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. SUi'IU,'IARY 

·On the assumptions of incompressible ideal fluid 

flow' théory this work is clirected towards investigating the 

design of a right-angled bend in a recta~Gular (or s~uare) 

conduit incorporating one c'urved surface only (the 'intrados'). 

Experiments were conducted' .toascertain the utility of guide 

.vanes intended to prevent loss of energy due to separation 

and subse~uent eddy fo~mation. In the present instance, the 

boundary layor formation, as weIl as turbulence? vIas kept to 

·a minimum by the use of a large constant level t~~c at the 

inJ.et to' .the test section. The uniform vcloci ty distribution 

thus obtained was, hoV",ever, modified in testing, and by the 

use of mesh, trapezoidal distributions simulating possible 

disturbances met vIi th in practice l,'l.ere also investigated. 

The design of the inner c~rved wall and internal 

guide vanes was carried out for the· case in which both legs 

of the elbow have the sarne cross sectional area, viz., there 

is no change of section in the main duct before and after the 

bend. But the method of analysis is applicable to a V/hole 

family of possibl~ designs depending on the values of y.lb 

(xo =' horizontal p::::-ojection of the inner curvedwall, b == '.'lidth 

of inlet). 

The mathematical analysis for obtainine the shape 

of the internal cuide vanes.was verified by an elec'trical 



analogy. E::qJerimental investiea tions on the selected shape WQ.S 

carried out on alucite conduit'having a square inlet section. 

The measurement of head 10ss and velocity had been conductecJ. 

wi th and, Vii thout internaI guide va...."'les a:'1d aln,o, vii th a shar~ 

mitre bend, in order to evaluate the poss~ble advan~ages of 

both the inside guide vanes and the inner curved vialle 

For the uniform inlet velo city distribution, pressure 

measuremcntn showed that vlith guide vanes the loss of head \'las, 

'reduced almost to zero under sui table condi t'ions Cafter deduc-

ting skin friction losses) and the velocity measurements COl1-

firmed that the separation a."'1d eddy formation had diminished 

considcrably with the introduction of guide vanes. 

John Chempalatn~a 
N.Eng. 
Civil Engineering 

~ .. :' .. ' ... 
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INTRODUCTION 

'Many tl'!o-dimensional flo\'1 patterns \'lhich include 

the formation or deflectiolJ. of jets,flows over bends or 

steps or flows past cavities,involve separation of the 
i 

fluid from the solid surface with a corresponding loss of 

energy with or without the occurrence of cavitation.Problems 

of this type are particularly difficult to analyze and 

predict when the distribution of the velocity of the 

incoming fluid is not uniform. 

A bend in a pipe line causes local disturbance of 

the velo city distribution with" a corresponding loss of 

mechanical energy. From momentum considerations ,ol'Ting to 

the change in flow direction,there must be an increase in 

pressure(and hence a decrease in velocity} around the 

outside of the bend,or the extrados,and a decrease in 

pressure around the inside of "the bend. 

It may be of interest to knOl'! what happens and 

how head losses occur when a bend( the centre line of 

Wh1ch 1s a circular arc) is introduced in a circular pipe 

w1th the usual type of non-uniform velocity distribution. 

As the flo,"1 enters such a bend, the inertia effect (so-called 

centrifugaI forces) acting on the upstream velocity profile 

produces an oscillatory secondary flow,transverse to the 

main flow.After sorne oscillations in the transition region 

of the bend,the second~ry flow 1s damped by viscosity and, 
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if the bend i8 8ufficiently Iong,fully developed curved 

flow i8 reached.ln the outlet pipe of the bend the 

di8turbances attenuate gradually over a distance of up to 

50 pipe diameters. Ha\'Tthorne (Ref. 23) has sho\'ffi that fully 

developed curved flow i8 not estab1ished in most bends of 

prac'tical interest.Large head losses occur ,,,hen high 

energy fluid spreads from the centre to the vlal1 of. the 

pipe on account of the secondary flow.He states that the 

losses in the' bend itse1f are probab1y 1east l'Then the 

bend deflection does not exceed ~(-r:/2) J d/R radians, 

l'There R represents the mean radius of curvature of the 

bend J d the pipe diameter and 'B, a constant, varies bet\'Jeen 

1.1 and 1.5.This 10ss is a maximum in the out1et transition 

region when the bend def1ection is once or 3 times the 

above value. The loss in the outlet transition region is 

a minimùm \;,hen the bend def1ection is t\'lice the above 

value and ful1y developed curved flO\'1 has been establishe'd • 

. Owing to viscous effects,the inlet velocity 

will genera1ly ~e non-uniform with zero velocity at the 

wall of the circular pipe. The inertia effects usua1ly . 

predominate over the viscous ones at the initial portion 

of the bend for most of the cross section. 

In the bend transition region the secondary 

flow exhibits the characteristics of a damped vibration. 

For low Reynolds numbers,no oscillation occurs.~t large 
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Reynolds numbers, the secondâ-ry f'~0\'1 is oscillatory and 

fully developed curved flow is never reached.Hence the 

flow enters the outlet tr~nsi tion region dO\'mstream f'rom 

a bend at a phase of' the damped oscillation depending 

both on the bend geometry and the inlet conditions. The 

possible conditions at the inlet to the downstream pipe 

are hence numerous'and experimental results are diff'icult 

to interpret. 

The major loss in a pipe bend is the increased 

viscous dissipation due to the large gradient of' axial 

velo city created on th~ outer wall of' the pipe when the 

high velocity fluid initially in the centre of the pipe 

is displaced outvlards by the ·secondary flo\'/. 

The foregoing discussion has been concerned 

with bends in pipes of circular cross section.Analyzing 

bends follo\'ling circular arcs in pipes of square or 
., 

rectangular cross section,Cuming{1955) has stated that 

th~ dynamical parameter on \'/hich the secondary flol'! in 

.a.pipe of rectangular cross section depends is 

( 1 ) 

where d is the axis of the rectangle in the plane of the 

bend.R is the radius of curvature of the axis of the pipe 

and Rn i8 the Reynolds number based on the mean velocity 

and the dimension d. When the value of K* is large ,the 

viscous effects tend to become confined to a bou~dary 

layer on the 't'raIl of the pipe. 
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In a square' pipe,the secondary velocity at the 

axis is more than twice' the value in a circular pipe of 

diamet'er equal to' the side of the square pipe. The .; 

co.mparison :i,s made at flows' ,gi ving the same pressure 

105s per unit 1ength ofstrai'ght pipe • . 
Squir,e 'and vlinter (1951) have shén'm experimentally 

~hat in the case of ,a rectangu1ar channel bent to the 

form of a circular arc ,the secondary vorticity in a 

,right angled bend can be easily three times the initial 

vorticity at right angles to the flow.Since large velocity 

gradients can occur near the '\'la1l of the duct,this explains 

th~ pronounced secondary flo'\'lS which' are frequently 

observed. 

Severa1 methods have been tried in the past to 

reduce this 10ss of energYJ~scillatory f10wand 

possibilities of cavitation damage at high velocities. 

The MOSt recent 1ine of approach has been to introduce'a 

series of deflecting vanes in a simple mitre joint,and 

several empirical designs have been tried to get the 

maximum efficiency. 

A theoretical approach to this type of prob1em 

was lac king unti1 the development of the Helmholtz

Kirchhoff theory of free streamlines.The purpose of 

the present l'lork is to investigate theoretica11y and 

experimentally the possibilities of solving this problem 

,'by adoptin~ a suitable curve along the inner side of the 
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bend l'/ith necessary guide vanes' inside,all designed 

using the Kirchhoff theory of free streamlines. 

'For experimental purposes, the problem was 

was sttidied by allowing the water to flow through a 

lucite right angled duct having a square cross ~ection 

with removable casing of the bend on the iuner side, 

inclined at 450 ~ the horizontal. Guide vanes could 

be introduced or removed at will through this ,',rall 

(~ig.7).A uniform velocity distribution at the inlet 

to the lucite bend was achieved by bol~ing it to a 

constant level tank having a funnel type bottom l'li th 

a square opening at the end.'l'lith a constant outflo\'1 

the velocity and head losse~ were measured before and 

after the bend with a sharp right angled mitre bend 

and also with the designed curved intrados with and 

without internal guide vanes.The experimental study 

was extended to t\'10 different trapezoidal veloci ty 

distributions ( one with maximum along the intrados 

and one minimum) at the entrance to the bend.The 

flo\" follows the path of the streamlines and it \'las 

noted that in the absence of internaI guide vanes, 

separation occurs from the curved intrados with,eddies 

forming; this l'laS requced considerably by the introd

uction of internaI guide vanes.Similarly,it was 

observed that the head losses and variation in velocity 

distr~bution were re~u~ed appreciably. 
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In the theoretical study,the free_streamline 

along ",,'hich pres'sure and veloci ty were constant, l'laS 

use.d for the determination of the profile of the curved 

intrados of the right angled duct. 

The analysis of this prpblem is extended to the 

determination of the shape of the internal guide vanes 

also.The method consists of the definition of successive 

conformal transformations including a hodograph plane . 

and the application of the Sch\<Tarz-Christoffel 

transformation. This type of transformation for the t\'lO

dimensional flow was amenable to the free streamline 

analysis, since the boundaries upstream and dOl'mstream 

from the constant pressure section were made of straight 

. lines along which the direction of flow was constant. 
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2. DETAILS'OF PREVIOUS INVESTIGATIONS 

2.1. PREVIOUS STUDIES FOR 1.1IfllIJ;1IZnm BEI':D LOSSES 

S~vera1 investigations have previously been carried 

out vrith a view to reducing the 10ss of energy in bends, which 

really involves reduction in both the secondary floVi and the 

separation effectsJeither through proper changes in the bend 

ge~metry or by introducing suitable deflecting vanes. 

Such sets of vanes have been experimented and pro

posed by Krober (Ref. 3) in particular. for.rectangular ducts 

(ventilation shafts for example). These may be computed like 

turbine cascades. The a~solute values of pitch and depth ,. 

(Fi~. l6a) should be optimised considering the thrust on these 

vanes, Krober gave the shape of practical profiles, obtained 

experimentally for angles of 90°, 60° and 450• These profiles 

can be built out of thin metal sheets (Fig. 16b). The separa

tion occurring on the inner curved wall for right angled bends 

may be reduced by using thick profiles (Fig. 17), made up of 

two metal sheets, but this adds of course to the difficulty of 

construction. Fig. 18 shows a design prepared by Rateau Pu.mp 

Company, France. 

The head-loss coefficient vrith Krober guide vanes 

(Ref. 3) is claimed to be as low as 0.15 v2
2 , whateverthe 

2g , 

bend' angle may be, i.e., 45° or 90°, in turbulent flow'condi

tions, providing that the vanes are very carefully built. In 

this formula, V2 represents the average velocity in the fully 

expanded area, do\vustream of the bend. These vanes could be 



-. 

used for circu1ar ducts but head losses \'lou1d be greater. 

owing to separation occurring at the junction of these 

vanes wi th the circu1ar bo·undary. 

Another method is to round off the inner corner 

with a radius R as large as possible. Such a design May 
t fi 

a1so calI for vanes 1ike A and A in Fig.19. Still 

another m~thod inspired by the slotted wing principle is 

to make use of a series of vanes 1ike a1 ,a2 ,a3 (Fig.20) of 

convenient shape and suitably p1aced \'/i th respect to 

each other{Ref.3). This is of cou~se the approach studied 

in the present thesis. 

l'lirt (described in Ref. 2) tried to reduce 

the intensity of the secondary f10\'/~by increasing the 

width and decreasing the depth for different aspect 

ratios of a 900 bend in a rectangu1ar duct of \'lidth b2 
and depth D in the plané of curvature and having a 

centre 1ine radius R. The resu1ts obtained by him are 

described in Ref.2 and reproduced in the fo11owing table. 

TABLE l 

LOSS COEFFICIENTS FOR RECTANGULAR DUCTS 

b2/ D 6 6 6 3 3 3 

R/D 5/3 1 2/3 5/3 l 2/3 

K 0.09 0~16 0.38 0.15 0.22 0.55 

* Refer page l 
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Here K is the head-loss coefficieht and is defined as 

the ratio of the head loss to velocity head. The rèsults 

show some suc cess in lowering the intensi~y of th~ 

secondary flow and also it indicates that separation 

losses decreases as the curvature ratio increases., 

This was used for circular cross section for quite 

sometime. Hofmann's results suitable for cases in \'lhich 

the inner surface is·properly finished,as in pipes or 

tunnels,are described in Ref.2 and reproduced in fig.ll 

as functions of Reynolds number. 

It l'laS found later that far better results 

could be obtained by introducing a series of deflecting 

vanes(described in Ref.2) in a sfmple mitre bend (fig.13). 

For example,the head-loss coefficient K for a plain 

mitre bend "ras approximately 1.1 and that for a normal 

long radius ~lbow could be of the order of 0.5,in either' 

case,a properly designed set of vanes could reduce K to 

as little as 0.15,and beyond the bend '\'lOuld restore the 

same velocity distribution across the section as in the 

incoming flow. Typ~cal vanes used had short leading and 

trailing tangents as shown in fig.12.by the investigation 

of ~'lirt, Klein, Tupper and Green as descri bed in Re!. 2,. 

The latter investigators found that vanes without tangents 

(fig.13) perform equally l'Tell. 
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2. 2. DEVELOPl,offiNT OF THE FREE STREAl.1LINE ~'HEOHY 

D1;lring the period of over 100 years which has elapsed 

aince the,original development of the method of Helmholtz and 

Kirchhoff, numerous contributions to this theory have been made 

primarily by mathematicians. The co~cept of the discontinuous ' 

surface, or free streamline separating the f10w into two regions 

and thus permitting more ~ealistic analysis of f10w situations, 

was introduced by Helraholtz (1868). The only prior classical ' 

theory was for flow which doub1ed back on the boundary in such 

a way as to give infinite velocities and negatively infinite 

pressures at the end of the channel (point A in Fig. l4·a). 

Helmho1tz's fundamental contribution was the concept of a free 

boundary which was defined in the kinematic, rather than in the 

geometric sense (Fig. l4b). He reasoned that the bounding 

stream1ine would separate from the_,solid boundary and that 

the free streamline thus formed could be characterized by a 

constant pressure and hence by a co'nstant veloci ty. He visue.:. 

lized a quiescent wake of constant pressure and a velocity 

diacontinuity at the free 'streamline. In 1869 bis col1eague, 

G. Kirchhoff,solved the problem of an efflux from an opening 

in an infinit~ reservoir having plane boundaries, and also 

that of the affect of a plate in an othervdse uniform field 

of flow extending to infinity in all directions. Lord Rayleigh 

(1876) systematized these results and extended free streamline 

analysis to the case of an inclined plate, found the value of 

0.611:' for the plane orifice ,contraction coefficient from 
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Kirchhoff's solution, and studied·intersecting jets or currents. 

The approach employed by these pioneers was indirect, to the 

extent that they tried out various f~ctions and adjusted con

stants until useful results were obtained. 

Development ofa direct method of sol~ing any of. a 

large class of free strearnline flows awaited definition of the 

. hodograph planes and certa~n complementary transformations~ 

In 1884, Max Planck introduced the use of logarithmic hodo

graphs in the solution of free streamline problems. 

Considerable work has since beeu carried out on the 

extension and application of this type of analysis~ A brief 

outline of sorne of the most important V/ork is described below:

N.E. Joukowsky greatly extencled Planck's ind.irect analysis 

technique in 1890, and. V/orked on the theory of jets and V/alees.· 

His method allowed for the sq;tution of problems with a large 

number of stagnation points and free surfaces. 

