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ABSTRACT

Existing MRI/PET registration methods are tracer-dependent and may not work
well with the PET emission images obtained using tracers which only accumulate
significantly in specific regions. or with PET images of pathology which have abnormal
tracer distribution.

This thesis describes an automared tracer-independent MRI/PET registration
method. in which the registration of MR tmages to tracer-independent PET transmission
images is performed to register the correspounding MRI and PET emission images.
Two voxel-based registration methods - mutual information method (MI) and voxel
intensity ratio (VR) method. were implemented for the registration of MRI/PET
transmission images.

The validation of the two registration methods was first performed on simulated
PET transmission images with real MR images. The quantitative evaluation of these
registration results reveals that the MI method gives more accurate registration re-
sults (mean 3-D registration error less than 2 mm) than the VR method (mean 3-D
registration error more than 2.5 mm): and the MI method is more robust against
noise and data truncation than the VR method. Both methods are more sensitive to
low spatial resolution than to the noise of the PET transmission unages. The valida-
tion of the MI method on real MRI/PET images was also carried out. and the results
show no obvious misregistration by visual inspection. Tracer-independent MRI/PET
registration using the MI algorithm is shown to be a feasible and robust method to

register the MRI to PET images. regardless of the tracer used in the PET studies.
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RESUME

Le recalage de données IRM avec des données PET permet une meilleur inter-
pretation de l'information fonctionnelle fournie par une acquisition PET lorsque ces
données sont utilisées conjointement avec des informations morphologiques fournies
par des images IRM de haute qualité. Actuellement. les méthodes de recalage IRM/PET
sont traceur depéndantes et leur efficacités varient selon que le traceur s’accumule
dans des régions anatomiques précises ou que la distribution du traceur est anormale
lorsque nous sommes en presence de données PET pathologiques.

Ce travail de these décrit une methode de recalage automatique entre données IR\
et PET. Cette méthode est traceur indépendante et permet le recalage de données
[RM et PET émission par le recalage préalable des données IRM et PET transmission
correspondantes. Deux méthodes de recalage basées sur une information de tvpe voxel
out été developpé et implementé durant ce travail de these. Ces deux méthodes sont
la méthode d'information mutuelle (MI) et la méthode du coéfficient d'intensité en
un voxel (VR)

Ces deux méthodes ont été validé dans un premier temps par utilisation d'images
simulées PET de transmission et de données IRM réelles. L analvse quantitative des
résultats de recalage montre que la methode MI peut donner des résultats de recalage
plus precis que la méthode VR. error de recalage est inférieure & 2 mm versus error
de recalage superieure a 2.5 mm. De plus. la method MI est moins sensible au bruit
et a la troncation de données. Les deux méthodes sont plus sensibles a une faible
resolution spatiale qu'an bruit des images de transmission PET.

Dans une deuxieme étude. la méthode MI a été validé lorsque des données réelles
IRM/PET sont utilisées. Cette é¢tude montre que cette méthode n’entraine pas
d’erreurs explicites de recalage. base sur une inspection visuelle des résultats.

En conclusion. le recalage de donnees IRM/PET par une methode traceur-indépendante
basée sur 'algorithme MI est une méthode robuste de recalage, quelque soit la nature

du traceur utilisé¢ durant 1" acquistion PET.
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Chapter 1

Introduction

1.1 Background of Image Registration

In the last several decades. many new medical imaging technologies. such as computed
tomography (CT). magnetic resonance (MR). positron emission tomography (PET).
and single photon emission computed tomography (SPECT) have been introduced
into clinical use. These imaging technologies greatly improve clinical diagnosis. treat-
ment planning. and therapv evaluation. Furthermore. since the images from these
imaging modalities can provide complementary information. correlating the infor-
mation contained in different images has been a widelvy emploved approach in both
research and clinical environments.

One of the applications to combine complementary information from different
imaging modalities is the investigation of functional PET images with the help of
anatomic MR or CT images [1. 2. 3. 4. 5]. PET images can produce n vivo quantita-
tive measurement of various functional parameters on a regional basis in the human
brain, including local hemodynamics. metabolism. receptor kinetics. and tissue pH
[6. 7. 8]. However. PET images suffer from poor spatial resolution and a possible low
signal-to-noise ratio (SNR). Morcover, poor counting statistics and inadequate reflec-

tion of underlving anatomical variation by the distribution of the radiolabel limit the



ability of PET images to vield accurate anatomic information [1]. This may be due
to the limited distribution of & tracer. which only accumulates in specific regions,
or because the normal distribution is disturbed by the presence of large pathological
areas. Hence. it is often hard to identifv the location of the functional activity that
a PET image indicates. High resolution MR images can provide detailed anatomic
information about the human body. but offer no functional information (except for
MR images) as PET images do. Consequently, by combining MRI data with PET
data, information concerning physiological activations contained in PET images will
be more accurately interpreted with the help of underlving anatomic structures pro-
vided by MRI data. Besides the applications in research environment. combining
MRI/PET image from the same patient is also useful in the clinical environment. For
example. PET images can identify the regions of high metabolic activity or protein
svnthesis, which are areas of possible cancerous tissue. Accurate localization of the
cancer will be greatly enhanced by correlating a PET image with a MR image from
the same patient.

Because the images involved in information correlation are acquired at different
times. the variations in patient position. and differences in image spatial resolution
and voxel size make it difficult for examiners to visually correlate-the images accu-
ratelv. Therefore. explicit registration of the images from different modalities is a
necessary step for information integration.

Image registration (sometimes called image fusion, image matching. or image cor-
relation) is the technique to find the geometric transformation which will spatially
align the two image data sets in a common space. Although there were many attempts
to fuse two images at acquisition time [1. 9. 10]. most attention has been paid to 3-D
retrospective registration. and it is also the interest of this thesis. In retrospective
3-D registration, one of the two data sets is usually called the target volume. and is
taken as the reference volume: the other one is called the source volume. on which a

linear geometric transformation (usually containing three rotation and three transla-
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tion parameters) is applied to align it with the target volume. Once the geometric
transformation has been found. the source volume can then be re-sampled via this
geometric transformation. The superimposition of the re-sampled source volume on
the target volume enables the voxel-to-voxel comparison of the two data sets either
by visual inspection or by using digital operations on the two aligned data sets.
Figure 1.1 illustrates the image registration procedure and a comparison setup
of two image volumes. In the first row of the figure. the left image denotes the
source image volume. and the middle one is the target volume. The right image
shows the superimposition of the source and the target image volumes. [t should
be noted that the superimposition is done in a common coordinate space. [t can
be seen from the figure that due to different orientations of the head during two
separate scanning sessions. the two volumes are not aligned in the same coordinate
space. Image registration procedure is applied to the two images to find a geometric
transformation to align them. After the registration procedure. the source volume
can be re-sampled by the registration result and the transformed source volume (left
image in bottom row) can then be superimposed on the rarget volume. allowing direct

voxel-to-voxel comparison.

1.2 Key Elements in Image Registration

The framework for the immage registration method can be viewed as a combination of

four key elements as follows [11]:

e Extracting Matching features. The matching features consist of information
extracted from the original images which is used for matching. This may be
explicitlv-defined corresponding features such as anatomical landmarks or sur-
faces identified in cach image. Alternatively. there may be no specific corre-
sponding features defined but registration is achieved by alignment of some

intensity-derived property of the images.
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e Parameter search space. The searching space is a set of transformations which
is used to resample the source image to align it with the target image. The ex-
tension of the searching space is determined by the problem itself. For example.
in 2D image registration. there are usuallv three parameters in the geometric
transformation - two translations and one rotation: while in 3D image registra-
tion of rigid bodies (as in intra-subject registration). there can be six parameters
- three translations and rhree rotations. The complexity of the searching pro-

cedure is partly determined by the number of these transformation parameters.

e Similarity measurement. The similarity measurement is the criterion used to
measure how well the source image aligns with the target volume after the
source image has been re-sampled by the current transformations in the pa-
rameter search space. For example. the sum of absolute differences between
corresponding voxel values from two images may be taken as a similarity mea-
surement. \When the sum is minimized. the two images are assumed to be

optimally registered.

e Optimization procedure. Since the registration is a procedure to find the best
transformation which leads to an optimal similarity measurement on the match-
ing features. an optimization method is a necessary component in this problem

domain.

The choice for each element is important for a successful final result of the image
registration and has great impact on rhe other elements. For example. a matching
feature which can be casily detected bv image processing techniques might eliminate
the necessity of human intervention in the registration procedure. A good similarity
measurement defined on the matching features may cause fewer local extremes in the
parameter search space. which will greatly relieve the burden from the optimization

procedure and make the registration method more robust.



1.3 Monomodality and Multimodality Image Reg-
istration

Depending upon the sources of the images engaged in the registration problem. there
exist two kinds of image registration - monomodality and multimodality registration.

Monomodality image registration tackles the registration problem for two or more
images from the same image modalitv. This category can be further divided to intra-
subject and inter-subject registration.

Intra-subject monomodality registration focuses on the same patient's images
which are acquired at different times 12. 13. 14. 15]. As an example. accurately
aligning two X-Rav images from the same patient acquired at different times might
be useful to detect. locate. and measure pathological changes in a target organ. Inter-
subject single modalitv image regcistration is useful in assessing morphometric vari-
ability over large number of patients [16. 17. 18, Although both source and target
images are from the same modalitv. inter-subject registration is an interesting prob-
lem. due to dissimilaritv in sizes and shapes of subjects” brains and is the subject of
much recent research.

Multimodality image registration is rhe registration of two image volumes from
different modalities. usuallv from rhe same patient. Combining anatomical and func-
tional images (4. 5. 19! from the same subject can lead to better interpretation of
the functional information. Correlating two anatomic images is also a valuable tool
in radiotherapyv and radiosurgerv. Precise dose localization in radiotherapv requires
both precise target contours. which are best outlined from MRI: and accurate dose
distribution calculations. which are better derived from the tissue-density information
provided by CT 20. 21. 22].

In the intra-subject multimodalityv registration problem. the difficultyv resides in
the enormous dissimilarity between the source and the rarget images. Similar tissue

tvpes in the two images may take on very different intensity values. and the problem is
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even worse when one of the images records anatomic information and the other records
functional information. where the latter might not provide much useful information

on anatomic structure.

1.4 Objective of This Thesis

Although existing imaging rechnologies can be applied to different parts of human
body. such as spinal cord. brain and chest: the MRI and PET images from the human
brain are the major sources for investigation of brain function at the Brain Imaging
Center (BIC) of Montreal Neurological Institute (MNI). Hence, the focus of this thesis

is the MRI/PET registration problem as applied to 3-D images of the human brain.

1.4.1 Problems with Existing Methods of MRI/PET Regis-
tration

Many methods have been reported for successfully registering MRI to PET emission
images [31. 23}. Some of them are manual or semi-automatic needing some human
intervention during the registrarion procedure. Auromated MRI/PET registration
methods make use of lmage processing rechnologies to extract corresponding features
from two data sets and search for the best transformarion to map these features in
a completely automatic wav. Both tvpes of methods have advantages: however. this
thesis covers the registration of MR to PET images in an automated fashion.

In different PET studies. various tracers are used to measure phvsiologv. For
example. ["*F]Huorodeoxyvglucose (FDG) is widely used in neurology. cardiology and
oncology to study glucose metabolism. Many PET tracers measure receptor or neu-
rotransmitter kinetics. for example. "*F!fluoroDOPA can be used to measure the
activity of the dopa decarboxvlase. a pre-svnaptic enzyvme involved in the svnthesis
of the neurotransmitter dopamine.

The existing automatic MRI/PET registration methods only work well with MRI
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to some PET images acquired using tracers such as FDG and HY*O which suffuse
the entire brain parenchvma. but not to those obtained bv enzvme tracers such as
receptor ligands which often provide limited anatomical detail in the emission images.
In other words. existing methods are tracer-dependent. Furthermore. for tracers
which do accumulate throughout the brain in cerebral blood How or metabolism
studies. registration techniques based on assumptions of uniform tracer distribution
can often fail with PET images containing large regions of abnormal accumulations
such as in stroke or tumor studies. Figure 1.2 shows a PET emission image acquired
using [F]HuoroDOPA. which does not contain adequate anatomic information for

registration purposes.

