J.M. CHEMPALATHRA

The Free Streamline Theory to a Right Angled Duct.



APPLICATION OF THE FREE STREAMLINE
THEORY TO A RIGHT ANGLED DUCT

by

John Mohan Chempalathra

A thesis submitted to the FACULTY OF

GRADUATE STUDIES and RESEARCH in partial

fulfilment for the degree of HASTER OIF
ENGINEERING

" Department of Civil Engineering
McGill University
Montreal Quebec January 1971

C) John Vohan Chempalathkra 1971



APPLICATION OF THE FREE STREAMLINE
THEORY TO A RIGHT ANGLED DUCT
by

John Mohan Chempalathra

A thesis submitted to the FACULTY OF

GRADUATE STUDIES and RESEARCH in partial

fulfilment for the degree of HASTER O
ENGINEERING

" Department of Civil Engineering
McGill University
Montreal Quebec January 1971

(© John Mohan Chempalathra 1971



- SUKMARY

.0On the assumptions of incompressible ideal fluid
flow theory this work is directed fowards invgstigating the
design of a right-angled bend in a fectangﬁlar (or square)
conduit incorporating one curved surface only (the 'intradost').
Experiments were conducted 1o ascertain the utilit& of guide
vanes intended to prevent loss of energy due to separation
and subsequent eddy formation. In the present instance, the
boundary layer formation, as well as turbulence, was kept to
.4 minimun by the use of a 1arge’constant.leyel tank at the .
inlet to.the test section. The uniform velocity distribution
thus obtained was, however, modified in testing, and by the
use of mesh, trapezoidal distributions'simulating possible

disturbances met with in practice were also investigated.

The design of the inner curved wall and internal
guide'vanes was carried out for the case in which both legs
of the elbow havelthe seme cross sectional area, viz., there
is no change of section in the main duct before and after the
beﬁd. But the method of analysis is applicaﬁle to a whole
family of possiblie designs depending on the values of x%/b
(ﬁoz'horizontql projection of the inner curved wall, b = width

of inlet).

The mathematical analysis for obtaining the shape

of the internal guide vanes .was verified by an electrical



enzlogy. ZExperimental investigations on the selectéd shape was .
carried out on a lucite conduit having a square inlet scction.
The measurement of head loss and velocity had been conducted
with and without internal guide venes and also with a sharp
mitre bend, in order to evaluate the possible advantages of

both the inside guide vanes and the inner curved wall,

For the uniform inlet velocity distribution; pressure
.measurements showed that with guide'vanes the loss of head was-
reduced almost to zero under suitable conditions (after deduc~
ting skin friction losses) and the velocity measurements coﬁ—
firmed that the separation and eddy formation had diminished

considerably with the introduction of guide vanes.

John Chempalathnra
M.Eng.
Civil Engineering
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INTRODUCTION

Many twd-dimensional flow patterns which include
the formation or deflection of jets,flowé over bends or
éteps or flows past cavities,involve separation of the
fluid from the solid surface with a corresponding loss of
‘energy with of without the occurrence of cavitation.Problems
of this type are partﬁéularly difficult to analyze and
predict when the distribution of the velocity of the
incoming fluid is not uniform.

A bend in a pipe line causes local disﬁurbance of
the velocity distribﬁtion with a corresponding loss of
mecﬁanical energy.From momentum considerations,owing to
the change in flow direction,there must be an increase in
pressure(and hence a decrease in velocity) around the
outside of the bend,or the ekzrados,and a decrease in
pressure around the inside of -the bend.

It may be of interest to know what happens and
how head losses occur when a bend( the centre line of
 which is a circular arc) is introduced in a circular pipe
with the usual type of non-uniform velocity distribution.
As the flow enters such a bend,the inertia effect(so-cailed
centrifugal forces) acting on the upstream velocity profile
produces an oscillatory secondary flow,transverse to the
main flow.After some oscillations in the transition region

of the bend,the secondary flow is damped by viscosity and,
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if the bend is sufficiently—long;fully aeveloped curved
flow is reached.In the outlet pipe of the bend the
disturbances attenuate gradually over a distance of up to
50 pipe diameters.Hawthorne(Ref.23) haslshoyn that fully
developed curved flow is not established in most bepds of
practical interest.large head losses occur when high
energy fluid spreads from the centre to the wall of the
pipe on account of thé secondary flow.He states that the
losses in the bend itself are probably least when the
bend deflection does not exceed B(T/2) [d/R radians,
where R represents the mean radius of curvature of the .
bend,d the pipe diameter and B,a constant,varies between
1.1 and 1.5.This loss is a maximum in the outlet transition
region when the bend deflection is once or 3 times the
above value.The loss in the outlet transition region is
. a minimum when the bend defléction is twice the above
value and fully develéped curved flow has been established.
. Owing to viscous effects,the inlet velocity
will generally be non-uniform with zero velocity at the
wall of the circular pipe.Tﬁe inertia effects usually
predominate over the viscous ones ét the initial portion
~ of the bend for most of the cross section. |
In the bend transition region the secondary

. flow exhibits the characteristics of a damped vibration.

For low Reynolds numbers,no oscillation occurs.At large
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Reynolds numbers,the secondary flow is oscillatory and
fully developed curved flow is never reached.Hence the
flow enters the outlet transition region downstream from
a bend at a'phasé of the damped oscillation depending
both on the bend géometry and thé inlet conditions.The
‘ possible conditions at the inlet to the downstreaﬁ pipe
_are'hence numerous;and experimentai results are difficult
to interpret. ' |
The major loss in a pipe bend is the increasecd

viscous dissipation due to the large gradient of axiai
velocity created on the outer wall of the pipe when the
high velocity fluid initially in the centre of the pipe
is displaced outwards by the secondary flow.

The foregoing.discuésioh has been concerned
‘with'bends inrpipes of circular cross section.Analyzing
bends following circulgr arcs in pipes of square or
rectangular cross section,Cuming(1955) has stated that
the dynamical parameter on which the secondary flow in

a pipe of rectangular cross section depends is

k* = R (20/R)} (1)

where d is the axis of the rectangle in the plane of the
bend.R is the radius of curvature of the axis of the pipe
and Rn is the Reypolds number based on the mean velocity
and the dimension d. When the value of K* is large,the
viscous effects tend to become confined to a boundary

layer on the wall of the pipe.
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In a square pipe,the sécondary velocity at the
axis is more than twice the value in a circular pipe of
. diameter equal to’ the side of the square pipe.The .
. comparison is made gt flows giving the same pressure
loss per unit length of,straight pipe.
, Squire and Winter (1951) have shown experimentally
_ that in the case of a rectangular channel bent to the
- form of.a circular arc,the secondary vorticity in a
right angled bend can.be easily three times the initial
YOrticity at right angles to the flow.Since large velocity
gradients can occur neaf the wall of the duct,this explains
the pronounced secondary flows which are frequently
observed.
. Several methods have been tried in the past to
reduce this loss of energy,oscillatory flow and
. possibilities of cavitaﬁion damage at high velocities.
The most recent line of épproach has been to introduce a
series of deflecting vanes in a simple mitre joint,and
several empiricél designs have been tried to get the
maximum efficiency;
A theoretical approach to this type of problem
" was lacking until the development of the Helmholtz- .
Kirchhoff theory of free streamlines.The pﬁrpose of
the present work is to investigate theoretically and
experimentally the possibilities of solving this probiem

. by adopting a suitable curve along the inner side of the
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‘bend with necessary guide Qanes-insidé,all designed
- using the Kirchhoff theory of free streamlines.

For experimental purposes,the proﬁlem was
was studied by allowing the water to flow through a
lucite right angled duct having a square‘cross section
with éemovéble casing of the bend on the inner side,
inclined at 45° té the horizontal.Guide vanes could
‘be introduced or reﬁoved at will through this wall
@ig.?).A uniform velocity:distribution at the inlet
to the lucite bend was achieved by bolting it to a
constant level tank having a funnel type bottom with
a square opening at the end.With a constant outflow
the velocity and head losses were measured before and
after the bend with a sharp right angled mitre bend
and also with the designed curved intrados with and
without internal guide vaneé.The experimental study
was extended to two different trapezoidal velocity
distributions( one ﬁith maximum along the intrados
and one minimum) at the entrance to the bend.The
flow follows the path of the streamlines and it was
noted that in the absence of internal guide vanes,
separation occurs from the.curved intrados with.eddies
forming; this was reduced considerably by the introd-
 uction of internal guide vanes.Similarly,it was
observed that the head losses and variation in velocity

distribution were reduced appreciably.



In the theofetical study;the free._streamline
along which pressure and velocity were constant,was
used for the determlnatlon of the profile of the curved
1ntrados of the right angled duct.

The analysis of this prpblem is extended to the
determination of the shape of the intefnal guide vanes
~also.The method consists of the definition of successive
conférmal transformations inecluding a hodograph plane
and the application of the Schwarz-Christoffel
ﬁransformation.This type of transformation for the two- -
dimensional flow was amenable to the free streamline
analysis,since the boundaries upstream and downstream
from the constant pressure section were made of straight

"lines along which the direction of flow was constant.
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2.  DETAILS OF PREVIOUS INVESTIGATIONS

2.1. PREVIOUS STUDIES FOR MINIMIZiHG BEIND LOSSES

‘queral investigations have previously been carried
out with a view to reducing the loss 6f energy in bends, which
really involves reduction in both the secondary flow and the
separation effects,either through proper changes in the bend

geometry or by introducing suitable deflecting vanes.

Such sets of vaneé have been experimented and pro-
posed by Krober (Ref. 3) in particular for rectangular ducts
‘(ventilation shafts for example). These may be computed like
ﬁurbine cascades, The a?solute values of pitch and depth
(Fig. 16a) should be optimised consiaering the thrust on these
vanes, Krober gave the shape of practical profiles, obtained
experimentally for angles of 900, 60° and 45°. These profiles
can be built out of thin metal sheets (Fig. 16b). The separa-~
tion occurring on the inner curved wall for right angled bends
may be reduced by using thick profiles (Fig. 17), made up of
two metal sheets, but this adds of course to the difficulty of
construction. Fig. 18 shows a design prepared by Rateau Pump

Company, France.

The head-loss coefficient with Krober guide vanes

(Ref. 3) is claimed to be as low as 0.15 V22

2g
bend angle may be, i.e., 45° or 90°, in turbulent flow condi-

, whatever the

tions, providing that the vanes are very carefully built. In
this fornula, V2 represents the average velocity in the fully

expanded area, downstream of the bend. These vanes could be
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used for circular ducts but head'losseé would be greater
owing‘to separation occurring at the junction of these
vanes with fhe circular boundary.

Another method is to round off the innef corner
',with a ?adius R as large‘as possible. Such a design may

also call for vanes like g' and An in Fig.l9; Still

- another method inspired by the slotted wing principle is

t6 make use of a series of vanes like 3,285,323 (Fig.20) of
convenient shape and suitably placed with respect to
each other(Ref.3). This is of course the approach studied
in the present thesis.

Wirt (described in Ref.2) tried to reduce
the intensity of the secéndar& flow?by increasing the
- width and decreasing the depth for different aspect
ratios of a 90° bend in a rectangular duct of width b2
and depth D in the plane 6f curvature and having a
centre line radius R..The results obtained by him are
described in Ref.2 and reproduced in the following table:

TABLE I |
L0SS COEFFICIENTS FOR RECTANGULAR DUCTS

b2/p 6 6 6 3 3 3
R/D 5/3 1 2/3 5/3 - 1 2/3
K 0.09 0.16 0.38 0.15 0.22 0.55
*

Refer page 1



-9 -

'Here K is the head-loss cogfficieht and is defined as
the ratio of the head loss to velocity head. The results
show some success in lowering the intensity of the

~ secondary flow and also it indicates that separation
losses decreases as the curvature ratio increases..

This was used for circular cross section for.quite
sometime.'Hofmann's.results suitable for cases in which
the inner surface is properly finished,as in pipes or |
tunnels,are described in Ref.2 and reproduced in fig.ll
as functions of Reynolds number.

It was found later that far better results
could be_obtained by introducing a series of deflecting
vanes(described in Ref.2f in a simple mitre bend (fig.13).
For example,the head-loss coefficient K for a plain
mitre bend was approximately 1.l and that for a normal
iong radius elbow could be of the order of 0.5,in either-
case,a properly designed'set of vanes could reduce K to
as little as 0.,15,and beyond the bend would restore the
same velocity diétribution across the section as in the
incoming flow. Typical vanes uséd had short leading and
trailing tangents as shown in fig.l2.by the investigation
‘of Wirt,Klein,Tupper and Green as described in Ref.z. -
The latter.investigators found that vanes without tangents

(fig.13) perform equally well.
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2.2, DEVELOPMENT OF THE FREE STREAMLINE THEORY

During the period of over 100 years which has elapsed
since the original development of the method of Helmholtz and
Kirchhofﬂ numerous contributions to this theory have been made
" primarily by mathematicians. The cbncept of the discontinuvous '
surface, or free streamline separating the floﬁ into two regions
and thus permitting more realistic analysis of flow situations,
was introduced by Helmholtz (1868). The only prior classical
theory was for flow which doubled back on the boundary in such
a way as to give infinite velocifies and negatively infinite
pressures at the end of the channel (point A in Fig. 1l4a).
Helmholtz's fundamental contributioﬁ was the concept of a free
boundary which was defined in the kinematic, rather than in the
geometric sense (Fig. 14b). He reasoned that the bounding
streamline would separate from the_ solid boundary and that
the free streamline thus formed could be characterized by a
constant pressure and hence by a constgnt veloéity. He visue-
lized a quiescent wake of constant pressure and a velocity
discontinuity at the free‘streamline. In 1869 his colleague,
G. Kirchhoff,solved the problem of an efflux from an opening
in an infinite reservoir having plane boundaries, and also
that df the effect of a plate in an otherwise uniform field
of flow extending to infinity in all directions. iord Rayleigh
(1876) systematized these results and extended free streamline
analysis to the case of an inclined plate, found the value of

0.611 for the plane orifice contraction coefficient from
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Kirchhoff's solution, and studied intersecting jets or currents.
The approach employed by these pioneers was indirect, to the
extent that they tried out various functions and adjusted con-

stants until useful results were obtained.

Development of a direct method of solving any of. a
iarge class of free streamline flows awaited definition of the
‘ hoﬁograph planes~and certain complementary transfdrmations;

In 1884, Hax Planck introduced thé use of logarithmic hodo-

graphs in the solution of free streamline problems.

Considerable work has since been carried out on the
extension and application of this type of analysis: A brief
outline of some of the most importgnt work is described below:;
N.E. Joukowsky greatly extended Planck's indirect analysis
technique in 1890, and worked on the the&ry of jets and wakes.
His method allowed for the solution of problems with a large

nunber of stagnation points and free surfaces.