J.H. Michell (1890) showed how to use the Schwarz

Christoffel transformation and the auxiliary t-plane between 

the logarithmic and complex potential planes. In his extension 

and formaliza~ion of Michell's met~od, A.E. Love (1891) indicated 

the limita of the flow field in the Q, j, w and t planes, using 

locations of important points along the real axis of the t~plane 

for identification. M. Rethy (1894) found solutions for a number 

of jet discharge cases in the style of Joukowski (i.e., without 

using the Schwarz-Christoffel trans:t;ormation). T. Levi-Civita" 
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(1901) indicated that free streamlines could start from 

rounded bodies as l"ell as from sharp cornered ones. Further 

extension of the free streamline analysis l'laS presented by 

,A.G.Greenhill(1910). 

R.von Mises (19l7) studied extensive efflux 

problems.ln 1920,G.Colonetti and Riaoouchinsky studied the 

case of flow past inclined plates hèld perpendicularly to 

th~ middle of an infinite jet and flows past symmetric 

pairs of l'ledges at suitable angles.Later,A.Betz and 

E.Petersohn (193l) studied multiple orifices and grids. 

Lavrentieff,in 1938 simplified the theory of 'the 

uniqueness and qualitative behavior of free streamlines. 

Gurevich, in ,1947 considered the, prob1em of a tl'10 dimensional 

jet issuing from a vertical wall taking into account 

surface tension of the jet.Birkhoff and Zarantonello,in 

1953 (Ref .18) ,made extensive studies of ideal steady flovlS 

moving under the influence of inertia,main1y the behavior 

liquid jets in air,cavities behind obstacles in high speed 

flows,cavitation behind cascades of airfoils,and also ideal 

plane flows with free boundaries past curved obstacles and 

gave a qualitative description of the geometry of free 

'streamlines.The work of J .S.McNm ..... n and C.S. Yih (1953) 

represents a relatively recent contribution and includes 

a wide range of free streamline problems.Comparisons of 

the results of theory and of experiment indicate a 

correspondence which is usua1ly close and sometimes 

astonishingly so. 
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,. FREE STREAMLINE THEORY 

M~ plane irrotational flow patterns which include 

the form~tion or deflection of jets can be analyzed completely 

by the Helmholtz - Kirchhoff theory of free streamlines. 

Patterns of flow through"well streamlined bends have been 

found to be defined at least moderately well by potential flow 

theory. The particular type of transition to be considered 

.herein was characterized by a constant pressure (and therefore 

by a constant magnitude of the velocity) around the curved 

portion of the boundary. 

Consider a plane steady. flow of an ideal, incom

pressible fluid. The equations of motion are: 

where 

au "au -1 ~ 
u àx + Vay = P àx (2 ) 

U ~v + v av = -1 ~ 
" 3x 'Oy r ay "(3 ) 

u, v = Components of velocity in the x, y 

directions, respectively 

p = the"density 

p ~ the pressure 

g = the acceleration due to gravity. 

The equation of continuity is: 

au + av 
- c 0 ax . ay (4 ) 
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Since the motion is irrotational, one ·can introduce a velocity 

potential p, such that 

u o·'" v af = ex , - ay 

The e.quation (4 ) reduces to 

a2
tP 

2 
"aV> 

~ + -2 - 0 
è)x oy 

(6) 

and the equations (2) and (3) can be integrated to give 

Vlhere B is an arbi trary constant·. 
1 

In plane .motion one can introduce a stream function ~~ 

auch that 

From 

a", 
u = ày 

(5) and (8), one' 

. a,p aV' 
ax = ay 

èJrI> -à'P 
èJy = àx 

.. 

, (8) 

obtains 

! (9) 

These are the Cauchy-Riemann equatio~s which indicate 

that the complex potenti~l w = ~ + i~ is an analytic function 

of the complex variable ~ = x + iy, i.e., 

VI = f( z) ( 10) 



15 

NOl'l 

cr = 1 d.'Of -iG (11 ) - . dz = .. q e 
~ 

i~ which ~ and 5 are the complex ve10city and 

its ~eciproca1 respective1y. q,the magnitude of the 

resu1tant ve1ocity, and Gits inclination measured from' 

the x-axis. 

Thus q Q 

3 G 1. FIXED AND FREE BOUr·JDARIES 

The boundaries of a moving fluid May consist 

partIy of free streamlines and part1y of fixed rigid 

. wa11s. A rigid \'la1l acting as a boundary is of course a 

str~amline a10ng which ~ = constant, but it is not 

necessari1y either an isobar or an isotachic 1ine. The 

Kirchhoff theory can be app1ied to cases in \'lhich the 

rigid boundaries are straight, and \'lhich depend on the 

function 

dz ) Q = log( V dW (13 r 
where V represents the constant ve1ocitya1ong the 

free stream1ine. If to simp1ify the termino1ogy, ~ is 

substituted for: -dz/d\'f the two kinds of hodographs 

common1y used are representations of ~ and of Q. The 

second is also expressib1e in the form 

Q = log ( *) + i Q (14 ) , 
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Since the pressure is constant, the speed 'q' along 

a free strearnline is constant and hence 10[';( V/q) is constant. 

Along a straight rieid, boundary tho flo\'l direction g is constant 

since it follows the direction of the boundary. 

Hence as a general rule, straight solid boundaries 

. in the z-plane (Fig.9.) transform in to radial lines in the 

::S -plane (U/V = constant) and in:lïo straight lines parallel to 

the l'cal axis (Q'= constant) in the Q-plane. Fur the l'more , free 

·streamlines along which th.e pressure and valoci ty are constant 

in the z-p~ane, becoma circulaI' arcs "d. th centres at the origin 

. (u2 + v2 = constant) in the 6 -plane and straisht lines par2.l1èl 

to the imaginary axis (q = constant) :i,n the Q-plane. It is thus 

evident that the original boundary transforms into either a cir-

culaI' sector or a rectangle. Renee when the boundary is tra~s-

formed into the Q-plane, the diagram vlill be a polygon, the 

interior of which can be mapped by the Sch\'/arz-Christoffol 

transformation on the ,upper half of the t-plane. A relation 

bet"leen Q and t can be obtained, i. e., between d\'l/dz ~d. t. 

Similarly,. when the bOUndary is transformed into the 

w-plane, the diagram will coneist of straight linos conntituting 

a polygon, the Interior of which can be mapped on tht;! upper half 

of the t-plane. lt'rom t..hin a rela tion between \'/ 8-'1.d t can be 

obtained. If t is eliminated from the two relatio1l3, or.e 

obtains a relation bet\'lecn d\'l/dz and \'1, V1hich on integration 
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Bives a relation be"tween VI and z, characterizine the motion. 

Al terna ti vely, in·stend of eliminating t , VI and z can be 

expreosed in terma of t . 

·3.2. PROPr.;HTIl':S OF FI-ŒE STR:E:Ai.-IIJII,mS 

Along a frce nireamline ~hci pressure is constrult, 

and hence the spced of flovl is too (Bernotl.lli 1 s theorem). 

Also the s~roam functi,on "'CfJ iH constant along a free streamline 

just as on any other streamline. 

3.3. MAnT ASSUT:IP'l'IO!iS lUID Ln.UTA~nOHS In THE ~}IEORY 

(i) The influence of gravit y is negligible. 

(ii) Tho influence of viscous friction. along solid 

bo'undarios is ncgligiblc. 

(ii1) The flo\'l approaching the section has essen tially, 

a uniform velocity distributioil, or, in practice that the non

uniformity of the velocity distribution is not significant. 

The first aosumption does not, of course, affect the 

. flow pattern studied hore, since the flovi takes place in a 

closed condui t. As far as the third asswnption. was concernéd~, 

the shaping of the lower portion of the tank gives one a uniform 

velocity distribution. The,problcm \'las thus reduced to a tVlO

dimenoional potontiu..l flo\'l problem to wh1ch classical hydro-:, 

dynûmics can bo applicd. 
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4. THEORETICAL D~SIGN OF INT~RNAL GUIDE VANES 
AJ.'JD THE INN~n CURV.c':D WALL 

4.1. GENERAL CONSIDERATIONS 

A general analysis based on free streamline the ory is 

de~cribed for determining the flow cparacteristics in a two 

dimensional pipe .bend. Expressions forvelocity and pressure 

at any point in the flow fi.eld are also obtained. The z-plane 

diagram represents (Fig.9. ) the right' angled duct, V/hose walls 

are A""BC.6and HCI()GFED.ô The wall ~G, is part of a streamline •. 

The fluid flows along H<ôG, turns at G and flo'us out of the duct 

.. âlong GED-6' . At the section C.~,D"" ~ t~ere is uniform parallel flow 

with velocity U say. Let the breadth Ce()D""be 'a' and the flux 

out of the duct be aU. 

If one takes "'1'=0 on AtdB~, then Tf = aU on the stream

line H~F~. Again one may also assume that 9f = <> at B and F, 

which can always be arranged, since an arbitrary constant cano 

be added to the velocity potentia1. Thus at ~H~, i.e., at all 

points in the tank: at a great distance frOID BF, 9f = + 06, while 

~ c -06 at C.o ,D~. 

According to the principles explained in Chapter 3, 

the ·.z-plane is transformed into the w-plane. The diagram 

obtained in the w-plane is a polygon having the boundary 

H-4D..,C.oA.", having the vertices CD and AH at infinity. The 

interior of this polygon is next mapped on the upper half 

of the t-plane using the Schwarz-Christoffel transformation, 
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-
making G and E correspond to t = -l'and t = +1 respectively. 

B and Fare regarded as coincident at t = O. 

The following transformation relation is thus 

obtained: 

dw rI 
dt = (t + '/\ ) Ct - Â ) (15 ) 

Â represents a parameter, to be evaluated later 

and rlis a constant. The next s~ep is to draw the polygon . 

described by 

Q = log, (V ~~) 

= log ( V ) + iQ 
q 

In order to map this polygon on, the t-plane, the 

plane sbowing 

V dz = - V~ (16) rw 
i8 drawn. On the' free streamline q = V and therefore 

- Vj = iQ 
e • Therefore along GFED in the -V~ plane (Fig.9.) 

-V ~ describes a quarter circle having a unit radius. Along HG 

one has B = in, while q increases from 0 to V at G. Rence 
2 i'Tr/2 -V oS changes to e = i, at G. Again at the point E, B = 0 

and q = V and -V ~ = eO = 1. Similarly, in the ~ -plane, one bas 

~ = -dz/dw = -1 
V (17) 
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At th~ poi~t E, Q = 0 and ~= -l/V· and at G, Q = i~/2 

and j = -ijV. The Q plane diagr~n is also similarly drawn. A 

polygon is obtairied having a vertex B at infinity. Now this 

polygon is mapped on to the upper·half of the t-plan~ by using 
"'-

the Schwarz-Christoffel trans{ormation, and the following 

transformation relations are obtained: 

dQ 
dt 

dQ. 
dt 

dQ 
ëft 

= 

= 

= 

ml 
i Jtr':"t'rft,+T') 

ml 

J1t-ïTl"t+ïT 

rCt-l) \ t + 1.T 

Since Q = loge (V dz ) 
dw 

for -1 < t ~ 1 

Ïlll positive and 

for t > 1 

for t <. -1 

real 

(20) 

(17) 

Now the above. equations are integrated a.."'1d the constants 

evaluated. 

(18) . 

(19 ) 

where rl~s a constant. 

Solving by partial fractions: 

dw - r ( - -1 
1(2 À (t+i\) + 1") 

2 1\ (t->S ) ·dt 

w = + ~, where S1 is a cons tant. 
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Vlhen t = 0 YI = iaU ) 

t=o(, w-+o ~ giving 2 Â aU 
8-1 = 0, rI = -lT-

. Hence, 

\ w = ~ loge 
(t-Â) 
( t+Â.) 

dw aU (. l 1) 
dt ~ ïT «t-Â) - (t+Â» 

= 2~aU. 
ïr ( t-;\) ( t+;\) 

(21) 

(22) 

From equation (21) 

i.e. 

ft-"~ -t+i' -

1 

WTr/ aU e 

- (t!~) = 1 -e w
rr

/ aU 

-t = ,,[ l+Exp Pu}. 
l-Exp Y!.!! aU (23 ) 

Now equation (1$) was integrated 

For t>l 

For .t<-I 

Q :: JIllloge (2t + 2i j (l-t) (t+l» +n
1 

for -1 ~ t ~ 1 and 

where n1is a constant 

t - complexe 

This may be re-vœitten as follows: 

Q c: ~Ioge ( .rm +i J l-t ) + nI (24) 

Q = m loge ( 2t + 2 ./(t-l) (t+l» + n (25) 
l 1 

Q = mlloge 2t - 2 J( t-l ) ( t+l) 1 + nI (26) 
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Substituting the boundary conditions 

Q == 0 .for t = +1 

and Q = i7r/2 :for t = - 1 

hence ml = i 

nI == -i log (2) . e 

Q == i loge ( t + i Je- 1 - t) (t + l» 

From equation (24 ), one obtains:. 

Q == loge [/t + 1 fi i il - t . ] 
and 

1: = .Q.Q.. 
dt 2 i J( 1 - t )( 1 + t ) 

From equation (17) 

dz 
dw == 1 eQ 

V 

1::: 
1 
V j t + i Je 1 - t ) ( 

1::: 
1 

v/2 
(it + 1 + i JI - t 

va1id :for t-comp1ex or 

-1 . < t rea1 < 1 

t + l 

) 

(28 ) 

(29 ) 

) (30 ) 

(31 ) 
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'Determination of Â as a function of V/U 

From the definition of ~ and Q, 

For t = + Â 

eQ = V 'dz = V and hence 
dw U 

Q = loge. V 
U 

Therefore: 

U 

. . . y. = (À + i J ·(1-;\). (1+?t) )1/2 

U 

V 2 
(U) -;\ = 

or 

v = . Exp (1/2 arcosh Â ) 

U 

and 

(:\+1 ) - 1 

2V2U2 
(V2 ~ U2 )2 

(~ -1) = ·1 (V2 _ U2 )2 

2V2U2 

. -""':'. (32 ) 

(34) 

( 35) 

(36 ) 

(37 ~ 

(38 ) 
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Equation (30), together wfth equations (21), (23 ) 

and (35) constitute the solution of the problem. t could 

be el:j.minated" from the abo·ve equations and the relation 

bet"reen 'Tf1 and z, 0 btained by integration. 

4.2. THE SHAPE OF THE FREE STREAMLINE 

From the pro jections of the length of the fre"e 

streamline on the x-axis,for instance,one may find the 

precise~location of point E with respect to B ( or, 

alternatively,of G with respect to B, considering the 

y-axis) in fig. 9. Thus ,one of the major parameters of ' 

the, bend l'las found. 

1. 

The general observatiqns "tere: 
iQ On a free streamline Q= iQ and dz= ds.e , 

where ds j,s an element of the curve and G is 

the inclination of the tangent. 

2. ~gain, along a free streamline t is real,since it 

1s mapped on the real axis of the t-plane. 

3. If a point on the free streamline be designated 

as (x,y) then 

dx/ds = cos Q dy/ds = sin Q (39 ) 

4. . A1so Iv dZ/dlrll = e1Q 
= 1 

\'lhere V represents the constant speed a10ng the 

free streamline. 

From the above ,on a free streamline 

. 1 = JV dz/dwf = IV e iQ ds dt 1 
dt ëiW 

= + ds , V dt , (40 ) dt • dw 
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~~ being negative. 

the upper or 10wer sign being taken according as 's' increases 

with t or note In the present prob1em, the origin in the z-p1ane 

was t,aken at F and the free stream1ine GE \'las considered. As 

one goes a10ng that 1ine from F in 'the z-p1ane to E, t increases 
1 

from 0 to +1. The,refor~, a10ng FE, ~~ '\I/as positive, \'lhereas, 

if'one goes a10ng FG, t decreases from 0 to -1, ds/dt was 

negative a10ng FG. 

