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SUMMARY

The elastic and plastic behaviour of a wide-flange beam
with a large extended opening in the web is investigated theoretically

and experimentally for various loading conditions.

Two different methods are introduced for calculating the
elastic stresses at the boundary of the opening for pure bending and for
pure shear. One is the "small hole theory'" based on the theory of elas-
ticity assuming that the dimensions of the opening are small compared
with the depth of the beam. The other is an approximate method treating
the beam near the opening as an elastic ring. Thé stresses for the case

of bending with shear are calculated by superposition.

The ultimate strength of the beam is analyzed and three
solutions are developed which apply to loadings of pure bending, bending
with a small amount of shear and bending with large shear, respectively.
Equilibrium is satisfied iq each case by considering shear, axial force

and moment force at each yield position.

Experiments are described in which two specimens of A36
steel 14" at 30 1b wide-flange beams each with a single extended opening
were tested under four shear to moment ratios. Measurements of deflec-
tions and elastic strains under different loading conditions and at
various stages of loading were recorded and also the ultimate strength

of the beams.

The theoretical values are compared with the experimental

results both for elastic stresses and for the ultimate strength. The



™

agreement between the measured and predicted elastic stresses is satis-
factory for practical design application. The general validity of the

ultimate strength solutions can be established only after further experi-

mental investigation.




NOTATION

The following notation is used in this thesis unless

explicitly stated otherwise:

A,B,C,D,E

Real coefficients of mapping function

Area of the tee

Area of the flange

Length of rectangular portion of the opening
Flange width

Web depth of the tee

Axial unit strain

Normal unit strain

Shear unit strain

Tangential unit strain at free boundary

Stress concentration factor

Reinforcement correction factor

Total depth of the beam

Half-height of the beam

Distance between the centroids of the upper and lower tee
Moment of inertia of the beam

Moment of inertia of the net section of the beam
Strain-optical sensitivity of plastic sheet
Fringe order in normal incidence

Applied load




o

@, B

Reaction force

Radius of half circle portion of the opening

Flange thickness

Thickness of plastic sheet

Web thickness

Yield point stress of the flange

Yield point stress of the web

Distance from the boundary of the opening to the centroid
of the tee

Half-height of opening (=A - B+ C - D + E)

Section modulus of the beam

Maximum stress

Nominal stress

Tangential stress at boundary of opening

Axial (or direct) stress

Normal stress

Yield point stress in tension

Shear stress

Yield point stress in shear

Wave length of light corresponding to the retardation at
the tint of passage (22.7 x 10-6 inches)

Poisson's ratio of sample beam

Orthogonal curvilinear coordinates

Shear parameter,"a measure of maximum shear stress in

the web
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CHAPTER I

INTRODUCT ION

In steel building structures, it is frequently required
to have openings in the webs of the beams for the passage of electrical
and mechanical services, Sometimes these openings are more than half
of the depth of the beam web, and their effects on the elastic and plas-
tic behaviour of the beam are not yet completely understood. Reinforce-
ment of these openings is usually expensive, and it is the purpose of
this investigation to study a particular shape of unreinforced opening

in an attempt to determine the conditions when reinforcement is not

necessary.

The behaviour of a large extended (ovaloid) opening with
parallel sides ended by two semi-circles (Figure 2-2a), in the web of
a wide-flange beam will be analyzed theoretically and experimentally for

different loading conditions.

1.1 HISTORICAL REVIEW

1. Elastic Stresses

Since the end of the last century, a lot of work has been
done concerning the stress concentration around an opening in a plate.
Most of the earlier efforts were concerned with a circular opening in
an infinite plate, in an infinite strip, and in a finite plate. The

stress distribution around a circular hole in an infinite plate under




tension was solved by Kirsch in 1898(1), and that under pure bending by

Tuzi in 1928(2). These solutions are applicable to the case of an infi-
nite strip if the ratio of the hole diameter to the plate width is
3)

respectively less than 0.25 for simple tension and 0.6 for pure

bending(z). An infinite strip, containing a symmetrically located cir-
cular opening, with its diameter up to 50% of the plate width, was ana-
lyzed for simple tension, pure bending and bending with shear by Howland
and Stevenson(a) in 1933, using a method of successive approximation.
This same strip under tension was investigated by Knight(s) in 1934 in
a way which is more direct than that used by Howland., 1In an extension

NO) (6) 7

of the methods of Howlan and Hengst , Wang published a paper

in 1946 which dealt with an infinite strip and a finite plate containing
a symmetrically located circular hole under pure shear., A different
solution for an infinite strip containing an unsymmetrically located
circular opening under simple tension and pure bending was presented by
Lin(8) in 1957. All this above mentioned work deals with a plate of
rectangular sections. Large circular openings in a plate which forms
the web of a wide-flange beam have recently been investigated by Gibson

€)) (10)

and Jenkins and So for a number of different loading conditions.

Much work has also been done on an infinite plate with

(12)

first investigated

(13) (14)

a non-circular opening: Kolosoff(ll) and Inglis
the elliptical hole under simple tension. Later Wolf and Neuber

worked on the same opening under pure bending and shear respectively.

An ovaleid (extended) opening under uniform load was analyzed by



(15)

Greenspan ; and triangular and rectangular holes by Green(16)' All
these solutions are for a hole in an infinite plate, and have been
solved by means of either real or complex variable stress functions.
However, the most important work was done by Mhskhelishvili(17) and his
associates, who, as early as the 1930's, developed a general and direct
method for determining the complex potentials by using the Cauchy inte-
gral at the boundary of the opening, without the necessity of guessing

(18) (19)

their form in advance. Following this technique, Morkovin , Savin s

(20,21,22,23) (2%) colved

the group in David Taylor Model Basin and Bower
a series of problems, concerning a small hole of various shapes in a

plate or in the web of an I-beam under various loading conditions.

However, no exact solution has been worked out for an
infinite strip or a finite plate containing a non-circular opening,
like its counterpart, the circular hole, as done by Howland and Stevenson,

Knight, Wang and Lin.

Mathematically, Muskhelishvili's method is not applicable
to the case of finite plate or an infinite strip. However, for some
particular loading conditions (e.g. pure bending), it does give an
approximate results which is sufficiently accurate for practical appli-

cation. The reason for this will be discussed in Chapter V.

A beam with a smwall extended opening in the web under
different loading conditions was investigated by the group in David

Taylor Model Basin: The solution for the case of pure bending was



presented by Joseph and Brock(zo)’ and that for bending with shear by
Heller(21). All used a curvilinear coordinate associated with Greenspan
A solution for the stresses around a small rectangular opening with
round corners in the web of a beam subjected to bending with shear was
presented by Heller et a1€2%L 1959, using a curvilinear coordinate dif-
ferent from that of Greenspan. This solution is valid for different
corner radii of the opening and in particular is applicable to the case
of the extended opening. The result of this solution shows an improve-

20,21 R s .
(20, ), since the new curvilinear coordinate

ment on their previous work
as determined by the new mapping function, produces a better fit to the

boundary curve of the opening.

Instead of rigorous analysis based on theory of elasti-
s > 1nyr3 " (25) »
city, an approximate "Vierendeel' method (in the latter part of
this thesis, it is referred to as ring theory) has been used to calcu-
late the elastic stresses around rectangular holes in the web of wide-
flange beams. This method is sometimes referred to as the Vierendeel
method because the beam, near the holes, is assumed to act like a

Vierendeel frame.

A great deal of experimental work has been done to verify
the stress conditions around an opening in a plate, mostly by means of

photoelasticity. Experiments on a wide-flange beam with openings of

€))

different shapes have recently been carried out by Gibson and Jenkins

(10) (28)

Segner(26), MbClellan(27), So* , and Bower

(15)

3

3




2. Ultimate Strength of the Beam

Little work has been done concerning the ultimate strength
of a wide-flange beam with an opening in the web., In 1958 Worley(zg)
analyzed a beam with elliptical holes in the web by upper bound: -
theory, neglecting the effects of shear and axial forces at the yield
sections. A more rigorous analysis was recently given by Bower(30) who

investigated a wide-flange beam with a rectangular opening in the web

by considering the effect of shear on the yield sections. However, no

axial force effect was taken into consideration in his solution, and
thus the equilibrium condition is not always satisfied for a free body

taken from the beam.