J.H., Michell (1890) showed how to use the Schwarz-
Christoffel transformétion and the auxiliary t-plane between
the logarithmic and complex potential planes. In his extension
and formalization of Kichell's method, A.E. Love (1891) indicated
the limits of the flow field in the Q, 5, w and t planes, using
locations of important points along the real axis of the t-plane
for'identification. M. Refhy.(1894) found solutions for a number
of jet discharge cases in the style of Joukowski (i.e., without

using the Schwarz-Christoffel transformation). T. Levi-Civita“
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(1901) indicated that free streamlines.could start from
rounded bodies as well as from sharp cornered ones.Further
extension of the‘free streamline analyéis was presented by
~A.G.Greenhill(1910). ‘

. ~ R.von Mises (1917) studied extensive efflux
problems.In i920,G.Colonetti and Riabouchinéky studied the
case of flow past iﬁclined plates held perpendicularly to
the middle of an infinite jet and flows past symmetric
pairs of wedges at suiﬁéble angles.Later;A.Eetz and
‘E.Petersohn (1931) stﬁdied multiple orifices and grids.
Lavrentieff,in 1938 simplified the theory of the
uniqueness and qualitative behavior of free streamlines.
Gurevich,in 1947 considefed the.problem of a two dimensional
jet issuing from a vertical wail taking into account .
surface tension of the jet.Birkhoff and Zarantonello,in
1953 (Ref.lB);made extensive studies of ideal steady flows
moving under'the inflpence of inertia;mainly the behavior
liquid jets in air,cavities behind obstacles in high speed
flows,cavitation behind cascades of airfoils,and also ideel
plane flows with free bOundarieé past curved obstacles and
| gave a qualitative description of the geometry of free
-streamlines.The work of J.S.McNown and C.S.Yih (1953)
represents a relatively recent contribution and includes
a wide range of free streamline problems.Comparisons of
the results of theory and of experiment indicate a
correspondence which is usually close and sometimes

astonishingly so.
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3. FREE STREAMLINE THEORY

Many plane irrotational flow patterns which include

the formation or deflection of jets can be analyzed completely

by the Helmholtz ~ Kirchhoff theory of free streamlines.

Patterns of flow through well streémlined bends have been

found to be defined at least moderately well.by potential flow

theory. The particular type of transition to be considered

_herein was characterized by a constant pressure (and therefore

by a constant magnitude of the velocity) around the curved

portiqh of the boundary.

Consider a plane steady flow of an ideal, inconm-

pressible fluid. The equations of motion are:

du |, . 3du -1 9p
tex tVay = P ax NG
3v. , ,av _ -lap
WsxtVvay = Fay (3)
where
u, v = Components of velocity in the x, y

The equation

directions, respectively

P

the density
P = the pressure
g = the acceleration due to gravity.

of continuity is:

(%)
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Since the motion is irrotational, one can introduce a velocity

potential g, such that

e L.
wo= 5% ’ v o= 35y (5)

The eguation (4) reduces +t0

2 2
X o9 -
— * S2 = O (6)
ox° . dy

and the equations (2) and (3) can be integrated to give
p
- +. % (u2 + v?) + gy = B (7)

where B is an arbitrary constant.

In plane motion one can introduce a stream function
such that _
v -0y

vo= 5y . vV ® 8)

o

.From (5) and (8), one obtains

28 _ 2w
ox - oY
26 _-ov
dy -~ ox 9)

These are the Cauchy-Riemann equations which indicate
that the complex potentiél W =@ + iy is an analytic function
of the complex variable z = x + iy, i.e.,

w = £(z) .o ' (10)



~ Now .
5-.- = —i— = . - -dq-g- = --'qe.-lg ' (ll)

in which & and 53 are the complex velocity and
its reciprocal respectively. q,the magnitude of the
resultant velocity, and 0 its inclination measured from

the x-axis.
1

2 2

Thus q =/u° +v @ = Tan” (12)

el<

3.1, FIXED AND FREE BOUNDARIES

‘ The boundaries of a moving fluid may consist
bartly of free streamlines and partly of fixed rigid
-walls. A rigid wall acting as a boundary is of course a
streamline along which ¥ = constant, but it is not
necessarily either an isobar or én isotachic line. The
Kirchhoff theory can be applied to cases in which the
rigid bouﬁdariés are straighp3 and which depend on the

function

Q = log(Vv $) (13)
where V represents the constant vélocity'along the
free streamline., If to simplify tﬁe terminology, 3 is
substituted for -dz/dw the two kinds of hodographs
commonly used are representations of 3 and of Q. The
second is also expressible in the form

Q = log ( Y

1 ) +i @ (14_).
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1

Since the pressure is constant, the spced 'q' along
a frec strcamline is constant and hence log(V/q) is constant.
Along a straight rigid boundary the flow direction © is constant

since i1 followis the direction of the boundary.

Hence as a general rule, straight solid'boundaries
A.in.the z-plane (Fig.9.) transform in to radial lines in the

S -plane (U/V = constant) and into straight lines parallel to
the real axis (O'=‘constant) in the Q-plane. Turthermore, free
'streamlines_along.which the pressure and velocity are constant
in the z-plane, become cifcular arcs with centres at the origin
'(u2 + v2 = constant) in the & ~plane ané straight lines‘parallel
to the imaginary axis (q = constanﬁ) in the Q-plane. It is thus
evident that the original boundary transforms into either a cir—
cular sector or a fectangle. Henée when the boundary is trans-
formed into the Q-plane, the'diagram will be a bolygon, the
interior of which can be mapped by the Schwarz—Christoffel

transformation on the upper half of the t~plane. A relation

between Q and t can be obtained, i.e., between dw/dz and t.

Similarly, when the boundaryvis transformed into the
w-plane, the diagram will consist of straight 1ines constituting
a polygon, the interior of which can be mapped on the uppér half
- of fhe t-plane. If'rom this a relation between w and t can be

obtained. If t is eliminated from the two relations, ore

obtains a relation between dw/dz and w, which on integration
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2 .

gives a rclation between w and z, characterizing the motiion,
Altlernatively, instead of eliminating t , w and z can be

expressed in terms of T .

3.2, PROPERTILS OF FREE STREAULINES

Along a frce sireamline ihé pressure is constant,
and hence the spced of flow is too (Bernoulli's theorem).
Also the stream function w is constant along a free streamline

just as on any other streamline.

%.3. MAIN ASSUNMPTIONS AND TLIMITATIONS IN THEH TEEORY

(i) The influence of gravity is negligible.
(ii) The influence of viscous friction along solid
boundaries is négligible. |
(iii) The flow.approaching the sectiqn has essentiallj
a.uniform Velocitj distribﬁtion, or, in practice that the non-

uniformity of the velocity.distribution is not significant,

B v The first assumption does not, of course, affect the

. flow pattern studied here, since the flow takes place in a
'élosed conduit. As far as the third 5ssumption_was concérnéq,
the Shaping of the lower portion of the tank gives one a unifor@
veloéity distribution. The problem was'thus reduced to a two-
dimensional potential fiow problem to which classical hydrbf

dynamics can be applied..
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4., THEORETICAL DESIGN OF INTERNAL GUIDE VANES
AND THE INNwIt CURVsSD WALL

4.). GENERAL CONSIDERATIONS

A general analysis based on free streamline theory is
described for determiﬁing the flow éharacteristics in a two
dimensional pipe bend. ZExpressions for 'velocity and pressure
at any point in the flow field are also obtained. The z-plane
diagram represents (Fig.g. ) the right angled duct, whose Wail's
are A BC,and H _GFED, The wall H,G, is part of a streamline.

T'he fluid flows along H G, turns at G and flows out of the duct
~along GED,. At the section C,D,, there is uniform parallel flow
with velocity U say. Let the breadth C,D,be 'a' and the flux
out of the duct be al. ’

If one .takes =0 on A BC, then yp= alU on the stream-
line H FD. Again one may also assume that @ = 0 at B and F,
which can always be arranged, since an arbitrary constant can.
be added to the velocity potential. T}'ms.at AH,, i.e., at all
points in the tank at a great distance from BF, @ =+ o6, while

g: "ﬂ at C‘o,D .

According to the principles explained in Chapter 3,
the z-plane is transformed into the w-plane. The diagrém
obtained in the w-plane is a polygon having the boundary
H,D,C A, , having the vertices CD and £H at infinity. The

interior of this polygon is next mapped on the upper half

of the t-plane using the Schwarz-Christoffel transformation,
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making G and E corresﬁond to t = -1 and t = +1 respectively.

B and F are regarded as coincident at t = O,

The following transformation relation is thus

obtained:
g__‘! _ I‘l . .
dat - T+ A) (T =2x) , @s5)

A represents a parameter, to be evaluated later

and rlis a constant. The next step is to draw the polygon -

described by

Q (e ¥4

log (V 33)

L

i

log (V) + ie
| q

In order to map this polygon on the t-plane, the

plane showing

Vdz = -V3 , - 16

s | (16)
is drawn. On the free streamline q = vV and therefore
ie

- V3 = e . Therefore along GFED in the ~-V35 plane (Fig.9.)

-V5 describes a quarter circle having a unit radius. Aiong HG

S|

one has 8 = i s while q increases from O to V at G. Hence

ei™2 _ i, at 6. Again at the point E, 6 = 0

o N}

-~V 3 changes t

and q = V and -V3 = e0 = 1., Similarly, in the 3 -plane, one has

5 = -dz/dw_ = _‘:,_]_._ e? (1.7)
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At the point B, Q = 0 and &= -1/V and at G, Q = im/2
and §= -i/V. The Q piane diag£am is also similarly drawn. A
folygon is obtained having a vertex B at infinity. Now this
. polygon is mapped on to the upper -half of the t-plane b# using
the Schwarz- Chrlstof;el transformation, und “the followlng

transformatwon relatlons are obtained:

ao . my  for -l <t <1l (18)

at = i =27 (B0 il, positive and real

. .
a0 N for t > 1 - (19)
a = J-0Dr+1)
aQ -' _t;::fl__ﬂ__“ﬂ S for t ¢ -1 ‘
SR AC AR N - (20)
Since Q = log, (V az )

dw

dz = 1 exp (Q)
w K

L

(17)

-

Now the above.equétions are integrated and the constants

evaluated.

From equation (15) dw ry vhere ryis a constant.
' odt f (F+A) (5-2) .

Solving by partial fractions:
aw = r (-1 — 1 )
122 A () * o7a eay ) 9t

W o= ]-log (t A) + SP vhere S,is a constant.

ZA e1t+2) +
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Yhen t = O w = iaU )

giving A
t=w . w—0 g SJ_:O,rl:-——-irig
-Hence,
al (t-2) '
v W=7 log,  Eray | (21)
dw _al (.1 _ l‘ )
at = 7 ((3=a) ~ [F+A))
‘= 222U
T (t-2) (t+a) . (22)
From equation (21)
(=3 wi/
t+a) - € 2U
i.e.
- 2A = - W C
t+A) 1-e al

ct
I

wIr
_ ?‘[ 1+Exp a0 |
wIr : .
1-Exp il (23)
Now equation (18) was integrated

Q = mlioge (26 + 20 /(I-%) (%+1)) + n

1l

waere nlis' a constenty
for -1 € ¢t £ 1 and t - complex.
This may be re-written as follows:

Q = 2mlog, ( JET +#J/IF ) +ny; (2

o
i

mlloge (2t + 2 J/(t-1)(T+1)) +nl (25)

Q l= inlloge |2t - 2./(t-'I)lt+l)l +n,q (26)
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Substitﬁting the boundary conditions

Q = 0 for t = +1
and Q = iTr/2 for t = -1
hence my = 2

ny = -3 log,(2)

C.Q = 3log (t+i/t1-t) (t+1)) (27 )

From equation (%4 ), one obtains:

| Jt + 1 i J1- 1t , |
Q = log, [ X j% L (28 )
and
N 1. -
d = (29)
3‘3“ 2iJ(1-t )(1+1t) :

From equation (17)

d 1
£ = g
= tJe+a/li-e)(e+1) (30)

Ao (el +iJ1-t) (31 )
vz

valid for t-complex or

-1 £ treal < 1
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‘Determination of A as a function of V/u

From the definition.of 2 and Q,

" For t = +A
. eQ =vy_4dz = V and hence
aw U
Q = log, ¥ | Zan (32)
U o
Therefore: .
log, ¥ = 1/2log, (2A+ iJ(I=A) (I+A)) (33)
U ‘ .
Ve (A+i JESTN)Y2 (34)
- . . .
2
F) -2 = +/X
A = V4 + U4 '
ovd? (35)
or
V = Exp (1/2 arcoshd) (36)
U ’ .
and
@) = 1 (V2 +u2)? (37)
VU S
0-1) = 1 (V2 -u?)? (38)
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Equation (30),together with equations (21),(23)

and (35) constitute the solution of the problem. t could

be eljiminated from the above equations and the relation

between w and z, obtained by iﬁtegration.

L2, THE SHAPE OF THE FREE STREAMLINE

From the projections of the length of the free

" streamline on the x-axis,for instahce,one may find the

precise ‘location of point E with respect to B ( or;

alternatively,of G with respect to B, considering the

y-axis) in fig.9.

the bend waé found.

1.

.Also IV dz/dWI = ¢l

The general observations were:

On a free streamline Q= i@ and dz= ds.e

where ds is an element of the curve and O is

the inclination of the tangent

is mapped on the real axis of the t-plane.

ie
’

Thus,one of the majof parameters of .

- Again, along a free streamline t is real,since it

If a point on the free streamline be designated

as (x,y) then

dx/ds = cos @ ; dy/ds
° -1

]

= gin O

(39 )

Where V represents the constant speed along the

free streamline.

From the above,on a free streamline

.1 = IV dz/dwl = IV e

. dt . dw

10 ds
dt

dat
dw

(40 )
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ds

ot .being negativef

the upper or lower sign being teaken according as 's' increases

with t or not. In the present problem, the origin in the z-plane

was taken at F and the free streamline GE was considered.

As

one goes along that line from F in the z-plane to E, t increases

ds

from O to +1. Therefore, along FE, EE'Was positive, whereas,

if one goes along.FG, t decreases from O to -1, ds/dt was

negative along FG.

S +ve z-Plane

e =T c.

't ___-ti . :Fignl
From equation (22), one has:

at _ m(t-2) (t+2)
dw ~ 222U

Substituting in equation (40)

1 = =V (t-1) (t+A) ds
2AaU at
ds _ =2aU 1 -
dt v (t2 _ 22) (41)

with the sign conventions shown.
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And .
Q = i 0 - iTT =%arc cos t (42)

from the property of the free streamline.Also this result

could be deduced by integrating

g% = 5z J(l}t) =1 ( for -1<t¢1,t real)
Hence t = cos 20 . _ .
at ~ -2 sin 20 40 | o (43)
Aiso . _ | | |
dx/ds = cos @ ; dy/ds = sin @ (39)
Taking the projection GE on the x-axis
3 U ' '
fdx - :/cos ° -?.r'?;,aU_ (cos}ZQd? a2) (-2 sin 26,
% Sy, .

