landscape structure and analyzing connectivity [141–143]. Landscape structure can be quantified 

by using feature extraction techniques and machine-learning classifiers to improve the accuracy 

of image classifications [80, 144, 145]. By quantifying landscape structure on a cloud-based 

processing platform like Google Earth Engine [57•], large-area landscape ecology structural 

analyses become more tenable and it will no longer be necessary to download new imagery to 

personal computers.  
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2.4.2 Quantifying landscape change 

Landscape ecology studies use remote sensing images from multiple collection dates to 

identify landscape change, to analyze their impacts on populations, and to predict future 

landscape change. Satellite-based time-series data (whether from one sensor or many) provide 

observations spanning multiple decades of landscape change such as cumulative forest cover 

decline, recovery of forest species from disturbances, degradation of forest patches, and land-use 

change [130, 132, 146–152]. Researchers applied a temporal-trend analysis of Landsat TM time-

series imagery and vegetation indices from 1987 to 2010 to map gradual and abrupt forest 

decline and regrowth in Québec, Canada and inform land management policy [132]. Another 

study integrated multi-source imagery from NASA’s Landsat MSS, TM, ETM+, the Russian 

KATE-200 satellite camera, and satellite Keyhole imagery to identify regions for management 

by evaluating the relationship between oasis changes and landscape structure in an arid region of 

China from 1963 to 2010 [148]. Remote sensing data has also been incorporated into existing 

landscape ecology simulations to model stochastic dynamics of landscape structure elements, 

and in turn, landscape function. For example, landscape ecologists have used remote sensing-

based data to predict rates and patterns of urban expansion over time [153], to quantify landscape 

structure and ecosystem service changes in urban areas [154, 155], and to simulate changes in 

soil organic carbon due to changing climate [156]. Observations from remote sensing platforms 

enable landscape ecologists to reconstruct landscape history for analyzing landscape changes and 

to inform predictive models for landscape changes.  

2.4.2.1 Future Prospects 

As the temporal revisit rate of satellite image observations gets shorter, landscape 

ecologists will be able to see landscape changes as they happen in near-real time, whether they 
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are persistent (e.g., fire), ephemeral (e.g., floods), or gradual (e.g., forest degradation) [157–159]. 

Increased data frequency will be useful for analyzing landscape changes at daily or monthly 

resolutions rather than only annual resolutions. Additionally, by accessing publicly available 

near-real-time global datasets that map land cover changes using cloud-based platforms like 

Google Earth Engine, landscape ecologists will be able to perform their own analyses more 

rapidly without developing their own image classification protocols. Multi-temporal landscape 

analyses of the same landscape or analyses comparing different landscapes will become 

increasingly accessible by employing data fusion methods to combine observations from 

multiple sensors and weighing the evidence from each classification [54••, 129, 160–162]. Such 

analyses have been previously difficult for landscape ecology due to data collection limitations 

and financial costs of imagery. However, open-access satellites provide multi-scale views for 

free [37, 163]. Robust predictive models that are able to include remote sensing classifications 

derived from multiple sources or classifications with continuous values (e.g., forest quality on a 

continuous scale rather than discrete classes) will be useful for incorporating future data sources 

more readily into existing landscape ecology models.  

2.4.3 Understanding landscape function 

Landscape ecologists can analyze landscape function of the study area by combining 

information derived from remote sensing with information from other sources into landscape 

ecology models. For example, satellite-derived ecosystem service indicators (e.g., water quality, 

soil moisture, and soil erosion) can be analyzed in combination with land cover information (e.g., 

wetland area) to estimate ecosystem service provisioning [164, 165]. Habitat classifications 

identifying population preferences and vulnerability related to landscape change, and primary 

productivity related to spatial distributions of species have been assessed using object-based 
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classifications and random forest machine learning algorithms of satellite data, vegetation 

structural observations provided by lidar data, and gross primary productivity values derived 

from the enhanced vegetation index [139, 143, 145, 166, 167]. By fusing spectral indices like 

NDVI with vegetative structural information provided by lidar and topographical information 

derived from SAR observations, human impacts on vegetation patterns and environmental 

gradients can be analyzed [142]. Research focusing on urban landscape ecology has analyzed 

remote sensing data like land surface temperature products to examine the relationship between 

land surface temperature and land cover/use [168–170]. By incorporating remote sensing data 

like the National Land Cover Database, NDVI, and Landsat 7 ETM+ observations with land 

surface temperatures, the urban heat island effect can be analyzed and used to predict future land 

surface temperatures [131]. 

2.4.3.1 Future Prospects 

For analyzing landscape function, advances will be made in landscape ecology by using 

new remote sensing data sources and analyses to quantify interactions between landscape 

structure and ecological processes (e.g., land cover type and population movement). Calls have 

been made to shift habitat assessments from categorical indices (e.g., low, medium, and high) to 

continuous values (e.g., 0-100) to better evaluate impacts of landscape change on biodiversity 

and incorporate error quantification into landscape ecology models [115, 171•, 172]. This shift 

towards continuous values would capitalize on advances made in remote sensing for classifying 

gradients of sub-pixel land cover and forest quality, per-pixel confidences in classification, and 

data uncertainty measurements [147, 171•, 172–174]. New sensors like GEDI and continuous 

data such as forest quality can provide more functional information about the landscape in terms 

of species distribution, resource distribution, and three-dimensional habitat connectivity [175]. 
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Landscape ecology studies that incorporate remote sensing images can also incorporate data 

from non-remote sensing sources like crowdsourcing, participatory research, and other existing 

geospatial datasets [54••, 56•, 176–178]. For example, landscape ecologists can incorporate 

geolocations of bird sightings collected by citizen scientists in eBird (eBird.org) in combination 

with vertical vegetative structure data from lidar to improve models analyzing species 

distribution or biodiversity. Additionally, the fusion of data and imagery from multiple sources 

can increase spatial, temporal, and spectral resolutions by updating the data cube with the finest 

resolution data available to better analyze landscape processes [54••, 112, 179–181]. For 

example, often genetic and metapopulation studies examine landscape changes that occur at 

scales finer than landscape changes captured by medium-resolution satellites like Landsat. 

Therefore, there is an opportunity to assimilate very-high spatial resolution remote sensing data 

from microsatellites and UAVs or temporally fine-scale satellite time series to analyze 

metapopulation dynamics [182].  

2.5 Conclusions 

The advances that have been made in landscape ecology using remote sensing can inform 

future opportunities for integrating remote sensing in landscape ecology studies. Landscape 

ecology has made advances in quantifying landscape connectivity, using genetics to analyze 

metapopulation dynamics, examining multi-functional and social-ecological systems, simulating 

future landscape changes, and establishing landscape histories to inform and model future 

landscape changes. These advances have been made possible in part due to remote sensing 

including the production of reliable land cover datasets that use new data sources, time series of 

remotely sensed data and three-dimensional data, machine-learning classification techniques, and 
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free data accessibility. Within landscape ecology, remote sensing images and analyses have been 

applied to construct multi-scale, multi-temporal, and multi-source landscape-scale analyses. 

Upcoming data sources will be used to estimate functional attributes of a landscape such as 

interactions between landscape elements and ecological processes, which can then be integrated 

into existing landscape ecology models that relate landscape structure or landscape change to 

ecological responses like species diversity. Remote sensing derived data can either inform the 

landscape structure and landscape change or the ecological responses, depending on research 

objectives and data availability. The fusion of remote sensing observations from multiple sources 

into data cubes can increase temporal and spatial resolutions without trading off spatial extent 

coverage. Near-real-time monitoring provided by open-access satellite sensors can provide 

landscapes pre- and post-change at the time steps necessary to evaluate impacts on ecosystem 

processes. Ultimately, these advances in data sources at varying scales and resolutions from very 

high resolution to large area coverage enable landscape ecology analyses that can be produced 

more rapidly, for larger study regions, and for longer study periods.         
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Preface to Chapter 3 

In Chapter 2, I identified core methodologies from both landscape ecology and remote 

sensing for analyzing landscape change and disturbances over space and time. Chapter 3 

examines one aspect of landscape change and disturbance mapping by creating a prototype for 

reconstructing fire progression maps for a single large fire over space and time.  

By reviewing approaches for mapping disturbances over time in Chapter 2, I can 

integrate remote sensing and computational landscape ecology methodologies in Chapter 3 to 

track fires using multi-source, open-access Earth observations. Chapter 3 advances the fields of 

remote sensing and landscape ecology by illustrating the opportunities for using multi-source 

data fusion to reconstruct burned-area progressions in geospatial data time series.  

Chapter 3 was published in 2019 in Remote Sensing Letters and uses the Chicago (author-

date) citation style.  
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Abstract 

As freely available remotely sensed data sources proliferate, the ability to combine imagery with 

high spatial and temporal resolutions enables applications aimed at near-term disturbance 

detection. In this case study, we present methods for synthesizing burned-area information from 

multiple sources to map the active phase of the Elephant Hill fire from the 2017 fire season in 

British Columbia. We used the Bayesian Updating of Land Cover (BULC) algorithm to merge 

burned-area classifications from a range of remote-sensing sources such as Landsat-8, Sentinel-

2, and MODIS. We created provisional classifications by comparing the post-fire Normalized 

Burn Ratio against pre-fire image composite within the fire boundary provided by the Province 

of British Columbia. BULC fused the classifications in Google Earth Engine, producing a 

cohesive time-series stack with updated burned areas for 19 distinct days. The fire burned 

unevenly throughout its lifespan: a rapid burn phase of 53,097 ha in two weeks by late July, a 

steady burn phase to 60,000 ha until late August, an accelerated burn phase of 95,766 ha until 

mid-September, and containment at 203,560 ha in October. The highly automated methods 

presented herein can synthesize multi-source fire classifications for active phase monitoring both 

retrospectively and in near-real-time.  

3.1 Introduction 

Forest disturbance mapping has been made possible for Canada through the Composite-

to-Change (C2C) protocol, which uses annual proxy best-available-pixel (BAP) composites 

across the 30 m Landsat record (Hermosilla et al. 2016; 2017; White et al. 2017). BAP 

composites enable cloud and gap-free observations while ensuring that similar illumination and 

growing conditions (August 1 ± 30 days) are represented across years (White et al. 2014). Using 
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these data, the average area burned annually by wildfire in Canada (1985-2010) is estimated to 

be 1.6 Mha (σ =1.1 Mha, where σ denotes the standard deviation). Operationally, annual data is 

acquired by provincial and territorial fire management agencies to track the location, size, and 

cause of wildfires, among other attributes. These jurisdictional data are compiled with other 

sources to produce the Canadian National Fire Database (CNFDB; Amiro et al. 2001; Stocks et 

al. 2003; Parisien et al. 2006; Burton et al. 2008). The CNFDB, which typically does not exclude 

unburned islands and water bodies from its fire perimeters, estimates an average annual area 

burned of 2.3 Mha (σ =1.9 Mha; White et al. 2017). While both C2C and CNFDB provide 

estimates of burned area, there are opportunities to augment and further refine burned-area 

estimates using data from multiple earth observing satellites. 

Individual sensors have been used to detect characteristics of forest fires, creating 

retrospective maps of burned area at a variety of spatial resolutions. For example, the MODIS 

Collection 6 MCD64A1 global burned area product provides geographic locations and timing of 

fires at 500 m spatial resolution derived using a burn-sensitive vegetation index (Giglio et al. 

2015; Humber et al. 2018). MODIS-derived products provide high temporal but low spatial 

resolution for monitoring fires, and spatial interpolation techniques have been used to downscale 

its coarse resolution for fire analyses across North American forests (de Groot et al. 2007; de 

Groot, Pritchard, and Lynham 2009; Parisien et al. 2011; Parks, Parisien, and Miller 2012; Parks 

2014). For Canadian boreal forests, the Normalized Burn Ratios (NBR) and the differenced pre-

disturbance and post-disturbance NBRs (dNBR) are reliable estimators of burned areas (Key and 

Benson 2006; Hall et al. 2008; Soverel, Perrakis, and Coops 2010, Soverel et al. 2011; 

Hermosilla et al. 2016, 2017; White et al. 2017; Frazier et al. 2018). The NBR and dNBR have 

been used with fine-scale Landsat time series to detect stand-replacing fires in Canadian forested 
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ecosystems at annual time steps (e.g., Schroeder et al. 2011; Hermosilla et al. 2016; 2017; San-

Miguel, Andison and Coops 2017; White et al. 2017; Frazier et al. 2018; San-Miguel, Andison 

and Coops 2018). In a few cases, observations from multiple sensors have been combined to 

enable retrospective mapping. For example, the dNBR can be calculated from pre-fire Landsat-8 

and post-fire Sentinel-2 observations (Quintano, Fernández-Manso, and Fernández-Manso 

2018). These retrospective maps of extinguished fires are useful for managers (Roy et al. 2005; 

Lentile et al. 2006; San-Miguel, Andison and Coops 2017), but the rapid spread and associated 

smoky conditions render near-term classification of a fire's rapidly changing extent difficult. 

Recent developments suggest that information from multiple satellites can be combined 

at greater temporal resolution not only for retrospective mapping but also for estimating fire 

growth while the fire is still active. Until very recently, the density of available data was such 

that fine-scale near-real-time monitoring of fires was impractical due to high costs and sparse 

frequencies of observations. Fusing observations from multiple sources advance the possibility 

of monitoring in near-real-time (Li and Roy 2017; Wulder et al. 2018), such as during the active 

phase of fires. The Bayesian Updating of Land Cover (BULC) algorithm synthesizes 

classifications of individual images through time by weighing evidence from multiple 

classifications to produce a time series of land undergoing rapid change (Cardille and Fortin 

2016). BULC records the land-use land-cover (LULC) history for each class of stability and 

change across large areas, allowing users to view the trajectory and probability of any pixel in 

the image calculated using Bayes' Theorem. In this letter, we demonstrate how combining 

observations from multiple sensors can facilitate the mapping of active fires. This fusion takes 

advantage of the growing frequency and quality of sensors with different spectral and spatial 
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characteristics, capturing near-real-time growth patterns of long-lived fires to inform managers 

and planners interested in fire risk, spread, and impact. 

3.2 Materials and Methods 

3.2.1 Study Area 

The 2017 fire season was the largest on record for British Columbia (BC) and mapping 

these fires is important for monitoring forest-disturbance impacts, with considerations related to 

timber supply, carbon consequences, and animal habitat. One of the largest fires was the 

Elephant Hill fire, also known as the Ashcroft fire (K20637). This fire started on July 11, 2017, 

north of Ashcroft, British Columbia and was contained by October 2. The Elephant Hill fire's 

eventual perimeter grew to 511 km, based upon data shared by the British Columbia Wildfire 

Service. The final burned area within this perimeter was reported to be 192,016 ha, damaging 

infrastructure in addition to forested lands (BC Wildfire Service 2017a; BC Wildfire Service 

2017b). For context, the final burned area of this individual fire was two-thirds of the cumulative 

burned area for the entire 2015 fire season (280,738 ha burned by 1,858 fires), and double that of 

the total area burned in the 2016 fire season (102,019 ha burned by 1,050 fires; BC Wildfire 

Service 2017c). 

