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Abstract

We performed 3+1D viscous hydrodynamic calculations of proton-lead (p-Pb) and
lead-lead (Pb-Pb) collisions at top LHC (Large Hadron Collider) energy. We show
that existing data from high-multiplicity p-Pb events can be well described in hydro-
dynamics. We proposed a more stringent test of the hydrodynamic behavior in small
systems by studying the detailed momentum dependence of two-particle correlations.
We calculated a relevant observable, rn, and made predictions for its value and cen-
trality dependence. These predictions were subsequently confirmed. This provides a
non-trivial confirmation of the nature of the correlations seen in small collision sys-
tems, and a tool for determining where the hydrodynamic description stops being
valid. Lastly, we probed what can be learned from rn, finding that, contrary to most
of the commonly considered observables, it is less sensitive to viscosity than to the
aspects of the initial state of the system, such as the transverse length scale of the
fluctuations.
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Résumé

Nous avons effectué des calculs 3+1D d’hydrodynamique visceuse de collisions d’un
système proton-plomb (p-Pb) et d’un système plomb-plomb (Pb-Pb) à haute énergie
du LHC (Grand collisionneur de hadrons). Nous avons démontré que les données des
événements p-Pb à haute multiplicité peuvent être décrites par un modèle hydrody-
namique. Nous avons suggéré un test plus rigoureux de l’applicabilité de la théorie
hydrodynamique à de petits systèmes, en étudiant la dépendance de corrélation de
paires de particules. Nous avons calculé un observable approprié, rn, et avons fait
des prédictions sur sa valeur et sa dépendance de centralité. Ces prédictions ont été
confirmées par la suite. Cela suggère que nous avons correctement décrit la nature de
la corrélation constatée dans les petits systèmes de collision, et fournit un outil per-
mettant de déterminer à partir d’où la description hydrodynamique n’est plus valide.
Enfin, nous avons examiné ce que l’on pouvait apprendre de rn, en découvrant que,
contrairement à la plupart observables communément considérés, rn est moins sen-
sible à la viscosité qu’aux aspects de l’état initial du système, comme l’échelle de
longueur transverse des fluctuations.
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Contributions of the thesis to original knowledge specified by author:

• Chapter 1: A comprehensive review of the relevant literature on theoretical
methods of studying of strong interactions, processes taking place in hadron
collisions (that provide an experimental opportunity to test our theoretical un-
derstanding), and the possibility of quark-gluon plasma (QGP) formation in
these experiments. This chapter is written by me (the manuscript author).
References to the used literature are included in the text.

• Chapter 2: A detailed review of the description of heavy-ion (large) collisions
within the hydrodynamical paradigm that assumes existence of the QGP phase
in the system’s evolution. This chapter is written by me. References to the
used literature are included in the text.

• Chapter 3: An introduction of the original fluid dynamics framework that I
used for the initial exploration of the applicability of hydrodynamics to small
systems. It is based on the original works [139, 209] of which I am the primary
author. I emphasize our following original findings:

– Simultaneous description of high multiplicity distributions in collisions of
various sizes within our model (Fig. 3.2 and Fig. 3.3)

– Explorational analysis of the parameter space and the ability of our model
to at least qualitatively describe conventional flow observables, vn{2}(pT),
v̄n{2}, that are considered to be evidences of collective behavior in large
systems (Fig. 3.5, right panel of Fig. 3.6, left panel of Fig. 3.7)

– Our model’s ability to describe experimentally observed triangular flow
similarity in (small) p-Pb and (large) Pb-Pb systems (left panel of Fig.
3.6)

• Chapter 4: Additional tests of hydrodynamics applicability to small systems. I
start with a discussion of signatures of collective behavior in two-particle cor-
relations and methods of its study, including the rn(paT, p

b
T) observable analysis

that has the ability to test hydrodynamics applicability to the description of
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hadron collisions independent of the specific details of the model’s implementa-
tion. References to the used literature are included in the text. The rest of the
chapter is dedicated to the study of the rn(paT, p

b
T) observable that I performed

using our model. I emphasize the following original ideas and findings:

– In [139] of which I am the primary author, we proposed to experimentally
measure rn(paT, p

b
T) in small systems and provided our prediction of the ob-

servable in p-Pb collision experiments at
√
s = 5.02TeV. Our quantitative

prediction was confirmed by the CMS collaboration [143], which strongly
supports the hypothesis of QGP formation in small systems (Fig. 4.7)

– Performed by me explorational analysis of the parameter space of the
rn(paT, p

b
T) revealed that contrary to the conclusions of previous studies

it is more sensitive to the granularity of the initial conditions than to the
shear viscosity of QGP making it a promising observable (compared to
the conventional flow ones) of the initial hadron collisions stage that is
currently theoretically challenging to describe (Fig. 4.6)

– Modeling of the effects of the final state particle collisions on the rn(paT, p
b
T)

observable performed by Dr. Sangwook Ryu using UrQMD framework and
based on my hydrodynamic calculations revealed that they have moderate
effect on the transverse observables and do not affect any of the aforemen-
tioned conclusions (Fig. 4.10 and 4.11)

• Chapter 5: Further advancements of our hydrodynamic model. I start with an
overview of the recent theoretical extensions of fluid dynamics frameworks that
include bulk viscosity and longitudinal fluctuations in the initial conditions.
References to the used literature are included in the text. Then I explain how
I implement those ideas to extend our hydrodynamic model, compute both
longitudinal and transverse observables for p-Pb collisions at

√
s = 5.02TeV,

compare them to experimental data. The most distinct original results include:

– Hydrodynamic calculation of the recently measured rn(ηa, ηb) longitudinal
fluctuations observable in small systems [143] that our model can reason-
ably describe (Fig. 5.14)

– Exploration of the effects of bulk viscosity in small systems confirming that
rn(paT, p

b
T) is a promising probe of the initial conditions granularity (Fig.

5.10)
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– Ability of our extended model to at least qualitatively describe an exhaus-
tive list of longitudinal and transverse observables in small systems allows
us to provide an estimate of the produced in p-Pb collisions matter char-
acteristics – σ = 0.4 fm, η/s = 0.08, ζ/s ∼ 0.03 – that are in line with
the ones obtained in the studies of large systems this way supporting the
hypothesis of the plausibility of QGP formation in collisions of all sizes
(Fig. 5.15)





1
Introduction

Science (from Latin scientia, meaning "knowledge") is a systematic enterprise that

builds and organizes knowledge in the form of testable explanations and predictions

about the Universe [1]. The goal of physical science is to understand the world at

the level of inanimate subjects: matter and its interactions. To accomplish this, one

creates theoretical models that are tested against experimental data.

At the present time, the most successful approach in fundamental physics is the

Standard Model (SM), which is a Quantum Field Theory (QFT) that classifies all

discovered elementary particles, see Fig. 1.1. It also describes three out of four know

interactions (excluding the gravitational force). According to the model, all matter

consists of six quarks, six leptons, and five bosons. The latter are transmitters of one

of the three forces – photons for electromagnetic; W,Z-bosons for weak; and gluons

for strong – and the Higgs boson is the "generator" of effective masses for those

model’s constituents that can interact. A scheme of the allowed interactions between

particles is represented in Fig. 1.2.

The SM is specifically valued for its predictive power. Its formulation led to the

discovery of multiple particles [3, 4], including the top quark [5, 6], tau neutrino [7],

and the Higgs boson [8].

However, despite all its successes, this theory faces a number of challenges. For

example, the experimentally observed neutrino oscillations [9, 10] prove that neutrinos

have masses, which contradicts the SM. Similarly, SM does not include the theory

of General Relativity, which was directly confirmed when gravitational waves were

registered [11]. Moreover, cosmological observations suggest that described with the

1
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Figure 1.1: Graphical representation of the SM elementary particles and their prop-

erties (mass, electric charge, and spin are correspondingly measured in MeV/c2, units

of positron charge, and magnitude of ~). Figure from [2].

Figure 1.2: Graphical representation of the allowed by the SM elementary particles

interactions. Figure from [2].
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SM matter composes only about 5% of the Universe content [12].

Thus, SM is an effective theory and further attempts towards creation of funda-

mental theories are required. One of the candidates for the "Theory of everything"

is String theory (ST). It states that everything consists of strings, which are one-

dimensional energy objects that propagate through space and interact with other

similar entities. Different excitations of strings represent all elementary particles and

transmitters of all four interactions. This idea is appealing already because it ad-

dresses the problem of the divergences emerging in all QFTs, which is due to the zero

dimensionality of particles [13, 14]. However, it is very challenging to observe the

internal structure of elementary matter constituents, which is expected to be of the

Planck length (10−35 meter) [15]. To get a sense of the energies at which particles will

reveal their dimensional (string) properties we can turn to the Heisenberg principle,

which states that the collision energy is inverse proportional to the resolution mag-

nitude of the experimental setup. We brought up here the notion of a collision for

two reasons. First, to discern internal structure of any object we need to use another

object as a (detector) tool. Second, the most impactful degree of interaction that can

currently be obtained in a controlled fashion takes place at "colliders" – machines

built to smash particles against each other. Nowadays the largest one is the Large

Hadron Collider (LHC) operating in CERN, Geneva. This facility has a vibrant pro-

gram and hosts several collaborations, including ALICE, ATLAS, and CMS, which

we will talk about later. The maximum collision energy per particle pair1 achieved

in these studies is of the order of ∼ 1012GeV (about a trillion times higher than the

temperature/kinetic energy of particles inside the Sun), which allows one to resolve

distances of ∼ 10−15 meter (or ∼ 1 fm – size of a proton). This is, however, ten

million times smaller than the Planck (energy) scale (∼ 1019GeV) – energy necessary

to reveal the intrinsic dimensional nature of string objects (if they exist). Thus, a

direct confirmation of ST is currently out of reach. However, one of the indirect

1One of the most common collided particles is a proton, and thus proton-proton (p-p) collisions is a

common reference.
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evidences supporting this paradigm would be discovery of Supersymmetry (SUSY),

which is inherent to the ST and its low energy approximation of Quantum Gravity.

SUSY among other things helps to resolve the theoretically unsatisfying assumption

of fine tuning that is currently required in the SM to explain the large separation

of scales between the mass of the Higgs boson and the Planck energy, which is also

called the Hierarchy problem. The Minimal Supersymmetric Standard Model [16],

which provides one of the least radical extensions of the SM that includes SUSY,

predicts existence of new particles – superpartners of the SM constituents. Those,

however, have not been found yet, which means that the ST paradigm should still be

considered as an abstract concept, however appealing.

Although, the SM is an effective theory, it is plausible that some of its compo-

nents could be treated as fundamental. If they are free of theoretical inconsistencies,

they could be low energy approximations of the fundamental theory that has not

been found yet. Quantum Chromodynamics (QCD) that describes the physics of

strong interactions is considered to be an element of the SM that can be considered

a fundamental theory. This allows, in principle, to describe any strong process at a

desired accuracy. However, in practice, this is challenging, because of the complexity

of the calculations. The theory is non-linear due to self-interaction of gluons, see

Fig. 1.2. This in particular leads to the emergence of such characteristic QCD effects

as asymptotic freedom and confinement, which we will discuss in more details later.

Thus, in order to study phenomena involving strong interactions, one uses various ef-

fective approaches/models, which are valid only within certain applicability domains.

In this work, we will study a recently discovered (experimentally) state of matter –

quark-gluon plasma (QGP) – which was the dominant form of matter during the first

microseconds after the Big Bang. This will require application of various effective

frameworks to study QCD (as strong interactions play the key role in the process).

Thus, in Section 1.1 we will describe them. Then, in Section 1.2 we will discuss how

the process of QGP formation happens in experiments. Finally, in Section 1.3 we will

explain the challenges that emerged in the recent experimental studies of QGP and
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outline how we aim to address them in this work.

1.1 Theoretical frameworks of studying QCD
QCD [17, 18] is the accepted theory of strong interaction and it is described with the

following action:

S ≡ SQCD =

∫
d4x

(
ψ̄i (i(γ

µDµ)ij −mδij)ψj −
1

4
Ga
µνG

µν
a

)
, (1.1)

Ga
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , Dµ = ∂µ − igAaµta, (1.2)

where the ψi field describes quark, and Aaµ are gluon fields; i, j = 1, 2, 3 are flavor in-

dices; a, b, c = 1, . . . 8 enumerate color degrees of freedom; µ, ν = 0, . . . 3 – Minkowski

(one) time and (three) space coordinates. ta and fabc are respectively generators and

structure constants of the internal color SU(3) symmetry – their role is to relate

transformations in color and Minkowski space. Finally, g is the strong coupling.

Graphical representation of strong interactions is shown in Fig. 1.3. It can be

obtained by matching corresponding contributions to the scattering amplitudes defin-

ing probabilities of arbitrary quantum processes [21, 22] that are calculated in the

S-matrix [23, 24] and the Path Integral [25] formalisms. While the former method

is based on evaluating coordinate space integrals over products of (ψ and A) terms

constituting the integrand of equation (1.1), the latter one implies summation over

all possible "histories" of transition between the initial and the final states of the con-

sidered process1. Those can involve multiple gluon and quark emissions. Feynman

rules determine one-to-one correspondence between each such history and the (ψ and

A) terms whose product should be calculated to determine the probability of such

scenario.

Note the consistency between the conclusions one can draw from Fig. 1.3 and

Fig. 1.2. For example, gluons can interact with quarks and other gluons, see quark-

gluon, 3- and 4-gluon vertices in Fig. 1.3. Note that the latter two diagrams could be

interpreted as a process of gluon emission from a quark and another gluon respectively.
1See also equation (1.10).
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Figure 1.3: Graphical representation of the strongly interacting particles’ dynamics,

which is known as Feynman diagrams [19]. Solid lines correspond to quarks and curly

lines correspond to gluons. Figure from [20].

Corresponding Lagrangian terms have a strong coupling prefactor, g. Thus, its value

directly affects the rate of the strong processes. For that reason it is important to

study it in more details. An effective approach to do it at small values of g is the

perturbative technique.

1.1.1 Perturbative QCD

We will start this section with the discussion of the process of charge screening, as

it helps to understand the idea behind the energy dependence (or "running") of the

strong coupling [26].

The parameter g that enters (1.1) is known as the "bare" coupling. Feynman rules

suggest that it should be equal to the quark’s and gluon’s charge, see quark-gluon

and 3-gluon vertices in Fig. 1.3. However, another quantity – the "dressed" (or

"running") charge – is actually what is measured in experiments. To estimate some

(source) particle’s charge, one scatters off it another (probe) particle and observes
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Figure 1.4: Illustration of the scattering process that can be used to probe one par-

ticle’s electric charge by another one. Figure from [27]. The experimental set-up

assumes that the particles (represented with circles) pass each other at a distance r.

Dipoles denote electron-positron pairs that get created (and annihilated) from (into)

the vacuum.

how the trajectory of the latter changes due to the presence of the former. In general,

the magnitude of this effect can depend on the distance between the source and the

probe particles, or equivalently on their collision energy-momentum, as it defines how

close particles approach each other. Let us illustrate this idea using electro-magnetic

interactions, see Fig. 1.4.

It is known that the magnitude of the particle’s electric field in dielectric materials

decreases due to the orientation polarization effect that takes place when matter

constituents’ fields, which can be well described in the dipole approximation, get

aligned to oppose the external field. Similar phenomenon takes place when a particle is

embedded in vacuum. Due to quantum effects, electron-positron pairs, which resemble

dipoles, get randomly created. They get polarized in the particle’s field, reducing it.

Because the process of vacuum polarization is a dynamical quantum phenomenon,

one should utilize QFT framework to describe it. In this approach, the quantum cor-

rection to the interaction between two particles is determined by the process in which

the photon emitted by the source creates an electro-positron pair that subsequently

annihilates into another photon that is absorbed by the probe. Scenarios involving
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(a) (b)

Figure 1.5: Feynman diagrams of leading-order processes causing the screening of

the strong charge in QCD. Process (a) corresponds to the emission of the quark-anti-

quark pair from a propagating gluon and involves two "quark-gluon" vertices. Process

(b) corresponds to the emission of the pair of gluons from a propagating gluon and

involves two "3-gluon" vertices.

multiple annihilation processes are also possible, but their probability is proportional

to higher orders in the coupling constant, and thus their contribution is usually ac-

counted for order by order. The dynamics of the photon exchange in vacuum depends

on its energy, Q. One absorbs this dependence into the definition of the "running"

coupling, g(Q). Thus, effectively the particle’s charge depends on the energy of the

collision in which it is probed.

Similar effect takes place in QCD vacuum with strong interaction. However, in this

case the gluon that was emitted by the source particle can reach the probe particle

after creation and annihilation of either a quark-anti-quark pair or a pair of gluons,

see Fig. 1.5 (a) and (b) correspondingly. To account for these effects one needs to

calculate the so-called β function of the renormalized ("running") coupling α:

α ≡ g(Q)2

4π
, (1.3)

β(α) = −(b1 · α2 + b2 · α3 + . . . ), (1.4)

b1 =
11CA − 4nfTR

12π
=

33− 2nf
12π

, (1.5)

b2 =
17C2

A − 4nfTR(10CA + 6CF )

24π2
=

153− 19nf
24π4

, (1.6)
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where CA, TR are so-called Casimir operators, which describe the color group SU(Nc)

(Nc = 3 for QCD); Nf is the number of flavors in the theory (for QCD Nf depends on

the energy scale, its maximum value is 6); bn coefficients correspond to the n-th order

loop contributions (here calculated in the widely used MS scheme [28]). We provide

results of the 1st and 2nd order loop calculations (1.5-1.6). They indicate that the beta

function of QCD is negative – qualitatively this is the most important conclusion1.

To get a quantitative estimate we can now substitute the derived expression (1.4) into

the renormalization group equation (1.7) that governs physical variables’ response to

the change of the energy scale Q, [30, 31]:

Q2 ∂α

∂Q2
= β(α) = −(b1α

2 + b2α
3 + . . . ) < 0. (1.7)

From the negativity of the QCD β(α) function (1.4) and the form of equation (1.7)

one can conclude that at large energy scale interaction coupling α (and thus gauge

coupling g) considerably decrease in size. This phenomenon is called asymptotic free-

dom [17, 18] and is closely related to confinement. Before getting to its description in

the next section, let us observe the following. First, there is a spectacular agreement

between the predicted behavior of the running coupling and the results of its indirect

extraction using perturbative methods from multiple experimental results that holds

across four orders of magnitude in the exchange momentum, Q, see Fig. 1.6. This

clearly advocates in favor of QCD validity and supports the applicability of pertur-

bative techniques in the region of high energy/momentum transfer. Second, from the

dimensional analysis it follows that, as α is a dimensionless quantity and Q is mea-

sured in units of energy, there should emerge another dimensional quantity, ΛQCD.

It should enter the solution of equation (1.7), which is defining the "running" of the

renormalized coupling, in the following way:

α = α

(
Q

ΛQCD

)
. (1.8)

1Noteworthy, the sign of the β functions of the electro-magnetic and the weak interactions is positive.

Thus, these theories (unlike QCD) encounter the "Landau pole" problem [29] which predicts infinite

growth of the coupling constant if measured at some high (but finite) energy. This suggests that the

SM model should be extended to describe processes happening at the energies above ∼ 1016 GeV.
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This parameter ΛQCD
1 is estimated to be of the order of∼ 0.2GeV (or∼ 1fm in spacial

dimension units) and it sets the scale of the confinement-deconfinement transition.

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  

0.1

0.2

0.3

αs (Q
2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)
(–)

Figure 1.6: Summary of measurements of αs as a function of the energy scale Q. The

respective degree of QCD perturbation theory used in the extraction of αs is indicated

in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading order; res.

NNLO: NNLO matched with resumed next-to-leading logs; N3LO:next-to-NNLO).

Figure from [34].

1.1.2 Lattice QCD

Despite the success of the perturbative technique in the regime of asymptotic free-

dom it is clear that this approach can not be applied ubiquitously. For example,

the nature of the hadrons’ mass formation is strictly non-perturbative. Specifically,

1Existence of ΛQCD anomalously breaks conformal invariance [32]. Its appearance is an example of the

dynamical scale generation in renormalization group equations, which is also known as dimensional

transmutation [33]. We will observe this phenomenon several times in this work.
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dependence of the π-meson mass on the coupling constant α can not be represented

as a perturbative power series:

mπ ∼ f

(
−C
α

)
6∼

∞∑
i=0

ai α
i, (1.9)

where f is an analytic function, C and ai (i = 0, . . .∞) are some constants [35].

This behavior has to deal with the already mentioned previously confinement phe-

nomenon: color charged (strongly interacting sub)particles (quarks and gluons) at

normal conditions are not observed individually. They merge together into color-

neutral compounds (hadrons). If one takes a color-neutral particle (say π0 meson)

and tries to pull its color charged constituents (u and ū quarks) apart one will result

with having two color-neutral particles (π− and π+ mesons): it will be more energy

efficient to create a color–anti-color pair from vacuum (dd̄ quark pair) in between

pulled apart constituents (and thus form two color-neutral objects: dū and ud̄ which

are exactly π− and π+ mesons) then to further increase the separation distance (be-

tween u and ū quarks)1. On the contrary, at high energies/temperatures2 quarks and

gluons, which as we mentioned at normal conditions are "confined" within particles

(hadrons) as its constituents, become free and travel over macroscopic distances. This

state of matter is called QGP. It was the dominant form of matter during the first

microseconds after the Big Bang. That is one of the main reasons its study draws

considerable interest. It is worth noting that there are very strong indications that

QGP is produced in the recent Heavy Ion Collisions (HIC) experiments [36]. This

makes the HIC research program to be the only controlled way of directly studying

processes taking place during the formation of the Universe.

In principle, knowing the action (1.1), it is theoretically possible to calculate ev-

ery aspect of QCD dynamics numerically by taking advantage of the Feynman path

integral formulation of QFT [25] and Monte-Carlo methods of evaluating integrals in

multiple dimensions [37]. In quantum theory every physical observable corresponds

1This mechanism is related to Fig. 1.6: at small momentum, Q, (or at large distance) α(Q) will grow.
2We will later discuss the notion of thermalization, and how it relates energy and temperature in

HIC.



12 1 Introduction

to some operator – let us call it O. An interesting quantity to calculate is a Green’s

function, which describes how physical observable O measured at space-time coordi-

nates x and y are related. To obtain it, one can first calculate a partition function

Z[J ] (or generating functional at zero temperature):

Z[J ] =

∫
D[Aψψ̄]ei(S+

∫
d4xJ(x)·O(x)), (1.10)

where J is a current corresponding to the conservation of a certain O-related sym-

metry/charge (e.g. baryon charge); D is a path integral measure that indicates that

averaging of the "J ·O" term with a weight of eiS goes over all possible field config-

urations, Aψψ̄. Then evaluation of any (say two-point) Green’s function is straight-

forward:

< T O(x)O(y) >=
δ2 lnZ[J ]

iδJ(x) iδJ(y)

∣∣∣∣
J=0

, (1.11)

where T stands for time-ordering of space-time coordinates x and y; and δ-s denote

functional derivatives.

However, in practice numerical calculation of (1.10) is extremely challenging due to

the highly oscillating integrand , which makes application of random sampling Monte-

Carlo methods of integration in multi-dimensional1 space challenging. Quantity e−S

is relatively better behaved as it takes only positive values, and for that reason does

not vanish during averaging.

Thus, in lattice QCD it is more common to perform a Wick rotation, [38]:

t→ −iτ, eiS → e−SE , < T O(x)O(y) >−→< O(x)O(y) >T . (1.12)

This allows to achieve desired behavior of the integrand (1.10) but at the expense

of turning to imaginary time. It can be shown that the new "Wick rotated" the-

ory describes statistical mechanics of a field system in three dimensional Euclidean

space at thermal equilibrium, which means that the system is at temperature T ,

all energy/matter flows are absent, and fundamental thermodynamic relations apply.

Noteworthy, the new system, which is described with Euclidean action SE, is static.
1To be precise it is infinite-dimensional as one needs to consider all possible field configurations.
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τ no more represents time evolution – it is a compactified variable related to the

value of the system’s (inverse) temperature T (τ ∈ [0, 1/T ]). Derivatives of partition

function (1.10) subjected to the Wick rotation instead of Green’s functions (1.11) will

evaluate correlators1.

In this way the desired outcome is achieved: Z is now real, positive, and attainable

to be calculated on the "lattice". This allows one to derive from the "first princi-

ples", (1.1), such important thermodynamical properties of QCD as energy density ε

and pressure P :

ε = − 1

V

∂ lnZ

∂β
, P = T

∂ lnZ

∂V
, (1.13)

where β = 1/T , and V is the system’s volume. See Fig. 1.7.

To summarize, lattice theory attempts a head-on approach to the solution of QCD

using numerical integration methods. The main advantage of this approach is that the

exact theory of strong interactions is probed without any simplifying approximations.

This allows to calculate even non-perturbative observables. On Fig. 1.8 (a), one can

see results of the running coupling evaluation on the lattice. One of the advantages

of this result is that it allows to assess the precision of the perturbative techniques in

its applicability region, µ > ΛQCD. On Fig. 1.8 (b), one can find hadron spectrum

calculated directly from the action, (1.1). Provided comparison of this result to

experimental data supports the validity of QCD as a theory of strong interactions.

The main downside of the method is that lattice computations are well suited

for evaluation of static quantities only. Even calculations of quasi-stable resonance2

masses face considerable challenges [43]. Their decay widths should have imaginary

contribution [44]. However, one performs Wick rotation on the lattice, in the first

place, to shift calculations to the real numbers field. In order to overcome this lim-

itation there were developed techniques of reconstruction of the real time spectral
1< O >T stands for the value of physical quantity O measured when the entire system is embedded

into a heat bath at temperature T , while < O > denotes vacuum expectation (or Green function)

of the same observable.
2Quasi-stable resonances are particles with finite lifetime of the order of ∼ 1 fm [34]. They subse-

quently decay strongly into stable particles.
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Figure 1.7: Energy density and three times the pressure calculated in units of tem-

perature to the fourth power on the lattice using two (numerically) different (but

physically equivalent) methods denoted as "p4" and "asqtad" (left). The black bars

at high temperatures indicate the systematic shift of data that would arise from

matching to a hadron resonance gas model (HRG). The vertical band indicates the

approximate location of the confinement-deconfinement transition region. The right

hand figure shows pressure divided by energy density (p/ε) and the square of the

velocity of sound (c2
s). Lines without data points give the square of the velocity of

sound calculated analytically from c2
s = ∂P

∂ε
using the interpolating curves for ε/T 4

and P/T 4. The dashed-dotted line at low temperatures gives the result for p/ε from

a HRG. Figures from [39].

function, ρ, from Euclidean correlators and trace anomaly1 [45, 46, 47]. This al-

lowed to calculate, for example, temperature dependence of bulk viscosity ζ near the

confinement-deconfinement phase transition, [48, 49]:

ζ =
1

9
lim
ω→0

lim
k→0

1

ω
ρii,jj(ω,k), (1.14)

where ρ is represented in momentum space, (ω,k), with Latin indices, i/j, denot-

ing spatial coordinates and Einstein summation convention is assumed. Still, the

1In a conformal theory energy-momentum is traceless. However, ΛQCD breaks conformal invariance

and thus the value of ε− 3P is not zero.
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Figure 1.8: Panel (a): Dependence of the running coupling α on the energy scale.

Lattice results [40] are compared to the perturbative calculation in the 2-nd and 3-rd

loop order [28]. Figure from [40]. Panel (b): Light hadron spectrum evaluated on

the lattice by the PACS-CS collaboration [41] and measured experimentally by the

Particle Data Group [42]. Figure from [41].

unavoidable difficulty of extracting a continuous function from a finite discrete set

of noisy lattice data makes this calculations challenging and systematic errors large.

It appears that in order to obtain the desired transport coefficient with reasonable

accuracy, one has to make certain assumptions about the form of the spectral func-

tion. But this contradicts the initial intention of using lattice QCD as a method of

calculating observables based on first principles.

This is a shortcoming of the method, because one is specifically interested in study-

ing the dynamical properties of QGP. As we know, the Universe was not created in

equilibrium. Rather it was quickly expanding, cooling down, and possibly undergoing

phase transition to the confinement phase. This QCD regime is characterized by a

growing value of the running coupling α, which makes techniques suited for descrip-

tion of strongly coupled field theories particularly interesting. One of such frameworks

that allows to calculate dynamical properties of strongly coupled QFTs that are very

similar to QCD is called the AdS/CFT correspondence.
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1.1.3 AdS/CFT correspondence

It was observed that there is a direct correspondence between the evolution of strongly

coupled field theories and a gravitational theory in an extended number of dimen-

sions1 [50]. The entire class of these approaches is referred to as AdS/CFT corre-

spondence/duality. It was found that a conformal field theory (CFT) of N = 4

Super-Yang-Mills (SYM) in flat R3,1 geometry2 with metric

ds2 = (−dt2 + dx2) (1.15)

is dual to the theory of quantum gravity in ten-dimensional AdS5 × S5 space3

ds2
10 =

r2

L2
(−dt2 + dx2) +

L2

r2
dr2 + L2dΩ2

5, (1.16)

where L is a constant related to the string tension, and couplings of the ten-dimensional

supergravity and SYM. See Fig. 1.9.

Thus, in order to calculate any physical observable in a QFT theory one could

instead obtain a dual quantity in AdS. For example, viscosity of CFT could be evalu-

ated in AdS by calculating Green’s function of the gravitational stress-energy tensor.

It was done in [51] by additionally taking advantage of the Kubo formula that relates

time-correlation function4 to the value of this transport coefficient:

χ = − lim
ω→0

lim
~k→0

1

ω
ImGR(ω,~k). (1.17)

The biggest advantage of this approach is that the strong coupling regime of CFT/QFT

corresponds to the weak one in AdS and thus perturbation technique is applicable on

the gravity side.5 The dictionary "translating" observables from one language (CFT)
1This interesting perspective came from the studies of the ST and its low energy limit described by

quantum supergravity. This suggests that an extension of the SM that includes gravitational effects

might be a ST.
2This is the regular three space, x, and one time, t, dimensional geometry that we live in.
3For brevity, one usually omits the S5 when talking about AdS/CFT.
4To be precise, it is the retarded Green’s function in momentum space, which is closely related to the

spectral function ρ that we discussed in Section 1.1.2, see Equation (1.14).
5With the proviso that perturbation theory works on the gravity side – see discussion of (1.9).

Fortunately, it does for a wide range of observables, see further discussion.
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Figure 1.9: Illustration of embedding of R3,1 into AdS5×S5. There is a region of ten

dimensional R9,1 flat space, where the geometry is curved and can be described with

AdS5× S5 metric, (1.16). Gravitation acts in the entire AdS5× S5 space, while CFT

"lives" only on its r →∞ border, which has the metric of the R3,1 flat space, (1.15).

into another (AdS) is growing and many interesting results have been obtained. For

example, see calculation of the Green’s functions [52, 53].

However, there are still important challenges to be faced. First, although CFT is

a strongly interacting theory and hence it could be relevant for confinement, it is not

exactly QCD. For example, in CFT the β function is exactly 0, which means that the

gauge coupling is not running. Thus, this theory lacks confinement-deconfinement

phase transition. For the same reason, it does not have such important quantity of

QGP dynamics as bulk viscosity. In CFT it is exactly zero, while lattice calcula-

tions show its non-trivial behavior in QCD and particularly near the confinement-

deconfinement phase transition. To overcome these difficulties, the class of "CFT"

theories that have a string dual is being constantly extended. Modifications include

addition of quarks (fundamental matter [54]); discretization of the excitations’ spec-

trum, which is necessary for confinement and breaking of conformality ("hard wall"

and Polchinski-Strassler background [55, 56]); inclusion of temperature in order to
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reproduce QGP state of matter (Witten’s black hole and Sakai-Sugimoto model [57]).

Even though the dual of exact QCD have not been found yet, it was shown that the

high temperature behavior of all confining theories demonstrates similarity and thus

AdS/CFT correspondence provides an excellent tool for studying QGP. Moreover, the

already mentioned lattice calculation of trace anomaly indicates that at high enough

temperatures QCD approaches CFT, as (ε − 3P ) → 0, see Fig. 1.7. In this way

interesting estimates of the values of shear and bulk viscosities have been obtained

in1 theories with a QCD-like equation of state, [58, 59, 60, 61, 62, 63]:

η

s
&

1

4π
,

ζ

η
& 2

(
1

3
− c2

s

)
, (1.18)

where η and ζ are values of shear and bulk viscosities; s is entropy density; cs is the

speed of sound.

We discussed an number of approaches that are suitable for studying various as-

pects of QCD (asymptotic freedom and confinement, equation of state, transport

coefficients). However, none of them can alone describe dynamics of matter undergo-

ing substantial geometrical and phase transformations that are taking place in HIC

experiments. One needs a framework that would be able to sew together all ana-

lytically/numerically accessible (weak/strong, static/dynamic) regimes of QCD and

provide description of strongly interacting medium in the transition region. This is

the only way to compare our current theoretical understanding of the processes tak-

ing place at high energies/temperatures to experimental data, test existing models,

and advance our knowledge. Importantly, this method should also be able to treat

time-dependent scenario of QCD matter evolution. This is when the effective theory

of fluid dynamics comes into play.

1.1.4 Hydrodynamics

Hydrodynamics describes collective behavior of medium that can interact so strongly

that it is impossible to disentangle individual quasi-particles. The condition of its

1Currently, QCD has no dual theory. There are only string theories that are "QCD-like".
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applicability can be defined with the Knudsen number:

Kn =
λ

L
, (1.19)

which is the ratio of microscopic, λ, and macroscopic, L, scales of the system dy-

namics. As hydrodynamics describes evolution of continuous medium, Kn should

not exceed the value of one. In a sense, hydrodynamics considers a coarse-grained

image of the underlying constituents’ dynamics. Hence, it does not have the means

of studying the process at micro level, e.g. at distances smaller than λ.

Equations of motion of (ideal) hydrodynamics are well known and represent con-

servation laws of energy and momentum coupled to the assumption of local thermal

equilibrium, [64]:

∂µT
µν
ideal = 0 , (1.20)

where T µνideal is the ideal, i.e. locally thermally equilibrated, energy-momentum tensor.1

Thus, (1.20) describes four conservation equations: one for energy and three for

spatial components of the momentum. As mentioned above, these equations describe

evolution of a system at the macro scale, i.e. at large wavelength or small momentum.

Hydro is valid without knowing the micro-dynamics. However, to do any calculations,

one needs to specify the equation of state and the transport coefficients of the fluid.

This is where perturbative QCD, lattice QCD, and AdS/CFT results come in handy.

In the case of HIC, we are interested in the evolution of strongly interacting systems

that do not necessarily start in local thermodynamical equilibrium. Thus, we want

to relax the aforementioned assumption and consider systems that are close to local

equilibrium:

T µν = T µνideal + Πµν , (1.21)

where Πµν is the viscosity tensor that describes the out-of-equilibrium correction to

the ideal energy-momentum one. Usually it is divided into two parts:

Πµν = πµν + Π ∆µν , (1.22)
1Einstein notation of summation over repeated Greek indices is assumed in (1.20) and further. Greek

indices µ/ν take values 0, . . . 3 enumerating time-space coordinates. They can be contracted with

the metric tensor gµν = diag(1,−1,−1,−1).
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which correspond to the shear and bulk contributions respectively. ∆µν = gµν−uµuν is

a projection operator on the fluid velocity vector, uµ. To first order1, this leads to the

well known viscous hydrodynamics Navier-Stokes (NS) equations of motion [64, 66].

Those have to be complimented with the generalized second law of thermodynamics,

which constitutes that the entropy of any out of equilibrium system can not decrease:

∂µs
µ ≥ 0 , (1.23)

where sµ is the Lorentz-covariant generalization of the entropy current. From the

physical point of view, this is necessary to break the time symmetry of the "mechan-

ical" conservation equations of motion and show the only "valid" time direction for

the evolution of an out-of-equilibrium system. In this way energy-momentum conser-

vation equations get extended with ones for the shear and bulk viscosity tensors:

πµν = η∇<µuν> , Π = −ζ∂µuµ , (1.24)

where ∇µ is a projected spatial gradient and ∇<µuν> stands for the traceless part

of symmetrized velocity gradient tensor ∇µuν . Specifically, we use the following

notations:

∇µ = ∆µν∂ν , A〈µν〉 ≡ ∆µν
αβA

αβ, ∆µν
αβ ≡

1

2

(
∆µ
α∆ν

β + ∆µ
β∆ν

α −
2

3
∆µν∆αβ

)
. (1.25)

However, it was observed that NS equations of motion contain certain problems.

Specifically, they allow for an onset of short wavelength excitations propagating with

super-luminal velocities [67, 68]. In principle, this is not a shortcoming of the hydro-

dynamical theory as it claims to correctly describe only long wavelength evolution.

However, it would create challenges when solving equations numerically in the case

of relativistic applications. For that reason gradient expansion of fluid dynamics is

usually extended to include second order corrections. If smaller than the first or-

der ones, they should not change the long wavelength behavior of the system. At

the same time they suppress the unphysical modes, successfully fix the problem of
1Expansions goes in the orders of Kn or spatial gradients. Time derivatives get substituted with

spatial ones by the means of using the lower order equations of motion [65].



1.1 Theoretical frameworks of studying QCD 21

super-luminal excitations, and make numerical treatment of fluid dynamics feasible.

Corresponding modification of equations (1.24) is referred to as Müller-Israel-Stewart

(MIS) equations [69, 70].

It is worth noting that the discussed in Section 1.1.3 correspondence between "fun-

damental" gravitational theories and quantum field theories suggests that "QGP" of

CFT should also have a regime that could be described with hydrodynamics. Indeed,

following the mentioned above prescription of expanding energy-momentum tensor

in higher order gradients, it is possible to obtain equation of conformal hydrodynam-

ics. They reproduce the form of the regular fluid dynamics equations, but possess

an additional symmetry with respect to the Weyl transformations.1 This essential

in string theory conformal invariance allows to construct non-trivial fluid dynamics

solutions [71]. Those should be valid in the approximately conformal early stage of

the matter evolution in HIC. For that reason they can and were used to test numerical

implementation of the hydrodynamical framework that is used in this thesis.

1.1.5 Kinetic theory

During the late stage of the HIC evolution, expanding QGP that is described with

fluid dynamics is expected to cool, undergo confinement-deconfinement phase tran-

sition, and form particles (hadronize). The interplay between the constituents will

become weaker and one would be able to distinguish quasiparticle excitations. The

characteristic micro- and macro-scopic scales of the system will be comparable, which

is the requirement of the kinetic theory approach applicability, although the former is

expected to be still smaller than the latter. The Knudsen number should thus be less

then one, which coincides with the requirement of applicability of hydrodynamics.

Hence, in this regime both hydrodynamics and kinetic theory should be valid and

thus could be directly related to one-another.

The fundamental variable in kinetic theory is the phase space one-particle distri-

1They preserves angles, but not sizes.
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bution function:

f(t,x,p) ∼ dN

dxdp
, (1.26)

of on-shell, pµpµ = m2 , constituents that could be treated in the quasi-classical limit

under the aforementioned assumptions. Its evolution is controlled by the Boltzmann

equation, [72]:

pµ∂µf = −C[f ] , (1.27)

where C[f ] is the so-called collision term that describes the constituents’ interactions

at the microscopic scale. Straight from definition (1.26) follows the formula for energy-

momentum tensor [66].

T µν =

∫
dχ pµpνf(x, p) , (1.28)

where we used the following notation:∫
dχ ≡ d4p

(2π)3
δ(pµpµ −m2)2θ(p0). (1.29)

Similarly to the case of hydrodynamics, it is common to separate ideal (equilibrium)

and viscous (out-of-equilibrium) contributions:

f(x, p) = f0

(
uµ(x) pµ

T (x)

)
[1 + δf(x, p)] , (1.30)

where δf should be a small correction to f0.

Viscous correction, δf , is defined by the requirement of matching the energy-

momentum tensor in the hydrodynamic and kinetic theory approaches, which is re-

quired by conservation laws. Thus, from the comparison of equations (1.28) and

(2.58) to (1.21) and (1.22), one obtains:

πµν = ∆µν
αβ

∫
dχ pαpβf0(x, p)δf(x, p), Π = −1

3
∆αβ

∫
dχ pαpβf0(x, p)δf(x, p).

(1.31)

It is worth mentioning that equations (1.31) are not enough to uniquely constrain the

dependence of δf on momentum. It was shown that various microscopic model lead

to different prescriptions of the viscous correction [73]. The quadratic (second power

in momentum) ansatz is the most commonly used in hydrodynamical calculations, see
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Section 2.4, but further studies of the viscous correction dependence on momentum

are necessary to reduce the related to it systematic uncertainty.

The correspondence between the kinetic theory and fluid dynamics can also be

observed in the following way: it is possible to derive the laws of hydrodynamic

evolution from the Boltzmann equation. To do it, one has to evaluate n = 0, 1, 2

moments of the latter, see equation (1.27):∫
dχ pµ1 pµ2 . . . pµn pµ∂µf = −

∫
dχpµ1 pµ2 . . . pµnC. (1.32)

Zeroth order moment1 will reproduce hydrodynamical equation for charge conser-

vation2: ∫
dχpµ∂µf = ∂µ

∫
dχpµf = ∂µj

µ = 0, (1.33)

where jµ would be the corresponding, for example baryon, charge current.

