
Active Preference Learning
Using Trajectory Segmentation

Monica Omprakash Patel

Master of Science

School of Computer Science
McGill University

Montreal, Quebec, Canada

July 2019

A thesis submitted to McGill University in partial
fulfillment of the requirements of the degree of

Master of Science

c©Monica Patel, 2019



Abstract

Machine learning is currently used heavily to develop robot behaviors, giving great flexibil-
ity and power, but there remains significant burden on human designers to specify reward
functions or label data for the learning target. Learning from demonstration is a very in-
tuitive way to teach your robot a new skill. This thesis considers two improvements to
modern learning from demonstrations.

First, we consider a model-based imitation approach that utilizes a modern form of deep
probabilistic model to predict agent behaviors in order to match them to demonstrations.
We replace the non-parametric estimator utilized by an existing approach, which has the
limitation of poor scaling with the amount of training data. In its place, a learned parametric
model is trained to capture inherent uncertainties. Through sampling-based prediction, our
approach is able to capture a distribution over likely outcomes of the given policy. This is
paired with a probabilistic notion of the difference between the agent’s outcome distribution
and the distribution of demonstrations, to produce a gradient-based policy improvement
approach. Our results show that this method is effective in imitating demonstrations in a
range of scenarios.

The second portion of this thesis considers the temporal credit assignment problem
within learning from demonstration. We propose an active learning framework that uses
trajectory segmentation to addresses this issue. Our method uses spatiotemporal criteria
to segment the trajectory. These criteria can be based upon speed, heading, or curve of the
trajectory which are intuitive properties to understand user’s intentions. Thus, not only does
our framework make the user query interface more intuitive but the resulting approach also

i



learns faster. We demonstrate and evaluate our approach by learning a reward function for
various driving scenarios and show that our algorithm converges faster.

ii



Abrégé

L’apprentissage automatique est actuellement très utilisé pour développer les comporte-
ments des robots, ce qui leur confère une grande flexibilité et puissance, mais il incombe
toujours aux concepteurs humains de spécifier des fonctions de récompense ou des don-
nées d’étique-tage pour la cible d’apprentissage. Apprendre à partir d’une démonstration
est un moyen très intuitif d’enseigner de nouvelles compétences à votre robot. Cette thèse
considère deux améliorations de l’apprentissage moderne à partir de démonstrations. Nous
examinons d’abord une approche par imitation basée sur un modèle qui utilise une forme
moderne de modèle deepprobabilistic pour prédire les comportements des agents afin de les
faire correspondre à des démonstrations. Nous remplaçons l’estimateur non paramétrique
utilisé par approche existante, qui a pour limite la faible mise à l’échelle avec la quan-
tité de données de formation. À la place, un modèle paramétrique appris est formé pour
saisir les incertitudes inhérentes. Grâce à la prédiction basée sur l’échantillonnage, notre
approche est capable de capturer une distribution sur les résultats probables de la politique
donnée. C’est assorti d’une notion probabiliste de différence entre la distribution des résul-
tats de l’agent et la distribution des démonstrations, afin de produire une approche basée
sur l’amélioration de la politique basée sur les gradients. Nos résultats montrent que cette
méthode est efficace pour imiter des démonstrations dans différents scénarios. La deux-
ième partie de cette thèse examine le problème de l’affectation temporaire de crédits avec
l’apprent-issage de la démonstration. Nous proposons un cadre d’apprentissage actif qui
utilise la segmentation par trajectoire pour résoudre ce problème. Notre méthode utilise des
critères spatio-temporels pour segmenter la trajectoire. Ces critères peuvent être basés sur
la vitesse, le cap ou la courbe de la trajectoire, propriétés intuitives permettant de compren-

iii



dre les intentions de l’utilisateur. Ainsi, non seulement notre framework rend l’interface
de requête utilisateur plus intuitive, mais l’approche résultante apprend également plus
rapidement. Nous démontrons et évaluons notre approche en apprenant une fonction de ré-
compense pour différents scénarios de conduite et montrons que notre algorithme converge
plus rapidement.

iv



Contributions

The research described in this thesis was carried out by the author, Monica Patel, super-
vised by Prof. David Meger, and in collaboration with several members of McGill’s Mobile
Robotics Lab. Monica independently implemented all of the methods described here and
carried out the experiments and analysis. Code for previous method in Active learning was
completely implemented by her. The thesis is written entirely by Monica, with reviews
and corrections from Prof. Meger. In some cases, the implementations build upon existing
libraries developed for previous research, which were used through standard interfaces to
save time during implementation. These libraries include: Bayesian Neural Network and
PILCO policy improvement code base written by Juan Camilo Gamboa Higuera.

This work has appeared through technical reports submitted to Huawei Research Canada,
through a collaborative research project between McGill and Huawei. Those reports repre-
sent early versions of this public research and were written by Monica, with reviews and
corrections from Prof. Meger.

v



Acknowledgements

Foremost, I would like to acknowledge and express my sincere gratitude to my thesis advi-
sor, Prof. David Meger for his help, support, expert advice and amiable patience through-
out all stages of the work. I would also like to thank him for his constant encouragement
that not only made this work possible but also introduced me to the field of Medical Tech-
nology through graduate certificate in Surgical Innovation.

I would also like to thank my colleague and good friend Juan Camilo Gamboa Higuera
for his advise, invaluable discussions and extremely helpful code base. Thank you for al-
ways taking time to answer my questions. Beside Juan, I also thank my friend Jana Pavlasek
for her shared efforts in building and maintaining the simulation environment used in this
work.

A very special gratitude goes to Prof. Joelle Pineau at McGill University and Huawei
for generous funding and fruitful discussions on research in Autonomous Driving.

A special thanks goes to Prof. Gregory Dudek for extremely enthusiastic and friendly
research environment. The skills I acquired during the field experiments made me a better
roboticist.

Finally, my very special thanks to my grandmother, parents and friends in Montreal and
back home for their constant love, care, encouragement and support.

Thank you very much all!

vi



Contents

I Introduction 1

1 Introduction 2
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 6
2.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Reinforcement Learning Algorithms . . . . . . . . . . . . . . . . . . . . . 8

2.3 Imitation Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Gaussian Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Gaussian Process Regression . . . . . . . . . . . . . . . . . . . . . 15

2.5 Bayesian Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Kullback-Leibler Divergence . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Active Learning and Adaptive Submodularity . . . . . . . . . . . . . . . . 18

2.8 Preference Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Experiment Task Description 22
3.1 Simulation Environment - Conduite-Simulateur

(ConSim) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Expert’s Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Expert’s Preference Collection . . . . . . . . . . . . . . . . . . . . . . . . 28

II Thesis Contributions 31

4 Imitation Learning 32

vii



4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Probabilistic Forward Model using BNN . . . . . . . . . . . . . . . . . . . 33

4.3 Model-based Imitation Learning by Probabilistic
Trajectory Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Expert Distribution Representation . . . . . . . . . . . . . . . . . . 36

4.3.2 Policy Distribution Representation . . . . . . . . . . . . . . . . . . 37

4.4 Deep PILCO Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.1 Two Lane Over Taking . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5.2 Lane Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.3 Round-A-Bout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Active Preference Learning 48
5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Learning Reward from Preferences . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Distribution Update Based on Feedback . . . . . . . . . . . . . . . . . . . 51

5.4 Generating Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Limitation and Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 Our Approach to Preference Learning . . . . . . . . . . . . . . . . . . . . 54

5.7 Temporal Segmentation of Trajectories . . . . . . . . . . . . . . . . . . . . 56

5.8 Query and Response With Segmented Trajectories . . . . . . . . . . . . . . 56

5.9 Weight Distribution Updates With Segmented Trajectories . . . . . . . . . 57

5.10 Smart Segment Query and Distribution Update . . . . . . . . . . . . . . . 57

6 Experiments and Results 58
6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Over Taking in Two-Lanes . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.1 Comparison of Weight Distribution Update . . . . . . . . . . . . . 59

6.2.2 Comparison of Goodness Metric . . . . . . . . . . . . . . . . . . . 60

6.2.3 Policy Learning From Reward Function . . . . . . . . . . . . . . . 60

6.3 Driving in Round-a-bout . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

viii



6.3.1 Comparison of Weight Distribution Update . . . . . . . . . . . . . 63

6.3.2 Comparison of Goodness Metric . . . . . . . . . . . . . . . . . . . 64

III Final Conclusion & Future Work 65

7 Final Conclusion & Future Work 66
7.1 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography 68

Acronyms 73

ix



List of Figures

1.1 Preference feedback interface . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 The agent - environment interaction in a MDP . . . . . . . . . . . . . . . . 7

2.2 Reinforcement learning Algorithms . . . . . . . . . . . . . . . . . . . . . 12

2.3 Block diagram: Different approaches to Preference learning. . . . . . . . . 21

3.1 ConSim Simulator various scenarios . . . . . . . . . . . . . . . . . . . . . 24
3.2 ConSim Simulator various scenarios . . . . . . . . . . . . . . . . . . . . . 24
3.3 Overtaking Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Merging Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Intersection Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Round a bout Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7 Preference interface without segmentation . . . . . . . . . . . . . . . . . . 29

3.8 Preference interface with segmentation . . . . . . . . . . . . . . . . . . . . 30

4.1 Generative model showing generation of predicted trajectories. . . . . . . . 34

4.2 Agent’s trajectory roll-out generation . . . . . . . . . . . . . . . . . . . . 38

4.3 Overtaking Expert’s Demonstration State Action Roll-outs . . . . . . . . . 41

4.4 Overtaking Policy roll-outs on Environment . . . . . . . . . . . . . . . . . 42

4.5 Overtaking Policy Action on Environment . . . . . . . . . . . . . . . . . . 42

4.6 Overtaking Policy roll-outs on Dynamics Model . . . . . . . . . . . . . . . 43

4.7 Merging Expert’s Demonstration State Action Roll-outs . . . . . . . . . . . 44

4.8 Merging Policy roll-outs on Environment . . . . . . . . . . . . . . . . . . 44

4.9 Merging Policy Action on Environment . . . . . . . . . . . . . . . . . . . 44

4.10 Merging Policy roll-outs on Dynamics Model . . . . . . . . . . . . . . . . 45

4.11 Round-a-bout Expert’s Demonstration State Action Roll-outs . . . . . . . . 46

x



4.12 Round-a-bout Policy roll-outs on Environment . . . . . . . . . . . . . . . . 46

4.13 Round-a-bout Policy Action on Environment . . . . . . . . . . . . . . . . 46

4.14 Round-a-bout Policy roll-outs on Dynamics Model . . . . . . . . . . . . . 47

5.1 Example Feasibility Set for Round-a-bout Scenario . . . . . . . . . . . . . 50

5.2 Preference interface showing two different Merging trajectories . . . . . . . 55

5.3 Preference interface: Merging Scenario . . . . . . . . . . . . . . . . . . . 55

6.1 Update of weight distribution w for Overtaking Scenario . . . . . . . . . . 59

6.2 Goodness Metric comparison for Overtaking Scenario . . . . . . . . . . . . 60

6.3 Overtaking Experts State Action Roll-outs . . . . . . . . . . . . . . . . . . 61

6.4 Overtaking Policy State Action Roll-outs . . . . . . . . . . . . . . . . . . 62

6.5 Update of weight distribution w for Round-a-bout Scenario . . . . . . . . . 63

6.6 Goodness Metric comparison for Round-a-bout Scenario . . . . . . . . . . 64

xi



Part I

Introduction

1



1
Introduction

Finding an optimal sequence of actions to perform a particular task lies at the heart of skill
acquisition. Research shows that imitation plays an essential role in the development of
these skills in humans and animals [BR63]. Discoveries in developmental psychology have
altered theories about the place of imitation learning in human nature. It was first believed
that humans gradually learn to imitate over the years, but now it is known that newborns can
imitate body movements at birth [MP02] thus revealing an innate link between observed
and executed acts. Neuroscientists and experimental psychologists have discovered mecha-
nisms connecting the observation and execution of actions [FR14], [FR15].

Just as skill acquisition involves connecting observations to actions in human beings
and animals, for an artificial agent, the problem of learning involves mapping of the world’s
state to an appropriate action. This mapping is often referred to as a policy. Programming
such policies by hand using domain knowledge alone is extremely challenging. It requires
a large amount of effort for every different task and would not take into consideration
changes in the environment. Moreover, many robotic applications involve assisting a hu-
man to perform a particular task; thus we want our agent to be able to learn from a human
who might not necessarily have knowledge of robotics.