-1

i

. 2 '
222 U j L u” du (L4)
T J k- )

©

where u = cos .©

du = - sin 0 40

R : ) -1
-V Y 1 J2 u
e U dex = (1-%) ATy — arc tan 71 .
G . .
o, , HAL o+ (Zu|™t
- (1 +=) 1 log
AT2/z (Av 1) °lal - Zu,
(45)
G m
. TV fdx = A-1 arc tan ..[.?—.9—9—?—.9—
EA& U e JZ—A /A_l

ans
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. . Lt -
JA'I‘ 10 J + 1 -+ 2 COSQ (hé)
2/—?\ eJ}\+ - J2 cos © amy,
Evidently,as
A—> 1 (Vo>u) [Fax —w0
. ’. E
A —> 00 (Vo) f dx — 0

» The position of F in the middle of the curve is found by
putting ces 8 = 5’!T/l; Ain the upper limit. The
expression for fdy 1s, of course similar to that for
fdx, except that cos © replaces sin @,

The value of 2 is obtained from equation ( 45)
5y putting x,= a, giving the .V/U ratio for the desired

geometry,where X, represents fE dx.
G

Hence
' _ 2%2avU |JA+2 Ine1 +/2
x = log
° Ty 2/2n" "t IAv1 -/2
- {A-1 arc tan———j—E——— (L7 )
Alz Ja-1 . -
with

IA+1 f+_ JA-1 from equation(33)
2

a i<



hence . : :
At +JA-1 | 2y fasdl g, [l ¢ JE]
Jz T 2/E A e\/avl - /2
- ‘2¥i% arc tan —L2— (48)

Solving the above expression, one gets thé value of A= 1.099.

The computer programme is shown in Appendixfl.

The x co-ordinate of the freé streamline is obtained
. from equation (11) by subsfituting the values of % and A for’
different values of 08 between T and 3*72. Similarly, the y-
'co;ordinate of the free streamline is.obtained by replacing

" Cos @ by Sin 8 and substituting different values for 6,
between 3Tpé and TT. The shape of the inner curved wall

obtained is plotted in figure 21.

Figure 2

0f course, the value of y can be found by symmetry.

27 . 6 with 6 as shown

3 = - i i o
Y(+) X(-) for point with ©
above .(M<¢Q < 3"72).
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4.3, IFORM OF THE STREANMLINES AND EQUIPOTENTIALS

This involves the integration of dz along a complex

plane.
First dz will be evaluated.
. B '
as t =A[( 1+exp” /aU)
( 1-exp”™au)| from equation (23).
(t+1) = (;\+1) +  (n=1) /3
(1 - eww/éu) (49)
£-1) = (J\'-]'..)‘ (A+1) wn/al
( ) (1+_ ex.';:r/aU)e (50)
%% = § ew (Q) (17)
= 1 /t + i J(2-1)(t+1) | (30)
1' ‘ : , .
’=. 1 Jt + 1+ j:(l-t) '
v /2 | . (31) -

Substituting the values of t, (t+l1) and (t-1) etec., one obtains

dz = _1 /()wl) + (A=1) R (A=1) + (A%-Il.le‘ma“’}
dw J2 v 1 - /3l 1 - gW/al

- (51)



A_.j‘o_

As one moves from B to F, the funétion-eW“th

varies as
Cos 6 + i Sin @) with 6 ranging from O'to TT. The above

equation was integrated by putting

-3 = oWr/al R . (52)
d3 = T 5 aw . - (53)
al o
‘4z = a5 a3
aw - as aw -
= d m o (54)
a3 al . :
therefore,
dz = aU _1_ {/(x%l) (13
a3 gy U (1 -3)

+ i J/ - jﬁ;l) - (A+1)3

(L -3) (55)

Multiplying the numerator and the denominator by the numerator,

one obtains

dz = _aUu O+1) + 0-1)5'
d3 mTV/2 5/(-5) [O+1) + (A-1) 5]

+i _=Qe1) - (el)s }
3 [1-3) [- (A1) - (A+1)3]

(56)
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4,4, THE SHAPE OF THE INTERNAL STREAMLINES

One has to integrate the above expression for 3
varying from -1 to -e’ip to get the point along the line BF

and also from 3 = -e"ilé to = - ve'iﬁ, for the case r'>l

and r real to get the x and y co-ordinates of the internal

streamlines.

? ' ‘ - Fig.3
Numerical integration of equation (56) for the range of 3

from -1 to —e~1P yields (as per appendix 3 part I)

| o
Je= - [ -0 { 4] [ el p o [ 20,

° ]

e (LG [

: 2
P 0s(©3/2 . S (3/
*(“"1){'[, _E_gz/._)_d;a i ._“_F/z_f)_a/g

| p os (©4/s . P im(©4/2
; *(7\4_1){"/0' G (Pj/z/) dF-J.j; f_—é-;r/—)—j‘

A

(57)
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Y, ==¥5 = 2 Sinp + (1+7) sin .2[5 - ' o (67)
v = or sinp  -r®(1-%) sin 2 ) (68)
Yo = (A1) Sin 2p - 2r Sin 2 - | (69)
Yq : = 2r sinﬁ. - r2(1+?\) Sin 2,3 _ ) (70)
Jg = (1=2) Sin2}3. - ér Sinfa (71)
From the definition of §
3 = -re P | C (72)
= T COSIb + ir Sinfa
W1/
o
~-T (CosP - iSin/B) o= e-a-"[T Cos-—%{—fr +iSin-1-V§-{-]-Ti' (74)
! |
Hence r = 3V - o (75)

The mirror image of the real diagram was taken

for computations. Hence

-¢m’/au .
r = e v . (76)
- Cosp = Cos.% : - (77)
a
sinp = sin £T (78)

au
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Y, ;_)-3= 2 5inp - + (1+72) Sin _2;§ - ' S (67)
¥ = 2r Sinp -r2(1-9) Sin 2p i - (68)
Ve = (M1) Sin 2}3 - 2r Sin 2f9 ' o " (69)
Yo : = 2r SinF. - r2(l+7\) Sin 2,6 : , ’ (70)
Vg = (1~%) sin2p - or Sinfl (71)
¥rom the dei‘inifion of §
5 = -p oiP o | o (72)
= - Cosfa + ir SinIB
= WT/al
= elP+ it,v):”'/aU : (73) .
o
-r (CosF - iSinF) o= eE'lT Co's--.(fé--{fr +iSin-%%—ri' (74)
e ' ‘I
Hence r = &2 . 75)
The'mirror image of the. real diagram was taken
for computations. . Hence
‘ -¢1T/ u
r =6 (76)
~ Cosp = Cos. T . - (77)
al _
sinp = Sin LALS | (78)

au



(79)

__——-?‘.
Figure L
for, Y = cU B
Tep =L
p o= w1~ c/a) ~ -(80)

Hence,sﬁpposc one wants a guide vane at 1/3
.,'poinﬂ, c/a = 2/3; taking the vane nearest the curved
boundary.Hence P==TV§. Similarly for other guide vanes.

' The integratioﬁ was done by using Simpson's.
‘rule.The computér programme is shown in Appendix 1 and 2,
‘and the results were tabulated in tables & - 9.The shape
of the inner curved wall and internal guide vanes at %,%
and 3/4 pégitions have been plotted in figure (22),for values
of /3= 1,52,90° ,and 135° respectively.The shapé 6f the

internal streamlines were checked by electrical analogy

and excellent agreement was found.
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5. FREE STREAMLINE ANALYSIS OF RIGHT ANGLED MITRE BENDS

5.1 GENERAL CONSIDERATIONS

The sudden deflection of.flbw produced
by a mitre bend in a pipe line causes séﬁafapion of the
fluid from the solid boundary at the inner edge of the bendg
The resulting contraction and subsequent expansion of the
flow downstream from thé bend produce a dissipation of .
energy which is primarily attributable to eddy diffusion.

i _Aé a first ppproximation to this loss,one may endeavor tq

use the well known Borda formula

‘ 2
hy = (v -V,) " (81)
. 2 g

or in dimgnsionleés form

— b - (g-1)7 (82)

V5/2g | c
Here, h; fepresents the loss in head, V%/Zg and V§/2g,
respectively represent the velocity head in the piﬁe in
the fully expanded area and the contracted area. Cc denotes
the ratio of the contracted area to the area of the pipe.
A schematic representation of tﬁe flow is shown in fig.15.
Determination of the velocity |

measurements before and after the bend sufficgs for an

estimate of the head loss and also a check on the direct

measurement of pressure difference.
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in this chaptér, a theoretical study has been des-
cfibed to'defermine to what degree the contraction coefficient
of the mitre bend in a pipeline can be approximated to by an

analysis of its free streamline counterpart.

5.2+ THEORETICAL

The free streamline flow is bounded by % semi-infinite
planes, the remainder of the boundary of flow being a curved
surface of separation upon which a constant pressure is pre-
sumed to act. The planes AB and Bcﬂform the outer boundary
intersecting at the deflection angle of §O° at the point B
(#ig. 10 ). The inner solid boundary FE is parallel to BA and
- geparated from it by a distance 'b'. The free surraée Ey is .
a curve and beco;es parallel to quaéympfotically, the ultimate
thickness or the jet being 'a', Since the pressure is assumed
" to be constant along the free surface, it féllows that the
velocity alung the surface varies in direction oniy. The

method of analysis is quite similar to that outlined in

Chapter 4, and hence only a resumé is given here.

The flow pattern is first transformed to the ordinary

ho&ograph by the basic relationship

",

4 - dz/dw = .1 el : (11)

q

Since the velocity along the free streamline has the

cpnstant magnitude V, Eqbappears as a circular arc in the 3-plane
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and the solid boundaries become radial lines. The z-plane
is plotted on the w-ﬁiane énd the diagram in the w-plane is
a polygon having the vertices CD and AT at infinity. | The
interior .of this polygon is frams‘formed on the upper ha:].f of
the t—-p.Larie using the Sch;.«/arz—Christoffel transformation
making CD and AF poi'respond to t = _:rl and .t =+ A, with B
and. E coincident at t = 0. The foJ.iowin'g transformation

relation is obtained:

dw 2 ' : ' ‘

- = ' , Wwhere m, is a constant

dt ($-1) (t=2) - (83)
similarly, the polygon described by Q = log, (V 5%) = Log I + i0

q
is drawn, having the vertex B at infinity. DNow this polygon
is plotved on the upper half of the t~plane using the Schwarz-

Christofifel transformation giving the following relation:

. r ' :
aQ . 2 ,  Where r, is a constant
at (t-1) : (8h)

r, is positive for t> 1 (for t real)

-q'-g = - -irz " . 8

dt [t (A-t) 0<t<1 (85)

dg . ___"T2

dt Jt (1-t) t <0, t real (86)

(_ ir2 -ir2 | >

St (1-v) i<t - 7

Since Q = loge (V -g—?;)
dz = 1 | Exp (Q .
i y B (@ (13)
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5.2.1. SOLUTION OF THE DIFFERENTIATL EQUATIONS AND
DETERMINATION OF THE CONSTANTS

From equation (83)

aw = M2 gt
' (t-1) (t=A)

_Sqlving by partial fractions

W= 2 log, ¢-n +0, , where n, is a constant
(=N (=) - . (87)
dw = My R S N S dt . (88)
(1=-2A)(t-~1) (1= 2A) (t=A)
" Now where t = 0, w -’—-A iaV
} S s
iaV = T | "2 . (8
ST log, (im) = —-— 1log, (~A) + n; 9)
-n T (1w 2
When t > o, the imaginary p;ift of (w) =0
- end the imaginary part (n,)=0
Therefore, m2 = (1-2) av
. 7o
and : = aV . )
- n, = log, (-2) (90)
dw = aV __(I-2) -‘ (91)

at T (t-1)(t-2)
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Now integrating_ equation (8L)

da _ _T2
at Jt(1-1)
- e (92)
o JE- (»-t)d :
._ Q = rzLOge{(t—z) + l/.l. - ( "'t)2} + 52 (93)
For t =1 = o where S, is a constant .
t=0 = iw
2

: It.follows, .therei"ore, th.a‘b_ | . |
Q = % lo'ge [(zt—l) + 2:;L mﬂ (94)
for o <t<1 ' t real, and t complex
'Q=z&-19ge (2t -1+ 2/[t (%-1)) for treal, t>1
= loge-{ﬁ + ./_1::1} ‘ 3 (95)
and _Q'=f,§-1nge[.l._et'+ gm] -F;L_g (96)
-for t rea_L,- t <o
The value' of A may now be obtained in terms of 'a' and 'p_'.
Q = log, (-V2) — log, (i 2)

rog, (&) + iF for t = A e

% log, (L=-2A4+2/A(0-1)), t < o, t real

{Jl—z +f-7\¥I} | — (98)

Hence, .nge

pl wio
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Finally, it is found that

“A = o - 277 (99)
4a“Db . )
A+l = §b2.+ a?zz . ' - (100)

-Free streamline

On the free streamline (o ¢t 1) Q= 18, with

the sign convention shown

Figs 2
g'l _ .
also g = Sin 6
. \
"On the streamline
1le
_ az| _ e=> ds 4t
1l = V I = ,V =t o (L0)
hence,
s _ =& 1-A ' :
at - 7w DA S (101)
(%% is actually negative with the sign convention for s.)
On the other hand :
Q = Qloge'[(zt-l) +zi/t(l-—t)] (9%)
= 4 i arc cos (2t-1)
(102)

= ie
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Whence  (2t-1) = Cos 20

t = Coszg
(1-t) = sin®o
dt = - Sin 20 @ (103)

5.2.2 DETERMINATION OF THE COEFFICIENT OF CONTRACTION

t=0. )
- dy ds 4t
Df dy j ds . dt (55 4e) . (104)
t=1
' o=T/2 _
= [ simef2 Q=2 (~Sin29}d@
0=0 (Cos®0-1)(Cos“0-2)
'"/2 (105)
: 2a(l- A) Cos © '
= ] = 5 de ( L06)
~ (Cos“6- 1)
W2
= - a l—.n-a loge VAT + Sin O (107)
) 1l -A -38in @ 0
JI-A -1
( 2+22) (b2+32t)> ] '
a +a a
= = log (109)
m . 2ab € 2,.2, -
(bZ+a”) _ lJ
2ab

2 2 : )
. Lb% + a%) b + a 11
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The coefficient of contraction is given by

a

(224 8®) (b_+_a)
{a + p— loge (b - 2)

In practice, for any given geometry, i.e., for b and
(a+ (b2 + a2) log, b+ a ) known, 'a' must be determined

. numerically.