First order moment will be equivalent to the energy-momentum conservation equa-

tion (1.21):

∂µT
µν =

∫
dχ pν pµ∂µf = −

∫
dχpν C = 0 , (1.34)

where the last equality holds due to the Lorentz covariance.

Finally, the second order moment will correspond to the MIS equations [74]. To

write those explicitly one would need to expand the viscous correction in low momen-

tum region, [75, 76]:

δf(xµ, pµ) = c+ pαcα + pαpβcαβ , (1.35)

provide expression for the collision term, C, which would also define the ideal distribu-

tion function f0(x, p). Derivations of MIS equations are available for various models,

i.e. the massless particle limit of Boltzmann statistics. Kinetic theory also allows to

calculate the values of transport coefficients as it has direct access to the model at

the microscopic level, i.e. through the collision term, C.

Interestingly, MIS equations obtained from Boltzmann equation, (1.32), and from

the generalized form of the second law of thermodynamics, (1.23), differ [77]. They

1Both sides of equation (1.27) are directly integrated over dχ.
2
∫
dχ C = 0 should be satisfied in this case.
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will, however, coincide if one recalls that they were both derived under the assumption

of small deviations from equilibrium and gradient "power counting" should be used

for proper comparison [78]. Importantly, both approaches will accurately reproduce

NS equations in the limit of long wavelengths with no super-luminal modes, which

was the main motivation of using the higher order expansion in gradients.

Note that the Boltzmann equation could be obtained in the weakly coupled limit

from the Yang-Mills theory at finite temperature [79, 80, 81, 82, 83] in the Hard

Thermal Loop approximation [84, 85, 86, 87, 88]. In addition to this fact, there are

indications that kinetic theory might be the first order in gradients approximation

of a more general quantum gravity field theory [89] and thus it is missing higher

order corrections. For example, calculation of transport coefficients in the strongly

coupled N = 4 SYM theory using AdS duality signals that kinetic theory approach

does not capture the entire dynamics [90, 91, 92, 93].1 Thus, hydrodynamics obtained

using higher order gradient terms is one of the equally reliable approaches to studying

strongly interacting systems.

1.2 QCD plasma in HIC

So far, we discussed theoretical frameworks that proved to be successful in exploring

various aspects of QCD. We mentioned that experimentally strong interactions are

studied in hadron collisions. The QCD phenomenon that recently captured the atten-

tion of the scientific community is QGP, as due to the latest technological advance-

ments physical conditions necessary for its creation were reproduced in the laboratory.

Yet technical limitations do not allow to observe QGP directly. The strong indirect

evidence of QGP formation in HIC is based on the capability of hydrodynamics to

describe experimental results in the so-called large collision systems, such as lead-

lead (A-A). We will discuss this topic and the related fluid dynamics framework in

details in Chapter 2. In Chapters 3, 4, and 5, we will utilize the same hydrodynamic

1In some sense this is not surprising, as kinetic theory should be applied to quasi-particle excitations,

which one can show are absent in this regime.
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approach to the so-called small collision systems, and, specifically, proton-lead (p-A),

in order to study whether it is applicable in this case. If this is true, it would attest

that QGP is produced in small collision systems as well as it was shown before for

the large ones.

It is important to dispel the impression that hydrodynamics could be applied

ubiquitously. It is not the case. Moreover, certain aspects of the fluid dynamics

framework applicability for the description of HIC still need to be clarified. For

example, it is challenging to theoretically explain the duration of the QGP formation

process (∼ 1− 10 fm), which is consistent with the time scale (∼ 0.1− 1 fm) required

by hydrodynamic models to successfully describe experimental data. For the sake

of completeness, in Section 1.2.1, we review a framework of QGP creation in HIC,

which is called "bottom-up" thermalization. Although, it provides a parametrically

larger estimate of the formation time, one believes it accurately captures the essence

of the phenomenon. Specifically, it offers an easy way to illustrate how a dense gluon

layer gets formed in the vicinity of the collision and how the collective behavior gets

established, which is valuable in order to qualitatively understand why hydrodynamics

could be applicable in hadron collisions.

In Section 1.2.2, we provide a schematic overview of the theory of Color-Glass Con-

densate (CGC) that studies early stages of the HIC. During this times hydrodynamics

cannot be applicable. And, indeed, CGC does not describe thermalization. For that

reason, there are two possible courses of action. First, one can utilize CGC to specify

the initial conditions of the hydrodynamics stage of HIC evolution, which we do in

details in Section 2.2. In this case, one assumes that, although one currently does not

understand how in details, the process of QGP formation takes place and the matter

density profile in thee early stage of fluid evolution can be well approximated with the

prescription coming from the CGC theory. Second, one supposes that experimental

data on hadron collisions can be described without hydrodynamics [94, 95, 96]. This

approach is based on the expectation that matter density will not be high enough to

form QGP in small systems (and peripheral collisions of large systems, see Section
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2.1). Indeed, early experimental results [97] indirectly confirm this conjecture – we

will discuss this question and how the recent small collision systems data allows to

reevaluate the conclusions on the applicability of fluid dynamics in this case in Chap-

ter 4. Thus, it is important to discuss at least qualitatively the theory of CGC before

moving to the main part of this work, where we will be describing HIC only in the

framework of fluid dynamics.

1.2.1 Bottom-up thermalization

In HIC experiments nuclei collide at very high energies. While at the partonic scale

(∼ 10−3 fm) nuclei consist of quarks and gluons, at the nucleonic scale (∼ 1 fm) one

is able to discern only protons and neutrons. Those interact indistinguishably from

the perspective of strong interactions1. Thus, one usually talks about "nucleons" as

the only type of the nuclei’s "building blocks".

Figure 1.10: The bands are x times the unpolarized parton distributions f(x). They

were obtained in the NNLO NNPDF3.0 global analysis [98] at the scales µ2 = 10GeV2

(left) and µ2 = 104GeV2 (right), with αs(M2
Z) = 0, 118. Figures from [98].

Experiments on Deep Inelastic Scattering (DIS) show that at high energies a cloud
1Influence of other forces on nuclear matter evolution in hadron collisions is considerably smaller.
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of virtual quarks and gluons is observed inside protons. In Fig. 1.10, one can see de-

pendence of the Parton Distribution Function (PDF), f(x, µ2), describing probability

to observe some quark/gluon constituent inside a proton. x is the fraction of the total

proton’s longitudinal momentum that this constituent carries. µ is the energy scale

at which the proton is probed. According to the estimates of the CMS collaboration,

the typical value of x for proton’s constituents at the LHC energies is 10−4 [99]. From

Fig. 1.10 (a), one can conclude that even at the energies well below those typical for

the LHC, µ ∼ 103 GeV, the proton’s content is dominated by the soft gluons, x� 1.

This trend becomes even more pronounced at higher energies, see Fig. 1.10 (b). Thus,

one expects to observe a tremendous amount of soft gluons in HIC. Quantitatively

this effect is described with the CGC model, which we will discuss in the next section.

The process of the bottom-up thermalization unfolds as follows, see Fig. 1.11. Soft

gluons start expanding into vacuum reducing their density to the extent that they

could be treated non-perturbatively as a gas of individual particles. It is instructive

to see what happens in the plane that is orthogonal to the beamline and is passing

through its origin, which coincides with the collision point.1 Soon the only gluons

to be observed there will be those with very small longitudinal momentum, because

the rest will leave the plane. However, they can still have relatively high transverse

momentum, of the order that they had inside the nuclei before those collided.

The system will thermalize only once the magnitudes of the longitudinal and trans-

verse momenta of its constituents become equal. This can happen due to multiple

interactions. Initially, the processes of elastic collisions and emissions of very soft

gluons, which are shown in the lower part of Fig. 1.11 (a), are the main channels of

the momentum isotropization.2 As more of these very soft gluons are produced, the

medium becomes denser. This increases the rate of relatively rare bremsstrahlung

processes, see the lower part of Fig. 1.11 (b). Those lead to significant energy loss

and as result the medium reaches a thermalized state, see Fig. 1.11 (c).3

1This is the so-called mid-rapidity region. See Section 2.3.1 for the precise definition.
2The circular (red) area highlights the already equilibrated part of matter.
3We do not discuss here plasma instabilities, which are also believed to contribute to the process and
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(a) (b) (c)

thermalized

equilibrium

Figure 1.11: Consecutive stages of the bottom-up thermalization. Figure from [100].

The top row of pictures describes gluons’ distribution in momentum space. The

horizontal axis is aligned with the beamline. The vertical one represents any spatial

direction that is orthogonal to it, as the dynamics at the origin is assumed to be

rotationally invariant for the purpose of the discussion. The lower row of illustrations

depicts the main types of the collision processes that bring the system to equilibrium.

Although this framework is believed to correctly capture the physical mechanisms

that take place in the early stage of HIC, it is puzzling why the thermalization time

calculated this way is rather big ∼ 2.5 fm [101]. If collective motion underlies the

HIC phenomena, one expects QGP to be formed much faster. The majority of the

hydrodynamical models that reasonably describe experimental data assume that the

fireball expansions starts no later than ∼ 1 fm [102, 103, 104, 105, 106]. In this way

the estimate of the thermalization time of ∼ 0.3 fm in AdS/CFT seems to be more

appropriate [107]. Ultimately, this raises questions of whether our understanding of

the early HIC phase could be improved and whether there are alternative explanations

of the observed experimental data.

thus are being actively studied.
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1.2.2 Color Glass Condensate and Glasma

The separation of the regions of applicability of perturbative methods into only two,

hard and soft energy/momentum exchange processes, is too restrictive. It was found

that in a certain kinematic limit there emerges also a semi-hard scale. Historically,

this Regge-Gribov QCD regime despite its seeming perturbative form did not provide

computational advantage when used for describing strongly interacting medium [108].

It was another, Bjorken QCD limit that gave interpretable insight into the physics

inside a proton. We will use Deep Inelastic Scattering (DIS) process of scattering

electron off a hadron to illustrate both regimes, see Fig. 1.12.

k
k’

P

θ

q





X

Figure 1.12: DIS of electron off a hadron. Figure from [95]. Initial momenta of

particles are respectively kµ and P µ. Rest frame energy of the collision is
√
s =

‖k − P‖. Virtual photon exchange momentum, qµ, is space-like. For that reason one

uses Q2 ≡ −q2 > 0. X denotes hadronic final products of the collision.

The following relation of kinematic Lorentz invariants holds in DIS processes:

xy =
Q2

s
, (1.36)

where x is the fraction of the longitudinal momentum of the parton that is interacting

with the electron by the means of a virtual photon; Q2 is their squared momentum

exchange; s is the squared energy of the collision in the center of mass frame; y is the

ratio of the photon to electron energy in the proton rest frame, which is instructive

to fix for further discussion.

The Bjorken limit corresponds to the fixed values of variables x and Q, and
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s → ∞. At these conditions the results of the electron’s probing of the hadron’s

content would look like the latter is constructed of several hard scattering centers

(valence quarks grouped together in nucleons), while the rest of the volume would

seem dilute (populated with small x gluons and sea quark pairs).1 The perturbative

and non-perturbative regimes are separated by scale Q and parton density evolution

with respect to it is described with the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) equations [109, 110, 111] see Fig. 1.13.

Figure 1.13: Graphical representation of different regimes of QCD on the example

of DIS. Figure from [112]. Gray rectangular region corresponds to the deeply non-

perturbative regime, which currently can be studied only using lattice QCD. Color

circles denote hard scattering centers in Bjorken and Regge-Gribov regimes. In the

former case they are valence quarks, and in the latter – gluon color charge lumps.

The Regge-Gribov limit corresponds to the fixed value of variable Q, while x→ 0

and s → ∞. Its study became possible with the advancement of experimental tech-

niques, when collision energies became high enough to ensure that Q ≥ 1GeV. Evo-

lution in the x variable is described by the Balitsky-Fadin-Kuraev-Lipatov (BFKL)

1An easy way to understand this is to recall that, due to the Lorentz time dilation, valence quarks

interact with the electron on a much shorter time scale than the typical one for the interaction

between each other.
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renormalization group equation [113, 114, 115]. It is a stochastic equation that in-

cludes description of the occupation numbers’ dynamics with respect to the change of

x due to the gluon splitting, recombination, and non-locality of the emission vertex.

The latter mechanism gets activated when the transverse momentum, kT, of an emit-

ting gluon gets shared between the produced constituents. It can be modeled with a

diffusion process, which explains the probabilistic nature of the BFKL equation.

BFKL is a particular case of the Fisher-Kolmogorov-Petrovsky-Piscounov reaction-

diffusion class of equations [116, 117]. Those have a characteristic solution, which

describes propagation of a dynamically created density saturation front without dis-

tortions. In the case of BFKL this effect would correspond to the scaling of the

so-called saturation momentum, Qs:

Q2
s(Y ) ' Q2

0e
λsY , (1.37)

where Y ≡ ln(1/x), λs ∼ αs, and Q0 is some arbitrary non-perturbative scale, which

should be greater than ΛQCD. Equation (1.37) marks the boarder of the saturation

region, in which hadronic matter is in the CGC state, see Fig. 1.13.

The physics of this regime could be described in the following way. As the number

of gluons grows with x → 0, see Fig. 1.10, at some point their density reaches the

critical value where it saturates, because the processes of emission and recombination

start to occur at the same rate, see Fig. 1.14 (a). In this state QCD is described with

two effective degrees of freedom: classical Yang-Mills fields, Aµ, and their "sources"

represented with the color charge density, ρ. Actually, both entities are fundamentally

gluon fields separated by the value of the longitudinal momentum, which is usually

measured with respect to the hadron’s one, (1.36). Thus, they can undergo transition

from one "state" into another. This evolution of the color charge density is described

with the Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner (JIMWLK)

renormalization group equation [118, 119, 120].1

1In the spirit of any other renormalization group equation, JIMWLK liberates the physical color

charge density variable from the the dependence on the unphysical separation scale quantity Λ0 =

xP , see Fig. 1.14 (b).
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(a)

(b)

Figure 1.14: Panel (a): Processes of gluon emission and recombination. Solid line

represents time evolution of the (color source) gluon that carries large momentum

fraction, x. Curly lines illustrate dynamics of soft gluons, which have small x val-

ues. They can undergo emission from the color source, splitting, and recombination.

Figure from [121]. Panel (b): Illustration of the nature of the JIMWLK equation.

Gluons, depending on the value of their longitudinal momentum, k, are split into two

types: fields and sources. If k < Λ0 gluon is considered to represent "fields", oth-

erwise – "sources". Longitudinal momentum of gluons can not exceed the hadron’s

total value, P . Figure from [95].

The name CGC originates from the properties of its constituents. Color sources’

interactions are considerably slowed down due to the special relativity effects and

their positions are stochastically distributed from event to event. These properties

resemble the non-crystalline amorphous solid structure of glass. At the same time

soft gluon fields have large occupation number of O(1/αs). This value corresponds to

the maximum above which the theory would be unstable in the s→∞ limit. Hence

the "condensate" part of the CGC name – saturation of gluons (bosons) reminds one

of the Bose-Einstein condensate.

In HIC one talks about creation of "Glasma" that is described within the CGC

framework. Nuclei consist of randomly distributed (gluon lumps) that are coherent in

the transverse plane on distance of ∼ 1/Qs. Soft gluon fields, which due to saturation

effects occupy low transverse momenta values and thus have characteristic scale of

k⊥ ∼ Qs, can be described using strong classical fields. The last property provides

the opportunity to describe a seemingly non-perturbative system with perturbative
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methods. The reason is that saturation effects suppress all quantum effects: occupa-

tion numbers are so high that stochastic creation or annihilation of another degree of

freedom does not alternate the dynamics of the system. Extended in the longitudinal

direction strong color field regions are called QCD strings, see Fig. 1.15 (a).

(a) (b)

Figure 1.15: HIC of a large A-A system within the CGC framework. Panel (a):

Formation of color flux tubes. Panel (b): Gluon fields’ dynamics in the leading order.

Figures from [122].

One can calculate the gluon dynamics within the CGC framework, see Fig. 1.15

(b), and subsequently hadronize produced partons into particles. This was recently

done for the case of p-A collisions1 [130]. Authors were able to explain the order

of magnitude value of the experimentally measured elliptic flow, which is usually

considered as an argument in favor of the QGP creation and applicability of hy-

drodynamics.2 However, there are several reasons to believe that hydrodynamical

model is still a viable candidate for the proper HIC evolution description. First, it

describes quantitatively at a higher level of accuracy a larger number of experimental

observables. Second, CGC saturation assumption holds only during the initial stage,

τ ∼ 1/Qs, of the HIC evolution. This is the reason that one expects that glasma

could provide an accurate description of the initial conditions but later should be

1This one of many works suggesting that collective signals in small systems are caused by initial-state

correlations, see, for example [123, 124, 125, 126, 127, 128, 129].
2See Section 2.2 for details.
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evolved using effective theory model, such as hydrodynamics [131, 132].1 Third, as

one can see in Fig. 1.15 (a), glasma initial conditions assume boost invariance in the

longitudinal direction. Effectively this makes the system 2-dimensional. While this

approximation is believed to be accurate enough for the consideration of large A-A

systems and their observables around the beamline origin, one expects that smaller

p-A systems will need a proper 3-dimensional description. Although the work in this

direction is under way at McGill, there is currently no realistic 3-dimensional model

of p-A collisions based on the CGC approach.2

1.3 Summary and outline of thesis

In this chapter we provided an overview of the current state of knowledge of the

physics of strong interactions. In Section 1.1, we described the developed theoretical

methods and their domains of applicability. In Section 1.2.2, we qualitatively dis-

cussed the theory describing the dynamics of QCD degrees of freedom in the early

stage of nuclei collisions. We mentioned that from the theoretical perspective the ex-

act mechanism of thermalization is currently not entirely clear, although we outlined

what microscopical processes contribute to it in Section 1.2.1. However, the ability of

the hydrodynamical paradigm to describe the experimental results of HIC collisions

strongly suggests that QGP is formed in these systems, see Chapter 2.

Recent measurements from collisions of protons and deuterons with heavy nuclei

reveal that high multiplicity events display features that are strikingly similar to those

previously seen in large HIC systems [134, 135, 136, 137, 138]. This raises the question

of whether these small systems also behave hydrodynamically, whether the physics

1Glasma initial conditions are constructed from classical fields, which do not include thermaliza-

tion mechanisms. Thus, similarly to the bottom-up framework, it is challenging to explain fast

thermalization within the CGC framework.
2The closest to it is the idea of slicing 2-dimensional glasma initial conditions at several points in

longitudinal direction using solutions of JIMWLK equation [133]. However, in this approach there

is no physical interaction between the slices at different longitudinal distances, which is expected to

be important in small systems.
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governing the two systems is different and the similarity in observables is merely a

coincidence, or whether the data from heavy-ion collisions have been misinterpreted.

Various explanations for the observed correlations in these small systems have been

proposed, but a definitive answer is not yet available. In this work we perform 3+1D

event-by-event viscous hydrodynamic calculations of p-Pb collisions at 5.02 TeV in

order to determine whether existing data is consistent with a fluid medium, and

whether new measurements could be devised in order to provide a definitive resolution

to the question of the correct description of the system.

Our work is of exploratory nature and aims to make general conclusions on the

applicability of fluid dynamics in small collision systems. There is still a number of

open questions in the field, including the mechanism of QGP formation, the treatment

of sub-nucleonic degrees of freedom, the calculation from first principles of the viscous

correction to particle distribution, the accurate evaluation of transport coefficients,

that can affect the results of hydrodynamic calculation. For that reason we use

a robust model, including all the relevant effects such as quantum fluctuations at

nucleonic level, shear and bulk viscosities, longitudinal asymmetry of the collision

geometry, and vary its parameters in broad physically reasonable ranges to get a

good idea of their relative contributions to various experimental observables. Thus,

even though our understanding of the theory (at microscopic level) could be improved,

we can still answer the main and very general question (at macroscopic level): can

hydrodynamics describe signs of collective behavior in small systems?

Our discussion will follow a historical path. In Chapter 2, we will discuss the

hydrodynamical paradigm of HIC and the way it got established. We will describe all

stages of the HIC system dynamics starting from the propagation of nuclei towards

each other and finishing with the free streaming of the created in the collision parti-

cles towards the collider’s detectors. We will show how the frameworks of studying

QCD that we discussed in Section 1.1 are used to describe all these evolution phases.

Our main focus will be directed towards the introduction of the "conventional" flow

observables that are considered to be the evidences of collective behavior in large
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(A-A) systems.

In Chapter 3, we will discuss our first attempt to apply the hydrodynamic paradigm

to small (p-A) systems [139]. We will introduce a robust fluid dynamics model that

included all the physical features that were considered relevant at time of the ap-

pearance of the first detailed study of the high multiplicity p-Pb collisions at 5.02

TeV [140] that motivated this work. Specifically, it includes quantum fluctuations at

nucleonic level, anisotropy of the system in the longitudinal direction, shear viscos-

ity that is known to have a considerable effect on collective behavior. We will show

that the model was able to qualitatively describe all conventional flow observables

in p-Pb collisions. Moreover, it was able to explain similarity of the triangular flow

in small (p-Pb) and large (Pb-Pb) systems that was considered to be challenging for

hydrodynamics [140]. We will explore the parameter space of our model to assess

its capabilities to describe experimental data, its robustness, and to identify further

ways towards its improvement.

In Chapter 4, we will use another approach towards testing hydrodynamics ap-

plicability to small systems. It was developed and applied for the same reasons for

the case of large systems [141] and its advantage is that it gives the means of testing

fluid dynamics falsifiability [142] independent of its particular implementation. This

test deals with the study of the rn(paT, p
b
T) observable. We suggested to study it in

small systems and, using the model described in Chapter 3, made a prediction of its

behavior in p-Pb collisions [139] that was later confirmed [143]. We also discuss our

discovery that the rn(paT, p
b
T) observable can be used as a probe of estimating the size

of quantum fluctuations in the early QGP.

In Chapter 5, we introduce to our model two new features: bulk viscosity and

fluctuations of matter density in longitudinal direction. These, improvements were

dictated by the necessity to describe the recent p-Pb experimental data [143] and to

assess the effects of bulk viscosity, which appeared to be important when describing

large systems [144]. We show that they help to further improve the agreement of our

model’s calculations with p-Pb data and support the generality of the conclusions that
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we made based on the analysis of the results that were obtained using the model’s

implementation discussed in Chapter 3.

Finally, in Chapter 6, we summarize all our findings, make a conclusion on the

applicability of hydrodynamics to the description of small systems, and propose di-

rections of future research.
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Heavy ion collisions in the hydrodynamical paradigm

38
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In this chapter we will discuss how theories described previously apply in the case

of HIC. We will start with a more technical recount of the collision stages. For that we

will need to introduce definitions of physical coordinates and observables that allow

to transcribe qualitative intuitions into quantitative analysis.

2.1 HIC in a nutshell

At colliders nuclei are accelerated to ultra-relativistic velocities, v. Those are less

than one ten thousandth of a percent smaller than the absolute maximum limit for

moving matter, which is the speed of light, c. Lorentz factor corresponding to these

velocities is of the order of1:

γ =
1√

1− v2

c2

∼ 102 − 103.2 (2.1)

This leads to a considerable contraction of the nuclei sizes along the direction of their

movement in the laboratory reference frame. Thus, a typical nucleus, whose shape

in its own reference frame could be well approximated with a sphere, is observed as

a "pancake" of matter with its dimensions being of the order of 10 fm and 0.1 fm (or

smaller) in the transverse and longitudinal directions respectively, see Fig. 2.1.

To observe the collision dynamics, nuclei are headed in opposite directions along

the beam axis, z. Impact parameter vector, b, stretched between the nuclei centers

defines the orientation of axis x and thus of the reaction plane x−z, and the transverse

plane x − y. The smaller its length, b, the larger will be the region impacted in the

(inelastic) collision3.

Nuclei therefore move towards each other along axis z almost at the speed of light.

They interact strongly when passing through each other. This happens at the time
1In this chapter, we mostly discuss early HIC experiments in which QGP formation was discovered.

Those were carried out at lower energies than those currently available, but high enough to observe

the phenomenon. Thus, we will use a low limit (threshold) estimate of the γ factor and other

kinematic variables in the discussion below.
2The lower estimate corresponds to RHIC energies of

√
s ∼ 102 GeV per nucleon pair, the higher one

is typical for LHC experiments with
√
s ∼ 103 GeV.

3This might provide some intuition on why b is called the "impact parameter".
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Figure 2.1: Experimental setup of nuclei collisions demonstrated on the example of a

Au-Au system. Figure from [145].

scale of ∼ 0.1 fm/c1. Then they proceed with their movement along axis z and play

no further role in the dynamics of the system that was created in the collision. They

leave behind a thin, but dense, almond shape layer of (soft) low energy gluons. Energy

of these gluons will be eventually converted into the particle multiplicity, which grows

monotonically with the increase of the collision overlap area in the transverse plane2.

Precisely, as we discussed in Section 1.2.1, soft partons that were created in the

collision of the passing through each other nuclei thermalize into QGP, which under-

goes subsequent hydrodynamical expansion, see Fig. 2.2. Thermalization of the left

behind gluon layer happens so quickly that the formed QGP fireball at the beginning

of its evolution has the almond-like collision geometry shape, Fig. 2.2 (b).3 Once
1This estimate is based on the following assumptions: the size of the nuclei is ∼ 10 fm, the Lorentz

γ factor is ∼ 102, and the nuclei velocities approximately equal the speed of light.
2 In this section, we provide an overview of the framework that proved to be successful in describing

HIC evolution of large A-A systems [146]. Later in this work we will be applying it to small p-

A systems. It might seem that the notion of the non-trivial collision overlap area, which will be

important for the further discussion, is not applicable for the p-A case: one expects it to be always

circular due to the nearly round shape of the proton and the much larger radius of the lead nucleus.

We will address this misconception in Section 2.2.2, where we will show that quantum fluctuations

in the initial conditions allow to extend the logic applied for the description of large A-A systems

to the small p-A ones. However, we will right away mention that the distance between the nuclei

centers is not an appropriate measure of the collision impact, if one wants to apply it to systems of

all sizes. One can instead utilize for that purpose collision’s multiplicity, which we do further.
3Thermalization happens at the time scale of ∼ 1 fm/c, while the lead nucleus size is ∼ 10 fm.



2.1 HIC in a nutshell 41

created, QGP medium starts its expansion into vacuum. The tremendous pressure

(∼ 30GeV/ fm3 [147]) in the center of the fireball drops to the zero vacuum value at

its periphery. The border of the QGP system is very roughly elliptical. Thus, pres-

sure drop will be more rapid in the direction of axis x than axis y. Pressure gradients

drive the magnitude of the medium’s local velocity1 [148]. It, in turn, defines the

preferred direction of the particle thermal emission from the fireball, which is affected

by the special relativity effects. Thus, one expects that the particle momentum dis-

tribution will peak in the direction of the x axis and will gradually decrease when

rotating towards the y axis, Fig. 2.2 (c). Indeed, this is what is observed in the HIC

experiments, which register particle distributions in the transverse plane [149].

Figure 2.2: Subsequent phases of the almond shape gluon layer dynamics: (a) QGP

fireball was formed (thermalized) and is plotted in the early stage of its expansion

alongside the nuclei that are quickly receding the place of the collision; (b) trans-

verse plane cross-section of the just thermalized into QGP gluon layer, arrows corre-

spond to the direction of the hydrodynamical pressure gradients; (c) transverse plane

cross-section of the momentum distribution of particles created by the cooling down

expanding QGP fireball. Figure from [150].

This characteristic property of the transverse particle momentum distribution is

1It can also be seen if one explicitly writes out the spatial dimensions’ part of equation (1.20):

Dui = ∇iP/(ε+ P ), where D ≡ uµ∂µ.
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not the only evidence supporting the hypothesis of the QGP formation in HIC. How-

ever, it will be the central one in this work, because it allows one to indirectly study

properties of the QGP medium using Fourier analysis. We will discuss qualitative

intuition behind this study later in the section and will introduce strict mathematical

definitions in Chapter 3. Currently we will mention that this effect is referred to as

anisotropic flow [151].

2.1.1 Evidence of QGP formation

As we explained in Chapter 1, HIC happen so fast that current technological methods

do not allow to directly observe the processes taking place in these experiments. Thus,

one has to use indirect indications to confirm that QGP is formed in the collisions

[152]. We will list them below for an overview and will provide accurate mathematical

definitions in the coming sections. In this work, we group these evidences into three

categories: flow effects, energy loss, and other experimental observables.

To the first category we refer: the anisotropic flow, which reveals the presence of

the collective motion by analyzing one-particle momentum distributions; the mass

ordering, which stems from the fact that all particle species emitted by the QGP

medium have equal velocities, but different momentum distributions and thus flow

coefficients; the ridge effect that describes how QGP defines the structure of the long

range two-particle correlations, and which we will discuss in details in Chapter 4.

Energy loss phenomena relate to the fact that if QGP is created in HIC then

particles traversing through this medium will transmit part of their energy to it [153].

Consequences of this effect can be observed in the suppression of high energy particle

yields and excessive for this collision energy production of lighter, compared to the

charm and bottom quarks, strange quarks. This "jet quenching" mechanism is studied

by measuring the nuclear modification factor:

RAA =
NAA

Ncoll Npp
.

It equals the ratio of the total particle yield in the A-A, NAA, and p-p, Npp, systems
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scaled by the number of (binary1) nucleon-nucleon collisions, Ncoll, taking place in the

A-A case. The idea behind this calculation is to evaluate the effect of QGP formation

on particle production. If no medium effects were present in A-A collisions, RAA would

be identically one (up to isospin effects that can be seen when one compares PDFs of

a proton and a large nucleus). The particle yield would be equal to that created in a

linear superposition of p-p collisions, while QGP is not expected to be formed in this

case [154]. Similarly, one could investigate the effects of the medium creation on the

two-particle production subject to the local (momentum, charge) conservation laws

in back-to-back jets [155] which we will also discuss in Chapter 4.

To give an example of the other experimental techniques, we will mention Hanbury-

Brown-Twis (HBT) interferometry [156]. Developed for astrophysical applications,

this method is based on the observation that two-particle emissions from various

points of an extended source are correlated. This technique was initially applied to

assess the size of extra terrestrial objects. However, it was later successfully utilized to

extract the dimensions of QGP fireballs [157, 158]. Again, the fact that this method

works proves that the emission of particles in HIC does not take place independently

in various spatial points thus suggesting presence of collective dynamics [159, 160]

which can be attempted to be described hydrodynamically.

2.1.2 Phases of HIC

In the previous section we listed arguments that support the hypothesis of QGP

formation in HIC. In this section we will describe the paradigm of the stages of a HIC

with QGP evolution being one of them. We will follow illustrations in Fig. 2.3 from

left to right.

Before the collision happens, nuclei are headed towards each other. Blue arrows

in the first illustration of Fig. 2.3 indicate the directions of their motion. Nuclei have

the shape of "pancakes" due to Lorentz contraction. Similarly, special relativity time

dilation effect slows down all physical processes inside nuclei by at least two orders of

magnitude, see Section 1.2.2. This explains why the colored spots that represent the
1See Section 2.2.1 for details, specifically equation (2.9).
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Figure 2.3: Stages of a HIC as observed in the lab/detector frame. Figure from [161].

See text for explanations.

hard scatterers’ configuration do not move within the nuclei, while the nuclei cover

the distance separating them along axis z.

The next "initial fluctuation" stage’s snapshot represents the moment when nuclei

start interacting strongly while they are passing through each other. The black arrows

denote high energy particles created in hard collisions, while the wave line represents

soft and hard electro-magnetic particle emission. Both processes could be described

using perturbative techniques. One of the biggest challenges in the theory of HIC

is the description of the initial conditions stage. This and the next stage of the

matter evolution has to deal with the physics of dynamical phase transitions, which

is historically the most difficult to describe. Thus, we will discuss the initial conditions

modeling in details in Section 2.2. We point out that it is highly desirable to obtain

constraints on these models from experimental data, which we did in Section 4.6.

In the next diagram one can see the dense gluon layer (in gray) that is left be-

hind by the receding nuclei, whose velocities are again designated with blue arrows.

Strongly and electro-magnetically interacting particles have to travel through this

dense medium, while it goes through the quick (∼ 0.1− 1 fm) thermalization phase.

Description of the pre-equilibrium stage constitutes another challenge. It has been

analyzed with perturbative (both pQCD [162] and AdS/CFT [163])1, kinetic, and

hydrodynamic methods, as in this transition region all of them are valid subject to

1AdS/CFT approach allows to describe non-perturbative CFT dynamics using classical gravity, which

can be treated perturbatively. See Section 1.1.3 and references therein.
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certain constrains, discussed in Chapter 1. Considerable progress has been achieved,

but the current state of research suggests that the effect of the out-of-equilibrium

dynamics is moderate on the flow observables [164, 165].

Thermalization: in this stage the system has (nearly) equilibrated to form ultra-

relativistic fluid. QGP, unlike pure gluon medium, can emit particles in the electro-

magnetic channel. These particles traverse QGP fireball alongside the earlier created

hard counterparts, which is also indicated in the figure. Both types of the afore-

mentioned particles, which are represented with solid and wavy lines, can escape the

QGP medium. The hard particles can do it, if they were created next to the edge

of the fireball with an energy considerably exceeding that of the surrounding matter

constituents, which will allow them to penetrate the layer of strongly-interacting en-

vironment on their way out and still stand out in the energy-momentum distribution

spectrum with respect to the rest of the yield in order to be detected. The electro-

magnetic ones – because the QGP fireball is optically thin due to the considerable

smallness of the electric coupling constant, αe ∼ 10−2. In this way both types of

produced particles can help in the studies of the processes taking place in the QGP

medium. The former particles are used in the "jet quenching" analysis that we dis-

cussed before. The latter are the main subject of the research field, which is called

"electro-magnetic probes". Specifically, electro-magnetic observables can be used as

a "thermometer" of the QGP fireball core, as they do not exchange energy with the

medium after their emission. The analysis of electro-magnetic probes in HIC with

hydrodynamics in large repeats the approach that we use in this work for studying

hadron flow in Chapter 3. The main difference is in the framework utilized for the

description of particle creation. For example, in case of photons one needs to use

models of thermal emission from QGP plasma such as AMY1 [166]. We will not be

discussing this area of research in more details in this work, because the main focus

of this thesis is whether QGP is formed in small collision systems. However, we refer

the interested reader to a publication on this topic, which the author of this work

1Instead of the Cooper-Frye method that is utilized for hadron emission, see Section 2.4.
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also co-authored [167].

Hydrodynamic expansion will last for about 10 fm/c. This is the longest phase of

the created in HIC matter evolution, during which the medium undergoes substantial

transformations. Its study constitutes the main focus of this thesis. Expanding hydro-

dynamically, the QGP fireball will be increasing its volume, and thus will necessarily

be cooling down due to energy conservation. For the same, reason the peripheral

regions of the QGP fireball will have lower temperature, and thus will be the first

to go through the phase transition and to emit particles. One can see this process

of hadronization in Fig. 2.3. Quarks are in free state in the hotter center of the

QGP medium. While at the border, they combine into duplets or triplets forming

mesons or hadrons. Graphically confinement is represented with solid lines that en-

circle groups of colored dots that denote quarks. This hadronization process will be

modeled within the Cooper-Frye framework [168, 169].

The strongly-interacting phase of QGP evolution is over at this point in time as

all degrees of hadronic freedom "froze out"1 (formed particles). However, there is one

more stage of HIC dynamics – "final state interactions" – that needs to be consid-

ered as it affects the experimentally observed particle distribution. Specifically, after

freeze-out particles collide and change their direction. In this work we used UrQMD

model to model this stage of HIC [170, 171]. Predating the detailed description, we

found out that the final state effects do not considerably modify the flow coefficients

in the case of small systems. The total number of produced particles appeared to be

too dilute in p-A collisions. Our calculations show that less than one percent of the

yield undergoes a final state collision.

In the next sections we will describe all these stages quantitatively. However,

at the qualitative level, we can already conclude that for the goal of this work the

most important stages of the matter evolution are the initial conditions and the

hydrodynamic expansion. They contribute the most to the values of the physical

1To be precise, there are two types of freeze-out: chemical (where the particle numbers do not change)

and kinetic (where the distribution function of particle yield does not change). We will discuss this

difference in more details in Section 4.4.
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observables that serve to be the evidences of the QGP creation. For that reason, we

need to primarily focus on them when modeling HIC in small systems.

2.2 Initial conditions for hydrodynamics

In Section 1.2.2, we discussed first principles approach to the studies of the initial

stage of hadron collisions. There we mentioned that the mechanics of early matter

thermalization is not precisely known, although it is schematically clear as we shown

in Section 1.2.1. In this section, we will discuss the topic of the initial conditions

modeling assuming that QGP is formed at a time scale of ∼ 0.1 − 1 fm. We will

do it by following its historical development path. The first collision systems to be

considered were those consisting of identical spherically shaped nuclei, such as Au-Au,

which are shown in Fig. 2.4.

b
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Figure 2.4: Au-Au HIC. Figures from [172]. Impact parameter value b = 7 fm, see also

Fig. 2.1. Dashed contours correspond to the perpendicular projection of the passing

nuclei to the event plane, x − y. Red line on the left panel indicates the boarder

between the QGP fireball and the vacuum. Length of the arrows corresponds to the

magnitude of the local pressure gradients. Colors of the ellipses on the right panel

indicate the magnitude of the nuclear density from the lowest value (in purple) at the

boarder to the highest one (in red) next to the origin.
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As we discussed in Section 2.1.2, collision geometry of the initial conditions leads to

the almond-shape energy density profile, see left panel of Fig. 2.4. It creates pressure

gradients that accelerate matter and eventually lead to its anisotropic momentum

distribution at the time when it reaches the detector.

To quantify the degree of the initial conditions’ asymmetry, it was suggested to

introduce a variable that was later called (standard) eccentricity, [173]:

εstd ≡
∫
dr ρ(r) (y2 − x2)∫
dr ρ(r) (x2 + y2)

, (2.2)

where ρ(r) can be either the energy or the entropy density distribution of the QGP

fireball in coordinate space at the time of the collision.

Similarly, an observable describing the anisotropy of the final state particle distri-

bution was defined, [174]:

v2 ≡
∫
dp dN

dp
(p2
y − p2

x)∫
dp dN

dp
(p2
x + p2

y)
, (2.3)

where N is the number of particles carrying momentum p. It is usually referred to

as "flow"1. The ratio of flow to eccentricity is called hydrodynamic response – it

measures to which extent QGP evolution modifies the matter anisotropy in HIC.

We note that, unlike "flow", eccentricity cannot be measured experimentally. In-

deed, according to (2.2), one needs a model of the initial energy density distribution to

assess its value. One of the first being used was the Optical Glauber Model, described

in the next section.

2.2.1 Optical Glauber Model

It is challenging to experimentally probe energy density distribution inside a nucleus.

To assess it, one assumes that it follows the charge density one. The latter was mea-

sured experimentally by scattering electron off hadrons. Woods-Saxon parametriza-

tion describes it well:

ρ(r) =
ρ0

1 + exp
(
r−R
a

) , (2.4)

1We note here that v2 is the "standard" definition of flow that was later replaced with more generalized

and sophisticated ones. See Section 3.2 and specifically equations (3.6), (3.7) for definitions of vn(pT),

v̄n. See also Section 4.2.1 and equations (4.4), (4.5) for definitions of vn{2}(pT), v̄n{2}.
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where R is the effective nucleus radius, and a is the width of the transition region

between hadronic matter and vacuum. Examples of Wood-Saxon distribution for Au

and Cu nuclei are plotted in Fig. 2.5.

Figure 2.5: Wood-Saxon potential, which describes forces applied on a nucleon inside

a nucleus.

The Optical Glauber Model describes the distribution of nuclear density in the

transverse plane. The longitudinal dynamics of a symmetric A-A collision next to

the lab frame origin can be described with the boost invariant Bjorken solution [175].

Thus, one can use a constant energy density longitudinal profile in this case. For an

asymmetric p-A system this prescription will not be appropriate and we will discuss

this question in Section 3.1.

In a nutshell, the Optical Glauber Model is based on the idea that the initial

conditions profile at a certain point of the overlap region that is formed by the nuclei

perpendicular projections onto the transverse plane should correspond to the amount

of hadronic matter passing through it, see Fig. 2.6.