Learning from demonstrations is an approach to solve such skill acquisition problems
in an elegant way. In this approach, a human expert’s demonstrations are collected for a par-
ticular task, and the algorithm helps the agent to find an optimal policy using these demon-
strations. There are two major design parameters which influence different approaches to

2



Introduction

learning from demonstration: 1) the demonstration approach; and 2) the policy derivation
approach. A demonstration approach specifies how and what kind of demonstrations are
collected from the expert. For example, many methods apply batch learning to the prob-
lem where complete data should be provided before the agent can start learning. A classic
example of this approach is behavior cloning [BS95]. On the other hand, many methods
apply interactive learning where data is provided by the expert incrementally, and the pol-
icy is updated incrementally with batches of these data point, e.g., DAgger [RBG11]. The
policy derivation approach specifies a method by which an agent derives its policy from
the demonstration. There are two core approaches to policy derivation: 1) directly using
demonstration data to define a approximate mapping function between state of the world
and an action, e.g., behavior cloning [BS95]; and 2) using demonstration data to learn the
reward function and optionally system model and learning an optimal policy using this
reward function [SBTC16].

Another aspect in which learning from demonstration approaches differ is the type of
data provided to the agent. In many applications, it is possible to provide data in the state
and action space of the robot. This reduces an extra step of understanding the data for an
agent. However, in other domains, the nature of the robot or environment may prevent a
human from giving direct demonstrations easily. For example, humans are not skilled at
controlling each joint of a high dimensional manipulator or all of the individuals that make
up a swarm of robots. In such cases, the expert can demonstrate the task in different state
space, and the agent learns via observation, e.g., learning by watching a video [RBG18].
This usually involves processing large an amount of complex visual information. There-
fore, many approaches do not rely on an expert’s demonstration of a task but rather on the
expert’s opinion on the agent’s behavior of the task. This opinion can be a ranking of the
behaviors which the agent demonstrate or preference over a set of behaviors.

One difficulty in learning from demonstration approaches is dealing with long demons-
tration trajectories with complex state space. Taking an example of a self-driving problem,
if an artificial agent wants to learn an overtaking maneuver, the trajectory in this scenario
will be long and involve complex continuous state-action space of the autonomous vehicle.
Thus the learning algorithm should be scalable to handle this large amount of data. In this
thesis, we improve upon an existing, state of the art imitation learning method [EPPD13]

3



Introduction

by proposing the use of a Bayesian Neural Network (BNN) (see section 4.2) to make the
method scale better for different scenarios.

Another issue with imitation learning is that it assumes the demonstration given by
an expert to be near-optimal, while for applications like training an autonomous vehicle,
demonstrations collected from humans may not be very reliable because it has been well
documented in popular culture that human beings are poor drivers [Van08], [Dav15]. A
user study performed by Basu et al. [BYH`17] shows that people often do not want their
car to drive like they drive but how they think they drive. In this context, it is desirable to
avoid the demonstrator from having to generate detailed motions.

Thus Sadigh et al. [SDSS17] proposed using an active approach to reward learning
where the agent car provides the expert with two behaviors, and the expert provides the
agent with a preference. The existing work, known as active preference learning, has illustrat-
ed the ability of this method for understanding user preferences in an intuitive fashion.
However, since the feedback is received over the complete trajectory, the difficulty with
the existing approach is that the algorithm needs to determine which states or actions were
responsible for the encountered preferences. This is known as the temporal credit assign-

ment problem (see section 2.8). In this thesis, we propose to use trajectory segmentation
with active preference learning to understand what properties of the trajectories were of
most significance for the demonstrator.

As an illustrative example, consider the two scenarios given in figure 1.1. The expert
may choose Trajectory A for segment 1 (shown in cyan) since the car shifts into the other
lane with greater distance from Non-Player-Character (NPC). On the contrary, for segment
2 (shown in yellow), trajectory B is better than A, since the agent car stays in middle of
the road. For segment 3 (shown in magenta) Trajectory A is better than B for the same
reason. By segmenting the trajectory and asking for preferences on each portion, we get
information about what part of the trajectory was responsible for the user to choose one
over the other. In the previous work, the user would have faced a difficult choice in how
to accumulate their preferences, and the algorithm would have faced the difficult task if
disentangling this feedback.

4



1.1 Outline

Figure 1.1: Preference interface showing two different overtaking trajectories, with seg-
mentation

1.1 Outline

The thesis is structured as follows. In chapter 2 we provide background on the concepts
used in this thesis. This chapter also contains a literature review related to the problems we
address. In chapter 3 we describe our experimentation task and environment. It provides
a detailed overview of the scenarios over which we test our methods and compare our
results. It also describes how human experts can interact with the learning agent and the
types of experts used in experiments. Chapter 4 details a method proposed by Englert et

al. [EPPD13] in previous work for imitation learning and our adaptation of the method to
better suit a larger data set. Chapter 5 describes the previous method proposed by Sadigh et

al. [SDSS17] for Active preference learning of a reward function and our adaptation of this
method to incorporate trajectory segmentation. It lastly describes methods we use to get
meaningful segments of the trajectory. Chapter 6 shows all the results obtained from active
preference learning over various scenarios, their comparison with previous methods and
understanding of why segmentation is necessary. Lastly, chapter 7 details the conclusions
of our work and discusses future work that can result from this contribution.

5



2
Related Work

The idea of Operant conditioning from psychology was adopted in Artificial Intelligence

and engineering (control theory) to form techniques to program artificial agents to make
decisions based on experience. A framework consisting of a collection of these methods
is called Reinforcement Learning (RL). In RL agent and environment interact continually,
where agent selects actions and the environment responds to these actions and present
new situations to the agent. Markov Decision Process (MDP) [Bel57], described in section
2.1, are used for a straightforward framing of the problem of learning from interaction to
achieve a goal. Many methods in this RL framework are based on this mathematical frame-
work. An MDP is used to describe a fully observable environment for RL. Similar to RL
algorithms, algorithms in learning from demonstration also involves a process where the
agent interacts with the environment and chooses an action. Therefore, an MDP framework
can also be used to formulate these problems. As mention in the previous chapter, there
are many design parameters involved in devising a learning from demonstration method.
Throughout the thesis, we use the MDP framework to formulate all of our design parame-
ters. In this chapter, we first explain this framework. Then, we give details on a selection of
background techniques that are the most required to comprehend the contributions within
this thesis.

In section 2.1 we describe MDP framework. In section 2.2 we give overview of a few
of the learning algorithms in reinforcement learning. In section 2.3 we give a definition of
Inverse Reinforcement learning based on the MDP framework and give an overview of the

6



2.1 Markov Decision Process

Figure 2.1: The agent - environment interaction in a MDP

algorithms in Imitation learning. One of our main contributions involves model-based RL,
and therefore in section 2.4 we briefly explain Gaussian Processes and how they can be used
for learning a dynamics model of the environment. This section is based on the definition of
the Gaussian process in [RW05]. In section 2.5 we explain how a Bayesian neural network
can be learned to represent input and output uncertainty just like the Gaussian Process.
This section is based on the work of Gal et al. [GG16]. The final contribution of this thesis
relates to active Preference learning, and therefore section 2.8 gives an overview of the
algorithms in Preference learning and explains the choice of our design parameters in the
context of these methods.

2.1 Markov Decision Process

An MDP is defined by tuple (S,A,R, δ, γ), where, S is set of states, A is set of actions, R
is a reward function that maps states in set S to a real value, R : S Ñ R, δ is transition
probability function, δps1|s, aq, that gives distribution over next states given current state
and action, and γ is the discount factor, γ P r0, 1q. A policy for an MDP is function that
maps states to action, πpsq “ a. A trajectory τ induced by a policy π in an MDP is a
sequence of states and actions upto a finite time horizon H . The goal of an RL agent is to
find an optimal policy π˚ that maximizes the total accumulated reward of the trajectory for
a particular task. Interaction of agent in an MDP in a RL setting is given in figure 2.1.

7



2.2 Reinforcement Learning Algorithms

2.2 Reinforcement Learning Algorithms

In an RL setting, the goal of an agent is formalized in terms of reward signals received from
the environment. The agent’s goal is to maximize the total amount of reward it receives.
This is usually done by finding an optimal policy that maximizes the total expected reward
of a trajectory τ . The trajectory is given by sequence of states and actions. Therefore the
reward over a trajectory can be given by,

Rpτq “
H
ÿ

t“0

rpst, atq, (2.1)

where,H is a finite horizon. For infinite horizon trajectories equation 2.1 can be written
as,

Rpτq “
8
ÿ

t“0

γtrpst, atq, (2.2)

where, γ is a discount factor used to bound the return. The objective of an RL algorithm
is finding the policy that maximizes this expectation:

π “ arg max
π

ErRpτqs. (2.3)

As we can see from equation 2.3, the RL objective contains a term for the expected
accumulated reward. In the RL framework, a value function or state-value function defines
the expected return of an agent in state s given by,

V ps0q “ Eπr
ÿ

τ

rpst, utqs, (2.4)

where, s0 is the starting state for a trajectory. st and ut are the state and action at time t
where ut is obtained from current policy π.

A core task of RL is to estimate value functions from data, and for IRL our goal is to

8



2.2 Reinforcement Learning Algorithms

x φpxq

[0, 0]
[0, 1]
[1, 0]
[1, 1]

[0, 0, 0, 0]
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 0, 1]

Table 2.1: Tabular representation of function φ

estimate the user’s hidden reward. For MDPs with continuous state and action spaces, such
as robots operating in the real physical world, function approximation is used to estimate
these quantities from finite sampled data. Function approximation is defining a continuous
function fpxq Ñ Rd for input x. A function approximator can be either parametric or
non - parametric. A parametric function approximator can be define as function fpθ, xq
that can be described by a finite set of parameters θ, for e.g., a polynomial. Thus, the
reward and/or policy can be defined using a continuous functions. A policy defined using
parametric function approximator is called a parametrized policy and is represented as
πpθ, sq “ a. In many methods, reward is represented using a linear function approximator.
Linear function approximator assumes that there exists a feature space φpxq that represents
input and function’s output as linear function of features with weight w given by,

fpxq “ wTφpxq.

An example function φ can be seen in table 2.2 that maps two dimensional input space
x to four dimensional feature space φpxq.

A linearly approximated reward function can be given by,

Rpsq “ wTφpsq.

Features for the reward function can either be manually designed, extracted, or learned
from the data.

Broadly, there are two ways of learning an optimal policy as shown in figure 2.2. 1)
Using direct RL and 2) Model based RL. In direct RL, the policy π or the value function

9



2.2 Reinforcement Learning Algorithms

is optimized directly from the experience obtained from environment. One of the classic
example of direct RL method is Value Iteration [SB18]. It is simple iterative algorithm
that finds the optimal value function for an MDP. Initially the value function is initialized
arbitrarily. Then it is updated using value function update equation until convergence given
by,

Qps, aq “ Rps, aq ` γ
ÿ

s1PS

δps1|s, aqV ps1q,

V ps1q :“ max
a
Qps, aq.

(2.5)

As we can see from equation 2.5 value iteration algorithm needs to know transition
probability to calculate Qps, aq. A more realistic case for robotics is that the state transi-
tion probability is not known and the agent discovers about certain transition and reward
only when it lands in that state. This is called the Reinforcement Learning problem and
the Q-learning algorithm [SB18] can be used. Q-learning rule can be given by following
equation,

Qtps, aq :“ Qt´1ps, aq ` αpRps, aq ` γmax
a1

Qps1, a1q ´Qtps, aqq, (2.6)

where, next state s1 is sampled and non-deterministic. We can see from equation 2.6
next action a1 is independent of the policy and is chosen based on max Q-value, such
methods where learning is independent of the current policy are called off-policy methods.

For low-dimentional discrete state and actions, a tabular form of Q-learning can be
used but when state and actions are continuous or become high dimensional the tabular
method suffers from curse of dimensionality. For these types of problems the Q function
must be approximated using function approximation explained above. Deep networks are
known for their capability of handling large data. Mnih et al. proposed a Deep Q-learning

method [MKS`13] that used a deep network to approximate Q function. Deep Q learning
was successfully applied to tasks with continuous state space but its action space was still
discrete.

A method for using deep learning method to learn a control policy with both continu-

10



2.2 Reinforcement Learning Algorithms

ous state and action spaces is proposed by Lillicrap et al. [LHP`13]. They adapted deep
Q-learning for continuous action space and proposed a model-free, off-policy actor-critic
algorithm to learn policies. Algorithm uses actor-critic approach based on the Determinis-
tic Policy Gradient (DPG) algorithm where a parameterized actor function is maintained
which specifies the current policy by deterministically mapping states to a specific action.
The Q-function is used as a Critic to provide guidance during policy optimization.

