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”The greatest glory in living lies not in never falling, but in rising every time we fall.”

Nelson Mandela
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Abstract

The ITU’s 2030 (6G) framework focuses on enhancing terrestrial networks by
integrating aerial communications for peak data rate, ubiquitous coverage, and sensing. In
this regard, massive multiple-input multiple-output (mMIMO) is considered as a key
enabling technology for large-scale deployments in beyond 5G mobile networks. By
utilizing a large number of antennas at base station (BS), mMIMO enables state-of-the-art
hybrid beamforming (HBF) and MIMO techniques that are powerful tools for improving
end-user experience and capacity in both uplink and downlink. The two-stage HBF
architecture is considered a promising solution in mMIMO systems to provide high data
rates with much-reduced hardware complexity/cost. We aim to address a set of objectives,
including antenna array configurations, beamforming optimization, interference
suppression, sum-rate maximization, improved energy efficiency, high self-interference
suppression (SIS) quality, and unmanned aerial vehicle (UAV) deployment to enhance both
coverage and capacity in terrestrials and UAVs-assisted terrestrial networks.

First, we study different two-dimensional (2D) and three-dimensional (3D) array
structures, which can be used at BS to support both aerial and ground users. We consider
half-duplex communications and investigate how the system performance can vary based
on (i) users angular location, and (ii) number of users. In this regard, we design HBF
schemes based on users angular locations to reduce multi-user (MU) interference. We also
examine the use of low-resolution hardware components (e.g., digital-to-analog converters
(DACs), phase shifters) and their impacts on the system performance.

Secondly, we explore full-duplex (FD) communications. We aim to mitigate strong
self-interference (SI) and maximize the total achievable rate based on over-the-air (OTA)
measurements of the SI channel measured in an anechoic chamber for a sub-6 GHz
frequency band. By using perturbation-based HBF for SI suppression and by exploiting
spatial degrees-of-freedom (DoF) due to the use of large antenna arrays, our objective is to
bring the SI level down to the noise floor, thus avoiding the use of costly/complex analog
cancellation circuits commonly used in FD circuitry. We propose different HBF solutions,
which can suppress SI up to 80 dB by optimizing (i) variable gain-controllers, (ii)
perturbing the directed beams, and (iii) selecting the best Tx/Rx antenna pairs.

Finally, we consider a UAV-assisted terrestrial system to address the coverage and
capacity issues by employing the UAVs as a relay between BS and multiple users. The high
mobility and easy deployment of a UAV can provide an additional DoF to improve the
overall capacity in mMIMO systems by addressing the signal fading, attenuation issues as
well as providing coverage to obscured/inaccessible users. However, the optimal
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deployment of UAV within a given flying span remains a challenging task. To maximize
the total achievable rate in dual-hop mMIMO systems, we investigate a joint HBF solution
by optimizing both UAV location and power allocation to multiple users, and sequentially
designing the HBF stages for BS and UAV. The RF stages are designed based on the slow
time-varying angular information, while the BB stages are designed using the
reduced-dimension effective channel matrices. Then, we aim to develop a deep
learning-based low-complexity joint HBF solution via a fully connected deep neural
network, consisting of an offline training phase, and an online prediction of UAV location
and optimal power values for maximizing the achievable rate while significantly reducing
the runtime by 99%. Later on, we further extend the performance analysis to multiple
UAV-assisted terrestrial systems, which can support many users in a dynamic environment,
providing greater network coverage and capacity.
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Sommaire

Le cadre 2030 (6G) de l’UIT vise à améliorer les réseaux terrestres en intégrant les
communications aériennes pour un débit maximal, une couverture omniprésente, et une
meilleure détection. La technologie massive MIMO (mMIMO) est considérée comme
essentielle pour les déploiements à grande échelle au-delà de la 5G. Grâce à un grand
nombre d’antennes à la station de base (BS), le mMIMO permet des techniques avancées
de formation de faisceaux hybrides (HBF) et MIMO, améliorant l’expérience utilisateur et
la capacité en liaison montante et descendante. L’architecture HBF à deux étages est
prometteuse pour fournir des débits élevés tout en réduisant la complexité et les coûts
matériels. Nous visons à optimiser les configurations d’antennes, le beamforming, la
suppression des interférences, la maximisation du débit, l’efficacité énergétique, la
suppression de l’auto-interférence (SIS) et le déploiement de drones pour améliorer la
couverture et la capacité dans les réseaux terrestres assistés par UAV.

Nous étudions différentes structures de réseaux 2D et 3D pouvant être utilisées à la
station de base pour prendre en charge les utilisateurs aériens et terrestres. Nous
considérons les communications semi-duplex et analysons les performances du système
selon la position angulaire des utilisateurs et leur nombre. Nous concevons des schémas
HBF basés sur ces positions pour réduire les interférences multi-utilisateurs (MU), et
examinons l’impact de l’utilisation de composants matériels à faible résolution
(convertisseurs numérique-analogique, déphaseurs) sur les performances.

Nous explorons ensuite les communications full-duplex (FD) pour atténuer
l’auto-interférence (SI) et maximiser le débit total réalisable. En utilisant le HBF basé sur
les perturbations pour la suppression du SI, et en exploitant les degrés de liberté spatiaux
grâce aux grandes antennes, nous cherchons à ramener le SI au niveau du bruit de fond,
évitant ainsi des circuits d’annulation analogiques coûteux et complexes. Nous proposons
des solutions HBF pouvant réduire le SI jusqu’à 80 dB en optimisant les contrôleurs de
gain variables, les faisceaux dirigés perturbés, et la sélection des meilleures paires
d’antennes Tx/Rx.

Enfin, nous envisageons un système terrestre assisté par UAV pour résoudre les problèmes
de couverture et de capacité, en utilisant les UAV comme relais entre la station de base et
plusieurs utilisateurs. La mobilité et la facilité de déploiement d’un UAV offrent un degré de
liberté supplémentaire pour améliorer la capacité globale des systèmes mMIMO en traitant
les problèmes d’évanouissement et d’atténuation du signal, tout en fournissant une couverture
aux utilisateurs inaccessibles. Cependant, le déploiement optimal d’un UAV reste un défi.
Pour maximiser le débit total réalisable dans ces systèmes mMIMO, nous explorons une
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solution HBF conjointe en optimisant à la fois l’emplacement du UAV et l’allocation de
puissance, et en concevant successivement les étapes HBF pour la station de base et le
UAV. Nous développons également une solution HBF conjointe à faible complexité, basée
sur l’apprentissage profond, permettant une prédiction en ligne de l’emplacement optimal
du UAV et des valeurs de puissance pour maximiser le débit tout en réduisant le temps
d’exécution. Nous étendons cette analyse à des systèmes terrestres assistés par plusieurs
UAV, capables de supporter de nombreux utilisateurs dans un environnement dynamique,
offrant ainsi une couverture et une capacité réseau accrues.
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Chapter 1

Introduction

1.1 Overview of 5G and Beyond

Over the years, the evolution of cellular networks from the first generation (1G) to the
fifth generation (5G) had a profound impact on different aspects of our life. Particularly,
the world has seen a rapid digital transformation in the last few years that has changed the
way people communicate, conduct business and search for information. A critical element
of this digital transition is wireless connectivity [1, 2]. It is expected that 5G and beyond
(B5G) networks will pave the way towards realizing the individuals technological aspirations
including holographic telepresence, e-health, pervasive connectivity in smart environments,
massive robotics, three dimensional massive unmanned mobility, augmented reality, virtual
reality, and internet of everything [3]. In this regard, the following statistics highlight the
significant increase in data traffic in the next few years:

• According to the International Telecommunication Union (ITU), the annual data traffic
increase between 2020 and 2030 is estimated to be around 55%, which can reach 606
exabytes (EB) per month in 2025 and 5016 EB per month in 2030 as shown in Fig.
1.1 [4].

• It is expected that the number of smart devices will surpass 38.9 billion by 2029 (an
increase of 148 % when compared to 15.7 billion devices in 2023) [5, 6].

• As per ITU, the overall mobile data traffic will reach 5 zettabytes (ZB) per month [7].

The explosive increase of mobile data traffic is real, driven primarily due to the increased
use of smart phones, tablets, video streaming services as well as machine-to-machine
(M2M) connections. Hence, with billions of low-power consumption devices, such as
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Figure 1.1. Global mobile data traffic forecast by ITU (source Cisco).

wireless sensors, connecting to the internet through the Internet of Things (IoT)
framework, there is a significant increase in both energy demand and data traffic. Hence,
the need for a new generation of highly scalable cellular networks is inescapable. In
particular, this new generation should:

• have a highly scalable and flexible architecture to support various services and
applications, such as massive device connectivity in IoT and M2M communications;

• provide larger capacity and improved coverage, while reducing the complexity and cost
of ultra dense network deployment;

• be able to make efficient use of different spectrum resources, including both licensed
and unlicensed bands as well as high frequency and low frequency bands;

• improve network energy efficiency to adapt to the performance requirements of different
applications and services;

To meet the above requirements and to cope with the challenges of ever increasing mobile
data traffic as well as demands for much higher data throughput, 5G of cellular networks,
also known as 5G new radio or 5G NR, is now becoming a reality. In 2018, the first full
set of 5G NR standards were announced by 3rd Generation Partnership Project (3GPP) in
release 15 (5G NR phase 1) [8,9], followed by release 16 in 2020, which drove 5G NR phase 2
expansion [10]. Currently, 5G NR networks are being deployed globally, and many 5G-ready
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smart devices (e.g., cell phones and tablets) are starting to come to market. ITU has defined
the following three requirements for 5G NR, each to be fulfilled for one of the three 5G usage
scenarios [11].

• peak data rate of 10-20 Gbps (required for the enhanced mobile broadband (eMBB)
[12]).

• 1 million connected devices per square kilometer (required for massive machine type
communication (mMTC) [4]).

• less than 1 ms latency (required for ultra reliable low latency communications (URLLC)
[8,13]).

The channel capacity is represented by the amount of information bits that can be reliably
transmitted to a destination and is given as:

Capacity [bps] = Bandwidth [Hz]× Spectral Efficiency [bps/Hz]︸ ︷︷ ︸
log2(1+SINR)

, (1.1)

which is defined by two factors: (i) operating bandwidth, and (ii) the
signal-to-interference-plus-noise ratio (SINR). To fulfill the challenging use cases of future
wireless systems for enhanced data rates and coverage, it is essential to consider advanced
transmission techniques such as massive multiple-input multiple-output (mMIMO) systems
and beamforming. These techniques are particularly effective in improving SINR by
focusing signal energy towards the intended receiver and reducing interference.
Additionally, exploring new frequency spectrums, such as millimeter-wave (mmWave)
communications and sub-terahertz (sub-THz) communications can provide higher
bandwidth. The integration of unmanned aerial vehicles (UAVs) as relays can further
enhance SINR by providing line-of-sight paths and reducing interference. Moreover, the
effective utilization of limited bandwidth resources through techniques like full-duplex (FD)
communications can increase capacity by simultaneously transmitting and receiving on the
same frequency band, though this also requires sophisticated interference management to
maintain a high SINR.
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1.2 MIMO to Massive MIMO: A Paradigm Shift in
Wireless Technology

Multiple-input multiple-output (MIMO) technology revolutionizes wireless
communication by deploying multiple antennas at both the transmitter and receiver ends.
This approach significantly enhances capacity and performance by mitigating challenges
like path loss and multipath fading that typically degrade wireless signals. Unlike
traditional single-antenna systems, MIMO capitalizes on multipath propagation, exploiting
the various channel conditions between each antenna pair to provide additional degrees of
freedom (DoF). MIMO technology is designed to deliver two key benefits: (i) spatial
multiplexing gain, which allows the transmission of parallel data streams without the need
for extra bandwidth, thereby boosting spectral efficiency and data rates, and (ii) diversity
gain, which leverages distinct channel paths to improve signal quality, reducing errors and
enhancing reliability. However, a balance must be struck between these benefits, known as
the diversity-multiplexing trade-off. Over the past 15 years, MIMO has become a
cornerstone of modern wireless standards, including LTE and WiFi [14–16]. For example,
LTE-Advanced supports configurations up to 8x8 MIMO, showcasing its integral role in
advancing wireless communication technology [17].

Massive MIMO represents a significant evolution in MIMO technology by addressing
the need to serve multiple users simultaneously with enhanced efficiency. Unlike traditional
MIMO systems, which primarily focused on point-to-point communication between two
devices with multiple antennas, mMIMO is designed for multi-user MIMO scenarios [18].
Here, a base station (BS) equipped with a large array of antennas can simultaneously serve
many users, each with a single antenna. This allows for the multiplexing gain to be shared
among all users, significantly boosting spectral efficiency and network capacity. The large
number of antennas in mMIMO systems also enables the use of simple linear signal
processing techniques, to efficiently manage interference and optimize performance across
all users, making mMIMO a cornerstone technology for 5G and beyond. The
third-generation partnership project (3GPP) has recognized the potential of mMIMO,
standardizing deployments of up to 256 antennas at BS in its Release 17 [8].

1.2.1 Benefits

The deployment of large antenna arrays and the capability for 3D beamforming in
mMIMO systems offer several key benefits:
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• High Spectral Efficiency: In multi-user mMIMO (MU-mMIMO) systems, large
antenna arrays allow a BS to serve multiple users simultaneously on the same frequency
band. Consequently, mMIMO technology enhances both spectral efficiency and overall
network capacity.

• Improved Interference Management: The narrow beams generated by large
antenna arrays in mMIMO systems significantly reduce inter-user interference (IUI).
Advanced beamforming techniques not only enhance the desired signal power but
also suppress interference power.

• High Energy Efficiency: Large antenna arrays in mMIMO systems reduce
downlink and uplink transmit powers through advanced beamforming techniques.
This enhancement in array gains leads to higher energy efficiency, which is crucial for
certain mMTC applications.

• Scalability: Massive MIMO systems are highly scalable, making them well-suited for
future expansions in wireless networks. This scalability ensures that as the demand for
data and connectivity grows, mMIMO systems can be adjusted to meet these increasing
needs without substantial changes to the existing infrastructure.

• Flexibility in Deployment: The advanced beamforming capabilities of mMIMO
systems provide greater flexibility in deployment scenarios. This includes support
for both terrestrial and non-terrestrial networks (NTN), making it easier to integrate
satellite communications and other emerging technologies.

1.2.2 Challenges

Although mMIMO technology offers substantial benefits, its practical implementation in
5G and beyond wireless networks brings several technical challenges. Key challenges include:

• High Hardware Costs and Complexity: One of the most significant obstacles is
the high cost and complexity of hardware. Traditional MIMO systems typically rely
on fully digital beamforming (FDBF), where each antenna element is associated with
its own radio frequency (RF) chain, digital-to-analog converters (DACs) for
transmission, analog-to-digital converters (ADCs) for reception, mixers, and other
components. In mMIMO systems, the large number of antenna elements dramatically
increases hardware costs and power consumption. While substantial beamforming
gains can reduce transmit power without compromising spectral efficiency, the high
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power consumption of these hardware components can significantly impact energy
efficiency.

• Substantial Channel Estimation Overhead: In mMIMO systems using traditional
FDBF techniques, estimating the high-dimensional channel state information (CSI) is
crucial for effective beamforming. The increased number of antennas leads to higher
channel estimation overhead. Given a fixed coherence time (the period during which
the channel remains stable), acquiring extensive CSI requires longer pilot transmission
times, which in turn reduces the time available for data transmission. This increased
overhead can negatively affect effective spectral efficiency. For example, as the number
of antennas approaches infinity, the required pilot transmission length could surpass
any finite coherence time, resulting in zero effective spectral efficiency. Therefore, it
is essential to develop new beamforming methods that require less CSI overhead for
mMIMO systems.