3.2.2 Provisional classifications using Landsat-8 OLI, Sentinel-2 and MODIS 

Images intersecting the Elephant Hill fire perimeter from summer and autumn 2017 were 

identified for classification in Google Earth Engine, a cloud-based platform for accessing and 

processing satellite imagery and geospatial datasets (Gorelick et al. 2017). Differences over the 

dNBR threshold outlined in Hall et al. (2008) were classified as ‘Burned/Burning’; those below 
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the threshold were classified as ‘Unburned’ at that time step (e.g., Frazier et al. 2018). The 

treatment of each of the relevant sensors—Landsat-8, Sentinel-2, and MODIS—differed slightly 

and are described below. 

Landsat-8: We computed the pre-fire NBR using a 2016 BAP gap-free reflectance 

composite that was generated following the C2C approach (e.g., White et al. 2014; 2017; 

Hermosilla et al. 2016; 2017). To compare with the pre-fire status, we identified 10 Landsat-8 

surface reflectance images from six different dates, with each image having less than 10% cloud 

cover. We masked clouds and haze before classification using the pixel-level Quality Assurance 

(QA) band (Zhu 2017; Egorov et al. 2018; USGS 2018). We differenced the NBR of each image 

with the pre-fire NBR to produce six dated provisional classifications for use in BULC. 

Sentinel-2: We identified 33 Sentinel-2 (A and B) images with less than 10% cloud cover 

on 11 distinct dates, for classification and use in BULC. In Earth Engine, we generated a pre-fire 

best-available-pixel image using similar pixel selection criteria as used in C2C. We then 

calculated the pre-fire NBR values for each pixel for comparison to each image's post-fire NBR 

values. Because observations from Sentinel-2 are provided in UTM tiles smaller than the study 

area, we mosaicked the Sentinel-2 images for each distinct day before classification then masked 

clouds and haze using the QA band of Sentinel-2 observations. The result was 11 date-specific 

classifications that were used as inputs in BULC. 

MODIS: We identified monthly summaries of burned areas from the MODIS Collection 6 

MCD64A1 burned area product, for classification and use in BULC (Giglio et al. 2015; Humber 

et al. 2018). This raster data product detects day-of-burning globally at 500 m resolution with an 

average uncertainty of 4.3 days and a processing delay between 1.5 to 3 months for the Elephant 

Hill fire. Because the burned-area product contains the detected burn date in each of the three 
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monthly images, we reclassified these MODIS burned-area products into Burned/Burning and 

Unburned layers in 15-day summaries. The result was six date-specific summary classifications 

that were used as inputs to BULC. 

Across the three sources, there were 23 provisional classifications of burned area from 19 

distinct imaging dates during the study period. Using observations from multiple remote sensing 

sources greatly reduced the revised interval considered across the portfolio of sensors., we were 

able to increase the frequency of observations to reduce the temporal revisit intervals provided 

by the sensors (e.g., Li and Roy 2017). The six Landsat-8 surface reflectance classifications, 

eleven Sentinel-2 classifications, and six MODIS bi-weekly classifications were ordered by date 

and used as provisional classification inputs in the BULC algorithm for the Elephant Hill fire 

study area, outlined in Table 3.1. The combined sensors imaged each pixel an average of 19.5 

times between July 5 and October 30, with the entire study area having been imaged at least once 

in 13 of the 15 weeks that the fire burned. 

 

Table 3.1 Satellite source and acquisition dates for Elephant Hill fire observations, whether 

MODIS, Landsat-8, or Sentinel-2, that were used as inputs in BULC. 

 July August September October 

 5 14 20 30 4 6 11 19 22 26 3 15 16 18 28 3 5 10 30 

Landsat-8 ✕ ✕   ✕   ✕     ✕       ✕             

Sentinel-2         ✕ ✕ ✕     ✕   ✕     ✕ ✕ ✕ ✕ ✕ 

MODIS ✕   ✕   ✕     ✕     ✕     ✕           
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3.2.3 BULC 

To synthesize the information from these three different sensors, we used the BULC 

algorithm (Cardille and Fortin 2016). BULC applies Bayes' Theorem to interpret a series of time-

ordered provisional classifications, synthesizing a time series that shows change and stability in 

the study area at the per-pixel level. To gauge the reliability of a given provisional classification 

to the construction of the time series, BULC compares each new classification—from any data 

source—against the previous classification in the time stack. Using the Producer’s Accuracy as 

the conditional probabilities in Bayes’ Theorem, BULC traces the probability of both classes 

through time. As detailed in Cardille and Fortin (2016), BULC can synthesize moderate-quality 

classifications over short time intervals to track rapidly changing landscapes. BULC tolerates 

occasional errors (i.e., resulting from smoke, clouds), and is thereby an ideal fusion algorithm for 

active-phase fire classification. BULC is able to quantify the burned and burning area of a fire at 

intermediate time steps between the beginning and end of individual fire events utilizing the 

dense stack of relatively clear provisional classifications from Landsat-8, Sentinel-2, and 

MODIS in Google Earth Engine. 

 

3.3 Results 

The Elephant Hill fire burned unevenly throughout its active phase: rapid escalation in late July, 

slow and steady growth until late August, an accelerated phase until mid-September, and 

containment by October (Figure 3.1). 
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Figure 3.1 Growth in Elephant Hill burned area through time as synthesized in BULC from 

Landsat-8 (L), Sentinel-2 (S), and MODIS (M). The line indicates BULC estimated 

Burned/Burning area through time, while bars show the high variability among provisional 

classifications from each sensor. 

 

         BULC synthesizes provisional input classifications from the active phase of the fire, 

which allows per-pixel burn detection within the British Columbia fire-event perimeter at the 

collection date of each event. Figure 3.2 shows the final fire perimeter delineated by the British 

Columbia Wildfire Service superimposed on the BULC burned-area estimates for the Elephant 

Hill fire at the following time steps: July 5 (a), July 30 (b), August 26 (c), and October 30 

following 100% containment (d). Figure 3.2(b) is the product of five images over 3.5 weeks and 

shows fire growth from 461 ha on July 20 to 50,122 ha on July 30. Figure 3.2(c) shows the 

BULC classification that results in 14 images over 7.5 weeks, showing a fire growth from 

113,103 ha on August 22 to 164,738 ha on August 26. Figure 3.2(d) shows the final BULC 

classification of Burned/Burning pixels within the BC polygon after the fire had been 100% 

contained. The BULC Burned/Burning area covers 67% of the British Columbia fire agency 
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polygon, amounting to 203,560 burned ha, 6% higher than the estimated 192,016 burned ha (BC 

Wildfire Service 2017a; BC Wildfire Service 2017b). 

 
Figure 3.2 BULC burned-area classification estimates in red within the BC Elephant Hill fire 

perimeter on dates July 5 (a), July 30 (b), August 26 (c), October 30 (d). 

 

The BULC fire classifications detect unburned pixels within the BC fire perimeter. 

Figure 3.3 compares zoomed regions of the final MODIS burned-area summary with the final 

BULC classifications for the Elephant Hill fire. The MODIS burned area shown in Figure 3.3(a) 

compared with the final BULC classification shown in Figure 3.3(b) emphasizes the unburned 

pixels within the fire-event perimeter. Additionally, based upon inputs from Landsat and 

Sentinel-2, BULC identifies Burned/Burning pixels at a finer spatial resolution than the MODIS 

dataset. The MODIS burned area, shown in Figure 3.3(c), detects unburned pixels with a coarser 

resolution than the fine spatial resolution of the final BULC classification in Figure 3.3(d). 
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Figure 3.3 Post-fire, final MODIS Collection 6 MCD64A1 burned pixels zoomed to 500 m 

following October 30, 2017 centred on 121° 29' W, 50° 55' N (a) compared with the final BULC 

classification (b); post-fire, final MODIS Collection 6 MCD64A1 burned pixels centred on 121° 

9' W, 51° 0' N (c) compared with the final BULC classification (d). The multi-sensor approach of 

the final BULC classification refines the edges of both burned and unburned objects present in 

the coarser MODIS Collection 6 MCD64A1 dataset. 

 

As BULC processed provisional input classifications, the new information contained 

therein updated the synthesized classification of the burned area, as shown in Figure 3.4. As the 

fire progressed through the area surrounding -120.933, 51.286, MODIS-based provisional 

classification from September 3 changed the probability of fire from around 38% to 62%, high 

enough to tip the estimated LULC to Burned/Burning in Figure 3.4(a). The next view of the area, 

Sentinel-based provisional classification from September 15 confirmed most of the September 3 

classification and changed the probabilities of many of the pixels to be 70% in Figure 3.4(b), 

which classified the LULC to Burned/Burning in those corresponding pixels. The subsequent 
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view of the area (imperfect Landsat-based provisional classification from September 16) refined 

the BULC classification further. The newly burned pixels in the northwest had a probability of 

being Burned/Burning around 58% and therefore were captured as Burned/Burning in the BULC 

classification, and the nearby pixels in the southwest that had not been classified as 

Burned/Burning were between 24% and 44% probability in Figure 3.4(c). 

 

Figure 3.4 As the fire progresses in this region (zoomed on 120° 59' W, 51° 17' N) from 

September 3 to September 16, the imperfect provisional classifications in row (a) provide 

evidence of Burned/Burning to influence the per-pixel probabilities in row (b) (lighter gradient 

depicts larger probabilities), and the updated probabilities classify the pixels as Burned/Burning 

in the BULC classification in row (c). 
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3.4 Discussion 

In this study, we have demonstrated a highly automated approach for combining 

accessible data products for active fire monitoring. The application of the BULC algorithm on 

dNBR and other burned-area classifications provides a seamless and multi-sensor method for 

synthesis of burned-area observations. This method combines observations from disparate data 

sources to increase the frequency of usable images to work towards near-real-time detection of 

burned areas during the fire’s active phase. Additional methodological novelty is demonstrated 

by the capacity to increase temporal revisit rates supporting the reconstruction of active fire 

lifespans to better understand fire growth and underlying drivers with high temporal frequency 

and fine spatial resolution. 

         In this case study, we found that observations from each sensor contributed to the time 

series tracking the growth of the Elephant Hill fire, thus supporting the fusion of multi-sensor 

observations to expand near-real-time burned-area detection (Hilker et al. 2009a; 2009b; Wulder 

et al. 2010; Li and Roy 2017; Wulder et al. 2018). Relying exclusively on Landsat-8 input 

classifications, our fire time series would be limited to burn detection primarily early in the 

active fire phase. Similarly, using only input classifications from Sentinel-2, the fire time step 

would be limited to burn detection after the first major growth in late July. Lastly, utilizing only 

MODIS burned area data would have caused over-classification of burned areas with coarse 

pixel resolution (Fraser et al. 2004; White et al. 2017). Even though BULC was able to create a 

credible time series using these sources, it was not quite real-time mapping: the density of data 

limited the BULC classification of the fire's burned area to about a 1-week delay. Because 

BULC is not limited to any set of sensors, as additional imagery becomes available the time 

series can become more narrowly timed, perhaps to a sub-weekly time series. 
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         The findings of this research provide a method for synthesizing burned-area 

classifications from multiple sources with varying scales and resolutions, including single-date 

remote sensing, burned-area detection algorithms, and jurisdictionally produced fire perimeters. 

For reconstructing the British Columbia 2017 fire season, there are observations available from 

other platforms (e.g., Landsat-7, Sentinel-3) that BULC could also incorporate imagery to create 

a sub-weekly time series. Due to the portability of the post-classification synthesis approach 

presented, future studies can apply these methods to create temporally dense fire-classification 

stacks for burned-area detection whether analysing fires in near-real-time or retrospectively. 
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Preface to Chapter 4 

In Chapter 3, I prototyped a method for reconstructing the Elephant Hill fire’s 

progression using multi-source, open-access satellite data with a Bayesian synthesis algorithm in 

Google Earth Engine. Chapter 3 was a novel contribution to the field because it used both multi-

source data and a cloud-based processing platform to support future wildfire monitoring with all 

available open-access data. Chapter 3 served as a prototype for Chapter 4, where this approach 

will be used to reconstruct burn progressions for 89 stand-replacing fires from the 2017 British 

Columbia fire season.  

Building upon the methods presented in Chapter 3, I apply the Bayesian synthesis 

algorithm on over 1500 observations from four satellite sensors with a sub-weekly temporal 

resolution. I employ an image segmentation approach in the provisional burned classification 

creation before Bayesian fusion, thus illustrating future opportunities for working in an object-

based rather than pixel-based burned-area mapping framework. I also use these fire progressions 

to create fire and fire season progression metrics, making Chapter 4 a novel contribution to the 

field of remote sensing and fire science. 

Chapter 4 was published in 2019 in Remote Sensing of Environment and uses the Harvard 

citation style.  
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Highlights 

● Retrospective and near real-time wildfire maps using data from multiple sensors 

● Bayesian-synthesized Earth observation data for mapping wildfire progression 

● Daily and weekly fire progression metrics to quantify and characterize fire behaviour 

● 35-week time series provided updated weekly burned areas for 89 fires in 2017. 

● Each pixel within a fire perimeter observed an average of 34 times April–December. 

Abstract 

The 2017 fire season was one of the largest on record for British Columbia (BC), Canada, in 

terms of total area burned (estimated 1.2 million hectares), affecting the safety and air quality of 

numerous communities. Moreover, fires of this number and extent alter the wood supply for 

harvesting, the nature of habitat for wildlife, and can affect regional and national carbon budgets. 

As a result, it is important to map these fires accurately and to monitor within-year fire 

progression in order to quantify the resulting forest-disturbance impacts fully. The Bayesian 

Updating of Land Cover (BULC) algorithm was used to merge burned-area classifications of 

individual fires from a range of remote sensing sources such as Landsat-7, Landsat-8, Sentinel-2, 

and MODIS (MCD64A1) burned-area dataset. Together, these provisional classifications imaged 

each pixel within a known fire perimeter an average of 33.8 times between April 1 and 

December 1. The resulting 35-week time-series stack had updated weekly burned areas for each 

of the 89 fires in BC in 2017. Province-wide fire progression was variable throughout the period 

analyzed, characterized by a steady burn phase of 41,437 ha (5% of total area burned) over a 

two-week period in early July, an accelerated burn phase of 149,422 ha  (17%) from mid-July to 

early August, another steady burn phase of 218,079 ha (24%) for one month until early 
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September, and a second accelerated burn phase of 301,931 ha (34%) over two weeks in late 

September with subsequent steady growth of 180,119 ha (20%) over 1.5 months until 

containment in late October. Herein, we demonstrate how such temporally dense fire 

classification stacks can be used to analyze fire progression over the course of a fire season (both 

retrospectively and in near-real time) providing useful metrics to characterize and compare fire 

events. End-of-season burned-area estimates correspond with estimates derived from the 

National Burned Area Composite (NBAC) product that is generated retrospectively from fire 

best-available mapping approaches. This rapid interpretation of information enables the analysis 

of suppression success and potential drivers of fires spread while facilitating analyses of carbon 

budget consequences as well as impacts to communities and timber supply. 

  

4.1 Introduction 

In 2017, British Columbia (BC), Canada, faced its most severe fire season to date in 

terms of total area burned. Due to the severity of the wildfires, BC was in an official State of 

Emergency from July 7 to September 15, the longest-running State of Emergency in the history 

of the province (British Columbia, 2018). Single fires such as the Plateau fire grew to be 

quadruple the size of the total area burned in the 2016 BC fire season and a quarter of the long-

term annual mean burned area for all of Canada (BC Wildfire Service, 2017a; Natural Resources 

Canada, 2018a). The number, size, duration, and intensity of BC’s wildfires have large-scale 

impacts on communities, surrounding ecosystems, industries, carbon balances, and more. 