1.2 OBJECT AND SCOPE OF INVESTIGATION

The object of this investigation was to study theoreti-
cally and experimentally the elastic and plastic behaviour of a wide-
flange beam with a large extended opening in the web subjected to pure
bending and bending with shear. It was desired to establish satisfac-
tory methods for predicting elastic stresses around the opening and the

ultimate strength of the beam.

Since the exact elastic analysis for a large opening is
difficult and not immediately possible, efforts were made to find an
approximate solution which is accurate enough for practical design

applications.



An approximate lower bound theory was developed for ulti-
mate strength analysis, The solutions were based on the equilibrium
condition of a free body bounded by two yield sections, with the shear,
axial and moment forces at these sections all taken into consideration.
The possible failure of the beam due to local inelastic buckling was
beyond the scope of this investigation.

The experiments were performed on two 14 inch at 30 1b

wide-flange beams of A36 steel., Elastic strains and the deflections

of the beams were measured and also the ultimate strengths.
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CHAPTER II

THEORETICAL APPROACHES - ELASTIC STRESSES

The elastic behaviour of a wide-~flange beam with a
large extended opening in the web is analyzed for pure bending, pure
shear, and bending with shear. Two different methods are briefly intro-
duced. One is the comparatively exact method based on theory of elasti-
city assuming that the dimensions of the opening are small compared
with the depth of the beam. The other is an approximate method treating
a length of the beam containing the opening as an elastic ring. These
solutions are all based on the usual assumptions of plane elasticity:
homogeneous, isotropic material within the elastic limit, and uniform
stress across the thickness of the web with no stress normal to the |

plane of the web.

2.1 PURE BENDING

1. Small Hole Theory

Based on the complex variable method associated with
Muskhelishi(17), Heller et al. have developed a theory for the case of
pure bending, with the assumption that the hole is small compared with
the depth of the beam. The tangential stress at the boundary of the

(23)

opening can be obtained from the following formula




where 6 ‘

M

~

S = 2 (A, sin B+ A_sin 38 + A .sin 5B B
My Ty 1 8 3sin 5
0 o
I
+ A7sin 78 + Agsin 9B) (2-1)
is the tangential stress at the boundary and

- PL

'R (Figure 2-1)

moment of inertia of the wide-flange beam without any
opening

half-height of opening, A - B+ C - D + E

C, D, E = real coefficients of mapping function which

can be found in Table D.l1, Appendix D.

A% - alaB + 3aJAC - 6aJAC + 10aAD - 30 K,AD + 42 K AE - 56E2

2 4 4 3 3
aéAz - AB - 2a;AB - 18 K3Ac + 5aJAD - 40 DE + lda,AE
ZaZ'l_A2 -6 K3AB - 3AC - 24 CE + 7aéAE
AD - 2BE
AE
SO + 82 cos2f + Sacos4ﬁ + 56cos66 + SSCOSSB

2 2 2

a2 + 8% + 9¢® + 250% + 49E?
-2(AB - 3BC - 15CD - 35DE)
-2(3AC - 5BD - 21CE)
~2(5AD - 7BE)

~14AE



P/2 | ' P/2

Fig. 2-1 Pure Bending Loading Condition,
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2K, -1 - 8KK

A 1 15
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1+2 K3 - 8 K1
- - ! |
a, 2( K5 K1a2) ]
i
. E
K =2
. _ D, B
K3 =at b |
« = &, B ac . |
s =2t a8 T 1K
« . B, B 3¢ 5D
K =2t as T 8Bt K
B = one of the curvilinear coordinates defining the positions

of points on the boundary of the opening.

2, Ring Theory

The structural element shown in Figure 2-2a can be con-
sidered as an elastic ring with loadings acting on both sides. This is
a statically indeterminate structure with two redundant forces. However,
the axial stresses on the central sections of both top and bottom mem-

. . (25)
bers can be approximately calculated from the following formula ,

based on the assumption of the plane section remaining plane at the

section concerned.

6, = & (2-2)
n

where (Sx is the axial stress on the tee section (Figure 2-2b). M is
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(a) Beam Element Near the Opening

Subjected to Pure Bending.

(b} Quarter Free Body.



the moment at the centre of the opening, and In is the moment of inertia
of the net section of the wide-flange beam at the centre of the opening.
Besides, the shear stresses vanish at the central section of the ring
since the structure and loadings are symmetrical about the &-axis. Then,
by considering the free body shown in Figure 2-2b, the stresses at the
boundary of the opening can be found by conventional methods. The tan-
gential stress at the curved boundary can be obtained by first finding
the axial stress on the vertical section, still based on the assumption
of plane sections remaining plane, and then resolving it into the tan-
gential direction. However, this approximate method is only valid
approximately up to the quarter point (point A as shown in Figure 2-2b)
of the half-circular boundary, for the slope of the tangent becomes
steeper and steeper which makes the stress at point B infinity, and

certainly this contradicts the actual situation.

2.2  PURE SHEAR

1. Small Hole Theory

(23)

Heller et al. have also derived a formula which is

shown below for calculating the stresses for the case of pure shear

2
126 = BA (A

o ¢ 77 sin2p + A451n45 + A6s1n6f3 + Assm 8B

2

+ AlosinIOB) (2-3)

where R is the shear force (Figure 2-3a) and

12




(a) Beam Element Near the Opening

Subjected to Pure Shear.

o s

(b) Quarter Free Body.

Fig. 2-3 )
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all

= A2 + a' A2 - 3a' AB + 3a' AC -

" " -
1 3 1 15al! AC + 15al] AD - 35 K, AD

5 3 3

+ 35af AE - 63E>

2 ..
= n - - 1" - " - 2 "
3a3 A AB 5a5 AB 21 K3 AC + 5a1 AD - 45DE + la3 AE

= 5ag A2 -7 K3 AB - 3AC - 27CE + 7a£ AE

= 2(AD - BE)

2AE

Ji
1+ 3K1 RA

Ry(2 - 3 K;)

1
=
)
-
m—.

t 21
f

= gross area of web

= gross area of flange

14
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total area of beam

>
I

[=n
I

half height of beam.

2, Ring Theory

In contrast to the case of pure bending, the structural
element shown in Figure 2-3a subjected to antisymmetric loadings {pure
shear) is actually a statically determinant structure. Then, one can
readily conclude from its symmetry that both the axial and moment forces
acting at the centroid of the tee vanish at the central section on which
the shear force is equal to R/2. Hence, by a similar procedure as in
the case of pure bending, the stresses at the boundary can be obtained
by examining the free body shown in Figure 2-3b. However, when the web
depth is small compared with the flange width, the effective width of
the flange must be taken into consideration since a non-uniform stress

distribution will exist across the width of the flange(32).

2.3 BENDING WITH SHEAR

As shown in Figure 2-4, the stresses for the case of
bending with shear can be obtained by superposition of pure bending and
pure shear, either by small hole theory or by ring theory, or by a com-

bination of these.




Fig.

2-4

Superpositicn Diagram.
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CHAPTER III

THEORETICAL APPROACHES - ULTIMATE STRENGTH

The ultimate strength of a wide-flange beam with an
extended opening is analyzed both for pure bending and bending with
shear. The material of the beam is assumed to be ideally plastic, i.e,
no strain hardening occurs throughout stress-strain range up to failure.
For the case of pure bending, it is assumed that one plastic hinge is
formed at the centre of the opening, while for bending with shear
either one or four plastic hinges arce assumed to be formed at the
opening, depending on the shear moment ratio at the opening as well as
the dimensions of the hole and the beam section. In addition, shear,
axial and moment forces are all taken into consideration at the yield
sections in order to keep every free body taken from the beam in equi-

librium.

3.1 PURE BENDING

The plastic behaviour of a wide-flange beam with an
extended opening subjected to pure bending is investigated as follows:
As shown in Figure 3-1, the whole section of the shaded portion above
and below the opening reaches the yield stress. Thus, by the equili-
brium condition, the ultimate load P can be directly found as follows:

24.h 6
tc v.p.
P = I (3-1)

where At is the area of the smallest tee section above and below the
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Fig. 3-1 'Possible Type of Failure for Pure Bending.
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Fig. 3-2 Beam Section through the Opening.
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opening, 6 g is the yield point stress in tension, and hc is the

distance between the centroids of upper and lower tee sections (Figure

3.2).