The model operates with the notion of "thickness functions", TA/B:

TA(~s) =

∫
ρ̂A(~s, zA)dzA, TB(~s−~b) =

∫
ρ̂B(~s−~b, zB)dzB, (2.5)

where ρ̂A/B stands for the nucleon probability density per unit volume inside the

respective nucleus that is normalized to unity. The number of nucleons of nucleus

A/B that are being observed at coordinate ~s equals to the flux tube value T at this
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Figure 2.6: Longitudinal (a) and transverse (b) cross-sections of a HIC. Figures from

[176]. For convenience, nuclei are referred to as a target (A) and a projectile (B). b

is the impact parameter vector. Arbitrary point in the overlap region is denoted with

vector s.

spatial point. Thus, the probability density of a nucleon-nucleon collision at ~s, as well

as the amount of deposited energy, is proportional to the product:

TA(~s)TB(~s−~b)d2~s, (2.6)

where d2~s is the differential area in the transverse plane. The total probability per

unit area of a given nucleon in A to interact with any counterpart in B will then be

equal to the value of the "thickness function":

TAB(~b) =

∫
TA(~s)TB(~s−~b)d2~s. (2.7)

It can be interpreted as the effective overlap area of the described above nucleon-

nucleon event. Multiplied by the cross-section of a certain process, σNNprocess, it will

yield the probability of a collision in the corresponding channel. Nucleons can interact

elastically and inelastically. In the Glauber model, the former collisions are not

considered, because their contribution to the total energy deposition is negligible

compared to that of the latter. Thus, the probability of n nucleon-nucleon collisions
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at given impact parameter b is equal to:

P (n,~b) =

AB
n

[TAB(~b)σNN
inel

]n [
1− TAB(~b)σNN

inel

]AB−n
, (2.8)

where A/B denotes the number of nucleons in the respective nucleus, and σNNinel is

the experimentally measured inelastic cross-section. The total number of the relevant

nucleon-nucleon collisions is:

Nbn(~b) =
AB∑
n=1

nP (n,~b) = AB TAB(~b)σNN
inel. (2.9)

Another useful quantity is the number of wounded nucleons:

Nwn(~b) = A

∫
TA(~s)

(
1− [1− TB(~s−~b)σNN

inel]
B
)
d2~s

+ B

∫
TB(~s−~b)

(
1− [1− TA(~s)σNN

inel]
A
)
d2~s, (2.10)

which corresponds to the total number of nucleons that underwent at least one colli-

sion [177, 178].

The energy deposition scheme that follows the distribution of wounded nucleons

provides a good description of the HIC initial conditions. This profile describes lower-

energy gluon background that leads to the formation of the QGP fireball. Hard

binary collisions have a different mechanism of energy loss. Their profile merely

superimposes higher-energy spots in the initial energy distribution. Thus, although

a linear combination of both prescriptions can be used:

ε(x, y,~b) = (1− α)Nwn(x, y,~b) + αNbn(x, y,~b), (2.11)

the value of the parameter α does not exceed 10% [179]. By setting α to zero, we

effectively exclude it from the list of the model’s free parameters. This prescription

is called "wounded" Glauber model.

Our choice is motivated by the following consideration. The goal of this work is to

answer the principal question of whether QGP is formed in small collision systems.

If we succeed in constructing a hydrodynamical model that includes all fundamental
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physical mechanisms of QGP formation in HIC and captures general experimental

trends, we will achieve our goal. Future work could then be directed towards improv-

ing the agreement between the model’s calculation results and experimental data. At

that stage inclusion of phenomena that contribute to the fine structure of experimen-

tal trends would be important.

However, keeping in mind the overfitting problem in statistics [180] the increase

of the model’s complexity should be done cautiously. For example, introduction

of sub-nucleonic interactions proved to be beneficial for describing flow data [181].

Because their description is based on the experimentally confirmed advancements

of CGC1 research, fitting of the corresponding model’s parameters can lead to the

physically meaningful results. However, in this thesis, we work at the nucleon level2,

as the physical effects characteristic to this energy scale contribute the most to the

effect of QGP formation. Thus, we exclude all phenomenological parameters that

play sub-leading role in the process. They, indeed, can improve the agreement with

experimental data but at the expense of affecting the generality of the obtained results

due to the excess of fitting parameters.

2.2.2 Monte-Carlo Glauber Model

Working at the nucleon level, one can improve the Optical Glauber Model by sta-

tistically sampling individual constituents from both nuclei. The Monte-Carlo (MC)

Glauber Model deals with individual nucleons that on average reproduce the Woods-

Saxon distribution. Those travel along the z-axis at the same speed when observed

in the center of mass frame. And one assumes that the nucleons’ velocities are not

affected by the collisions. Constituents coming from different nuclei interact in case

the distance between the orthogonal projections of their centers onto the transverse

1See Section 1.2.2 for the discussion of the CGC model.
2It is worth mentioning that there is currently no unified approach that describes both large A-A and

small p-A systems using fluctuations at the nucleonic level [182, 183]. For that reason we mostly

focus on small systems.
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plane is less than:

d =

√
σNN

inel

π
. (2.12)

The difference between the Optical and MC-Glauber models is due to the non-

commuting property of the averaging operation. To illustrate it, we cite here formulae

of the A-B nuclear system cross-section for MC-Glauber, [177]:

σAB =

∫
d2~b

∫
d2~sA1 · · · d2~sAATA(~sA1) · · ·TA(~sAA)×∫
d2~sB1 · · · d2~sBBTB(~sB1) · · ·TB(~sBB)×{

1−
A∏
i=1

B∏
j=1

[1− σ̂(~b− ~sAi + ~sBj)]

}
, (2.13)

where
∫
d2~sσ̂(~s) = σNN

inel. In the optical limit it reduces to:

σAB =

∫
d2~b

{
1−

[
1− TAB(~b)σNN

inel

]AB}
. (2.14)

In this approximation, individual nucleons "see" the approaching nucleus as a smooth

density. Formulae (2.13) and (2.14) are equivalent when σNN
inel is small. Optical ap-

proximation misses all the fluctuation terms, which proved to be important when

describing HIC. Specifically, large value of the flow observable that was measured in

Au-Au experiments was considered to be an indication of QGP formation [184]. Simi-

lar in magnitude final particle anisotropy was observed in Cu-Cu systems, see Fig. 2.7

(a). However, it was puzzling that if both results are of hydrodynamic origin then

what explains the difference between the values of hydro response, see Fig. 2.7 (b). It

was shown that this discrepancy was due to the disregard of quantum fluctuations in

the initial state. To take them into account, one needs to generalize the definition of

eccentricity, see (2.15) and (3.11). With that, the results of hydro response evaluation

in both HIC systems agree, see Fig. 2.7 (c).

An illustration of the difference between the Optical- and MC- Glauber Models and

the importance of fluctuations in HIC is shown in Fig. 2.8. In the former approach,

the system has axial symmetry, as one can deduce from observing the contours of the

nuclei transverse projections onto the reaction plane (RP). In MC-Glauber Model, the
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Figure 2.7: (a) Flow coefficients of Au-Au and Cu-Cu systems at collision energies of
√
s = 62.4 and 200GeV [185, 186]. (b) Ratio of final particle to initial energy density

anisotropies. This is the standard definition of hydro response, which relies on the

Optical Glauber Model. (c) Hydro response defined based on the systems’ partici-

pants. This definition is in the spirit of the MC-Glauber Model. It reveals scaling

for all systems/energies and this way supports the conjecture of the hydrodynamical

origin of the response. Figures from [185].

system does not necessarily have axial symmetry. Initial energy density anisotropy is

set to be "symmetric" (diagonal) with respect to the new coordinate system, which
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is called participant plane (PP). Specifically, the following conditions should hold:∫
dr ε(r)x =

∫
dr ε(r) y = 0. (2.15)

The mentioned discrepancy in the results steamed from the difference in the defini-

tions of eccentricity. This highlights the importance of the proper choice of observable

in order to arrive at a meaningful physical conclusion. It also indicates the key role

that fluctuations play in HIC. We will return to the discussion of the generalized

definition of eccentricity later in Section 3.3. However, one can already conclude from

Fig. 2.8 that quantum fluctuations of initial conditions create higher order harmonics

response in azimuthal angle.1

Figure 2.8: Illustration of the axial symmetry breaking in an A-A system that can

be captured by the MC-Glauber, but not the Optical-Glauber Model. Figure from

[188].

2.2.3 MC-KLN Model

We will describe here another well known model of initial conditions – MC-KLN [179].

Its main advantage is that, by using intuitions of saturation and color freeze-out
1Similar observations of the final particle momentum anisotropy in seemingly symmetric Au-Au

collisions lead to the discovery of the triangular flow. It served to be another convincing evidence

of the QGP creation in large collision systems [187].
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coming from the CGC model, it provides a description of sub-nucleonic fluctuations.

At the same time, it faces challenges with explaining experimental results of the

triangular flow [189]. Its extension to small systems has also not yet been developed.

However, we discuss this prescription for two reasons. First, to keep our discussion

of the HIC models complete, as we want to compare the widely used approaches in

Section 2.2.5. Second, to illustrate that modeling of initial conditions is an evolving

field and a unified prescription for HIC systems is currently not available.

As we discussed in Section 1.2.2, in the Regge-Gribov regime semi-hard processes

cross-sections become comparable with spatial dimensions of hadrons. This allows to

assess the number of gluons in the initial state using kT -factorization formula, [190]:

dN

d2~xTdy
=

4π2Nc

N2
c − 1

∫
d2pT

p2
T

∫
d2kTαs(Q

2)φA(x+,k
2
T,xT)φB(x−, (pT − kT)2,xT),

(2.16)

where

x± = pT e
± y√

s , Q2 = max(k2
T, (pT − kT)2). (2.17)

y and pT are correspondingly rapidity and transverse momentum of the produced

gluon. The following prescription for the unintegrated gluon distribution, φ, is used:

φ(x,k2
T,xT) =


κ(N2

c−1)
4π3Ncαs(Q2

s)
Q2
s

Q2
s+Λ2

QCD
, kT ≤ Qs,

κ(N2
c−1)

4π3Ncαs(Q2
s)

Q2
s

k2T+Λ2
QCD

, kT > Qs,
(2.18)

It was motivated by the simplified assumption that it should resemble perturba-

tive distribution behavior, ∼ 1/k2
T . This form differs from the one obtained using

McLerran-Venugopalan model, which predicts logarithmic suppression, ∼ ln(Q2
s/k

2
T ),

and was used in the IP-Glasma model. Similarly, a perturbative form was chosen for

the gluon density distribution1:

xf(x,Q2) = K ln

(
Q2 + Λ2

QCD

Λ2
QCD

)
x−λ(1− x)n, (2.19)

where parameters K,λ, n are used to control the saturation scale behavior for various

collision systems.
1 It is related to the unintegrated counterpart in the following way: xfA(x,Q2) =∫ Q2

d2kT
∫
d2~x⊥φA(x,~k

2

T , ~x⊥).
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Finally, the spatial dependence of saturation scale, Qs, in the transverse plane is

determined by solving equation:

Q2
s(x,xT) =

4π2Nc

(N2
c − 1)

αs(Q
2
s)xf(x,Q2

s)Twn(xT), (2.20)

where Twn(xT) describes local participants density, which is obtained using the MC-

Glauber procedure [191].

2.2.4 IP-Glasma Model

In this section we will describe at the quantitative level1 one of the most advanced

implementations of the CGC inspired initial conditions – IP-Glasma [131, 192]. In

addition to the description of CGC within the classical McLerran-Venugopalan frame-

work [193] it includes the impact parameter2 dependence of the saturation scale, which

is based on the application of the IP-Sat model3 [194, 195]. This allows to describe

experimental data on multiplicity distributions in p-p collisions [196] which confirms

that IP-Glasma properly reproduces general microscopic properties of the initial HIC

phase.

The idea behind the IP-Sat model is that processes involving scattering of a particle

in an excited state4 can be treated within a dipole formation framework. A real photon

would pass the proton’s saturated gluon cloud without interaction, as it does not have

any color charge. However, a virtual one, γ∗, can split into a quark-antiquark pair

(dipole), and then its constituents can undergo elastic scattering off the proton (they

have color charge), see Fig. 2.9 (a).

The dipole differential cross-section:

dσqq̄

d2~b
= 2

[
1− exp

(
− π2

2Nc

r2αs(Q
2)xf(x,Q2)T (b)

)]
(2.21)

depends on the dipole size, r; the energy scale of the collision, Q; the gluon density

inside the proton, xf(x,Q2); the strong coupling constant, αs(Q); and the proton
1See Section 1.2.2 for a qualitative overview.
2With respect to the color source (not the nuclei) centers.
3Hence the name IP-Glasma.
4They are called diffractive collisions.
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γ
*

γ
*

z

1-z

r

p p

(a)
(b)

Figure 2.9: Panel (a): Schematic representation of the virtual gluon scattering on

hadron by the means of forming a quark–anti-quark dipole. p, γ∗ denote proton,

virtual photon paths respectively. r is the dipole’s size. Panel (b): Dependence of the

differential dipole cross-section, σqq̄ on the impact parameter, b, for fixed values of

the dipole size, r, and carried momentum fraction, x, see kinematic equation (1.36).

Figures from [195].

thickness function, T (b). The ansatzes for the gluon density and thickness functions

can be tuned to fit the experimental data on inclusive and diffractive electron-proton

DIS by HERA [197]. Specifically, one uses:

T (b) =
1

2πBp

exp

(
− b2

2Bp

)
, xf(x,Q2

0) = Apx
−λp(1− x)5.6, (2.22)

where Ap, Bp, λp are constants, and gluon density is evolved to arbitrary scale,

Q ≡
√

1/r2 +Q2
0, using DGLAP equations.

One can see in Fig. 2.9 (b), that the obtained differential cross-section at first

rapidly increases with the decreasing value of the impact parameter, b, but then

saturates. Thus, the IP-Sat model correctly captures the physics of the process: the

effect of the proton’s field on the dipole grows inversely proportional to the distance

between them, but hits a plateau as the gluon density can not exceed the saturation
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scale. The size of the plateau can be assessed from the equation:

dσqq̄

d2~b
= 1, (2.23)

which at given values of Q, x, b is satisfied at a certain value of the dipole size, rd.

The value of the saturation scale is then:

Qs(Q, x, b) =

√
2

rd(Q, x, b)
, (2.24)

which is used in the IP-Glasma model.

The prescription of the initial conditions is then rather straightforward. As in

all other models, it starts with the described in Section 2.2.2 MC-Glauber sampling

of nucleons in the transverse plane using Woods-Saxon distribution. Then for every

spatial position in the transverse plane, r⊥, the saturation scale, Qs, is determined as

a sum over all nucleons:

Q2
s(Q, x, r⊥) =

∑
i

[
Qi
s(Q, x, r

i
T − biT)

]2
, (2.25)

where riT is the position of the nucleon center, i. The reason behind it is that satu-

ration scale is proportional to the color density per unit area:

Q2
s(Q, x, rT) = Cgg

2µ2(Q, x, rT), (2.26)

where the constant Cg is chosen to match the final particle multiplicity after the hydro

evolution; typical value of x can be estimated for the fit of 〈pT 〉(s)/
√
s to experimental

data, [99].1

Once the color charge density distributions in participating nuclei is determined,

one samples ρ(xT) in every event from the Gaussian distribution in transverse plane

subject to the following correlation condition:

〈ρa(xT)ρb(yT)〉 = δabδ2(xT − yT)g2µ2(xT), (2.27)

where a/b = 1, . . . 8 are color indices.
1For a r⊥ dependent estimate of x, see [131, 192].
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It is possible to show that the color field energy momentum tensor at early times

can be described at leading order with the classical Yang-Mills (YM) equations, [198]:

[Dµ, F
µν ] = Jν . (2.28)

Thus, one uses the color charge samples as initial conditions for the external currents:

Jµ = δµ±ρA
B
(x∓,xT), (2.29)

where x± ≡ (x0 ± x3)/
√

2 are the light-cone observables.

The solver of these equations is currently implemented only in a 2+1D case [131,

192]. Thus, one neglects any longitudinal dynamics. This is done to takes advantage

of the simplifications that originate from the boost invariance assumption, such as

light speed and "zero width" of the colliding nuclei, and absence of gradients in the

longitudinal direction. By solving YM equations in time, one can calculate the color

fields and thus their energy-momentum tensor. The latter can be matched to the

hydrodynamic. This is how the IP-Glasma model of initial conditions works.

It is worth reminding that currently there is no initial conditions model that can

describe subnucleonic fluctuations in asymmetric systems, see Section 1.2.2. For that

reason one cannot use MC-KLN or IP-Glasma approaches described in Sections 2.2.3

and 2.2.4 in case of the p-A system that we study in this work. This is the reason

we use an extension of the MC-Glauber model that although describes fluctuations

at nucleonic level but allows to capture the longitudinal dynamics of the collisions.

We discuss it in details in Section 3.1. In the next section we compare the discussed

above initial conditions models, which are applicable when one considers dynamics of

symmetric A-A systems next to the lab frame origin, see Section 2.1.

2.2.5 Model comparison

In Fig. 2.10 we provide graphical representation of the initial conditions for the

MC-Glauber, MC-KLN, and IP-Glasma models. It is not possible to perform one to

one comparison, because they have different characteristic values of the initial proper

time, τ . Thus, no units are provided for their energy densities.
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(a) (b) (c)

Figure 2.10: Graphical comparison of HIC initial conditions. Figures from [131]. On

panel (a): MC Glauber. On panel (b): MC KLN. On panel (c): IP-Glasma.

However, recalling that all of them start with sampling of the nucleon positions

using Woods-Saxon distribution, one can notice that the intuitive treatment of the

CGC framework within the MC-KLN model creates additional sub-nucleonic struc-

ture in the initial energy profile, and IP-Glasma refines it even further. At the same

time, the latter two approaches do not consider longitudinal evolution, which can

play an important role in small systems. For that reason, in this work we choose to

proceed with an improved MC-Glauber model, which we will introduce in Section 3.1.

One does not expect that this approach will be as accurate in describing the struc-

ture of quantum fluctuations in the initial conditions, as the CGC ones. However, it

will correctly capture their averaged size at the nucleon scale, which is important to

further constrain the initial conditions models using experimental data, as they are

still under development.

To highlight that the description at the nucleon level plays the leading role in

the models of initial conditions, we mention here the recently introduced TRENTO

framework [199]. It "effectively" unifies all of the discussed above models in one

parametrization [200]. In this approach HIC initial conditions’ density is defined as

a superposition of the nuclei ones:

S(p;SA, SB) =

(
SpA + SpB

2

) 1
p

. (2.30)
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Here SA/B are the regular MC-Glauber densities:

SA/B =
wA/B

2πσ2
exp

[
(x⊥ − x⊥A/B)2 + (y⊥ − y⊥A/B)2

2σ2

]
, (2.31)

where wA/B are the normalization pre-factors fitted to match final particle multiplic-

ity; σ is the initial conditions effective transverse scale; x⊥A/B are transverse plane

projections of nucleons in respective nuclei, A/B.

Dimensionless parameter p approximates between types of the initial conditions:

p = 1 corresponds to the wounded nucleon model; p = −0.67 – MC KLN, [201]; p = 0

– glasma-like EKRT [202]. IP-Glasma model provides a more accurate microscop-

ical description of the subnucleonic fluctuations in the initial conditions and is not

reproduced by the formulated at the nucleon level TRENTO model [203]. However,

in terms of the approximate accuracy of its phenomenological applications and the

glasma physical foundations that it is based on it remotely resembles the EKRT model

[204], which can be approximately described with the TRENTO parametrization.

With this qualitative comparison of the popular initial conditions models we con-

clude this section and turn to the detailed description of the next phase of the collisions

– hydrodynamical evolution.

2.3 Implementation of hydrodynamics

In the previous section, we discussed several approaches to the modeling of the initial

conditions’ fluctuations in the transverse plane. Similarly, anisotropies are created

in the longitudinal direction [205]. We will discuss them in more details in Chapter

5, keeping in mind that for small asymmetric systems longitudinal evolution is ex-

pected to be important. Here we will introduce kinematic variables that facilitate

HIC description along the longitudinal axis, z. They are often used when describing

the hydrodynamical evolution and the hadronization stages.

2.3.1 Kinematics

In the previous sections we saw that the discussed models of initial conditions as-

sume intricate energy distribution in the transverse plane and trivial Bjorken boost
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invariant profile in the longitudinal direction. This explains why a special choice of

coordinates is utilized when describing dynamics along the beam-line direction.

For a particle with momentum, pµ:

pµ = (E, px, py, pz) = (mT cosh y, px, py,mT sinh y) ≡ (mT cosh y,pT,mT sinh y).

(2.32)

Here E, mT, y are correspondingly energy, transverse mass, rapidity of the particle:

E =
√
m2 + p2, mT =

√
m2 + p2

x + p2
y ≡

√
m2 + p2

T, y =
1

2
ln
E + pz
E − pz

. (2.33)

It is beneficial to use rapidity variable for two reasons. First, it transforms linearly

under Lorentz boosts, which simplifies vector transformations to the lab frame and

back, ubiquitously used in HIC. Second, it provides a geometrical interpretation of

the particle’s momenta. For that the particle’s mass should be smaller compared to

its spatial momenta, which is true for the majority of the produces in HIC yield.

Specifically, if p� m:

y = − ln tan
θ

2
≡ η, (2.34)

where η is known as the particle’s pseudorapidity. Relation (2.34) is useful, because

in order to determine the particle’s rapidity, one needs to identify its species. This

procedure leads to the introduction of an irreducible systematic error. However, it is

easy to measure the particle’s pseudorapidity, as it depends only on the value of the

polar angle θ1, see Fig. 2.11.

For future reference we note here, that the used by experimentalists |η| < 2.4 and

|η| < 5 pseudorapidity cuts capture correspondingly about 90% and 99% of the entire

azimuthal region. This allows to consider in the analysis the majority of particles

that carry the memory of the underlying medium’s collective behavior.

In the similar fashion, one deals with spatial vectors, xµ. One switches to the

τ − ηs coordinates that are called the proper time and the spatial rapidity:

τ ≡
√
t2 − z2, ηs ≡

1

2
log

(
t+ z

t− z

)
. (2.35)

1The angle between the particle’s spatial momentum, p, and the direction of the beam-line, ẑ.
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Figure 2.11: Illustration of the correspondence between the particle’s rapidity η and

its polar angle θ. Figure from [206].

Figure 2.12: t− z plane view of the HIC evolution stages. Figure from [207].

Then the coordinate four-vector, xµ, can be represented in the following form:

xµ = (t, x, y, z) = (τ cosh ηs, x, y, τ sinh ηs) ≡ (τ cosh ηs,xT, τ sinh ηs). (2.36)

This explains why initial conditions are usually set at a constant τ rather than t.

Spacial surfaces with fixed values of τ represent hyperbolas in the t − z plane, see

Fig. 2.12.

2.3.2 Hydrodynamics equations

As we discussed in Section 1.1.4, in this work we will use hydrodynamical model in

the second order in gradients approximation. It is described with the following system
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of differential tensor equations, [208, 209]:


∂µT

µν = 0

τππ̇
〈µν〉 + πµν = 2η σµν − δπππµνθ + ϕ7π

〈µ
α π

ν〉α − τπππ〈µα σν〉α + λπΠΠσµν

τΠΠ̇ + Π = −ζ θ − δΠΠΠ θ + λΠππ
µνσµν ,

(2.37)

(2.38)

(2.39)

where:

T µν = ε uµuν − (P + Π) ∆µν + πµν (2.40)

is the energy-momentum tensor of the fluid with ε and P being respectively its en-

ergy density and pressure. It is worth mentioning that we chose to follow Landau

framework1 [64] in which the "ideal" part of the energy-momentum tensor has the

following form in the rest frame of a fluid cell:

T µνideal =


ε 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

 . (2.41)

Π and πµν are bulk and shear viscosity tensors. They need to be found by solving

differential equations (2.38) and (2.39). They reduce to the NS form, (1.24):

σµν ≡ ∇<µuν> =
1

2

[
∇µuν +∇νuµ − 2

3
∆µν(∇αu

α)

]
, θ = ∇µu

µ, (2.42)

in the absence of the higher order terms τπ, τΠ, δππ, ϕ7, τππ, λπΠ, δΠΠ, λΠπ, which orig-

inate from the second order gradient expansion. As discussed in Section 1.1.4, the

values of these parameters could with certainty be determined only experimentally.

However, one could calculate them in certain limits. Specifically, they were derived

from the Boltzman equation in the limit of small, but finite, masses [208].

δππ
τπ

=
4

3
, ϕ7 =

18

35

1

ε+ P
,

τππ
τπ

=
10

7
,

λπΠ

τπ
=

6

5
, (2.43)

δΠΠ

τΠ

= 1− c2
s,

λΠπ

τΠ

=
8

5

(
1

3
− c2

s

)
. (2.44)

1Alternatively one can state that fluid velocity uµ constitutes an eigenvector of the energy-momentum

tensor.
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Transport coefficients

τπ =
5 η

ε+ P
and τΠ =

ζ

15
(

1
3
− c2

s

)2
(ε+ P )

(2.45)

control how fast the viscosity tensors approach their NS limit. For that reason they

are respectively referred to as shear and bulk relaxation time.

Equations (2.37), (2.38), (2.39) together describe the laws of energy and momen-

tum conservation. In general case, they should be complemented by the baryon charge

conservation equation:

∂µj
µ
B = 0. (2.46)

However, as in this work we will be analyzing results obtained at the LHC, we can

omit consideration of equation (2.46). It would provide an insignificant correction

that would be beyond the systematic accuracy of the used model. For completeness,

we mention here that equation (2.46) plays an important role in the studies of the

QGP phase diagram. It is being investigated in the Beam Energy Scan experimental

program that is taking place at RHIC. One could find more information on how hydro-

dynamical model could be used in this case in [210]. Here we will limit our discussion

to the qualitative level. In Fig. one can find a (simplified) version of the hadron mat-

ter phase diagram, where energy regions corresponding to the experimental programs

carried out at RHIC and the LHC are graphically specified.

In the conclusion of this section, we note that finding a general analytic solution to

hydrodynamical equations is a very challenging problem even in the first-order (NS)

approximation. Actually, it is one of the seven Millennium Problems established by

The Clay Mathematics Institute of Cambridge [212]. Although several particular

analytical solutions were found recently [71] those do not have direct applications in

the studies of HIC systems. For that reason the only way to develop quantitative

understanding of the underlying QGP dynamics is to apply numerical methods.

2.3.3 Numerical methods

In this section we will review several standard numerical approaches to solving Partial

Differential Equations (PDEs). We will explain why these schemes fall short in de-
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Figure 2.13: Hadronic matter phase diagram. Figure from [211]. Solid line corre-

sponds to the first order phase transition between atomic nuclei and QGP. It ends

with the "critical point" (in yellow). The steaming from there dashed line corresponds

to the cross-over phase transition that was discovered using methods of lattice QCD.

Blue and green ellipses denote the the states in which matter is observed at RHIC

and the LHC correspondingly. One can see that in the LHC experiments matter

is created at higher temperatures compared to RHIC and with nearly zero baryon

density, which explains the reason one omits charge conservation treatment in the

analysis.

scribing QGP evolution in HIC, which is governed by equations (2.37), (2.38), (2.39).

To arrive at a proper approach one needs to take into account the specifics of the

problem. We will illustrate that this is achieved by utilizing the Kurganov-Tadmor

algorithm [213]. It was first implemented for that purpose in the numerical package

MUSIC [214] which we use in this work.

System (2.37), (2.38), (2.39) that one needs to solve is a generalization of a con-

servation law equation for current jµ, which could correspond to energy, momentum,

baryon or any other density. In order to facilitate graphical visualizations, we will
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consider dynamics of the current in one spatial dimension:

∂tρ+ ∂xj = 0, (2.47)

where ρ and j ≡ vρ are the appropriate quantity’s density and current.1 Given that

the initial density profile at time t0 is described by ρ(t0, x), the distribution at a later

time t will be given by:

ρ(t, x) = ρ(t0, x− vt). (2.48)

Basically, the solution describes propagation of the wave along the x axis at speed

v without modification of its shape. To compare different schemes visually we chose

a profile with sharp edges, see Fig. 2.14, as it closely resembles the HIC setup when

energy, densely concentrated in a small volume, quickly expands into vacuum at a

light-like velocity. We will assess suitability of the scheme depending on how well it

retains the structure.

Figure 2.14: Initial density profile with sharp edges. Figure from [215].

The standard approach to solving (2.47) would entail application of the Finite

Difference Methods (FDM), such as a forward-time centered-space (FTCS) scheme:

ρn+1
i = ρni −

v∆t

2∆x
(ρni+1 − ρni−1). (2.49)

Here n and i are indices of the FDM lattice in time and space directions. The lattice

knots are separated by distances ∆x and ∆t in the corresponding directions. One
1We assume that the propagation speed v is constant.
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can see the result of using the FTCS scheme in Fig. 2.15 (a). Its comparison to the

analytic solution reveals that although it works well in the smooth density regions,

FTCS experiences difficulties with describing the sharp edges.1 Specifically, we see

that numerically defined density values can be negative, which is non-physical.

(a) (b)

Figure 2.15: Comparison of the analytic (solid line) to the FDM methods’ (dots)

solutions. Figures from [215]. Here and later ∆x = 0.01, ∆t = 0.001, v = 0.5. On

panel (a), FTCS scheme was iteratively applied 200 times. On panel (b), Up-Wind

scheme was iteratively applied 1000 times.

First order schemes, on the contrary, are less accurate in the smooth regions,

but deal well with the sharp edges. Specifically, they maintain non-negativity of

the density profile. This effect is due to the implicit numeric viscosity, which is

introduced by this method. For example, in the (positive velocity branch of the)

Up-Wind scheme:

ρn+1
i = ρni −

v∆t

∆x
(ρni − ρni−1) ≈ ρni − v∆t∂xρ+

v∆t∆x

2
∂2
xρ. (2.50)

The last term represents numerical viscosity, which is in this case proportional to the
1We here leave behind the questions of the FTCS scheme’s stability. It can be shown with Von

Neumann analysis that it allows exponential growth of unphysical modes. However, the problem

can be fixed with applying backward-time scheme, although at the expense of the necessity to invert

lattice size matrix at every iteration.
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second spatial derivative. However, it appears to be too big to properly describe the

profile evolution, see Fig. 2.15 (b). Sharp edges diffuse at a time inverse proportional

to the product of v∆xk2, where k describes the gradient of the transition.1.

There are two conclusions that one can draw from the discussion so far. First,

numerical viscosity is essential to ensure the scheme’s stability, but needs to be small

not to alternate the solution. Second, the regions of smooth and drastic variable

change should be treated differently. One of the consequences of the latter observation

is the special minmod prescription for defining spatial derivatives:

(∂xu)ni =


0 , ρni < ρni−1, ρ

n
i+1

0 , ρni > ρni−1, ρ
n
i+1

sign(ρni+1 − ρni ) min
(
θ
|ρni+1−ρni |

∆x
,
|ρni+1−ρni−1|

2∆x
, θ
|ρni −ρni−1|

∆x

)
, otherwise,

(2.51)

where θ is a hyper-parameter that should be chosen specifically for every problem.

Fig. 2.16 illustrates that (2.51) is a better density approximator in the sharp edge

discontinuity regions and is equivalent to the (more accurate) central FDM in the

smooth regions. Minmod is an example of the "Flux Limiter" methods that are

part of the Total Variation Diminishing (TVD) schemes. They are used to suppress

propagation of unphysical modes. Mathematically the condition that they impose

can be expressed in the following form:∑
i

|ρn+1
i − ρn+1

i−1 | ≤
∑
i

|ρni − ρni−1|. (2.52)

In the continuous limit it is equivalent to the condition on
∫
|∂xρ|dx, which con-

trols that numerical implementation of the density derivative satisfies the physical

conservation laws.

Another way to implicitly impose conservation laws in numerical calculations is to

use Finite Volume Methods. By integrating (2.47), one arrives at:

ρ̄n+1
i = ρ̄ni −

v

∆x

tn+1∫
tn

dt
(
ρni+1/2 − ρni−1/2

)
, (2.53)

1The sharper the edge – the larger is the value of k
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Figure 2.16: Graphical representation of the spatial derivative defined in (2.51). Fig-

ures from [215]. Blue solid line corresponds to the analytical solution. (left panel):

Red line segments correspond to the central scheme prescription calculated in the

vicinity region of every spatial lattice knot. Problematic regions that lead to the

development of unphysical kinks are encircled. (right panel): Green line segments

are plotted in the regions where the central difference and the minmod methods eval-

uate to different results. One can see that latter method provides a more accurate

description of the analytic solution.

where ρ̄i stands for the integral of the density within the spatial limits [xi − ∆x
2
, xi +

∆x
2

], and ρi+1/2 is the density value evaluated in the mid point between xi and xi+1.

One could use mid-point approximation in the time integral, as it should not have

discontinuities typical for the spatial direction, and apply the Leap-Frog method. This

would allow to arrive at a solution without the necessity of approximating density

values at half-mid points. However, this approach suffers from the "staggered grid"

drifting (effective decoupling of integer and half-integer lattices), which prevents it

from handling density discontinuities effectively.

Thus, one has to use interpolation ansatz in the spatial direction. The following

linear form proved to be effective:

ρn(x) =
∑
j

[
ρ̄nj + (∂xρ)nj (x− xj)

]
θ(xj−1/2 < x ≤ xj+1/2), (2.54)

where (∂xρ)j is the minmod spatial derivative at xj, and θ is a support function that

equals one when the argument condition is true and zero otherwise. Importantly, this
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ansatz satisfies the conservation laws when being integrated over any symmetrical

vicinity of the point it is defined at. Now one could efficiently switch between the

"staggered" integer and half-integer grids. If one imposes that the time step must be

small enough that the discontinuities can not propagate half of the lattice spacing ∆x

during one iteration in time, one would arrive at the Nessyahu-Tadmor scheme [216].

It allows to describe sharp edges well, see Fig. 2.17 (a). However, the drawback of

the method is that it does not allow to arbitrarily reduce the size of the time step ∆t

as the value of the numerical viscosity is inverse proportional to it.

(a) (b)

Figure 2.17: Comparison of the analytic (solid line) to the numeric methods’ (dots)

solutions for Nessyahu-Tadmor (a) and Kurganov-Tadmor (b) schemes. Figures from

[215].

Kurganov-Tadmore algorithm successfully solves this problem by taking into ac-

count that in physical problems discontinuities can not propagate faster than at the

speed of sound, v. This approach also uses linear interpolation (2.54) when solving

equation (2.53) on "staggered grids". But in this method vicinities of the half-integer

knots are limited to the [xi+1/2−v∆t, xi+1/2+v∆t] regions. Time step n density values

contribute to the next iteration one, ρn+1
i , proportionally to the length of the interval

they are defined on. Now the time step size can be taken to be arbitrary small1. This

1Condition v∆t < ∆x/8 must still be satisfied.
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allows one to arrive at the following set of Ordinary Differential Equations (ODE)

that constitute the method1:

dρ̄i(t)

dt
= −

Hi+1/2(t)−Hi−1/2(t)

∆x
, (2.55)

where

Hj±1/2 =
j(xj±1/2,+, t) + j(xj±1/2,−, t)

2
−
vj±1/2(t)

2

(
ρ̄j±1/2,+(t)− ρ̄j±1/2,−(t)

)
, (2.56)

ρ̄j+1/2,+ = ρ̄j+1 −
∆x

2
(ρx)j+1, ρ̄j+1/2,− = ρ̄j +

∆x

2
(ρx)j. (2.57)

The method has small, ∼ (∆x)3, implicit numerical viscosity and deals with propa-

gation of density discontinuities well, see Fig. 2.17 (b). It was used in this work for

calculating QGP hydrodynamics.2

2.4 Hadronization of hydrodynamics

As QGP plasma will expand, its volume will grow in size and cool down. At some point

one needs to switch to kinetic theory to describe the subsequent matter evolution. To

calculate the one-particle distribution, one needs to specify the form of its correction,

see (2.58). We use the prescription specified in [73, 217], which follows the theoretical

framework of polynomial momentum expansion, (1.35):

f(xµ, pµ) = f0(xµ, pµ)(1 + δfshear(x
µ, pµ) + δfbulk(xµ, pµ)), (2.58)

f0 ≡ f0(xµ, pµ) = f0

(
uµ p

µ

T

)
=

1

exp
(uµ pµ

T

)
∓ 1

, (2.59)

δfshear(x
µ, pµ) = (1± f0)

πµνp
µpν

2 sT 3
, (2.60)

δfbulk(xµ, pµ) = −(1± f0)
Cbulk

T

[
m2

3 (uµ pµ)
−
(

1

3
− c2

s

)
(uµ p

µ)

]
Π. (2.61)

Here uµ, s, T are correspondingly the flow velocity, entropy density, temperature

of the fluid at xµ. m is the mass of the particle species under consideration. It

1Here we provide the generalized formulae of the method: velocity v can vary in space and time,

j = vρ.
2Kurganov-Tadmore ODE equations, (2.57), were solved with the second order Runge-Kutta method.
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also enters the formula of the particle’s energy, p0 =
√
m2 + p2. Prefactor Cbulk

includes summation over all particle species. Corresponding particle masses, mn, and

degeneracies, dn are also taken into account.

1

Cbulk

=
1

3T

∑
n

dnm
2
n

∫
dp

(2π)3
f0 (1± f0)

[
m2
n

3(p2 +m2
n)
−
(

1

3
− c2

s

)]
, (2.62)

where f0 also implicitly depends mn through the value of the particle’s energy, p0. In

this work, we include into consideration all know particles and resonances with masses

below 2GeV [218]. This ensures that we do not introduce any systematic error during

hadronization, as the maximum temperature of the QGP fireball in small systems is

∼ 0.5GeV, see (2.59).

We utilize Cooper-Frye framework for hadronization. It assumes that particles are

formed in the regions where QGP temperature is below some freeze-out value, TFO.

According to [168], the momentum distribution of the particle species n is:

p0dNn

dp
=

gn
(2π)3

∫
ΣTFO

f(xµ, pµ) pµ d3Σµ. (2.63)

Here ΣTFO
is the manifold of world lines of all QGP medium cells that have tempera-

ture TFO. It is usually referred to as a freeze-out surface and it is embedded into the

four dimensional time-space. d3Σµ defines the local differential normal element with

respect to this surface.

Σ = (τFO(x, y, ηs) cosh ηs, x, y, τFO(x, y, ηs) sinh ηs), (2.64)

d3Σµ = −εµνλρdΣνdΣλdΣρ, (2.65)

where εµνλρ is the antisymmetric Levi-Civita symbol, and τFO is the proper time

when matter temperature at spatial point (x, y, ηs) equals to the freeze-out value,

TFO. Cooper-Frye prescription, (2.63), resembles the framework of thermal emission

of particles from a black body. The difference is that in the former case one particle

distribution, f(xµ, pµ), has shear, (2.60), and bulk, (2.61), corrections.

Formula (2.63) looks specifically instructive in the proper time - spatial rapidity,
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τ − ηs, basis:

uµp
µ = uτpτ − uxpx − uypy − τ 2uηspηs

= uτmT cosh(y − ηs)− uxpx − uypy − τuηsmT sinh(y − ηs), (2.66)

pµd3Σµ =

[
mT

∂ (τFO sinh(y − ηs))
∂ηs

− τFOp
x∂xτFO − τFOp

y∂yτFO

]
dxdydηs , (2.67)

where mT is the "transverse mass" and y is the rapidity of the produced particle

when (2.66) is used in (2.63). One can see that the rapidity of the emitted particle

enters the formulae in a linear combination (difference) with the spatial rapidity of

the surface element it was created from. This fact illustrates why particle spectra

at mid-rapidity will be less affected by the dynamics at higher (in absolute value)

rapidities.1

However, the obtained particle distribution, (2.63), can change by the time par-

ticles reach the detector. There are two reasons for that: resonance decays and

rescatterings. We will discussion the latter effect in Section 4.4. The former source of

the distribution correction is due to the fact that some of the QGP created particles

are unstable. They will undergo subsequent decays into lighter hadrons, which in

their turn might also have finite lifetime. In this work we calculate the entire tower of

particle distribution corrections due to decays. We use a generalization to three spa-

tial dimensions of the AZHYDRO code [219, 220]. We will illustrate the calculation

procedure below.

One starts with considering particle distributions, (2.63), that corresponds to the

resonance species, R. Note, that we are interested only in those types of particles,

which decay due to strong processes. Excited states undergoing decays through the

weak channel have longer lifetimes than those needed to reach the detector. For that

reason in our analysis we can consider them as "stable".