Reflecting upon this extreme fire season, the BC government issued a report describing the 2017 

fire season as “the new normal” for wildfire conditions and vulnerability for future fire seasons 

within the province (Abbott and Chapman, 2018). As part of the report, recommendations were 
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made to increase real-time, near-term, and consistent mapping approaches for monitoring the fire 

disturbances to aid in planning and emergency responses (Abbott and Chapman, 2018). Thus, it 

is vital for highly systematic and rapid large-scale disaster mapping and near-term monitoring of 

wildfires to better aid communities and understand fire ecology and underlying factors that 

contribute to their behavior in these wildfire-prone areas. This recent increase in burned area and 

wildfire occurrence is not unique to BC, however. Longer-term trends indicate a greater fire 

season length at the global (Jolly et al., 2015) and increasing fuel loads and fire activity related to 

a changing climate in western North America (Abatzoglou and Williams, 2016), further 

underscoring a need for systematic monitoring efforts in Canada (Bowman, 2018). 

Several national datasets capture annual area burned information for Canada. First, each 

jurisdiction (i.e., province or territory) maps the final perimeters of major fires; each 

jurisdictions’ dataset is then combined to produce the Canadian National Fire Database 

(CNFDB; Amiro et al., 2001; Burton et al., 2009; Parisien et al., 2006; Stocks et al., 2003). An 

aspatial database of burned area is also maintained by the Canadian Council of Forest Ministers 

(CCFM; Canadian Council of Forest Ministers, 2018). The Carbon Accounting Program for 

Canada’s forest sector requires more detailed fire boundaries and estimates of burned area, which 

led to the development of the Canadian National Burned Area Composite (NBAC; Stinson et al. 

2011). NBAC uses a compilation of data sources, including jurisdictional data (as per CNFDB) 

and satellite data such as Landsat, to capture refined fire perimeters by excluding large, unburned 

islands and waterbodies (de Groot et al., 2007; Fraser et al., 2000). Lastly, the Composite-to-

Change (C2C) protocol provides a fully automated remote-sensing-based methodology for 

mapping forest disturbances including burned areas, using the annual proxy best-available-pixel 

(BAP) composites across the 30m Landsat record (Hermosilla et al., 2016, 2017; White et al., 
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2017). The cloud and gap-free BAP composites allow for similar growing conditions inter-

annually, to enable long-term forest disturbance monitoring and inventorying (White et al., 

2014). Each of these products provides post-hoc estimates of total national annual burned area, 

but there is further opportunity to map and refine near-term burned-area estimates using data 

from multiple Earth-observing satellites across large regions such as BC. 

         Several remote-sensing platforms can be used to estimate burning and burned areas at a 

variety of spatial resolutions for forest disturbances in Canada. The Canadian Forest Service uses 

data from AVHRR, MODIS, and VIIRS for its Fire Monitoring, Mapping, and Modeling (Fire 

M3) daily hotspot map that is publicly available and utilized by fire agencies across Canada to 

assess near-real-time fire activities (Fraser et al., 2000). The daily, coarser-resolution MODIS 

Collection 6 MCD64A1 global burned area product provides geographic locations and timing of 

fires at 500m spatial resolution (Giglio et al., 2015; Humber et al., 2018). For finer scale 

disturbance analyses in Canadian and North American forests, spatial interpolation techniques or 

fusion with Landsat imagery have been used to downscale the coarse resolution of the MODIS, 

while at the same time leveraging the high temporal frequency of MODIS imagery and data 

products (de Groot et al., 2007, 2009; Hilker et al., 2009a, 2009b; Parisien et al., 2011; Parks et 

al., 2012; Parks, 2014). For Landsat-8 and Sentinel-2, the Normalized Burn Ratio (NBR) and its 

subtractive change from a pre-fire value (dNBR) provide reliable, fine-scale annual estimates of 

burned areas from stand-replacing fires for Canadian boreal forests (Frazier et al., 2018; Hall et 

al., 2008; Hermosilla et al., 2016, 2017; Key and Benson, 2006; San-Miguel et al., 2017, 2018; 

Schroeder, et al. 2011; Soverel et al., 2010; 2011; White et al., 2017). However, the final maps 

created from these pixel-based burned-area mapping techniques can be heavily impacted by on-

the-ground haze, smoke, and flare fire conditions that cause low-quality or missing data. 
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         There is an opportunity for near-real-time monitoring of disturbances such as fire through 

data-synthesis of observations from numerous sources (Li and Roy, 2017; Wulder et al., 2018). 

Within-year fire progression can be constructed by fusing observations from multiple data 

sources into a synthesized time series, however three main limitations that remain. First, the 

smoke and haze from fires can obscure active fire visibility in observations from optical sources, 

creating difficulties for the classification of an active fire’s mid-burn extent from a single-date 

image. Second, due to the coarse resolution of MODIS imagery, daily products detect only the 

largest unburned islands within fire perimeters and can result in overestimation of cumulative 

burned areas. Third, the processing requirements (e.g., download, correction, normalization, and 

interpretation) of multiple data streams over large areas for near-daily observations create a 

challenging image analysis environment and data processing load. Despite these challenges, 

there are complementary strengths of these data streams (e.g., temporal frequency of MODIS, 

temporal frequency and spatial resolution of Sentinel, high-accuracies for boreal forest 

disturbance detection of Landsat) that could potentially be combined for mapping of fires in 

near-real-time (e.g., Boschetti et al., 2015; Hilker et al., 2009a, 2009b; Korhonen et al., 2017; 

Mora et al., 2013; Roy et al., 2014; Wulder et al., 2010). Crowley et al. (2019) adapted the 

BULC algorithm (Cardille and Fortin, 2016; Lee et al., 2018) to map the growth and extinction 

of a single fire event (Elephant Hill fire) at a near-weekly frequency for a small area (<200,000 

ha). That research explored the opportunity for combining multi-source satellite image fusion for 

reconstructing a high-resolution burn progression time series for a single fire. 

This research analyzes fire progressions for a given fire season over the entire province of 

British Columbia, Canada, with a forest area of approximately 60 million ha. We are able to 

examine the cumulative fire season trends as well as individual fire behaviors throughout the fire 
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season. Our objectives are four-fold. First, we present a methodology for weighing multi-scale, 

multi-source burned-area evidence incorporating many fires over a 245-day study period using a 

singular, statistically driven post-classification fusion algorithm (BULC). Second, we apply a 

newly available segmentation algorithm in Google Earth Engine and a multi-source dNBR 

technique. Third, we present an automated approach that employs the provisional classification 

and synthesis entirely using data and functionality made available in Google Earth Engine. 

Fourth, we demonstrate how the derived information outputs can be used to characterize the 

spatio-temporal development of the fires over the course of the fire season, introducing novel 

metrics enabled by the applied methods. In sum, the objective of this work is to track detailed 

fire progressions over an extremely large area for an entire fire season using observations from 

multiple sources of imagery with differing spatial, temporal, and spectral characteristics. 

 

4.2 Materials and Methods 

4.2.1 Study Area 

The 2017 British Columbia fire season began in April, with an exceptional increase in the 

burned area following a series of extreme thunderstorms between July 6 to July 8, and a second 

surge in fire activity in August due to sustained hot and dry weather and heightened build-up of 

fuels (BC Wildfire Service, 2017a). The BC Wildfire Service estimated a total of 1.2 million 

hectares burned throughout the fire season, resulting in $568 million in fire suppression costs 

(BC Wildfire Service, 2017a). 

         The four largest wildfires from the 2017 fire season comprised an estimated 80% of the 

total burned-area from the 2017 fire season in BC (Figure 4.1). The largest fire of the season, the 

Plateau fire (C10784), was identified on July 7 within the Itcha Ilgachuz Provincial Park, west of 
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Quesnel and northwest of Williams Lake (BC Wildfire Service, 2017c). This massive interface 

fire grew to an estimated 520,885 ha from multiple smaller fires merging (BC Wildfire Service, 

2017c). The second largest fire of the 2017 fire season in terms of area burned, the Hanceville-

Creek fire (C50647), was an interface fire located southwest of Williams Lake (BC Wildfire 

Service, 2017d). Hanceville-Creek fire was discovered on July 8 and grew to an estimated size of 

239,339 ha (BC Wildfire Service, 2017d). The third fire examined, the Elephant Hill fire 

(K20637), was an interface fire located near Ashcroft and was used as the prototype study area in 

Crowley et al. (2019). It was detected on July 6 and grew to an estimated size of 192,016 ha (BC 

Wildfire Service, 2017e). The fourth-largest fire, the White River fire (N21628), grew to an 

estimated size of 26,399 ha after its identification on July 29 northeast of Canal Flats (BC 

Wildfire Service, 2017f). 
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Figure 4.1 The locations of the 2017 British Columbia fires, which comprise the study area, 

shown as NBAC polygons inside the provincial boundary. The four largest fires can be viewed 

individually in the panels on the right. 

4.2.2 Google Earth Engine implementation 

We implemented our burned-area dataset creation and analysis using a series of four 

stages in Google Earth Engine (Gorelick et al., 2017) shown in Figure 4.2 with each stage’s 

inputs and outputs. First, we created provisional classifications using observations from April to 

December 2017 within each fire’s CNFDB perimeter (section 4.2.3). Second, we synthesized the 

provisional classifications together using the BULC algorithm (section 4.2.4). Third, we 

compared the end-of-season mapped fire areas to the corresponding interpretations in the NBAC 
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dataset (section 4.2.5). Lastly, we produced whole-season and whole-province analyses of 

changing fire behaviors and patterns through time in the 2017 BC fire season. Data are described 

in greater detail within each subsequent methods section. 

 

Figure 4.2 Outline of the four stages of analysis for this research, shown in a simplified flow 

chart (yellow represents inputs, green represents processes, and red represents outputs). Stage 1 

(left) created provisional classifications that were then used in the BULC algorithm in Stage 2 

(center). The output from Stage 2 was used in the validation in Stage 3 (right). The validated 

outputs from Stage 3 were then analyzed further in Stage 4 (bottom). 
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4.2.3 Provisional classifications using Landsat-8, Landsat-7, Sentinel-2, and MODIS 

We identified 207 Landsat-8 OLI/TIRS Collection 1 Level-2 surface reflectance images, 

200 Landsat-7 ETM+ Collection 1 Level-2 surface reflectance images, and 1094 Sentinel-2 MSI 

Level-1C images with less than 20% cloud cover between April 1 and December 1, 2017, 

intersecting with the fire perimeters. We masked all clouds and haze before classification using 

the pixel-level Quality Assurance (QA) band for Landsat and Sentinel-based imagery (Egorov et 

al., 2018; USGS, 2018; Zhu, 2017). 

We implemented the differenced Normalized Burn Ratio (dNBR; Key and Benson, 1999, 

2006) on the Landsat and Sentinel imagery to create provisional classifications of burned area for 

each fire in each image. First, we calculated the Normalized Burn Ratio (NBR) (Key and 

Benson, 1999, 2006), which captures the variation between healthy vegetation and burned areas 

detected in the near-infrared (NIR) and shortwave infrared (SWIR) wavelengths. The ratio is 

calculated per-pixel for each image by dividing the NIR minus SWIR reflectance values by the 

NIR plus SWIR reflectance values. Low NBR values correspond with bare and burned areas and 

high values correspond with vegetation. 

Each active-fire NBR image was segmented into median-NBR objects using the Simple 

Non-Iterative Clustering (SNIC) segmentation algorithm available in Google Earth Engine 

(Achanta and Süsstrunk, 2017). Segmentation algorithms like SNIC create pixel clusters using 

imagery information such as texture, color or pixel values, shape, and size and are especially 

useful for forest disturbances (Blaschke, 2010; Wulder et al., 2004). Many fire-detection 

methods rely on pixel-based approaches, but image segmentation offers advances for the 

refinement of burned-area imagery (Gitas et al., 2004; Veraverbeke et al., 2012). In particular, 

SNIC is a bottom-up, seed-based segmentation approach that groups neighboring pixels together 
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into clusters based on input data and parameters such as compactness, connectivity, and 

neighborhood size. To segment each active-fire NBR image, we set the SNIC parameters as 

follows: compactness was set to 0.1 to enable larger clusters, connectivity was set to 8, the 

neighbourhood size was set to 8 pixels to avoid tile boundary artifacts, and the seeds were 

created in a hexagonal pattern using a superpixel seed spacing of 4 pixels. 

Using the 2016 BAP composite a pre-fire expected NBR; we calculated the differenced 

Normalized Burn Ratio (dNBR) using each segmented active-fire NBR image. The dNBR is 

calculated by subtracting the post-fire NBR from the pre-fire NBR, where negative and lower 

values correspond with regrowth and unburned vegetation and higher values correspond with fire 

severity (Key and Benson, 2006). The dNBR index is often calculated using single-source 

imagery, however, observations from pre-fire Landsat-8 and post-fire Sentinel-2 can be 

combined to enable retrospective mapping without impact on stand-replacing fire map accuracy 

(Quintano et al., 2018). For this reason, we utilized the 2016 BAP gap-free surface reflectance 

composite that was generated following the C2C approach to calculate the pre-fire NBR to 

compare with Landsat-7, Landsat-8, and Sentinel-2 observations (e.g., Hermosilla et al., 2016, 

2017; White et al., 2014, 2017). We differenced the segmented active-fire NBR of each image 

with the pre-fire NBR to produce 259 dated provisional classifications from Landsat-7, -8 and 

Sentinel-2 for use in BULC, from 157 distinct dates during the study period. This approach pre-

processed each dNBR image with temporal contextualization from the BAP protocol and spatial 

normalization from the segmentation. Differences over the stand-replacing fire dNBR threshold 

(dNBR > 0.284) for moderate to high severity, as outlined in Hall et al. (2008), were classified as 

‘Burned/Burning’; those below the threshold were classified as ‘Unburned’ at that time step 

(e.g., Crowley et al., 2019; Frazier et al., 2018). 
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To create the MODIS provisional classifications, we summarized 15-day burned areas 

from the MODIS Collection 6 MCD64A1 burned area product as classifications (Giglio et al., 

2015; Humber et al., 2018). This raster data product detects day-of-burning globally at 500m 

resolution with an average uncertainty of 5.3 days and a processing delay between 1.5 to 2.5 

months for the 2017 BC fires. Each monthly MODIS burned-area raster contains the detected 

day-of-burn for pixels, we reclassified these MODIS burned-area products into Burned/Burning 

and Unburned layers in 15-day summaries. The result was 17 date-specific summary 

classifications that were used as inputs to BULC. 

In total, we classified 276 provisional classifications spanning 167 distinct imaging dates 

during the study period. The 83 Landsat-8 surface reflectance classifications, 76 Landsat-7 

surface reflectance classifications, 100 Sentinel-2 classifications, and 17 MODIS bi-weekly 

classifications were ordered by date and used as provisional classification inputs in the BULC 

algorithm. Combined, these sensors imaged each pixel within the fire perimeters an average of 

33.8 times between April 1 and December 1, with the entire study area imaged approximately 

once in each of the 35 weeks of the fire season. 