3.2  BENDING WITH SHEAR

1. Possible Types of Failure

Depending oﬁ the ratio of shear to moment at the opening
as well as the dimensions of the opening and the beam section, four
possible types of failure are hypothesized for the case of bending with
shear. The beam may fail

i, by a four plastic hinge mechanism as shown in Figure 3-3a when
the ratio of shear to moment at the opening is high;
ii, by local inelastic buckling at A and B as shown in Figure 3-3a
when the shear moment ratio is high; |
iii. by a one plastic hinge mechanism as shown in Figure 3-3b when
the shear moment ratio is low, and
iv. by a one plastic hinge mechanism as shown in Figure 3-3c when
the shear moment ratio is low and the dimension of the opening
is small compared with the depth of beam.
The ultimate load for Type iv failure can be calculated by the conven-
tional method, but the behaviour of Type ii failure is rather compli-
cated and is beyond the scope of this thesis. Hence, only Type i and

Type iii are investigated in the following sections.




20

Fig. 3-3 Possible Typcs of Failure. for Bending
with Shear



2, Four Hinge Mechanism - High Shear Moment Ratio

Since the shear moment ratio is high, the bending stress
at the yield sections due to the shear force is larger than the stress
due to axial force. Hence the stress distribution at these sections
should be partly in tension and partly in compression. In order to
make the problem simplified and solvable, the following assumptions were
made, some of which are fully discussed at the end of this chapter.
These assumptions are:

a. The four plastic hinges are located at the tangent points as
shown in Figure 3-4.

b. The stresses on the yield sections are distributed in the way
shown in Figure 3-5a, i.e. part of the section yields in direct
stress, and part of it by shear.

¢. The shear yield stress is determined from the distortion

energy yield criterion, i.e.
2
6 +3¢C %2 =6 2 (3-2)

where 4 % is the axial stress, and 1:xy the shear stress.

Thus, for pure shear,

= ——YeP- 3-3
Ty = 5 (3-3)
in which T is shear yield stress.

d. The plastic moments about the axis through the centroid of tee
section at the four hinges are equal. Thus the points of

inflection fall at the mid-length of the opening.

21
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e. The opening is far away from the applied load and the reaction,
so that the effect of the stress concentrations due to the con-
centrated loading can be neglected. Thus, by the symmetric
property of the geometrical configuration, the total shear
force at the opening should be equally carried by the upper

and lower tee sections.

Figure 3-5a is a free body diagram bounded by two yield

sections as shown in" Figure 3-4. From assumption (c) we get

_ /3 R
ky = D- 5 (3-4)
W V.P.
in which D is the web depth of the tee section, tw is the web thickness,

and R is the right reaction 6f the beam (Figure 3-5b). 1In addition, by

equilibrium of all the horizontal forces, one obtains
6y.p.[bk1 - b(tf- kl) - k3§J = 6y.p.[§k3 + b‘tf - k2) - bkz] (3-5)

in which tf is the flange thickness of the tee section. Substituting

(3-4) in (3-5) and rearranging, equation (3-5) becomes

Dt
W V3 R (3-6)

17 2 £ b T 2b68
Y.P.

Moreover, by equilibrium of all moment forces about the horizontal axis

through the centroid of tee section, we get

t

Dt
- W /3 R - f
béy.p.[Z(D- y+tf)(tf+ —B—-'Z—b—g'y——;—) - th(D- y + -2—)
2 2 /3R - 1 /3 R
—kl -k2]+2tw6y.p.(D-2t S )[y-Z(D-Zt 'S )]
w o y.p. W ¥.P.
Ra
= 5 3-7

2
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in whicﬁq§ is the distance from the boundary of the opening to the
centroid of the tee. One more equation can be obtained by considering
the equilibrium of the fight-hand side free body shown in Figure 3-5b,

i.e,

/3 R - R -
bo, o (2K -t - (D 2e, 6 ey Oy b = h_ (3-8)

in which hc is the distance between the centroids of upper and lower
tees. Eliminating k1 and k2 from equations (3-5), (3-6) and (3-8),

the following quadratic equation is obtained for R

3, L 3b (.2
(4+h2+2tw YR® + 6y.p'(ab+/§_btf-/_3—th)R
C
2 2.2 2 2
+ 6y'p_ [D%¢,” - b7t,” - 2bDt (D + t)] = 0 (3-9)

The solution of equation (3-9) is the value of R corresponding to the
ultimate strength of the beam. Since the equation is quadratic, two

solutions exist. However, one of them is negative and meaningless,

Substituting R in equations (3-6) and (3-8), we can get

the values of kl and k2. However, it should be noticed that equation

(3-9) only holds true when O <Ikls§ te and 0 <'k2§; tg. For

k, >t the stresses on the left yield section (Figure 3-5s) should

1 £’
be distributed in the way shown in Figure 3-5c¢, Following a similar

procedure as indicated before, we obtain another quadratic equation

as follows:



L,3, B3, L L L 33 g2
[+ 50 et ) - (3 5 ) 7 IR
C C w C w
t _oobe 2pe 2bt,
+[/§(2—+8D-8y-—,D )+B—(tf+2D-——b - )+2a]6y'p'R
C w
Dt bt _ Dt tfb 62
- [tfb(D + 3t - - ) + th(9D - 8y + 3tp - — +— )] v.p.
W w

One of the two solutions of equation (3-10) is the correct value of R,
provided that its corresponding values of kl and k2 satisfy the condi-

tions that O<k1$D and O <k2$ tf.

3. One Hinge Mechanism - Low Shear Moment Ratio

When the shear moment ratio is low, the whole tee may
be in compression or tension. By considering the effect of shear
force and keeping all forces acting on the free body element in equi~
librium, we assume a simplified stress distribution which is shown in
Figure 3-6a, while the assumption concerning shear force distribution
and shear yield stress are the same as before. From the equilibrium

of the right hand side free body shown in Figure 3-6b, we get

t

a _ i _ _£ B _ _ D
R(L- 3 = 26 Ibe.(5 7 ) D (S -t - g
v3
- 2?? tw('l"z{ T 36R )] (3-11a)
W Y.P. W “y.p.

where H is the total depth of the beam. Rearranging equation (3-1la)

yields

26
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3 2 /3 a
it & R -[2(H-2tf)+L- E]R+btf6y.p.(H~tf)_
W Y.P.
+ théy.p.(H - 2t - D) = 0 (3-11)

The solution of equation (3-11) is the value of R corresponding to the
ultimate strength of the beam. Depending on the size of the opening as
well as the ratio of shear to moment, either one or none of the two
solutions is correct. From consideration of the equilibrium of the

free body shown in Figure 3-6a, the following is obtained.

f§-R a
k., = D- —==_ _ % (3-12)
5 26,600, 3

Hence, the correct value of R should be the one which makes kS’ by sub-~

stituting R in equation (3-12), greater than or equal to zero.

4, Criterion for Different Types of Failure

Putting k5 equal to zero in equation (3-12) yields

a _ 3R 1
"5 T TS, O

From equations (3-11) and (3~13), we get the critical value of L, say

Lc, as follows:

3[bt.(H - t.) +Dt (H - 2t_. - D)]
L = £ £ w £ - %—(H- 2t - D) (3-14)

¢ 2tw( /3D - a)

Since k5 shown in Figure 3-6a should always be positive, it follows

-

from equation (3-12) that
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a
p > 2 (3-15)
{3
and
2tf3—6R < » - = (3-16)
w y.p. 3

Therefore, with all the assumptions made in the foregoing sections, an
approximate criterion for different types of failure can be obtained as
follows: when D > = and L >-Lc, the beam will fail by the one

3
hinge mechanism; and when D < 2 orwhen D> € and 1 £ L, the

g /3 ©

beam will fail by the four hinge mechanism.