A second type of reinforcement learning algorithms are categorized as Model-based
RL, where experience are used to learn the model of the environment and policy or value
functions are optimized based on data obtained from this dynamics model. The Dyna-Q ar-
chitecture introduced by Sutton et al. includes all of the processes shown in figure 2.2. Plan-
ning in Dyna-Q is done using tabular Q-planning (see equation 2.6) and learning is done
using tabular Q-learning method. Model learning assumes the environment to be determin-
istic. After each transition, the model simply adds st, at and its prediction rps, aq, st`1 in
its table. Thus, if the model is queried with a state-action pair that has been experienced
before, it simply returns the last-observed next state and next reward as its prediction. Thus
algorithm for Dyna-Q can be given by algorithm 1.

Algorithm 1: Dyna-Q algorithm
Initialize Qps, aq and Modelps, aq for all s P S and a P A ;
while True do

sÐ current state ;
aÐ ε-greedy(s, Q) ;
Execute action a in state s and observe reward rps, aq and next state s1 ;
Qps, aq Ð Qps, aq ` αrrps, aq ` γmaxaQps

1, aq ´Qps, aqs (Q-learning step) ;
Modelps, aq Ð rps, aq, s1 ;
while iterations < n do

sÐ random previously observed state ;
aÐ random action previously taken in s ;
rps, aq, s1 ÐModelps, aq ;
Qps, aq Ð Qps, aq ` αrrps, aq ` γmaxaQps

1, aq ´Qps, aqs ;
end

end

One of the recent model-based RL method that is used to learn control policies in con-

11



2.3 Imitation Learning Algorithm

Figure 2.2: Reinforcement learning Algorithms

tinuous state and action space sample efficiently is PILCO [DR11], proposed by Deisenroth
et al. PILCO uses a Gaussian process to represent the model of the environment and both
the model and policy are improved iteratively. The model of the environment is improved
by the data collected from actual experience while exploring the state and action space us-
ing the current policy. The policy is then improved using synthetic roll-outs of the policy
through the learned model. This allows many policy update rounds in between data col-
lection, thus making the algorithm sample efficient. PILCO was able to learn the swing up
pendulum task with only handful of trials and a total experience of 17.5 seconds.

2.3 Imitation Learning Algorithm

Now, consider an MDP without the reward function, denoted by MDP\R, given by tuple
(S,A, δ, γ). Goal of learning from demonstration algorithms is to learn an optimal policy
in this MDP. It can broadly be done two ways. 1) The agent directly learns the policy by
using the demonstrations. This is usually called Imitation learning. Or 2) The agent finds
the reward function for the task that can explain the observed behavior, this is called inverse

reinforcement learning problem. That is, if for a given MDP\R we know a policy π then
we find reward function R such that π is optimal.

As we can see algorithm 1 uses tabular form of Q-learning and Q-planning which can-

12



2.3 Imitation Learning Algorithm

not be used for continuous state and action space applications. In order to address this issue
Schaal et al. [Sch97] used learning from demonstration along with Q-learning to solve a
swing up pendulum task. The algorithm they proposed learned both the Q function and
model incrementally by a non linear function approximator, Receptive Field Weighted Re-
gression. They tested following learning conditions empirically.

1. Scratch: Q-function, model and policy π were learned from scratch using trial by
trial learning.

2. Primed Actor: initially, π was trained from demonstration and later trained by trial
by trial.

3. Primed Model: Initial training of model using demonstration then trial by trial learn-
ing.

4. Primed Actor and Model: training both π and model initially by demonstration then
by trial by trial learning.

Comparing condition 1 and 3 results showed that learning model from demonstration
data did not show significant improvement in speeding up learning. This is true since ap-
proximating the model of system requires dense exploration of complete state and action
space. While in condition 2 demonstration had significant effect on initial performance.

Many other algorithms in literature use the fact that demonstrations helps in learn-
ing a policy for a complex task quicker than trial by trial learning. These algorithms are
grouped under imitation learning. Imitation as a mechanism to acquire skill is studied
widely in both cognitive and computer science. One of the most classic technique in imi-
tation learning is using pure supervised learning to learn the mapping between states and
actions [BS95]. But these methods suffer greatly from covariance shift. That is as the policy
rolls out a trajectory, error compounds with each step. Because in this case distribution of
states encountered by policy is different than what was seen in the training data and there-
fore the policy divergens from intended behaviour. Moreover, these methods assume that
training data is independently and identically distributed (i.i.d), which is not the case when
training data composed of trajectories where the next step is dependent on the previous
state. Many approaches address this issue by using either extensive data set [BTD`16] or
by using the interactive aggregation of data set rather than using a fixed data set [RBG11].

13



2.4 Gaussian Process

Another approach to address this issue is using a policy evaluation and improvement
step instead of using direct supervised learning. Policy evaluation and improvement step
can use either learned reward function from demonstrated data(IRL) [ZMBD08, AN04] or
there can be a direct policy optimization step which uses demonstrated data[HGE16]. One
main difficulty with these methods is that policy needs to be run on the real system for eval-
uation which can be very costly and even damage the system. To address this issue many
approaches use model based imitation learning[EPPD13] where the policy is not evalu-
ated on that real system but on the dynamics model of the system. This model can be either
mathematical dynamics model of the system or can be a learned model. Methods that use
deterministic models of the environment rather than probabilistic ones ignore the stochastic
nature of realistic environments, thus making them less robust towards small changes. To
capture this uncertainty, [RA07] proposed using distribution over reward function rather
than a single reward. [EPPD13] proposed using Gaussian Process to learn the model of
environment (see section 4.2).

Thus for the first part of the thesis, design requirements we work on are, 1) we don’t
want our approach to reply completely on supervised learning method. 2) We want our
system to be sample efficient. 3) We want our strategy to be able to handle uncertainty in
environment and noise in expert’s demonstrations. 4) And, most importantly, we want our
system to scale for longer trajectory demonstrations and sophisticated feature space. These
requirements will be addressed one by one in chapter 4.

2.4 Gaussian Process

In section 2.3 we saw initial attempts at using model based imitation learning, which sug-
gested using data from exploration to learn the model of the environment and using demon-
stration data to improve policy. In chapter 4, we use similar approach to imitation learning
problem. But since the environment in real scenarios is very complex and uncertain we
need a function approximator that can capture this uncertainty. Englert et al. [EPPD13]
proposed using Gaussian Process to learn the model of the environment. This section gives
a brief introduction to Gaussian Process [RW05].

Definition 1 A Gaussian process is a collection of random variables, any finite number of

14



2.4 Gaussian Process

which have a joint Gaussian distribution [RW05].

For application in the thesis, more intuitive definition can be describing it as a dis-
tribution over functions. This distribution can be fully specified by a mean function and
covariance function. The mean function is usually defined to be zero or as mean of the
available data its trying to model. There are several form of covariance function in the
literature but most commonly used is squared exponential or Radial basis function (RBF)

given as,

kpx, x1q “ λ2f expp´
1

2
px´ x1qTΛxpx´ x

1
qq, (2.7)

where, two input vectors x, x1 are related using a covariance function to measure corre-
lation. aλ2f and Λx are hyper-parameters where, aλ2f , reflects how much variance is present
in the mapping itself and Matrix Λx is a diagonal matrix, whose elements represent length
scale.

According to definition 1 we saw that A Gaussian process is a stochastic process such
that any finite subcollection of random variables has a multivariate Gaussian distribution.
That is, a collection of random variables fpxq : x P X is said to be drawn from a Gaussian
process with mean function m(·) and covariance function k(·, ·) for finite set of elements
xi P X . Therefore the associated distribution of finite set of random variables fpxiq can be
given by,

»

—

—

–

fpx1q
...

fpxmq

fi

ffi

ffi

fl

„ N

¨

˚

˚

˝

»

—

—

–

mpx1q
...

mpxmq

fi

ffi

ffi

fl

,

»

—

—

–

kpx1, x1q, ¨ ¨ ¨ kpx1, xmq
... . . . ...

kpxm, x1q ¨ ¨ ¨ kpxm, xmq

fi

ffi

ffi

fl

˛

‹

‹

‚

, (2.8)

where, m is mean function and k is covariance function given in equation 2.7.

2.4.1 Gaussian Process Regression

In many of model based reinforcement learning methods and imitation learning methods
we saw in section 2.2 and 2.3 Gaussian process was used as dynamics model of the envi-

15



2.4 Gaussian Process

ronment. We can consider the prediction of next state using dynamics model as regression
problem where input is current state and action and output is either next state or change in
state. Let D “ txpiq, ypiqumi“1 be the training data set for Gaussian process model. Gaussian
process regression model can be given by,

ypiq “ fpxpiqq ` εpiq, (2.9)

where, εpiq is noise variable with Gaussian distribution N p0, σ2q for ith element. Now
let, T “ txpiq˚ , y

piq
˚ u

m˚
i“1 be the test data set. Applying definition of GP with zero mean and

covariance kp., .q to training and test set we get,

«

~f
~f˚

ff

|X,X˚ „ N p~0,

«

KpX,Xq KpX,X˚q

KpX˚, Xq KpX˚, X˚q

ff

q, (2.10)

where,
~f “ rfpxp1qq, ¨ ¨ ¨ , fpxpmqqsT ,

~f˚ “ rfpx
p1q
˚ q, ¨ ¨ ¨ , fpx

pm˚q
˚ qs

T ,

pKpX,Xqqi,j “ kpxpiq, xpjqq,

pKpX,X˚qqi,j “ kpxpiq, xpjq˚ q,

pKpX˚, X˚qqi,j “ kpxpiq˚ , x
pjq
˚ q.

Noise in the equation 2.9 is assumed to i.i.d therefore we can write,

«

~ε

~ε˚

ff

„ N p~0,

«

σ2I ~0

~0T σ2I

ff

q. (2.11)

The sums of independent Gaussian random variables is also Gaussian, therefore,

«

~y

~y˚

ff

|X,X˚ “

«

~f
~f˚

ff

`

«

~ε

~ε˚

ff

„ N p~0,

«

KpX,Xq ` σ2I KpX,X˚q

KpX˚, Xq KpX˚, X˚q ` σ
2I

ff

q. (2.12)

16



2.5 Bayesian Neural Network

Using the rules for conditioning Gaussians, equation 2.12 can be written as,

~y˚|~y,X,X˚ „ N pµ˚,Σ˚q, (2.13)

where,

µ˚ “ KpX˚, XqpKpX,Xq ` σ
2Iq´1~y,

Σ˚ “ KpX˚, X˚q ` σ
2I´KpX˚, XqpKpX,Xq ` σ2Iq´1KpX,X˚q.

As we can from see while making a prediction using a Gaussian Process, calculating
inverse of the kernel matrix of all training data is involved. Therefore Gaussian processes
scale poorly as the size and complexity of the data set increases.

2.5 Bayesian Neural Network

As we saw in section 2.4 using Gaussian process for a large data set can be challenging
as Model fitting scales with OpDn3q where n is the dataset size and D is the number of
vector dimensions. Deep learning tools have gain tremendous popularity for such large
data application but they do not capture uncertainty. Gal et al. showed that show that a
neural network with arbitrary depth and non-linearities, with dropout applied before every
weight layer, is mathematically equivalent to an approximation to the probabilistic deep
Gaussian process [GG16].

Given a model fw with parameter w and dataset D “ tX, Y u, BNN can be used to
find posterior over the parameter, ppw|Dq, to make predictions at new test points. Let y
be the prediction of Neural Network (NN) model with L layers, Wi be the NN’s weight
matrices of dimension Ki ˆKi´1 and bi be the bias vector of dimension Ki for each layer
i “ 1, ¨ ¨ ¨ , L then the uncertainty induced at prediction of new point x can be given by,

ppyq “

ż

ppy|fw, xqppw|Dqdw. (2.14)

17



2.6 Kullback-Leibler Divergence

The posterior distribution ppw|Dq used in equation 2.14 is intractable. A new distribu-
tion qpwq is used over matrices whose columns are randomly set to zero, to approximate
the intractable posterior. Thus qpwq can be defined as:

Wi “ Mi.diagprzi,jsKij“1q, (2.15)

where, zi,j „ Bernoullippiq for i “ 1..., L; j “ 1, ..., Ki´1 given some probability pi
and variational parameter matrices Mi. Variable zi,j when set to zero denotes jth unit in
layer i´1 dropped out as an input to layer i.The posterior ppw|Dq can be approximated by
qpwq by minimizing the KL divergence (see section 2.6) between two distributions.