From equation 

dt 
aw 

Substituting 

1 

ds 
dt 

with the sign 

S +ve 

9="Jr 

1: = t i 

(22) , one has: 

. ~~t-Îl) (t+Â) = 2ÀaU 

in equation (40) 

= -1TV~t-Â2 ~t+.i\~ 
aU 

-2ÂaU 1 = Vrr (t2 _ ;\2) 

conventions shown. 

ds 
a:t 

5=0 

e.,. 31T/2. 

t :: -1 

z-P18,ne 

lFig.1 

(41) 
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And 

Q 1:: i G - i 1ï = i arc cos t (42 ) 

trom the property of the free streamline.Also this result 

could be deduced by integrating 

Hence 

Also 

.Q.Q 
dt 

t 

dt 

dX/ds 

= 2i J(l:t) (t + 1) (for -l<t<l,t real) 

= Cos 2 G 

= -2 sin 2G d.G (43 ) 

= cos G dy/ds = sin g C39 ) 

Taking the projection GE on the x-axis 
~ 

J dx 
G; 

-lTV r' 
2Âa UJdx. 
. .• Cii 

= 

= 

1:: 

1T 

jcos Q 
-2·~ aU 1 dG {-2 
1TV (cos:l.2G - ,)./-) 

"wh -1 . 

-2 Â a tJ . J. 4- u 2 du 
V Tl" 4 2 2 4 u - 4 u -(À -1) 

0 

where u = cosG 

du = - sin G dG 

1· . 1 
C 1 - j\ ) ft (A-=-!) 

J2u 
arc tan '" _ t 

sin 

(44 ) 

-1 

o 
-1 

_ ( 1 + 1.) . 1 10 g 5+ï + .[2 u 
Â 2 [2 (tA + 1) e J Jo. +1 - 12 u 0 

TTV 
. 2 Âa U· [dx = 

E 

/" - 1 
.fi').. 

arc tan 12 cos Q 

l'A - 1 

. (45) 

2Gj 
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EVidently,as 

( V ~ U ) 

( V--+-06) J
E 

dx ---r 0 

G 

. The position of F in the middle of ~he curve is found by 

putting cos Q = 5 -rr/h ·in the upper limit. 'rhe 

expression for 

fdx, 
G 

J dy is, of ~ourse,similar to that 
G '. 

except that cos Q rep~aces. sin Q. 

for 

The value of ~ is obtained from equation ( 45) 

by putting xo= a, giving.the.V/U ratio for the desired 

geometry,where Xo represents JE dx. 
G 

Hence 

[h+ l log h+ l +12 2 Â a U Xo = 
1TV 212Â e JJ\+ l -12 

J'A - 1 ~ arc tan !2 (47 
?12 JÀ- 1 

l'li th 

! J'A+ 1 + J'A- 1 from equation(33J = 
U [2 
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; 

hence 

= ~.[ .J?:+ï log {JÂ +1 + 
'.7T 212/\ e ~+l 

Pi] 
n· 

arc tan (48) 

Solving the above expression, one gets the value of À= 1.099. 

The computer programme is. shown in Appendixl. 

The x co-ordinate of the free streamline is obtained 

froID equation (hl) by substituting the values of & and Â for' 

different values of g between Tf and 3~ 2. Similarly, the y-

'co-ordinate of the free streamline is obtained by replacing 

Cos G by Sin Q and substituting different values for G, 

betVleen 31J 2 and lT • The shape of the inner curved wall 

obtained is plotted in figure 21. 

r 
Of course, the value of y can be found by symmetry. 

. 51T 
·:Y(+) = -xl _) for point with QI = 2 - Q with Q as shown 

above . {Tf (Q < 3~2). 



. .. , . 

- 29 -

4.3. 1!'OID,f Q,E..11!E STREAT.1T",IHES AND EQU,IPOTENTIA1S 

T~is involves the integration of dz along a complex 

plane. 

First JB

F 
dz will be evaluated. 

as t = Â[ ( l+e~T'iau)] 
( 1_exp'r'l

1Tï aU) from equation (23 ). 

(t + 1) = 

(t - 1) = 

,'dz 
aw = 

= 

= 

1 exp (Q) V 

l ft + i /(l-t) (t+l) 
V 

1. [.r;:-:;-ï + i j (1- t >,1 
V 12 J 

(49 ) 

(50) 

(17) 

. (31) 

Substituting the values of t, (t+l) and (t-1) etc., one obtains 

(51) , 
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As one moves fr,om B to F, the fun~~ion, e vnr/o.U varies as 

(Cos G + i Sin G) w~th Q ranging from 0 to Ir. The above 

equation was integrated by putting 

'd = ewrr/ aU 

d~ = 1T ~ dw 

aU 

~ = ~ B:j' 
dw d~ dw 

= ~ ~ 
dd aU 

therefore, 

~ = .€ll! ...L 
d~ "lT~ J2v 

+ i 

.(52) 

(53) 

(54 ) 

{j('>.+ll +. (À-l)j 
(1 -~) 

j ("-1 ~ - ~Â+l r~ (55) 
, (1 -~) 

Multiplying the numerator and the denominator by the numerator, 

one obtains 

dz -
d~ 

+ i -- (À-l) (;\+l)-§ 1 
-,---- - (~+---1·-):-~5T 

-1/(1--J) L - (Â-l) - ~ ='-l 
(56) 
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4._ 4. THE SH~E OJ~ THE INTERNAJJ STREAMLlNES 

One has to integ.rate the above expression", for § 

varying from -1 to _e-iP to get the point along the line BF 

and also :from ;j = _e-ip to = - ye-ip, for the case r > 1 

and r real to get the x and y co-ordinates of the internal 

streamlines. 

.B 

, , 
, '" .. 

~-----M 

Fig.3 

Numerical integration of equation (5~ for the range of ~ 

-iA ( ) from -1 to -e r yie1ds as per appendix 3 part l 

.. (i\+1) [l Cos ~~z) df - Â t 5m~:4/2) dP]] 

(57) 
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y 2 =-Y3:;: 2 S~n- p + (1+ À) S~n ,2 r 
= 2r. sinf -r

2l1- 'À) Si,n 2 f 

= {i\+1} Sin 2/3 2r Sin 2(3 

Y7 = 2r Sin? - r 2(1+Â} Sin 2' 

Y8 = (1-/\) Sin2~. - 2r Sin; 

bTom the definition of j 

~ = -r· e -iF 

= -r cosf + ir Sinp 

= eW1T/ aU 

= e(CP+ itp) ir/aU 

-r (Cos p - i == 

Rence r = 

[ 

"tpTr 
Cos aU 

(67) 

(6g) 

. (69) 

(7D) 

(71 ) 

(72) 

(73) .. 

. S' VJTf l ( ) 
+ ~ ~n aU J. 74 

(75 ) 

The mirror image of the real diagram was taken 

for computations. Rence 
_tpTT/au 

r = e (76) 

- Cosp = Cos !!! 
aU 

(77) 

Sin? S' Tf'7f = ~n-
aU 

(7g) 
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Y2 =-Y,::: 2 s~n.p . + (1+À) S~n,2 F (67) 

= 2r. Sin? -r2l1-"') Si.n 2; (66) 

= lÀ+l) Sin 2f 2r Sin 2f . (69) 

Y7 = 2r sint· - r 2{1+Â) Sin 2/ (70) 

Y8 = (l-Â) Sin2p. - 2r Sin; (71 ) 
r 

From the definition of ~ 

:j -if = -r·e '. (72) 

= -r cosr + ir sinp 

= eWlT/ aU ' 

= 

. -r (Co s p - i Sin p ) = 

t!!: 
Bence r = eau (75 ) 

The mirror image of the real diagram was taken 

for computations. Hence 

-tf>-rrl au 
r = e (76) 

- Cosp = Cos. !f!! 
aU 

(77) 

Sinp = Sin !2!:. 
aU 

(78 ) 
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~1T 
aU 

cU 

Tr- f = ..JLrr · 
'a 

t = 1r( 1 

(79 ) 

aU, 

'a = b >. 

Figure 4 . 

c/a} . (80) 

Hence, suppos,e one ,.,ants a guide vane at 1/3 

, point, cla = 2/3, taking the vane nearest the curved 

boundary. Hence p = 17/3. Simi1arly for other guide vanes. 

The integration was done by using Simpson's 

'rule. The computer programme is sho\'ln in Appendix 1 and ~, 

and the results were tabu1nted in tables 4 - 9.The shape 

of the inner curved \'1all and internaI guide vnnes at ~,! 
• 

and 3/4 positions have been plotted in figure (22) ,for values 

of p= 45°,900 ,and 135° respectively.The shape of th~ 

internaI streamlines were checked by electrical analogy 

and excellent agreement was found. 
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5. FREE s'rREAMLINE ANALYSIS OF 'RIC1HT ANGLED HITRE BENDS 

5.1 GENERAL CONSIDERATIONS 

The sudden deflection of flo\-l produced 

by a mitre bend in a pipe l·ine causes separation of the 

flu~d 'from the solid boundary at the inner edge of the bend~ 

The resulting contraction and subsequent expansion of the 

flow downstream from the bend produce a dissipation o·f. 

energy which is primarily attributable ta. eddy diffusion. 

As a first ~pproximation to this loss,one may endeavor to 

use the l'le11 kno\\'I1 Borda formula 

hL == 
( VI' - V2 )2 

2g 
(81) 

or in dimensionless form 

hL 
= ( 1 1)2 

V~/2g C
c

- (82) . 

2' 2 Here, hL represents the loss in head, V2/2g and Vl /2g, 

respectively represent ~he veloci~y head in the pipe in 

the fully expanded area and the contracted area. Cc denotes 

the ratio of the contracted area to the area of the pipe. 

A schematic representation of the flo\-I is sho\"m in fig.15. 

Determination of the velocity 

·measurements before and after the bend suffices for an 

.estimate· of the head 10ss and also a check on the direct 

measurement of pressure difference. 



In this chapter, a theoretical ~tudy has been des

cribed to ·determine to what degree the contraction coefficient 

of the mitre bend in a pipeline can be approximated to by an 

analysis of its free stre~ine counterpart. 

5.2.. THEORETICAL 

The free streamline flow is bounded by ~ semi-infinite 

planes, the remainder of .the boundary of flow being a curved 

surface of separation upon which a constant pressure is pre

sumed to act. The planes A} and BC~form the outer boundary 

1nt~rsecting at the deflection angle of 900 at the.point B 

(.l!'ig. 10 ). The inner sol id boundary EE is parallel to BAoc) and. 

separated from it .by a distance 'b'. The rree surface ED~is 
. " 

a curve and becomes parallel to BC
oO 

asymptotieally, the u1 timate 

thiekness ot the jet being 'a'. Sinee the pressure is assumed 

to be constant along th~ fre.~ surface, i t fol.LOWS that the 

velocity along the surface varies in direction only. The 

method of analysis 1s quite similar to that outlinea in 

Chapter 4, and henee only a resumé is given here. 

The flow pattern 18 ·first transformed to the ordinary 

hOdograph by the basié relationsh~p 

~ - dz/dVl (11 ). 

Sinee the velocity along the free streamline has the 

constant magnitude V, E~appears as a eireular are in the ~-plane 
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and the solid boundaries become radial linos. The z-plane 

is plotted on the w-plane and the diagram in the. w-plane is 

a polygon having the verticos CD and AF at infini ty. ~Phe 

inte.rio.r of this polygon in transformed on the upper half of 

the t-plane usine the Schwarz-Christoffel transformation .. 
making CD and AF correspond to t ::: .+1 and. t ::' + Â, Vii th 13 

. and. E coinciden·t at t ::: O. The fol10Vling transformation 

~elation is obtained: 

~ ::: 

dt 
. . '"lhere m is a constant (rl3) 

(t-1) (t-~)·.) 2 0 

Simi1ar1y, the po1ygon desc'ribed by Q ::: log .e (v ~) ::: Log V + iQ 
dw -q 

is dravm, having tho vertex B at infin.i ty. NoVI this polygon 

is plot·~ed on :the upper half of the t--p1&11e using the Sch~1arz-

Christoffel transformation giving_the following relation: 

r 2 

~ 
dt 

r 2 = .......-.....------
ft (t-l) 

1 '"There r 2 is a constant 
($L~ ) 

is positive for t> l (for t real) 

dQ. -ir2 
::: - '($5 ) 

.dt Jt (l~t) 0 <t<l 

iill -r2 
-

dt Jt (l-t) t <: 0, t real ($6) 

( -. ir2 -ir2 ) ::: . 
Ft t1-t) i /-t Cl-t) 

Since Q ::: loge CV È) 
aVI 

dz ::: 1 Exp (Q) 
aw V ( 13) 
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5.2.1. SOLUTION OF THE DIFFEHENTI!l1 EQUATIOnS AND 

DETERMINATION OF 11IE cons'rAH1'S 

From equation (83) , . 

dw = m2 dt 

(t-l) (t-,") 

Solving by partial fractions 

,Vi = m2_ loge 
(1-:- À) 

(t -1) +n 
2 

(t..:. À) 
where n2 is a constant 

(87) 

dw ::: m.[ l 2 . __ ~_ 

(1- Î\) (t .... l) 
(88) 

. NOVI where t = 0, w = iaV 
,;-

iaV = 
m2 

.m2 
(89 ) .. loge (br) loge (-;\) - _-..-- + n' 

(1-/\) (l-~) 2 

When t > 0, 'the imaginary p.axt of (VI) = 0 

and the imaginary part (~)= 0 

Therefore, ~ = ~l-~2 aV 
TT· 

and .~ ::: !!:.Y. loge (-Â) (90) 
TT 

fuy = ~ (1-'-) . (91) 
dt TT (t-l) (t-Â) 

" 
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~ow intcgratin& equation (B~ 

~ = 
dt' 

= 

For t = 1 

t = 0 

-~r2 

Jt(l-t) 

Q = 0 

Q = i11' 
2' 

It follows, therefore, that 

where 82 is a constant, 

Q = {, loge [(2t-l) + 2i / t(l-t~ 

(92 ) 

(94 ) 

for 0 < t < 1 t real,' and t complex 

Q = ~. loge (2t - 1 + 2 J t (t-l») for t real, t > l, 
, ' 

= loge { fi + Jt-l] , 
and Q = l 10 ge [ l - 2t + 2 1 t ( t-l ~ + irr 

2' 

for t re~, t < 0 

The ,value of Â may now be obtained in terrus of 'a' and lb'. 

= log e 
b (-) + a 

(i ~) a 

i1T 
2" for t = Â 

(95 ) 

(96 ) 

(97) 

Renee, J.og ~ = t loge (1 - 2).. + 2j.i\~'\-1»), t ~ 0, t real 
e a 
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Finally, it is found that 

- À = + ~ b2 _ a2 )2 

4a2b2 

-À+l = {b2· + a?2 2 

4a2b2 

. Free streamline 

On the free streamline (0 < t < 1) Q = lB, with 

the sign convention shovm 

Fig. 5 
also ~ = ds Sin Q dx as - .Co·s g , 

·On the streamline 

1 Iv dz 1 Iv ·e1Q ds dt = dW dt aw 

hence, 

da ~ (l-Â~ 
dt' = l t-I) ( t- .1\) - Tl" 

(~.iS actually negative with the sign convention for s.). 

On the other hand 

Q = 
= 
= 

i loge [(2t-l) +2.i/ t(l-t~ 
i i arc cos (2t-l) 

iQ 

(99) 

(100 ) 

(40) 

(101 ) 

(94 ) 

(102) 
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l'lhence (2t-1 ) ::: Cos 2G 

t ::: Cos2g 

(l-t) ::: Sin2g 

dt ::: - Sin 29 dg ( 103) 

5.'2.2 DETERMINATION OF THE COEFFICIENT OF CONTRACTION 

E 

J dy 
D 

= Jt=o. .9::L ds (dt ) 
ds ,dt' dg dG 

t=l 

0°/2 

=1 
a 

2a(1- ~ ) 
, 1T . 

Cos 9 .dG 
(Cos2g- Â ) 

( 104) 

( 106) 

::: ' 
a )1- Â 

TT l 
'7.2 ' 

log ./:;1=-==~;=:::-+_S::-i:-n--:g~ 0 (107) 
e JI - ~ - Sin 9 

= ~ }1- Â log J 1- Â + 1 (lOg) 
if e J 1- ?t. - 1 

b2+a2~ 
+ ~l ~ { ( 109) 

1r 2ab 
- 1 

2ab 

= 

= f b + a' ~ 
b - a 

{ 110J 
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The coefficient of contraction i8 given by 

a 

(b + a) } 
(b - a) 

In practice, for any given geometry·, i. e., for b and 

( a + (b2 + a2) loge 
"rTb 

b + a) known, .f a 1 must" be determined 
b--a 

. numerically. 