• High Computational Complexity: As the size of the antenna array increases, so
does the size of the channel matrix. Applying conventional MIMO signal processing
algorithms to tasks such as beamforming, channel estimation, and signal detection
involves large-scale matrix computations (e.g., matrix inversions, multiplications,
singular value decompositions (SVD), and determinants), leading to higher
computational complexity.

• Dynamic and Unpredictable Channel Conditions: The integration of UAVs
introduces highly dynamic and rapidly changing channel conditions due to their
mobility and varying altitudes. This makes channel estimation and beamforming in
mMIMO systems more challenging, as traditional techniques may not adapt quickly
enough to these variations [19].

The advantages of mMIMO technology significantly enhance 5G and future networks,
enabling support for emerging services, particularly eMBB and mMTC applications.
However, to fully exploit these benefits in both terrestrial and UAV-assisted terrestrial
networks, it is vital to address the technical challenges. This necessitates the development
of advanced, low-complexity signal processing techniques to reduce hardware costs,
complexity, and channel estimation overhead.

Hybrid Beamforming (HBF) has been proposed as a promising solution for mMIMO
systems [20]. Unlike the conventional single-stage FDBF, HBF divides the beamforming
architecture into two stages: an analog RF stage and a digital baseband (BB) stage,
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interconnected by a reduced number of RF chains. This HBF architecture helps mitigate
the technical challenges of high hardware cost and complexity, large CSI overhead, and
increased computational demands. A detailed comparison of beamforming architectures
will be presented in Section 2.1.

1.3 UAV-Assisted Terrestrial Communications

With the advent of advanced wireless communications and networking technologies, a
new era of innovation has emerged with IoT at its forefront. The potential applications of
IoT are vast, ranging from healthcare and urban environments to households [21]. However,
deploying IoT effectively and extensively still poses significant challenges, including
efficient information transfer between wireless nodes and gateways. To address this issue,
various routing schemes have been proposed, including direct transmission or relay
structures. Nonetheless, when the distance between the IoT end node and the gateway is
substantial, direct transmission may not be feasible or may consume excessive power. In
such cases, communication through relay can be a more power-efficient alternative.
Moreover, deploying cellular stations in urban areas can be a costly and challenging task,
which can further complicate the communications coverage issue in the IoT framework [22].
UAVs, commonly referred to as drones, are viewed as a key component of the next
generation of wireless communications networks. UAV as a relay offers several advantages
over traditional static relays. Specifically, the ability to deploy on-demand, mobile relaying
systems at a relatively low cost and in a timely manner, makes them particularly
well-suited for unforeseen or short-term events, such as emergency situations or network
offloading [23]. Furthermore, the high mobility of UAVs allows for the dynamic adjustment
of their locations to optimize communications conditions, a technique particularly
promising for delay-tolerant applications, such as periodic sensing and the transfer of large
data [24–26]. UAVs’ capability to reach inaccessible locations makes them a viable option
for future IoT applications, as they can fly close to IoT devices, sequentially collect sensing
data, address coverage issues, and reduce IoT communications networks’ overhead [19].

The incorporation of UAVs as relay nodes in wireless sensor networks (WSNs) has the
potential to augment communications capacity by connecting remote sensor gateways and
addressing the escalating data-rate demands in applications such as virtual reality,
device-to-device communications, and smart cities. UAVs can be deployed at high altitudes
to increase the likelihood of line-of-sight (LoS) dominated air-to-ground communications
channels, thereby supporting high-rate communications. However, the severely congested
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sub-6 GHz bands can be inadequate to meet the rising data rate requirements. In contrast,
millimeter-wave (mmWave) communications, with their abundant spectrum resources, can
potentially support the high-throughput and low-latency requirements of various UAV
application scenarios [27]. Nonetheless, mmWave signals suffer from high propagation loss,
including free-space path loss, atmospheric and molecular absorption, and rain attenuation.
This challenge can be surmounted by leveraging mMIMO technology with large array
structures to generate high beam gains in UAV-assisted terrestrial systems, which can
improve the transmission range and simultaneously suppress interference among IoT nodes
by utilizing the advanced capabilities of three-dimensional (3D) beamforming.

1.4 Thesis Contributions and Organization

Massive MIMO refers to utilizing a large number of antennas at BS for improving data
rates through spatial multiplexing in single-user mMIMO (SU-mMIMO) and multi-user
mMIMO (MU-mMIMO) operation modes. By concentrating signal energy into smaller
regions through substantial beamforming gains, mMIMO ensures remarkable advancements
in transmission quality in both uplink and downlink directions. The existing studies in
mMIMO systems focus on the use of one-dimensional array (i.e., uniform linear array
(ULA)), which has been a common array configuration in literature. However, it can not
accommodate a very large number of antenna elements, which is important to support a
large number of users. Moreover, it creates two important issues: (i) spatial inefficiency,
and (ii) restriction to illuminate both azimuth and elevation angles at the same time.
Additionally, despite effective precoding/combining solutions, the performance in mMIMO
systems can significantly vary due to the following: (i) UE/device angular location, and (ii)
UE/device distance from the BS (e.g., users obscured due to buildings, mountains., etc.).
Therefore, the antenna configuration can play an important role in serving a large number
of users (both ground and aerial) for future IoT applications. In this regard, ITU’s
IMT-2030 (6G) framework focus on enhanced capabilities (refers to the key performance
indicators of peak data rate, latency, connection density, mobility, and reliability) as well as
new capabilities (refers to key parameters of ubiquitous coverage, sensing, sustainability,
resilience, and positioning). Thus, to enable these new capabilities, future wireless
networks are expected to adopt an integrated terrestrial and NTN architecture. This thesis
targets a set of objectives, including 2D/3D array configurations, beamforming
optimization, interference suppression, sum-rate maximization, improved energy efficiency,
high self-interference suppression (SIS) quality, low channel estimation overhead, and UAV
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deployment to enhance both coverage and capacity in terrestrials and UAV-assisted
terrestrial networks. The remainder of this thesis is organized as follows.

Chapter 2 presents an overview of the beamforming architectures and MU-mMIMO
system model. Then, we present a literature review of different relaying schemes in wireless
networks. Afterwards, we review different SIS techniques used in FD communications.
Finally, we discuss how artificial intelligence (AI) and machine learning (ML) can help
solve non-convex optimization problems in wireless communications with less complexity
and more reliability.

Chapter 3 investigates different 2D array configurations to be used at BS for enhanced
capacity in mMIMO systems. We design three HBF architectures: (i) HBF using
full-resolution PSs and DACs, with a baseband transfer block for constant-modulus RF
beamformer, (ii) HBF using b-bit PSs and full-resolution DACs, with an orthogonal
matching pursuit (OMP) based algorithm that can approach the optimal unconstrained RF
beamformer, and (iii) HBF using b-bit PSs and q-bit DACs, taking into account also DAC
quantization noise. The proposed HBF schemes not only reduce the hardware
cost/complexity by utilizing a limited number of RF chains but also lower the CSI
overhead size by designing RF-stage via slow time-varying CSI (i.e., angular information).
Therefore, the reduced-size effective CSI is utilized during the BB-stage design. We
compare the spatial, spectral and energy efficiencies of HBF designs for different
antenna-arrays. In the illustrative results, we show that the proposed HBF schemes achieve
higher sum-rate and energy efficiency than other HBF benchmarks.

Chapter 4 compares the performance of various 3D array structures in the design of HBF
for mmWave MU mMIMO systems. The proposed HBF scheme involves two stages: (i) RF
beamforming based on SVD of the channel matrix, and baseband MU precoding based on
the instantaneous effective baseband channel to mitigate MU-interference by a regularized
zero-forcing (RZF) technique. The illustrative results show that, in comparison to 2D arrays,
3D array structures can provide high spectral and energy efficiencies as well as non-varying
achievable rate independent from the user angular location. Thus, 3D structures can be
useful in supporting both terrestrial and non-terrestrial communications.

In Chapter 5, we propose different novel full-duplex hybrid beamforming (FD-HBF)
techniques to enhance the overall capacity in mMIMO systems based on over-the-air
(OTA) measurements of the SI channel. Our objective is to leverage the spatial DoF in
mMIMO systems to enhance FD capacity without the need for expensive analog
SI-cancellation circuitry. For a single uplink, single downlink user setup, we develop both
constant modulus (CM) and non-constant modulus (NCM) RF-stages via slow
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time-varying angular information in order to maximize the intended signal power and
suppress the strong SI power. Particularly, both CM and NCM RF-stages are constructed
for the following schemes: (i) maximizing the directivity towards the intended direction
and suppressing the strong SI power via orthogonal beams, (ii) introducing beam
perturbations within an allowed directivity degradation to minimize SI power, and (iii)
selecting best Tx/Rx sub-array indices jointly with beam perturbation for enhanced SI
suppression. Afterwards, the BB-stages are built via the reduced-size effective intended
channel. The illustrative results show that FD-HBF significantly suppresses the strong SI
power by achieving upto 80 dB SI suppression capability, which remarkably improves the
achievable rate capacity and approximately doubles it compared to its HD counterpart.

Chapter 6 introduces a UAV-assisted terrestrial system to enhance both coverage and
capacity in SU-mMIMO and MU-mMIMO systems. Due to the limited coverage and fixed
deployment of terrestrial networks, the integration of UAVs offer key advantages of rapid
deployment especially in emergency situations. Therefore, we consider the UAVs as
relaying structures to extend the coverage area of BS. We consider UAV as
amplify-and-forward (AF) relay as well as decode-and-forward (DF) relay in both
SU-mMIMO and MU-mMIMO systems, where the overall capacity is maximized by
optimizing the UAV placement within a deployment area, power allocation (PA) to users
jointly with angular-based HBF solutions for both BS and UAV. We introduce two
AI/ML-based algorithms for the joint UAV deployment and PA. First, we develop a
particle swarm optimization based joint UAV location and PA (PSOLPA) algorithm, which
attains almost the optimal sum-rate capacity at the expense of longer runtime for the
larger number of users. Second, we introduce a novel deep learning based UAV location
and PA (DLLPA) algorithm for faster and more robust prediction of UAV deployment and
PA. The proposed DLLPA algorithm has two phases: (i) offline supervised learning via the
allocated powers and UAV optimal values calculated by PSOLPA, and (ii) online power
and UAV location prediction via the trained deep neural network (DNN). The illustrative
results depict that DLLPA closely approaches the optimal sum-rate capacity with
remarkably reduced runtime.

Chapter 7 studies the multiple UAVs-assisted terrestrial networks to support a large
number of users, enhancing both coverage and capacity, while the proposed HBF
techniques in Chapter 6 follows the use of single UAV. We consider multiple UAVs
operating as DF relays, which connect the BS to a large number of IoT devices. We utilize
structured sequential optimization to address the multi-faceted optimization problem by
splitting it into two sub-problems. First,K-means-based user clustering is used for
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UAV-users association. Then, the location of each UAV is optimized jointly with PA using
swarm intelligence. The RF stages are designed based on the slow time-varying angular
information, while BB stages are designed utilizing the reduced-dimension effective channel
matrices. Illustrative results show that multiple UAV-assisted cooperative relaying systems
outperform a single UAV system in practical user distributions.

Finally, Chapter 8 provides the concluding remarks, summarizes the key findings of this
thesis, and discusses the possible future research directions.
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Chapter 2

Background

This chapter provides an overview of the beamforming architectures for the mMIMO
systems including DBF, ABF, and HBF. We present MU-mMIMO system model. Then,
we review the SI suppression (SIS) techniques in FD communications and emphasize the
advantages of using DoF provided by large mMIMO array structures to generate narrow
beams to enhance the SIS quality. Later on, we discuss different relaying schemes used
in UAV-assisted terrestrial communications. Finally, we discuss the AI/ML applications
in wireless communications to develop low-complexity and robust solutions for non-convex
optimization problems.

2.1 Beamforming Architectures in mMIMO Systems

Beamforming is a fundamental technique in massive MIMO (mMIMO) systems,
enhancing communication performance by directing signal energy toward desired
directions. This targeted focus is achieved through the use of large antenna arrays that
adjust the phase and amplitude of signals. By optimizing the beamforming weights,
mMIMO systems can achieve high signal-to-interference-plus-noise ratio (SINR), which is
crucial for reliable communication. As the number of antennas increases, the SINR also
increases, which is referred to as beamforming gain [28]. This gain allows mMIMO systems
to direct the signal energy towards desired regions, reducing interference and improving
signal quality. The high beamforming gain in mMIMO systems is particularly effective in
overcoming the significant path loss experienced in mmWave communications. Moreover,
the spacing between antenna elements also plays a critical role in beamforming
performance. Typically, antenna separation is maintained at half the wavelength of the
carrier frequency to avoid grating lobes and ensure optimal spatial resolution. This spacing



2. Background 13

(a) (b) (c)

Figure 2.1. Beamforming architectures for the mMIMO systems. (a) FDBF (b) ABF (c)
HBF.

is crucial, as it impacts the overall beam pattern, sidelobe levels, and beamforming gain.
As shown in Fig. 2.1, the three main architectures for beamforming in mMIMO systems
are:

• Single-stage fully digital beamforming (FDBF)

• Single-stage fully analog beamforming (ABF)

• Two-stage hybrid beamforming (HBF)

These architectures have different advantages and limitations. Understanding the strengths
and weaknesses of each can help in selecting the appropriate beamforming strategy for specific
applications. A brief summary of the advantages and limitation of each beamforming solution
is presented in Table 2.1.

2.1.1 Fully Digital Beamforming

In traditional MIMO systems, typically featuring a limited number of antennas, a single-
stage FDBF architecture is commonly employed. This approach performs beamforming
directly at the baseband level using digital signal processing techniques [29–31]. FDBF offers
significant flexibility and a high degree of freedom (DoF), making it possible to implement
efficient beamforming algorithms. As illustrated in Fig. 2.1(a), the FDBF architecture
supports S data streams using NT antennas, where S ≤ NT . The digital baseband stage for
downlink or the digital baseband combiner for uplink is represented by the matrix BFDBF ∈
CNT ×S. This matrix contains the beamforming weights, which can be adjusted in both
magnitude and phase using digital processing techniques. FDBF facilitates the transmission
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Table 2.1. Advantages and Limitations of Beamforming Techniques in mMIMO Systems

Aspect FDBF ABF HBF

Advantages

Offers precise control
of amplitude and phase
per antenna, enabling
optimal beamforming
and high spectral efficiency

Low-cost and power-efficient
as it uses a single RF chain
with phase shifters (PSs), making
it suitable for large arrays

Balances power consumption
and performance; enables
multi-stream transmission
with fewer RF chains
than FDBF

Limitations

High hardware cost and
power consumption due
to one RF chain per
antenna element

Limited flexibility; only
controls phase, so
performance is lower
in multi-user scenarios

Increased complexity
compared to ABF; requires
optimization of both RF
and baseband stages

of multiple data streams simultaneously by effectively mitigating interference, such as inter-
symbol interference (ISI) in single-user MIMO (SU-mMIMO) and inter-user interference
(IUI) in multi-user MIMO (MU-mMIMO). However, each antenna element in the FDBF
architecture requires its own dedicated RF chain, which is both power-intensive and costly.
Consequently, in a system with NT antennas, there are NT RF chains, leading to significantly
increased hardware costs and power consumption as MIMO systems evolve into mMIMO
with larger antenna arrays. For example, 3GPP Release 17 specifies the use of 64-256
antennas at BS, making it impractical and costly to deploy 64-256 RF chains using the
FDBF approach [32].