2.6 Kullback-Leibler Divergence

Kullback-Leibler divergence, or simply, the KL divergence is measure of the difference
between two probability distributions over the same variable x. Unlike other distance mea-
sures like euclidean distance, KL divergence is non-symmetric measure. That is, KL diver-
gence of probability distribution ppxq from qpxq is not same as divergence of qpxq from
ppxq. More specifically, KL-divergence of qpxq from ppxq, written as DKLpppxq, qpxqq, is
a measure of the information lost when qpxq is used to approximate ppxq. For a continuous
random variable x, the KL divergence can be given by equation,

DKLpppxq||qpxqq “

ż 8

´8

ppxq ln
ppxq

qpxq
(2.16)

2.7 Active Learning and Adaptive Submodularity

One of the biggest challenge in reinforcement learning or inverse-reinforcement learning
is obtaining labeled data. In reinforcement learning data is obtained from experience. For
the system that runs the risk of damage during exploration collecting such data is very
expensive. In inverse reinforcement learning labels are provided using expert and therefore
involves, human’s interaction with the agent. Therefore collecting large amount of data this

18



2.8 Preference Learning Algorithm

way is also very expensive. An important this to notice in both the cases is that all records
are not equally important from the perspective of labeling. Active leanring is technique that
allows agent to decide which data is point if labeled help it most in the learning process.
Thus agent can selectively ask user to label those data points and improve its data efficiency.
Many approaches propose problem of selecting the query in active learning as adaptive

sub-modular optimization [GK10], [GB10], [Gui12].

A submodular function is a set function satisfying a natural diminishing returns prop-
erty. We call a set function F defined over a ground set V submodular iff for allA Ď B Ď V

and v P V \B

F pA` vq ´ F pAq ě F pB ` vq ´ F pBq.

That is, adding an element toA, a subset ofB, results in a larger gain than adding the same
element to B. Consider the following example to understand diminishing returns property.
We want to deploy a collection of sensors to monitor certain phenomenon. Each sensor
has its own sensing range covering a certain region. Thus, we want to find best subset of
location for the sensors. Therefore, intuitively, adding a sensor helps more in region where
we have placed few sensors and helps less in region where we have already placed many
sensors. Thus the total area covered by the sensors is a submodular function defined over
all sets of locations. Adaptive version of this problem can be seen as placing sensor one
by one where sensor may fail with some probability. Thus we get to observe which sensor
failed and adaptively decide the the placement of new sensor based on this observation.

2.8 Preference Learning Algorithm

The final contribution of this thesis focuses on tasks where giving optimal demonstrations
is either very challenging or impossible. In such cases, a numerical feedback signal is
replaced with the assumption of a preference-based feedback signal, where the expert only
needs to determine if the relation holds for a given object pair. Here, the object pair can be
a pair of states, actions, or trajectory. A preference zi ą zj indicates zi is preferred over zj
for object pair pzi, zjq. Several kind of preference can be defined over object pairs [Kre98]:

19



2.8 Preference Learning Algorithm

‚ zi ą zj: zi is strictly preferred over zj

‚ zi „ zj: The choices are indifferent, meaning neither zi ą zj nor zj ą zi holds.

‚ zi ě zj: zi is weakly preferred over zj

Just like IRL, preference learning problem is also formulated on MDP\R where goal
is to learn the reward function R. There are many design parameters on which various ap-
proaches differ. The first design parameter is the learning approach of the algorithm. Either
agent directly learns the policy from data that maximally comply with the preferences (see
block method in figure 2.3)[Aar12, Bus14], other approaches learn the reward function
from preference and then run forward RL to find optimal policy [CN17, SDSS17, Aar12].
Steps in learning loops may also differ. The method may first learn the reward function
entirely and then find optimal policy [SDSS17] or both reward and policy learning hap-
pens iteratively [Aar12, ASS12]. Next parameter is type of query that is generated (see
agent block in figure 2.3). Some of the approaches ask for user preference over individual
states [RBG11, WF12, WF13], while other approaches ask for preference over trajecto-
ries [SDSS17, CN17]. Methods which ask for preference over complete trajectory suffers
from temporal credit assignment problem [Sut84]. Temporal credit assignment can be seen
in two ways, in direct policy learning its inability to tell which action in complete trajec-
tory resulted in the desired behavior. In reward learning, it can be seen as an inability to
tell which part of the trajectory was responsible for influencing expert’s preference (hight
reward region). To address this issue, many methods propose on taking feedback over seg-
ments of trajectory rather than complete trajectory [Ols17]. Other parameter is a type of
feedback provided (see Expert’s block in figure 2.3). Many approaches ask expert to pro-
vide ratings over the demonstrated trajectory [Ols17]. Some approaches ask their user to
critique the demonstrated trajectory as good or bad [CN17]. Other approaches ask the ex-
pert to rank the trajectories [AM10]

Thus just like imitation learning, for the second part of the thesis, we describe our
approach with respect to each of above mentioned parameters. The main focus of our ap-
proach is to alleviate the credit assignment problem while still keeping the query natural
for the expert. We also want our method to be sample efficient in order to reduce interac-
tion time with the expert. The response that user provides should be easy and small, thus

20



2.8 Preference Learning Algorithm

Figure 2.3: Block diagram: Different approaches to Preference learning.

reducing expert overhead.

21



3
Experiment Task Description

Imitation learning and inverse reinforcement learning are being applied in many fields and
applications. Its application in Robotics is specifically challenging because it involves dif-
ficulties such as 1) complex and constantly changing environment. 2) Difference in policy
space and behavior space of the robot. That is, as a human we know what behavior robot
should exhibit, like go in a circle while avoiding the obstacle, but we don’t know how to
instruct it to do so in it its policy space which involves moving the motor with certain ve-
locity and steering at certain angle. 3) longer behavior sequences and, 4) complex system
dynamics, etc.

Many methods in the literature address these problems or a combination of them. In this
thesis, we wanted to progressively study all the different aspects of these problems. Start-
ing with the problem of uncertainty associated with the environment and long, complex
demons-tration sequences in such environments. This is addressed in our proposed adapta-
tion of the imitation learning method described in chapter 4. We next study the problems
of the dependence of the optimal policy of the robot on the performance of the expert, the
difference between the behavior and policy spaces as discussed above and the correspon-
dence problem due to the difference in the anatomy and dynamics of the expert and robot.
Chapter 4 presents an integrated solution to all of the problems mentioned above. In order
to have the same experiment setup for the study which involved all of these difficulties, we
chose autonomous driving as our experimentation task.

Learning a driving maneuver for a particular scenario involves a long trajectory with

22



3.1 Simulation Environment - Conduite-Simulateur
(ConSim)

a complex state and action space of the autonomous vehicle. Moreover, the World Health
Organization has indicated that about 1.2 million people die in road accidents [Org 15] each
year [Org15], thus showing humans are not the ideal demonstrator for this task. There are
many different aspects in driving that influence human preference of one driving behavior
over another, such as defensive driving vs. aggressive driving, shortest time vs. increasing
safety by slow driving or any combination of these. Therefore it is important to understand
in what part of the maneuver the user preferred which style. Alternatively, what part of the
trajectory most influenced his/her preference. Thus the autonomous driving task best suited
our experimental needs. Due to a lack of access to a physical self-driving car, we perform
all of our experiments on a simulation environment that we built.

In this chapter, section 3.1 describes the simulator for all the experiments in the thesis.
Section 3.2 describes how the expert data is collected for imitation learning experiments
and section 3.3 describes how expert’s preferences are collected for active preference learn-
ing experiments.

3.1 Simulation Environment - Conduite-Simulateur
(ConSim)

The simulation environment used for all of our experiments is a low-dimensional driving
simulator programmed in PyGame. Significant work was put into developing this simulator
to create an appropriate and suitable experimental setup.

Our simulator provides a variety of different driving scenarios with the flexibility to
configure traffic. For convenient usage and to follow the same conventions as state-of-the-
art RL experiment platforms in order to facilitate integration with code developed for those
simulators, ConSim has the same interface as OpenAI Gym [BCP`16]. It provides flexible
control over environment parameters such as traffic and behavior of the NPC to allow for
greater control in experimental design. Not only does it provide control over traffic but it
can also load various scenario maps, such as those visualized in figures 3.1 and 3.2, to
facilitate experimentation on different agent behaviors.

23



3.2 Expert’s Data Collection

(a) Two Lanes (b) Four lanes (c) Merge

Figure 3.1: ConSim Simulator various scenarios

(a) Round A Bout (b) Intersection (c) Track

Figure 3.2: ConSim Simulator various scenarios

3.2 Expert’s Data Collection

The simulator was built not only for forward reinforcement learning but also with inverse
reinforcement learning in mind. We mainly focus on two types of learning from demonstra-
tion methods: 1) Imitation learning and 2) Active Preference IRL. Therefore, the simulator
provides mechanisms for the expert to give learning inputs to the agent. There are two dif-
ferent ways to collect data from the expert. 1) The simulator provides the Robot Operating
System (ROS) support with a joystick interface. The expert can drive the car using the joy-
stick in different scenarios, and data is collected in ROS-bags, which can later be used by a
learning algorithm. 2) When the user study is not involved, and a large amount of data is to
be collected for testing, driving using a joystick every time can be a very time-consuming
process. Therefore, the simulator also provides preprogrammed experts for different sce-

24



3.2 Expert’s Data Collection

narios which automatically drive and collect data. For example, figure 3.3 shows our soft-
ware expert’s trajectory for the overtaking scenario. Similarly figures 3.4, 3.5 and 3.6 show
the expert’s trajectory for the merging, crossing an intersection and round-a-bout scenarios
respectively.

Figure 3.3: Our overtaking scenario where the red car is the agent and the blue car is the
NPC. The lines are their respective trajectories.

25



3.2 Expert’s Data Collection

Figure 3.4: Our merging scenario where the red car is our agent car and the green car is
the NPC. The lines are their respective trajectories.

26



3.2 Expert’s Data Collection

Figure 3.5: Our intersection scenario where the red car is our agent and the blue car is the
NPC. The lines are their respective trajectories.

Please note that temporal information is missing from the image, hence the trajectories seem

to intersect.

27



3.3 Expert’s Preference Collection

Figure 3.6: Our round-a-bout scenario where the red car is our agent car and the white car
is the NPC. The lines are their respective trajectories.

Please note that temporal information is missing from the image, hence the trajectories seem

to intersect.

3.3 Expert’s Preference Collection

For active learning, our simulator provides a user interface showing two different behaviors
to choose from (see figure 3.7). The user can then click on the box of the preferred behavior
to provide input. We also provide a modification of this functionality to fit our adaptation of
active learning, which requires the user to give input over segments of the trajectory rather
than on the complete trajectory. The Active preference box for that method is shown in
figure 3.8. In this interface user enters a k´bit sequence of 1 and -1 for k segments. Where
1 represents user prefer segment from trajectory A and -1 represents user prefer segment
from trajectory B.

28



3.3 Expert’s Preference Collection

Figure 3.7: Preference interface showing two different overtaking trajectories, without
segmentation

Please note that temporal information is missing from the image. Preference box actually

shows a moving gif.

29



3.3 Expert’s Preference Collection

Figure 3.8: Preference interface showing two different overtaking trajectories, with seg-
mentation

Please note that temporal information is missing from the image. Preference box actually

shows a moving gif with segments highlighted in various colors.

30



Part II

Thesis Contributions

31



4
Imitation Learning

In this chapter we adapt model based imitation learning method proposed by Englert et al.

[EPPD13] to make it more scalable for longer and complex trajectories. Section 4.1 intro-
duces terminologies used throughout the chapter and describes the problem we are trying
to solve. Section 4.2 explains the previously proposed approach to learning the dynamics
model of the environment and our adaptation of the method to make it suitable for large
data set. This section relies on background given in section 2.4 and 2.5. Section 4.3 de-
scribes our Trajectory matching approach to obtain the optimization objective for learning
the imitation policy. It also explains how the expert and policy data can be represented as
probabilistic distributions. After representing the policy distribution and expert distribution
and obtaining the optimization objective, section 4.4 describes how the policy is actually
optimized. Finally, section 4.5 and 4.6 describes the experiment we do to test our approach
and the results obtained and discuss the benefits and limitation of the approach respectively.

4.1 Problem Statement

We start by introducing the notations that will be used throughout this chapter. The state
of the system is denoted by x P Rd and the actions are denoted by u P Re respectively,
where d, e P N. Furthermore, the trajectory, denoted by τ , is defined as sequence of states
x0, x1, ....xH for a fixed time horizon H. Our goal is to learn a policy π with parameter θ
such that u “ πpx, θq where u approximately imitates experts demonstrations.