For the case of a right-angled duct 

and hence 

b = a + (b2 + a 2) loge 
lTb 

(b + a) 

(b - a) 
(Ill) 

~ = 1.9 (or the coefficient of contraction is 0.526.) 

-It may be of.interest to note the important limiting 

case of b ~ IIIÔ 

ln b + a ~ ln ( l +f!)->- 2a 
b - a 0 

(112 ) 

b2 + a2 
\ 

ln b + a~ b 2a 2a 
7Th b - Tf 0' = rr-a 

(113 ) 

The contraction coefficient is therefore equa1 to 

a 
a + 2 a 

TT 
as i8 \'Iell kno\'m. 

= -rr 
7T+2 

(114) 



.. . - 43 -

5.2.3. EXPRESSIONS FOR THE S'l'RgAHLINES AND EqUIPOTEI'JTIALS 

In genera1 

Q == i. 'loge [(2t-1) +. 2i /t(l-t)] 

= .1oge . (ft + iJl - t· ) ( 94 J 

dz 
dw == ~ Exp(Q) 

= ~{!t + i J1- t] (115 ) 

On ~he other hand 

. ( W7r) ll.::J_l· (_ 1\) Exp av- == ~ (116) 

1 + exp (l'l1T / a V ) 

;L .- e~pf.:; 4av L .. 
t == (1~7 ) 

Writing ~ == Exp(l'Trr/aV) for simplicity's sake and d·~·= ;~ d,,,, 

One has 

clz 
.: d~ 

whence 

;~ J2i~ ] l-:J\. '.~ l - i 
-~ 

if J' ri (1- ~) ( L - .~$J. + 1 (1 - -i) J - dz = - log + ~-.,-=':"'~-
a. . r e . ~ ... 
'. 1 

1 [ .2.(:k ) ~ - (1- :l-) j 
of- J 1 arc sin 

_~ (1 + _J
Â 

) 

(Ile) 

+ constant (119): 

00 



- 44 -

After slight simplification 

. 1 [!(I1-~)C-Â-.j) + N + 
(-.i\) - 1 j = - og . 

2(-~) .. e . -j j-Â 

[ 2~ + r - (-1\) j . +. j-Â arc·sin· 
(-.i\) + 1 

+ ;'}(1.-'),,) loge [~.~ + (-;) + j~2_(_;>.)jJ 

+.' constant . (120) 

. If B is chosen as' the origin of the (x,y) co-ordinate 

sys~em, the constant of integration ~ay ~e determined by 

putting 

w ~ 'log 
-, 1r e and (121 ) 

'hence ~ = -Â, the appropriate value at B 

'COllstant 

. = log .' . e 

(122 ) 
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6. EXPERIMENTAL PHOCEDURE 

6.1. DESCRIPTION OF THE EQUIPMENT USED 

The experiments were performed in alucite right-angled 

elbow having a 12" square cross-section at the inlet, the irmer 

part of the bend being housed within a 4?0 removable casing for 

ihtroducing and removing the guide v.anes. The lay~ut is shovm 

in Fig. 7 • 

The lucite duct was supported on two I-sections welded 

together which in turn could be jacked up or dovm for fixing or 

removing the luc~ te b.end. The jacks Viere supported on a concrete 

platform made to suit· the' requirements. A platform \'las con- . 

structed around the upper part of the. tank (Fig. 7. ) for opera

tion of the supply line and also for access inside the tank. . 

The·lucite test elbpw was bolted to a constant level 

tank Vlhich provided a constant head of 14'0" above the base' 

of the test section~ A constant level was maintained by a 

l.ong overfloVi weir running around the upper edge of the tank. 

The flow from the weir went ~hrough an outlet pipe which led 

the surplus water ~o the sump. The lower part of the tank was 

designed so as to get a square velocity distribution and also 

minimum turbulence at the opening of the duct. An aluminum 

frame Vias built to cover the corners of the lucite bend, so as 

to prevent the lucite joints from separating under pressure. 

The tail end of the lucit"e duct \Vas connected to a cast-iron 

reducer pipe which in turn Vias connected to two cast-iron 
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valves on the outlet pipe. One of the valves served the pur

pose of keeping the flow adjusted to any desired value and 

the other one \Vas a shut-off·valve. 

To reduce turbulence inside the test section to the 

lowest possible value, the main suppl Y to the tank passed 

" through a perforated barrel filled ,vdth a fi~ter material. 

The inner curved wall and internal guide vanes Viere 

made by moulding thin fibreglass supports to the shape of the 

computed streamlines. Aluminum plates 1/16" thick were fixed 

·to these fibreglass supports, which Viere fixed in turn to thin 

lu ci te plates eut to sui table shape,s in order to facili tate 

fixing of the guide vanes 'at the proper location inside the 

luci te bend (Plate·13). The right-angle mitre bend was con

structed by fixing two plates of lucite at 900 at the proper 

location. The velo city measurements were done by dye injec

tions (Fig. g ). TV/o liqu~cis, one of specifie gravi ty greater 

,than water and one 1ess, were'mixed'together and proportioned 

in such a way as to give a mixture of sp~cific gravit y equal 

to that of water, so that drops'ot: the' mixture, \'Then : 
, . 

injected in water, would follow the precise motion of water' 

partic1es. The liquids used were,dibutyl phthalate (Specifie 

gravit y 1.047) and petrolium ether (specifie gravit y 0.68) 

both insoluble in water; they mix quite weIl and do not cause 

damage to lucite by crazing. 

When the tank was full of water and flowing at a 

constant discharge, the dyc was allowed to fall frccly through 
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a g1.ass tube 8" above the beginning of the bend at the central 

axis of the test section. The head of supply of dye was kept 

only slightly greater than that of water level in the tank, 
. 

so that the velocity of injection relative to the main f~ow 

was low. The supply of dye to the' test section was regulated 

by a valve, so as to get small droplets. A thin black metal 

plate ruled with a grid of lines painted' bright yellow was 

fixed ~nside the lucite bend vertically close to the glass 

t~be, which supplied the dye, so that measurements were not 

sffected ~y parallaxe The plate was illuminated fromthe 

si,des. An identical plate was fixed in the horizontal portion 

of .' the luci te duct at the central axis ad~acent to the tail 

end of the bend with similar racilities for dye injection. 

The travel distance was measured by photography. 

A black disc having a V-shaped opening was attached to a 

steel rod revolv~ng at a constant speed by a motor (Fig. S.). 

The speed of revolution was reduced to 4 revolutions/second 

by a belt and speed reducer. A revolution counter was also 

attached to measure the exact time of travel of the droplets 

with the help of a stopwatch. A camera supported on a stand 
1 

was fixed behind the disc and positioned in su ch a way that it 

could take pictures of the illuminated plate and the droplets, 

when the V-shaped opening of the dise passed in front of the 

shu·tter. 

Tha experimental part of this work was rendered 

difficult for a variety of reasons. Since the lucite walls 
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of the test section suffered de.flection beyond permissible 

limits even under low heads,'operation under a high head 

necessitated putting additional frames aIl around the duct. 

Since good visibility through thé Quct was a necessity for 

the .experim~nts, either glass or lucite had to be used for 

construction of this bend, but both have ~heir ovm serious 

disadvantages. Water-proofing the duct was a difficUJ. t task. 

Also since part of the dU'ct had to be removable, in order to 

facilitate fixing of the guide vanes, it proveQ difficult to 

make the d.uct watertight under the opera~ing head. Rence 

each setup involved considerable labour and time. 'After each 

set of tests (3 or 4 runs) it became essen~ial to refurbish 

the lucite joints, since they tended.to separate under high 

pressure. Fixing the lucite duct to the reducer pipe at the 

outlet was much more difficult than would appear, owing to 

both the heavy weight of the reducer pipe and the considerable 

difficulty in makl.ng the joint watertight. 

Obtaining successive positions of the droplets in the 

sarne photograph involved considerable effort and time, by 

experimenting various trials. Each experimental run therefor~ 

required lengthy preparation and this restricted the actual 

number of experiments that COulC1 be carried out. Further' tests 

that coulC1 have been carrieQ out would include trying the effect 

of various lengths of the guide vanes, and possibly a different 

number of guide vanes instead of 3 used here, and also various 

discharges through ~he duct instead of onlyone usect here. 
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6. 2. ~SUREMENT Or' VELOCITY 

Vlhen the tank was full of water, the regulating valve 

was opened to get a constant maximum possible discharge. The 

opening was kept constant throughout aIl tests, and it was 

. such', that tlie surplus water from the weir was kept to a mini

mum. Next, the dye was 'allowed to fall 'in droplets. Since 

it had a specifie gravit y equal to that of water, each droplet 

, followed the pattern of the streamlines. The dise was set in 

rotation at constant speed, and the camera shutter was opened 

while the'particular droplet in view passed the boundaries of 

the grid on the illuminated plate. Renee, in the same photo

graph, successive well-defined positions of the droplets were 

obtained along with the relevant portion of the illuminated 

grid - this enabled the travel distance of the droplet to be 

measured quite accurately within a limited interval of time. 

Beveral specimen,photographs are shown in Plates 5-7. The 

travel time was obtained from the revolution counter of the 

rotating'disc vdth the help of a stop watch, by noting the 

number of revolutions for a specifie, intcrval of time. The 

distance between successive positions of the droplet in the 

photograph represents one revolution, which could be measured 

accurately by comparing with the lines on the grid. Rende one 

obtains the velocity of the dye droplets, i.e., the velocity 

of the water particles at that particular location. By moving 

the inlet of the dye to different positions on the centreline 

of the test section, the velocities of the water particles 
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upstream from the bend across a ho+izontal section of the test 

rig (Fig. 7 ) were obtained. Sirn11arly, the velocity distri

bution was obtained do\vnstream from the bend at another section. 

In the experiments, the velocity·measurements were conducted at· 

8" before and after the bend down the middle of the teE?t section. 

The droplets of dye were inJ"ected at 211 4" , .' 
th.e si de walls at the extrados or intrados. 

. . 
6", 8" and 10" from. 

The ruled plate for 

nieasur~ng the travel distance was. kept at a distance of li-" 

behind the place o~ injection of the dye, so as to prevent the 
. . 

dye gliding ~ong. the plate and also keeping the droplets away 

from the boundary layer of the plate. One may assume that no 

appreciable wake existed behind the·vanes. This enables one to 

·measure the velocity vdthout disturbing affects. From the plot 

of the velocity distribution t the discharge could be estimated 

(unfortunately, laboratory facilities did not aIIoVi the dis- . 

charge to be ~easured directly). 

In subsequent tests, the square velocity distribution 

. at the entrance to the.Iucite duct Vias modified by introducing 

a.wire mesh, vdth layers of mesh increasing as uniformly as 

possible from one side to the other. With the help of the me·sh, 

two more types of velocity distrib~tion were introduced, one 

with maximum velocity and·another vdth minimum velo city along 

the intrados. The velocity distribution obtained for different 

cases have been plotted ( figures 26-34). 
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6.3. HEAD-LOSS MEASUREME!IT..§ 

Since the difference in pressures before and after 

the bend was smal1, a differential manometer was set up using 

a liquid having a specifie grayity slightly greater than tha~ 

of w~ter (dibutyl phthalate, specifie gravit y 1.047) so as to 

give an amplified differ~nce in level. The difference in 

,'press~es between points before and after the bend was rneasured 

on all the four central points of the sides. (Refer page 62 ). 

The measurement of head-loss vias carried out for the 

three different types of velocity distribution, and, the readings 

obtained have been tabulated in Tables 2-3 • 

.. 
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7. DISCUSSION OF EXPERIMENTAL RESULTS AND GOMPARISON 

WI'l.'H ~I.'HE THEORY 

Th~ maül purpose of the experiments Vias to study the 

e.fficiency of internal guide vanes and the inner-curved' wall 

in reducing head losses, for three different velocity distri

butions at the inlet. Even though the theory holds only for 

. uniform veloci~y distribution, the merits of the interna~ 

gui~e ·vanes and the inner-curved bend were checked for all 

three velocity-:conditions •. 

{a} Uniform Velocï"ty Distribution at InJ.et 

In the case of a sharp right~angled mitre bend~ by 

injecting a mixture of condensed mille an~ water on the side 

of the lucite duct at the corner of the right angle, it \'laD 

noted that the free streamline reaches as low as the centre 

·line of the horizontal leg of the test section, leaving the 

upper half of the· conduit do\'mstream from the bend in eddying 

mo tion (fig. 25).. Replacing the mitre bend wi th the inner

cl;1rved wall designed for constant velocity and pressure, it 

was noted that droplets of condensed milk follows a s~ira1-

ling path, as in the above case, leaving the top 20% of the 

con~ui t just downstream of the elcoVi bend in eddying motion.· 

Separation from the solid surface occurred over a·height 

of 2~" onl" compared with about 6" for the mitre bend .. 01 , ~ 

(figure 2.3~25).;· \'/i th separation, a conccntrated jet Vias 

formed along the extrados of the duct, with an accompanying 



- 53 -

loss of energy due to eddying motion. With guide vanes, 

separation and eddy formation were repressed completely 

in aIl intents and purposes. The velocity measurements 

by i~jeçting t~e dye droplets in the horizontal portion 

of the bend in aIl three cases substantiated the above 

observations. With the right-angled·mitre bend in position, 

a head-loss coefficient of the order of 0.52 was found. This 

was reduced to 0.47 when the inner-cur.ved wall V/as substi tu ted 

for the mitre bend. When the internal guid~ vanes were also 

introduced along with the inner curved wall, the head-loss 

coet'ficient,was reduced to a very much lower figure of 0.04. 

(b) Trapezoidal Velocit~Distributions ai the Inlet 

Vlith the maximum velocity along the extrados, it \'las 

observed that for ~ll three cases, viz., vath the right-angled 

mi tre bend, wi th the inner-curved wall alone, and also \Vi th 

internal guide vanes, the droplets .of condensed milk injected. 

on the inner side of the bend moved back upstream and most of 

t~e horizontal portion of the test section was affected by 

eddying. The v~locity measurements also gave evidence of 

this. The inner-curved wall, when compared with the mitre bend, 

helped to reduce the head-loss coefficient considerably (from 

3.3 ·to 2.3). The use of the internal guide vanes further 

helped to reduce the head-loss coefficient from 2.3 to 1.5; 

this figure is, however, substantially higher than that 

achieved for a uniform velocity at the inlet. 
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\Vith the maximum velocity,al'Ong the.intrados, it VIas 

observed in all three cases that the upper half of the hori

zontal test section Vias in turbulent motion and there V/as 

swirling of the fluid particles intermitten~ly, which \Vas 
. , 

also evidenccd by the path taken by the dye droplets. It 

was noted that the incoming water separated from the solid 

boundary at approximately the midpoint of the irm,er-curved 

wall (~r, of course, at the corner of the right angle in the 

case of the mitre ~end) and issued as a sharp jet through the 
, . 

b~ttom of the hor~zontal portion, leaving the area above in 

eddying motion. This \'las also clcar f.roIn the condensed milk 

test, (figures 23,24 & 25 ). The J?ressure. tests indicated 

that the inner-curved wall showed I?urprising efficiency in 

reducing the head-loss coefficj.ent (from 2.1 to 0.64). But 

the intern·al guide vanes showed oilly a marginal ,improvement 

(0.64 to 0.57). The results shown 011 :figures(23-25) indicate 

that in the case·of uniform inlet velocity_distribution (th~ 

only case for which the theory hOlds), the internal guide 

.' vanes Viere effective in reducing the separation and uniformizing 

the velocity after thé bend. In other cases, particularly with 

high velocities at the intrados, the guide vanes did not con

serve the original distribution past the bend. 