4.2.4 Bayesian Updating of Land Cover (BULC) algorithm 

We used the BULC algorithm to fuse the burned-area information from the four sources 

for the 2017 fires (Cardille and Fortin, 2016; Crowley et al., 2019). BULC applies Bayes' 

Theorem to each pixel within each time-ordered provisional classification. The provisional input 

classifications are used as the prior knowledge in Bayes’ Theorem and contribute to the 

synthesized time series summarizing evidence-based change and stability for each pixel. First, 

provisional classifications are ordered temporally and compared pixel-by-pixel to calculate their 

correspondence in an agreement matrix. This agreement matrix serves as conditional 
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probabilities in Bayes’ formula, which are then tracked for each class in each pixel for the 

duration of the time series. BULC traces the probability of two classes, burned and unburned, 

corresponding to the two classes from the dNBR classifications. Probabilities are updated 

through time using new evidence provided by each new provisional classification in the stack. 

The most-likely class per pixel is evaluated to create the BULC classification at each time step in 

the series. 

BULC can be used to fuse varying-quality classifications over fine temporal scales to 

track rapidly changing landscapes, as detailed in the context of a 2013 wildfire in Quebec in 

Cardille and Fortin (2016). Like other burned-area classifying algorithms (Padilla et al., 2014, 

2015), BULC’s burned-area estimations correspond with the availability of images from a given 

provisional classification source. For example, if clear observations from a single source are only 

available monthly, this can cause a delay in the temporal burn date given by BULC. As BULC is 

sensor-independent (Cardille and Fortin, 2016), data acquired by more sensors can be considered 

by the algorithm to improve the frequency and accuracy of the fire sequence to rectify any 

temporal gaps in imagery availability from a single source. Additionally, BULC can 

accommodate occasional errors such as from smoke, clouds, haze by relying on the input 

classifications from multiple data sources to fill temporal and quality gaps in imagery.         

A previous study has demonstrated the ability for BULC to fuse information from 

multiple data sources into a singular, consistent fire progression dataset in British Columbia for a 

large fire event (203,560 ha; Crowley et al., 2019). Fusing images from Sentinel-2, Landsat-8, 

and MODIS, BULC leveraged the temporal and spatial resolution strengths of data from each 

sensor to produce a spatially explicit time series that documented the fire’s changing patterns at 

sub-weekly time scales and at the 30m spatial resolution of Landsat. Therefore, BULC is able to 
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estimate the burned area of an active fire at intermediate time steps relying on a dense stack of 

relatively clear provisional classifications from multiple sources in Google Earth Engine. 

4.2.5 Agency data for fire perimeters and burned-area estimates 

4.2.5.1 Canadian National Fire Database (CNFDB) 

At the end of the fire season, the BC Wildfire Service digitizes official fire perimeters for 

each fire available in a vectorized dataset that is then used in the CNFDB compilation of fire 

perimeters across Canada. For the 2017 fire season, the most commonly used methods for 

delineating BC fire perimeters were ground/airborne GPS, manual sketches from observers in 

aircraft, and remote sensing image digitization (e.g., satellite, aerial, digital camera). The 2017 

fire season dataset had 379 distinct fire perimeters for BC, capturing the final extent and 

estimated burned area for each fire as determined by the various provincial fire agencies (BC 

Wildfire Service, 2017b). Of the 379 fire polygons included in the CNFDB database, there were 

290 fire polygons that were either duplicate polygons or grew to be less than <100ha in 

provincially calculated burned area. As these fires typically burned for a limited period (i.e., only 

a few days), they were removed for consideration. This dataset provides the estimated burned 

area for the province each year, and these estimates are further refined following the fire season 

by the remote sensing supported NBAC dataset. 

 

4.2.5.2 National Burned Area Composite (NBAC) 

The NBAC is created in the year following each fire season to provide a more spatially 

refined, vectorized burned area dataset for Canada’s Carbon Accounting Program (Stinson et al. 

2011). For the 89 fires from the 2017 fire season, the most commonly used method for 

delineating the NBAC burned area polygons was using the Canadian Forest Service/Canadian 
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Center for Remote Sensing fine spatial resolution derived products from Single Acquisition Fire 

Mapping System (SAFiMS) or Multi Acquisition Fire Mapping Systems (MAFiMS) software on 

Landsat-based satellite imagery (Table 4.1). For NBAC, SAFiMS and MAFiMS satellite 

mapping is done manually for each fire using pre- and post-fire images, assessed in areas of the 

country with sufficient levels of fire activity. The final NBAC product is generated using a rule-

based algorithm to select the best-available data source for each fire event, considering the 

quality of the data source and the methods used for mapping. For the 89 fires from the 2017 BC 

fire season, 57 NBAC fire events were created from SAFiMS/MAFiMS processing of Landsat 

imagery, including the four largest fires: Plateau, Hanceville-Riske Creek, Elephant Hill, and 

White River. The remaining 32 NBAC fire polygons were based on fire agency polygons (e.g., 

CNFDB), created either from manual sketches or ground/aerial GPS data.  

 

Table 4.1 NBAC Dataset metadata for 89 2017 BC fires including data provider and fire 

mapping method and source. 

Data provider Fire mapping method and source Total fires mapped 

NRCan Remote Sensing SAFiMS/MAFiMS on Landsat imagery 57 

  Aerial Survey GPS 18 

Provincial Fire Agency Field Survey GPS 9 

  Hand Sketch 3 

  Undefined 2 

 

4.2.6 Comparison of burned-area estimates 

The NBAC was used for comparison against the end-of-season BULC burned area maps to 

assess the degree of correspondence in burned area estimates. First, we cross-tabulated the pixels 
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of the NBAC data and BULC at each time step. Using these cross-tabulations, we calculated the 

Dice Coefficient for each date and bias in terms of proportion of burned area between the NBAC 

data with the BULC end-of-series burned-area map, following the validation methods employed 

in Padilla et al. (2015). In particular, the Dice Coefficient in this scenario estimates the spatial 

overlap between the BULC fire-progression dataset and the NBAC dataset, ranging from 0 (no 

agreement) to 1 (complete agreement) (Padilla et al., 2014, 2015). 

4.2.7 Fire progression metrics 

Availing upon the unique information provided by the BULC fire progression data, we 

generated a number of metrics to characterize the 2017 fires in BC (Table 4.2). These metrics 

quantify the spatio-temporal characteristics of the fires in both summary and comparison values 

that can be used to describe and compare the fire season and individual fire behaviors. Fire 

metrics can be calculated at various temporal scales, including daily, weekly, and entire fire 

season. Additionally, these metrics can be calculated relative to the fire season’s calendar 

days/weeks to examine fire season features or relative to the individual fire’s day of fire to 

examine fire-specific features. 
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Table 4.2 Definition and purpose for each fire progression metric, where n is the burned area on 

a given day (d) or week (w). 

 

Fire Progression 

Metric 
Definition Purpose 

Cumulative burned 

area 

Total burned area at each time step 

per fire or per fire season in hectares 

(nt) 

Summary metric for 

burned area over time 

Cumulative area 

relative to max area 

Proportion of cumulative burned 

area divided by maximum burned 

area per fire (nt / nmax) 

Comparison metric for 

burned area over time 

Daily burned area Burned area growth from prior time 

step to current time step per fire in 

hectares (nd – nd-1) 

Summary metric for daily 

burned area change 

Daily burned area 

relative to max area 

Proportion of daily burned area 

divided by maximum burned area 

per fire (nd – nd-1)/(nmax) 

Comparison metric for 

daily burned area changes 

Number of active fires Count of total fires actively burning 

at each time step 

Summary metric 

indicating combined fire 

season activity 

Number of fires at 

peak burn week 

Count of fires per week that have 

their maximum Weekly relative 

change in burned area 

Summary metric 

indicating fire season 

activity per fire 

Weekly observation 

rate 

Average number of observations per 

fire per week during its active phase 

and across entire fire season 

Summary metric for data 

availability per fire 

Weekly relative 

change in burned 

area 

Proportion of burned area growth 

from the past week divided by 

previous week’s burned area amount 

(nw – nw-1)/(nw-1) 

Comparison metric for 

relative weekly burned 

area changes per week 
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4.3 Results 

4.3.1 Correspondence of BULC burned area dataset for BC 

We calculated the Dice Coefficient, bias, relative bias, and relative difference to quantify 

agreement between the NBAC and BULC dataset (Table 4.3). The average relative difference in 

burned area was -7.5% for larger fires with an average Dice Coefficient of 0.76 (e.g., Plateau, 

Hanceville-Riske Creek, Elephant Hill), and -16.0% for smaller fires that had lower average Dice 

Coefficient of 0.61 (e.g., White River). The bias and relative bias for all BC fires pointed 

towards the BULC dataset estimated the burned area as lower compared to the NBAC dataset 

(i.e., bias of -0.34, relative bias of -0.41). The lower estimation of burned area in the BULC-

derived dataset is most evident on the edges of burned objects when comparing the BULC and 

NBAC datasets (Figure 4.3). Both datasets have strong agreement (i.e., ~99% on average) in the 

clearly unburned and much of the burned area (Figure 4.3D, 4.3H, 4.3L, 4.3P), and the BULC 

dataset tends to provide a lower estimate of burned areas corresponding with the satellite 

imagery. The level of correspondence between the BULC burned area estimate with the NBAC 

dataset builds confidence in the BULC outputs. 
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Table 4.3 Dataset validation using the National Burned Area Composite (NBAC), the relative 

difference and the Dice coefficient was calculated using the correspondence between the BULC 

final dataset against individual fire polygons from the NBAC dataset. 

 

Fire Region BULC (ha) NBAC (ha) Relative 

difference (%) 

Dice 

Coefficient 

All BC Fires 890,988 

  

1,057,998 -15.79 0.73 

Plateau 

(C10784) 

381,168 

  

410,382 

  

-7.12 0.75 

Hanceville-Riske 

Creek (C50647) 

199,075 

  

214,293 -7.10 0.76 

Elephant Hill 

(K20637) 

165,894 

  

180,867 

  

-8.27 0.76 

White River 

(N21628) 

16,164 

  

23,153 -30.19 0.66 
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Figure 4.3 For each fire (rows), zoomed final burned area Landsat-8/Sentinel-2 composite in 

column 1 (A, E, I, M), corresponding BULC final classification in column 2 (B, F, J, N), 

corresponding NBAC burned area polygon in column 3 (C, G, K, O) and fire agreement between 

burned area from the BULC fire progression dataset and the burned area from the NBAC dataset 

in column 4 (D, H, L, P). In the Landsat-8 and Sentinel-2 composites in column 1, red areas 

correspond with burned area. 

 

In Figure 4.4, we compare the datasets in terms of their refined capabilities, showing the 

final BULC classification for Elephant Hill fire against the raw Sentinel-2 image for the fire, the 

polygons marking the CNFDB fire perimeter and NBAC burned area, and the final MODIS 

burned area dataset for this fire on October 4, 2017 (following its containment). Evident 
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refinement has been made in burned-area detection to Landsat resolution with this BULC burned 

area dataset with burned-area agreement with the existing refined datasets, while also creating 

fire progression details that will be further examined in the subsequent sections. 

 

 

Figure 4.4 Burned-area dataset comparisons against final burned area Sentinel-2 image from 

October 3 in (A) for the Elephant Hill fire zoomed in at fire edge at 51°10’ N, 121°2’W. The 

resulting October 3 BULC classification within the CNFDB fire boundary is shown in (B), 

highlighting the fine spatial resolution. The NBAC burned area polygon dataset is shown in (C), 

the CNFDB polygon perimeter dataset is shown in (D), and the final MODIS burned area is 

shown in (E). 

4.3.2 Fire progression metrics 

BULC synthesized provisional input classifications from the fire season, which allows 

per-pixel burn progressions within the British Columbia fire-event perimeters at the collection 

date of each provisional classification. Considered together, the 89 fires of the 2017 fire season 

burned unevenly temporally through the summer and autumn (Figure 4.5). The cumulative area 
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burned through the fire season was irregular and was characterized by a steady burn phase of 

41,437 ha for two weeks from its start in early July to mid-month, an accelerated burn phase by 

149,422 ha for two weeks from mid-July to early August, a steady burn phase of 218,079 ha for 

one month from early August to early September, and a second accelerated burn phase of 

301,931 ha for two weeks from early September to mid-September, and subsequent steady 

growth by 180,119 ha for 1.5 months from mid-September until containment in late October. 

Figure 4.5 Cumulative burned-area progression for the 89 fires in 2017 in British Columbia, 

Canada, from the beginning of the fire season in April to December 1, with provisional 

classification frequency denoted by grey bars. 

 

Provisional, burned-area classifications were synthesized together in the same time series 

stack by BULC, and using that dataset, individual fire progressions for each fire polygon can be 

examined in greater detail. The four largest fires of 2017 (Figure 4.6A) accounted for 86% of the 

total 2017 burned area in BC. Individual fires varied in the timing of their burned area and burn 

rates, with many smaller fires burning quickly to their final size (Figure 4.6B) while the larger 

fires experienced longer burn periods. Many smaller fires grow to their final burned area within a 

single day (Figure 4.6B, 4.6C), indicating these fires were extinguished quickly and contained to 

a smaller area. The largest fires grew to their final burned areas more gradually (4.6B), but with 
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spikes in daily burned area following a widespread lightning storm that caused many ignitions 

across BC (Figure 6D). 

By examining the maximum size and burned-area growth rates of the individual fires 

(Figure 4.6), we developed a heuristic to characterize the 2017 fires, characterizing them 

according to size (small versus large) and their rate of spread (slow versus fast). Large fires grew 

to be greater than 20,000 hectares in total burned area, while small fires were smaller than 

20,000 hectares. Fast fires grew more than 40% of their burned area in a single week, while slow 

fires did not. Of the 89 fires we analyzed, 13 were small and slow fires growing to their final 

extent of less than 20,000 hectares steadily across the fire season. These small and slow fires 

accounted for 3% of the total burned area of the 2017 fire season. By contrast, small and fast 

fires (n =72) were less than 20,000 ha in size and had rapid growth periods over their actively 

burning period (e.g., growing to over 40% of their burned area within a single week like the 

White River). Small and fast fires accounted for 13% of the cumulative burned area for the 2017 

fire season. Two fires were large fires (>20,000 ha) and had dispersed growth periods throughout 

their active phase (e.g., Hanceville-Riske Creek, Elephant Hill). These two large and slow fires 

accounted for 41% of the cumulative burned area for the fire season. One fire, the Plateau fire, 

was a large and fast-moving fire that had rapid growth weeks over 40% of its final burned area. 