As an input to the algorithm, we take the expert’s demonstrations. We assume that ex-

32



4.2 Probabilistic Forward Model using BNN

perts provide near-optimal demonstrations of behavior for each task T . We also assume that
the expert is able to provide this demonstration in the robot’s state and action space. The
input demonstrations from an expert are received in the form of N trajectories with fixed
time horizon H . We represent these N trajectories as a probability distribution denoted by
ppτ expq. The initial state of the robot while collecting these trajectories is sampled from a
distribution over initial state ppx0q. The main objective of the experiment is to find policy π
such that distribution over the trajectories predicted by π, denoted by ppτπqmatches the ex-
pert’s trajectory distribution ppτ expq. Using probability distributions has many advantages.
For example, it allows us to capture the uncertainty in the system’s dynamics. It also allows
room for variability in the expert’s behavior. Consider the task of overtaking in a two-lane
scenario. The expert might choose to overtake the NPC at variable distances with different
speeds. We want to learn a policy that will take into account all these variabilities. Thus
using a probability distribution allows us room for such differences in the expert’s demon-
stration. For measuring similarity between ppτ expq and ppτπqwe use Kullback-Leibler (KL)
divergence [Kul59]. Thus the imitation learning objective of the algorithm is to find a policy
such that the following loss is minimized:

π˚ P arg min
π
KLpppτ expq||ppτπqq. (4.1)

Since we want the distribution generated by the policy to get closer to the expert’s
distribution, that is we want to approximate expert’s distribution by trajectories generated
by policy we take KL divergence of ppτπq from ppτ expq (see section 2.6) and not the other
way around.

4.2 Probabilistic Forward Model using BNN

In order to collect predicted trajectory data from π we need to execute the policy multiple
times. This can be very expensive to run on a real system and can also cause physical
damage. Therefore we make use of the forward model of the system dynamics, thus making
the process sample efficient and practical for our task. We learn the forward model by
collecting initial data by applying random input to the system and collecting the system’s
response to these actions. The forward model of a system is a function that maps the current

33



4.2 Probabilistic Forward Model using BNN

Figure 4.1: Generative model showing generation of predicted trajectories.

state and action of the system, pxt, utq, to the next state xt`1.

In our case, we define the dynamics of the system using the probabilistic model since it
is able to capture the uncertainty in the environment as well as the noise in demonstration
provided by different users. Using this probabilistic dynamics model, the policy generates
predicted trajectories from an initial state distribution ppx0q until time horizon T, ppxT q.
This prediction of the state distribution follows a generative model given by figure 4.1 At
a certain state xt, the policy predicts action ut both along with dynamics model predict
samples yt`1 for next state which forms a distribution over next state. Next state xt`1 is
sampled from this distribution. This can be summarized by the following equations:

x0 „ ppx0q, ut „ πθput|xtq,

f „ ppfq, yt`1 „ ppxt`1|xt, ut, fq,

where, xt`1 „ Npxt`1|µyt, σytq.

(4.2)

The main difference between our [EPPD13] and our implementation is the modeling of
the dynamics model. Function f is represented by a Gaussian Process (see section 2.4) in
implementation of [EPPD13]. With Gaussian process, model fitting scale by OpDn3q and
simulated roll-out trajectories scale by OpD3n2q, where n is data set size and D is state di-
mensions. Thus in a scenario where trajectory horizon is long, and state space of the system

34



4.3 Model-based Imitation Learning by Probabilistic
Trajectory Matching

is complex Gaussian processes scale poorly, limiting their use. We represent our dynam-
ics model using Bayesian Neural Network, thus making it scalable to high dimensional
observation space.

We use a BNN model learning (see secion 2.5) implementation as described in [HMD18]
to learn our dynamics model. Given a function f with parameter θm and data D “ pX, Y q

we find posterior ppθm|Dq to make prediction for new point. The uncertainty in this distri-
bution induces uncertainty in model prediction at new point. Using the true posterior for
predictions on a neural network is intractable therefore methods based on variational infer-
ence are used to approximate posteriors to make prediction. Fitting of the model is done by
minimising KL divergence between the true and the approximate posterior by optimising
the following objective,

Lpθmq “ ´LDpθmq `DKLpqpθmq||ppθmqq, (4.3)

where, LDpθmq is the expected value of the likelihood ppD|θq, qpθmq is the approximate
posterior and ppθmq is a user-defined prior on the parameters. Negative sign in the objective
function given by equation 4.3 indicates gradient ascent to maximize a likelihood function.
In our case to we build dynamic model using data set which consist of tuple tpxt, ytq, δxu
where δx “ xt´1´xt P R

E is change in state x when applied action u and pxt, ytq P RpD`Eq

are state action pair at time t.

4.3 Model-based Imitation Learning by Probabilistic
Trajectory Matching

The goal of our experiments in this chapter is to find policy parameters θp such that policy
π˚ imitates the expert. That is, the distribution of trajectories as predicted by the policy π˚ is
similar to expert’s demonstration distribution. This is done my minimizing KL divergence
between distribution ppτ expq and ppτπq using equation 4.1.

Recall (from section 2.6) that the KL divergence is a difference measure between two
probability distributions and is defined for continuous distribution as:

35



4.3 Model-based Imitation Learning by Probabilistic
Trajectory Matching

KLpppxq||qpxqq “

ż

ppxq log
ppxq

qpxq
dx, (4.4)

where ppxq and qpxq are both continuous probability distributions.

In the case of Gaussian distributions, where ppxq „ N px|µ0,Σ0q and qpxq „ N px|µ1,Σ1q,
the KL divergence equation can be stated as a closed form given by

KLpp||qq “
1

2
log |Σ´11 Σ0| `

1

2
trpΣ´11 ppµ0 ´ µ1qpµ0 ´ µ1q

T
` pΣ0 ´ Σ1qq. (4.5)

In our case, we use this closed form of the KL divergence equation to measure dis-
tance between distributions. Therefore trajectory data collected from the expert and pre-
dicted from trajectories are represented as Gaussian distributions. Data is collected as set
of trajectories represented byDτ “ τ0, τ1, .....τM . Therefore, approximate distribution over
trajectories ppτq “ ppx0, x1......xHq using a Gaussian can be given by

ppτq «
H
ź

t“0

ppxtq “
H
ź

t“1

N pµt,Σtq. (4.6)

4.3.1 Expert Distribution Representation

In this section we describe how the expert’s demonstration is represented as a Gaussian
distribution. We collected and time align (each trajectory has the same number of states)
the demonstration data which is represented by Dτexp “ τ0, τ1, .....τM . Then we compute
the mean and covariance matrix of the marginal distribution ppxtq given by equation 4.7

pµexpt “
1

M

M
ÿ

i“0

xit,
pΣexp
t “

1

M ´ 1

M
ÿ

i“0

pxit ´ pµexpt qpxit ´ pµexpt q
T . (4.7)

In equation 4.7 xit is state at time t in ith demonstrated trajectory in data set Dτexp .
Therefore the Gaussian distribution over the complete set Dτexp can be given by the equa-

36



4.3 Model-based Imitation Learning by Probabilistic
Trajectory Matching

tion 4.8

ppτexpq “ N ppµexp, pΣexp
q “ N

¨

˚

˚

˚

˚

˚

˝

»

—

—

—

—

–

pµexp0 ,

pµexp1 ,
...

pµexpH

fi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

–

pΣexp
0 , 0, ¨ ¨ ¨ 0

0, pΣexp
1 ,

...
... . . . 0

0 ¨ ¨ ¨ 0 pΣexp
H

fi

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‹

‚

. (4.8)

As we can see from equation 4.8, we assume that Στ is block diagonal without cross-
correlation among states at different time steps.

4.3.2 Policy Distribution Representation

In the above section, we have described the representation of expert data using a Gaus-
sian distribution. In this section, we describe how to represent trajectories predicted by the
policy as the Gaussian distribution. Our implementation in this section differs from that
of [EPPD13] because we use a Bayesian Neural Network to represent our forward model
rather than a Gaussian process. The advantages of this are described in section 4.2.

The learned BNN model as described in section 4.2 is iteratively used to predict the
state distribution P px1q, ...P pxHq for a given policy π and distribution over initial state
P px0q.

To predict a complete roll-out of the trajectory, the dynamics model must pass uncertain
dynamics outputs from a given time step as uncertain input into the dynamics model in
the next time step. In a Gaussian process, this can be handled analytically [EPPD13]. In-
order to handle input uncertainty in BNN dynamics model we use the particle method with
PEGASUS evaluation given in algorithm 2 as described in [HMD18] (see figure 4.2).

As seen from algorithm 2 the mean µt and standard deviation Σt are calculated for
each time step of the roll out trajectory. This µt and Σt along with mean pµexpt and standard
deviation pΣexp

t of the expert (see equation 4.7) are used to calculate the imitation cost at
every time step given by equation 4.5.

37



4.3 Model-based Imitation Learning by Probabilistic
Trajectory Matching

Figure 4.2: Agent’s trajectory roll-out generation

Algorithm 2: Predict agent’s trajectory roll-outs
Define time horizon H;
Initialize set of K particles x0 „ P px0q ;
Sample noise for dynamics tzpkqw |1 ď k ď Ku ;
Sample state noise tzpkqt |1 ď k ď K, 1 ď t ď Hu ;
Sample noise for policy tzpkqθ |1 ď k ď Ku ;
while t < H do

while k < K do
Sample BNN dynamics model weights wpkq “ g1pw, zpkqw q ;
Sample θ for policy θpkq “ g2pθ, zpkqθ q ;
Evaluate policy upkqt “ πθpkqpx

pkq
t q ;

Propagate state through dynamics model xpkqt`1 “ fwpkqpx
pkq
t , u

pkq
t q

end
Fit mean µxt`1 and covariance Σxt`1 ;
for k < K do

x
pkq
t`1 “ µxt`1 ` Σxt`1zpkqt

end
end

38



4.4 Deep PILCO Learning

4.4 Deep PILCO Learning

Now we have all of the elements for policy optimization. Deep-PILCO uses back-propagation
through time (BPTT) to estimate the policy gradients ∇θJpθq. The objective function is
calculated at each time step given by,

Jπpθq “
t“H
ÿ

t“0

KLpppxexpt q||ppxπt qq “
t“H
ÿ

t“0

KLpN pµexpt ,Σexp
t q||N pµπt ,Σπ

t qq. (4.9)

We use implementation of Deep PILCO as proposed by [HMD18] for their two im-
provements made over traditional Deep-PILCO algorithm. 1) Reducing variance and im-
proving convergence by drawing all the random numbers needed for simulating trajectories
at the beginning of the policy optimization and keeping them fixed as the policy parameters
are updated. 2) Dealing with vanishing and exploding gradients when computing them via
BPTT when trajectories with longer time horizons are involved by using ReLU activations
for the policy and dynamics model,and clipping the gradients to have a norm at most equal
to pre-decided clipping values.

The complete algorithm for imitation learning using gradient clipping can be given by
algorithm 3.

4.5 Experiments and Results

We tested our algorithm on the various autonomous driving scenarios mentioned in chapter
3. Results for each scenario are given in different subsections. Each subsection starts by
showing the expert’s demonstrated data (for example see figure 4.3). It then shows policy
roll-outs collected by applying actions to the real environment. We can see that the behavior
of the policy gets closer to the expert’s behavior as learning iterations progress (for exam-
ple, see figure 4.4). Roll-outs of action on the environment are also shown which match
the expert’s action roll outs as iterations progress (for example, see figure 4.5). Next, we
also show trajectory roll outs over dynamics model that demonstrate both the policy and
the model get better with the number of iterations (for example, see figure 4.6).