Without loss of generality, we may assume that the resonance species R produces

particle species j. Our task is to calculate the correction that the particle species’ j
1 Note that formula (2.67) reproduces the 2-dimensional Bjorken result,

(mT cosh(y − ηs)− px∂xτFO − py∂yτFO) τfdxdydηs, when τFO does not depend on spatial ra-

pidity, i.e. when longitudinal profile is trivial.
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momentum distribution receives as a result of the decay process. Kinematic analysis

of an excitation’s splitting is easy to perform when there are only two particles in the

final state. If the resonance decays into N particles, one groups all particles into two

"effective" ones:

M =

√√√√( N∑
i=1

pµi − p
µ
j

)2

and mj, (2.68)

where mR is the mass of the resonance and mi are masses of its decay products.1

In the rest frame of the resonance, R, the absolute momentum and energy of the

particle j are:

p∗ =

√
((mR +mj)2 −M2) ((mR −mj)2 −M2)

4mR

, p0
∗ =

√
m2
j + p2

∗. (2.69)

One then performs the transformation from the rest frame of the resonance to the lab

frame. If one assumes that the decay is isotropic and integrates out the irrelevant for

the particle j kinematic variables, which include resonance and "effective" particle’s

momenta, one arrives at the following formula:

dNn

dp2
Tdy

=
mRb

4πp∗

y
(+)
R∫

y
(−)
R

dyR√
m2
jT cosh2(yj − yR)− p2

jT

m
2(+)
RT∫

m
2(−)
RT

dm2
RT√(

m
(+)
RT −mRT

)(
mRT −m(−)

RT

) dNn

dp2
RTdyR

, (2.70)

where yR and mRT are the resonance’s rapidity and transverse mass. Constrained by

conservation laws, integration limits of kinematic observables are:

y
(±)
R = yj ± ln


√
E2
∗ + p2

jT + p∗

mjT

 (2.71)

and

m
(±)
RT = mR

E∗mjT cosh(yj − yR)± pjT
√
E2
∗ + p2

jT −m2
jT cosh(yj − yR)

m2
jT cosh2(yj − yR)− p2

jT

. (2.72)

1Then one repeats the analysis iteratively until all produced particles species are considered.
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One can see that the contribution is being calculated at the level of distributions

rather than individual particles sampling. Thus, one could expect corrections aris-

ing from particle rescatterings. We checked that this effect is insignificant for all

observables that we analyzed in this work due to the low final multiplicity in small

HIC systems, see Section 4.4. Thus, we proceed to the discussion of the results of

our calculation that were obtained using the AZHYDRO framework without loss of

generality.



3
Hydrodynamics in small systems

In this chapter we specify the initial conditions model that we used and the results

that we obtained for the flow observables, which are used as conventional evidences

of the QGP formation in HIC. We compare them with experimental data to find

reasonable agreement. We also provide a prediction for the triangular flow, v̄3{4},

as a function of multiplicity in small systems. Within our model, we are able to

explain the unexpected similarity of the v̄3{2} observable magnitude in large and small

systems1. We study the origin of this result by comparing both systems’ characteristic

properties, such as hydrodynamical response, typical size, and asymmetry of the

initial profile.

3.1 Model

We model the evolution of the collision system with the 3+1D relativistic viscous

hydrodynamics solver MUSIC, [214]. In all calculations, we use the following param-

eters, which have given reasonable fits to heavy-ion data in the past: thermalization

time τ0 = 0.6 fm/c, freeze out temperature Tfreeze = 150 MeV, and equation of state

s95p-v1 [147].

For initial conditions, we use a modified Monte Carlo Glauber model, where a

contribution of entropy density is associated with each participating nucleon. The

simplest prescription is to distribute entropy in the transverse plane according to a

1This suggests that our model adequately captures the structure of the quantum fluctuations in the

initial state, as they define the system’s triangular anisotropy in the linear response approximation,

see Section 3.3.

78
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2D Gaussian centered at the location of each participant:

ρ⊥(xT) ≡ 1

2πσ2
exp

(
−|xT|2

2σ2

)
. (3.1)

The width of the transverse Gaussian σ is commonly chosen to be between 0.4 fm and

0.8 fm. We will vary the value within this range in order to study the effect of the

granularity of the initial state and the transverse length scale associated with density

fluctuations in the transverse plane.

For the distribution in spatial rapidity, one should take into account the fact that

a proton-nucleus collision is not symmetric. In particular, there are more particles

produced in the direction of the nucleus, and the asymmetry is greater in events with

a larger multiplicity, see Fig. 3.1). This can be achieved by associating an asymmetric

rapidity profile with each participant, peaked in the direction of its motion. Following

[223], we take the profile:

ρL±(ηs) ≡
(

1± ηs
ybeam

)
exp

[
−(|ηs| − η0)2

2σ2
η

θ (|ηs| − η0)

]
, (3.2)

with parameters η0 = 2.5, ση = 1.4, which proved to work well for describing exper-

imental data on large collision systems [224, 225, 226, 227]. We set the value of the

ybeam to the beam rapidity of 8.58, which corresponds to the case of the
√
s = 5.02TeV

collision energy in p-Pb experiments [222]. So right moving participants have a con-

tribution proportional to ρL+ while left moving participants have a contribution pro-

portional to ρL−. Events with more participants in one direction will then naturally

have an asymmetry.

The total initial entropy density distribution is then given as a sum over partici-

pants:

s(xT, ηs, τ = τ0) =

Npart∑
i=1

si ρ⊥(xT − xiT) ρL±(ηs). (3.3)

Here xiT is the transverse position of each participant nucleon and si is the entropy

per participant (per unit rapidity at ηs = 0). Often this is taken to be a constant.

However, this is not realistic. It implies, for example, that in the limit of a p-p system,
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Figure 3.1: Charged hadron multiplicity dNch/dη versus pseudorapidity in our cal-

culation for various centrality bins, to be compared to the data from the ATLAS

collaboration shown in Fig. 2 of [221]. From top to bottom curves correspond to

centrality bins 0-1%, 1-5%, 5-10%, 10-20%, 20-30%, 30-40%, 40-60%, 60-90%. We

do not plot experimental data in this plot, because signatures of collective behavior

were found only in the high multiplicity collisions. If one bins events according to

this – multiplicity – metrics, like it was done by the CMS collaboration for p-Pb at
√
s = 5.02TeV [222], one will find that collective effects are clearly seen when the

final yield of a collision is 150 < Nch < 280 charged hadrons. This range corresponds

to approximately half of the entire observed experimentally total final multiplicity

segment 0 < Nch < 280, but constitutes only a very small centrality region of 0− 2%,

see Table 3.1. Similarly, we note that the initial analysis of small systems (d-Au

at
√
s = 200GeV) at RHIC [97] did not find signatures of collective behavior until

after one focused on only the 0 − 5% top centrality data [137] – we will discuss this

fact in more details in Chapter 4. Thus, we conclude that one should not expect

fluid dynamics to work in peripheral collisions and that the comparison of our hydro-

dynamic model results to experimental data should be performed on a multiplicity

axis, as the conventionally used in large systems centrality binning does not allow to

accurately observe where fluid dynamics stops to provide a reasonable description of

experimental results. This is what we do later in all further figures of this work.

every collision will produce the same multiplicity. On the contrary, it is known that p-
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p collisions exhibit a wide distribution of multiplicities, with a long tail, which is well

described by a negative binomial distribution (NBD). Similarly, this basic Glauber

model implies a multiplicity distribution in a p-Pb system that is much narrower than

seen experimentally, see Fig. 3.2.

Figure 3.2: Distribution of (uncorrected) multiplicity Ntrk at |η| < 2.4 and pT > 0.4

GeV in p-Pb events from the CMS Collaboration [222] compared to the entropy dis-

tribution implied by a basic MC-Glauber model with a fixed entropy per participant

(Glauber), and the model used in this work that has been supplemented with addi-

tional negative binomial fluctuations (Glauber + NBD).

However, instead of a constant, we can sample the factor si for each participant

according to a NBD:

P (si) =
Γ(si + s0κ)(s0λ)si(s0κ)s0κ

Γ(s0κ)si!(s0λ+ s0κ)si+s0κ
. (3.4)

In this case, the mean entropy per participant is 〈si〉 = s0λ. If we choose parameters

λ = 5.1 and κ = 0.6, the scaled entropy distribution (i.e., with entropy per particle

s0 → 1) approximately fits both p-p and p-Pb data, see Fig. 3.3 and Fig. 3.2. Since the

initial entropy is approximately proportional to the final multiplicity in each event,

this will result in an approximately correct distribution of multiplicity, when scaled

by the proper factor s0. Note that it is particularly important for this work to have a

realistic description of the tail of the multiplicity distribution, since the events with

the highest multiplicity are the best candidates for a hydrodynamic description.
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Figure 3.3: Scaled charged hadron multiplicity distributions 〈Nch〉 ∗P (Nch/〈Nch〉) at

|η| < 0.5 in p-p collisions at various collision energies from the ALICE Collaboration

[228], and the CMS Collaboration [229], compared to the probability distribution of

entropy given by our model. Data are not available for the same collision energy

as the p-Pb collisions that our model is tuned to, but normalizing by 〈Nch〉 gives a

universal curve that is reproduced for a range of collision energies (KNO scaling).

Finally, in order to facilitate comparisons to experiment, in the p-Pb case we

shift from the frame representing the center of mass of an individual nucleon-nucleon

collision to the experimental lab frame, which is shifted by a rapidity of 0.465 in the

direction of the Pb beam.

With this prescription, we can generate a very large number of initial conditions

and place them into "centrality" bins according to their total entropy. By calculating

the multiplicity per unit entropy in a set of high-multiplicity events, we can then

choose s0 in (3.3) so that the measured multiplicity in the most central bin (repre-

senting a fraction 6×10−5 of events) matches the experimental value, 〈Nch〉 = 280 for

|η| < 2.4 and pT > 0.4 GeV [222]1, see Table 3.1. After this has been done, we prepare

events in the same multiplicity (entropy) bins in a Pb-Pb system, using exactly the

same model parameters, for comparison. Once a sufficient set of initial conditions

is prepared, we evolve them with hydrodynamics and calculate the distribution of

charged hadrons in each event, parameterized as:

1This is done separately for each set of parameters, since the amount of entropy produced in the

collision can vary.
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dN

dpTdηdφ
≡ 1

2π

dN

dpTdη

[
1 +

∞∑
n=1

vn(pT , η) cosn(φ−Ψn(pT , η))

]
, (3.5)

where in general vn and Ψn depend on pseudorapidity η and transverse momentum pT .

In a purely hydrodynamic picture, this single-particle distribution contains all possible

information, and observables can be calculated from appropriate event averages, as

described in the following section.
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Centrality(%) Fraction 〈Nch〉 〈Nch〉CMS 〈Ntrk〉CMS

0.00031–0.00631 0.00006 280 280 232

0.00631–0.05631 0.0005 230 236 196

0.05631–0.45631 0.004 190 195 162

0.45631–2 0.015 150 159 132

2–5 0.03 120 132 109

5–12 0.07 95 108 89

12–24 0.12 70 84 69

24–33 0.09 55 66 54

33–43 0.10 45 54 45

43–55 0.12 35 42 35

55–69 0.14 20 30 25

69–100 0.31 8 12 10

Table 3.1: Centrality bins used for the hydrodynamic calculations. The p-Pb hydro

events were selected according to the total initial entropy, in bins corresponding to

the fraction of the cross-section listed in the first column. The results can then be

compared directly to data selected according to multiplicity in bins with the same

fraction of the cross-section [222], or rebinned for comparison to other centralities

(as in Fig. 3.1). The last column lists the (uncorrected) number of tracks from the

respective CMS measurements in [222], to which we map our results when comparing

to their data. Calculations with the same cuts in entropy were then performed for

Pb-Pb events, to be compared to experimental measurements in the same multiplicity

bins.
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3.2 Comparison to experiment

The first task is to determine whether a hydrodynamic calculation, with realistic prop-

erties, can describe measured data. If so, it is confirmed as a plausible explanation. A

number of hydrodynamic calculations suggesting that certain aspects of p-A collisions

can be described with hydrodynamics are available [230, 231, 232, 233, 234, 235]. The

distinctive feature of this work is that we combine all the relevant existing data and

extend far into the high-multiplicity tail. The increasing amount of independent ob-

servables that can be described with the hydrodynamics paradigm and the absence of

an equally successful competing explanation makes the conjecture of QGP formation

in small systems even more plausible. In addition, we explore parameter space of the

hydrodynamic model, including granularity of the initial conditions and viscosity of

plasma, that has not been studied.

The simplest observables (theoretically) are single-particle measurements. For

example, one can measure the average number of charged hadrons in each bin in

pseudorapidity. We do this within our hydrodynamic framework for a number of

centralities. Results are displayed in Fig. 3.1, showing that our prescription for the

longitudinal profile is reasonable.

Next we calculate and compare to experimental data the mean transverse momen-

tum for identified particles and investigate how parameters of our model affect the

results, shown in Fig. 3.4. A smaller value of σ from (3.1) corresponds to a more

granular initial condition. For future reference we also notice here that in a small

p-A collision system, unlike in a larger A-A one, σ also significantly affects overall

transverse size of the initial fireball, see Fig. 3.15. The larger gradients in the initial

condition then result in a larger average transverse momentum, while shear viscosity

has apparently little effect1 From the above comparison it is clear that mean pT data

can be well described by a hydrodynamic calculation for high multiplicity events2 –

fluid dynamics approach is not expected to work in peripheral collisions, where energy

1This observation was also confirmed in [236].
2In Chapter 5, we will see that in order to simultaneously describe average transverse momentum

and flow observables, one needs to take into account effects of bulk viscosity.
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Figure 3.4: Average transverse momentum of identified particles in 5.02 TeV p-Pb

collisions compared to CMS data [140]. Top to bottom: protons, kaons, pions. Each

particle’s mean pT data was probed to be described with 3 sets of parameters. Thin

solid lines correspond to η/s = 0.08, σ = 0.4 fm — our base line calculation. Thick

lines were obtained by changing the value of σ to 0.8 fm, dashed of η/s to 0.

density of the system is not high enough to melt hadronic matter into QGP.

The most striking aspect of the p-Pb data, however, is the strong azimuthal de-

pendence, which can be captured by Fourier component expansion. Here we provide

an explicit definition, which stems from (3.5):

vn(pT)einΨn(pT) ≡

2π∫
0

∫
|η|<2.4

einφ dN(pT,η,φ)
dφdpTdη

dφdη

2π∫
0

∫
|η|<2.4

dN(pT,η,φ)
dφdpTdη

dφdη

. (3.6)

vn and Ψn are correspondingly called flow coefficients and angles. As we mentioned

above, in general case they depend on the values of both transverse momentum, pT,

and pseudorapidity, η. We explicitly chose to fix the latter in order to mimic the CMS

detector acceptance. If one integrates out pT dependence as well, one will obtain the

so-called integrated flow:

v̄ne
inΨ̄n ≡

2π∫
0

∫
|η|<2.4

3GeV∫
.3GeV

einφ dN(pT,η,φ)
dφdpTdη

dφdηdpT

2π∫
0

∫
|η|<2.4

3GeV∫
.3GeV

dN(pT,η,φ)
dφdpTdη

dφdηdpT

, (3.7)
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which represents the averaged particle anisotropy of the system weighted with its

yield.

In order to compare our model’s results to experimental measurements, it is ben-

eficial to calculate the following quantity:

v̄n{2}2 ≡ 1

Nevents

∑
events

v̄2
n. (3.8)

We will explain the reason in detail in Chapter 4.2.2. In a nutshell, there is an

unavoidable uncertainty related to the extraction of flow coefficients from one-particle

distribution that is relatively large, ∼ 50%. It is, however, considerably smaller,

∼ 5%, in multi-particle calculations, which are thus broadly utilized. Hence the

index {2} in (3.8), which indicates that the value of the final particle anisotropy was

assessed from the two-particle distribution.

The results of our hydrodynamic calculation for v̄2{2} and v̄3{2} are compared to

experimental data in Fig. 3.5. Viscosity has the expected effect of suppressing v̄n.

Increasing σ causes a decrease in the spatial eccentricity (due to the increase in the

system size), and therefore also has a suppressing effect.

Figure 3.5: Integrated charged hadron v̄2{2} (left panel) and v̄3{2} (right panel) in

5.02 TeV p-Pb collisions for |η| < 2.4 and pT > 0.3 GeV compared to measurements

from the CMS Collaboration [222]. Curve types correspond to the ones used in

Fig.3.4. Namely, the thin solid line corresponds to the observable’s (in this case v̄2{2})

calculation within our model with a set of parameters η/s = 0.08 and σ = 0.4 fm,

thick line — η/s = 0.08 and σ = 0.8 fm, dashed line — η/s = 0 and σ = 0.4 fm.
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It is worth noting that averaging over events in (3.8) and all the following formulae

is essential, because flow coefficients vary event-to-event. This effect is mostly due to

the quantum fluctuations pertinent to the initial conditions of HIC. For that reason

the study of flow coefficients is expected to shed light upon the physics of the initial

state. However, one can see that the viscosity of the hydrodynamic model, η/s, affects

the results of the calculation as much as a substantial smoothening of the initial

profile, described by σ, see Fig.3.5. Thus, it is hard to disentangle corresponding

individual contributions and this way to estimate the characteristic scale of quantum

fluctuations from flow coefficients alone.

An interesting feature that was noticed is that if one plots v̄3{2} from p-Pb and

Pb-Pb collisions as a function of multiplicity (i.e., comparing high-multiplicity events

in p-Pb to peripheral events in Pb-Pb with the same multiplicity), the results are

very similar [222]. It has been questioned whether this is natural (or even possible) in

a hydrodynamic picture. To answer this, we calculated v̄3{2} in both systems using

the set of parameters that reasonably fits the above observables (σ = 0.4 fm and η/s

= 0.08), and the result is shown in the left panel of Fig. 3.6. While v̄3{2} is still

slightly above the data for these parameters, we find that even in our simple model,

we see very similar values in the two systems. We will investigate this interesting

result further in the following section.

In order to study anisotropy dependence on transverse momentum and following

the same motivation that lead to (3.8), one defines differential flow observable:

vn{2}(pT) ≡

1
Nevents

∑
events

vn(pT)v̄n cosn(Ψn(pT)− Ψ̄n)√
1

Nevents

∑
events

v̄2
n

. (3.9)

See the comparison of our model’s calculation of v2{2}(pT ) to experimental data for

the highest multiplicity bin in the right panel of Fig. 3.6.

An extension of (3.8) that allows to compare calculated in our model flow coeffi-

cients to the estimates obtained from experimental four-particle correlations is also
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Figure 3.6: Left panel: integrated charged hadron v̄3{2} for the parameter set η/s

= 0.08 and σ = 0.4 fm in p-Pb compared to Pb-Pb collisions [222]. Right panel:

differential charged hadron v2{2}(pT ). For curve types and data reference see caption

of Fig. 3.5.

Figure 3.7: Left panel: integrated charged hadron v̄2{4}. For curve types see caption

of Fig. 3.5. Right panel: predicted integrated charged hadron v̄3{4} in 5.02 TeV p-Pb

collisions for σ = 0.4 fm, η/s = 0.08, |η| < 2.4 and pT > 0.3 GeV.

possible:

v̄n{4}4 = 2

(
1

Nevents

∑
events

v̄2
n

)2

−

(
1

Nevents

∑
events

v̄4
n

)
. (3.10)

Because of how the two-particle correlation is subtracted from a four-particle cor-

relation, non-flow effects that complicate the comparison between hydrodynamical

models and experimental data get typically suppressed – we will discuss it in more
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details details in Chapter 4.3.1. As a result, v̄n{4} calculations performed within mod-

els that do not assume strong collective behavior typically give a value very close to

zero, while hydrodynamic calculations typically predict a sizable value. Remarkably,

high-multiplicity p-Pb experimental data show a large value that is clearly compatible

with a hydrodynamic picture, as shown in the left panel of Fig. 3.7. To date, only

hydrodynamic model calculations have been able to reproduce this large (real) value

of v̄2{4}.

We also include a prediction for v̄3{4} in the right panel of Fig. 3.7. We do not ex-

pect it to provide an accurate quantitative description of the data, as our calculation

of v̄3{2} is systematically above the measurements. However, an experimentally ob-

served non-trivial value of v̄3{4} that our model qualitatively reproduces will provide

an additional constraint on the alternative explanations of small systems dynam-

ics, such as jet physics, as they are not expected to even qualitatively explain such

non-trivial multiplicity behavior of triangular flow.

In this section, we presented the results of one of the first parameter space ex-

plorations of a hydrodynamic framework applied to the description of the high mul-

tiplicity p-Pb collisions. We observed that our robust hydrodynamic model that

includes all the relevant effects of small hadron collision systems such as longitudinal

asymmetry of the collision geometry, the initial conditions fluctuations of the nuclear

density, and the shear viscosity of the QGP medium at least qualitatively reproduces

flow experimental data. We found out that the parameter values of σ = 0.4 fm for

the transverse fluctuations granularity and σ/s = 0.08 for the fluid shear viscosity

provide a somewhat accurate description of elliptic flow and qualitatively reproduce

the shape of the triangular flow dependence on multiplicity. We note that there is

a number of effects that lead to irreducible at the moment systematic uncertainties

in hydrodynamic modeling of hadron collision systems. Specifically, the temperature

dependence of shear viscosity, the viscous correction to particle distribution, and the

mechanism of sub-nucleonic fluctuations in the initial conditions are not known with

any degree of precision. Our analysis indicates that these effects greatly influence
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the results of hydrodynamic calculations and especially the value of the triangular

flow, which is expected to be more sensitive to the initial state nuclear density fluc-

tuations. This consideration and the fact that our hydrodynamic model provides

a simultaneous qualitative description of flow measurements, which is considered to

be a compelling argument towards the creation of QGP in large collision systems,

suggests that fluid dynamics is a plausible explanation of experimental data trends

observed in high multiplicity p-Pb collisions.
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3.3 Investigating the hydrodynamic response

It is interesting to investigate more thoroughly how flow develops, especially in or-

der to better understand the results in the left panel of Fig. 3.6, which displays a

striking similarity in triangular flow between p-Pb and Pb-Pb events with the same

multiplicity.

In hydrodynamic calculations of nucleus-nucleus collisions, the final flow is under-

stood to be a hydrodynamic response to large-scale properties of the initial density

[237]. That is, one can make a direct connection between the final triangular flow

and the "triangularity" of the initial state. This triangularity is a vector that has a

size ε3 and orientation Φ3, which can be conveniently written as the magnitude and

phase of a complex number

ε3e
i3Φ3 ≡ −

∫
r3ei3φs(x)dx∫
r3s(x)dx

, (3.11)

where r =
√
x2 + y2 + z2, φ is the polar angle in the transverse plane, and s is the

entropy density distribution.

It has been shown [238, 239] that the flow vector is approximately proportional to

the triangularity. That is, in a given centrality class, the magnitude and direction of

triangular flow in a given event follows the approximate relation

v̄3e
i3Ψ̄3 ' kε3e

i3Φ3 , (3.12)

where the coefficient k encodes all relevant information about the hydrodynamic

response (e.g., medium properties), but is independent of the initial conditions. The

relevant properties of the initial conditions, on the other hand, are encoded in the

triangularity vector.

The accuracy of this relation can be tested quantitatively by calculating the Pear-

son correlation coefficient Q3 between the left and right sides of (3.12) over a large

set of events

Q3 =

〈
v̄3ε3 cos 3(Ψ̄3 − Φ3)

〉√
〈v̄2

3〉 〈ε2
3〉

. (3.13)
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If triangular flow is perfectly predicted by the initial triangularity in every event,

then Q3 = 1. Otherwise |Q3| < 1, with larger values indicating a stronger linear

correlation.

Figure 3.8: Linear correlation Q3 between the initial triangularity vector and the final

flow vector, (3.13), as a function of multiplicity.

In Fig. 3.8 we show Q3 in various multiplicity bins for both p-Pb and Pb-Pb

collisions. The triangularity was calculated at zero spatial rapidity, and integrated

triangular flow was calculated in the same kinematic region as in the previous section:

|η| < 2.4, pT > 0.3 GeV. For the multiplicity region of interest, Q3 is large. Therefore

it is plausible to analyze p-Pb events in terms of ε3, just as in Pb-Pb collisions.

A simple expectation is that the multiplicity scales roughly with the number of

participant nucleons Npart, so that comparing p-Pb and Pb-Pb events at the same

multiplicity is also comparing systems with the same number of participants. Further,

since geometric fluctuations are typically expected to be driven by the fluctuating po-

sitions of participants within the colliding nuclei, such fluctuations should be similar

in these two systems. Since symmetry dictates that ε3 is generated entirely from

fluctuations, the natural expectation would then be that its value is similar in both

systems. If the hydro response, k, is similar in both systems, this is a natural explana-

tion for the similar values of v̄3. On the other hand, if the hydro response is different

(e.g., because of different system sizes), similar values of v̄3 would be unnatural in a

hydrodynamic system. Arguments like this have been made in, e.g. [240, 241], and

they explain why the similarity of triangular flow in p-Pb and Pb-Pb collisions was
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not trivially expected in a hydrodynamic calculation [222].

Our model suggests that the experimentally observed triangular flow similarity

phenomenon is due to the intricate interplay of the following three effects: fluctua-

tions in the initial conditions, peculiarities of the utilized events binning metrics, and

the difference of the hydrodynamic properties in systems of different sizes. The mod-

eling of the first effect in our framework is greatly impacted by the NBD of entropy per

participant. It allows the individual contributions of wounded nucleons to the initial

matter density profile to vary not only in space, like in the discussed in Section 2.2.2

MC Glauber Model, but also in magnitude. Second, particle multiplicity that is used

for events binning is an appropriate quantity to compare energies of QGP fireballs

formed in p-Pb and Pb-Pb collisions, but it creates a sense of false similarity between

the happening inside of these systems dynamics, which should be described using two

distinct regimes. Indeed, the region of 150 < Ntrk < 250 multiplicity corresponds to

central (0-2%) collisions in p-Pb and to peripheral ones (55-60%) in Pb-Pb [222]. We

will show that this leads, for example, to the difference in the characteristic sizes of

p-Pb and Pb-Pb fireballs and their hydrodynamic properties. We will now discuss

all these effects in order to show that triangular flow similarity in p-Pb and Pb-Pb

collisions is not a trivial consequence of the same initial conditions profiles and iden-

tical system evolution properties, but a profound and intricate physical phenomenon

that our framework is able to capture this way providing additional credibility to the

applicability of hydrodynamics towards describing processes in hadron collisions.

We will start by comparing p-Pb and Pb-Pb qualitatively. As we noted above,

ultra-central p-Pb and peripheral Pb-Pb collisions have similar multiplicities. In our

model, nuclei consist of multiple nucleons distributed inside of them according to

the Woods-Saxon distribution, see Fig. 2.5 and equation (2.4). For a large nucleus,

such as lead, the nucleon density is constant inside a sphere of an order of magnitude

larger size, R ∼ 5 fm, than that of the transition scale, a ∼ 0.5 fm, which describes

the distance at which the probability to find a nucleon in the "halo" (outside of the

nucleus "core", r ≤ R) is exponentially smaller. Thus, the lowest multiplicity event
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will likely correspond to the Pb-Pb collision in which a nucleon from the periphery

of one nucleus will interact with a nucleon from the periphery of another nucleus, see

the right panel of Fig. 3.9.

Figure 3.9: Examples of the lowest multiplicity collisions in the standard MC Glauber

Model for p-Pb (left panel) and Pb-Pb (right panel) systems. Circles of large radii

correspond to the transverse plane orthogonal projections of R-radius spheres plotted

around the colliding lead nuclei centers. Small circles correspond to the wounded

nucleons in each of the colliding nuclei.

An event with (slightly) higher (than the lowest) multiplicity will probably have

three participants. Most likely, one of them will be a nucleon from the periphery of

one nucleus, and the other two from either the "halo" or the edge of the "core" of the

second one, see the right panel of Fig. 3.10.

Figure 3.10: Examples of ultra-peripheral collisions in the standard MC Glauber

Model for p-Pb (left panel) and Pb-Pb (right panel) systems with multiplicities

slightly higher than that of the events shown in Fig. 3.9.
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This picture is exactly similar to what happens in low multiplicity p-Pb collisions,

except that the proton is probing the periphery of the lead nucleus, see left panels of

Fig. 3.9 and Fig. 3.10. This explains why all calculated quantities that we display

in this section have same values at nearly zero multiplicity for both p-Pb and Pb-Pb

systems, see Fig. 3.13, Fig. 3.14, and Fig. 3.15.

The trend will change once four and more participants interact in an event. In a

p-Pb collision it will correspond to the proton colliding with three lead nucleons, see

Fig. 3.11. But in the Pb-Pb case, there is another possible scenario: two nucleons

Figure 3.11: An example of ultra-peripheral collision in the standard MC Glauber

Model for p-Pb system with multiplicity slightly higher than that of the events shown

in Fig. 3.10.

Figure 3.12: Examples of ultra-peripheral collisions in the standard MC Glauber

Model for Pb-Pb system with exactly the same multiplicities as that of the event

shown in Fig. 3.11.

from one lead nucleus can interact with one (or two) nucleons from the other lead
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nucleus, see both panels of Fig. 3.12. It is quite possible that these pairs of wounded

nucleons will be set apart by some distance in the transverse collision plane, as it

is shown in the right panel of Fig. 3.12. This explains why the system size (and

the initial eccentricity) of Pb-Pb system experiences faster grows as a function of

multiplicity then the p-Pb one, see Fig. 3.15 (and Fig. 3.14): in the latter case all

nucleons are grouped around the proton center. This also explains why the p-Pb

system size saturates at ∼ 1 fm, which is the proton radius.

However, the approach described so far does not take into account NBD fluctu-

ations. They become important once the number of participants in a p-Pb collision

reaches the threshold of Npart ∼ 10. This value approximately corresponds to the

maximum number of nucleons that a proton can interact with if they are all equally

distributed inside a sphere of lead radius (in this case the proton will be crossing the

sphere through its center). If every participant is contributing the same amount of

entropy to the initial conditions, the final multiplicity is directly proportional to the

number of participants. Probability of p-Pb events with a higher multiplicity than the

one with the threshold number of participants should roughly follow Poisson distri-

bution (PD), as these events describe (considerable) deviations of the nucleon spatial

density from its average values. However, NBD fluctuations allow event’s multiplicity

with a fixed number of participants to vary event-by-event. Thus, it is also possible

that the high multiplicity p-Pb bins contain events in which the average entropy con-

tribution per participant grows faster than the average number of participants. In

order to understand which of the these effects (PD or NBD) is stronger, we show the

results of our model’s calculations in Fig. 3.13.

One can see that in line with our qualitative explanations, p-Pb and Pb-Pb curves

coincide at low multiplicities. In the region of Ntrk < 70, they demonstrate linear

correlation between the average number of participants in the event, < Npart >, and

its multiplicity, Ntrk. This means that the contribution of every participant is the

same and corresponds to the average of the NBD distribution. However, the situa-
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Figure 3.13: Average number of participants versus multiplicity.

tion changes at high multiplicity, where curves separate1. The Pb-Pb linear scaling

continues, which agrees with our qualitative explanation that at low multiplicities a

Pb-Pb collision can be represented as a superposition of several peripheral p-Pb ones.

The p-Pb curve, however, bends towards the multiplicity axis. This suggests that the

high multiplicity behavior of the curve is less likely to be determined by the growth

of the number of participants and NBD fluctuations play an important role in the

description of central p-Pb collisions. This should not be a surprise – in Fig. 3.2, we

saw that the MC Glauber Model cannot explain p-Pb probability distribution in the

high multiplicity region unless accompanied by NBD fluctuations.

Figure 3.14: Average triangularity 〈ε3〉 versus multiplicity.

Thus, we conclude that when performing the binning of central p-Pb collisions us-
1Note that the separation of p-Pb and Pb-Pb curves takes place around < Npart >≈ 10, which

supports the validity of our qualitative explanation.
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ing their multiplicity, one selects events with larger than average entropy contribution

per participant. In fact, these rare high multiplicity p-Pb events are often dominated

by one or two participants with an uncharacteristically large entropy. Since the con-

tribution from each participant is a symmetric Gaussian, despite a smaller average

number of participants, the average triangularity is smaller in p-Pb than in Pb-Pb

events at the same multiplicity, as shown in Fig. 3.14.

Therefore, in our calculation, the strikingly similar values of v̄3 in the two systems

are not in fact a trivial consequence of a similar geometry.

It should be noted that, in principle, the various scales in the system can enter

in a complicated way. Therefore, even in the case of nucleus-nucleus collisions, equa-

tion (3.12) works best when events are segregated into centrality bins (classes). The

expense of this is that the response coefficient k is allowed to depend on centrality.

Similarly for p-Pb, grouping all events together and assuming a constant value of

k results in a less obvious correlation between v̄3 and ε3 [233]. More importantly

though, p-Pb events and Pb-Pb events can have a significantly different hydrody-

namic response to the initial triangularity. So despite having a different initial spatial

anisotropy, p-Pb and Pb-Pb events can end up with very similar values of v̄3. This

is due in large part to the very different sizes of the two systems, which we show in

Fig. 3.15.

Note that the size of the p-Pb system is uncertain, and depends significantly on

the treatment of the initial state physics, with some models giving an even smaller

size than the model used here [233, 235], and some slightly larger [230]. This smaller

size results in a more forceful hydrodynamic response, and a larger ratio of v̄3/ε3
1.

1The general dependence on system size is not a trivial matter. One does not have a general rule that,

at a fixed total multiplicity or entropy, a system that is smaller initially will always have a larger (or

smaller) hydrodynamic response v̄3/ε3 in a viscous hydrodynamic calculation. Obviously, reducing

system size alone should increase pressure gradients and thus enlarge the response. However, one

has to consider it along dissipative and freeze out effects that can play a significant role. Which

effect wins out depends on the particular scales of the system in question, including transverse size

as well as viscosity and freeze out temperature.
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Figure 3.15: Mean square radius of the initial entropy density versus multiplicity.

To summarize, in this section, we discussed in details that our improved MC

Glauber model prescribes drastically different initial conditions for p-Pb and Pb-

Pb collision systems with similar multiplicity: specifically, their eccentricities and

characteristic transverse sizes. It is based on very robust and general foundations:

existence of nucleonic degrees of freedom inside nuclei and fluctuations of energy

deposition in proton-proton collisions. We emphasize that MC Glauber model is

being applied in models, such as HIJING, LEXUS, PYTHIA, UrQMD, that do not

assume formation of QGP. Thus, it is valid to state that the MC Glauber model

and our extended version of it has nothing to do with hydrodynamics. Moreover,

results of fluid dynamics calculation has challenging to predict dependence on the

parameters of the initial conditions and properties of plasma. Some of the latter,

such as equation of state and an estimate of shear viscosity, we obtained from first

principle lattice calculations and AdS/CFT theory that only partially overlap with the

subject of studies of hadron collisions. Yet it appeared that within our hydrodynamic

framework we observed intrinsic interplay of these independent models and competing

effects that led to a natural explanation of the triangular flow similarity in p-Pb and

Pb-Pb systems presented in the left panel of Fig. 3.6. This fact strongly supports the

fluid dynamics paradigm applicability to the description of high multiplicity hadron

collisions independent of their size. Further, given its nontrivial nature, this result

may well give valuable insight into medium properties and/or the initial stages of the
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collision.

3.4 Conventional flow observables in small systems

It is clear from the results of this chapter that a hydrodynamic model can in princi-

ple fit data existing at the time of this work. Specifically, the measured differential

vn{2}(pT) and integrated v̄n{2}(Ntrk) flow coefficients, which we will refer to from

here on as the conventional observables as they played instrumental role in the estab-

lishment of the hydrodynamic paradigm in HIC, see Section 2.1.1. Even the simple

model presented here, gives a reasonable description of the available measurements,

and it is clear that a more sophisticated model could likely describe them with even

more precision. Thus, the hydrodynamic picture is confirmed as plausible.

One might wonder if there exists an even more stringent test that one could per-

form to test this picture. For example, could a measurement be made that returns

a value that a hydrodynamic calculation could never reproduce, no matter what pa-

rameters, transport coefficients, and equation of state are chosen or what model of

initial condition is used?

In fact, this is indeed possible. In the following chapter, we explain how this can be

done by considering details of the full two-particle correlation matrix that are ignored

in conventional flow analyses.
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In this chapter we use another observable to test hydrodynamics applicability

to small systems. It was introduced in [141], but was so far utilized only for the

analysis of A-A collisions. There it confirmed that the region of hydrodynamics

applicability coincides with the one determined based on the conventional analysis.

The latter consists in the comparison of the flow coefficients measured experimentally

and calculated in a hydrodynamic model (we performed this conventional analysis

for p-A system in Chapter 3). The power of the new method is that it provides a

falsifiability test for hydrodynamics as a model [142]: if the value of the experimentally

measured rn observable exceeds certain range, hydro model will be eliminated as

a potential description of this result. Thus, we suggested to measure rn in small

systems, calculated its value in our model [139] and released our prediction before

the experimental data got available [143]. These results will be discussed in Section

4.3.4. We will start this chapter with the discussion of the context that motivated

the introduction of rn.

4.1 The "ridge"

In Section 2.1.1, we mentioned that one of the evidences of collective behavior in HIC

is the so-called (near-side) ridge. Below we introduce its definition and briefly discuss

relevant features of two-particle correlations.

From the results of statistical physics of dense systems, we know that by studying

correlations of a higher number of particles one can reveal principally new information

about the underlying phenomenon of interest [242]. Thus, one could potentially

benefit from studies of multi-particle distributions in HIC. We will start with two

particles and then extend the analysis to the case of multiple particles.

In HIC experiments, one can reconstruct spatial momenta of particles which reach

the detector. Those can be parametrized with three independent variables. As we dis-

cussed in Section 2.3.1, those are conventionally transverse momentum pT, azimuthal

angle φ, and pseudorapidity η. When particles are analyzed in pairs, they are usu-

ally indexed as a and b or "trigger" and "associate" – we will discuss the reason for
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this naming convention later. Thus, an arbitrary two-particle correlation function

can potentially depend on six kinematic variables. However, one cannot measure the

absolute value of azimuthal angles φa and φb. For that reason, one has access only

to the relative orientation of particles in the transverse plane, which is described by

∆φ ≡ φa − φb. Thus, an experimentally measured two-particle correlation function

depends only on the five following variables:

2-part-corr = function(∆φ, paT, η
a, pbT, η

b). (4.1)

One of the first candidates considered for the role of the "function" was particle

yield. It was directly measured in the experiment [97] and was expected to be relevant

in the studies of "jet" energy loss. High energy particles (pT ∼ 100 GeV) created in

HIC are called jets and are treated differently from the low energy ones (pT ∼ 1GeV).1

By studying how jets interact with the medium, one gains insights into the interplay

between different regimes of QCD. Particularly, as jets are part of the HIC system,

then according to the momentum conservation in the transverse plane, they are related

to a cascade of associated particles moving in the opposite azimuthal direction. This

explains the names ("trigger" and "associate") and commonly used renormalization

of the (pair) yield with the number of "jet/trigger" particles, Ntrig, see Fig. 4.2 and

Fig. 4.3.

As it is challenging to analyze and graphically represent data in more than three

dimensions, one has to choose at most two out of five variables in (4.1). For that

reason, the two-particle yield correlation is plotted as a function of:

∆η = ηa − ηb and ∆φ = φa − φb, (4.2)

while the values of transverse momenta of "trigger" and "associate" particles are fixed

1This owes to the distinction in the mechanisms of their creation, see Section 2.1.2. While the former

originate from the hard parton collisions, which can be well described with perturbative methods,

the latter are produced by the strongly interacting expanding medium, which is non-perturbative

by nature.
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to be in (relatively broad) regions1.

Typical examples of such correlation functions, in this case for Au-Au and d-Au

collision experiments at √s
NN

= 200GeV, are shown in Fig. 4.1. Transverse momenta

of particles are bounded within these ranges: 2GeV < pbT < paT and 3GeV < paT <

4GeV. Note that only the events from certain multiplicity bins (central for Au-Au

and min bias for d-Au) were used in the analysis – this fact will be important later.
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Figure 4.1: Typical shape of a two-particle correlation for a large and a small system

is shown in the left and in the right panels correspondingly. One can see that the

latter lacks the "ridge". See text for details. Figures from [97].

One can observe the three following characteristic features of the produced in HIC

pair distributions, which are also seen more distinctly in Fig. 4.3 (a):

• The near-side peak at ∆φ→ 0, ∆η → 0. As we mentioned, jets have higher

energy and momentum compared to plasma constituents. Thus, in case of a

head-on collision the latter effectively get carried away by the former towards

the original direction of the jet. This results in a pronounced narrow structure

at the distribution’s origin, which actually gets broadened. It happens because

those redirected plasma components undergo subsequent collisions with other

QGP constituents, which randomly alternate their momentum and thus spatial

orientation away form the original jet’s one.
1One can alternatively say that the original five-dimensional distribution (4.1) was inte-

grated/averaged over paT and pbT within the aforementioned momentum ranges.
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• The away-side long-range correlation at ∆φ → π. This structure again

owes its origin to (back-to-back) jets. Those can be arbitrarily directed in space

and can pass considerable amounts of momentum to the plasma constituents.

Due to momentum conservation in the transverse plane one expects to see a

structure in the direction straight opposite to jets, i.e. at ∆φ → π. It extends

to many units of (pseudo-)rapidity in both directions as jet spatial distribu-

tion, which defines emitted particles’ longitudinal rapidities, is nearly uniform.

Similarly to the case of the near-side peak, one can notice characteristic broad-

ening due to the subsequent collisions that associate particles undergo after the

moment of the interaction with the jet and before the moment of reaching the

detector.

• The near-side long-range correlation at ∆φ → 0 or the "ridge". This

structure looks similar to the away-side correlation, but manifests a different

physical phenomena – it has nothing to do with jets. It looks like a ridge

extended in many units of (pseudo-)rapidity and shows that particles moving

differently in longitudinal direction move alike in the transverse one. This strong

azimuthal correlation of particles produced in HIC is a clear evidence of the

underlying collective behavior.