1.4.2 Tracer-Independent MRI/PET Registration

A PET transmission (tPET) image. usuallv acquired immediately before the PET
emission (ePET) study. is similar to an X-ray CT scan of tissue density but acquired
with 511 ke\” gamma rayvs instead of the usual 80-100 ke\” X-ravs. It carries the in-
formation necessary to correct for gamma-ray attenuation in the rissue which occurs
during the subsequent ePET study. Although the tPET image lacks rhe fine detail
of X-ray CT imaging. it can still identifv some anatomic structures. such as petrous
bones. sinus cavities and skull. This anatomic information is sufficient to register
the tPET image with MRI data. Because the tPET and ePET images are acquired
in sequence while the patient is immobilized in the PET scanner by a customized
foam head-holder. we assume that the tPET and ePET images are spatially aligned.
Furthermore. the post-injection tPET scan technique [24] and the simultaneous trans-
mission and emission scan technique [23. 26] in PET greatly reduce or even eliminate
the time span bhetween transmission and emission scans. thereby the likelihood of
patient motion during scans. This further ensures exact spatial alignment between
tPET and ePET data. In a clinical environment. ro prevent from possible misregis-

tration between tPET and ePET due to the patient movement in a long time PET
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Figure 1.2: A transverse slice of a typical ['*F]luoroDOPA PET image acquired from Siemens
ECAT HR+ scanner (FWHM = 8 mm. voxel size = 2 x 2 x 2.4 mm? with 63 slices. The slice shows

the dopamine distribution in the normal corpus striatum).
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scan. several transmission scans can be made along the ePET scan. In this way, a
tPET scan will be used for registration of ePET scans made around the time when
the specific tPET scan was made. which can also ensure the registration of tPET and
ePET images of the same patient.

From the registration of MRI/tPET images. the MRI and ePET image can be
indirectly registered. Since tPET images carry the same information regardless of
the kind of PET tracer studv. MRI/tPET registration allows the registration of MRI
to ePET image in a tracer-independent way. Several research groups have tried
to use tPET to register MRI to ¢PET images [4. 77]: however. their methods are
either manual or semi-automatic. in which human intervention is necessary to identify
matching features. In this thesis an automated registration method which matches
MR/ePET image through MR/tPET image registration is investigated.

In summary. the objective of this thesis is to find an accurate and robust method
which will register MRI to tPET images: and therebyv accomplishing MRI/ePET
image registration automatically.

Due to the limitations of tPET images and characteristics of multimodality image

registration. it is also desirable that the MRI/tPET registration be stable when:
e the tPET image is at low spatial resolution:
e the tPET image has low signal-to-noise ratio (SNR):

e the MRI and tPET data do not cover exactly the same volume of brain.

1.5 Structure of This Thesis

In this thesis. chapter 2 briefly describes the basic principles of positron emission
tomography and the relationship between tPET and ePET images. Chapter 3 gives a
review of existing multimodality image registration methods. In chapter 4. the meth-

ods for MRI/tPET image registration used in this thesis and some implementation

10
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details of the algorithms are described. Validation methods on the registration algo-
rithms are also presented in this chapter. Chapter 5 presents the experiments and
results of MRI/simulated-tPET image and MRI/real-tPET image registration. Sev-
eral implementation details are explored first in this chapter: and then experiments
are carried out on simulated tPET images generated by setting scanning parameters
close to those used in clinical studies: finallv the robustness of the method to various
resolutions. SNR. and data truncation is explored. Discussion of the experimental
results and a comparison of two registration methods are also given in this chapter.
The last chapter draws conclusions from the experimental results: and possible future

work is proposed to end this thesis.

11
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.Chapter 2

Positron Emission Tomography

Positron emission tomographyv is a technique used to study the distribution of sub-
stances labeled by positron emitting radioisotopes within a three-dimensional object.
The radioisotopes are first injected or inhaled into the body. and by making use
of measurements of radiation from these isotopes. an intensity image can be recon-
structed from the recorded radiation data. The intensity of voxels can be regarded
as the representation of the isotope concentration.

Many comprehensive papers are available giving detailed information about the
positron emission tomography technique [27. 28]. In this chapter. only the basic

principles of PET and the characteristics of PET images are brieflv described.

2.1 Positron Emission and Detection of Emission

Positrons are positively charged electrons. The nucleus of some radioisotopes. which
have an excessive number of protons. can emit the positrons to stablize the nucleus
by removing the positive charge. Although proton-rich radioisotopes can reduce ex-
cessive positive charge in the nucleus by another way in which the nucleus captures
an orbital electron and neutralizes the positive charge. all radioisotopes used in the

PET technique decay by positron emission.

12




by

After traveling a short distance (the distance depends on the energy of the positron.
i.e. for F-18 the maximum range of the distance = 2.6 mm}) . a positron emitted from a
decaying nucleus will collide with a surrounding electron. The annihilation caused by
the collision will convert the masses of both positron and electron into electromagnetic
radiation. In order to conserve the energy and linear momentum. the electromagnetic
radiation takes the form of two 511 ke\" gamma-ray photons at 180° £ %O apart from
each other. The two photous are often called comncident rays. Easily penetrating
the human body. the coincident gamma-ray photons are then recorded by external
detectors. Because the two annihilation photons are emitted at 180° to each other
and they are created at the same time. the near-simultaneous detection of the two
photons by a pair of detectors placed opposite to cach other can determine the lo-
calization of the emission to be limited to the line joining the two detectors. If onlyv
one of the photons is detected. the annihilation must have originated from the region
outside the volume between the detector pair or the other ray was lost by scattering
or absorption in the scanned object. In this case. the detected event will be rejected.

Figure 2.1 is a schematic diagram of coincident ray detection. Two detectors are
placed on the opposite sides of the object. The region (often called sensitive volume)
encased by the detector and the two dashed lines is an area in which true coincidence
event can be detected. In the diagram. it can be seen that another coincident event
that happened outside of the sensitive volume is rejected by the detectors since only
one gamma-ray photon is detected.

The detection of the annihilation coincidence is in one dimension only. To obtain
a three dimensional image. it is necessary to get the measurements from different
directions. This procedure is in essence similar to other tomography techniques. such
as computed tomography (CT). Once enough measurements have been obtained. the

data can be reconstructed into a two-dimensional tomographic image [29. 30].
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Figure 2.1: Detection of positron emission.

2.2 PET Transmission Image

As the annibilation photon penetrates human body. it may lose some of its energy or
even he absorbed. This attenuation of photons is one of the major sources of inac-
curacy of PET image. The emissions that occurred in the center of the human body
will be attenuated more than the ones near the surface of the body due to the longer
distance between the emission and the detector. Without attenuation correction. the
measurement of annihilation photons can not trulv represent the concentrations of
isotopes in the body. The attennation of radiation after photons pass through an

object can be represented as:

[ = Le™™ (2.1)

where [y and [ are the original number of photons and the number of photons left after

passing through the object respectivelv: r is the distance of the radiation traveling

within the attenuation object: and p is the attenuation coefficient of the object.
One way to measure the attenuation correction is to generate a PET transmission

image. In order to get the atrenuation factor for the subject. two additional scans are
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Figure 2.2: The Geometry of ePET and tPET Scans

needed before the emission scan. With a ring positron emitter placed in the field of
view (FOV) of the scanner. the scanner first does a blank scan of the emitter source
without the subject in the FOV before it scans the subject of interest (transmission
scan).

For every line-of-response between two PET detectors ¢ and j. LOR;;. the blank
scan data and transmission scan data measure [ and [ respectively in Equation 2.1.
The ratio of the two data sets can then be used to compute the attenuation correction
for the corresponding LOR,, from the ePET scan. The log of this ratio (¢ in Equation
2.1} can be reconstructed to provide an image of the attenuation coefficients of the
cross section in a fashion analogous to the reconstruction of the ePET image. This
image is called the PET transmission image (tPET). Figure 2.2 shows the geometry
of ePET and tPET scanning.

In principle, the formation of a tPET image is the same as that of an X-ray CT
image. Although the actual image quality of the tPET image is much worse than

CT image. it can still delineate some of the important anatomical structures such as
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(a) PET Emission Image (b) PET Transmission Image

(c) Superimposition of Emission and Transmission Images

Figure 2.3: PET emission and transmission images

bone. Figure 2.3 shows sagittal slices from a ePET image and from a corresponding
tPET image. These PET images are obtained from a Siemens ECAT HR+ scanner

(FWHM = 8 mm. voxel size = 2 x 2 x 2.4 mm?* with 63 slices) in a H}*O tracer study.
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2.3 Characteristics of the PET Image

2.3.1 Spatial Resolution of the PET Image

[deally. the spatial resolution of a PET image is determined by the detector width of
the PET scanner. In reality. there are two more factors which will reduce the accuracy
of positron emission localization detected by the scanner. and thereby lowering the
spatial resolution of the final image [28I:

e Not all annihilation photous are emitted at exactly 180° (i.e. 180° = %c) due to

the residual momentum of the emitted positron:

e The positron travels some distance (i.e. for F-18 the maximum range of the
distance = 2.6 mm) from the site of the emitting nucleus before annihilating

with an electron. This distance depends on the energyv of the positron.

Moreover. if there is patient motion during scan. it apparently will cause resolution

loss (i.e. blurring) in the final image. There are three aspects of effort to remedy this

problem:
e acomfortable scanning setting to allow the patient to be at ease during scanning:
e a short scan time:

e a well-designed restraint svstem.

2.3.2 Noise

In the section 2.1. an ideal detection of positron emission was described. However. in
reality, there are two kinds of spurious events which can be mistakenly accepted as
coincidence ravs (shown in Figure 2.1) - scatter coincidence and random coincidence.

Because of the interaction with surrounding tissues. the annihilation photons can

scatter from their original direction. [n Figure 2.1. a coincident event that happened
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outside the sensitive volume is detected simultaneously by the two detectors due to
scatter.

The random coincident event accepted by the detectors is actually two photons
from different emissions which happen to reach the two detectors at almost the same
time. Due to the speed limitations of the detector itself and the finite speed of gamma
rays. the detectors cannot distingnish rthe random event from the true coincident
event.

Both scatter and random events will cause artifacts in the final PET image. To-
gether with other noise sources (i.e. detection efficiency) which will not be discussed
in detail here. the artifacts contained in the dara set make PET images have lower

signal to noise ratio (SNR) rhan the MR images.

2.4 Summary

From the above sections. it can be seen that due to the physics of the emission process
and the physical size of rhe detectors. both ePET and tPET images have very poor
spatial resolution. With such a low spatial resolution. the partial volume effect ! is also
a problem associated with PET images. When compared with MRI and CT images.
PET images usunalls- have lower SNR due 1o low counting rates. scatter coincidences.
and accidental coincidences.

Despite the above limitations. PET image can provide in nvo measurement of
a wide variety of functional parameters in human brain. These functional measure-
ments can greatly improve the understanding of human brain function and provide

an effective wayv to detect the abnormal function of tissues.

'Refers to the case of a data element (pixel or voxel) containing more than one tissue type.
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Chapter 3

Review of Multimodality Image

Registration Techniques

In this chapter. a review of multimodality image registration techniques is presented.
The goal is not to cover all of the existing image registration methods. but to focus on
the methods for three dimensional multimodality medical image registration problem.

Many methods have been proposed to deal with the medical image registration
problem (see [23. 31. 32| for an extensive literature review). Since the focus of this
thesis is the intra-subject registration of MRI/PET images. this review is limited to
3-D linear registration methods. where a global ! linear ? transformation is used to
re-sample the source volume to align it with the tarset volume.

In Chapter 1. the four key elements in the framework of an image registration
method were described. Four categories of methods will be discussed in this chapter

as follows:

e Point-landmark-based methods.

! A transformation is called global when a change in any one of the matching parameters influences

the transformation of the image as a whole. [31]
*In this thesis, we define the linear transformation as a transformation only including translation,

rotation and isotropic scale.
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e Surface-based methods.
e Principle axis transformation method.

e Voxel-based methods.

Although the optimization methods will not be covered in this review. it should be
noted that this element is important to the accuracy and robustness of the registration
methods. Two registration methods using the same matching features but different
optimization methods may vield very different results. Also. a better optimization

method may allow a more accurate registration result with faster convergence speed.

3.1 Point-landmark-based Multimodality Registra-
tion Methods

Point-landmark-based methods use small sets of homologous point landmark pairs
from both the source and the target images as the matching features. The points to
be matched are obtained from either external fiducial markers or intrinsic anatomical

landmarks in the images themselves.