Furthermore, as the number of antennas increases, so does the computational
complexity associated with beamforming optimization, due to the expanding matrix
dimensions of BFDBF ∈ CNT ×S. Although FDBF can achieve optimal spectral efficiency in
mMIMO systems, exploring alternative beamforming architectures is essential to reduce
hardware and computational complexity while maintaining near-optimal spectral efficiency.
To address the challenges posed by FDBF in mMIMO systems, alternative architectures
have been developed. As mMIMO technology continues to advance, these new
beamforming architectures will be crucial for enabling scalable and efficient communication
systems.

2.1.2 Fully Analog Beamforming

Fig. 2.1(b) depicts the ABF architecture, where a single RF chain supports NT antennas
[33]. In this setup, NT low-cost PSs connect the RF chain to the antennas. These PSs
consume significantly less power compared to RF chains, typically around 1 mW per PS
versus 250 mW per RF chain. This substantial reduction in power consumption and hardware
costs makes ABF particularly beneficial for mMIMO systems. The use of a single RF chain
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in the ABF architecture remains constant regardless of the number of antennas, significantly
reducing hardware complexity and costs. The analog RF beamforming vector is represented
as fABF ∈ CNT . Compared to the digital baseband beamforming matrix BFDBF ∈ CNT ×S,
which has NT × S elements, fABF with NT elements exhibits much lower computational
complexity [34].

Despite its advantages, the ABF architecture has some significant limitations. The
analog RF beamforming vector fABF typically only applies phase shifts to the transmitted
and received signals, adhering to the constant-modulus (CM) constraint. This limitation
complicates beamforming optimization and reduces the DoF compared to FDBF, which
can adjust both the magnitude and phase of signals. As a result, the ABF architecture
generally experiences performance degradation compared to FDBF. Moreover, ABF
supports only a single data stream, while FDBF, as shown in Fig. 2.1(a), can handle
multiple data streams. This limitation reduces spectral efficiency, which is one of the key
benefits of mMIMO systems.

Thus, there is a trade-off between digital and analog beamforming architectures. FDBF
offers higher spectral efficiency by supporting multiple data streams and providing greater
flexibility in signal processing. On the other hand, ABF improves hardware and
computational efficiency by reducing power consumption and complexity. The choice
between these architectures depends on the specific requirements and constraints of the
application, balancing the need for high spectral efficiency with the practical considerations
of hardware and power costs.

2.1.3 Hybrid Beamforming

The two-stage HBF architecture has emerged as a promising solution for mMIMO
systems, effectively addressing the trade-offs between single-stage FDBF and ABF
architectures [20, 35]. As illustrated in Fig. 2.1(c), HBF divides the beamforming process
into two stages: an analog transmit (or receive) RF beamformer FHBF ∈ CNT ×NRF and a
digital baseband (BB) precoder (or combiner) BHBF ∈ CNRF×S for transmission (or
reception). This two-stage approach leverages a reduced number of RF chains, NRF, where
S ≤ NRF ≤ NT , to minimize hardware cost and complexity in mMIMO systems with large
antenna arrays. Additionally, the HBF architecture supports multiple data streams,
making it a versatile solution.

In the RF stage, each RF chain connects to every antenna element through PSs,
constructing the analog RF beamformer FHBF ∈ CNT ×NRF with NT × NRF PSs.
Subsequently, the digital BB precoder/combiner BHBF ∈ CNRF×S is designed in the BB
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Table 2.2. Comparison of Fully Digital, Analog, and Hybrid Beamforming in Massive
MIMO Systems

Aspect DBF ABF HBF

Hardware Complexity
High: One RF chain
per antenna

Low: Single RF chain,
phase shifters

Medium: Few RF chains,
phase shifters

Power Consumption High Low Medium
Computational Complexity High Low Medium

Flexibility
High: Change magnitude
and phase Low: Change phase only

Medium: Combines DBF
and ABF

Spectral Efficiency High: Optimal
Low: Limited by
single stream

High: Near-optimal,
multiple streams

Cost High Low Medium
Implementation Feasibility Difficult for large arrays Easy, cost-effective Feasible with trade-offs

CSI Overhead High
Medium: Slow time
varying CSI Medium: Effective CSI

stage. By employing a reduced number of RF chains, the two-stage HBF architecture
significantly cuts down on hardware costs and power consumption. Moreover, HBF
techniques optimize both RF and BB stages to enhance system capacity. Numerical studies
indicate that HBF can closely match the spectral efficiency of FDBF while significantly
outperforming ABF. Thus, HBF achieves high spectral, energy, and hardware efficiency for
mMIMO systems, offering more DoF for low-complexity HBF techniques.

Most existing research on FDBF and HBF architectures assumes the availability of
full-size instantaneous CSI [36–42]. However, as antenna arrays scale up, the channel
dimension and pilot transmission length increase, resulting in substantial channel
estimation overhead. The HBF architecture can mitigate this overhead by developing the
RF stage using slow time-varying CSI (e.g., channel covariance matrix or angular
information), and subsequently designing the BB stage with reduced-size effective
instantaneous CSI. This capability further enhances the practicality of HBF by reducing
the channel estimation overhead. HBF architectures are categorized into fully-connected
(FC) and sub-connected (SC) configurations. In FC HBF architecture, each RF chain
connects to all antenna elements, which necessitates NT × NRF PSs. Conversely, SC HBF
architecture reduces the number of PSs to NT by connecting each RF chain to a subset of
antennas. In this thesis, we focus on both FC and SC HBF techniques for mMIMO
systems. Table 2.2 provides the comparison between ABF, FDBF, and HBF, which shows
advanced HBF techniques can achieve high spectral efficiency with low hardware
cost/complexity, low CSI overhead size for practical mMIMO systems.
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2.2 Multi-User Massive MIMO Communications

One of the key features of mMIMO is to support multi-user communications (i.e.,
MU-mMIMO), where multiple single-antenna users (K ≤ NT ) are served simultaneously by
employing advanced beamforming techniques. Both downlink and uplink transmissions in
MU-mMIMO systems are facilitated by designing appropriate beamforming techniques to
enhance the overall sum-rate capacity. The primary goals of beamformer design in
MU-mMIMO systems are to maximize the desired signal for each user while effectively
mitigating multi-user interference (MUI). MU-mMIMO systems offer significant advantages
over SU-mMIMO systems. Firstly, the channel conditions improve due to the spatial
diversity provided by users positioned at different locations, leading to a higher channel
rank. Secondly, MU-mMIMO systems serve users with fewer antennas, which is more
practical for wireless communication systems constrained by hardware limitations and cost
considerations.

In the downlink transmission of the FDBF architecture, depicted in Fig. 2.1(a), the
signal transmitted from the BS after precoding is represented as sD = BDdD ∈ CNT . Here,
BD = [bD,1,bD,2, . . . ,bD,K ] ∈ CNT ×K denotes the digital baseband beamforming matrix,
and dD = [dD,1, dD,2, . . . , dD,K ]T ∈ CK is the vector containing the downlink data signals.
The received signal at the user side is then expressed as:

rD = HDsD + nD = HDBDdD + nD =


rD,1

rD,2
...

rD,K

 =


hTD,1BDdD
hTD,2BDdD

...
hTD,KBDdD

+ nD, (2.1)

where HD = [hD,1,hD,2, . . . ,hD,K ]T ∈ CK×NT represents the downlink channel matrix,
hD,k ∈ CM corresponds to the channel vector for the kth user, and nD ∼ CN (0, σ2

nIK) is the
complex Gaussian noise vector. The primary goal of the digital baseband beamforming
stage BD is to mitigate multi-user interference (MUI) while maximizing the desired signal
power. Common linear beamforming methods for designing the digital BB precoder
include: (i) matched filter (MF), (ii) zero-forcing (ZF), and (iii) regularized zero-forcing
(RZF). The general form of the digital BB precoder is given by:

BD = αDX−1
D HH

D ∈ CNT ×K , (2.2)

where αD is a normalization factor ensuring that the transmit power constraint PT is met,
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and XD ∈ CNT ×NT varies based on the technique: XD = INT
for MF, XD = HH

DHD for ZF,
and XD = HH

DHD+ σ2
n

PT /K
INT

for RZF. Similarly, in uplink MU-mMIMO systems, the digital
BB combiner BU = [bU,1,bU,2, . . . ,bU,K ] ∈ CK×NT is used to combine the signals received at
the BS:

r̃U = BU(HUdU + nU) = BUHUdU + BUnU =


rU,1

rU,2
...

rU,K

 , (2.3)

where HU ∈ CNT ×K is the uplink channel matrix, and nU ∼ CN (0, σ2
nIM) is the noise vector.

The digital BB combiner’s general form is expressed as:

BU = HH
U X−1

U ∈ CK×NT , (2.4)

where XU = INT
for MF, XU = HH

U HU for ZF, and XU = HH
U HU + σ2

n

PU
INT

for RZF, with PU
being the uplink transmit power. Beyond the conventional single-stage FDBF techniques, the
two-stage HBF architecture discussed in Section 2.1.3 can also be utilized in MU-mMIMO
systems to enhance spectral efficiency while reducing hardware complexity.

2.3 Self-Interference Suppression (SIS) Techniques for
Full-Duplex Communications

Full-duplex (FD) communication systems have the potential to double system capacity
by enabling simultaneous transmission and reception on the same frequency bands, thus
utilizing time and frequency resources more effectively compared to conventional
half-duplex (HD) systems like TDD and FDD. This characteristic makes FD
communications especially promising for mMIMO systems. However, FD operation
introduces significant self-interference (SI) between co-located transmit and receive
antennas, necessitating sophisticated self-interference suppression (SIS) techniques. To
maintain performance in FD communications, the strong SI must be reduced to or below
the noise floor. For instance, with a noise power spectral density (PSD) of −174 dBm/Hz
and a transmission bandwidth of 20 MHz, the noise power is calculated as:

σ2
n = −174 + 10 log10(20× 106) ≈ −101 dBm. (2.5)

To facilitate simultaneous downlink and uplink transmission, an FD mMIMO system
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Figure 2.2. Full-duplex mMIMO systems featuring several SIS stages: antenna isolation,
analog/digital SIS, RF and BB beamforming stages.

involves five SIS stages: (i) antenna isolation, (ii) analog transmit/receive RF beamforming,
(iii) analog SIS, (iv) digital SIS, and (v) digital baseband (BB) precoding/combining. Each
stage contributes differently to the overall cancellation/suppression quality. Given a transmit
power PT of 30 dBm, the required SIS must reduce the SI to below −101 dBm, leading to a
required SIS of:

Required SIS = PT − σ2
n = 30 dBm− (−101 dBm) = 131 dB. (2.6)

Achieving such a high level of SIS is challenging, particularly as PT and the number of
antennas increase. Note that an FD mMIMO system might involve various SIS stages to
reach the desired SIS quality, as illustrated in Fig. 2.2. Some SIS stages might be omitted
due to complexity or inadequate SIS performance. Extensive research has been conducted
to enhance SIS quality and maximize the benefits of FD technology [43–45]. One approach
involves separating the transmit and receive antenna elements in the passive propagation
domain cancellation technique, allowing the signal to be attenuated in the propagation
domain before reaching the receive circuitry [46–48]. The goal of passive antenna isolation
is to maximize separation between the transmit and receive RF chains. Practical
implementations demonstrate SIS levels between 60 and 70 dB based on antenna
isolation [49]. Following antenna isolation, the RF stage includes both analog
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transmit/receive RF beamforming and analog SIC. With large antenna arrays and high
beamforming gain in mMIMO systems, the transmit and receive RF beamformers can
generate narrow beams for the intended downlink and uplink channels, while keeping them
nearly orthogonal to the SI channel [50, 51]. Given the SI channel matrix HSI ∈ CMU ×MD ,
the transmit RF beamformer FD ∈ CMD×NRF,D and the receive RF beamformer
FU ∈ CNRF,U ×MU aim to satisfy:

FUHSIFD ≈ 0, (2.7)

which requires joint optimization of FD and FU . The analog SIC stage then generates an
accurate replica of the SI signal based on the transmitted signal and estimated SI channel
parameters (e.g., delay, attenuation). This replica is subtracted from the received SI signal.
However, estimating SI channel parameters becomes more complex with larger array sizes,
potentially impacting analog SIC performance. Conversely, larger antenna arrays provide
more degrees of freedom for transmit/receive RF beamformers, improving SIS quality and
potentially negating the need for analog SIC. Combining antenna isolation, transmit/receive
RF beamforming, and analog SIS techniques is critical to prevent overload and saturation in
the receive RF chain and ADCs due to high SI power. These methods are vital for advancing
SIS in the BB stage and establishing FD communications.

The digital SIC and digital BB precoder/combiner functions at the BB stage. Like analog
SIC, digital SIC aims to eliminate the residual SI signal in the digital domain. Digital
cancellation techniques, being simpler forms of active cancellation, achieve limited SIS due
to hardware imperfections such as transceiver phase noise and non-linearities that restrict
the effectiveness of traditional digital cancellation methods [52]. The digital BB precoder
BD ∈ CNRF,D×KD and the digital BB combiner BU ∈ CKU ×NRF,U further enhance SIS by
satisfying:

BUFUHSIFDBD ≈ 0. (2.8)

The objective is to develop innovative HBF techniques to improve SIS quality and reduce
SI power below the noise floor. Thus, the proposed HBF techniques for FD mMIMO systems
involve the integrated design of four components: (i) analog transmit RF beamformer, (ii)
analog receive RF beamformer, (iii) digital BB precoder, (iv) digital BB combiner.
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2.4 Massive MIMO Relaying

Relaying techniques in MIMO communications, particularly in the context of HBF,
play a vital role in enhancing coverage, reliability, and overall system performance. As
discussed earlier, HBF combines the benefits of both analog and digital beamforming,
making it an efficient choice for mMIMO systems. This section explores the two primary
relaying strategies, amplify-and-forward (AF) and decode-and-forward (DF), in the context
of HBF [53–56].

2.4.1 Amplify-and-Forward (AF) Relaying

In AF relaying, the relay node amplifies the received signal and forwards it to the
destination. Considering a HBF architecture, the relay utilizes both analog and digital
beamforming stages to process the signal efficiently. For a mMIMO communication system
with NT antennas at the transmitter, NR antennas at the relay, and ND antennas at the
destination, then the received signal at the relay is expressed as:

yR = HSRxS + nR, (2.9)

where HSR ∈ CNR×NT is the channel matrix between the source and the relay, xS ∈ CNT ×1

is the transmitted signal from the source, and nR ∈ CNR×1 is the noise vector at the relay.
Considering a HBF architecture at relay, the received signal is amplified and forwarded to
the destination. Then, the signal transmitted from the relay is given by:

xR = FByR, (2.10)

where F ∈ CNR×NRF is the analog beamforming matrix, and B ∈ CNRF ×NT is the digital
beamforming matrix. The received signal at the destination is:

yD = HRDxR + nD = HRDFByR + nD. (2.11)

Substituting yR into the above equation, we get:

yD = HRDFRFFBB(HSRxS + nR) + nD. (2.12)

The design of hybrid beamforming stages F and B is crucial to balance the trade-off between
signal amplification and noise control. The design of HBF matrices can maximize the received
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Table 2.3. Comparison of relaying protocols in mMIMO systems.

Criterion AF Relaying DF Relaying
Complexity Moderate High
Noise Amplification Yes No
Processing Delay Low High
Implementation Moderate Complex
Reliability Moderate High

signal power while minimizing the amplified noise.

