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Abstract

The ITU’s 2030 (6G) framework focuses on enhancing terrestrial networks by
integrating aerial communications for peak data rate, ubiquitous coverage, and sensing. In
this regard, massive multiple-input multiple-output (mMIMO) is considered as a key
enabling technology for large-scale deployments in beyond 5G mobile networks. By
utilizing a large number of antennas at base station (BS), mMIMO enables state-of-the-art
hybrid beamforming (HBF) and MIMO techniques that are powerful tools for improving
end-user experience and capacity in both uplink and downlink. The two-stage HBF
architecture is considered a promising solution in mMIMO systems to provide high data
rates with much-reduced hardware complexity/cost. We aim to address a set of objectives,
including antenna array configurations, beamforming optimization, interference
suppression, sum-rate maximization, improved energy efficiency, high self-interference
suppression (SIS) quality, and unmanned aerial vehicle (UAV) deployment to enhance both
coverage and capacity in terrestrials and UAVs-assisted terrestrial networks.

First, we study different two-dimensional (2D) and three-dimensional (3D) array
structures, which can be used at BS to support both aerial and ground users. We consider
half-duplex communications and investigate how the system performance can vary based
on (i) users angular location, and (ii) number of users. In this regard, we design HBF
schemes based on users angular locations to reduce multi-user (MU) interference. We also
examine the use of low-resolution hardware components (e.g., digital-to-analog converters
(DACs), phase shifters) and their impacts on the system performance.

Secondly, we explore full-duplex (FD) communications. We aim to mitigate strong
self-interference (SI) and maximize the total achievable rate based on over-the-air (OTA)
measurements of the SI channel measured in an anechoic chamber for a sub-6 GHz
frequency band. By using perturbation-based HBF for SI suppression and by exploiting
spatial degrees-of-freedom (DoF) due to the use of large antenna arrays, our objective is to
bring the SI level down to the noise floor, thus avoiding the use of costly/complex analog
cancellation circuits commonly used in FD circuitry. We propose different HBF solutions,
which can suppress SI up to 80 dB by optimizing (i) variable gain-controllers, (ii)
perturbing the directed beams, and (iii) selecting the best Tx/Rx antenna pairs.

Finally, we consider a UAV-assisted terrestrial system to address the coverage and
capacity issues by employing the UAVs as a relay between BS and multiple users. The high
mobility and easy deployment of a UAV can provide an additional DoF to improve the
overall capacity in mMIMO systems by addressing the signal fading, attenuation issues as

well as providing coverage to obscured/inaccessible users. However, the optimal
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deployment of UAV within a given flying span remains a challenging task. To maximize
the total achievable rate in dual-hop mMIMO systems, we investigate a joint HBF solution
by optimizing both UAV location and power allocation to multiple users, and sequentially
designing the HBF stages for BS and UAV. The RF stages are designed based on the slow
time-varying angular information, while the BB stages are designed using the
reduced-dimension effective channel matrices. Then, we aim to develop a deep
learning-based low-complexity joint HBF solution via a fully connected deep neural
network, consisting of an offline training phase, and an online prediction of UAV location
and optimal power values for maximizing the achievable rate while significantly reducing
the runtime by 99%. Later on, we further extend the performance analysis to multiple
UAV-assisted terrestrial systems, which can support many users in a dynamic environment,

providing greater network coverage and capacity.
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Sommaire

Le cadre 2030 (6G) de I'UIT vise a améliorer les réseaux terrestres en intégrant les
communications aériennes pour un débit maximal, une couverture omniprésente, et une
meilleure détection. La technologie massive MIMO (mMIMO) est considérée comme
essentielle pour les déploiements a grande échelle au-dela de la 5G. Grace a un grand
nombre d’antennes a la station de base (BS), le mMIMO permet des techniques avancées
de formation de faisceaux hybrides (HBF) et MIMO, améliorant ’expérience utilisateur et
la capacité en liaison montante et descendante. L’architecture HBF a deux étages est
prometteuse pour fournir des débits élevés tout en réduisant la complexité et les cofits
matériels. Nous visons a optimiser les configurations d’antennes, le beamforming, la
suppression des interférences, la maximisation du débit, Iefficacité énergétique, la
suppression de l'auto-interférence (SIS) et le déploiement de drones pour améliorer la
couverture et la capacité dans les réseaux terrestres assistés par UAV.

Nous étudions différentes structures de réseaux 2D et 3D pouvant étre utilisées a la
station de base pour prendre en charge les utilisateurs aériens et terrestres. Nous
considérons les communications semi-duplex et analysons les performances du systeme
selon la position angulaire des utilisateurs et leur nombre. Nous concevons des schémas
HBF basés sur ces positions pour réduire les interférences multi-utilisateurs (MU), et
examinons l'impact de [lutilisation de composants matériels a faible résolution
(convertisseurs numérique-analogique, déphaseurs) sur les performances.

Nous explorons ensuite les communications full-duplex (FD) pour atténuer
l'auto-interférence (SI) et maximiser le débit total réalisable. En utilisant le HBF basé sur
les perturbations pour la suppression du SI, et en exploitant les degrés de liberté spatiaux
grace aux grandes antennes, nous cherchons a ramener le SI au niveau du bruit de fond,
évitant ainsi des circuits d’annulation analogiques cotiteux et complexes. Nous proposons
des solutions HBF pouvant réduire le SI jusqu’a 80 dB en optimisant les controleurs de
gain variables, les faisceaux dirigés perturbés, et la sélection des meilleures paires
d’antennes Tx/Rx.

Enfin, nous envisageons un systeme terrestre assisté par UAV pour résoudre les problemes
de couverture et de capacité, en utilisant les UAV comme relais entre la station de base et
plusieurs utilisateurs. La mobilité et la facilité de déploiement d’'un UAV offrent un degré de
liberté supplémentaire pour améliorer la capacité globale des systemes mMIMO en traitant
les problemes d’évanouissement et d’atténuation du signal, tout en fournissant une couverture
aux utilisateurs inaccessibles. Cependant, le déploiement optimal d'un UAV reste un défi.

Pour maximiser le débit total réalisable dans ces systemes mMIMO, nous explorons une



solution HBF conjointe en optimisant a la fois 'emplacement du UAV et l'allocation de
puissance, et en concevant successivement les étapes HBF pour la station de base et le
UAV. Nous développons également une solution HBF conjointe a faible complexité, basée
sur I'apprentissage profond, permettant une prédiction en ligne de I'emplacement optimal
du UAV et des valeurs de puissance pour maximiser le débit tout en réduisant le temps
d’exécution. Nous étendons cette analyse a des systémes terrestres assistés par plusieurs
UAV, capables de supporter de nombreux utilisateurs dans un environnement dynamique,

offrant ainsi une couverture et une capacité réseau accrues.
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Chapter 1

Introduction

1.1 Overview of 5G and Beyond

Over the years, the evolution of cellular networks from the first generation (1G) to the
fifth generation (5G) had a profound impact on different aspects of our life. Particularly,
the world has seen a rapid digital transformation in the last few years that has changed the
way people communicate, conduct business and search for information. A critical element
of this digital transition is wireless connectivity [1,2]. It is expected that 5G and beyond
(B5G) networks will pave the way towards realizing the individuals technological aspirations
including holographic telepresence, e-health, pervasive connectivity in smart environments,
massive robotics, three dimensional massive unmanned mobility, augmented reality, virtual
reality, and internet of everything [3]. In this regard, the following statistics highlight the

significant increase in data traffic in the next few years:

 According to the International Telecommunication Union (ITU), the annual data traffic
increase between 2020 and 2030 is estimated to be around 55%, which can reach 606
exabytes (EB) per month in 2025 and 5016 EB per month in 2030 as shown in Fig.
1.1 [4].

o It is expected that the number of smart devices will surpass 38.9 billion by 2029 (an
increase of 148 % when compared to 15.7 billion devices in 2023) [5,6].

« As per ITU, the overall mobile data traffic will reach 5 zettabytes (ZB) per month [7].

The explosive increase of mobile data traffic is real, driven primarily due to the increased
use of smart phones, tablets, video streaming services as well as machine-to-machine

(M2M) connections. Hence, with billions of low-power consumption devices, such as
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Global Mobile Data Traffic Forecast (2020-2030)
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Figure 1.1. Global mobile data traffic forecast by ITU (source Cisco).

wireless sensors, connecting to the internet through the Internet of Things (IoT)
framework, there is a significant increase in both energy demand and data traffic. Hence,
the need for a new generation of highly scalable cellular networks is inescapable. In
particular, this new generation should:

o have a highly scalable and flexible architecture to support various services and

applications, such as massive device connectivity in IoT and M2M communications;

» provide larger capacity and improved coverage, while reducing the complexity and cost
of ultra dense network deployment;

« be able to make efficient use of different spectrum resources, including both licensed

and unlicensed bands as well as high frequency and low frequency bands;

« improve network energy efficiency to adapt to the performance requirements of different

applications and services;

To meet the above requirements and to cope with the challenges of ever increasing mobile
data traffic as well as demands for much higher data throughput, 5G of cellular networks,
also known as 5G new radio or 5G NR, is now becoming a reality. In 2018, the first full
set of 5G NR standards were announced by 3rd Generation Partnership Project (3GPP) in
release 15 (5G NR phase 1) [8,9], followed by release 16 in 2020, which drove 5G NR phase 2
expansion [10]. Currently, 5G NR networks are being deployed globally, and many 5G-ready
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smart devices (e.g., cell phones and tablets) are starting to come to market. I'TU has defined
the following three requirements for 5G NR, each to be fulfilled for one of the three 5G usage

scenarios [11].

« peak data rate of 10-20 Gbps (required for the enhanced mobile broadband (eMBB)
[12]).

o 1 million connected devices per square kilometer (required for massive machine type
communication (mMTC) [4]).

o less than 1 ms latency (required for ultra reliable low latency communications (URLLC)
8,13]).

The channel capacity is represented by the amount of information bits that can be reliably

transmitted to a destination and is given as:

Capacity [bps| = Bandwidth [Hz| x Spectral Efficiency [bps/Hz|, (1.1)

log, (1+SINR)

which is defined by two factors: (i) operating bandwidth, and (ii) the
signal-to-interference-plus-noise ratio (SINR). To fulfill the challenging use cases of future
wireless systems for enhanced data rates and coverage, it is essential to consider advanced
transmission techniques such as massive multiple-input multiple-output (mMIMO) systems
and beamforming. These techniques are particularly effective in improving SINR by
focusing signal energy towards the intended receiver and reducing interference.
Additionally, exploring new frequency spectrums, such as millimeter-wave (mmWave)
communications and sub-terahertz (sub-THz) communications can provide higher
bandwidth. The integration of unmanned aerial vehicles (UAVs) as relays can further
enhance SINR by providing line-of-sight paths and reducing interference. Moreover, the
effective utilization of limited bandwidth resources through techniques like full-duplex (FD)
communications can increase capacity by simultaneously transmitting and receiving on the
same frequency band, though this also requires sophisticated interference management to
maintain a high SINR.
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1.2 MIMO to Massive MIMO: A Paradigm Shift in
Wireless Technology

Multiple-input  multiple-output ~ (MIMO)  technology  revolutionizes  wireless
communication by deploying multiple antennas at both the transmitter and receiver ends.
This approach significantly enhances capacity and performance by mitigating challenges
like path loss and multipath fading that typically degrade wireless signals.  Unlike
traditional single-antenna systems, MIMO capitalizes on multipath propagation, exploiting
the various channel conditions between each antenna pair to provide additional degrees of
freedom (DoF). MIMO technology is designed to deliver two key benefits: (i) spatial
multiplexing gain, which allows the transmission of parallel data streams without the need
for extra bandwidth, thereby boosting spectral efficiency and data rates, and (ii) diversity
gain, which leverages distinct channel paths to improve signal quality, reducing errors and
enhancing reliability. However, a balance must be struck between these benefits, known as
the diversity-multiplexing trade-off. ~ Over the past 15 years, MIMO has become a
cornerstone of modern wireless standards, including LTE and WiFi [14-16]. For example,
LTE-Advanced supports configurations up to 8x8 MIMO, showcasing its integral role in
advancing wireless communication technology [17].

Massive MIMO represents a significant evolution in MIMO technology by addressing
the need to serve multiple users simultaneously with enhanced efficiency. Unlike traditional
MIMO systems, which primarily focused on point-to-point communication between two
devices with multiple antennas, mMIMO is designed for multi-user MIMO scenarios [18].
Here, a base station (BS) equipped with a large array of antennas can simultaneously serve
many users, each with a single antenna. This allows for the multiplexing gain to be shared
among all users, significantly boosting spectral efficiency and network capacity. The large
number of antennas in mMIMO systems also enables the use of simple linear signal
processing techniques, to efficiently manage interference and optimize performance across
all users, making mMIMO a cornerstone technology for 5G and beyond. The
third-generation partnership project (3GPP) has recognized the potential of mMIMO,
standardizing deployments of up to 256 antennas at BS in its Release 17 [8].

1.2.1 Benefits

The deployment of large antenna arrays and the capability for 3D beamforming in

mMIMO systems offer several key benefits:
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o High Spectral Efficiency: In multi-user mMIMO (MU-mMIMO) systems, large
antenna arrays allow a BS to serve multiple users simultaneously on the same frequency
band. Consequently, mMIMO technology enhances both spectral efficiency and overall

network capacity.

o Improved Interference Management: The narrow beams generated by large
antenna arrays in mMIMO systems significantly reduce inter-user interference (IUT).
Advanced beamforming techniques not only enhance the desired signal power but

also suppress interference power.

« High Energy Efficiency: Large antenna arrays in mMIMO systems reduce
downlink and uplink transmit powers through advanced beamforming techniques.
This enhancement in array gains leads to higher energy efficiency, which is crucial for

certain mMTC applications.

o Scalability: Massive MIMO systems are highly scalable, making them well-suited for
future expansions in wireless networks. This scalability ensures that as the demand for
data and connectivity grows, mMIMO systems can be adjusted to meet these increasing

needs without substantial changes to the existing infrastructure.

« Flexibility in Deployment: The advanced beamforming capabilities of mMIMO
systems provide greater flexibility in deployment scenarios. This includes support
for both terrestrial and non-terrestrial networks (NTN), making it easier to integrate

satellite communications and other emerging technologies.

1.2.2 Challenges

Although mMIMO technology offers substantial benefits, its practical implementation in

5G and beyond wireless networks brings several technical challenges. Key challenges include:

« High Hardware Costs and Complexity: One of the most significant obstacles is
the high cost and complexity of hardware. Traditional MIMO systems typically rely
on fully digital beamforming (FDBF'), where each antenna element is associated with
its own radio frequency (RF) chain, digital-to-analog converters (DACs) for
transmission, analog-to-digital converters (ADCs) for reception, mixers, and other
components. In mMIMO systems, the large number of antenna elements dramatically
increases hardware costs and power consumption. While substantial beamforming

gains can reduce transmit power without compromising spectral efficiency, the high
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power consumption of these hardware components can significantly impact energy
efficiency.

o Substantial Channel Estimation Overhead: In mMIMO systems using traditional
FDBF techniques, estimating the high-dimensional channel state information (CSI) is
crucial for effective beamforming. The increased number of antennas leads to higher
channel estimation overhead. Given a fixed coherence time (the period during which
the channel remains stable), acquiring extensive CSI requires longer pilot transmission
times, which in turn reduces the time available for data transmission. This increased
overhead can negatively affect effective spectral efficiency. For example, as the number
of antennas approaches infinity, the required pilot transmission length could surpass
any finite coherence time, resulting in zero effective spectral efficiency. Therefore, it
is essential to develop new beamforming methods that require less CSI overhead for
mMIMO systems.

« High Computational Complexity: As the size of the antenna array increases, so
does the size of the channel matrix. Applying conventional MIMO signal processing
algorithms to tasks such as beamforming, channel estimation, and signal detection
involves large-scale matrix computations (e.g., matrix inversions, multiplications,
singular value decompositions (SVD), and determinants), leading to higher

computational complexity.

o« Dynamic and Unpredictable Channel Conditions: The integration of UAVs
introduces highly dynamic and rapidly changing channel conditions due to their
mobility and varying altitudes. This makes channel estimation and beamforming in
mMIMO systems more challenging, as traditional techniques may not adapt quickly

enough to these variations [19].

The advantages of mMIMO technology significantly enhance 5G and future networks,
enabling support for emerging services, particularly eMBB and mMTC applications.
However, to fully exploit these benefits in both terrestrial and UAV-assisted terrestrial
networks, it is vital to address the technical challenges. This necessitates the development
of advanced, low-complexity signal processing techniques to reduce hardware costs,
complexity, and channel estimation overhead.

Hybrid Beamforming (HBF) has been proposed as a promising solution for mMIMO
systems [20]. Unlike the conventional single-stage FDBF, HBF divides the beamforming
architecture into two stages: an analog RF stage and a digital baseband (BB) stage,
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interconnected by a reduced number of RF chains. This HBF architecture helps mitigate
the technical challenges of high hardware cost and complexity, large CSI overhead, and
increased computational demands. A detailed comparison of beamforming architectures

will be presented in Section 2.1.

1.3 UAV-Assisted Terrestrial Communications

With the advent of advanced wireless communications and networking technologies, a
new era of innovation has emerged with IoT at its forefront. The potential applications of
[oT are vast, ranging from healthcare and urban environments to households [21]. However,
deploying IoT effectively and extensively still poses significant challenges, including
efficient information transfer between wireless nodes and gateways. To address this issue,
various routing schemes have been proposed, including direct transmission or relay
structures. Nonetheless, when the distance between the IoT end node and the gateway is
substantial, direct transmission may not be feasible or may consume excessive power. In
such cases, communication through relay can be a more power-efficient alternative.
Moreover, deploying cellular stations in urban areas can be a costly and challenging task,
which can further complicate the communications coverage issue in the IoT framework [22].
UAVs, commonly referred to as drones, are viewed as a key component of the next
generation of wireless communications networks. UAV as a relay offers several advantages
over traditional static relays. Specifically, the ability to deploy on-demand, mobile relaying
systems at a relatively low cost and in a timely manner, makes them particularly
well-suited for unforeseen or short-term events, such as emergency situations or network
offloading [23]. Furthermore, the high mobility of UAVs allows for the dynamic adjustment
of their locations to optimize communications conditions, a technique particularly
promising for delay-tolerant applications, such as periodic sensing and the transfer of large
data [24-26]. UAVs’ capability to reach inaccessible locations makes them a viable option
for future IoT applications, as they can fly close to IoT devices, sequentially collect sensing
data, address coverage issues, and reduce IoT communications networks’ overhead [19].

The incorporation of UAVs as relay nodes in wireless sensor networks (WSNs) has the
potential to augment communications capacity by connecting remote sensor gateways and
addressing the escalating data-rate demands in applications such as virtual reality,
device-to-device communications, and smart cities. UAVs can be deployed at high altitudes
to increase the likelihood of line-of-sight (LoS) dominated air-to-ground communications

channels, thereby supporting high-rate communications. However, the severely congested
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sub-6 GHz bands can be inadequate to meet the rising data rate requirements. In contrast,
millimeter-wave (mmWave) communications, with their abundant spectrum resources, can
potentially support the high-throughput and low-latency requirements of various UAV
application scenarios [27]. Nonetheless, mmWave signals suffer from high propagation loss,
including free-space path loss, atmospheric and molecular absorption, and rain attenuation.
This challenge can be surmounted by leveraging mMIMO technology with large array
structures to generate high beam gains in UAV-assisted terrestrial systems, which can
improve the transmission range and simultaneously suppress interference among IoT nodes

by utilizing the advanced capabilities of three-dimensional (3D) beamforming.

1.4 Thesis Contributions and Organization

Massive MIMO refers to utilizing a large number of antennas at BS for improving data
rates through spatial multiplexing in single-user mMIMO (SU-mMIMO) and multi-user
mMIMO (MU-mMIMO) operation modes. By concentrating signal energy into smaller
regions through substantial beamforming gains, mMIMO ensures remarkable advancements
in transmission quality in both uplink and downlink directions. The existing studies in
mMIMO systems focus on the use of one-dimensional array (i.e., uniform linear array
(ULA)), which has been a common array configuration in literature. However, it can not
accommodate a very large number of antenna elements, which is important to support a
large number of users. Moreover, it creates two important issues: (i) spatial inefficiency,
and (ii) restriction to illuminate both azimuth and elevation angles at the same time.
Additionally, despite effective precoding/combining solutions, the performance in mMIMO
systems can significantly vary due to the following: (i) UE/device angular location, and (ii)
UE/device distance from the BS (e.g., users obscured due to buildings, mountains., etc.).
Therefore, the antenna configuration can play an important role in serving a large number
of users (both ground and aerial) for future IoT applications. In this regard, ITU’s
IMT-2030 (6G) framework focus on enhanced capabilities (refers to the key performance
indicators of peak data rate, latency, connection density, mobility, and reliability) as well as
new capabilities (refers to key parameters of ubiquitous coverage, sensing, sustainability,
resilience, and positioning). Thus, to enable these new capabilities, future wireless
networks are expected to adopt an integrated terrestrial and NTN architecture. This thesis
targets a set of objectives, including 2D/3D array configurations, beamforming
optimization, interference suppression, sum-rate maximization, improved energy efficiency,

high self-interference suppression (SIS) quality, low channel estimation overhead, and UAV
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deployment to enhance both coverage and capacity in terrestrials and UAV-assisted
terrestrial networks. The remainder of this thesis is organized as follows.

Chapter 2 presents an overview of the beamforming architectures and MU-mMIMO
system model. Then, we present a literature review of different relaying schemes in wireless
networks. Afterwards, we review different SIS techniques used in FD communications.
Finally, we discuss how artificial intelligence (AI) and machine learning (ML) can help
solve non-convex optimization problems in wireless communications with less complexity
and more reliability.

Chapter 3 investigates different 2D array configurations to be used at BS for enhanced
capacity in mMIMO systems. We design three HBF architectures: (i) HBF using
full-resolution PSs and DACs, with a baseband transfer block for constant-modulus RF
beamformer, (ii) HBF using b-bit PSs and full-resolution DACs, with an orthogonal
matching pursuit (OMP) based algorithm that can approach the optimal unconstrained RF
beamformer, and (iii) HBF using b-bit PSs and g-bit DACs, taking into account also DAC
quantization noise. The proposed HBF schemes not only reduce the hardware
cost/complexity by utilizing a limited number of RF chains but also lower the CSI
overhead size by designing RF-stage via slow time-varying CSI (i.e., angular information).
Therefore, the reduced-size effective CSI is utilized during the BB-stage design. We
compare the spatial, spectral and energy efficiencies of HBF designs for different
antenna-arrays. In the illustrative results, we show that the proposed HBF schemes achieve
higher sum-rate and energy efficiency than other HBF benchmarks.

Chapter 4 compares the performance of various 3D array structures in the design of HBF
for mmWave MU mMIMO systems. The proposed HBF scheme involves two stages: (i) RF
beamforming based on SVD of the channel matrix, and baseband MU precoding based on
the instantaneous effective baseband channel to mitigate MU-interference by a regularized
zero-forcing (RZF) technique. The illustrative results show that, in comparison to 2D arrays,
3D array structures can provide high spectral and energy efficiencies as well as non-varying
achievable rate independent from the user angular location. Thus, 3D structures can be
useful in supporting both terrestrial and non-terrestrial communications.

In Chapter 5, we propose different novel full-duplex hybrid beamforming (FD-HBF)
techniques to enhance the overall capacity in mMIMO systems based on over-the-air
(OTA) measurements of the SI channel. Our objective is to leverage the spatial DoF in
mMIMO systems to enhance FD capacity without the need for expensive analog
SI-cancellation circuitry. For a single uplink, single downlink user setup, we develop both

constant modulus (CM) and non-constant modulus (NCM) RF-stages via slow
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time-varying angular information in order to maximize the intended signal power and
suppress the strong SI power. Particularly, both CM and NCM RF-stages are constructed
for the following schemes: (i) maximizing the directivity towards the intended direction
and suppressing the strong SI power via orthogonal beams, (ii) introducing beam
perturbations within an allowed directivity degradation to minimize SI power, and (iii)
selecting best Tx/Rx sub-array indices jointly with beam perturbation for enhanced SI
suppression. Afterwards, the BB-stages are built via the reduced-size effective intended
channel. The illustrative results show that FD-HBF significantly suppresses the strong SI
power by achieving upto 80 dB SI suppression capability, which remarkably improves the
achievable rate capacity and approximately doubles it compared to its HD counterpart.

Chapter 6 introduces a UAV-assisted terrestrial system to enhance both coverage and
capacity in SU-mMIMO and MU-mMIMO systems. Due to the limited coverage and fixed
deployment of terrestrial networks, the integration of UAVs offer key advantages of rapid
deployment especially in emergency situations. Therefore, we consider the UAVs as
relaying structures to extend the coverage area of BS. We consider UAV as
amplify-and-forward (AF) relay as well as decode-and-forward (DF) relay in both
SU-mMIMO and MU-mMIMO systems, where the overall capacity is maximized by
optimizing the UAV placement within a deployment area, power allocation (PA) to users
jointly with angular-based HBF solutions for both BS and UAV. We introduce two
AI/ML-based algorithms for the joint UAV deployment and PA. First, we develop a
particle swarm optimization based joint UAV location and PA (PSOLPA) algorithm, which
attains almost the optimal sum-rate capacity at the expense of longer runtime for the
larger number of users. Second, we introduce a novel deep learning based UAV location
and PA (DLLPA) algorithm for faster and more robust prediction of UAV deployment and
PA. The proposed DLLPA algorithm has two phases: (i) offline supervised learning via the
allocated powers and UAV optimal values calculated by PSOLPA, and (ii) online power
and UAV location prediction via the trained deep neural network (DNN). The illustrative
results depict that DLLPA closely approaches the optimal sum-rate capacity with
remarkably reduced runtime.

Chapter 7 studies the multiple UAVs-assisted terrestrial networks to support a large
number of users, enhancing both coverage and capacity, while the proposed HBF
techniques in Chapter 6 follows the use of single UAV. We consider multiple UAVs
operating as DF relays, which connect the BS to a large number of IoT devices. We utilize
structured sequential optimization to address the multi-faceted optimization problem by

splitting it into two sub-problems.  First,K-means-based user clustering is used for
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UAV-users association. Then, the location of each UAV is optimized jointly with PA using
swarm intelligence. The RF stages are designed based on the slow time-varying angular
information, while BB stages are designed utilizing the reduced-dimension effective channel
matrices. [llustrative results show that multiple UAV-assisted cooperative relaying systems
outperform a single UAV system in practical user distributions.

Finally, Chapter 8 provides the concluding remarks, summarizes the key findings of this

thesis, and discusses the possible future research directions.
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Chapter 2
Background

This chapter provides an overview of the beamforming architectures for the mMIMO
systems including DBF, ABF, and HBF. We present MU-mMIMO system model. Then,
we review the SI suppression (SIS) techniques in FD communications and emphasize the
advantages of using DoF provided by large mMIMO array structures to generate narrow
beams to enhance the SIS quality. Later on, we discuss different relaying schemes used
in UAV-assisted terrestrial communications. Finally, we discuss the AI/ML applications
in wireless communications to develop low-complexity and robust solutions for non-convex

optimization problems.

2.1 Beamforming Architectures in mMIMO Systems

Beamforming is a fundamental technique in massive MIMO (mMIMO) systems,
enhancing communication performance by directing signal energy toward desired
directions. This targeted focus is achieved through the use of large antenna arrays that
adjust the phase and amplitude of signals. By optimizing the beamforming weights,
mMIMO systems can achieve high signal-to-interference-plus-noise ratio (SINR), which is
crucial for reliable communication. As the number of antennas increases, the SINR also
increases, which is referred to as beamforming gain [28]. This gain allows mMIMO systems
to direct the signal energy towards desired regions, reducing interference and improving
signal quality. The high beamforming gain in mMIMO systems is particularly effective in
overcoming the significant path loss experienced in mmWave communications. Moreover,
the spacing between antenna elements also plays a critical role in beamforming
performance. Typically, antenna separation is maintained at half the wavelength of the

carrier frequency to avoid grating lobes and ensure optimal spatial resolution. This spacing
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Figure 2.1. Beamforming architectures for the mMIMO systems. (a) FDBF (b) ABF (c)
HBF.

is crucial, as it impacts the overall beam pattern, sidelobe levels, and beamforming gain.
As shown in Fig. 2.1, the three main architectures for beamforming in mMIMO systems

are:
 Single-stage fully digital beamforming (FDBF)
« Single-stage fully analog beamforming (ABF)
» Two-stage hybrid beamforming (HBF)

These architectures have different advantages and limitations. Understanding the strengths
and weaknesses of each can help in selecting the appropriate beamforming strategy for specific
applications. A brief summary of the advantages and limitation of each beamforming solution

is presented in Table 2.1.

2.1.1 Fully Digital Beamforming

In traditional MIMO systems, typically featuring a limited number of antennas, a single-
stage FDBF architecture is commonly employed. This approach performs beamforming
directly at the baseband level using digital signal processing techniques [29-31]. FDBF offers
significant flexibility and a high degree of freedom (DoF'), making it possible to implement
efficient beamforming algorithms. As illustrated in Fig. 2.1(a), the FDBF architecture
supports S data streams using Ny antennas, where S < Np. The digital baseband stage for
downlink or the digital baseband combiner for uplink is represented by the matrix Brpgr €
CNt>S_ This matrix contains the beamforming weights, which can be adjusted in both

magnitude and phase using digital processing techniques. FDBF facilitates the transmission
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Table 2.1. Advantages and Limitations of Beamforming Techniques in mMIMO Systems

Aspect FDBF ABF HBF
Offers precise control .. Balances power consumption
of amplitude and phase LOW‘COSt and power—efhm(.ent and performance; enables
per antenna, enabling as it uses a single RF chain multi-stream transmission
optimal beamforming with phase shifters (PSs), making | with fewer RF chains
Advantages | and high spectral efficiency | it suitable for large arrays than FDBF
High hardware cost and Limited flexibility; only Increased complexity
power consumption due controls phase, so compared to ABF; requires
to one RF chain per performance is lower optimization of both RF
Limitations | antenna element in multi-user scenarios and baseband stages

of multiple data streams simultaneously by effectively mitigating interference, such as inter-
symbol interference (ISI) in single-user MIMO (SU-mMIMO) and inter-user interference
(IUI) in multi-user MIMO (MU-mMIMO). However, each antenna element in the FDBF
architecture requires its own dedicated RF chain, which is both power-intensive and costly.
Consequently, in a system with Ny antennas, there are Ny RF chains, leading to significantly
increased hardware costs and power consumption as MIMO systems evolve into mMIMO
For example, 3GPP Release 17 specifies the use of 64-256
antennas at BS, making it impractical and costly to deploy 64-256 RF chains using the
FDBF approach [32].

Furthermore,

with larger antenna arrays.

as the number of antennas increases, so does the computational
complexity associated with beamforming optimization, due to the expanding matrix
dimensions of Bppgr € CV7*%. Although FDBF can achieve optimal spectral efficiency in
mMIMO systems, exploring alternative beamforming architectures is essential to reduce
hardware and computational complexity while maintaining near-optimal spectral efficiency.
To address the challenges posed by FDBF in mMIMO systems, alternative architectures
have been developed. As mMIMO technology continues to advance, these new
beamforming architectures will be crucial for enabling scalable and efficient communication

systems.

2.1.2 Fully Analog Beamforming

Fig. 2.1(b) depicts the ABF architecture, where a single RF chain supports N7 antennas
[33]. In this setup, Nr low-cost PSs connect the RF chain to the antennas. These PSs
consume significantly less power compared to RF chains, typically around 1 mW per PS
versus 250 mW per RF chain. This substantial reduction in power consumption and hardware

costs makes ABF particularly beneficial for mMIMO systems. The use of a single RF chain
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in the ABF architecture remains constant regardless of the number of antennas, significantly
reducing hardware complexity and costs. The analog RF beamforming vector is represented
as fagr € CN7. Compared to the digital baseband beamforming matrix Bppgp € CN7*9,
which has Ny x S elements, fagr with Np elements exhibits much lower computational
complexity [34].

Despite its advantages, the ABF architecture has some significant limitations. The
analog RF beamforming vector fagp typically only applies phase shifts to the transmitted
and received signals, adhering to the constant-modulus (CM) constraint. This limitation
complicates beamforming optimization and reduces the DoF compared to FDBF, which
can adjust both the magnitude and phase of signals. As a result, the ABF architecture
generally experiences performance degradation compared to FDBF. Moreover, ABF
supports only a single data stream, while FDBF, as shown in Fig. 2.1(a), can handle
multiple data streams. This limitation reduces spectral efficiency, which is one of the key
benefits of mMIMO systems.

Thus, there is a trade-off between digital and analog beamforming architectures. FDBF
offers higher spectral efficiency by supporting multiple data streams and providing greater
flexibility in signal processing. On the other hand, ABF improves hardware and
computational efficiency by reducing power consumption and complexity. The choice
between these architectures depends on the specific requirements and constraints of the
application, balancing the need for high spectral efficiency with the practical considerations

of hardware and power costs.

2.1.3 Hybrid Beamforming

The two-stage HBF architecture has emerged as a promising solution for mMIMO
systems, effectively addressing the trade-offs between single-stage FDBF and ABF
architectures [20,35]. As illustrated in Fig. 2.1(c), HBF divides the beamforming process
into two stages: an analog transmit (or receive) RF beamformer Fypp € CN7*MNer and a
digital baseband (BB) precoder (or combiner) Bygr € CNMrF*S for transmission (or
reception). This two-stage approach leverages a reduced number of RF chains, Ngg, where
S < Ngrp < Nrp, to minimize hardware cost and complexity in mMIMO systems with large
antenna arrays. Additionally, the HBF architecture supports multiple data streams,
making it a versatile solution.

In the RF stage, each RF chain connects to every antenna element through PSs,
constructing the analog RF beamformer Fypp € CN*MrF with Np x Ngp PSs.
Subsequently, the digital BB precoder/combiner Bygr € CNrF*S is designed in the BB
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Table 2.2. Comparison of Fully Digital, Analog, and Hybrid Beamforming in Massive
MIMO Systems

Aspect

DBF

ABF

HBF

Hardware Complexity

High: One RF chain
per antenna

Low: Single RF chain,
phase shifters

Medium: Few RF chains,
phase shifters

Power Consumption

High

Low

Medium

Computational Complexity

High

Low

Medium

Flexibility

High: Change magnitude
and phase

Low: Change phase only

Medium: Combines DBF
and ABF

Spectral Efficiency

High: Optimal

Low: Limited by
single stream

High: Near-optimal,
multiple streams

Cost
Implementation Feasibility

Medium
Feasible with trade-offs

High Low
Difficult for large arrays | Easy, cost-effective

Medium: Slow time
varying CSI

CSI Overhead High Medium: Effective CSI

By employing a reduced number of RF chains, the two-stage HBF architecture
Moreover, HBF

techniques optimize both RF and BB stages to enhance system capacity. Numerical studies

stage.

significantly cuts down on hardware costs and power consumption.

indicate that HBF can closely match the spectral efficiency of FDBF while significantly
outperforming ABF. Thus, HBF achieves high spectral, energy, and hardware efficiency for
mMIMO systems, offering more DoF' for low-complexity HBF techniques.

Most existing research on FDBF and HBF architectures assumes the availability of
full-size instantaneous CSI [36-42].

dimension and pilot transmission length increase,

However, as antenna arrays scale up, the channel
resulting in substantial channel
estimation overhead. The HBF architecture can mitigate this overhead by developing the
RF stage using slow time-varying CSI (e.g., channel covariance matrix or angular
information), and subsequently designing the BB stage with reduced-size effective
instantaneous CSI. This capability further enhances the practicality of HBF by reducing
the channel estimation overhead. HBF architectures are categorized into fully-connected
In FC HBF architecture, each RF chain
connects to all antenna elements, which necessitates Ny x Nrp PSs. Conversely, SC HBF

(FC) and sub-connected (SC) configurations.

architecture reduces the number of PSs to Np by connecting each RF chain to a subset of
In this thesis, we focus on both FC and SC HBF techniques for mMIMO
systems. Table 2.2 provides the comparison between ABF, FDBF, and HBF, which shows

advanced HBF techniques can achieve high spectral efficiency with low hardware

antennas.

cost/complexity, low CSI overhead size for practical mMIMO systems.
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2.2 Multi-User Massive MIMO Communications

One of the key features of mMIMO is to support multi-user communications (i.e.,
MU-mMIMO), where multiple single-antenna users (K < N7) are served simultaneously by
employing advanced beamforming techniques. Both downlink and uplink transmissions in
MU-mMIMO systems are facilitated by designing appropriate beamforming techniques to
enhance the overall sum-rate capacity. The primary goals of beamformer design in
MU-mMIMO systems are to maximize the desired signal for each user while effectively
mitigating multi-user interference (MUI). MU-mMIMO systems offer significant advantages
over SU-mMIMO systems. Firstly, the channel conditions improve due to the spatial
diversity provided by users positioned at different locations, leading to a higher channel
rank. Secondly, MU-mMIMO systems serve users with fewer antennas, which is more
practical for wireless communication systems constrained by hardware limitations and cost
considerations.

In the downlink transmission of the FDBF architecture, depicted in Fig. 2.1(a), the
signal transmitted from the BS after precoding is represented as sp = Bpdp € CN7. Here,
Bp = [bpi1,bpa,...,bp k] € CNT*E denotes the digital baseband beamforming matrix,
and dp = [dp1,dpa,. .. ,dDJ(]T € C¥ is the vector containing the downlink data signals.

The received signal at the user side is then expressed as:

TD71 hg71BDdD
D, hT BDdD

rp ZHDSD+DD=HDBDdD+nD = ‘2 = b2 . +np, (21)
TD,K hZA’KBDdD

where Hp = [hpi,hpo,...,hp g7 € CE*NT represents the downlink channel matrix,
hp . € CM corresponds to the channel vector for the k" user, and np ~ CN(0, 021) is the
complex Gaussian noise vector. The primary goal of the digital baseband beamforming
stage Bp is to mitigate multi-user interference (MUI) while maximizing the desired signal
power. Common linear beamforming methods for designing the digital BB precoder
include: (i) matched filter (MF), (ii) zero-forcing (ZF), and (iii) regularized zero-forcing

(RZF). The general form of the digital BB precoder is given by:
BD = (IDXBng S CNTXK, (22)

where ap is a normalization factor ensuring that the transmit power constraint Pr is met,
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and Xp € CN7*N7 varies based on the technique: Xp = Iy, for MF, Xp = HEH), for ZF,
and Xp = HEHp + iINT for RZF. Similarly, in uplink MU-mMIMO systems, the digital

Pr/K
BB combiner By = [bij/,l, by, ..., buxk] € CE*NT is used to combine the signals received at
the BS:
Tu1
Fy = By(Hydy + ny) = ByHypdy + Byng = | 7|, (2.3)
UK

where Hy € CN7*K s the uplink channel matrix, and ny ~ CA(0, 021,,) is the noise vector.

The digital BB combiner’s general form is expressed as:
By = Hi X! € CF*r) (2.4)

where XU = INT for MF, XU = HgHU for ZF, and XU = HgHU—i— %INT for RZF, with PU
being the uplink transmit power. Beyond the conventional single-stage FDBF techniques, the
two-stage HBF architecture discussed in Section 2.1.3 can also be utilized in MU-mMIMO

systems to enhance spectral efficiency while reducing hardware complexity.