39



4.5 Experiments and Results

Algorithm 3: Model based imitation learning using BNN
Define time horizon H;
Initialize set of K particles x0 „ P px0q ;
initialize iterations for optimization Nopt ;
Sample noise for dynamics tzpkqw |1 ď k ď Ku ;
Sample state noise tzpkqt |1 ď k ď K, 1 ď t ď Hu ;
Sample noise for policy tzpkqθ |1 ď k ď Ku ;
while n < Nopt do

while t < H do
while k < K do

Sample BNN dynamics model weights wpkq “ g1pw, zpkqw q ;
Sample θ for policy θpkq “ g2pθ, zpkqθ q ;
Evaluate policy upkqt “ πθpkqpx

pkq
t q ;

Propagate state through dynamics model xpkqt`1 “ fwpkqpx
pkq
t , u

pkq
t q ;

end
Fit mean µxt`1 and covariance Σxt`1 ;
for k < K do

x
pkq
t`1 “ µxt`1 ` Σxt`1zpkqt

end
;

end
Evaluate objective given in equation 4.9 and average over each particle. ;
Compute gradient estimate∇θJpθq ;
if∇θJpθq ą ε then
∇θJpθq Ð ε ∇θJpθq

||∇θJpθq||
end
Update θ by stochastic gradient descent step.

end

40



4.5 Experiments and Results

4.5.1 Two Lane Over Taking

To represent the state for two-lane overtaking scenarios, the features are the x and y posi-
tion of the agent, as well as its heading and speed and the y position of the NPC. These
are given by tuple, rx, y, θ, v, ynpcs. The actions used by the policy to direct the agent are
the continuous value of acceleration and steering angle. Expert data is collected using pre-
programmed expert and variability in demonstrations are introduced by injecting noise in
acceleration value of the agent. Figure 4.3 shows the trajectory state and action data for
horizon H “ 148. The goal of the agent is to try to generate trajectories that are similar to
the expert’s.

Figure 4.3: Overtaking Expert’s Demonstration State Action Roll-outs

Trajectory roll-outs from Expert’s Demonstration (H = 148). Agent will try to roughly match these

roll-outs by minimizing KL divergence loss.

In figure 4.4 we can see that when an initial policy with random weights (iteration 0) is
run on the environment, the behavior of the policy (trajectory in red) is far off from expert’s
behavior (trajectory in green). As the iterations proceed, the trajectory roll out of the policy
gets closer to the expert’s roll-out. Similarly, in figure 4.5, we can see that at with each
iteration, actions output by the policy get closer to the expert’s actions.

41



4.5 Experiments and Results

Figure 4.4: Overtaking Policy roll-outs on Environment

We can see the roll outs of policy on environment progressively gets closer to expert’s roll-outs.

Figure 4.5: Overtaking Policy Action on Environment

We can see the actions of policy on environment progressively gets closer to expert’s actions.

In the proposed method, the weights of both the policy as well as the dynamics model
are updated with each iteration. With each iteration, more data is collected from the en-
vironment, and the dynamics model is retrained with this data. Therefore as iterations
progress, the behavior of the dynamics model should get closer to the real environment
and roll-out of the policy on the model should become increasingly similar to the expert’s
roll-out on the environment. In figure 4.6, at iteration zero, we can see that the model of the
environment has huge uncertainty. That is, for the same initial state and action, the model
predicts a different next stat. Therefore, there is a huge variability in roll-outs (high vari-
ance). As iterations progress, the uncertainty of the model decreases and policy roll-out on
model gets similar to the expert’s roll-out on the environment.

42



4.5 Experiments and Results

Figure 4.6: Overtaking Policy roll-outs on Dynamics Model

We can see that model uncertainty progressively reduces with each iteration and agent’s behavior

gets closer to expert’s behavior. Showing that both model and policy improve with iterations.

Similar results are given for different driving scenarios in the following section.

4.5.2 Lane Merging

Lane merging scenario uses same features as in section 4.5.1. Expert’s data is collected
using a pre-programmed expert and is shown in figure 4.7. Incrementally updating Policy
state and action roll outs on the environment is shown in figure 4.8 and 4.9 respectively.
Figure 4.10 show model of the environment incrementally getting closer to the real envi-
ronment.

43



4.5 Experiments and Results

Figure 4.7: Merging Expert’s Demonstration State Action Roll-outs

Trajectory roll-outs from Expert’s Demonstration (H = 148). Agent will try to roughly match these

roll-outs by minimizing KL divergence loss.

Figure 4.8: Merging Policy roll-outs on Environment

We can see the roll outs of policy on environment progressively gets closer to expert’s roll-outs.

Figure 4.9: Merging Policy Action on Environment

We can see the actions of policy on environment progressively gets closer to expert’s actions.

44



4.5 Experiments and Results

Figure 4.10: Merging Policy roll-outs on Dynamics Model

We can see that model uncertainty progressively reduces with each iteration and agent’s behavior

gets closer to expert’s behavior. Showing that both model and policy improve with iterations.

4.5.3 Round-A-Bout

In the case of round-a-bout scenarios, the features used to represent the state are the x and
y positions of the agent, its heading and speed and the distance from the NPC, given by
tuple, rx, y, θ, v, dnpcs. The actions that the policy uses to control the agent are the con-
tinuous value of acceleration and steering angle. Similar analysis is done for this scenario
as well like Merge and Two lane over take where, Expert’s data is collected using a pre-
programmed expert and is shown in figure 4.11. Incrementally updating Policy state and
action roll outs on the environment is shown in figure 4.12 and 4.13 respectively. Figure
4.14 shows the model of the environment incrementally getting closer to the real environ-
ment.

45



4.5 Experiments and Results

Figure 4.11: Round-a-bout Expert’s Demonstration State Action Roll-outs

Trajectory roll-outs from Expert’s Demonstration (H = 148). Agent will try to roughly match these

roll-outs by minimizing KL divergence loss.

Figure 4.12: Round-a-bout Policy roll-outs on Environment

We can see the roll outs of policy on environment progressively gets closer to expert’s roll-outs.

Figure 4.13: Round-a-bout Policy Action on Environment

We can see the actions of policy on environment progressively gets closer to expert’s actions.

46



4.6 Discussion

Figure 4.14: Round-a-bout Policy roll-outs on Dynamics Model

We can see that model uncertainty progressively reduces with each iteration and agent’s behavior

gets closer to expert’s behavior. Showing that both model and policy improve with iterations.

4.6 Discussion

From above results, we can see that proposed method can handle both difference in expert’s
demonstration by making use of distribution over trajectory, and uncertainty in predicting
the next state given current state.

The main difficulty in using this method is that to use the KL-divergence as cost func-
tion, we have to assume that distribution over trajectory is Gaussian in nature with a block
diagonal covariance matrix. This is not always true for trajectories collected in many tasks.
It also assumes that an expert is able to provide near optimal demonstrations in state and
action space of agent. This is not possible in many application, for example, a manipulator
arm with many degrees of freedom. Even if the expert is able to move the arm using a
joystick, the demonstrations will not be optimal.

Therefore in order to deal with these difficulties, in the next chapter we investigate the
inverse reinforcement learning method which learns the user’s preferred reward function
for the task instead of using a designed reward. Moreover, this method does not require
an expert’s demonstration in the agent’s state space, thus making the user interface more
natural for humans.

47



5
Active Preference Learning

In this chapter we present a segmentation-based Active preference learning framework for
reward learning. We introduce a method that helps the robot to learn the reward function for
a task in a sample efficient manner. We also present the theoretical aspects of the method
and explain how it alleviate the temporal credit assignment problem.

Section 5.1 introduces the terminology used throughout the chapter and describes the
problem we are trying to solve. Section 5.2 introduces the approach proposed by Sadigh
et al. [SDSS17]. It explains the format of the query generated by the agent and the format
of feedback given by the user. Section 5.3 describes the initial distribution over reward
functions and explains how this distribution is updated from the feedback of the user. Sec-
tion 5.4 describes how the current distribution over the reward function is used to generate
queries. Section 5.5 gives limitation of current method and explains how temporal segmen-
tation can be used to overcome those limitation. Section 5.7 describes method we use for
segmenting the trajectory and formate of query after segmentation. Section 5.9 and 5.10
describes how the method of weight distribution is adapted to for feedback over segmented
trajectories.

5.1 Problem Statement

The goal of this chapter is to learn the reward function that matches expert’s preference,
in a sample efficient manner. Finding an optimal policy from this reward function is done

48



5.1 Problem Statement

using the same method as described in section 4.4. For the scope of this chapter we focus
on only learning the reward function. We first describe in detail the Active Preference
Learning algorithm as described in [SDSS17], we then present our adaption of the method,
which is described in sections 5.6 - 5.10. The same notation as chapter 4 is used throughout
this chapter. A trajectory is generated when the agent interacts with the environment and
is denoted by τ . τ is a finite horizon sequence of state and action pairs given by τ “

tpx0, u0q, px1, u1q, ...pxH , uHqu where H is the horizon. The set of trajectories that satisfies
the differential constraints of the system is called the Feasible Set and is denoted by Ω.
Figure 5.1 shows Ω visually. Note that trajectories in Ω satisfy the differential constraints of
the system but may not be the safe trajectories. For example, crashing the car is physically
plausible but not safe. The state of the system and of other agents in the environment are
converted to some global features and the mapping function is denoted by φpxq P Rl. This
function is used to convert the raw sensor data of robot, for example, LIDAR and camera
data, to meaningful global features, such as the distance from the border of the lane etc.

The reward function being learned is assumed to be a linear combination of these global
features. Thus the reward function of the system at a particular time t can be written as

rpxt, utq “ wTφpxt, utq, (5.1)

where w is vector of weights for feature function φpxt, utq evaluated at every time step
t. Therefore for trajectory τ with finite horizon H , the reward function R can be given by

Rpτq “
t“H
ÿ

t“0

rpxt, utq. (5.2)

For simplification of notation we factor the H ` 1 elements of φ such that Φ “
řt“H
t“0 φpx

t, utq. Therefore reward function in equation 5.2 can be written as,

Rpτq “ wTΦpτq. (5.3)

The goal of preference learning is to learn weight vector w for linear reward R.

49



5.2 Learning Reward from Preferences

Figure 5.1: Example Feasibility Set for Round-a-bout Scenario

5.2 Learning Reward from Preferences

Unlike imitation learning where training data is given as set of demonstrations, the idea of
preference learning is to provide training data in the form of pair-wise comparison between
two behaviors. For a particular scenario, the agent iteratively generates two trajectories
and presents them to the expert who then selects the one trajectory that they prefer. The
response is assumed to be strictly preferred, i.e. one trajectory is strictly better than the
other, for example pτA ą τBq (see figure 3.7). This response provides a preference learn-
ing method with information about the reward function for that particular scenario. Active
learning deals with generating these queries such that the information required for approxi-
mating the unknown function is maximized, according to some measure. In this chapter, we
are trying to approximate a probability distribution over the weight vector w. In the follow-
ing section, we describe how this distribution over the reward function’s weight vector is
updated based upon the expert’s preference response and explain the information measure
that is used to generate the next query.

50



5.3 Distribution Update Based on Feedback

5.3 Distribution Update Based on Feedback

As mentioned in the previous section, we are trying to approximate the distribution over
weight vectors w. This can also be seen as having various hypotheses over weight vectors
w and we want a mechanism that help us shrink the remaining version space (the set of
consistent hypotheses) as quickly as possible. Golovin et al. showed that the reduction in
version space probability mass is adaptive sub-modular (see section 2.7) and can have a
adaptive greedy algorithm that is near optimal querying policy [GK10]. This section shows
how the version space shrinks given the response of the query.

We start by having a uniform distribution over the space of w. Since the scale of w does
not change the preference, we can constraint ||w|| ă 1. Therefore, the distribution over w
lies in the interior of a unit hyper-sphere with coefficients w of feature function φ as its
axes.

This section assumes that the algorithm is at iteration i and has already synthesized two
trajectories, τA, τB to query from. As shown in figure 3.7, the two trajectories are presented
to the expert. She then gives her preference over these trajectories. If the expert’s response
is τA ą τB, the input is recorded as +1 and if it is τB ą τA then input is -1. This response
gives us information about w. User is more likely to say +1 if total reward of τA is greater
than that of τB.

The distribution over w is updated using a Bayesian update rule given the preference as
evidence. Therefore, the new distribution over w can be given by,

ppw|Itq9ppwqppIt|wq, (5.4)

where, ppwq is prior distribution and ppIt|wq is likelihood function.

The expert’s preferences are not assumed to be perfect. Therefore, to deal with the noise
associated with the response, ppI|wq is modeled as a noisy preference with respect to the
reward function, R, given by the following equation:

51



5.4 Generating Queries

ppIt|wq “

$

&

%

exppRpτAqq
exppRpτAqq`exppRpτBqq

It “ `1

exppRpτBqq
exppRpτAqq`exppRpτBqq

It “ ´1.
(5.5)

Let ϕ be the difference between the trajectories in feature space given by,

ϕ “ ΦpτAq ´ ΦpτBq. (5.6)

Then, the update function (likelihood) ppIt|wq “ fϕ for the Bayesian update is given
by,

fϕpwq “
1

1` expp´ItwTϕq
. (5.7)

Thus, every Bayesian update can be seen as removing the undesired volume of the
hyper-sphere that represents the distribution of w. Therefore, we want our query to be such
that the maximum volume is removed. This is our information measure for generating the
next query.