2.4.2 Decode-and-Forward (DF) Relaying

In DF relaying, the relay decodes the received signal, re-encodes it, and then forwards it
to the destination. The HBF technique can be used at both the relay and the destination to
process the signal efficiently. The received signal at the relay in DF relaying is the same as
in AF relaying:

yR = HSRxS + nR. (2.13)

The relay decodes the received signal to obtain x̂S, which is an estimate of the transmitted
signal xS. The relay then re-encodes and forwards x̂S to the destination using HBF
architecture. The transmitted signal from the relay is:

xR = FRFFBBx̂S. (2.14)

Then, the received signal at the destination is:

yD = HRDxR + nD = HRDFRFFBBx̂S + nD. (2.15)

In practical scenarios, decoding errors at the relay can degrade performance. The joint
design of HBF stages at BS, relay, and at destination can maximize the sum-rate capacity
by improving SINR.

The choice between AF and DF relaying depends on the specific requirements of the
communication system. AF relaying with HBF is simpler and introduces less delay but
can amplify noise. DF relaying with HBF provides better performance in terms of noise
mitigation but requires more complex processing and introduces decoding delays. A brief
comparison of DF versus AF relaying scheme is presented in Table 2.3.
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2.5 AI/ML Applications in Wireless Communications

In recent years, the application of artificial intelligence (AI) in wireless communications
has garnered significant attention due to its ability to develop low-complexity and robust
solutions for non-convex optimization problems. Various terms are used in the literature to
refer to AI as it encompasses different branches, including nature-inspired (NI) intelligent
algorithms, supervised/unsupervised machine learning (ML), and deep learning (DL). This
section briefly introduces NI and DL, followed by a discussion of their potential applications
in wireless communications.

2.5.1 NI Intelligent Algorithms

NI algorithms have gained popularity due to their effectiveness in solving complex
optimization problems. Unlike traditional deterministic methods, these algorithms employ
multiple search agents, which are initially randomly placed in the optimization space and
move towards the global optimum through iterative communication, combining
deterministic and stochastic movements. Some of the key NI algorithms are: particle
swarm optimization (PSO), genetic algorithm (GA), ant colony optimization (ACO)., etc.

Among different NI algorithms, PSO is inspired by the social behavior of animals such
as birds flocking or fish schooling. It is used to solve optimization problems by iteratively
improving candidate solutions with regard to a given measure of quality. The basic idea
of PSO involves a swarm of particles moving through the search space to find the optimal
solution. Each particle represents a potential solution and has the following attributes:

• Position: xi ∈ Rn for particle i.

• Velocity: vi ∈ Rn for particle i.

• Personal best position: pi ∈ Rn, which is the best position found by particle i so far.

• Global best position: g ∈ Rn, which is the best position found by any particle in the
swarm.

The velocity and position of each particle are updated iteratively using the following
equations:

vi(t+ 1) = ωvi(t) + c1r1(pi − xi(t)) + c2r2(g− xi(t)), (2.16)

xi(t+ 1) = xi(t) + vi(t+ 1), (2.17)

where:
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• ω is the inertia weight, which controls the impact of the previous velocity.

• c1 and c2 are cognitive and social coefficients, respectively, which control the influence
of the personal best and global best positions.

• r1 and r2 are random numbers uniformly distributed in [0, 1].

The iterative process of PSO can be summarized as follows:

1. Initialize the positions xi(0) and velocities vi(0) of all particles randomly.

2. Evaluate the fitness of each particle’s position.

3. Update each particle’s personal best position pi if the current position is better.

4. Update the global best position g if any particle’s personal best position is better than
the current global best.

5. Update the velocities and positions of all particles using the equations (2.16) and (2.17).

6. Repeat steps 2-5 until a stopping criterion is met (e.g., a maximum number of iterations
or a satisfactory fitness level).

2.5.2 Applications of NI-PSO in Wireless Communications

PSO has been effectively applied in various wireless communication problems due to its
simplicity and ability to find near-optimal solutions. For example, PSO can be used for:

• RF Beamformer Design: Optimizing the phase shifts of RF beamformers to
maximize the received signal power or minimize interference.

• Resource Allocation: Allocating resources such as power, bandwidth, and time slots
to users in a wireless network to optimize overall performance.

• Antenna Design: Designing antenna arrays to achieve desired radiation patterns and
improve signal quality.

Although NI algorithms promise to achieve almost optimal solutions, they might be
computationally expensive and time consuming due to the iterative behavior. On the other
hand, when the optimization problem is non-convex, NI algorithms can be also utilized for
developing a dataset to train the low-complexity and robust ML techniques.



2. Background 25

2.5.3 Deep Learning

Deep learning (DL), a subset of ML, has been pivotal in fields such as computer vision,
speech recognition, and natural language processing. Its success has also extended to
wireless communications, where it has been used for tasks such as signal detection, resource
management, and channel estimation. A single neuron in a neural network performs a
weighted sum of the inputs and applies a non-linear activation function. The output y of a
single neuron can be expressed as:

y = f

(
N∑
i=1

wixi + b

)
(2.18)

where:

• xi are the input features.

• wi are the weights associated with the inputs.

• b is the bias term.

• f(·) is the activation function.

Some common activation functions used in DL are:

• Sigmoid Function:
f(x) = 1

1 + e−x (2.19)

• Rectified Linear Unit (ReLU):

f(x) = max(0, x) (2.20)

• Hyperbolic Tangent (Tanh):

f(x) = tanh(x) = ex − e−x

ex + e−x (2.21)

In DL, the loss functions are used to measure the difference between the predicted output
and the actual output. Some common loss functions are:

• Mean Squared Error (MSE):

MSE = 1
N

N∑
i=1

(yi − ŷi)2 (2.22)
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where yi is the actual value and ŷi is the predicted value.

• Mean Absolute Error (MAE):

MAE = 1
N

N∑
i=1
|yi − ŷi| (2.23)

• Cross-Entropy Loss (used for classification):

L = −
N∑
i=1

yi log(ŷi) (2.24)

In a deep neural network, forward propagation involves calculating the output of each layer
from the input layer to the output layer. For a layer l, the operation can be described as:

a(l) = f
(
W(l)a(l−1) + b(l)

)
(2.25)

where:

• a(l−1) is the activation from the previous layer.

• W(l) is the weight matrix of the current layer.

• b(l) is the bias vector of the current layer.

• f(·) is the activation function.

On the other hand, backpropagation is used to compute the gradient of the loss function
with respect to each weight in the network. It involves:

• Gradient of the loss with respect to the output of the network:

∂L

∂ŷ
= ŷ − y (2.26)

• Gradient of the loss with respect to the weights:

∂L

∂W(l) = δ(l)a(l−1)T (2.27)
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• Updating weights using gradient descent:

W(l) ←W(l) − η ∂L

∂W(l) (2.28)

where η is the learning rate.

An example DNN architecture includes input, multiple hidden, and output layers, where
each hidden layer neuron uses activation functions to learn complex patterns. The depth
(number of hidden layers) and the number of neurons per layer directly influence the
network’s capacity to model intricate relationships.

In summary, both NI algorithms and DL techniques offer significant potential for
optimizing and enhancing wireless communication systems, each contributing uniquely to
addressing the challenges posed by non-convex optimization problems.

2.6 Concluding Remarks

In this chapter, we have presented an overview of the beamforming architectures for the
mMIMO systems and highlighted the benefits of the HBF architecture for high spectral,
and energy efficiency with reduced hardware complexity. Afterwards, we discussed
MU-mMIMO communications system model. Then, we presented different SIS techniques
for the FD communications, including analog RF beamformer and BB precoder/combiner.
Also, we have emphasized that the large antenna arrays in the FD mMIMO systems bring
a great potential for the improved SIS quality via the HBF design. Then, we discussed
different relaying schemes in mMIMO systems, which can extend the coverage area while
enhancing the capacity. We also highlighted the use of different AI/ML applications in
wireless communications. In the next chapters, we develop novel HBF techniques for
various mMIMO systems along with the aforementioned points, which address two key
issues: (i) capacity, and (ii) coverage area.
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Chapter 3

2D Antenna Array Structures in
Hybrid Massive MIMO1

3.1 Introduction

As expressed in Chapter 2, the large antenna arrays in mMIMO systems bring two
interesting challenges: (i) increased expense and energy consumption due to the use of
large number of RF chains, and (ii) the use of significant amount of spectral resources
and increased CSI overhead [20]. In order to overcome these problems, HBF has been
proposed as a promising solution [20, 31], which is a two-stage precoder consisting of an
analog RF beamforming stage and a digital baseband precoding stage, and with much-
reduced system complexity/hardware cost, it can achieve the performance close to FDBF
which requires full instantaneous CSI. In HBF, large-dimensional processing is carried out by
phase shifters (PSs) at the transceiver RF front-end, followed by low-dimensional processing
at the baseband level. A few RF chains and digital-to-analog converters/analog-to-digital
converters (DACs/ADCs) connect the RF and the baseband stages. Furthermore, at the
RF-stage, two commonly used methods of processing input paramters are: (i) using fast
time-varying CSI [36–42], and (ii) using slowly time-varying instantaneous CSI [60–68]. The
first strategy employs full CSI, whereas, in the second strategy, only the reduced-dimension
effective instantaneous CSI seen from the BB-stage is required for the BB precoder design. In
other words, the second strategy is capable of reducing both the hardware cost/complexity
and the CSI overhead size.

1Parts of this chapter have been presented at the 2020 IEEE Global Communications Conference
(GLOBECOM), Taipei, Taiwan [57], the 2021 IEEE International Conference on Communications (ICC),
Montreal, QC, Canada [58], and published in the IEEE Open Journal of the Communications Society [59].
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Most of the HBF solutions have assumed the use of full-resolution PSs and DACs to
achieve a satisfactory performance close to FDBF structures. However, because of the
increased complexity and costs, implementing ∞-bit PSs and DACs/ADCs is impractical.
The recent studies show that there has been an increased interest in the use of small,
power-efficient, and inexpensive devices for hardware efficient transceivers capable of
beamforming. Therefore, the use of low-resolution PSs [69–77] and DACs/ADCs [78–83]
allows a more viable HBF solution to be designed. Another important aspect in mMIMO is
the number of the antenna elements as well as their arrangement at the transmitter side as
the array configurations can be critical in the generation of narrower beams with reduced
sidelobes, which can offer small interference to the unintended users. The existing research
studies mostly use uniform linear array (ULA) at the BS for the HBF
design [36–40, 60–64, 66, 67, 69–74, 78–82]. However, it is not applicable to deploy a large
single-dimensional (1D) ULA at the BS because of: (i) spatial inefficiency, and (ii)
restriction to illuminate both azimuth and elevation angles at the same time. The antenna
elements can be arranged on a two-dimensional (2D) grid to overcome the aforementioned
issues. In this chapter, we present the analysis of different 2D array structures (ULA,
URA, UCA, and CCA) in mMIMO, where we compare the spatial, spectral and energy
efficiencies by designing the HBF using low-resolution PSs and quantized DACs. The
proposed HBF schemes include two cascaded stages: (i) the RF-beamforming stage is
designed via the eigen-decomposition of mMIMO channel second-order correlation matrix,
and (ii) the baseband MU precoding stage is constructed via the regularized zero-forcing
(RZF) technique [84,85] to mitigate the MU interference in the reduced-dimension effective
MU-channel. The main contributions are summarized below:

• Energy-Efficient HBF Design Using Low-Resolution PSs: Most of the
existing HBF designs (e.g., in [36–40, 60–67, 78–83]) assume the use of full-resolution
PSs for the implementation of RF-stage. However, the components required for phase
shift with high accuracy can be expensive [86]. Therefore, it is reasonable to use
cost-effective PSs in HBF. One possible way to design the HBF with low-resolution
PSs is to design the RF beamformer assuming infinite-resolution PSs and then,
quantize each PSs value by a finite set [36]. This approach, however, is not suitable
for systems with low-resolution phase constraint and requires full CSI. Furthermore,
the HBF designs which are presented in [69–71,73–76] are considered for SU-mMIMO
and MU-MISO systems. In this chapter, we design the HBF using low-resolution PSs
for MU-mMIMO by taking into account the few-bit phase constraint and formulate
the optimization problem which is solved using orthogonal matching pursuit
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(OMP) [87, 88]. The algorithmic precoding solution takes the input as the optimal
unconstrained (full-resolution) RF beamformer and approximates the constrained
(quantized) RF beamformer by exploiting the dominant eigenvectors at the RF. We
present the illustrative results of the proposed HBF scheme and show that it is
possible to approach the performance limit of the unconstrained RF-stage with as low
as 2 bit PSs (i.e., sum-rate degradation ≈ 2-3 bps/Hz).

• Comparison of 2-D Antenna Array Structures: In this work, we compare the
spatial, spectral and energy efficiencies of different 2D antenna array structures using
low-resolution PSs and DACs. The array structure used in [36–40,60–64,66,67,69–83]
is either ULA or URA. However, in this work we compare four different 2D array
structures using low-resolution PSs and DACs. The simulation results show that the
sum-rate of both CCA and URA can approach the sum-rate of their FDBF counterparts
with much-reduced number of RF chains.

• HBF Design Using Low-Resolution PSs and DACs: As mentioned above, the
HBF is designed using either only low-resolution PSs [69–77] or only low-resolution
DACs/ADCs [78–83]. To the best of our knowledge, the design of a MU-mMIMO
HBF using both low-resolution DACs and low-resolution PSs has not been considered
yet. Moreover, we also compare the performance of such a reduced-complexity HBF
for different 2D array structures i.e., ULA, URA, UCA, and CCA. The simulation
results give useful results about the combination of various low-resolution DACs and
PSs for near optimal performance. The proposed HBF using 2-bit PSs and 5-bit DACs
can achieve almost the same spectral efficiency while offering higher energy efficiency
than the HBF using full-resolution PSs and DACs. Therefore, the designed HBF saves
power consumption and cost while having negligible impact on the performance.

• Design of the Quantized Variable Gain RF Beamformer: In this work, we
design the HBF in which the RF beamforming stage is constructed using eigen
beamforming based on user’s angular location. Eigen beamforming can give sum-rate
performance of HBF close to FDBF [60–63], however, the RF beamformer results in
having non-constant modulus entities. The quantization of such variable gain RF
beamformer is challenging. Also, to the best of our knowledge, the quantization of
analog precoder which is designed using eigen beamforming has not been considered
yet. Therefore, we solve this problem to modify our system model to have a constant
modulus RF beamformer and introduces a transfer block at the baseband stage by
formulating an optimization problem. The resulting RF beamformer requires
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double-PS structure and follows the constant modulus constraint, i.e., the gain of
each entity of RF beamformer can vary between 0 and 2. The resulting HBF with
constant-modulus gives the same sum-rate performance as the variable gain RF
beamformer.

The rest of this chapter is organized as follows. In Section 3.2, we introduce the HBF design
using full-resolutions PSs and DACs. Section 3.3 presents the HBF solution when using
quantized DACs/ADCs at BS. In Section 3.4, we discuss HBF design using low-resolution
PSs followed by the algorithmic HBF solution for few-bit DACs and PSs in Section 3.5. The
illustrative results are provided in Section 3.6 to compare the performance of different 2D
array structures. Finally, the chapter is concluded in Section 3.7.

3.2 Hybrid Beamforming Design Using Full Resolution
PSs and DACs

In this section, we discuss the HBF solution using full-resolution hardware components.