3.1.1 Extrinsic Landmarks

The points to be matched can be obtained from external fiducial markers. These
markers are attached either to the head of the patient directly [33. 34. 35. 36] or to
a structured fiducial frame fixed to the patient’s head [37. 38. 39. 40. 41. 42, 43].
[deally, the fiducial makers should meet the following requirements to generate the

appropriate landmarks for the registration:

1. The markers should appear in both modalities (i.e. MRI and PET); and the im-
age of the markers in both modalities should have high contrast when compared

with surrounding structures for case of identification.
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The locations of the markers can be accurately identified. The accuracy of their
localization should not be worse than the spatial resolution of the images from

each modality.

3. The markers should be comfortable for the patient to wear and easilyv attached

to or detached from the patient.

4. The markers should not cause artifacts (e.g.. magnetic susceptibility or chem-
ical shift in MRI) in both image modalities. Otherwise thev will deteriorate
the quality of the image. and furthermore. atfect the following processing and

analysis.

The fiducial markers might not satisfv all of these requirements in practice. For
example. the locations of the markers in a stereotactic frame fiducial marker system
can be identified accurately from both images. but it is uncomfortable for the patient
to wear and might cause artifacts in the MR images. On the other hand. markers
attached to the skin of the head lets the patient feel more comfortable during the
scanning. However. there is a possibility of skin movement between or during image
acquisitions. and the fiducial markers might not be fixed steadily relative to the
subject. Therefore. this kind of marker svstem is mostly used in the case where one
of the image modalities produces a lower resolution image than the other one does,

such as in MRI/PET registration.

3.1.2 Intrinsic Landmarks

Another way to obtain corresponding landmark pairs is to identifv the equivalent
points in the two images based on anatomical structures [5. 44. 45, 46]. A user.
who has enough radiological knowledge of the anatomy of structures in both modali-
ties, can use a display and navigate software to search for corresponding tag (either
intrinsic or extrinsic) points on both the source and the target images. After the cor-

responding points are identified from the two images respectively, the co-registration
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transformation can be obtained by minimizing some distance norm between these
point landmarks.
A widely used distance norm in point-landmark-based registration methods is the
least square fit [19] [51}:
N
L =3 | Q. —T*P I (3.1)

=1

where P, and 2; (i = 1....V') are the the set of landmark pairs for the source and the
target volumes respectivelv. and the 3-D transformation applied to the source volume
is represented by 7. || - || is the notation for norm of vector. When the geometric
transformation minimizes the ls¢* term. the transformation is taken as the solution
for the registration of the two data sets.

Unlike the other registration methods discussed below. the optimization proce-
dures in landmark-based registration methods are not iterative. The direct solution
from linear algebra makes the optimization very efficient. The Procrustes algorithm
[47. 48] was used by Evans et al. [5] to minimize the least square measurement.

Since the locations of landmark points are determined by the user. the accuracy of
the points’ location depends on the expertise of the user. the tvpe of data (i.e. MRI.
PET) and image quality (i.c. contrast and spatial resolution). Therefore. a friendly
user-interface for the labelling operation is a kev component for the success of this
method.

Moreover. two factors affects the accuracy of the intrinsic landmark registration

approach:
e homology error. i.e. uncertainty in identifving the equivalent landmarks from
the two images:
e the number of landmark points used in the registration.

Neelin et. al. used point simulations to investigate the effect of these two factors
on the intrinsic landmark registration method [77]. Figure 3.1 (from [77]) shows their

result. A constant homologyv error g, = 5mm was injected into the simulation. The
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Figure 3.1: Registration and Homology Error in Intrinsic Landmark Registration Method.

registration errors fall rapidly with .V (the number of points used in the registration)
when .V < 5. But when .V is between 8 and 10. the registration error is proportional
to g,/V.N. Similar curves were observed from their experiment. for injected noise

levels of 2, 10. and 15. with the error scaling linearly with notse level.

3.1.3 Discussion

Once the point landmark pairs are identified, the point-landmark-based registration
methods have the advantage of computational efficiency. The direct solution of the
optimization increases the robustness of this method over the iterative approaches.
However. the extrinsic landmark method complicates the image acquisition process
and makes retrospective analvsis impossible. Placing the external fiducial markers
on patient’s head is inconvenient for the patient and may be expensive as well. Fur-
thermore, if the markers are attached to the skin. landmark location may not be
accurate since skin movement will be inevitable. The intrinsic landmark method re-
lieves the patient from any external attachments: and it enables the retrospective
registration since no prescan procedure is required. But the accuracy and robustness

of this method depends heavily ou the expertise of the user. This method is also time
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consuming due to difficulty in identification of low contrast anatomic structures. espe-
cially in anatomical/functional image registration. such as MRI/PET or MRI/SPECT
registration. With respect to human interaction during the registration procedure.
extracting the coordinates of external fiducials is usually straightforward and can be
automated: the intrinsic point-landmark-based registration methods require manual

interaction to identify rhe landmark points.

3.2 Surface-based Multimodality Registration Method

In order to overcome the difficulty of identifving anatomic structures in low contrast
medical images. many researchers have proposed to use corresponding surfaces from
the images as matching features to fulfill the registration [4. 32. 53. 54]. In most
medical image modalities. continuous surfaces are more easily labelled than specific
point landmarks. For example. the contrast between air and tissue is high in MRI
and CT. which makes it easy to extract as boundary or surface feature from original
images.

One of the popular surface-based registration methods is referred to as the head
and hat algorithm [4]. The surface obtained from the first image. which is usually at
higher resolution. is represented by a set of 2-D contours extracted from the slices of
the tomographic image. For instance. the external surface of tissues in MRI or CT
images is easily outlined: these contours form the head model. The corresponding
surface from the second image is usually represented by series independent points.
and is referred to the hat. After the head and hat are acquired. the hat surface is
transformed to fit the head surface. The registration result is finally obtained when
the hat surface most closely fits onto the head surface. Usually. the measure of fit
between two surfaces is defined as the square of the distance between a point from the
hat and the nearest point on the head surface in the direction of the head’s centroid.

However, this measure of fit has a problem that the point on the head surface. which




is nearest to a point on the hat. might not be in the direction of the head’s centroid.
The author claimed the mean registration error of MRI/PET registration is below
2.5 mm. Several research groups improved the fit measurement by applving distance
transforms to images. which can be performed efficiently by the chamfer method
[53. 36, 37].

In some cases. it is difficult to identify the equivalent high contrast surfaces from
the two images to be registered. For example. the inner surface of the skull is distinct
in CT images while it is not very clear in MR images. Hill and Hawkes [58] pro-
posed using adjacent anatomical structures instead of exactly equivalent structures
as matching features. In their method to register MR and CT images. the inner
surface of the skull from the CT image and the outer surface of the brain from the
MR image are first extracted from the original images. Although the two surfaces are
not exactly equivalent to each other due to the presence of membranes. blood vessels.
etc., between them. knowledge about the relationship between the two surfaces (i.e.
containment relation) can still help to define a fit measurement between the two sur-
faces, which can lead to an optimal geometric transformation to align the two image
volumes.

Surface-based methods take a further step towards automating the medical image
registration procedure. Since numerous edge and boundary detection methods already
exist, the extraction of a surface from the 3-D volume can be automated. hence
relieving the burden of detecting equivalent anatomic structure from users. However.
the existing edge and boundary detection methods are far from accurate and robust
on real medical images. Therefore. some user interaction is usually still needed to

accurately extract the surfaces from the images.



3.3 Principle Axis Transformation

The principle axis transformation (PAT) method introduced by Alpert et al. [19] is an
analytic approach based on the classical theorv of rigid bodies [30]. A rigid body can
be uniquely localized by the position of its center of mass and the principle axes * with
origin placed at the center of mass. Rigid bodies can be constructed by extracting an
equivalent surface from each image and taking the surface-enclosed volume as a 3-D
object of uniform density. Once the rigid bodies have been defined from the images.
the center of mass and principle axes can be obtained for each object. In the PAT
method. one rigid body is first translated to make the two bodies™ centers of masses
coincident. then the necessary rotational operations are applied to align the two rigid
bodies, thereby registering the two images. This approach. as the author claimed
[19]. can accomplish with tvpical errors in the range of around lmm.

The principle axis transformation has the advantage of an analvtic solution. It
avoids the heavy computation and local-minima problem associated with the iterative
registration techniques. However. this method is sensitive to truncation of one or both
of the image volumes [23}. which vields nonequivalent objects and different moments

of inertia for the two images.

3.4 Voxel-based Multimodality Registration Meth-
ods

The point-landmark-based. the surface-based. and the PAT registration methods
achieve their goals by matching correspondent features extracted from the original
images. Due to the fact that accurately identifving corresponding features is not easy
and is sensitive to noise and data truncation. these methods requiire some user inter-

vention during the registration procedure. Furthermore. in some cases. if the contrast

30rthogonal axes about which the moments of inertia are minimized.
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is low between the feature of interest and surrounding tissue. it is even difficult for an
operator to visually detect the corresponding features from both images. Voxel-based
registration methods. which are based on the numerical comparison of all or a large
number of voxels from the two images. usuallv do not require an accurate feature
extraction step.

The assumption in voxel-based methods is that a numerical operation between
each corresponding voxel pair will provide a similaritv measure. which is optimal
when the two images are correctlv registered. Therefore the similarity measure-
ment is the most important element in the voxel-based methods: in contrast. the
accuracy in identifving corresponding features largelv determines the success of the
point-landmark-based and surface-based registration methods.

Three similarity measurements proposed for multimodality medical image regis-
tration will be discussed in the following sections: cross-correlation. variance of voxel

intensity ratio. and mutual information.

3.4.1 Feature Space Histogram

The feature space histogram. sometimes called a scatter plot. is a very useful tool for
examining the effects of misregistration. Since most voxel-based methods reviewed
in this chapter are directly or indirectly related to rhe analvsis of the feature space
histogram. a brief description of the histogram and its characteristics is given here
first.

The feature space histogram is in principle a 2D histogram (h(r.y)) of spatially
aligned voxel intensity pairs from the source and the target volumes respectively.
The variables of r and y are the inrensity values of voxels from the source and the
target image volumes having the same spatial coordinates. The value of ii(x. y) is the
number of the voxel pairs. such that the intensity value of the voxel from the source
volume is r. and the intensity value of the aligned voxel from the target volume equals

to y. Equation 3.2 illustrates rhe structure of the feature space histogram:
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where P;. P, are the coordinates of the voxels from source and target volumes respec-
tivelv. and /(P) represents the intensitv of the voxel at P.

The shape of the feature histogram has a close relationship to the image misregis-
tration. To explain this relationship. a feature space histogram sequence of registered
and misregistered inmages was generated (shown in Figure 3.2). For simplicitv. a T1
MR image was chosen for both source and target volumes. In the original setting.
the source and target volumes were strictlyv aligned because theyv are identical. Since
the two images are exactlv rhe same. the feature space histogram (Figure 3.2 (a)) is
a straight diagonal line when the rwo images are registered. In Figure 3.2 (b). (¢)
and (d). the source image i shifted by 3 mm. 5 mm. and 10 mm from its original
position along the r direction respectivelv: in (ej. (fj. and (g). the source image is
rotated around the r direction for 3°. 5°. and 10° respectively.

[t is verv clear that as the two images are misregistered. dispersion from the
diagonal line in the feature space histogram is increased.

A feature space histogram sequence from MRI/tPET data was also generated
(shown in Figure 3.3). This time the two images were acquired from different modali-
ties and there is no monotonic relationship between MRI intensity and tPET intensity.
The relationship between the scatter plots and misregistration is not so clear as it was
shown in Figure 3.2. but the dispersion of the scarter plot with misregistration can
still be observered. The “cloud”™ in the feature space histogram becomes less tight as

the two images are moved farther from the registered position.

3.4.2 Cross-Correlation Method

Cross-correlation has heen widelv used in signal processing to measure how closely
two signals martch each other. Thus. it is very natural to use cross-correlation in image

registration. In three dimensions. for volumes 4 and B with [ x J x A" dimensions.