5. Discussion

The foregoing methods for calculating ulﬁimate loads for
different types of failure are rather ideal analyses, i.e. all have
been based on the common assumption that the material of the wide-flange
beam is ideally plastic. Actually, the pattern of stress distribution
shown in Figures 3-5 and 3-6a cannot be attained, for excess strain
near the boundary of opening would cause strain hardening in this region.
Moreover, it is possible that the beam may fail by local inelastic
buckling in the web, with its strain somewhere in the strain hardening
range, while the flange is still below the yield point stress. However,
with the ideal plastic material assumed, the patterns of stress distri-
bution seem to be the most reasonable which permit a straightforward
solution to be obtained. Except at points of discontinuous stress, the
two equilibrium equations for plane stress are both satisfied throughout

the section, The two equations are




064 + 2 Txy
ox 2y

1
[«

(3-17)

35y+ A Cxy
oy DX

where <SX and <5y are the direct and normal‘stresses and 1:xy is the
shear stress. Again, elastic analysis indicates that high strain con-
centrations océur on the boundary of the opening, so it is logical to
conclude that the portion of the web near the boundary will yield by
bending stress, Finally, experiments by Bower(go) have shown that the
upper part of the web above an épening does yield in pure shear., Hence,
and since the effect of strain hardening is neglected, the foregoing
analyses for different types of failure are approximately lower bounds

and thus conservative solutions.

The yield point stress of the material of the wide-flange

(30) showed

beam actually varies from point to point. Some experiments
that the yield point stress of the flange was much lowér than that of
the web. If different values of yield point stress for the flange and

the web are used, then equation (3-9) becomes

3 L2 Bbe 2
[ +— + IR™ + [abY_. + 3 bt_Y_. - 3 Dt Y ]R
4 h 2 ZtWYW f £f°f wow
c
2 22 2 2
+ [D t, Y, - b te Yf— 2thw(D + tf)YfYW] = 0 (3-9a)

in which Yf is the yield point stress of the flange and Yw that of the

web., Results of numerical calculations based on an arbitrarily assumed

30
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ratio of Y, to Yw are shown in Chapter V.

£
When 'a' is small, the yield sections may be shifted to
the positions shown in Figure 3-4, then equation (3-9) should be modi-

fied and written as

2 2
[ 3 + L + 3b ]R2 + 68 [(a + 2x)b +/3bt_ -/3t (D + 1 - r2 - xz)]R
4 h 2 2t y.p. f w
c
2 2 2.2 2 2 2
-kéym.[ﬂ)+r- r® - x) e S+,
- 2btw(D +r - r2 - x)(D+ te +r -,/r2 - xz)] = 0 (3-9b)

in which x is a variable indicating the distance between the assumed
and shifted positions. Solving R from equation (3-9b) as a function of

X, and minimizing R with respect to X, we can get the x and corresponding

R which is the correct solution of equation (3-9b). If we put 'a

equal to zero in equation (3-9b), then a quadratic equation for the

case of a circular opening can be obtained as follows:

3 2 2
[ A B v IR™ + y'p_[sz +[§btf -/§tw(n +r-Jr” - x")IR

2 2 2.2 2 2 2
+6y.p. [+ -Jr - x7) tw +btf

- 2btw(D +r - }rz - x)(D + tf +r - (r2 - x2)]

= 0 (3-18)

The correct values of x and R can again be calculated by minimizing R
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with respect to x.

Equations (3-9), (3-10) and (3-11) can also be applied
to the beam with rectangular opening, with 'a' being the horizontal
length of the hole. 1In addition, by putting ‘'a' equal to zero, equa-

tion (3-11) becomes

3 2 3

——— R" - [= (H- 2t.) +LIR +bt_8 (H-t.)
4tw‘5y.p. 2 £ f y.p. £
+ Dt 6y,p,(H -2t -D) =0 (3-19)

This is for the case of the circular opening if the beam fails by a

one plastic hinge mechanism.
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<»\ CHAPTER IV

EXPERIMENTAL PROCEDURE

4,1 GENERAL DESCRIPTION

Two specimens of A 36 steel 14"WF at 30 1b beams each
with a single extended opening as shown in Figure 4-1 were tested to
investigate their elastic and plastic behaviour under different loading
conditions. Specimen A, 15 feét long, was subjected to pure bending
(Test No. 1), shown in Figure 4-2, while specimen B which was 19 feet
long was tested under different ratios of shear to moment (Tests Nos.

2 to 4, as shown in Figure 4-2).

Measurements of deflections and elastic strains under
different loading conditions and at various stages of loading were

recorded and also the ultimate strength of the beams,

Both electrical resistance strain gauges and a photo-
elastic coating (Photostress) were employed to measure the elastic
strains in the web around the opening. The loading was applied by a
440 kips capacity Baldwin-Emery testing machine in the form of onme or
two (pure bending) concentrations on a 14 foot span. Load was inrweased

at the rate of 5 kips per minute.

4.2 MEASUREMENT OF ELASTIC STRAIN

1, Strain Gauge Method

Two kinds of foil strain gauges produced by Budd
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Instruments Limited were used to measure the elastic strains of the

tested specimens. The linear gauges C6-121A were mounted on the boun-
daries of openings, while C6-121-R3C, which are 120° rosette gauges,
were bonded to the interior points around the holes. Linear and rosette
gauges were also mounted on the flange surface of specimens A and B
respectively. The detailed locations of all the gauges both on speci-

ments A and B are shown in Figures 4-3 and 4-4.

Strains were recorded with Model A-110 digital strain
indicator (Budd Instruments Ltd), by using a half bridge circuit with
a dummy gauge mounted on the plate which was cut from the opening in

the web,

Measurement of relative strain has been adopted through-
out the experiments, i.e. the strains indicated for some particular
loading are actually the additional strains due to the additional
loadings. In the case of pure bending, zero strain readings were set
when an initial loading of 2 kips had been applied. Further records
were taken at increments of 10 kips until a final load of 42 kips was
obtained. For the case of bending with shear, 1 kip was taken as the
initial loading, and further records were taken at increments of 5 kips
until a final load of 11 kips (Tests Nos. 2 and 3) or 16 kips (Test No.

4) was applied.

Since all the gauges were placed only on one side of the

neutral axis of the beam, the strains measured were limited to this side.

36
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However, strains on the other side of the axis were also obtained by
turning the beam upside down and repeating the procedure mentioned

before,

2, Photostress Method

In addition to strain gauge measurements, the tangential
strains on the boundary of the opening were also measured by the photo-
stress method. The photostress technique is more economical than the
strain gauge method in view of money and time. Actually it contains
infinite numbers of gauges over the region of particular interest. Both
in specimens A and B type S plastic sheets (K factor = 0.093, thickness
= 0,120") cut in the shapes shown in Figure 4-5 were bonded to the web
surface around the openings, using reflecting cement. Before bonding
the cut plastic sheets were checked by polarizer and analyzer and there
was no residual fringe induced by improper cutting. Fringe orders at
particular points on the boundary of the opening were measured with a
large field meter (Budd Instruments Ltd.). According to the theory of
(3D

s

photoelasticity the tangential unit strain at a free boundary can

be obtained as follows:

e = —t s (4-1)
t 1+ M 2t K F
s p ¢
where e, = tangential unit strain at free boundary
Mg = Poisson's ratio of sample beam
Nn = fringe order in normal incidence which can be measured

with the large field meter
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N = wave length of light corresponding to the retardation at the

tint of passage (22.7 x 10-6 inches)

tP = thickness of plastic sheet
K = strain-optical sensitivity of plastic sheet
Fc = reinforcement correction factor,

The values of K and tp were supplied by the manufacturing company, and

FC can be found in the Chart shown in Appendix C.

Fringe orders were measured at the load of 40 kips for
pure bending and at 10 kips for bending with shear. The measured points
were selected slightly inside the boundary in order to avoid edge effects,
and corrections were made in all tests by measuring the residual fringe

orders due to absorption of moisture and other effects.

4.3 DEFLECTIONS AND ULTIMATE STRENGTH

Deflections were measured with 1/1000 inch dial gauges
placed at two foot intervals along the span of the beam. Measurements
were taken for each moment/shear ratio in the elastic range. 1In Tests
Nos. 1 and 2, measurements were taken in 10 kip increments up to loads
near the ultimate strengtii. Deflection readings were then discontinued

and the loads were carried to failure.

To prevent lateral buckling, the compression flanges of
both specimens were held by a lateral bracing system. No stiffeners

were used under the loading point or at the reactions.
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CHAPTER V

INVESTIGATION OF THEORETICAL AND EXPERIMENTAL RESULTS

5.1 COMPARISON OF STRAIN GAUGE AND PHOTOSTRESS RESULTS

The strain gauge and photostress results are shown in
Tables A.1 to A.ll, Appendix A. The boundary stresses obtained from
both methods are plotted in diagrams shown in Figures 5~1 to 5-4, The
agreement between the two different approaches is good and only a single
curve is drawn. When a discrepancy occurs, it is due to either a low
strain level, or a steep strain gradient which makes the location of

the reporting point critical.