3.2.1 System Model

In the system model shown in Fig. 3.1, we assume that NT BS antennas at the transmitter
are fed by NRF RF chains to serve K single-antenna users. bT represents the number of
orthogonal-beams spanning the degrees of freedom (DoF) provided by the channel, such
that K ≤ NRF ≤ bT ≪ NT . S denotes the independent data streams to be transmitted,
which is equal to the number of simultaneously served users in this model (i.e., S = K).
Furthermore, by selecting NRF = K RF chains, the hybrid precoding matrix B = FDTBD

where i) RF-beamforming matrix FD ∈ CN×bT is based on the channel second order statistics
and reduces the CSI overhead and the number of RF chains ii) transfer matrix T ∈ CbT ×NRF

exploits the available DoF of the channel, and further reduces the number of RF chains
without sacrificing the performance iii) multi-user precoding matrix BD ∈ CNRF ×S is based
on the reduced-dimension effective MU channel, and reduces the MU interference. The
received signal at the kth user is expressed as:

yk = hHk Bs + nk. (3.1)

s ∈ CS×1 is the transmitted data signal satisfying E
[
||s||22

]
≤ PT

S
Is, where PT is the transmit

power at the BS and nk denotes the additive circular symmetric Gaussian noise such that
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Figure 3.1. System model of the hybrid beamforming architecture.

nk : CN (0, 1). Assuming no line of sight propagation, the channel hk : CN (0,Rk), where
Rk ∈ CN×N is the covariance matrix.

The channel vector hk ∈ CN×1 for user k can be expressed by using Karhunen-Loeve
decomposition as:

hk = UkΛ
1
2
kwk, (3.2)

where wk ∈ Cr×1
: CN (0, Ir) is the complex weight coefficient vector, Λk ∈ Cr×r is the

diagonal matrix containing r eigenvalues of Rk and Uk ∈ CN×r is the matrix containing the
eigenvectors corresponding to the non-zero eigenvalues. Assuming mutually independent
channel vectors hk, the overall channel model can be expressed as:

H = [h1,h2, . . .,hK ], (3.3)

The correlation matrix Rk is obtained by using the one-ring model [89], where a user is
located at some distance rd and the mean azimuth angle is θ. For the 1D and 2D antenna
structures as shown in Fig. 3.2, assuming a uniform distribution of power received from the
antennas, the correlations between the channel coefficients of the antennas 1 ≤ n, p ≤ N are
respectively given as:

[
Rn,p

]
1D

= 1
2∆

∫ ∆+θ

−∆+θ
e−j2πd(n−p) sin(β) dβ, (3.4)

[
Rn,p

]
2D

= 1
2∆

∫ ∆

−∆
e−j 2π

λ
k(β+θ)(vn−vp) dβ, (3.5)

where λ is the wavelength. ∆ ≈ ± arctan l
rd

is the angle spread around the mean azimuth
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(a) (b)

(c) (d)

Figure 3.2. 2D Array structures (a) ULA (b) URA (c) UCA (d) CCA.

angle for a user surrounded by a ring of scatters of radius l , k(β) = (cos(β), sin(β))T is the
wave vector for a planar wave impinging with angle-of-arrival (AoA) β and vn,vp is R2. The
correlation matrix R1D for ULA is computed using (3.4) where d is the distance between the
nth and pth antenna. For UCA, URA, and CCA, (3.5) is used to calculate the correlation
matrix R2D. Thus, the correlation matrix R depends on the antenna array configuration
employed at the BS, and the corresponding rank of R = UΛUH plays an important role
in the sum-rate performance of the array structure. In the eigen-beamforming, the hybrid
precoder B ∈ CNT ×S is constructed by concatenating the RF-beamforming FD ∈ CNT ×bT

and reduced-dimensional multi-user precoder (baseband-stage) BD ∈ CNRF ×S through an
intermediate block called transfer block T ∈ CbT ×NRF .

3.2.2 RF-beamforming Stage

Suppose K users are clustered into G groups based on their AoD information, where each
group contains Kg number of users such that K = ∑G

g=1 Kg. For simplicity, we assume that
the users in the same group have identical covariance matrix Rg, where g = 1, 2, . . . , G. The
index gk = ∑g−1

g′=1 Kg′ +k is used to denote the kth user in group g. Then, the channel vector
for the user k in group g is hgk

: CN (0,Rg), where Rg = UgΛgUH
g is the covariance matrix
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of the group g. Based on the AoD of the users, the correlation matrix can be written as:

Rg = [U+
g ,U−

g ][Λ+
g ,Λ−

g ][U+
g ,U−

g ]H , (3.6)

where U+
g ∈ CN×r+

g is the matrix of eigenvectors corresponding to the dominant
eigenvalues for the user group g. Similarly, Λ+

g ∈ Cr+
g ×r+

g is the diagonal matrix of the
dominant eigenvalues. As a result, the data streams per group is Sg ∈ [0, min{Kg, r+

g }].
The maximum number of independent data streams that can be transmitted is limited by
the multiplexing gain min{Kg, r+

g }. The total data streams can be written as S = ∑G
g=1 Sg.

By using Karhunen-Loeve decomposition, we have:

hgk
= UgΛ

1
2
g wgk

. (3.7)

The overall channel matrix H can be written as:

H = [H1,H2, . . . ,HG], (3.8)

where Hg = [hg1 ,hg2 , . . . ,hgKg
] is the channel matrix for group g. The performance of the

hybrid precoder heavily depends on the choice of bT and NRF . It must be seen that i)
NRF ≥ S to ensure that the minimum number of RF chains used in the precoder is not
less than the transmitted signals and ii) NRF = ∑G

g=1 NRFg . The RF-beamforming matrix
FD depends on the second-order statistics as it relies on the eigenvalues and eigenvectors
extracted from the covariance matrix Rg. If BA,g = U+

g is the RF-beamforming matrix of
group g and by choosing bg = r+

g , the complete RF-beamforming matrix can be written as:

FD = [FD,1,FD,2, . . .,FD,G]. (3.9)

The overall reduced dimensional effective channel matrix is expressed as HH = FH
DH. Using

(3.8) and (3.9), HH can be written as:

HH =


HH

1 FD,1 HH
1 FD,2 . . . HH

1 FD,G

HH
2 FD,1 HH

2 FD,2 . . . HH
2 BA,G

... ... . . . ...
HH
GFD,1 HH

GFD,2 . . . HH
GFD,G

 , (3.10)

where the diagonal matrices HH
g FD,g ∈ CKg×bg are the effective channel matrix for group g

and the off-diagonal matrices HH
g FD,q ∈ CKg×bq represent the effective interference channel
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matrix between groups g and q, ∀q ̸= g.

3.2.3 Transfer Block and Multiuser Precoder Design

The transfer block T ∈ CbT ×NRF is designed between the RF-beamforming matrix and
the multi-user precoding matrix, reducing the number of RF chains NRF such that K ≤ NRF

< bT . T is placed at the RF precoder satisfying E
[
||s||22

]
= tr(BH

DTHTBD) ≤ PT , where
PT is the transmit power. The transfer block T and the reduced dimensional multi-user
precoder BD is designed as:

min
T,BD

||B̂D −TBD||22,

s.t. T ∈ To,

tr(BH
DTHTBD) ≤ PT ,

(3.11)

where To represents the set of matrices of size bT × NRF . B̂D = γXHH is the NRF ×
K baseband precoder without using the transfer block T. The optimization problem is
formulated to design the reduced-size baseband precoder BD giving the same performance
as B̂D. HH is the reduced dimensional effective channel, X = [HHH + αbT IbT

]−1, IbT
∈

CbT ×bT , α is the regularization paramter and γ is the normalization factor used to satisfy
the power constraint, which can be written as:

γ =
√

S

tr{HHXHFH
DFDXH} . (3.12)

Since (3.11) is non-convex, so T is dissolved into TA ∈ CbT ×K and TB ∈ CbT ×k by using
NRF = K RF chains. Then, the optimal solution is given as [90]:

TA(a, b) = e
j

(
∠B̂D(a,b)+cos−1( B̂D(a,b)

2µ
)
)
,

TB(a, b) = e
j

(
∠B̂D(a,b)−cos−1( B̂D(a,b)

2µ
)
)
,

BD = (TA + TB)†B̂D, (3.13)

where µ = 1
2 maxa,b |B̂D(a, b)| is the half of the highest modulus element at B̂D. Then, the

joint-group processing (JGP) approach [60] is used for the SINR computation. Therefore,
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Figure 3.3. Hybrid beamforming architecture using few-bit DACs.

the SINR at the user k in group g can be computed as follows:

SINRgk
=

PT

S
|hHgk

FDB̂DB̂H
DFH

Dhgk
|2

1 + PT

S

∑
i ̸=gk
|hHgk

FDB̂DB̂H
DFH

Dhi|2
. (3.14)

Hence, the corresponding sum-rate performance can be computed as:

R =
G∑

Kg=1

Kg∑
gk=1

E[log2(1 + SINRgk
)]. (3.15)

3.3 Hybrid Beamforming Design Using
Low-Resolution DACs

In this section, we discuss the HBF solution using low-resolution DACs/ADCs in mMIMO
systems.

3.3.1 System Model

In the system model shown in Fig. 3.3, we assume that NT BS antennas at the transmitter
are fed by NRF RF chains to serve K single-antenna users, where K ≤ NRF ≪ NT . The
hybrid precoder B = FDBD is divided as the RF precoder FD ∈ CNT ×NRF and the baseband
precoder BD ∈ CNRF ×K . The system model employs low resolution q-bit DACs between
the RF and the baseband precoder to reduce the system complexity/cost. To model the



3. 2D Antenna Array Structures in Hybrid Massive MIMO 37

Table 3.1. Distortion factors µ in q-bit DACs (q ≤ 5).

q 1 2 3 4 5
µ 0.6366 0.8825 0.96546 0.990503 0.997501

precoded signal at the transmitter, we consider the non-uniform quantizer, and adopt the
additive quantization noise model (AQNM) as in [91, 92]. Then, the received signal at the
kth user is expressed as:

yk = hHk FDQ{BDs}+ nk,

= hHk FD{µBDs + nq}+ nk,

= µhHk FDBDs︸ ︷︷ ︸
Desired Signal

+ hHk FDnq︸ ︷︷ ︸
Quantization Noise

+ nk︸︷︷︸
Noise

, (3.16)

where s ∈ CK is the transmitted data signal satisfying the power constraint PT (i.e.,
E{∥s∥2

2} ≤ PT ). Here, nk denotes the additive circular symmetric Gaussian noise such that
nk ∼ CN (0, 1), Q(.) is the quantizer function, µ is the distortion factor of q-bit DAC, and
nq ∼ CN (0,Rnq) is the additive Gaussian quantization noise which is uncorrelated with s.
For q ≤ 5, the exact values of µ is given in Table. 3.1. When quantization bit q > 5, then
the distortion factor can be approximated as µ ≈ 1 − π

√
3

2 2−2q [92]. Furthermore, the
covariance matrix of nq is given as:

Rnq = E
[
nqn

H
q

]
= µ(1− µ) diag(BDBH

D). (3.17)

Assuming no line of sight propagation, the channel hk ∼ CN (0,Rk), where Rk ∈ CNT ×NT is
the covariance matrix. The channel vector hk ∈ CNT ×1 for user k can be expressed by using
Karhunen-Loeve decomposition as given in (3.2). Similarly, the overall channel model can
be expressed as given in (3.4).

3.3.2 RF and BB Stage Design with Low-Resolution DACs

In the eigen-beamforming, the hybrid precoder B ∈ CNT ×K concatenates the
RF-beamforming stage FD ∈ CNT ×NRF and the reduced-dimensional baseband MU
precoding stage BD ∈ C

NRF ×K
through the use of low-resolution DACs. The design of the

RF beamforming stage employs full-resolution PSs and the details can be found in Section
3.2.2. After the design of RF beamforming stage FD, the baseband MU precoder BD can
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be determined by using the joint group processing (JGP) [60]. Using regularized zero
forcing, BD can be defined as:

BD = γXHH , (3.18)

HH is the reduced-dimension effective channel as given in (3.10), X = [HHH+αNRFINRF
]−1,

INRF
∈ CNRF ×NRF , α is the regularization paramter and γ is the normalization factor used

to satisfy the power constraint, which can be written as:

γ =
√

S

tr{HHXHFH
DFDXH} . (3.19)

Therefore, the signal to quantization, interference and noise ratio (SQINR) at the user k in
group g can be computed as follows:

SQINRgk
=

PT

S
|hHgk

FDXFH
Dhgk

|2

1 + â+ b̂
, (3.20)

where â = PT

S

∑
i ̸=gk
|hHgk

FDXFH
Dhi|2 accounts for the multi-user interference and

b̂ = PT

S
|hHgk

FDRnq(FH
Dhgk

)H |2 is the quantization noise. Hence, the corresponding sum-rate
performance can be computed as:

R =
G∑

Kg=1

Kg∑
gk=1

E[log2(1 + SQINRgk
)]. (3.21)

3.4 Hybrid beamforming Design Using
Low-Resolutions PSs

In this section, we present the HBF design using low-resolution PSs.

3.4.1 System Model

In this section, we introduce the system models of the proposed hybrid MU-mMIMO
systems. We consider a MU-mMIMO system with three different HBF structures shown
in Figure 3.4. At first, the HBF architecture is depicted in Figure 3.4(a), which considers
full-resolution hardware components i.e., ∞-bit DACs and PSs. Then, the HBF using b-bit
PSs and ∞-bit DACs is shown in Figure 1(b), which offers an energy efficient structure due
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(a) (b)

(c)

Figure 3.4. MU-mMIMO HBF architectures: (a) HBF with ∞-bits DACs and PSs (b)
HBF with b-bit PSs and ∞-bit DACs (c) HBF with q-bit DACs and b-bit PSs.

to less power consumption of finite-bit PSs. Finally, the least power consuming HBF model
is presented in Figure 3.4(c), which uses b-bit PSs and q-bit DACs. The BS employs NT

antenna elements at the transmitter, which are fed by NRF RF chains to serve K single-
antenna users, where K ≤ NRF ≪ NT . As shown in Figure 3.4(a), the hybrid precoder
B = FDBD is divided as the RF beamformer FD ∈ C

NT ×NRF and the baseband precoder BD

∈ C
NRF ×K. The design of HBF helps in reducing the number of RF chains from NT to NRF .

Then, the received signal at the kth user is expressed as:

yk = hHk Bs + nk. (3.22)
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The system model shown in Figure 1(c) employs low resolution q-bit DACs between the RF
and the baseband precoders to reduce the system complexity/cost. To model the precoded
signal at the transmitter, we consider the non-uniform quantizer, and adopt the additive
quantization noise (AQN) model as in [91, 92]. Then, the received signal at the kth user is
given as:

yk = hH

k FDQ{TBDs}+ nk,

= hH

k FD{µTBDs + nq}+ nk,

= µhH

k FDTBDs︸ ︷︷ ︸
Desired Signal

+ hH

k FDnq︸ ︷︷ ︸
Quantization Noise

+ nk︸︷︷︸
Noise

, (3.23)

where s ∈ CK is the transmitted data signal satisfying the power constraint i.e., E{∥s∥2
2} ≤

PT , where PT is the transmit power at the BS, nk denotes the additive circular symmetric
Gaussian noise such that nk ∼ CN (0, 1), µ is the distortion factor of q-bit DAC, nq ∼
CN (0,Rnq) is the additive Gaussian quantization noise which is uncorrelated with s, and
T ∈ C

NRF ×NRF is the transfer block which is introduced at the baseband stage to have a
constant-modulus RF beamformer F̂D ∈ C

NT ×NRF such that F̂DT = FD. The covariance
matrix of nq can be written as [83,93]:

Rnq = E
[
nqnHq

]
= µ(1− µ) diag(TBDBH

DTH). (3.24)

For q = 1, 2, . . . , 5, the exact values of µ are 0.6366, 0.8825, 0.96546, 0.990503, and 0.997501,
respectively, whereas for q > 5, the distortion factor µ can be approximated as µ≈ 1−π

√
3

2 2−2q

[92].