It is quite possible that"in sp~te of every effort 

to prevent turbulence inside ~hc test section, sorne turbulence 

did in tact subsiste Photographs of the streamline pattern 

throughout the duct VIDUld have helped to investigate flow 
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conditioQs,but this cou1d not.be don~ owing to the 

necessity of having the large frame at the midd1e of 

the bend. 'Improved results l'lOuld no doubt have been 

obtained if the experiments had been conducted with 

air, because no such frame \'lou1d have been required. It 

shou1d be noted that the resu1ts of do\'mstream points 

were improved considerab1y with the curved intrados,and 

. still better with the interna1 guide vanes, With the 

mitre bend in position the ve10city at the dovmstream 

points cou1d not be measured accurate1y owing to the 

irregu1ar paths taken by the drop1ets. Thes.e measurements 

l'lere introduced here particu1ar1y to i11ustrate the 

efficiency of the curved ihtra~os and interna1 guide 

vanes. It "lou1d have been better to measure the velocities 

in the 1atera1 locations to verify that the f10w \'las 

in fact two-dimensiona1. HO\'Tever, ol'ling to considerable 

difficulties and time invo1ved in the experiments, the 

work is 1imited to its present forme 

It seems reasonable at this point to ShO\'1 

that the boundary layer is in fact laminar inside the 

test section. In the present experiments, a 1aminar 

boundary layer starts forming in theory from the top 

water 1eve1 of the constant 1eve1 tank and' gro\lIS 

approximate1y toa thickness*of 3.," at a horizontal 

* The 1aminar boundary layer thickness is given by the 

we11 lmo\'m formula cS::!: 4.91 (ilX;;- = 4.91}10-5• 7 .;'.5~ 
j ~ 0.01 
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section,just before the converging funnel is reached 

at the bottom. A major parameter associated with the 

boundary layer is the m0!l1entum thickness, l'lhich at 

this section is 

== 

= 

O.664J' vx* . (laminar case) 
VJ~ 

. ,., (123 ) J 10-
5 1 0.664 . 0.01 feet 

== 0~666" 

where x... = The distance from the top 
'r 

= 

water level to section(l} 

where the momentum thickness 

or boundary layer thickness is 

measured. 

The velocity inside the tank 

at section (1 J. 

Owing to the funnel shape,the flowaccelerates 

(the velocity increases from 0.01 to 0.3$ ft/sec.) at the 

inlet of the test section. 

-: -- 6' 0" - - - ------ -

(1) 

. 
t-<-- I·O·~ 

(2.) Fig.6 
• 



- 57 -

As a rough approximation, it seems logical to 

assume that t"he momentum thickness at sections just 

before and after the conical funnel type bottom are 

equal ( of course, here one ?eglects the friction ~osses 

and the boundary layer gro\rth ~long the curved bottom). 

Rence 

Momentum defect at section (1) = IrYomentum defect at 

section (2) 

6* V2 
Pl = 6*"~ V;*"P2 (124) 2 * 2. 

*)',c * 2 
Pl V* A2 d = 5 ( ~) since 

2 2 2 "V;* 
= 

Al V*:~ P2 

= s* ( ~ )2 ( ~_!)i P2/PI = bl /b2 
2 A~. A2 

Where Pl and P2 are the perimeters, Al' A2 are 

the areas and bl' b2 are. the breadths at section (1) 

and (2) respecti vely, and 6*"': is the momentum 
2 

thickness at section (2). 

** 5 
2 

** i.e. li 
2 

** but 0 
2 

where 

. 

= 

c 

= 

0.666 
216 

(125 ) 

ft 
= 0.03 

= The distance from the origin of the 
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momentum thickness to secti.on (2 l

in fig.6. 

= 

i.e. = 

The ve10city at the inlet to the 

test ~ection(section 2 in fig.6) 

0.0 ' 
[

·2 

12 ,. 0.t64 J 0.3$ 
10';"5 = 0.0054 

Hence it may be assumed for aIl practical 

purposes that a ne\'1 boundary layer is in effect 

brought into existence at the start of the test 

section. 

7.1. DISCUSSION OF HEAD LOSS MEASUREMENTS 

(a) Right ang1ed Mitre bend' 

Il 

The coefficient of contraction corresponding to 

theory out1ined in Chapter 4 is 0.526. Hence the 

height of the issuing jet at' the vena contracta 

shou1d be 0.526' whereas fu11y expanded flow spreads, 
t 

of course to 1 • The actua1 measurement of velocity 

by dye injection and also the test l'li th condensed mi1k 

in the case of a mitre 'bend with uniform ve10city 

distribution shol'Ied that the vena contracta 
t 

occupied a height of 0.5 approximate1y, indicating 

a coefficient of contraction of near1y 0.5, c10s~ly 

agreeing with theory. The 10ss of head due to sudden 

contraction Can be estimated in terms of the velocity 



- 59 -

. . . 
head by the familiar formula '(Vl - V2 )2/2g (81 ) 

where VI and V2 are respectively the ve10cities at 

the contracted area and at the ful1y expanded region. 

(i) From table 2.3 for uniform velocity distribution 

in the case of the mitre bend, 

·V 
1 == 

== 

0.544 ft/sec. (Average velocity 

interpo1ated from the g'raph

figure 28) 

0.344 ft/sec. 

Estimated head loss == ( VI ..; V2 )2/2g 

0.0006 1 == 

(of course, this formula is only q~oted here as an 

.approximate check) 

Weighted average head 10ss as per table 2.3 
'. 

== 0.275" of the manometer 1iquid. 

Measured head 105s in the differential manometer 

where 

== 0.2·75 ( wi l' 
12 w'- ) 

== °i~75( 1.047 - 1 ) 

== 0.00108' 

== density of the manometer liquid 

= density of the metered fluid 

Using the Blasius theory of the 1aminar boundary layer for a 

.* , 



60 

fIat plate (admittedly only an approximation in the present 

case), one may get a rough idea of the 10GS due to the laminar 

boundary layer acting on the walls o·f· the test section-lC· (on 

the assumptions of no breakaway, of course, imd neglecting the 

effect o~ pressure gradients). Though this a~proach is VC!y 

approximate indeed, it is perhaps bettertnan rnaking I!o. such 

estimate at aIl. 

According to Blasius, frictional·force = V 2 
2 1.328A (126) 

2g 
jv~ L 

and·the head-Ioss is obtained by dividing this by the area of 

the wetted cross section (1 sq.ft.) at the ~easuring point. 

where 

Head-loss. 

v = Kinematic v~scosity 

L = Overall lE:wgth. of pl.ate subjected 

to laminar boundary layer 

A = Wetted. area over whic·h the frictional 

force acts. 

= 1.328 • 19.2 
0.344 ~ 4.817 

10:> 
= 0.000115' 

Net head-loss due to the bond alonè .6H = 0.00108 - 0.000115. 

= 0.00096' 

= 0.00184 

*Note that in applyine this thcory, .any change in wettod cross 
section through the bend is Ilcglected, too; 'l'he theory is 
approxiInatc indeed! 
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Let K be the head-loss coefficient,then K V2!2g =AH,.i.e. 

O.Q0184K = 0.00096 

. K = 0.52 

Similarly, the values of K for non-uniform velocity distri-
. . 

butions have been tabulated in Table 10. 

(b.) Inner-Curved WD~l in·Place of the Mitr~ Bend 
(Uni[orm Velocity Distribution) 

From Table 3.3 

VI = 0.544 ft/sec. (Average veloci ty interpolated 

from the gral)h, Fig. 31 ) 

. Estimaicd 

V 2 = 0.344 ft/sec . 

head-loss = (VI - V2)2 = 0.00062' 
2g . 

(Once again, this value is included as a rough indication only). 

Measv.red head-Ioss in the diffcrential manometer ='0.25(0.047) 
12 . 

". 
= 0.00098' 

Loss due to laminar bounda~y (cf" previous section) 

. = V 2 
2 

2g 
1.328A 

fV;L 
.j -fT 

= 0.000115' 

Loss due to the bend a10ne 4H = 0.00098'- 0.000115' 

= 0 .• 00086' 

. . . O.00184K = 0.00086 

(where 0.00184 as previous1y 
. 2 

is the value of V 2 ) 
2g 

K = 0.47 
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(c) Inner-Curved Wall With InternaI Guide Vanes 
(Uniform Velo city Distribution) 

, 
Loss due to'laminar boundary layer acting on the sides = 0.000115. 

Loss due to laminar boundary la~er acting on both sides of the 

guide vanes = 2 • (O. 344}~ 1.328 [ 64.4 

+ 

Jo. 344 oc 2.135 
10 .. 5 

:;: 0.000113" 

.;,. 

1. 9ltî~' 

JO' 344 • 1. 94) 
. 10-5 

+ 2.057* ] 
0.344 >: 2.057 

. 10-5 

(as if these were plane plates with zero pressure gradient, 

a rou~l approximation,but the best aVailable). 

'Measured head-loss = 0.0775 A 0.047 
12 

= 0.000303' 

. Loss due to. the bend = 0.000303 (0.000115 + 0.000113) = 0.000075' 

0.00184 K = 0.000075 

i. e. , . K = 0.04 

The values of K for non-uniform vel'ocity distributions have been 

·tabulated in Table 10. 

However, it should be observed that the measurement 

of head-loss in a bend should, strictly speaking, be done by 

extrapolating energy gradients towards the bend trom stations 

sufficient1y upstream and dovmstream. But owing to the limited 

facilities in the laboratory, in the present work the pressure 

tappings had to be located no further than a distance of lt feet 

dovmstream from the bend and 6 inches upstream from the bend at 

the centre 11ne of each end'piate. The average of the centre 

* represents the surface area on one side of each guide vane. 

The ~rldth of the guide vane is of course equal to 1 foot. 
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line· pressures on the ~our sides was approximated to by 

the weighted average over the cross section ( In a 

theoretically more accurate approach,the total head 

.should perhaps have been evaluatedby ihtegration o~ 

stagnation pressures measured·~t various points across 

·the do\·mst·re~ cross section, but it is i·n ~act, very 

doubt~ul \'Ihether under the present experimental 

.conditions o~ low velocity head and high average 

pressure, this approach l'lould ,in ~act, have gi ven 

inipro·ved results. 

It May be worthwhile also to mention at 

thi.s point that as ~ar as the breaka\'lay is concerned, 

the present tests were conducted under adverse conditions, 

seeing that laminar boundary layers are not frequently 

~ound in practice *. Ho\'rever ft should also be recalled 

that ~riction in a turbulent boundary layer May be 6 

or more times higher than tho~e in a laminar one,for 

a given velocity in the main stream. 

It is always desirable to avoid separation 

of the ~luid from the walls,since it is accompanied by 

* In the mathematical analysis of this problem,the 

. flol'1 is assumed to be laminar ,and head losse~ due· to 

a laminar boundary layer are taken into consideration 

when analysing the experimental results. ~v.hen considering 

the practical applications of this work,e.g. in 

·industrial ducts,it should be noted that laminar 

boundary layers are rarely found. 
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cO,nsiderable energy loss., Lam:tnar boundary layers can 

support only very small adverse pressure gradients" 

(retarde"d flo'ttlS) wi thout s'eparation as compared to 

turbulent ones (Ref.12). However, ~xistence of adverse 

pre~sure gradients favours the transitio~ from lamin?r' 

"to turbulent flows. The easiest method of controlling 

separation is to arrange the pressure gradients to 

remain below the limi t for l'lhich separation occurs'. 

Other possibl~ methods include suction or by injecting 

fluid into the boundary layer or by the addition of 

aerodynamic guide vanes. T~e f~rst method of boundary 

layer control is used here and with constant velocity 

along the intrados, the pressure nu~t remain theoretically 

constant ( the intrados, a line of constant pressure). 

'. 

.' 
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8. CONCLUSIONS 

A.general analysis for the design of an inner-curved 

wall and .internal guide vanes for a right-angled elboVi has 

been described using free streaInline theory. The effec:liiveness 

of such a design in reducing the head-losses and its efficiency 

in ·providing an undisturbed velo ci ty distribution after the bend 

was determined experimentally for three different velocity 

condi tions. The design of internal.: guide vanes Vias checked 

by an electrical anal ogy. 

8.1. EXPERIMEN TAL 

8.1.1. 

Vlith a uniform veloci1!Y distribution, the hea.d-loss 

coefficient due to the bend V/as reduced from 0.52 to 0.47 when 

the inner-curved wall was substitu~ed for the mitre head. ~7hen 

internal guide vanes were employed these \'Iere reduced further 
-

from 0.47 to 0.04. These figures are .quoted after subtracting 

skin friction losses within the bend. 

The guide vanes were able to main tain approximately 

the sarne velocity distribution after the bend as that before the 

bend - this was not the case when the guide vanes were removed. 

·8.1.2. 

Even with trapezoidal velocity distributions, the 

inner-curved wal~ and internal guide vanes are still advantageous. 

With the maximum velocity al0?S the extrados, the head 
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. 
10ss coefficient was reduced from 3.3 to 2.3, when the inner-

curved wall was used instead of the mitre bend. The internal 

guide vanes reduced it further ,to 1.5. 

With the maximum velocity along the intrados, the 

inner-curved wall proved its efficiency by reducing the head-

10ss coefficient from 2.1 to 0.64 when i t was used ins,tead of 

the sharp mi~re bend. But the internaI guide vanes preserited 

only a minor supplemental advan~age by reducing the head-loss 

coefficient to 0.57. 

The ve10city distribution after the bend in both 

trapezoida1 velocity conditions does not approach the velocity 

pattern before the bend, even when internal guide vanes were 

emp1oyed. 

8.1.3. 

Owing to limitations in the 1aboratory'faci1ities, 

the 1imited time available and the considerable difficulties 

in carrying out these tests, the experiments could not be 

conducted in the best way. Quite a lot of improvements could 

have been made (as mentioned 'at appropriate places) if circum

stances had al1owed. 

The guide vanes were found to be efficient in redu

oing the turbulence and eddy effects to a measurable'degree.' 

8.2. THEORETICAL 

(i) The form of the streamlines and.equipotentials was well 

defined by the ~heory. 



- 67 -

(ii) The theoretical solution could be- adopted to cases'for 

which xo~ h, viz. for different two-dimensional flows, 

by substitu"ting suitable values to 'x~ in terms of lb'. 

8. 3. IN FERENC E 

The effe'ct of the internaI guide vanes could not be 

predicted under non-uniform velocity conditions. But it can 

be ass~med from the results of the two trapezoidal velocity 

distribution tests that its effect is always to reduce 'head

losses and to increase the efficiency of the bend, even though 

the improvement may not ~e very appreciable in aIl. cases. 

Allo\ung for the fac~ that the internal guide vanes 

used were probably much longer than necessary, it is clear 

that the curved intrados with guide vanes give a very small 

loss of head indeed for a uniform inlet velocity distribution. 

Bends so designeq may be useful in indus trial application 

where high performance (i.,e., very 10Vi head-losses) i8 required, 

e.g., dump tanks for heavy water atomic reactors. Use of only 

one curved-wall may facilitate construction. 
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APPENDIX 1 

COMPU~PROGRAMJ\1E USED IN I.R.M.360 

l. To calculate the value of Â from equation (47) vdth x=a and 
, 0 

V/U" ...:.n::+i +.r;:-:::ï 
- Il. 