2.3 Self-Interference Suppression (SIS) Techniques for

Full-Duplex Communications

Full-duplex (FD) communication systems have the potential to double system capacity
by enabling simultaneous transmission and reception on the same frequency bands, thus
utilizing time and frequency resources more effectively compared to conventional
half-duplex (HD) systems like TDD and FDD. This -characteristic makes FD
communications especially promising for mMIMO systems. However, FD operation
introduces significant self-interference (SI) between co-located transmit and receive
antennas, necessitating sophisticated self-interference suppression (SIS) techniques. To
maintain performance in FD communications, the strong SI must be reduced to or below
the noise floor. For instance, with a noise power spectral density (PSD) of —174 dBm/Hz

and a transmission bandwidth of 20 MHz, the noise power is calculated as:

02 = —174 4+ 101og,,(20 x 10%) ~ —101 dBm. (2.5)

To facilitate simultaneous downlink and uplink transmission, an FD mMIMO system
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Figure 2.2. Full-duplex mMIMO systems featuring several SIS stages: antenna isolation,

analog/digital SIS, RF and BB beamforming stages.

involves five SIS stages: (i) antenna isolation, (ii) analog transmit/receive RF beamforming,
(iii) analog SIS, (iv) digital SIS, and (v) digital baseband (BB) precoding/combining. Each
stage contributes differently to the overall cancellation/suppression quality. Given a transmit
power Pr of 30 dBm, the required SIS must reduce the SI to below —101 dBm, leading to a
required SIS of:

Required SIS = Pr — 02 = 30 dBm — (—101 dBm) = 131 dB. (2.6)

Achieving such a high level of SIS is challenging, particularly as Pr and the number of
antennas increase. Note that an FD mMIMO system might involve various SIS stages to
reach the desired SIS quality, as illustrated in Fig. 2.2. Some SIS stages might be omitted
due to complexity or inadequate SIS performance. Extensive research has been conducted
to enhance SIS quality and maximize the benefits of FD technology [43-45]. One approach
involves separating the transmit and receive antenna elements in the passive propagation
domain cancellation technique, allowing the signal to be attenuated in the propagation
domain before reaching the receive circuitry [46-48]. The goal of passive antenna isolation
is to maximize separation between the transmit and receive RF chains.  Practical
implementations demonstrate SIS levels between 60 and 70 dB based on antenna

isolation [49]. Following antenna isolation, the RI stage includes both analog
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transmit /receive RF beamforming and analog SIC. With large antenna arrays and high
beamforming gain in mMIMO systems, the transmit and receive RF beamformers can
generate narrow beams for the intended downlink and uplink channels, while keeping them
nearly orthogonal to the SI channel [50,51]. Given the SI channel matrix Hg; € CMv*Mp,
the transmit RF beamformer Fp, & CMp*Nero and the receive RF beamformer
F; € CNrruvxMu aim to satisfy:

FyHgFp =~ 0, (2.7)

which requires joint optimization of Fp and Fy. The analog SIC stage then generates an
accurate replica of the SI signal based on the transmitted signal and estimated SI channel
parameters (e.g., delay, attenuation). This replica is subtracted from the received SI signal.
However, estimating SI channel parameters becomes more complex with larger array sizes,
potentially impacting analog SIC performance. Conversely, larger antenna arrays provide
more degrees of freedom for transmit/receive RF beamformers, improving SIS quality and
potentially negating the need for analog SIC. Combining antenna isolation, transmit /receive
RF beamforming, and analog SIS techniques is critical to prevent overload and saturation in
the receive RF chain and ADCs due to high SI power. These methods are vital for advancing
SIS in the BB stage and establishing FD communications.

The digital SIC and digital BB precoder/combiner functions at the BB stage. Like analog
SIC, digital SIC aims to eliminate the residual SI signal in the digital domain. Digital
cancellation techniques, being simpler forms of active cancellation, achieve limited SIS due
to hardware imperfections such as transceiver phase noise and non-linearities that restrict
the effectiveness of traditional digital cancellation methods [52]. The digital BB precoder
Bp € CNreEoXED gnd the digital BB combiner By € CEv*Nrru further enhance SIS by
satisfying:

BUFUHSIFDBD ~ 0. (28)

The objective is to develop innovative HBF techniques to improve SIS quality and reduce
SI power below the noise floor. Thus, the proposed HBF techniques for FD mMIMO systems
involve the integrated design of four components: (i) analog transmit RF beamformer, (ii)

analog receive RF beamformer, (iii) digital BB precoder, (iv) digital BB combiner.
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2.4 Massive MIMO Relaying

Relaying techniques in MIMO communications, particularly in the context of HBF,
play a vital role in enhancing coverage, reliability, and overall system performance. As
discussed earlier, HBF combines the benefits of both analog and digital beamforming,
making it an efficient choice for mMIMO systems. This section explores the two primary
relaying strategies, amplify-and-forward (AF) and decode-and-forward (DF), in the context
of HBF [53-56].

2.4.1 Amplify-and-Forward (AF) Relaying

In AF relaying, the relay node amplifies the received signal and forwards it to the
destination. Considering a HBF architecture, the relay utilizes both analog and digital
beamforming stages to process the signal efficiently. For a mMIMO communication system
with Nr antennas at the transmitter, N antennas at the relay, and Np antennas at the

destination, then the received signal at the relay is expressed as:
yr = Hgpxgs + ng, (2.9)

where Hgp € CV2XNT g the channel matrix between the source and the relay, xg € CN7x!
is the transmitted signal from the source, and ng € CV#*! is the noise vector at the relay.
Considering a HBF architecture at relay, the received signal is amplified and forwarded to

the destination. Then, the signal transmitted from the relay is given by:
XR = FByR, (210)

where F € CN&XNrr s the analog beamforming matrix, and B € CVrr*NT jg the digital

beamforming matrix. The received signal at the destination is:

yp = Hppxp +np = HgpFByg +np. (2.11)
Substituting yr into the above equation, we get:

yp = HrpFrrFpp(Hsrxs + ng) + np. (2.12)

The design of hybrid beamforming stages F and B is crucial to balance the trade-off between

signal amplification and noise control. The design of HBF matrices can maximize the received
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Table 2.3. Comparison of relaying protocols in mMIMO systems.

Criterion AF Relaying | DF Relaying
Complexity Moderate High

Noise Amplification | Yes No

Processing Delay Low High
Implementation Moderate Complex
Reliability Moderate High

signal power while minimizing the amplified noise.

2.4.2 Decode-and-Forward (DF) Relaying

In DF relaying, the relay decodes the received signal, re-encodes it, and then forwards it
to the destination. The HBF technique can be used at both the relay and the destination to
process the signal efficiently. The received signal at the relay in DF relaying is the same as
in AF relaying:

yr = Hggpxg + np. (2.13)

The relay decodes the received signal to obtain Xg, which is an estimate of the transmitted
signal xg. The relay then re-encodes and forwards Xg to the destination using HBF
architecture. The transmitted signal from the relay is:

XR = FRFFBB)A(‘g. (214)
Then, the received signal at the destination is:
yp = Hrpxp + np = HrpFrrFppXs + np. (2.15)

In practical scenarios, decoding errors at the relay can degrade performance. The joint
design of HBF stages at BS, relay, and at destination can maximize the sum-rate capacity
by improving SINR.

The choice between AF and DF relaying depends on the specific requirements of the
communication system. AF relaying with HBF is simpler and introduces less delay but
can amplify noise. DF relaying with HBF provides better performance in terms of noise
mitigation but requires more complex processing and introduces decoding delays. A brief

comparison of DF versus AF relaying scheme is presented in Table 2.3.
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2.5 AI/ML Applications in Wireless Communications

In recent years, the application of artificial intelligence (Al) in wireless communications
has garnered significant attention due to its ability to develop low-complexity and robust
solutions for non-convex optimization problems. Various terms are used in the literature to
refer to Al as it encompasses different branches, including nature-inspired (NI) intelligent
algorithms, supervised /unsupervised machine learning (ML), and deep learning (DL). This
section briefly introduces NI and DL, followed by a discussion of their potential applications

in wireless communications.

2.5.1 NI Intelligent Algorithms

NI algorithms have gained popularity due to their effectiveness in solving complex
optimization problems. Unlike traditional deterministic methods, these algorithms employ
multiple search agents, which are initially randomly placed in the optimization space and
move towards the global optimum through iterative communication, combining
deterministic and stochastic movements. Some of the key NI algorithms are: particle
swarm optimization (PSO), genetic algorithm (GA), ant colony optimization (ACO)., etc.

Among different NI algorithms, PSO is inspired by the social behavior of animals such
as birds flocking or fish schooling. It is used to solve optimization problems by iteratively
improving candidate solutions with regard to a given measure of quality. The basic idea
of PSO involves a swarm of particles moving through the search space to find the optimal

solution. Each particle represents a potential solution and has the following attributes:
o Position: x; € R” for particle i.
o Velocity: v; € R” for particle 7.
o Personal best position: p; € R", which is the best position found by particle i so far.

o Global best position: g € R”, which is the best position found by any particle in the

swarm.

The velocity and position of each particle are updated iteratively using the following
equations:
vi(t+1) =wvi(t) + crri(pi — x3(t)) + cara(g — x;(1)), (2.16)

X(t+1) =x(t) + vi(t + 1), (2.17)

where:
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e w is the inertia weight, which controls the impact of the previous velocity.

e ¢; and ¢, are cognitive and social coefficients, respectively, which control the influence

of the personal best and global best positions.
e r1 and ry are random numbers uniformly distributed in [0, 1].
The iterative process of PSO can be summarized as follows:
1. Initialize the positions x;(0) and velocities v;(0) of all particles randomly.
2. Evaluate the fitness of each particle’s position.
3. Update each particle’s personal best position p; if the current position is better.

4. Update the global best position g if any particle’s personal best position is better than
the current global best.

5. Update the velocities and positions of all particles using the equations (2.16) and (2.17).

6. Repeat steps 2-5 until a stopping criterion is met (e.g., a maximum number of iterations

or a satisfactory fitness level).

2.5.2 Applications of NI-PSO in Wireless Communications

PSO has been effectively applied in various wireless communication problems due to its

simplicity and ability to find near-optimal solutions. For example, PSO can be used for:

« RF Beamformer Design: Optimizing the phase shifts of RF beamformers to

maximize the received signal power or minimize interference.

o Resource Allocation: Allocating resources such as power, bandwidth, and time slots

to users in a wireless network to optimize overall performance.

« Antenna Design: Designing antenna arrays to achieve desired radiation patterns and

improve signal quality.

Although NI algorithms promise to achieve almost optimal solutions, they might be
computationally expensive and time consuming due to the iterative behavior. On the other
hand, when the optimization problem is non-convex, NI algorithms can be also utilized for

developing a dataset to train the low-complexity and robust ML techniques.
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2.5.3 Deep Learning

Deep learning (DL), a subset of ML, has been pivotal in fields such as computer vision,
speech recognition, and natural language processing. Its success has also extended to
wireless communications, where it has been used for tasks such as signal detection, resource
management, and channel estimation. A single neuron in a neural network performs a
weighted sum of the inputs and applies a non-linear activation function. The output y of a

single neuron can be expressed as:

y=1r (i w;T; + b) (2.18)

where:

e x; are the input features.
« w; are the weights associated with the inputs.
e b is the bias term.

o f(+) is the activation function.
Some common activation functions used in DL are:

» Sigmoid Function:

1

= 2.19
f) = 1 (2.19)

« Rectified Linear Unit (ReLU):
f(z) = max(0, z) (2.20)

« Hyperbolic Tangent (Tanh):
et — e~

— tanh = - 2.21
() = tanb(e) = £~ (221)

In DL, the loss functions are used to measure the difference between the predicted output

and the actual output. Some common loss functions are:
e« Mean Squared Error (MSE):

1 N

MSE = =3 (3 — §1)’ (2.22)
ND
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where y; is the actual value and g; is the predicted value.

e Mean Absolute Error (MAE):
1 N
MAE = N >y — G4l (2.23)
i=1

e Cross-Entropy Loss (used for classification):

L=— Z yilog(9:) (2.24)

=1

In a deep neural network, forward propagation involves calculating the output of each layer

from the input layer to the output layer. For a layer [, the operation can be described as:

al) = f (W(l)a(l—l) + b(l)> (2.25)
where:

=1 is the activation from the previous layer.

° a(
« WO is the weight matrix of the current layer.
« b® is the bias vector of the current layer.

o f(+) is the activation function.

On the other hand, backpropagation is used to compute the gradient of the loss function

with respect to each weight in the network. It involves:

« Gradient of the loss with respect to the output of the network:

oL
99

=j—y (2.26)
e Gradient of the loss with respect to the weights:

oL T
— 50 40=1)
WO 0a (2.27)
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« Updating weights using gradient descent:

oL

® 0 _
WYV «— W naw(l)

(2.28)
where 7 is the learning rate.

An example DNN architecture includes input, multiple hidden, and output layers, where
each hidden layer neuron uses activation functions to learn complex patterns. The depth
(number of hidden layers) and the number of neurons per layer directly influence the
network’s capacity to model intricate relationships.

In summary, both NI algorithms and DL techniques offer significant potential for
optimizing and enhancing wireless communication systems, each contributing uniquely to

addressing the challenges posed by non-convex optimization problems.

2.6 Concluding Remarks

In this chapter, we have presented an overview of the beamforming architectures for the
mMIMO systems and highlighted the benefits of the HBF architecture for high spectral,
and energy efficiency with reduced hardware complexity. Afterwards, we discussed
MU-mMIMO communications system model. Then, we presented different SIS techniques
for the FD communications, including analog RF beamformer and BB precoder/combiner.
Also, we have emphasized that the large antenna arrays in the FD mMIMO systems bring
a great potential for the improved SIS quality via the HBF design. Then, we discussed
different relaying schemes in mMIMO systems, which can extend the coverage area while
enhancing the capacity. We also highlighted the use of different AI/ML applications in
wireless communications. In the next chapters, we develop novel HBF techniques for
various mMIMO systems along with the aforementioned points, which address two key

issues: (i) capacity, and (ii) coverage area.
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Chapter 3

2D Antenna Array Structures in
Hybrid Massive MIMO!

3.1 Introduction

As expressed in Chapter 2, the large antenna arrays in mMIMO systems bring two
interesting challenges: (i) increased expense and energy consumption due to the use of
large number of RF chains, and (ii) the use of significant amount of spectral resources
and increased CSI overhead [20]. In order to overcome these problems, HBF has been
proposed as a promising solution [20, 31|, which is a two-stage precoder consisting of an
analog RF beamforming stage and a digital baseband precoding stage, and with much-
reduced system complexity /hardware cost, it can achieve the performance close to FDBF
which requires full instantaneous CSI. In HBF, large-dimensional processing is carried out by
phase shifters (PSs) at the transceiver RF front-end, followed by low-dimensional processing
at the baseband level. A few RF chains and digital-to-analog converters/analog-to-digital
converters (DACs/ADCs) connect the RF and the baseband stages. Furthermore, at the
RF-stage, two commonly used methods of processing input paramters are: (i) using fast
time-varying CSI [36-42], and (ii) using slowly time-varying instantaneous CSI [60-68]. The
first strategy employs full CSI, whereas, in the second strategy, only the reduced-dimension
effective instantaneous CSI seen from the BB-stage is required for the BB precoder design. In
other words, the second strategy is capable of reducing both the hardware cost/complexity
and the CSI overhead size.

'Parts of this chapter have been presented at the 2020 IEEE Global Communications Conference
(GLOBECOM), Taipei, Taiwan [57], the 2021 IEEE International Conference on Communications (ICC),
Montreal, QC, Canada [58], and published in the IEEE Open Journal of the Communications Society [59].
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Most of the HBF solutions have assumed the use of full-resolution PSs and DACs to
achieve a satisfactory performance close to FDBF structures. However, because of the
increased complexity and costs, implementing oco-bit PSs and DACs/ADCs is impractical.
The recent studies show that there has been an increased interest in the use of small,
power-efficient, and inexpensive devices for hardware efficient transceivers capable of
beamforming. Therefore, the use of low-resolution PSs [69-77] and DACs/ADCs [78-83]
allows a more viable HBF solution to be designed. Another important aspect in mMIMO is
the number of the antenna elements as well as their arrangement at the transmitter side as
the array configurations can be critical in the generation of narrower beams with reduced
sidelobes, which can offer small interference to the unintended users. The existing research
studies mostly use wuniform linear array (ULA) at the BS for the HBF
design [36-40, 60-64, 66, 67, 69-74, 78-82]. However, it is not applicable to deploy a large
single-dimensional (1D) ULA at the BS because of: (i) spatial inefficiency, and (ii)
restriction to illuminate both azimuth and elevation angles at the same time. The antenna
elements can be arranged on a two-dimensional (2D) grid to overcome the aforementioned
issues. In this chapter, we present the analysis of different 2D array structures (ULA,
URA, UCA, and CCA) in mMIMO, where we compare the spatial, spectral and energy
efficiencies by designing the HBF using low-resolution PSs and quantized DACs. The
proposed HBF schemes include two cascaded stages: (i) the RF-beamforming stage is
designed via the eigen-decomposition of mMIMO channel second-order correlation matrix,
and (ii) the baseband MU precoding stage is constructed via the regularized zero-forcing
(RZF) technique [84,85] to mitigate the MU interference in the reduced-dimension effective

MU-channel. The main contributions are summarized below:

o Energy-Efficient HBF Design Using Low-Resolution PSs: Most of the
existing HBF designs (e.g., in [36-40,60-67,78-83]) assume the use of full-resolution
PSs for the implementation of RF-stage. However, the components required for phase
shift with high accuracy can be expensive [86]. Therefore, it is reasonable to use
cost-effective PSs in HBF. One possible way to design the HBF with low-resolution
PSs is to design the RF beamformer assuming infinite-resolution PSs and then,
quantize each PSs value by a finite set [36]. This approach, however, is not suitable
for systems with low-resolution phase constraint and requires full CSI. Furthermore,
the HBF designs which are presented in [69-71,73-76] are considered for SU-mMIMO
and MU-MISO systems. In this chapter, we design the HBF using low-resolution PSs
for MU-mMIMO by taking into account the few-bit phase constraint and formulate

the optimization problem which is solved using orthogonal matching pursuit
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(OMP) [87,88]. The algorithmic precoding solution takes the input as the optimal
unconstrained (full-resolution) RF beamformer and approximates the constrained
(quantized) RF beamformer by exploiting the dominant eigenvectors at the RF. We
present the illustrative results of the proposed HBF scheme and show that it is
possible to approach the performance limit of the unconstrained RF-stage with as low
as 2 bit PSs (i.e., sum-rate degradation ~ 2-3 bps/Hz).

o Comparison of 2-D Antenna Array Structures: In this work, we compare the
spatial, spectral and energy efficiencies of different 2D antenna array structures using
low-resolution PSs and DACs. The array structure used in [36-40,60-64,66,67,69-83]
is either ULA or URA. However, in this work we compare four different 2D array
structures using low-resolution PSs and DACs. The simulation results show that the
sum-rate of both CCA and URA can approach the sum-rate of their FDBF counterparts
with much-reduced number of RF chains.

« HBF Design Using Low-Resolution PSs and DACs: As mentioned above, the
HBF is designed using either only low-resolution PSs [69-77] or only low-resolution
DACs/ADCs [78-83]. To the best of our knowledge, the design of a MU-mMIMO
HBF using both low-resolution DACs and low-resolution PSs has not been considered
yet. Moreover, we also compare the performance of such a reduced-complexity HBF
for different 2D array structures i.e., ULA, URA, UCA, and CCA. The simulation
results give useful results about the combination of various low-resolution DACs and
PSs for near optimal performance. The proposed HBF using 2-bit PSs and 5-bit DACs
can achieve almost the same spectral efficiency while offering higher energy efficiency
than the HBF using full-resolution PSs and DACs. Therefore, the designed HBF saves

power consumption and cost while having negligible impact on the performance.

e Design of the Quantized Variable Gain RF Beamformer: In this work, we
design the HBF in which the RF beamforming stage is constructed using eigen
beamforming based on user’s angular location. Eigen beamforming can give sum-rate
performance of HBF close to FDBF [60-63], however, the RF beamformer results in
having non-constant modulus entities. The quantization of such variable gain RF
beamformer is challenging. Also, to the best of our knowledge, the quantization of
analog precoder which is designed using eigen beamforming has not been considered
yet. Therefore, we solve this problem to modify our system model to have a constant
modulus RF beamformer and introduces a transfer block at the baseband stage by

formulating an optimization problem. The resulting RF beamformer requires
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double-PS structure and follows the constant modulus constraint, i.e., the gain of
each entity of RF beamformer can vary between 0 and 2. The resulting HBF with
constant-modulus gives the same sum-rate performance as the variable gain RF

beamformer.

The rest of this chapter is organized as follows. In Section 3.2, we introduce the HBF design
using full-resolutions PSs and DACs. Section 3.3 presents the HBF solution when using
quantized DACs/ADCs at BS. In Section 3.4, we discuss HBF design using low-resolution
PSs followed by the algorithmic HBF solution for few-bit DACs and PSs in Section 3.5. The
illustrative results are provided in Section 3.6 to compare the performance of different 2D

array structures. Finally, the chapter is concluded in Section 3.7.

3.2 Hybrid Beamforming Design Using Full Resolution
PSs and DACs

In this section, we discuss the HBF solution using full-resolution hardware components.

3.2.1 System Model

In the system model shown in Fig. 3.1, we assume that Ny BS antennas at the transmitter
are fed by Nrr RF chains to serve K single-antenna users. by represents the number of
orthogonal-beams spanning the degrees of freedom (DoF) provided by the channel, such
that K < Ngp < by < Np. S denotes the independent data streams to be transmitted,
which is equal to the number of simultaneously served users in this model (i.e., S = K).
Furthermore, by selecting Ngr = K RF chains, the hybrid precoding matrix B = Fp,TBp
where i) RF-beamforming matrix Fp € CV*T is based on the channel second order statistics
and reduces the CSI overhead and the number of RF chains ii) transfer matrix T € CPr*VNrr
exploits the available DoF of the channel, and further reduces the number of RF chains
without sacrificing the performance iii) multi-user precoding matrix Bp € CNrr*5 is based
on the reduced-dimension effective MU channel, and reduces the MU interference. The

received signal at the kth user is expressed as:
_WH

s € C%*! is the transmitted data signal satisfying E [||s| |§} < 21, where Pr is the transmit

power at the BS and nj; denotes the additive circular symmetric Gaussian noise such that
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Figure 3.1. System model of the hybrid beamforming architecture.

ng ~ CN(0,1). Assuming no line of sight propagation, the channel h, ~ CAN (0, Ry), where
R, € CV*¥ ig the covariance matrix.
The channel vector h, € CV*! for user k can be expressed by using Karhunen-Loeve

decomposition as:
1

where w;, € C"™1 ~ CN/(0,1,) is the complex weight coefficient vector, A, € C™*" is the
diagonal matrix containing r eigenvalues of Ry and Uy € CV*" is the matrix containing the
eigenvectors corresponding to the non-zero eigenvalues. Assuming mutually independent

channel vectors hy, the overall channel model can be expressed as:
H = [hy, hy, ... hgl, (3.3)

The correlation matrix Ry is obtained by using the one-ring model [89], where a user is
located at some distance r4 and the mean azimuth angle is . For the 1D and 2D antenna
structures as shown in Fig. 3.2, assuming a uniform distribution of power received from the
antennas, the correlations between the channel coefficients of the antennas 1 < n,p < N are

respectively given as:

A+0

p—J2md(n—p)sin(B) 4 3.4
{ 7p 1D 2A/A+9 & ( )

—j2EK(B40) (Vn—Vp)
R, QA/ s, (3.5)

where ) is the wavelength. A ~ =4 arctan 2 oo s the angle spread around the mean azimuth
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Figure 3.2. 2D Array structures (a) ULA (b) URA (c¢) UCA (d) CCA.

angle for a user surrounded by a ring of scatters of radius [ , k() = (cos(f3),sin(3))7 is the
wave vector for a planar wave impinging with angle-of-arrival (AoA) 8 and v,,, v, is R%. The
correlation matrix R;p for ULA is computed using (3.4) where d is the distance between the
nth and pth antenna. For UCA, URA, and CCA, (3.5) is used to calculate the correlation
matrix Rop. Thus, the correlation matrix R depends on the antenna array configuration
employed at the BS, and the corresponding rank of R = UAU¥ plays an important role
in the sum-rate performance of the array structure. In the eigen-beamforming, the hybrid
precoder B € CN7*% is constructed by concatenating the RF-beamforming Fp € CNrxtr
and reduced-dimensional multi-user precoder (baseband-stage) Bp € CN&r*S through an

intermediate block called transfer block T € Cbr*Nrr,

3.2.2 RF-beamforming Stage

Suppose K users are clustered into G groups based on their AoD information, where each
group contains K, number of users such that K = Zle K,. For simplicity, we assume that
the users in the same group have identical covariance matrix R,, where g = 1,2,...,G. The
index g, = Zg;ll Ky +F is used to denote the kth user in group g. Then, the channel vector
for the user k in group ¢ is h,, ~ CN(0,R,), where R, = UgAgUf is the covariance matrix
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of the group g. Based on the AoD of the users, the correlation matrix can be written as:
R, =[U; U, J[A;, AJ][U;, U, 17, (3.6)

where U; € CN*'d is the matrix of eigenvectors corresponding to the dominant
eigenvalues for the user group g. Similarly, A} € Crs >3 is the diagonal matrix of the
dominant eigenvalues. As a result, the data streams per group is S, € [0, min{K, r;}].
The maximum number of independent data streams that can be transmitted is limited by
the multiplexing gain min{ K, r;}. The total data streams can be written as S = Zngl Sy

By using Karhunen-Loeve decomposition, we have:
h, = U,Alw,,. (3.7)
The overall channel matrix H can be written as:
H=[H,, H,,. .. Hg|, (3.8)

where Hy = [hy,,h,, ... ,thg] is the channel matrix for group g. The performance of the
hybrid precoder heavily depends on the choice of by and Ngp. It must be seen that i)
Ngrr > S to ensure that the minimum number of RF chains used in the precoder is not
less than the transmitted signals and ii) Nrp = 25:1 Nrr,. The RF-beamforming matrix
Fp depends on the second-order statistics as it relies on the eigenvalues and eigenvectors

extracted from the covariance matrix Ry. If By, = U] is the RF-beamforming matrix of

_l’_

> the complete RF-beamforming matrix can be written as:

group g and by choosing b, = r
Fp=[Fpi,Fps,...Fpgl (3.9)

The overall reduced dimensional effective channel matrix is expressed as H = FEH. Using
(3.8) and (3.9), H* can be written as:

H{{FDJ H{IFDQ P H{IFD,G
H H 1
G |H FDJ H} _FD’2 3 H, 1_3A,G 7 (3.10)
HEF,, HEFp, ... HiFp.

where the diagonal matrices H/Fp 4 € CXo*% are the effective channel matrix for group g

and the off-diagonal matrices Hf Fp, € CHoxba represent the effective interference channel
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matrix between groups g and ¢, Vq # g.

3.2.3 Transfer Block and Multiuser Precoder Design

The transfer block T € C’7*Nrr is designed between the RF-beamforming matrix and
the multi-user precoding matrix, reducing the number of RF chains Ngp such that K < Ngp
< bp. T is placed at the RF precoder satisfying E {Hsﬂg} = tr(BETHTBp) < Pr, where
Pr is the transmit power. The transfer block T and the reduced dimensional multi-user
precoder Bp is designed as:

min |[Bp — TBp|[3,
st. TeT,, (3.11)

tr(BETATB)) < Pr,

where T, represents the set of matrices of size by X Ngp. B p = YXH! is the Npp x
K baseband precoder without using the transfer block T. The optimization problem is
formulated to design the reduced-size baseband precoder By giving the same performance
as Bp. M is the reduced dimensional effective channel, X = [H7H + abrI,, ]! 1, €
CPr*b7 v is the regularization paramter and « is the normalization factor used to satisfy

the power constraint, which can be written as:

S
7= \/tr{%HXHFgFDXH}' (3.12)

Since (3.11) is non-convex, so T is dissolved into T4 € C’7*K and Tp € C’7** by using

Ngr = K RF chains. Then, the optimal solution is given as [90]:

ej (4]§D(a,b)+cos*1(%:’b)))
)

TA(a,b) =
i s —cos™ L (a.b)
Tylah) — oot (az)
By = (T4+Ts)Bp, (3.13)

where p = 3 max,, IBp(a,b)| is the half of the highest modulus element at Bp. Then, the
joint-group processing (JGP) approach [60] is used for the SINR computation. Therefore,
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Figure 3.3. Hybrid beamforming architecture using few-bit DACs.

the SINR at the user k£ in group g can be computed as follows:

%|hgfk FpBpBEFAh,, |?

SINR,, = e . 3.14
* o1+ fry,, hEFpBpBEF D)2 (3.14)
Hence, the corresponding sum-rate performance can be computed as:
G Ky
R= Y Y Ellog,(1+SINR,,)]. (3.15)
Kg:1 gk=1
3.3 Hybrid Beamforming Design Using

Low-Resolution DACs

In this section, we discuss the HBF solution using low-resolution DACs/ADCs in mMIMO

systems.

3.3.1 System Model

In the system model shown in Fig. 3.3, we assume that Np BS antennas at the transmitter
are fed by Ng. RF chains to serve K single-antenna users, where K < N, < Np. The
hybrid precoder B = FpBp is divided as the RF precoder F, € CN7*N&r and the baseband
precoder Bp € CVrr*K_ The system model employs low resolution g-bit DACs between

the RF and the baseband precoder to reduce the system complexity/cost. To model the
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Table 3.1. Distortion factors p in g-bit DACs (¢ < 5).

q] 1 2 3 1 5
11| 0.6366 | 0.8825 | 0.96546 | 0.990503 | 0.997501

precoded signal at the transmitter, we consider the non-uniform quantizer, and adopt the
additive quantization noise model (AQNM) as in [91,92]. Then, the received signal at the

kth user is expressed as:

ye = hIFp,Q{Bps} + ns,
= h{Fp{uBps +n,} + n,

H H
= ,uhk FDBDS—|— hk: FDTLq + ng s (316)
Desired Signal Quantization Noise =~ Noise

where s € CX is the transmitted data signal satisfying the power constraint Pr (i.e.,
E{||s|2} < Pr). Here, n; denotes the additive circular symmetric Gaussian noise such that
ng ~ CN(0,1), Q(.) is the quantizer function, u is the distortion factor of ¢-bit DAC, and
ng ~ CN(0,R,,) is the additive Gaussian quantization noise which is uncorrelated with s.
For ¢ < 5, the exact values of p is given in Table. 3.1. When quantization bit ¢ > 5, then
the distortion factor can be approximated as u ~ 1 — ”T‘/EZ’Q‘I [92].  Furthermore, the

covariance matrix of n, is given as:
R,, = E [ngnf] = u(1 - p) diag(BpBJ). (3.17)

Assuming no line of sight propagation, the channel hy, ~ CA(0, Ry,), where Ry, € CN7*NT g
the covariance matrix. The channel vector h;, € C¥7*! for user k can be expressed by using
Karhunen-Loeve decomposition as given in (3.2). Similarly, the overall channel model can

be expressed as given in (3.4).

3.3.2 RF and BB Stage Design with Low-Resolution DACs

In the eigen-beamforming, the hybrid precoder B € CN*K concatenates the
RF-beamforming stage Fp € CN7*Ner and the reduced-dimensional baseband MU
precoding stage Bp € (CNRFXK through the use of low-resolution DACs. The design of the
RF beamforming stage employs full-resolution PSs and the details can be found in Section

3.2.2. After the design of RF beamforming stage Fp, the baseband MU precoder Bp can
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be determined by using the joint group processing (JGP) [60]. Using regularized zero
forcing, Bp can be defined as:
Bp = 7y XH", (3.18)

H ! is the reduced-dimension effective channel as given in (3.10), X = [H*H+a NIy, ] 7},
Iy, € CNerxNer o is the regularization paramter and v is the normalization factor used

to satisfy the power constraint, which can be written as:

S
7= \/tr{HHXHFgFDXH}' (3.19)

Therefore, the signal to quantization, interference and noise ratio (SQINR) at the user k in
group ¢g can be computed as follows:

%|h§ FpXF&h,, |2

k

1+a+0b

SQINR,, = (3.20)

~ __ Pp H
where & = - 3, ., |hy

FpXFEh;|? accounts for the multi-user interference and
b= L2 W FpR,, (FEh, )| is the quantization noise. Hence, the corresponding sum-rate

performance can be computed as:

Kg
R = f: > Ellog,(1 + SQINR,, ). (3.21)
Kg=1gx=1
3.4 Hybrid beamforming Design Using

Low-Resolutions PSs

In this section, we present the HBF design using low-resolution PSs.

3.4.1 System Model

In this section, we introduce the system models of the proposed hybrid MU-mMIMO
systems. We consider a MU-mMIMO system with three different HBF structures shown
in Figure 3.4. At first, the HBF architecture is depicted in Figure 3.4(a), which considers
full-resolution hardware components i.e., co-bit DACs and PSs. Then, the HBF using b-bit
PSs and oo-bit DACs is shown in Figure 1(b), which offers an energy efficient structure due
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Figure 3.4. MU-mMIMO HBF architectures: (a) HBF with co-bits DACs and PSs (b)
HBF with b-bit PSs and oco-bit DACs (¢) HBF with ¢-bit DACs and b-bit PSs.

to less power consumption of finite-bit PSs. Finally, the least power consuming HBF model
is presented in Figure 3.4(c), which uses b-bit PSs and ¢-bit DACs. The BS employs Np
antenna elements at the transmitter, which are fed by N, RF chains to serve K single-
antenna users, where K < Np. < Nr. As shown in Figure 3.4(a), the hybrid precoder
B = FpBp is divided as the RF beamformer Fp € (CNTXNRF and the baseband precoder Bp

""" The design of HBF helps in reducing the number of RF chains from Np to Ng.

Then, the received signal at the k' user is expressed as:

yr = hi’Bs + ny. (3.22)
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The system model shown in Figure 1(c) employs low resolution ¢-bit DACs between the RF
and the baseband precoders to reduce the system complexity/cost. To model the precoded
signal at the transmitter, we consider the non-uniform quantizer, and adopt the additive
quantization noise (AQN) model as in [91,92]. Then, the received signal at the kth user is

given as:

Y = h:FDQ{TBDS} + N,
= hIZIFD{,uTBDS + nq} + ng,

H H
= ,uhk FDTBDS—|— hk FDTLq + ng y (323)
Desired Signal Quantization Noise =~ Noise

where s € C" is the transmitted data signal satisfying the power constraint i.e., E{||s|>} <
Pr, where Pr is the transmit power at the BS, n;, denotes the additive circular symmetric
Gaussian noise such that ny ~ CN(0,1), p is the distortion factor of ¢-bit DAC, n, ~
CN(0,R,,) is the additive Gaussian quantization noise which is uncorrelated with s, and
T € C"*""™ is the transfer block which is introduced at the baseband stage to have a
constant-modulus RF beamformer ¥, € C R such that FpT = Fp. The covariance

matrix of n, can be written as [83,93]:

R, =E [nan} = u(1 —p) diag(TBpBETH). (3.24)

q q

For g =1,2,...,5, the exact values of u are 0.6366, 0.8825, 0.96546, 0.990503, and 0.997501,
respectively, whereas for ¢ > 5, the distortion factor x can be approximated as p & 1—”7‘/32_2‘1
[92].

3.4.2 RF and BB Stage Design with Low-Resolution PSs

In the eigen beamforming, the hybrid precoder B € C™" is constructed by concatenating
the RF-beamforming stage Fp € """ and reduced-dimensional MU baseband precoding
stage Bp € """ The HBF design based on eigen beamforming results in non-constant
modulus entities at the RF stage. As discussed earlier, the quantization of this variable
gain RF-stage is challenging. To solve this issue, we formulate an optimization problem and
introduce a transfer block T € ¢ R such that B pT =Fp, where Fpp € C" R s the
NREZNRE o the transfer block placed at the baseband

" is the RF beamformer with constant-modulus entities. The design

variable gain RF beamformer, T € C
stage and Fp, € TR
of the RF-stage together with the transfer block and the baseband stage is explained in the
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following sections.

3.4.2.1 Variable-Gain RF Beamformer

We assume K users are clustered into G groups based on their angle-of-departure (AoD)
information, where each group contains K, number of users such that K = Zle K,. For
simplicity, we also assume that the users in the same group have identical covariance matrix
R,, where g = 1,2,...,G. The index g; = Zz;ll Ky + k is used to denote the kth user
in group g. Then, the channel vector for the user k in group g is hy, ~ CN(0,R,), where
R, = UgAgU: is the covariance matrix of the group g. Based on the AoD of the users, the

correlation matrix can be written as:
+ g 1rat A 1Tt pr1H
R, = [Ug,Ug][Ag,Ag][Ug,Ug] , (3.25)

N><'r+
where U; € C 7 is the matrix of eigenvectors corresponding to the dominant eigenvalues

for the user group g. Similarly, A;r € CT;XT; is the diagonal matrix of the dominant
eigenvalues. As a result, the data streams per group is bounded by S, € [0, min{ K, 7“;}].
Furthermore, the multiplexing gain limits the maximum number of independent data
streams per group that can be transmitted, which is min{/K, r;}. Thus, the total data
streams can be written as S = 25:1 Sg. The selection of N, is a design parameter and
the performance of HBF heavily depends on its value such that: (i) Nz > S, to ensure
that the minimum number of RF chains used per group in HBF is not less than the
transmitted signals per group, and (ii) the total number of RF chains is determined by the
number of groups for K users (i.e., Ny, = 25:1 Ngr,). The RF beamforming matrix B4y
depends on the second-order statistics as it relies on the eigenvalues and eigenvectors
extracted from the covariance matrix R,. If B, = U;r is the RF beamforming matrix of

group g, then the complete RF beamforming matrix can be written as:
Fp=1[Fp,, Fp,,....Fp_| (3.26)

3.4.2.2 Design of Transfer Block and Constant-Gain RF Beamformer

From (3.26), we can see that Fp has non-constant modulus entities, which results in a
variable-gain RF-stage. To the best of our knowledge, the design of constant-gain analog
precoder in mMIMO, which is based on eigen beamforming has not been considered yet. For

this challenging issue, we formulate an optimization problem and introduce a transfer block
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T e C """ a5 shown in Figure 1(b) such that Fp = FDT, where Fp € C"" VR s the
variable-gain RF beamformer as given in (3.26), T € C"* ™R ig the transfer block placed
at the baseband stage and Fp e C"""""" is the RF beamformer with constant-gain. The

transfer block T and the RF beamformer with constant-modulus F, is designed as:

arg{nin HFD—]?‘DT‘;
TFp (3.27)
s.t. FD S FDD,

where [Fp, represents the set of matrices of size Ny x Ny, satisfying the unit-modulus property
for the constrained RF-beamformer ¥ p, which is constructed using double-PS structure as
shown in Fig. 3.4(b). The optimization problem is formulated to design the RF beamformer
Fp satisfying the modulus constraint and targeting the same performance as Fp, where Fp
is the RF beamformer whose entities does not satisfy the modulus constraint. Since (3.27)
is non-convex because of the unit-modulus constraint, and as proven in [90, Lemma 1], we
can dissolve I p into P D, € (CNTXNRF and F D, € (CNTXNRF based on double-PS structure, and

can rewrite the equivalent optimization problem as:

arg min HF —(ﬁ‘ +F )TH2
Tﬁil,l:“% D Dy Do 97

S.t. FDlaﬁ‘Dg € ]FDO, (328>

FD = FDl + FDQ

Then, the optimal solution for the transfer block T and constant-modulus RF beamformer
Fpis given as:
LFD(a,b)+COS—1(w))

Fp,(a,b) =€ ( , (3.29a)

AFD(a,b)fcos_l(wo

Fp,(a,b) =¢ ( , (3.29b)
T = (Fp, +Fp,) Fo, (3.29¢)

where v = max,; |[Fp(a,b)| is the half of the highest modulus element at Fp. Each
RF chain is connected to the corresponding antenna element through two PSs, which are
summed up together to formulate the RF beamforming gain. This summation allows the gain
of each RF beamformer entity to vary between 0 and 2, i.e., by relaxing the unit-modulus

constraint, the new constraint of the analog stage is [F'p(a,b)] < 2 ¥V a,b. By implementing
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the double-PS structure, we can have PS-only RF beamformer without having any impact on
the performance of eigen beamforming. In other words, without T and double-PS structure
at RF stage, we would require variable-gain controllers together with PSs, which makes the

implementation of HBF using low-resolution PSs challenging.