5.2 COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS

1. Elastic Behaviour

The theoretical results based on the methods mentioned
in Chapter II are also plotted and compared with the experimental

results in Figures 5-1 to 5-4. 1In the case of pure bending, the small

23>

hole theory predicts well the stresses at the boundary of opening,

‘with a deviation of about 5.8% at point of maximum stress, while the

ring theory shows less accurate results, especially at the tangent

point where the deviation is up to 31.7%.

The small hole theory predicts the stresses for the case
of bending with shear very poorly, e.g. the deviation is as high as

55.6% at point of maximum stress for Test No. 2. However, the results
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based on either ring or combined theory (i.e. small hole theory for
pure bending plus ring theory for pure shear) shows a far more satis-
factory agreement with the experimental results, especially the latter.
This is due to the good accuracy of small hole theory for pure bending
and that of ring theory for pure shear. The deviations at points of
maximum stfess, by results based on the combined theory, are a maximum

of 17% for Tests Nos. 2 to 4,

In the case of pure bending, the applicability of small
hole theory to a large opening even when its height is up to 577 of the
beam depth is due to the following reason:

Figure 5-5a is a large plate (in two directions) with a small opening
subjected to pure bending. The shear and the normal stresses on the
sections y = t h, with approximately yo/h == 0.6, are usually so small
they can be neglected. This has been demonstrated by Tuzi( 2) for the
case of a circular opening. For a non-circular hole, these stresses
could be found by modifying the solution developed by Heller et al.(zg).
This is a lengthy procedure and the work involved was not considered
justifiable., Intuitively, it is concluded that a similar state of
stress distribution as in the case of a circular opening exists in the
case of a non-circular opening. Therefore, the free body bounded by
the lines y = t h with loadings acting on both ends is identical to the
element shown in Figure 5-5b., However, no such kind of identity exists

in the case of pure shear, and thus the small hole theory tends to inac-

curate results for the case of. bending with shear.
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The errors induced in the ring theory are mainly due to
the simplifying assumption of plane sections remaining plane. The dis-
crepancy can be clearly observed at the tangent point where a strain

concentration exists due to the change of curvature of the bottom fiber

of the tee.

2. Ultimate Strength

The theoretical and exper imental results of the ultimate
strength for Tests Nos. 1 and 2 are compared in Table 5-1. The theore-
tical values are calculated based on the methods developed in Chapter
IIT. The deviation is 15.5% for pure bending and 13.8% for bending with
shear (Test No. 2). The error of the former is possibly due to the non-
uniform yield point strésses of the material of the wide-flange beam,
and that of the latter is caused mainly by the assumption of ideally
plastic material. As discussed in Chapter III,experiments have shown
that the yield point stress of the flange can be considerably lower than
that of the web. This will considerably reduce the plastic moment for
the case of pure bending but not affect significantly the ultimate
strength of the beam for the case of heavy ratio of shear to moment,
since the moment arm of the flange forces is far larger for pure bending
than for bending with shear (for a four plastic hinge mechanism). If
an arbitrary ratio 1.3 of Yw to Yf is" used and with Yw remaining the
smae as before, then the deviation becomes 5.87% for pure bending and
16.9% for Test No. 2. However, better results will be obtained for

Test No. 2 if the effect of strain-hardening in the web near the boundary



TABLE 5-1

Comparison of Theoretical and Experimental Values

of Ultimate Strength

Test No. 1 Test No. 2
Experiment 75.9k 35.5k
Theoretical K Kk *
s = 51 ksi 90.5 30.6
y.p.
Error +15.5% -13.8%
Theoretical 71.5k 29.5k
Y = 51 ksi
w
YW/Yf =1.3
Error - 5,8% -16.9%

* The calculation is based on Equation (3-9), i.e. the beam fails

a four hinge mechanism.
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is taken into consideration. In the experiment as shown in Flate 5-1,

the beam seemed to fail by local buckling in the web as shown in Figure

3-3a.

5.3 CHARACTERISTICS OF ELASTIC AND PLASTIC BEHAVIOUR

1. Deflection

The measured deflections of the beam for different
loading conditions and at various stages of loading are tabulated in
Tables A.16 to A.19, Appendix A, Sélected diagrams are plotted for de-
flections at some particular points for different stages of loading and
for deflections of points of the whole span at various stages of loading.
Some of the curves are compared with the theoretical value of the same
beam withouf any opening subjected to the same loading condition, as shown
in Figures 5-6 to 5-10, 'Additional deflections due to shear effect have

been taken into consideration in the theoretical calculations. Typical

calculations are shown in Appendix B.

For the case of pure bending, no significant difference
occurs due to the presence of the opening. However, in the case of Test
No. 2, the . differences are up to 25% at the point of maximum deflection
(point 4, as shown in Figure 5-10) and 35% at the point of maximum dif-
ference (point 2). _These excess deflections are mainly due to the fact
that the shear forces at the opening cause further relative deflection
between two ends of the opening, as in the case of a rigid frame side-

swaying under the action of transverse loading.
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2. Stress Distribution Shapes and Stress Concentration Factors

From the experimental results, selected curves indicating
horizontal and vertical stress distributions in the region above (or
below) the opéning are shown in Figures 5-11 to 5-13. For the case of
pure bending (Figure 5-13), the axial stresses at the sections near the
centre of the opening aré'linearly (or approximately linearly) distri-
buted along the vertical sections. An enlarged diagram indicating the
stress distribution on the central section is shown in Figure 5-14 from
which a good agreement between theoretical (based on Equation 2-2) and
experimental results can be observed so long as the outside fiber stress
of the flange is concerned. The stress concentration factor is calcu-
lated to be 1,05 with critical stress occurring at the outside fiber of

the flange. Here the stress concentration factor F is defined as

6 max
SRS
nom
with § nom (nominal stress) = M/Z, where M is the moment at the central

line of the opening and Z the section modulus of the same beam without

any opening. It is worth repeating that the maximum stress for pure
bending is not on the boundary of the opening but at the outside fiber

of the flange. 1In Test No. 2, no linear stress distribution along the E
vertical éections exists as in the case of pure bending. A steep stress
gradient occurs at the section where the depth of the web begins to

change. The stress concentration factor (as defined before) for Test No.
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2 is calculated to be 9.37 and those for Tests Nos. 3 and 4 are 4.94
and 3.55 respectively. All the maximum stresses occur at the boundary
of the opening, somewhere near the tangent point on the half-circular

portion.

3. Ultimate Strength

The reductions of ultimate strength due to the presence
of opening are calculated theoretically as 9.5% in pure bending, 56.2%
in Test No, 2, 28.3% in Test No. 3, and 22.87 in Test No. 4, while experi-
ments showed 24.5% in pure bending and 49.4% in Test No. 2. This data
indicates that the shear is a significant factor in reducing ultimate
strength of the beam with an extended opening in the web, especially

when the horizontal length of the opening is long.
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CHAPTER VI

CONCLUS IONS

The following conclusions can be drawn:

In the case of pure bending, the theory of elasticity with the
assumption that the hole is small predicts well the elastic stresses
at the boundary of the opening even when its height is up to 57%

of beam depth. For the size and shape of the opening tested experi-
mentally the stress concentration factor is 1.05 with the critical
stress occurring at the outside fiber of the flange. Hence, for

elastic analysis, the effect of the opening can be neglected.

In the case of bending with shear, the combined theory (i.e, small
hole theory for pure bending plus ring theory for pure shear) pre-
dicts the stresses at the boundary of the opening with a maximum
error of about 177 for the size and shape of the opening tested

experimentally,

The critical stress for all cases of bending with shear occurs at
the boundary of the openings, somewhere near the tangent point on
the semi-circular portion. The stress concentration factors are
9.37 for Test 2, 4.94 for Test 3 and 3.55 for Test 4. Hence, for
elastic analysis, the effect of the opening cannot be neglected

under these conditions.

The lower bound solutions for the ultimate strength are given in

general forms and are applicable to various shapes of opening.

[P REPEEE S - —
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The solution satisfactorily predicts the strength of the one experi-
mental test for bending with shear. Further experimental evidence

is required in order to establish more general validity.