The ridge is widely accepted to be of hydrodynamical origin in case of A-A col-

lisions [187, 243]. It was not initially observed in smaller systems (p-p, p-A, d-A),

which could be considered as a confirmation that QGP was not created there. In-

deed, one needs to exceed certain energy threshold, estimated to be of the order of

1GeV/ fm3, for the matter to undergo a phase transition. Higher density is easier to

achieve in systems with more participating nucleons. For reference, Au/Pb has two

orders of magnitude higher number of nucleons than proton/deuteron.

However, recent experiments with p-Pb systems at new higher energies of √s
NN

=

5.02TeV per nucleon pair by the CMS collaboration brought a novel perspective1

1As we mentioned in the comment to Fig. 4.1, centrality selection plays an important role in observing

signatures of collective behavior. Only high multiplicity (very central) p-Pb events [134] revealed
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Figure 4.2: Two-particle correlation functions for 5.02TeV p-Pb collisions system at

different multiplicities. Figures from [134]. Both particles in the pair are charged

hadrons with transverse momentum from 1GeV to 3GeV. Plot (a) represents analysis

based on low-multiplicity events (Noffline
trk < 35) and (b) – on high-multiplicity ones

(Noffline
trk ≥ 110). See Table 3.1 in Section 3.1 for more details. The near-side peaks

are truncated to have a better view of the functions’ structure outside that region.

[134]. Although they confirmed previously observed behavior of the two-particle

charged hadrons yield correlation function when multiplicity was low, see Fig. 4.2(a)

– one can find the characteristic near-side peak and away-side long correlation, but

no near-side ridge. But they also observed an appearance of a very similar to the A-A

"ridge" structure at high multiplicity, see Fig. 4.2(b).

For a one-to-one comparison of A-A and p-A systems, see Fig. 4.3. Plots represent

two-particle correlations for Pb-Pb and p-Pb in the same multiplicity window. For

Pb-Pb system this multiplicity range corresponds to peripheral collisions, while for

p-Pb system – most central. One can see that both systems exhibit similar char-

acteristic structures – particularly, presence of the near-side ridge. This observation

suggests that QGP plasma could be created in small (p-A) systems at high multiplicity

those signatures – see Section 3.3 for the discussion of the relation between centrality and multiplicity

in small systems. In Fig. 4.1, d-Au data was presented without any centrality selection (min-bias).

See [137] and [138] for multiplicity-selected analysis of d-Au collisions.
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and thus hydrodynamics could be potentially used for the description of experimental

results in this case.
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Figure 4.3: The two-particle correlation functions for (a) 2.76TeV Pb-Pb and (b)

5.02TeV p-Pb systems. Figures from [222]. Both particles in the pair are charged

hadrons with transverse momentum from 1GeV to 3GeV. Only events with (high)

multiplicity between 220 and 260 were used, see Table 3.1 in Section 3.1 for more

details. The near-side peaks are truncated to have a better view of the functions’

structure outside that region.

4.2 Azimuthal angle correlations

4.2.1 Two-particle azimuthal angle correlation function

Pair yield is not the only type of the two-particle correlation, (4.1). Depending on

the goals of the study one can use any arbitrarily function of the particles’ momenta.

One usually takes an arithmetic mean of this observable over particle pairs of certain

type that are produced in the event, for example, charged hadrons: pions, kaons,

and protons. As we saw in Section 3.2, averaging over events is also typical in this

type of analysis. Thus, Figs. 4.1, 4.2, 4.3 represent correlations of charged hadrons

and weighting is substituted with implicit averaging over charged hadron pairs in

all events. However, usage of different particle types in a pair is also common. For
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example, when one studies the effects of flow on electromagnetic observables, one

measures correlations of hadrons with photons [245],[246].

As one of the main points of interest in QGP studies is the transverse system

dynamics that describes flow, we will further mostly focus on the azimuthal angle

correlations:

Vn∆(paT, p
b
T) ≡

〈
〈ein(φa−φb)〉

〉
, (4.3)

where the internal angular bracket indicates averaging of the "integrand" over all pair

combinations of charged hadrons in an event and the external angular bracket stands

for averaging over events. In this work, we use the CMS collaboration notations and

kinematic variables’ ranges, see [222] for details.

One can observe that ηa and ηb were fixed in (4.3) – in further analysis they

take their values from the range of |∆η| > 2. There is another reason, beyond the

dimensionality reduction, to do so. As we saw in Fig. 4.3, jets dominate the two-

particle correlation function at ∆η → 0. They have different physical origin than the

flow and thus one should subtract their contribution when doing analysis of collective

behavior. One of the ways to accomplish this is to introduce wide pseudorapidity cuts,

another one is to consider multi-particle correlations – we will discuss this method

later.

We should also mention the following general features of the azimuthal angle two-

particle correlation.

First, that due to anti-symmetric nature of the integrand, expression (4.3) is real

and one could substitute all exponents in its definition with cosines.

Second, final state particle anisotropy can be defined through the two-particle

correlation, (4.3), in the following way:

v̄n{2} ≡
√
Vn∆(p̄T, p̄T), (4.4)

and

vn{2}(pT) ≡ Vn∆(pT, p̄T)√
Vn∆(p̄T, p̄T)

, (4.5)

where we chose the particles’ momenta p̄T to be in the range 0.3 < p̄T < 3.0GeV

as in the mentioned above p-Pb experiments by CMS at √s
NN

= 5.02TeV. The
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reason one does not use flow coefficients v̄n, vn(pT) defined in equations (3.6), (3.7)

is because their extraction from a single p-Pb event leads to at least 60% statistical

error. Indeed, the magnitude of the biggest (elliptical) flow component is of the order

of 10%. At the same time, the maximum event multiplicity is about Noffline
trk ≈ 300

particles, which is equivalent to the yield’s statistical error of 1/
√
Noffline

trk ≈ 6%,

which justifies the estimate provided above. To keep the discussion complete, we

notice here that there were methods developed to extract flow coefficients in every

event using unfolding analysis [247, 248, 249]. However, in order to use them, one has

to introduce additional assumptions regarding the form of the response function or

rapidity dependence of flow harmonics, which complicates the analysis and introduces

systematic errors.

Third, in equations (3.9), (3.8) we showed how vn{2}(pT), v̄n{2} could be expressed

in terms of vn(pT), v̄n. This is possible only under certain assumptions, because

the latter observables are defined through one-particle correlation, while the former

relies on two-particle correlation function, which contains more information about the

underlying dynamics.

Before moving to the discussion of the aforementioned assumptions, we here men-

tion for completeness that there is another approach to defining particle anisotropies:

the event-plane method [250]. However, it becomes less commonly used because of

its complicated dependence on the event multiplicity and thus limited usability com-

pared to the multi-particle correlation method [251]. It also reduces to the latter at

low resolution, which is the case for small (p-A) systems.

4.2.2 Theoretical aspects of flow definition

In this section we will dwell on the principal challenges of comparing theoretically

calculated and experimentally measured flow observables, and lay foundations of de-

termining irreducible limitations of the hydrodynamical paradigm.

As we mentioned, the principal difference between equations (4.4), (4.5) and (3.8),

(3.9) is that they are defined using two- and one- particle correlations respectively.

Unlike experimental set-up, which always deals with a finite yield, particle distribu-
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tions in theoretical models can be calculated with infinite resolution. However, the

fundamental limitation of hydrodynamics stems from the fact that two-particle dis-

tribution does not reduce to a product of one-particle distributions on event-to-event

basis:
dNpairs

dpadpb
=

dN

dpa

dN

dpb︸ ︷︷ ︸
flow contribution

+ δ2(pa,pb)︸ ︷︷ ︸
non-flow contribution

. (4.6)

"Flow" is a phenomenon pertinent to the collective motion taking place in QGP

plasma that is being created in HIC collisions. It can be observed if one obtains one-

particle yield distribution, which describes the effect of collective dynamics on single

particle emission. For that reason one should refer to (3.6), (3.7) as the definition of

flow. Flow’s contribution to the two-particle yield correlation function enters in the

form of a product of two single-particle distributions. This term in (4.6) describes

what would be the pair yield distribution if particles were emitted from the QGP fire-

ball independently from each other. However, besides flow there exist other physical

phenomena that affect pair yield, such as the discussed above jet induced radiation.

It is common to explicitly indicate contribution of such effects to (4.6) and refer to

them as non-flow. The latter phenomena manifest the principal difference between

definitions (4.4), (4.5) and (3.8), (3.9) and highlights that one should be particularly

accurate when comparing experimental results to theoretical calculations.

Non-flow contribution is absent by definition in any hydrodynamic calculation.

Pair distribution factorizes into a product of single-particle ones in every event:

dNpairs

dpadpb

hydro
≡ dN

dpa

dN

dpb
. (4.7)

This happens because hydrodynamic models assume that QGP radiates particles sim-

ilar to a thermally equilibrated black-body, i.e. single particle yield correlates with

the expanding fireball and not with other emissions. On one hand, this makes hydro-

dynamics an appropriate tool to describe the flow effect in QGP. On the other hand,

it introduces fundamental restrictions on the results of hydrodynamic calculations

and thus on the method’s applicability overall. Notably, we will see that, contrary to

the expectation that a model with a large enough number of parameters can describe
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any experimental data, values of certain hydrodynamic results are bounded within

certain limits regardless of their particular choice. This creates an opportunity to

perform a principle test of hydrodynamics applicability to HIC, which we will discuss

in Section 4.3.1.

Absence of non-flow in hydrodynamical approach leads to the following simplifi-

cations that were used when calculating (3.8) and (3.9):

Vn∆(paT, p
b
T)

hydro
≡ 1

Nevents

∑
events

van(paT)vbn(pbT) cosn(Ψa
n(paT)−Ψb

n(pbT)). (4.8)

In this section we discussed the difference between definitions of flow that are

constructed using one- and two-particle correlation functions. Although one would

be able to get access to the "pure" flow phenomenon by studying one-particle cor-

relation, in practice one will never be able to do it, because in every event a finite

number of particles is being created and thus direct extraction of the one-particle

yield is not possible. For that reason one has to work with two-particle correlations

that can be experimentally measured with high precision. Those contain non-flow

contributions, which one would like to subtract when studying collective motion of

QGP. We mentioned the procedure that is performed to subtract non-flow contribu-

tions that emerge due to jets – one introduces (large) rapidity cuts when measuring

two-particle azimuthal correlation, (4.3). In the next section we will go over another

general method that leads to non-flow suppression.

4.2.3 Multi-particle azimuthal angle correlation function

Flow describes collective behavior of plasma constituents and thus it is a multi-particle

effect. For that reason one expects that its relative contribution to the azimuthal

angle correlation function will grow with increasing the number of particles considered

in the analysis of every event. We will illustrate this idea by considering non-flow

contribution coming from jets. If one arbitrary chooses several charged hadrons in a

HIC collision event, all of them will carry effect of flow, because it affects all particles.

At the same time, the probability that all of the selected particles are coming from

the same jet is decreasing when one takes into account more and more particles,
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because jet affects QGP constituents only in a very narrow spherical angle around

the direction of its propagation. Based on this logic, one needs to consider multi-

particle emission rates from a HIC event in order to suppress non-flow contributions.

Below we will focus on the relevant case of particle quartets.

Similarly to the pairs case, (4.6), four-particle yield has contribution of flow and

non-flow terms, [237]:

dNquartet

dpadpbdpcdpd
= (4.9)

=
dN

dpa
dN

dpb
dN

dpc
dN

dpd︸ ︷︷ ︸
flow contribution

+
dN

dpa
dN

dpb︸ ︷︷ ︸
flow contribution

δ2(pc,pd)︸ ︷︷ ︸
non-flow contribution

+ permutations(a, b, c, d )

+
dN

dpa︸︷︷︸
flow contribution

δ3(pb,pc,pd)︸ ︷︷ ︸
non-flow contribution

+ permutations(a, b, c, d )

+ δ4(pa,pb,pc,pd)︸ ︷︷ ︸
non-flow contribution

,

where δ2(pa,pb), δ3(pa,pb,pc), δ4(pa,pb,pc,pd) describe possible non-flow contribu-

tion coming from two-, three-, and four-particle processes.

One can notice that unlike in the case of pairs, (4.6), there are terms mixing

contributions from flow and non-flow. It is desirable to subtract those for two reasons.

First, we want to extract and analyze the flow signal – this was our initial motivation

to study multi-particle correlations. Second, these terms are more endurant to the

suppression caused by the discussed above increase in the number of particles used in

every event’s analysis, because they are multiplied by flow terms that are not affected

by that change. Thus, these terms contribute to the "noise" background created

by non-flow when extracting flow from a multi-particle correlation function. This

becomes important also for statistical reasons. Inclusion of one additional particle

to the event’s analysis (i.e. considering n + 1- instead of n- particle correlations)

considerably decreases the total number of available combinations. For example,

given a typical high-multiplicity p-Pb event with several hundred emitted charged
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hadrons, averaging of (4.10) over quartets will be performed over a dataset of at

least three orders of magnitude smaller than averaging of (4.3) over pairs. Here we

introduced four-particle azimuthal angle correlation similarly to the two-particle one,

(4.3): 〈
〈ein(φa+φb−φc−φd)〉

〉
, (4.10)

where the internal angular bracket indicates averaging of the "integrand" over all

quartet combinations of charged hadrons in an event and the external angular bracket

stands for averaging over events. As in the two-particle case, this definition includes

relative measurement of particles’ azimuthal angles and thus is invariant under rota-

tions in the transverse plane. Finally, the harmonic order of the correlation is defined

by the integer number n.

Using cumulant analysis it can be shown [252] that two-particle non-flow effects

can be subtracted from the four-particle cumulant. This provides motivation for the

mentioned earlier vn{4} observable:

− vn{4}4 ≡
〈
〈ein(φa+φb−φc−φd)〉

〉
− 2

〈
〈ein(φa−φb)〉

〉
, (4.11)

which reduces to (3.10) under the assumption that all non-flow effects are subtracted

from experimental analysis. Although the aforementioned procedure is not able to en-

tirely subtract all non-flow effects (contributions coming from δ3 and δ4 terms of (4.9)

still contaminate the flow signal), it leads in practice to their significant suppression

[253].
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4.3 A Stringent Test of Hydrodynamics

As we saw in the previous sections, the essential aspect of a purely hydrodynamic

description is that particles emerge from the fluid independently – that is, the one-

particle distribution contains all relevant information, and multi-particle distributions

are simply obtained as products of the single-particle one. We also announced that

this places non-trivial restrictions on observed multi-particle measurements, even if

one is free to choose an arbitrary single-particle distribution.

As a simple example, by comparing (3.8) and (3.10), it is possible to convince

oneself that in any hydrodynamic calculation:

v̄n{4}4 ≤ v̄n{2}4. (4.12)

However, this does not serve as a non-trivial restriction, because this inequality gener-

ically holds in most reasonable physical models and collision systems.

A truly non-trivial restriction on hydrodynamics comes from the data that is not

utilized in the conventional flow analysis, which we presented in Chapter 3. Two-

particle correlation, (4.3), is experimentally measured for all possible combinations of

paT and pbT. For statistical reasons one splits all registered particles into bins of final

width. For example, when measuring p-Pb two-particle azimuthal correlation, CMS

collaboration uses the following splits for the "trigger" hadrons:

paT = {[1.GeV, 1.5GeV], [1.5GeV, 2.GeV],

[2.GeV, 2.5GeV], [2.5GeV, 3.GeV]}. (4.13)

Similar procedure is being performed with the "associate" particles, although the bin-

ning is denser. In this way experimentally measured pair azimuthal angle correlation

is a matrix with its elements being evaluated at the aforementioned "trigger" and

"associate" particle transverse momenta kinematic bins. Part of it was presented in

the averaged way. Indeed, "differential" flow measurement vn{2}(pT ), (4.5), corre-

sponds to the averaging of the matrix over rows, while the "integrated" flow v̄n, (4.4),

– over both rows and columns. Thus, the full matrix contains more information than
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the "differential" and "integrated" flow observables that one conventionally uses to

compare to hydrodynamic calculations in order to test the latter.

The non-trivial restriction arises when we take into account both: peculiarities of

the particle emission in the hydrodynamic picture and all the available information

contained in the two-particle correlation matrix. We will compare prediction of our

model to the entire matrix of values measured in p-Pb collisions, which contains

four times more data points than used in the conventional analysis of differential

and integrated flow. But we will do it using special parametrization, rn, that will

provide additional fundamental constraint on the applicability of the hydrodynamic

paradigm.

4.3.1 rn(p
a
T, p

b
T) observable as a stringent test of hydrodynamics

To begin with, we recall that in any hydrodynamic calculation the azimuthal pair

correlation matrix will have the form, (4.8):

Vn∆(paT , p
b
T )

hydro
=

1

Nevents

∑
events

vn(paT )vn(pbT ) cos
(
n
(
Ψn(paT )−Ψn(pbT )

))
. (4.14)

Namely, it’s the events average of a scalar product between the flow vectors measured

at each of the "trigger" and "associate" values of transverse momentum. This form

dictates that the elements of the matrix must satisfy a set of inequalities [254].

First, the diagonal elements (that is, when both particles are restricted to the same

transverse momentum bin, paT) must be positive semidefinite:

Vn∆(paT , p
a
T ) ≥ 0. (4.15)

Second, the off-diagonal elements must be related to the diagonal by a triangle

Cauchy-Schwarz inequality:

Vn∆(paT , p
b
T )2 ≤ Vn∆(paT , p

a
T )Vn∆(pbT , p

b
T ). (4.16)

We reiterate that these inequalities are inescapable. They will be satisfied in

any purely hydrodynamic calculation, and can not be circumvented by engineering
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a particular initial condition, tuning parameters, changing the equation of state or

transport coefficients.

Whenever the first inequality, (4.15), is satisfied, a convenient way to quantitatively

compare azimuthal pair correlation theoretical and experimental results is to use the

following ratio, [254]:

rn ≡
Vn∆(paT , p

b
T )√

Vn∆(paT , p
a
T )Vn∆(pbT , p

b
T )
. (4.17)

In hydrodynamics, the second inequality, (4.16), ensures that this ratio must lie in

the range −1 ≤ rn ≤ 1.

However, if hydrodynamics is not the correct description, the quantity is com-

pletely unbounded. While the matrix elements, Vn∆(paT, p
b
T), can take values only in

the range [−1, 1], see (4.3), any real number is allowed for rn(paT, p
b
T). Even existing

data for differential flow, vn{2}(pT ), does not restrict the latter.

We proposed the entire "double differential" correlation matrix, Vn∆(paT, p
b
T), to be

measured in the case of p-A collisions and compared against these inequalities, (4.15)

and (4.16), as a stringent test of the hydrodynamic picture. Any violation would

unambiguously have indicated a breakdown of hydrodynamics as the dominant con-

tribution to correlations, and the presence of at least some significant contribution

from non-flow correlations. This measurement provided a significant additional con-

straint to theoretical models, beyond what had already been measured. It had a

chance to either debunk or confirm whether hydrodynamical paradigm is valid in

case of small collision systems.

In Section 4.3.4, we will return to the quantitative comparison of our prediction of

rn(paT, p
b
T) observable,(4.17), against the experimental p-A measurements that were

performed after we publicly released our results. Now we will turn to the qualitative

analysis of relations (4.15) and (4.16) in order to clarify the mechanism actuating the

inequalities and to illustrate that they lead to the non-trivial conclusions regarding

the domain of applicability of hydrodynamics.
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4.3.2 Factorization breaking

The support for flow was not unanimous at start even in case of large systems. One of

the crucial steps that assisted its recognition was the observation of the two-particle

correlation function factorization:

Vn∆(paT, p
b
T) ≈ vn(paT) · vn(pbT). (4.18)

Specifically, since it was possible (at least within a certain range) to represent a multi-

particle observable as a product of single-particle measurements, one could consider

QGP to be a plausible explanation.

Experimental results [256, 257, 205] have also shown that factorization, (4.18),

was broken for the considerable number of two-particle correlation matrix elements,

Vn∆(paT, p
b
T). It gave rise to some skepticism regarding the possibility of hydrodynam-

ics to describe this effect, as in this approach yield factorization holds identically,

(4.7). However, accurate theoretical consideration shows that it is actually possible.

Indeed, yield and thus flow factorization holds in hydrodynamics in every event. But

after averaging over all events factorization remains valid only under specific condi-

tions: either trivial dependence of the flow angles, Ψn(pT), on transverse momentum,

or global (i.e., one for all events) dependence of flow coefficients, vn(pT), on it. Both

of these conditions are quite restrictive and thus hold only in a limited domain.

To understand the physics of factorization breaking, it is instructive to observe

(using hydrodynamics as a proxy) that it happens after averaging over events. This

means that events have different (and non-trivially dependent on transverse momen-

tum) flow coefficients, (3.6). As we discussed in Section 3.3, hydrodynamic response

for the second and third flow harmonics is nearly linear. Thus, flow coefficients’ non-

trivial distribution over events stems from the fluctuations in the initial conditions.

Those originate from the quantum effects taking place in the colliding nuclei, such

as randomized event-to-event spatial distribution of nucleons in the transverse plane

right before the collision. Thus, one expects that factorization breaking will be larger

at lower multiplicities, as relative magnitude of fluctuations will become more pro-

nounced. For the same reason, one expects that effect of the initial state fluctuations
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will be more noticeable in case of the third flow harmonic, as second one has larger

contribution from the initial collision geometry. In terms of variable rn(paT, p
b
T) these

qualitative observations translate into larger deviation of the rn observable from unity

at at lower multiplicities and when switching from the second, (n = 2), to the third,

(n = 3), order harmonic; see quantitative comparison for p-Pb system in Fig. 4.5.

Non-trivial nature of the relations (4.15), (4.16) in the analysis of the two-particle

correlation factorization breaking was qualitatively demonstrated in case of A-A (Pb-

Pb) collisions [141]. First, second, and third orders of pairs correlations, Vn∆(paT, p
b
T),

were used, see Fig. 4.4. ALICE collaboration used the following transverse momen-

tum boundaries: {0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 15} (in GeV) [256]

which allowed the authors to test (though qualitatively) the validity of the hydrody-

namic hypothesis against an order of magnitude more experimental results than in

the conventional differential and integrated flow analyses.

It was shown that inequalities (4.15) and (4.16) are satisfied in all kinematic re-

gions where hydrodynamics is expected to be valid. Specifically, if one ignores one

element (indicated in red in Fig. 4.4) in the second and the third harmonic matrices,

which as authors stipulate probably originate from the low statistics in that partic-

ular bins, the results do not exclude hydrodynamics as a model that can describe

experimental data at low momentum, i.e. at paT and pbT less than 4 GeV. This is ex-

actly the soft momentum regime, which describes the domain of applicability of the

(macroscopic) hydrodynamic theory. One can also observe that once the particles’

transverse momentum increases above this soft limit threshold, the third harmonic

demonstrates clear presence of non-flow effects and thus inapplicability of hydrody-

namics. It might seem confusing that the first harmonic indicates dominant non-flow

contribution at all, including low, transverse momenta. However, it has long been

known that V1∆(paT, p
b
T) should have this contribution due to momentum conserva-

tion, which is accounted for in hydrodynamics only on average due to the independent

nature of the particle emission. It was shown [258] that once this effect is taken into

account, the first order correlation is indeed consistent with the hydrodynamic model.
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Figure 4.4: Test of inequalities (4.15), (4.16) for the correlation matrix Vn∆(paT, p
b
T)

in case of 0-10% centrality Pb-Pb collisions at √s
NN

= 2.76TeV. Experimental data

was measured by ALICE [256]. Only statistical errors were taken into account in

the analysis. Green: inequality (4.16) reduces to an equality within errors, |rn| = 1.

Blue: (4.16) holds as a strict inequality and thus it is possible to explain result in

this cell with flow fluctuations within the hydrodynamical paradigm, |rn| < 1. Red:

either (4.15) or (4.16) inequality is violated, which means that hydrodynamics cannot

explain this result, |rn| > 1.
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4.3.3 Quantitative analysis of the rn(paT, p
b
T) observable

While any value between -1 and 1 is mathematically allowed for the rn observable in

hydrodynamics, our calculations indicate that in the highest-multiplicity collisions,

it should be expected to be very close to 1. As multiplicity becomes smaller, the

transverse size of the fireball and the typical number of participating nucleons are

expected to decrease causing relatively larger fluctuations and thus driving rn further

away from unity. In Fig. 4.5, we show the centrality dependence of r2 and r3, respec-

tively, for the set of parameters that best fit the above data (σ = 0.4 fm, η/s = 0.08),

though the trend is general. The 2D matrix is flattened along the first index, such

that each set of curves represents a fixed transverse momentum bin for one of the

particles (paT , labeled on the bottom), while each point on a curve represents a differ-

ent pbT . We predict that the highest multiplicity collisions should give a value close to

1, and decrease monotonically when reducing multiplicity. Thus, any deviation from

this trend would likely indicate a breakdown of a dominantly fluid description.

Figure 4.5: r2 and r3 dependence on centrality for the seven highest multiplicity bins

in Table 3.1.

In Figs. 4.6, we show the effect of varying the viscosity η/s and the granularity

parameter σ on rn. We find that the viscosity actually has a quite small effect.

This observation was confirmed in [259]. In contrast, a variation of σ has a stronger

effect on rn, which indicates that aspects of the initial condition are more important.

We confirmed that this is still the case in mid-peripheral Pb-Pb collisions. Thus, rn
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could potentially be of special value, since numerous other observables are sensitive

to η/s, but no other observable is known to be this sensitive to the granularity of the

initial conditions of a heavy-ion collision.

Figure 4.6: r2 and r3 dependence on the model’s parameters of viscosity, η/s, and

granularity, σ, (in fm). Calculations are shown for two centrality bins to illustrate

generality of the conclusions.

4.3.4 Confirmation of our prediction with experimental p-Pb data

After our results were made available and predictions sent to the experiments (but

before publication), results from all three LHC experiments were released [260, 261,

262, 143]. The results confirm our predictions – for a large range of centrality and

pT, the inequalities (4.15) and (4.16) are satisfied, the ratios rn are close to unity in

high multiplicity events, and the value decreases with smaller multiplicity as well as

with larger transverse momentum difference paT−pbT. In fact, the data show strikingly

precise quantitative agreement with our predictions.

These results give a strong indication of the collective nature of high multiplicity p-

Pb collisions and the likely applicability of hydrodynamic modeling in these systems.

They also present a significant test that must be passed for any alternative explanation

for the previous measurements.

Interestingly, r3 rises above a value of 1 for high pT particles in lower multiplicity

events, i.e. when both pT > 2.5 GeV and Ntrk < 150 in the CMS data). This indicates
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a violation of inequality (4.16), and therefore a clear signal of physics beyond fluid

dynamics. Thus, as we have proposed, the rn observable can indeed be a useful tool

for making a more precise determination of where hydrodynamics is valid.
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Figure 4.7: Comparison of our prediction that was released publicly [139] and sent to

the CMS collaboration before they published their experimental results. Figures are

from the CMS collaboration [143].
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4.4 Final state effects in rn(paT, p
b
T)

In Section 4.3.2, we mentioned that non-flow effects do not play the key role in A-

A collisions at least in the low transverse momentum region, pT ∼ 1GeV. We also

observed good agreement between the prediction of our hydrodynamic model and

the recently obtained experimental data, see Fig. 4.7. This alone confirms that pure

fluid dynamics passes the most stringent test one could currently construct. However,

to make our analysis exhaustive, in this section we discuss the final state effects on

rn(paT, p
b
T).

To account for non-flow effects, we utilize an afterburner, specifically UrQMD

[170, 171]. We follow the approach described in [144], where it was applied to the

case of large A-A systems.

4.4.1 Discrete particles hadronization

One uses the freeze-out hypersurface, ΣTFO
, that was obtained during the hydrody-

namic phase of matter evolution. It is parsed element-wise to calculate the number

of particles of species n that would be created from every piece, ∆Σµ, if one was to

use the Cooper-Frye formula, (2.63).1 The obtained value:

∆Nn = dn

(∫
d3p

(2π)3
f(x,p)

)
uµ∆Σµ (4.19)

is used as an estimate of the average multiplicity coming from this segment.2 One

could think of it as of an average of an ensemble of events in which the freeze-

out surface element, Σµ, and matter flow velocity vector, uµ, are the same, but the

number of created particles changes around the average, ∆Nn. Then, one uses Poisson

distribution to sample representations from this events’ ensemble:

P (Nn) =
1

Nn!
(∆Nn)Nn e−(∆Nn). (4.20)

1So far, this process resembles the calculation of the Cooper-Frye formula, (2.63), using the Riemann

sum approximation.
2One can say that multiplicity is calculated in every cell. However, we want to avoid the confu-

sion of mixing the discretization used when numerically solving hydrodynamical equations and the

mentioned above calculation over the freeze-out hypersurface. The happen in different spaces.
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Once the total multiplicity, Nn, coming from this specific hypersurface segment is

determined from (4.20), one can sample momenta of these particles individually using

distribution:

p0dNn

dp
=

dn
(2π)3

(f0 + δfshear + δfbulk) pµ∆Σµ. (4.21)

After iterating this procedure over all particle species, n, and all elements of the

freeze-out hypersurface, ∆Σµ, one obtains a set of particles with known momenta

[263]. Time-space evolution of these individual particles can now be modeled with

the UrQMD solver [170, 171]. Before describing it, we need to discuss two caveats of

the above sampling approach.

First, numerical modeling of the QGP evolution shows that there are surface ele-

ments where flow1 is directed inwards:

uµdΣµ < 0. (4.22)

To avoid negative multiplicity values, one sets to zero contributions from these surface

elements, (4.19). These regions describe the physical situation in which the QGP ve-

locity and the normal to the freeze out hypersurface are oppositely directed. Accord-

ing to the Cooper-Frye framework, in this case QGP should be absorbing particles

rather than emitting them. However, it is not possible as QGP expands into vac-

uum. Along the physical motivation for ignoring these negative contributions, there

is a computational one. It was shown [263] that the problematic inward-directed

segments appear randomly amidst of the larger outward-directed regions, where the

velocity vector was almost orthogonal to the surface normal, and thus their product

was nearly zero. Thus, its is possible that those negative contributions are of the

numeric origin, as the used computational method guarantees the precision of the

calculated value, but not its sign. In any case, we utilize this approach taking into

account that it introduces a systematic error of about 10%. This estimate is based

on the calculation of the contributions to the total energy of the QGP system and

the hadrons’ momentum distribution coming respectively from the inward-directed

regions of the matter flow and the particles’ momenta [263].
1In this paragraph we refer to the flow of matter, not the effect of collectivity in HIC.
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Second, in Poissonian processes the values of mean and variance are equal. Thus,

the following relation holds for the event’s multiplicity averaged over the thermally

equilibrated ensemble of states, (1.12):

〈N2
n〉T − 〈Nn〉2T = 〈Nn〉T . (4.23)

This property remains valid when particles obey the classical Maxwell-Boltzman

statistics [242]. However, for Bose-Einstein and Fermi-Dirac distribution equality

(4.23) is violated:

〈N2
n〉T − 〈Nn〉2T ∼

∫
dχ p0f0(xµ, pµ)(1± f0(xµ, pµ)) 6= 〈Nn〉T ∼

∫
dχ p0f0(xµ, pµ),

(4.24)

where f0(xµ, pµ) was defined in (2.59). Thus, it is not guaranteed that (4.23) would

hold for a generalized distribution, f(xµ, pµ). For that reason it was tested that in a

typical HIC collision described within the framework of this work, (2.58), condition

(4.23) is satisfied with a 10% accuracy for the switching temperatures in the range

from 0.135 to 0.165GeV. Thus, the systematic error resulting from the usage of

the Poisson distribution is consistent with the discussed above uncertainty of the

implementation of the Cooper-Frye method.

Our final remark in this section will be regarding the difference in the vocabular-

ies used in the hydrodynamical and kinetic theory descriptions of the HIC. As we

discussed in Section 1.1.5, at certain conditions matter evolution could be described

using both of the aforementioned approaches.

For hydrodynamic evolution it would be the requirement for the Knudsen number,

(1.19), to be less than one. Knudsen number value can be estimated using the formula:

Kn = τπ∂µu
µ, (4.25)

where τπ is given by (2.44) and expansion rate, ∂µuµ, is to be determined from the

hydrodynamical calculation [264]. It was shown that for small collision systems Knud-

sen number is in the range of 0.5− 0.7 during the entire evolution [265, 266], see also

Fig. 5.8. Thus, application of the hydrodynamical approach is justified all the way

to the freeze-out temperature of 0.150GeV.
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For the kinetic theory case, one could use the definition of the Knudsen number,

(1.19), as of the ratio between the mean free path, λ, and the characteristic extension

of the medium, L. For the former quantity we use the following estimate:

λ ∼ 1∑
n

σ̄nN̄n

, (4.26)

where σ̄n and N̄n are correspondingly the average cross-section and the average den-

sity1 of particles of species n. Pions are the most abundant final state particles in

HIC. Their cross-section, used also in the UrQMD package, is σπ−π+ = 4 fm2. Its av-

erage density can be estimated based on the assumption of emission from thermally

equilibrated medium, (4.24). The typical temperature and size of the system could be

obtained from our hydrodynamical calculation. This is how we arrive at the estimate:

λ ∼ L ∼ 5 fm.

Thus, application of both hydrodynamic and kinematic approaches is justified once

the QGP fireball cools down to about 0.130−0.170GeV. In the hydrodynamic frame-

work, hadronization happens at the freeze-out temperature, TFO. In kinetic theory,

particles are considered to be created at the switching temperature, Tsw. Usually

the latter is higher than the former. This is the case, because in the hydrodynamic

approach, one assumes that after freeze-out particles undergo free streaming, i.e.

propagate freely, without collisions. One turns to kinetic theory when willing to esti-

mate effects of inter-particle interactions during the late stage of the HIC evolution.

Thus, one wants to start describing this dynamics as early as possible, i.e. at higher

temperatures.

Finally, it is worth mentioning the principal difference between the hydrodynamic

and kinetic descriptions. In the former case, one deals with a smooth (averaged over

the ensemble) particle distribution, (2.58), while in the latter – with a variety of linear

combinations of delta functions (individual configurations from this ensemble). Thus,

in the latter case, one needs to repeat the described in this section particle sampling

procedure multiple times and average calculated observables over this ensemble. In

1Multiplicity, Nn, per unit volume.



4.4 Final state effects in rn(paT, p
b
T) 129

this work we iterated the sampling procedure 500 times for every hydrodynamic hy-

persurface. Before averaging we evolved every sampled configuration using UrQMD

package.

4.4.2 UrQMD fundamentals

UrQMD is a numerical package used for modeling particle dynamics at microscopic

level. It describes the particle kinetics on the event-by-event basis rather than at

the level of the "average" distribution function, f(xµ, pµ), which satisfies Boltzman

equation, (1.27). It incorporates various reaction mechanisms, which are appropriate

for different energy levels (among them: compound nucleus, resonance production,

string1 excitation and fragmentation), in order to provide a consistent understanding

of the HIC dynamics. One also has to introduce a number of phenomenologically

motivated approximations and parameters, as accessible experimental data on mi-

croscopic dynamics is rather limited. In this section we will discuss relevant for our

discussion physical principals and phenomena that are being utilized in UrQMD.

The model is a successor of RQMD (Relativistic Quantum Molecular Dynamics)

[268], which combines the classical propagation of particles with quantum effects, such

as stochastic scattering and particle decays. It approaches the challenge of introducing

Lorentz-invariant particle dynamics interaction at a distance without field degrees of

freedom by utilizing a Hamiltonian framework with 8N variables. Those correspond

to four spatial, xµ, and four momentum, pµ, coordinates of each of the N particles.

The system is also subject to 2N − 1 constraints: N are the mass shell restrictions

for every particle, and the other N − 1 correspond to the relative time fixations, as

in relativistic systems every physical object has its own proper time. Thus, there are

6N + 1 independent variables that describe the system dynamics with one of them

being τ – the system clock.

Although this framework allows to introduce covariant relative distance between

1Here we talk about QCD strings, which are phenomenological objects that are being formed by the

fluxes of the gluon field, and are not the fundamental building blocks of the ST, see [267]



130 4 Tests of hydrodynamics in small systems

any two particles, i and j:

dtrans =

∥∥∥∥(xi − xj)µ −
(xi − xj)ν(pj + pi)ν

(pi + pj)2
(pi + pj)

µ

∥∥∥∥ , (4.27)

which is necessary to define the probability of their interaction, it still does not solve

the problem of the dependence of the time ordering of particles’ collisions on the

reference frame.

For that reason, UrQMD approaches the frame-dependence problem in a phe-

nomenological way. Specifically, the distance between every pair of particles, i and j,

is defined with respect to their ("primed") rest-frame:

d′trans =

√√√√(x′i − x′j)
2 −

(
(x′i − x′j) · (p′i − p′j)

)2(
p′i − p′j

)2 . (4.28)

Analogous to the the Glauber prescription discussed in Section 2.2.2, particles’ colli-

sion is considered to happen if they pass each other at a distance:

d′trans ≤
√
σi,j
π
, (4.29)

where σi,j is the cross-section of particles i and j, which also depends on the collision

energy,
√
s. The "system time" of every collision, τcoll, is defined with respect to the

nucleus-nucleus reference frame:

τcoll = −
(xi − xj) · (pip0i −

pj
p0j

)

(pi
p0i
− pj

p0j
)2

. (4.30)

The dependence of this prescription on the reference frame was studied numerically

for an A-A system and it was found that the particle multiplicities and the number

of collisions vary by less than 3% when switching between the detector and nucleus-

nucleus reference frames [170]. Thus, one considers that the algorithm provides a

reasonable description of the N -body relativistic microscopic dynamics in HIC.

As we mentioned, π-mesons are the most abundant particle species in the final

state multiplicity (about 80% of the total yield). For that reason we will briefly

discuss here the mechanism that is used to describe their collisions in UrQMD. As

we saw in Section 3.2, pions are produced in small systems with average transverse
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momentum of about 0.6GeV. At these ("low") energies pion-nucleon cross-section is

large, and this is another reason why collisions with pions are important to discuss.

Below 2.2GeV, they occur through the formation of an intermediate resonance, R:

σi,j(
√
s) =

∑
R

〈ji,mi, jj,mj|JR,MR〉
2SR + 1

(2Si + 1)(2Sj + 1)

π

pi,j2

ΓR→i,jΓtot

(MR −
√
s)2 +

Γ2
tot

4

,

(4.31)

where m, s, j, and M , S, J are respectively the mass, spin, angular momentum of

the i, j,R particles. Summation goes over all resonances, R, that could be formed

in the collision of particles i and j. Angular bracket stands for the Clebsch-Gordan

coefficient between the initial and final states. Γtot(MR) and ΓR→i,j(MR) denote

correspondingly the resonance’s full decay width and the one corresponding to the

channel i, j.

In Fig. 4.8, one can see the comparison between the UrQMD parametrization

and experimental data for π+π− and π−p processes. The reasonable agreement was

achieved by tuning the numerous model’s parameters to reproduce data in the exclu-

sive channels, such as π−p −→ ηn1. It is worth mentioning that because the available

experimental data [269] has relatively large errorbars, there are several different sets

of UrQMD parameters that allow to reproduce it. In our calculation we used the

default parametrization of UrQMD.

Sharp peaks in panels (a) and (b) of Fig. 4.8 correspond to the intermediate

resonances that are contributing to the total cross-section. Specifically, for the π+π−

process it is the ρ resonance, and for the π−p one – N∗ and ∆ resonances. The relative

contribution of different cross-section mechanisms is illustrated in panel (b) of Fig.

4.8. One can see that in the relevant for this work "low" energy/momentum region,

resonances dominate, while particle elastic and string inelastic collision contributions

have no effect.

In the purely UrQMD approach2, resonances are mostly created in the initial

proton-proton collisions. Masses of the excitations are sampled stochastically from

1In this case equation (4.31) should be modified by replacing Γtot with ΓR→η,n.
2In case one chooses to entirely ignore the QGP dynamics in HIC.
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(b)

Figure 4.8: Comparison of UrQMD fits to experimental data for total cross-sections

of: (a) π+π− [269] and (b) π−p [270] processes. Figures from [170].

the Breit-Wigner distribution:

BW (M,MR) =
1

N

Γ(M)

(MR −M)2 + Γ(M)2

4

, N ≡
∫

Γ(M)

(MR −M)2 + Γ(M)2

4

dm, (4.32)

subject to kinematic constraints that stem from the energy-momentum conservation

laws. The most general form of the relative momenta of the created particles in their

rest frame is:

p′i,j(
√
s) = (4.33)∫ ∫ √

(s− (mi +mj)2) (s− (mi −mj)2)

2
√
s

BW (mi,mRi)BW (mj,mRj)dmidmj.

If one of the produced particles is stable, the corresponding Breit-Wigner distribution

will reduce to the delta function, δ(mR −m).1

In our work we do not utilize UrQMD code to describe p-Pb collisions from the

very beginning (starting at τ = 0 fm). We use our own prescription for the initial

conditions and then evolve the system hydrodynamically, because we want to test
1UrQMD can not straightforwardly deal with N body processes, if N > 2. Thus, in the case of many

body decays, particles are united into two "effective" ones. See discussion in Section 2.4.
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the implications of the strongly interacting medium (QGP) creation. At switching

temperature, we perform the discussed above hadronization by sampling particles’

species and momenta. Only then we use UrQMD to model the particle kinetics. In

this way we aim to understand the effect of particlization (discretization) and whether

the used before (average) distribution based approach was accurately capturing the

late HIC dynamics.