For the case of a right-angled duct

b=a+ (224 a%) log, (bt a) (111)
b (b - a)
" and hence ‘

-2-= 1.9 (dr the coefficient of contraction is 0.526,)

It mai be of interest to note the impor'barit limiting

case of b— «

In b+ a .~ 1n 1+éa 2a 112
v-a (1+g)— & - (12)

2 2 ‘
b 4+ a° 1ln b+ a b 2a (113)

= 22
) b =-a T b T

The contraction coefficient is therefore equal to

LS | (114)

a =
a+ 2a mE 2
v

as is well knovm,
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5.2.3. EYPRESSIONS FOR THE STREAMLINES AND EQUIPOTENTIALS

In general

Q = %1og [(2{;-1) +'2i/t(1-t)]

= log, (f& +ifi-t) L oy
%-3; = \:L,Exp(Q) . .
= V{ft? + i J1- } g o @15)

On. the other hand

p( W) = fe=ll 116
Exp( ¥ (- A) - e

t' = 1 + exp(wm/av) - .(117)
: 1 - exp(ww/aV) o |
: (~A)

Writing & = Exp(ww/aV) for simplicity's sake and d3 = -3-,-3 dw,
One has ' . , . .
dz o { 1+3 'n/:L + 1 /:———-—--3 } (118)
L d5 - s | J1- A - 3 :
‘ds T3 ‘1 _‘ _.éi .. .
whence '

' 1-3)(1-3 ),+1' (l“‘:‘)
%fdz - —/loge j(- 3 = * o
/.

adys -1 &) |

1 .
+ == arc sin p

= (r+ Ly ]

VY /:!5 +1 log, [—3 + (:2-7‘—) + s‘-(—ﬁ)é}

+ constant (119)°




.;.41*..

After slight simplification

: R /a (-2A-3) + A -A) — 1
I - =

. 1 - (=2
+,J:3-\ a{‘c.sin- 22;) +C1 —

+ i,/(z—k.) log, -5+ '(i’?) + /32~(‘-?\)3]

=

+. constant - .. (120)
" If B is chosen as the origin of the (x,y) co-ordinate
system, the constant of integfatioh may be determined by

putting

—3

w _ a7 log, ( -A) and N (121)
- T . .

 hence 3=-A, the appropriate value at B

. - . . | A
Constant = log, (7‘27\,1 - Irz_'_,/-ﬂ - iJ1-2A logg -
N 1 +(-2) _ .l -
T 0% [——z(—ar 2 A

~ 172 log, (GO (122)

2
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6. EXPERIMENTAL PROCEDURE

6.1, DESCRIPTION OF THE EQUIPMENT USED

The experiments>were performed in a lucite right-angled
elbow hgving a lav square cross~section at the inlet, tﬂe'inher
part of the bend being housed within a 450 reﬁovable casing for
ihtrodgcing and removing the guide vanes. The layout is shovm

in Fig. 7 .

Theilucité duct was supported on two I-sections welded

‘ together'which in turn could be Jacked up or down for fixing or
removing the lucite bend. The jacks were supported on a concrete
platform made {to suit- thé'requirements. A platform was con- -
 structed around the upper part of the tank (Fig.7 ) for opera-
tipn of the supply line and also for access inside the tank.

_ The- luc1te test elbow was bolted to a constant level
tank whlch provided a constant head of 14'0" above the base -
of the test section. A constant level was maintained by a
| long overflow weir running around the upper edge of the tank.
The flow from the weir went through an outlet pipe which led
the surplus water to the sump., The lower part of the tank was
desigﬁed so as to get a square veiocity distribution and also
minimum turbulence at the opening of the duct. An aluminum
frame was built to cover the corners of the lucite bend, so as
to prevent the lucite joints from separating under pressure.
The tail end of the lucite duct was connected to a cast-iron

reducer pipe which in turn was connected to two cast-iron
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valves on the outlet pipe.' One of the valves served the pur-
pose of keeping the flow adjusted to any desired value and

the other one was a shut-off-valve.

To reduce turbulence 1ns1de the test section to the
lowest possible value, the main supply to the tank passed
'-through a perforated barrel filled with a filter material.

The inner curved wall and internal guidé vanes were
made by moulding thin fibreglas; éupports to the shape of the
computed streamlines. Aluminum plates 1/16" thick were fixed
- to these fibreglaés supporfs, which were fixed in turn to thin
Jucite plates cut to suitable shapes in order to facilitate
fixing of_the'guide vgﬁes'at the propér location inside the
" lucite bend (Plated3). The right-angle mitre bend was con-
structed by fixing two plates of lucite ét 90° at the proper
location. The velocity measurements were done by dye injec-
tions (Fig. ¢ ). Two liquids, one of specific gravity greater
- -than water and oné less, were mixed together and proportionéd ‘
in such a way as to give a mixture of specific gravity equal
to that of water, so that dropsqoﬁ the mixture, when
injected in water, would follow the piecise motion of water
particles. The liquids used were dibutyl phthalate (Specific
gravity 1.047) and petrolium ether (specific gravity 0.68) '
both insoiuble in water; they mix quite well and do not cause

damage to lucite by crazing,

Vhen the tank was full of water and flow1ng at a

constant dlscharge, the dye was allowed to fall frecly through
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a glass tube 8" above the beginniné of the bend at the central
axis of the test section. The head of supply of dye was kept
only slightly greater than that of water level in the tank,

80 that‘£he velocity of injection relative to the main flow
was low. The supply of dye to the test section was regulatedl
by a valve, so as to get small droﬁlets.“A thin black metal
piate ruled with a grid qf lines painted- bright yellow was
fixed inside the lucite bend vertically close to the glass

. tube, which supplied the dye, so that measurements were not
affected by parallax. The.plate was illuminated from the
sides. An identical plate was fixed in the horizontal portion
of .the lucite duct at the central axis adjacent to the tail

end of the bend with similar facilities for dye injection.

The travel distance was measured by photography.
A black disc having a V-shaped opening was attached to a
steel rod revolving at a constant speed by a motor (Fig.8.).
The speed of revolution was réduced to 4 revolutions/second '
by a belt and speed reducer. A révolution counter was also
attached to measure the exact time of travel of the droplets
with the help of a stopwatchs A camera supported on a stand
was fixed behind the disc and positioned in such a way that it
could take pictures of the illuminated plate and the dropleté,
when thé V-shaped opening of the disc passed in front of the

shutter,

The experimental part of this work was rendered

difficult for a variety of reasons. Since the lucite walls
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of the test section suffered deflection beyond permissibie
Aimits evén under low heads, -operation under a high head
necessitated putfing additidnal frames all around the duct,
Since good visibility through the duct was a necessity for
the.expérimqnts, either glass.or lucite had to be used for
construction of this bend, but both have their owﬁ'serious
disadvantages. Water-proofing the duct was a difficult task.
Also éince part of the duct had to be removable, in order to
facilitate fixing of the guide vanes, it proved difficult to
make the duct watertight uhder the operating head. Hence
each setup involved considerable labour and time. -After each
set of tests (3 or 4 runs) it became eésential to0 refurbish

* the lucite joints, since they'tendéd_to separate under high
pressure. Fixihg the lucite duct to the reducer pipe at the
outlet was much more difficult than wouid appear, owing to
'both the heavy weight of the reducer pipe and the considerable
difficulty in making the joint watertight.

Obtaining successive positions of the droplets in the
same photograph involved considerable effort and time, by
éxperimenting various trials. ZEach experimental run therefore
required lengthy preparation and this restricted the actual
number of experiments that could be carried out. PFurther tests
that could have been carried out would include trying the effect
of various lengths of the guide vanes, and possibly a different
number of guide vanes instead of 3 used here, and also various

discharges through the duct instead of only one used here.
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6.2, MEASUREMENT OF VELOCITY

When the tank was fﬁll of water, the regulating valve
was opened.to get a constant maximum possible discharge. The
opening was kept constant throughout all tests, and it was
‘such}that the surplus water from the weir was kept to a:mini—
mum. Next, the dyé was -allowed to fall in droplets. Since
it had a specific gravity equal to that of water, each droplet
. followed the pattern of the streamiines. The disc was set in
rotation at constant speed and the camera shutter was opened
while the particular droplet in view passed the boundaries of
the grid on the illuminated plate., Hence, in the Same photo-
graph, successive well-defined posifions of the droplets were
obtained along with the relevant portion of the illuminated
grid - this enabled the travel distance of the dfoplet to be
. measured quite accurately within a limited interval of time.
Several specimen.photographs are shown in Plates 5-7. The
“travel timg was obtained from.the revolution counter of the
rotating disc with the help of a stop watch, by noting the
number of revolutions for a specific interval of time. The
‘distance between successive positions of the droplet in the
photdgraph represents one revolution, which could be measured
accurately by comparing with the lines on the grid. Hence oﬂe
obtains the velocity of the dye droplets, i.e., the velocity
of the water particles at that particular location, By moving
the inlet of the dye to different positions on the centreline

of the test section, the velocities of the water particles
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upstream fr;m'the bend across a horizontal section of the test
rig (Fig.‘ 7 ) were obtained. Similarly, the velocity distri-
bution was obtained downstream ffom the bend at another section.
In the experiments, the velocity'meaéurements were condﬁcted at’
8" before and after the bend down the middle of the test section.
" The droplets of dye were injected at 2%, 4%, 6", 8" and 10" from.
the side walls at the extrados or intrados. The ruled plate for
measuring the travel distance was kept at a distance of 13" |
behiﬁd the place of injecfion of the dye, so as to prevent the
dye gliding along'the platé.and also keepiﬁg the droplets away
from thé boundary layer of the plate. One may assume that no
appreciable wake existed behind the'vahes._ This enables one to
"measure the velocity without distu;bing effects. From the plot
of the velocity distributidn, the disoharge cquid be estimated
(unfortunately, laboratory facilities did not allow the dis- -

chafge'to be measured directly).

In subsequent tests,‘fhe square velocity distribution '
."aﬁ the entrance to the. lucite duct was modified by introducing
'é.wire mesh, with layers of mesh increasing as uniformly as
possible from one side to the other, With the help of the mesh,‘
twé more types of velocity distribution Were introduced, one

with maximum velocity and another with minimum velocity along

the intrados. The velocity digtribution obtained for different

cases have been plotted ( figures 26-34),
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6.3. HEAD-LOSS MEASUREMENTS

Sinpe'the difference in pressures before and after
the bend was small, a differential manometer was set up using
a liquid having a specific gravity s}ightly greater than that
of water (dibutyl phthalate, specific gravity 1.047) so as to
give an amplified difference in level, The difference in
.'préssures betwéen points'before and after the bend was measured

on all the four central pdints of the sides. (Refer page 62 ).

The measurement of head-loss was carried out for the
three different types of velocity distribution, and the readings

obtained have been tabulated in Tables 2-3.
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7. DIS cussxon OF DXPERINDNTAL RESULTS AND COMPARISON
" WITH THE THEORY

The main purpose of the experiments was to study the
eéfficiency of internai guide vanes and the inner-curved‘wal}
in reducing head losses, for three different velocity distri~
" butions at the inlet. Even though the theory holds onl& for
“uniform velocity distribution, the merité.of the internal
guide-yanes and the innerfcurved bend were checked for all

three velocityeconditions.

(a) Uniform Velocity Distribution at Inlet

In the case of a sharp right;anglgd mitre bend; by
' injecting a mixture of condensed milk and watér on the side
of the 1u01te duct at the corner of the right angle, it we
noted that the free streamline reaches as low as the centre
“line of the horizontal leg of the test section, leaving the
upper half of the conduit dovnstream from the bend in eddying
motion (fig.25) . Replacing the mitre bend with the inner-
“éurved wall designed for constant velocity and pressure, it
was noted that droplets of condensed milk follows a spiral-

" ling path, as in the above case, leaving the top 20% of the

' conduit just downstream of the elbow bend in eddying motion.:
Separation from the so0lid surface occurred over a‘height'

of 23" only, compared with about 6" for the mitre bend
(figure 23-25), . With separation, a concentrated jet was

formed along the extrados of the duct, with an accompanying
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loss of energy due to eddying motion; With gﬁide vaﬁes,
separation and eddy formation were repressed completely

in all intents and purposes. The velocity measurements

by injecting the dye droplets in the horizontal portion

of the bend in all three dases substantiated the ébove
observations. With the right~angledihitre bend in position,

a head-loss coefficient of-the order of 0.52‘was found. This
was reduced to 0.47 when tﬂe inner-curved wéll was substituted.
for the mitre bend. When the internal guide vanes were also .
introduced along with the inner curved wall, the head-loss |

coefficient .was reduced to a very much lower figure of 0.04.

(b) Trapezoidal Velocity Distributions at the Inlet

With the maximum velocity along the extrados, it was
observed that for all three cases, viz., with the right-angled
mitre bend, with the inner-curved Qall alone, and also with
internal guide vanes, the droplets of condensed milk injected.
on the inner side of the bend moved back upstream and most of
the horizontal portion of the test section was affected by
eddyihg. The velocity measurements aiso gave evidence of
- this., The inner-curved wall, when compared with the mitre bend,
'helped to reduce the head-loss coefficient considerably (from'
3.3 to 2.3). The use of the internal guide vanes further
helped to reduce the head-loss coefficient from 2.3 to 1.5;
this figu;e is, however, substéntially higher than that

achieved for a uniform velocity at the inlet.
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Wifh the maximum velocity along the.intrados, it was
observed in 211 three cases that the upper half of the hori-
zontal test section was in turbulent motion and there was
swirling of the fluid particles intefmittently, which was
also evidenced by the path taken by the dye droplets. It
was notéd‘that the incoming water separatgd from the solid
boundary at apbroximately the midpoint of the inner-curved
wall (or, of course, at the corner of the right angle in the
Easé of the mitre bend) and issued as a sharp jet through the
bdttom of the horizontal pbftion, leaving the area above in
.eddying‘motion. This was also clear from the condeﬁsed milk
%esf.(figures 23,2l & 25 ). The pressure tests indicated
" that the inner-curved wall showed gurprising efficiency in
reducing the head-1oss coefficient (from 2.). to 0.64)., But
the internal guide vanes showed only a marginal .improvement
(0.64 to 0.57). The results shown on figures(23-25) indicate
that in the case of unifornm inlet velocity-distfibution (the
only case for which the theory hol&s), the internal guide
-vanes were effective in reducing the separation and uniformizing
tﬁe velocity after the bend. 1In othér cases, particularly with
high velocities at the infrados, the guide vanes did not con;

serve the original distribution past the bend.

_ It is quite possible that, in spite of eVery>effort
to prevent turbulence inside the test section, some turbulence
did in fact subsist. Photographs of the streamline pattern

throughout the duct would have helped to investigate flow
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‘conditions,but this could not.be done owing to the
necessity of having the iarge frame at the middle of

the bend. Improved results would no doubt have been
obtained if the experiments had been conducted with
air,because no such frame would have been required. It
shoula be noted that the resuits of downstream points
were improved conéiderably with the curved intrados,and
"still better with the internal guide vanes, With'the
mitre bend in position the velocity at the downstream
points could not be measured accurately owing to the
'irregular paths taken by the droﬁlets. These measurements
were introduced here particularly to illustrate the
efficiency of the curved intrados and internal guide
vanes. It would have been better fo measure the velocities
in the lateral locations to verify that the flow was |
in fact two-dimensional. However; owing to considerable
difficulties and time involved in the experiments, the
work is limited to its present form.,

It seems reasonable at this point to show
that the boundary layer is in fact laminar inside the
fest section. In the present experiments, a laminar
boundary layer starts forming in theory from the top
water level of the constant level tank and grows

approximately to a thickness™of 3.5" at a horizontal

# The laminar boundary layer thickness is given by the

well known formula S L.91 [Vx, = 4.91 10"5. fZ‘ 25"
. Us 0.01
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section, just before the converging funnel is reached
at the bottom. A major parameter associated with the

boundary layer is the momentum thickness, which at

this section is

& . . M
'5; = 0.661 [ ¥ % (Laminar case)
' ] T, |

5
=  0.66 lgl:—é‘ﬁl feet

A)

(123)
= 0.666"

. where x, = Thé distance from the top
water level to section(l)
wheré the momentum thickness
or boundary layer thickness is
meaéured;

Ve = .The velocity inside the tank
. at section (1).
Owiﬁg to the funnel shape,the flow accelerates

(the ielocity increases from 0.0l to 0.38 ft/sec.) at the

inlet of the test section.