3.4.2.3 RF Beamformer Quantization

By the introduction of the transfer block in the HBF architecture, each entity of the
RF beamformer ¥, which is expressed in (3.29), can be converted to a modulus constraint
within 0 and 2 (Figure 1(c)). Thus, the analog RF beamformer ¥, can have only PSs
for the RF processing. Since the phase of each entry of Fp tends to be highly quantized
as well as the use of full-resolution PSs is impractical because of the high cost and power
consumption, therefore, we need to investigate the performance of our proposed HBF by
using low-resolution PSs to be used in a more realistic scenario. For this purpose, we quantize
the phase of each entry of Fp i.e., phases of the (2 x N, N) entries of Fp are quantized up
to b bits of precision. Each (7, j)th entry is quantized to its nearest neighbor based on the
closest Euclidean distance. Thus, we can write as:
2ml

9 — 28

| (3.30)

[ = arg min
l € Lo

where ¥ is the unquantized phase of each entity of RF beamformer obtained from (3.29),
L = 2% and L, is the set of all possible quantized phase values i.e., L, = {0,...,2°7}. Then

the quantized phase of each entry of Fp can be written as:

orl

3.4.2.4 RF Beamformer Design for Low-Resolution PSs

As discussed earlier, the straightforward approach for HBF using low-resolution PSs is to
design the RF-stage based on full-resolution PSs first, and then quantizing the value of each
PSs to a finite set. However, this approach yields a large sum-rate degradation and thus,
it is not effective for very low-resolution PSs. To reduce the sum-rate degradation resulting
from the constraint of low-resolution PSs, we design the RF beamformer by minimizing
the Euclidean distance between the HBF using full-resolution PSs and the HBF using low-
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resolution PSs. The optimization problem can be formulated as:

arg min HFDT — ]?‘(g)T(q)H

T(q)f‘g])

F )
s.t. F%’ S IAF%]), (3'31)

Fg)T(q)H; = NRFa

where I@‘g) represents the set of matrices of size Ny X Ng. under the following constraints:

(i) the gain of each entity of the matrix can vary between 0 and 2, and (ii) the phase of each
matrix entity is quantized to enable the use of low-resolution PSs at the RF-stage, FpT
is the optimal unconstrained precoding matrix, ]?‘g) and T are the RF beamformer and
the transfer block designed for low-resolution PSs, respectively. The design problem can be
defined as finding the projections of the optimal unconstrained precoder FpT onto the set
of ]?‘%’) and T. Each entry of 13“53’ follows modulus constraint and can have a distinct phase
f‘%)T(Q)H; = Ny represents
the normalized transmit power constraint of the RF beamformer. Due to the complex non-

convex nature of the feasible set I@(I()]), the problem of finding the projections is difficult.

value as depicted by the constraint f‘%) € IAF%). Furthermore,

However, we can notice that there exits a connection between Fp and ]?“53’ by exploiting the

structure of the channel H. This can be further explained by the following remarks.

1. Structure of unconstrained RF beamformer: The design of unconstrained RF
beamformer ¥ is based on Karhunen-Loeve decomposition of the covariance matrix
R. Thus, the eigenvectors (column vectors) for the corresponding dominant

eigenvalues form an orthonormal basis.

2. Relation between F p and IAF%): We notice that there exits an association between F D
and Fg) as both are based on the dominant eigenvalues extracted from the covariance

matrix. In fact, IE“([‘)]) is the set of quantized matrices of U', where
U =[U],U,,...,Uj].

3. Transfer block: The problem of finding projection of ¥ onto Fg) alone is challenging.

By using the transfer block T, we can find the projection of T onto the set of 1?“(5)
and T.

4. Design of Fg): It must be seen that the feasible quantized RF beamformers in IAF%])

are of size Ny X Ng.. Thus, each column of the constrained RF beamformer f‘%) can

be designed by applying N, vectors, where each vector follows the constant-modulus
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Algorithm 3.1 Constrained RF Beamformer Design via Orthogonal Matching Pursuit

1: Given: Optimal unconstrained RF beamformer Fp, = [Fp, , Fp,, ..., Fp,]

2: forg=1:G do

n Fp =1

4: Fres, =Fp, Ty

5: fOI‘] g NRFg dO

6: Y, =(U,) Fres,

7 Find the index [ which maximizes (T 1)

. B [

9: Compute T(q) by using least squares
: TeSqg HFDng—F(gg)Tg HF

12: er(ld for v )
. T(a) RFg

13: T, HF(cn T(q

14: end for

15 T — (B0 50 )
16: B = [P, ), B
17: return T(q), Fg)

and have distinct phase values only. Furthermore, by using the transfer block T, we

can form the arbitrary linear combinations of Ny, vectors and design the constrained
)

Based on remark 2, the optimal constrained RF beamformer can be found by replacing IAFS‘])

RF beamformer by reducing the Euclidean distance i.e.,

with I[Aﬁ, where U" represents the set of matrices of quantized eigenvectors corresponding to
the dominant eigenvalues, i.e., U Subsequently, we can rewrite the optimization problem

as follows:
arg min HFDT F T(q)H
T( ) F(‘I)

st. B el (3:32)

‘N
F_ RF*

)

We can append the constraint 1?“33’ into the optimization objective and formulate the
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equivalent problem as [88]:
arg min HIAT‘DT — [AJ+T(Q)HF ,

st [diag(T T = N,

where the constraint Hdiag(T(q)T(q)*) o = Ner states that the matrix T acts as an

auxilliary variable and can only have a maximum of N, non-zero rows. As a result, only

Ny columns of U are selected and thus, the transfer block T can be designed by N
non-zero rows. The constrained RF beamformer is formulated by projecting the N
columns of U" onto Fp. By employing the OMP technique proposed in [87,88], we present
an algorithmic solution to design the constrained RF beamformer for low-resolution PSs.
The pseudo-code is given in Algorithm 3.1, which can be summarized as: (i) the algorithm
starts by initializing the constrained precoder PA‘%SI as an empty matrix, (ii) finds the vector
along which the unconstrained precoder has the maximum projection, (ii) append the
selected column vector to the empty matrix F%’z, (iv) using least squares, find the transfer
block T;q), (v) remove the contribution of the selected vector, and (vi) finding the column
along which the residual precoding matrix F;s, has the largest projection. The algorithm
continues until we find Nz precoding vectors. As a result, we get an Ny X Nz RF
preoding matrix and Nz, X Ngp, transfer matrix. Finally, from Algorithm 3.1, step 11
ensures that the transmit power constraint is satisfied. The process is repeated for all G

user groups. Combining the RF and transfer matrix of all groups, we get a large Ny X Ngp

2
RF preoding matrix and Ng, X Ng transfer matrix which minimizes HF pT — Fg)T(Q)HF.

Fp, T, - FHTY| <,

g9

then the Fuclidean distance after normalization is HﬁDﬂTf? — }?“%LT?HF < 2C.

Lemma 3.1. If the Fuclidean distance before normalization is ‘

Proof. See Appendix.

3.4.2.5 Baseband MU Precoder Design

After the design of RF beamformer f‘g) for b-bit PSs, the baseband MU precoder B,
can be determined by using the joint group processing (JGP) [60]. The overall reduced

dimensional effective channel matrix is expressed as ‘H = T(q)ng)HH. Using (3.8) and
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(3.26), H! can be written as:

T BT . ey

HHFqTq H, #9TY  H"H R TY

%H — 2 D1 1 2 ‘DQ 2 . 2 ?G G , (334)
HABOTO HIPOEY | HIPY

A -~ KgxN
where the diagonal matrices HHF%)T eC "™ are the effective channel matrix for group
KgxNRF.
g and the off-diagonal matrices H, F( T eC * represent the effective interference

channel matrix between groups g and g, ‘v’g # g. By applying the well-known RZF technique
[84,85], Bp can be defined as:
B, = yX#H", (3.35)

where H is the reduced-dimension effective channel as given in (3.34), X = [HIH +
aNgpI NRF]_I, In,. € CNRFXNRF, « is the regularization paramter and «y is the normalization

factor used to satisfy the power constraint, which can be written as:

S
’y =
\Jt {% X T(Q) F() F(q)T(q X'H,}

(3.36)

Therefore, the signal-to-interference-plus-noise ratio (SINR) at the user k in group g can be

computed as follows:

PT|h FD T(q)XT Q)HF(Q)H gk|2
1+ PT E ‘h Fq)T(q)XT( )HF(q h; |2

i#gk

SINR,, = (3.37)

where £F 3 |h;ﬁ%)T(q)XT(q)HFg)Hhi|2 accounts for MU interference. ~ Hence, the
i#gk

corresponding sum-rate performance can be computed as:

G Ky
Roum Z Z [log, (1 + SINRy, )]. (3.38)



3. 2D Antenna Array Structures in Hybrid Massive MIMO 48

3.5 Hybrid Beamforming Design Using
Low-Resolution PSs and DACs

In this section, we design the HBF using low-resolution hardware components (i.e., ¢-
bit DACs and b-bit PSs). The HBF structure is shown in Fig. 3.4(c). Based on the AoD
information of users, we design the RF beamformer and the baseband MU precoder along

with a transfer block such that quantization error is minimized.

3.5.1 RF Beamformer and Transfer Block Design

Following the same user distribution as discussed in Section 3.4.2.1, K users are

clustered into G groups. Based on the AoD of the users, the correlation matrix of group g
+

N X7
is given in (3.25), which consists of the dominant eigenvectors U; € C "’ corresponding

T+><T
to the dominant eigenvalues A; eCc’ ”’

Moreover, min{ K, r;} limits the maximum
number of the independent data streams that can be transmitted. By wusing
Karhunen-Loeve decomposition, we can write the user channel vector h, and the overall
channel matrix H as given in (3.7) and (3.8), respectively. If Fp, = U;r is the RF
beamforming matrix of group ¢ having non-constant modulus, then the complete RF
beamforming matrix can be written as given in (3.26). As discussed in Section 3.4.2.2; the
variable-gain RF beamforming matrix Fp, can be converted to a constant-gain
beamforming matrix ﬁ‘Dg by using a transfer block T, at the baseband. Using this

approach, we can rewrite (3.26) as:
Fp=[Fp,T1,Fp, Ty, ..., Fp.Tel. (3.39)

f‘Dg and T, can be found using (3.29), respectively. However, since the RF beamformer

employs b-bit PSs for the phase quantization, we can rewrite (3.39) as:
PO _ BT 0T B0 1] (3.40)

By using the solution given in Algorithm 3.1, we can find ﬁ‘%; and T;q) for HBF using b-
bit PSs at the RF-stage. The overall RF beamforming matrix and the transfer matrix for

low-resolution PSs can be given as:

R N S o] (341)
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T = (7' 7. T (3.42)

3.5.2 Baseband MU Precoder Design With Finite-Resolution
DACs

In this section, the design of the baseband MU precoder ]f%g]) using ¢-bit DACs is
presented. After designing RF beamformer }?“g) and the transfer block T for b-bit PSs as
given in (3.41) and (3.42), respectively, the quantized baseband precoder ]AB%) can be
designed using RZF as given in (3.35). The use of ¢-bit DACs introduces the quantization
noise. Therefore, the signal to quantization, interference and noise ratio (SQINR) at the
user k in group ¢ can be computed as given in (3.43), where
P—ST > |hiﬁ§§)T(q)XT(q’Hﬁ§§)Hhi|2 accounts for the interference experienced by users in

179k
group g from the users in group § # ¢ and P—;\h;F%)T(q)an(T(q)Hf‘g)thk)H\Q is the
quantization noise when using ¢-bit DACs. Hence, the corresponding sum-rate performance
of HBF with b-bit PSs and ¢-bit DACs can be computed as:

K,
Roum f: Z [log, (1 + SQINR,, )]. (3.44)

3.6 Simulation Results

In this section, the Monte-Carlo simulation results are presented based on the hybrid
precoding for various array structures. For the presented results, the BS is equipped with

100 isotropic antennas, arranged in 1x 100 ULA and 10x 10 URA configurations. In UCA, the
1

)
2, /(1— cos(NT))2+sm(137;)2

antennas are equally distributed on a circle of radius AV where V =

whereas the antennas are distributed on multiple circular rings in CCA. The radius of nth

ring is AR,,, where R, = nL [94]. Then, the corresponding number of antennas on nth ring

is N, = 2”R’”‘ , where d is the antenna spacing which is selected as 2 for all array structures.

L is the mter-rmg spacing which is selected as 0.55\. Using this Conﬁguratlon of CCA, 100

9k 1+ \h T(Q)XT(Q)H [1)1 h| +PT|h F(qTq)R (T(qHF() h, )Hf’
(3.43)
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P
02K

and the regularization parameter o = "73 [85]. In the following analysis, the array structures

antennas can be arranged in just 5 rings. The signal-to-noise-ratio (SNR) is defined as

performance is compared based on: i) spatial efficiency, ii) sum-rate versus users AoD, iii)

sum-rate versus number of the users.

3.6.1 Spatial Efficiency

To arrange 100 antenna elements with an inter-element spacing d, It can be seen that
the 1 x 100 ULA requires 50\ space in one direction. On the other hand, 10 x 10 URA
requires just 5\ space in horizontal and vertical directions, which is equivalent to a space of
252, Similarly, UCA with a radius of about 7.96\ (D = 15.92 )\) requires an array size of
approximately 199\2. It can be seen that URA is more spatially efficient structure compared
to both ULA and UCA. In CCA, 100 antennas can be arranged in 5 rings as discussed before.
The maximum ring radius in CCA is about 2.75\, which is more than three times smaller in
size than UCA having the same number of antennas. In other words, this is equivalent to a
space of approximately 24)\2. To better understand the spatial efficiency, consider the signal
frequency is 6 GHz (sub-6 GHz mMIMO frequency). Then, the array sizes of ULA, URA,
UCA, and CCA are respectively 2.5 m, 0.0625 m?, 0.49 m?, and 0.0592 m?. Thus, CCA
offers the highest spatial efficiency, whereas ULA is the least spatially efficient structure.

3.6.2 Performance Comparison with Full-Resolution Components

In this section, we first compare the performance of different 2D array structures using

full-resolution hardware components.

3.6.2.1 Sum-Rate versus User AoD

In this section, the sum-rate of the array structures is compared based on the AoD
information of the users around the BS. As discussed, the hybrid precoder is designed using
the RF-beamforming stage and the optimized reduced-size baseband stage. The
RF-beamforming stage depends on the dominant eigenvalues extracted from the covariance
matrix R [see (3.9)]. Based on the different geometrical configuration of ULA, URA, UCA,
and CCA, the rank of the covariance matrix can vary [see (3.4), (3.5)], playing an
important role in the sum-rate performance of the array structures. For Ny = 100, the
rank 7 is 21 and 17 for UCA and ULA respectively and 13 for CCA and URA. Also, some
of the non-zero eigenvalues are too small that can be ignored. So, the dominant eigenvalues
'r; of UCA, ULA, CCA, and URA become 10, 9, 4, and 3, respectively. In Table. 3.2, a
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Table 3.2. Number of dominant eigenvalues of ULA, URA, UCA, and CCA versus

number of antennas.

Number of

antennas (N7) | URA | CCA | ULA | UCA
64 3 4 6 8

128 4 6 10 13
256 9 8 19 26
512 14 11 39 49
1024 20 14 71 89

comparison of numbers of the dominant eigenvalues of different array structures is
presented. With the increased number of antennas, both ULA and UCA can have a higher
value of 7“; and can support an increased number of independent data streams. On the
other hand, URA and CCA can have a small increase in ;" because of the much-reduced
array size. As a result, the correlation between the antennas is increased, resulting in small
increment in dominant eigenvalues in URA and CCA. In Fig. 3.5, the sum-rate is
calculated for multiple user groups, when Npr = 100. We consider three user groups
(G = 3) are located around the BS at mean azimuth locations ¢; = 30°, 0y = 90°, 63 =
150° with A = 15°. The sum-rate performance of hybrid precoding for the array structures
is compared with their FDBF counterparts using RZF. Fig. 3.5(a) shows the result of the
hybrid precoding without using the transfer block, when Ngp, = Ky = 3, Ngp = K = 9
and b, = 3. As expected, FDBF provides the highest sum-rate. For the hybrid
beamforming sum-rates, URA and CCA give the highest sum-rate whereas ULA gives the
lowest sum-rate. On the other hand, the sum-rate of UCA is comparable to the sum-rate of
URA and CCA. By using the transfer block in the hybrid precoder, when, Ngr, = K, = 3,
Nrrp = K = 9 and b, = 5, it can be seen in Fig. 3.5(b) that the sum-rate of the array
structures is increased significantly. The sum-rate of URA and CCA approaches to the
sum-rate of their FDBF equivalents. Though ULA still provides the lowest sum-rate
among the array structures, it shows a sum-rate increase of about 20 bps/Hz after using
the transfer block. Thus, we can conclude that for the same number of RF chains, the use
of transfer block greatly increases the sum-rate performance of the array structures.
Furthermore, both URA and CCA provides the best performance among the array
structures by converging to their FDBF sum-rate. Secondly, the sum-rate is compared

versus users AoD. For a fixed SNR = 10 dB, the sum-rate using hybrid precoding with a
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Table 3.3. Performance comparison of ULA, UCA, URA and CCA.

ULA UCA URA CCA
Spatial efficiency Low Low High High

Low sum-rate. High sum-rate. High sum-rate. High sum-rate.
Sum-rate versus mean | Lhe sum-rate varies The sum-rate remains | Lhe sum-rate varies | The sum-rate remains
azimuth location about 5 bps/Hz for same for fixed K about 2 bps/Hz for a | same for fixed K
6 € [0°,180°] fixed K. (see Fig. 3.6) | (see Fig. 3.6) fixed K (see Fig. 3.6) | (see Fig. 3.6)
Sum-rate versus Low sum-rate High sum-rate High sum-rate High sum-rate
number of users (see Fig. 3.7) (see Fig. 3.7) (see Fig. 3.7) (see Fig. 3.7)

transfer block is compared for the mean azimuth user locations between 6 = 0° to # = 180°
as shown in Fig. 3.6. URA and CCA give the best sum-rate at all azimuth user locations,
when G =1, Ngp, = K, =3, Npp = K =3, by = b =4, A = £15°. The sum-rate of ULA
is the lowest, whereas UCA gives a reasonably high sum-rate. Furthermore, the sum-rate
variation of UCA and CCA is < 1 bps/Hz, whereas the variation is about 2 bps/Hz for
URA. On the other hand, the sum-rate of ULA varies about 5 bps/Hz. Thus, it can be
concluded that for a fixed number of users, the hybrid precoding sum-rate can vary w.r.t
the users AoD depending on the array structure. Both CCA and URA can provide a very

high sum-rate at all azimuth user locations.

3.6.2.2 Sum-Rate versus Number of Users

Finally, a comparison of the sum-rate versus the number of users is provided now. In Fig.
3.7, the sum-rate of the array structures using the hybrid precoding is compared for different
number of users. The result is shown for a single user group (G = 1) at fixed SNR = 10
dB, when Ngp, = Ky = 3, Ngp = K =3, b, = b =4, 0 = 60°, A = £15°. Based on the
dominant eigenvalue r; as discussed previously, the users are gradually increased from 1 to 3,
and the corresponding sum-rate of the array structure is plotted. The FDBF sum-rates are
compared with the sum-rate of the hybrid precoding with the transfer block. ULA provides
the lowest sum-rate performance among the array structures. Also, a large performance gap
exists between the FDBF and hybrid precoding results of ULA. UCA provides a reasonably
high sum-rate versus K and it can approach its FDBF sum-rate only when K = 1. On the
other hand, the sum-rate of URA and CCA using the hybrid precoding can approach their
respective FDBF sum-rates at all K values as shown in Fig. 3.7. Thus, both URA and
CCA can provide the highest sum-rate versus K among the array structures. The overall

performance comparison of the array structures is summarized in Table. 3.3.
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Figure 3.7. Sum-rate comparison of ULA, URA, CCA, and UCA versus number of users,
Ny =100, G =1, Nep = K =3, b=4, 0 = 60°, A = +15°, SNR = 10 dB.

3.6.3 Performance Comparison with Low-Resolution DACs

In the following analysis, 2D array structures are compared based on: i) spectral efficiency

using ¢-bit DACs, ii) energy efficiency using ¢-bit DACs.

3.6.3.1 Spectral Efficiency Using ¢-Bit DACs:

In this section, we analyze the spectral efficiency of ULA, URA, UCA, and CCA by
computing the sum-rate of the HBF using few-bit DACs. At first, we compare the sum-rate
of the HBF using ¢-bit DACs for ULA, URA, UCA, and CCA.

In Fig. 3.8, the sum-rate is calculated for multiple user groups, when N;y = 100. We
consider three user groups (G = 3) are located around the BS at mean elevation angle § =
73°, mean azimuth locations (¢1, ¢a, ¢3) = (30°, 90°, 150°) with J, = 15° and J, = 12.5°.
The sum-rate of HBF for the array structures is compared with their FDBF counterparts
using RZF. Figure. 3.8 shows the sum-rate of HBF of different 2D array structures by
using different quantization levels of DAC. It can be seen that 1-bit quantization gives the
lowest sum-rate for all array structures, though having the advantage of least DAC power
consumption. The sum-rate increases with an increase in the number of DAC quantization
bits. Moreover, CCA gives the highest sum-rate when compared to ULA, URA, and UCA
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for both full and low-resolution DACs.

3.6.3.2 Energy Efficiency Using ¢-Bit DACs

In this section, the energy efficiency of HBF using ¢-bit DACs is compared for different
2D array structures. The energy efficiency is defined as the ratio of the sum-rate R,,,, and

the total power consumption Py [95], i.e.,

Rsum . Rsum

- - 3.45
Piotar  tr(BB*) + Ny P22’ ( )

€
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where tr(BB™) represents the total transmission power, Py, is the power consumption per
RF chain, Nr is the total number of the antennas, Ny, is the number of the RF chains and
q is the different number of the bits used for DAC quantization.

The use of few-bit DACs in HBF significantly reduces the power consumption, which
increases the overall energy efficiency. However, this increase in energy efficiency comes
at the expense of slight decrease in the spectral efficiency. Fig. 3.9 compares the energy
efficiency of HBF using ULA, URA, UCA, and CCA with the energy efficiency of FDBF
(here we are taking only FDBF of UCA for comparison as it provides the highest FDBF
sum-rate among 2D array structures) for different g-bit DACs, where ¢ = 1,2,3,...,10. Fig.
3.9(a) shows the energy efficiency at very low SNR at -20 dB, whereas Fig. 3.9(b) shows
the energy efficiency at high SNR at 20 dB. CCA and URA, both gives the highest energy
efficiency at very low SNR, and this highest value can be achieved even by using 1-bit DAC
as shown in Fig. 3.9a. At high SNR, CCA still provides the highest energy efficiency among
the compared array structures. The highest efficiency value is achieved by using (¢ = 5)-bit
DAC. In comparison, FDBF offers very low energy efficiency due to the use of large number
of power-hungry RF chains (N, = Nr).

Finally, we examine the energy efficiency of 2D array structures versus ¢ at different
values of SNR. Fig. 3.10 compares the performance of ULA, URA, UCA, and CCA in terms

of energy efficiency. For all compared array structures, we can achieve very high energy
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efficiency by using (¢ < 5)-bit DACs in HBF. From Fig. 3.10, it can be seen that: i) 1-bit
DACs can contribute the highest energy efficiency only at very low SNR ii) at very high
SNR, only (3-5)-bit DACs are sufficient to provide the highest energy efficiency along with
very good spectral efficiency. The overall performance comparison of the array structures is

summarized in Table. 3.4.
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Table 3.4. Performance comparison of ULA, UCA, URA, and CCA with few-bit DACs.

ULA UCA URA CCA

Sum-rate using

few-bit DACs Low Low High High
(see Fig. 3.8) sum-rate | sum-rate | sum-rate | sum-rate
Energy efficiency

using few-bit DACs Low Low High High
(see Fig. 3.9 - Fig. 3.10) | efficiency | efficiency | efficiency | efficiency
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Figure 3.11. Sum-rate comparison of ULA, UCA, URA and CCA using full-resolution
PSs and DACs: (a) variable-gain RF beamformer (b) constant-modulus RF beamformer

(with transfer block).

3.6.4 Performance Comparison with Low-Resolution PSs and
DACs

In this section, we compare the performance of different 2D array structures using low-
resolution PSs and DACs. Since the RF beamformer can be designed for constant and
variable-gain entities, therefore, we first compare the performance of the HBF for the two
cases: (i) HBF with variable-gain RF beamformer, and (ii) HBF with transfer block and
constant-gain RF beamformer. To compare the performance of these two HBF schemes, we
assume full-resolution hardware components (i.e., DACs and PSs).

In Fig. 3.11(a), the sum-rate of proposed HBF scheme with variable-gain RF
beamformer is compared to FDBF as well as different HBF techniques (i.e., phase

extraction alternative minimization (PE-AltMin) method in [42] and iterative phase
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Figure 3.12. Sum-rate comparison with 1-bit PSs: (a) ULA (b) UCA (c) URA (d) CCA.

matching (IPM) HBF technique in [72]) for different array structures, whereas in Fig.
3.11(b), the sum-rate of HBF with transfer block and constant-gain RF beamformer is
presented. It can be seen that both HBF schemes (i.e., two-stage HBF as in Fig. 3.11(a)
and three-stage HBF as in Fig. 3.11(b)) yield similar performance for ULA, URA, UCA,
and CCA. Furthermore, FDBF achieves higher sum-rate at the expense of large number of
RF chains i.e., N = Ny = 100, whereas for both proposed HBF schemes, we can approach
the sum-rate of FDBF with relatively small number of RF chains, i.e., N, = 9. Also, both
CCA and URA can give high sum-rate when compared to ULA and UCA as well as the
HBF solutions presented in [42] and [72]. In the following analysis, we provide an extensive
comparison of spectral and energy efficiencies of the array structures for the case of: (i)
HBF with b-bit PSs and oco-bit DACs, and (ii) HBF with b-bit PSs and ¢-bit DACs.
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Figure 3.13. Sum-rate comparison with 2-bit PSs: (a) ULA (b) UCA (c) URA (d) CCA.

3.6.4.1 b-bit PSs AND oo-bit DACs

In this section, we analyze the performance of ULA, URA, UCA, and CCA by
evaluating the proposed HBF schemes when using few-bit PSs only. Fig. 3.12 depicts the
sum-rate of different array structures for the following cases: (i) FDBF, (ii) HBF using
co-bit PSs, (iii) HBF using 1-bit PSs (phase quantization of (if)), (iv) HBF using 1-bit PSs
(OMP), (v) HBF using PE-AltMin [42], and (vi) HBF using IPM [72]. By using the same
simulation parameters as mentioned earlier, it can be seen that the proposed OMP based
HBF design for 1-bit PSs can provide higher sum-rates than the HBF designed with simple
phase quantization as well as different HBF solutions (i.e., [42,72]) for URA and CCA
array structures. Also, the sum-rate degradation is reduced to around (3-4) [bps/Hz] at low
SNR, whereas at high SNR, the degradation is ~ (8 — 10) [bps/Hz| due to high

quantization error. However, by using only 2-bit PSs, we can approach the sum-rate of
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Figure 3.14. Sum-rate vs b at SNR = (0, 10,20) dB: (a) ULA (b) UCA (¢) URA (d) CCA.

oo-bit PSs as shown in Fig. 3.13. In this case, the sum-rate degradation is reduced to
~ (2 — 3) [bps/Hz] at all SNR values. From Figures 3.12 and 3.13, we can also see that
URA and CCA can give higher sum-rate than ULA and UCA for both 1-bit and 2-bit PSs.

Fig. 3.14 plot the sum-rate versus b, where b is the number of the bits of the PSs, and
compares the spectral efficiency of ULA, URA, UCA, and CCA. The results are presented
at SNR of 0, 10 and 20 dB. Fig. 3.14 indicates that the proposed HBF scheme with 2-bit
PSs can approach the performance of HBF with oco-bit PSs. For a given SNR, the sum-rate
performance gap between the FDBF and HBF with oo-bit PSs in the case of URA and CCA
is much smaller than in the case of ULA and UCA. Furthermore, for all array structures,
the sum-rate gap increases with increasing SNR. Similarly, for the same SNR values, we
investigate the sum-rate versus Ny, of FDBF, HBE’s with oo-bit and 1-bit PS in different
array structures as plotted in Fig. 3.15. The results show that both URA and CCA can
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Figure 3.15. Sum-rate vs Ny, with 1-bit PSs at SNR = (0, 10,20) dB: (a) ULA (b) UCA
(¢) URA (d) CCA.

give high sum-rate with a slight increase in Ngy,. The sum-rate increases by approximately
20 % for ULA and UCA, and almost 10 % for URA and CCA by increasing Ny, from 3 to
4. Also, in Fig. 3.16, we plot the sum-rate versus Ngr, of FDBF, HBF’s with oco-bit and
2-bit PS. It can be seen that by increasing Ny, from 3 to 4, the proposed HBF scheme using
either URA or CCA can approach the performance of FDBF with oco-bit PSs, and offers a
slightly lower sum-rate with 2-bit PSs. On the other hand, the propsed HBF scheme using
ULA and UCA requires more RF chains to approach the performance of the FDBF.

The use of low-resolution PSs with the proposed HBF scheme not only offers high spectral
efficiency but can also provide high energy efficiency compared to FDBF and HBF using full-

resolution PSs. The energy efficiency is defined as the ratio of the sum-rate R, and the
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Figure 3.16. Sum-rate vs Ny, with 2-bit PSs at SNR = (0, 10,20) dB: (a) ULA (b) UCA
(c) URA (d) CCA.

total power consumption P, i.€.,

Rsum

Rsum

B Ptotal B PT + NRFPRF + ]\/v})spf>s*,,7

(3.46)

where Pr represents the total transmission power, Ny, is the total number of RF chains,

Py is the power consumption of each RF chain, and Ppg, is the power consumption of b-bit
PSs. As in [90], we use Pr = 1 W and Py, = 250 mW. The use of transfer block yields a
constant-gain RF beamformer but also doubles the number of PSs per each RF chain due
to double-PS structure (as discussed in Section 3.4.2.2). Thus, Npg = 2 x Ngp x N. We use
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Figure 3.17. Energy efficiency comparison versus transmit power at SNR= 15 dB: (a)
ULA (b) UCA (c) URA (d) CCA.

5 mW and 10 mW as the power consumption values for 1-bit and 2-bit PSs i.e., (Pps, =5
mW, Ppg, = 10 mW) [96,97]. Fig. 3.17 analyzes the energy efficiency of ULA, UCA, URA,
and CCA versus transmit power, which varies from -30 dB to 30 dB and compares € at SNR
= 15 dB for four cases which are: (i) FDBF, (ii) HBF using oco-bit PSs, (iii) HBF using 1-bit
PSs, and (iv) HBF using 2-bit PSs. For the full-resolution PSs, we assume 5-bit PSs be a

good choice to replicate the performance of oo-bit PSs.

Fig. 3.17 shows that both 1-bit and 2-bit PSs can offer high energy efficiency compared to

FDBF and HBF using co-bit PSs. However, the energy efficiency decreases sharply beyond

0 dB for all array structures because of high transmit power. Compared to ULA and UCA,
both URA and CCA can offer higher energy efficiency when using only 1 or 2-bit PSs at the

RF-stage.
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Figure 3.18. Sum-rate degradation versus b for different DAC resolutions at SNR = 10
dB: (a) ULA (b) UCA (¢) URA (d) CCA.

3.6.4.2 b-bit PSs AND ¢-bit DACs

In this section, we examine the spectral effiency of the proposed HBF scheme with low-
resolution DACs and PSs, i.e., the combined effect of ¢-bit DACs and b-bit PSs on the
sum-rate performance for ULA, URA, UCA, and CCA. To better understand the effect of
low-resolution PSs and DACs on the sum-rate degradation Rg.,, we first plot Rge, due to
each individual hardware component (i.e., DACs or PSs). Fig. 3.18 shows various R, plots
versus b for different values of ¢q. It can be seen that 1-bit DAC can give large sum-rate
degradation (=~ 65%). The large quantization noise introduced by the use of only 1-bit DAC
impede the performance improvement even by increasing PSs resolution (i.e., b). However,
by increasing DAC resolution, we can see that R4, decreases significantly, e.g., Rqe, reduces

to &~ 25% with 5-bit DACs and 1-bit PSs. In other words, we can approach the performance
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Figure 3.19. Sum-rate degradation versus ¢ for different PS resolutions at SNR = 10 dB:
(a) ULA (b) UCA (c) URA (d) CCA.

of HBF with oo-bit resolution with just 5-bit DACs, offering significant advantages in power
consumption and cost.

Fig. 3.19 plots Ry, versus ¢ for different PSs resolution. Similar to the case of 1-bit
DACs, HBF using 1-bit PSs can give high R4, (= 70%). However, this degradation can
be decreased significantly by increasing the resolution of DACs. Thus, HBF with 1-bit PSs
can provide higher sum-rate than HBF with 1-bit DACs. Also, for b > 2, we can see that
Rgeq is almost the same for all resolution levels i.e, b = 2,3,4,5, which indicates that the
performance of HBF depends more on DAC resolution than on PS resolution. Furthermore,
this analysis gives us the least numbers of bits of DACs and PSs required to achieve a
satisfactory performance close to FDBF and HBF using co-bit components.

Fig. 3.20 plots the sum-rate versus ¢ and b for ULA, UCA, URA, and CCA at SNR = 10
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CCA.

dB and b and ¢ varying from 1 to 10. The sum-rate performance gap between the FDBF and
proposed HBF using ULA and UCA is larger than the case using URA and CCA. Moreover,
the analysis of the results obtained in Fig. 3.18 and Fig. 3.19 gives some following useful
notes: (i) the use of low-resolution DACs significantly degrades the sum-rate performance as
compared to the use of low-resolution PSs (e.g., R(g=1-10) < R(qzloybzl)), (ii) single-layered
array structures (i.e., ULA and UCA) give low sum-rate, whereas, the multi-layered array
structures (i.e., URA and CCA) can approach the sum-rate of FDBF, and (iii) the optimal
sum-rate can be obtained by using different combinations of ¢ and b and thus, offers the
choice to use which combination of low-resolution hardware components for increased sum-
rate. This can also be better understood by the equal-sum-rate contour plots shown in Fig.

3.21. It can be observed that we can get reasonably high sum-rate by using the proposed
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Figure 3.21. Equal-sum-rate contour plots at SNR = 10 dB: (a) ULA (b) UCA (c¢) URA
(d) CCA.

HBF with (¢ > 5,b > 2), which is, in particular, close to that of FDBF for both CCA and
URA. Finally, Table 3.5 gives the comprehensive comparison of spatial, spectral and energy
efficiencies of ULA, UCA, URA, and CCA when using few-bit DACs and PSs.

3.7 Concluding Remarks

In this chapter, we have presented the MU-mMIMO hybrid beamforming (HBF) design
for low-resolution PSs and/or DACs, and investigated its performance using different 2D

antenna array structures. In the HBF design, the RF precoder has been developed via the
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Table 3.5. Performance comparison of ULA, UCA, URA and CCA using low-resolution
PSs and DACs.

ULA | UCA | URA | CCA
Spatial efficiency Low | Low | High | High

Sum-rate using b-bit PSs
(see Figure 3.12 - Figure 3.12) | Low | High | High | High

Energy efficiency using
b-bit PSs (see Figure 3.17) Low | High | High | High

Sum-rate using g-bit DACs
and b-bit PSs
(see Figure 3.18 - Figure 3.19) | Low | Low | High | High

slow time-varying AoD information, whereas the reduced-size effective CSI is utilized at the
baseband precoder. Considering the hardware complexity, we have considered the following
cases in the HBF design: (i) low-resolution PSs only, and (ii) low-resolution PSs and DACs.
An optimization problem has been formulated to provide an RF beamformer with uniform
gain entities by introducing a transfer block at the baseband stage. Furthermore, we have
proposed an algorithmic solution using OMP to reduce the Euclidean distance between the
HBF with full-resolution PSs and the HBF with low-resolution PSs. Based on OMP, we have
first designed HBF using b-bit PSs and co-bit DACs, then constructed the HBF using b-bit
PSs and ¢-bit DACs to significantly reduce hardware complexity and costs in MU-mMIMO
HBF systems. The spectral and energy efficiencies of ULA, UCA, URA, and CCA have been
compared using Monte Carlo simulations. Illustrative results indicate that the proposed
HBF using both URA and CCA can provide high sum-rates, which are comparable to their
FDBF counterparts. Also, the use of low-resolution PSs and DACs can provide high energy
efficiency. Finally, we have presented different combinations of PS and DAC quantization
levels to achieve near-optimal sum-rate. It has been shown that HBF using only 2-bit PSs
and 5-bit DACs can provide high performance close to FDBF.

3.8 Appendix: Proof of Lemma 3.1

Let the normalization factor — ((JXRF(Z ] is equal to %. Then, we can write:
BT, ’

[FT], = Vo, = o[, .7
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Using norm inequality, we have:

v

Y

|#p,T, - 1300 W

9 HF F(gs)zTéq)HF

o), -

= 1=l [Fp, Ty . (3.48)

which is equivalent to HFDHTQHF < ﬁ(’ When p # 1, we have HFDQTQ — f‘%iTéq)HF # 0.
Then,

[#0,7, - F5 2],

A A 1 A
_ HFDng ~FPTY 4 (1~ pF(gZqu’) ,

F
< [Pom, £, + -] (BT,
< C+lp—11|[Fp, Ty,
lp— 1
< T
= 2. (3.49)

From (3.49), we can write as:

|#p,T, — BT =2c. (3.50)
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Chapter 4

3D Antenna Array Structures in
Hybrid Massive MIMO!

4.1 Introduction

As discussed in Chapter 3, the antenna elements at the BS can be configured in a
number of ways, resulting in narrower beams to reduce MU interference. A comparison of
different 2D array structures in MU-mMIMO is presented in [57, 58], showing higher
spectral and energy efficiencies of uniform rectangular array (URA) and concentric circular
array (CCA) than uniform linear array (ULA) and uniform circular array (UCA). Given
the massive wireless connectivity requirements of I[oT, mMTC, and future aerial
applications involving mobile drones, UAVs, satellites, existing array structures lack the
ability to transmit signals in arbitrary location in 3D space. As a result, in future wireless
applications, the 3D configuration of antenna elements will be critical. The design of
uniform spherical array (USA) is presented in [99], which shows significant advantages in
mMIMO. Antenna elements can also be placed in a 3D cylindrical array to increase SE as
shown in [100]. The majority of existing research on HBF solutions in mmWave
MU-mMIMO systems is focused on ULA or URA (e.g., [42, 62, 88,90]). Therefore,
analyzing the performance of various 3D array topologies remains an unaddressed research
problem.

In this chapter, we compare the spectral and energy efficiencies of three different 3D array
structures in mmWave MU-mMIMO systems., i.e., cylindrical array (CA), hemi-spherical

array (HSA), and spherical array (SA) and analyze the computational complexity as well as

1Parts of this chapter have been published in the IEEE Communications Letters [98].
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robustness of the proposed HBF scheme. The main contributions of this chapter are outlined

as follows:

e SVD-Based HBF Design: We consider the design of HBF for mmWave
MU-mMIMO systems, which involves two stages: (i) RF beamforming based on SVD
of channel matrix, and baseband MU precoding based on the instantaneous effective

baseband channel to mitigate MU-interference by RZF technique.

o Comparison of 3D Antenna Array Structures: We compare the spectral and
energy efficiencies of different 3D antenna array structures in mmWave MU-mMIMO
systems. Particularly, we consider three different 3D array configuration, namely, SA,
HSA, and CA, and compare their performance versus URA (2D array configuration).
We show that in comparison to 2D arrays, 3D array structures can provide high spectral
and energy efficiencies as well as non-varying achievable rate independent from the user

angular location.