This single large and fast developing fire event accounted for 43% of the cumulative burned area 

for the 2017 fire season 
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Figure 4.6 Individual fire (A) cumulative burned-area progression in ha, (B) cumulative burned-

area progression relative to maximum area, (C) daily burned area relative to maximum burned 

area, (D) daily burned area in ha for each of the 89 fires in 2017 in British Columbia, Canada, 

from the beginning of the fire season in April to December 1, with the four fires presented in 

greater depth in the following sections colored uniquely. 
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Fire progressions and corresponding metrics can be summarized to weekly attributes to 

better identify key periods of the fire season. For fires of all sizes, there were two key periods of 

individual fire growths compared to previous weekly burned areas, occurring in week 18 (end of 

July) and week 26 (mid-September) of the fire season (Figure 4.7A). The number of fires 

actively burning increased notably by 33% between July 16 and July 27, corresponding with a 

widespread lightning storm on July 17 that caused many ignitions across BC (Figure 4.7B). 22 

fires had their peak burn weeks in week 18 (July 29) following the lightning storm, and 21 

additional fires had their peak burn week during week 26 beginning on September 23 (Figure 

4.7C). BC fire agencies employed many resources to contain all of these growing fires during 

their peak burn weeks in July (Figure 4.7B, 4.7C; Abbott and Chapman, 2018). However, the 

four largest fires steadily grew out of control following that period to contribute the largest areas 

to the cumulative burned area and the largest daily burned areas (Figures 4.6A, 4.6D, 4.7A). 

Following the second peak burn week in mid-September, 67% of the fires were extinguished 

between September 23 and October 7 as shown by the decreasing total count of active fires after 

week 26 (Figure 4.7B). 
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Figure 4.7 Weekly fire season attributes, including (A) weekly relative change in burned area for 

each fire, (B) number of active fires, (C) number of fires’ peak burn weeks, from the beginning 

of the fire season in April to December 1, with the four fires presented in greater depth in the 

following sections colored uniquely. 
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4.3.3 Individual fire attributes 

 

Figure 4.8 Burned-area progression tables for individual fires, including (A) Plateau, (B) 

Hanceville-Riske Creek, (C) Elephant Hill, (D) White River, from the beginning of the fire 

season in April to December 1, with observation frequency denoted by grey bars. The denser the 

grey bars in the figure, the more observations included in BULC as provisional classifications. 

 

There were consistent observations throughout each fire’s active phase that helped 

delineate their individual burn progressions (Figure 4.8). The Plateau Fire was the largest fire 

from the 2017 BC fire season and was a large and fast-moving fire that grew in distinct burn 

phases over the duration of its long actively burning period of 10 weeks (Figure 4.8a). The burn 

progressions for the Plateau fire for the entire fire season highlights these large increases in 
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burned areas at the end of July and middle of September. The Hanceville-Riske Creek Fire was 

the second-largest fire from the 2017 BC fire season and was a large and steady growing fire 

over the duration of its 11-week burning period (Figure 4.8B). The burn progression for the 

Hanceville-Riske Creek depicts steady increases in burned areas throughout the fire’s active 

phase. The Elephant Hill fire was a large and steady 12-week burning period, with two larger 

increases in burned area of the fire at the end of July and during the middle of September (Figure 

4.8C). The fourth largest 2017 BC fire, the White River fire, was a small and fast burning fire 

during its 9-week burning period and had a rapid jump in size at the end of September following 

a steady increase in burned/burning area (Figure 4.8D). 

Each of these fires had distinct peak burn weeks that contributed to a majority of their 

total burned areas, and we can view the pre-peak week and post-peak week BULC classifications 

to better visualize the fire behaviors (Figure 4.9). Prior to its peak burn week in mid-September, 

the Plateau fire had already burned nearly 120,000 ha (30% of total burned area) by September 2 

in distinct, separate smaller fires that were joined together in its peak burn phase (Figure 4.9A, 

4.9B). The Hanceville-Riske Creek fire had a peak burn week in the end of July following its 

growth to 68,636 ha (34% of total burned area) on August 3 after its ignition in early July 

(Figure 4.9C, 4.9D). The Elephant Hill fire grew to 66,767 ha (40% of total burned area) on 

August 4 after its ignition in early July and prior to its peak burn week at the end of July (Figure 

4.9E, 4.9F). Lastly, the White River fire had its peak burn week in mid-September after growing 

to 2,236 ha (14% of final burned area) on September 1 (Figure 4.9G, 4.9H). BULC 

classifications for distinct dates of interest can be mapped individually in addition to being 

summarized in date-of-burned-observation maps. 

 



 

136 

 
Figure 4.9 For each fire (rows), intermediate burned area Landsat-8/Sentinel-2 composite in 

column 1 using the least-cloudy imagery from the nearest-in-time date from Landsat-8 or 

Sentinel-2 shown in Bands 7/12, 5/8, 3 (A, C, E, G) and intermediate BULC burned area dataset 

within the official CNFDB fire boundary zoomed on each fire in column 2 on September 2 (B), 

August 3 (D), August 4 (E), and September 1 (F). 
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Figure 4.10 For each fire (rows), final burned area Landsat-8/Sentinel-2 composite in column 1 

for Bands 7,5,3/12,8,3 (A, D, G, J), final BULC burned area dataset within the official CNFDB 

fire boundary zoomed on each fire in column 2 (B, E, H, K), and fire-progression dataset shown 

from April to December in column 3 (C, E, I, L). In the Landsat-8 and Sentinel-2 composites in 

column 1, red areas correspond with burned area. The scale bar in column 3 is the same for all 

images in columns 1 and 2. 
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When the burn history presented by BULC can be charted for each large fire (e.g., Figure 

4.8), it is possible to also map the spatio-temporal dynamics of each fire as it progressed (Figure 

4.10). For the Plateau fire, the fire had grown to its maximum extent near October 24 at 381,168 

burned ha (Figure 4.10A 4.10B) from several smaller fires that grew together rapidly late in the 

fire season (Figure 4.10C). The Hanceville-Riske Creek fire grew to its final extent by 

September 29 at 199,075 burned ha (Figure 4.10D, 4.10E) steadily outward from its central 

ignition location (Figure 4.10F). The similarly sized Elephant Hill fire grew to its final extent by 

October 3 at 165,894 burned ha (Figure 4.10G, 4.10H) in two distinct growth phases that 

expanded northward from its initial ignition source (Figure 4.10I). The small but fast burning 

White River fire, had a final burned extent of 16,164 burned ha (Figure 4.10J, 4.10K) that grew 

southward from its initial ignition source in a mountainous region (Figure 4.10L). 

In addition, fire progressions can also be compared using the elapsed fire duration, from 

ignition to completion, to better compare fire-level behaviors and attributes (Figure 4.11). The 

temporal window for days of fire was determined by the final day of growth to the final 

maximum fire size. For the Plateau fire, it was active for 122 days, with distinct burn periods 

throughout the active phase most notably on day 87 when relative burned area grew by 42% 

(Figure 4.11A). The Plateau fire had a weekly observation rate of 1.72 observations per week 

during its actively burning period and 1.22 observations per week throughout the entire fire 

season. The Hanceville-Riske Creek fire had more dispersed burn periods throughout its 126-day 

actively burning period, with 23% relative growth on day 5 and 18% relative growth on day 101 

(Figure 4.11B). The Hanceville-Riske Creek fire had a weekly observation rate of 1.00 during its 

burning period and 1.5 throughout the entire fire season. The Elephant Hill fire had more steady 

burn periods without any distinct jumps of relative burned area growth greater than 10% 
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throughout its 96-day burn period (Figure 4.11C). The Elephant Hill fire had a weekly 

observation rate of 2.09 observations per week during its actively burning period and 1.22 

observations per week throughout the entire fire season. The White River fire had very low burn 

periods until large spikes of relative growths of 23% on day 69 and 34% on day 71 in its 74-day 

actively burning periods (Figure 4.11D). The White River fire had a weekly observation rate of 

1.03 during its burning period and 2.27 throughout the entire fire season. The average relative 

weekly burn rate for each of the four fires throughout their actively burning weeks were between 

8-11%. The 2017 fire season average for relative weekly burn rate was 26.6% with a range from 

8.3% to 100%. 
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Figure 4.11 Daily burned area relative to maximum burned areas for each of the (A) Plateau, (B) 

Hanceville-Riske Creek, (C) Elephant Hill, (D) White River fires, from normalized to days of 

fire rather than calendar date, with number of days until maximum burned date denoted in gray 

(secondary axis). 
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4.4 Discussion 

Burned-area progression analyses were created for each of the 2017 fires in BC and 

created a large-area methodological approach for mapping the growth of fires throughout their 

active phases using data from multiple sources. Observation rate varied from fire to fire when 

creating this dataset over the extensive, BC-wide area for all 89 unique fires. The four largest 

fires from the study area shared characteristics as interface fires that were discovered in July. The 

largest and smallest fires presented, the Plateau and White River, both experienced two periods 

of large growth rates in August and September with fast burning characteristics. While both large 

fires, Elephant Hill and Hanceville-Riske Creek fires had more constant growth rates throughout 

their active phases. This work builds upon existing fire progression mapping methods outside of 

Canada that utilize the MO(Y)D14 active fire dataset to interpolate day-of-burn values for 

vectorized fire perimeters (e.g., Benali et al., 2016; Veraverbeke et al. 2014). The BULC 

approach advances fire progression methods by synthesizing fine-scale observations from 

multiple sensors to utilize the fine temporal resolution of coarse sensors like MODIS alongside 

the fine spatial scale resolution of sensors like Landsat and Sentinel-2. This enables weekly date-

of-burn values derived for each pixel within the final fire perimeters at the spatial resolution of 

the input observations. 

As presented in Figures 4.3 and 4.4, the BULC product refines the burned/burning maps 

spatially compared with the existing datasets such as the CNFDB and NBAC burned-area dataset 

for mapping burned areas in British Columbia for the 2017 fire season. The spatial refinement of 

the BULC burned-area dataset relied heavily on Landsat and Sentinel-2 observations, which 

made up 94% of the total observations used as provisional classifications. Depending on the 

targeted use of burned-area datasets, the spatial scale and refinement necessary for analysis may 
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vary. For example, the NBAC burned-area dataset provides burned area estimates that are more 

spatially generalized relative to the BULC fire-progression dataset, which may be preferable for 

providing less conservative estimates of carbon losses at the end of each season. However, if the 

burn-progression dataset is being used for targeting harvesting after the wildfires, then a more 

spatially refined approach such as is provided by BULC may be preferred. 

Near-real-time monitoring of disturbances is made possible through data-synthesis 

advancements for fusing observations from multiple sources (Li and Roy, 2017; Wulder et al., 

2018). Although this approach does not currently provide real-time monitoring capacity, our 

long-term goal is to extend the approach to include a fire detection component by integrating 

active fire perimeters from provincial fire agencies. This would allow BULC to proceed mostly 

as described here, refining burned areas as new imagery arrived. By using active fire 

observations from multiple remote sensing sources, we were able to reduce the revisit interval 

provided by the sensors. BULC is a spectrally independent algorithm, which allows for the 

integration of data from multiple sources. In the case of mapping burned-area datasets, this 

allows for using the most reliable burned-area classification protocol to classify imagery from 

varying sensors while also integrating information provided by previously created burned-area 

datasets. 

In a practical context, the highly automated approach to mapping provides a refined, 

spatially explicit estimate of burned area that is available when the fire season concludes or at 

any time throughout the fire season. For all BC fires, the burned-area estimate generated from 

this approach was within 16% of burned area estimates derived from a best-available composite 

mapping product that is typically generated retrospectively. The three largest fires have the 

greatest consequences for carbon loss and forest management and the burned-area estimates 
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achieved with BULC were within 7.5% on average of NBAC burned-area estimates. Note that 

while correspondence to NBAC builds confidence in the generated BULC outputs, both products 

represent an estimate, and neither are truth. The approach demonstrated herein provides 

opportunities for actively mapping wildfires through the fire season to have running total of 

refined burned areas also highlighting locations of interest regarding carbon consequences and 

forest management and planning. 

By increasing the number of data sources availed upon for mapping, such as using 

imagery from Landsat-7 in addition to Landsat-8, Sentinel-2, and MODIS, and by raising the 

cloud-cover threshold, we were able to retrospectively create fire observations at a sub-weekly 

scale. One challenge of using observations from cloudy, coarse, and scan line corrector-off 

(SLC-off; Wulder et al. 2011) imagery with no data is that there is a risk of causing temporal or 

spatial gaps in imaging. Temporal gaps occur when the fire grows, but there is a lack of clear 

observations to update the map. Additionally, spatial gaps arise when there are clear observations 

with partial coverage that update portions of the fire. The benefit of using the observations from 

Landsat-7 is that its observations fill temporal gaps in the time series. The risk, however, is that 

its usage may propagate further spatial gaps and partial-image updates due to systematically 

missing data. For example, some of the Plateau Fire intermediary BULC-classifications contain 

strips of missing data in burned areas as the mapping relied largely on Landsat-7 imagery to 

provide temporal coverage. The benefit of including MODIS data is that its observations fill both 

temporal and spatial gaps in the time series. One trade-off is that production and release of the 

MODIS burned-area dataset takes approximately 4 months to deliver burned areas related to a 

given month. Another risk, however, is a coarsening of the final data product, whether in 

intermediary time steps or the dataset’s duration. For example, a lack of data for several days for 
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the Hanceville-Riske Creek and Elephant Hill fires caused anomalous spikes in burned-area 

estimations. 

The impact of these temporal and spatial gaps in observations can be reduced in two 

ways; that is, using object-based knowledge to fill data gaps and increasing observations from 

non-optical sources. First, future methods can use segmentation to fill in spatial gaps within 

Landsat-7 provisional classifications (e.g., Wulder et al. 2004). Alternatively, BULC could 

update a series of pre-defined burned-area objects using evidence from partial observations to 

reduce spatial gaps. Second, there are opportunities to utilize observations from Synthetic-

Aperture Radar (SAR) sensors such as Sentinel-1 to increase both temporal and spatial gaps from 

optical-sensor observations (Chuvieco et al., 2019). There are fewer algorithms for burned-area 

detection in Sentinel-1 imagery (e.g., Engelbrecht et al., 2017; Lohberger et al., 2018; 

Verhegghen et al., 2016), but even moderately reliable provisional classifications would provide 

gap-filling evidence for burned/burning pixels in the BULC algorithm. 

The province-wide analysis opens new opportunities for understanding fire at regional, 

national, and continental scales. For example, comparisons can be made using this data source to 

relate characteristics of growing fires and act as validation for pre-existing forecasted fire 

weather datasets, fire behavior datasets, and existing wildland fire growth simulation models for 

Canada’s boreal forest (Natural Resources Canada, 2018b; Fire Growth Model, 2018). 

Additional analyses can be performed to evaluate the relationship between underlying drivers of 

fire behavior (e.g., land cover, disturbance history) with the resulting fine-scale, patch-level fire 

progressions (e.g., Nogueira et al., 2016; Parks et al., 2018). Ultimately, the analysis area is not 

limited by the common constraints of disk space and processing speed because the provisional 

classification protocol and BULC algorithm are both programmed in Google Earth Engine. 
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Information regarding fire progression through time, within a given year, offers insights 

regarding suppression success and enables linkages to potential drivers of fire spread. 

  

4.5 Conclusion 

         In this study, we created and analyzed a fire-progression time series for all 89 fires in the 

historically large 2017 BC fire season using freely available data from multiple sensors and 

BULC. Working within the 2017 fire perimeters created by the BC Wildfire Service, we used 

over 1500 raw scenes from Landsat-7, Landsat-8, Sentinel-2, and MODIS to create 276 

provisional input classifications. BULC was then used to merge the provisional classifications in 

Google Earth Engine, producing a synthesized time-series stack with updated weekly burned 

areas for the 2017 fire season for each fire in BC. This approach estimated burned areas for the 

2017 fire season to within 16% of the estimates developed by the Canadian federal government 

in cooperation with provincial authorities for this fire season while uniquely also mapping fire 

progressions throughout the entire fire season. 