The failure moment at the opening in Test 2 is 0.33 of the failure
moment under pure bending. This significant reduction in moment
capacity due to the presence of shear indicates that reinforcement

of the opening must be considered under these conditions.

For the case of pure bending, no significant difference in deflec-
tion occurs due to presence of the opening. However, the differ-
ence is large for bending with shear and is up to 25% at the point

of maximum deflection in Test No. 2.
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APPENDIX A

EXPERIMENTAL AND THEORETICAL DATA
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TABLE A.1

Comparison of Strain'Gauge and Photostress Results

6 6 , , 9 s
Value e_x 10 e_x 10 CE'(p51) CY; (psi) - % Variation

t t
Position S.G. P.S. 5.G. P.S. from mean
H. 1 =585 -568 -17550 -17050 1.4
I.1 =585 -608 -17550 -18230 2.0
J.1 " =632 -656 -18970 -19700 1.9
K.1 =704 -696 -21000 ~20900 0.6
L.1 =381 =275 ~-11430 - 8250 16.2
M.1 185 - 203 5550 6090 4,6
N.1 354 404 10620 12110 6.6

[Test No. 1: P = 40 kips]

TABLE A, 2 H

Comparison of Strain Gauge and Photostress Results

Value e, x 106 e x 106 CY; (psi) cy; (psi) % Variation

t .
Position . S.G. X P.S. S.G. P.S. from mean
B.1 501 503 - 15020 15090 0.2
c.1 936 915 28100 . 27450 1.2
D.1 1104 1078 33150 32320 3.2
E.1 820 844 . 24600 25300 1.4
F.l 454 429 13620 12880 2.7
G.1 160 ) 138 4800 4140 7.4
H.1l - 120 - - 3800 - -
I.1 - 39 - 405 -11820 -12160 1.5
J.1 - 690 - 721 -20700 -21650 2.0
K.l -1094 ~1167 -32820 -35000 3.2
L.1 -1260 - =1300 ~37800 " =39000 1.6
M.1 - 889 - 907 -26650 -27200 1.0
N.1 - 408 - 389 -12240 -11980 2.3

[Test No., 2: P = 10 kips]

Note: Refer to Figures 4-3 and 4-4 for identification of strain gauge

locations.



TABLE A.3

Comparison of Strain Gauge and Photostress Results

Value e x 108 e, x 108 Cj; (psi) cj} (psi) % Variation

Position S.G. P.S. S.G. P.S. from mean
B.1 439 397 13180 11910 5.0
C.1 767 729 23080 21880 2.5
D.1 816 794 24520 23800 1.4
E,1 544 535 16320 16050 0.7
F.1l 252 243 7560 7300 1.6
G.1 32 - 960 - -
H.1 - 188 - 186 " = 5640 " = 5580 0.5
I.1 - 412 - 413 -12360 -12400 0.1
J.1 - 660 - 720 -19800 21600 4.3
K.1 - 990 -1000 -29700 ~30000 0.5
L.1 =1079 -1085 =32370 =32600 ‘ 0.3
M. 1 - 693 - 690 . =20800 -20700 0.2
N.1 =281 - 227 - 8430 - 6820 . 10,6

[Test No. 3: P = 10 kips]

TABLE A.4

Tangential Strains and Stresses

6

Value . e, x 10 . O ¢ (psi)
Position o S.G. o

B.1 353 10600
c.1 592 17800
D.1 551 16550
N.1 -187 ' - 5600
M. 1 =520 -15600
L.1 -874 . -26200

[Test No. 4: P = 10 kips]
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TABLE A.5

Strain Gauge Results and Derived Stresses in Cartesian Coordinates

(The x-Axis is the Longitudinal-Axis of the Beam)

6 6 6

. - ,
Value e X 10 ey x 10 exy x 10 0 (psi) O/y (psi) L—xy(p‘c'l) |
Position '
H.1 =585 146 0 -17550 ’ 0 0
H.2. ~-637 163 21 ' -19080 120 249
H.3. =695 179 20 -20807 168 235
H.4 ~718 191 - 3 ' =21451 337 - 42
I.1 =585 146. 0 ~17550 0 0
1.2 -635 166 - 14 ~18989 3 69
1.3 -675 184 48 -20130 477 582.
J.1 -632 158 ) 0 -18970 0 0
J.2 -633 158 8 -18989 1243 - 166
J.3 -688 173 14 -20629 43 ...166
J.b ~718 © 184 1 =21504 144 14
K.1l -704 176 0 -21000 0 0
K.2 =631 . 128 44 -19171 - 963 527
K.3 -648 ’ 154 - 8 -19503 - 256 - 97
L.2 ~501 118 L4 .-=15085 L= 222 533
L.3 =588 184 - 57 -17359 1172 - 689
L.4 -682 191 =111 -20293 667 -1330
M.2 =208 T 131 21 - 5607 2540 256
M.3 =325 i 159 87 - 9139 2473 1048
M. 4 =656 169 70 =-19624 149 845
N.2 - 6 96 -145 559 3014 ~1737
N.3 - 58 49 - 84 - 1453 1107 1005
F.5 ~760 ) -22800 '
H.5 =775 ' -23250
J.5 -750 -22500
L.5 =720 ' -21600

[Test No. 1: P = 40 kips]
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TABLE A.6

- Strain Gauge Results and Derived Stresses in Cartesian Coordinates

' 6 6 6 . .
Value e x:10 e .x.10 e x .10 Oj; (psi) (T;'(pSL? 4:£y(p31)

y Xy

Position
B.2 145 104 441 5460 4487 5295
B.4 193 -21 3% . 6013 867 4677
C.2 .373 88 495 12636 . 5791 5944
C.b 274 -2 . 127 8765 2142 1528
C.5 - 100 31 178 . =~ 2955 181 2134
- D.2 465 25 410 15092 . 4534 4926
D.4 189 57 180 6493 -3347 2161
D.5 - 70 61 : 147 - 1749 " 1403 1760
E.1l 820 -205 0 ..24:600 0 0
"E.3 - 277 - 14 406 8754 1779 4877
F.1 454 . =112 - 0 13620 0 0
'F.3 210 - 42 358 6384 336 - 4295
F.5 - 43 20 506 - 1219 285 6069
G.1 160 - 40 0 4800 0 - 0
G.3 50 3 370 1573 293 4434
H.1 - 120 30 0 .~ 2800 0 0
H.3 - =116 53 366 - 3290 757 4392
H.5 - 128 .43 517 - 3755 341 6208
I.1 - 394 98 _ 0 -11820 0 0
1.3 -39 125 370 -11610 837 4434
J.1 - 690 172 .0 =20700 0 0
J.3 - 426 127 - 367 . =12613 667 4406
J.5 - 218 - 49 510 . - 6587 - 187 6125
K1 -1094 " 273 0  -32820 0. . 0
K.3 .- 510 - 70 457 -15760 -1840 5487
L.2 - 617 20 485 ~19584 -4309 5815
L.4 - 386 6 188 -12304 - .-2896 2254
L.5 - 196 2 137 - 6256 -1504 - 1649
M.2 - 397 - 85 591 ~13368 5885 .7088
M. 4 - 370 46 227 11455 ~1478 2720
M.5 - 133 54 C =147 - 3821 675 -1760
" N.2 - 141 =111 431 ‘= 5393 -4687 . 5172
N.& ‘= 182 .18 - 369 - 5671 - 889 4428

[Test No. 2: P = 10.kips] _
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Strain Gauge Results and Derived Stresses

TABLE A,.7

220
298
185
374
165
268
140
136
110
4
88
80
54
16

x 10 e
y

in Cartesian Coordinates

53 -
92 -
71
111
144 -
85
38
43
14

21
23 -

Test No. 2:

Xy

x 10

46
45
39
23

104
165
121
122
106
30
43
28
32

P =

5 (psi)

6,613
8, 800
5,352
-11,077
- 4,131
- 7,893
- 4,176
- 4,005
- 3,408
181

- 2,805
2,395

- 1,541
- 576

kips

6y (psi)

3,

53
560
792
571
277
587

96
299
432
245
661

21
315
384

<.
Xy

74

(psi)

554
540
471
277
14
1,247
1,981
1,455
1,469
1,275
360
513
333
388
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TABIE A.8