» Robustness of HBF to CSI Errors: We compare the effect of channel estimation
error on the sum-rate performance for different array structures and show that the

proposed HBF scheme is not sensitive to the accuracy of CSI.

The rest of this chapter is organized as follows. In Section 4.2, we discuss the system and
channel model for mmWave MU-mMIMO systems. Section 4.3 presents the SVD-based
HBF solution to maximize the total achievable rate. The illustrative results are provided in
Section 4.4 to compare the performance of different 3D array structures. Finally, the chapter

is concluded in Section 4.5.

4.2 System and Channel Model

In this section, we introduce the system and channel models of the proposed hybrid
mmWave MU-mMIMO systems.

4.2.1 System Model

We consider the downlink of a mmWave MU-mMIMO system with HBF structure, as
depicted in Fig. 4.1. The BS employs N antenna elements at the transmitter, which are
fed by N, RF chains simultaneously communicating with K single-antenna users. At the
BS, the hybrid precoder B = FpBp consists of the digital baseband precoder B, € ¢t
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Figure 4.1. System model for the proposed mmWave MU-mMIMO hybrid precoding.

TXNRF

and the analog RF beamformer Fp € c”
and thus, imposes a constant-modulus contraint., i.e., |Fp(i, )| = ﬁ Vi, j. The design of
HBF reduces the number of RF chains from Ny to Nge, while satisfying K < N, < Nr.

Assuming the number of data streams S equal to the number of the users K., i.e., S = K,

that is implemented using phase shifters

the precoded signal at the transmitter is given by:
S = FDBDdy (41)

where d € C" is the data signal with E{dd”} = Ix. The transmitted signal satisfies the
power constraint., i.e., B{||s||5} < Pp, where Py is the transmit power at the BS. Then, the

received signal at k' user is given by:

Yk = ths + ng,

K
k+#k N\o:;a

Desired Signal

IUI

where h;, € CN7 and s, are the narrowband flat-fading channel vector and data signal for
k™ user, respectively, by, is the k' column of Bp, and nj; denotes the additive circular
symmetric Gaussian noise such that ny ~ CN(0, 0?).

By using (4.1) and (4.2), the instantaneous signal-to-interference-plus-noise ratio (SINR)
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expression at k™ user is derived as follows:

|hk:HFDbdk |2

SINR; = .
Zlé;k |h§FDbd;; >+ 07

(4.3)

By using the instantaneous SINR, the ergodic sum-rate capacity Rgum, for the MU-mMIMO

systems is given by:

N

sum Z 10g2 1 + SINRk)] (44)

The design of Fp, Bp aims at maximizing the SE of mmWave MU-mMIMO systems. Then,

the optimization problem can be formulated as follows:

F%I%XD Rsum (FDa BD) (45&)
1

. |\Fp(i,g)| = 4.5b

5 ‘ D(Z7.]>| \/N—Ta ( )

E{|ls|3} < Pr. (4.5¢)

4.2.2 Channel Model

We consider a narrowband clustered channel model, based on the extended
Saleh-Valenzuela model to characterize the sparse scattering of the mmWave
communication channel [88]. We assume the channel matrix H € CM*X be the sum of N,
scattering clusters, where each cluster contributes N, propagation paths. Then, the

narrowband channel vector hy, for k" user can be written as:

Ne—1L-1

Z Zak a( ¢ml Hml) (4.6)

m=0 [=0

h, =
k NL

where oz;”’l corresponds to the complex gain of the [th multipath ray in the mth cluster,
ak(#j’l, QZM) is the transmit array response vector, where (,b?,:”’l € [Pk —0e, Or+0.| represents the
mean elevation angle of the corresponding path with angle spread ., and 6?’1 € [0k —04, Op+34)

represents the azimuth angle of departure (AoD) with azimuth angle spread §,. We assume
2

complex weights o™ are iid CN(0,03,,), where o7,

r Y oa,m

is the average power of the mth
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cluster such that 70 102 = ,/%. The array steering vector is given as [90,99,100]:

m=0 Ga,m

1

a<¢7 0) - W[al(qﬁa 0)7 (12(925, 9)7 R 7aN(¢7 0)]T7 (47)
where an(¢,0) = e XTu@0)  Np is the number of the antenna elements at BS,
r, = (@0, Yn, 20)T  is  the position of the n'™ antenna element and

u(¢, ) = [cos O sin ¢, sin 0 sin ¢, cos §]7. Different from the conventional array structures, we
assume the antenna elements arranged in 3D space namely, CA, HSA, and SA, and

compare their performance with that of 2D array i.e., URA, as shown in Fig. 4.2.

4.3 Hybrid Beamforming Design

In this section, we present the design of proposed hybrid precoder B &€ CNTXK, which
maximizes the spectral and energy efficiencies of mmWave MU-mMIMO systems. The HBF is

NpXNgpp . .
and reduced-dimensional

constructed by concatenating the RF beamformer Fp € C
MU baseband precoder Bp € C""**" " The HBF solutions presented in literature (e.g.,
[42,62,88]) can achieve a high sum-rate performance but depends on finding the optimal fully
digital precoder F,,, which increases the computational complexity. Eigen beamforming
(EBF), on the other hand, can give high performance with reduced complexity. However,
the RF beamformer in this case constitutes variable-gain entities and thus, does not meet
the constraint given in (4.5b). To design the constant-modulus RF beamformer while using
EBF is a challenging problem. The simple solution is to formulate the correlation matrix R
based on the array response vector a; [101]. Then, the correlation matrix for k™ user can
be written as:

Rk = aka,:. (48)

By using Karhunen-Loeve decomposition, we let R, = UkAkU:. Then, the RF beamformer
can be designed using the dominant eigenvalues., i.e., Uj. However, this approach gives low
performance. In [59], a three-stage HBF is designed using EBF but it requires the use of
doubling phase shifter structure. In the proposed HBF design, we introduce a low-complexity
solution, which uses ordered SVD of the mmWave MU-mMIMO channel and achieves high

performance without requiring F,,; [102].
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(c) (d)
Figure 4.2. mmWave MU-mMIMO array structures: (a) URA (b) CA (c) HSA (d) SA.

4.3.1 RF Beamformer Design

We assume K users are clustered into G groups based on their AoD information, where
each group contains K, number of users such that K = Zle K,. The index g, = Zg;l Ky +
k is used to denote the k' user in group ¢g. Then, the channel matrix H for ¢gth group can

be written as:
H® = QWxR@v") (4.9)

where Q¥ and V@ are K, x K, and Ny x Np unitary matrices, respectively. >0 is a

K, x Np rectangular diagonal matrix with non-negative real numbers on the diagonal, and
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Algorithm 4.1 SVD Based RF Beamformer Design

1: Input: [0, ¢\ for k=1,..., K

2: forg=1:G do

3: Compute channel matrix h,(f’ ) via (4.6)

Using (4.9), form the unitary matrices Q) and V)

for n=1: Ny do
Calculate the phase of each entity of V(:,n)9) i.e., ¥(:, n)(g)
Construct the phase vector v

end for

Formulate T'9) via (4.10)

10 Compute W using Ng} via (4.11)

11: end for

12 Fp = (WO, WO WO

the elements are arranged in decreasing order. Let I'9) be the matrix containing Ny column

vectors. Then, we can write as:

T = i o, o], (4.10)
(0 (@) @)
where v = [e/¥1n V2 ,ewﬁ,n]T € C" is the phase vector of group ¢, and Y9 s the

phase angle of the (m,n) — th entry of V. Comparing (4.9) and (4.10), we can see that each
entry of v(¥9) and V,(n) have the same phase angle., i.e., 1. Let W) be the set containing
N ](%g} columns where each nth column represents the nth largest singular value of channel

matrix H@. We can write W) as:
WO = [ o, ol ] (4.11)
The pseudo-code for RF beamformer design is given in Algorithm 4.1.

4.3.2 Baseband MU Precoder Design

After the design of RF beamformer Fp, the baseband MU precoder Bp can be determined
by using the joint group processing (JGP) [90]. The overall reduced dimensional effective
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channel matrix is expressed as H" = FgH. The effective channel H can be written as:

H(1) (1) H(1) +(2) H(1) +(G)

H F, H F, H F,
H(2) (1) H(2)14(2) H(2)1(G)
H= . Y . 5 . . ¥ ) (4.12)
HH(G)Fg) HH(G)F(;) HH(G)F(E)
K(g)xN
where the diagonal matrices HH(Q)F<DQ) € 9 are the effective channel matrix for group
g K(g)xN g
g and the off-diagonal matrices HH(‘”F? € "7 represent the effective interference

channel matrix between groups g and g, Vg # g. By applying the well-known RZF technique,
B is defined as:

where H is the reduced-dimension effective channel as provided in (4.12), T = [HHY +

NRpXNp
C

aNgrlng,] s Ing, € |« is the regularization parameter and + is the normalization

factor used to satisfy the power constraint, which can be written as:

v = - HSH . (4.14)
tr{H T FLF, TH)

4.4 Tllustrative Results

In this section, the Monte-Carlo simulation results are presented based on the proposed
hybrid precoding for various array structures. For the presented results, we assume the
BS is equipped different array configurations as depicted in Fig. 4.2. For URA(CA), we
arrange the antenna elements in 20 rows(rings), where each row(ring) having 10 elements
with a spacing of d, = % [90,100]. For HSA and SA, the antenna elements are arranged
having uniform angle spacing [99]. The signal-to-noise-ratio (SNR) is defined as C%’( and the
regularization parameter o = ;—; [59].

4.4.1 Spectral Efficiency (SE) Comparison

In this section, we compare the spectral efficiency of different 3D array structures in
mmWave MU-mMIMO systems both with 2D array structure (i.e., URA) and HBF solutions
presented in [42,88,101]. In Fig. 4.3, we compare the sum-rate performance of different array
structures, when N = 200. We consider K = 12 users are equally distributed into G = 3
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Figure 4.3. Sum-rate versus SNR comparison for URA, CA, HSA and SA.
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Figure 4.4. Sum-rate versus azimuth location 0, ¢ = 73°, SNR = 10 dB.

groups (i.e., K, = 4, Vg), which are located around the BS at mean elevation angle ¢ =
73°, mean azimuth locations (6, 02, 63) = (30°, 90°, 150°) with ¢, = 15° and 6, = 12.5°.
Each user having minimum number of RF chains (i.e., Ngr, = Ky, = 4). For SNR varying
from -10 dB to 30 dB, we plot the sum-rate of URA, CA, HSA and SA in Fig. 4.3. FDBF

achieves higher sum-rate but it requires the utilization of 200 RF chains. On the other hand,
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Figure 4.5. Sum-rate versus number of users K, N =200, G =1, Ngrp = K, ¢p =73°, 0 =
90°, (d4,0.) = (£15°,£12.5°), SNR = 20 dB.

by using the proposed HBF, the sum-rate capacity of FDBF can be closely achieved with
HBF by only using 12 RF chains., i.e., a 94% reduction of RF chains. Also, the use of 3D
array structure can provide a higher sum-rate when compared to URA (e.g., the sum-rate
increases by approximately 10 bps/Hz via CA, HSA or SA) as well as the HBF schemes
in [42,88,101]. In Fig. 4.4, we investigate the variation of sum-rate for different array
structures when the user changes its angular location. We consider single user group., i.e.,
G = 1 having Ngp, = K, = 4. Fig. 4.4 shows the sum-rate versus the mean azimuth
location of a user group 6, where 6 varies between [0°:30°:180°] and ¢ = 73° at SNR =
10 dB. It can be seen that both HSA and SA can provide a non-varying/uniform sum-rate
irrespective of the angular location 8 because of a more symmetrical configuration, whereas
the sum-rate can vary slightly for URA and CA. Also, both SA and HSA provide a higher
sum-rate.

Fig. 4.5 plot the sum-rate versus number of users K for single user group (G = 1) located
at 8 = 90° and evaluated at SNR = 20 dB. 3D array structures can provide a higher sum-
rate, where in particular SA can offer the highest sum-rate among all the array structures.
Considering the future massive wireless connectivity requirements of IoT and for different
aerial applications (e.g., in UAVs), different 3D array structures can be considered, which

can provide a high sum-rate while supporting more number of users/devices.
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Figure 4.6. Energy efficiency versus transmit power Pr.

4.4.2 Energy Efficiency Comparison

In this section, we compare the energy efficiency of the proposed HBF in mmWave MU-
mMIMO systems using different 3D array structures. The energy efficiency e is defined as

the ratio of the sum-rate R,,,, and the total power consumption Py, i.e.,

. Rsum - Rsum
Ptotal PT+NRFPRF+NPSPPSJ

€ (4.15)
where Pr represents the total transmission power, Ny is the total number of RF chains, Prp
and P,y are the power consumptions of each RF chain and PS, respectively. Nps = Nrp X Np
is the total number of PSs used at the RF front end. Asin [90], we use Pr = 1 W, Pgp = 250
mW and P,y = 1 mW. In Fig. 4.6, we plot energy efficiency versus transmit power for single
user group (i.e., G = 1) located at ¢ = 73°, 0 = 30°. We analyze the performance of different
3D array structures at SNR = 10 dB. FDBF provides very low performance due to use of
large number of RF chains. On the other hand, the proposed HBF can provide a higher
energy efficiency as it uses only a few number of RF chains (in this case, Ngp = K = 4).
Furthermore, 3D array structures can give a more energy-efficient HBF design in mmWave

MU-mMIMO systems when compared to 2D array structures.
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Figure 4.7. Sum-rate versus imperfect CSI ¢ at SNR = 0, 10, 20 dB.

4.4.3 Complexity Analysis

The design of FDBF requires O(N? + K N?) operations, where O(K N?) is required for
computation of HH? and matrix inversion requires O(N3). For the proposed HBF, to
obtain RF beamformer Fp as given in Algorithm 4.1, the complexity is O(GN), where
Nr is the total number of antennas and G is the total number of user groups. Then, the
design of baseband precoder (as given in (4.13)) Bp requires O(N3 . + KN%p) operations,
which makes the computational complexity of the proposed HBF solution as O(GNr +
N3+ KN3p). For the HBF solution in [88] and [42], the computational complexity of F,,
requires O(K2Ny) operations. Thus, the overall complexity becomes (’)(K Ny + N2KN RF)
and O(K Ny +kNpN% F), respectively, where k is the number of iterations. As an example,
consider Ny = 100, G = 3, K = 3 and Ngrr = 3, the complexity of the proposed HBF
solution is only about 1 percent of the complexity of the HBF methods in [42,88].

4.4.4 Imperfect CSI

In practical systems, CSI is contaminated by estimation error, therefore, we evaluate the
impact of imperfect CSI on the performance of the proposed HBF solution. The estimated

channel matrix H is given as [90)]:

H=CH+\/1-CE, (4.16)
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where H is the reduced-dimensional effective channel matrix at the baseband, ¢ € [0, 1] is
the parameter that controls CSI accuracy and E is the error matrix with entities following
the standard complex Gaussian distribution. In Fig. 4.7, we compare the effect of channel
estimation error on the sum-rate for different array structures and observe that the proposed
HBF scheme is not sensitive to the accuracy of CSI. In particular, SA can provide a higher
sum-rate when compared to HSA, CA and URA with imperfect CSI (e.g., ( = 0.7).

4.5 Concluding Remarks

In this chapter, we have presented the mmWave MU-mMIMO HBF design and
investigated the performance comparison of different 3D antenna array structures. In the
low-complexity HBF design, the RF beamformer has been developed by using the ordered
SVD of the channel matrix, whereas the baseband precoder is designed using the
reduced-dimensional effective channel matrix via RZF. The simulation results show the
high spectral and energy efficiencies of 3D antenna arrays when compared to URA for the
proposed HBF solution as well as the robustness to the channel imperfections. Among
different 3D configurations introduced in this letter, both HSA and SA can provide high

uniform performance irrespective of the users’ angular location around the BS.
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Chapter 5

Enhancing Capacity in Full-Duplex
Massive MIMO: Hybrid Beamforming
Approach!

5.1 Introduction

In the previous chapters, the HBF techniques have been proposed for the half-duplex
(HD) mMIMO systems. Full-duplex (FD) communications can further extend the expected
impacts of the mMIMO systems since it theoretically doubles the capacity via
simultaneous transmission and reception over the same frequency band. Although FD is
severely affected by the strong self-interference (SI), the recent developments in SI
suppression (SIS) techniques make it more practical [43-45]. For instance, the Tx and Rx
antenna sub-systems can be designed in such a way to isolate the transmit and receive RF
chains as much as possible [46-48]. The practical demonstrations show SI suppression
between -60 and -70 dB based on antenna isolation [49]. On the other hand, active SI
cancellation refers to mitigating SI by subtracting a processed copy of the transmitted
signal from the received signal. Then, based on the signal domain, where the SI signal is
subtracted, active cancellation is divided into digital and analog SI cancellations. Analog
SI cancellation requires the use of specially designed circuitry to reconstruct the SI

counterpart and substract it from the received signal at the analog front-end of the local

'Parts of this chapter have been presented at the 2023 IEEE Global Communications Conference
(GLOBECOM), KualaLumpur, Malaysia [103], the 2024 IEEE Wireless Communications and Networking
Conference (WCNC), Dubai, UAE [104], and published in the IEEE Open Journal of the Communications
Society [105].
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Rx [106-108]. Digital SI cancellation techniques are considered to be the simplest forms of
active cancellation techniques. However, the amount of SI cancellation achieved through
digital techniques is quite limited due to hardware imperfections, particularly transceiver
phase noise and non-linearities that restrict the performance of traditional digital
cancellation techniques [52]. Therefore, antenna isolation, analog and digital SI
cancellation (suppression), and their combinations have been used to suppress the strong
SI signal below the Rx noise floor in FD communications [109-111].

In 5G and beyond systems, there is a growing trend towards utilizing an increased
number of antennas at BS. For instance, 3GPP has been considering configurations with
64-256 antennas [32]. However, the increased number of antennas introduces additional
challenges for analog SI cancellation in FD mMIMO systems. This results in high analog
complexity, which is not affordable. An alternative approach relies exclusively on transmit
beamforming to suppress SI, thereby completely obviating the need for analog
cancelers [112]. The use of large array structures both at the transmitter and receiver in
FD communications can provide additional spatial DoF, which can help to suppress strong
SI and can double the capacity. The existing research studies, for instance [113-120],
consider HBF in FD mMIMO systems to mitigate the strong SI from Tx to Rx. However,
the SI suppression evaluation in these studies relies exclusively on the theoretical SI
channel models. In other words, the studies in [113-120] do not consider the experimental
evaluations to validate the theoretical doubling of capacity/throughput. Instead, the
studies assume both residual near-field SI channel via LoS paths and the far-field SI
channel via the reflected non-line-of-sight (NLoS) paths in a simulated manner. In
practical implementations, real-world platforms inevitably experience SINR loss due to the
impact of strong SI. Therefore, it is important to develop a robust understanding of
beamforming-based SI suppression capabilities by utilizing the experimentally measured SI
channels. Therefore, investigating the effectiveness of beamforming-based SI suppression in
the real-time implementation of FD mMIMO systems becomes essential to bridge this gap
between theory and practical performance.

Additionally, most existing FD studies primarily consider FC-HBF architectures. In
the FC-HBF scheme, each RF chain is connected to all antenna elements, which allows
the RF chain to exploit the full beamforming capability of the antenna array. However,
this leads to increased cost and complexity. On the other hand, SC-HBF architectures
require the connection of each RF chain to a subset of antennas, significantly reducing the
connectivity and implementation cost/complexity. Thus, SC-HBF utilizes fewer RF PSs

circuits compared to FC-HBF, and its use can reduce power consumption at the expense
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of some performance degradation. However, SC-HBF can provide a better spectral-energy
efficiency tradeoff [104,121]. Thus, it is more suitable to deploy SC-HBF structure for future
key enabling technologies, for instance, mmWave and sub-Terahertz (THz) communications
[122-124]. It is worth noting that the SC-HBF architecture is mainly considered in HD
transmission studies, while most research in FD communications has focused on the use of
FC-HBF [113-120]. Therefore, it is important to explore SC-HBF architecture’s potential
in FD mMIMO systems to reveal its advantages and enable its deployment in emerging
technologies.

The main contributions of this chapter are outlined as follows:

o We formulate a multi-objective optimization framework that focuses on maximizing
the total achievable-rate and SI minimization in FD mMIMO systems. To solve this
challenging non-convex MOOP, we propose swarm intelligence-based SI suppression
scheme that optimizes the beam perturbations in the UL and DL UE directions and find

the best Tx and Rx sub-arrays while satisfying the directivity degradation constraints.

o We propose two different SI suppression schemes for the design of UL/DL RF
beamformers, namely maximum-directivity beamforming (MBF) and perturbed
beamforming (PBF) incorporating SAS for MOOP!. The MBF scheme optimizes the
RF beamformers by maximizing the intended signal power and suppressing SI
leakage power using maximum-directivity beams. In the joint PBF with SAS scheme,
we introduce perturbations to the MBF beams to enhance SI suppression. Compared
to the PBF scheme in [117], which uses phase-range constraints, the proposed PBF
scheme uses directivity-loss constraints, which offer greater flexibility in perturbing
the MBF beams while maintaining low directivity loss. Additionally, we jointly select
the best Tx and Rx sub-arrays, optimizing the UL and DL beam directions to further

enhance SI suppression by leveraging the spatial DoF.

o For the practical application purpose, we implement a testbed in an anechoic chamber
to measure the SI channel in the sub-6GHz band. The experimental setup considers
64 Tx and 64 Rx antenna elements as per 3GPP [32] and the measurements are done
without external surrounding reflections (i.e., SI channel is mainly due to “internal”
coupling between Tx and Rx antenna arrays) for a frequency band between 3 GHz and

4 GHz. We formulate RF beamforming stages using the proposed perturbation-based

1Tt must be noted that the MBF and PBF RF beamformers design in [103] reduces SI only, whereas, in
this work, the MBF and PBF RF beamformers formulation is based on a multi-objective design criteria i.e.,
reducing SI and maximizing the total rate.
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PBF schemes using the measured SI channel for 20 MHz bandwidth (BW). Moreover,
we employ a SC-HBF architecture for both Tx and Rx arrays, and investigate SI
suppression for the measured SI channel. The illustrative results show the significant
SI suppression achieved using the proposed joint PBF with SAS scheme compared to
the MBF scheme. We also demonstrate that using only 4 (1x4) or 8 (1x8) antenna
elements, SI value can be brought down to -78 dB, which shows the spatial suppression
abilities of FD mMIMO systems.

« We provide a realistic capacity gain in FD communications compared to HD
transmissions in mMIMO systems. Specifically, we consider the extreme case when
both UL and DL users are at same angular locations. Our results show that FD
performance degrades significantly when using MBF scheme due to inter-user
interference (IUI). However, using the proposed joint PBF with SAS scheme can
achieve approximately 1.85 times more capacity than HD communications in

real-time implementations.

The rest of this chapter is organized as follows. In Section 5.2, we discuss the channel model
for the FD mMIMO systems. Section 5.3 presents CM HBF design jointly with sub-array
selection scheme., whereas in Section 5.4, we discuss the non-constant modulus (NCM) HBF
design. The illustrative results are provided in Section 5.5 to compare the performance of

the proposed HBF schemes. Finally, the chapter is concluded in Section 5.6.

5.2 Channel Model

In this subsection, we present the intended channel, IUI channel, and the measured SI

channel in an acnechoic chamber.

5.2.1 Intended Channel

Based on the geometry-based 3D channel model [125], the channel vector between the
BS and UE is given by:

L
h = ZTiZ_nZil¢i(9il7 ) = z; @i € C', (5.1)
=1

L
is the path loss exponent and ¢;(. .) is the array steering vector with i = {D, U} is the DL

where 7, and z;, ~ CN (0, l) are the distance and complex path gain of the I path, n
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phase response vector for ¢ = D or the UL phase response vector for i = U. Here, the angles
0;, € [HZ- — 89,0, + (5?} and ¢;, € [d)i — 07, ¢ + (5?} are the azimuth AoD (AAoD) and elevation
AoD (EAoD) for I*" path in i'* channel, respectively. #;(¢;) is the mean AAoD(EAoD) with
angular spread 67 (55) ). Then, the ** instantaneous channel vector for the user is represented
via the fast time-varying path gain vector z; = {Ti:"zil, e ,Ti;”ZiL}T € Cl and the slow

time-varying phase response matrix as:

¢1T (911 ) (bu)
®, = : € CkxMi (5.2)
o7 (0:,, b,

where M; € {Mys, M} is the Tx/Rx antenna elements.

5.2.2 IUI Channel

Based on the array phase response vectors ¢p and ¢y (as given in (5.2)), the IUI channel
for single antenna u* UL UE and d"* DL UE can be written as [117]:

Hiui(u, d) = i, 2101, 45 (5.3)

where 11, , and 2, , ~ CN (0,1) are the distance and path gain for the UL and DL UEs,

respectively.

5.2.3 Measured SI Channel

We consider a measured SI channel based on the measurement setup designed in an
anechoic chamber (i.e., without external surrounding reflections) as shown in Fig. 5.1. The
OTA FD lab setup has following internal dimensions: 1) length = 20 ft (6.096 m); 2) width
= 8 ft (2.438 m); and 3) height = 8 ft (2.438 m). This non-reflective space was large enough
to place our antenna array under test (measuring 84 cm x 32 cm, WxH) on a positioner,
approximately 4 ft away from each of C-RAM SFC-48 absorber covered five walls (reflection
< -45 dB at 3.5 GHz). We did not observe significant changes to the measured SI channel
when slightly rotating the antenna under test. The antenna arrays consisted of 64 right-hand
circular polarization Tx elements and 64 left-hand circular polarization Rx elements. These
elements were designed to minimize cross-polarization, and all antenna elements shared a
common ground plane. Both the Tx and Rx antenna arrays were arranged in an 8x§

URA configuration, with a spacing of 20 cm between these two arrays, enhancing passive
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Figure 5.1. OTA FD mMIMO lab setup for SI measurement. (a) Anechoic chamber. (b)
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isolation. Fig. 5.1 illustrates the mapping of the 64 Tx and 64 Rx antenna arrays. The
S-parameters were measured with vector network analyzer (VNA) Keysight PNA N5247A,
configured with an output power of 10 dBm. To reduce the effect of noise on the expected
high isolation measurements, intermediate frequency (IF) BW should be set 300 Hz (resulting
in an integrated thermal noise power of -149 dBm), and trace smoothing function was set to
1%, the averaging was turned off. The measurement bandwidth was 1 GHz, from 3 GHz to
4 GHz, with a step size of 625 kHz (resulting in 1601 measurement points). The sweep time
for each antenna elements pair was ~10 sec, thus total measurement time for 64 x 64 = 4096

combinations, was expected to be 11.5 hrs.
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The Tx and Rx antennas were connected to the VNA via 5m long coaxial cables, and
MCL USB-1SP16T-83H RF absorptive switches, with approximate total insertion loss of
12.5 dB, on both the Tx and Rx sides. To construct the full 64x64 s-parameters matrix, the
measurements were done using two SP16T RF switches (one for Tx and one for Rx) connected
to each 4x4 sub-section at a time. The obtained s-parameters were transmitted to a PC via
Ethernet and post-processed in MATLAB, to de-embed all insertion losses of the test setup,
and to construct 64 Tx by 64 Rx SI channel matrix for further use in analysis and simulations
of the FD mMIMO testbed system. The detailed results of the measured 64 Tx by 64 Rx SI
channel, such as magnitude, phase, and delay are discussed in detail in [126]. The individual
isolation between each Tx and Rx element ranged from approximately 37 dB to 80 dB, thus
the resulting minimum SNR, in front of the VNA receiver, was expected to be approximately
54 dB (10dBm - 12.5dB — 80dB — 12.5 dB + 149dBm). The observed trace variations over
frequency, for fixed RF attenuator of 100dB at VNA ports, were approximately £0.75 dB,
+3°, and +100ps for group delay. This setup is used for SI channel measurement.

The resulting parameters in the form of .S2P file are used to get a 64x64 SI channel
matrix, which is mainly due to internal coupling between Tx and Rx antenna elements (i.e.,
consisting of only LoS path components). Then, the complete SI channel matrix Hgy, apr, has
dimensions of 64 x 64 x 1601 for a total of 1601 different frequency points. As mentioned
earlier, we consider a ULA sub-array configurations of 4 and 8 antenna elements for both
Tx and Rx. Hence, the corresponding SI channels for 1x4 and 1x8 sub-array configurations
can be represented as Hgy € CH*#*1601 and Hg € C¥*®*1601 regpectively. As per 3GPP
specification, the UL and DL channel BW can vary from 5 MHz to 100 MHz [127], then
the corresponding SI channel for the given BW can be written as: Hg p = Hg(:,:,n) €
C™>>xn where i = {4,8}, B is the given BW, and n = 1,2,..., N is the sample frequency
point for a total of N frequency points in a given BW. For instance, for a BW of 20 MHz,
n=1,2,...,33 for the frequency range from 3.49 GHz to 3.51 GHz. Similarly, for a BW of
100 MHz, n = 1,2, ...,161 for the frequency range from 3.45 GHz to 3.55 GHz.
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Figure 5.2. FD mMIMO system using SC-HBF architecture.

5.3 Constat-Modulus Hybrid Beamforming Design:
Joint Beam-Perturbation and Sub-Array

Selection

5.3.1 System Model

We consider a single-cell FD mMIMO systems for joint DL and UL transmission as
shown in Fig. 5.2. Here, the BS is equipped with transmit/receive uniform rectangular
arrays (URAs), and operates in FD mode to simultaneously serve Kp DL and Ky UL
single-antenna users over the same frequency band, while the users operate in HD mode due
to the hardware/software constraints (e.g., low power consumption, limited signal processing
and active/passive SI suppression capability). Specifically, the transmit (receive) URA has
Np = N9 x N9 (Ny = N x N¥) antennas, where N&(N™) and NY(N)) denote the
number of transmit (receive) antennas along z-axis and y-axis, respectively.

For the proposed FD mMIMO systems, we consider the DL signal is processed through
DL BB stage Bp = [bp1,bpa,...,bpr,] € CVeFo*E0 and DL RF beamformer Fp €
CNp*Nrrp  where Ngp, is the number of RF chains such that Kp < Npp, < Np and
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bpr € Ngr, is the BB stage vector for k* DL UE. Similarly, the received UL signal at
BS is processed through UL RF beamformer Fy € CVerv*Nv and UL BB combiner By =
by, bua, ..., buk,]’ € CEv*Nery by utilizing Ky < Ngp, < Ny RF chains. To further
reduce the complexity and cost, we consider a SC-HBF' architecture as shown in Fig. 5.2,
where the Tx (Rx) URA is divided into Mp(M,) different sub-arrays in the form of uniform
linear array (ULA). Hence, compared to Np X Ngp, PSs for Tx (Ny x Ngp, PSs for Rx),
only Ngs X Nrp,, (Nys X Ngp,, ) PSs are required as RF chain s is connected to a specific sub-
array, comprising a distinct set of antenna elements. Here, Mys(M,;) represents the number
of Tx (Rx) antenna elements for RF chain s, where ZSJ,\iDl Ny4s = Np and Zi\@l ws = Ny. The
mtg Tx sub-array, for instance, consists of Ny, antenna elements numbered from 1 to Ny,
ensuring a sequential distribution of elements within each sub-array. Similarly, the m{ Rx
sub-array comprises antenna elements numbered from 1 to N,s. This approach ensures an
orderly arrangement of antenna elements within each sub-array. We assume that Nys(Nys)
is an integer value such that each Tx (Rx) sub-array has the same number of antennas. It
must be noted that each sub-array is independent of each other. Thus, we can write the DL

and UL RF beamformers as follows:

£ 0 0

Fp = ° fg) .| e CNpXNrrp, (5.4)
0 0 fg:w
£V o 01"

Fy = 0 f[(fz) € CNrry*Nu (5.5)
0 0 .. g

where ng ) € CMas is the DL RF beamformer associated with mt Tx sub-array. Similarly,
f,(JmU) € CNu= is the UL RF beamformer associated with m!? Rx sub-array. Here, the UL and
DL RF beamforming stages (i.e., Fy and Fp) are built using low-cost PSs, which brings the
constant-modulus (CM) constraint due to the use of PSs. Then, the DL channel matrix is
denoted as Hp = [hpy,hpa, ..., hp |7 € CEP*Np with hp, € CVP as the d" DL UE
channel vector. Similarly, Hy = [hy 1, hyo, ..., hy k] € CNV*EU s the UL channel matrix
with hy,, € CNv as the u' UL UE channel vector. Due to the FD transmission, the SI
channel matrix Hg; € CNv*Np is present between Tx and Rx antennas at the BS. For the

DL transmission, the transmitted signal vector at the BS is defined as sp = FpBpdp € CVp,
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where dp = [dp 1, ... ,dvaD]T € CKp is the DL data signal vector such that E{dpd} =
Ix,. The transmitted signal vector satisfies the maximum DL transmit power constraint,
which is E{||sp||*} = tr(FpBpBEFZ) < Pp, where Pp is the total DL transmit power.
The TUT channel Hyyr = [hyura, .- ., hiuig, |7 € CEP*EU exists between DL and UL UEs,
where hyy 4 denotes the channel vector from all UL UEs to the d" DL UE. For the practical
FD implementation, we consider the scenario of a single UL UE and a single DL UE (i.e.,
Kp = Ky = 1) to understand how close the FD systems can achieve in terms of theoretical
doubling of the sum-rate capacity by suppressing strong measured SI based on beamforming

capability of mMIMO systems 2. Then, the received signal at the DL UE is given as follows:

rp = hngdeD + hﬁjldU + np s (56)
~—— ~

_—
Desired Signal ~ IUI by UL UE  Noise

where dy is the UL data signal, fp, € CNes*Nrrp is the DL RF beamformer, and np ~
CN (0,02) is the additive circular symmetric Gaussian noise. The received signal includes
the desired DL signal, IUI generated by UL UE as well as the noise. Thus, the DL UE
is exposed to IUI from UL UE due to the FD transmission. After some mathematical

manipulations, we derive the instantaneous SINR at the DL UE as follows:

lhifpbpl?
Py|hpyl[? + o2

SINRp = (5.7)

Here, Py is defined as the transmit power of UL UE. Similar to the DL data signal, the UL

received signal at BS can be written as follows:

fu = bl fyhydy + bl fyHs fpbpdp + EEJ : (5.8)
Desired Signal ST Modified Noise

where nyy = byfyny, ny ~ CN (0, 021y, ) is the complex circularly symmetric Gaussian noise
vector and fi; € CVrFu*Nus ig the UL RF beamformer. If Hg = fyHgfp € CVrru*Nerp g

the effective SI channel seen from the BB-stage after applying DL and UL RF beamformers,

2In this real-time FD implementation, we consider the scenario of single UL and a single DL UE to
understand how effective SI suppression can be achieved solely based on beamforming capability with SAS
based on a measured SI channel. The proposed perturbation-based PBF scheme can be applied to the case
of multiple UL and DL UEs in real-time systems.



5. Enhancing Capacity in Full-Duplex Massive MIMO: Hybrid Beamforming
Approach 94

then the instantaneous SINR for the UL UE can be given as:

Py bl fyhyl|?
|[bf £/ |2
[[b] Hsibp|[? 9’
—nTe Tz~ T O
Ibf fl? n

SINRy =

5.3.2 Sub-Array Mapping and Problem Formulation

In this section, we discuss the Tx and Rx sub-array mapping for the measured SI channel

as well as the problem formulation using multiple optimization objectives.

5.3.2.1 Sub-Array Mapping

In Fig. 5.3(a), the antenna mapping is shown for both Tx and Rx of BS, which consists
of 8x8 = 64 elements at BS and separated by an antenna isolation block. We present the
sub-array mapping for our FD mMIMO setup in an anechoic chamber by using the following
two different sub-array configurations for Tx and Rx: 1) 1x4 sub-array; and 2) 1x8 sub-
array. Given 64 Tx and 64 Rx antenna elements, we can have 16 distinct Tx sub-arrays and
similarly 16 Rx sub-arrays, each of 1x4 elements, which are arranged in the form of ULA.
The mapping of the 1x4 sub-arrays for Tx and Rx ends can be represented mathematically
as: Let T'z(i, j) represent the (7, j)th element of the 8x8 Tx antenna array, where i denotes
the row index and j denotes the column index. The mapping of the p!" 1x4 Tx sub-array,

denoted as T'Tqun4(p), can be expressed as follows:
Tagna(p) = [Tx(i,j);  (i,7) € Spil, (5.10)

where S, represents the set of indices corresponding to the elements in the p™ 1x4 Tx sub-
array. Similarly, let Rz (i, j) represent the (7, j)th element of the 8x8 Rx antenna array. The

mapping of the ¢ 1x4 Rx sub-array, denoted as Rrqum.4(q), can be expressed as follows:
Raguna(q) = [Rx(i,7);  (i,]) € S, (5.11)

where S, represents the set of indices corresponding to the elements in the ¢** 1x4 Rx sub-
array. Fig. 5.3(b) depicts the mapping of 16 distinct 1x4 sub-arrays for both Tx and Rx. For
instance, sub-array 1 for Tx and Rx constitutes antenna elements with index values 1,9,17,25.
It can be seen that using 1x4 sub-arrays at Tx and Rx can give rise to 16 x 16 = 256 possible
combinations for the Tx and Rx sub-array pair selection. Thus, the use of a particular or

a fixed Tx and Rx sub-array in FD mMIMO can not suppress the strong SI effectively
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Figure 5.3. Antenna mapping. (a) 64 Tx and 64 Rx antennas index. (b) 1x4 Tx and Rx
sub-array mapping. (¢) 1x8 Tx and Rx sub-array mapping.
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and limits the potential of utilizing the spatial DoF provided due to the use of large array
structures in mMIMO. Hence, finding the optimal Tx and Rx sub-array combination can
result in enhanced SI suppression, which can lead to significant performance gains in FD
communications.

To further explore the realm of sub-array configurations, we consider the use of 1x8 Tx
and Rx sub-arrays. The mapping of the p* 1x8 Tx sub-array, denoted as Tz4;5(p), can be

expressed as follows:
Tasus(p) = [Tx(i,5);  (i,7) € Syl (5.12)

where S, represents the set of indices corresponding to the elements in the p™ 1x8 Tx

sub-array. Similarly, for the ¢'* 1x8 Rx sub-array, we can write as follows:

Rraws(q) = [Re(i,7); (i,5) € Sl (5.13)

where S,, represents the set of indices corresponding to the elements in the ¢ 1x8
sub-array. Fig. 5.3(c) depicts the mapping for different 1x8 sub-arrays for both Tx and
Rx. For instance, sub-array 1 for Tx and Rx now constitutes antennas with indices
1,9,17,25,33,41,49,57.  The selection of 1x8 Tx and 1x8 Rx sub-array gives rise to
8 x 8 = 64 possible combinations for SAS.

5.3.2.2 Problem Formulation

We aim to address a multi-objective optimization framework that involves two primary
design objectives: 1) minimizing self-interference; and 2) maximizing achievable rate in FD
mMIMO systems. To achieve this, we present a formulation that balances these objectives
within a MOOP framework.

Objective 1 - Minimizing Self-Interference:

We consider minimizing the strong SI caused by simultaneous transmission and reception in
the FD system. We quantify SI by considering the average power of the interference signal
between UL and DL channels. Based on the DL and UL RF beamforming stages, we can
express the total achieved SI for FD mMIMO system as follows:

1 A A2
Agr = —10log, (N > ‘fg(eU)HSI(:7 i,”)fD(eD)‘ ) (5.14)

Lemma 5.1. If Fp and ¥y are the DL and UL beamforming stages, respectively. Then, for
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a given (i,7)" DL-UL pair {0p,, Ou,} in large array structures, the following holds:
FUHSIFD ~ 0. (515)

Proof. See Appendix.