By reconstructing fire progressions for actively burning fires using a multi-source 

satellite time series approach, we are able to examine burned-area attributes for the fire season 

and individual fires at varying temporal windows. Fires from the same fire season have varying 

attributes, whether small or large and quickly or slowly burning. A majority of the fires in the 

2017 fire season were small and had rapid growth periods but accounted for less than 13% of the 

cumulative fire area. Small and slow-growing fires accounted for only 3% of burned areas. Of 

the three largest fires investigated (e.g., Plateau, Hanceville-Riske, Elephant Hill), collectively 

representing 83% of the cumulative burned area for the 2017 fire season, burning was 

widespread but progressed at variable rates (both slow and rapid). Most of the behaviours and 
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peak burn periods for the fire season were associated with weather events such as lightning and 

windstorms that occurred in early July and mid-September. Individual fires have varying burn 

progressions and different spatial patterns. By examining the daily burned areas of fires relative 

to total burned areas, we can quantify, compare, and contrast fire characteristics and the length of 

active burning phase. 

This study reveals the potential for classifying multi-source, fire-progression stacks in 

other fire-prone regions and fire seasons utilizing our approach. Opportunities exist for 

increasing sources for fire observations for retrospective progression reconstruction and for 

implementing this approach for near-real-time fire monitoring to better inform fire agencies and 

forest managers. By implementing this approach using open-source satellite sources and remote 

sensing platforms, it can be applied on other historical fire seasons in Canada and tested for 

applicability internationally. Retrospective and near-term fire-classification stacks like these for 

historical and future fire seasons can be used to analyze underlying fire ecology and inform 

future disaster management.   
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Preface to Chapter 5 

Chapter 4 presented a large-area data fusion approach for mapping and analyzing active 

wildfire progressions with novel fire progression metrics for individual and cumulative fire 

season scales. Chapter 4 advanced the field of remote sensing and fire science by mapping a 

synthesized fire progression time series for all stand-replacing BC fires in 2017 and using fire 

progression metrics to compare fire characteristics. I often contextualized the fire progression 

metrics with fire drivers describing fire season conditions throughout Chapter 4’s analysis, 

highlighting future research opportunities to integrate fire drivers into fire season progressions. 

Chapter 5 builds upon Chapters 2, 3 and 4 to apply a whole-systems lens to fire monitoring and 

management using Earth observations. 

Chapter 5 identifies information needs for each fire monitoring and management stage to 

clarify stakeholder priorities for future research and management interventions. Chapter 5 

advances the field of wildfire remote sensing by conceptually connecting all stages of the fire 

research cycle, identifying future data needs and opportunities, and working collaboratively with 

stakeholders from each stage of the fire research cycle. This last research chapter is an important 

contribution to the broader fields of fire sciences and remote sensing because it applies a whole-

systems approach to research design, which is less frequently used in the nexus of these fields. 

Additionally, Chapter 5 outlines future research opportunities that will guide me as I progress in 

my fire remote sensing career. 

Chapter 5 will be submitted for review in 2022 and uses the American Psychological 

Association (APA) citation style.  
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Abstract  

Fire seasons have become increasingly variable and extreme due to changing climatological,  

ecological and social conditions. Earth observation data are critical for monitoring fires and their 

impacts. Herein, we present a whole-system framework for identifying and synthesizing fire 

monitoring objectives and data needs throughout the life cycle of a fire event. The four stages of 

fire monitoring informed using Earth observation data include: 1) pre-fire vegetation inventories, 

2) active-fire monitoring, 3) post-fire assessment, and 4) multi-scale synthesis. We identify the 

challenges and opportunities associated with current approaches to fire monitoring, highlighting 

four case studies from North America. The field of remote sensing is experiencing a rapid 

proliferation of new data sources, providing observations that can inform all aspects of our fire 

monitoring framework; however, significant challenges for meeting fire monitoring objectives 

remain. We identify future opportunities for data sharing and rapid co-development of 

information products like fire dashboards using cloud computing that benefit from open-access 

Earth observation and other geospatial data layers. 

 

5.1 Introduction 

Around the world, the impacts of a warming climate on fire activity are clear, from 

lengthening fire seasons to increased variability in the number, extent, and severity of fires. 

These changes correspond with more extreme ecological factors and shifting human populations 

that contribute to a complex, interrelated cycle of forest fires and associated impacts (Jolly et al., 

2015; Wooster et al., 2021). Communities in these fire-prone regions try to reduce the negative 

impacts of wildfires through prevention and suppression but face challenges due to increased, 

unpredictable ignition locations in remote forests with heavy fuel loads that are vulnerable to 
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uncontrolled and less predictable spread (Coogan et al., 2019, 2020; Flannigan et al., 2009; 

McFayden et al., 2019). Through a broad lens, fire monitoring should not be limited to the time 

of active fire. Pre-fire monitoring is essential to community preparedness, while active and post-

fire monitoring are critical for characterizing impacts and understanding the effectiveness of 

management interventions (and assessment of post-fire damages). To monitor conditions and 

changes in vast fire-prone landscapes in Canada and the United States, communities often rely 

on Earth observation data collected by sensors mounted on satellites, airplanes, unoccupied aerial 

and high-altitude systems, balloons, and ground-based systems (Chuvieco et al., 2019, 2020; 

Giglio et al., 2016; Johnston et al., 2020; O’Connor, 2021; Schroeder et al., 2008; Wooster et al., 

2021). However, each of these remote-sensing data sources provides a specific type of 

information at a specific spatial scale, and each has associated advantages and limitations, such 

as financial costs for data collection on demand, delayed revisit rates for freely available data 

sources, mismatched provincial or fire-agency focused data collection, and no existing fire-

focused satellite sensors for cross-boundary data collection (Chuvieco et al., 2019; Crowley & 

Cardille, 2020; Johnston et al., 2020). While these disparate data sources fulfill specific fire 

monitoring information needs, they are rarely brought together or used synergistically to produce 

new information products or enable new insights.  

A whole-systems fire monitoring approach, whereby multi-stage objectives are 

synthesized using Earth observations, can help stakeholders harmonize wildfire response and 

management objectives to better respond to the complex ecological and social conditions of the 

wildfire system. Whole-systems approaches are already used in fire ecology to unite multiple 

scientific fields, methodologies, and spatial and temporal scales (Bowman & Murphy, 2011; 

McWethy et al., 2019; Tedim et al., 2018). For example, pyrogeography is a disciplinarian 
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framework that combines biological, atmospheric, and social approaches to better understand the 

multiple direct and indirect factors of fire activity in the past, present, and future (Bowman et al., 

2013; Bowman & Murphy, 2011; Krawchuk et al., 2009; Roos et al., 2014). Given this context, 

herein, we propose a whole-system fire monitoring framework using Earth observation data as an 

opportunity to address the varying objectives associated with forest monitoring and management 

before, during, and after a wildfire occurs. Four main stages of fire monitoring have been 

identified (Chuvieco et al., 2019, 2020; Wooster et al., 2021): (1) pre-fire inventory, (2) active-

fire monitoring: (3) post-fire analysis, and (4) multi-scale synthesis. The information, needs, data 

sources, and tools required vary at each stage; as observation abilities increase, the opportunities 

and constraints increase. Our objectives are to outline the information needs associated with each 

stage of our fire monitoring framework, describe how the stages relate to each other, and define 

how Earth observation data can be used to meet objectives within our holistic framework. We 

then consider this whole-systems fire monitoring framework in the context of four case studies 

from western North America to demonstrate how the proposed framework could address some of 

the identified challenges when similar conditions are experienced in the future. 

 

5.2 Fire monitoring: growing opportunities for Earth observations at each stage 

Each fire monitoring stage has unique information needs that are met by specific data 

sources matching their priority spatial and temporal scales. Spatial and temporal characteristics 

of a given sensor also link to image extent and revisit time. Very-high and high spatial resolution 

sensors typically have a smaller spatial extent, which can result in longer revisit times if 

consistent viewing geometry is required. Requirements for rapid revisit times necessitate trade-

offs in spatial resolution, favouring coarse spatial resolution data (i.e., > 500 m2) and resulting in 
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less spatial detail for mapped features. For example, many remote sensing and fire community 

members use data sources such as the Geostationary Operational Environmental Satellite 

(GOES-R), Moderate Resolution Imaging Spectroradiometer (MODIS) or Visible Infrared 

Imaging Radiometer Suite (VIIRS) for active fire monitoring because they have a frequent 

revisit, are readily available, pre-processed, and open-access. Other stakeholders who prioritize 

spatially fine-scale mapping and monitoring, and do not need the information as rapidly, use 

Landsat, Sentinel-2, or joint Landsat and Sentinel-2 based workflows that calculate band ratios 

or use training-data-informed classification algorithms to map pre-fire vegetative conditions or 

post-fire fire burned areas and severity. Often in these instances, the nuances in differing fire 

monitoring objectives vary drastically (J. M. Johnston et al., 2020) al., 2020), and mismatches in 

temporal and spatial scales and resolutions create gaps and limitations in research findings and 

emergency decision-making. Fire monitoring objectives can be categorized into four major 

stages outlined in Figure 5.1 and Table 5.1 including, 1) pre-fire inventories (Arroyo et al., 2008; 

Chuvieco et al., 2020; Gale et al., 2021; White et al., 2016), 2) active-fire monitoring (Chuvieco 

et al., 2020; Johnston et al., 2020; Wooster et al., 2021), 3) post-fire assessment (Bartels et al., 

2016; Chuvieco et al., 2019, 2020; Frolking et al., 2009; White et al., 2016), 4) multi-scale 

synthesis (Roos et al., 2014). The fire monitoring stages over have commonalities of data inputs 

and outputs, the intersections of which can be categorized into three sub-stages, including fire 

behaviour prediction analyses (1A), impact assessments (2A), and recovery and successional 

trajectory (3A).   

 

 

 

https://paperpile.com/c/RQHHqK/poShd
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Figure 5.1 The four-stage, whole-systems fire monitoring framework that mirrors the life cycle 

of a fire event from before, during, and after the fire. Starting from the left, Stage 1 is pre-fire 

inventory, overlapping in 1A with fire prediction analyses with Stage 2, active-fire monitoring. 

The objectives of Stage 2 intersect with Stage 3, post-fire assessment, in Stage 2A, impact 

assessments. Stage 3 objectives intersect with Stage 1 objectives in Stage 3A, recovery and 

succession. The three major Stages 1-3 intersect together to match the objectives of Stage 4, 

multi-scale synthesis.  
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Table 5.1 Summary of objectives and primary information needs for each fire monitoring stage 

and substage as described in Section 5.2.  

  

Stage Description Objective 
Primary information needs and data 

sources/additional information requirements 

1 Pre-Fire Inventory What can burn? ● Detailed, annual observations of forest 

structure (e.g., forest type, height stem 

density), vegetation/fuel conditions, and 

important infrastructure (e.g., roads, power 

lines, pipelines, municipal facilities) 

● Analysis-ready, medium spatial resolution 

RS data 

1A Fire Behaviour and 

Prediction Analysis 
Where and how could 

it burn? 
● Annual inventory maps from Stage 1 

● Additional information on forest vertical 

structure (e.g., crown base height) from 

airborne lidar  

2 Active-Fire 

Monitoring 
Where is the fire and 

what is it doing? 
● Near-real time detection (sub-daily) 

● Rapid download (e.g., minimal latency) 

● High-to-medium spatial resolution RS data 

● On-demand data collection 

2A Impact Assessment Where and how did it 

burn? 
● Fire characteristics data from Stage 2 

● Burn characteristics from active remote 

sensing 

3 Post-Fire Assessment What burned and how 

did it burn? 
● Open-access data 

● High-to-medium spatial resolution RS data 

(e.g., Landsat, Sentinel-2) or fine temporal 

resolution (e.g., MODIS, VIIRS, GOES) 

● Data fusion algorithms (e.g., machine 

learning, Bayesian synthesis) 

3A Recovery & 

Succession 
Where and how will it 

regrow? 
● Burned area maps from Stage 3 

● Regrowth characteristics from active remote 

sensing or retrospectively from time series 

optical EO data 

4 Multi-scale Synthesis What has and can burn 

in the past, present, 

and future?  

● Pre-, active, post-fire information 

● Social and ecological data 

● Cloud-based platforms and dashboards 

 



 

166 

5.2.1 Stage 1: Pre-fire Inventory 

In Stage 1, stakeholders answer “what can burn?” on a landscape before a fire occurs. 

Pre-fire information needs relate to the vegetation available on the landscape to burn and the 

associated risks to communities, wildlife, and critical infrastructure. There are a variety of pre-

fire inventorying objectives that must be met before a fire happens to identify what could be 

vulnerable to impacts when a fire is ignited and spreads. Using geospatial technologies and 

remotely sensed data, managers and scientists will inventory landscape resources, forested areas, 

vegetation types, infrastructure, fuel types, and fuel moisture conditions. Sometimes inventories 

will rely on historical data to identify locations impacted by past disturbances (Shang et al., 

2020). Vegetation inventory maps are often used to support forest and landscape management 

efforts to mitigate the impacts of future fires (O’Connor, 2021). In Stage 1A (Figure 5.1), fire 

behaviour and prediction analyses use pre-fire inventories for pre-season planning or to model 

potential active fire characteristics in fuel growth models (Chuvieco et al., 2020; Wotton et al., 

2009). This stage often informs active-fire characterization by providing information from fire 

growth models using parameters gathered from controlled burns, vegetation inventories, and 

other landscape condition data (e.g., Jolly and Freeborn 2017). By relying on information 

provided from pre-fire inventories, fire behaviour prediction analyses support Stage 2, active-fire 

monitoring, by helping to predict what could happen and plan future response if a fire begins in a 

particular location under specific weather conditions. 

The characteristics of remotely sensed data sources used to create landscape inventory 

maps vary based on the objectives for their usage, for example, for forest inventory or fire 

growth modelling. In the case of fuel and vegetation inventory maps, many existing datasets do 

not use Earth observations in their creation, thus rendering them outdated. Fuel and vegetation 
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inventory maps typically rely on sources with a medium spatial resolution (10m to 30m). Remote 

sensing-based fuel loads and vegetation maps are primarily derived from optical sensors (such as 

Landsat or Sentinel-2) and updated monthly or annually (Chuvieco et al., 2020; Gale et al., 

2021). Some data sources such as MODIS-derived vegetation datasets are updated with higher 

temporal frequency but at the expense of having a coarser spatial resolution. Fuel and vegetation 

condition maps are often outdated from current landscape conditions due to the tradeoffs 

between spatial extent, spatial resolution, and revisit rates relative to the rate of disturbances in 

the region. Additionally, these vegetation maps lack vertical information due to the limitations of 

optical data sources for estimating vegetation structure. Census and GIS-based infrastructure 

datasets are typically updated at 5- to 10-year cycles. Infrastructure can also be estimated from 

imagery-based classifications that identify impervious surfaces or built-up features (Xian et al., 

2009). 