FORTRAlIJ" SOURCE S~lATEl\'1ENT LI ST 

IMPLICIT REAL*8(A-H,0-Z) 

" DIMEN~10N DIFF(1000) 

:AL=1.001 DO 

DO 200 1=1,1000 

. " 

ALHS= (DSQRT (AL+ 1. ODO) + DSQRT(AL-i. ODO ) ) /DSQRT (2. ODO) 

'ALA=(DSQRT(AL+1.0)+DSQRT(2.0DO»/(DSQRT(AL+l.0DO)-DSQRT(2.0DO») 

ALB=(2.0DO*AL)/3.1415926535897932 

ALC=(DSQHT(AL+1.0DO) )/(AL*DSQRT(2.0DO» 

ALD=(DSQRT( 2.0DO) )/(AL~'DSQRT(2. ODO» 

ALE=(DSQRT(2.0DO»/(DSQRT(AL-l.0DO) 
" 

ARHS=ALB*«ALC*DLOG(ALA»-(ALD*DATAN(ALE») 

DIFF(l)= ALHS-ARHS 

DIFR=DABS(DIFF(I» 

lF(DIFR.L~.O.ODO)GO TO 100 

AL=AL+O.OOIDO 

GO TO 200 

lOOVIRITE( 6,20 )AL, DIFF(I) 

20 FORMAT ( 20X, 2D25 .14) 

AL=AL+O.OOIDO 

200 CONTINUE 

STOP' 

END 
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" II. TO CALCULATE THE SHAPE-OF THE INNER CURVED WALL 

FROM EQUATION (L'01) \'JITH ~ = 1.099 AND_, 

V /U = J~ + 1 +1'>. - 1 
0/2 

FORTRAN SOURCE STATEMENT LIST 

nD·tENSION V(ll), VAR (Il ) ,X(ll) 

AL = 1.0993446l1603705DO 

Pl = 3~14159265DO 

N = 10 

RALP = SQRT(AL+l.O) 

RAU~ = SQRT(AL-l.O) 

R2 = SQRT(2.0) 

K = N + 1 

DO 10 l = 1,K 

V(I) = COS (PI/2 + PI/2/N - I::~PI/2/N) 

..... 

VAR(I) = l2/PI/(RALP + RALr~n :~ (RAI,PirALOG( (RALP +R2 * V(I») 

l-2*RAL1·it.~ATAr~ (R2)'rV(I )/RALr,1) ) 

XCI) coVAR(I) - VAR(l) 

10 CONTINUE 

WRITE(6,12) 

12 FORMAT(20X,'X' ,20X,'Y' ,//////) 

o ltIRITE(6',13) (X(I),X(K-I + 1),1 = 1,K) 

13 FOffi4AT (10X,2E 20.g,//) 

STOP 

END 
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. APPENDIX-2 
. . 

'COMPUTER PROGRM·11·iE USED IN I.H.M.360 

I. . .To calculate the intersection point of the .internal 

guide vanes and the complex 1ine BF (or numerica1 

. _ integration or: equa~~on (56) 

d~ aU [. (Â+l) + ("-1)~ 
cl ~ :: Ji ïf' Y ~ j (l - j) [ ( " + 1) + ( ~ - 1) 3 ] 

- (~. - 1) - (" + J) j ] 

.... ; ~ J(i -~) [ -(Â- j) :- (Â+ 1)3] 

. for the range o.!' .; from -1 to _e-J./3 

FORTRAN SOURCE STATEMENT L,IST. 

IMPLICIT REAL*B(A-HjO-Z) 

DIMENSION C (1000) ,RO (1000), THETA(1000) ,~(1000), 

IDELTA(10,40),AEAL(40},BNREAL(40) ,X(1000) ,Y(1000) 

AL = 1.099345DO 

DO 1000 NNN =l,B 

DO 5000 LLL =1,35 

LL = LLL * 5 

PI = 3.1415926no 

M = LL ,.~ 2 + 1 

.J = M - 10 

C{l) = 0.000 

GO Ta ( 1 J 2 ,3 ,4 J 5 , 6 , 7 , 8 ) ,NNN 

1 DO I = J,M 

IF ( I.EQ.l) GO Ta Il 

C{I) = C(I-l)+ ((O.5DO*PI)/180.0DO) 

Il X( I) = (AL+l. ODO )+2. ODO:!:DCOS (C (I) )+(1. ODO-AL ),;c 
. . 

1{(DCOS{C(I»)**2-(DSIN(C(I)})**2) 

y( l )=2. ODO:;'DSIN (C (IJ )+ (AL-l. 000 )>:~2. ODO~:DSIN (C (I ) );,,; 

IDCOS(C(I» 
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R6(l)=DSQRT«X(I»**2 +(Y(I»**2) 

THETA(I)=DATAN2(Y(I)/X(I» 

10 F(I)=DSIN(THETA(I)/2.0DO)/DSQRT(RO(I») 

GO TO 2000 

2 DO 20 I=J,M 

IF(I.EQ.l) GO TO 21 

C(I)~C(I-l)+«0.5DO*Pt)/180.0DO) 

21 X(I)=(AL+l.ODO)+2.0DO*nCOS(C(I»+(1.ODO-AL)*«DCOS(C(I»)**2-

1(DSIN(C(I))**2) 

Y(I)=-2.0DO*DSIN(C(I»+(AL-l.ODO)*2.0DO*DSIN(C(I»*DCOS(C(I» 

RO(I)=DSQRT(X(I»**2 +(Y(I»**2). 

THETA(I)=DATAN2(Y(I)/X(I» 

20'F(I)=DCOS(THETA(I)/2.0DO)/DSQRT(RO(I» 

GO TO 2000 

3 DO 30 I=J,M 

IF(I.EQ.l) GO TO 31 

0{I)=C(I-1)+«0.5DO*PI)/lS0.0DO 

31 X(I)=(1.0DO-AL(+2.0DO*DCOS(C(I»+(1~ODO+AL)*«DCOS(C(I)»**2-

1{DSIN(C{I»)**2) 

Y(I )=2. ODO*nSIN( C(I) )+(AL+1. ODO) *2. ODO*DSIN( 0(1) )*DCOS( C(I).) 

RO(I)=DSQRT«X(1»**2 +(Y(I»**2) 

THETA(1)=DATAN2{Y(I)/X(1» 

30 F(1)=DSIN(THETA(I)/2.0DO)/DSQRT(RO(I» 

GO TO 2000 

4 DO 40 I=J,M 

IF{I.EQ.l) GO TO 41 

. 0(1)=0 (I-i)+ «O. 5DO*PI)/lS0. 000)' 

41 X{I)=(1.0DO-AL)+2.0DO*DCOS(C(1»+(1.0DO+AL)*«DCOS(C(I»)**2) 

1-(DSIN(C(I»)**2) 
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Y( 1)=2. qDO*DSIN( C (1»+ (1. ODOi;AL) *2~ ODO~'DSIN( C(I) )*DCOS( C(I» 

RO(I)=DSQRT«X(I) )**2 +(Y(r) )**2) 

THE TA ( 1) =DATAN2 (y ( 1 ) /X ( 1) ) 

40 F(I)=DCOS(THETA(I)/2.0DO)/DSQRT(RO(I» 

GO Ta 2000 

5 DO 50 I=J,M 

. IF (I.EQ.l) 'GO TO 51 . 

O(!I);:C(I-l)+ «O. 5DO*PI )/180. ODO) 

51 X(I)=(l. ODO-AL)+2. ODO*DCOS( C (1) )+(l.'ODO+AL)*( (DCOS( C (1» )~'*2-

IDSIN(C(I» )**2) 

Y(I)=-2.0ro*DSIN(C(I»-(1.0DO+AL)*2.0DO*DSIN(C(I)*DCOS(C(1» 

RO(I)=DSQRT«X(I»**2 +(Y(I»**2) 

THETA(I)=DATAN2(Y(I)/X(I» 

50 F(I)=DCOS(THETA(I)/2.0~0)/DSQRT(RO(I» 

GO TO 2000 

6 DO 60 I=J,M 

IF(I.EQ.l) GO TO 61 

C(I)=C(I-l)+«0.5DO*PI)!l80.0DO) 

61 X(I)=(1.0DO-AL)+2.0DO*DCOS(C(I»+(l.0DO+AL)*«DCOS(C(I»)**2 

1-(DSIN(C(I»)**2) 

Y(I)=2.0DO*DSIN(C(I»-(1.0DO+AL)*DSIN(C(I»*DCOS(C(I» 

RO(I)=DSQRT«X(I»**2 +(Y(I»**2) 

THETA(I)=DATAU2(Y(I)/X(I» 

60 F(I)=DSIN(THETA(I)/2.0DO)/DSQRT(RO(I» 

, GO TO 2000 

7 DO 70 I=J,M 

IF(I.EQ.l) GO TO 71 

C(I)=C(I-1)+«O.5DO*PI)/180.0DO) 



- 73 -

71 X( l )=(1. ODO-AL)* «DCOS( C(I» )**2~'(DSIN( C(I») **2)+2. ODO'* 

IDCOS(C(I»+(AL+l.0DO) 

Y(I)=(1.0DO-AL)*2.0DO*DSIN(0(I»*DOOS(0(I»+2.0DO*DSIN(C(I» 

. RO(I)=DSQRT«X(I»**2+(Y(I»**2) . . . 

THETA(I)=DATAl~2(Y(I)/X(I» 
. . . 

70 F(I)=DCOS(THETA(I)/2.0DO)/DSQRT(RO(I» 

GO TO 2000 

8 DO 80 I=J,M 

IF(I.EQ.l) GO TO 81 

C{I)=C(I-l)+«0.5DO*PI)/180.0DO) 

81 l,C( l )=( 1. ODO-AL)i(· «DCOS( 0(1) ) )**2-(DSIN( C(I) ) )**2)+2. OJJO* 

IDC08(C(I»+ (AL+l. ODO) 

Y( 1)=(1. ODO-AL) ~·2. ODO*DSIN( C(I) )*DCOS( o( 1) )+2. onO*DSIN( 0(1» 

RO(I)=DSQRT«X(I»**2+(Y(I»**2) 

THETA(I)=DATAN2(Y(I)/X(I» 

80 F( l )=DSIN( THE TA ( l )/2. ono )/nSQHT('RO(I» 

2000 FO=O.ODO 

FE=O.ODO 

K=LL-4 

DO 3000 I=K,LL 

NN=2*I 

FO=FO+F(NN-l) 

3000 FE=FE+F(NN) 

'. FO=FO-F( J) 

DELTA(NNN,LLL)=«O.5DO*PI)/(3.0no*1800DO»*(F(J)+F(M)+2.ODO 

1*FO+4.0DO*F.E) . 

IF(LLL.EQ~l) GO TO 5000 .. 

. DELTA(N1'N, LLL)=DELTA(NNN t LLL)+DELTA(NNN, LLL-l) 



5000 CONTINUE 

1000 CONTINUE 

DO 4000 LLL=1,35 

. - 74 -

. AEAL(LLL)=(1.0DO/(PI*(DSQRT(AL+1.0)+DSQRT(AL-1.0DO»»* . . 

l(-(AL*l. ODO)* (DELTA(l,LLL) )+(AL-l. ODO)·~ (.DELTA(3,LLL»-. 
2(AL-l.ODO)*(DELTA(5,LLL»+(AL+l.ODO)*(DELTA(7,LLL») 

.BNREAL(LLL)=(l.ODO/(PI*(DSQRT(AL+l.ODO)+DSQRT(AL-l.ODO»». 

1*(-(AL+l.ODO)~·(DELTA(2,LLL) )+(AL-l. ODO)* (DELTA(4,LLL»+ 

. 2(AL-l.ODO)*(DELTA(6,LLL»-(AL+l.ODO)*(DELTA(8,LLL») 

NDGREE=LLL*5 

4000 VnilTE (6,101)NDGREE,AEAL(LLL),BNREAL(LLL) 

101 FORMAT(10X,I4,2F26.14) 

STOP 

END 

.. 
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- . 
II TO CALCULATE 'l'Hl~ SHAPE OF THE Il-rTBHNAL GUIDB V ANES (OR 

NUI\"ŒRICAL INTEGRATION O}' EQUA'l'JON (56") 

J aU J { (:>.+.1) + (71- J)':; of- À. - (+ Â-1) - (:>.-I-f)~ ·1 
dz - 12 V1r 'J,j(f- ,g)[(Â+1)+(Â-1)~J . jJ(t- j)[-(+À-J)-(Â-t!).!] 

-iP' :for the range of;:; from -e . to 

FORTRAN .sOURCE STATEMENT LIST 

_re-if3 

DIMENSION RO ( 2000 ) ,.THETA( 2000 ), F( 2000 ) , DELTA ( 2000 ) ,AEAL ( 2000 ) , 

1BNREAL(2000),R{2000),X(2000),Y(2000) 

AL=1.09935 

PI=~.1415927 

.C=(135.0+:-PI )/180. 0 

. DO 1000 NNN=l, 8 

DO 5000 LLL=1,100 

LL=LLL*5 

M=LL*2+1 

J=M-10 

R(1)=1.0 

GO TO(1,2,3,4,5,6,7,8),~NN 

L DO 10 I=J,M 

IF(I.EQ.l)GO TO 11 

R(I)=R(I-l)+0.2 

11 X(I)=(AL+l.0)+2.0*R(I)*COS(C)+(R(I)**2)*(1.0-AL)*«COS(C»**2-

1{SIN(C»**2) 

Y(I)=-2.0*R(I)*SIN(C)+(R(I)**2)*(AL-l.0)*2.0*SIN(C)*COS(C) 

RO{I )=SQRT( (X( l )*-~2)+ (Y( l )i(·*2) ) 

THETA(I)=ATAN2(Y(I)/X( I» 

10 F(I)=COS(THETAlI)/2.0)/(SQRT(RO(I)*R(I» . . .. . 
GO !['O 2000 



2 DO. 20 I.,:J,M 

IF(I.EQ.l) "GO TO 21 

R(I)=R(I-l)+0~2 ' 
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21 X( 1)= (AL+l. 0)+ 2. O-lC'R(I )*COS (C)+ (R(l) -)('*2) -)(. (1. O-AL)* « COS (C) )-)('-)('2 

1-(SIN(C»**2) 
. 

Y(I)=-2.0*R(I)*SIN(C)+(R(I)**2)*(AL-l.0)*?0*SIN(C)*COS(C) 

RO(I)=SQRT«X(I)**2)+(T(I)**2» 

THETA(I)=ATAN2(Y(I)/X(I» . 

20 F(I)=SIN(THETA(I)/2.0)/(SQRT(RO(I»*R(I» 

GO TO 2000 

3 DO 30 I=J,M 

IF(I.EQ.l) GO TO' 31 

R(I)=R(I-l)+0.2 ' 

. 31 X( l )=(AIn·l. 0) -3(. « COS( C )**2-( SIN( C) )-)(-*2)+2. O*R(I) *COS (c)+ (R( 1) -3('-)('2) 

l*(l.O-AL) 

Y(I )=~loO) -)('2. O*SIN( C )*COS (C.>+2. O*R(I )-)('SIN( C) 

RO(I)=SQRT(X(I)**2)+(Y(I)**2» 

THETA(I)=ATAN2(Y(I)/X(I» . 