Thus, we utilize UrQMD procedures for the description of resonances, as similar

to all other particles they and their decay products can be created after the initial

thermal emission from QGP and can change direction due to collisions before reaching

the detector. Resonance lifetime is determined (in a standard way) using Monto-Carlo

sampling and assuming exponential decay law with parameter:

τR =
1

ΓR
, (4.34)

where ΓR is the resonance’s decay width. For any unstable particle in UrQMD, the

total decay width is equal to the sum of the contributions coming from all available

channels, i, j:

Γtot(M) =
∑
i,j

Γi,j(M). (4.35)

Widths in various channels, as well as the total one, can depend on the excitation

mass, M . This relation is defined with respect to the mass value at the pole, MR:

Γi,j(M) = Γi,jR
MR

M

1.2
(
p′i,j(M)

p′i,j(MR)

)2l+1

1 + 0.2
(
p′i,j(M)

p′i,j(MR)

)2l
, (4.36)

where l is the angular momentum of the exit channel. An example of a resonance

lifetime mass dependence is shown in Fig. 4.9.

Now that we discussed the relevant mechanisms of the UrQMD package, we can

assess the non-flow effects on p-Pb observables.

4.4.3 Results comparison of the discretized and "average" descriptions

In Sections 2.4 and 4.4.2, we discussed the implementations of the discretized and

"average" approaches to describing final state particle evolution. In a nutshell, in
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Figure 4.9: Used in UrQMD implementation of the ∆(1232) excitation lifetime mass

dependence (solid line). One can also see how the value of the lifetime would have

changed if one used constant width definition instead (dashed line). Figure from

[170].

the latter case momentum conservation laws hold on average, while in the former

case they are fulfilled in every particle decay and collision. Here we will compare the

results of these calculations.

We will start with the conventional flow observables, see Fig. 4.10. One can

notice that the results of the UrQMD calculations with switching temperatures, Tsw,

of 0.150 and 0.170 GeV practically coincide with each other and with the result of the

"average" framework calculation at "low" transverse momentum, pT ≤ 3GeV. From

this we can deduce two conclusions. First, as we anticipated in Section 4.4.1, both

hydrodynamic and kinetic theory approaches can accurately describe the final state

particle evolution. The change of the switching temperature in a rather wide range of

values does not alternate the results. For that reason we will fix its value to 0.150GeV

in further analysis. Second, discretization of the final state dynamics provides a

negligible correction to the transverse flow observables. This is due to the low final

multiplicity in small systems that results in almost no final state particle collisions –

approximately one per hydro event. This explains why there is almost no difference
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Figure 4.10: Comparison of the differential charged hadron v2{2}(pT) and v3{2}(pT)

in the highest multiplicity bin of 5.02 TeV p-Pb collisions. Results are obtained

from: circles – experiment (by CMS); dashed line – hydrodynamic model + "average"

particle distribution framework (also presented in the right panel of Fig. 3.6), TFO =

0.150GeV; (two entirely overlapping) solid lines – hydrodynamic model + discrete

particlization approach with UrQMD. The two latter curves represent calculations

performed at switching temperatures Tsw = 0.150 and 0.170GeV.

compared to the result obtained from the superposition of the "average" distributions.

There is some discrepancy above pT ≥ 3GeV for v2{2}(pT), but hydrodynamics is not

expected to be applicable in this region anyway. All in all, we arrive at a conclusion

that MUSIC solver that utilizes "average" particle distributions approach captures

experimental trends at "low" momentum in small systems reasonably well.

Now we will turn to the comparison of our prediction for rn, see Fig. 4.7, but

this time using UrQMD approach for the description of the final state dynamics.

Although, from the comparison of the flow harmonics, vn{2}(pT), evaluated using

both methods, we expect that there will be no considerable difference between the

results, one still needs to check it. First, because, as we discussed in Section 4.2.3, the

transition between the discretized and "average" distributions formalisms is rather

involved and it is challenging to predict the outcome of the comparison. Second,

because UrQMD approach describes non-flow effects that might affect the results and

this way the generality of our earlier conclusions in Section 4.3.4.

Fig. 4.11 shows the results of the comparison of our prediction for the rn observ-
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able using the "average" distribution approach with freeze-out temperature, TFO =

0.150GeV, and discretized UrQMD framework with switching temperature, Tsw =

0.150GeV. First, one can notice an agreement between the results of both approaches

and experimental data for r2. Second, similar observation holds for the case of r3,

but with one exception. At "low" pbT momentum, UrQMD evaluates a non-flow con-

tribution that even further improves agreement with the data. This is a non trivial

result, because the effect of UrQMD on v3 was unnoticeable, see Fig. 4.10 (b), but is

clearly visible in r3.

Figure 4.11: Comparison of r2 and r3 in 5.02 TeV p-Pb collisions obtained from:

dots – experiment, [143]; dashed line – hydrodynamic model + "average" particle

distribution framework (our prediction [139] also presented in Fig. 4.7); solid line –

hydrodynamic model + discrete particlization approach with UrQMD.

As we expected, (the third harmonic of) rn(paT, p
b
T) exceeds unity when UrQMD is

used to describe the final state effects. However, this happens at large separation of

transverse momenta, paT−pbT , which also coincides with the limit of the hydrodynamics

applicability, and indicates that non-flow effects originating from conservation laws

start to play an important role in this kinematic domain.

Usage of UrQMD helps to better explain rn behavior beyond the region of ap-

plicability of hydrodynamics, but does not affect the results obtained with the pure

fluid dynamics model within the domain of its validity, where it describes experi-

mental data well, see Fig. 4.7. Thus, we conclude that in the kinematic region of
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high multiplicity, Ntrk > 150, and low transverse momentum, paT and pbT < 2.5GeV,

hydrodynamics is a reasonable model of HIC collisions in small systems.

Studies of the multi-particle flow coefficients’ ratios [271], which are less sensi-

tive to the hydro response, show that there is currently no model that can properly

describe fluctuations in large and small systems simultaneously. While in the for-

mer case QCD-inspired models such as IP-Glasma [131] work better, they fail to

reproduce, for example, experimentally observed positive elliptic flow from the four

particle correlation, v2{4}, in small systems.1 On the contrary, the discussed in this

work Glauber initial conditions model allows to capture experimental trends in p-A

system, see Fig. 4.7, but has challenges explaining rn results in large systems when

using the same set of parameters. We discuss this in details in the next section.

4.5 Revisiting rn(paT, p
b
T) for A-A

Three previous hydrodynamic calculations of the ratio rn were made for nucleus-

nucleus collisions. The first was a calculation for Au-Au collisions with NEXUS

initial conditions and zero viscosity [254]. The next was a Glauber model calculation

with η/s = 0.08 and an MC-KLN calculation with η/s = 0.2 [273], both for a Pb-Pb

system.

The values of rn in these three calculations were ordered according to the viscos-

ity in the calculation – the lowest viscosity result was farthest from one, while the

calculation with the largest viscosity was closest to one. Both of the latter two had

reasonable agreement with measured Pb-Pb data. The most natural interpretation

was that viscosity reduced the magnitude of fluctuations and causes the ratio to be-

come closer to 1. However, one should note that each of these three calculations also

had different initial conditions. As we have shown for p-Pb (small system), viscosity

actually has a small affect, while the initial conditions can have a significant effect.
1Recently progress has been achieved within the IP-Glasma framework, when each nucleon was ef-

fectively treated as a combination of three particles – "gluonic hot spots" [272]. Thus, we believe

that further theoretical effort should focus on the modeling of subnucleonic fluctuations to achieve

single framework approach to the systems of all sizes.
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The latter two calculations neglect the local fluctuations in entropy production that

we model with NBD. While these extra fluctuations are typically not believed to be

important for observables in heavy-ion collisions, we might guess that they cause rn

to deviate further from one.

Figure 4.12: r2 and r3 in 40–50% centrality Pb-Pb collisions from our model with and

without NBD fluctuations in the initial entropy per participant and with different

values of the granularity parameter σ (in fm), compared to data derived from ALICE

measurements of V2∆ and V3∆ [256, 254].

To test this in the case of large systems, we calculated rn at 40-50% centrality

Pb-Pb in the same model as above, but in addition we did a calculation for the same

events with the extra NBD fluctuations turned off (i.e., so that every participant had

the same contribution to the total entropy). The results are shown in Fig. 4.12.

Our calculations with a more standard Glauber model (i.e. without extra fluctu-

ations) and σ = 0.8 fm should be close to the previous results, which fit data well.

As can be seen in Figs. 4.12, this is the case. However, when we add more realistic

NBD fluctuations, the value decreases, away from data. Further, if we change to

the model that best fits existing p-Pb data (σ = 0.4 fm), r2 falls even further from

the measured value. This indicates that a simultaneous fit to all data is difficult.

Calculations [235, 274, 271] also have trouble simultaneously reproducing p-A and

A-A experimental results. This tension may ultimately provide useful constraints on

hydrodynamic models.
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In particular, it will be interesting to study why NBD fluctuations seem to be in-

compatible with rn in peripheral Pb-Pb collisions, despite being necessary to describe

the multiplicity distribution and being consistent with rn in ultra-central heavy-ion

collisions [259]. In addition, a simultaneous study of rn in different collision systems

can give valuable information about fluctuations in the initial state at different length

scales.

4.6 New properties of the rn observable and stringent test of

hydrodynamics

In order to make a more stringent test of the applicability of hydrodynamics to small

systems, we made a proposal to measure the rn(paT, p
b
T) observable. It uses the full

transverse momentum information from two-particle correlations, which is consider-

ably more extensive than the conventional set of experimental observables that is

being utilized in testing of HIC models. Thus, just that alone introduces additional

constraints on the hydrodynamic model. Moreover, we discussed that rn(paT, p
b
T) has

the potential to rule out hydrodynamics as the correct description of HIC in small

systems regardless of the particular implementation of the initial conditions and pa-

rameters of the fluid dynamics. However, rather than ruling out a hydrodynamic

description, recent measurements of rn(paT, p
b
T) in p-Pb collisions confirm both generic

hydrodynamic expectations and quantitative predictions. This gives major credence

to the validity of a fluid dynamic description of high multiplicity proton-nucleus col-

lisions, and provides a significant constraint on other possible descriptions.

Further, we found out that rn(paT, p
b
T) is less sensitive to viscosity than was previ-

ously expected. Thus, it is a promising observable to probe the transverse length scale

of fluctuations in the early stages of a heavy-ion collision. We also confirmed with a

direct calculation that non-flow effects do not alternate any of the above conclusions.

Finally, using our model, we calculated the rn(paT, p
b
T) observable in large systems.

Our results are consistent with experimental data and previous studies. We provided

a new perspective on the challenge of describing experimental data within one model
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and using one set of parameters. Specifically, we showed that the essential in the

p-Pb case NBD fluctuations seems to be excessive in the case of Pb-Pb systems. This

observation is important, because it was based on the analysis of the rn observable,

which as we showed is sensitive to the initial conditions. Thus, we suggest that future

work should be focused on modeling of subnucleonic degrees of freedom if one is to

find a universal approach to all systems.
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Further advancements of hydrodynamical model

In this chapter we discuss further extensions of our hydrodynamical model. They

were implemented after our prediction of the rn(paT , p
b
T ) observable was publicly re-

leased [139] and verified [143]. The new model modifications, despite their postdictive

nature, provide important insight into the main topic considered in this work. Specif-

ically, they show that our extended hydrodynamical model even better describes ex-

perimental data (transverse plane observables) that we discussed in Chapter 3 [140].

It also allows to reasonably reproduce the recently measured structure of the longi-

tudinal observable rn(ηa, ηb) [143]. Noteworthy, one would expect a retuning of the

model to be needed. However, our extension does not require that. We use the same

values of the initial conditions, σ = 0.4 fm, and hydrodynamical evolution, η/s = 0.08,

parameters as in Chapters 3 and 4. The extension of our model also does not modify

(within statistical errors) the value of our prediction of the rn(paT , p
b
T ) observable. All

this provides another evidence that hydrodynamics can at least qualitatively describe

the global dynamics of small collision systems.

5.1 Bulk viscosity

In this chapter we discuss the effects of bulk viscosity on hydrodynamical observables.

We outlined how to account for them qualitatively in Section 1.1.4 and quantitatively

in Sections 2.3, 2.4. However, as we pointed out in Section 1.1.2, it is challenging to

precisely calculate hydrodynamic models’ transport coefficients such as bulk viscos-

ity ζ from first principles. For that reason one needs to turn to phenomenological

frameworks to get at least a qualitative understanding of the effect.

141
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5.1.1 Estimates of bulk viscosity

In Section 1.1.3, we discussed that AdS/CFT provides a lower limit to the value of

shear viscosity1, η, in strongly coupled nearly conformal theories that closely resemble

QCD. We also mentioned that a similar constraint exists for bulk viscosity, ζ, see

equation (1.18):

ζ ∼
(

1

3
− c2

s

)
η, (5.1)

where cs is the speed of sound in the medium. Computation [275] of the bulk viscosity

in weakly coupled QCD to leading order in powers of the running coupling αs, see

Section 1.1.1, leads to the following estimate:

ζ ∼
(

1

3
− c2

s

)2

η. (5.2)

Note that both estimates, (5.1) and (5.2), contain a prefactor
(

1
3
− c2

s

)
[276]. In

conformal theories it is exactly zero. In general, its value depends on the equation of

state, which defines the speed of sound in the medium:

c2
s =

∂P

∂ε
. (5.3)

In our model, we use equation of state s95p-v1 from [147], see Section 3. It was

obtained using lattice calculations from the first principles of QCD and for that reason

is expected to provide a reliable description of the matter dynamics. According to it,

c2
s drastically deviates from 1

3
only in the phase transition region, Tc ∼ ΛQCD, where

plasma constituents merge to form hadron degrees of freedom, see Figs. 1.7 and 5.22.

Thus, it is reasonable to expect that bulk viscosity provides a negligible contri-

bution that does not affect the results of hydrodynamical calculations, unless the

freeze-out temperature corresponds to the region where ζ/s peaks [144]. An obser-

vation that bulk effects could be detected in experimental data was made in [277]:

it was pointed out that despite bulk viscosity, ζ, being suppressed in weakly coupled
1To be precise, it is a constraint on the shear viscosity to entropy density ratio, η/s, see equation

(1.18).
2In Fig. 5.2, the ζ(T ) = 1

2π

(
1
3 − c

2
s(T )

)2 function was plotted. One can see that ζ(T ) quickly

decreases when moving away from Tc, which equivalently means that c2s(T ) quickly approaches 1
3 .
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theories by the second power of
(

1
3
− c2

s

)
, the corresponding bulk viscous correction

to the particle distribution function, δfbulk, is affected only proportionally to the first

power, see equation (2.61).

Phenomenological evaluations of bulk viscosity were made based on microscopic

models of hadronic resonance gas (HRG) [278, 279]. They obtained an estimate of:

ζ

s
∼ 0.03, (5.4)

which was used in hydrodynamical calculations [217, 280], see Fig. 5.1. Relation

T (GeV)
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/s
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/s
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/sη

=15)α/s (ζ
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Figure 5.1: Dependence of bulk viscosity to entropy ration, ζ/s, on temperature, T ,

from: (a) [280] (Figure from [280]), and (b) [281, 217]. Prescription (a) uses relation

(5.2) with the coefficient of proportionality α = 15.

(5.4) is expected to be valid in the low temperature region, which is below the critical

value, Tc, that corresponds to the confinement-deconfinement transition. Above Tc

one expects bulk viscosity to be suppressed and quickly approach zero following the

trend specified by equation (5.1), see Fig. 5.2.

Studies [286, 287, 288] of bulk viscosity behavior around Tc suggest that it peaks

in this region. Lattice calculations [48, 289] suggest an order of magnitude higher

value there than the one obtained with perturbative methods, see equation (5.4):

ζ

s
∼ 0.3. (5.5)
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Figure 5.2: Dependence of bulk viscosity to entropy ration, ζ/s, on temperature, T ,

that was used in [282]. Figure from [282]. It is based on the AdS/CFT estimate,

see equations (1.18), (5.1), and [61]. As an exact gravity dual theory of QCD has

not been found and thus the precise dependence of bulk on temperature is yet to

be determined, authors of [282] use a multiplicative factor C when modeling the

ζ/s profile. They also point out that there is no agreement in the literature on the

temperature dependence of bulk viscosity below Tc other than that its absolute value

should be small [283, 284, 285]. Thus, they use ζ/s = 0 in the hadron gas phase.

Due to the significant difficulties that are pertinent to the extraction of transport

coefficients in lattice calculations, see Section 1.1.2, it is challenging to determine the

temperature profile of bulk precisely from a direct calculation of the correlation func-

tion of the trace of the energy-momentum tensor. An alternative way to study bulk

behavior in the critical temperature region using sum rules derived from low-energy

theorems of broken conformal invariance and lattice data [49] confirmed the peak

value estimate of the variable. However, similarly to the aforementioned direct lat-

tice calculation framework, the authors of the latter method had to use an ansatz for

the spectral density of the correlation function of the energy-momentum tensor, which

greatly contributed to the uncertainty of the calculation. Nevertheless, an expecta-

tion of the rapid growth of bulk in the transition region and the results of the hadron
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gas (HG), (5.4), and lattice (QGP), (5.5), calculations led to the parametrization

proposed in [290] and illustrated in Fig. 5.3. One can describe it as an exponential

Figure 5.3: Interpolating fit of the bulk viscosity to entropy ratio, ζ/s, dependence

on temperature, T , measured in units of its critical value, Tc [290]. Figure from [290].

HGas corresponds to the values obtained in hadron gas model [279]. LQCD indicates

results of bulk extraction from lattice calculations [49].

decrease of the bulk magnitude away from its peak value, which is reached at the

critical temperature.

Qualitatively similar parametrization of the bulk viscosity coefficient

(ζ/s)(T ) =
(ζ/s)max

1 + [(T − Tc)/(ζ/s)width]2
(5.6)

was used in a massive attempt to constrain parameters of hydrodynamical models

from the comparison to experimental data using Bayesian analysis and TRENTO

prescription of initial conditions [200, 291]. The results of the calculation surprisingly

agree better with the estimate (5.4) than (5.5). Specifically, it was shown that one

cannot with certainty determine either the magnitude of the peak or its position.

Noteworthy, similar difficulty of resolving the fine structure of the bulk viscosity

profile was observed in the calculation using IP-Glasma initial conditions, see Fig.

5.4. From this we conclude that the models of initial conditions play a role in the

uncertainty of the obtained results and the precision is yet to be achieved in the
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Figure 5.4: Extraction of the bulk viscosity ansatz (5.6) parameters using hydrody-

namical modeling of A-A collisions at RHIC and LHC energies with IP-Glasma initial

conditions [292]. Figures from [292].

quantitative studies of the bulk viscosity temperature dependence, which agrees with

[293].

Nevertheless, we are interested in estimating the effect of bulk viscosity on hydro-

dynamic observables at least qualitatively. First, we want to learn whether it helps to

improve agreement with the experimental data on the average transverse momentum

of identified hadrons the way it does in large A-A systems [144]. Second, we aim to

verify the generality of the conclusion on the property of the rn(paT, p
b
T) observable to

probe transverse granularity of the initial conditions, see Section 4.6. We also want

to verify whether it has a drastic effect on the result of our prediction for rn(paT, p
b
T).

5.1.2 Bulk effects in small systems

In Section 5.1.1 we discussed various approaches to calculating bulk viscosity, ζ. We

concluded that the existing estimates agree on its schematic dependence on tempera-

ture – it should peak around Tc and decay on both sides of it – but not on the values

of the profile parameters, such as the height, the width, and the position of the peak.

Notice that the ansatz used in [282], which is plotted in Fig. 5.2, matches the

aforementioned description. There, it was shown that large, up to an order of mag-

nitude, multiplicative variations of this parametrization affect flow observables less

than moderate modifications of shear viscosity, which were varied in the vicinity of
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its minimum value (at least in the conformal theories) of η/s = 1/4π. Thus, one can

conclude that as soon as hydrodynamical approach remains valid, bulk viscosity with

a temperature profile that peaks only around Tc should have a moderate effect on the

collective flow.

Figure 5.5: Our model’s three scenarios of the bulk viscosity to entropy ratio, ζ/s,

dependence on temperature, T , measured in units of its critical value, Tc = 180MeV.

Dotted line corresponds to the ansatz with the "peak" at the value of ζ/s = 0.12

– this prescription resembles the one from [290], which was used together with IP-

Glasma initial conditions, see also Fig. 5.4. Dashed line profile has a wide "plateau"

at ζ/s = 0.03 – it closely resembles the results obtained [200], which though used a

different (TRENTO) model of initial conditions. Finally, the solid line describes "flat"

parametrization with zero bulk, ζ/s ≡ 0, – this profile was used in our calculations

that were discussed in Chapters 3 and 4.

In this work, we took as a basis the ansatz proposed in [290], which is illustrated

in Fig. 5.3. We did not alternate the hadron gas part of the parametrization, but

proportionally reduced the rest of it (the magnitude at the peak and the region above

Tc) with a multiplicative prefactor, which we varied similarly to what was done in

[282]. As we discussed above, the fine structure of the profile seems to play a limited

role when estimating bulk viscosity effects on flow observables. Thus, we provide

only graphical representations of the three prescriptions that we used, see Fig. 5.5.
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We refer to them as a "peak", a "plateau", and a "flat" bulk profile. Note that the

maximum value of the "peak" ansatz is (considerably) three times smaller compared

to the one from [290]. Yet, it is (considerably) by a factor of four larger than the

estimate obtained for bulk viscosity in [200], see also (5.4). We attempted larger

values of bulk viscosity at Tc up to the one obtained in lattice calculations [48], see

(5.5). However, it appeared to have a too drastic effect on the average pT observables,

see Fig. 5.6.

Figure 5.6: Effect of bulk viscosity on average transverse momentum of identified

particles. Top to bottom: protons, kaons, pions. See Fig. 3.4 for more details. We

try three different scenarios of bulk profile, which are illustrated in Fig. 5.5. Dotted

line corresponds to the ansatz with the "peak" at the value of ζ/s = 0.12, dashed line

indicates the one that has a wide "plateau" at ζ/s = 0.03, and the solid line specifies

the trivial "flat" case of ζ/s ≡ 0.

From the results shown in Fig. 5.6, we conclude that in our model the "plateau"

profile with ζ/s = 0.03 of up to T ∼ Tc provides the best fit to the experimental data

on the average transverse momentum of identified particles. We point out that shear

viscosity does not have any visible effect on the same observable, see Fig. 3.4. This

has to do with the fact that bulk viscosity contributes to the effective total isotropic

pressure, P +Π, which determines the acceleration of the QGP fireball expansion and
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thus of the particle transverse momenta, while shear viscosity does not1. One can

quantify this effect by noting that the magnitude of the bulk correction to the effective

pressure, Π, grows with the increase of the bulk transport coefficient, ζ: Π ∼ −ζθ,

where θ ≡ ∂µu
µ is the so-called expansion rate that is positive for any expanding

medium, see equation (1.21). This relation explains why the average transverse mo-

mentum of charged hadrons is suppressed more in the scenario of the (larger) "peak"

than the (smaller) "plateau" ansatz of ζ/s and why the overall inclusion of the bulk

viscosity into the hydrodynamic calculation leads to the decrease of the < pT > ob-

servable. We also note that particle transverse momentum was also affected by the

transverse granularity of the initial conditions, see Fig. 3.4. Thus, bulk effects pre-

vent one from directly assessing the magnitude of the initial conditions fluctuations

from experimental data on particles transverse momenta. In other words, we confirm

our earlier finding that the nature of the initial conditions also affects the extraction

of ζ/s.

In Fig. 5.10, we show how bulk viscosity affects flow observables: v̄n{2}, vn{2}(pT),

rn(paT, p
b
T). We use the three aforementioned prescriptions for the bulk profile, see Fig.

5.5.

Before proceeding to the description of these results, we note that the concern

on the larger than in HIC matter gradients pertinent to small systems that could

potentially lead to the uncontrolled growth of the bulk effects was addressed in [281,

230, 231, 232, 265, 181]. In these calculations even larger values of bulk viscosity

compared to the present work were used, but no evidences of the aforementioned

problem were found. For completeness, we perform here our own consistency check.

We start with showing the relative bulk viscosity contribution to effective pressure

in one of our hydrodynamic 5.02 TeV p-Pb system calculations in Fig. 5.7. We, on

purpose, choose an event from the highest multiplicity bin, see Table 3.1, and use the

(extreme) "peak" scenario for the bulk viscosity, see dotted profile in Fig. 5.5. All the

1The Landau-Lifshitz frame condition that we chose for our implementation of the fluid dynamics

equations requires shear tensor to be traceless, uµπµν ≡ 0 [64].
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Figure 5.7: Distribution of the relative bulk contribution to effective pressure in one

hydrodynamic event of our calculation of p-Pb collisions at 5.02 TeV in the top

centrality bin, see Table 3.1. We use the (extreme) "peak" scenario for the bulk

viscosity, see dotted profile in Fig. 5.5. Contour lines correspond to the surfaces of

constant temperature at T = 0.15GeV (dashed line) and T = 0.17GeV (solid line).

rest of our calculations should have smoother gradients and smaller viscosity values.

In Fig. 5.7, we see that even in the extreme case, bulk correction does not exceed

20% in the entire region where fluid dynamics framework is applied and that it is of

the order of 5-10% on the freeze-out surface of constant temperature T = 0.15GeV

that we use in our calculations. This means that introduction of bulk viscosity does

not violate the applicability of hydrodynamics to the description of small collision

systems and its effect on flow observables should be moderate, see Fig. 5.9. Now

let us proceed with assessing the effects of shear viscosity and testing the general

requirement of fluid approach consistency numerically.

In Fig. 5.8, we evaluate the inverse Reynolds and the Knudsen numbers. Both

observables should be less than one for viscous effects to remain perturbative and

fluid paradigm to be applicable, see Sections 1.1.4 and 1.1.5. One can see that this

is, indeed, the case within the regions of the system where the temperature of the
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Figure 5.8: Distributions of the inverse Reynolds (left panel) and the Knudsen (right

panel) numbers. Definitions of Kn = 5η
ε+P

∂µu
µ and R−1

π =
√
πµνπµν

ε+P
are taken from

[264]. See description of the calculation and of the contour lines in Fig. 5.7.

medium is above T = 0.15GeV. Moreover, one can see in the left panel of Fig. 5.8

that the values of the Knudsen number along the constant temperature (T = 0.15GeV

and T = 0.17GeV) contours are relatively high and almost reach the magnitude of

unity. This means that our calculation is self-consistent in both kinetic theory, see

Section 1.1.5, and hydrodynamics, see Section 4.3.4, cases. Furthermore, we correctly

identify the temperature range of hydrodynamics applicability in small systems – the

edge of the QGP medium corresponds to the freeze-out surfaces of T = 0.15GeV that

we use. One might wonder whether it will be an issue if the freeze-out surface appears

to be slightly in the region where the Knudsen number is of the critical order of unity,

as hadronization in the Cooper-Frye framework takes place along it, see Section 2.4.

Left panel of Fig. 5.8 shows that it is likely to happen only in the early stage of the

evolution for those hyper-surface elements whose normal vector d3Σµ is orthogonal

to the τ -axis. But such elements contribution to the total yield is negligible, see

Equation (2.63) [263]. Thus, hydrodynamics provides an appropriate description of

the system dynamics throughout its entire evolution and viscous corrections should
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not be expected to greatly affect the results of our flow calculation.

Figure 5.9: Effects of shear and bulk viscous corrections on flow observables. Dot-

ted curve corresponds to the calculation of vn{2}(pT) using the "peak" scenario for

the bulk viscosity, see dotted profile in Fig. 5.5, and our model’s standard prescrip-

tion for the particle distribution function f(xµ, pµ), see (2.58), which includes shear,

δfshear(x
µ, pµ), and bulk, δfbulk(xµ, pµ), viscous corrections. Dot-dashed and dot-

double dashed lines correspond to the calculations of the same observable, but using

a modified definition of the particle distribution function, f(xµ, pµ). In the former

case, both δfshear(x
µ, pµ) and δfbulk(xµ, pµ) contributions were set to zero. In the latter

case, the standard prescription (2.60) was used for δfshear(x
µ, pµ), but δfbulk(xµ, pµ)

was set zero.

In Fig. 5.9, we show that the bulk (and shear) viscosity correction, indeed, repre-

sents a small contribution to the calculated values of flow observables, which should

be the case according to the theoretical assumptions that the viscous fluid dynam-

ics framework is based on. This quantitatively confirms that the effect of bulk (and

shear) viscosity is under control even in the most extreme of the bulk profile scenarios

that we use in this work.

From the first pair of plots in Fig. 5.10, we conclude that bulk viscosity suppresses

the magnitude of the integrated flow observables, v̄n{2}. The physics of the process is

identical to one resulting in the decrease of the particles transverse momenta. Specif-

ically, bulk creates negative contribution to the total pressure during the expansion

phase of the QGP fireball, see equation (1.24). This slows down the velocity of mat-
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Figure 5.10: Effect of bulk viscosity on flow observables. We try three different

scenarios of bulk profile, which are illustrated in Fig. 5.5, see legend of Fig. 5.6.

ter propagation and thus reduces the development of the final particle anisotropy, see

Section 2.1.

From the second pair of plots in Fig. 5.10, one can study the transverse momentum

dependence of the bulk flow suppression effect. At low transverse momentum the value

of flow coefficients, vn(pT){2}, is decreased compared to the calculation with zero bulk

viscosity. At higher transverse momentum one observes an inverse trend: the larger
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the bulk viscosity the higher is the value of vn(pT){2}. However, as the majority of

particles have low transverse momentum of pT ≈ 0.5GeV, see 5.6, the magnitude of

the integrated flow coefficients, v̄n{2}, is reduced compared to the calculation without

bulk.

These two aforementioned conclusions agree with the ones observed previously in

the hydrodynamic modeling of large A-A systems [294]. We also confirm the finding

made in [144] that bulk viscosity helps to improve agreement of the hydro calculations

results with experimental data. It remains valid is small systems, as well. However,

we note that due the small magnitude of the used bulk profile (ζ/s ∼ 0.03, "plateau"

scenario, dashed line in Fig. 5.5), unlike the authors of [144], we do not need to

considerably alter the value of the shear viscosity in order to improve agreement of

our results with experimental data on flow observables. Integrated elliptic flow, v̄2,

practically touches the data points within errors even once we use the ("plateau")

non-zero bulk prescription. The agreement with integrated triangular flow, v̄3, data

requires systematic improvement of the initial conditions model using sub-nucleonic

fluctuations, as we suggested in Section 3.2. Similar observations can be made from

the graphs representing differential flow, vn(pT){2}, results. We believe that the

difference between the bulk profiles used in [144], [200], and this work has to do with

the initial conditions (IP-Glasma, TRENTO, improved MC-Glauber). We suggest to

study this topic in the future in more details – at this point it is premature to make

any conclusions on the dependence of the bulk viscosity, ζ/s, on temperature as it

should be model independent. Once this question is addressed, it would be reasonable

to re-tune the model using a global statistical approach of the MADAI type [295] and

assess the values of shear and bulk viscosity from the comparison to experimental

data, see also Section 5.2.

Finally, we turn to the third pair of plots in Fig. 5.10. One can see that bulk effect

(even in the severe "peak" scenario, see dotted profile in Fig. 5.5) does not modify

the validity of our rn prediction – the calculation goes through the experimental

data within errorbars. It is specifically important because it confirms the conclusion
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that we made in 4.6 that rn observable can serve as a probe of the initial conditions

granularity, as it is less sensitive to the effects of either shear or bulk viscosities.

All in all, we conclude that our model with (the "plateau" scenario of) bulk vis-

cosity and without any other additional change of parameters is able to at least

qualitatively describe experimental data. We reiterate that initial conditions’ models

should be the main focus of future research in order to further improve agreement

of hydrodynamical models with experimental data. Studies of small systems will es-

pecially benefit from the development of three dimensional models that rigorously

consider sub-nucleonic fluctuations, such as IP-Glasma.

5.2 Longitudinal fluctuations

We mentioned in Sections 1.2.2 and 2.2.4 that the currently available models of ini-

tial conditions with sub-nucleonic fluctuations, such as IP-Glasma, are defined only

for symmetric systems and only in the transverse (collision) plane. However, p-Pb

collisions are strongly asymmetric and require a prescription for defining the initial

matter density profile along the beam axis. One expects to get valuable insights

on the physics of the QGP formation from studying longitudinal dynamics of p-Pb

systems. Specifically, one is interested in analyzing the flow factorization observable,

rn(ηa, ηb), that was recently measured as a function of pseudorapidity [143]. As mod-

els with sub-nucleonic fluctuations are not suitable in the p-Pb case, it was suggested

to modify the MC-Glauber model in order to capture the longitudinal dynamics of the

system [296]. The idea was tested using a framework that was based on a modified

MC-Glauber prescription for the initial matter density profile, but that did not in-

clude modeling of the subsequent system’s evolution using hydrodynamics or kinetic

theory [297]. In this chapter, we provide for the first time a full hydrodynamic calcu-

lation of rn(ηa, ηb) in a small p-Pb system and compare our results to experimental

data.
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5.2.1 Longitudinal flow factorization

In order to study two-particle correlations in longitudinal direction, equation (4.1)

should be modified to:

Vn∆(ηa, ηb) ≡
〈
〈ein(φa−φb)〉

〉
, (5.7)

where the internal angular bracket indicates averaging of the "integrand" over all pair

combinations of charged hadrons in an event and the external angular bracket stands

for averaging over events. Note that bins a and b are defined in (5.7) differently then

in (4.3). We here follow the introduced by the CMS collaboration conventions, see

[143]. Specifically, particles from bin a are restricted to be in the pseudorapidity limit

|ηa| < 2.4, and those from bin b must have values from the segment 3.0 < |ηb| < 5.0.

The reasoning behind splitting particles into sets a and b is conditioned by the

need of subtracting considerable short-range jet induced correlations when studying

collective effects, see Section 4.2.2. We mentioned in the discussion of equation (4.3)

that in the analysis of the transverse plane two-particle correlations, CMS uses cuts

of two units of pseudorapidity [222]. Thus, it would be preferable to impose even

stricter constraints on the definition of the particle bins a and b: |ηa| < 2.4 and

4.4 < |ηb| < 5.0. We will discuss this topic in more details later.

One expects that factorization equation (4.18) in case of longitudinal variables can

be rewritten as:

Vn∆(ηa, ηb) ≈ vn(ηa) · vn(ηb), (5.8)

where, similarly to (3.6), flow coefficients

vn(η)einΨn(η) ≡
∫
einφ dN(pT,η,φ)

dφdpTdη
dφdpT∫ dN(pT,η,φ)

dφdpTdη
dφdpT

(5.9)

are defined based on the one-particle distribution in every event, see equation (3.5).

Thus, the simplest non-trivial quantity to be considered as a probe of factorization

breaking in a symmetric (A-A) HIC would be, [143]:

rn(ηa, ηb) ≡ Vn∆(−ηa, ηb)
Vn∆(ηa, ηb)

, (5.10)
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Figure 5.11: Illustration of rn(ηa, ηb) definition using CMS detector pseudorapid-

ity bins [143]. Particles with pseudorapidity |ηa| < 2.4 are registered by the CMS

"Tracker" calorimeter and are referred to by index a. Nearly beamline directed par-

ticles with pseudorapidity 3.0 < |ηb| < 5.0, see Section 2.3.1, are registered by the

Cherenkov hadronic forward (HF±) calorimeters and are labeled by index b. rn(ηa, ηb)

corresponds to the measurement of the ratio between the two-particle correlations of

yield with pseudorapidities ηb and ±ηa, see equation (5.10).

where the discussed above constraint of wide rapidity cuts/gaps is fulfilled, because

correlations are only considered between particles in bins a and b, see Fig. 5.11.

By construction, the rn(ηa, ηb) observable is dominated by flow [143]. This allows

one to use a pure hydrodynamical approach (without an afterburner, see Section 4.4)

in its modeling [298]. We will elaborate on this in the next section. Here we will only

mention that the above "pseudorapidity cuts" play an important role in suppressing

non-flow contributions to rn(ηa, ηb). If they were entirely absent, rn(ηa, ηb) would

reduce to the following expression:

rn(ηa, ηb)
hydro
=

〈
vn(−ηa)vn(ηb) cos

[
Ψn(−ηa)−Ψn(ηb)

]〉
〈vn(ηa)vn(ηb) cos [Ψn(ηa)−Ψn(ηb)]〉

, (5.11)

where the angular bracket denotes averaging over events, see equations (5.9) and

(4.8).
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Relation (5.11) helps to better understand the physical essence of the rn(ηa, ηb)

observable. In HIC collisions of identical nuclei, experimental set-up is entirely sym-

metric with respect to the η → −η transformation. However, due to quantum fluc-

tuations in the initial conditions, the corresponding equality of flow coefficients holds

only approximately in every event:

vn(η) ≈ vn(−η). (5.12)

If one applies it while also assuming that flow coefficients do not change considerably

event to event, one will obtain:

rn(ηa, ηb) ≈
〈
cos
[
Ψn(−ηa)−Ψn(ηb)

]〉
〈cos [Ψn(ηa)−Ψn(ηb)]〉

. (5.13)

Thus, rn(ηa, ηb) approximately probes the measure of the relative event-plane angle

decorrelation (conventionally referred to as "torque") between pseudorapidities |ηa +

ηb| and |ηa − ηb|.

In case of asymmetric systems, torque effect could be calculated from the following

generalization of the longitudinal flow breaking observable, (5.10):

√
rn(ηa, ηb)× rn(−ηa,−ηb), (5.14)

which is by definition symmetric under parity transformation in longitudinal direc-

tion. The observable defined by equation (5.14) measures torque effect between four

pseudorapidity planes, which becomes clear if one uses the assumptions that led to

approximation (5.13):

√
rn(ηa, ηb)× rn(−ηa,−ηb) ≈

√
〈cos [Ψn(−ηa)−Ψn(ηb)]〉
〈cos [Ψn(ηa)−Ψn(ηb)]〉

〈cos [Ψn(ηa)−Ψn(−ηb)]〉
〈cos [Ψn(−ηa)−Ψn(−ηb)]〉

.

(5.15)

5.2.2 Qualitative estimate of the rn(ηa, ηb) observable

In this section, we will dwell upon the logic behind the definition of rn(ηa, ηb) and the

way this observable’s dependence on pseudorapidity can be qualitatively estimated

[296].
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One might wonder why the definitions of rn as a function of transverse (momenta)

and longitudinal (pseudorapidities) kinematic variables differ, see equations (4.17)

and (5.10). In this work, we are interested in probing the long-range1 structure of

particle correlations, because as we discussed in Sections 2.1.1 and 4.1 it is closely

related to the notion of collective flow and the evidence of QGP formation in collision

systems. Thus, it is important to subtract from the analyzed observables short-

range contributions coming from non-flow sources, such as jets. This can be done for

the two-particle correlation function by introducing wide rapidity cuts, see equations

(4.3), (5.7) and Section 4.2.1. However, one cannot straightforwardly extend the

definition of rn(paT , p
b
T ), (4.17), to the longitudinal case by simply replacing paT with ηa

and pbT with ηb, because this will give rise to the Vn∆(ηa, ηa) and Vn∆(ηb, ηb) terms that

contain short-range correlations. For that reason CMS introduced another definition

of rn as a function of longitudinal variables2, see equation (5.10), which combines two-

particle correlation functions in a way that suppresses contributions of short-range

effects.

As we discussed in Sections 1.2.2 and 2.2.4, most existing models of initial condi-

tions are two-dimensional. They suffice for the description of the transverse flow in

symmetric A-A collisions, as the values of flow coefficients barely change across several

units of rapidity, see Section 4.2. However, one cannot entirely neglect fluctuations in

pseudorapidity, because in this case rn(ηa, ηb) observable would be identically equal

to unity, which experiments show is not the case [143].

Nevertheless, for the reasons discussed in the previous paragraph, it is reasonable

to assume that flow barely changes its magnitude, vn(η), and slightly alternates its

direction, ψn(η), along the beam line. The two-particle correlation function, (5.7),

1In this section we refer to proximities in pseudorapidity coordinates between pairs yield when dis-

cussing ranges.
2Note that due to the difference in definitions of rn(paT, p

b
T) and rn(ηa, ηb), see equations (4.17) and

(5.10), constraints (4.15) and (4.16) do not hold for the latter observable. Hence, rn(ηa, ηb) does not

offer a test of all hydrodynamical models applicability to HIC, see Section 4.3.1, and the analysis

needs to be performed on a case to case basis.
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can be represented in the following mathematically equivalent way:

Vn∆(ηa, ηb) =
〈
〈ein(φa−φb)〉

〉
=
〈
〈ein(ψn(ηa)+δψ(ηa)−ψn(ηb)−δψ(ηb))〉

〉
, (5.16)

where we separate the flow angle dependence on pseudorapidity into the event plane,

ψn(η), and the fluctuations, δψn(η), parts. The former one describes collective motion

of matter, which corresponds to the long-range structure of the two-particle correla-

tion. The latter is dominated by the short-range non-flow effects, such as jets. Thus,

one expects that event-to-event correlator

〈δψ(ηa)δψ(ηb)〉 ' 0, (5.17)

as particles in bins ηa and ηb are separated by a substantial distance in longitudinal

direction. Equation (5.16) can be rewritten in the following way:

Vn∆(ηa, ηb) =
〈
ein(ψn(ηa)−ψn(ηb))

〉
︸ ︷︷ ︸

long-range

〈
〈ein(δψ(ηa)−δψ(ηb))〉

〉
︸ ︷︷ ︸

short-range

, (5.18)

which explicitly manifests factorization of the long- and short-range contributions to

the two-particle correlation function in pseudorapidity.