The minimum mapping unit for Stage 1 to inform pre-fire inventorying is the object of 

interest on the landscape, whether vegetation-related (e.g., forest stand) or infrastructure (e.g., 

houses, cabins, pipelines, powerlines). A primary data need for Stage 1 is Earth observations 

collected with a medium temporal resolution to regularly update fuel, vegetation and 

infrastructure inventories and medium spatial resolution to support operational response 

(Chuvieco et al., 2020). To properly inform fire prediction models in Stage 1A, annual inventory 

maps that provide vertical structure can refine estimates of standing fuel loads and their 

condition. To work towards near-real-time fuel condition maps, satellite missions with short 

revisit rates (e.g., less than one week) will be particularly useful to update fuel inventory maps at 

more frequent intervals. There is often a tradeoff in download latency for near-real-time 

observations between accessing the data rapidly and the time it takes to pre-process and classify 
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the imagery. Analysis-ready data can help streamline data processing latencies when updating 

fuel inventories by reducing the number of steps in the analysis process. There are opportunities 

for these inventory maps to benefit from airborne LiDAR data and recently or soon-to-be-

launched SAR and LiDAR satellite missions (e.g., ICESat-2, ALOS-4, NISAR, BIOMASS, 

GEDI, RADARSAT Constellation Mission) to inform vertical components of fuel inventories 

(Chuvieco et al., 2020; García et al., 2012; O’Connor, 2021; White et al., 2016). 

 

 

Figure 5.2 What information is needed for each fire monitoring stage to meet their mapping 

objectives? Each stage’s information needs in terms of Earth observation scalar characteristics 

are plotted as shaded circles in A) for ideal spatial and temporal resolution and in B) for spatial 

and temporal extent/coverage. 

5.2.2 Stage 2: Active-fire monitoring 

In the event of an active fire, the main objective in Stage 2 is to answer, “where is the 

fire?” on a landscape and “what is it doing?”. Active-fire monitoring in Stage 2 relies on remote-

sensing data collected with reduced latency so that stakeholders can make emergency 

suppression decisions in a timely manner (Johnston et al., 2020; Wooster et al., 2021). Satellite 



 

169 

systems like GOES, VIIRS, MODIS and SLSTR, provide large-area imagery with a moderate 

spatial resolution (375m to 2km) and sub-daily collection rates, beneficial for detecting ignitions 

across large regions (Roy et al., 2005). However, analyses using these sources can be impacted 

by atmospheric interferences and sub-optimal collecting rates (Chuvieco et al., 2020; Johnston et 

al., 2020; Wooster et al., 2021).  

Detailed, near-real-time active fire monitoring focuses on helping control and limit active 

fire spread through fire detection, delineation, and characterization. Active fire monitoring uses 

Earth observations to detect actively burning fires, estimate fire radiative power, and derive or 

delineate fire characterizations like perimeters, sub-pixel conditions, intensity, rate of spread, 

fuel consumption, and real-time emissions (Wooster et al., 2021). Optical sensors that collect 

data with infrared bands are useful for fire detection and characterization, however, can be 

vulnerable to false positives due to similarities between fire and other infrared-emitting features 

like sunglints, volcanoes, and more (Johnston et al., 2020; Wooster et al., 2021). Detected fire 

hotspots and characteristics, in conjunction with knowledge of available fuels (pre-fire stage), are 

used in fire growth models to inform evacuation decisions for nearby communities and 

prevention and immediate fire suppression operations. These models have to be updated with 

real-time information on fire perimeters to make short-term fire predictions that estimate where 

and when a fire will move in a particular direction based on where it is currently burning 

(Johnston et al., 2020). On-demand data collection is particularly useful for this type of active 

fire monitoring and is made possible with commercial satellites (e.g., DigitalGlobe’s Worldview-

3, DLR FireBIRD), solar-powered high-altitude systems (e.g., Airbus Zephyr unoccupied aerial 

vehicle), aerial surveys (Allison et al., 2016), or handheld cameras. However, these systems are 

costly and cover smaller spatial extents than satellite data sources. 
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Stage 2A occurs either immediately after the fire has been extinguished or using data 

collected directly after the fire has burned to assess its near-term impacts (Chuvieco et al., 2019, 

2020). In this stage, remotely sensed data are used to estimate how the fire burned, its severity, 

and the burn depth relative to the active fire and burned areas. By analyzing active-fire data 

collected with reduced latency in Stage 2, the fire impact assessments of Stage 2A are often used 

to inform post-fire analyses further explored in Stage 3. Synthetic Aperture Radar (SAR) 

satellites like RADARSAT and Sentinel-1 that employ active remote sensing approaches are 

particularly useful for estimating these types of fire characteristics because they can be used to 

penetrate smoke/haze and map burned areas (Chuvieco et al., 2019). However, SAR satellite 

imagery often has longer revisit rates and pre-processing times. Tradeoffs between data 

collection characteristics and availability time create difficulty for rapid active-fire detection, 

delineation, and characterization. 

A crucial characteristic of remote-sensing sources for future active fire monitoring is 

rapid download latency, ideally less than 30 minutes between data collection and availability to 

the user (Johnston et al., 2020). High-to-medium spatial resolution observations are valuable 

contributions for delineating precise active-fire boundaries, Figure 5.2, however easily accessible 

sub-daily observations are even more critical to support fast updates of these maps for decision-

making (Johnston et al., 2020). Rapid data access and processing is vital for fire detection and 

emergency response; therefore, there are significant opportunities to utilize machine learning 

algorithms to quickly map active fire boundaries on the fly to reduce classification latency (Jain 

et al., 2020). Dedicated fire monitoring satellite programs like the proposed WildFireSat 

missions will advance fire delineation and characterization because they have been designed to 
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meet the user needs in the active-fire monitoring stage with frequent revisit rates, medium spatial 

resolution, large area coverage, and reduced latency for data collection (Johnston et al., 2020). 

5.2.3 Stage 3: Post-fire assessment 

Stage 3 focuses on post-fire assessments to answer the question “what burned and how 

did it burn?” and analyses the impacts of the fire itself, management strategies, and suppression 

efforts. Burned area mapping is the primary objective to map the final disturbance extent and 

understand what burned and how it burned when a fire passed through (Chuvieco et al., 2019). In 

this stage, post-fire analyses of fire behaviour and spread are reconstructed in relation to 

underlying ecological conditions. The results from these analyses are helpful for refining fire 

prediction models and better understanding future fire drivers. Stage 3A uses post-fire 

assessments that identify burned regions to monitor fuel recovery and successional trajectories 

(Bartels et al., 2016; Chu & Guo, 2013). Inventory maps created in Stage 1 are informed by 

Stage 3A analyses that can identify the post-fire changes to underlying landscape conditions to 

identify what burned and what can burn next. Post-fire studies focus on how vegetation regrows 

in burned areas that experienced different fire severities. 

Current post-fire assessments presently rely on readily available, open-access data that 

have either high-to-medium spatial resolution (e.g., Landsat, Sentinel-2) or fine temporal 

resolution (e.g., MODIS, VIIRS, GOES) (Andela et al., 2019; Chuvieco et al., 2016, 2020; 

Frazier et al., 2018; Hawbaker et al., 2017). Very-high and high spatial resolution data are 

available from commercial satellites from companies like Planet and DigitalGlobe; however, 

these imagery sources can be cost-prohibitive for broadscale applications, cover small spatial 

extents, or lack temporal revisits rates ideal for post-fire successional assessments. Additionally, 

LiDAR and SAR data are useful for mapping changes in vegetation structure and recovery after 



 

172 

a fire disturbance (Bright et al., 2017; Chu & Guo, 2013; Frolking et al., 2009; Lefsky et al., 

2001; White et al., 2017). 

Much like the other stages of fire monitoring analyses, tradeoffs must be made to 

prioritize different post-fire analysis objectives, Figure 5.2. Data fusion algorithms could help 

leverage benefits from various Earth observation sources by informing post-fire analyses with 

fused data about burned and unburned regions (Johnston et al., 2020). Opportunities exist to fuse 

fine temporal resolution observations with the high-to-medium spatial resolution data from 

optical, SAR, and LiDAR sources to create large-area datasets. There are existing data fusion 

algorithms that assimilate some of these data sources on the fly or provide analysis-ready data 

for further post-fire analyses (Boschetti et al., 2015; Chuvieco et al., 2020; Crowley et al., 2019a, 

2019b; Hilker, Wulder, Coops, Linke, et al., 2009; Hilker, Wulder, Coops, Seitz, et al., 2009). 

But additional data fusion algorithms will be necessary to leverage input data sources’ unique 

and informative characteristics into one unified, seamless analysis. 

5.2.4 Stage 4: Multi-scale synthesis 

At Stage 4 of the framework presented in Figure 1, multi-scale synthesis and 

pyrogeography analyses use data and results from all of the other stages (Bowman et al., 2013; 

Bowman & Murphy, 2011; Krawchuk et al., 2009; Roos et al., 2014). These assessments, which 

are central to the fire system monitoring framework, explore complex, large-scale concepts like 

classifying ecosystem trajectories, fire regimes, firesheds, and fire risk (McFayden et al., 2019). 

In this interrelated stage of fire monitoring, social and ecological data are often integrated 

together to better understand the complex wildfire system (Chuvieco et al., 2020). Broad-scale, 

pyrogeography-based fire monitoring analyses that utilize Earth observations assimilate data and 
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findings from pre, active, and post-fire analyses as well as long and short-term historical 

geospatial data, Figure 5.2.  

To support multi-scale analyses like these in Stage 4, individual fire monitoring Stages 1, 

2 and 3 must meet their fire monitoring objectives and achieve their primary information needs. 

To synthesize the findings from the multiple stages, cloud-based data processing and storage 

platforms are beneficial for creating fire dashboards (e.g., Pyregence, Technosylva) that increase 

open data accessibility and rapid analyses (Lanclos, 2021; Saah, 2021). By using existing multi-

source Earth observations, dashboards like these can support end-to-end user applications 

between the different fire monitoring stages by providing analysis-ready data and emergency 

alerts. Multi-scale fire monitoring analyses are also being incorporated into mission plans before 

the satellite launch and data collection. For example, dedicated fire monitoring satellite missions 

would be more readily able to assist these analyses because the different user groups from each 

fire monitoring stage are involved in the planning from the start of the satellite design to the data 

processing algorithm creation to designing the data-sharing platforms.  

 

5.3 Applying the whole fire system monitoring framework to historical fires 

The whole-systems framework can be applied to historical fires to assess mismatches 

between monitoring objectives, information needs, and available data. This section will use four 

historical fires, fire seasons, and regions as case studies representing each stage of the whole fire 

monitoring framework, Table 5.2. The 2016 Horse River Fire in Alberta, Canada highlights the 

important impacts that inaccurate pre-fire information in Stage 1 can have on all subsequent fire 

monitoring stages. The 2021 White Rock Lake Fire, in British Columbia, Canada, demonstrates 

how a paucity of data and a failure to meet the information needs in Stage 2 can adversely impact 



 

174 

active fire response. The 1988 Yellowstone Fires in Wyoming, USA highlights the importance of 

satellite data sources for supporting post-fire, retrospective analyses in Stage 3. Lastly, the 

numerous pyrogeographical studies assessing the fire-prone Northern Rockies region in the 

conterminous USA illustrate the benefits of Stage 4 multi-scale analyses to analyze fire regimes, 

legacies, resiliency, and ecological shifts. For each case study, our objective is to describe the 

context associated with the particular fire and indicate how Earth observation data could have 

been used to support the objectives and information needs associated with that stage. In so doing 

we also make recommendations for how Earth observations could be used to better support fire 

monitoring under similar future conditions.  

 

Table 5.2 Characteristics overview for each case study corresponding with fire monitoring 

stages 1 through 4. 

Stage Case Study Location Scope 
Total Area 

Burned (ha) 

Start/held dates or 

study period 

Suspected 

Cause 

1 Horse River Fire Alberta, Canada Incident 585,000 May 1 to July 4, 2016 Human 

2 White Rock Lake 

Fire 

British Columbia, 

Canada 

Incident 83,342 July 13 to September 10, 

2021 

Lightning 

3 Yellowstone 

Fires 

Wyoming, USA Fire 

Season 

485,600 June to September 1988 Lightning 

and human 

4 Northern Rocky 

Mountains 

Conterminous, 

USA 

Fire 

Atlas 

~100,000 Various dates between 

1900 to 2007 

Lightning 

 

5.3.1 Stage 1: Horse River Fire, Alberta, Canada 

The 2016 Horse River Fire occurred near Fort McMurray, Alberta and burned over 

585,000 hectares. It is one of the costliest wildfires in Canadian history, with nearly $9 billion in 

damages and over 2400 structures destroyed (Malbeuf, 2021). In the week leading up to the fire 

ignition on May 1, fire behaviour models had successfully predicted extreme conditions despite 
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needing improvements to weather forecasting to include longer-term dryness of past seasons 

(Ahmed et al., 2019; Nash et al., 2017). However, the existing vegetation inventory was too 

coarse in spatial resolution and missed more explosive understory fuel types and dryer ground 

fuels, and the infrastructure inventory around the community was outdated and lacked up-to-date 

information about valuable structures and assets (Nash et al., 2017). The response agencies only 

learned about the significance of critical infrastructure (e.g., electricity and pumping stations) 

once they were already at risk of being destroyed by the fire.  

In the case of the Horse River Fire, pre-fire information did not fully characterize the risk 

of explosive vegetation fuel conditions and critical infrastructure for Stage 1. This challenge had 

cascading impacts on subsequent stages because the existing infrastructure inventory created in 

Stage 1 differed from the information needs of the fire predictions made in Stage 1A and the 

emergency respondents in Stage 2. Similar to other historical fires like California’s Camp Fire in 

2018 (Griffin, 2021), if the fire agencies of Fort McMurray had had access to fine-scale, near-

real-time landscape inventories identifying significant infrastructure and fuel conditions, they 

could have planned accordingly to mitigate some of the severe impacts on the high-risk and 

vulnerable community. The post-fire report for the Horse River Fire (Nash et al., 2017) 

recommended a unified response from provincial and local fire agencies. We would extend this 

recommendation to the generation of Stage 1 information products that multi-scale jurisdictional 

fire agencies (e.g., local, provincial, federal) should coordinate inventory and mapping efforts. 

The Horse River Fire exemplifies how inaccurate pre-fire data products can severely impact 

response and ultimately outcomes of catastrophic wildfires in the vicinity of communities. This 

example also illustrates the importance of involving different end-users throughout the fire 

monitoring system when objectives and creating near-real-time updating inventory maps.  
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5.3.2 Stage 2: White Rock Lake Fire, British Columbia, Canada 

British Columbia experienced its third-worst fire season in 2021 in terms of area burned, 

just behind the historic 2018 and 2017 seasons (Kulkarni, 2021). Record-breaking temperatures 

due to a series of heatwaves combined with drought conditions culminated in a disastrous fire 

season for the southern interior region of the province (BC Wildfire Service, 2021). One fire of 

note was the White Rock Lake Fire near Falkland, BC, which caused significant damage to 

nearly 80 properties. During the White Rock Lake Fire, the intense smoky conditions and high 

winds limited airborne response (MacPherson & Dickson, 2021), which is a challenge commonly 

faced in active-fire monitoring as illustrated by the 2017 Kenow Fire in Alberta, Canada 

(Rumbolt, 2017). The smoky conditions also limited the availability of clear optical Earth 

observation data for monitoring White Rock Lake Fire conditions, which further contributed to 

data sparsity.  