¥

@

@) Fig;6
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Asra rough approximation, it seéms iogical to
assume that the mqmentum thickness at sections just
- before‘and after the conical funnel type bottom are
equal ( of course, here one neglects the friction losses
énd the bouﬁdary layer growth along the curved bottém).
Hence "
Momentum defect at section (1) = Mo@éntum defect at

section (2)

* 2 ek 2
& Tuhr T 8 Tl (124)
b3 % 2
S =8 (Ix) A1 stmee] x _ L
2 2 2 ’ \ A
Vi P, Kk 1
2 Ay A,

Where Pl and P2 are the perimeters, Al, A, are
the areas and b;, b, are the breadths at section (1)
and (2) respectively, and 5 - is the momentum

thickness at sectlon (2).

3+

%%k

5, = 62 ( /0372 (125)
%
| = 5 (1/6)
| 2
sk
0.666 _
i.e. 52 = 516 = 0,03

2 2
but Y = 0,66l Xex?
2 ° V .
%3

where X =  The distance from the origin of the
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momentum thickness to section (2)

in fig.6.
Vi = The velocity at the inlet to the
o test section(section 2 in fig.6)
. " 2 '
LeCo X, = 0.03 : 0.38 — n

Hence it may be assumed for all préctical
purposes that a new boundary layer is in effect
brought into existence at thg start of the test.
section,

7.1. DISCUSSION OF HEAD LOSS MEASUREMENTS

(a) Right angledMitre bend:

- The coefficient of contraction corresponding to
theory outlined in Chapter L is 0.526. Hence the
height of the issuing jet at the véna contracta
should be 0.526' whereas fuliy expanded flow spreads,
of course to 1'. The actual measurement of velocity
by dye injection and also the test with condensed milk
in the case of a mitre bend with uniform velocity
distribution showed that the vena contracta
occupied a height of O.S'approximately, indicating
a coefficient of contraction of nearly 0.5, closely
| agreeing with theory. The loss of head due to sudden

contraction can be estimated in terms of the velocity
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hegd by the familiar formula '(Vl - V2)2/2g (81)

where V1 and V, are respectively the velocities at

the contracted area and at the fully expanded region.

- ()  From table 2.3 for uniform velocity distribution

in the case of the mitre bend,

‘ V1 = O.544 fﬁ/sec. (Average velocity
interpolated from the graph-
figufe 28) | .
V, = 0;344 ft/sec.

Estimated head loss

-

) 2
. ( Vl - V2 ) /2g
= 0.0006!

(of course, this formula is only quoted here as an

.approximate check)
Weighted average head loss as per table 2,3

= 0,275" of the manometer liquid.

., Measured head loss in the_differential manometer

= 0. 2~7§ (_Iil_-_ - 1' )
12 w!

= %2B(1.047-1)

= 0,00108!
where Wy = density of the manometer liquid
w!t = density of the metered fluid

Using the Blasius theory of the laminar boundary layer for a
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flat plate (admittedly only an apﬁfoximation,in the present
case), oﬁc may get a rgugh idea of the loss due to the laminar
boundary layer acting on the walls of. the test section* (on
the assumptions of no breakaway, of course, and neglecting the
effect of pressure gradients)., Though this approach is very
.approximate indeed, it is perhaps better than making ro such

esfimate'at all.

Accordiﬁg to Blasius, frictional-force = V22 1.328A (126)
_ . 5% e
V2 L
P,

and -the head-loss is obtained by dividing this by the area of
the wetted cross section (lhsq.ft.) at the'méasuring point.
where YV = Kinematic viécosity
L = Overall length of plate subjected
to laminar boundary layer
A = Wetted area over which the frictional

force acts.

Head-loss. = (0.344)2 1.328 . 19.2
' 64.4 /@.344 < 4.817
10°
= 0.000115!

0.00108 - 0.000115,

U

Net head-loss due to the bend alone AH

= 0.00096°
v.2 2
2 = (0.3%44)° = 0.00184

*Note that in applying this theory, .any change in wetted cross
section through the bend is neglected,toco. The theory is
approximate indeed! '



- 61 -

4

. Lo .
Leﬁ K be the bead~loss coefficient,then K‘VE/Zg éZSH,Li.e.

0.00184K = 0.00096 -
Similarly, the values of K for noh-uniform velocity distri-

butiqns have been tabdlated in Table 10,

(b) Inner-Curved Wall in -Place of the Mitre Bend
jUnlform Velocity Distribution)

From TableB 3

v, = 0. 544 ft/sec. (Avorage ve3001ty interpolated
' from the graph,Fig.31)
.V, = 0.344 ft/sec - '
(v, - v,)° -
-Estimated head-loss = ‘'l 2 = 0,00062
28 S . ' ,
(Once again, this value is included as a rough indication only).
Measvred head-loss in the differential manometer = 0.25(0.047)
l2 -
= 0.00098’
Loss due to laminar boundary (cf. previous section)
2
= Y2©  1.3284 = 0.000115"
2g .
V2L
. T . . , .
Loss due to the bend alone AH = 0,00098 - 0.000115?
_ - = 0.00086"
.. 0.00184K = 0.00086
2 .
(where O. 00184 as previously is the value of V )
?g

K = 0047
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.

(¢) Immer-Curved \all With Internal Guide Vanes
(Uniform Velocity Distribution)

Loss due to - 'laminar boundary layer acting on the sides = 0,000115.
Loss due to laminar boundary layer acting on both sides of the

guide vanes = 2 .(0.344)2 1.328 {' 1.9137

64.4 0.344 , 1,913
107
+ 2.135" + ___2.057"
‘/0.344 « 2,135 //0.344 x 2,057
| 10~2 10™°
& 0.000113"

(as if these were plane plates with zero preséure gradicnt,
a rough approximation,but the best available).

‘Measured head-loss = 0.0775 , 0.047 = 0.0003%03'
12

.". Loss due to. the bend = 0.,000303 - (0.000115 + 0.000113) = Q.000075'
0.00184 K = 0.000075 '
i.e., -K = 0.04

The values of K for non-uniform velocity distributions have been

'tgbulatéd in Table 10,

However, if should be observed that the measurement
of head-loss in a bend should, strictly speaking, be done by
extrapolating energy gradients towards the bend from stations
sufficiently upstream and dowvmstream. But owing to the.limited
facilities in the laboratory, in the present work the pressure
teppings had to be located no further than a distance of 1% feet
dovnstrean from the bend and 6 inches upstream from the bend at

the centre line of each end'piate. The average of the centre

%* .
represents the surface area on one side of each guide vane.

The width of the guide vane is of course equal to 1 foot.
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line pressures on the four sidés was approximated to by
.the weighted average over the cross section ( In a
theorefically more accurate approach,the total head
.should perhaps have been evaluated'by iﬁtegration of
stagnation pressures measured'gt various points across
the dovmstream cross section,but it is in fact, very
doubtful whether under the present experimentai
.conditions of low velocity head and high average
pressure, this approach would,in fact, have given
improved results.

It may be worthwhile also to mention at
this point that as far as the'breakaway is concerned,
the present tests were conducted under adverse conditions,
Seeing that laminar boundary layers are not frequently
found in practice*. However it should also be recalled
that friction in a turbulent boundary layer may be 6
or more times higher than those in a laminar one,for
a given velocity in the main Stréam.

It is always desirable to avoid separation

of the fluid from the walls,since it is accompanied by -

* In the mathematical analysis of this problem,the

- flow is assumed to be laminar,and head losses due to

a laminar boundary layer are taken into consideration
when analysing the experimental results. When considering
the practical applications of this work,e.g. in
'industrial ducts,it should be noted that laminar

boundary layers are rarely found.
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-cqnsidergble energy loss. Laﬁinar boundary layers can
support only very small adverse pressure gradients.
(retarded flows) without separation as compared to
turbulent ones (Ref.1l2). However, existence of adverse
pressure gradients favours the transition from laminarf
‘to turbulent flows. The easiest method of controlling
separation is to arrange the pressure gradients to.
remain below the limit for which separation occurs.
Other possible methods inciude suction or by injecting
fluid into the boundary layer or by the addition of

. aerodynamic guide vanes. Tﬁe first method of boundary
layer control is used here and with constant velocity
along the intrados, the pressﬁre nust remain théoretically

constant( the intrados, a line of constant pressure).
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8. CONCLUSIONS

A general analysis for the design of an inner-curved
Wall and.internal guide vanes for a right-angled elbow has
been described using free streamline theory. The effectiveness
of such a design in reducing the héad—losses and its efficiency '
in providing an undisturbed velocity distribu%ion aftef the bend
was determined experimentally for three different veloclty
_conditions. The design of internal:guide vanes was checked

by an electrical analogy.

.8.1. EXPERIMENTAT

8.1.1.

With a uniform velocity distribution, the head-loss
coefficient due to the bend was reduced from 0.52 to 0.47 when
the inner-curved wall was substituiéd for the mitre head. Vhen
internal guide vanes were employed these were reduced further
from 0.47 to 0.04. These figures ére,quoted éfter subtracting

skin friction losses within the bend.

The guide vanes were able to maintain approximately
the same velocity distribution after the bend as that before the

bend -~ this was not the case when the guide vanes were removed.

8.1.2.
Even with trapezoidal velocity distributions, the

inner-curved wall and internal guide vanes are still advantégeous.

With the maximum Veiocity along the extrédos, the head
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loss coefficient was reduced froﬁ_3.3 td 2.3, when the inner-
curved wall was used instead of the mitre bend. The internal

guide vanes reduced it further -to l.5.

With the maximum velocity along thé infrados, the
inner-curved wall proved its efficiency by reducing the head-
loss coefficient from 2.1 to 0.64 when it was used instead of
tﬁe sharp mitre bend. But the internal guidé vanés presented
only a minor supplemental advantage by reducing the head-loss

coefficient to 0.57.

The velocity distribution after the bend in both
trapezoidal velocity conditions does‘not approach the velocity
pattern before the bend, even when internal guide vanes were

employed.,

8.1.3.

Owiﬁg to limitatioﬁé in the laboratory facilities,
the limited time available and the considerable difficultieé
in carrying out these tests, the experiments could not be.
conducted in the best way. Quité a lot of improvements could
have been made (as mentioned at appropriate places) if circum-
stances had allowed.

The guide vanes were found to be efficient in redu-

cing the turbulence and eddy effects to a measuraﬁle'degree."

8.2. THEORETICAL

(i) The form of the streamlines and, equipotentials was well

defined by the theory.
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(ii) The theoretical solution could be adopfed to cases for
which x,# b, viz. for different two-dimensional flows,

by substituting suitable values to 'x! in terms of 'b!,
8.3. INFERENCE

The effect of the internal éuide,vanes could not be
predicted under non-uniform velocity conditions. But it can
be assumed from the results of the two trapezoidal velocity
distribution tests that its effect is always to reduce head-
losses and to increase the-efficiency of the bend, even though

the improvement may not be very appreciable in all. cases.

Allowing for the fact that the internal guide vanes
used were probably much longer than necessary, it is clegr
that the curved intrados with guide vanes give a very small
~ loss of head indeed for a uniform inlet velocity distribution.
Bends so designed may.be useful in industrial application
where high performance (i.p.,.very low head-losses) is required,
€.8., dump tanks for heavy water atomic reactors. Use of only

~one curved-wall may facilitate construction.



APPENDIX 1

COMPUTER PROGRAMME USED IV I.B.M.360

I. To calculate the value of A from equatlon (&7) wlth x=a and

/U JA +1 J;_./A-l

FORTRAN SOURCE STATEMENT LIST

IMPLICIT REAL*8(A-H,0-2)

~ DIMENSION DIFF(1000)

100
20

200

AL=1.001 DO

D0 200 I=1,1000
ALHS”(D?QRT(AL+1 0D0)+DSQRT(AL~1.0D0)) )/DSQRT( 2. ODO)

‘ALA=(DSQRT(AL+1.0)+DSQRT(2.0D0) ) /(DSQRT (AL+1.0DO)~ DSQRT(Z ODO))

ALB=(2.0DO*AL)/5.1415926535897932
ALC:(DSQRT(AL+1.0DO))/(AL*DSQRT(Q.ODO))'
ALD=(DSQRT(2.0D0))/(AL*DSQRT(2.0D0))
ALE:(DSQRT(Q.ODO))/(DSQRT(ALj}.ODO))
ARHS=ALB* ((ALC*DLOG(ALA) )~ (ALD*DATAN(ALE) ) )
DIFF(1)= ALHS-ARHS

DIFR=DABS(DIFF(I))

IF(DIFR.LE.O.ODO)GO T0 100

_AL=ATI+0.001D0

GO TO 200

WRITE(6,20)AL,DIFF(I)

FORMAT( 20X, 2D25. 14 )
AL=AT+0.001D0
CONTINUE

STOP *

END
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\ ' »
IX. T0 CALCULATE THE SHAPE OF THE INNER CURVED (ALIL

FROM EQUATION (41) WITH A= 1.099 AND.