28




(a) registered

{b) shifted 3 mm (c) shifted 3 mm (d) shifted 10 mm

(e) rotated 3° (f) rotated 3° (g) rotated 10°

Figure 3.2: Feature space histogram and image misregistration
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Figure 3.3: Feature space histogram and image misregistration in MR/tPET images. Due to the
blurring of MRI (Gaussian kernel of FIWHAM = 9mmn was applied) and tPET (intrinsic blurring)

images, the “cloud” in the feature histogram distributed widely.
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the correlation value for a geometric transformation T on A is defined as:

I J K
corr(A.B:T) = Z > SN A-T(B) (3.3)
The transformation T is the solution for the registration problem if it maximizes the
correlation value.

The matching feature used in these kind of methods can be voxel intensity [61], or
derived features such as voxel intensity gradient [59. 60. 61]. or ridge-like L., features
[57). However. in multimodality registration. directly using voxel intensity as the
matching feature is less successful. because the voxel intensity values in one image
are usually not a monotonic function of the voxel intensity values in the other image
acquired from a different image modality. This leads to multiple values in one image

corresponding to the same value in the other image.

3.4.3 Variance of Voxel Intensity Ratio Method

The variance of voxel intensity ratio method was first introduced by Woods et al. [15]
to deal with the intra-subject intra-modality registration problem. The assumption
behind this method is that the voxel intensity from the same tissue tvpe from one
modality should be the same. or only different by a constant factor. In other words.
the ratio of voxel intensities from the image pair should be a constant when the
two images are registered. However. in realities. even two exactly aligned images
will show some residual variation due to counting statistics, partial volume effect.
and interpolation error. Therefore. the similarity measurement for the registration is
defined as the variance of this ratio. As an illustration. let a; and b; be the intensity

of voxel i from the two images to be registered:

(,

T b

where ¢ covers all possible voxels in the volumes.

r,

And the normalized variance value can be represented:
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R=12 (3.5)

r"l

where r, is the standard deviation and r,, is the mean value of r;. When the two
images are registered. the variable r; should be maximally uniform if not constant
(when registering two images on the same subject and from the same modality), which
minimizes the value R.

In intra-modality registration. the variance of the intensity ratio (VR) [15] method
is based on the assumption that there is a linear relationship between the matching
feature across the whole volume. However. in multi-modality image registration, this
assumption does not hold. especially in the case where one volume is an anatomic
image and the other is a functional image. Nevertheless. Woods et al. extended this
idea to the multimodality image registration [63]. In this method. instead of using a
global random variable r; as in Equation 3.4. a set of such intensity ratios. based on the
segmentation of the reference image. is used to overcome the non-linear relationship
between voxel intensities across the two volumes in MRI/PET registration.

The reference image (the MR image in MRI/PET registration) is partitioned de-
pending upon the intensity value. The voxels whose intensity values are equal to b;

are in the same partition j. A variable r, is defined as:

=4 (3.6)

o=
J
b;
where q; are intensity values from corresponding voxels of the other image.
For each variable r;, the same measurement R; as in Equation 3.5 can be gen-
erated. Finally, the similaritvy measurement is defined as the weighted average of

RJ'I

R=% &{fﬁi (3.7)
A

where n; is the number of the voxel pairs in the partition j and the N is number
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of whole voxel pairs in the registration ( .V = 3, n;). When the two images are
registered. R’ should be minimized.

Woods et al. reported successful registration of MRI/PET images (PET FDG
images) by this method. obtaining a mean 3-D error in the registration result of less
than 2 inm [63].

In an adaptation of the Woods™ approach. Hill et al. [81] proposed selecting specific
bins of the intensity value from the feature space histogram to calculate the variance
of the voxel intensity ratio in the MR/CT image registration. For each bin. different
weights can be used on the variance ratio: i.e.. more weights can be assigned to the

bins corresponding to tissues that are likely to be useful for registration.

3.4.4 Mutual Information Method

[n information theorv. entropy is a measure of the uncertainty of a random variable
and can be denoted as [71]:

H(X) = = 3 plr)log(p(x)) (3.3)

reN

where X is a random variable and p(x) is the probability mass function of X.
[t is very easyv to extend the entropy concept to a pair of random variables. Joint
entropy H(X.Y) of a random variable pair (X.Y) is defined as:

H(NY) == 3 3 pla. y)log(p(r)p(y)) (3.9)

reX yey
where p(x), p(v) are the marginal probability distributions of X. Y respectively. and
p(x.,y) is the joint probability distribution of (N.Y).
Mutual information of random variables X and Y is introduced to measure of the

amount of information that one variable contains about another variable:

-y (p(a.y))
I(X:1) = - ) log[~———22] 3.10
(1) = 2 2 vtenloglr ) (3.10)

[f one random variable contains more information about the other. the mutual infor-

mation value will be higher due to the reduction in the uncertainty of one random
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variable from the knowledge of the other. The relationship between the joint entropy

and mutual information is:
(N Y)=HNX)+ HY)-H(X.Y) (3.11)

Based on these concepts. Collignon et al. recently proposed two voxel-based reg-
istration methods. First. they used the entropy of the joint probabilitv distribution
of the combined intensity values of all common voxel pairs in the two images as the

similarity measurement [69]:
E(X.Y:T) Z Z - )log(p(T(x))p(y)) (3.12)

where X" and Y are random variables that represent the voxel intensity from the source
and the target volumes and T is a geometric transformation applied to the source
volume. Ideally the transformation I is the registration result when it minimizes the
function E(X.}": 7).

In subsequent work [70}. theyv found that the joint entropy measurement is sensitive
to the problem of partial overlap of the two data sets. Thev then proposed using
mutual information of the joint probability distribution to improve the robustness
of the method to partial overlap and to reduce the number of local minima in the

parameter searching space:

MIXY:T)==) > p(T(r).y) zaJ[M] (3.13)
rEX yev p(T'(£))ply)

Again the registration result is the transformation T which can minimize MI(X.Y:T).

The assumption behind these two methods is that when two related images cor-
rectly registered. one image should provide the most information about the other
one. thereby minimizing E(\\.Y:7T) or M[(X.Y:T). The author didn’t give quanti-
tative evaluation of MRI/PET registration using this method, but their result from

MRI/CT registration indicated that registration error is below 2.5 mm.
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3.4.5 Discussion of Voxel-based Registration Methods

All of the voxel-based registration methods described above use a similarity mea-
surement to solve the registration problem. Ideallv. the measurement is maximized
or minimized when the images are exactly registered. and it decreases or increases
monotonically with increasing misregistration between the two images. Furthermore.
the methods use all possible voxels in the two image volumes to calculate the simi-
larity measurement. This has the advantage of robustness against random noise and
the partial overlap problem.

Besides the three methods reviewed in this section. there are several other voxel-
based methods. such as the methods based on measurement of sum of absolute differ-
ences [66. 67]. stochastic sign change [12. 14]. and region overlapping [68]. However
these methods are either not suitable for the multimodality registration problem or
thev require user interaction during the registration procedure. These methods are
not discussed here.

Although cross-correlation of voxel intensity is not suitable in the multimodality
registration problem. it can be applied to derived features such as intensity gradient
to accomplish the multimodality registration (such as MRI/CT registration [57]).

The variance of intensity ratio measurement in the MRI/PET registration problem
requires that the regions corresponding to scalp and skull be removed before regis-
tration. The removal of these regions might increase the likelihood that all voxels
with a particular value in the MRI study will represent similar tissue types [63] and
thus reduce the number of local minima in the parameter searching space. This pre-
processing step usuallyv involves human intervention. At the Montreal Neurological
[nstitute, the non-brain structures can be extracted automatically using a brain atlas
in standard space. In this approach. rhe MR image is first re-sampled into the stan-
dard 3-D coordinate space of the atlas using 9-parameter transformation (3 rotations.
3 translations and 3 scales){62]. The brain atlas can then be used as a mask to zero

the extra-cerebral voxels in the image.
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Information theory methods proposed by Collignon et al.. are different from Woods’
VR method in that the sinilaritv measurement is svimmetric. The VR method is
not symmetric since the result depends upon which of the two images is used as the
reference image. For example. in MRI/PET registration. the MR image is chosen as
the reference image. In the information theory based methods. on the other hand.
the selection of the reference image is not important. and this svmmetric similarity

measurement may lead a more robust registration method.

3.5 Summary

Multimodality image registration is a difficult problem in the medical imaging field.
Although many methods have been proposed. there has been no consistent way (i.e..
different methods were validated by using different data sets) to compare the regis-
tration accuracy and robustness among these methods from the literature. Therefore.
it is also hard to choose the best from the existing methods. For practical use. the
amount of human interaction. the computation efficiency of the method. and the data
dependency of the method (i.e. a registration method mayv work well with MRI/CT
irage registration but not with MRI/PET) affect the selection of the registration
technigues. Most attention in this review was paid to matching features and the
similarity measurements of the registration methods: however. due to the complexity
of the image registration problem. other elements in the registration algorithm may
also affect the performances of the technique. such as the interpolation algorithm and

the optimization method. These issues are discussed in Chapter 4 and 3.
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Chapter 4

Registration and Validation

Methods

Two registration methods were implemented for MRI/TPET image registration -
Mutuai Information MI, and Variance of Intensity Ratio (VR In this chapter
the implementation details wili be discussed first. followed by a description of the

validation methods.

4.1 Introduction

In the implementation of MRI tPET image registration. the higher resolution MR
images are taken as source volumes and tPET images as target volumes. Therefore.
once the registration result has been obtained. the MR image can be re-sampled by
the geometric transformation into the coordinate space of the PET image in order to
perform voxel-to-voxel comparizons.

Because of the rigid skull of the head and intra-subject characreristics of MRI/tPET
image registration. the parameter searching space of this registration can be safelv
restricted to a set of global rigid body rransformations. which have six degrees of

freedom - three translations and three rotations. In order to facilitate the calculation
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These matrices are concatenated into a single six-parameter homogeneous matrix:

COSOCOS S COSOSING —-sino T

sinfsinocos s — cosfsing  sinfsinosing ~ coslcos: sinfcoso T,

RT (4.3)

coslsinocosy + sinfsins  cos@sinosin o — sinflcosys cosfecoso T,

{) 0 0 1

4.2 Preprocessing the Source MRI Volume

Since the FOV™ of the MRI data usually covers the head and neck. which contains a
much larger volume than the tPET image. it is necessary to crop the MRI data to
cover approximatelv only the volume of the brain.

To make use of standard Talairach space to crop the MR image to the desired
extent. two preprocessing steps are accomplished antomatically with application tools

already built at the BIC of MNT:

1. Transform the MRI dara into the standard Talairach space 611 through the
p 0L g

registration of MRI data to an average brain model 62].

[V

Use the average brain volume in Talairach space to mask the undesirable volume
in the original MRI data. The cropped rectangular volume encases the head

from the top of the =calp to the middle of the cerebellum vertically.

4.3 Registration Methods

4.3.1 Estimation of Probability Distribution of Random Vari-

ables in the Mutual Information Method

The similarity measurement in the MI method {Equation 3.13) requires the knowl-
edge of probability distributions of the random variables. The probability distribu-

tion is estimated from the observation of the feature histogram. Collignon et al. [70]
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indicated that if the quantization of the feature space histogram is too fine. the ap-
plication of Parzen-windowing [72] can be used to reduce the effect of image noise
and increase the reliability of the estimation. However. the computation cost of this
method is high. According to Collignon et. al. {70]. it is expected that small intensity
distortions of the observations do not introduce large deviations in the registration
solution. Upon these. a crude bur computational efficient approximation method -
normalized feature space histogram - is used in our implementation. The normalized
feature space histogram is defined as:

hir.
proy) = ———J(J\-w (4.6)

where A(r.y) is the feature space histogram. and .V is the number of voxel pairs in
the overlapped sample set when calculating A(r. y).

The marginal probability distributions of p(r) and p(y) are also estimated in a sim-
ilar way. Since there might be different overlap between the two image volumes in each
transformation during the optimization procedure. p(.r) and p(y) are re-calculated for

each transformation as well as p(.r. y).

4.3.2 Estimation of the Initial Transformation

The initial transformation of the registration procedure is usually important to the
iterative registration algorithm in rwo aspects:

e A better estimation of the initial transformation which is closer to the correct

registration transformation will save more computation time on the searching

for the optimal transformation in the parameter hyperspace.

e A better estimation of the initial transformation will make the two images have
larger overlapped volume. which can reduce the local minima in the parameter

hyperspace in the voxel-based registration algorithm.