Strain Gauge Results and Derived Stresses in Cartesian Coordinates

6 6 6 . .
Value e, X 10 ey x 107 exy x 10 ¢y; (psi) 'CT; (psi) «c;xy(psi)
Position :
B.2 154 - 22 317 4750 830 3808
B.4 116 94 376 4450 3923 4518
C.2 392 - 39 =121 12238 1896 -1454
C.4 196 7 - 29 6326 1781 352
C.5 -196 54 158 - 5840 160 1898
D.2 298 37 321 9821 3566 5853
D.4 55 68 140 2290 2616 1679
D.5 ~164 69 127 - 4693 907 1524
E.1 544 ~-136 0 16320 0 0
E.3 115 9 324 3752 1208 3894
F.1 252 - 63 0 . 7560 0 0
F.3 66 - 15 299 1995 59 3589
F.5 =145 38 395 - 4339 45 4739
G.1 32 - 8 0 960 0 0
G.3 - 60 24 303 - 1728 288 3630
H. 1 -188 47 0 - 5640 0 0
H.3 =194 68 - 294 - 5664 624 3533
H.5 ~210 56 ) 401 - 6272 112 4808
I.1 -412 103 0 -12360 0 0
1.3 ~314 97 298 - 9275 581 3575
J.1 =660 165 - 0 ~19800 0 0
J.3 =450 152 260 -13184 1264 3118
J.5 ~286 63 405 - 8651 - 283 4864
XK.1 =990 247 0 -29700 ’ 0 0
K.q -500 71 379 -13435 = <1739 4545
L.2 -576 38 395 -18139 -3408 4740
L.4 =401 30 147 -12591 -2235 17 68
L.5 =265 33 105 - 8216 -1064 1261
M.2 -363 - 17 520 -11757 =3443 6240
M.4 -352 53 199 -10837 -1110 2392
M.5 209 70 .= 99 - 6131 557 =-1192
N.2 -104 - 80 312 - 3967 ~3392 3749
N.4 -159 14 .290 - 4988 ~ 825 3484

[Test No. 3: P = 10 kips]
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TABLE A, 9

Strain Gauge Results and Derived Stresses

in Cartesian Coordinates

Value
Position e_ X 106 e x 106 e, X 106 6 (psi) 6 (psi) T (psi)
x y Xy X y Xy
C.6 - 284 81 - 57 - 8443 309 -
c.7 - 366 108 - 57 -10848 528 -
D.6 - 255 94 30 - 7405 979
D.7 - 429 125 31 -12728 568
F.6 - 238 88 128 - 6912 912
F.7 - 337 96 88 -10013 387
H.6 - 224 71 121 - 6597 491
H.7 - 230 63 92 - 6853 187
J.6 - 204 55 105 - 6085 139
J.7 - 120 33 91 - 3579 85
L.6 - 186 31 16 - 5701 - 485
L.7 - 56 21 24 - 1627 213
M.6 - 160 53 - 35 - 4693 427
M.7 - 130 33 - 17 - 3893 27

Test No. 3: P = 10 kips

679
679
360
374
1538
1053
1454
1109
1261
1095
194
291
- 416
- 208
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TABLE A.10

Strain Gauge Results and Derived Stresses in Cartesian Coordinates

6 6 6 , , .
Vélue e, X 10 ey x 10 exy x 10 Cx; (psi) -CT; (psi) 4;xy(p31)
Position
B.2 99 - 13 252 3075 . 391 3028
B.4 86 63 307 3244 .2703 3688
C.2 287 - 40 - 63 8859 1007 - 753 .
C.4 123 .11. - 7 4011 1323 - 88.
C.5 -232° 59 130 - 6949 43 . 1566
D.2 147 38 234 5021 2392 2804
D.4 - 25 76 117 T - 194 2221 1399
D.5 =210 69 98 ~ 6165 539 ‘1178
E.1l 326 - 81 -0 9780 0 0
‘E.3 7 20 226 387 707 2716
F.1l 126 - 31 0 3780 0 0
F.3 - 30 3 «.219 - 933 - 133 2633
F.5 -196 46 304 - 5904 - 96 3644
G.1 - 45 ‘ 11 0 - 1350 0 0
G.3 - ~120 41 232 - 3515 341 2633
H.1 =218 54 0 - 6540 0 0
H.3 =255 " 68 219 - 6653 387 2633
H.5 ~248 64 309 - 7424 64 3713
I.1 -380 95 ) 0 =11400 0 0
1.3 =320 89 212 - 9525 299 2550
J.1 ~562 140’ 0 -16860° o . .. 0
J.3 -412 113 216 - -12283 "~ 309 2591
J.5 -295 . 62 - . 328 - 8941 - 365 . 3935
K.1 -838 £ 209 0 " =25140 0o . 0 .
k.3 =448 59 290 -13861 -1685 3478 T
L.2 =490 : 38 300 - -15392 =2715 3595
L.4 =374 40 104 -11637 -1723 1254
L.5 ~-285 37 70 - 8824 -1096 .~ 845 -
M.2 =294 - 32 374 - 9665 =3375 _4488 '
M4 =305 © 55 . 156 - 9323 - 677 - 1872
" M.5 244 - 64 - 69 = 7296 96 - 831
N.2 T - 89 - 66 222 - 3364 -2823 2669
N.4 =131 ) 8 208 - 4141 - 793 2500

[Test No. 4: .P = 10 kips]



TABLE A,11

Strain Gauge Results and Derived Stresses

in Cartesian Coordinates

Value
Position e x 106 e X 106 e X 106 5 (psi) & _(psi) C__ (psi)
X y Xy X y Xy
C.6 - 292 66 - 24 - 8816 - 224 - 290
Cc.7 - 368 112 - 53 ~-10880 640 - 673
D.6 - 275 94 12 - 8045 819 139
D.7 - 412 124 35 =12192 672 416
F.6 - 268 91 101 - 7851 757 1219
F.7 - 330 100 57 - 9859 525 679
H.6 - 255 79 100 - 7528 488 1206
H.7 - 255 82 66 - 7507 573 790
J.6 - 242 69 67 - 7195 261 804
J.7 - 174 55 65 - 5125 379 776
L.6 - 224 50 3 - 6768 - 192 42
L.7 - 135 45 14 - 3960 360 166
M.6 - 205 58 - 29 - 6093 227 - 346
M.7 - 193 52 - 21 - 5757 131 - 249

Test No. 4: P = 10 kips
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BLE A.12

Comparison of Experimental and Theoretical Results ( 6t)

Experimental

- 17,300
- 17,890
- 19,335
- 20,950
- 9,840

5,820

11,365

Test No.

TA

- 14,100
- 14,100
14,100
- 14,100
- 9,700

1: P =

BLE A.13

Ring Theory

40 kips

Small Hole Theory

- 14,700
- 15,900
- 18,000
- 20,700
- 15,200

2,750

7,500

Comparison of Experimental and Theoretical Results ( 6t)

Experimental

15,050
27,775
32,735
24,950
13,250

4,470
- 3,800
-11,990
-21,175
-33,910
-38,400
-26,925
-12,110

Ring Theory

27,700
21,100
14,500
6,000

- 2,400
- 11,500
- 19,700
- 26,350
- 30,900

Test No.

Small Hole Theory  Combined Theory

12,200
15,200
10,000
2,000
1,100
2,500
3,200
5,000
7,900
12,000
17,500
14,500
9,000

10 kips

26,700
20,000
13,500
5,700
- 2,400
- 11,500
- 20,500
- 27,900
- 32,000

79
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TABLE A.14

Comparison of Experimental and Theoretical Results ( § )
T

Experimental Ring Theory Small Hole Theory Combined Theory

12,045 8,000

22,480 9,000
24,160 20,550 3,500 19,000
16,185 15,000 - 2,000 13,250
7,430 9,500 - 3,100 8,400
960 2,500 - 3,900 1,900
- 5,610 - 4,100 - 4,500 - 4,100
- 12,380 - 11,000 - 5,200 - 11,000
- 20,700 - 17,500 - 7,100 - 18,500
- 29,850 - 22,800 - 9,600 - 25,000
- 32,485 - 26,000 - 12,000 - 27,500

- 20,750 - 9,600

- 7,625 - 3,600

Test No. 3: P = 10 kips

TABLE A,15

Comparison of Experimental and Theoretical Results ( 6t)

Experimental Ring Theory Small Hole Theory Combined Theory

10, 600 6,800

17,800 7,000

16,500 14,100 1,300 12,400

9,780 9,790 - 3,800 8,000

3,780 5,100 - 4,500 4,500
- 1,350 0 - 1,500 0
- 6,540 - 5,000 - 4,900 - 4,800
- 11,400 - 9,800 - 5,500 - 9,800
- 16,860 - 14,500 - 7,200 - 16,000
- 25,140 - 19,000 - 9,600 - 21,000
- 26,200 21,000 - 10,600 - 22,200
- 15,600 - 5,900
- 5,600 - 1,900

Test No. 4: P = 10 kips



Point

Total Load
(kips)

10
20
30
40
50
60
70

20

Note: 1.