N+ 1 A~
v/u I

FORTRAN SOURCE STATEMENT LIST

DIMENSION V(11),VAR(11),X(11)

AL = 1.099344611603705D0

PI = 3.14159265D0

N =10

RALP = SQRT(AL+1.0) |

RALM = SQRT(AL-1.0) RN
R2 SQRT(2.0) -

K =N+1

DO 10 I = 1,K

v(I) = cos(P1/2 + PI/2/N - I*PI/2/N)
VAR(I) = 12/PI/(RALP + RALM) * (RALP*ALOG( (RALP +R2 * V(I)))

ol

1-2#RALM#ATAN (R2%V (I )/RALM) )
X(I) =VAR(I) - VAR(1)
10 CONTINUE
WRITE(6,12)
12 FORMAT(20X,'X',20X,'Y',//////)
. WRITE(6,13) (X(I),X(K-I +1),I = 1,K)
13 FORMAT (10X,2E 20.8,//)
" STOP
EED
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'COMPUTER PROGRAMME_USED IN I.B.M.360

I. To calculate the intérsection'point of the internal
guide vanes and the complex line BF (or numerical
. integration of equation (56))
dz  _ _aU { (r+1)  +(A-D3
35 T ®wv L 3/-9L(r D *(r-D3]

. (A=) - (A+D3
o é‘f(l-'g)[—(?\—j).—(}HQé}}

ip

~ for the range of § from -1 to -e”

FORTRAN SOURCE STATEMENT LIST_

IMPLICIT REAL*8(A-H,0-2)
DIMENSION C(1000),R0(1000),THETA(1000),F(1000),
1DELTA(10,40),AEAL(40) ,BNREAL(40),X(1000),Y(1000)

AL = 1,099345D0
DO 1000 NNN =1,8
DO 5000 LLL =1,35
LL = LLL * 5
PI = 3.1415926D0
M=1LL *2 +1
Jd=M--10
¢(1) = 0.0pO | |
GO TO (1,2,3,k,5,6,7,8),NNN
1D0I=Jd,M ‘
IF ( I.EQ.1) GO TO 11 |
c(1) = ¢(1-1) + ((0.5D0%P1)/180.0D0)
11 X(I) = (AL+1.ono)+2.ono*Dcos(c(I))+(;.0D07AL)*
1((pcos(c(1)))=*2~-(DSIN(C(I)))**2)
Y(i)=2.ono*DSIN(CII))+(AL-1.0D0)*2.ono*DSIN(c(I))*
1pcos(c(I))
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RO(T)=DSQRT( (X(I))**2 +(¥(I))**2) - -
THETA(I)=DATAN2(Y(I)/X(I)) |
10 P(I)=DSIN(THETA(I)/2.0D0)/DSQRT(RO(I)))
GO TO 2000
2 DO 20 I=J,M
IF(I.EQ.1) GO To 21
¢(1)=C(I-1)+((0.5D0*PI)/180.0D0)
21 X(I)=(AL+1.0D0)+2.0D0*DCOS(C(I))+(1.0DO-AL)*((DCOS(C(I)))**2-
L(DSIN(C(I)))**2) -
Y(I)=-2.0D0*DSIN(C(I))+(AL~-1.0D0)*2,0DO*DSIN(C(I))*DCOS(C(I))
_ RO(I)=DSQRT(X(I))**2 +(¥(I))**2) |
THETA(I)=DATAN2(Y(I)/X(I)) |
20 F(I)=DCOS(THETA(I)/2.0D0)/DSQRT(RO(I))
GO TO 2000 '
3 DO 30 I=J,M
IF(I.EQ.1) GO T0 31
¢(I)=C(I~1)+((0.5D0%PI)/180.0D0 .
31 X(I)=(1.0D0-AL(+2.0D0*DCOS(C(I))+(1s0D0+AL)*((DCOS(C(L)))**2-
1(DSIN(C(I)))**2)
Y(1)=2.0D0*DSIN(C(I))+(AI+1.0DO)*2,0DO*DSIN(C(I) )*DCOS(C(I))
RO(I)=DSQRT((X(I))**2 +(¥(I))**2) | |
THETA (I )=DATAN2(Y(1)/X(I))
30 F(I)=DSIN(THETA(I)/2.0D0)/DSQRT(RO(I))
GO TO 2000 |
4 DO 40 I=J,N
IF(I.EQ.1) GO TO 41
- €(I)=C(I-1)+((0.5D0*P1)/180.0D0)
41 X(I)=(1.0D0-AL)+2.0D0*DCOS(C(I))+(1.0D0O+AL)*((DCOS(C(I)))**2)
1-(DSIN(C(I)))**2) “
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Y(I)=2.QDO*DSIN(C(I))+(l.ObOfAL)*2;ODé*DSiN(C(I))*DCOS(C(I))
RO(I)=DSQRT((X(I))**2 +(Y(I))**2)
. THETA (I )=DATAN2(Y(I)/X(I))
40 F(I)=DCOS(THETA(I)/2.0D0)/DSQRT(RO(I))
GO TO 2000 '
| 5 DO 50 I=dJ,M
IF (I.EQ.1) GO TO 51 -
¢¢1)=c(I-1)+((0.5D0*PI)/180.0D0)
51 x(1)=(1.0DoéAL)+2.0Do*Dcos(c(I))+(1;0D0+AL)*((DCOS(C(I)))**2-
1DSIN(C(I)))**2) | | |
¥(1)=-2.0D0*DSIN(C(I))~(L.0DO+AL)*2. ODOXDSIN(C(I))*DCOS(C(I)) .
RO(I)=DSQRT((X(I))**2 +(¥(I))**2)
THETA (I )=DATAN2(Y(I)/X(I)) .
50 F(I):DCOS(THETA(I)/?.opo)/bsqnw(Ro(I))
GO TO 2000 '
6 DO 60 I=J,M
IF(I.EQ.1l) GO TO 61 |
¢(I)=C(I-1)+((0.5D0O*PI)/180.0D0)
61 X(I)=(1.0D0-AL)+2.0D0*DCOS(C(I))+(1.0DO+AL)*((DCOS(C(I)))**2
1-(DSIN(C(I)))**2) |
Y(I)=2.0D0*DSIN(C(I))-(1.0D0O+AL)*DSIN(C(I))*DCOS(C(I))
RO(I)=DSQRT((X(I))**2 +(Y(I))**2)
THETA(I)=DATAN2(Y(I)/X(1))
60 F(I):DSIN(THETA(I)/z.ono)/DSQRT(Ro(i))
GO TO 2000
7 DO 70 I=J,H
" IF(I.EQ.1) GO TO 71
¢(1)=c(1-1)+((0.5D0*P1)/180.0D0)
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X(I):(l.ODO—AL)*((DCOS(C(I)))**2-7'(1.)SIN(C(I')))**2)+2.ODO*
10c0S(C(I) )+ (AL+1.0DO)
Y(I)=(1.0D0~AL)*2.0D0*DSIN(C(I))*DCOS(C(I))+2.0D0*DSIN(C(I))
RO(I)=DSQRR((X(I) )**2+(¥(I))**2) S
THRTA(T)=DATAN2(Y(I)/X(I)) |
F(1)=DCOS(THETA(I)/2.0D0)/DSQRT(RO(I))

GO TO 2000 | N

DO 80 I=J,M

IF(I.EQ.1) GO To 81

¢(I)=C(I-1)+((0.5D0%P1)/180.0D0)
X(1)=(1.0D0-AL)*((DCOS(C(L)))**2-(DSIN(C(I)))**2)+2.0L0%

" 1Dpcos(c(I))+(AI+1.0D0)

Y(I):(l.ODO—AL)*2,0DO*DSIN(C(I))*DCOS(C(I))+2.0DO*DSIH(C(I))
RO(I)=DSQRT((X(TI))**2+(Y(I))**2)
THETA(I)=DATAN2(Y(I)/X(I))

80 F(I)=DSIN(THETA(I)/2.0D0)/DSQRT(RO(I))

2000

F0=0.0D0
FE=0.0D0
K=LL-4

DO 3000 I=K,LL
NN=2%1
FO=FO+F(NN-1)

3000 FE=FE+F(NN)

~FO=FO-F(J) .

DELTA(NNN, LLL)=( (0. 5D0*PI) /(3. 0D0*1800D0) ) * (F(J )+ F(M)+2. 0DO
1%F0+4, ODO*FE)

IF(LLL.EQ.1) GO TO 5000 _
' DELTA(NNN, LLL)=DELTA(NNN, LLL)+DELTA (NNN, LLL-1)
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5000 CONTINUE
1000 CONTINUE
DO 4000 LLIL=1,35 .
© AEAL(LLL)=(1.0D0/(PI*(DSQRT(AL+1.0)+DSQRT(AL~1.0D0))))*
1(~(AL*1.0DO0)* (DELTA(L, LIL) )+ (AL~1. 0D0)* ( DELTA(3,LLIL) ) -
2(AL-1.0D0)* (DELTA(5, LLL) )+ (AL+1, 0D0) * (DELTA(7,5LL)))
,BNREAL(LLL):(l.bDo/(PI*(bSQRT(AL+1.0D0)+DSQRT(AL-1.ono))))
1*(—(AL+1.0Do)*(DELTA(z,iLL))+(AL-1.oDo)*(DELTA(4,LLL))%
2(AL-1.ono)*(nELTA(6,LLL))—(AL+1.0D0)*(DELTA(B,LLL)))
NDGREE=LLL*5
4060 WRITE (6,101 )NDGREE,AEAL(LLL),BNREAL(LLL)
101 FORMAT(10X,I4,2F26.14)
ST0P
END
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IT TO CALCULATE THE SHAPE OI' THE I-N'TERNAL GUI]-)E VANES (OR
NUI\'IERICAL INTEGRATION OF EQUATION (56’)‘
[ : al j‘{ e +(a-Ds . -CA-D-(a+05 ]
dz = BwJ 3 (re 1)31 5T S[-CaA-D-(reD3Y)

for the range of 3 from -e -ip to -re -ip

FORTRAN SOURCE STATEMENT LIST
DIMENSION RO(2000),THETA(2000), F(2000) DELTA(2000) AEAL(2000),
1BNREAL( 2000), R( 2000), x(2000), Y(2000)

AL=1.09935 '

PI=3.1415927

€=(135.0%P1)/180.0

- DO 1000 NNN=1,8

DO 5000 LLL=1,100

LI=LLL*5

M=TLI%2+1

J=M-10

R(1)=1.0

GO T0(1,2,3,4,5,6,7,8),NNN

1 D0 10 I=J,M

11

10

IF(I.EQ.1)GO TO 1l

R(I)=R(I-1)+0.2

X(I)=(AL+1.0)+2. O*R(I)*COS(C)+(R(I)**2) (1 0—AL)*((COb(C))**2-—
l(SIN(C))**2) .
Y(I)=-2. O*R(I)*SIN(C)+(R(I)**2)*(AL-.L 0)*2,0%SIN(C)*COS(C)
RO(I)=SQRT((X(I)**2)+(Y(I)**2))

THETA(I)=ATAN2(Y(I)/X(1))
F(I)=COS(THETA(I)/2.0)/(SQRT(RO(I)*R(I))

GO TO 2000 -
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2 D020 I=J,M |
IF(I.EQ.1) GO TO 2L
R(I)=R(I-1)+0.2
21 X(I)=(AL+1.0)+2.0%R(I)*COS(C)+(R(1)**2)*(1.0-AL)*((COS(C))**2
© 1-(SIN(C))**2) | o
Y(I)=;2.0*R(f)*SIN(C)¥(R(I)**2)*(AL—l;O)*2.0*$IN(C)*COS(C)
RO(I)=SQRT((X(I)**2)+(T(1)**2))
 THETA(I)=ATAN2(Y(I)/X(I)) .
20 F(I)=SIN(THETA(I)/2.0)/(SQRT(RO(I))*R(I))
GO TO 2000

3 DO 30 I=J,M
IF(I.EQ.1l) GO TO 3L
R(I)=R(I-1)+0.2

31 x(1)=(AL+1.o)*((cos(c)**z-(SIN(c))**25+2.b*R(I)*cos(c)+(n(1)**2)
1*(L.0~AL)

Y(I)=(A1+1.0)*2.0%SIN(C)*COS(C)+2.0%R(I)*SIN(C)
RO(I)=SQRT((X(I)**2)+(Y(I)**2))
~ THETA(I)=ATAN2(Y(I)/X(I))
" 30 P(I)=COS(THETA(I)/2.0)/SQRT(RO(I))
GO TO 2000
4 DO 40 I=J,M

 IP(I1.EQ.1)+0.2 ,

41 x(I)=(AL+1.o)*((COS(c»**z-(SIN(c))**2)+2.0*(R(I)**2)*(1.04AL)
Y(I)=(AL+1.0)*2.0*SIN(C)*COS(C)+2.0*R(I1)*SIN(C)
RO(I)=SQRT((X(I)**2+(Y(I)**2))

THETA(I)=ATAN2(Y(I,;/X(1))
40 F(I)=SIN(THETA(I)/2.0)/SQRL(RO(I))
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GO TO 2000
5 DO 50 I=J,M
IF(I.EQ.L) GO 10 5L
© R(I)=R(I-1)+0.2 |
51 X(1)=LL.0-AL)+2.0*R(I)*COS(c)+R(;)**2*(1.0+AL)*((COS(C))**z-
L(SIN(C))**2) o |
Y(I)=~2,0%R(I)*SIN(C)~(R(I)**2)*(1.0+AL)*2,0%SIN(C)*COS(C)
RO(I)=SQRT((X(I)**2+(Y(L)**2))
THETA(I)=ATAN2(Y(I)/X(1))
50 F(I)=SIN(THETA(I)/2,0)/(SQRT(RO(I))*R(I))
GO TO 2000 ’
6 DO 60 I=J,M
IF(I.EQ.1) GO TO 61
R(I)=R(I-1)+0.2
61 X(I)=(1.0-AL)+2.0%R(I)*C)S(C)+(R(I)**2)*(1.0+AL)*((C)S(C))**2~
1(SIN(C)**2) | .
Y(I)=—2.0%R(I)*SIN(C)~(R(I)**2)*(1.0+AL)*SIN(C)*COS(C)*2.0
RO(I)=SQRT((X(I)**2)+(Y(I)**2))
THETA(I)=ATAN2(Y(I)/2.0)/(SQRT(RO(I))*R(I))
. 60 F(1)=COS(THETA(I)/2.0)/(8QRT(RO(I))*R(I))
GO TO 2000 |
7 DO 70 I=J,M
| IF(I.EQ.1) GO TO 71
R(I)=R(I-1)+0.2 ,
TL X(I)=(AI+1.0)*(R(I)**2)+2.0*R(I)*COS(C)+(1.0-AL)*((COS(C) )**2-
1(SIN(C))**2) '
Y(I)=2,0*R(I)*SIN(C)+(1.0-AL)*2.0*SIN(C)*COS(C)
RO(I)=SQRT((X(I)**2+(Y(1)**2))
THETA(I )=ATAN2(Y(1)/X(1))
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70 F(I)=SIN(THETA(I)/2.0)/SQRT(RO(I)) -
GO TO 2000
8 DO 80 I=J,M’
IF(I.EQ.1)GO TO 81
R(I)=R(I-1)+0.2 |
81 x(I)=(AL41.0)*(R(I)**2)+2.0*R(1)*cos(b)+(;.o-AL)*((cos(c))%*2
1-(SIN(C))*x2) '
Y(I)=2.0*R(I)*SIN(C)+(1.0~AL)*2.0%SIN(C)*COS(C)
RO(I)=SQRT((X(I)*¥2)+(Y(I)**2))
THETA(I)=ATAN2(Y(I)/X(I))
80'3(I)=cos(THETA(I)/2.0)/SQRT(R0(I))

2000 F0=0.0 ' ‘

FE=0.0

K=LL-4

DO 3000 I=K,LL
NN=2+*T
FO=FO+P(NN-1)

3000 FE=FE+F(NN)

" F0=FO-F(J)
DELTA(NNN,LLL)=(0.20/3.0)* (F(J )+F(M)+2.0%FO+4,0*FE)
IF(LLL.EQ.1) GO TO 5000 |
-DELTA(NNN,LLL):DEL?A(NNN,LLL)+DELTA(NNN,LLL—l)