Representation of the two-particle correlation in the form of equation (5.18) eluci-

dates why contribution of short-range fluctuations is considerably suppressed to the

defined by equation (5.10) rn(ηa, ηb) observable. Indeed, if one applies approxima-

tion (5.17) to equation (5.18), one will notice that non-flow contributions to equation

(5.10) approximately cancel out:

rn(ηa, ηb) '

〈
ein(ψn(−ηa)−ψn(ηb))

〉
〈
ein(ψn(ηa)−ψn(ηb))

〉 ' 〈cos[n(ψn(−ηa)− ψn(ηb))]〉
〈cos[n(ψn(ηa)− ψn(ηb))]〉

. (5.19)

Taking into account that bin a is located in the vicinity of the origin, one can

linearly expand flow angle, ψn(ηa), dependence on pseudorapidity, ηa:

ψn(±ηa) ' ψn(0)± dψn
dη

(0)ηa. (5.20)

Substituting this result into equation (5.19), one gets:

rn(ηa, ηb) '
〈cos[n(ψn(0)− ψn(ηb))]− n sin[n(ψn(0)− ψn(ηb))]dψn

dη
(0)ηa〉

〈cos[n(ψn(0)− ψn(ηb))] + n sin[n(ψn(0)− ψn(ηb))]dψn
dη

(0)ηa〉
. (5.21)
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Expanding equation (5.21) further, one arrives at the final result:

rn(ηa, ηb) ' 1− 2n2〈(ψn(0)− ψn(ηb)))
dψn
dη

(0)〉ηa, (5.22)

which suggests that at small values of pseudorapidity deviation of the rn(ηa, ηb) ob-

servable from unity should depend linearly on ηa. We will test the validity of this

qualitative conclusion quantitatively in our hydrodynamic model in Section 5.2.4.

5.2.3 Model of long-range longitudinal fluctuations

From the experimentally measured dependence of the rn(ηa, ηb) observable on pseu-

dorapidity one aims to get an estimate of the extent to which quantum fluctuations

alternate initial conditions longitudinal structure. This expectation is based on the

assumption of the linear hydro response, which holds for the second and third flow

harmonics on average around mid-rapidity, see Section 3.3. To verify this approxima-

tion rigorously, one needs to perform a full hydrodynamic calculation of the rn(ηa, ηb)

observable, which we do in Section 5.2.4. However, we will start using this intuition

immediately when discussing initial conditions models.

In Section 3.1 we specified the initial conditions profile of individual nucleons in

longitudinal direction, see equation (3.2), which allows to reasonably model the par-

ticle yield asymmetry in small systems, see Fig. 3.1. This prescription was motivated

by the observation that relativistic particles should preferably emit in the direction of

their motion [299]. This asymmetry of matter deposition leads to event-by-event fluc-

tuations of the initial longitudinal profile, which are further enhanced by folding with

the NBD distribution, see equation (3.3) and specifically note prefactor si. However,

it was shown that all these contributions are not able to reproduce the magnitude

of the experimentally measured rn(ηa, ηb) observable in small systems, if one is to

estimate it based on the initial conditions longitudinal profile anisotropy [296].

It was suggested to introduce an additional source of fluctuations by alternating

event-to-event the end-points of the matter deposition profile of individual nucleons

[300, 301]. Yet on average one still aims to reproduce the prescription specified by

equation (3.2), as it proved to work well in describing small systems. This is possible
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if one uses the following "step" function profile with variable ηi uniformly distributed

in the [−ybeam, ybeam] segment, see Fig. 5.12:

ρiL±(ηs) ≡ 2θ [±(ηi − η)] exp

[
−(|ηs| − η0)2

2σ2
η

θ (|ηs| − η0)

]
, (5.23)

where θ(x) is the "step" function, which equals unity if its argument is greater than

zero and evaluates to zero otherwise.

Figure 5.12: Illustration of the used in our model prescriptions describing longitudinal

dependence of the matter density deposition in the initial conditions. Thick line

corresponds to the contribution of an individual nucleon moving in the direction of

the lead nucleus, ρiL+(ηs). In this case the value of ηi was chosen to be equal to

one. Thin line corresponds to a randomly generated average profile, 1
N

N∑
i=1

ρiL+(ηs).

We used N = 20 as it represents a typical number of sources in a high multiplicity

p-Pb event. Dashed line corresponds to a profile averaged over an infinite number of

sources, N . As expected, it coincides with distribution ρL(ηs), see equation (3.2).

The total initial entropy density distribution is then given by a formula similar to

equation (3.3):

s(xT, ηs, τ = τ0) =

Npart∑
i=1

si ρ⊥(xT − xiT) ρiL±(ηs). (5.24)

However, the difference introduced by the additional fluctuations of the longitudinal

profile, ρiL±, requires re-tuning of the NBD parameters. We used λ = 5.5 and κ = 2.0,

which provide a good fit of the model to the CMS multiplicity data, see Fig. 5.13.
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Figure 5.13: Distribution of (uncorrected) multiplicity Ntrk at |η| < 2.4 and pT > 0.4

GeV in p-Pb events from the CMS Collaboration [222] compared to the entropy distri-

bution implied by a basic MC-Glauber model (with a fixed entropy per participant)

that was discussed in Section 2.2.2 (Glauber), the model supplemented with addi-

tional negative binomial fluctuations of individual nucleon sources (Glauber + NBD)

and described by equation (3.3), and the model with negative binomial fluctuations

and uniformly distributed fluctuations of the longitudinal profile endpoints (Glauber

+ NBD + ηi) that is based on equation (5.24).

Before discussing the results of our model’s calculations, we will for the reasons of

completeness list the other initial conditions frameworks that were used in the studies

of rapidity fluctuations [302, 303, 304, 305, 306, 274, 307]. All of them implicitly use

the idea of MC-Glauber sampling in the transverse plane, but have various prescrip-

tions for the longitudinal profiles. Those are either heuristically defined or use various

(mostly kinetic) models such as AMPT, EPOS, HIJING, LEXUS, PYTHIA, UrQMD

that can describe particle evolution and thus provide insights into the longitudinal

matter distribution, but were not initially developed for the treatment of collective

effects and thus are out of scope of this work. We also note that none of the afore-

mentioned studies provided a hydrodynamic calculation of the rn(ηa, ηb) observables

in small systems, which we do in the next section.
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5.2.4 Comparison to experiment

We start the comparison of our model results to experimental data with the rn(ηa, ηb)

observable, see Fig. 5.14. One can observe that the initial version of our model de-

Figure 5.14: Effect of longitudinal fluctuations and bulk viscosity on the rn(ηa, ηb)

observable defined by equation (5.10). Empty diamonds correspond to the exper-

imental measurement of rn(ηa, ηb), which considers particles to pertain to bin b if

their pseudorapidities satisfy the condition 3.0 < |ηb| < 4.0. Full diamonds repre-

sent the measurement of the same observable, but defined using another constraint:

particles in bin b have pseudorapidities in the range 4.4 < |ηb| < 5.0. This should

make the latter measurement a more appropriate quantity for a one-to-one compari-

son with a result obtained in hydrodynamic modeling, see equation (5.11) and Section

5.2.2 for details, which is why we calculate rn(ηa, ηb) in our model using the latter

pseudorapidity range for bin b. However, we note that both definitions of the b bin

pseudorapidity range provide similar results of the experimentally measured rn(ηa, ηb)

observable. The solid line corresponds to the calculation based on our model of ini-

tial conditions described in Section 3.1, see equation (3.3). The dotted line illustrates

the results obtained with the model discussed in Section 5.2.3, which has an addi-

tional mechanism of generating longitudinal fluctuations, see equation (5.24). In this

(dotted line) computation we use zero bulk viscosity. The dashed line shows calcula-

tion performed using the latter model (with additional longitudinal fluctuations) and

non-trivial "plateau" bulk profile illustrated in Fig. 5.5 with the dashed line.



5.2 Longitudinal fluctuations 165

scribed in Section 3.1, with the initial conditions specified by equation (3.3), has

almost no torque effect. The value of the rn(ηa, ηb) observable evaluates almost iden-

tically to one in the entire pseudorapidity range, 0 < ηa < 2.4. However, the final

version of our model described in Section 5.2.3, with the initial conditions specified by

equation (5.24) and the "plateau" scenario of the bulk profile, provides a reasonable

agreement with experimental data. We also observe a nearly linear dependence of

rn(ηa, ηb) calculated in our model on pseudorapidity, ηa, which quantitatively con-

firms the validity of the result discussed in 5.2.2. Finally, we check that although

bulk viscosity modifies the value of the effective pressure in QGP medium, it does

not affect the results of our calculation for the rn(ηa, ηb) observable.

Having confirmed that the final version of our model with additional longitudinal

fluctuations and non-trivial bulk viscosity reasonably captures experimental trends

of longitudinal dynamics is small collision systems, we turn to the transverse ob-

servables. In Fig. 5.15, we compare 〈pT〉, v̄n{2}, vn{2}(pT), rn(paT, p
b
T) observables

obtained using our model of the initial conditions described in Section 3.1 (it includes

shear viscosity, η/s = 0.08), its extended version discussed in Section 5.2.3 (with ad-

ditionally added longitudinal fluctuations and bulk viscosity following the "plateau"

temperature dependent scenario, ζ/s ∼ 0.03), and CMS experimental data [143].

We observe that our extended version of the model has even better agreement with

the data: specifically, it provides the same quality description of flow observables, but

(due to bulk viscosity) allows to also reasonably reproduce experimental results on

the average transverse momentum of identified particles. The agreement holds in

a wide 0 − 30% centrality region, see Table 3.1, and gets violated only at lower

multiplicities, where one does not expect hydrodynamics to be applicable, see Section

4.3.4. One can see that elliptical integrated and differential flow coefficients agree

with the data within errorbars. Triangular flow is systematically overestimated, which

signifies that the transverse fluctuations prescription of the initial conditions should

be improved. This is not surprising as our model considers fluctuations at the nucleon

level. Realistic CGC treatment of subnucleonic effects in the spirit of IP-Glasma is
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required. We expect that the agreement with the data in small systems will improve

once the glasma three-dimensional models of initial conditions become available.

Noticeably, we did not need to modify any parameters of the model (η/s = 0.08,

σ = 0.4 fm) that we initially used for making our prediction of rn(paT, p
b
T). Addition

of a "plateau"-like bulk profile and longitudinal fluctuations within errorbars does

not modify the results of the calculation of the transverse observables and thus does

not affect their agreement with the data. Specifically, the extended model results

agree with the rn(paT, p
b
T) experimental measurements within errorbars. This is an

important and non-trivial result, because it confirms that our prediction remains

valid after the extension and our conclusion of rn(paT, p
b
T) being a convenient probe of

the initial conditions transverse granularity is further verified1.

We summarize the results of the comparison with an overall observation that our

extended hydro model at least qualitatively captures experimental trends of both

longitudinal and transverse observables. Thus, hydrodynamics is a plausible expla-

nation of the dynamics taking place in small colliding systems and alternative models

have to provide at least equally good agreement with a wide range of the studied

experimental observables to question this statement.

1We note that the characteristic scale of transverse fluctuations could not be accurately estimated

from the average transverse momentum of identified hadrons, because bulk viscosity contributes to

its value.
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Figure 5.15: Comparison of the models described in Sections 3.1 (solid line), 5.2.3

(dashed line) and experimental data.



6
Conclusion

This work was completed during the time of a paradigm shift. Initially, small collision

systems, as opposite to large ones, were considered as a reference lacking collective

effects [97]. But later, evidences of flow in hadron collisions were observed ubiqui-

tously across systems of all sizes [140, 308]. One of the possible explanations of this

phenomenon is the transition of hadronic matter to the QGP state. In this work, we

aimed to explore this hypothesis by performing a hydrodynamic calculations of p-Pb

and Pb-Pb collisions at top LHC energy.

We proposed a robust fluid dynamics framework [139] that included all the latest

developments utilized at the time when the first high multiplicity p-Pb data was

published [222] for describing A-A collisions and that was able to account for the

specific to p-A systems phenomena. Specifically, our approach treats hadron collisions

event-to-event, which allows to describe initial conditions quantum fluctuations at

nucleonic level consistently across systems of various sizes and energies, see Fig. 3.3.

Importantly, this enables us to accurately describe the high multiplicity tail of the

experimental p-Pb multiplicity distribution, which is important, because only in this

range small systems demonstrate signatures of collective behavior, see Fig. 3.2 and

Table 3.1. Our framework incorporates the possibility to describe the characteristic

longitudinal anisotropy of p-Pb collisions (see Fig. 3.1) through the entire evolution

due to the utilization of the 3+1D hydrodynamics equations solver MUSIC [214]. This

package is based on the Kurganov-Tadmor algorithm [213], which allows to accurately

treat propagation of matter density discontinuities that are expected to be substantial

in small collision systems. It also fully incorporates the possibility to describe viscous

168
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effects that proved to be important in the description of large systems, See. (2.38),

(2.39), (2.59), and [309, 106, 310].

Our work of testing the applicability of hydrodynamics to the description of small

collision systems is of an exploratory nature. There is still a number of theoreti-

cal challenges even in the case of large A-A collisions, where the QGP paradigm is

now widely accepted [255]. Specifically, the 3D modeling of sub-nucleonic degrees

of freedom in the initial conditions, the exact mechanism of thermalization, the first

principle QCD calculation of the fluid dynamics transport coefficients and of the vis-

cous correction to the particle distribution function are among the topics that require

further clarification before it is possible to claim that the processes taking place in

HIC are fully understood and their modeling is performed accurately. For that reason,

we use a robust framework that includes all relevant well-understood effects of colli-

sion systems and explore its parameter space to assess the overall phenomenological

capabilities of hydrodynamics.

We started our study with performing the conventional analysis of flow observ-

ables (v2{2}, v3{2}, v2{4}) that strongly contributed to the establishment of the QGP

paradigm in large systems [102]. We compared the results obtained using our fluid

dynamics framework [139] to the available at the time p-Pb data [222] and stud-

ied the parameter space of the model. We focused mainly on the two parameters

that were considered to be specifically important in the description of the observed

final particle anisotropy in large systems: σ, which is the granularity of the initial

conditions transverse fluctuations, and η/s, which is the ratio of shear viscosity to

entropy density. Bulk viscosity was not considered in our calculation at that point

based on the expectation that similarly to large systems [282] its effect on flow will

be subdominant compared that of shear.

Result of the comparison presented in Chapter 3 showed that hydrodynamics can

at least qualitatively describe experimental data trends in small systems. We ob-

served that the values of the model’s parameters σ = 0.4 fm and η/s = 0.08 work

reasonably well. They perfectly fit the high multiplicity elliptic flow data, but some-
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what systematically overestimate its triangular component. This result may suggest

the inclusion of sub-nucleonic fluctuations which are expected to affect primarily the

triangular flow component. Moreover, the temperature dependence of η/s is still not

known with any degree of precision, while our studies show that shear viscosity affects

the results of the triangular flow component calculation to a larger extent than those

of the elliptic one. Finally, the exact prescription for the viscous correction that also

greatly influences particles’ final anisotropy is also not available at the moment. All

the aforementioned effects introduce systematic uncertainties and define the precision

that one could expect from a hydrodynamic model of hadron collisions. This is one

of the main reasons that in this work, we are focused on exploring the overall capabil-

ities of the fluid dynamics paradigm. The fact that our calculation’s triangular flow

multiplicity profile reproduces the shape of the experimental data one suggests that

our framework captures the relevant small systems’ phenomena.

In Chapter 3, we also showed that our model can explain hydrodynamically the

striking similarity in triangular flow between p-Pb and Pb-Pb events with the same

multiplicity, see left panel of Fig. 3.6 and [222]. This is a non-trivial result, because

one expects small and large systems to have different eccentricities. We confirm this

expectation in our calculations, see Fig. 3.14, and explore the difference between the

systems characteristics. Specifically, we observe that the wounded nucleon number

and the transverse size of the systems has different dependence on multiplicity in the

p-Pb and Pb-P collisions. We conclude that the general dependence on system size

is not a trivial matter. A proper hydrodynamic calculation should be performed in

order to evaluate the interplay of the competing contributions of the system’s size

(initial pressure gradients) and viscous (energy dissipation and thus evolution time)

effects on the magnitude of particle flow.

Additionally, in Chapter 3, we presented a prediction of the multiplicity depen-

dence of the v3{4} flow component in p-Pb collisions at 5.02 TeV, see right panel

of Fig. 3.7. We note that its non-zero value is an even more convincing evidence

(compared to the same result for v2{2} and v3{2}) of collectivity in the system, be-
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cause the observable is defined based on the multi-particle correlator. If confirmed,

this finding will serve a further non-trivial confirmation of QGP formation in small

systems and will put additional constraints on alternative explanations.

In Chapter 4, we discussed how signatures of collective behavior could be observed

using the the entire dataset of the two-particle correlation matrix. This approach pro-

vides a considerably stricter test on the applicability of hydrodynamics to describing

the hadron collisions dynamics compared to the conventional flow analysis that we

performed in Chapter 3. First, vn{2} and v̄n{2} coefficients represent averaging over

groups of the two-particle correlation matrix elements, which means that the con-

ventional analysis is less restrictive than the comparison of the model’s calculation

results to the entire matrix. Second, it was shown on the example of large collision

systems [141] that if the comparison of the hydrodynamics results to the two-particle

correlation matrix is performed in terms of the rn(paT, p
b
T) variable, one can obtain

general restrictions on the applicability of the fluid dynamics regardless of its spe-

cific implementation. That is the reason that we suggested to measure the rn(paT, p
b
T)

observable in small systems and made a prediction of its dependence on multiplicity

that was later confirmed by CMS collaboration, see Fig. 4.7 and [143]. This fact indi-

cates that our framework is applicable for the at least qualitative description of small

colliding systems and that hydrodynamics is a plausible explanation of the collective

effects in p-Pb collisions in the region of high multiplicity (Ntrk > 150 or 0% − 2%

centrality) and low transverse momentum (pT < 2.5GeV).

Our studies of the parameter dependence of the rn(paT, p
b
T) observable clarified the

previous studies made for the case of large colliding systems. We found out that

rn(paT, p
b
T) is more sensitive to the granularity of the initial conditions than the vis-

cosity used during the hydrodynamical expansion of the system. This makes it a

promising probe for studying the initial conditions in hadron collisions at least com-

pared to the other conventionally used observables. This finding and the agreement

of our prediction for rn(paT, p
b
T) with experimental data suggests that the transverse

size of longitudinal fluctuations should be in the ballpark of σ = 0.4 fm, which agrees
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with other studies [131, 236, 200].

Finally, in Chapter 4, we study the final state effects contribution to flow ob-

servables using UrQMD [171]. We find out that they have moderate effect on the

transverse flow observables, which we conclude is the result of the considerably low

final multiplicity in p-Pb systems. Overall, the UrQMD afterburner improves the

agreement of our model with the rn(paT, p
b
T) experimental measurements and sup-

ports the conjecture of the fluid dynamics applicability to the description of high

multiplicity events in small systems.

In Chapter 5, we address the recent findings of the importance of bulk viscosity

for the accurate description of the transverse particle momentum in large systems

[144] and the new experimental data on the longitudinal fluctuations in p-Pb col-

lisions that are described with the rn(ηa, ηb) observable [143]. For that reason we

explain how we extend the model to account for the appropriate effects and then

perform a hydrodynamical calculation trying several different prescriptions for the

bulk temperature dependence. We find out that the small magnitude of the used

bulk profile (ζ/s ∼ 0.03, "plateau" scenario, dashed line in Fig. 5.5) is favorable

for the description of the transverse momentum observables. Thus, similarly to the

case of large systems [144] we conclude that bulk viscosity plays an important role in

describing final particles’ velocities. We also observe similar effect of bulk viscosity

on differential flow observables vn{2}(pT): they get slightly suppressed in the low and

slightly enhanced in the high transverse momentum regions. However, unlike in [144],

the inclusion of bulk viscosity into the model does not require us to alter the value of

the shear counterpart, because the magnitude of the bulk profile that we use is con-

siderably smaller (it is in line with the results of the calculations presented in [200]).

Interestingly, the consideration in the model of both bulk or longitudinal fluctuations

effects does not require us to alter any of the previously used parameters: the results

of our flow calculations and predictions remain the same within errorbars, and our

conclusions on the role of the rn(paT, p
b
T) observable as a probe of initial conditions

stays valid. Moreover, our model can now capture experimental trends of < pT >
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and rn(ηa, ηb) observables, see Fig. 5.15.

The, although qualitative, simultaneous description of such a large number of ex-

perimental observables, including the confirmed prediction of the model for rn(paT, p
b
T),

makes a strong case towards the plausibility of QGP formation in high multiplicity

small collision systems. It is even further reinforced by the observation that the ob-

tained in this work estimates of the model’s parameters – σ = 0.4 fm, η/s = 0.08,

ζ/s ∼ 0.03 – are in line with the later performed detailed studies of the properties

of QGP from large systems experiments [311], which suggests that the same type

of matter is being created in hadron collisions of all sizes. Of course, despite these

convincing results, much further work is required to clarify that one accurately under-

stands the mechanisms taking place in hadron collisions. All of the mentioned above

theoretical challenges of fluid dynamics applicability to the description of hadron col-

lisions should be addressed. We see the following two directions for future research:

phenomenological and oriented towards first principles. The former could proceed

with the approach applied in [182]. It is clear that sub-nucleonic fluctuations are

substantial in the description of small systems [182, 312, 181]. One could come up

with an extension of the TRENTO model to include them and tune the parameters

of this phenomenological model to experimental data. Moreover, there is a suggestion

[313] that one would not be able to differentiate between the specific implementations

of the sub-nucleonic fluctuations as they will quickly smooth out by viscous effects,

which actually supports the generality of the conclusions obtained in this work and

provides an explanation on why we were able to obtain a reasonable estimate of

the transverse granularity that agrees with the results of other studies. However,

the extraction of such effective model parameters in practice will merely indirectly

advances us towards the understanding of the physical mechanisms taking place in

hadron collisions. That is the reason why we find to be more promising the approaches

that are oriented towards the first principles modeling of initial conditions, such as

3+1D IP-Glasma [314]. We expect these studies to shed light upon the theoretical

origin of the applied in this work phenomenological approach to the description of
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longitudinal fluctuations1. Similarly, theoretical calculations of bulk viscosity, such

as [276], have the potential to elucidate what transport coefficients’ profiles should be

used in hydrodynamic calculations. Finally, we want to highlight that other barely

studied theoretical effects, such as thermal fluctuations [315, 316] should be carefully

considered before one states that the mechanism of QGP formation in small sys-

tems is entirely understood. We conclude by making an observation that theoretical,

phenomenological, and experimental approaches proved to work specifically success-

ful when applied simultaneously and collaboratively. We hope that it will continue

to be the case in the future so that our understanding of the surrounding Universe

progresses at a fast pace.

1After this conclusion was written, but before this work was submitted, the results of the following

study were made publicly available [291]. Those explore the possibility of simultaneous description

of small and large system with an extended TRENTO model (although still 2+1D) that includes

parametric prescription for sub-nucleonic degrees of freedom. First, they are consistent with our

model’s estimates for the parameter values of σ, η/s, ζ/s. Second, they observe ∼ 10− 15% tension

describing vn flow observables in 5.02 TeV p-Pb. This is in line with our results. It also further

supports our proposal that one needs to focus on developing a first principle model of initial con-

ditions, because a parametric framework only indirectly suggests what physical phenomena should

be taken into account in future calculations. Finally, this extensive parameter space exploration

study agrees with the main conclusion of this work on the plausibility of the description of high

multiplicity hadron collisions within the hydrodynamic paradigm.



Bibliography

[1] Wikipedia, "Science", https://en.wikipedia.org/wiki/Science.

[2] Wikipedia, "Standard Model", https://en.wikipedia.org/wiki/Standard_

Model.

[3] E. D. Bloom et al., Phys. Rev. Lett. 23, 930 (1969).

doi:10.1103/PhysRevLett.23.930

[4] M. Breidenbach et al., Phys. Rev. Lett. 23, 935 (1969).

doi:10.1103/PhysRevLett.23.935

[5] F. Abe et al. [CDF Collaboration], Phys. Rev. Lett. 74, 2626 (1995)

doi:10.1103/PhysRevLett.74.2626 [hep-ex/9503002].

[6] S. Abachi et al. [D0 Collaboration], Phys. Rev. Lett. 74, 2422 (1995)

doi:10.1103/PhysRevLett.74.2422 [hep-ex/9411001].

[7] K. Kodama et al. [DONUT Collaboration], Phys. Lett. B 504, 218 (2001)

doi:10.1016/S0370-2693(01)00307-0 [hep-ex/0012035].

[8] Biever, C., "New Scientist", https://www.newscientist.com/article/

dn22029-its-a-boson-but-we-need-to-know-if-its-the-higgs

[9] Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 81, 1562

(1998) doi:10.1103/PhysRevLett.81.1562 [hep-ex/9807003].

[10] Q. R. Ahmad et al. [SNO Collaboration], Phys. Rev. Lett. 89, 011301 (2002)

doi:10.1103/PhysRevLett.89.011301 [nucl-ex/0204008].

175

https://en.wikipedia.org/wiki/Science
https://en.wikipedia.org/wiki/Standard_Model
https://en.wikipedia.org/wiki/Standard_Model
https://www.newscientist.com/article/dn22029-its-a-boson-but-we-need-to-know-if-its-the-higgs
https://www.newscientist.com/article/dn22029-its-a-boson-but-we-need-to-know-if-its-the-higgs


176 BIBLIOGRAPHY

[11] B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Phys.

Rev. Lett. 116, no. 6, 061102 (2016) doi:10.1103/PhysRevLett.116.061102

[arXiv:1602.03837 [gr-qc]].

[12] NASA Science: Astrophysics, "Dark Energy Dark Matter", https://science.

nasa.gov/astrophysics/focus-areas/what-is-dark-energy.

[13] N. N. Bogoliubov and O. S. Parasiuk, Acta Math. 97, 227 (1957).

doi:10.1007/BF02392399

[14] S. Weinberg, Phys. Rev. 118, 838 (1960). doi:10.1103/PhysRev.118.838

[15] M. Planck, 479 (1899).

[16] S. Dimopoulos and H. Georgi, Nucl. Phys. B 193, 150 (1981). doi:10.1016/0550-

3213(81)90522-8

[17] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).

doi:10.1103/PhysRevLett.30.1343

[18] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).

doi:10.1103/PhysRevLett.30.1346

[19] R. P. Feynman, Phys. Rev. 76, 749 (1949). doi:10.1103/PhysRev.76.749

[20] M. Botje, Lecture notes Particle Physics II, Nikhef (2013).

[21] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics Volume 3,

"Quantum Mechanics: Non-Relativistic Theory", Pergamon Press (1965).

[22] V. B. Berestetskii, E. M. Lifshitz, L. P. Pitaevskii, Course of Theoretical Physics

Volume 4, "Relativistic Quantum Theory", Pergamon Press (1982).

[23] J. A. Wheeler, Phys. Rev. 52, 1107 (1937). doi:10.1103/PhysRev.52.1107

[24] W. Heisenberg, Z. Physik 120, 513 (1943). doi.org/10.1007/BF01329800

https://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy
https://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy


BIBLIOGRAPHY 177

[25] R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).

doi:10.1103/RevModPhys.20.367

[26] M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300 (1954).

doi:10.1103/PhysRev.95.1300

[27] A. Anastasi et al. [KLOE-2 Collaboration], Phys. Lett. B 767, 485 (2017)

doi:10.1016/j.physletb.2016.12.016 [arXiv:1609.06631 [hep-ex]], http://w3.

lnf.infn.it/the-variable-constant/.

[28] M. Czakon, Nucl. Phys. B 710, 485 (2005) doi:10.1016/j.nuclphysb.2005.01.012

[hep-ph/0411261].

[29] L. Landau, "Niels Bohr and the Development of Physics", ed W. Pauli, Perga-

mon Press, London (1955).

[30] C. G. Callan, Jr., Phys. Rev. D 2, 1541 (1970). doi:10.1103/PhysRevD.2.1541

[31] K. Symanzik, Commun. Math. Phys. 18, 227 (1970). doi:10.1007/BF01649434

[32] A. M. Polyakov, Phys. Lett. 103B, 207 (1981). doi:10.1016/0370-

2693(81)90743-7

[33] S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7, 1888 (1973).

doi:10.1103/PhysRevD.7.1888

[34] C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016).

[35] R. Gupta, hep-lat/9807028.

[36] T. Ludlam et al. [BRAHMS and STAR and PHOBOS and PHENIX Collabo-

rations], doi:10.2172/15015225

[37] K. G. Wilson, Phys. Rev. D 10, 2445 (1974). doi:10.1103/PhysRevD.10.2445

[38] G. C. Wick, Phys. Rev. 96, 1124 (1954). doi:10.1103/PhysRev.96.1124

http://w3.lnf.infn.it/the-variable-constant/
http://w3.lnf.infn.it/the-variable-constant/


178 BIBLIOGRAPHY

[39] A. Bazavov et al., Phys. Rev. D 80, 014504 (2009)

doi:10.1103/PhysRevD.80.014504 [arXiv:0903.4379 [hep-lat]].

[40] R. Sommer, F. Tekin and U. Wolff, PoS LATTICE 2010, 241 (2010)

[arXiv:1011.2332 [hep-lat]].

[41] S. Aoki et al. [PACS-CS Collaboration], Phys. Rev. D 79, 034503 (2009)

doi:10.1103/PhysRevD.79.034503 [arXiv:0807.1661 [hep-lat]].

[42] C. Amsler et al. [Particle Data Group], Phys. Lett. B 667, 1 (2008).

doi:10.1016/j.physletb.2008.07.018

[43] Z. Fodor and C. Hoelbling, Rev. Mod. Phys. 84, 449 (2012)

doi:10.1103/RevModPhys.84.449 [arXiv:1203.4789 [hep-lat]].

[44] M. Luscher, Nucl. Phys. B 364, 237 (1991). doi:10.1016/0550-3213(91)90584-

K

[45] F. Karsch and H.W. Wyld, Phys. Rev. D 35, 2518 (1987).

[46] S. Huang, Phys. Rev. D 47, 653 (1993).

[47] A. Nakamura and S. Sakai, Phys. Rev. Lett. 94, 072305 (2005).

[48] H. B. Meyer, Phys. Rev. Lett. 100, 162001 (2008)

doi:10.1103/PhysRevLett.100.162001 [arXiv:0710.3717 [hep-lat]].

[49] F. Karsch, D. Kharzeev and K. Tuchin, Phys. Lett. B 663, 217 (2008)

doi:10.1016/j.physletb.2008.01.080 [arXiv:0711.0914 [hep-ph]].

[50] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys.

2, 231 (1998)] doi:10.1023/A:1026654312961 [hep-th/9711200].

[51] G. Policastro, D. T. Son and A. O. Starinets, Phys. Rev. Lett. 87, 081601 (2001)

doi:10.1103/PhysRevLett.87.081601 [hep-th/0104066].



BIBLIOGRAPHY 179

[52] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Phys. Lett. B 428, 105 (1998)

doi:10.1016/S0370-2693(98)00377-3 [hep-th/9802109].

[53] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998) [hep-th/9802150].

[54] A. Karch and E. Katz, JHEP 0206, 043 (2002) doi:10.1088/1126-

6708/2002/06/043 [hep-th/0205236].

[55] J. Polchinski and M. J. Strassler, Phys. Rev. Lett. 88, 031601 (2002)

doi:10.1103/PhysRevLett.88.031601 [hep-th/0109174].

[56] J. Polchinski and M. J. Strassler, hep-th/0003136.

[57] T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005)

doi:10.1143/PTP.113.843 [hep-th/0412141].

[58] A. Buchel, Nucl. Phys. B 802, 281 (2008) doi:10.1016/j.nuclphysb.2008.03.009

[arXiv:0801.4421 [hep-th]].

[59] P. Benincasa, A. Buchel and A. O. Starinets, Nucl. Phys. B 733, 160 (2006)

doi:10.1016/j.nuclphysb.2005.11.005 [hep-th/0507026].

[60] A. Buchel, Phys. Rev. D 72, 106002 (2005) doi:10.1103/PhysRevD.72.106002

[hep-th/0509083].

[61] A. Buchel, Phys. Lett. B 663, 286 (2008) doi:10.1016/j.physletb.2008.03.069

[arXiv:0708.3459 [hep-th]].

[62] S. S. Gubser, A. Nellore, S. S. Pufu and F. D. Rocha, Phys. Rev. Lett. 101,

131601 (2008) doi:10.1103/PhysRevLett.101.131601 [arXiv:0804.1950 [hep-th]].

[63] S. S. Gubser, S. S. Pufu and F. D. Rocha, JHEP 0808, 085 (2008)

doi:10.1088/1126-6708/2008/08/085 [arXiv:0806.0407 [hep-th]].

[64] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics Volume 6,

"Fluid Mechanics", Butterworth-Heinemann (1987).



180 BIBLIOGRAPHY

[65] S. Chapman and T. G. Cowling, “The mathematical theory of non-uniform

gases”, Cambridge University Press (1970).

[66] S. R. de:Groot, W. A. van Leeuwen and C. G. van Weert, "Relativistic kinetic

theory : principles and applications", Elsevier North-Holland (1980).

[67] W. A. Hiscock and L. Lindblom, Phys. Rev. D 31, 725 (1985).

doi:10.1103/PhysRevD.31.725

[68] P. Kostadt and M. Liu, Phys. Rev. D 62, 023003 (2000).

doi:10.1103/PhysRevD.62.023003

[69] I. Muller, Z. Phys. 198, 329 (1967). doi:10.1007/BF01326412

[70] W. Israel, Annals Phys. 100, 310 (1976). doi:10.1016/0003-4916(76)90064-6

[71] S. S. Gubser, Phys. Rev. D 82, 085027 (2010) doi:10.1103/PhysRevD.82.085027

[arXiv:1006.0006 [hep-th]].

[72] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics Volume 10,

"Physical Kinetics", Pergamon Press (1981).

[73] K. Dusling, G. D. Moore and D. Teaney, Phys. Rev. C 81, 034907 (2010)

doi:10.1103/PhysRevC.81.034907 [arXiv:0909.0754 [nucl-th]].

[74] H. Grad, Commun. Pure Appl. Math. 2, 331 (1949).

[75] W. Israel and J. M. Stewart, Phys. Lett. A 58, 213 (1976).

[76] W. Israel and J. M. Stewart, Annals Phys. 118, 341 (1979). doi:10.1016/0003-

4916(79)90130-1

[77] R. Baier, P. Romatschke and U. A. Wiedemann, Nucl. Phys. A 782, 313 (2007)

doi:10.1016/j.nuclphysa.2006.10.016 [nucl-th/0604006].

[78] P. Romatschke, Int. J. Mod. Phys. E 19, 1 (2010)

doi:10.1142/S0218301310014613 [arXiv:0902.3663 [hep-ph]].



BIBLIOGRAPHY 181

[79] E. Calzetta and B. L. Hu, Phys. Rev. D 37, 2878 (1988).

doi:10.1103/PhysRevD.37.2878

[80] J. P. Blaizot and E. Iancu, Phys. Rev. Lett. 70, 3376 (1993)

doi:10.1103/PhysRevLett.70.3376 [hep-ph/9301236].

[81] E. A. Calzetta, B. L. Hu and S. A. Ramsey, Phys. Rev. D 61, 125013 (2000)

doi:10.1103/PhysRevD.61.125013 [hep-ph/9910334].

[82] J. P. Blaizot and E. Iancu, Nucl. Phys. B 557, 183 (1999) doi:10.1016/S0550-

3213(99)00341-7 [hep-ph/9903389].

[83] P. B. Arnold, G. D. Moore and L. G. Yaffe, JHEP 0301, 030 (2003)

doi:10.1088/1126-6708/2003/01/030 [hep-ph/0209353].

[84] U. W. Heinz, Phys. Rev. Lett. 51, 351 (1983). doi:10.1103/PhysRevLett.51.351

[85] E. Braaten and R. D. Pisarski, Nucl. Phys. B 337, 569 (1990). doi:10.1016/0550-

3213(90)90508-B

[86] J. Frenkel and J. C. Taylor, Nucl. Phys. B 334, 199 (1990). doi:10.1016/0550-

3213(90)90661-V

[87] J. C. Taylor and S. M. H. Wong, Nucl. Phys. B 346, 115 (1990).

doi:10.1016/0550-3213(90)90240-E

[88] P. F. Kelly, Q. Liu, C. Lucchesi and C. Manuel, Phys. Rev. D 50, 4209 (1994)

doi:10.1103/PhysRevD.50.4209 [hep-ph/9406285].

[89] J. P. Blaizot and E. Iancu, Phys. Rept. 359, 355 (2002) doi:10.1016/S0370-

1573(01)00061-8 [hep-ph/0101103].

[90] M. A. York and G. D. Moore, Phys. Rev. D 79, 054011 (2009)

doi:10.1103/PhysRevD.79.054011 [arXiv:0811.0729 [hep-ph]].

[91] P. Romatschke and D. T. Son, Phys. Rev. D 80, 065021 (2009)

doi:10.1103/PhysRevD.80.065021 [arXiv:0903.3946 [hep-ph]].



182 BIBLIOGRAPHY

[92] S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani, JHEP 0802,

045 (2008) doi:10.1088/1126-6708/2008/02/045 [arXiv:0712.2456 [hep-th]].

[93] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets and M. A. Stephanov,

JHEP 0804, 100 (2008) doi:10.1088/1126-6708/2008/04/100 [arXiv:0712.2451

[hep-th]].

[94] E. Iancu and R. Venugopalan, In *Hwa, R.C. (ed.) et al.: Quark gluon plasma*

249-3363 doi:10.1142/9789812795533_0005 [hep-ph/0303204].

[95] F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, Ann. Rev. Nucl. Part.

Sci. 60, 463 (2010) doi:10.1146/annurev.nucl.010909.083629 [arXiv:1002.0333

[hep-ph]].

[96] A. Dumitru, K. Dusling, F. Gelis, J. Jalilian-Marian, T. Lappi and R. Venu-

gopalan, Phys. Lett. B 697, 21 (2011) doi:10.1016/j.physletb.2011.01.024

[arXiv:1009.5295 [hep-ph]].

[97] B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C 80, 064912 (2009)

doi:10.1103/PhysRevC.80.064912 [arXiv:0909.0191 [nucl-ex]].

[98] R. D. Ball et al. [NNPDF Collaboration], JHEP 1504, 040 (2015)

doi:10.1007/JHEP04(2015)040 [arXiv:1410.8849 [hep-ph]].

[99] V. Khachatryan et al. [CMS Collaboration], Phys. Rev. Lett. 105, 022002 (2010)

doi:10.1103/PhysRevLett.105.022002 [arXiv:1005.3299 [hep-ex]].

[100] P. B. Arnold, Int. J. Mod. Phys. E 16, 2555 (2007)

doi:10.1142/S021830130700832X [arXiv:0708.0812 [hep-ph]].

[101] P. B. Arnold, J. Lenaghan, G. D. Moore and L. G. Yaffe, Phys. Rev. Lett. 94,

072302 (2005) doi:10.1103/PhysRevLett.94.072302 [nucl-th/0409068].

[102] P. F. Kolb and U. W. Heinz, In *Hwa, R.C. (ed.) et al.: Quark gluon plasma*

634-714 [nucl-th/0305084].



BIBLIOGRAPHY 183

[103] M. Luzum and P. Romatschke, Phys. Rev. C 78, 034915 (2008) Erratum: [Phys.

Rev. C 79, 039903 (2009)] doi:10.1103/PhysRevC.78.034915, 10.1103/Phys-

RevC.79.039903 [arXiv:0804.4015 [nucl-th]].

[104] W. Broniowski, M. Chojnacki, W. Florkowski and A. Kisiel, Phys. Rev. Lett.

101, 022301 (2008) doi:10.1103/PhysRevLett.101.022301 [arXiv:0801.4361

[nucl-th]].

[105] H. Song, S. A. Bass, U. Heinz, T. Hirano and C. Shen, Phys.

Rev. C 83, 054910 (2011) Erratum: [Phys. Rev. C 86, 059903

(2012)] doi:10.1103/PhysRevC.83.054910, 10.1103/PhysRevC.86.059903

[arXiv:1101.4638 [nucl-th]].