By steering the UL and DL beams to the desirable directions (i.e. 8y = 0y, 0p = 0p),

we can get maximum directivity in DL and UL directions, which can be given as:
@5 (00)E0(0p)|” = Nus, £ (00) @0 (00)* = Nus. (5.16)

For a FD mMIMO system consisting of DL and UL RF beamformers fp and f;, and using

sub-array structures at Tx and Rx of BS, the total achieved SI can be minimized by the

optimization of UL and DL perturbation angles éU, p jointly with finding best

combination of Tx and Rx sub-arrays. Let p and ¢ represents the sub-array index for Tx

and Rx, respectively, then, we can formulate the optimization problem for achieved SI as
follows:

.2

min v)Hsipq(:, 5 1)fp(0p)

{éDﬁU,P»Q} Z ‘ pq ‘

st. Ci: Np—|®5(00)fn(0p)]* <,

Cot Ny — €5 (00)®u(60)]? < .

Cs: prq =1 Vp,
q

Cy: Y ap=1 Vg, (5.17)
P

where C and C refers to the directivity degradation constraints in DL and UL directions,
respectively. In other words, the constraints mean that we limit the degradation of
directivities from the main beam directions p and 6y to a small value . The constraints
C5 and Cy ensure that exactly one Tx sub-array is selected for each Rx sub-array and vice
versa, resulting in a one-to-one mapping between the Tx and Rx sub-arrays. The
optimization problem defined in (5.17) is non-convex and intractable due to the
non-linearity constraints.
Objective 2 - Mazximizing Total Achievable Rate:

The second objective is to maximize the total achievable data rate in FD system. Using
the SINR expressions for both DL and UL (as given in (5.7) and (5.9)), we can write the



5. Enhancing Capacity in Full-Duplex Massive MIMO: Hybrid Beamforming
Approach 98

achievable rate for the DL and UL UE as follows:

Rp = log,(1+ SINRp)
RU = 10g2(1 + SINRU)
Rt = Rp+ Ry, (518)

where Rp and Ry are the achievable rates for DL and UL UE, respectively. Then, the

optimization problem can be expressed as follows:

max Rr(0p, 00, p,q)
{eDzeUzp’q}

Multi-Objective Optimization Problem:
To balance the conflicting objectives of minimizing self-interference and maximizing
achievable rate, we formulate a multi-objective optimization problem. We introduce a
weighting factor, 3, to adjust the trade-off between the objectives. Then, the problem can

be expressed as follows:

N 2
{0 9 }NZ ‘ HSLPQ(? ) )fD(QD)‘ — BRy
D,YU,p,q

In this formulation, the objective combines the minimized SI term with the weighted negative
logarithm of the total achievable rate to balance the objectives. By varying the weighting
factor 3, we can explore different trade-offs between self-interference and achievable rate?.

Remark: This problem formulation is tailored to address the objectives of minimizing
SI and maximizing total achievable rate in an FD communications system. It accounts for
the UL/DL RF beamforming vectors, interference thresholds, and SINR values to guide the
optimization process. The multi-objective optimization approach allows for using mMIMO
spatial DoF to achieve different trade-offs between the objectives.

Our objective in this research work is to consider the practical FD mMIMO
implementation using OTA measured SI channel and to study the capacity gains of FD
mMIMO system over HD transmissions using the data-driven analysis. Therefore, the

proposed solution can help to understand how close the FD systems can achieve in terms of

3Here, our objective is to enhance FD capacity while suppressing SI. Therefore, the optimization of 3 is
beyond the scope of this research work.
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theoretical doubling of the achievable rate by suppressing strong SI based on beamforming

capability of mMIMO systems. Then, the phase response vectors can be written as follows:

¢D(8D) — [1’ efj27rdcos(0D)7 . ,eijﬂ'd(Ndel)cos(GD)]T c CMdsX:L’ (521)

¢U(0U) _ [1’6j27rdcos(9U)’ . ’ejQWd(Mus—l)cos(GU)]T c CNusxl‘ (522)

5.3.3 Hybrid Beamforming With SAS

In this section, our objectives are to suppress strong SI and maximize the total achievable
rate solely by utilizing the spatial DoF of the large array structures, which can avoid the
use of costly analog SI-cancellation circuits. In particular, we use a swarm intelligence-based
algorithmic solution and present the HBF design based on beam perturbations jointly with
SAS approach, where the Tx and Rx sub-arrays are selected jointly with perturbed UL and
DL RF beam angles to minimize MOOP (as given in (5.20)) while satisfying the directivity

degradation constraints in the respective directions.

5.3.3.1 RF Stages Design

In the rest of this section, we discuss the proposed HBF with following two schemes: 1)
Maximum-directivity RF beamformer (MBF); and 2) Perturbed RF beamformer with SAS
(PBF).

5.3.3.1.1 MBF RF Stages Design In this scheme, our aim is to suppress the strong
SI and maximize Ry via designing the DL RF stage fp, which steers the beam at DL user
jointly with the design of UL RF stage fyy for UL user. The objective here is to generate
the maximum-directivity beams, which are steered at the desired DL and UL user, which
are located at fp and 0y, respectively. In particular, we use the measured SI channel Hgy,
which consists of LoS path components. Then, the effective reduced-size SI channel matrix

as seen from the BB-stages can be written as follows:
Har(:,:n) = £ Hg(c, 1, n)fp. (5.23)

Based on the orthogonality principle, we can generate Ngs(N,s) maximum-directivity DL
(UL) beams. Here, the design of DL and UL MBF RF stages, which satisfies the maximum-
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directivity property, can be given as follows [117]:

f%[BF(QD) _ 1\1/[ [1’ ej27rdcos(6p)’ . ’ejQWd(Nds—l)COS(eD)]T (524)
ds
f}}dBF(eU> _ ]1[ [1’ e_jQWdCOS(GU)7 e e—j2ﬂ'd(Nus—1)C05(9U)]T' (525)

The use of SC architecture for beamforming simplifies the design of f¥P" and B as

it requires only log,(Nys) and log,(N,s) PSs at Tx and Rx, respectively when compared
to logy(Np) and log,(Ny) PSs when using FC antenna array. The MBF RF stages are
formulated using the DL/UL angle pair while satisfying CM constraints.

5.3.3.1.2 PBF RF Beamformer With SAS Design The simulation results in [117]
show that HBF based on PBF RF beamformer stages can achieve better SI suppression
than MBF RF stages, where the latter is formulated using the orthogonal angle pairs. In
this proposed HBF scheme using PBF RF stages, our motivation is to suppress the strong
SI while maximizing the total achievable rate for a FD mMIMO system using a measured
SI channel (i.e., real-time implementation). Particularly, we introduce beam perturbations
jointly with Tx-Rx SAS to design the RF beamforming stages.

Remark 1: The maximum-directivity constraint limits the number of UL and DL beam
pairs that can be supported in a given system, which can become a bottleneck in scenarios
of high user density. As the number of UL and DL users increases, the available
orthogonal /non-overlapping resources may be exhausted, leading to reduced system
capacity and throughput.

Remark 2: Compared to the PBF scheme in [117], which introduces phase-range
constraint scheme, the proposed directivity-loss constraint PBF scheme allows a more
freedom to perturb the maximum-directivity beams while keeping the directivity loss to a
small value. Moreover, the proposed PBF scheme in [117] is limited by the quantized angle
pairs, where the users’ AoD and AoA have to be quantized, and then the DL and UL
beams are steered within the boundary of the quantized angles. Thus, for a small number
of antennas, the quantization process can introduce large errors, which can result in
reduced directivity gain. On the other hand, the quantization error can be low for large
number of antennas, however, the perturbed beams can only be steered within tight
boundaries, so the beamforming-based SI suppression might be limited.

Remark 3: The use of SC Tx and Rx structures enable the creation of a reduced-size SI
channel matrix based on the chosen Tx and Rx sub-array configuration. This reduced-size
matrix captures the SI channel characteristics specific to the selected antennas. By

leveraging the spatial properties of the sub-arrays, the SI channel exhibits improved
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isolation and reduced coupling, leading to a lower level of SI. By choosing the best subset
of antennas, we can increase the spatial separation between the desired signal and the
interfering signals, thereby augmenting the system’s capability to support multiple
independent spatial channels simultaneously. This increased spatial DoF translates into
higher capacity, improved system performance, and efficient management of interference in
FD mMIMO systems.

As a continuation to the SI suppression scheme in [117], we propose to explore the HBF
with PBF RF beamformers jointly with SAS to minimize SI and maximize capacity.
Instead of using the quantized angle pairs, we allow the DL and UL beams to be slightly
steered away from the AoD and AoA angles to minimize the SI power while maintaining
possible degradation in directivity within affordable constraints. In particular, the
proposed PBF with SAS approach optimize the UL and DL RF beamformers via new
perturbed angles as well as selects the best Tx-Rx sub-array pair for enhanced SI
suppression in FD mMIMO systems. For a given maximum-directivity angle pair {p, 0y},
we introduce a perturbation to make them steered at perturbed angle pair to suppress SI
(i.e., the UL and DL RF beamformers steer the non-maximum-directivity beams at
{0p,00}).

We propose a swarm intelligence inspired particle swarm optimization (PSO)-based
perturbation scheme to solve the challenging non-convex optimization problem (as given in
(5.20)), which can find the optimal DL and UL beam directions 0p, 8y jointly with Tx and
Rx best sub-array pair {p,q} to minimize SI and maximize total achievable rate while
satisfying the corresponding directivity degradation and SAS constraints C; — Cy. The
algorithm starts with a swarm of Z particles, each with its own position, velocity, and
fitness value, which are randomly placed in optimization search space of perturbation
coefficients. During a total of T iterations, the particle z communicates with each other,
and move for the exploration of the optimization space to find the optimal solution. Let
h t* iteration, which consists of

X® be the perturbation vector of z*" particle during

optimization variables, and can be given as follows:

A A

th) = [ D> U>pzaqz]7 (526)

where 2 =1,...,Zand t = 0,1,...,T. For each 2" particle, by substituting (5.26) in (5.24)
and (5.25), the DL and UL PBF RF beamformers fp(X{®) and f; /(X)) can be obtained
as function of perturbation angles 9% and éf], respectively. By using (5.42), MOOP can be
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written as:

30 £ X0 (X (X1~ BRa(X) (5.27)

Based on the sub-array mapping as discussed in Section 5.3.2.1, each z* particle finds
the best Tx-Rx sub-array indices p*,¢®, and uses the corresponding measured SI channel
HSI(X ) instead of using the complete measured SI channel Hgy arp,, which greatly reduces
SI. Then, the personal best for the z* particle and the current global best among all particles

at the ' iteration, are respectively found as follows:

2
X", = argmin Z £ (X)) Hg (XO)Ep(XD)|” = SR (X)) (5.28)
xg*>,w*zo,1,...,
. 2
ngst = arg min AT Z ’fT best 2 HSI (Xbest z)fD (Xbest z) - ﬁRT( best z) (529)

x(®

best,z’vz:()’l’m’z
The convergence of the proposed joint PBF scheme with SAS for enhanced SI suppression
depends on the velocity vector v, for both personal best Xpeq . and global best Xpegt

solutions, which is defined as follows:

V,(thrl) = Ql(Xl()te)st - Xg)) + 92(Xl()te)st z X,(zt)) + Qi(‘]t)v,gt)7 (530>

tth

where v{) is the velocity of the z** particle at the iteration, €21,€2 are the random

diagonal matrices with the uniformly distributed entries over [0, 2] and represent the social

relations among the particles, and the tendency of a given particle for moving towards its

T-1
T

matrix, which finds the balance between exploration and exploitation for optimal solution
tth

personal best, respectively. Here, €23 = ( ) 1(2 Narp+2Nnry ) is the diagonal inertia weight
D U

in search space. By using (6.19), the position of each particle during ¢ iteration is updated

as:
th—i_l) = clip (th) + VgH_l), XLow, XUpp) ) (531)

where Xi,ow € R(QN rEp+2NREy ) and Xyp, € ]R(QN RFp+2NREy ) are the lower-bound and upper-
bound vectors for the perturbation coefficients, respectively, and are constructed according
to the earlier defined boundaries of each perturbation coefficient given in '} — Cy. Here, we
define clip(z, a, b) = min(max(z, a), b) as the clipping function to avoid exceeding the bounds.
Furthermore, different from the sub-optimal approach, we here consider each perturbation

coefficient as a continuous variable inside its boundary. Then, we can design the PBF RF
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Algorithm 5.1 Proposed Swarm Intelligence-based PBF RF Stages With SAS
I: Input Za?u ]AVdS7 N’LLS7 HSI: (9D7¢D>) (0U7¢U)‘
2: Output: 0p,0y.
3: fort=0:T do
4: for z=1:7do

5: if t =0 then

6: Initialize the velocity as v(?) = 0.

7: Initialize X uniformly distributed in [Xrow, Xupp)-
8: else

9: Update the velocity v via (5.30).
10: Update the perturbation X via (5.31).
11: end if
12: Find the personal best Xt(fe)sw via (5.28).
13: end for

14: Find the global best X,(Dte)St as in (5.29).
15: Design RF stages fp, fiy via (5.32), (5.33).
16: end for

stages with SAS as follows:

N . 5 : (p) )
flP)BF(eDm) _ 1( 1, 6]27rdcos(9p)7 .. 76127rd(Ndf —l)COS(GD)]T (5.32)
N
A —j2mrdcos(0 —92m (a) _ cos(f
5 Brvq) = s (Lm0, N et (533

us

The design of proposed swarm intelligence-based PBF RF stages utilizing beam perturbations

jointly with SAS is summarized in Algorithm 5.1.

5.3.3.2 BB Stages Design

After designing the RF beamformers fp and f;, the BB precoder stages Bp and By only
employ the reduced-size effective downlink channel matrix Hp = Hpfp € CEP*Nrrp and
uplink channel matrix Hy = fyHy € CVero*Ev | respectively. Therefore, it remarkably
reduces the channel estimation overhead size in the FD mMIMO systems with large antenna
arrays. Considering that the number of RF chains in the proposed FD SC-HBF scheme is
significantly smaller than the number of antennas (i.e., Ngp, < Nys and Ngp, < Nys),
the utilization of effective DL /UL channel matrices reduces the total CSI overhead size from
Ngs x Kp + Nys X Ky to Ngp, X Kp + Ngrp,, X Ky. It is important to highlight that the
instantaneous SI channel matrix Hg; is not required in the proposed BB precoder/combiner

design. We here develop BB precoder/combiner via applying regularized zero-forcing (RZF).
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Here, the primary objective is maximizing the intended DL and UL signal power while
suppressing the TUI power. According to the well-known RZF technique, we first define the
BB DL stage as follows:

Bp = yp X' HE € CNrrp > KD (5.34)

where vp = \/PD/ tr (’HDXEfngXBl?-Lg) is the normalization scalar satisfying the
maximum DL transmit power constraint of Pp. According to the RZF technique, we here
define Xp = HEHp + PDo./iiKDINRFD € CNrrp*NrFp which aims to eliminate IUI by taking
noise power o2 into account for the regularization. Similarly, the UL BB stage By is also
designed as:

By = H{ X' € CRvxNrry (5.35)

where Xy = ’HU’H{}’ + %INRFU € CNrryXNrry gccording to the RZF technique.

5.4 Non Constant-Modulus RF Beamforming Design

In this section, we propose a novel SI suppression scheme in FD mMIMO systems using
a URA SC-HBF architecture. Particularly, the proposed non-constant modulus RF
beamforming-based SI suppression (NCM-BF-SIS) scheme optimizes the uplink and
downlink beam directions jointly with Tx/Rx variable gain controllers while adhering to
the directivity degradation constraints. Our objectives here are twofold: first, to show that
the beam perturbation combined with tuned Tx/Rx gain controllers in RF beamformers
design can significantly improve SI suppression and can bring the SI level close to the noise
floor; and second, to show that the use of URA SC-HBF architecture can provide better
performance than ULA SC-HBF.

5.4.1 System Model

We consider a single-cell FD mMIMO system for joint uplink and downlink transmission
as shown in Fig. 5.4. The BS operates in FD mode to simultaneously serve Kp (Kp)
downlink (uplink) single-antenna UEs over the same frequency band, while the UEs operate
in HD mode due to the hardware/software constraints on UEs (e.g., low power consumption,
limited signal processing and active/passive SI suppression capability). The BS is equipped
with Tx and Rx URAs. Specifically, the Tx (Rx) URA has Np = N& x N¥ (N, =
N % N¥) antennas, where N&(N) and N (N¥) denote the numbers of Tx (Rx)

antennas along x-axis and y-axis, respectively.
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Figure 5.4. FD mMIMO system using NCM SC-HBF architecture.

For the proposed FD mMIMO system, we consider the downlink signal processed through
BB stage Bp € CNerp Kb and RF beamformer Fp € CNo*Nerp wwhere Ny, is the number
of RF chains such that Kp < Ngp,, < Np. Similarly, the received uplink signal at BS is
processed through RF combiner Fy; € CVeru*Nv and BB combiner By € CEv*Nrry by
utilizing Ky < Ngp,, < Ny RF chains. Here, the RF beamforming stages (i.e., Fiy and Fp)
are built using low-cost PSs and variable gain controllers. The downlink channel matrix is
denoted as Hp € CE2*No with hpy € CMP as the k™ DL UE channel vector. Similarly,
Hy € CNv*Ev g the uplink channel matrix with hy;, € CM as the k™ uplink UE channel
vector. Due to the FD transmission, the SI channel matrix Hg; € CNv*Np is present between
Tx and Rx antennas at the BS. Then, the transmitted signal vector at the BS is defined as
sp = FpBpdp € CNo| where dp = [dp1,--- ,dpx,]" € CKP is the downlink data signal
vector such that E{dpdZ} = Ix,. The transmitted signal vector satisfies the maximum
downlink transmit power constraint, which is E{||sp||*} = tr(FpBpBEFE) < Pp, where
Pp is the total downlink transmit power. Then, the received downlink signal vector is given
as follows:

rp =HpFpBpdp+ Hydy + np, (5.36)

—_— —— ~—

Desired Signal ~ TUI by uplink UE  Noise
where Hyy € CF2*EU js the inter-user interference (IUT) between the downlink and uplink
UE, and np = [npy, - ,nps,] ~ CN(0,02Ik,) is the complex circularly symmetric

Gaussian noise vector. Here, we define Py as the transmit power of each uplink UE. Similar
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to the downlink data signal vector, the uplink received signal at BS can be written as:

ry = BUFUHUdU + BUFUHSIFDBDdD + ny , (537)

Desired Signal SI Modiafi/Noise
where dy = [dy1,- -+ ,du,]" € CX is the uplink data signal vector such that E {dUdg} =
Ik, and ny = ByFywy, where ny = [ng1,- - ,nU,KU}T ~ CN (0,021, ) is the complex

circularly symmetric Gaussian noise vector. The desirable downlink (uplink) beam direction
has elevation and azimuth angles ¢p(¢y) and 0p(0y), respectively. We define the phase-

response vector as:

@(9’ ¢’ N(m)’ N(y)) — [17 ej27rdsin(9) cos(d))’ o 7€j27rd(N(z)71) sin(0) cos(¢)}T

T (5.38)
® [17 pi2mdsin(0) sin(d))’ . 7ej27r(N<yL1)sin(9) sin(d))} :

where 6 (¢) represents the azimuth (elevation) angle, N® (N®) denote the number of
antennas along the z (y)-axis, d, is the antenna spacing, and ® is the Kronecker product.

Based on the number of antenna elements in both Tx and Rx sub-arrays, the

corresponding SI channels can be represented as HfgSIUb) € CNusxNasx1601 = where,
Nys(Nys) = %(%) represents the number of Tx (Rx) antenna elements in mi*(mi")

sub-array for mg = 1,--+ , Mp(m, = 1,--- ,My). As per 3GPP specification, the uplink
and downlink channel bandwidth can vary from 5 MHz to 100 MHz [127], then the
corresponding SI channel for the given BW can be written as: Hgsfu%) = Hfgslu b)(:, Ln) €
C>xn where i = {Nys, Nus}, B is the given bandwidth, and n = 1,2,..., N is the sample
frequency point selected from a total of N frequency points for a given bandwidth. For
instance, the 20 MHz band constitutes n = 1,2, ..., 33 points for the frequency range from
3.49 GHz to 3.51 GHz. Similarly, for the band of 100 MHz, n = 1,2,...,161 points in the
frequency range from 3.45 GHz to 3.55 GHz are considered.

5.4.2 URA SC-HBF Architecture and Problem Formulation for
SI Suppression

5.4.2.1 URA SC-HBF Architecture

We consider a URA SC-HBF architecture, where the Tx (Rx) URA is divided into
Mp(Myy) different sub-arrays in the form of URA. Hence, compared to Np X Ngg, PSs for
Tx (Ny X Ngr, PSs for Rx), only Ngs X Ngp,(Nyus X Ngr, ) PSs are required as each Tx
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(Rx) RF chain is connected to {%J Q%J) Tx (Rx) antennas, where [.] represents the
largest integer less than or equal to a real number. Then, the downlink and uplink phase

response vectors are given as:

®p(0p, ¢p, N, N) = ®(0p, 6, N, NY),

5.39
@ (0, pv, N, NV = & (0, oy, N, NV, (539)

where ®p(®y) is the Tx(Rx) phase response vector as given in (5.38). By controlling the
phase of the signals transmitted or received by the array elements, we can effectively steer
the beam in the desired uplink/downlink UE direction, and maximize the radiated energy
while minimizing interference from other directions. We consider the MU scenario using a
single uplink and a single downlink UE (i.e., Kp = Np = 1, Ky = Ny = 1)%. Moreover,
the Tx (Rx) RF beamformer constitutes gain controllers, which scales the amplitudes of
the signals transmitted (received) from the antennas as shown in Fig. 5.4. Then, the RF

beamformer fp, for the single downlink UE can be written as:

1 z
fp = ————®(0p, ép, NiT, Ny ) © Gp € CVoex, (5.40)
N(x)N(y)
ds ds
where Gp = [g@, e ,95\257 g§ ), ceey g](\‘}’; ]T is the vector containing the gain values for Tx
URA with gz-(w) (gj(-y)) representing the gain value of i*#(j'") antenna for i =1, - - ,Ncgf) (j =
1,---, N gg)). Similarly, the uplink RF beamformer f;; can be expressed as follows:
1 x) 1X N,
fiy = ————®y (0, 6v, N, NIV) © Gy € TN, (5.41)
DNy
where Gy = [g?), - g](\:fj , gg ), ce g](\?) | is the vector containing the gain values for Rx URA

us

with gé“”) (g(gy)) is the gain value of p™(¢**) antenna for p=1,--- , N® (q =1,--- ,N(y)).

5.4.2.2 Problem Formulation

Based on the downlink and uplink RF beamforming stages, we can write the total

achieved SI as:
ASI:—1010g10< Z‘fTH(S“b Lon fD‘> (5.42)

4Here, we consider a simple scenario with a single uplink and downlink UE to investigate the SI
suppression in FD mMIMO systems. However, the proposed scheme can be applied to multiple uplink
and multiple downlink UEs, which is left as our future work.
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By steering the uplink and downlink beams to the desirable directions (i.e. éU =0y, 0 p = 0p,

éU = ¢y, qg p = ¢p), the Tx and Rx directivities reach their maxima as follows:

’¢£(9D>¢D, N§§)>Nég))fD(eDa¢D>Nc(l§)? Nd(g))P = Ndsa
|f5<0U7 ¢U’ N(x) N(:Z))(pU<9Ua ¢U’ N(x) N(z))|2 = Nus.

us ' us 14tV

(5.43)

For a FD mMIMO system consisting of RF beamformers f, and f; with variable gain
controllers, and using URA SC-HBF architecture at Tx and Rx of BS, the SI can be
minimized by finding the uplink and downlink perturbation angles {(8y,0p), (b, dp)}
jointly with Tx/Rx variable gain controller coefficient optimization. —Then, we can

formulate the joint optimization problem for SI suppression as:

) 1 ~ A su ~ A 2
_ in *Z‘fr:;(QSU,@U,GU)HSgIb)(%1>n)fD(¢D>9D,GD)‘
{9D79U7¢D7¢U} N n
91,7, 9M
g1, 9My s

s.t. C1 2 Ngg — |®5(0p, ép, Nas)tp(6p,0p, Gp, Nas)|* < n,
Ca: Nys — |f5(¢A5U,'§U, GU,Nus)‘I’U(QU>¢U>Nus)|2 <1,
Cy: 6p,ou,0p,0y € [0, 27],
Ciogi,oo 9N, €101,
Cs: g1, 5 9n,. €10,1], (5.44)

where C; and Cj refer to the directivity degradation constraints in downlink and uplink
UE directions, respectively, i.e., to limit the directivity degradation from the main beam
directions {(0y,0p), (¢, ¢p)} to a small value n. The constraint C5 limits the perturbed
angles range between 0 and 27, whereas the constraints C; and Cj confine the Tx and Rx
variable gains within the continuous range from 0 to 1. The optimization problem defined

in (5.44) is non-convex and intractable due to the non-linearity constraints.

5.4.3 Proposed Non-constant Modulus RF Beamforming-Based

SI Suppression Scheme

We propose a particle swarm optimization (PSO)-based SI minimization scheme, which
optimizes the Tx and Rx variable gain controllers coefficients jointly with the optimal
uplink and downlink beam directions 6p, f; while satisfying the constraints of directivity
degradation (Cy and C3), uplink and downlink perturbed beam search space (C3), and

Tx/Rx gain controller values (Cy and C5). The algorithm starts with a swarm of total P
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particles, each with its own position, velocity, and fitness value, which are randomly placed
in optimization search space of perturbation coefficients. During a total of T iterations, the
particle p communicates with others, and move for the exploration of the optimization

space to find the optimal solution. We define the perturbation vector X{*) as:

th) - I:QZD7 ZU? ¢ZD7 éé?gf7 e 79%(1579?7 e 797\[113]7 (545)

where z =1,...,Zand t =0,1,...,T. For each 2" particle, by substituting (5.45) in (5.40)
and (5.41), the downlink and uplink RF beamformers f5(X®) and f;;(X®) can be obtained
as function of perturbation angles (Aj“'j, @ZD) and (A(Z], &5), and gain controller coefficients
(95, ,9%,., 9%, » 9%,.) respectively. By using (5.42), we can write the total achieved SI

suppression as follows:
]' SUl 2
Ast(X) = ~101ogy, (5 3087 (X G 5.5, m) (X)), (5.46)

At the t'" iteration, the individual best for the z* particle as well as the current best among

all particles within the swarm are respectively found as follows:

Xé)tgst 2 = arg min ASI (X,(zt*))y (547)

XU =01, t

Xy = argmin  Ast(XpL,.). (5.48)

X\ V=017
The convergence of the proposed PSO-based joint optimization scheme for enhanced SI
suppression depends on the velocity vector w, for both personal best Xy, and global best

Xpest Solutions, which is defined as:

z )

wi D = (X {0, - X0) + (X, . — XO) + Qf wl (5.49)

where w(®) is the velocity of the 2z particle at the #** iteration, £1,Q, are the random
diagonal matrices with the uniformly distributed entries over [0, 2], and represent the inter-

particle relationships and the tendency of each particle to move toward its personal best,
T—1

T) I(QNRFD+2NRFU)7
weight matrix, which helps find the balance between exploration and exploitation for optimal

respectively. Additionally, we introduce Q3 = ( a diagonal inertia

solution in search space. By using (6.19), the position of each particle is updated as:

th+1) = clip (th) + Wgt+1),XLow7 XUpp) . (5.50)
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Algorithm 5.2 Proposed NCM-BF-SIS Algorithm

1: Input: Z, T, HS”, (0p, ¢p), (0v, ¢v).

2: OUtpLIt 0D79U7¢D7¢U7917“ y M55 915" s GMys-
3: fort=0:7T do

4: for z=1:7 do

5: if t =0 then

6: Initialize the velocity as w(® = 0.

7: Initialize X uniformly distributed in [Xrow, Xupp)-
8: else

9: Update the velocity w®) via (5.49).

10: Update the vector X via (5.50).

11: end if

12: Find the personal best X! ?Destn via (5.47).
13: end for

14: Find the global best X,(Dte)St as in (5.48).

15: end for

Here, we have Xy, € ]R(QNRF p+2Nery ) and Xiow € R<2NRF pT2NrE U), which represent the
upper and lower boundaries for the perturbation coefficients, respectively and they are
determined based on the predefined limits for each perturbation coefficient specified in
C1-Cs. To ensure that the coefficients stay within these boundaries, we employ the clipping
function, defined as clip(y, 4, j) = min(max(y, ), j). Also, unlike sub-optimal approach, we
here consider each perturbation coefficient as a continuous variable inside its boundary.
The proposed joint optimization scheme for enhanced SI suppression using PSO is

summarized in Algorithm 5.2.

5.5 Illustrative Results and Discussions

In this section, we present the Monte Carlo simulation results to illustrate the
performance of the proposed HBF with NOBF RF beamformers and SAS scheme in FD
mMIMO systems. In particular, we consider the measured SI channel in an anechoic
chamber to provide realistic SI suppression capability and capacity gain of a practical FD
mMIMO system over HD mMIMO system. We consider Np = Ny = 1 RF chain to serve a
single UL and DL UE with 1x4 and 1x8 sub-array configurations for the results presented
hereafter. It is important to mention that the proposed HBF scheme requires only 1 RF
chain as compared to FDBF, which need 4 or 8 RF chains to support single UL and single
DL UE. Thus, the proposed HBF scheme significantly reduces the number of RF chains,

especially when the number of served users increases. For PSO, we use the following



5. Enhancing Capacity in Full-Duplex Massive MIMO: Hybrid Beamforming
Approach 111

)
a

-39.07 | -41.09 | -56.67 | -55.04 | -45.41 | -39.53 165 B0 -15.85 | -19.08

=3
5

-74.12 -753 | -66.74

ik} 68.61 -72.96 -69.69 -74.64 3

@
&

-38.74 | -39.91 | -53.7 | 5471 | 47.48 | -39.54 135 RN 14.98

—~ 3 3
< L S
Z g 2
R 7545 73 ECEYRNE RN YN | |55 = 105 -53.77 | 55.15 06 5737 | 5413 | | 155 £ 105 -17.85 | -1.253 | -11.52 | -188 | -17.92
a A a
5} 5] 60 [
60 = =
Rl 751 7289 -76.98 -75.96 -73.19 = 75| -5481 | 5871 56.85 [ Lol -55.29 Z s 1417 | 14.33 -9.231 | -17.9
E 65 = -65 é
PP 7247  69.09 7521 | 69.58  -75.29 2 45| 5317 !60-87‘ -59.57 -51.86 | -52.35 Z 45| -193 | -8.225 | -15.39 | -11.01 | -17.72
a 70 R~ 70 A
69.08 -73.16  -70.88 a5 15| -40.38 | 42.79 | 59.05 | -56.91 | -45.87 | -40.7 75 15 9 9.337 | -12.18 9 -30.18
15 45 75 105 135 165 15 45 75 105 135 165 15 45 75 105 135 165
Uplink UE Direction (0;) Upllink UE Direction (0;) Uplink UE Direction (6;)
(a) (b) (c)

Figure 5.5. Achieved SI suppression using 1x4 sub-array with 20 MHz BW. (a) Proposed

PBF with SAS. (b) MBF. (c) SI suppression gain
values: Z =20, =y =2, and Q3 = 1.1.

5.5.1 Self-Interference Suppression

In this subsection, we first present the results of achieved SI using the proposed HBF
scheme for NOBF RF beamformers with SAS, and compare it to HBF scheme with OBF
RF beamformer. In Fig. 5.5, we consider six different angular UE locations (i.e., {#p,0y} €
{15° : 30° : 180°}) and generate the results using 1x4 sub-arrays for Tx and Rx antenna
elements with a maximum directivity degradation ¢ =1 dB and a bandwidth of 20 MHz. In
MBF scheme, the beams generated by the UL and DL RF beamformers are steered at exact
UE locations (i.e., both fp(0p) and fi;(6y) steer the beams at 0p and 6y, respectively). It
can be seen that the design of RF beamformers f5,(0p) and fy(0y) using MBF can achieve
SI suppression ranging from -38.74 dB to -75.05 dB for different UL/DL UE angle pairs. On
the other hand, the proposed PBF scheme with SAS can achieve SI suppression ranging from
-61.59 dB to -77.57 dB. This shows that the design of RF beamformers £ (0p), £ (Ay) using
the proposed PBF RF beamformers with SAS can provide an additional SI suppression gain
of 19 dB on average when compared to MBF, and can further reduce SI by a maximum of
33.04 dB (e.g., for Op = 135°,6y = 45°, SI suppression improves from -39.91 dB to -72.96
dB). In other words, by introducing beam perturbation in both UL and DL directions and
the selection of the best Tx-Rx sub-array pair can improve SI suppression capability by more
than 82% using the proposed PBF with SAS HBF scheme.

The use of a larger sub-array at Tx and Rx can generate narrower beams and can serve
large number of users. In Fig. 5.6, we compare the achieved SI suppression results using 1x8

sub-array for six different UL and DL UE angular locations and compare the performance
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Figure 5.6. Achieved SI suppression using 1x8 sub-array with 20 MHz BW. (a) Proposed
PBF with SAS. (b) MBF. (c) SI suppression gain.

of HBF scheme with PBF and SAS versus HBF scheme with MBF RF beamformers. It
is noteworthy to mention that, even though using a larger array structure can narrow the
mainbeam width, however, due to the orthogonality, there is still a limitation on the number
of orthogonal UL/DL beams that can be generated with such large array structures. As a
result, using MBF restricts the maximum number of UL and DL users that can be served
simultaneously in FD mMIMO systems. The proposed HBF with PBF RF beamformers and
SAS can achieve SI suppression ranging between -51.93 dB and -77.45 dB, where the achieved
SI suppression for MBF RF beamformers varies between -37.35 dB to -69.05 dB. Thus, the
proposed HBF scheme with PBF RF stages and SAS can provide an additional SI suppression
gain of around 15.43 dB (on average) with a maximum SI suppression improvement of around

-31.11 dB, which represents an enhanced SI suppression capability of 78.69%.

5.5.2 FD-to-HD Achievable Rate Ratio

In this subsection, we compare the achievable rate of FD mMIMO system versus the HD
mMIMO system for UL and DL transmission. In particular, the UL and DL transmissions
are operated separately in the case of HD communications, where the received DL signal
given in (5.6) does not include TUI by UL UE. Similarly, the received UL signal given in
(5.8) does not experience the strong SI. As a benchmark scheme, we consider the angular-
based HBF technique in [90], which considers the DL transmission via applying OBF at
the RF-stage and RZF at the BB-stage. Similarly, for the UL transmission, we develop
the angular-based HC technique using [90] to compare both HD UL and DL rate with FD

rate of the proposed HBF scheme. Since the HD DL and UL transmissions are carried out
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over either different time-slots or different frequency bands, therefore, the DL, UL and total
1
7RU7

2
and Rrotal, ip = Rpup + Rump respectively. To better compare the achievable rate of FD

achievable rate in the HD transmission are normalized as: Rpup = %RD, Rywup =

and HD transmission, we use the FD-to-HD rate ratio, which is defined as Ratiop = gg’;g,

. R . R
Ratioy = Rz(j’:;’ and Ratior = %, where Rp pp, Ryrp and Rppp are the DL, UL and

total achievable rates in FD communications and can be calculated using (5.18). In Fig. 5.7,
we compare the DL, UL and total FD-to-HD rate ratio versus BS transmit power Pp and
UL UE transmit power Py using the measured SI channel. Given the maximum BS transmit
power as 44 dBm at sub-6 GHz band [128], the BS transmit power range is considered as
Pp € [0,40] dBm. For simplicity, we consider the same range for the UL UE transmit power
(i.e., Py € [0,40] dBm) though BS and UE have different hardware constraints. Here, we
depict the results for the proposed HBF scheme using OBF RF beamformers to compare the
FD-to-HD performance at different BS and UE power levels and to provide understanding
of how different power levels can impact the FD achievable rate at a fixed angular location
(i.e., Op = 135°, 0y = 15°).

In Fig. 5.7(a), the total rate ratio is analyzed, which shows that FD transmission can
double the capacity with respect to the conventional HD transmission at low power levels of
BS and UL UE. Though the FD-to-HD total rate ratio (Ratior) decays for very high UL UE
transmit power, the proposed HBF scheme can still provide higher capacity (> Rrup) even
for the extreme case of very high UL UE power (i.e., at Py = 40 dBm, Ratior > 1.0). As
shown in Fig. 5.7(b), the DL rate ratio improves when Pp increases and only drops below the
unity ratio for Py > 35 dBm and low Pp values (i.e., for Pp € [0,10] dBm, Ratior € [0.8,1].
This means HD transmissions can provide higher capacity than FD communications in such

cases), where the large UL power boosts the IUI power in comparison to the low DL intended



5. Enhancing Capacity in Full-Duplex Massive MIMO: Hybrid Beamforming
Approach 114

>
&
]
&

165 | 1.744 1.952 1.925 1.911 1.924 1.858 18 1.851 1915 1.937 1.902 1.875 1.738 18

@
&

1.879 1.915 1.917 1.89 1.675 1.896

I
&

135 | 1.943 1.917 1.908 1.884 1.821 1.913

i)

5
&

1.919 1.907 1.866 |EUEGI VAN 1.902 1912

S
&

105 | 1.821 1.866 1874 1.787 1.914 1.809

~
I
~
el

75| 1.935 1924 1.873 1.889 1.894 1.897 08 1.887 (LA 0.8785 1.87 1.877 1.923 08

Downlink UE Direction {0p)
Downlink UE Direction {(5)

Downlink UE Direction

5
&
®
®

45| 1.949 169 1.893 1.887 1.922 1.945 1575 1.882 1.866 1.908 1918 45

1866 | 1909 | 1.862 182 | 1634 02 15

@
o
)

15| 1.751 1.952 1.942 1.937 1.921 1.755 02

15 45 75 105 135 165 15 45 75 105 135 165
Upllink UE Direction () Upllink UE Direction (f;) Upllink UE Direction {(f;; )

(a) (b) (c)

Figure 5.8. FD-to-HD total rate ratio at different UL/DL UE angular locations with
1 x 8 sub-array at 20 MHz. (a) PBF with SAS. (b) PBF. (c) MBF.

signal power (please see (5.6)). Similarly, the UL rate ratio as depicted in Fig. 5.7(c) shows
that the increased SI power due to the high BS transmit power negatively affect the UL
transmission. For instance, at Py = 30 dBm, the FD-to-HD uplink rate ratio (Ratioy) is
exactly 2.00 and 1.12 for Pp = 0 dBm and Pp = 40 dBm, respectively.

Fig. 5.8 depicts the FD-to-HD total rate ratio (Ratior) for a fixed BS and UL UE transmit
power (i.e., Pp = 30 dBm and Py = 20 dBm)°. Here, we consider six different angular
locations for the DL and UL UE (i.e., {#28% 0AM) € {15° : 30° : 180°}) and compares
Ratior using 1x8 sub-arrays with 20 MHz BW and maximum directivity degradation e =1
dB for the following three cases: 1) Proposed HBF with PBF RF beamformers with SAS
(MOOP); 2) Proposed HBF with PBF RF beamformers (SOOP)%; and 3) Proposed HBF
with MBF RF beamformers. Fig. 5.8 shows that HBF with MBF scheme results in poor
FD-to-HD rate ratio when both UL and DL UE have same angular locations (on average
the total rate ratio is around 0.74). By using the HBF with PBF RF stages (SOOP) can
significantly increase the rate ratio at most angular locations, however, due to SI channel
characteristics and the use of a fixed Tx-Rx sub-array pair, we can see that SOOP can
still result in low FD total rate at few angular locations (e.g., {0p,0y} = {75°,105°}, and
HD transmissions can provide better total rate than FD communications at these angular
locations). Moreover, the use of a larger sub-array can still suffer from low FD-to-HD total

ratio at certain angular locations, and the number of such angle pairs with low FD-to-HD

5From Fig. 5.7, we can see that high values of BS and UL UE transmit power can significantly reduce
Ratior for MBF scheme. Our motivation is to show that using the proposed HBF with PBF with SAS
scheme, we can enhance the total rate in FD communications even for the extreme case of very high power
UL UE values, thus achieving Ratior close to 2.