In our implementation. only the translation parameters are estimated for the ini-

tial transformation and all the rotation parameters are set to 0° at the beginning
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of optimization procedure. Two methods for the estimation of initial translation

parameters have heen implemented:

e Take the translational alignment of the geometric centers of the volume (center
coordinate of the image volume) of the two images as the estimation of initial

translation parameters.

e Take the translational alignment of the centers of gravity (COG) of the two

images as the estimation of initial translation parameters.

The comparison between the two approaches will be addressed in next chapter.

4.3.3 Multiresolution Registration Scheme

Owing to the low spatial resolution of the tPET image. high-resolution information
in the MRI volume mayv not be useful and a sub-sampled version of the MRI image
volume may be quite adequate for registration purposes while vielding faster results.
However, combined with noise effecr. subsampling the MRI data during calculation
of the similarity measurement mayv cause more local minima in the parameter search
space.

Woods et al. [63] used a hierarchical strategy in their VR method. which starts
with sampling the source voluine at every S1st voxel. The convergence transformation
parameters at this stage are used as the initial parameters for the next stage where
the sampling rate decreases to 27 : 1. This procedure is repeated with ratios of 9 : 1.

3:1.and finallv 1: 1. The intention of this hierarchical scheme is to:

e increase the chance of not being trapped by local minima in the parameter
search space. Since a local minimum in one stage may not be a minimum in
the next stage due to more information involved in the similarity measures, this
scheme increases the possibility that the optimization procedure avoids being

trapped in a local minimum and reaches the global minimum.
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e accelerate the convergence of the searching procedure. Subsampling the source
image volume greatly reduces the computation cost for the calculation of the

similarity measurement.

Studholme et al. [63] used a traditional low-pass pyramid representation of the
image {74, 75] to achieve multiresolution optimization. In their algorithm, multiple
resolution versions of images are created by averaging neighboring voxels. For an
example. the optimization procedure starts at the top of the pvramid. where the
image is built by averaging cach 8 x 8 x 8 neighboring voxels. The registration result
at this level is taken as the initial guess of the registration at the next level where
the image is a less blurred version of the original. created by averaging 4 x 4 x 4
neighboring voxels. This procedure repeats until the original resolution.

In our implementation. we also use a hierarchical multi-resolution strategv to
optimize the similarity measurement with two important differences from the other

methods described above:
e The same sub-sampling interval is used in each of the r. y. and = direction.

e An isotropic 3D gaussian kernel is convolved with the MR image before regis-

tration.

Subsampling the source volume reduces the number of voxels involved in the cal-
culation of 2-D feature space histogram. which in turn might increase the effect of
the noise on similarity measurement. The Gaussian blurring kernel which is a linear-.
shift-, and rotationally-invariant operator [61] [73]. is able to reduce the number of
local minima in the parameter scarching space caused by the combination of noise
and subsampling.

The multi-resolution scheme of our implementation begins with subsampling blurred
MRI data at a sampling rate of 3 : 1 in each of the . y. and = direction. then performs

a few iterations with a sampling rate of 2 : 1 on MRI data to improve the registration




accuracy. The issue of selecting the starting and ending sampling rate for the multi-
resolution scheme will be discussed later in Chapter 5. Compared with full sampling
of MRI data. the sampling rate of 3: 1 and 2 : 1 reduces the computation time to ,LT

and é respectivelyv in one transformation during the optimization procedure.

4.3.4 Interpolation Methods

During the registration procedure. each voxel from the source volume has to be trans-
formed into the coordinate space of the target volume. Due to the continuous charac-
teristics of the transformation parameters and different voxel sizes between the source
and the target volumes. the transformed voxel is generally not located at a grid point
of the target image. Therefore. an interpolation algorithm must be applied to the
source image to obtain an interpolated voxel intensity value at each grid point of the
target volume.

The simplest interpolation method is the nearest neighbor interpolation. in which
the value at the interpolation point is assigned to the value of the voxel that is closest
to the interpolation point. The advantage of this method is its efficiency. However.
the nearest neighbor interpolation mav cause the whole image to be shifted with
regard to the intended position. Sub-voxel interpolation accuracy cannot be achieved
by this method.

A better interpolation method is linear interpolation (trilinear in 3-D) where the
value of the interpolation point is obtained by linearly interpolating neighboring
points. The linear interpolation may result in smoothing of the image [76].

In the MI method. applving the trilinear interpolation method on the target
image may cause unpredictable changes of probability distribution p(y) [70]. Thus
Collignon et al. [70] proposed a method called trilinear partial volume distribution
interpolation. Instead of using the interpolation weights to average the neighboring
voxels in the target image as in trilinear interpolation. Collignon’s method distributes

the same interpolation weights onto the corresponding neighboring voxels in the target
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image when calculating the feature space histogram (scatter plot). I[n this way, the
normalized histogram of the target image. which is the estimation on the probability
distribution of p(y). will not change discretely by the interpolation operation.
Finally, a higher order interpolation method - tricubic interpolation. has been im-
plemented with the registration algorithm. This method involves a 4 x4 x 4 instead of
2 x 2 x 2 neighborhood of voxels around the interpolating point. giving it the attribute
of continuous second order derivative. Although the tricubic interpolation method
leads to more accurate and smoother estimation of the value between the image grid
than the other three methods. its computation cost is much higher (i.e. at least it will
take six times more than the trilinear interpolation method to obtain a interpolation

value). because of the greater number of voxels involved in the calculation.

4.3.5 Optimization Method

The optimization method is an important element of the registration algorithm. A
good optimization method usuallv can be characterized by the following three char-

acteristics:

e the ability to converge in anv condition:
e the ability to converge quickly:

e the ability to escape from local minima/maxima and finally to converge at a

global minimum/maxima.

However. in practice it is not easy to find a method that meets all of these require-
ments. For instance. the so-called global optimization methods. such as simulated
annealing [78] and the genetic algorithin [79]. are able to avoid being trapped by local
minima. but thev are not computationally efficient.

In 3-D medical image registration. the number of optimization parameters is usu-
ally six or more. The multivariate characteristic of the optimization in medical image

registration dramatically increases the complexity of the problem.
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Various optimization methods have been incorporated into the multimodality itn-
age registration algorithms. Woods et al. [63] used the Newton-Raphson algorithm
[80] which takes advantage of the easily obtained true derivative value of the similar-
ity measurement. Collins et al. [61] implemented the Simmplex optimization algorithm
[80] in their MRI-MRI intersubject registration algorithm. which is a downhill method
that does not require derivative information and has some resilience to local minima.
Collignon et al. [70] used the Powell algorithm [80] to minimize the mutual informa-
tion similarity measurement. Due to the efficiency of the downhill methods. which
stop when they reach an extrema regardless whether the extrema is global or local.
they have been used in manyv 3-D wmedical image registration methods. However.
to reduce the effect of local extrema within the parameter searching space. several

approaches have been proposed to improve these original optimization algorithms:

o Multi-start approach [81]. In this approach. many initial guesses of the solution
are used to start the optimization algorithm hoping that one of the starts can

lead to the global minimum.

e Multi-resolution structure of the optimization algorithm [61] [63] {65]. In this
method. the registration starts with lower resolution image volumes. then the
result of this stage is used as the initial guess for the next stage where higher
resolution images are matched. Using this approach. the iterative searching
procedure have better chance to avoid being trapped by the local minima in the

parameter search space.

e Better estimation of initial transformation. This will give the optimization a
much better chance to get to the global minimum. Collins et al. [61] used the
principle axis transformation registration method [19] to get an initial estima-

tion of the desired transformation.

In our implementation of both MI and VR methods. an improved version of the

Powell method [82. 83| with multi-resolution structure was chosen as the optimization
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method. In this method. whenever the optimization method reaches a minimum
(either global or local). it will not stop but apply a random perturbation (translations
within £3 voxels and rotations within £17) to the transformation parameters. If the
optimization procedure moves back to that minimum position after the perturbation.
the optimization will finallv stop. Otherwise. it will take that minimum as a local
one and resume searching in the parameter hyvperspace until the global minimum is
reached or an iteration limit is imposed. Along with the multi-resolution strategyv.
the perturbation applied to the transformation parameters increases the possibility

that the algorithm is not trapped by local minima.

4.3.6 Structure of the Implementation

[t is desirable that the implementation be modular so that ditferent elements of image
registration mayv be easilv plugged into the algorithm (see Figure 4.1). For example.
the similarity measurement function of the registration can be changed among the
MI. VR. or other new similaritv functions. Thus. the structure of our implementa-
tion clearly separates three major elements from each other. and strictly defines the

interface of these three elements:

e Similarity measurcment function - MI and VR are supported by the current

version of the program.

e [nterpolation method - nearest-neighbor. trilinear. tricubic and trilinear partial

volume distribution interpolation methods are supported.
e Optimization method - onlv the Powell method is currently supported.

This modular implementation structure enables the program to easily extend the
current method for a specific element while keeping others unchanged. Furthermore.
it is also useful for investigation of the performance of different methods. such as the

comparison of the performances between the MI and VR methods.
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4.4 Validation Methods

Validation of a registration algorithm in medical image registration itself is not trivial.
since the true registration solution is unknown for real images.
Several methods have been proposed to validate medical image registration algo-

rithms. Theyv can be classified into three categories:

e Visual inspection of the superimposition of the re-sampled source image and the
target image [84]. This merhod is subjective and non-quantitative. hence it is
not suitable for an accurate comparison between different algorithms. However.
this method does not require anyv special procedure during image acquisitions

and it enables a quick assessment on the success of the registration algorithm.

e Use the registration result from the extrinsic landmark-based registration method
as a reference to validate the registration algorithm {19. 63]. The comparison
of the registration result with the reference transformation can give a quantita-
tive evaluation of the registration error. However. the reference transformation
might also contain misregistration. for instance. the extrinsic markers may move

between scans.

o Use simulation data for validation {83]. There are two advantages to use simu-

L

lation data to validate image registration:
— The true registration result is known exactly. which enables the quantita-
tive measurement of misregistration:
— The simulation program can generate image data with different scanning
settings. Thus the validation can be performed on image data with various

resolutions. noises. and contrast. [t is useful to test the robustness of the

registration method against these factors.

In this thesis. both visual inspection method on real data and quantitative vali-

dation on simulated tPET data (details escribed in Chapter 3) are used to validate
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the MRI/tPET image registration algorithms.

4.4.1 Quantitative Measurement of Misregistration

The validation method used on MRI/tPET data registration proceeds with the fol-

lowing steps:

1. Using a 3-D MRI data set as input to the PET simulator (which will be described

in next chapter). generate a tPET image volume.

o

Generate a random rigid bodv transformation 7,. in which the translations are
within range of £10 mm and the rotations are within the range of =10°. The

rotations are centered on the geometric center of the image volume.

3. Use the generated random transformation to re-sample the MRI data. which

vields a MR image no longer spatially aligned with the tPET image.

4. Apply the registration method on the transformed MR and simulated tPET

images to obtain an estimated geometric transformation I,.

3. Compare the result of registration algorithm 7T, with 7;. Ideally. if the registra-
tion can recover the random transformation applied to the original MR image.

T, should be the inverse of the random transformation 7T,.

To quantitatively measure the misregistration. it is desirable to use a single numer-
ical value to represent the registration error. Since the rigid transformation contains
translations and rotations. it is not suitable to combine them both into a single
quantitative measurement error directlv. Therefore. the quantitative measurement of
misregistration is based on r.m.s. (root mean square) of the 3-D distance between
two sets corresponding voxels in original MRI and the recovered MRI data sets. A
set of voxels (P;. { = 1...\') are chosen from the original MRI data. Then the ran-

dom transformation T, is applied to this set of voxels to different coordinates (P,.
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i = 1....V). The registration result T, transforms the P, back to P, . If the T, = TL.
the 3-D distance o between corresponding voxels from the sets P, and P is zero. The

value of o can be represented as:

;- \/z.m; P 47)

where P' = P, « T, = T, and n is the number of points.
The same seven voxels as those chosen by Neelin et. al. [77] were used to evaluate

the misregistration. The points were:
e the center of the brain.

e six voxels at 75 mm (= radius of the brain) awav from the centroid of the brain

along each direction.