3.4.2 RF and BB Stage Design with Low-Resolution PSs

In the eigen beamforming, the hybrid precoder B ∈ CN×K is constructed by concatenating
the RF-beamforming stage FD ∈ C

NT ×NRF and reduced-dimensional MU baseband precoding
stage BD ∈ C

NRF ×K. The HBF design based on eigen beamforming results in non-constant
modulus entities at the RF stage. As discussed earlier, the quantization of this variable
gain RF-stage is challenging. To solve this issue, we formulate an optimization problem and
introduce a transfer block T ∈ C

NRF ×NRF such that F̂DT = FD, where FD ∈ C
NT ×NRF is the

variable gain RF beamformer, T ∈ C
NRF ×NRF is the transfer block placed at the baseband

stage and F̂D ∈ C
NT ×NRF is the RF beamformer with constant-modulus entities. The design

of the RF-stage together with the transfer block and the baseband stage is explained in the
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following sections.

3.4.2.1 Variable-Gain RF Beamformer

We assume K users are clustered into G groups based on their angle-of-departure (AoD)
information, where each group contains Kg number of users such that K = ∑G

g=1 Kg. For
simplicity, we also assume that the users in the same group have identical covariance matrix
Rg, where g = 1, 2, . . . , G. The index gk = ∑g−1

g′=1 Kg′ + k is used to denote the kth user
in group g. Then, the channel vector for the user k in group g is hgk

∼ CN (0,Rg), where
Rg = UgΛgU

H

g is the covariance matrix of the group g. Based on the AoD of the users, the
correlation matrix can be written as:

Rg = [U+

g ,U
−

g ][Λ+

g ,Λ
−

g ][U+

g ,U
−

g ]H

, (3.25)

where U+
g ∈ C

N×r+
g is the matrix of eigenvectors corresponding to the dominant eigenvalues

for the user group g. Similarly, Λ+
g ∈ C

r+
g ×r+

g is the diagonal matrix of the dominant
eigenvalues. As a result, the data streams per group is bounded by Sg ∈ [0, min{Kg, r

+
g }].

Furthermore, the multiplexing gain limits the maximum number of independent data
streams per group that can be transmitted, which is min{Kg, r

+
g }. Thus, the total data

streams can be written as S = ∑G
g=1 Sg. The selection of NRFg

is a design parameter and
the performance of HBF heavily depends on its value such that: (i) NRFg

≥ Sg to ensure
that the minimum number of RF chains used per group in HBF is not less than the
transmitted signals per group, and (ii) the total number of RF chains is determined by the
number of groups for K users (i.e., NRF = ∑G

g=1 NRFg
). The RF beamforming matrix BA

depends on the second-order statistics as it relies on the eigenvalues and eigenvectors
extracted from the covariance matrix Rg. If BAg

= U+
g is the RF beamforming matrix of

group g, then the complete RF beamforming matrix can be written as:

FD = [FD1 ,FD2 , . . .,FDG
]. (3.26)

3.4.2.2 Design of Transfer Block and Constant-Gain RF Beamformer

From (3.26), we can see that FD has non-constant modulus entities, which results in a
variable-gain RF-stage. To the best of our knowledge, the design of constant-gain analog
precoder in mMIMO, which is based on eigen beamforming has not been considered yet. For
this challenging issue, we formulate an optimization problem and introduce a transfer block
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T ∈ C
NRF ×NRF as shown in Figure 1(b) such that FD = F̂DT, where FD ∈ C

NT ×NRF is the
variable-gain RF beamformer as given in (3.26), T ∈ C

NRF ×NRF is the transfer block placed
at the baseband stage and F̂D ∈ C

NT ×NRF is the RF beamformer with constant-gain. The
transfer block T and the RF beamformer with constant-modulus F̂D is designed as:

arg min
T,F̂D

∥∥∥FD − F̂DT
∥∥∥2

2
,

s.t. F̂D ∈ FDo ,

(3.27)

where FDo represents the set of matrices of size NT×NRF satisfying the unit-modulus property
for the constrained RF-beamformer F̂D, which is constructed using double-PS structure as
shown in Fig. 3.4(b). The optimization problem is formulated to design the RF beamformer
F̂D satisfying the modulus constraint and targeting the same performance as FD, where FD

is the RF beamformer whose entities does not satisfy the modulus constraint. Since (3.27)
is non-convex because of the unit-modulus constraint, and as proven in [90, Lemma 1], we
can dissolve F̂D into F̂D1 ∈ C

NT ×NRF and F̂D2 ∈ C
NT ×NRF based on double-PS structure, and

can rewrite the equivalent optimization problem as:

arg min
T,F̂D1 ,F̂D2

∥∥∥FD −
(
F̂D1 + F̂D2

)
T
∥∥∥2

2
,

s.t. F̂D1 , F̂D2 ∈ FDo ,

F̂D = F̂D1 + F̂D2

(3.28)

Then, the optimal solution for the transfer block T and constant-modulus RF beamformer
F̂D is given as:

F̂D1(a, b) = e
j

(
∠FD(a,b)+cos−1( FD(a,b)

2ν
)
)
, (3.29a)

F̂D2(a, b) = e
j

(
∠FD(a,b)−cos−1( FD(a,b)

2ν
)
)
, (3.29b)

T =
(
F̂D1 + F̂D2

)†
FD, (3.29c)

where ν = 1
2 maxa,b |FD(a, b)| is the half of the highest modulus element at FD. Each

RF chain is connected to the corresponding antenna element through two PSs, which are
summed up together to formulate the RF beamforming gain. This summation allows the gain
of each RF beamformer entity to vary between 0 and 2, i.e., by relaxing the unit-modulus
constraint, the new constraint of the analog stage is |F̂D(a, b)| ≤ 2 ∀ a, b. By implementing
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the double-PS structure, we can have PS-only RF beamformer without having any impact on
the performance of eigen beamforming. In other words, without T and double-PS structure
at RF stage, we would require variable-gain controllers together with PSs, which makes the
implementation of HBF using low-resolution PSs challenging.

3.4.2.3 RF Beamformer Quantization

By the introduction of the transfer block in the HBF architecture, each entity of the
RF beamformer F̂D, which is expressed in (3.29), can be converted to a modulus constraint
within 0 and 2 (Figure 1(c)). Thus, the analog RF beamformer F̂D can have only PSs
for the RF processing. Since the phase of each entry of F̂D tends to be highly quantized
as well as the use of full-resolution PSs is impractical because of the high cost and power
consumption, therefore, we need to investigate the performance of our proposed HBF by
using low-resolution PSs to be used in a more realistic scenario. For this purpose, we quantize
the phase of each entry of F̂D i.e., phases of the (2×NRFN) entries of F̂D are quantized up
to b bits of precision. Each (i, j)th entry is quantized to its nearest neighbor based on the
closest Euclidean distance. Thus, we can write as:

l̂ = arg min
l ∈ Lo

∣∣∣∣∣ϑ− 2πl
L

∣∣∣∣∣, (3.30)

where ϑ is the unquantized phase of each entity of RF beamformer obtained from (3.29),
L = 2b and Lo is the set of all possible quantized phase values i.e., Lo = {0, . . . , 2b−1}. Then
the quantized phase of each entry of F̂D can be written as:

ϑ̂ = 2πl̂
L
.

3.4.2.4 RF Beamformer Design for Low-Resolution PSs

As discussed earlier, the straightforward approach for HBF using low-resolution PSs is to
design the RF-stage based on full-resolution PSs first, and then quantizing the value of each
PSs to a finite set. However, this approach yields a large sum-rate degradation and thus,
it is not effective for very low-resolution PSs. To reduce the sum-rate degradation resulting
from the constraint of low-resolution PSs, we design the RF beamformer by minimizing
the Euclidean distance between the HBF using full-resolution PSs and the HBF using low-
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resolution PSs. The optimization problem can be formulated as:

arg min
T(q)

,F̂(q)
D

∥∥∥F̂DT− F̂(q)
D T(q)∥∥∥

F
,

s.t. F̂(q)
D ∈ F̂(q)

D ,∥∥∥F̂(q)
D T(q)∥∥∥2

F
= NRF ,

(3.31)

where F̂(q)
D represents the set of matrices of size NT × NRF under the following constraints:

(i) the gain of each entity of the matrix can vary between 0 and 2, and (ii) the phase of each
matrix entity is quantized to enable the use of low-resolution PSs at the RF-stage, F̂DT
is the optimal unconstrained precoding matrix, F̂(q)

D and T(q) are the RF beamformer and
the transfer block designed for low-resolution PSs, respectively. The design problem can be
defined as finding the projections of the optimal unconstrained precoder F̂DT onto the set
of F̂(q)

D and T. Each entry of F̂(q)
D follows modulus constraint and can have a distinct phase

value as depicted by the constraint F̂(q)
D ∈ F̂(q)

D . Furthermore,
∥∥∥F̂(q)

D T(q)
∥∥∥2

F
= NRF represents

the normalized transmit power constraint of the RF beamformer. Due to the complex non-
convex nature of the feasible set F̂(q)

D , the problem of finding the projections is difficult.
However, we can notice that there exits a connection between F̂D and F̂(q)

D by exploiting the
structure of the channel H. This can be further explained by the following remarks.

1. Structure of unconstrained RF beamformer : The design of unconstrained RF
beamformer F̂D is based on Karhunen-Loeve decomposition of the covariance matrix
R. Thus, the eigenvectors (column vectors) for the corresponding dominant
eigenvalues form an orthonormal basis.

2. Relation between F̂D and F̂(q)
D : We notice that there exits an association between F̂D

and F̂(q)
D as both are based on the dominant eigenvalues extracted from the covariance

matrix. In fact, F̂(q)
D is the set of quantized matrices of U+, where

U+ = [U+
1 ,U

+
2 , . . . ,U

+
G].

3. Transfer block: The problem of finding projection of F̂D onto F̂(q)
D alone is challenging.

By using the transfer block T, we can find the projection of F̂DT onto the set of F̂(q)
D

and T.

4. Design of F̂(q)
D : It must be seen that the feasible quantized RF beamformers in F̂(q)

D

are of size NT ×NRF . Thus, each column of the constrained RF beamformer F̂(q)
D can

be designed by applying NRF vectors, where each vector follows the constant-modulus
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Algorithm 3.1 Constrained RF Beamformer Design via Orthogonal Matching Pursuit
1: Given: Optimal unconstrained RF beamformer F̂D = [F̂D1 , F̂D2 , . . . , F̂DG

]
2: for g = 1 : G do
3: F̂(q)

Dg
= [ ]

4: Fresg = F̂DgTg

5: for j ≤ NRFg
do

6: Υg = (Û+
g )∗Fresg

7: Find the index l which maximizes (ΥgΥ
∗
g)

8: F̂(q)
Dg

=
[
F̂(q)
Dg
|Û+(l)

g

]
9: Compute T(q)

g by using least squares

10: T(q)
g =

(
F̂(q)∗
Dg

F̂(q)
Dg

)−1

F̂(q)
Dg

F̂Dg

11: Fresg =
F̂Dg Tg−F̂(q)

Dg
T(q)

g∥∥∥F̂Dg Tg−F̂(q)
Dg

T(q)
g

∥∥∥
F

12: end for
13: T̃(q)

g = NRF g∥∥∥F̂(q)
Dg

T(q)
g

∥∥∥
F

T(q)
g

14: end for
15: T̃(q) = [T̃(q)

1 , T̃(q)
2 , . . . , T̃(q)

G ]
16: F̂(q)

D = [F̂(q)
D1 , F̂

(q)
D2 , . . . , F̂

(q)
DG

]
17: return T̃(q), F̂(q)

D

and have distinct phase values only. Furthermore, by using the transfer block T, we
can form the arbitrary linear combinations of NRF vectors and design the constrained
RF beamformer by reducing the Euclidean distance i.e.,

∥∥∥F̂DT− F̂(q)
D T(q)

∥∥∥
F

.

Based on remark 2, the optimal constrained RF beamformer can be found by replacing F̂(q)
A

with Û+, where Û+ represents the set of matrices of quantized eigenvectors corresponding to
the dominant eigenvalues, i.e., Û+. Subsequently, we can rewrite the optimization problem
as follows:

arg min
T(q)

,F̂(q)
D

∥∥∥F̂DT− F̂(q)
D T(q)∥∥∥

F
,

s.t. F̂(q)
D ∈ Û+

,∥∥∥F̂(q)
D T(q)∥∥∥2

F
= NRF .

(3.32)

We can append the constraint F̂(q)
D into the optimization objective and formulate the
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equivalent problem as [88]:

arg min
T(q)

∥∥∥F̂DT− Û+T(q)∥∥∥
F
,

s.t.
∥∥∥diag(T(q)T(q)∗)

∥∥∥
0

= NRF ,

(3.33)

where the constraint
∥∥∥diag(T(q)T(q)∗)

∥∥∥
0

= NRF states that the matrix T(q) acts as an
auxilliary variable and can only have a maximum of NRF non-zero rows. As a result, only
NRF columns of Û+ are selected and thus, the transfer block T(q) can be designed by NRF

non-zero rows. The constrained RF beamformer is formulated by projecting the NRF

columns of Û+ onto F̂D. By employing the OMP technique proposed in [87,88], we present
an algorithmic solution to design the constrained RF beamformer for low-resolution PSs.
The pseudo-code is given in Algorithm 3.1, which can be summarized as: (i) the algorithm
starts by initializing the constrained precoder F̂(q)

Dg
as an empty matrix, (ii) finds the vector

along which the unconstrained precoder has the maximum projection, (ii) append the
selected column vector to the empty matrix F̂(q)

Dg
, (iv) using least squares, find the transfer

block T(q)
g , (v) remove the contribution of the selected vector, and (vi) finding the column

along which the residual precoding matrix Fresg has the largest projection. The algorithm
continues until we find NRFg

precoding vectors. As a result, we get an NT × NRFg
RF

preoding matrix and NRFg
× NRFg

transfer matrix. Finally, from Algorithm 3.1, step 11
ensures that the transmit power constraint is satisfied. The process is repeated for all G
user groups. Combining the RF and transfer matrix of all groups, we get a large NT ×NRF

RF preoding matrix and NRF ×NRF transfer matrix which minimizes
∥∥∥F̂DT− F̂(q)

D T(q)
∥∥∥2

F
.

Lemma 3.1. If the Euclidean distance before normalization is
∥∥∥F̂DgTg − F̂(q)

Dg
T(q)
g

∥∥∥
F
≤ ζ,

then the Euclidean distance after normalization is
∥∥∥F̂D,gTg − F̂(q)

D,gT̃
(q)
g

∥∥∥
F
≤ 2ζ.

Proof. See Appendix.