The lack of data available for monitoring the White Rock Lake Fire resulted in delays in 

meeting the information needs for Stage 2 active fire mapping and decision-making. Social 

media served as a leading source of communication to update community members about 

evacuation alerts and fire location statuses (MacPherson & Dickson, 2021). While the lack of 

contemporaneous reconnaissance data throughout the fire event in Stage 2 hindered operational 

response, remotely sensed data will be instrumental in supporting Stage 2A and 3 analyses. For 

example, when examining the subsequent research that followed the data sparsity throughout the 

2017 Kenow Fire, Landsat observations were used to estimate fire severity (Whitman et al., 

2020), ground-based LiDAR data was collected to quantify carbon dioxide release (Gerrand et 

al., 2021), and mixed-methods of satellite and ground-based observations were used to identify 

vegetation recovery and successional trajectories (Eisenberg et al., 2019). In the case of the 
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White Rock Lake Fire, Earth observation satellites with short-wave infrared or infrared sensors 

and short temporal imaging latency could have helped image the active wildfire as it spread and 

was clouded in smoke. Proposed missions such as WildFireSat, which house sensors specifically 

designed for imaging wildfires, would be useful for increasing the likelihood of clear 

observations to support Stage 2 mapping objectives.  

5.3.3 Stage 3: Yellowstone Fires, Wyoming, USA 

From June to September 1988, Yellowstone National Park experienced catastrophic 

wildfires that burned nearly 1.2 million acres in the region (Hansen & Krantz, 2008; Kwak-

Hefferan, 2021). The fires were ignited by natural and human sources in a region experiencing 

severe drought, extreme weather conditions and increased fuel loads (Turner & The 

Conversation US, 2018). Aerial surveys with infrared sensors were conducted throughout the fire 

season to calculate daily burned area and map fire perimeters (Rothermel et al., 1994). Following 

the conclusion of the fire season, scientists analyzed the impacts of the fires on the Yellowstone 

National Park landscape using available optical imagery from Landsat Thematic Mapper (TM) 

sensor from the following fire season to classify burn severity using estimates of biomass loss 

(Turner et al., 1994, 1997). Post-fire analyses revealed relationships between daily fire size and 

pattern, fire severity and early vegetation succession (Turner et al., 1994, 1997). 

For the Yellowstone Fires of 1988, the information available for post-fire analyses in 

Stage 3 was limited by the technologies and data accessibility of the time. These post-fire 

analyses of the Yellowstone Fires relied on a single, cloud-free Landsat TM image from August 

2, 1989, and aerial surveys for daily burned areas and patterns (Rothermel et al., 1994; Turner et 

al., 1994, 1997). The analyses of fire impacts, pattern, and early succession were performed prior 

to the open-access data policy being enacted in 2008 (Woodcock et al., 2008; Zhu et al., 2019), 
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thus limiting the availability of satellite-based information for post-fire analyses before this date. 

In the case of the Yellowstone Fires of 1988, successional data was collected from field-based 

samples from the following summer. For a similar fire season today, opportunities exist to use 

data from open-access, satellite-based LiDAR, SAR, and optical sensors to map near-term, early 

vegetation succession data across large areas (Bartels et al., 2016; Bolton et al., 2017; Hermosilla 

et al., 2018). Technological and policy advancements have increased data types and accessibility, 

and data fusion algorithms can be used to synthesize information from these new data sources for 

comprehensive post-fire analyses (Boschetti et al., 2015; Chuvieco et al., 2020; Crowley et al., 

2019a, 2019b; Hilker, Wulder, Coops, Linke, et al., 2009; Hilker, Wulder, Coops, Seitz, et al., 

2009). These types of retrospective analyses or forensic audits enable greater understanding of 

fire behaviour and efficacy of response and control strategies. Moreover, information derived 

from these investigations can in turn refine parameterizations of fire spread models. The 

feedback and interplay among the various stages of the framework represented in Figure 5.1 are 

key to maximizing investments in data, infrastructures, and systems to better manage and 

integrate information. 

5.3.4 Stage 4: Northern Rocky Mountains, Conterminous USA 

The fire regime and system of the Northern Rockies region of the United States have 

been analyzed extensively through multi-scale and pyrogeography studies using combined 

satellite-based data sources and previously created satellite-derived products. For example, 

LANDFIRE vegetation and fire regime products have been combined with multi-decadal burn 

severity products from Monitoring Trends in Burn Severity (MTBS) to analyze regional forest 

resilience to wildfires, fire legacies, and ecological shifts over future conditions (Kemp et al., 

2016, 2019). Digitized polygon fire perimeters from local national forests and parks have been 
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used to create a fire atlas for the region (Morgan et al., 2014). By combining the region’s fire 

atlas with LANDFIRE vegetation data, scientists characterized pyrogeography and multi-season 

climate drivers for the twentieth century (Gibson et al., 2014; Morgan et al., 2008, 2014). Other 

studies in this region analyzed the impact of forest management practices on fire severity for past 

fires in the US Northern Rockies by combining satellite-derived burn severity from MTBS and 

fuel characteristics from LANDFIRE (Wimberly et al., 2009).  

In the case of the US Northern Rockies region and multi-scale analyses of Stage 4, it is 

more difficult to perform large-scale, cross-boundary analyses because existing pre-processed 

fire products like fire atlases, LANDFIRE, and MTBS have been created at regional or national 

extents. Multi-scale analyses that rely on these satellite-derived products are limited to the spatial 

and temporal scale characteristics of the input remotely sensed data or the algorithms used to 

create the datasets. Data fusion algorithms, open-access workflows, and cloud-based fire 

dashboards can support future multi-scale analyses that synthesize information from multiple 

sources (Boschetti et al., 2015; Chuvieco et al., 2020; Crowley et al., 2019a, 2019b; Hilker, 

Wulder, Coops, Linke, et al., 2009). In particular, fire dashboards can integrate data developed in 

the first three fire monitoring stages to contextualize present-day fires with historical fire 

patterns, behaviours, and risk across multiple temporal and spatial scales (Lanclos, 2021; Saah, 

2021). By integrating information outcomes from all the stages of the framework, Stage 4 

syntheses provide social-ecological systems findings that can inform future response, policy, and 

planning.  
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5.4 Discussion and Conclusions 

In this study, we present a holistic framework for Earth observation analysis that 

identifies the multiple stages of monitoring during the life cycle of the wildfire system. By 

identifying and synthesizing objectives and information needs for each fire monitoring stage 

using this framework, Earth observation-based fire monitoring can be better positioned to 

support future fire suppression and management. We identified fire monitoring stage priorities to 

assemble, facilitate, and expedite the accessibility of Earth observations to inform near-real-time 

modeling and management, further supporting downstream fire mapping and analyses. In the 

case of wildland fires, as illustrated by the four case studies presented, failure to information 

needs and fire monitoring objectives can result in catastrophe, whether loss of life, infrastructure, 

ecosystems, and more. Whole-systems frameworks like the one presented herein can be used to 

navigate the complexities of fire monitoring by understanding information needs at each stage, 

identifying existing data sources, and conceptualizing measures to advance fire monitoring 

capacity in the future. 

By applying this framework to four North American fire case studies, we show how a 

holistic framework can help identify gaps between data acquisition, supply, analysis, and desires 

for stakeholders. The case studies illustrate the importance of having access to the right 

information for the right scale at the right time to meet fire monitoring objectives for each stage. 

For example, the 2021 White Rock Lake Fire illustrated that there can be significant challenges 

in acquiring the data necessary to support the information needs associated with a given stage, 

and moreover that delays in processing that data into the required information products and 

getting those products into the hands of decision-makers can have downstream consequences for 

response and management. Fire analysis dashboards like Pyregence show promise for making 
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fire monitoring data and alerts publicly available as soon as they can be processed. Additionally, 

fire dashboards can support multi-scale analyses and multi-stage data synthesis to contextualize 

current fire events with historical conditions, disturbances, and succession. Fire dashboards, 

however, must be designed in consultation with all stakeholders (e.g., provincial and federal fire 

agencies, First Nations communities, local governments, landowners, residents) to help prioritize 

the information needs of a broad range of end-users while also building trust and awareness of 

the resource. 

In recent years, we have seen the launch of multiple Earth observation satellites that will 

be particularly useful for meeting fire monitoring objectives outlined in the whole-systems 

framework. Recently launched Landsat-9, GEDI, ICESAT-2, RADARSAT Constellation 

Mission, and others will provide perspectives of pre, active, and post-fire landscapes with 

cutting-edge data characteristics like frequent revisit rates, capacity to characterize vertical 

structure and distribution of vegetation, and smoke and haze penetrating wavelengths. Proposed 

missions like WildFireSat will be designed with fire monitoring objectives at the forefront. 

Together, all these data sources will advance forest fire monitoring capacity due to the increased 

volume of data and the complementary nature of the observations. By fusing these sources with 

historical data from the long-term, open-access Landsat program, multi-decadal 

pyrogeographical analyses using Earth observations will provide additional insights into the fire 

system from the past fifty years. 

A significant contribution of this whole-systems approach is increasing the understanding 

of fire systems and multiple objectives for remote sensing scientists. There is often a challenge to 

find the right balance between validation of information products generated from Earth 

observation data and providing timely outputs to meet the needs of decision-makers. Fire 



 

182 

dashboards co-designed with representatives from multiple stakeholder groups can be 

particularly powerful to ensure that future fire monitoring approaches prioritize the needs of the 

whole fire system. This framework can be applied to future fire case studies to identify 

mismatches between fire monitoring objectives and data needs. By identifying these 

inconsistencies, users from similar fire systems will be able to identify challenges and 

opportunities for paths forwards using Earth observations to support fire monitoring and 

management of future fires. 
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6. Discussion and synthesis 

In this dissertation, I explored opportunities for using multi-scale, open-access Earth 

observations and cloud-based processing for monitoring environmental change, such as 

wildfires. The field of remote sensing will continue to have significant advances for 

environmental change monitoring as new satellites with new data characteristics are launched 

and made more readily accessible to stakeholders and scientists. New cloud-based and 

cyberinfrastructure platforms like Google Earth Engine, Microsoft Planetary Computer, and 

Open Data Cube enable easy access and processing of new Earth observation data sources 

without needing a supercomputer. These dramatic advances support rapid environmental 

monitoring for hazards and disasters like forest fires.  

Remote sensing is both a scientific field and a powerful methodological tool that can 

enable achievements in other research fields through raw imagery, analysis-ready data, pre-

processed datasets, or processing platforms. Chapter 2 illustrated the importance of integrating 

methods and data from remote sensing into landscape ecology by examining the historical 

contributions of the Earth observation approaches to landscape ecology research. By doing so, I 

showed how remote sensing data and methodological approaches can continue to support 

advancing multi-scale landscape ecology research examining landscape function, structure, and 

change. As remote sensing data sources continue to proliferate, landscape ecologists will 

continue to tackle large-scale, synthesis-based questions using Earth observation techniques. 

This chapter examined recently published research from 2015 to 2019 and can serve as a 

baseline for future evaluations of remote sensing’s contributions to landscape ecology research 

as both fields continue to benefit from open-source data and technological advances.  
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Remote-region fire monitoring is made possible with increased data availability, 

accessibility, and processing platforms, especially multi-source, multi-scale wildfire progression 

mapping with data fusion techniques. In Chapters 3 and 4, I made use of these advances in 

remote sensing to create a novel prototype for synthesizing fire classifications from multiple 

satellite sources to reconstruct near-term fire progressions in British Columbia, Canada. As we 

prepare for future satellite missions, including some that focus exclusively on mapping fires, 

novel data fusion techniques will be integral to synthesize data and leverage the strengths of each 

Earth observation source to improve fire monitoring. Because of its cloud-based approach, my 

method for fire classification synthesis can be used to reconstruct historic fires or track future 

wildfire progressions, cross-validate fire behaviour models, and compare fire progression metrics 

between historic fires and fire seasons. There are opportunities for this method to be applied in 

larger geographic areas, spanning longer periods, integrating active synthetic aperture radar 

(SAR) data sources (Engelbrecht et al., 2017), and using other commercial optical remote 

sensing data sources. Additionally, by using the output fire progression dataset generated with 

the approach illustrated in Chapters 3 and 4, these methods can provide information about active 

wildland fire progressions to improve our understanding of fire growth and associated drivers 

over space and time. 

The whole-systems fire monitoring framework presented in Chapter 5 was developed as a 

result of the lessons learned from analyzing remote sensing contributions to landscape ecology in 

Chapter 2 and creating and applying a prototype for fire progression mapping using data fusion 

in Chapters 3 and 4. In particular, when presenting my research at scientific conferences 

throughout my Ph.D. program, I was often asked if my prototype would work in different fire 

scenarios that had different monitoring objectives. It was clear that while the other researchers 

https://paperpile.com/c/RQHHqK/aOdbG
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were all looking at the same landscape phenomena, they had different information needs and 

priorities that could be achieved with adjustments to the spatial and temporal resolutions of the 

input Earth observation sources. By examining the fire monitoring system together as a whole, 

we can better understand and meet objectives by including all the stakeholders from every fire 

monitoring stage together in one framework. Like the wildfire system that is impacted by 

interrelated social and ecological fire drivers occurring on the same landscape, each fire 

monitoring stage is related to the prior stage’s data products and research findings and then 

impacts the subsequent stage. This chapter advances opportunities for whole-systems approaches 

using Earth observations to support fire and environmental change monitoring. 

This research opens doors for overcoming additional challenges in environmental change 

monitoring. The BULC algorithm could be used to synthesize incidence, burned area, day-of-

burn, and burn severity classifications from both optical and radar sensors to analyze wildfire 

behaviours and fire season archetypes throughout Canadian history. Other opportunities exist by 

using deep learning or automated machine learning to integrate fire drivers into fire progression 

and occurrence mapping protocols (Jain et al., 2020; Reichstein et al., 2019) and to analyze the 

relationship between wildfire progressions and fire drivers over time.  Ultimately, this research 

advances multi-scale, multi-source fire monitoring and identifies opportunities for Earth 

observation sciences to aid in wildfire planning and response.  
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7. Conclusion 

This thesis contributes to fire disturbance monitoring by producing and analyzing fire 

progressions using multi-scale approaches that draw upon landscape ecology and remote sensing 

theory, as identified in Chapter 2. In Chapters 3 and 4, I present and apply a new data-fusion 

protocol for reconstructing fire progressions in British Columbia using multi-sensor, multi-scale 

Earth observations and analyze the resulting fire progressions for large fires using novel fire 

progression metrics. This research advances the field of remote sensing by implementing 

systematic methods for synthesizing multi-source data to improve near-term fire disturbance 

monitoring, thus illustrating opportunities for future multi-source Earth observation data fusion 

using Bayesian approaches. Chapter 5 presents a whole-systems fire monitoring framework that 

can be used to identify and harmonize fire monitoring objectives and data needs throughout the 

life cycle of a fire event using Earth observations. Overall, my thesis highlights the current and 

future opportunities using cloud computing and open-access Earth observations to advance 

environmental change monitoring. 
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