4.4.2 Similarity Measurement As a Function of Translational
Misregistration

[n order to qualitativelyv evaluate the performances of some implementation parame-
ters such as sampling interval. function curves for the similarity measurement versus
translational misregistration can be generated. This is accomplished by shifting the
MR image t mm along one of the «. 4. and z direction. The similaritv measurement
value can be calculated on the translated MR image and the corresponding simulated
tPET image. Ideallyv. with £ = 0 mm. the value should be minimized: while with
t increasing, the M I value should increase monotonically also. Although the three
curves can not fullv reflect the parameter searching space. the smoothness of the
curves and the number of local minima appearing along the curves indicate how well
the implementation behaves for a specific similarity measurement. It should be noted.
this qualitative evaluation does not cover the whole parameter scarching space. i.e.

“similarity measurement as a function of rotational misregistration” is not measured.
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This is because the objective of this evaluation is qualitative and for comparison of

the effects of different implementation parameters.
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Chapter 5

Experiments and Results

In this chapter. experiments using the two registration algorithms (MI and VR)
on MRI with simulated and real tPET images are presented. The first section de-
scribes the experimental data sets of MRI and tPET images. The next two sections
present the results from the experiments on MRI/simulated tPET image registration
and MRI/real tPET image registration respectivelv. The last section discusses the

experiment results and compares the two registration algorithms.

5.1 Experimental Data Sets and Methods

This section describes the data sets and methods used in MRI/tPET registration

experiments using both simulated and real tPET images.

5.1.1 MRI/Simulated tPET Image Registration
5.1.1.1 Experimental Data Sets

In order to quantitatively evaluate the image registration algorithms discussed in
Chapter 1. two subjects were selected to acquire the experimental MRI/simulated

tPET image data sets. The procedure of obtaining the MRI data and the simulated
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Figure 5.1: PET simulation procedure

tPET images is illustrated as in Figure 5.1.

In the first step. Tl-weighted MRI data from the two subjects. S1 and S2. were
collected on a Philips Gyroscan 1.5 Tesla svstem with 3-D gradient echo acquisition
(Tp = Toms. Tg = ldms. flip angle = 60°. voxel size = 1 x 1 x 3 mm?*). The
two columns in Figure 5.2 show the sagittal slices of the two MR images and various
blurred versions (blurred with different filter widths) of these two images respectively.
As described in Chapter 4. two preprocessing steps were completed on the MR images
- the images were re-sampled to have isotropic voxel size of 1 x 1 x 1 mm? and cropped
to cover only the brain.

An automatic tissue classification program was then used to segment the raw MRI
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Figure 3.2: Sagittal slices of original MR images and the corresponding blurred MR images. The
original MRI data were collected on a Philips Gyroscan 1.5 Tesla system. The slices shown here
have been re-sampled and cropped. The blurred MR images were generated by filtering the original

two MR images with a 3-D Gaussian kernel with FWHM = 3 mm, 6 mm, and 9 mm respectively.
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data into grav matter. white matter. CSF structures. skull bone. scalp. and sinus
[86. 87]. This segmented MR image is taken as a 3-D brain model. Using this model.
a 3-D simulation program based on the geometry of the Scanditronix PC-2048 PET
scanner [88. 89] was used to generate realistic simulated tPET image as illustrated in
Figure 5.3. In the first step. the 3-D simulation program takes the segmented MRI
data as input to create tissue attenuation maps by assigning the known attenuation
coefficient at 511 keV to the voxels of each tissue tvpe. Then. based on the physical
design of the Scanditronix PC-2048 PET scanner system. the simulator incorporates
the key phyvsical characteristics of 3-D sampling and resolution. detector efficiency.
attenuation. and count statistics. to generate realistic projection data. The simulation
matches the configuration of the Scanditronix PC-2048 PET scanner. which generates
tPET images with 15 slices. 6 mm slice thickness and 6.5 mm slice separation. The

details of generating noisy blank and transmission scan data are as follows [89]:

1. The 3-D brain model image is resampled at specified image planes and smoothed
with the axial resolution function of the scanner (i.e. Gaussian filter with filter

width = 6 mm).

2. True counts and attenuation factors are calculated by projecting each image
plane and corresponding attenuation map onto a uniform grid at all angular
positions of the scanner (i.e. number of angles = 128, number of rays = 128.
ray spacing = 2 mm). The projections counts are smoothed by convolving with
the in-plane resolution function (i.e. Gaussian filter with filter width = 6 mm).
Then they are mapped onto cach detector position and adjusted by detection

efficiency from the Scanditronix PC-2048 PET scanner system.

3. Scatter counts are estimated by convolving the projection with spatially variant

filter derived from line source scans in water.

4. Random counts are estimated from measured single rates and scaled to give the

desired total random counts. Noisy projection data are then generated from
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Possion distributions with variance equal to the total counts.

In the last step. as in clinical studies. blank and transmission scan data were
smoothed with a Gaussian filter (i.e. filter widths from 5 mm and 10 mm are used
in this thesis) and reconstructed into transmission images by filtered backprojection.
Figure 5.4 shows the central transverse slice of MRI and segmented MRI of subject
S2. Figure 5.3 shows transverse slices of a real and a simulated tPET image.

In the following experiments. 12 tPET images (15 slices with 3-D voxel size =

2 x 2

x 6.5 mm®) were generated for each MRI volume from the two subjects (S1
and S2 as shown in Figure 5.2). These tPET images have three different resolutions
(FWHM) and four different noise levels (maximum total counts per slice .V,,,.) as
listed in Table 5.1. Among these. image 3 (FWHM = 11.7 mm and V.. = 9\/)
closely matches the scanning conditions used in clinical studies. Figure 5.6 shows the
sagittal slices of six ([y;. [a1. In. [13. [y, [33) simulated tPET images of subject S1.
The resolution of FWHM = 7.8 mm is the highest possible resolution for Scanditronix
PC-2048 PET scanner used in clinical studies. therefore no higher resolution than

FWH)M = 7.8 mm was used in this thesis.

Noar =09M | Ve =2M | Nz =9M | Nypor = 28V
FWHM = 7.8 mm I J [ I3 I
FWHM = 11.7 mm [ Ly [ [y
FWHM = 16.2 inm [y I [y I3y

Table 5.1: Parameters of twelve simulated tPET images for each subject.

5.1.1.2 Experimental Methods

Based on the these simulated tPET images. two types of experiments were carried
out in order to examine how different implementation parameters affect the regis-

tration algorithms and the performance of the registration algorithms under various
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Figure 5.4: Central transverse slice of MRI and corresponding segmented MRI of subject S2.

conditions (i.e. different resolutions and noise levels):
A. Registration accuracy: A set of random transformations (translations within
+10 mm, rotations within +10°) were applied the MRI data. The registration

algorithm was then used to recover the MRI data from each of these transfor-
mations. The 3-D misregistration error was then measured by Equation 4.7

for each transformation. The mean of the ran.s. values (r.m.s. value for each
registration) was calculated for the whole trial as a measurement of the regis-

tration accuracy. The variance of the r.m.s. values for the trial was taken as an
indication of stability of the registration algorithm.

B. Parameter sensitivity: Curves of similarity measurement as a function of trans-

lational misregistration were generated for each of the z, y. and z direction (As

described in Chapter 4).



Figure 5.5: Simulated and real tPET images. The left column are transverse slices of simulated
tPET image of subject S2 (with resolution F\WWHM = 11.7mm. maximum total counts in one slice =
9M). The right column are transverse slices of a typical real tPET from a different subject acquired
from the Scanditronix PC-2048 at resolution of FWHM = 12mm. For each column. from top to

bottom rows are transverse slices from top to bottom of brain in the tPET image volumes.
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Figure 5.6: Simulated PET transmission images at different resolutions and noise levels from

subject S1. 60
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5.1.2 Real MRI and tPET Images

Although the true result of registration of MRI/tPET data is unknown and quanti-
tative analysis of registration is not possible. it is important to apply the registration
algorithms to real clinical data and visually inspect the registration error. This will
highlight any gross errors which mayv not be apparent if the simulations do not ade-

quately reflect the real situation.

5.1.2.1 Experimental Data Sets

Twenty-one T1 MRI data sets were collected from a Philips Gyvroscan 1.5 Tesla system
with a 3-D gradient echo acquisition (T = 18 ms. Tp = 10 ms. flip angle = 30°, voxel
size =1 x 1 x 1 mm?).

The tPET data sets from the same subjects were also acquired with a rotating
Ge-68 rod source. Fifteen image volumes were collected with a Scanditronix PC-2048
(FWHM =20 mm. 15 slices and voxel size = 2 x 2 x 6.5 mm?*). The other six tPET
data sets were collected on a Siemens ECAT HR+ scanner (FWHM = 8 mm. voxel
size = 2 x 2 x 2.4 mm® with 63 slices). which can generate images with a larger FOV

and better spatial resolution than the Scanditronix PC-2048 tomograph.

5.1.2.2 Experiment Method

The experiments performed on real data focused on testing if the MI algorithm (VR
method was not used on real data sets. refer to Section 3.3 for the details) could suc-
ceed in the registration of real MRI/tPET images. The MRI data were first blurred
with an isotropic 3-D Gaussian kernel with FWHM = 6 mm (the choice of filter width
will be discussed in Section 5.4.1.2), then cropped to cover only the brain approxi-
mately as described in Chapter 4. The registration algorithm was applied to all 21
subjects to register the MRI to the tPET images. Ounce the registration results were
obtained, the MRI data were re-sampled using the transformation from the registra-

tion procedure. into the PET space and voxel-to-voxel comparison were performed.
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The re-sampled MR and tPET images were superimposed and the registration error

visually evaluated.

5.2 Results from the Experiments on MRI/Simulated
tPET Images

Two sets of experiments performed on MRI/Simulated tPET images are described.
We first examined how different implementation parameters would affect the perfor-
mances of the voxel-based registration method. However. only the MI registration
algorithm was examined and the subsequent experiments on both VR and MI meth-
ods used the same implemenrtation parameter settings derived from this experiment
(the choice of the implementation parameters for VR method will be addressed in
Section 5.2.2). The second set experiments evaluated the performances of both the

MI and VR registration algorithms using four criteria:

p—4

. registration accuracy

o

stability against noise
3. stabilitv against spatial resolution

4. robustness to data truncation.

5.2.1 Implementation Parameters

Three issues were examined in this set of experiments:

1. method of estimation of the initial transformation:

o

subsampling interval and blurring filter width:

3. interpolation method.




[

All of the experiments here were focused on the MI method. In the second set of
experiments (Section 5.2.2). both the MI and VR methods used the same implemen-

tation parameter settings (see Section 5.2.2 for details).

5.2.1.1 Estimation of the Initial Transformation

Two trials of experiment tvpe A (registration accuracy. see Section 5.1.1.2) were
applied to MRI and simulated tPET image [,; (FWHM = 11.7 mm. Ve = 9\M)
from both subjects S1 and S2. Each trial included 20 random transformations and
the MI algorithm started with two different estimations of the initial transformation.
The 3-D registration errors (Equation 1.7) showed that there is no big performance
difference of the two methods on subject S1. This is because that the COG and
geometric volume center of subject S1 are verv close. But for subject S2 (there is
a large offset between COG and geometric volume center for this subject), with an
estimation of initial transformation by alignment of the image volume centers. two
out of twentv (10%) tests failed (r.m.s. > 5 mm) while all the cases succeeded (r.m.s.
< 2.5 mm) when an estimation by aligning COG was used. Furthermore. COG
alignment reduced the number of iterations by tvpically 25% on average compared

with volume center alignment.

5.2.1.2 Subsampling and Blurring on MRI

To investigate the effect of subsampling and blurring on MRI data, two trials of
experiment tvpe B (parameter sensitivity, sce Section 5.1.1.2) were performed on
MRI and simulated tPET image [,3 from subject S1 and S2.

Figure 5.7 shows the MI function curves versus translational misregistration for
subject S1 (similar curves were observed for S2) when the original and blurred MRI
data were subsampled at sampling rate of 1 : [ and 3 : | respectively. In the case of
sampling rate = 3 : 1. the MI function curves for blurred MRI/tPET images have

fewer local minima than those for non-blurred MRI/tPET images. When sampling
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Fignre 5.7: The MI measurement as a function of translations along the r. y. and z directions.
Solid line - along r direction. dashed line - along y direction. dash-dot - along = direction. (a), (c)
- the original MRI data subsampled with sampling rate = 1 : I and 3 : 1 respectively. (b). (d) the

blurred MRI data (F\WWHM = 3 mm) subsampled with sampling rate = 1: 1 and 3 : | respectively.