30 F(I)=COS(THETA(I)/2.0)/SQRT(RO(I» 

GO !l'O 2000 

4 DO 40 I=J,M 

IFlI.EQ.1)+0.2 

41 X(I)=(ALtl.O )-1(. « COS(C»)**2-( SII~( C) )**2)+2.0*(R(I) **2)* (l.O-'AL) 

Y(I)=(ALtl.0)*2.0*SINlC)~COS(C)+2.0*R(I)*SIN(C) 

RO( l )=SQRTl (Xl 1) '**2+ (Y( 1) **2) ) 

TH~TA( l )=Aï'AN2l Yl l )/X( 1) ) 

40 F(I)=SINlTHEï'AlI)/2.0)/SQH~'lHO.(I» . 



GO TO 2000 

5 DO 50 I=J,lI'I 

IF(I.EQ.l) GO TO 51 

R(I)=RtI-1)+0.2 

- ?? -

51 Xt 1)= tJ..0-AL)+2. O*RtI )-le'COS( C )+R(I) **2* (1. O+AL)* « COS( C» **2-
, . 
1{SIN{C»**2) 

Y(1)=-2.0*R(I)*SIN(C)-(R(I)**2)*(1.0+AL)*2.0*SIN(0)*COS(O) 

RO(I )=S~RT( (X(I)**2+ (Y( l )*'~2» 

THETA(I)=ATAN2(Y(I)/X(I» 

50 F(I )=SIN( THE TA ( 1)/2 ,0 )/( SQR'T(RO(I) )-le'R(I» 

GO .TO 2000 

6 DO 60 I=J,M 

IF(I.EQ.l) GO TO 61 

R(I)=R(I-l)+0.2 

61 X(I)= (l.0-AL)+2.0*R(I )*0) S( C)+ (R(I )**'2 )*(1. O+AL)* (CC) s( c) )-le'*2-' 

1(SIN(0)**2) , 

Y(I )=-2. O*R(I) *SIN(O)- (R(I )**2.)* (1. O+AL)*SIN( C )-le'COS( 0)* 2. 0 

RO(I)=SQRT«X(I)**2)+(Y(I)**2» 

THETA(I)=ATAN2(Y(I)/2.0)/(SQRT(RO(I»*R(I» 

60 F(I)=COS(THETA(I)/2.0)/(SQRT(RO(I»*R(I» 

GO TO 2000 

7 DO 7Ç) I=J ,~i 

IF(I.EQ.l) GO TO 71 

R(l )=R(I-l )+0.2 

71 x( l )=(AIrr1. 0)* (R(I) 'lH2)+2.0-le'R( l )*COS( C)+ (1. O-AL) *( (COs( c) ) *-1('2-

l(SIN(O) )**2) 

Y(I)=2.0*R(I)*SIN(C)+(l.0-AL)*2.0*siN(0)*COS(C) 

RO(I)=SQRT«X(I)**2+(Y(I)**2» 

THETA(I)=ATAN2(Y(I)/X(I» 
• 
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70 F(I)=SIN( TI-IETA(I )/2. 0 )/SQRT(RO(I» 

GO TO 2000 

8 DO 80 I=J, M . 

IF(I.EQ.l)GO TO 81 

R(I)=R(I-l)+0.2 

81 X(I)=(Aitl. 0) -K-(R(I )*-K-2)+2.0*R(I) *COS( C )+(~.O-AL)* « COS( C) )~*2 
l-(SIli1(C) )*-K-2) 

Y( 1)=2. O*R(I) *SIN( C)+ (1. O-:-AL)* 2. O*,SIN( C )*COS( C) 

RO(I)=SQRT«X(I)**2)+(Y(I)**2» , 

THETA(I)=ATAli2(Y(~)/X(I» 

80 F(I)=COS(THETA(I)/2.0)/SQRT(RO(I).) 

2000 FO=O.O 

FE=O.O 

K=LL-4 

DO 3000 I=K,LL 

NN=2*I 

FO=FO+F(NN-l) 

3000 FE=FE+F(NH) 

FO=FO-F(J) 

DELTA (NNN ,LLL)=(O. 20/3.0)* (F(J )+F(M)+2.0-x'FO+4. O*FE) 

IF(LLL.EQ.l) GO TO 5000 

DELTA(NNIT~,LLL)=DELTA(NNN,LLL)+DELTA(NNN,LLL-l) 

5000 CONTINUE 

1000 CONTINUE 

DO 4000 LL1=1,100 

AEAL(LL1)=(l.0/(PI*(SQRT(AL+l.0)+SQRT(AL-l.0»)*«AL+l.0)* 

l (DELTA(l, LLL) )--(AL-l.O) *(DELTA( 3,LLL') )-(A1-1. 0) * (DELTA ( 5, L11» 

2+(AL+l.0)*(DELTA(7,LLL») 
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BNREAL(LLL)= (1. O/(PI-K· (SQRT(AL+l. 0 )+SQRT(AL-l~ 0» ) )*( -(AL+l. 0)* 

l( DELTA ( 2, LLL»+ (AL+l. 0 )*(DELTA( 4 ,LLL) )-(AL-l. 0 )-K. (DELTA( 6, LLL»+ 

2(AL+l. 0 )-l(·(DJ~LTA(8·, LLL) ) 

AEAL(LLL)=AEAL(LLL)*12.0 

BNREAL ( LLL) =BNREAL (IJLL ) * 12. 0 

XLL=LLL 

RADI=XLL*2.0+1.0 

4000 WRI TE( 6., 101) RADI, AEAL(LLL), BNREAL(LLL) 

101 FORMAT(10X,3F18.5) 

STOP 

END 
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III. EXPLANATION OF OOMPUTER SYMBOLS USED 

AL = Â 

o 
0(1) 

RO(I) 

THETA(I) 

~(I) 

1 

iCI) 

M & J 

PI 

ND GREE 

= 
= 

= 
= 

= 

= 

= 

The value of ,'13' in radians 

The variable value of ip' in rad.ians 

,p (1) 

G(I) 

The real part of the particular function 

The imaginary part of the particular function 

The maximum and minimum ordinate of the 

trapezoid when integrating by Simpson's rule' 

= ....r 
= The value of 'p' at intervals af 5 degrees 

'DELTA (NNN, LLL) = Integrated result of the particular function 

FO = 'Odd ordinate of the trapezoid when integrating 

by Simpson's rule 

FE = Even ordinate of the t~apezoid when integrating 

by Simpson's rule 

AEAL(LLL) = Real part of the'integration 

BNREAL(LLL) = Imaginary part of the integration 

RALF 

RALM 

R2 

= 

= 
= 

J'A ... 1 

j").. - 1 

fi" 
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IV. NOTES ON PROGEUJIiI'UNG 

T~e progrrulli~e was \vritten in Fortran IV for use on 

the McGill University IBM 360 digital computer. In Appendix 2, 

Part l, the integral has been computed \ti th the value of f 
increasing in steps of 5 degrees. Similarly, in Appendix 2, 

Pa~t II, the integral has been evaluated with the value of r 

increasing in steps of 2. : and . the programme has been wri tten 

with the value /3= 135°, Viz., c/a = i. The srune programme 

has been used for computing internal guidè vanes at t and 3/4 

positions, by changing the value of p to 90° and 45°, respec

tively, instead of 135°. In al1 the programmes better accuracy 

can be attained by changing the interval of integration. 

Tables 8-13 show the computer output tabulated in order. 

• 
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APPENDIX 3 

NUMERICAL INTEGRA~f.'ION Ol!' EQUATION (56 ~ TO FIND ~~ 

SHAPE OF INTERNAL STREAfliIJII'Œ.2 

PAR~' l 

For the range of ~ from ~l to - e-;P 

By putting 
. -iJ3 = ,- e 

. d j _; e- i P d r 
Equation (56) becomes 

= 

+ 

+ 

T 

+ 

-a.U 
J2-rrv 

ctU 
.jZTTV 

.i.. a.V 
J2TrV 

a.U 
ftTrV 

i' (~+ 1) e-
ip dp 

J( J + e-1P) [ -( À -1) + (Â + 1) e-
iP

] 0 

t (À + 1) dp 
Jei-l- e~i~)[(Â+ 1) -(~-1) e-'P] 

.0 

./3 (Â-l) i.. e-i/l d p 
1 j (1 + e- iP ) [(~+ 1) - (À -1) e- i13

] 
0 

_ ; 0. u("+r) rfJ 
. dp 

Ji 1TV Jo /[("-+1)'" 2.cosp r(I-Â)COS2fJ- ;[es,np.,.(j-?t)S,-n~é 

p , 
ia.U(Â-1) L dp 
.[2 rrv 0 lrc/-À) +zcoSf+(l-1-")COS GfJ-4- i[2.smp +(~+1).s1'l'12d 

a. U (."-1) 1P d p , . 
ft Tf V 0 j [C ,-") + 2, co.sf + U+ i\)co.s zt] - ï[ 2. .si~r -t(1 +/\)s;n 2../] 

~ , , . . 

a. U CÀ + t) J . d P 
(Z Tf V 0 i[e I-À) Cos 2f + 2 cos; +(i\+t)] -t" {Q -À) Sin 2.f + 2 .s''nf] 
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For simplieity one ean write 

Henee 

xl '= x4 := [C7\+1) +,2. COS? + (r-A) Cos 2;] 
X2 Q x

3
- r ( J -;>.) "+";) co./, + 6+") cos 21'J 

YI'= -Y4 =. [-2.s,np -O-?!)Si'Yl2rJ 

y 2 Q -Y3 Q [" 2 s''''1' + (1 +;>.) s,';" 2/'J 

JdZ = -io.U("+ 1) II' dp 
fi ïTV 1 p, (co.s e. + i s,'l1. e,) 0 

+ 
..i. o.U (;>'-1) II> "de 
ft Tf V 0 j ~ (cos GR. + ; S''Y\. S.e) 

. a. V (Â - t) 1 ~ .d f3 
fi 1TV 0 J ~ (co..s e.;s + i s.',.,.., 9.3) 

co.. U (Â+I) l' dÉ 
.tE rrv ' ~'j & (cos c94- + j SI"" (4) 

Pi = J X,2 + Yi 2-

, ej = A--tc. TO:?1.C-*) ; = ,~ 2,3,4 

= . a. U ' [_ (~+1) {. ;1/3 co.s(S'h) 
.{2 TrV 0 p,~ 

+ (7- -'-1) { i t CO.5 Jj.2/z) dt + L /J 

+ (':>'-1) [ - t 
.. (,,+ 1) ( l" 

d{3 + ; 1" SI'YL C:.3,!cz2 dt] 
o P:s 

d r -i f s,,>, f' ::;'4/2 ) dt]] 
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PART II 

For the ran,'!e of :; front -e -if ta' -re -i~ 

Let 

By puttine j == re-iP 

d'~ - e-iPdr 

, -~ 

io.U(Â-1) J d-f 
fi TI V i J ( 1 - 'te-tp.) [- CÀ- 1) - (;\+ i)"t e -ifs] 

-1 , , 

-r( , • 

. Îo.V("-fe1) f e-'~d..y 
./2 1fV _, j(l-ye- tP)[-(Â-l)-(7\-fe1)'Ye- i?j 

-y , 
= av CÀ'" 1) J . cl.., 

Ji Ti V , _, "I/[(?l-ti) -?"Ieosl+ !2(1-")Û's2~ -fe i[2"1 S'7 _.y2(/-').)$,.y,,1iJ 

-"'/' . 

o..U(Â+l)j " d-t' . 

,i- $rrv _, J[~+1) Cos 2.f -2.-fCo.:s; + 7'2(1+ Â)] .,. f(Â-fe Os,;... 2.f -2ï'.5':r-.p] 

-"(. 

- io.U(~-i) J 
ft TTV 

-1 

d'Y' 

X's = [c ')...,. 1) - z y COS f + ~2. (1- ~) Cos 2.f] 
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X 6 = [ ( Â + 1) Cos 2. f - ~ r Cos f + 7 2 (J - Â)] 

Yb ::. [( Â + J) SIn ?" - 2.ry: SI'YL f] 

x.., ::. [( I-~) - Z t"( cO~f + 7'2 (1.,. ?\) Cos zr] 
.. 

'37 
::: [ 2,,.,, .sl~ f - '(/2(1+ /i) S,~ ·2{ ] 

Ye 

Hepce 

-~ 

J d x. '= n· tJ [( Â + 1)! d,." 
/Env -, 7' J f5 (Cos 9 s + ; s,~ Gs-) 

-"1 . 

- ,. (? - 1) J d7'" 
. _1 "1 j P, ( Cos GJ7 + ; s,~ e?) 

-;(;>'+1) J-:"- d'f l 
-1 J Pe (Cos ee + is,~ Se) J 

l'lhere 

;:: s: ... s 
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+("-1) [ L7 
Cos (e6/22 

--( 

d-t - if Si"n. CelGh) d ] 
Al-2 x 7" 
(;- Pcs 2 -, 

[ -~ 
. -"'( 

+ ( 'À -1) -; J Cos (e:iz) dT -- J S'o/t (~7h) dY] 
..." f.!12 r~~ -/ - 7 -, 

+ (~+1) [ - [T -71 

dY], s,on (e%2 d'f - if Cos (G8/22 

Ft p~. -, 
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Table 2. 

Table 2.1 

HEAD !&.§S MEASUREMENT fiim MAXIMUM VELOCITY ALOI'TG THE INTRADOS 

VlITlI RIGHUNGLE MITHE BEN]) 

Expt. No •. 

1 

2 

:5 

4 

5 

Difference in level in the differential munometer 
corresponding to two points before and after. the 
bend on the --
Intra.dos 'Sides Extrados 

0.95" 0.85" 1.15" 

1.0" Q.90" 1.20" 

1.0" 0.90" 1.20" 

1.0" 0.90" , 1.20 " 

1.0" 0.90" 1.20 " 

The above readings have to be multiplied by (Y- 1) 

to obtain the pressure difference in inches of water. Y =. 

specifie gravit y of the manomèter liquid = 1.047. ' 
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Table 2.2 

HEAD ,L088 MEASUHEMENT WITtI MAXIMUM VELOCITY ALONG ~PHE EXTRADOS 

VlITH RIGHT-ANGIJE MITRE BEND 

Expt. No. 

1 

2 

3 

4 

5 

Difference in level in the differential manometer 
corresponding to tv/o points béfore and after the 
bend on 

Intrados Bides Extrados' 

1.6" 1.35" 1.65" 

1.7" 1.40" 1.70" 

1.75" 1.45" 1.70" 

1.75" 1.45" 1.70" 

1.75" 1.45" 1.70" 

The above readings have to be mu1 tip1ied ~y (y - 1) . 

to obtain the pressure difference in inches of water~ y~ 

specifie gravit y of the manometer 1iquid = 1.047. 

\ 
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Table 2.3 " 

HEAD IJOSS MRt\.SUREMENT VlITH UNIFOHM VEIJOCITY DISTRIBUTION 

WITH BIill!T-ANGLE MITRE BEND 

Expt. No. 

1 

2 

:3 

4 

5 

,Difference in level in the differential manbmeter 
corre"sponding to two points before and after the bend on t~h~e __________________ " ________________ __ 

Intrados Sides Extrados 

0.15" 0.15" 0.55" 

0.20" 0.15" 0.60" 

0.20 " 0.15" 0.60" 

0.20 " 0.15" 0.60" 

0.20" U.15" 0.60 " 

The above readings have to be mul tiplied by (y - 1) " 

to obtain the pressure difference ïn inches of"water. 

y= specifie gravit y of the manometer liquid"= 1.047. 
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TABLE 3 ' 

Table 3.1 

HEAD LOSS MEASUREMENT V/lm MAXIrIJUM VELOClTY AJJONG THE INTRADOS 

(i) WlTH INNER-CUHVED WALL ALONE 

Difference in level in the differential ma~ometer 
Expt. No. corresponding to tv/o points before and after the 

bend on the 

Intrados Sides Extrados 

1 0.25" 0.25" 0.55" 

2 0.25" 0.25" 0.55" 

3 0.25" o. '25" 0.55" 

4 0.25" 0.25" 0.55" 

5 0.25" 0 .. 25" 0.55" 

(ii) WITH INNÉR-CURVED V/ALII AND INTERNAL GUIDE VANES 

Difference in level in the differential manometer 
Expt. No. corresponding to tv/o points before and after the 

bend on the 

Intrados Bides Ex'trados 

1 0.15" 0.40 " 0.35" 

2 0.15" 0.40" 0.35" 

3 0.15" 0.40" 0.35" 

4' 0.15" 0.40" 0.35" 

The above readings have to be multiplied by (Y- 1) to 

obtain the pressure difference in inches of water. Y = specifie . 
gravit y 0:[: the manomcter liquid = ,1.047. 
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Table 3.2 

HEAD LOSS MEASUREl\ŒHT VIITII IVIAXIMUM VELOCITY ALOnG THE EXTRADOS 

(i) V/PPH .. INNER-CURVED WALL ALONE 

Expt. No. 

l 

2 

3 

4 

Difference in level in the differential manometer 
correspondin,g to two points before and after the 
bend on the. 