3.4.2.5 Baseband MU Precoder Design

After the design of RF beamformer F̂(q)
D for b-bit PSs, the baseband MU precoder BD

can be determined by using the joint group processing (JGP) [60]. The overall reduced
dimensional effective channel matrix is expressed as H = T̃(q)B̂(q)H

A
H. Using (3.8) and
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(3.26), HH can be written as:

HH =


HH

1 F̂(q)
D1T̃(q)

1 HH

1 F̂(q)
D2T̃(q)

2 . . . HH

1 F̂(q)
DG

T̃(q)
G

HH

2 F̂(q)
D1T̃(q)

1 HH

2 F̂(q)
D2T̃(q)

2 . . . HH

2 F̂(q)
DG

T̃(q)
G

... ... . . . ...
HH

GF̂(q)
D1T̃(q)

1 HH

GF̂(q)
D2T̃(q)

2 . . . HH

GF̂(q)
DG

T̃(q)
G

 , (3.34)

where the diagonal matrices HH

g F̂(q)
Dg

T̃g ∈ C
Kg×NRF g are the effective channel matrix for group

g and the off-diagonal matrices HH

g F̂(q)
Dĝ

T̃ĝ ∈ C
Kg×NRF ĝ represent the effective interference

channel matrix between groups g and ĝ, ∀ĝ ̸= g. By applying the well-known RZF technique
[84,85], BD can be defined as:

BD = γXHH , (3.35)

where HH is the reduced-dimension effective channel as given in (3.34), X = [HHH +
αNRFINRF

]−1, INRF
∈ C

NRF ×NRF , α is the regularization paramter and γ is the normalization
factor used to satisfy the power constraint, which can be written as:

γ =
√√√√ S

tr{HHXHT̃(q)HF̂(q)H
D F̂(q)

D T̃(q)XH}
. (3.36)

Therefore, the signal-to-interference-plus-noise ratio (SINR) at the user k in group g can be
computed as follows:

SINRgk
=

PT

S
|hH

gk
F̂(q)
D T̃(q)XT̃(q)HF̂(q)H

D hgk
|2

1 + PT

S

∑
i ̸=gk

|hH

gk
F̂(q)
D T̃(q)XT̃(q)HF̂(q)H

D hi|2
, (3.37)

where PT

S

∑
i ̸=gk

|hH

gk
F̂(q)
D T̃(q)XT̃(q)HF̂(q)H

D hi|2 accounts for MU interference. Hence, the

corresponding sum-rate performance can be computed as:

Rsum =
G∑
g=1

Kg∑
gk=1

E[log2(1 + SINRgk
)]. (3.38)
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3.5 Hybrid Beamforming Design Using
Low-Resolution PSs and DACs

In this section, we design the HBF using low-resolution hardware components (i.e., q-
bit DACs and b-bit PSs). The HBF structure is shown in Fig. 3.4(c). Based on the AoD
information of users, we design the RF beamformer and the baseband MU precoder along
with a transfer block such that quantization error is minimized.

3.5.1 RF Beamformer and Transfer Block Design

Following the same user distribution as discussed in Section 3.4.2.1, K users are
clustered into G groups. Based on the AoD of the users, the correlation matrix of group g

is given in (3.25), which consists of the dominant eigenvectors U+
g ∈ C

N×r+
g corresponding

to the dominant eigenvalues Λ+
g ∈ C

r+
g ×r+

g . Moreover, min{Kg, r
+
g } limits the maximum

number of the independent data streams that can be transmitted. By using
Karhunen-Loeve decomposition, we can write the user channel vector hgk

and the overall
channel matrix H as given in (3.7) and (3.8), respectively. If FDg = U+

g is the RF
beamforming matrix of group g having non-constant modulus, then the complete RF
beamforming matrix can be written as given in (3.26). As discussed in Section 3.4.2.2, the
variable-gain RF beamforming matrix FDg can be converted to a constant-gain
beamforming matrix F̂Dg by using a transfer block Tg at the baseband. Using this
approach, we can rewrite (3.26) as:

FD = [F̂D1T1, F̂D2T2, . . ., F̂DG
TG]. (3.39)

F̂Dg and Tg can be found using (3.29), respectively. However, since the RF beamformer
employs b-bit PSs for the phase quantization, we can rewrite (3.39) as:

F(q)
D = [F̂(q)

D1T(q)
1 , F̂(q)

D2T(q)
2 , . . ., F̂(q)

DG
T(q)
G ]. (3.40)

By using the solution given in Algorithm 3.1, we can find F̂(q)
Dg

and T(q)
g for HBF using b-

bit PSs at the RF-stage. The overall RF beamforming matrix and the transfer matrix for
low-resolution PSs can be given as:

F̂(q)
D = [F̂(q)

D1 , F̂
(q)
D2 , . . ., F̂

(q)
DG

]. (3.41)
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T(q) = [T(q)
1 ,T(q)

2 . . .,T(q)
G ]. (3.42)

3.5.2 Baseband MU Precoder Design With Finite-Resolution
DACs

In this section, the design of the baseband MU precoder B̂(q)
D

using q-bit DACs is
presented. After designing RF beamformer F̂(q)

D and the transfer block T(q) for b-bit PSs as
given in (3.41) and (3.42), respectively, the quantized baseband precoder B̂(q)

D can be
designed using RZF as given in (3.35). The use of q-bit DACs introduces the quantization
noise. Therefore, the signal to quantization, interference and noise ratio (SQINR) at the
user k in group g can be computed as given in (3.43), where
PT

S

∑
i ̸=gk

|hH

gk
F̂(q)
D T̃(q)XT̃(q)HF̂(q)H

D hi|2 accounts for the interference experienced by users in

group g from the users in group ĝ ̸= g and PT

S
|hH

gk
F̂(q)
D T̃(q)Rnq(T̃(q)HF̂(q)H

D hgk
)H|2 is the

quantization noise when using q-bit DACs. Hence, the corresponding sum-rate performance
of HBF with b-bit PSs and q-bit DACs can be computed as:

Rsum =
G∑
g=1

Kg∑
gk=1

E[log2(1 + SQINRgk
)]. (3.44)

3.6 Simulation Results

In this section, the Monte-Carlo simulation results are presented based on the hybrid
precoding for various array structures. For the presented results, the BS is equipped with
100 isotropic antennas, arranged in 1×100 ULA and 10×10 URA configurations. In UCA, the
antennas are equally distributed on a circle of radius λ∇ where ∇ = 1

2
√

(1−cos( 2π
NT

))2+sin( 2π
NT

)2
,

whereas the antennas are distributed on multiple circular rings in CCA. The radius of nth
ring is λRn, where Rn = nL [94]. Then, the corresponding number of antennas on nth ring
is Nn = 2πRn

d
, where d is the antenna spacing which is selected as λ

2 for all array structures.
L is the inter-ring spacing which is selected as 0.55λ. Using this configuration of CCA, 100

SQINRgk
=

PT

S
|hH

gk
F̂(q)
D T̃(q)XT̃(q)HF̂(q)H

D hgk
|2

1 + P
S

∑
i ̸=gk

|hH

gk
F̂(q)
D T̃(q)XT̃(q)HF̂(q)H

D hi|2 + PT

S
|hH

gk
F̂(q)
D T̃(q)Rnq(T̃(q)HF̂(q)H

D hgk
)H|2

,

(3.43)
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antennas can be arranged in just 5 rings. The signal-to-noise-ratio (SNR) is defined as P
σ2K

and the regularization parameter α = σ2

P
[85]. In the following analysis, the array structures

performance is compared based on: i) spatial efficiency, ii) sum-rate versus users AoD, iii)
sum-rate versus number of the users.

3.6.1 Spatial Efficiency

To arrange 100 antenna elements with an inter-element spacing d, It can be seen that
the 1 × 100 ULA requires 50λ space in one direction. On the other hand, 10 × 10 URA
requires just 5λ space in horizontal and vertical directions, which is equivalent to a space of
25λ2. Similarly, UCA with a radius of about 7.96λ (D = 15.92 λ) requires an array size of
approximately 199λ2. It can be seen that URA is more spatially efficient structure compared
to both ULA and UCA. In CCA, 100 antennas can be arranged in 5 rings as discussed before.
The maximum ring radius in CCA is about 2.75λ, which is more than three times smaller in
size than UCA having the same number of antennas. In other words, this is equivalent to a
space of approximately 24λ2. To better understand the spatial efficiency, consider the signal
frequency is 6 GHz (sub-6 GHz mMIMO frequency). Then, the array sizes of ULA, URA,
UCA, and CCA are respectively 2.5 m, 0.0625 m2, 0.49 m2, and 0.0592 m2. Thus, CCA
offers the highest spatial efficiency, whereas ULA is the least spatially efficient structure.

3.6.2 Performance Comparison with Full-Resolution Components

In this section, we first compare the performance of different 2D array structures using
full-resolution hardware components.

3.6.2.1 Sum-Rate versus User AoD

In this section, the sum-rate of the array structures is compared based on the AoD
information of the users around the BS. As discussed, the hybrid precoder is designed using
the RF-beamforming stage and the optimized reduced-size baseband stage. The
RF-beamforming stage depends on the dominant eigenvalues extracted from the covariance
matrix R [see (3.9)]. Based on the different geometrical configuration of ULA, URA, UCA,
and CCA, the rank of the covariance matrix can vary [see (3.4), (3.5)], playing an
important role in the sum-rate performance of the array structures. For NT = 100, the
rank r is 21 and 17 for UCA and ULA respectively and 13 for CCA and URA. Also, some
of the non-zero eigenvalues are too small that can be ignored. So, the dominant eigenvalues
r+
g of UCA, ULA, CCA, and URA become 10, 9, 4, and 3, respectively. In Table. 3.2, a
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Table 3.2. Number of dominant eigenvalues of ULA, URA, UCA, and CCA versus
number of antennas.

Number of
antennas (NT ) URA CCA ULA UCA
64 3 4 6 8
128 4 6 10 13
256 9 8 19 26
512 14 11 39 49
1024 20 14 71 89

comparison of numbers of the dominant eigenvalues of different array structures is
presented. With the increased number of antennas, both ULA and UCA can have a higher
value of r+

g and can support an increased number of independent data streams. On the
other hand, URA and CCA can have a small increase in r+

g because of the much-reduced
array size. As a result, the correlation between the antennas is increased, resulting in small
increment in dominant eigenvalues in URA and CCA. In Fig. 3.5, the sum-rate is
calculated for multiple user groups, when NT = 100. We consider three user groups
(G = 3) are located around the BS at mean azimuth locations θ1 = 30◦, θ2 = 90◦, θ3 =
150◦ with ∆ = 15◦. The sum-rate performance of hybrid precoding for the array structures
is compared with their FDBF counterparts using RZF. Fig. 3.5(a) shows the result of the
hybrid precoding without using the transfer block, when NRFg = Kg = 3, NRF = K = 9
and bg = 3. As expected, FDBF provides the highest sum-rate. For the hybrid
beamforming sum-rates, URA and CCA give the highest sum-rate whereas ULA gives the
lowest sum-rate. On the other hand, the sum-rate of UCA is comparable to the sum-rate of
URA and CCA. By using the transfer block in the hybrid precoder, when, NRFg = Kg = 3,
NRF = K = 9 and bg = 5, it can be seen in Fig. 3.5(b) that the sum-rate of the array
structures is increased significantly. The sum-rate of URA and CCA approaches to the
sum-rate of their FDBF equivalents. Though ULA still provides the lowest sum-rate
among the array structures, it shows a sum-rate increase of about 20 bps/Hz after using
the transfer block. Thus, we can conclude that for the same number of RF chains, the use
of transfer block greatly increases the sum-rate performance of the array structures.
Furthermore, both URA and CCA provides the best performance among the array
structures by converging to their FDBF sum-rate. Secondly, the sum-rate is compared
versus users AoD. For a fixed SNR = 10 dB, the sum-rate using hybrid precoding with a
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(a) (b)

Figure 3.5. Sum-rate comparison of ULA, URA, CCA, and UCA, NT = 100, G = 3,
NRFg = Kg = 3, NRF = K = 9, θ1 = 30◦, θ2 = 90◦, θ3 = 150◦, ∆ = ±15◦: (a) bg = 3

without transfer block (b) bg = 5 with transfer block.

Figure 3.6. Sum-rate comparison of ULA, URA, CCA, and UCA versus mean azimuth
user location, NT = 100, G = 1, NRF = K = 3, b = 4, ∆ = ±15◦, SNR = 10 dB.
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Table 3.3. Performance comparison of ULA, UCA, URA and CCA.

ULA UCA URA CCA
Spatial efficiency Low Low High High

Sum-rate versus mean
azimuth location
θ ∈ [0◦,180◦]

Low sum-rate.
The sum-rate varies
about 5 bps/Hz for
fixed K. (see Fig. 3.6)

High sum-rate.
The sum-rate remains
same for fixed K
(see Fig. 3.6)

High sum-rate.
The sum-rate varies
about 2 bps/Hz for a
fixed K (see Fig. 3.6)

High sum-rate.
The sum-rate remains
same for fixed K
(see Fig. 3.6)

Sum-rate versus
number of users

Low sum-rate
(see Fig. 3.7)

High sum-rate
(see Fig. 3.7)

High sum-rate
(see Fig. 3.7)

High sum-rate
(see Fig. 3.7)

transfer block is compared for the mean azimuth user locations between θ = 0◦ to θ = 180◦

as shown in Fig. 3.6. URA and CCA give the best sum-rate at all azimuth user locations,
when G = 1, NRFg = Kg = 3, NRF = K = 3, bg = b = 4, ∆ = ±15◦. The sum-rate of ULA
is the lowest, whereas UCA gives a reasonably high sum-rate. Furthermore, the sum-rate
variation of UCA and CCA is ≪ 1 bps/Hz, whereas the variation is about 2 bps/Hz for
URA. On the other hand, the sum-rate of ULA varies about 5 bps/Hz. Thus, it can be
concluded that for a fixed number of users, the hybrid precoding sum-rate can vary w.r.t
the users AoD depending on the array structure. Both CCA and URA can provide a very
high sum-rate at all azimuth user locations.

3.6.2.2 Sum-Rate versus Number of Users

Finally, a comparison of the sum-rate versus the number of users is provided now. In Fig.
3.7, the sum-rate of the array structures using the hybrid precoding is compared for different
number of users. The result is shown for a single user group (G = 1) at fixed SNR = 10
dB, when NRFg = Kg = 3, NRF = K = 3, bg = b = 4, θ = 60◦, ∆ = ±15◦. Based on the
dominant eigenvalue r+

g as discussed previously, the users are gradually increased from 1 to 3,
and the corresponding sum-rate of the array structure is plotted. The FDBF sum-rates are
compared with the sum-rate of the hybrid precoding with the transfer block. ULA provides
the lowest sum-rate performance among the array structures. Also, a large performance gap
exists between the FDBF and hybrid precoding results of ULA. UCA provides a reasonably
high sum-rate versus K and it can approach its FDBF sum-rate only when K = 1. On the
other hand, the sum-rate of URA and CCA using the hybrid precoding can approach their
respective FDBF sum-rates at all K values as shown in Fig. 3.7. Thus, both URA and
CCA can provide the highest sum-rate versus K among the array structures. The overall
performance comparison of the array structures is summarized in Table. 3.3.
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Figure 3.7. Sum-rate comparison of ULA, URA, CCA, and UCA versus number of users,
NT = 100, G = 1, NRF = K = 3, b = 4, θ = 60◦, ∆ = ±15◦, SNR = 10 dB.

3.6.3 Performance Comparison with Low-Resolution DACs

In the following analysis, 2D array structures are compared based on: i) spectral efficiency
using q-bit DACs, ii) energy efficiency using q-bit DACs.

3.6.3.1 Spectral Efficiency Using q-Bit DACs:

In this section, we analyze the spectral efficiency of ULA, URA, UCA, and CCA by
computing the sum-rate of the HBF using few-bit DACs. At first, we compare the sum-rate
of the HBF using q-bit DACs for ULA, URA, UCA, and CCA.