5.4 Generating Queries

This section describes how the two trajectories are synthesized for the query. In the pre-
vious section, we saw how the weight distribution for w is updated at iteration i. A good
query will help in maximal undesired volume removal from the distribution. This fact is
used to formulate query generation as a constraint optimization problem. Trajectories are
synthesized by maximizing the volume removed under the feasibility constraints of ϕ given
as follows:

max
ϕ

mintEr1´ fϕpwqs,Er1´ f´ϕpwqsu

subject to ϕ P F.
(5.8)

The constraint in this optimization problem requires ϕ to be in the feasible set F where,

52



5.4 Generating Queries

F “ tϕ : ϕ “ ΦpτAq ´ ΦpτBq, τA, τB P Ωu. (5.9)

As mentioned in section 5.1, Ω is the set of trajectories which satisfy the differential
constraints of the system. Therefore F is the set of differences of features over all feasible
trajectory pairs pτA, τBq such that τA, τB P Ω.

The above optimization given in equation 5.8 maximizes the minimum difference be-
tween the two spaces preferred by either choice of the user. Each term in the minimum
function represents a volume removed based on the input. It is very difficult to enforce
feasibility constraints in the global feature difference space of the environment. Therefore
the feasibility of trajectories are enforced by directly optimizing over the states and actions
of the agent. Therefore, the optimization equation can be given by:

max
x0,u

mintEr1´ fϕpwqs,Er1´ f´ϕpwqsu, (5.10)

where ϕ is a function of x0, u. This optimization is solved using a Quasi-Newton
method (L-BFGS) as described in [Gal11]. The volume removed is given by Er1´fϕpwqs,Er1´
f´ϕpwqs depending on user’s input.

The expectation in equation 5.10 is taken with respect to the distribution over w. How-
ever ppwq can be very complex thus making it difficult to compute the volume removed
by the Bayesian update and to differentiate through it. Therefore, a sampling method is
used as a surrogate to approximate the full objective. Subsequently, this sampled estimate
is optimized.

Assume that we draw M independent samples from the distribution ppwq. Then the
distribution ppwq can be approximated using an empirical distribution consisting these M
samples. Therefore, the volume removed by the update fϕpwq can be approximated by,

Er1´ fϕpwqs «
1

M

M
ÿ

i“1

p1´ fϕpwiqq. (5.11)

Thus the objective is now differentiable with respect to ϕ which is differentiable with

53



5.5 Limitation and Assumption

respect to the starting state and controls.

Since distribution ppwq is very complex to sample from, for sampling its assumed to be
log-concave function. The update function is also log-concave, therefore posterior distribu-
tion remains log concave. Due to log-concativity assumption it is possible to use efficient
polynomial time algorithms for sampling. Hence, the samples are obtained using Metropo-
lis Markov Chain methods.

5.5 Limitation and Assumption

As in most reinforcement learning problems with sparse and delayed reward, one of the
main difficulties with this method is Temporal credit assignment problem. That is, while
the user reports their preference over the complete trajectory, the algorithm does not get
information about which states and actions or sequence of states and actions were respon-
sible for the user’s choice of one trajectory over the other. Consider the case given in figure
5.2 for example. Even though trajectory B is bad for most of its duration because the car
is too close to the border and trajectory A is good for the most part, our user might still
choose τB ą τA because of the safer merging maneuver in τB highlighted by a red circle.
Therefore, the segment of the trajectory within the red circle is the most salient segment for
the reward function, such information is missed in the current preference learning frame-
work. We will continue by describing a solution based on trajectory segmentation during
preference elicitation.

5.6 Our Approach to Preference Learning

In order to alleviate the temporal credit assignment problem explained in the previous sec-
tion, we propose a framework that asks users for their preference over segments of trajec-
tories rather than complete trajectories. Consider the same case as in the previous section.
If the trajectories are segmented based on change in heading, the segments will look some-
thing like given in figure 5.3.

Thus, in our framework, our user can choose τA ą τB for segments highlighted in cyan
and yellow whereas τB ą τA for segment in magenta. Thus response provided per-segment

54



5.6 Our Approach to Preference Learning

Figure 5.2: Preference interface showing two different Merging trajectories

Figure 5.3: Preference interface showing two different Merging trajectories with segmen-
tation

55



5.7 Temporal Segmentation of Trajectories

are more informative to the preference learning update. This helps in reducing no of times
the optimization process is run to generate queries and the method converges to the reward
function with fewer iterations.

As we can see, even though this method has the advantage of requiring fewer iterations,
the amount of input feedback that our user must give is increased. In order to deal with this
issue, we further evaluate each segment pair based on expected information gain (change
in reward function if a certain segment was queried) to update the reward function and ask
user for preference only over the segment with most information gain. Intuitively, in case
of figure 5.3 that segment would be one highlighted with red circle.

5.7 Temporal Segmentation of Trajectories

In order to gain the most advantage out of this method the segments generated within the
trajectory should be meaningful. One key goal of the preference learning algorithm is to
determine the user’s intention and find the policy that is most consistent with it. Therefore
it is important to segment the trajectory in way that is naturally understood by the user. We
adopt the idea of an attribute function and criterion described in [Mai11] to segment the
trajectory. An attribute function specifies a value at every point in time where the trajectory
is defined. For example, attributes can be speed, heading, and curvature etc. A criterion

specifies a rule for judging when to split a segment, so that the attribute values at all points
within the segments are sufficiently similar. For example a segment where the attribute
value changes more than a certain threshold would be split. An example of segmentation
can be seen in figure 5.3 where the attribute function is the heading of the robot and criterion
is ∇θ ą ε.

5.8 Query and Response With Segmented Trajectories

The process of generating the two trajectories for a query using the Quasi Newton method
for optimization remains the same as described in section 5.4. The trajectories are then
segmented using the method described in previous section (5.7). The response of the user
is collected over all the segments. If, for a certain segment k, the user prefers τ kA ą τ kB the
response is collected as `1 while if for certain segment k user prefer τ kA ă τ kB the response

56



5.9 Weight Distribution Updates With Segmented Trajectories

is collected as ´1. Where, τ kA, τ
k
B are kth segment in trajectory A and B respectively. Thus,

if the algorithm outputs total K number of segments, the input feedback signal will be
K-bit vector of `1 and ´1.

5.9 Weight Distribution Updates With Segmented Trajec-
tories

Our approach uses Multiple evidence Bayesian update to update the weight distribution
over the reward function. For K segments the update equation can be given by,

ppw|I1t , ...I
K
t q9ppwq

K
ź

k“1

ppIkt |wq, (5.12)

where, Ikt is user’s response for kth segment of the trajectory. Since preference over one seg-
ment is independent of other segments, above equation 5.12 assumes conditional indepen-
dence.

5.10 Smart Segment Query and Distribution Update

The method described in section 5.9 helps in reducing the number of iterations for query
generation but increases the need of feedback from the user. In order to deal with this, we
further process the segments obtained from queried trajectories based on their information
score. We calculate information gain between w and ϕ in order to evaluate which segment
gives us the most information about the reward function and ask for our user’s preference
only on the segment with the most information gain. This reduces number of iterations for
optimization and keeps the amount of input the same as the previous method. The weight
distribution update of this method is the same as described in section 5.3.

Results for our methods, their comparison with the previous method and metrics of
comparison are described in detail in the next chapter.

57



6
Experiments and Results

6.1 Results

We evaluate our method using the different autonomous scenarios mentioned in chapter 3.
To evaluate and compare our method with the previously proposed method we use the true
hidden reward weights wtrue and at every Bayesian update we calculate the goodness of
the learned reward using following equation;

m “ Er
w.wtrue

|w||wtrue|
s, (6.1)

where, m computes the average heading of the current distribution of w with respect to
wtrue. Since the prior distribution of w is symmetric, this expectation starts at 0, and moves
closer to 1 at every step of the iteration.

6.2 Over Taking in Two-Lanes

The raw-features use to represent the state for two-lane overtaking scenarios are, x, y po-
sition of the agent, heading, speed and y position of NPC given by tuple, rx, y, θ, v, ynpcs.
These are converted to global features where feature 1 penalizes the agent if it gets too
close to the border given by, f19c1. expp´c2.d

2q, where d is distance from the border and
c1, c2 are appropriate scaling factors. A similar feature is used to keep the agent in the cen-
ter of the lane. Higher speed is encourage by f3 “ pv ´ vmaxq

2, where v is the velocity of

58



6.2 Over Taking in Two-Lanes

the agent and vmax is its speed limit. Feature four encourages the agent’s heading along
the road, given by, f4 “ θagent ¨ ÝÑn , where ÝÑn is normal vector along the road. Feature
5 corresponds to collision avoidance given by nonspherical Gaussian over the distance of
agent and NPC, whose major axis is along the robot’s heading. Actions to the agent are the
continuous value of acceleration and steering angle.

6.2.1 Comparison of Weight Distribution Update

Figure 6.1 shows ppwq approximated with samples at different iterations. We can see that
the distribution which is updated using segmentation converges quicker than the distribu-
tion updated without segmentation.

Figure 6.1: Update of weight distribution w for Overtaking Scenario

Row 1 shows the distribution update for the reward function without Trajectory Segmentation.

Row 2 shows the distribution update for the reward function using Trajectory Segmentation.

59



6.2 Over Taking in Two-Lanes

6.2.2 Comparison of Goodness Metric

Figure 6.2 shows a comparison of three methods using the metric described in section 6.1.
We can see that both methods with segmentation (shown in green and blue) get closer to
true reward function in fewer iterations than the method without segmentation (shown in
red).

Figure 6.2: Goodness Metric comparison for Overtaking Scenario

The goodness of learned reward for: (red) original method without Trajectory Segmentation;

(green) our method with Trajectory Segmentation; and (blue) our method with Selective

Segmentation Queries.

6.2.3 Policy Learning From Reward Function

A policy can be developed to optimize the reward function learned using the method in this
chapter. This policy optimization is done using the same method as described in 4.4. Figure
6.3 shows trajectory roll-outs from Ideal Expert’s Reward (H = 148). The agent will try to
roughly match these roll-outs by learning a reward function.

60



6.2 Over Taking in Two-Lanes

Figure 6.3: Overtaking Experts State Action Roll-outs

In figure 6.4 we can see that when an initial policy with random weights (iteration 0) is
run on the environment, the behavior of the policy (trajectory in red) is far off from expert’s
behavior (trajectory in green). As the iterations proceed trajectory roll out of policy gets
closer to expert’s roll-out. Similarly, we can see that at with each iteration actions output
by policy gets close to expert’s actions.

61



6.3 Driving in Round-a-bout

Figure 6.4: Overtaking Policy State Action Roll-outs

Trajectory Roll-outs from Learned Reward Function (H = 148).

6.3 Driving in Round-a-bout

The raw-features to represent the state for round-a-bout scenarios are, x, y position of the
agent, heading, speed and x and y position of NPC given by tuple, rx, y, θ, v, xnpc, ynpcs.
These are converted to global features where feature 1 penalizes the agent if it gets too
close to the border given by, f19c1. expp´c2.d

2q, where d is distance from the border and
c1, c2 are appropriate scaling factors. Distance is calculated using assuming that the car is
moving in perfect circle with certain radius and at certain point a tangent can be drawn from
its position. Similar feature is used to keep agent in the center of the lane. Higher speed
is encourage by f3 “ pv ´ vmaxq

2, where v is velocity of agent and vmax is speed limit.
Feature four encourages agent’s heading along the road, given by, f4 “ θagent.ÝÑn , where
ÝÑn is normal vector along the road. Feature 5 corresponds to collision avoidance given by
non spherical Gaussian over the distance of agent and NPC, whose major axis is along the
robot’s heading. Actions to the agent are the continuous value of acceleration and steering
angle.

62



6.3 Driving in Round-a-bout

Similar analysis is done for this scenario as in section 6.2 where figure 6.5 shows the
distribution update for our method with segmentation is faster than the existing method
that did not use segmentation. Figure 6.6 shows comparison of the goodness metric for the
three methods. We can see that results are similar between methods in this case. This is
possible due to two reasons. 1) Because the segments do not provide any more information
about the choice made by the user and 2) the attribute function is chosen such that segments
are not created. For example, if the change in heading is chosen as attribution function for
this scenario, in round-a-bout the steering is ideally kept constant. Therefore the output of
the segmentation will still be a complete trajectory. Even in this less ideal experiment, we
can see that our approach either out performs the previous method or at least matches the
proposed method, but does not underperform.