81

TABLE A, 16

Deflections of the Beam (Inch)

Test No. 1

P

= £
| _17 &’ 1 4’

(@]
! 2 3 4 5 4° 3’ 2’ v
[ 3@2'=¢"  _Li. 1 @z2'=6
@ 1/1 /#_ @ -

Measured Values

2 3 4 5 4! 3! 2!
0.040 .0.071 0.086 0.092 0.089 0.075 0.044
0.080 0.146 0.177 0,181 0.178 0.146 0.085 ;
0.120 0.220 0.267 0,242 0.269 0.221 0.126 3
0.160 0.293 0.365 0,361 0.360 0.292 0.163 ;
0.201 0.366 0.442 0.451 0.447 0.367 0.206
0.244 0.453 0.531 0.542 0.537 0.450 0.249
0.300 0.549 0.663 0.651 0.678 0.550 0.305
Theoretical Values (gross section)
0.083 0.150 0.182 0,186 0.182 0.150 0.083

The measured values have been corrected for the errors due
to the yielding of supports.

Theoretical values were based on the gross section of the
beam, with shear effect taken into consideration. The value
of E was taken as 30 x 106 psi.

The theoretical values being slightly larger than the measured
values may be explained by the following factors: mnon-
homogeneity of the beam material; assumptions in the theory
for calculating shear deflections; the value of E.



Point

Total Load
(kips)

10
20

30

10

TABLE A,17

Deflections of the Beam (Inch)
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Test No. 2
P
4 1o’ 4
(@)
2 3 < s 3 8-
- @2 =14 -
Measured Values
2 3 4 5 6 7
0.032 0.055 0.059 0.054 0.048 0.025
0.065 0.111 0.119 .0.108 0.085 0.047
0.142 0.239 0.248 0.222 0.163 0.087
0,290 0,512 0,496 0.424 0.304 0.158
Theoretical Values (gross section)
0.048 0,084 0,095 0,087 0.065 0.035



sz,

TABLE A.18

Deflections of the Beam (Inch)

Test No. 3

P
el - _
: ©
/ 2 3 4 < A 7 8
- 7@2 = 14’ |
Measured Values
Point
2 3 4 5 6 7
Total Load
(kips)
5 0.028 0,053 0.072 0.069 0.051 0.029
10 0.054 0.107 0.144 0.133 0.102 0.058
Theoretical Values (gross section)
0.047

10 0.052 0,095 0.119 0.114 0.87

83
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TABLE A, 19

Deflections of the Beam (Inch)

Test No. 4

. @2 =14’ _

Measured Values

Point
2 3 4 5 6 7
Load (kips)
5 0.027 0.044 0.065 0.071 0.059 0.034
10 0.051 0.089 0.127 0.140 0.114 0.066

Theoretical Values (gross section)

10 0.047 0.087 0,114 0.119 0.095 0,052



85

APPENDIX B

SAMPLE CALCULATIONS

B.1  ELASTIC TANGENTIAL STRESSES AT THE BOUNDARY OF THE OPENING
- COMBINED THEORY
Test No. 2 P = 10 kips
The tangential stresses at the boundary of opening can

be calculated by superposition as shown in Figure B-1.

1. Stresses due to pure bending - small hole theory

By equation 2-1 the tangential stresses at points 1 and

2 (Figure B-2) are calculated as
/
(6= - 3,320 psi
!
((S_t; - 3,100 psi
The values shown are calculated by computer.

2. Stresses due to pure shear - ring theory

Point 1
The effective width of the flange is taken arbitrarily

as 90% of its original width, then, from Figure B-2

[6]1- _ 3570 x 3.39 x 2.41
2 1.528

= - 19,100 psi
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Point 2
Similarly, from Figure B-2
[6]2 _ 3570 x 5.56 x 2.39 4
ty 1.867 * 3,78
= - 29,200 psi
3. Total Stresses
[6]= - 3,320 - 19,100 = - 22,420 psi
1
[6* = - 3,100 - 29,200 = - 32,300 psi
2z
B.2 ULTIMATE STRENGTH OF THE BEAM
Test No. 2
Refer to Figures 3-4
D = 2.55" a = 8,5" b = 6.73"
L = 24" h = 13" t = 0,27"
C W
t.= 0.38" 0~ =51 ksi
f ¥.Pp.
2 .83 _ 491 » 2.5
3 3

From

~~
~lw

Therefore the beam will fail by a four hinge mechanism.

equation 3-9 we obtain

2
+ 28, 32 6.73 422 51y (8.5 x6.73 + 3 x 6.73 x 0.38

132 2 x 0.38

- 3 x 2.55 x 0.27)R + 512 X [2.552 x 0.272 - 6.732 X 0.382

- 2x6.73 x 2.55 x 0.27 x (2.55 + 0.38)] = O



i.e.

41.56R> + 51 x 60.43R - 51° x 33.2) = 0

Solving the equation gives

21.7 kips

R =
14 _ 4
P = 10 x 21.7T = 30.% kips

0.38 + 2.55 x 0.27

24

89

3

k= 7 % 6.73

0.272 € 0.38

+

2x13x6,73 x50l 4x6.73 x 51

THEORETICAL DEFLECTION OF THE BEAM (GROSS SECTION)

2(1 + 0.25)

B.3
Test No. 2 P = 10 kips E = 30 x 10° /&= 0.25
Point 4 (Figure B-3a)
1. Deflection due to bending moment
Pa (L - x,) '
' 1 1 _ 2 2
By, 6EIL (2Lx) - 2" - %))
_ 10,000 x 48 (168 - 72)
6 x 30 x 106 x 289.6 x 168
= 0.0878"
. 2. Deflection due to shear(33)
V (shear force at point 4) = 2,86 l'ips
30ix 106 6
G = 12 x 10" psi

I = 289.6 in”

(2 x 168 x 72 - 48% - 72%)
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Avl

I

3. Total Deflection

0.0878 + 0.0068

0.0946

0.095"

2
2 h

T G

175 - 3 (- gl

w

1 [ E13 w1386’ | 1307

0.27 x 289.6 8 8
0.297
LI

AG

2860 x 0.297 , 5, 1

12 x 10
0.0068"

(6.73 - 0.27)]

5
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APPZNDIX C

REINFORCEMENT CCRRECTION FACTOR (F.)¥

, MEASURED STRAIN

]1 STEEL
i
"u [ /‘I \
» ; =
w /___ " CAST IRON
o i
-
(%)

Y

‘\‘\\
/
/

- T \
. IC THICKNESS 0F-PLASTIC
LU, TS THICKNESS OF METAL
,//,/

|1s

E=|420,000 |psi | :
———f"' (FOR PLATES OR BEAMS IN BENDING, PERPENDICULAR TO PLANE OF COATING]
—~=————F_ {FOR PLANE STRESS)

L

# 'This chart is due to Zandman st a (24)

T Eg is-the Young modulsus of the Plastilc sheet



N

¥

2r

= a + 2r

1/4
2/7
1/3
2/5
1/2
2/3

1.0

From the results by Heller et al.

APPENDIX D

TABLE D.1

Coefficients of Mapping Function¥*

0.33546
0.34499
0.35730
0.37391
0.39776
0.43522

0.5

0.18773
0.17788
0.16482
0.14668
0.11997
0.07581

0

0.02473
0.02533
0.02550
0.02469
0.02148
0.01733

0

(23)

+ 0.00002
+ 0.00122
+ 0.00279
+ 0.00490
+ 0.00730
+ 0.00837

0

.00177
.00116
.00153
.00078
.00128

.00256
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