5000 COKTINUE

1000 CONTINUE
D0 4000 LLL=1,100 .
AEAL(LLL):(l.O/(PI*(SQRT(AI¢1.0)+SQRT(AL-1.0)))*((AL+1.0)*

1(DELTA(1,LLL))-(AL-1.0)*(DELTA(3,LLL) )-(AL-1.0)* (DELTA(S5,LLL) )
2+(AL+1.o)f(DELTA(7,LLL)))
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BNREAL(ILL)=(L.0/(PI* (SQRT(AL+1.0 )+ SQRP(AL-1.0))))*(~(AL+1.0)*
1(DELTA(2,LLL))+(AL+1.0)*(DELTA(4,LLL))-(AL-l.o)*(DELTA(s,LLL))+
2(AL+1.0)*(DELTA(8, LLL) )) ’ '

. AEAL(LLL)=AEAL(LLL)#*12.0

BNREAL(LLL)=BNREAL (LLL)*12.0
| XLI=ILL ' '

RADI=XLL*2,0+1.0

4000 WRITE(6,101) RADI,AEAL(LLL),BNREAL(LLL)
101 FORMAT(10X,3F18.5)

STOP

END



- 80 -

III. EXPLANATION OF COMPUTER SYMBOLS USED

A

A =

¢C . . = The value of 'p' in radians

c(1) = The variable value of ‘P' in radians

RO(I) = ‘P(I)'
| THETA(I) = O(I)

X(I) = The real part of thé particular function

f(I) = The imaginary part of the particular function
M'& J = The maximum and minimum ordinate of the

| trapezoid ﬁhén integrating by Simpson's rule

PI = T

NDGREE = The value of 'p' at intervals af 5 degrees
DELTA(NNN, LLL) = Integrated result of the particular function
FO = 044 ordinate of the trapezoid when integrating

by Simpson's rule
FE = Even ordinate of the trapezoid when integrating
by Simpson's rule

AEAL(LLL) = Real part of the integration

BNREAL(LLL) = Imaginary part of the integration

RALP = A1

RALM = /a1

R2 = = Ja
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IV. NOTES ON PROGRANLIING

The programme was written in Fortran IV for use on
the MéGill University IBil 360 digital‘computer. In Appendix.z,
Part I, the integral has been computed with the value of P
increasing in steps of 5 degrees. Similarly, in Appendix 2,
Part II, the integral has.been evaluated with the value of r
increasing in steps of 2. 'and . the programme has been written
with the value p= 135°, Viz., ‘V;,: 4. The same programme
has been used for 66mputing internal guide vanes at % and 3/4 .
positions, by chaﬁging the value of p to 90° and 450, respec~-
tively, instead of 135°., In all the programmes better accuracy
can be attained by changing the intérval of integration.

Tables 8-13 show the computer outpuf tabulated in order.
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APPENDIX 3

NUMERICAL INTEGRATION OF EQUATION (56) TO I'IND THE

SHAPE OF INTERNAL S TRE‘AMLI NES

PART 1
For the range of 3 from -1 to _e'P
By putting 4 = - e P
' K| = ie..iPdP

Equation (‘56) becomes
-aU . (A - 1) dp

J&= = F f ﬁ+'e-fp>[-cA-1>+<A+1>~°-""’J

f (en) &P dp .
J"TTV /(1+e"")[-(7\—1) A+ 1) el

.LO.U f (A'”)dP
- j—TrV JCi+ eB)[(A+1) - -(a-De’f]

(r-9 ie® dp
* J—TTV f JC+e®)[(+D) -(a-ne*]

. et ’ ____& Y
v ‘/[(7\+1) " ZCOSF ,,_(,..A)COSZF]- i[ZSqu/s-f-(l"A)szﬁ
, Jau(a-d f ::

VoY ﬂ' )\) +2ca$/3+cf+7‘)c°5 3/3J+ l[25m/3 +()+1)5|h2&
_ aU(A-ILf f

75 TV JCom zcosf* G+ 2)cos 2f] - [z.smF (H?\)sz]

_av(a+1) op

fTTV f /[:(I /'\) cos: Zlb + Zco_sf +(A+O]+ r[( )\)S:n z/a-;- 2.5:71/37
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For simplicity one can write

‘Hence -

fd'z ='

+

+

=X, = r(7\+1-) +2cosp + (-A) cos 2}‘]
= x, = f(:-,\) + 2 cosp +@+2) cos ZP]
=Yy = :—2 .SmF ~ (1-2) sim ZF]
= -¥g = ;‘2 smp +(1+R) s 2}’]

-iov(Aa+1) dP

‘/—'lTV f /HCC05QI+iSI%@)

<iaU(a-1) d;s
+ ——

Jemyv \/@ CCo.s Oy + .5me¢)
) ~au(x—1) P dp

JZ Vv J, [ B (cos o5 * 1 5 B) |

ayu (A+1) dp

t JZ2 TV f ‘/ P4 (Cos @y + i Sm 94)

‘ P; jx, + ;%
o = R~c ran(-Y—)

-0 ([ fpi o[ 20

i=12 34

p/e

J—TI'V
(o [ [ ety o[ 2GR ]

»-0 |- [ C‘”(%) dF*’fo 2inl o) d/‘}

coe { [ coscew api [ s'ﬂcevad,aﬂ
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PART II
For_ the_range of 3 from -.e_i/’to’-re P
By putting 5 = pe~iP
: ds = e Har

. Equation (56) becomes .
(A+1) dv

fdz = fTrv / 27 Yc"f’)[(“”)*U\ 5 're-rPJ

-'Fd
U((A-1 1
* = )f /(;-Ye"P)[(?\+i) (r-1) veF ]

JZ wV
:au(a D f dy
f‘“rv Yf(i-Ye"P)[ (A1) - (7\+1)“/e"f‘j

. . uo.U('A+1) f e P gy .
. JE TV J(=veP)[-(A-1)-( 2+ D) ve P]

-7
av (A+1) d+
smv. J 1/[(a+1) -_Z'YCOS/J +73(1-N)cos 2] + s[zw.'_w/t; -72(1-2) s 35

. aUO\-H) i dv«
Y J[(’MDC::s&/a zvc«»}s-f-v‘(mz)] [(7\+1)5m2'/3 -27sing]

-7,
1au(A-D ' dr

VALY YL [C-N-2v cosp + v2(1+2) Cos 2/3] + "lEfS:&\PT-'IL(l'F?DS«%zE

-7
dv

roau(A+1) ~
JZ2TvVv J, J[(1-2) cos Zfz -:2-15.%4/9 +7’2(/+7\§I+ i[(l-h)S:M2P-Qy.s.hg

Let

X5

= [(7“’1) -2v COS/_s +72(1-2) cos zfs]

Ys = [2,'{ siap - v2(1-2) sin 2p]
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Xe = [C?\+1)Cos 2,15 —2YCosIb + o (1 )\)]
YG ) = 1:(?\+1)$1n 2,13-—27‘5101/3]
'X., = [(l-—?{) -20'(:«:;/3 +72C1+A)C052F]

J, | = [ %*Y 5"%/3 - #2(1+2) S z/s]

X
®
i

| [(J—-?\) Cos 2/b - 27 Cos/ts' + 22(1+ 2)] .

«©
@
1

[(:-;\) sin ap ~ 2 s,;n/a]

v ’ -y '
| ' d
fdz - f;:v[c;wﬂ«_[ vJ Ps (¢

Cos O5 + i Sim Og)

do

+ (- 1)[ /QEC05@6+|5;~195]

dv
- t(?\-l)f G

v * i Sim 6’.7>

d'a’
_‘(?\-H)‘/: J f’e (Cos 0g + iSim 0g) }

Where ' FI = [% + Y

I

.

+ ¥ _dr os (®54) - i -'5""@5/>C’
/“WV[(A 1>{fﬁ s cos (°) f 2

. TRE

=N = A‘YC Tam (%,) ,=5:

[+ 4]

]
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— L B 4

-0 [ cos @so) gy _ i [ Sm (%) 4

: Ly R %2 Peyz r
: -t

v o

4 (r-0) | i c::s(@zz) Ay - , 5:'%(@'7/2) d
TR ; TR

-1

s (e [~ [ oo o [ dyﬂ

8 L 8
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‘ Table 2.
‘Table 2.1 .

HEAD T.0SS MEASUREMENT WITH MAXIMUM VELOCITY ALONG THE INTRADOS

WITH RIGHT ANGLE MITRE BEND

i Difference in level in the differential manometer
|Expt. No. * |corresponding to two pOlnts bcfore and after the
bend on the

. Intrados Sides Extrados
1 0.95" 0.85" 1.15"
2 1.0" 0.90" 1l.20"
3 1.0 | 0.90" 1.20"
4 1.0" 0.90". l.20"
5 - l.0" 0.96" 1.20"
NB

The above readings have to be multiplied by (¥ - 1)

to obtain the pressure differencé in inches of water. Y =

specific gravity of the manométer liquid = 1.047. °
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Table 2.2
HEAD LOSS MEASUREMENT WITH MAXIMUM VELOCITY ALONG.THE EXTRADOS

WITH'RIGHT—ANGLE MITRE BEND

Difference in level in fhe differential manometer
Expt. No. corresponding to two points before and after the
bend on :
— Intrados ' Sides | Extrados -

1 1.6 : 1.35" v 1.65"

2 1.7 1l.40" 1.70"

3 1,75 1,450 1.70"

4 1,75 1450 ~ 1.70v

5 1.75" | 1.45" 1.70"

HE.

The above readings have to be multiplied by (¥ - 1)’
to obtaih the pressure difference ih inches of water. 7,

specific gravity of the manometer liquid = 1,047.
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Table 2.3
HEAD LOSS MEASUREMENT WITH UNIFORM VELOCITY DISTRIBUTION

WITH RIGHT-ANGLE MITRE BEND

. Difference in level in the differential manometer
Expt. No. corresponding to two points before and after the

bend on the ‘
Intrados = . Sides Extrados

1 0.15" ' 0,15" , 0.55"

2 0.20" 0.15" . ) 0.60"

3 0.20" 0.15" . 0.60"

4 0.200 | © 0.15¢ " 0.60n

> 0.20" ' 0;15" : oc.60"

NB

S

The above readings have to be multiplied by (V - 1)
to obtain the pressure difference in inches of'water.‘

Y= specific gravity of the manometer liquid = 1.047.
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TABLE 3
Table 3.1 -
HEAD LOSS MEASUREMENT WI'H MAXIMUM VELOGITY ATONG THE INTRADOS

(i) WITH INNER-CURVED WALL ALONE

. Difference in level in the differential manometer
Expt. No. corresponding to iwo points before and after the
bend on the ~
Intrados © Sides Extrados
1 0. 25" Co.sn 0.55"
2 0, 25" 0.25" 0.55"
3 0. 25" ' 0.25" 0.55"
4 0.25" Of25" 0.55"
'5 0.25" 0.25" 0.55"

(ii) WITH INNER-CURVED WALL AND INTERNAL GUIDE VANES

Difference in level in the differential manometer
Expt. No. corresponding to two points before and after the -
bend on the
Intrados Sides Extrados
1 0.15" 0.40% - 0.35"
2 0.15" 0. 40" 0.35"
3 0.15" 0. 40" 0,35
4 0.15n 0.40" 0. 35"

The above readings have to be multiplied by (Y - 1) to
obtain the pressure differeﬂce in inches of water. Y = specific

gravity of the manometer liquid = 1.047.
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Table 3.2
HEAD I,0SS MEASUREMENT WITH MAXIMUM VELOCITY ALONG THE EXTRADOS

(i) WITH.INNER-CURVED WALL ALONE

-leférence in level in the differential manometer
Expt. No. corresponding to two points before and after the
bend on the. A
Intrados ) Sides Extrados
1 1.1 ©o1.10" 1.15"
2 1.1 1,1n ' 1.15"
3 1.1 1.0 1.15v
4 1.1 1.1 ' 1.15"

(ii) WITH INNER-CURVED WALIL AND INTERVNAL GUIDE VANES

Difference in level in the differential manometer.
Expt. No. corresponding to two p01nts before and after the
bend on the
Intrados Sides Extrados
1 o.7" - 0.,8" ’ 0.8"
2 0.7 : . 0.8" Q.8"
3 0.7" . 0.8n 0.8"
4 0.7" 0.8" 0.8"

The above readings have to be multiplied by (Y- 1) to
obtain the pressure differences in inches of water. Y = specific

gravity of the manometer liquid = 1.047.
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HEAD LOSS MEASUREMENT WITH UNIFORM VELOCITY DISTRIBUTION

WITH INNER-CURVED VWALL ALONE

= ‘Difference in level in the differential man;meter
Expt. No. corresponding to two points before and after the
bend on the '
Intrados ‘ Sides Extrados
1 0.15" 0,25" : 0.35"
2 0. 15" 0. 25" © 0.35¢
3 0.15" 0,254 ~0.35"
4 0.154 0,250 | 0.35"
5 0.15" : 0.é5" 0.35"
(ii) WITH INNER~CURVED WALL AND INTERNAL GUIDE VANES
Difference in level in the differential manometer
Expt. No. corresponding to two points before and after the
bend on_the -
Intrados' . Sides : Extrados
1 0.00" 0.05" : 0.2"
.2 o.oL" : ' 0.05" 0.2
3 0.01" 0.05" 0.2"
4

0.00" 0.05" -1

The above readings have to be multiplied by (Y - 1) to

obtain the head loss in inches of water. Y = specific gravity

of the manoneter liquid = 1.047.
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THE OUTPUT OF THE COMPUTER PROGRAMME AS PER APPENDIX 1 and 2

Table 4
I
The value of The difference between
- A ' computed valueea- 1 foot
1.0980 : - 0.0068
1.0990 ‘ - 0.0017
1.1000 ~ + 0.0033
1.1010 _ ~ + 0,0083

CHENCE A = 1.0993

"II THE SHAPE OF THE INNER—-CURVED WALL

Table 5
x_(inches) ~ y_(inches)
0.0 . 12.0
0.130 " 10.708
0.662  8.497
1.466 | 6.546
2.448 . . 4.939
3.595 » 3.595
4.939 2.448
6.546 1.466
8.497 0.662
10.708 0.130
12.00 0.0

The shape of the inner-curved wall has been plotted in ‘Pigure 21.
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IIT 10 CALCULATE THE SHAPE OF THE INTERNAL GUIDE VANES

(a) Calculation of the point on the line BF( Fig.3)

(The output of the numerical integration for fhe range of 3

from -1 to -e'P)