In this approach, we design PBF RF beamformers for single objective optimization problem (i.e., to
minimizing SI). We consider fixed Tx-Rx sub-arrays (without SAS) and find the optimal beam perturbations
only.
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Figure 5.9. FD-to-HD total rate ratio improvement with 1 x 8 sub-array at 20 MHz. (a)
PBF with SAS. (b) PBF.

rate ratio can increase for even larger array structures. This issue can be resolved by using
HBF with PBF RF beamformer jointly with SAS, which can provide spatial DoF to improve
FD rate at all UL/DL UE angular locations. In Fig. 5.8(a), we can see the mean total
FD-to-HD rate ratio is around 1.88 {#3F, 04} and 1.79 {63 9SAMEY which represents
an increase of around 11.6% and 142.3%, respectively when compared to MBF total rate
ratio.

Fig. 5.9 plots the FD-to-HD total rate ratio improvement using 1x8 sub-array. Fig.
5.9(b) shows the percentage gain in FD-to-HD total rate ratio for the proposed HBF with
PBF RF stages (SOOP) over MBF. We define the percentage improvement in FD-to-HD
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Figure 5.10. FD-to-HD total rate ratio versus angular separation with 1 x 4 sub-array at
20 MHz. (a) PBF with SAS. (b) MBF.

total rate ratio as follows:

Ratior s — Ratioypr

Ratio Gain(%) = < ) x 100, (5.51)

RatioMBF
where s = {PBF (SOOP),PBF with SAS (MOOP)}. We can see from Fig. 5.9 that
compared to the mean gains of 6.57% for {93 54} and 87.8% for {93 MME 9PAMEY with
SOOP, MOOP can provide the mean gains of 11.6% for {#8 04} and 142.3% for
{OSAME gSAMEY.

In Fig. 5.10, we present the FD-to-HD total rate ratio versus the angular spacing between
both UL and DL UE for a fixed power levels usig 1x4 sub-array. Here, we consider the DL
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Figure 5.11. FD-to-HD total rate ratio versus angular separation with 1 x 8 sub-array at

20 MHz. (a) PBF with SAS. (b) MBF.

UE is located at fixed 0p = 75° and the UL UE varies its angular location (i.e., 0y €
{75° : 1° : 135°}). Thus, the angle separation between UL/DL UE can vary from 0° to
60°. It can be seen that by using the proposed HBF with PBF RF stages jointly with SAS
(MOOP) can achieve FD-to-HD total rate ratio > 1.5 with minimum angle separation of
0°. In other words, the proposed PBF with SAS (MOOP) can give atleast 1.5 times the
total achievable rate of HD transmissions irrespective of UL and DL UE locations in FD
mMIMO systems, whereas, with MBF scheme, a minimum angle separation of 7° is required
to achieve the rate ratio of at least 1.5. For Ratior > 1.8, we need angle separation of at least

14° with MBF scheme. However, with the proposed PBF scheme, we require a minimum
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Figure 5.12. Total achievable rate versus transmit power with 1 x 4 sub-array.

angle separation of 3°. Similarly, Fig. 5.11 compares the minimum angle separation for the
case when both Tx and Rx are equipped with 1x8 sub-array for DL UE located at fixed
0p = 15° and the UL UE varies its angular location (i.e., 0y € {15° : 1° : 75°}). Compared
to the minimum angle separation of 3° and 6° for MBF scheme to achieve ratio > 1.5 and
1.8, respectively, the proposed HBF scheme with PBF RF beamformers and SAS (MOOP)
scheme only requires 0° and 5° of UL/DL UE angular separation. It must be noted that the
use of larger sub-array can generate narrow beams for UL and DL UE, which can reduce IUI,
and thus reducing minimum angle separation. In Fig. 5.12, we compare the total achievable
rate versus transmit power of our proposed schemes (i.e., PBF with SAS (MOOP) and PBF
(SOOP)) with MBF as well as the HBF solutions presented in [115,129,130]. We consider
Kp = Ky = 1, which are located at azimuth angle 0, = 75°, 0y = 135°. By using 1 x 4 Tx
and Rx sub-arrays, it can be seen that compared to MBF and HBF solutions in [115,129,130],
the proposed PBF schemes can significantly increase the total achievable rate by suppressing
the strong SI. For example, PBF can provide an increase of 1-2 bps/Hz when compared to
MBF, however, by using the proposed PBF with SAS, we can achieve a gain of around 3-4
bps/Hz. It is noteworthy to mention that our proposed PBF with SAS can significantly
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Figure 5.13. SI suppression bound comparison using 1x8 sub-array. (a) Achieved SI
versus 0. (b) Achieved SI versus 0p.
increase the total achievable rate, especially when operating under the following conditions:
1) harnessing a larger sub-array (i.e., 1 x 8); and 2) accommodating a greater number of

users. This highlights the scalability and adaptability of our approach, offering promising

performance enhancements in FD mMIMO systems.

5.5.3 Constrained Versus Unconstrained SI  Suppression

Comparison

In this section, we compare the achieved SI using 1x8 sub-array for the following schemes:
1) HBF with MBF RF beamformers; 2) HBF with PBF RF beamformers (PBF-SOOP); 3)
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HBF with PBF RF beamformers (PBF-MOOP); and 4) HBF with PBF RF beamformers
jointly with SAS (PBF-MOOP-SAS). For the NOBF schemes, we compare the results for
directivity degradation of e = 1 dB. In Fig. 5.13(a), we plot the achieved SI versus different
UL UE angular locations (i.e., 8y € {15° : 30° : 180°}) for a fixed DL UE location (6p =
165°). The results show that MBF scheme can provide very low SI suppression with a
minimum value of around -55 dB. In comparison, both PBF schemes (PBF-SOOP and PBF-
MOOP) can achieve better SI suppression levels at all UL-DL UE angle pairs with a minimum
ST suppression of around -63 dB. However, the use of SAS jointly with PBF for MOOP (PBF-
MOOP-SAS) can reduce SI as low as -76 dB, which is very close to lower bound values of SI
suppression. Here, the lower bound for SI suppression level can be achieved by considering
the loose directivity degradation limits (i.e., ¢ = c0). In other words, this loose bound can be
considered as an unconstrained optimization, which can allow beam perturbations in both
UL and DL directions with high directivity degradation. Our objective here is to show that
by using the proposed PBF-MOOP-SAS with a tight bound of ¢ = 1 dB, we can closely
approach the unbounded SI suppression (¢ = c0). Compared to the mean difference of 28.3
dB, 24.1 dB of MBF and PBF-SOOP (PBF-MOOP) schemes from the lower bound, PBF-
MOOP-SAS has a mean difference of only around 3.81 dB. Similarly, Fig. 5.13(b) depicts
the bounded versus unbounded SI suppression comparisons for different DL UE angular
locations (i.e., Op € {15° : 30° : 180°}) for a fixed UL UE location (6y = 15°). Here, we can
see that PBF-MOOP-SAS scheme can achieve SI suppression level close to the bound with

an average difference of around 5.2 dB. Thus, we can see that Asypprmoop.-sas(€ = 00) =~

Agi permoop-sas(€ = 1) < Agr persoor (Asiper-moop) < Agr MBF-

5.5.4 Achieved SI and Achievable Rate Ratio Tradeoff

In this section, we compare the achieved SI as well as FD-to-HD total rate ratio for
six different UL and DL locations (i.e., {0p,0y} € {15° : 30° : 180°}), which generates 36
possible UL-DL angle pairs. Fig. 5.14(a) evaluates the frequency (number of occurrences)
of UL-DL angle pairs while satisfying certain performance metric. For instance, using MBF
scheme, we can achieve SI suppression < -50 dB together with FD-to-HD total rate ratio
> 1.5 for a total of g—é UL-DL angle pairs, which represents 58.3% of the total available
angle pairs. However, there is 3—16 UL-DL angle pair to achieve SI < -70 dB jointly with rate
ratio > 1.5. On the other hand, the proposed PBF-MOOP-SAS scheme can provide % and
2 UL-DL angle pairs for (achieved SI < -50 dB & Ratio > 1.5) and (achieved SI < -70
dB & Ratio > 1.5), respectively. Similarly, Fig. 5.14(b) depicts the performance tradeoff
using 1x8 sub-array. The MBF scheme results in 3%‘ UL-DL angle pairs to achieve SI < -70
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Figure 5.14. Achieved SI and FD-to-HD total rate ratio tradeoff using MBF and PBF
with SAS schemes. (a) 1x4 sub-array. (b) 1x8 sub-array.

dB & Ratio > 1.5, whereas, the proposed PBF-MOOP-SAS scheme can provide % UL-DL
angle pairs to achieve SI < -70 dB & Ratio > 1.5. Thus, the proposed PBF-MOOP-SAS
scheme can achieve high SI suppression jointly with increased FD-to-HD rate ratio for 55%
of the UL-DL angle pairs as compared to 0% in the case of MBF scheme. The detailed
performance comparison of the proposed PBF schemes versus MBF for 1 x 4 and 1 x 8

sub-array is summarized in Table 5.1 and Table 5.2, respectively.
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Table 5.1. Performance Comparison: PBF with SAS versus MBF (1x4 and 20 MHz

BW).
HBF Scheme .
Performance Metrics MBF PBF Improvement using PBF HBF
SOOP | MOOP with SAS || SOOP versus MBF | MOOP + SAS versus MMBF
Best® || -75.05 | -75.9 -77.57 16.25 33.04
Achieved SI(dB) Worst || -38.74 | -40.01 -61.59 0.569 1.25
Avg -52.6 | -59.69 -71.96 7.07 19.33
. Best 1.930 | 1.929 1.948 225.8 261.1
(ALl ULYDL DR loostioms) (150 807 « 1659 [ Worst || 0.514 | 0.597 1.508 6.18 5857
Avg 1.650 | 1.780 1.886 7.87 14.3
FD-to-HD Total Rate Ratio Best 0.879 | 1.674 1.885 225.8 261.1
(Same UL/DL UE locations) [15° : 30° : 165°] Worst | 0.514 | 0.597 1.598 1.56 83.51
Avg 0.730 | 1.371 1.774 87.6 143

Table 5.2. Performance Comparison: PBF with SAS versus MBF (1x8 and 20 MHz
BW).

HBF Scheme

Improvement using PBF HBF

Performance Metrics MBF PBF

SOOP | MOOP with SAS || SOOP versus MBF | MOOP + SAS versus MBF
Best -69.0 | -77.46 -77.45 17.3 31.11
Achieved SI(dB) Worst || -37.35 | -38.9 -51.93 1.16 4.24
Avg -55.0 | -62.59 -70.43 7.58 15.43
FD-to-HD Total Rate Ratio Best 1.939 1.936 1.952 217.1 239
(All UL/DL UE locations) [15° : 30° : 165°] Worst || 0.5481 | 0.864 1.694 —?.19 -2.13
Avg 1.689 1.80 1.886 6.57 11.6
FD-to-HD Total Rate Ratio Best 0.873 | 1.738 1.872 217.1 239
(Same UL/DL UE locations) [15° : 30° : 165°] Worst || 0.548 | 0.864 1.69 -1.03 104.5
Avg 0.741 | 1.392 1.796 87.8 142.3

5.5.5 SI Suppression with NCM URA SC-HBF

In this section, we present the achieved SI suppression results using the proposed NCM-
BF-SIS scheme (as discussed in Section 5.4) at different uplink and downlink UE angular
locations. In Fig. 5.15, we present the achieved SI using 2x2 URA SC-HBF architecture over
a bandwidth of 20 MHz, and compare the performance of NCM-BF-SIS with the following
two SI suppression schemes: 1) maximum-directivity-based beamforming scheme (MD-BF-
SIS), and 2) constant-modulus RF beamforming scheme (CM-BF-SIS)”. In Fig. 5.15(a), we
plot the achieved SI suppression for varying uplink and downlink azimuth locations (i.e.,
{ép,ouv} € {0° : 30° : 180°}) for fixed uplink and downlink elevation angles (i.e., Op =
Oy = 90°). It can be seen that compared to MD-BF-SIS, both NCM-BF-SIS and CM-BF-
SIS schemes can provide more uplink-downlink angle-pairs for an enhanced SI suppression.
However, the proposed NCM-BF-SIS can achieve the best SI suppression when compared

"In MD-BF-SIS, fp and fy steer the beams at exact user locations (i.e., (0p,¢p) and (0, ¢r) while

in CM-BF-SIS, beam angles are optimized (i.e., éD, gZ)D, éU, g?)U) to construct the RF stages with fixed gain
controllers.
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Table 5.3. SI Suppression performance Comparison of NCM-BF-SIS, CM-BF-SIS,
MD-BF-SIS scheme.

Sub-Array Proposed
Configuration | NCM-BF-SIS | CM-BF-STS | MP-BF-SIS
9w o | Best -79.6 772 742
(URA) | Worst -36.6 -34.6 322
Avg -70.2 -67.3 49.3
gxq | Bost -79.6 78.2 742
(URA) Worst -36.7 -35.4 -33.1
Avg 72.3 -69.4 54.4
1% 4 Best -78.69 -76.6 -67.3
(ULA) Worst -34.2 -33.4 -30.2
Avg -61.8 574 192

to MD-BF-SIS and CM-BF-SIS schemes, and can bring SI level down to -79.5 dB. The
proposed NCM-BF-SIS can further reduce the SI level by around -20 dB and -4 dB versus
MD-BF-SIS and CM-BF-SIS schemes, respectively. In Fig. 5.15(b), we compare the achieved
SI for varying uplink and downlink elevation angles (i.e., {0p,0y} € {0° : 30° : 90°})
for fixed ¢p = ¢y = 90°. The results show that the proposed NCM-BF-SIS scheme can
achieve an SI suppression of -75 dB or lower for almost 70 % of the (6p,0y) angle-pairs.
Similarly, Fig. 5.15(c) depicts the SI levels for varying downlink angular locations (i.e.,
Op € {0°:30°:90°}, pp € {0° : 30° : 180°}) for fixed uplink angular location 0y = ¢y = 90°.
The proposed NCM-BF-SIS scheme can achieve SI suppression upto -80 dB. Thus, compared
to MD-BF-SIS and CM-BF-SIS schemes, jointly optimizing beam angles with gain controller
coefficients in NCM-BF-SIS can significantly enhance SI suppression.

In Fig. 5.16, we present the achieved SI using a 4 x 4 URA SC-HBF architecture at
20 MHz bandwidth, and compare the performance of NCM-BF-SIS with MD-BF-SIS and
CM-BF-SIS schemes. In Fig. 5.16(a), the achieved SI suppression for varying uplink and
downlink azimuth locations for fixed uplink and downlink elevation angle 8, = 6 = 90° is
presented, which shows the proposed NCM-BF-SIS can achieve the best SI suppression at all
¢p — ¢y angle-pairs. Moreover, compared to 2 x 2 URA, a 4 x 4 URA sub-array can provide
better performance as the 4 x 4 array can generate narrower beams than 2 x 2 sub-array,
which results in enhanced SI suppression. Similarly, Fig. 5.16(b) compares the achieved
SI suppression for different uplink/downlink angle-pairs. The results show that NCM-BF-
SIS diminishes the strong SI for any uplink and downlink angle-pair. For instance, the SI

can be reduced by -70 dB or lower for any uplink-downlink angle-pair (6p,0y) for a fixed
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Figure 5.15. Achieved SI suppression of proposed NCM-BF-SIS with 2x2 sub-array at 20
MHz bandwidth. (a) versus ¢p and ¢y for fixed (0p = 0y = 90°). (b) versus 0p and 6y for
fixed (¢pp = ¢y = 90°). (c) versus ¢p and 0p for fixed (0y = oy = 90°).

¢ = ¢p = 90°. In Fig. 5.16(c), we show the achieved SI levels for different downlink user
locations (i.e., {0p,pp} € {0° : 30° : 180°}) for fixed uplink user location 8y = ¢y = 90°.
It can be seen that the proposed NCM-BF-SIS scheme can attain the SI suppression of -75
dB or lower at all (0p, ¢p) angle-pairs, whereas MD-BF-SIS scheme can bring the SI level
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Figure 5.16. Achieved SI suppression of proposed NCM-BF-SIS with 4x4 sub-array at 20
MHz bandwidth. (a) versus ¢p and ¢y for fixed (0p = 0y = 90°). (b) versus 0p and 0y for
fixed (¢pp = ¢y = 90°). (c) versus ¢p and Op for fixed (y = ¢y = 90°).

down to -75 dB or lower for only a single (6p, ¢p) angle-pair. Thus, the proposed NCM-
BF-SIS significantly alleviate SI for any uplink-downlink user location (for instance, out of
28 possible (0p, ¢p) angle-pairs, NCM-BF-SIS achieve SI suppression of < -75 dB for all 28
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pairs, whereas MD-BF-SIS can provide SI suppression of < -75 dB for only a single angle-
pair). As a result, NCM-BF-SIS can provide more DoF in enhancing FD communications
performance irrespective of uplink and downlink user locations.

Finally, Table 5.3 presents the detailed comparison of achieved SI suppression using
different URA SC-HBF sizes (2 x 2 and 4 x 4) for NCM-BF-SIS, CM-BF-SIS, and
MD-BF-SIS schemes over a bandwidth of 20 MHz. Here, we consider varying uplink and
downlink azimuth locations (i.e., {¢p,¢v} € {0° : 30° : 180°}) for fixed uplink and
downlink elevation angles (i.e., 8p = 6y = 90°), and provide the results for best, worst, and
average SI suppression. The analysis can be summarized as follows: 1) we can achieve the
best SI suppression of around -80 dB by using the proposed NCM-BF-SIS scheme when
using either 2 x 2 or 4 x 4 URA sub-array; 2) increasing the number of antennas can
provide an enhanced SI suppression (for instance, 4 x 4 URA sub-array can provide more
uplink-downlink UE angle-pairs for increased SI suppression than a 2 x 2 URA sub-array);
3) the proposed NCM-BF-SIS can provide an average SI suppression gain of around -20 dB
and -4 dB when compared to MD-BF-SIS and CM-BF-SIS schemes, respectively; and 4)
the URA sub-array configuration can minimize SI more effectively than ULA sub-array (for
example, an average SI suppression of 2 x 2 is around -9 dB lower than 1 x 4 ULA

sub-array).

5.6 Concluding Remarks

This chapter considers a FD mMIMO system using a sub-array-based HBF architecture
and investigates the capacity gains of FD communications over HD transmissions in a
real-time implementation. In particular, the strong SI is suppressed by designing the RF
beamformers jointly with SAS to utilize the spatial DoF in large array structures, thus
avoiding the use of costly analog Sl-cancellation circuits. To achieve capacity gains in FD
communications, a multi-objective design framework is considered to minimize SI and
maximize the total achievable rate. Based on OTA measured SI channel, we have proposed
a novel HBF scheme that applies perturbations to the orthogonal beams in UL and DL
beam directions and jointly finds the best Tx-Rx sub-array pair. To solve this challenging
non-convex problem, we have proposed a swarm intelligence-based algorithmic solution to
find the optimal perturbations and Tx-Rx indices while satisfying the directivity
degradation constraints for the UL and DL beams. Illustrative results show that the
proposed HBF scheme with PBF RF stages jointly with SAS can achieve high SI

suppression compared to MBF for both 1x4 and 1x8 sub-array configurations and can
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mitigate SI to -78 dB in real life implementations for FD mMIMO systems. Moreover, the
proposed HBF scheme can achieve an average capacity gain of around 1.8 for any angular
location of UL-DL UE.

5.7 Appendix: Proof of Lemma 5.1

Let f;y and fp be the UL and DL RF beamformers for i* DL UE and j* UL UE,

respectively. Then, we can express the RF beamformers as:

1

fD(QD-) _ [17 €j27rAcos(0Di)7 . 7€j27rA(ND—1)cos(9Di)]T7 (552)

5

1 . .
fU(er) _ [1’ efJQwAcos(GUj) L efJZTrA(NUfl)cos(OUj)]T. (553>

Then, we can rewrite the expression for fg Hgfp as:

i Hs fp
1

v Np

1 1, pi2mdeos(9u;)

AT o
1
vV Np

1 Ny Np

—72mwd(ny, cos(0y . )—ng cos(p,
= T 2 3 e o raclen), (5.54)
ny=1ng4=1

T i2md cos(0p . i2nd(Np—1) cos(0p. )1T
fUHSI[L@J (Dl)’,,, el (Np—1) (Dl)}

€7j27rd(NU -1) cos(GU]. )] HSI

[1 ej27rdcos(9Di) .
)

’ : €j27rd(ND71) cos(HDi)]T

where Ay, n, is the (ny,nq)-th element of Hg;. Since |cos(fy,)|, | cos(fp,)| < 1, the term

inside the exponent of (5.54) is bounded as follows:

[, cos(fy,) — nacos(0p,)| < ny|cos(by,)| + na| cos(fp,)

Snu+nd§Nus+Nds_2a (555)

where the last inequality follows because n, and ng both range from 1 to Ny and Np,
respectively. Now, let us consider the term h,,, ,,. Considering the large array structures,
the path loss between the transmit and receive antennas within the same device is generally
low due to the short distance between them. Thus, the SI channel, which is the channel

from the transmit antenna to the receive antenna in the same device, is expected to be very
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strong in magnitude. Hence, we can assume that h,,, ,, has non-negligible values. Next, we
analyze the magnitude of the expression f Hg;fp. Applying the triangle inequality, we can

write as follows:

£ Hgfp)

1 Ny  Np )
Z h —j2md(ny cos(GUj )—naqcos(fp,))
Nu,Nd

- VNDNU nzzlnd—l

Ny Np
hnu,n
VNDNUnZ—lnle| d‘
1
< W(NU + Np = 2) max [y, 5, , (5.56)

where the last inequality holds due to the bounds on the indices n, and ny. Based on the
assumption that the path loss is significant and the SI channel is strong, we can infer that
the maximum absolute value of the SI channel coefficients max,,, », |, n,| i very small.

Consequently, we can approximate the expression as follows:
[fiHs;fp| ~ 0. (5.57)

This approximation is valid when SI channel is strong, the path loss is significant, and the
array dimensions Ny and Np are sufficiently large. It suggests that the design of DL and UL
RF beamforming stages, represented by Fp and Fy respectively, can effectively eliminate
the interference caused by the SI channel. Hence, we conclude that for a given UL-DL angle-
pair Op,, 0y, in large array structures, the approximation FyHg;Fp & 0 holds, indicating

the suppression of SI interference.



129

Chapter 6

UAV-Assisted Terrestrial Massive

MIMO Systems for Enhanced
Coverage and Capacity!

6.1 Introduction

In the previous chapters, different HBF solutions have been proposed for both
half-duplex (HD) and full-duplex (FD) communications in mMIMO systems. With the
advent of advanced wireless communications and networking technologies, it is expected
that billions of low-power consumption devices, such as wireless sensors will be connected
to the internet through the IoT framework, which will significantly increase capacity and
coverage needs in mMIMO systems [21]. However, deploying IoT effectively and extensively
still poses significant challenges, including efficient information transfer between wireless
nodes and gateways. Due to the limited coverage and fixed deployment of terrestrial
networks, the integration of UAVs offer key advantages of rapid deployment especially in
emergency situations. To address this issue, various routing schemes have been proposed,
including direct transmission or relay structures. Nonetheless, when the distance between
the IoT end node and the gateway is substantial, direct transmission may not be feasible or
may consume excessive power. In such cases, communication through relay can be a more

power-efficient alternative. Moreover, deploying cellular stations in urban areas can be a

'Parts of this chapter have been presented at the 2022 IEEE 96th Vehicular Technology Conference
(VT C2022-Fall), London/Beijing [131], the 2023 IEEE 97th Vehicular Technology Conference (VTC2023-
Spring), Florence, Italy [132], the 2023 IEEE Global Communications Conference (GLOBECOM),
KualaLumpur, Malaysia [133] and published in the IEEE Internet of Things Journal [134].
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Table 6.1. A brief comparison of the related literature.

Contents
Literature UAV Operation Mode Propagation Environment MIMO Relay nsmission Radio Resource Management Deep 1 o
As BS As Relay No Fading (LoS) | Fading (LoS + NLoS) || SU-MIMO [ MU-MIMO || With Buffer | Without Buffer || UAV Positioning/Trajectory | Power Allocation | Beamforming
[135,136] 7 7 7 7 v
[137] 7 7 7 7 7 7
139] 7 7 7 7 7 7
[140] v v v 4 v
141 v v v v v
[142] v v v v v
143] v v v v v
144 v v v v v
[148,152,154] |/ 7 7 % 7 7
[149-151] 7 7 7 7 7 7 7
153] v v v v v v v
[154] 7 7 7 7 7 7
This work v v v v v v v v

costly and challenging task, which can further complicate the communications coverage
issue in the IoT framework [22].

The deployment of UAVs as a relay has garnered significant research attention in recent
years, with the objective of designing UAV-assisted systems that maximize throughput or
minimize transmit power [135-144]. Most existing research studies on the use of UAVs to
assist in communications has overlooked the potential benefits of beamforming solutions,
as evidenced by studies such as [135-147]. While some studies have explored beamforming
solutions, they have been limited to single-hop communications scenarios and have only
examined its application in single links, such as in studies [148-155], where UAVs act as
flying BSs rather than relays, making the beamforming solutions inapplicable for dual-hop
or relaying structures. The joint optimization of UAV location, power allocation (PA),
and HBF design for a dual-hop mmWave MU-mMIMO IoT communications networks is an
unaddressed problem, presenting a significant opportunity to advance the field of UAV-based
wireless communications. To address this gap in literature, this chapter aims to highlight
the full potential of beamforming, and its ability to enhance performance in dual-hop UAV

communications networks' The main contributions of this work are summarized as follows:

o« We propose three novel optimization schemes for maximizing total capacity in
UAV-assisted MU-mMIMO IoT systems: 1) joint HBF and optimal PA for fixed UAV
location (J-HBF-PSOPA-FL); 2) joint HBF and UAV location optimization for equal
PA (J-HBF-PSOL-EQPA); and 3) joint HBF, UAV location optimization and PA
(J-HBF-PSOLPA). Using swarm intelligence-based particle swarm optimization
(PSO), we tackle the challenging non-convex problem with high-dimensional variable
matrices and fractional programming variables, while adhering to constraints like
UAV deployment span, total transmit power, PA, and CM. In particular, the RF

stages are formulated using slow time-varying angle-of-departure

'Tt is worth noting that, unlike prior literature that employs a single antenna in UAV-assisted systems,
this study considers large antenna arrays deployed in the mmWave band to consider beamforming issues
in fading scenarios. In non-fading situations, for instance, LoS channels, the proposed HBF solutions can
further improve performance by providing higher directional gain and reducing interference.
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(AoD)/angle-of-arrival  (AoA) information, while the BB stages use the
reduced-dimension effective channel information with RZF. In J-HBF-PSOPA-FL, we
allocate optimal power for multiple IoT users with fixed UAV location, and design
the RF and BB stages for maximum capacity. In J-HBF-PSOL-EQPA, we optimize
UAV location for equal PA, whereas, in J-HBF-PSOLPA, we jointly optimize both
UAV location and PA, and design HBF stages for both UAV and BS. The illustrative
results show that J-HBF-PSOLPA can achieve higher total rate compared to
J-HBF-PSOL-EQPA and J-HBF-PSOPA-FL schemes.

o To overcome the high computational complexity of J-HBF-PSOLPA, we propose a
novel low-complexity DL-based joint HBF, UAV location optimization and PA (J-
HBF-DLLPA) algorithm for a UAV-assisted MU-mMIMO IoT systems. The proposed
J-HBF-DLLPA-based solution can achieve AR of J-HBF-PSOLPA, while reducing the
runtime by 98 — 99 %. In particular, the proposed J-HBF-DLLPA is built via a fully-
connected DNN consisting of two phases: 1) offline supervised learning via the optimal
allocated powers and UAV locations calculated with J-HBF-PSOLPA; and 2) real-time

prediction of optimal power values and UAV location via the trained DNN.

o We analyze the performance of UAV DF relaying with and without buffering. Most
existing studies have explored the option of forwarding the received signal without
buffering the data, which fails to fully leverage the UAV’s mobility [135-141, 148
155]. The proposed solutions incorporate signal buffering at the UAV, enhancing the
relaying performance significantly. Particularly, we analyze the average delay of delay-
unconstrained and delay-constrained transmissions, which can be significantly reduced

by J-HBF-PSOLPA compared to fixed UAV deployment and equal PA (FL-EQPA).

The rest of this chapter is organized as follows. Section 6.2 discuss the channel model of
mmWave UAV-assisted mMIMO systems. In Section 6.3, we present the HBF solution for
a single-hop UAV-assisted mMIMO system. Section 6.4 discuss the UAV-assisted amplify-
and-forward (AF) relaying followed by the decode-and-forward (DF) relaying in Section 6.5
for a point-to-point mMIMO system. Section 6.6 introduces the UAV-assisted DF relaying
for a MU-mMIMO system. The illustrative results are provided in Section 6.7. Finally, the

chapter is concluded in Section 6.8.
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6.2 Channel Model

While LoS channel models can be useful for simple scenarios, they can be limited in
their ability to capture the channel complexities (e.g., multi-path fading and shadowing).
On the other hand, mmWave channel models can provide a more accurate representation of
the channel characteristics, including the impact of non-LoS (NLoS) paths and obstacles on
the signal propagation in UAV-assisted communications. Therefore, we consider mmWave
channels for both links. The channel between BS and UAV is modeled based on the Saleh-

Valenzuela channel model [156], and is given as:

Cc L
H, = Z Z 21617_1—6;7357‘)(9(7") (T))agt)T(Q(t) ¢(t))

c ¥l c Vel

c=11=1 (6]_)
= AZ,AY

where C' is the total number of clusters, L is the total number of paths, n is the path

" path in c* cluster. Here, agj)(-, -) is the

loss exponent, and z;, is the complex gain of
corresponding transmit or receive array steering vector for uniform rectangular array (URA),

which is given as [90]:

agj) (9’ gb) — [1’ 6—j27rdsin(6) cos(d))7 . ’6—j27rd(Nx—1)sin(9) cos(qﬁ)}

6.2
® 17 €—j27rdsin(9) sin(qﬁ)’ L. 7€—j27rd(Ny—1)sin(9) sin(qb)}’ ( )

where j = {t,7}, d is the inter-element spacing, N,(N,) is the horizontal (vertical) size of
corresponding antenna array at BS and UAV, Z; = diag(zl’lrﬂ?, .. .,zl,LTig) e CxL g
the diagonal gain matrix, A{”? € C¥*L and A € CL*Mr are the receive and transmit
phase response matrices, respectively. Here, the angles 93) € [99 — 5i(t),9£t) + 52(0} and
¢S) € [(bgt) — 690 o) 4 (5?“’)} are the azimuth AoD (AAoD) and elevation AoD (EAoD)

I"" path in channel H,, respectively. 0% is the mean AAoD and 6?” represents the

for
AAoD spread, whereas ¢{) is mean EAoD with spread §?®). Similarly, the angles 02") €
[0 — 6200, 000 + 890)] and ¢ € [¢() — 62, ¢ + 62| are the azimuth AoA (AAoA)
and elevation AoA (EAoA), where ) and ¢{") are the mean AAoA and EAoA with angular
spread 67(") and 62", respectively. Then, the channel vector between the UAV and the k"

IoT user can be written as follows:

L _
hg:k - Zl:l 227’617_2,]?[21(9]@17 ¢kl)

(6.3)
- Zgjk?A'ch € CNt,
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where L is the total number of downlink paths from UAV to IoT nodes, zo, ~ CN(0, 1) is
the complex path gain of /" path in second link, a(-,-) € C is the UAV downlink array
phase response vector. As expressed in (6.3), the intended downlink channel constitute two
parts: 1) fast time-varying path gain vector zoy = (204,757, , 224, To, ). € C"; and 2)
slow time-varying downlink array phase response matrix A, € CE*M with the rows of

a(bk,, ¢r, ). Then, the channel matrix for second link is written as:
H2 = [h271, e ,hz}K]T = Z2A2 € CKXNt, (64)

where Zy = (231, -+ , 22, x|t € CK*L is the complete path gain matrix for all downlink IoT

nodes.

6.3 Joint HBF and UAV Deployment in Single-Hop
mMIMO Systems

In this section, we propose a novel Sl-based joint HBF and UAV positioning scheme
(JHBFP) to maximize the overall system capacity in mmWave MU-mMIMO systems. Based
on the 3D geometry-based mmWave channel model, a two-stage architecture is designed
for the proposed JHBFP technique: (i) RF beamformer, and (ii) BB precoder. The RF
beamformer is designed by using SVD of channel matrix followed by the BB precoder utilizing
the reduced-size effective channel matrix seen from the BB-stage. Both RF and BB stages
aim to mitigate the multi-user interference (MU-I) among the users, while reducing the
number of RF chains. Afterwards, we present a novel PSO-based UAV location (PSO-L)
algorithm for the optimal UAV positioning to maximize ASR of the mmWave MU-mMIMO
systems. Here, our primary motivation is to address non-convex UAV placement problem via
the proposed PSO-L algorithm. We also propose hemi-spherical (HSA) array configuration
for the UAV communications as compared to URA, which is a preferred array structure in the
existing UAV studies ( [149,157-161]). Illustrative results indicate that, the proposed JHBFP
of UAV using PSO-L can significantly enhance the system spectral and energy efficiencies.

6.3.1 System Model

We consider a cellular network in an urban environment consisting of a set of non-
vehicular cellular users/IoT devices. Due to possible obstructions (e.g., high-rise buildings.,

etc.), the direct communication between BS and the users located in a certain geographical
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Figure 6.1. UAV-assisted mmWave MU-mMIMO system.

area is not possible as shown in Fig. 6.1. We consider integrating UAV as a flying relay into
the existing cellular network that connects the BS with users located at a far distance r.
We assume the UAV is placed at a height D, > D, where D, is the height of the BS. Let
IC represents the set of users that needs to be served by BS via UAV relay. Let (xy, Yy, Du)
and (z, yx, z) denote the locations of the UAV and k' user, respectively.

We assume the channel H between UAV relay and BS has sufficient capacity for BS-
UAV data transfer to serve the users in . Moreover, the UAV relay is assumed to employ
a hybrid precoder/beamformer with an Nr element antenna array and Ngr RF chains for
simultaneously communicating with K single-antenna users. We consider UAV location
optimization jointly with HBF design for UAV-UE link to maximize ASR while the design
of BS-UAV link is left for future work. The hybrid beamformer B = FpBp consists of
the digital baseband precoder Bp = [by, -+, bg] € CMrr*E and the analog RF beamformer
Fp=1If, - ,fn,,] € CN*Nrr that is implemented using phase shifters and thus, imposes a
constant-modulus (CM) constraint., i.e., |Fp(i, j)| = ﬁ Vi, j. The design of HBF reduces
the number of RF chains from Ny to Ngp, while satisfying K < Nrp < Nr. Considering
K data streams, the precoded signal at UAV relay is given by:

S = FDBDd, (65)

where d € C¥ is the data signal with E{dd"} = Ix. The transmitted signal satisfies the

power constraint., i.e., E{||s||>} < Pp, where Py is the transmit power at the UAV relay.
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Then, the received signal at k' user is given by:

Y = hEBS + ng,

K
= h'Fpbydi+ Y hFpby dj + ny | (6.6)
—— ~~
Desired Signal k#k Noise
IUI

where h;, € C¥ is the narrowband flat-fading mmWave channel vector between UAV relay
and users, s; is the data signal for & user, by, is the £ column of Fp, and n; denotes the
additive circular symmetric Gaussian noise such that n;, ~ CA(0,0?). By using (6.5) and
(6.6), the instantaneous signal-to-interference-plus-noise ratio (SINR) expression at k" user

is derived as follows:
[hyFpby|”

tar [DEF Dby 2 + 02

SINRe = (6.7)

By using the instantaneous SINR, the ergodic sum-rate capacity Rg.. for UAV-assisted
mmWave MU-mMIMO systems is given by:

K
Roum (Fp,Bp, Ty, yu) = Z E[log,(1 4+ SINRy)]. (6.8)
k=1

For the case where the ground BS is directly serving the users, the ASR can be maximized
by designing Fp and Bp. However, in a UAV-assisted cellular system, where the UAV is
deployed at a fixed height z, and relaying data to the users, the ASR can be maximized by
the joint optimization of Fp,Bp and x = [x,,1,] € R?, where x represents UAV position to
be optimized within the given UAV flying span. By using (6.5) and (6.6), the ASR is written

as:

max Rsum (FD, BD; Loy, yu)
{Fp,Bp,%0o,y0}

s.t. Cl . ‘FD(Z,j)| =

VN’ (6.9)
Cy: E{|ls|2} < Pr,

03 * Tmin S Lo S Tmax ) Ymin S Yo S Ymax,

where C refers to the CM constraint due to the use of phase shifters, C5 indicates the
transmit power constraint at UAV and C5 implies UAV positioning within the given flying
span. Here, [Zmin, Tmax] a0d [Ymin, Ymax] represent the UAV relay deployment range in x-axis
and y-axis, respectively. The optimization problem defined in (6.9) is non-convex. To solve
this problem, we sequentially develop Fp and Bp and apply PSO-L to optimize z, and y,.
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v

(a) (b)

Figure 6.2. UAV-relay array structures: (a) URA (b) HSA.

6.3.2 Low-Complexity Hybrid Beamforming Design

In this section, we first decouple the optimization problem (as given in (6.9)) and present
the design of proposed low-complexity hybrid beamformer B € CNTXK, which maximizes the
spectral and energy efficiencies of a UAV-assisted mMIMO system. In particular, the HBF is
constructed by concatenating the RF beamformer Fp € """ and reduced-dimensional
MU baseband precoder Bp € ", Compared to the existing HBF solutions for UAV-
assisted mMIMO systems (e.g., [149, 161]), the proposed HBF design can achieve a high
sum-rate and energy efficiency with reduced complexity by using ordered SVD of the MU-

mMIMO channel between UAV relay and ground users [98].

6.3.2.1 RF Beamformer Design

We assume K users are clustered into G groups based on their AoD information, where
each group contains K, number of users such that K = Zle K,. The index g, = Zg;l Ky +
k is used to denote the k*" user in group ¢g. Then, the channel matrix H for gth group can

be written as:
H

HY =[hy,- - hg ] = QUEWY ) e CloN, (6.10)

where Q@ and YV are K, x K, and Ny x Np unitary matrices, respectively. @ ig a
K, x Np rectangular diagonal matrix with non-negative real numbers on the diagonal, and

the elements are arranged in decreasing order. For each group g, the low-complexity RF
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beamformer F, € CN7*Nrry is constructed by utilizing SVD of the channel matrix H).

Then, the complete RF beamformer is given as follows:

Fp — [Fl Fg| € CNrxNer, (6.11)
i@ L G9) i) Np .
Let ¢ = [e/V1n e/V2n ... /"Nn]T € C" be the phase vector of group g, where Ufﬁ?n is the

phase angle of the (m,n) —th entry of V. Then, we can formulate the phase matrix B as:
30 = [p? ¢ ... o] € CNrXNr, (6.12)

Comparing (6.10) and (6.12), we can see that each entry of ¢\9 and V,(n) have the same
phase angle. Then, using Ngp, RF chains for each group, the RF beamformer for g'" group

can be given as:
FO = 67,65, ..., gy, ] € CV¥Nors, (6.13)

Using Ngp = Z?;l Nrp,, we can then generate the complete RF beamformer as given in
(6.11). Then, H = [HT,--- JHL]T € CKX*V is the complete channel matrix between UAV
relay and K users. Using (6.10), (6.11), the effective channel matrix as seen from the BB-

stage is given as:

H.Fp, HFp, ... HiFpg
2 — HF — HQ]::‘D,I H2]?‘D,2 . HQ:F‘D,G € CKxNrr, (6.14)
H¢Fp: HeFpe ... HeFpe

where the diagonal matrices H, = H,F, = Z,A Fp , € C**Nrry are the effective channel
matrix for group g and the off-diagonal matrices H;, = H;F, = Z;A;Fp, € CKaxNrrg

represent the effective interference channel matrix between groups g and g, Vg # g.