6.3.1 Comparison of Weight Distribution Update

Figure 6.5: Update of weight distribution w for Round-a-bout Scenario

Row 1 shows the distribution update for the reward function without Trajectory Segmentation.

Row 2 shows the distribution update for the reward function With Trajectory Segmentation

63



6.3 Driving in Round-a-bout

6.3.2 Comparison of Goodness Metric

Figure 6.6: Goodness Metric comparison for Round-a-bout Scenario

Goodness metric curves over the learning process for learning: (red) without Trajectory

Segmentation; (green) with Trajectory Segmentation; and (blue) with Selective Segmentation

Queries.

64



Part III

Final Conclusion & Future Work

65



7
Final Conclusion & Future Work

In this thesis, we made two contributions. 1) We presented an improvement on probabilistic
model-based imitation learning approach to make it scalable for longer and more complex
demonstrations. The main component of this contribution was using a Bayesian Neural net-
work for probabilistic modeling of the dynamic environment and policy roll-outs. Thus the
method was better able to handle the uncertainty of the environment. 2) We presented an
improvement on active preference learning by introducing a trajectory segmentation frame-
work. This helped in alleviating the temporal credit assignment problem. We proposed two
approaches to address the credit assignment using trajectory segmentation. The first ap-
proach asked for preference over all the segments in a trajectory. This helped in reducing
the number of iterations for which query was made to the user but increased the user feed-
back inputs (as 3 inputs were needed each iteration). Therefore, in the second approach, we
calculated which segment contained the most information about the reward function and
asked for preference selectively, over only that segment. The experiments have shown that
both our approaches show improvement on the previous method by reducing the number of
iterations required to converge to the true reward. The comparison of all three approaches
was done by using the goodness function mention in section 6.1.

7.1 Limitations and Future Work

Our framework of trajectory segmentation for active preference learning is currently lim-
ited in many ways. 1) While segmenting a trajectory, the point of segmentation is the same

66



7.1 Limitations and Future Work

in both the trajectories which are generated for querying. In this case, we choose the trajec-
tory with the most segments and segment both the trajectories using those points. Currently,
the segmentation is only helping in updating the reward distribution but is not helping in
the optimization process. The framework can be further improved and can be made more
general by working on these two points. Furthermore, the current framework considers
only linear rewards, which are a function of some global features. For many task, linear
reward functions might not work. Moreover, the features are designed by the programmer
and not learned by the algorithm. The method can be made adaptive for different and more
complex tasks by incorporating these improvements.

67



Bibliography

[Aar12] Aaron Wilson and Alan Fern and Prasad Tadepalli. A Bayesian Approach for

Policy Learning from Trajectory Preference Queries. Curran Associates, Inc.,
2012.

[AM10] Nir Ailon and Mehryar Mohri. Preference-based Learning to Rank. Machine

Learning, 80(2-3):189–211, 2010.

[AN04] Pieter Abbeel and Andrew Y. Ng. Apprenticeship Learning via Inverse Rein-
forcement Learning. Proceedings of the Twenty-first International Conference

on Machine Learning, 2004.

[ASS12] Riad Akrour, Marc Schoenauer, and Michèle Sebag. APRIL: Active Prefer-
ence Learning-based Reinforcement Learning. pages 116–131, 2012.

[BCP`16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. OpenAI Gym. arXiv:1606.01540

[cs.LG], 2016.

[Bel57] Richard Bellman. A markovian decision process. Indiana University Mathe-

matics Journal, 6:679–684, 1957.

[BR63] Albert Bandura and Walters R.H. Social learning and personality develop-

ment. Holt Rinehart and Winston, New York, 1963.

[BS95] Michael Bain and Claude Sammut. A Framework for Behavioural Cloning.
Machine Intelligence 15, 1995.

[BTD`16] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller,

68



BIBLIOGRAPHY

Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. End to End Learning
for Self-Driving Cars. CoRR, abs/1604.07316, 2016.

[Bus14] Busa-Fekete, Róbert and Szörényi, Balázs and Weng, Paul and Cheng, Weiwei
and Hüllermeier, Eyke. Preference-based reinforcement learning: evolution-
ary direct policy search using a preference-based racing algorithm. Machine

Learning, 97(3):327–351, 2014.

[BYH`17] Chandrayee Basu, Qian Yang, David Hungerman, Anca Dragan, and Mukesh
Singhal. Do you want your autonomous car to drive like you? . 12th

ACM/IEEE International Conference on Human-Robot Interaction (HRI).,
2017.

[CN17] Yuchen Cui and Scott Niekum. Active learning from critiques via bayesian
inverse reinforcement learning. 2017.

[Dav15] Alex Davies. Oh look, more evidence humans shouldn’t be driving.
Online, https://www.wired.com/2015/05/oh-look-evidence-humans-shouldnt-

driving/, 2015.

[DR11] Marc Peter Deisenroth and Carl Edward Rasmussen. PILCO: A Model-Based
and Data-Efficient Approach to Policy Search. Proceedings of the 28 th Inter-

national Conference on Machine Learning, 2011.

[EPPD13] Peter Englert, Alexandros Paraschos, Jan Peters, and Marc P Deisenroth.
Model-based Imitation Learning by Probabilistic Trajectory Matching. Pro-

ceedings of the IEEE International Conference on Robotics and Automation,
2013.

[FR14] Pier Francesco Ferrari and Giacomo Rizzolatti. Mirror neuron research: the
past and the future. Phil. Trans. R. Soc. B, page 369, 2014.

[FR15] Pier Francesco Ferrari and Giacomo Rizzolatti. New Frontiers in Mirror Neu-

rons Research. Oxford University Press, 2015.

69



BIBLIOGRAPHY

[Gal11] Galen Andrew and Jianfeng Gao. Scalable training of l 1-regularized log-
linear models. In Proceedings of the 24th international conference on Machine

learning, pages 33–40, 2011.

[GB10] Andrew Guillory and Jeff Bilmes. Interactive submodular set cover. Pro-

ceedings of the 27th International Conference on International Conference on

Machine Learning, pages 415–422, 2010.

[GG16] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approxima-
tion:Representing Model Uncertainty in Deep Learning. Proceedings of the

33rd International Conference on Machine Learning, 48, 2016.

[GK10] Daniel Golovin and Andreas Krause. Adaptive Submodularity: Theory
and Applications in Active Learning and Stochastic Optimization. CoRR,
abs/1003.3967, 2010.

[Gui12] Andrew Guillory. Active Learning and Submodular Functions. PhD thesis,
2012.

[HGE16] Jonathan Ho, Jayesh K. Gupta, and Stefano Ermon. Model-Free Imitation
Learning with Policy Optimization. CoRR, abs/1605.08478, 2016.

[HMD18] Juan Camilo Gamboa Higuera, David Meger, and Gregory Dudek. Synthesiz-
ing Neural Network Controllers with Probabilistic Model based Reinforcement
Learning. International Conference on Intelligent Robots and Systems, 2018.

[Kre98] David Kreps. Notes On The Theory Of Choice. Routledge, 1998.

[Kul59] Solomon Kullback. Information Theory and Statistics. Wiley, New York, 1959.

[LHP`13] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. ArXiv, abs/1312.5602, 2013.

[Mai11] Maike Buchin and Anne Driemel and Marc van Kreveld and Vera Sacristan.
Segmenting trajectories: A framework and algorithms using spatio-temporal
criteria. JOURNAL OF SPATIAL INFORMATION SCIENCE, 3:33–63, 2011.

70



BIBLIOGRAPHY

[MKS`13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing Atari with
Deep Reinforcement Learning. ArXiv, abs/1312.5602, 2013.

[MP02] Andrew Meltzoff and Wolfgang Prinz. The Imitative Mind: Development,
Evolution, and Brain Bases. 01 2002.

[Ols17] R.M. Olsthoorn. Segmented Active Reward Learning. PhD thesis, 2017.

[Org15] W H Organization. Global Status Report on Road Safety 2015. World Health

Organization, 2015.

[RA07] Deepak Ramachandran and Eyal Amir. Bayesian Inverse Reinforcement
Learning. Proceedings of the 20th International Joint Conference on Artifi-

cial Intelligence, pages 2586–2591, 2007.

[RBG11] Stephane Ross, Drew Bagnell, and Geoffrey J Gordon. A Reduction of Imita-
tion Learning and Structured Prediction to No-Regret Online Learning. 14th

International Conference on Artificial Intelligence and Statistics , 15, 2011.

[RBG18] Stephane Ross, Drew Bagnell, and Geoffrey J Gordon. Imitation from Ob-
servation: Learning to Imitate Behaviors from Raw Video via Context Trans-
lation. IEEE International Conference on Robotics and Automation (ICRA),
2018.

[RW05] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes

for Machine Learning. MIT Press, 2005.

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-

duction. The MIT Press, second edition, 2018.

[SBTC16] Halit Bener Suay, Tim Brys, Matthew E. Taylor, and Sonia Chernova. Learning
from Demonstration for Shaping Through Inverse Reinforcement Learning.
Proceedings of the 2016 International Conference on Autonomous Agents and

Multiagent Systems, pages 429–437, 2016.

71



BIBLIOGRAPHY

[Sch97] Stefan Schaal. Learning From Demonstration. Advances in Neural Informa-

tion Processing Systems, 9, 1997.

[SDSS17] Dorsa Sadigh, Anca Dragan, Shankar Sastry, and Sanjit Seshia. Active
Preference-Based Learning of Reward Functions. Robotics Science and Sys-

tems, 2017.

[Sut84] Richard Stuart Sutton. Temporal Credit Assignment in Reinforcement Learn-

ing. PhD thesis, 1984. AAI8410337.

[Van08] Tom Vanderbilt. Traffic: Why we drive the way we do (and what it says about

us). Alfred a. knopf, New York, 2008.

[WF12] Christian Wirth and Johannes Fürnkranz. First Steps Towards Learning from
Game Annotations. Proceedings of the ECAI Workshop on Preference Learn-

ing: Problems and Applications in AI, pages 53–58, 2012.

[WF13] Christian Wirth and Johannes Fürnkranz. A Policy Iteration Algorithm for
Learning from Preference-Based Feedback. pages 427–437, 2013.

[ZMBD08] Brian D Ziebart, Andrew Maas, Andrew Bagnell, and Anind K. Dey. Max-
imum Entropy Inverse Reinforcement Learning. Proceedings of the 23rd

National Conference on Artificial Intelligence - Volume 3, pages 1433–1438,
2008.

72



Acronyms

NPC Non Player Character

RL Reinforcement Learning

IRL Inverse Reinforcement Learning

BNN Bayesian Neural Network

NN Neural Network

GP Gaussian Process

BPPT Back Propagation Through Time

DQN Deep Q-Learning

DDPG Deep Deterministic Policy Gradients

73


	I Introduction
	Introduction
	Outline

	Related Work
	Markov Decision Process
	Reinforcement Learning Algorithms
	Imitation Learning Algorithm
	Gaussian Process
	Gaussian Process Regression

	Bayesian Neural Network
	Kullback-Leibler Divergence
	Active Learning and Adaptive Submodularity
	Preference Learning Algorithm

	Experiment Task Description
	Simulation Environment - Conduite-Simulateur  (ConSim)
	Expert's Data Collection
	Expert's Preference Collection


	II Thesis Contributions
	Imitation Learning
	Problem Statement
	Probabilistic Forward Model using BNN
	Model-based Imitation Learning by Probabilistic  Trajectory Matching
	Expert Distribution Representation
	Policy Distribution Representation

	Deep PILCO Learning
	Experiments and Results
	Two Lane Over Taking
	Lane Merging
	Round-A-Bout

	Discussion

	Active Preference Learning
	Problem Statement
	Learning Reward from Preferences
	Distribution Update Based on Feedback
	Generating Queries
	Limitation and Assumption
	Our Approach to Preference Learning
	Temporal Segmentation of Trajectories
	Query and Response With Segmented Trajectories
	Weight Distribution Updates With Segmented Trajectories
	Smart Segment Query and Distribution Update

	Experiments and Results
	Results
	Over Taking in Two-Lanes
	Comparison of Weight Distribution Update
	Comparison of Goodness Metric
	Policy Learning From Reward Function

	Driving in Round-a-bout
	Comparison of Weight Distribution Update
	Comparison of Goodness Metric



	III Final Conclusion & Future Work
	Final Conclusion & Future Work
	Limitations and Future Work

	Bibliography
	Acronyms