Table 6
Real part Imaginary part
Yalue of (in feet) (in feet)
5 0.01593 ~0.0159%
10 0.03226 ~0.03226
15 0.04898 ~-0.04898
20 0.06611 -0.06611
25 0.08366 ~0.08366
30 0.10164 -0.10165
35 0.12008 ~0.12008
40 0.13898 -0.13898
45 0.15836 -0.15836
50 0.17824 ~0.17824
55 0.19865 -0.19865
60 0.21961 ~0.21961
65 0.24114 -0.24114
70 0.26327 -0.26327
75 0.28604 . -0.28604
80 0.30948 -0.30948
85 0.33364 -0.33%3%64
90 0.34855 . =0.34855
95 0.38429 -0.38429
100 0.41091 © =0.41091
105 0.43%848 -0. 43848
110 0.46710 ~0.46710
115 0.49686 -0.49686
120 0.52710 -0.52710

(continued)
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125 0.55726 ~0.55726
130 0.58880 ~0. 58880
135 0.62192 ~0.62192
140 0.65692 -0.65692
1145 0.69416 -0.69416
150 0.73414 -0.73414
155 0.77760 -0. 77760
160 0.82565 - =~0,82565
165 10.88016 ~0.88016
170 0.94481 ~0.94481
- 175 1.02905 -1.02905

IV TO CALCULATE THE SHAPE OF THE INTERNAL GUIDE VANES (THE
OUTPUT OF THy NUMSRICAL INTEGRATION FOR THE RANGE OF 3
FROM -~e='P 1O —re®? ). ‘

(a) For S/, =3/t or p=45°
Table 7
. Real part Imaginary part
Radius (in inches) (in.inches)
1.50 0.86003 0.09495
2.0 1.55612 - 1.87644
2.5 2.03049 2.61780
3.0 2.37788 3.23439
5.0 3.17568 -4.99518
7.0 3.57588 6.16991
9.0 3.8130 7.05136
11.0 3.98053 7.75725
13.0 4,09606 8.%4651 .
15.0 4.18190 8.85272
17.0 4.24773 9. 29690

" (continued)
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19.0 4.29951 - 9.69198
21.0 4.34109 10.05065
23.0 4.37508 10. 37689
25.0 4.40%31 10,67693
27.0° 4.42707 10.95476
29.0 4.44732 11.21351
31.0 4.46476 11.45568
 33%.0 4.47993 11.68330
35.0 4.49%24 11.89802
37,0 4.50501 12.10125
39.0 4.51548 12.19418
41.0 4.52487 12.47780
43.0 4.53332 12.65298
45.0 4.54097 12.82045
47.0 4.54793 12. 98086
49.0 4.55429 13.13480
51.0 4.56012 13, 28276
(b) For €/, =1/2 or p = 90°
Table.8
Real part Imaginary part
Radius (in inches) (in inches

1.5 1. 25883 1.45323
2.0 2.04327 '2,61580
2.5 2.56137 '3.54068
3.0 2.93900 4.32403
5.0 3.74230 6.43567
7.0 4.12874 7.80619
9.0 4.35912 8.81597
11.0 4.51301 . 9.61400

(continued)
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13.0
15.0
'17.0
19.0
21.0
23.0

25.0

. 27.0
29.0
- 31.0

33.0 -

35.0
37.0
39,0
41.0
43,0
45.0
47.0
49,0
51.0
53.0
55.0
57.0
59.0
6L.0
63.0
65.0
67.0
69.0
7L.0
73.0
75.0

4.62339
4.70653
4.77142
4.82348

4.86617
4.09181

4,9%200
4.95789
4,98035

5.0000 -

5.01735
5.03276
5.04655
5.05896
5.07019
5.08039
5.08970
5.09823
5.10608
5.11331
5.12002
5.12623
5.13202
5.13741

 5,14246

5.14719
5.15164
5.15582
5.15975
5.16347
5.16698
5.17031

10. 27326

110.83472

11.32361
11,75654
12.14502
12.49734
12,81968
13.11676
13.%9225
13,64911
1%.88967
14.11591
14.32944
14.53162
14.72358
14.906%2
15.08069

15.24742
15, 40715

15.45044
15.70782

15,84969
-15,98647

16.11850
16.24612
16.36961
16.48921
16.60519
16.71773
16,82704
16.93332
17.03671

(continued)
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77.0
79
8%
87
91
95
99
103
107
111
115
119
123
127
131
135
139
143 -
147
151
155
159
163
167
171
175
182:
185
189
193
197
201

5.17347
5.17647
5.18204
5.18709
5.19170
5.19592

5.19981

5.20340
5.20671
5.20979
5, 21265
5, 21532
5.21781
5.22016
5,2223%5
5,22442
5. 22637
5.22820
5,22994
5.23158
5.23314
5.23462
5. 23603
5. 23737
5. 23865
5. 23987
5. 24159
5. 24268
5, 24372
5.24422
5. 24567

5. 24650

17.13737
17.23544

- 17.42433

17:60431
17.77617
17.94063
18.09828
18.24986
18.39531
18.53558
18.67087
18.80153
18.92786
19.05016
19.16864
19, 28357
19.39513
19.50351

"19,60890

19.71147
19.8113%6
19.90869

. 20.00360

20.09621
20.18663
20.27495
20.40372
20. 48721
20.56892
20.64893
20.72726
20.80405
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(¢) For &/, =1/4 or p=.135

_ Table 9
Real part Imaginary part
Radius (in inches) (in inches)
3.0 3,16775 5.94243"
5.0 3.75L79 8.52136
7.0 4.00577 10.10204
9.0 4,15114 11.23433
11.0 4,24634 12.11397
13,0 4.313%94 12,.83212
15.0 4,3%6461 1%, 43836
17.0 4.40410 13.96260
19.0 4.43578 14.42424
21.0 4.46180 14.8365%
23.0 4.48356 15. 20896
25.0 4,50204 15.54850
29 . 4,53176 16.14899
33 4.55463. 16.66815
37 4.57279 17.12531
43 4,59396 17.72264
47 4.60520 18,07466
51  4.61474 18, 39700
55 4.62229 18.69462
59 4.63006 18.97009
63 4,63631 19.22736
71 4.64676 19,69510
79 4,65514 20.11180
87 4.66202 20.48749
95 4,66778 20.82953%
103 4.67265 21.14343
111 4.67683 21.43350
119 4.68045 21.70%08
127 . '4.68363 21.95490

(continued)
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135
143
151
159
167
175
183
191
199
201

4.68643
4.68892
4,69115

4,69316

4.69497
4.69662
4.69813

- 4,69951

4.70078
4,70108

122419110

22.41357
22.62378
22,82301 .
23,01237

23,19278

23.36504
23.52988
23.68787
23.72638




Table 10

Average Velocity V2 = 0,344 ft/sec

2 . .
V (Vi-Vz) Measured| Head Loss |Head Loss due to AH = 1y, e
2 Head loss| in feet Laminar Boundary = (6)/ K=’z§%
8 - of water layer (4)=(5) (2)
Mitre bend (1) (2) (3) (4) (5) (6) (7) (8)
(i) Uniform Velocity| 0.544] 0.00062 | 0.275" 0.00107 0.000115 0.00096| 1.55 0.52
(ii) Maximum along
intrados 0.90 0.00475| 1.0 0.00391 0.000115 0.0038 0.8 2.1
(iii)Maximum along '
extrados 0.60 0.00101L | 1.5856"n 0.00621 - 0.000115 0.0061 6 3.3 .
Inner-Curved wall ' ’ _
(i) Uniform Velocity 0.544| 0.00062| 0.25" 0.00097 0.000115 0.00086{ 1.391| 0.47
(1) With maximum : ’ '
along intrados 0.70 0.00196 | 0.325" 0.00127 0.000;15 0.00115| 0.6 0.64
(iii)With maximum . ‘ ' . R
along extrados 0.6 0.00101} 1.1125" 0.00436 0.000115 0.00425| 4 2.3
Inner-Curved wall ’
and Internal
Guide Vanes
(i) Uniform Veloeity - - 0.0775n 0.00030 0.00023 0.00007 - 0.04
|(ii) with maximum -
along intrados - - C. 325" 0.00127 0.00023 0.00104 - 0,57
(iii)With maximum : § '
along extrados - - 0.775" 0.00304 0.00023 0.0028 - 1.5

- SOT -
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Plate No.2. Lucite Duct Covered with Aluminum Frame.



clote No.2. Tmelite Dact Govered it Jdnminga Irooc
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Plate 4. The Weir Construetion at the top
of the tank
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Plate No.3. The Differential Ianometer

Plate L. The 'eir Construction at the to»
of the tank
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(a) Velocity Measurements in the Horizontal
portion of the duct

Plate.No.5.(b) Velocity Measurements in the

horizontal portion of the duct
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() Velocity ‘leasurements in the Horizontal
portion of the duct

Plate.No.5.(b) Velocity lieasurements in the

horizontzl portion of the duct
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Plate No.b6.(a) Velocity Measurements in the
horizontal portion of the duct

Plate No.6.(b) Velocity Measurements in the
vertical portion of the duct
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plate No.b.(a) Velocity Measuremernts in the

horizontal portion nf the duct

eseurenents in

olate No.b.(b) Teloclty
vertical portion of

+he dnct
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Plate No.7.(a) Velocity Measurements in the
vertical portion of the duct

Plate No.7.(b) Velocity Measurements in the

vertical portion of the duct.
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Plate Fo.7.(a) Velocity Messurcments in the

verticel portion of the duct
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Plate No.8. Lucite Duct Covered with frames
all around

Plate No.9. The Equipment used for velocity
measurement



- 111-

Plate No.3. Lucite Duct Covered with frames
all around

Plate '0.9. The Eouipment used for velocity

messurement
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13

100

ot late No.10. Lucite Duct,Supporting Platform & Jacks

Plate No.ll. An outside View of the Internal

Guide Vanes
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Plate Mo.ll. An outside View of the Internal

Guide Vznes



e
U ST

... Plate No.l12., The Lucite Duct in Open Position

Plate No.l3. An Inside View of the Guide Vanes



Plale ¥o.l2., The Lucite Duct in Onen Position
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RIGHT ANGLED DUCT WITH INNER CURVED WALL DESIGKED

FOR CONSTANT VELOGITY

+¢,
K -l Ay
U
YzaU '
V=const. ~
b K
¢"6 ~—y 4):0
C. _ B
Z-Plane ' 3
AY ’ ‘ | ' , radius%-l/V. A
' Pp=all} : .
- /' / '
e s % /
/ w-Plane : B
A - ) .
H .
) 3 -Plane
G 4
radiu F
=] jf / A
: : / .
’ D,C B /
) o

E .
(-V 3 )-Plane |

G H;A . . -

/ / | AH G FE D,C
F  (=a) (v (+2) (+7
E . / . t-Plane

r D,C L

Q-plane | " Fig.9




- 117 -

RIGHT ANGLED MITRE BEND

TRANSFORMATIONS USED

GRAPHICAL PRESENTATION

b he ' S
: . Y

; E PY=aV Feé'
A// ///
: R v S
> B .
‘ w-Plane
z-Plane
' A
radius=1/V
c,D
- E : F{A
///// /?///
D % > //
o .
S -Plane Q-Plane
ordinate// ' : | | ' '
b/a / /
P "/
. E . Bd
radius= /////
o1 )
\ /A /l /
' D,C T F,A E D,C
('+2) - ¢_Plane (+1)

" {(=V5 )-Planc

Fig.10.
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(smooth)
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FIG.11.HEAD LOSS COEFFICIENTS FOR SHMOOTH 90° RENDS
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FIG.12. DIMENSIONS OF DEFLECTING VANES FOR ITRE BENDS
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FIG. 13, SIMPLE VANE INS LATION FOR A 90° MITRE BEED
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THE _SHAPE OF THE INNER CURVED WALL
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INNER CURVED WALL WITH INTERNAL GUIDE VANES

VISUALIZATION OF FLOW BREAKAWAY USING = !
' CONDENSED MILK '

Zone of- eddying flow in “the case of maximum
velocity along the extrados

With uniform velocity distribution

. “\ . . . ,
With maximum velocity along the intrados
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b ] ) .
MEASUREMENT OF VELOCLTY IN THE MITRE BY

D (ITTH MAY THUM

(ii) In the horizontal porﬁiop of the duct

.VELOGITY ALONG_INTRADOS

vertical portion of the duct

- (1) In the
.. ’ 0
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17
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1
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0
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12

distance(In.)—>
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e
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8
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'1’ 8 DN
12 . R
0.4 0 - 0.4 0.8 1.2

discharge=0.37cfs.

FIG, 26.
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MEASUREELT OF VELACIZY TH.TEE LITRE BEL n( TAXTHU

g l..l

VELOCITY ALOKC EXTRADOS

(i) In the vertical portion of the duct

0.
.
o b
w .
2
éo.l;
B
5 .
et .
(4]
s
4 0.8
> ) -
X.2 . —J discharge=0.38cfs
0 Nk S 12
dlstance(In.)——%> -
f. . .
(ii) In thc horizontal porolon of thé duct
0
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8
bogl .
2 N .
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o0 - 0.4 . 0.8 1.2 .
velocitv(ft/sec)—>
1

B

T . FIG.27.
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* 'MEASUREMENT OF VELOCIIY Iil TIE MITRE DEND WITH

‘_.UNIFORM VELOCITY. DISTRIBUTION
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" MEASUREHEE

LOCITY WITH CURVED INTRADOS (WITH

MAXINUI VELOCITY ALONG INTRADOS ) s

(1) In the vertical portion of the duct

(? -
§d.h
2 ™
o0, \
o
. T .2
N ¢ R ) 8 ‘ 12

(ii) In the horizontdl portion of the duct

0
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0

0_0&

0.8

velocity(ft/sec)—

1.2

discharge;0.37c£s;

discharze=0,39cfs

I

FIG.29.
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ITY VITH CURVED INTRADOS AﬁD ITH

MEASUREMENT OF VELOG

MAXIMUM VELOCITY ALOHG THE EXTRADOS

(i) In the vertical portion of the duct

~—velocity(ft/sec)’

0

o
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o
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=
e .
N

o

—

b 8. 12
distance(In.)— '

(iif In the horizontal portion of the 'duct
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O
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‘velocity(ft/sec)—>

v

discharge=0.39cfs

discharge=0,37c{s

FIG.30.
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MIEA \SUREHENT OF -VELOCITY YWITH FURVPD IITRMDO) AFD WITH

(1) In the vertical portlon of thc duct

-é——velocity(ft/sec)'

UFIFORH VELOCITY DIuTRIBUTION

0

o o .
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(ii) In the horizontal portion of the duct
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TY WIT IHTERNAL GUIDN VAWURS AMND

MEASURELENT OF VELOCT
INNER CURVED WALL. (MAXIMUM VELOGITY ALONG INTRADOS)

.

ertical portion of the duct

(i) In the
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 MBASUREMENT OF VELOCITY WITH THTERMAL GUIDE VALES

" & INNER CURVED WALL. (LAXIIUL VELOCITY ALONG EXTRADOS)

(1) In the vertical portion of* the duct
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MLA SUREMENT OF VELOCITY VITH INTFRH&L GUIDE VﬁNEu-:ND

- INNER CURVED "l\LL(U“IFOt?‘T VELOCITY DISTRIBUTIONl
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