6.3.2.2 BB-Stage Design

After designing the RF-stage, the reduced-size effective CSI H given in (6.14) is employed
for the BB precoder. We consider joint-group-processing (JGP) technique as designed in [90].
The design of BB precoder W not only reduces the intra-group interference but also mitigate

the residual inter-group interference remaining after RF beamformer design. By applying
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the well-known RZF technique, W is defined as:
By =yTHE, (6.15)

where T = [H7H + aNy Iy, ] Ing, € (CNRFXNRF, « is the regularization parameter and

v is the normalization factor used to satisfy the power constraint, which can be written as:

S PR A (6.16)
tr{H T F FTH}

6.3.3 UAYV Deployment with PSO-L

After the design of F and W, the optimization problem given in (6.9) can be reformulated

as:
max  Rgm (Fp,Bp, Ty, yu)
{1'072,’0} (617)

s.t. C'3 * Tmin S Lo S Lmax; Ymin S Yo S Ymax-

Though, the constant modulus constraint for F (i.e., C in (6.9)) is satisfied via the solution
of RF beamformer design as discussed in Section. 6.3.2.1, however, the resulting problem in
(6.17) is still an NP hard [162] because the optimization variables {z,, y,} are jointly located
in both the numerator and denominator of the SINR expression given in (6.7).

We propose a PSO based algorithm for optimization of the UAV relay location (PSO-L)
to maximize the capacity of UAV-UE link. PSO is capable of searching the global optimum
iteratively for vastly complex spaces and has a faster convergence time. In a UAV-assisted
cellular system, the number of feasible UAV positions required to search space is
(W) X (W), where M, and M, represents the search space resolution.
PSO-L makes use of multiple agents called particles to search the objective function space,
which is given in (6.17). PSO-L solves the problem by employing Z particles, which
represent the potential solutions for UAV locations. Initially, a swarm of particles, each
with its own position, velocity, and fitness value are randomly placed in search space.
PSO-L algorithm solves the optimization problem by iteratively updating particle
positions; a particle moves to the next position using the best position experienced by the
particle and the best position experienced by all the particles. Hence, PSO-L algorithm
solves the optimization problem by updating particle positions during T iterations.

In PSO-L, a particle represents the candidate position of UAV and the location is

represented by a certain point (r,%) in the search space. Then, the potential position of i**
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particle during ' iteration is given as:

U = [, ") (6.18)
where t = 0,1,---,T represents the iteration index. Thus, each particle calculates the

corresponding objective function as given in (6.17), evaluates its personal best solution,
communicates with other particles for the global best solution, and moves from U® to U¢+D
until ¢ approaches T. Let U and VZ@ be the position and velocity of i'* particle during
iteration, respectively. The position U§” is uniformly distributed between [z, Tmaz| and
[Yrmins Ymaz) While the velocity Vgt) is adjusted to VEO) = 0. Then, during the iterations, both
U and V of i*" particle are updated as follows:

= WV AP UL, - UD) + AP (Ul U, (6.19)

best,i 7

o= Ul vy, (6.20)

\%

5
U
where w denotes the inertial weight factor, p; and ps are the learning parameters for the
global best Ul()?st and the personal best Ul(,te)sm-, Agt) and Aét) are the matrices with entries
uniformly distributed in [0,1]. The function of w is to control the impact of previous
velocity history on current velocity, thus, it is considered vital for convergence as it
manages the particle’s tradeoff between global and local exploration. By applying (6.8) as
the objective function, the personal and global best solutions for i* particle during "

iteration are obtained as:

Ul()l;)st,i = arg max Rsum(F7 W7 Ugt*)), (621)
U e =0,1,- t
Ul()i)st = arg max Roum(F, W, Ul()?stz) (6.22)

Ut wi=0,1,- N,

best,i’

Algorithm 6.1 summarizes the proposed joint hybrid beamformer and UAV positioning
(JHBFP) scheme using using PSO-L Algorithm.
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Algorithm 6.1 Proposed Joint HBF Design and UAV Positioning (JHBFP) Algorithm
Using PSO-L

1: Input: Z,T,G, uy, po, w, [0,(99), ,(f)] fork=1,... K.

2: Output: z,,y,, Fp,Bp.

3: forg=1:G do

4 Compute channel matrix h\? via (6.3).

Using (6.10), form the unitary matrices @9 and V).

forn=1: N do
Calculate the phase of each entity of V(:,n)@, i.e., ¢(:,n)?.
Construct the phase vector v9).

end for

10:  Formulate T'9) via (6.12).

11:  Find FY using N via (6.13).

122 Fp=[FW F2 . F)

13: Compute Bp using (6.15).

14: fori:=1:7Zdo

15: Initialize the velocity as VEO) =0.

16: Diagonal entries of UEO) are uniformly distributed in [0, 1].
17: Set the personal best Uggim = UEO).

18: end for

19:  Find the global best U\, as in (6.22).
20: fort=1:T7Tdo

21: fori=1:27,do

22: Update the velocity V" as in (6.19).

23: Update the position UZ(-t) as in (6.20).

24: Find the personal best Uéte)sm- as in (6.21).
25: end for

26: Find the global best Ul()?st as in (6.22).

27: end for

28: end for

29: Update Fp,Bp for z,, vy, using steps 1-10.

6.4 Joint HBF and UAV Deployment in Dual-Hop
mMIMO Systems: Amplify-and-Forward (AF)
Relaying

In this section, we present a novel joint optimization scheme to maximize the
end-to-end throughput in a UAV-assisted mmWave mMIMO communications systems

using two different SA configurations, namely spherical array equal-angle (SAEA) and
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(a) (b)
Figure 6.3. Spherical array configurations: (a) equal-angle (EA) (b) uniform-space (US).

spherical array uniform-space (SA-US) as shown in Fig. 6.3. In particular, the UAV acts as
an amplify-and-forward (AF) relay between a BS and an [oT gateway and the challenging
non-convex optimization problem is solved using swarm intelligence (SI)-based particle
swarm optimization (PSO) method to find optimal UAV relay positioning within a given
deployment region [163]. Then, HBFs for the BS and IoT gateway are designed using an
orthogonal matching pursuit (OMP)-based algorithmic solution, whereas, for the UAV
relay, both transmit and receive RF beamformers are formulated using singular value

decomposition (SVD) of the channel matrices.

6.4.1 System Model

We consider IoT devices and IoT gateway are located in a remote area, which is difficult
to access directly by BS (eNodeB) due to obstacles, and UAV is used as AF relay to improve
the situation as shown in Fig. 6.4. We assume the UAV relay is placed at a height h, > hq,
where hy is the height of the BS. Let (zy,Yu, hu), (21,y1,h1) and (22, ya, he) denote the
locations of UAV, BS and gateway, respectively.

In the system model as shown in Fig. 6.5, we consider the BS is equipped with N;
transmit antennas, UAV relay with N, ,(N,:) antennas for receiving (transmitting) signals
and gateway with Ny antennas. Both BS and gateway adopt HBF architecture, where BS
consists of a RF beamforming stage F; € CN1*Nrr1 and BB stage By CVeri*Ns | where Ng
represents the data streams from the BS and Ngp, is the RF chains such that Ng < Ngp, <
N to guarantee multistream transmission. Considering half-duplex (HD) UAV AF relaying,
BS sends Ng data streams through channel H; € CM«*M in first time slot. Using Nyr
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Figure 6.4. UAV-assisted mMIMO IoT communications system.

antennas, the UAV relay receives signals with an RF combiner F,, . € CVreru*Nur - We assume

UAV relay transmits the data in the second time slot using RF beamformer F,,; € CNutXNrru
through channel Hy, € CV2*Nut The received signal at gateway is processed through RF
stage Fy € CVrr2XN2 and BB stage By CVs*N&r2 - Here, all RF beamforming and combining
stages are implemented using phase shifters (PSs) and thus, impose a constant-modulus (CM)
constraint, i.e., [Fi(j, k)| = & (i = 1,2), |Fu, (4, k)| = ﬁ |F..:(4, k)| = ﬁ vy, k.
The use of RF beamforming and combining stages for BS, UAV relay and gateway greatly
reduces the number of RF chains from: 1) Ny to Ngp,; 2) Ny, (Nyt) to Ngp,; and 3) N to
Ngpr,, respectively. Considering the data signal is d = [dy, dy, . .., dng|” with E{dd”} = I,
€ CNs*Ns_then the signal transmitted by BS can be written as follows:

S = FlBld. (623)

The power constraint at BS can be expressed as ||F1B1||% = P;, where P, denotes the total

transmit power of BS. Then, the received signal at UAV relay is given as follows:

Yur = Hls + ny,
=H,F,Bd +n,,

(6.24)

where n; € CVer denotes the zero-mean complex circularly symmetric Gaussian noise vector
at UAV relay with covariance matrix E{n;nf’} = 0?1y, € CNer*Nur Then, the received

signal after RF combining at UAV relay is written as follows:

S’u,r = Fu,rHlFlBld + Fu,rnl- (625)
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Figure 6.5. UAV-assisted mmWave mMIMO AF relaying architecture.

Ignoring the delay constraints, the transmit signal at UAV relay is given as follows:
Yutr = Fu,tFu,rHlFlBld + Fu,tFu,rnl- (626)

The power constraint of tranmsitted signal at UAV relay can be expressed as ||F, F,.[|3 =
P,, where P, denotes the total transmit power of UAV. The received signal at [oT gateway

can be expressed as follows:
Ya = HgFu,tFu,THlFlBld + HQFthu’rl’ll + o, (627)

where n, denotes the additive circular symmetric Gaussian noise such that ny ~
CN(0,021y,). After HBF at IoT gateway, the received signal can be written as follows:

S’d = WgHgFuvtFumHlWld + WgHgFu7tFu,rl’11 + Wgng s (628)
——
Desired Signal UAV Relay Noise Gateway Noise

where W; = F1B; and W, = ByF,. Then, the spectral efficiency can be calculated as:

L Q, (P PWSHLF, B HOW ) PUP1W2H2Fu,tFu,TH1W1)H\ :

1
R = ~log, Ne AN
6.29

9 Ins +

where Q! = afl[(\/EWQHQFWFW)(\/EW2H2FU¢FW)H + WQWﬂil is the covariance
matrix of Gaussian noise at UAV relay. For a UAV-assisted mMIMO IoT system, where the
UAV is deployed at a fixed height h, and relaying data to the gateway, the total achievable
rate (AR) can be maximized by the joint optimization of Fy, By, F,, F,,, Fs, By, and

x = [1,,Yo] € R?, where x represents UAV relay position, which is to be optimized within
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the given UAV flying span. Then, we can formulate the joint optimization problem as:

max R(Fb Bla Fu,ta Fu,ra F2a B27 Lo, yo)
{Fl,Bl ,Fu,tyFu,ryFZ:B%on:yn}

. 1 . 1 .
s.t. C(1 : |Fu,t(zaj)| = T |Fu,7”(la.7)| = T VZ,],

1 1
Oy |F1(i, §)] = ——, |Fa(i, §)| = ——, Vi, j,
2 ‘ 1( j)’ m‘ 2( ])‘ \/m J
Cs: E{|Isll3} < P E{|lywll5} < Pu,

C’4 * Tmin S Lo S Tmax; Ymin S Yo S Ymax,

(6.30)

where C} and Cj refer to the CM constraints due to the use of PSs for UAV and BS/gateway,
respectively. (5 indicates the transmit power constraint for UAV relay and BS, and Cy
implies UAV positioning within the given deployment region. Here, [(Zmin, Ymin) » (Tmax, Ymax)]
represents the UAV flying span in x-y plane. The optimization problem defined in (6.30)
is non-convex and intractable. To solve this problem, we sequentially develop beamforming
stages for BS, UAV and gateway based on arbitrary fixed UAV location to optimize {x,, y,}
using PSO. Then, based on optimal UAV relay position, we re-formulate RF and BB stages
for BS and gateway as well as RF beamformer/combiner for UAV based on instantaneous

channel matrices H; and Ho.

6.4.2 Joint Beamforming and UAV Positioning

To maximize the spectral efficiency (as given in (6.30)), we consider ABF for UAV
relay, where we design both transmit and receive RF beamformer/combiner and optimize
UAV location together with HBF (i.e., design of RF beamformer and BB stage) for BS and
gateway. Since the optimization problem is intractable, we first design Fi, By,
F.. F.,, Fs,By based on arbitrary fixed UAV location, and then re-formulate RF
beamformers and baseband stages for optimal UAV location using PSO. Since SVD-based
beamforming design is considered optimal for point-to-point mMIMO systems [164],
therefore the design of HBF stages for BS and gateway can be found by minimizing the
Frobenius norm of the difference between optimal unconstrained beamformers and the

corresponding HBF stages as follows:

min ||Fopt,i — F1B1||F
{FsBa (6.31)
s.t. CQ, Cg,
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where F; is the unconstrained beamformer (combiner), which is derived from SVD of
channel matrix between BS and UAV (between UAV and gateway). Using SVD, H; can be

written as follows:
H, = 9,3,V € CNurN1, (6.32)

where Q; and V, are N,, x N,, and N; x N; unitary matrices, respectively. X; is a
N, x Np rectangular diagonal matrix with non-negative real numbers on the diagonal.
Then, the unconstrained optimal beamformer for BS is formulated as Fo,.1 = Vi1, where
V) = [V11V12] € CV>Mi [164]. Using SVD, the channel matrix Hy can be written as follows:

H, = Q,%, Vi € CN2xNut, (6.33)

Then, the optimal uncostrained combiner for gateway can be formulated as Fop0 = Va1,
i.e., right singular vectors of Hy. The HBF stages Fy, By, Fy, By are designed using an OMP-
based algorithmic solution, which is outlined in Algorithm 6.1. For UAV relay, we design
transmit and receive RF beamformer and combiner based on angular location of UAV and

T e CNer is the receive phase

gateway, respectively. Let 1, = [e/Vin elV2n . elVNurn]
vector, where v,, ,, is the phase angle of the (m,n) —th entry of Q;. Then, we can formulate

the receive phase matrix W; as follows:

\I’Z — [¢1, ¢27 “e. ’¢Nu,7~] e (CNu,rXNu,r' (634)

Comparing (6.32) and (6.34), we can see that each entry of v, and Q;(n) have the same
phase angle. Using Ngp, RF chains at UAV relay, the receive RF combiner can be formulated

as:
Fo,=[$1,%2,..., N, || € CVrruNur, (6.35)

Following a similar approach, the transmit RF beamformer at UAV can be formulated by

using SVD of Hy. Then, the transmit phase matrix W! can be written as follows:
\IIZ = [cpla P2, .., LPNu,t] € CNuthNu’ty (636)

where ,, = [e/#1n eiv2n  /?Nuen]T € CNut is the transmit phase vector, where @y, is
the phase angle of the (m,n) — th entry of V. Then, using Nrp, RF chains at UAV relay,

the transmit RF beamformer can be formulated as:

Fu,t = [‘Ph $2,.. ., ‘PNRFH] S CN%tXNRFu- (637)
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After the design of RF and BB stages, the optimization problem given in (6.30) can be

reformulated as follows:

max  R(z,, Yo)
{ono} (638)
s.t. 04 * Tmin S Lo S Tmax; Ymin S Yo S Ymax-

The resulting optimization problem in (6.38) is still an NP hard and remains a
computationally challenging task. Therefore, we propose a PSO-based algorithmic solution
to optimize UAV position and sequentially update the RF and BB stages for BS, UAV, and
gateway. Initially, Z particles are randomly placed in search space, each with its own
position, velocity, and fitness value. Then, during t"* iteration, the position th) and

velocity Y of each 2z particle are updated as follows [163]:

X0 = X0 4y, (6.39)
YO = 0P 4 O (X, — XO) +eCY (X, . — XO), (6.40)

where w, p1, 2 are tuning parameters and Cgt) and Cgt) are the matrices with entries
uniformly distributed in [0, 1]. Here, each 2! particle represents the candidate position of
UAV and it iteratively updates its personal best X" and global best Xl()?st solution

best,z

during a total of T iterations as follows:

X\, = argmax R(F;,By,F,;,F,,, Fy By, X)), (6.41)
X =01, t
X\ = argmax  R(F1, By, F,,, F,, F2, By, X[ ). (6.42)

X)) Wi=01,,2,

best,z

After T iterations, we assign x = ng)t Algorithm 6.2 summarizes the proposed beamforming

and UAV deployment scheme.

6.5 Joint HBF and UAV Deployment in SU-mMIMO
Systems: Decode-and-Forward (DF) Relaying

In this section, we propose a novel approach to optimize the performance of UAV relay
systems in a dual-hop mMIMO communications network. By jointly optimizing the UAV
location and HBF design, our approach maximizes the end-to-end throughput of a UAV-

assisted mMIMO IoT communications system.
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Algorithm 6.2 Joint Beamforming and UAV Positioning

H
@

11:

12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

© PN Wy

Input: Z, T, (0,9), (x1,y1,21), (T2,92,22), (Tu,Yu,2u)-
Output: X, Fl,Bl, Fu,ta FU’T,FQ,BQ.
fort=1:2do
Compute H; using (6.1).
Find the unitary matrices @; and V; using SVD.
Fi = []7 Fres,i - Fopt,i-
for 5 =1: Ng,, do
Ti = (Ai)TFres,i~
Find the index & which maximizes (1;Y}).
= [F. ] (A7)

F;
B, = (F/'F,) Fl'F,p..

F ) Fopt,i—F;B;
res,i

[Fopt,i—FiBill
end for
B, = VP,
end for
forn=1: Ny, do
Calculate the phase of each entity of Q;, Vs.
Construct the phase vectors v,,, @,.
end for
Formulate ¥’ W via (6.34), (6.36).
Construct F,, ., F,; using Ny, via (6.35), (6.37).
for z=1:7do
Initialize the velocity as Y(*) = 0.

Each entry of X is uniformly distributed in [0, 1].

Set the personal best Xl(,glw
end for
Find the global best Xl(,glt as in (6.42).
fort=1:Tdo
for z=1:7do
Update the velocity Y as in (6.40).
Update the position X as in (6.39).
Find the personal best X\", _ as in (6.41).

= X0,

best,z
end for
Find the global best Xl()?st as in (6.42).
end for

Update F,F9,B,,By, F,;, F, , for x using steps 1-19.
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Figure 6.6. UAV-assisted mMIMO DF relaying.

6.5.1 System Model

We consider the case in which an [oT gateway is connected to various IoT devices via wire
or wireless links. ToT devices and IoT gateway are located in a remote area, which is difficult
to access directly by BS (eNodeB) due to obstacles (e.g., buildings, mountains., etc.), and
UAV is used as a dual-hop DF relay to improve the situation as shown in Fig. 6.6. Unlike
traditional static relaying, which uses fixed relay locations, we presumptively use a UAV as
DF relay. In this chapter, we underline the potential of UAV relays in future mMIMO-enabled
[oT systems with no direct link possible between BS and gateway. Let (x1,y1, 21), (Tu, Yu, 2u)
and (za,ys, 22) denote the locations of BS, UAV relay and gateway, respectively. Then,

Thi = \/(xu — ;)2 + (yu — v:)? and 7,; = |2, — 2| are the horizontal and vertical distance
between UAV & BS (i = 1) or UAV & gateway (i = 2), and 7, = \/(3:1 — x2)2 + (11 — ¥2)?
is the horizontal distance between BS and gateway.

In the system model shown in Fig. 6.7, we consider BS is equipped with N; antennas,
UAV relay with N, ,(/V,,+) antennas for receiving (transmitting) signals and gateway with Ny
antennas. We consider HBF for all nodes (i.e., BS, UAV and gateway), where BS consists of
a RF beamforming stage F, € CM>*Nrr1 and BB stage B; CV#r1*Ns | Here, Ng represents
the data streams from BS and Ngp, is the RF chains such that Ng < Ngp, < Nj to
guarantee multi-stream transmission. We consider half-duplex (HD) DF relaying, whereas
the use of full-duplex (FD) UAV relaying is left as our future work. During the first time

slot, Ng data streams are transmitted through channel H; € CVer*M Using N, antennas,
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Gateway

Figure 6.7. UAV-assisted mMIMO HBF system model.

UAV receives signals with RF stage F,, € CNrew*Nur and BB stage B,, € CNs*xNrFy
We assume UAV transmits the data in the second time slot using RF beamformer F,,; €
CNwtxNrru and BB stage B, € CVrFu*Ns through channel Hy € CN2*MNut, The received
signal at gateway is processed through RF stage Fy € CVrF2XN2 and BB stage By CNs*Vers
Here, all RF beamforming/combining stages are implemented using phase shifters and thus,

impose a constant-modulus (CM) constraint, i.e., |Fy(i,7)| = \/LNT’ |Fo.(i,j)] = \/ﬁ,

|Fo:(i,j)| = ﬁ, |F2(i, )| = \/%@ Vi, j. The design of HBF for UAV DF relaying reduces
the number of RF chains from N, ,(N,:) to Ngp,, N1 to Ngp, and Ny to Ngp, while
satisfying: 1) Ng < Ngp, < Ni; 2) Ng < Ngp, < Nyyp(Nuy); and 3) Ng < Ngp, < No.
Considering the transmitted signal is d = [dy,d, . . ., dng|T with E{ddf} = Iy, € CNs*Ns

then the signal transmitted by BS is given as follows:

S1 = FlBld. (643)

The power constraint of the beamforming matrices can be expressed as |F1B.||% = Pr,
where Pr denotes the total transmit power of BS. Then, the received signal at UAV is given

as follows:

y1 = His; +ny,

(6.44)
= H,F,Bid +n,,

where n; € CM«r denotes the zero-mean complex circularly symmetric Gaussian noise vector
at UAV relay with covariance matrix E{nnf’} = 021y, € CNer*Nur Then, the received

signal after baseband processing at UAV relay is written as:

5’1 = Bu,’rFu,rHlFlBld + Bu,rFu,rnL (645)
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UAV as DF relay uses y; to decode the information and encodes it again for transmission in

second time slot. Then, the signal transmitted by UAV is given as:
So = Fu,tBu,taa (646)

where d is the re-encoded signal at UAV relay. After transmitting via channel H,, the

received signal at gateway can be written as follows:
}72 = BQFgHgFu,tBu?ta -+ B2F2n2, (647)

where n, denotes the additive circular symmetric Gaussian noise such that n, ~
CN(0,021y,). Then, the achievable rate of first link (i.e., BS — UAV) is given as follows:

Ry = log [Tns + Q; 'B.,, HiBi B H{'B],|, (6.48)

u,r

where Q! = (02Bu,Fu,) 'F Bl and #, = F,,H,F;. Similarly, the achievable rate for
the second link (i.e., UAV — gateway) is given as follows:

Ry = log, [Ty, + Q; 'ByM,B, Bl HIBY|, (6.49)

where Q; ' = (02ByF3) 'Fy"BY and H, = FoHoF, ;. For a dual-hop mMIMO IoT system,
where the UAV DF relay is deployed at a fixed height z, and relaying data to gateway, the
achievable rate can be maximized by the joint optimization of Fy, By, Fy;, Fy ., By, By,
F,, B, and 75,1, where 75, ; represents the horizontal distance between UAV and BS, which is

to be optimized within the given UAV flying span. Then, we can formulate the optimization

problem as:
max —min(R4, Ry)
{F1.B1,Fut,But,FurBu,r,F2, B, }
1 1
st. Cr: |Fui(i,))| = —=—, |[Fu,(i,j)| = —, Yi,7,
\/ Nu,t \/ Nu,'r

(6.50)
1 |F ( >| 1

_— Z g
\/Nl’ 2\ J v Ny
Cs 0 E{|ls1]3} < Pr.E{||s2|l5} < Pr,

02: |F1(l7.])|: Vimjv

Cit Thmin < Thi < Thmaxs

where C and C refers to the CM constraint due to the use of phase shifters for UAV, BS
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and gateway, respectively, C3 indicates the transmit power constraint for UAV and BS, and
Cy implies UAV positioning within the given flying span. Here, [T min, Th.max| represents the
UAV DF relay deployment range in x-axis and y-axis. The optimization problem defined in
(6.50) is non-convex and intractable. To solve this problem, we first develop HBF stages for
BS, UAV and gateway based on arbitrary UAV location to optimize 75,1 using PSO. Then,

based on optimal UAV relay location, we re-design RF and BB beamforming stages.

6.5.2 Joint UAV Relay Positioning & Hybrid Beamforming

In this section, our objective is to jointly optimize the UAV relay location and hybrid
beamforming to reduce the channel state information (CSI) overhead size while maximizing
the throughput of a dual-hop UAV-assisted mMIMO IoT system. First, we design the RF
stages F1,Fy, ., Fyi, Fa based on the slow time-varying AoD and AoA. Then, the BB stages
B,,B,,, B, B; are developed by using SVD.

6.5.2.1 RF-Beamformers Design

We first define AoD and AoA supports as:

AoD = {sin (9) [cos (¢) ,sin (9)]|0 € 6;,6 € ¢}, (6.51)
AoA = {sin (9) [cos (¢) ,sin (9)]|0 € 6,6 € ¢, }, (6.52)

where ; = [0; — 09, 0; + 65} and ¢; = {QZ)Z - (5? , O + 5? ] denote the azimuth and elevation
angle supports, respectively. To exploit all degrees of freedom provided by the channel to
maximize the transmit (receive) beamforming gain in either channel link, we consider
selecting the columns of Fy(F, ) and F, ;(F5) from the subspace spanned by a;(a,) in first
and second link, respectively (i.e., Span {Fy,F,;} C Span (a;) and Span {F,,, Fs} C

Span (aT)). Then, the transmit RF beamformers are constructed via transmit steering

vector e (6,6) _ Mit[Leijdsin(G)cos((ﬁ)"__ ’ejzwd(/vtm,t_l)sin(e)cos(qs)]T 2
[1, ermisin@)sin(@) . prmd My —sin®sin(@)] " where M, = {Ni,N,}. We define N
orthogonal steering vectors via generating the quantized angle-pairs as A\j, = —1 + f\jj for
u = 1, ,Myy and N, = _1+i]ft;i for k¥ = 1,---,My;. The use of quanfized

angle-pairs minimizes the RF chain utilization while covering the complete AoD and AoA
supports. Then, the quantized angle-pairs inside the AoD support satisfying (7.14) are
obtained as:

(A4, 08 ) ‘ sin(0) cos(¢) € Ay, sin(f) sin(¢) € A

0 Myt Yyt

(6.53)
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where A%, = [A;t — ﬁm, Aoyt ﬁ“} is the boundary of A¥, and
Ab,= A, — ﬁ,)\’;t + ﬁyj is the boundary of A, By using (7.14) and (6.53), the
transmit RF beamformers for BS and UAV are found as:
u k
F, — [et (A;}t, A’;}t), . ,et()\xf:”’l,)\yf:”’lﬂ € CN1*Nrra (6.54)
u k
Fu,t = |:et (Ag,lﬂ Al@j}t)a e (AfoRF,u7 Ayf;’RF,u):| c (CNu,tXNRF,u (655)
Following similar approach, the receive RF beamformers can be designed via receive
o A . T
steering vector e, (0’ ¢) — MLT {1’ e—]Qﬂdsm(@) (:05((]5)7 . ’€—j27rd(/\/l,—”,-—1)sm(9) COS(¢):|
® |1, e—J2mdsin(0) sin(d))’ L ’67j27rd(My,r71)Sin(9) Sin(d’)]T’ where M, = {N% Nur} Using
quantized angle-pairs as Ay, = —1+ /2\/[“—;1 for u = 1,--- My, and X' = —1+ /2\’;; for
k=1,---, M,,, we can formulate the receive RF beamformers for U and D as:
U k T
Fupr = [ec(A, ML), e (Aa™ Ay )| € CNrmaxNur (6.56)
u k T
Fy = ler(Ash Ay ) over (Aed™ Ay )| € CXexnre, (6.57)

where the quantized angle-pairs inside the AoA support satisfying (7.15) are obtained as:

(AL, X5,) | sin(6) cos(¢) € AL, sin(6) sin(¢) € AL, (6.58)
where ~ AY, = (X, — 5 Ae, + xi-] is the boundary of A¢, and
A= — /vl11 A+ Mly -] is the boundary of A ,.

6.5.2.2 BB-Stage Design and UAV Deployment

After designing the transmit and receive RF beamformers for BS, UAV and gateway, the

effective channel matrices for first and second link as seen from the BB-stages are given as:

%1 - Fu,rHlFl (659)
Ho = FHoF,, (6.60)

By using SVD of effective channel matrix as H; = U;3; VI where U; € CNrFrxrank(Hi) and
V, € CNrrrxrank(#i) gre tall unitary matrices and X; is the diagonal matrix with singular
values in the decreasing order. Here, Nrr 1 = {Ngr1, Nrru} and Nrrr = {Nrr2, Nrru}
represents the transmit and receive RF chains, respectively. Assuming rank(H;) > Ng, V;
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can be partitioned as V; = [V, 1, V5] with V,; € CN=r77xNs  Then, the optimal B; and
B, in first link can be obtained as [165]:

P
B, =~V B,,=U (6.61)
Ns

Similarly, the optimal By and B,,; in second link can be obtained as:
B,,=UY, By=,/—V.. (6.62)

The design of RF and BB stages reduces the optimization problem given in (6.50) by

satisfying the constraints C; — C3. Then, the optimization problem can be reformulated as:

1 .
rrT1ha1X imln (Rl,Rg)

(6.63)
S.t. 04  Th,min < Th,1 < Th,max-

This resulting problem in (6.63) is still NP hard as the UAV location affects the channel
state information, which, in turn, affects the beamforming design of the RF and BB stages.
Therefore, the problem is combinatorial and involves a large search space, making it difficult
to find the optimal solution within a reasonable time frame. Hence, we propose a PSO-based
algorithmic solution for jointly optimizing UAV location and sequentially updating both RF
and BB stages for BS, UAV, and gateway. The algorithm starts with a swarm of Z particles,
each with its own position, velocity, and fitness value, which are randomly placed in search
space. Let Ti(t) and Wi(t) be the position and velocity of " particle during t* iteration,
respectively. Then, during the iterations, both Ti(t) and VVi(t) of i*" particle are updated as

follows:

) est

PN 0 gy (6.65)

(2

Wit = wW,-(t) + iz (Tb(t) Ti(t)) + M2Z2(Tb(2t,i - Ti(t))7 (6.64)

where w, 1, 1o are tuning parameters and z; and 2y are random numbers between 0 and

1. Each i particle represents the candidate position of UAV and it iteratively updates its
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Algorithm 6.3 Proposed Joint HBF and UAV Positioning and HBF Algorithm
Input: Z,, T, (0,9), (z1,y1,21), (T2, Y2, 22), (Tus Yu, Zu)-
Output: 7,1, F1, By, Fuy, Buy, Fu,, Buy, Fa, By,
Formulate transmit RF beamformers using (6.54), (6.55).
Formulate receive RF beamformers using (6.56), (6.57).
Using (6.59), (6.60), form the unitary matrices U; and V;.
Construct BB stages via (6.61), (6.62).
fori=1:7,do
Initialize the velocity as WZ-(O) =0.

Each entry of Ti(o) is uniformly distributed in [0, 1].

Set the personal best Tb(o) ©

: end for

: Find the global best Tb(ggt as in (6.67).

: fort=1:T7Tdo

fori=1:7,do
Update the velocity W\ as in (6.64).
Update the position 7 as in (6.65).
Find the personal best Tb(zit,i as in (6.66).

end for

Find the global best 7.7, as in (6.67).

: end for

21: Update By, By, B, ;, B, for 7,1 using steps 1-4.

,_.
@

est,i =T

e T e e e e T e
@ L X P Tk Wy

personal best and global best solution during a total of T iterations as:

1 . .
Tl)(éiti =  argmax —min (Rl(ri(t N, Ro(r" ))), (6.66)
7 ) e =0,1, 2
1
Ty = agmax omin (Ri(rgl, ). Ra(rcd ) (6.67)
) Wi=0,1, 7, ’ ’

After T iterations, we assign 7,1 = T}E?best. Algorithm 6.3 summarizes the proposed joint
HBF and UAV relay deployment scheme. The developed algorithm is applicable to both

fixed and movable nodes.
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6.6 Joint HBF and UAV Deployment in MU-mMIMO
Systems: Decode-and-Forward (DF) Relaying

In this section, we consider a UAV-assisted MU-mMIMO systems, where a DF relay in the
form of a UAV facilitates the transmission of multiple data streams from BS to multiple IoT
users. A joint optimization problem of HBF, UAV relay positioning, and power allocation
(PA) to multiple IoT users to maximize the total achievable rate (AR) is investigated. The
study adopts a geometry-based mmWave channel model for both links and proposes three
different swarm intelligence-based algorithmic solutions to optimize: 1) UAV location with
equal PA; 2) PA with fixed UAV location; and 3) joint PA with UAV deployment. The
radio frequency (RF) stages are designed to reduce the number of RF chains based on the
slow time-varying angular information, while the BB stages are designed using the reduced-
dimension effective channel matrices. Then, a novel DL-based low-complexity joint hybrid
beamforming, UAV location and power allocation optimization scheme (J-HBF-DLLPA) is
proposed via fully-connected DNN, consisting of an offline training phase, and an online

prediction of UAV location and optimal power values for maximizing the AR.

6.6.1 System Model

The present study delves into a challenging scenario where multiple IoT devices are
connected to an IoT gateway through either wired or wireless links. This setup is situated
in a remote area that is difficult to access directly by BS/eNodeB due to various obstacles
such as buildings, mountains, etc. Then, a UAV is introduced as a dual-hop DF relay to
access the IoT users, as depicted in Fig. 6.8. We assume that there is no direct link between
BS and IoT devices due to severe blockage. In contrast to traditional static relaying, which
relies on fixed relay locations, we investigate the potential of using UAVs as DF relays for
future mMIMO-enabled IoT systems where direct link communication between BS and IoT
node ends is not feasible. It is important to note that the algorithms proposed in Sections I1I
and IV are not only limited to fixed/static node locations but can be applicable to movable
nodes (i.e., dynamic environment). Let (24, s, 25), (Tu, Yu, 2u) and (g, yg, 2;) denote the
locations of BS, UAV relay and k" IoT node, respectively. We define the 3D distances for a
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Figure 6.8. Network model of UAV-assisted relaying in MU-mMIMO IoT systems.

UAV-assisted mmWave MU-mMIMO IoT system as follows:

71 =/ (@0 — 1) + (Y — 90)? + (2 — )2
Tok =/ (0 — 2 + (Y — )2 + (20 — 22)? (6.68)

T = \/(wb — )%+ (Yo — yu)* + (2 — 2)?

where 71, 7o and 75 are the 3D distance between UAV & BS, between UAV and k' ToT
node, and between BS and k' IoT node, respectively.

In the system model shown in Fig. 6.9, we consider BS equipped with Ny antennas, UAV
relay with N, antennas for receiving and N; antennas to serve K single-antenna [oT nodes
clustered in G groups, where ¢ group has K, IoT nodes such that K = 25:1 K,. For the
downlink transmission of Ng = K data streams, we consider HBF for BS and UAV, where BS
consists of a RF beamforming stage F, € CN**V&r, and BB stage By, € CN2#» X Here, Ngp,
is the RF' chains such that Ng < Npp, < Np to guarantee multi-stream transmission. We
consider half-duplex (HD) DF relaying, whereas the use of full-duplex (FD) UAV relaying
is left as our future work. During the first time slot, K data streams are transmitted
through channel H; € CN*N7_ Using N, antennas, UAV receives signals with RF stage
F,, € CVeroXNr and BB stage B,, € CK*Vrru, We assume UAV transmits the data in
the second time slot using RF beamformer F,; = [fu,t,la e ’f'thvNRFu] € CNexNerw BB
stage Byt = [but1, -, burx] € CNeFueXE and MU PA matrix P = diag(\/p1,---,/PK) €

CHE*K through channel Hy € CK*Nt where p;, reflects the allocated power to k" user. The
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Figure 6.9. System model of UAV-assisted DF relaying in MU-mMIMO IoT networks.

implementation of all RF beamforming/combining stages involves the use of PSs and thus,
impose a CM constraint, i.e., |Fy(i, 7)| = ﬁ, |Fo.(i,7)| = ﬁ’ |Fo(i,j)] = \/#th Vi, j. The
design of HBF greatly reduces the number of RF chains, for instance, from Ny RF chains to
Ngp, for BS, from N;(N,) RF chains to Ngp, for UAV whilst satisfying: 1) K < Ngp, < Nr;
and 2) K < Npp, < N,(N;). For the data signal d = [dy,ds,...,dg|" with E{dd”} = I

€ CK*K the signal transmitted by BS is given as follows:
s1 = F;Byd. (6.69)

Let Pr be the total transmit power of BS. The design of F;, and B, satisfies the power
constraint |F;By||% = Pr. Then, the received signal at UAV is:

y1 = His; +ny,

(6.70)
= HlFbBbd +ny,

where n; € CVr denotes the zero-mean complex circularly symmetric Gaussian noise vector at
UAV relay with covariance matrix E{n;nf’} = 021y, € CN-*Nr. Subsequently, the received

signal after baseband processing at UAV relay is written as follows:
5’1 = B%TFU,THlF{,Bbd + BW«FWnl. (671)

UAV as DF relay uses y; to decode the information and re-encodes it for transmission in

second time slot. Then, the signal transmitted by UAV is:

sy = F,,B,,Pd, (6.72)
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where d is the re-encoded signal at UAV relay. After transmitting via channel H,, the

received signal at k™ IoT node in ¢'* group can be written as:

_ 1T _ 1T 3
Yo = h2,gks2 + N2,9, = h2,ngu7tBu7th + Mgy s

Kg
T 3 T 3
= vpgkh2,ngu7tbu,t7gkd9k + Z \/pg,;hzngu,tbwt,g,; dgfc
k+#k

Desired Signal

Intra-group interference (673)
G Ky
T A
+ Z Z \/pthQ,ngu,tbumqkqu + N,
979 k=1 ~

Noise

Inter-group interference

where g, = k + Zg;ll K, is the IoT node index, hy, € C™ is the channel vector between
UAV and corresponding IoT node, and ng, denotes the complex circular symmetric Gaussian
noise distributed as CA/(0, ¢2). Then, the achievable rate of first link (between BS and UAV)
is:

Ri (Fy, By, Fyr, Buy) = log, [T + Q1 'B,, 1y BB H{'BY

u,r

: (6.74)

where Q' = (02Bu,Fu,) 'F B and #, = F,,H,F,. Similarly, the total AR for the
second link (between UAV and multiple IoT nodes) is based on the instantaneous SINR,

which is given as:

pgk ’hgk‘Fuvtbuatvgk |2

Ky H 2 G Ky H 2 2 (6.75)
ch;ﬁk Dy, |h2,kFu,tbu,tvg,;| + Zq;ﬁg Z;;?gk Dg; |h2,kFu7tbu7t,q1;| +o

SINR,, =

By using the instantaneous SINR, the ergodic sum-rate capacity of the second link R, for
the UAV-assisted mmWave MU-mMIMO IoT systems can be written as:

G Ky
Ry (Fus By, P ) = E{Z S* Eflog, (1 + SINRgm}. (6.76)

g=1k=1

6.6.2 Problem Formulation

Considering the UAV is positioned at a fixed height z,, and operates as DF relay, the
total AR can be maximized by the joint optimization of the beamforming stages ¥y, By, F, 4,
F.,, B,; and B,, with optimal PA matrix P and UAV positioning x, = [z,,y,]’ € R

Here, x, represents the 2-D UAV deployment in a given flying span. Then, we can formulate
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the optimization problem as follows:

max Ry
{szBvau,t7Bu,t7Fu,r7Bu,r7P’xo}
1 1
st. Oy |Fuili,§)] = ——, [Fu, (i, §)] = ——, Vi, 7,
1 | ,t( j)| \/ﬁt| 7< ])| m J

1
02 : |Fb(7'7.]>| = T Vi7j7
VNT (6.77)

Cy: E{|ls:[l3} < Pr,

K
Ci: E{llsall3} =, bl yFL Fusbusr < Pr,
Cs: pp >0, Vk,

06 * Xmin S Xo S Xmax

where Ry = %min(Rl, Rs) is the total transmission rate from BS to multiple ToT devices
under DF protocol, C and C refers to the CM constraint due to the use of PSs for UAV
and BS, respectively, C5 and C} represents the transmit power constraint for BS and UAV,
respectively, C is the non-negative allocated power to each IoT node, and (s implies UAV
deployment within the given flying span. Here, [Xmin, Xmax] = [(Zmin, Ymin); (Tmax, Ymax)]
represents the UAV deployment range in 2-D space. The optimization problem defined in
(6.77) is non-convex and intractable due to the following reason: 1) the CM constraint at
each RF stage; and 2) fractional programming variables are entangled with each other. To
solve this challenging problem, we propose three different PSO-based algorithmic solutions
in Section 6.6.3, which can achieve a near-optimal solution in finding optimal PA P and UAV
deployment x,. Then, in Section IV, we introduce a novel low-complexity DL-based solution,
which can reduce the runtime while providing similar performance to proposed PSO-based

solutions.