MRI data at full resolution. the MI-translational misregistration function curves for
original MRI data do not have as manyv local minima as those at the sampling rate
= 3: 1. Nevertheless. they are still Hat around the correct registration position and
the local minimum in the curve for the y direction (anterior-posterior. dashed line
in Figure 3) can be seen clearly. The Gaussian blurred MRI data, however. gives a

sharper response around the correct registration position.
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Figure 5.8 shows the MI versus translational misregistration function curves gen-
erated for the cases of subsampled blurred MRI data (FWHM = 3 mm and FWHM
=Jdmm)atl:1.2:1.3:1 and 4:1 rates. It can be seen from the figures that the
shape of the curves obtained at the sampling rates 1 : 1. 2: 1. and 3 : 1 are similar.
without local minimum. The curves from sampling rate 4 : [ has some local minima.
especially when the MR image was blurred bv the Gaussian kernel of FWHM = 3
mm, which is smaller than the sampling interval. For this reason. our implementation
uses 3 : 1 and 2 : 1 as the starting and the ending sampling rates in the optimization
procedure. The similar curves as FWHM = 4 mm. were observed for higher F\WHM
(i.e. FWHM = 6 mm and 9 mm). i.e. less local minima with sampling rate of 4 : 1
than the curves generated from FWHM = 3 mm.

For tPET data at various resolutions. there should be an optimal FWHMI for
the 3-D Gaussian kernel applied to the MRI data which vields the best registration
performance. This issue was investigated by experiment tvpe A using MRI at five
resolutions (Gaussian kernel F\WWHM = 0 mm. 3 mm. 6 mm. 9 mm. and 12 mm) and
simulated tPET images [1;. L. and [33 respectively from both subject S1 and S2.

Figure 5.9 shows the mean 3-D r.mn.s. misregistration errors for this experiment.
Consistent with the MI versus rranslational misregistration function curves in Figure
3.8. it can been seen that with the lowest resolution tPET image (FWHM = 16.2 mm),
the procedure cannot recover the non-blurred original MRI data (F\WHM=0 mm)
from the random transformation very well due to nnmatched information contained
in MRI and tPET images (i.c. lack of details in tPET image but many details in non-
blurred MR image). And for the tPET images at the medium resolution (FWHM =
7.8 mm and 11.7 mm). the MI algorithm is not very sensitive to the resolution of MR
images; e.g., FWHM = 3 mm to 9 mm gave similar resuits. It can be noticed that the
two subjects respond to the resolution of MRI differently. i.e.. S1 shows a minimum
at FWHM = 6mm with larger registration error at lowest resolution (FWHM = 12

mm) while S2 does not. this issue will be discussed later in Section 5.4.1.2.
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Figure 5.8: The effect of different sub-sampling rates on MI measurement. The MR data is blurred
by 3-D Gaussian kernel with FWHM = 4 mm. 3 mm respectively before the MI versus translational
misregistration calculation. The four columns from left to right correspond to sampling rates of
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5.2.1.3 Interpolation Methods

The effect of interpolation methods on registration were also examined by analysis
of the MI versus translational misregistration function curves. MI measurement
with four different interpolation methods (nearest neighbor. trilinear. trilinear par-
tial volume distribution. and tricubic) have been obtained from the same MRI and
tPET data as above. The results shown in Figure 5.10 demonstrate that the nearest
neighbor interpolation gives step-wise curves along each direction and the other three

interpolation methods result in similar function curves.

5.2.2 Performance of Registration Methods

The performance of both MI and VR registration algorithms was assessed using
different indices. including (1). registration accuracy. (2). stability against noise.
(3). stability against spatial resolution of tPET image. and (4). robustness to data
truncation. In Section 5.2.1. three implementation parameters including estimation of
initial transformation method. sampling and blurring on MRI data and interpolation
method were investigated on the MI method. These three parameters should have

the same effect on both of the rwo voxel-based methods (MI and VR):

e The estimation method of initial transformation intends to get a better overlap
of the two images at the beginning of the iteration. therefore the one which can
give a larger overlap volume. will benefit anv voxel-based registration method
since the success of the voxel-based method depends on large number of voxels

participating registration.

e A beter choice of sampling rate and blurring on MRI volume enables the two
images from different modalities to have more matched information and quickens
the registration procedure. Therefore. for the two voxel-based methods using
the same matching features (i.e. voxel intensity) . the choice of these two

parameters should only be affected by the data sets not by the method itself.
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e The choice of interpolation method in this thesis is a trade-off accuracy and

computation efficient. So we use the trilinear interpolation on both methods.

Based on these reasons. the same implementation parameters are used on both MI

and VR methods.

5.2.2.1 Registration Accuracy

Experiment type A was applied to MRI and simulated tPET image [,3 (FWHM = 11.7
mm and V., = 91/) from both subject S1 and S2. Forty random transformations
were applied on each subject. The 3-D misregistration errors of the results from the
two registration algorithms are shown in Table 5.2.

The simulated tPET data image [,y is closest to the real ones obtaining during
general clinical studies. The accuracy of the registration can be examined by the
3-D mean r.m.s. (Equation 4.7 ). The standard deviation of the r.m.s. values also
indicates the stabilitv of the registration algorithm. The MI method succeeded in
all of the 80 runs on the two subjects (max r.m.s. < 2.5 mm). while 10% of the VR

registrations have r.n.s. misregistration values of > 4 mm.

] 1
subject | method | mean r.ans. (mm) a std ranes. (mm) | max r.m.s. (mm)
T
\MI 1.90 (1.16 2.35
S1 -
VR 2.81 0.72 5.68
NI 1.84 0.17 2.15
S2
VR 2.72 0.43 4.36

Table 5.2: 3-D misregistration errors on subject S1 and S2

5.2.2.2 Noise and Resolution

The performance of the registration algorithms against the noise and resolution of

MR images was not investigated in this thesis. Compared with the tPET images.
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MR images have much higher resolution and signal to noise ratio. Besides the in-
trinsic characteristics of the two image modalities. the MR images is blurred before
registration in our implementation. therefore. the noise in MR images is negligible.
The resolution and noise level of PET transmission images are the major effect on
the MRI/tPET image registration.

The stability of the registration algorithms as a function of resolution and noise
level in tPET images was examined using tvpe A experiments (registration accuracy.
see Section 5.1.1.2). The MR image was registered with each of the 12 simulated
tPET images from the same subject. Twenty random transformations were used on
each MRI/tPET image pair of both subjects of S1 and S2. Figure 5.6 demonstrates
examples of the simulated tPET images. Figure 5.11 and 5.12 show the mean 3-D
misregistration errors (Equation 4.7) for different total counts in the tPET image.
using the MI and the VR methods respectively. In figure 5.12. the results from PET
images at resolution of FWHMI = 16.2 mm were not shown. The mean r.m.s. values
from the registration results are all larger than 10 mm. which indicates that the VR

method is verv unstable for low resolution tPET images.

5.2.2.3 Data Truncation

MRI and PET scans on the same patient. when acquired at different times. might
cover different parts of the brain. This partial overlap issue is a common problem in
medical imaging.

To test the robustness of the method to truncation of MRI data. slices from MRI
data were removed from bottom. top. or both from subject S2. Experiment tvpe A
was performed on the MRI data with missing data and the simulated tPET data.
Twenty random transformmations were applied on the MRI data in each trial.

Figure 5.13 gives the mean 3-D registration error of the registration as a function
of the percentage of missing data from MRI data. [t should be noted that the original

MRI data cover larger (16%. vertical dash line mark in the figure) volume than tPET
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data because the preprocessing step only cropped the MRI data to approximately
cover the whole brain. Therefore. the first 16% data from top in MRI data have
no corresponding part in tPET image. hence. this part might be removed without
affecting the performance of registration algorithms. From the figure. it can be seen
that the MI method is stable with up to 25% data missing from bottom. 28% (44% —
16%) from top and 34% (50% — 16%) from both. While the VR method can keep
stable with 10% data missing from bottom. 9% (25% - 16%) from top. and 9%

(25% — 16%) from both .

5.3 Results from the Experiments on Real Data

Sets

Based on the experimental results from last section. we found that the MI method is
more accurate and robust than the VR method. For real data sets. true registration
results were unknown. Hence. an exact measure of misregistration was not possible.
Therefore. it is not possible to quantitativelv compare the registration accuracy be-
tween the two methods on the real data sets. For this reason. the experiments on the
real data sets were only applied to the MI method to examine the performance of
the method on the images from clinical studies.

The MI method was used to register 21 MRI/tPET image pairs (See section
5.1.2.1). Figure 5.14 shows two typical registered images. As can be seen from the
right column. although part of the data was missing from the tPET image. the MI
algorithm was still successful.

Visual inspection of the superimposed re-sampled MRI and tPET images from all

21 subjects demonstrated no obvious misregistrations.
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Figure 5.14: Registration on real data both tPET images were collected from Siemens ECAT

HR+ scanner. The PET image on right column has part of data missing from the front of head.




5.4 Discussion

In this section. the first part discusses the issues related to the effect of implementation
parameters on the MI method. The second part compares the performances between

the MI and the VR methods.

5.4.1 Implementation Parameters
5.4.1.1 Volume Overlap at the Beginning of Registration

The experiments performed to evaluate two methods of estimation of the initial trans-
formation indicate that the volume overlap at the beginning of registration is an
important factor on the success of the MI algorithm. The random transformations
in the experiment (Section 4.3.2) caused the two volumes to have small overlap if
aligned by geometric center. The estimation of initial transformation by COG align-
ment has the advantage of providing better overlap of the two volumes. Since the use
of a large number of voxels in a voxel-based registration is the principle reason for
its robustness against noise contained in hoth images. larger overlap regions at the
beginning of registration permit the MI algorithm to be more robust against random
noise in both images. The similarity measurement can only indicate how well the two
data sets match in the areas of overlap: therefore. at the initial position. if the MR
and tPET images have significant non-overlap areas. the similarity measurement MI
may be a local minimum and smaller than that obtained when the two volumes are
correctly aligned.

The experiment (Section 5.2.1.1) also shows the by aligning COG, the initial esti-
mation gives a better estimation on translation parameters, hence, the optimization

converges more quickly (less iterations were performed).




5.4.1.2 Sampling and Blurring on MRI in the MI Method

The goal of blurring the MR image before registration was to reduce the effect of
noise and subsampling. and to remove details visible at the highest resolution from
the MR image. which no corresponding detail in the tPET image. may only introduce

registration errors. The experiments on two simulated tPET images showed:

e A blurring kernel applied to MRI data before registration is necessary even
with a fully-sampled MR image (See Section 3.2.1.2). This will let the two
images have more corresponding information. i.e.. decreasing the details from

MR images. which have no correspondence in tPET images.

e For medium resolution PET data. e.g. F\VHN = 7.8 mm and 11.7 mm, the MI
method is not very sensitive to the width of the Gaussian kernel applied to the

MRI data (See Figure 5.11 and Figure 5.12). A broad range of blurring kernel

widths (FWHM from 3 mm to 9 mm) vielded similar good results at both PET
resolutions. This is because that at this range of resolution. information from
MRI and PET image have better match than those when MRI is not blurred

or over-blurred.

e The FWHNM of the blurring kernel should be bounded above by the resolution
feature of interest. such as skull and scalp in MRI/ tPET registration. \When
the FWHNMI of blurring kernel is large enough to blur out these features. l.e.
mixing scalp and skull in MRI data. the matching features between the images
to be registered will be lost. Thus correct registration is hard to obtain in this

case.

However. the two subjects gave different results when the tPET data were at
resolution of FWHM = 16.2 mm and the MRI data were blurred with F\WVHM =9
mm or 12 mm kernel. i.e. there is no explicit minimum in the r.m.s. error plot for

.{ subject S2.
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Visual inspection of the two MRI data sets (Figure 5.2) shows that subject SI has
a thinner scalp than S2 and the contrast between scalp and skull in S1 is lower than
that of S2. When S1 is blurred with a large FWHM kernel (i.e. FWHM = 9 mm). the
scalp and skull cannot be distinguished from each other clearly. On the other hand.
the tPET data has high contrast between the scalp and skull tissue. When blurred
with the same kernel. the intensityv difference between scalp and skull is still quite
clear for subject S2. Therefore. there is a trade-off between retaining the feature of
interest (e.g. skull and scalp) and removing details and noise from the MRI data. The
results suggest that a filter FWHDM of 6 mm be chosen as a compromise for practical

use.