[106] B. Schenke, S. Jeon and C. Gale, Phys. Rev. Lett. 106, 042301 (2011)

doi:10.1103/PhysRevLett.106.042301 [arXiv:1009.3244 [hep-ph]].

[107] J. J. Friess, S. S. Gubser, G. Michalogiorgakis and S. S. Pufu, JHEP 0704, 080

(2007) doi:10.1088/1126-6708/2007/04/080 [hep-th/0611005].

[108] A. Donnachie and P. V. Landshoff, Phys. Lett. B 437, 408 (1998)

doi:10.1016/S0370-2693(98)00899-5 [hep-ph/9806344].

[109] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972) [Yad. Fiz.

15, 781 (1972)].

[110] Y. L. Dokshitzer, Sov. Phys. JETP 46 (1977) 641 [Zh. Eksp. Teor. Fiz. 73

(1977) 1216].

[111] G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977). doi:10.1016/0550-

3213(77)90384-4

[112] E. Iancu, Nucl. Phys. Proc. Suppl. 191, 281 (2009)

doi:10.1016/j.nuclphysbps.2009.03.135 [arXiv:0901.0986 [hep-ph]].

[113] L. N. Lipatov, Sov. J. Nucl. Phys. 23, 338 (1976) [Yad. Fiz. 23, 642 (1976)].



184 BIBLIOGRAPHY

[114] E. A. Kuraev, L. N. Lipatov and V. S. Fadin, Sov. Phys. JETP 45 (1977) 199

[Zh. Eksp. Teor. Fiz. 72 (1977) 377].

[115] I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978) [Yad. Fiz.

28, 1597 (1978)].

[116] A. N. Kolmogorov, N. G. Petrovskii, N. S. Piskunov, Moscow Univ. Bull. Math.,

1 (1937), 1.

[117] R. A. Fisher, Ann. Eugenics, 7 (1937), 353.

[118] J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, Nucl. Phys. B 504,

415 (1997) doi:10.1016/S0550-3213(97)00440-9 [hep-ph/9701284].

[119] H. Weigert, Nucl. Phys. A 703, 823 (2002) doi:10.1016/S0375-9474(01)01668-2

[hep-ph/0004044].

[120] E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nucl. Phys. A 703, 489

(2002) doi:10.1016/S0375-9474(01)01329-X [hep-ph/0109115].

[121] J. L Albacete, "Saturation Physics", Fall meeting of the GDR PH-QCD: nucleon

and nucleus structure studies with a LHC fixed-target experiment and electron-

ion colliders, Oct 2011, IPN Orsay.

[122] F. Gelis, J. Phys. Conf. Ser. 381, 012021 (2012) doi:10.1088/1742-

6596/381/1/012021 [arXiv:1110.1544 [hep-ph]].

[123] A. Dumitru, L. McLerran and V. Skokov, Phys. Lett. B 743, 134 (2015)

doi:10.1016/j.physletb.2015.02.046 [arXiv:1410.4844 [hep-ph]].

[124] B. Schenke, S. Schlichting and R. Venugopalan, Phys. Lett. B 747, 76 (2015)

doi:10.1016/j.physletb.2015.05.051 [arXiv:1502.01331 [hep-ph]].

[125] T. Altinoluk, N. Armesto, G. Beuf, A. Kovner and M. Lublinsky, Phys. Lett. B

751, 448 (2015) doi:10.1016/j.physletb.2015.10.072 [arXiv:1503.07126 [hep-ph]].



BIBLIOGRAPHY 185

[126] A. Esposito and M. Gyulassy, Phys. Lett. B 747, 433 (2015)

doi:10.1016/j.physletb.2015.06.037 [arXiv:1505.03734 [hep-ph]].

[127] T. Lappi, B. Schenke, S. Schlichting and R. Venugopalan, JHEP 1601, 061

(2016) doi:10.1007/JHEP01(2016)061 [arXiv:1509.03499 [hep-ph]].

[128] B. Schenke, S. Schlichting, P. Tribedy and R. Venugopalan, Phys.

Rev. Lett. 117, no. 16, 162301 (2016) doi:10.1103/PhysRevLett.117.162301

[arXiv:1607.02496 [hep-ph]].

[129] Y. Hagiwara, Y. Hatta, B. W. Xiao and F. Yuan, Phys. Lett. B 771, 374 (2017)

doi:10.1016/j.physletb.2017.05.083 [arXiv:1701.04254 [hep-ph]].

[130] K. Dusling, M. Mace and R. Venugopalan, Phys. Rev. Lett. 120, no. 4, 042002

(2018) doi:10.1103/PhysRevLett.120.042002 [arXiv:1705.00745 [hep-ph]].

[131] B. Schenke, P. Tribedy and R. Venugopalan, Phys. Rev. Lett. 108, 252301

(2012) doi:10.1103/PhysRevLett.108.252301 [arXiv:1202.6646 [nucl-th]].

[132] C. Gale, S. Jeon, B. Schenke, P. Tribedy and R. Venugopalan, Phys.

Rev. Lett. 110, no. 1, 012302 (2013) doi:10.1103/PhysRevLett.110.012302

[arXiv:1209.6330 [nucl-th]].

[133] B. Schenke and S. Schlichting, Nucl. Phys. A 967, 285 (2017)

doi:10.1016/j.nuclphysa.2017.05.028 [arXiv:1704.03018 [hep-ph]].

[134] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 718, 795 (2013)

[arXiv:1210.5482 [nucl-ex]].

[135] B. Abelev et al. [ALICE Collaboration], Phys. Lett. B 719, 29 (2013)

[arXiv:1212.2001 [nucl-ex]].

[136] G. Aad et al. [ATLAS Collaboration], Phys. Rev. Lett. 110, no. 18, 182302

(2013) [arXiv:1212.5198 [hep-ex]].



186 BIBLIOGRAPHY

[137] A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 111, no. 21, 212301

(2013) [arXiv:1303.1794 [nucl-ex]].

[138] F. Wang [STAR Collaboration], Nucl. Phys. A 932, 392 (2013) [arXiv:1404.2674

[nucl-ex]].

[139] I. Kozlov, M. Luzum, G. Denicol, S. Jeon and C. Gale, arXiv:1405.3976 [nucl-

th].

[140] S. Chatrchyan et al. [CMS Collaboration], Eur. Phys. J. C 74, no. 6, 2847

(2014) [arXiv:1307.3442 [hep-ex]].

[141] J. Y. Ollitrault and F. G. Gardim, Nucl. Phys. A 904-905, 75c (2013)

[arXiv:1210.8345 [nucl-th]].

[142] K. Popper, "The Logic of Scientific Discovery", Routledge (1959).

[143] V. Khachatryan et al. [CMS Collaboration], arXiv:1503.01692 [nucl-ex].

[144] S. Ryu, J. F. Paquet, C. Shen, G. Denicol, B. Schenke, S. Jeon and C. Gale,

Phys. Rev. C 97, no. 3, 034910 (2018) doi:10.1103/PhysRevC.97.034910

[arXiv:1704.04216 [nucl-th]].

[145] T. Schäfer, Physics 2, 88 (2009).

[146] C. Gale, S. Jeon and B. Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013)

doi:10.1142/S0217751X13400113 [arXiv:1301.5893 [nucl-th]].

[147] P. Huovinen and P. Petreczky, Nucl. Phys. A 837, 26 (2010)

doi:10.1016/j.nuclphysa.2010.02.015 [arXiv:0912.2541 [hep-ph]].

[148] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics Volume 2, "The

Classical Theory of Fields", Butterworth-Heinemann (1975).

[149] K. H. Ackermann et al. [STAR Collaboration], Phys. Rev. Lett. 86, 402 (2001)

doi:10.1103/PhysRevLett.86.402 [nucl-ex/0009011].



BIBLIOGRAPHY 187

[150] R. Nouicer, Eur. Phys. J. Plus 131, no. 3, 70 (2016) doi:10.1140/epjp/i2016-

16070-2 [arXiv:1512.08993 [nucl-ex]].

[151] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998)

doi:10.1103/PhysRevC.58.1671 [nucl-ex/9805001].

[152] E. V. Shuryak, Phys. Rept. 61, 71 (1980). doi:10.1016/0370-1573(80)90105-2

[153] J. D. Bjorken, FERMILAB-PUB-82-59-THY and erratum (unpublished).

[154] K. Adcox et al. [PHENIX Collaboration], Phys. Rev. Lett. 88, 022301 (2002)

doi:10.1103/PhysRevLett.88.022301 [nucl-ex/0109003].

[155] C. Adler et al. [STAR Collaboration], Phys. Rev. Lett. 90, 082302 (2003)

doi:10.1103/PhysRevLett.90.082302 [nucl-ex/0210033].

[156] R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956).

doi:10.1038/1781046a0

[157] C. Adler et al. [STAR Collaboration], Phys. Rev. Lett. 87, 082301 (2001)

doi:10.1103/PhysRevLett.87.082301 [nucl-ex/0107008].

[158] U. W. Heinz and P. F. Kolb, hep-ph/0204061.

[159] S. A. Voloshin, J. Phys. G 38, 124097 (2011) doi:10.1088/0954-

3899/38/12/124097 [arXiv:1106.5830 [nucl-th]].

[160] T. Niida [PHENIX Collaboration], Nucl. Phys. A 904-905, 439c (2013)

doi:10.1016/j.nuclphysa.2013.02.043 [arXiv:1304.2876 [nucl-ex]].

[161] C. Nonaka and M. Asakawa, PTEP 2012, 01A208 (2012)

doi:10.1093/ptep/pts014 [arXiv:1204.4795 [nucl-th]].

[162] T. Lappi, Phys. Lett. B 643, 11 (2006) doi:10.1016/j.physletb.2006.10.017 [hep-

ph/0606207].



188 BIBLIOGRAPHY

[163] P. Romatschke and J. D. Hogg, JHEP 1304, 048 (2013)

doi:10.1007/JHEP04(2013)048 [arXiv:1301.2635 [hep-th]].

[164] D. Bazow, U. W. Heinz and M. Strickland, Phys. Rev. C 90, no. 5, 054910

(2014) doi:10.1103/PhysRevC.90.054910 [arXiv:1311.6720 [nucl-th]].

[165] M. Alqahtani, M. Nopoush and M. Strickland, arXiv:1712.03282 [nucl-th].

[166] P. B. Arnold, G. D. Moore and L. G. Yaffe, JHEP 0112, 009 (2001)

doi:10.1088/1126-6708/2001/12/009 [hep-ph/0111107].

[167] C. Shen, U. W. Heinz, J. F. Paquet, I. Kozlov and C. Gale, Phys. Rev. C 91, no.

2, 024908 (2015) doi:10.1103/PhysRevC.91.024908 [arXiv:1308.2111 [nucl-th]].

[168] F. Cooper and G. Frye, Phys. Rev. D 10, 186 (1974).

doi:10.1103/PhysRevD.10.186

[169] F. Cooper, G. Frye and E. Schonberg, Phys. Rev. D 11, 192 (1975).

doi:10.1103/PhysRevD.11.192

[170] S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998) [Prog. Part. Nucl.

Phys. 41, 225 (1998)] doi:10.1016/S0146-6410(98)00058-1 [nucl-th/9803035].

[171] M. Bleicher, E. Zabrodin, C. Spieles, S. A. Bass, C. Ernst, S. Soff, L. Bravina

and M. Belkacem et al., J. Phys. G 25, 1859 (1999).

[172] U. W. Heinz, hep-ph/0407360.

[173] H. Sorge, Phys. Rev. Lett. 82, 2048 (1999) doi:10.1103/PhysRevLett.82.2048

[nucl-th/9812057].

[174] J. Y. Ollitrault, Phys. Rev. D 46, 229 (1992). doi:10.1103/PhysRevD.46.229

[175] J. D. Bjorken, Phys. Rev. D 27, 140 (1983). doi:10.1103/PhysRevD.27.140



BIBLIOGRAPHY 189

[176] M. L. Miller, K. Reygers, S. J. Sanders and P. Steinberg, Ann. Rev. Nucl.

Part. Sci. 57, 205 (2007) doi:10.1146/annurev.nucl.57.090506.123020 [nucl-

ex/0701025].

[177] A. Bialas, M. Bleszynski and W. Czyz, Nucl. Phys. B 111, 461 (1976).

doi:10.1016/0550-3213(76)90329-1

[178] D. Kharzeev, C. Lourenco, M. Nardi and H. Satz, Z. Phys. C 74, 307 (1997)

doi:10.1007/s002880050392 [hep-ph/9612217].

[179] D. Kharzeev and M. Nardi, Phys. Lett. B 507, 121 (2001) doi:10.1016/S0370-

2693(01)00457-9 [nucl-th/0012025].

[180] B. S. Everitt, A. Skrondal , Cambridge Dictionary of Statistics, Cambridge

University Press (2010).

[181] H. Mäntysaari, B. Schenke, C. Shen and P. Tribedy, Nucl. Phys. A 967, 317

(2017) doi:10.1016/j.nuclphysa.2017.04.017 [arXiv:1705.03735 [nucl-th]].

[182] P. Bożek, W. Broniowski and M. Rybczyński, Phys. Rev. C 94, no. 1, 014902

(2016) doi:10.1103/PhysRevC.94.014902 [arXiv:1604.07697 [nucl-th]].

[183] R. D. Weller and P. Romatschke, Phys. Lett. B 774, 351 (2017)

doi:10.1016/j.physletb.2017.09.077 [arXiv:1701.07145 [nucl-th]].

[184] P. Huovinen, P. F. Kolb, U. W. Heinz, P. V. Ruuskanen and S. A. Voloshin,

Phys. Lett. B 503, 58 (2001) doi:10.1016/S0370-2693(01)00219-2 [hep-

ph/0101136].

[185] B. Alver et al. [PHOBOS Collaboration], Phys. Rev. Lett. 98, 242302 (2007)

doi:10.1103/PhysRevLett.98.242302 [nucl-ex/0610037].

[186] A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 98, 162301 (2007)

doi:10.1103/PhysRevLett.98.162301 [nucl-ex/0608033].



190 BIBLIOGRAPHY

[187] B. Alver and G. Roland, Phys. Rev. C 81, 054905 (2010) Erratum: [Phys.

Rev. C 82, 039903 (2010)] doi:10.1103/PhysRevC.82.039903, 10.1103/Phys-

RevC.81.054905 [arXiv:1003.0194 [nucl-th]].

[188] S. A. Voloshin, A. M. Poskanzer, A. Tang and G. Wang, Phys. Lett. B 659,

537 (2008) doi:10.1016/j.physletb.2007.11.043 [arXiv:0708.0800 [nucl-th]].

[189] Z. Qiu, C. Shen and U. Heinz, Phys. Lett. B 707, 151 (2012)

doi:10.1016/j.physletb.2011.12.041 [arXiv:1110.3033 [nucl-th]].

[190] L. V. Gribov, E. M. Levin and M. G. Ryskin, Phys. Rept. 100, 1 (1983).

doi:10.1016/0370-1573(83)90022-4

[191] T. Hirano, U. W. Heinz, D. Kharzeev, R. Lacey and Y. Nara, Phys. Lett. B

636, 299 (2006) doi:10.1016/j.physletb.2006.03.060 [nucl-th/0511046].

[192] S. McDonald, C. Shen, F. Fillion-Gourdeau, S. Jeon and C. Gale, Phys. Rev.

C 95, no. 6, 064913 (2017) doi:10.1103/PhysRevC.95.064913 [arXiv:1609.02958

[hep-ph]].

[193] L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233 (1994)

doi:10.1103/PhysRevD.49.2233 [hep-ph/9309289].

[194] J. Bartels, K. J. Golec-Biernat and H. Kowalski, Phys. Rev. D 66, 014001 (2002)

doi:10.1103/PhysRevD.66.014001 [hep-ph/0203258].

[195] H. Kowalski and D. Teaney, Phys. Rev. D 68, 114005 (2003)

doi:10.1103/PhysRevD.68.114005 [hep-ph/0304189].

[196] P. Tribedy and R. Venugopalan, Nucl. Phys. A 850, 136 (2011) Erra-

tum: [Nucl. Phys. A 859, 185 (2011)] doi:10.1016/j.nuclphysa.2011.04.008,

10.1016/j.nuclphysa.2010.12.006 [arXiv:1011.1895 [hep-ph]].

[197] H. Kowalski, L. Motyka and G. Watt, Phys. Rev. D 74, 074016 (2006)

doi:10.1103/PhysRevD.74.074016 [hep-ph/0606272].



BIBLIOGRAPHY 191

[198] F. Gelis, T. Lappi and R. Venugopalan, Phys. Rev. D 78, 054019 (2008)

doi:10.1103/PhysRevD.78.054019 [arXiv:0804.2630 [hep-ph]].

[199] J. S. Moreland, J. E. Bernhard and S. A. Bass, Phys. Rev. C 92, no. 1, 011901

(2015) doi:10.1103/PhysRevC.92.011901 [arXiv:1412.4708 [nucl-th]].

[200] J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu and U. Heinz, Phys. Rev.

C 94, no. 2, 024907 (2016) doi:10.1103/PhysRevC.94.024907 [arXiv:1605.03954

[nucl-th]].

[201] D. Kharzeev, E. Levin and M. Nardi, Nucl. Phys. A 747, 609 (2005)

doi:10.1016/j.nuclphysa.2004.10.018 [hep-ph/0408050].

[202] K. J. Eskola, P. V. Ruuskanen, S. S. Rasanen and K. Tuominen, Nucl. Phys. A

696, 715 (2001) doi:10.1016/S0375-9474(01)01207-6 [hep-ph/0104010].

[203] B. Schenke, C. Shen, P. Tribedy, "Elucidating the properties of hot nuclear mat-

ter with a comprehensive description of ultra-relativistic heavy-ion collisions",

Contribution ID 307, Quark Matter 2018.

[204] K. J. Eskola, H. Niemi, R. Paatelainen and K. Tuominen, Nucl. Phys. A 967,

313 (2017) doi:10.1016/j.nuclphysa.2017.04.038 [arXiv:1704.04060 [hep-ph]].

[205] B. Alver et al. [PHOBOS Collaboration], Phys. Rev. C 81, 034915 (2010)

doi:10.1103/PhysRevC.81.034915 [arXiv:1002.0534 [nucl-ex]].

[206] Wikipedia, "Pseudorapidity", https://en.wikipedia.org/wiki/

Pseudorapidity.

[207] F. Gelis and B. Schenke, Ann. Rev. Nucl. Part. Sci. 66, 73 (2016)

doi:10.1146/annurev-nucl-102115-044651 [arXiv:1604.00335 [hep-ph]].

[208] G. S. Denicol, S. Jeon and C. Gale, Phys. Rev. C 90, no. 2, 024912 (2014)

doi:10.1103/PhysRevC.90.024912 [arXiv:1403.0962 [nucl-th]].

https://en.wikipedia.org/wiki/Pseudorapidity
https://en.wikipedia.org/wiki/Pseudorapidity


192 BIBLIOGRAPHY

[209] I. Kozlov, M. Luzum, G. S. Denicol, S. Jeon and C. Gale, Nucl. Phys. A 931,

1045 (2014) doi:10.1016/j.nuclphysa.2014.09.054 [arXiv:1412.3147 [nucl-th]].

[210] C. Shen and B. Schenke, PoS CPOD 2017, 006 (2018) doi:10.22323/1.311.0006

[arXiv:1711.10544 [nucl-th]].

[211] K. Walsh, "Supercomputing the Transition from Ordinary to Extraordinary

Forms of Matter", https://www.bnl.gov/newsroom/news.php?a=24281.

[212] The Millennium Prize Problems, http://www.claymath.org/

millennium-problems/millennium-prize-problems.

[213] A. Kurganov, and E. Tadmor, Journal of Computational Physics, 160, 241

(2000).

[214] B. Schenke, S. Jeon and C. Gale, Phys. Rev. C 82, 014903 (2010)

[arXiv:1004.1408 [hep-ph]].

[215] S. Jeon, "Lectures on Partial Differential Equations in Physics", unpublished.

Illustations by C. Shen.

[216] H. Nessyahu, and E. Tadmor, Journal of Computational Physics, 87, 408 (1990).

[217] P. Bozek, Phys. Rev. C 81, 034909 (2010) doi:10.1103/PhysRevC.81.034909

[arXiv:0911.2397 [nucl-th]].

[218] K. Hagiwara et al. [Particle Data Group], Phys. Rev. D 66, 010001 (2002).

doi:10.1103/PhysRevD.66.010001

[219] R. Peschanski and E. N. Saridakis, Phys. Rev. C 80, 024907 (2009)

doi:10.1103/PhysRevC.80.024907 [arXiv:0906.0941 [nucl-th]].

[220] P. F. Kolb and R. Rapp, Phys. Rev. C 67, 044903 (2003)

doi:10.1103/PhysRevC.67.044903 [hep-ph/0210222].

[221] A. Milov [ATLAS Collaboration], arXiv:1403.5738 [nucl-ex].

https://www.bnl.gov/newsroom/news.php?a=24281
http://www.claymath.org/millennium-problems/millennium-prize-problems
http://www.claymath.org/millennium-problems/millennium-prize-problems


BIBLIOGRAPHY 193

[222] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 724, 213 (2013)

[arXiv:1305.0609 [nucl-ex]]; ; Additional data on the CMS public wiki: https:

//twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN13002

[223] P. Bozek and I. Wyskiel, Phys. Rev. C 81, 054902 (2010) [arXiv:1002.4999

[nucl-th]].

[224] B. B. Back et al., Phys. Rev. Lett. 91, 052303 (2003)

doi:10.1103/PhysRevLett.91.052303 [nucl-ex/0210015].

[225] I. G. Bearden et al. [BRAHMS Collaboration], Phys. Rev. Lett. 88, 202301

(2002) doi:10.1103/PhysRevLett.88.202301 [nucl-ex/0112001].

[226] B. B. Back et al. [PHOBOS Collaboration], Phys. Rev. Lett. 97, 012301 (2006)

doi:10.1103/PhysRevLett.97.012301 [nucl-ex/0511045].

[227] B. I. Abelev et al. [STAR Collaboration], Phys. Rev. Lett. 101, 252301 (2008)

doi:10.1103/PhysRevLett.101.252301 [arXiv:0807.1518 [nucl-ex]].

[228] K. Aamodt et al. [ALICE Collaboration], Eur. Phys. J. C 68, 89 (2010)

[arXiv:1004.3034 [hep-ex]].

[229] V. Khachatryan et al. [CMS Collaboration], JHEP 1101, 079 (2011)

[arXiv:1011.5531 [hep-ex]].

[230] P. Bozek, Phys. Rev. C 85, 014911 (2012) [arXiv:1112.0915 [hep-ph]].

[231] P. Bozek and W. Broniowski, Phys. Lett. B 718, 1557 (2013) [arXiv:1211.0845

[nucl-th]].

[232] P. Bozek and W. Broniowski, Phys. Rev. C 88, no. 1, 014903 (2013)

[arXiv:1304.3044 [nucl-th]].

[233] A. Bzdak, B. Schenke, P. Tribedy and R. Venugopalan, Phys. Rev. C 87, no.

6, 064906 (2013) [arXiv:1304.3403 [nucl-th]].

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN13002
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN13002


194 BIBLIOGRAPHY

[234] G. Y. Qin and B. Müller, Phys. Rev. C 89, no. 4, 044902 (2014) [arXiv:1306.3439

[nucl-th]].

[235] B. Schenke and R. Venugopalan, Phys. Rev. Lett. 113, 102301 (2014)

[arXiv:1405.3605 [nucl-th]].

[236] H. Niemi, K. J. Eskola and R. Paatelainen, Phys. Rev. C 93, no. 2, 024907

(2016) doi:10.1103/PhysRevC.93.024907 [arXiv:1505.02677 [hep-ph]].

[237] M. Luzum and H. Petersen, J. Phys. G 41, 063102 (2014) [arXiv:1312.5503

[nucl-th]].

[238] B. H. Alver, C. Gombeaud, M. Luzum and J. Y. Ollitrault, Phys. Rev. C 82,

034913 (2010) [arXiv:1007.5469 [nucl-th]].

[239] F. G. Gardim, F. Grassi, M. Luzum and J. Y. Ollitrault, Phys. Rev. C 85,

024908 (2012) [arXiv:1111.6538 [nucl-th]].

[240] G. Basar and D. Teaney, Nucl. Phys. A 931, 931 (2014) [arXiv:1408.3411 [hep-

ph]].

[241] G. Torrieri, Phys. Rev. C 89, no. 2, 024908 (2014) [arXiv:1310.3529 [nucl-th]].

[242] I.A. Kvasnikov, Thermodynamics and Statistical Mechanics Volume 2, "The

theory of equilibrium systems Statistical Physics", Editorial URSS (2002).

[243] J. Takahashi, B. M. Tavares, W. L. Qian, R. Andrade, F. Grassi,

Y. Hama, T. Kodama and N. Xu, Phys. Rev. Lett. 103, 242301 (2009)

doi:10.1103/PhysRevLett.103.242301 [arXiv:0902.4870 [nucl-th]].

[244] M. Luzum, Phys. Lett. B 696, 499 (2011) doi:10.1016/j.physletb.2011.01.013

[arXiv:1011.5773 [nucl-th]].

[245] A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 109, 122302 (2012)

doi:10.1103/PhysRevLett.109.122302 [arXiv:1105.4126 [nucl-ex]].



BIBLIOGRAPHY 195

[246] D. Lohner [ALICE Collaboration], J. Phys. Conf. Ser. 446, 012028 (2013)

doi:10.1088/1742-6596/446/1/012028 [arXiv:1212.3995 [hep-ex]].

[247] B. Alver et al. [PHOBOS Collaboration], PoS CFRNC 2006, 023 (2006) [nucl-

ex/0608025].

[248] A. R. Timmins [ALICE Collaboration], J. Phys. Conf. Ser. 446, 012031 (2013)

doi:10.1088/1742-6596/446/1/012031 [arXiv:1301.6084 [nucl-ex]].

[249] G. Aad et al. [ATLAS Collaboration], JHEP 1311, 183 (2013)

doi:10.1007/JHEP11(2013)183 [arXiv:1305.2942 [hep-ex]].

[250] S. A. Voloshin, A. M. Poskanzer and R. Snellings, Landolt-Bornstein 23, 293

(2010) doi:10.1007/978-3-642-01539-7_10 [arXiv:0809.2949 [nucl-ex]].

[251] M. Luzum and J. Y. Ollitrault, Phys. Rev. C 87, no. 4, 044907 (2013)

doi:10.1103/PhysRevC.87.044907 [arXiv:1209.2323 [nucl-ex]].

[252] N. Borghini, P. M. Dinh and J. Y. Ollitrault, Phys. Rev. C 64, 054901 (2001)

doi:10.1103/PhysRevC.64.054901 [nucl-th/0105040].

[253] C. Adler et al. [STAR Collaboration], Phys. Rev. C 66, 034904 (2002)

doi:10.1103/PhysRevC.66.034904 [nucl-ex/0206001].

[254] F. G. Gardim, F. Grassi, M. Luzum and J. Y. Ollitrault, Phys. Rev. C 87, no.

3, 031901 (2013) [arXiv:1211.0989 [nucl-th]].

[255] E. V. Shuryak, Nucl. Phys. A 750, 64 (2005)

doi:10.1016/j.nuclphysa.2004.10.022 [hep-ph/0405066].

[256] K. Aamodt et al. [ALICE Collaboration], Phys. Lett. B 708, 249 (2012)

[arXiv:1109.2501 [nucl-ex]].

[257] S. Chatrchyan et al. [CMS Collaboration], Eur. Phys. J. C 72, 2012 (2012)

doi:10.1140/epjc/s10052-012-2012-3 [arXiv:1201.3158 [nucl-ex]].



196 BIBLIOGRAPHY

[258] E. Retinskaya, M. Luzum and J. Y. Ollitrault, Phys. Rev. Lett. 108, 252302

(2012) [arXiv:1203.0931 [nucl-th]].

[259] C. Shen, Z. Qiu and U. Heinz, arXiv:1502.04636 [nucl-th].

[260] Y. Zhou [ALICE Collaboration], Nucl. Phys. A 931, 949 (2014)

[arXiv:1407.7677 [nucl-ex]]; You Zhou, PhD Thesis, 2015, Utrecht University

[261] G. Aad et al. [ATLAS Collaboration], Phys. Rev. C 90, no. 4, 044906 (2014)

[arXiv:1409.1792 [hep-ex]].

[262] D. Devetak [CMS Collaboration], Nucl. Phys. A 931, 954 (2014).

[263] P. Huovinen and H. Petersen, Eur. Phys. J. A 48, 171 (2012)

doi:10.1140/epja/i2012-12171-9 [arXiv:1206.3371 [nucl-th]].

[264] H. Niemi and G. S. Denicol, arXiv:1404.7327 [nucl-th].

[265] C. Shen, J. F. Paquet, G. S. Denicol, S. Jeon and C. Gale, Phys. Rev. C 95, no.

1, 014906 (2017) doi:10.1103/PhysRevC.95.014906 [arXiv:1609.02590 [nucl-th]].

[266] C. Shen, https://github.com/chunshen1987/hydro_analysis.

[267] Y. M. Makeenko and A. A. Migdal, Phys. Lett. 88B, 135 (1979) Erratum:

[Phys. Lett. 89B, 437 (1980)]. doi:10.1016/0370-2693(79)90131-X

[268] H. Sorge, H. Stoecker and W. Greiner, Annals Phys. 192, 266 (1989).

doi:10.1016/0003-4916(89)90136-X

[269] V. Flaminio, W. G. Moorhead, D. R. O. Morrison, and N. Rivoire, CERN,

Geneva Report No. CERN-HERA-84-01, (1984).

[270] R. M. Barnett et al. [Particle Data Group], Phys. Rev. D 54, 1 (1996).

doi:10.1103/PhysRevD.54.1

[271] G. Giacalone, J. Noronha-Hostler and J. Y. Ollitrault, Phys. Rev. C 95, no. 5,

054910 (2017) doi:10.1103/PhysRevC.95.054910 [arXiv:1702.01730 [nucl-th]].

https://github.com/chunshen1987/hydro_analysis


BIBLIOGRAPHY 197

[272] H. Mäntysaari, B. Schenke, C. Shen and P. Tribedy, Phys. Lett. B 772, 681

(2017) doi:10.1016/j.physletb.2017.07.038 [arXiv:1705.03177 [nucl-th]].

[273] U. Heinz, Z. Qiu and C. Shen, Phys. Rev. C 87, no. 3, 034913 (2013)

[arXiv:1302.3535 [nucl-th]].

[274] W. Ke, J. S. Moreland, J. E. Bernhard and S. A. Bass, Phys. Rev. C 96, no. 4,

044912 (2017) doi:10.1103/PhysRevC.96.044912 [arXiv:1610.08490 [nucl-th]].

[275] P. B. Arnold, C. Dogan and G. D. Moore, Phys. Rev. D 74, 085021 (2006)

doi:10.1103/PhysRevD.74.085021 [hep-ph/0608012].

[276] A. Czajka, K. Dasgupta, C. Gale, S. Jeon, A. Misra, M. Richard and K. Sil,

arXiv:1807.07950 [hep-th].

[277] K. Dusling and T. Schäfer, Phys. Rev. C 85, 044909 (2012)

doi:10.1103/PhysRevC.85.044909 [arXiv:1109.5181 [hep-ph]].

[278] D. Fernandez-Fraile and A. Gomez Nicola, Phys. Rev. Lett. 102, 121601 (2009)

doi:10.1103/PhysRevLett.102.121601 [arXiv:0809.4663 [hep-ph]].

[279] J. Noronha-Hostler, J. Noronha and C. Greiner, Phys. Rev. Lett. 103, 172302

(2009) doi:10.1103/PhysRevLett.103.172302 [arXiv:0811.1571 [nucl-th]].

[280] A. Monnai and T. Hirano, Phys. Rev. C 80, 054906 (2009)

doi:10.1103/PhysRevC.80.054906 [arXiv:0903.4436 [nucl-th]].

[281] P. Bozek, Phys. Rev. C 85, 034901 (2012) doi:10.1103/PhysRevC.85.034901

[arXiv:1110.6742 [nucl-th]].

[282] H. Song and U. W. Heinz, Phys. Rev. C 81, 024905 (2010)

doi:10.1103/PhysRevC.81.024905 [arXiv:0909.1549 [nucl-th]].

[283] M. Prakash, M. Prakash, R. Venugopalan and G. Welke, Phys. Rept. 227, 321

(1993). doi:10.1016/0370-1573(93)90092-R



198 BIBLIOGRAPHY

[284] D. Davesne, Phys. Rev. C 53, 3069 (1996). doi:10.1103/PhysRevC.53.3069

[285] J. W. Chen and J. Wang, Phys. Rev. C 79, 044913 (2009)

doi:10.1103/PhysRevC.79.044913 [arXiv:0711.4824 [hep-ph]].

[286] K. Paech and S. Pratt, Phys. Rev. C 74, 014901 (2006) Erratum: [Phys. Rev.

C 93, no. 5, 059902 (2016)] doi:10.1103/PhysRevC.74.014901, 10.1103/Phys-

RevC.93.059902 [nucl-th/0604008].

[287] D. Kharzeev and K. Tuchin, JHEP 0809, 093 (2008) doi:10.1088/1126-

6708/2008/09/093 [arXiv:0705.4280 [hep-ph]].

[288] A. Buchel, Phys. Lett. B 681, 200 (2009) doi:10.1016/j.physletb.2009.10.007

[arXiv:0908.0108 [hep-th]].

[289] H. B. Meyer, JHEP 1004, 099 (2010) doi:10.1007/JHEP04(2010)099

[arXiv:1002.3343 [hep-lat]].

[290] G. S. Denicol, T. Kodama, T. Koide and P. Mota, Phys. Rev. C 80, 064901

(2009) doi:10.1103/PhysRevC.80.064901 [arXiv:0903.3595 [hep-ph]].

[291] J. S. Moreland, J. E. Bernhard and S. A. Bass, arXiv:1808.02106 [nucl-th].

[292] J. F. Paquet, C. Shen, G. Denicol, S. Jeon and C. Gale, Nucl. Phys. A 967,

429 (2017). doi:10.1016/j.nuclphysa.2017.06.024

[293] B. Schenke, "Elucidating the properties of hot nuclear matter with a com-

prehensive description of ultra-relativistic heavy-ion collisions", Quark Matter

2018, http://indico.cern.ch/event/656452/contributions/2869794/.

[294] J. B. Rose, J. F. Paquet, G. S. Denicol, M. Luzum, B. Schenke, S. Jeon and

C. Gale, Nucl. Phys. A 931, 926 (2014) doi:10.1016/j.nuclphysa.2014.09.044

[arXiv:1408.0024 [nucl-th]].

[295] MADAI collaboration, http://madai.msu.edu/.

http://indico.cern.ch/event/656452/contributions/2869794/
http://madai.msu.edu/


BIBLIOGRAPHY 199

[296] P. Bozek and W. Broniowski, Phys. Lett. B 752, 206 (2016)

doi:10.1016/j.physletb.2015.11.054 [arXiv:1506.02817 [nucl-th]].

[297] M. Rybczynski, G. Stefanek, W. Broniowski and P. Bozek, Comput. Phys. Com-

mun. 185, 1759 (2014) doi:10.1016/j.cpc.2014.02.016 [arXiv:1310.5475 [nucl-

th]].

[298] P. Bozek, W. Broniowski and A. Olszewski, Phys. Rev. C 91, 054912 (2015)

doi:10.1103/PhysRevC.91.054912 [arXiv:1503.07425 [nucl-th]].

[299] A. Bialas and W. Czyz, Acta Phys. Polon. B 36, 905 (2005) [hep-ph/0410265].

[300] S. J. Brodsky, J. F. Gunion and J. H. Kuhn, Phys. Rev. Lett. 39, 1120 (1977).

doi:10.1103/PhysRevLett.39.1120

[301] A. Bialas and M. Jezabek, Phys. Lett. B 590, 233 (2004)

doi:10.1016/j.physletb.2004.03.070 [hep-ph/0403254].

[302] H. Petersen, J. Steinheimer, G. Burau, M. Bleicher and H. Stocker, Phys. Rev.

C 78, 044901 (2008) doi:10.1103/PhysRevC.78.044901 [arXiv:0806.1695 [nucl-

th]].

[303] K. Werner, I. Karpenko, T. Pierog, M. Bleicher and K. Mikhailov, Phys. Rev.

C 82, 044904 (2010) doi:10.1103/PhysRevC.82.044904 [arXiv:1004.0805 [nucl-

th]].

[304] L. G. Pang, G. Y. Qin, V. Roy, X. N. Wang and G. L. Ma, Phys. Rev. C 91, no.

4, 044904 (2015) doi:10.1103/PhysRevC.91.044904 [arXiv:1410.8690 [nucl-th]].

[305] I. A. Karpenko, P. Huovinen, H. Petersen and M. Bleicher, Phys. Rev. C 91, no.

6, 064901 (2015) doi:10.1103/PhysRevC.91.064901 [arXiv:1502.01978 [nucl-th]].

[306] A. Monnai and B. Schenke, Phys. Lett. B 752, 317 (2016)

doi:10.1016/j.physletb.2015.11.063 [arXiv:1509.04103 [nucl-th]].



200 BIBLIOGRAPHY

[307] M. Okai, K. Kawaguchi, Y. Tachibana and T. Hirano, Phys. Rev. C 95, no. 5,

054914 (2017) doi:10.1103/PhysRevC.95.054914 [arXiv:1702.07541 [nucl-th]].

[308] S. S. Padula [CMS Collaboration], EPJ Web Conf. 172, 05005 (2018).

doi:10.1051/epjconf/201817205005

[309] P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007)

doi:10.1103/PhysRevLett.99.172301 [arXiv:0706.1522 [nucl-th]].

[310] H. Song, S. A. Bass and U. Heinz, Phys. Rev. C 83, 024912 (2011)

doi:10.1103/PhysRevC.83.024912 [arXiv:1012.0555 [nucl-th]].

[311] J. E. Bernhard, J. S. Moreland and S. A. Bass, Nucl. Phys. A 967, 293 (2017)

doi:10.1016/j.nuclphysa.2017.05.037 [arXiv:1704.04462 [nucl-th]].

[312] K. Welsh, J. Singer and U. W. Heinz, Phys. Rev. C 94, no. 2, 024919 (2016)

doi:10.1103/PhysRevC.94.024919 [arXiv:1605.09418 [nucl-th]].

[313] J. Noronha-Hostler, J. Noronha and M. Gyulassy, Phys. Rev. C 93, no. 2,

024909 (2016) doi:10.1103/PhysRevC.93.024909 [arXiv:1508.02455 [nucl-th]].

[314] S. McDonald, S. Jeon and C. Gale, arXiv:1807.05409 [nucl-th].

[315] J. I. Kapusta, B. Muller and M. Stephanov, Phys. Rev. C 85, 054906 (2012)

doi:10.1103/PhysRevC.85.054906 [arXiv:1112.6405 [nucl-th]].

[316] M. Singh, C. Shen, S. McDonald, S. Jeon and C. Gale, arXiv:1807.05451 [nucl-

th].


	 Abstract
	 Résumé
	 Acknowledgments
	 Statement of originality
	 Introduction
	Theoretical frameworks of studying QCD
	Perturbative QCD
	Lattice QCD
	AdS/CFT correspondence
	Hydrodynamics
	Kinetic theory

	QCD plasma in HIC
	Bottom-up thermalization
	Color Glass Condensate and Glasma

	Summary and outline of thesis

	 Heavy ion collisions in the hydrodynamical paradigm
	HIC in a nutshell
	Evidence of QGP formation
	Phases of HIC

	Initial conditions for hydrodynamics
	Optical Glauber Model
	Monte-Carlo Glauber Model
	MC-KLN Model
	IP-Glasma Model
	Model comparison

	Implementation of hydrodynamics
	Kinematics
	Hydrodynamics equations
	Numerical methods

	Hadronization of hydrodynamics

	 Hydrodynamics in small systems
	Model
	Comparison to experiment
	Investigating the hydrodynamic response
	Conventional flow observables in small systems

	 Tests of hydrodynamics in small systems
	The "ridge"
	Azimuthal angle correlations
	Two-particle azimuthal angle correlation function
	Theoretical aspects of flow definition
	Multi-particle azimuthal angle correlation function

	A Stringent Test of Hydrodynamics
	rn(pTa, pTb) observable as a stringent test of hydrodynamics
	Factorization breaking
	Quantitative analysis of the rn(pTa, pTb) observable
	Confirmation of our prediction with experimental p-Pb data

	Final state effects in rn(pTa, pTb)
	Discrete particles hadronization
	UrQMD fundamentals
	Results comparison of the discretized and "average" descriptions

	Revisiting rn(pTa, pTb) for A-A
	New properties of the rn observable and stringent test of hydrodynamics

	 Further advancements of hydrodynamical model
	Bulk viscosity
	Estimates of bulk viscosity
	Bulk effects in small systems

	Longitudinal fluctuations
	Longitudinal flow factorization
	Qualitative estimate of the rn(a,b) observable
	Model of long-range longitudinal fluctuations
	Comparison to experiment


	 Conclusion