Intrados Sides Extr"ados 

1.1" 1.10" .1.15" 

1.1" 1.1" 1.15" 

1.1" 1.1" 1.15" 

1.1" .1.1" 1.15" 

(ii) VIPIJI INNER-CUHVED WALL AND INTERNAL GUIDE VArIES 

Difference in 1eve1 in the differentia1 manometer. 
Expt. No. corresponàing ta two points before and after the 

bend on the 

Intrados Sides Extrados 

1 0.7" 0.8" 0.8" 

2 0.7" 0.8" Q.8" 

3 0.7" 0.8" 0.8" 

4 0.7" 0.8" 0.8" 

The ab()ve readings have to be mu1 tip1ied by (Y - 1) to 

obtain the pressure differences in inches of water. "1 = specifie 

g~avity of the m~mometer 1iquid = 1.047. 
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Table 3.3 

HEAD LOSS MEAsUREP .. 1ENT WI~{ UNIFORM VELOCI~ly DISTRIBU~nON 

WITH INNER-CURVED WALL ALO:NE 

(i) 

Expt. No. 

1 

2 

3 

4 

5 

'Difference in 1eve1 in the differential manometer 
corresponding to two points before and after the 
bend on the' 

Intrados Sides Extrad.os 

0.15" 0.25" 0.35" 

0 • .l5" 0.25" 0.35" 

0.15" 0.25,j 0.35" 

0.15" 0.25 " 0.35" 

0.15" 0.25" 0.35" 

(ii) V/PL!! INNER-CURVED WALL AND INTERNAL GUIDE VANES 

Expto No. 

1 

2 

3 

4 

Difference in 1evel in the differcntial manometer 
correspond.ing to two points before and after the 
bend on the 

Intrados Sides Extrad.os 

0.00" 0.05" 0.2" 

0.01" 0.05" 0.2" 

0.01" 0.05" 0.2" 

0.00" 0.05" 0.2'" 

The above readings have to be mu1 tiplied by ('1 - 1) tô 

ob tain the head loss in inches of water. Y = specifie gravi ty 

of the manoraetcr liquid = 1.047. 
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THE OUTPUT OF ~IHE COMPUTER PROGRAl\1ME AS PER APPENDIX land 2 

Table 4 

l 
!l1}}e value of 

Â 

1.0980 
1.0990 
1.1000 
1.1010 

BENCE 

The difference between 
computed value q..., l foot 

- 0.00q8 
- 0.0017 
+ 0.0033 
+ 0.0083 

'II THE SHAPE OF THE INNER-CURVED V1ALL 

Table 2. 
x (inches) y {inches~ 

0.0 12.0 

0.130 10.708 

0.662 8.497 

1.466 6.546 

2.448 4.939 

3.595 3.595 

·4.939 2.448 

0.546 1.466 

8.497 0.662 

10.708 0.130 

12.00 0.0 

The shape of the inner-curved wall has been plotted in :figure 21. 
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III ~'O CALCULA TE THE SHAPE OF THE INTERNAL GUIDE VANES 

(a) Calcul~ tion 'of the Eoint on the 1ine BF. ( Fig. 3 ) 

(The output of the numerical integration for the range of 1 .. 
fro~ -1 to -i~ ) -e 

Table 6 

Real part Imaginary part 
Value of ~in feet} (in feet} 

5 U.01~93 -0.01593 
10 0.03226 -0.03226' 
15 0.04898 -0.04898 
20 0.06611 -0.06611 
25 0.08366 ~0.08366 

30 0.10164 -0.10165 
35 0.12008 -0 .. 12008 
40 0.13898 -0.13898 
45 0.15836 -0.15836 
50 0.17824 .-0.17824 
55 0.19865 -0.19865 
60 0.21961 .-0.21961 
65 0.24114 -0.24114 
70 0.26327 -0.26327 
75 0.28604 -0.28604 
80 0.30948 -0.30948 
85 0.33364 -0.33364 
90 0.34855 . -0.34855 
95 0.38429 -0.38429 

100 0.41091 . -0.41091 
105 0.43848 -0~43848 

110 0.46710 -0.46710 
115 0.49686 -0.49686 
120 0.52710 -0.52710 

(continued) 
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125 0.55726 -0.55726 
130 0.58880 -0.58880 
13~ 0.62l92 -0.62192 
140 0.65692 -0.65692 
145 0.694.L6 -0.69416 
150 0.73414 -0.73414 
155 0.77760 -0.77760 
160 0.82565 . -0.82565 
165 0.88016 -0.88016 
170 0.94481 -0.94481 
175 1.02905 -1.02905 

IV TO CALCULATE THE SHAPE OF ~J.1HE IN~PERNAL GUIDE VANES (~'HE 
OUTPU~' Olt' THE NUIvŒtUCAL IN~7::GRATIOrI .b10R 1'HE RAHGB OE' ~ 
FROM -e -,p ï'O -re-:P). -

(a) For CI = 3/4 or a 
Tab1e-1 

Radius 
1.50 
2.0 
2.5 
3.0 
5.0 
7.0 
9.0 

Il.0 
13.0 
15.0 
17.0 

1;leal part 
(in inches) 

0.86003 
1.55612 
2.03049 
2.37788 
3.17568 
3.57588 
3.8130 
3.98053 
4.09606 
4.18190 
4.24773 

Imaginary part 
(in.inches) 
0.09495 
1.87644 
2.61780 
3.23439 

.4.99518 
6.16991 
·7.05136 
7~75725 
8.34651 
8.85272 
9.29690 

. (continued) 
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19.0 4.29951 
21.0 4.34109 
23.0 4.37508 
25.0 4.40331 
27.0 4.42707 
29.0 4.44732 
31.0 4.46476. 
33.0 4.47993 
35.0 4.49324 
37.0' 4.50501 
39.0 4.51548 
41.0 4.52487 
43.0 4.53332 
45.0 4.54097 
47.0 4.54793 
49.0 4.55429 
51.0 4.56012 

(b) For C/a ::: 1/2 or f ::: 900 

Table. 8 --
Real part 

Radius (in inches) 
1.5 1.25883 
2.0 2.04327 
2.5 2.56137 
3.0 2.93900 
5.0 3.74230 
7.0 4.12874 
9.0 4.35912 

11.0 4.51301 . 

.. 

9.69198 
10.05065 
10.37689 
10.67693 
10.95476 
Il. 2135t 
11.45568 
11.68330 
Il.89802 
12.10125 
12.19418 
:;1.2.47780 
12.65298 
1? 82045 
12.98086 
13.13480 
13.28276 

Imaginary part 
~in inch~.L 

1.45323 
2.61580 
3.54068 
4.32403 
6.43567 
7.80619 
8.81597 
9.61400 

(continued) 
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13.0 4.62339 10.27326 
15.0 4.70653 " 10.83472 

"17.0 4.77142 Il.32361 
19.0 4.82348 II.75654 .. 
21.0 ·4.86617 12.14502 
23.0 4.09181 12.49734 
25.0 4.93200 12.81968 

" 27.0 4.95789 13.11676 
29.0 4.98035 13.39225 
31.0 5.0000 . 13.64911 
33.0 . 5.01735 13.88967 
35.0 5.03276 14.11591 
37.0 5.04655 14.32944 
,9.0 5.05896 14.53162 
41.0 5.07019 14.72358 
43.0 5.08039 14.90632 
45.0 5.08970 15.08069 
47.0 5.09823 15.24742 
49.0 5010608 15.40715 
51.0 5.11331 15.45044 
53.0 5.12002 15.70782 
55.0 5.12623 15.84969 
57.0 5.1,3202 ,15.98647 
59.0 5.13741 16.11850 
61.0 5.14246 16.24612 
63.0 5.14719 16.36961 
65.0 5.15164 16.48921 
67.0 5.15582 16.60519 
69.0 5.15975 16.71773 
7l.0 5.·16347 16.82704 
73.0 5.16698 16.93332 
75.0 5.17031 17.03671 

(continued) 
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77.0 5.17347 17.13737 
79 5.17647 17.23544 
'83 5.18204 17.42433 
87 5.18709 17.60431 , . 

91 5.19170 17.77617 
95 5.19592 17.94063 
99 5.19981 18.09828 

103 5.20340 18.24986 
.' 107 5.20671 18.39531 

III 5.20979 18.53558 
115 5.21265 18.67087 
119 5.21532 18.80153 
123 5.21781 18.92786 
127 5.22016 19.05016 
131 5.22235 19.16864 
135 5.22442 19.28357 
139 5.22637 19.39513 
143 5.22820 1.9.50351 
147 5.22994 19.60890 
151 5.23158 1.9.71147 
155 5.23314 19.81136 
159 5.23462 19.90869 
163 5.23603 . 20.00360 
167 5.23737 20.09621 
171 5.23865 20.18663 
175 5.23987 20.27495 
18:t 5.24159 20.40372 
185 5.24268 20.48721 
189 5.24372 20.56892 
193 5.24422 20.64893 
197 5.24567 20.72726 
201 5.24650 20.80405 
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Cc) For C/a = 1/4 or f =.135° 

Table 9 

Real part Imaginary part 
Radius (in inches) (in inches) 

3.0 3.16775 5.94243· 
5.0 3.7517.9 8.52136 
7.0 4.00577 10.19204 
9.0 4.15114 11G23433 

Il.0 4.24634. 12.11397 
, 13.0 4.31394 12.83212 
15.0 4.36461 13.43836 
17.0 4.40410 13.96260 
19.0 4.43578 14.42424 ' 
21.0 4.46180 14.83653 
23.0 4.48356 15.20B96 
25.0 4.50204 15.54850 
29 4.53176 16.14899 

33 4.55463. 16.66815 

37 4.57279 17.12531 

43 4.59396 17.72264 
47 4.60520 18.07466 
51 4.61474 18.39700 

55 4.6'2229 18.69462 

59 4.63006 18.97009 
63 4.63631 19.22736 
71 4.64676 19.69510 
79 4.65514 20.11180 
87 4.66202 20.48749 

95 4.66778 20.82953 
103 4.67265 21.14343 
III 4.67683 21.43350 
119 4.68045 21.70308 
127 ' ·4.68363 21.95·490 

(continued) 
• 
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135 4.68643 ,22.19110 
143 4.68892 22.41357 
l'51 4.69115 22.62378 
159 '4.69316 22.82301, 
167 4.69497 23.01237 
175 4.69662 23.19278 
i83 4.69813 23.-36504 
191 ' 4.69951 23.52988 
199 4.70078 23.68787 
201 4.70108 23.72638 

c 

• 



Table 10 

v 
-- - - - - - .., - .. -

VI (V
l
-V

2
)2 Measured 

2 g Head 10ss 

Mitre bend (1) ( 2) (3) 

(i) Uniform Velocity 0.544 0.00062 0.275 tl 

(ii) Maximum along 
ir..trados 0.90 0.00475 1.0" 

(iii)Maximum along 
extrados 0.60 0.00101 1.585" 

Inner-Curved wall 
(i) Uniform Velocit~ 0.544 0.00062 0.25" 
(ii) \'/i th maximum 

along intrados 0.70 0.00196 0.325" 
(iii)\'/i th maximum 

alOr.lg extrados 0.6 0.00101 1.1125" 
In..'1er-Curved wall 
and In ternal 
Guide Vanes 

1 

(i) Uniform Veloci t~ - - 0.0775" 
" ( ii) Vii th maximum 

along intrados - - 0.325" 
(iii)With maximum 

along extrados - - 0.775" 
, 

- -
-_Head -Loss - Head Loss due to 

AH = -in feet Laminar Boundary 
(4)-(5) of water l-ayer 

(4) (5) (6) 

0.00107 0.000115 0.00096 

0.00391 0.000115 0.0038 

0.00621 0.000115 0.0061 

0.00097 0.000115 0.00086 

0.00127 0.000115 0.00115 

0.004"36 0.000115 0.00425 

0.00030 0.00023 0.000.07 , 

0.00127 0.00023 0.00104 

0.00304 0.00023 0.0028 
_ .. ~~- - ---

. 

6) / (2) 

(7) 

1.55 

0.8 

6 

1.391 

- 0.6 

4 

-
..;, 

-

-1<:: CC) 
~~, c 

(8) 

0.52 

2.1 

3.3 -

0.47 

0."64 

- 2.3 

0.04 

"0057 

1.5 

1-' 
o 
\J\ 
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Plate No.l. Photograprrof the Experimental Set up 

Plate No. 2. Luci te Duct Covered l'ri th Aluminum Frame. 
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Pl.')te r·:o .1. Photop;raph of the Exneri:"1ent[',1 ~~et U;) 

T,ue:. te •. ~ + '. 
'. . .~. '-,. 
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Plate No.3. The Di~~erential Manometer 

Plate 4. The \Ileir Construction at the top 
o~ the tank 
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Plate No.3. The DifferentiaI Manometer 

Plate h .• The ~eir Construction at the top 
of the tank 
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(a) Velocity Measurements in the Horizontal 
portion of the duct 

--
Plate.No.5.(b) Velocity Measurements in the 

horizontal portion of the duct 
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---------- ------------

Ca) Velocity Measurements in the Horizontal 

portion of the duct 

PJ.ate.No.5.{b) Velocitv !·~eéisure~ents in the 

horizontal portion of the duct 
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Plate No.6.(a) Velocity Measurements in the 
horizontal portion of the duct 

Plate No.6.(b) Velocity Measurements in the 
vertical portion of the duct 
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Plate No. 6. (a) Veloci ty r.1ea.sure!11ents in the 

horizontal portion of the duct 

,
;Jl:,Te Po 6 (b) "relocl." t-· '·e·'·Cl,')',p~"entC"" in t.r.~ ....... t.- ... \.. ..- of, v.~...A.- ..... "-' 
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Plate No.7.(a) Velocity Measurements in the 
vertical portion of the duct 

Plate No.7.(b) Velocity Measurements in the 

vertical portion of the duct. 
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Plate 1';0.7. (2) 'Jelocity T'·;e(;sllrc·~ents in the 

verticE,l portion of the duct 

'- " :.:, , . : ::) • ':' • ! l \ '! r· "1 , ~ ~ : •• ': c . ~ '} ~'(:' ,r r. ~~ ~ 1. :, •. (~ 
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Plate No_.8. Lucite Duct Covered with frames 
aIl around 

Plate No.9. The Equipment used for velocity 
measurement 
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Plate No.d. Lucite Duct Covered with frames 
aIl around 

Plate l'o. 9. The EC1uipnent use(! for veloci ty 

measurement 
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. ,. .. 

,!O,"plate No.IO. Lueite Duet',Supporting Platform & Jaeks 
.' r 

\. 

Plate No.ll. An outside View of the Interna! 

Guide Vanes 
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Plate No.lD. Lucite Duct,Supporting Platform & Jacks 

Plate t:o .11. An out side View of the Intern.ql 

GUide Vanes 
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• --- ___ . __ ._ .... _ .1 

i 

1 
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1 
j 

1 
1 
: 

~_Plate No.12. The Lucite Duct in Open Position 

Plate No.13. An Inside View of the Guide Vanes 

.' 
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Pla :JO )':0 .12. 'l'he Luci te Duct in 0 r:JE:n Po si tian 
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.RI.GH'l' 'ANGLED DUCT 'vITH INNER CURVED l'IALI.I Dr~SIÇrNE.D 

FOR COi-IsTIlN.T VELOéITY. 

~-Plane 

A. 
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\-l-Plane 
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ordinat 
b/a A 

F 

E 

radius= 
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RIGHT ANGLED MITRE BE ND 

TRANS FORt-TA 'l'IONS USED 

9J(APHICAL PRESENTATION 

b 

E 

F 
A 

;> 

D 

r,A 

C· 

. (-V~ )-Planc 
( . +7\) 

• 

~-P1ane 
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t-Plane 
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0.5 (smooth ). 
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FIG.~~. HEAD J.JOSS COEFFICIEHrl'S !t'OR SMOOTH 90°' BEHDEJ. 
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FIG. 12. DHmr-!SIONS OF DEFLECTING VAr'lES FOR r·lITHE BEi~DS 
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MEASUREMENT OF VELOCITY ~lITB CURVED INTRADOS AND ~ITH 
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pNIFOflT':I VgLOCITY DIPJ'RIBUTION 
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