6.6.3 Joint HBF, PA and UAV Location Optimization

In this section, our objectives are to reduce the CSI overhead and the number of RF
chains, while mitigating the inter-user interference to maximize the total achievable rate of
a dual-hop UAV-assisted MU-mMIMO IoT systems. In this regard, we consider the joint
optimization of the UAV location, PA to multiple IoT users, and HBF design for BS and
UAV. Since the optimization problem is intractable, we first design
Fy,, By, F..,F,, B, B,, based on some fixed UAV location, and then re-formulate RF
and BB stages for the optimal UAV location as well as adjusting the allocated power in the
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MU PA block P by using three different algorithmic schemes: 1) optimal PA for fixed UAV
location; 2) UAV location optimization for equal PA; and 3) joint UAV location

optimization and optimal PA.

6.6.3.1 RF-Beamformer Design

The design of RF stages Fy, F, ., F, ; intends to maximize the beamforming gain for the
desired signals expressed in (6.71) and (6.73). We design the RF stages F,F,,,, F,, based
on the slow time-varying AoD and AoA. By using (6.1), the effective channel for first link

can be written as follows:
H,=F, HF,=F,,A"Z, AVF, (6.78)

To maximize the transmit (receive) beamforming gain and exploit all degrees of freedom
(DoF) provided by the first channel, the columns of F;(F, ) should belong to the subspace
spanned by A (A ) Thus, we should satisfy Span (F;) C Span(Af)) and Span (F,,) C
Span(Agr)). Here, it is worthwhile to mention that the transmit (receive) phase response
matrix Agt) (AgT)) is a function of slow time-varying AoD(AOA) information. Thus, the AoD

and AoA supports for first channel are defined as follows:

AoD = {sin(@)[cos(gzﬁ), sin(qb)]‘@ col) pc qbgt)}, (6.79)
AoA = {sin(0)[cos(¢),sin()]|0 € 61", ¢ € ¢}, (6.80)

where 95’5) = UCCZI[HQ — 55’329,9 + 5(t)9] and qb(t = U2, [of t) 5%’56 : 5‘2 + cﬁtm denote
the azimuth and elevation AOD supports of first Channel respectlvely. Similarly, HY) =
ug, [HYC) - 5&)9, HYC) + 5529] and ¢\" = UC, [(bl ) _ §ne ", (r . )+ 5 } represent the azimuth
and elevation AoA supports of the channel between BS and UAV, respectively. Then, the

transmit RF beamformer F} is constructed via transmit steering vector as follows:

1 . .
| pi2mdsin(6) cos(@) .
\/NI,T[ ’ C

1 {17 ef2mdsin(6)sin(9)
Ny

6j27rd(NgD,T—l)sin(9) Cos(qﬁ)} T®

’ej%d(zvy,T—l)sm(e)smw)}T, (6.81)

To reduce the RF chains utilization while covering the complete AoD and AoA supports,

we define the quantized angle-pairs as: A;Lf;) =—-1+ ?\?—Tl for n = 1,---,N,r and
/\5%) = ?\Z_; for k=1,---,Nyr. Here, N, 7 and N, 1 are the antenna elements along
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x and y axis, respectively. Then, the quantized angle-pairs inside the AoD support
satisfying (6.79) are obtained as:

(Any) Apy)) | sin(0) cos(e) € ALY, sin(0) sin() € A, ), (6.82)
where ,\ng) = [A:(If)_ﬁ7AZ(If)+N1T] is the boundary of )\ZS), and

)\k(lf) = {)\k(ﬁ) — NlT,)\k(t) + —T} is the boundary of /\ . By using (6.79) and (6.82), F,

y7 y7 7
can be written in the form of transmit steering vector as:

F, = [ (t) (/\x b(t)v )\lﬂ(t))7 . 7eét) ()\ZZRF;, (t)7 /\kNRFb(t))] c CNrxNrr, (6.83)

y,b y,b

Following similar approach, we can design the UAV receive RF stage via receive steering

vector as follows:

e1(17") (9’ ¢) _ [17 €—j27rdsin(6) COS((b)’ . 7€—j27rd(Nw,,»—1)sin(t9) cos(¢)]T®
\/ Nx,r
#[1, efj27rdsin(9) sin(qﬁ)7 . 7€7j27rd(Ny7T71)sin(0) sin(d))]T' (684)
Ny,
Using quantized angle-pairs as )\gqu) =-1+ 2](}; form=1,---,N,, and )\’;( -1+ QNkwl

for k=1,---,N,,, the UAV receive RF stage can be formulated as:

F,, = [ ()\”1

T,u )

)\kl r)) e r)( ZZRF (r) )\kNRFu ))}T c CNRFHXNT, (6.85)

u

where the quantized angle-pairs to provide AoA support while satisfying (7.15) are obtained

as:

(A, AR) \ sin(6) cos(¢) € A2, sin(0) sin(¢) € ALY, (6.86)
where A;fg;) = [)\”(’") - ﬁ,)\%j) + Nir} is the boundary of )\qu , and
AR = [XE0) — 2 NGO 4 2] is the boundary of AEG). After the design of Fy, F,, RF

stages, the UAV transmlt RF stage is designed to support K IoT users, which are clustered
into G groups based on their AoD information. Here, each group g contains K, number of
IoT users such that K = Zle K,. The index g; = Zg;ll Ky + k is used to denote the k™
[oT user in group g. According to the user groups, we design G different sub-blocks for the
UAV transmit RF stage as F,;, = [Fui1,Fuio,- - ,Fuig] € CVoNrru o where
F,., € CNe*Nrrug denotes the RF beamfomer for group ¢ such that Ngp, = 25:1 Nrr, ,-

Then, Hy = HyF, ; € CE*Nerru s the reduced-size effective channel matrix seen from UAV
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T
transmit baseband stage B, ;. By defining Hy = [H;l, . ,H;G} € CE*Nt the effective

channel matrix for second link can be expressed as:

Hy Fouin HyiFuio ... HpiFouic
H22Fut1 H22Fut2 H22FutG

Ho = : . . ; (6.87)
HocF,.1 HocFu:2 ... HocFuic

where the diagonal block-matrix He, = HyFo g = Zoy Ay F,, is the effective channel
matrix for group g and the off-diagonal block-matrix Hs; = Hy (F 1 g = Zo A2 ;F, ; is the
effective interference channel matrix between groups g and §,V§ # g. The RF beamformer

matrices are designed to eliminate inter-group interference as:
Azngu7t7g ~ 07 vg # g and g? g = 17 Tt 7G' (6-88)

To design F,;, which can satisfy the above zero condition, the columns of F,, , should
belong to the intersection of the null spaces of Ay, i.e., Span (Fy.4) C Nyzg Null (Agy).
Moreover, in order to maximize the beamforming gain, the columns of F,;, should belong
to the subspace spanned by A, g, i.e., Span(F,;,) C Span(As,). Thus, the intersection
of Span (A, ,) and Null (A3 ;),V§ # g, should not be empty to obtain the RF beamformer
matrix satisfying the above conditions. Similar to the design F;, the AoD support of the
group g can be expressed as the union of AoD supports for all IoT user in the corresponding

group as:

AoD, = {Sin(Q)[cos(gb),sin(gb)HQ €60,,.0c ¢2.g}, (6.89)

emin

max] _ [ ) A A 1 .
59 0oy } = {mmlgw 02,9,.5- MaXa g, 4 Hgggk,g} is the elevation angle support

where 0, , = {
for group g and ¢o 4 = [ gj;“, g};ﬂ = [minz,gk,g $2,9,.5» MaAX2 g, ¢2»9k7§} is the azimuth angle
support for group g. To achieve Span (F,;,) C Span(A.,), the columns of the UAV

transmit RF beamformer for the group g can be constructed as:
Fu,t,g = {e(ut) (()07 19) ‘ (907 19) € AODg}a (690)

where ¢ = sin 6 cos ¢ and ¢ = sin 0 sin ¢ represent the beam directions for the UAV transmit

steering vector for uniform rectangular array (URA), which is defined as follows:

el (. 9) = e, (p) @ &), (V). (6.91)

Y,
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Then, we can construct the UAV transmit RF beamformer for each group ¢ based on the

quantized angle-pairs as:

zu ) T\yu

Fu,t,g _ {et ()\m Q) )\kl(t )7 o

6.92

R P o

where )\:qut) = [)\ni(t) — ,)\gzu + ﬁ] is the boundary of A;zu , and
)\'?jfl(f) = [)\’y“fg) ,)\'y“u ﬁ} is the boundary of /\’?jfy). The BS and UAV RF-stage

designs do not requlre the fast time-varying instantaneous CSI and it is only based on the
slow time-varying AoD/AoA information. Particularly, the design of BS and UAV RF
beamformers require only four angular parameters, which are the mean of elevation and
azimuth AoD (AoA) and their angular spread.

6.6.3.2 BB-Stage Design

After designing the RF beamforming stages, we design the BB stages B, and Bq(],';i)
based on the effective channel matrix H; (as given in (6.78)). By using singular value

decomposition (SVD), we can write:
H, =U, 5,V (6.93)

where U, € CNrruxrank(H1) and V, e CNrryxrank(H1) gre tall unitary matrices and 3 is
the diagonal matrix with singular values in the decreasing order such that
¥y = diag(of, -+, 07y uppy)) € CroFHXTenk) = Assuming rank(H,) > K, Vi can be
partitioned as V| = [V, Vo] with Vi, € CY27*X | Then, the BB stages By, and B, for
BS and UAV can be obtained as follows [165]:

P
B, = ,/%Vl € CNrry K (6.94)

B,, = U € CF*Nrru, (6.95)

Similarly, the reduced-size effective CSI H, given in (6.87) is employed for the UAV transmit
BB stage design. We consider joint-group-processing (JGP) technique as designed in [90,
98,166]. The design of BB stage B, ; not only reduces the intra-group interference but also

mitigate the residual inter-group interference remaining after RF beamformer design. By
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applying the RZF technique, B, ; is defined as follows:
B,:= (7'[5[7{2 + BNRFUINRFH)‘l’)-Lf € CNrru <K (6.96)

where [ = Ii—; is the regularization parameter and Iy, € CNrruXNrFW — The power
constraint (i.e., Cy in (6.77)) will be adjusted by designing multi-user PA block P in
Section 6.6.3.3.

6.6.3.3 UAYV Deployment and Multi-User Power Allocation
After the formulation of RF beamformers ¥y, F, ., F,; and BB stages B;, B, By,
the optimization problem for maximum achievable rate can be formulated as follows:

{IlelaX} RT(Fb7 Bba Fu,t7 Bu,ta Fu,m Bu,ra P7 Xu)

K
st Co: E{llsol3} =>0, bl FlFuibu < Pr, (6.97)
Cs: pr >0, VE,

C’6 © Xmin S Xo S Xmax)

where Ry is defined in (6.77). Even though the CM constraints for the RF beamformers and
transmit power constraint for BS (i.e., C, Cy and Cj given in (6.77)) are satisfied via the RF
and BB stages developed in Section 6.6.3.1 and 6.6.3.2, the updated optimization problem
in (6.97) is still non-convex due to the joint dependence of both the allocated powers py,
and the UAV location x, = [z,,,]7 on the SINR expression in (6.75), which is used in the
sum-rate Ry calculation as given in (6.76). To overcome this challenge, we propose different
PSO-based algorithmic solutions, which employ multiple agents, called particles, to explore
the search space of objective function given in (6.97). Initially, Z, particles are randomly
placed in search space, where each particle communicates with other particles to share their
personal best solution and update the current global best solution for the objective function.
The particles then move iteratively for T iterations to reach the global optimum solution.
Our PSO-based algorithms rely on two components, deterministic and stochastic, to guide
the motion of the particles. The deterministic component utilizes knowledge from global
and personal best solutions, while the stochastic component involves random movements.
The proposed PSO-based algorithmic schemes are as follows: 1) optimal PA for fixed UAV
location; 2) UAV positioning for equal PA; and 3) joint UAV positioning and optimal PA.
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6.6.3.3.1 Optimal PA for Fixed UAV Location In this problem, we allocate optimal
MU power values P for a fixed UAV location x,. Then, the i*" particle at the t** iteration

represents an instance of the PA matrix as follows:

= diag(\/p\), - ,\/Pi) € RIK, (6.98)

where, ¢ = 1,---,7Z, and t = 0,1,---,T are the particle index and iteration index,
respectively. The objective function RT(Fb,Bb,Fu,t,Bu,t,FU,T,BW,PE”,X“) is calculated
after evaluating the personal best and communicating for the global best solutions for each

th particle. The particles move from PZ@

to PEHl) until the maximum number of iterations
is reached. To satisfy the transmit power constraints Cy and Cj given in (6.97), we define

the following:

"= - = a 6.99
) E{|F.B.P"d| ) szzmiiibﬁt,kbu,t,k’ (6.99)

where (a) follows the unitary property of UAV transmit beamformer (i.e., FILF,; = Iy, ).

The normalized PA matrix is given as: P{" = diag( \/]E, \/7 ) € RK xK Wlth p(t)
[0,1]. Here, Pgt) satisfies the transmit power constraints for any PZ() by defining Pgt) =
(t)f’() The PSO-based optimal PA solution is defined by two variables: the position
PE ) € REXE and velocity W € RE*K Initially, the diagonal entries of P{” are uniformly
distributed over the range [0, 1], while the velocity is set as Wl(o) = 0. During the iterations,

the velocity and position matrices of i'® particle are updated as follows:
Wi = Y (PLL - PY) 4+ Y (Pl — PV + 5" WY, (6.100)

P = dclip(P + clip(Wi™, [winin s wmax ]), [0, 1]), (6.101)

where v, and 7, are the learning parameters for the global best Pl()?st and the personal best

Pf)te)st i %Ef) = u— i(,uu p) is the inertia parameters with the upper bound ,uu and lower
bound y; for decreasing the velocity as the number of iterations increases, Y and Y, ()
are the random diagonal matrices with the uniformly distributed entries over [0, 1], Wy, and
Whax denote the minimum and maximum acceptable velocity for the particles, respectively.
Here, clip (z, [a, b]) = max(a, min(z, b)) is used to prevent exceeding the maximum /minimum

tth

acceptable velocity and normalized power. Then, at iteration, the personal best of the
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Algorithm 6.4 Proposed Joint HBF and Optimal PA for Fixed UAV Location (J-HBF-
PSOPA-FL) Algorithm
1 Input: Z,T, (6,9), (x1,v1,21), (Tu, Yu, 2u)-
Output: P, Fy,, By, F,.;, Bys, Four, By
Formulate BS RF and BB stages using (6.54), (6.94).
Formulate UAV receive HBF stages using (6.56), (6.95).
Construct UAV transmit HBF stages via (6.92), (6.96).
fori=1:7Zdo
Initialize the velocity as WEO) =0.
Each entry of 152(0) is uniformly distributed in [0, 1].
Set the personal best Pgﬁm = 15,50).
end for
: Find the global best f)é?st
: fort=1:7 do
for:=1:7do
Update the velocity W' as in (6.100).
Update the position P! as in (6.101).
Find the personal best P{fe)sm as in (6.102).
end for
Find the global best P{") as in (6.103).
: end for
P = m Pl

—_ =
= O

as in (6.103).

[ e e e e e
@ L 2P TRy

~.
+
=

particle and the global best over Z, particles are respectively obtained as follows:

Pl = argmax Rp(Fyp, By, Fup,Bus Fup Buyy sl PY x,), (6.102)
P e =01, t
P _ ar R ®)  p
best — gmax T<Fb7 Bb7 Fu,ta Bu,ta Fu,ra Bu,r7 ’ibest,inest,ﬂ Xu)? (6103>
Pl Vi=01, .7,
Finally, the multi-user PA matrix can be derived as follows:
P = “gs)tpl(azs)tv (6.104)

where nfjgst can be calculated by substituting f’,@t into (6.99). The summary of the proposed

PSO-based optimal PA for fixed UAV location with HBF is outlined in Algorithm 6.4.
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6.6.3.3.2 UAV Positioning for Equal PA In this problem, we optimize UAV location
Xy = [Ty, yu)T in a given deployment span for fixed MU PA matrix P, which is defined as:

P = el € CK*F, (6.105)

where ¢ is the normalization factor used to satisfy the power constraints Cy4, C5, and can be

written as follows:

Pr
tr E{dHE THFEF,  TH,}

= (6.106)
where T = (HYH, + aNgp, 1 Nar,) - Since the number of feasible UAV positions required
to search space is (‘“"E"Tj‘“> X (%), where A, and A, represents the search space
resolution, hence, we propose a PSO-based algorithmic solution to find optimal UAV position
while maximizing Ry. Following a similar approach as in Section 6.6.3.3, the i'* particle at
the t'" iteration now represents an instance of the UAV location as:

X = [0 4O ¢ R (6.107)

7

Here, the corresponding particle ¢ represents the candidate UAV position and calculates the
objective function as RT(Fb,Bb,Fu,t,Bmt,Fu’T,Bw,P,XEt)). Then, the position XZ(-t) and

velocity VZ@ are updated as follows:

th—l—l) _ Xl(t) + Vgt-l—l)’ (6108)
VI IR, ) v R, ) A 0VE (600
Then, the personal and global best solutions for i** particle during #* iteration are obtained
as follows:
X]E)tgst,i = argmax RT<Fb7 Bba Fu,ta Bu,t> Fu,ra Bu,r, P, th*)), (6110)
X vie=0,1,-- t
X, = argmax  Rp(Fy, By, Fup, By Fup B, PLXL, ), (6.111)

XM =01, .7,

best,’

After T iterations, we update x, = X,@t. The pseudo-code is given in Algorithm 6.5, which

summarizes the proposed PSO-based UAV positioning for equal PA with HBF.
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Algorithm 6.5 Proposed Joint HBF and UAV Deployment for Equal PA (J-HBF-PSOL-
EQPA) Algorithm
Input: Z,, T, (0,9), (z1,y1,21), (Tus Yus Zu)-
Output: x,, P, Fy, By, Ft, By, Foup, By,
Formulate BS RF and BB stages using (6.54), (6.94).
Formulate UAV receive HBF stages using (6.56), (6.95).
Construct UAV transmit HBF stages via (6.92), (6.96).
fori=1:7,do
Initialize the velocity as VZ(D) =0.
Each entry of XEO) is uniformly distributed in [0, 1].
Set the personal best Xg)e)st,i = XEO).
end for
: Find the global best Xgi)st as in (6.111).
: fort=1:7do
fori=1:7,do
Update the velocity Vl(t) as in (6.109).
Update the position XZ(-t) as in (6.108).
Find the personal best ngstvi as in (6.110).
end for
Find the global best ngst as in (6.111).
: end for
- Xo = Xl(ajezt
21: Update By, B, B, for x,.

6.6.3.3.3 Joint UAV Positioning and Optimal PA In this problem, we jointly
optimize UAV location x, = [z4,%,]7 and P, which are given by (6.98) and (6.107),

respectively. To solve this non-convex optimization problem, we propose a PSO-based

e T e e e e e e
@ L X NPT Wy D

algorithmic solution to optimize x, and P whilst maximizing the total achievable rate Rp.
Here, the " particle at the ¢ iteration now represents an instance of the UAV location

and multi-user PA matrix, which is given as follows:

35 = (XU PO = 2V g \/7 F e RE+2, (6.112)

where each particle 7 represents the candidate UAV position and PA to K 10T users, and
calculates the obJect1ve functlon as Rr(Fy, By, Fui, Byt Fur, Bus k; Pt) Xt)). Here,

= diag( \/pl,i, /D) € RN is the normalized PA matrix with ﬁ,(:z € [0,1] and

t)

similar to Section III-C1, the transmit power constraints for any P§ are satisfied by

defining P = £"P". Then, the position JV) ».i and velocity J ffz for i particle during ¢
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Algorithm 6.6 Proposed Joint HBF, UAV Location Optimization and PA (J-HBF-
PSOLPA) Algorithm

1 Input: Z,T, (6,9), (x1,v1,21), (Tu, Yu, 2u)-
2 OUtPUt Xo P) Fb7 Bb) Fu,t7 Bu7t7 Fu,r; Bu,r'
3: Formulate BS RF and BB stages using (6.54), (6.94).
4: Formulate UAV receive HBF stages using (6.56), (6.95).
5: Construct UAV transmit HBF stages via (6.92), (6.96).
6: fori=1:7do
7: Initialize the velocity as J 202 =0.
8: Each entry of J, 0- is uniforrnly distributed in [0, 1].
9: Set the personal best Jp besti = Jz(,?z.
10: end for
11: Find the global best Jp best @8 in (6.116).
12: fort=1:7T do
13: fori=1:7do
14: Update the velocity J 2 as in (6.114).
15: Update the position J 2 as in (6.113).
16: Find the personal best Jp best @8 in (6.115).
17: end for
18: Find the global best J) pbest @8 in (6.116).
19: end for
20: X, = Jg(f;o)est’ P = "’il(oje;s)tPl(DQt
21: Update By, B, ;, B, for x,.
iteration are updated as follows:
I =30 g, (6.113)
T = Y (3 = IpD) + 0 Ty = Tp0) + 57300, (6.114)
Finally, the personal and global best solutions for i** particle during ¢** iteration are obtained
as follows:
I i = argmax  Rp(Fy, By, FopByy Fy, By, sl P X)), (6.115)
30D ver=0,1, t
30 = L argmax Rr(Fy, By, Fug Bu Fup Bu, ri P LX), (6.116)
thbest i’ Vi= ’Zp

After T iterations, we update x, = X](Qt and P = n](agtf’ggt. Algorithm 6.6 gives the

pseudo-code of the proposed PSO-based joint UAV positioning and optimal PA with HBF.
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Figure 6.10. Block diagram of offline supervised learning and real-time prediction in

J-HBF-DLLPA algorithm.

6.6.3.4 Low-Complexity DL-Based Joint Power Allocation and UAV

Positioning

The proposed joint HBF, PA and UAV location schemes can achieve near-optimal
capacity for a UAV-assisted MU-mMIMO IoT systems. Additionally, compared to the
computationally expensive exhaustive search method, the proposed solutions offer higher
computational efficiency. However, as the number of IoT users increases, the proposed
PSO-based solutions require more iterations and longer run time, which may render them
impractical for real-time online applications of UAV-assisted MU-MIMO IoT systems. To
address this challenge, we propose a low-complexity DL-based algorithm, called
J-HBF-DLLPA, which can achieve a near-optimal AR while maintaining a reasonable run
time. The proposed algorithm has two phases, as illustrated in Fig. 6.10: 1) Phase 1
applies the offline supervised learning via the optimal allocated power and UAV location
values calculated by J-HBF-PSOLPA; and 2) Phase 2 runs the trained J-HBF-DLLPA
algorithm for predicting the allocated powers and UAV location in the real-time online
applications. Therefore, the remaining part of this section focuses on the deep neural
network (DNN) architecture, loss functions, dataset preparation, and training process for
the proposed low-complexity J-HBF-DLLPA algorithm.

6.6.3.4.1 Proposed Deep Neural Network Architecture We employ a
fully-connected DNN architecture with four hidden layers as depicted in Fig. 6.11, which
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aims to predict the optimal allocated powers for K IoT users as well as UAV optimal
location in a given deployment span. We consider L; neurons in each i hidden layer (HL)
with ¢ = 1,--- ;4. As shown in Fig. 6.10, the proposed J-HBF-DLLPA algorithm uses the
effective channel matrix between UAV and K IoT users H, € CE*Nrru given in (6.4), and
the UAV transmit BB stage B,; € CNerv*E given in (6.96) as inputs, which are first
subject to feature scaling and vectorization operations. Subsequently, the input layer
feature vector is derived as:

W1Zfl2 )

W1Zf12 P

o= | Pest | R, (6.117)

w2zbu,t,K

W3ZBB,

L W4ZBB,inv,u,t i

where Lo = (2N;+2Ngp, +2) K is the input feature size, z;, = [Re(ﬁ{k), Im(flsz)]T € R?M,

— T T \T 2Ngr _ hH ... hH T K

Zb, e = [Re(bu,t,k>71m(bu,t,k)] eR * ZBBL = [bu,t,lbu,t,b 7bu,t,Kbu,t,K] € R™ and
= (-1 .. 1 7 K i - i

XBBinv.ut? = g T b BT Kbu,t,K] € R"™ are respectively the non-scaled input feature

vectors for the effective channel, UAV transmit BB stage, the gain of each BB precoder vector
and its inverse. By implementing the maximum absolute scaling [167], the corresponding
scaling coefficients are calculated as:

wr = max (|28 |- |2k ) (6.118)
Wy = max (|Z€W71 FEEE |Z€u,t,K|)_1 (6.119)
ws = max (b, bl bl b )T (6.120)
wy =max (bl bl -+ bl (bl ). (6.121)

The proposed algorithm utilizes the maximum absolute scaling technique to scale the input
feature vector between -1 and 1 (i.e., zg € (—1,1]), which prevents certain features from
dominating the learning process. In the offline supervised learning process, the optimal
power allocation and UAV location values are calculated as the output labels via the
computationally expensive J-HBF-PSOLPA algorithm. Similar to the input features, we

also apply the maximum absolute scaling to the optimal allocated powers and UAV
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Figure 6.11. Deep neural network architecture for J-HBF-DLLPA algorithm.

location as follows:

Lo
T, = 0,1 6.122
%o = max(aegy) < 01 (6:122)

_ Yo
JYR L — 1 12
bo = moaxteyy € 101 (6.123)

opt

_ P
e = Opt’f e € [0,1]. (6.124)
max(pl y T apK )

To perform non-linear operations, we adopt the rectified linear unit (ReLU) as the activation
function in the hidden layers (i.e., f.(z) = max(0,z). Therefore, using the input feature
vector of zg given in (6.117), the output of i** hidden layer is computed as z; = f,(U;_12;_1 +
b; 1) € RL ) where U;_; € RLixEi-1 and b;_; € R% are the weight matrix and bias vector,

respectively. To ensure that the predicted output values are between 0 and 1, we apply the

i Jrel_oo). Thus, the predicted power and

UAV location values via the DNN architecture are written as follows:

sigmoid function at the output layer (i.e., f,(2) =

[ﬁhﬁ%"' 7]51(7‘%0’@0] = fU(U4Z4+b4) (6125)
= [o(Uafr(Us [ (U2 f- (U f:(Uoxo + bo) + b1) + b2) + b3) + by).
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6.6.3.4.2 Loss Functions We here consider two loss functions by using the predicted
and optimal power values: 1) mean square error (MSE); and 2) mean absolute error (MAE).
When there are S, network realizations in the dataset, the MSE loss function is given by:

Lt = o 35S s = ) S = 802+ S — 1) (6.126)
MSE_STKZ- Pki — Pk Sr- 0 0 S Yo — Yo) - .

=1k=1

Similarly, the MAE loss function is written as:

EMAE —

5. K
Z Z — Pl + = Z |To — Zo| + 5 Z 1Yo — ol (6.127)
i=1 k=1 Sr i Srio

The weight matrices U; and bias vectors b; of the DNN architecture are updated by back-
propagating the gradients of the loss function from the output layer to the input layer. This
helps in reducing the loss and accurately predicting the optimal allocated power and UAV
location values, and thus, maximizing the total AR as expressed in (6.97).

6.6.3.4.3 Data Generation & Training Process We generated a dataset of S, =
100.000 = 10° network realizations to train the proposed DNN architecture, as shown in
Fig. 6.10. For each realization, we randomly varied the path gains, AoD parameters, and
UE location to generate the channel vector for each UE as given in (6.3). The corresponding
optimal allocated powers and UAV location are calculated via the J-HBF-PSOLPA algorithm
6.6 (Section 6.6.3.3.3) and stored in the dataset. The total available dataset was split into
80% for training and 20% for validation for the offline supervised learning process (i.e., Phase
1). After completing the offline supervised learning process, the online power allocation and
UAV location (i.e., Phase 2) is tested with a purely new test dataset. The DNN architecture
for the proposed J-HBF-DLLPA algorithm is implemented using the open-source DL libraries
in TensorFlow [168].

6.7 Illustrative Results

In this section, we present the Monte-Carlo simulation results based on the proposed
algorithmic solutions. Table 6.2 outlines the simulation setup based on the 3D micro-cell
scenario [90] for the results discussed hereafter. Moreover, for PSO-based results, we use
Z,=20,7 =7 =2and y3 = 1.1.
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Table 6.2. Simulation Parameters

Number of antennas (N, Ni, N,) = 144
Number of paths Path loss exponent L=10 3.6
Frequency Channel Bandwidth 28 GHz 100 MHz
Noise PSD Reference Path Loss o —174 dBm/Hz 61.34 dB
BS/Gateway height UAV height 10 m 20 m
User groups # of users per group G=1lor2 K, = %
UAV x-axis range UAV y-axis range [Tmins Tmaz] = [0,100] M | [Ymin, Ymaz) = [0, 100] m
Mean AAoD/AAoA (1% link) Mean AAoD (27 link) 120° ¢y = 21°4+120°(g — 1)
Mean EAoD/EAoA (1 link) Mean EAoD (27 link) 60° 0, = 60°
Azimuth/Elevation Angle Spread # of network realizations +10° 2000
Minimum horizontal distance 7, i | Maximum horizontal distance 7, min 0 100 [m]

6.7.1 Spectral Efficiency

In this section, we compare the spectral efficiency of the proposed PSO-based algorithmic
solutions for a UAV-assisted MU-mMIMO IoT systems. To achieve this, we first analyze the
rate of each link individually for a fixed UAV location and transmit power Pr = 20 dBm.
Specifically, we consider that the BS is located at (xy, yp, 25) = (0,0, 10), the UAV is deployed
at fixed location (zy, Yy, z.) = (50,50,20) and the IoT users are randomly distributed and
located at a far distance from BS (zg,yx) € [50,100]. We then compare the optimal UAV
location for maximizing the capacity of the first link using two schemes: 1) exhaustive search;
and 2) the proposed PSO-based UAV deployment and equal PA (J-HBF-PSOL-EQPA) over
a given deployment span of [(Zmin, Ymin)s (Tmax, Ymax)] = [0, 100]. The results show that the
optimal location for the UAV to maximize the capacity of the first link is close to the BS, as
demonstrated in Fig. 6.12(b). Furthermore, the proposed J-HBF-PSOL-EQPA can find the
global optimal solution for almost 95% of the realizations, as shown in 6.12(a). Fig. 6.13
plots the rate of first link R; using J-HBF-PSOL-EQPA versus different 2-D UAV locations,
which shows similar performance to exhaustive search solution presented in Fig. 6.12(b).

Fig. 6.14 analyzes the total rate of second link Ry for exhaustive search and J-HBF-PSOL-
EQPA. Due to the randomness in the placement of the IoT users, finding a single optimal
UAV location that covers all loT users while minimizing interference is a challenging task.
However, the proposed J-HBF-PSOL-EQPA can find optimal UAV placement close to global
solution as depicted in Fig. 6.14(a). Fig. 6.15 plots the AR of second link versus different
UAV 2-D locations for Pr = 20 dBm, which shows that UAV placement by the proposed
J-HBF-PSOL-EQPA can give higher AR when compared to UAV deployed at some fixed
location. Fig. 6.16 compares the AR versus transmit power Pr of the proposed HBF
solution for four cases: 1) PSO-based UAV location and PSO-based PA (J-HBF-PSOLPA);
2) PSO-based UAV location and equal PA (J-HBF-PSOL-EQPA); 3) fixed UAV location and
PSO-based PA (J-HBF-PSOPA-FL); and 4) fixed UAV location and equal PA (FL-EQPA).
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Figure 6.12. Comparison of AR R;. (a) Number of realizations for best UAV location
using J-HBF-PSOL-EQPA. (b) Contour plot using exhaustive search.
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Figure 6.13. Achievable rate R; versus (x — y)-coordinates at Pr = 40 dBm.

The results show that all proposed algorithmic schemes can increase the total capacity of a
UAV-assisted MU-mMIMO IoT systems when compared to the FL-EQPA case. Comparing
the single optimizations (i.e., PSO location-EQ PA and fixed location-PSO PA), we can
see that optimizing UAV location only can provide a higher AR than allocating optimal
power to multiple IoT users. However, in a highly dynamic environment, where the IoT
users are far located and randomly distributed, the joint optimization of UAV location and
power allocation can achieve higher spectral efficiency (i.e., Rpsor—psora > Rpsor-rqpa >
RrL_psopa). Moreover, compared to FL-EQPA case at Pr = 40 dBm, the proposed J-HBF-
PSOPA-FL, J-HBF-PSOL-EQPA, and J-HBF-PSOLPA schemes can increase the total AR
by 77%, 155%, and 200%, respectively. We also compare the performance with the existing
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Figure 6.15. Achievable rate Ry versus (x — y)-coordinates at Pr = 40 dBm.

HBF solutions. For instance, compared to HBF schemes presented in [70,130], the proposed
J-HBF-PSOLPA can provide a higher AR. Similarly, compared to the iterative successive
approximation (ISA) algorithmic solution in [169], which requires full CSI, the proposed
J-HBF-PSOLPA can provide better performance with reduced CSI overhead size.

6.7.2 Buffer-Aided Transmission

Section 6.7.1 of this study presents a comparison of different proposed PSO-based

algorithms for conventional relaying in UAV-assisted wireless systems, i.e., UAV receives
the data transmitted by BS in first time slot, decode the data, and then forwards it to
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Figure 6.16. Total AR Ry versus Pr for different proposed algorithmic schemes.

multiple IoT users in the second time slot. This pre-scheduled approach may not perform
well in UAV-assisted wireless systems because the channel qualities (i.e., H; and Hy) can
vary significantly with time, preventing the UAV relay from exploiting the best
transmitting and receiving channels. In addition, unlike static relays, UAVs can fly close to
BS, store the data in a buffer, and then fly close to multiple IoT users. The results in
Section 6.7.1 are based on a fixed optimized location for the UAV relay, which can increase
the rate of one link but may degrade the rate for other link 2. To fully exploit the potential
of a mobile relay and to further maximize the capacity of a UAV-assisted MU-mMIMO IoT
systems, we propose a buffer-aided UAV relay that can store the data in a buffer while
transitioning from one optimal location for link 1 to an optimal location for link 2. By
considering two possible locations for UAV, we can maximize the SINR for each link,
leading to a higher total rate.

In Fig. 6.17, we compare AR versus transmit power for UAVs with buffer and without
buffer. For the buffer-aided UAV, we consider two scenarios for delay-unconstrained
applications. In FL-EQPA, we consider UAV is deployed at fixed location (z,,y, = 50, 50)

and multiple IoT users have equal PA. However, the UAV does not transmit in consecutive

2Since Ry is the minimum of (Ry, Ra), therefore UAV is deployed close to multiple users to maximize
Ra, however, it increases the pathloss for first link, which results in slight rate degradation for Ry (Fig. 6.12
- 6.15).
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Figure 6.17. Total AR Ry versus Pr for buffer-aided transmissions.

time slots. In the second scenario, J-HBF-PSOLPA, we consider two different UAV
locations (close to BS for link 1 and close to multiple IoT users for link 2) and do not use
pre-scheduled transmissions. The results show that using buffers at UAV can significantly
increase the capacity (e.g., from 10 bps/Hz for FL-EQPA (without buffer) to 62 bps/Hz for
J-HBF-PSOLPA (with buffer) at Pr = 40 dBm, which represents more than five fold
increase in capacity). It is important to note that we assume a buffer size as B = oo, and
thus, it represents a performance upper bound for a UAV-assisted MU-mMIMO IoT
system in a delay-constrained transmissions. For delay-unconstrained transmissions, the
average delay tends to oo as B — oo. However, with the simple heuristic modifications
proposed in this subsection, the proposed algorithmic solutions for delay-unconstrained
transmission can also be employed for delay-constrained transmission at the expense of a
small performance degradation due to the delay constraint. Let D denote the waiting time
(delay) experienced for a bit transmitted from the BS to the multiple IoT users via UAV
relay equipped with buffer and having queuing size () bits. Then, for the HD UAV-assisted
MU-mMIMO ToT systems, we use Little’s Law to relate D to . Let A\ = min(Ry, Rz) be
the arrival rate, then we can express D as [170]:

Q

= . 6.128
mil’l(Rl,Rg) ( )
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Figure 6.18. Average delay D versus transmit power Pr.

We assume a first-in-first-out (FIFO) queuing mechanism for the UAV buffer, where the
UAV receives data from the BS at a rate of Ry, and transmits it to the IoT users at rate of Ry
incurring a delay D due to queuing bits @ of buffer . Fig. 6.18 plots the average delay versus
transmit power Pr for the cases of: 1) FL-EQPA; and 2) J-HBF-PSOLPA. It can be seen
that for a fixed queuing size of () = 2 bits, increasing Pr can result in reduced average delay
due to an increased AR for both cases. However, the proposed J-HBF-PSOLPA can reduce
the average delay by approximately 50% when compared to FL-EQPA. In Fig. 6.19, we plot
average delay versus queuing size () for a fixed transmit power Pr = 20 dBm. As expected,
higher queuing size results in increased delay. However, by utilizing the proposed J-HBF-
PSOLPA, we can decrease D by more than 140% (e.g., at Q = 8 bits, D can be reduced
from 0.48s to 0.2s). Finally, we compare the average delay versus Pr and @ for FL-EQPA
and J-HBF-PSOLPA in Fig. 6.20. Our results show that the proposed J-HBF-PSOLPA
can significantly reduce the average delay for any combination of Pr and (). Thus, it can

be applied to both delay-unconstrained and delay-constrained applications in UAV-assisted
MU-mMIMO IoT systems.

3Tt is important to note that the arrival rate R; is greater than the departure rate Ry for the given
system (i.e., Ry > Rg), the stability of the system is still guaranteed due to the assumption of min(Ry, Rs)
being used as the arrival rate. This ensures that the overall arrival rate is always less than or equal to the
departure rate, which is necessary for the stability of the system.
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Figure 6.19. Average delay D versus queuing size ().

6.7.3 Low-Complexity DL-Based Performance

In this section, we present the results obtained using the proposed low-complexity J-
HBF-DLLPA algorithm and compare its performance with that of J-HBF-PSOLPA. Table
6.3 outlines the hyper-parameters for the proposed DNN architecture, which is given in
Fig. 6.11. Fig. 6.21 exhibits the MSE performance for training and validation datasets
under varying learning rates a = {0.001,0.01,0.03,0.1} over a total of 15 epochs. The
larger values of «, such as 0.1 and 0.03 result in higher validation error, which requires a
significant number of iterations to converge. In contrast, smaller values of @ = 0.01 and
0.001 can provide lower MSE for validation dataset, even with a few epochs. Notably,
MSE —9.001 < MSE,—0.01 < MSE,—p03 < MSE,—¢.1, which emphasizes the importance of
appropriately choosing the learning rate. Similarly, Fig. 6.22 compares the MSE performance
for training and validation datasets with different numb<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>