5.4.1.3 Interpolation Methods in MI Method

From the four MI measurement. as a function of translational misregistration plots
obtained by using different interpolation methods (Figure 5.10), the nearest neighbor
interpolation. which is the fastest interpolation among the four methods. gives a step-
wise curve due to the large voxel size of tPET data. From the flat response around
the true registration position. it is apparent that the nearest neighbor interpolation
can not give results with sub-voxel accuracy.

For the other three interpolation methods. the trilinear and trilinear partial vol-
ume distribution interpolation methods give quite similar results. Although the initial
intent to use trilinear partial volume distribution interpolation instead of trilinear in-
terpolation was to avoid unpredictable changes in the histogram of the target volume.
the trilinear interpolation shows no sign of ill-behavior from the MI versus transla-
tional misregistration function (Figure 5.10). Due to the low resolution and large
interval between slices along the = direction of transmission data. the more sophisti-
cated tricubic interpolation does not gain much advantage over the trilinear methods.

Therefore. due to the fast speed of the trilinear interpolation method (approxi-

mately six times faster than the tricubic interpolation), it was used throughout the
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experiments in this thesis.

5.4.1.4 Noise and Resolution Effect in MI Method

The experiments on the stability of the MI algorithm to resolution and noise level
of the tPET data (Figure 5.11) show that the two curves representing resolutions
of FWHM = 11.7T mm and 7.8 mm are verv close when V,,,, > 93/. When the
resolution is high (FWHM= 7.8 mm). the registration error is still below 2 mm even
for tPET data baving low counts. i.e. N, = 2M. These results suggest that the
algorithm is less sensitive to noise than it is to spatial resolution. Since the MI
algorithm uses a large number of voxels in the similarity calculation and the noise in
the data sets is randomly distributed. the algorithm is robust to noise. However. low
spatial resolution (i.e. FWHMN > 16.2 mm) of the tPET image may cause a shift of
the features of interest. affecting the registration accuracy. In Figure 5.11. the results
from subject S1 shows that the mean registration error at V., = 28.\/ is larger than
that at V0, = 9.V for F\WHM = 16.2mm . due to one large r.m.s. value in the trial.
This demonstrates that the spatial resolution affects the MI algorithm more than
does noise. and the algorithm is less stable when the tPET image is at low spatial

resolution.

5.4.2 Comparison Between MI and VR Methods

The second set of experiments of MRI/simulated tPET image registration were per-

formed on both the MI and the VR methods. The registration accuracy experiments

was larger than 2.7 mm from VR. This indicates that the MI method can give more
accurate registration results than the VR method from the clinical-like simulated
PET images. The standard deviation value of the r.m.s. (Table 5.2) shows that the
MI method (std r.m.s. < 0.2 mm) is more stable than VR method (std r.m.s. > 0.4

mm).




The experiments on the robustness of the methods against noise and spatial res-
olution (Section 5.2.2.2) show that both the MI and the VR methods are more
sensitive to spatial resolution than to noise. However. the VR method deteriorated
much faster than the MI method when decreasing the spatial resolution of the PET
image (i.e. for the VR method. mean 3-D registration error r.m.s. > 10 mm when

the FWHM of PET image is 16.2mm).

is more robust to the data truncation from MR images than the VR method. With
up to 25% slices missing from MR image. the MI method could still work well. But
the VR method could not remain stable when more than 10% slices missing from
MR images.

From the experiments in Section 5.2.2. we conclude that the MI method is more
suitable for the MRI/tPET image registration problem. The MI method can achieve
sub-voxel accuracy (< 2 mm) for practical clinical studies. It is more stable than the
VR method when the PET image has low spatial resolution and high noise levels.
The MI method is also more robust to the partial overlap issue than the VR method.

In the VR method. the similaritv measurement is most effective if the intensity
partitions can be best matched to the true tissue classification (i.e. the same intensity
values represent similar tissue tvpes). However. in T1-weighted MR images. the inten-
sity values of scalp and white matter are close to each other. therefore in MRI/ePET
image registration, the non-brain structures have to be removed before registration.
In MRI/tPET image registration. the scalp and skull both contain very important
information to match PET image with MR images. Thus. the scalp and skull should
not be removed from the MR image. On the other hand. keeping the scalp may cause
the variance of intensity ratio similarity measurement to be less effective. and thereby
causing the VR method to be less accurate and robust than the MI method.

Another possible reason for the MI method being more accurate and robust than

the VR method is that the MI method measures the feature space histogram from
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both dimensions while the variance of intensitv ratio measurement works iz one di-
mension. i.e. it is asvmmetric. Since the VR measurement is calculated along one
axis (i.e. the MRI axis in MRI/PET registration) of the feature space histogram. it
can only assign large variance value to the MRI partitions (voxels with same MRI
intensity value in the VR method) where the intensities in the corresponding PET
regions are not uniform. On the other hand. when the uniform regions in the PET
image corresponds to non-uniform regions in the MR image. the VR method will
not directly make the variance value higher since the MR image is taken as the de-
nominator image in the VR measurement. The MI method calculates the similarity
measurement on the feature space histogram syvminetricallv. Therefore. both cases
described above increase the similaritv measurement (MI) value instead of onlv one
case does in the VR method. where uniform region in denominator image corresponds

to non-uniform region in numerator image.
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6.1.1 More Evaluation Experiments on the Registration Al-
gorithm
6.1.1.1 Experiment on Simulated PET Transmission Images

The experiments in Chapter 5 show rhat the filter width of the blurring kernel should
be limited by the resolution of the fearures of interest :i.e. skull and scalp in PET
images). More experiments on MRI/PET data sets from different subjects should be
performed to prove this and give a more strict criterion and an adaptable method for
choosing the filter width of rhe blurring kernel antomatically for each subject.
Various experiments have shown that the MI method is more sensitive to =patial
resolution than to the noise of PET transmission image. Wirth PET images at higher
spatial resolution. the algorithm should give more accurate regisiration results. The
Siemens ECAT HR~ scanner at the NMNI can provides tPET images at higher resolu-
tions and with larger FO\™ than the older Scanditronix PC-2048 scanner. Simulated
tPET images generated based on the geometrv of this new scanner should be used 10
prove this conclusion. From these quantitative evaluation resules. the method can be

widely used in the research work based on rthe PET images from the Siemens scanner.

6.1.1.2 Quantitative Evaluation of the MI Algorithm on Real PET Trans-

mission Images

The validation experiments on real MRI and tPET images described in Chapter 5
were not quantitative. The exact registration accuracy could not be evaluated by the
visual inspection. Therefore. the quantitative assessment on the registration accuracy
of the algorithm on real data =ets is desirable. The registration result from extrinsic
landmark-based registration algorithm can be used as the reference to measure the
registration error [19. 63.. On the other hand. registration results from other regis-
tration methods (i.e. surface-based method and intrinsic landmark-based method)

on the same data sets can be used to evaluare the consistency of the MI registration

S
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algorithm.

Another experiment will be very interesting to furtherly verify the MI and VR
methods. in which the registration methods are to register real MR image to both
real and simulated tPET images of the same patient. Comparing the two registration
results will help the validation of both simulated PET technology described in Section

3.1.1.1 of this thesis and the registration method itself.

6.1.2 Incorporating More Matching Features to Improve the
Registration

In our voxel-based MRI/tPET image registration algorithms. onlv voxel intensity is
taken as the matching feature. The advantage of using this matching feature is its
simplicity and robustness. because no feature extraction procedure is required. Collins
et al. [61] demonstrated that using two matching features (i.e. voxel intensity and
gradient magnitude) allows the registration algorithm to be more robust than using
only one matching feature. Although not all gradient information from the original
MRI and PET image are equivalent (i.e. rthe tissues within the skull are almost
uniform in tPET image). it is possible to get some eqguivalent gradient information
from the blurred MR image. in which the fine details in brain are removed. For
example, both MRI and tPET image have large intensity changes around the scalp
and skull area. which can vield strong gradient magnitude values. These strong
gradients will have a positive effect on the registration accuracy.

However, incorporating gradient information into existing voxel-intensitv-based
registration method must consider the following two issues in order to make the

registration more accurate and robust:

e How to remove the fine details from MRI data while keeping the contrast be-
tween skull and scalp strong. and the gradient information in these regions not

shifted. In this case. the choice of filter width of the blurring kernel may be more
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critical to the success of the registration than that in the intensity matching.

The effect of gradient matching on the whole registration procedure. There are
two possible ways to incorporate the gradient matching into the whole registra-
tion procedure. Firstly. the gradient matching can be taken only as a fine tuning
approach. For example. we can limit the range of changes on the transforma-
tion parameters of the registration result obtained from voxel-intensity-based
matching. Secondly. we can have the gradient matching affect the transforma-
tion parameters as equallyv as the inteusity-based matching. Gradient operation
might give spurious information due to noise and gradient matching may be not
as robust as the intensityv-based matching against noise though both methods
use large number of voxels. Therefore. a preliminary analvsis on the robustness
of the gradient matching against noise in the images should be performed first.
If the analvsis shows the gradient matching is not as robust as the intensity-
matching. the first method (using gradient matching as a fine-tune approach)

may still be used.

Besides the matching feature. the optimization procedure used in this thesis (Pow-

ell algorithm) may be improved. For example. compared with the Newton-Raphson

algorithm. the Powell algorithm calculating much more times of similarity measure-

ments, which is very computation-intensive due to large number of voxels participat-

ing the computation. Although the true derivative value of mutual information can

not be obtained. numerical approximation may be adequate to make the derivative-

based algorithm work in the MI method which will greatly improve the efficiency of

the optimization procedure.

6.2 Conclusion

This thesis describes an automated tracer-independent N[RI/PET registration method.

which is based on the spatial aligned relationship between the tPET and ePET images.
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In this method. the registration of the MR image with the ePET image is accom-
plished automatically by the registration of the MR image with the corresponding
tPET image. Because tPET images carry the same anatomical information regard-
less of the tracer used in the PET studies. the registration of NIRI/PET transmission
images allows the MRI/PET registration performed in a tracer-independent fashion.

This tracer-independent registration method is especially useful in two cases:

e The tracers used in some PET studies accumulate in a small region. The PET
emission images in these studies do not provide enough anatomical information

to match with MR images.

e Even with the tracer that accumulates throughout the entire brain. the PET
images from the patients with tumor or stoke may contain large regions of

abnormal accumulations.

Two voxel-based registration methods were implemented to register MR and tPET
images in this thesis. The mutual information method (MI). which is based on
information theory. uses the murual information of corresponding intensity values
from the two images to measure how well the two images match to each other. The
-ariance intensity ratio method (VR tries to minimize the variance of intensityv ratio
throughout the volumes to register the two images. These two voxel-based methods.
compared with point-landmark-based methods and surface-based methods, do not
require feature extraction procedure before the registration and use large number of
voxels in the registration. Therefore. these two methods are more robust to the noise
and partial overlap of the two image volumes.

The validation of the registration methods was performed on both simulated and
real tPET images with real MR images. The quantitative evaluation of the two

methods on simulated PET transmission images with MR images indicates:

1. The MI method gives more accurate registration result than the VR method

in MRI/tPET image registration. With PET images at resolution < 12 mm
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and Vo > 9 M. the MI method gives 3-D mean registration error less than 2

mm.

2. The MI method is more stable than the VR method when the PET trans-
mission image has a high noise level. With tPET image having total counts
Npmazr < 1M, the MI method shows registration error < 3.5mm for both S1 and
S2 subjects and the VR method shows error > 3mm for SI. (See Figure 5.11

and 5.12).

3. Both methods are more sensitive to spatial resolution than the noise in PET
transmission image. The VR method seems to deteriorate more quickly than

the MI method with the spatial resolution of PET transmission image decreas-

ing.

4. The MI method is more robust than the VR method in the case of data trun-

cation in MR images.

5. The blurring procedure before subsampling MRI data in the registration allows
the multi-resolution optimization to be more robust against noise in the images

and more efficient.

MRI/PET image registration is a valuable technique to facilitate the investigation
of brain function. the clinical diagnosis and treatment. The tracer-independent regis-
tration algorithm developed in this thesis greatly increases the possibility of accurate
registration of MRI to ePET images in any tracer studies. Further improvement and
validation of this algorithm will enhance the emplovment of this method in both

research and clinical environment.
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