In Fig. 3.8, the sum-rate is calculated for multiple user groups, when NT = 100. We
consider three user groups (G = 3) are located around the BS at mean elevation angle θ =
73◦, mean azimuth locations (ϕ1, ϕ2, ϕ3) = (30◦, 90◦, 150◦) with δa = 15◦ and δe = 12.5◦.
The sum-rate of HBF for the array structures is compared with their FDBF counterparts
using RZF. Figure. 3.8 shows the sum-rate of HBF of different 2D array structures by
using different quantization levels of DAC. It can be seen that 1-bit quantization gives the
lowest sum-rate for all array structures, though having the advantage of least DAC power
consumption. The sum-rate increases with an increase in the number of DAC quantization
bits. Moreover, CCA gives the highest sum-rate when compared to ULA, URA, and UCA
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(a) (b)

(c) (d)
Figure 3.8. Sum-rate versus SNR comparison using few-bit DACs, NT = 100, G = 3,

NRFg = Kg = 3, NRF = K = 9, θ = 73◦, (ϕ1, ϕ2, ϕ3) = (30◦, 90◦, 150◦),
(δa, δe) = (±15◦,±12.5◦) (a) ULA (b) URA (c) UCA (d) CCA.

for both full and low-resolution DACs.

3.6.3.2 Energy Efficiency Using q-Bit DACs

In this section, the energy efficiency of HBF using q-bit DACs is compared for different
2D array structures. The energy efficiency is defined as the ratio of the sum-rate Rsum and
the total power consumption Ptotal [95], i.e.,

ϵ = Rsum

Ptotal
= Rsum

tr(BB∗) +NRFPRF22q , (3.45)
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(a) (b)

Figure 3.9. Energy efficiency versus q for different array structures, NT = 100, G = 3,
NRFg = Kg = 3, NRF = K = 9, δa = ±15◦, δe = ±12.5◦, θ = 73◦, (ϕ1, ϕ2, ϕ3) = (30◦, 90◦,

150◦), (a) SNR = -20 dB (b) 20 dB.

where tr(BB∗) represents the total transmission power, PRF is the power consumption per
RF chain, NT is the total number of the antennas, NRF is the number of the RF chains and
q is the different number of the bits used for DAC quantization.

The use of few-bit DACs in HBF significantly reduces the power consumption, which
increases the overall energy efficiency. However, this increase in energy efficiency comes
at the expense of slight decrease in the spectral efficiency. Fig. 3.9 compares the energy
efficiency of HBF using ULA, URA, UCA, and CCA with the energy efficiency of FDBF
(here we are taking only FDBF of UCA for comparison as it provides the highest FDBF
sum-rate among 2D array structures) for different q-bit DACs, where q = 1, 2, 3, . . . , 10. Fig.
3.9(a) shows the energy efficiency at very low SNR at -20 dB, whereas Fig. 3.9(b) shows
the energy efficiency at high SNR at 20 dB. CCA and URA, both gives the highest energy
efficiency at very low SNR, and this highest value can be achieved even by using 1-bit DAC
as shown in Fig. 3.9a. At high SNR, CCA still provides the highest energy efficiency among
the compared array structures. The highest efficiency value is achieved by using (q = 5)-bit
DAC. In comparison, FDBF offers very low energy efficiency due to the use of large number
of power-hungry RF chains (NRF = NT ).

Finally, we examine the energy efficiency of 2D array structures versus q at different
values of SNR. Fig. 3.10 compares the performance of ULA, URA, UCA, and CCA in terms
of energy efficiency. For all compared array structures, we can achieve very high energy
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(a) (b)

(c) (d)

Figure 3.10. Energy efficiency versus q and SNR, NT = 100, G = 3, NRFg = Kg = 3,
NRF = K = 9, θ = 73◦, (ϕ1, ϕ2, ϕ3) = (30◦, 90◦, 150◦), δa = ±15◦, δe = ±12.5◦ (a) ULA (b)

URA (c) UCA (d) CCA.

efficiency by using (q ≤ 5)-bit DACs in HBF. From Fig. 3.10, it can be seen that: i) 1-bit
DACs can contribute the highest energy efficiency only at very low SNR ii) at very high
SNR, only (3-5)-bit DACs are sufficient to provide the highest energy efficiency along with
very good spectral efficiency. The overall performance comparison of the array structures is
summarized in Table. 3.4.
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Table 3.4. Performance comparison of ULA, UCA, URA, and CCA with few-bit DACs.

ULA UCA URA CCA
Sum-rate using
few-bit DACs
(see Fig. 3.8)

Low
sum-rate

Low
sum-rate

High
sum-rate

High
sum-rate

Energy efficiency
using few-bit DACs
(see Fig. 3.9 - Fig. 3.10)

Low
efficiency

Low
efficiency

High
efficiency

High
efficiency

(a) (b)

Figure 3.11. Sum-rate comparison of ULA, UCA, URA and CCA using full-resolution
PSs and DACs: (a) variable-gain RF beamformer (b) constant-modulus RF beamformer

(with transfer block).

3.6.4 Performance Comparison with Low-Resolution PSs and
DACs

In this section, we compare the performance of different 2D array structures using low-
resolution PSs and DACs. Since the RF beamformer can be designed for constant and
variable-gain entities, therefore, we first compare the performance of the HBF for the two
cases: (i) HBF with variable-gain RF beamformer, and (ii) HBF with transfer block and
constant-gain RF beamformer. To compare the performance of these two HBF schemes, we
assume full-resolution hardware components (i.e., DACs and PSs).

In Fig. 3.11(a), the sum-rate of proposed HBF scheme with variable-gain RF
beamformer is compared to FDBF as well as different HBF techniques (i.e., phase
extraction alternative minimization (PE-AltMin) method in [42] and iterative phase
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(a) ULA (b) UCA

(c) URA (d) CCA
Figure 3.12. Sum-rate comparison with 1-bit PSs: (a) ULA (b) UCA (c) URA (d) CCA.

matching (IPM) HBF technique in [72]) for different array structures, whereas in Fig.
3.11(b), the sum-rate of HBF with transfer block and constant-gain RF beamformer is
presented. It can be seen that both HBF schemes (i.e., two-stage HBF as in Fig. 3.11(a)
and three-stage HBF as in Fig. 3.11(b)) yield similar performance for ULA, URA, UCA,
and CCA. Furthermore, FDBF achieves higher sum-rate at the expense of large number of
RF chains i.e., NRF = NT = 100, whereas for both proposed HBF schemes, we can approach
the sum-rate of FDBF with relatively small number of RF chains, i.e., NRF = 9. Also, both
CCA and URA can give high sum-rate when compared to ULA and UCA as well as the
HBF solutions presented in [42] and [72]. In the following analysis, we provide an extensive
comparison of spectral and energy efficiencies of the array structures for the case of: (i)
HBF with b-bit PSs and ∞-bit DACs, and (ii) HBF with b-bit PSs and q-bit DACs.
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(a) ULA (b) UCA

(c) URA (d) CCA
Figure 3.13. Sum-rate comparison with 2-bit PSs: (a) ULA (b) UCA (c) URA (d) CCA.

3.6.4.1 b-bit PSs AND ∞-bit DACs

In this section, we analyze the performance of ULA, URA, UCA, and CCA by
evaluating the proposed HBF schemes when using few-bit PSs only. Fig. 3.12 depicts the
sum-rate of different array structures for the following cases: (i) FDBF, (ii) HBF using
∞-bit PSs, (iii) HBF using 1-bit PSs

(
phase quantization of (ii)

)
, (iv) HBF using 1-bit PSs

(OMP), (v) HBF using PE-AltMin [42], and (vi) HBF using IPM [72]. By using the same
simulation parameters as mentioned earlier, it can be seen that the proposed OMP based
HBF design for 1-bit PSs can provide higher sum-rates than the HBF designed with simple
phase quantization as well as different HBF solutions (i.e., [42, 72]) for URA and CCA
array structures. Also, the sum-rate degradation is reduced to around (3-4) [bps/Hz] at low
SNR, whereas at high SNR, the degradation is ≈ (8 − 10) [bps/Hz] due to high
quantization error. However, by using only 2-bit PSs, we can approach the sum-rate of
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(a) ULA (b) UCA

(c) URA (d) CCA
Figure 3.14. Sum-rate vs b at SNR = (0, 10, 20) dB: (a) ULA (b) UCA (c) URA (d) CCA.

∞-bit PSs as shown in Fig. 3.13. In this case, the sum-rate degradation is reduced to
≈ (2 − 3) [bps/Hz] at all SNR values. From Figures 3.12 and 3.13, we can also see that
URA and CCA can give higher sum-rate than ULA and UCA for both 1-bit and 2-bit PSs.

Fig. 3.14 plot the sum-rate versus b, where b is the number of the bits of the PSs, and
compares the spectral efficiency of ULA, URA, UCA, and CCA. The results are presented
at SNR of 0, 10 and 20 dB. Fig. 3.14 indicates that the proposed HBF scheme with 2-bit
PSs can approach the performance of HBF with ∞-bit PSs. For a given SNR, the sum-rate
performance gap between the FDBF and HBF with∞-bit PSs in the case of URA and CCA
is much smaller than in the case of ULA and UCA. Furthermore, for all array structures,
the sum-rate gap increases with increasing SNR. Similarly, for the same SNR values, we
investigate the sum-rate versus NRF g

of FDBF, HBF’s with ∞-bit and 1-bit PS in different
array structures as plotted in Fig. 3.15. The results show that both URA and CCA can
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(a) ULA (b) UCA

(c) URA (d) CCA
Figure 3.15. Sum-rate vs NRF g

with 1-bit PSs at SNR = (0, 10, 20) dB: (a) ULA (b) UCA
(c) URA (d) CCA.

give high sum-rate with a slight increase in NRF g
. The sum-rate increases by approximately

20 % for ULA and UCA, and almost 10 % for URA and CCA by increasing NRFg
from 3 to

4. Also, in Fig. 3.16, we plot the sum-rate versus NRF g
of FDBF, HBF’s with ∞-bit and

2-bit PS. It can be seen that by increasing NRFg
from 3 to 4, the proposed HBF scheme using

either URA or CCA can approach the performance of FDBF with ∞-bit PSs, and offers a
slightly lower sum-rate with 2-bit PSs. On the other hand, the propsed HBF scheme using
ULA and UCA requires more RF chains to approach the performance of the FDBF.

The use of low-resolution PSs with the proposed HBF scheme not only offers high spectral
efficiency but can also provide high energy efficiency compared to FDBF and HBF using full-
resolution PSs. The energy efficiency is defined as the ratio of the sum-rate Rsum and the
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(a) ULA (b) UCA

(c) URA (d) CCA

Figure 3.16. Sum-rate vs NRF g
with 2-bit PSs at SNR = (0, 10, 20) dB: (a) ULA (b) UCA

(c) URA (d) CCA.

total power consumption Ptotal, i.e.,

ϵ = Rsum

Ptotal
= Rsum

PT +NRFPRF +NPSPPSb

, (3.46)

where PT represents the total transmission power, NRF is the total number of RF chains,
PRF is the power consumption of each RF chain, and PPSb

is the power consumption of b-bit
PSs. As in [90], we use PT = 1 W and PRF = 250 mW. The use of transfer block yields a
constant-gain RF beamformer but also doubles the number of PSs per each RF chain due
to double-PS structure (as discussed in Section 3.4.2.2). Thus, NPS = 2×NRF ×N . We use
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(a) ULA (b) UCA

(c) URA (d) CCA
Figure 3.17. Energy efficiency comparison versus transmit power at SNR= 15 dB: (a)

ULA (b) UCA (c) URA (d) CCA.

5 mW and 10 mW as the power consumption values for 1-bit and 2-bit PSs i.e., (PPS1 = 5
mW, PPS2 = 10 mW) [96, 97]. Fig. 3.17 analyzes the energy efficiency of ULA, UCA, URA,
and CCA versus transmit power, which varies from -30 dB to 30 dB and compares ϵ at SNR
= 15 dB for four cases which are: (i) FDBF, (ii) HBF using∞-bit PSs, (iii) HBF using 1-bit
PSs, and (iv) HBF using 2-bit PSs. For the full-resolution PSs, we assume 5-bit PSs be a
good choice to replicate the performance of ∞-bit PSs.

Fig. 3.17 shows that both 1-bit and 2-bit PSs can offer high energy efficiency compared to
FDBF and HBF using ∞-bit PSs. However, the energy efficiency decreases sharply beyond
0 dB for all array structures because of high transmit power. Compared to ULA and UCA,
both URA and CCA can offer higher energy efficiency when using only 1 or 2-bit PSs at the
RF-stage.
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(a) ULA (b) UCA

(c) URA (d) CCA
Figure 3.18. Sum-rate degradation versus b for different DAC resolutions at SNR = 10

dB: (a) ULA (b) UCA (c) URA (d) CCA.

3.6.4.2 b-bit PSs AND q-bit DACs

In this section, we examine the spectral effiency of the proposed HBF scheme with low-
resolution DACs and PSs, i.e., the combined effect of q-bit DACs and b-bit PSs on the
sum-rate performance for ULA, URA, UCA, and CCA. To better understand the effect of
low-resolution PSs and DACs on the sum-rate degradation Rdeg, we first plot Rdeg due to
each individual hardware component (i.e., DACs or PSs). Fig. 3.18 shows various Rdeg plots
versus b for different values of q. It can be seen that 1-bit DAC can give large sum-rate
degradation (≈ 65%). The large quantization noise introduced by the use of only 1-bit DAC
impede the performance improvement even by increasing PSs resolution (i.e., b). However,
by increasing DAC resolution, we can see that Rdeg decreases significantly, e.g., Rdeg reduces
to ≈ 25% with 5-bit DACs and 1-bit PSs. In other words, we can approach the performance
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(a) ULA (b) UCA

(c) URA (d) CCA
Figure 3.19. Sum-rate degradation versus q for different PS resolutions at SNR = 10 dB:

(a) ULA (b) UCA (c) URA (d) CCA.

of HBF with∞-bit resolution with just 5-bit DACs, offering significant advantages in power
consumption and cost.

Fig. 3.19 plots Rdeg versus q for different PSs resolution. Similar to the case of 1-bit
DACs, HBF using 1-bit PSs can give high Rdeg (≈ 70%). However, this degradation can
be decreased significantly by increasing the resolution of DACs. Thus, HBF with 1-bit PSs
can provide higher sum-rate than HBF with 1-bit DACs. Also, for b ≥ 2, we can see that
Rdeg is almost the same for all resolution levels i.e, b = 2, 3, 4, 5, which indicates that the
performance of HBF depends more on DAC resolution than on PS resolution. Furthermore,
this analysis gives us the least numbers of bits of DACs and PSs required to achieve a
satisfactory performance close to FDBF and HBF using ∞-bit components.

Fig. 3.20 plots the sum-rate versus q and b for ULA, UCA, URA, and CCA at SNR = 10
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(a) ULA (b) UCA

(c) URA (d) CCA
Figure 3.20. Sum-rate versus q and b at SNR = 10 dB: (a) ULA (b) UCA (c) URA (d)

CCA.

dB and b and q varying from 1 to 10. The sum-rate performance gap between the FDBF and
proposed HBF using ULA and UCA is larger than the case using URA and CCA. Moreover,
the analysis of the results obtained in Fig. 3.18 and Fig. 3.19 gives some following useful
notes: (i) the use of low-resolution DACs significantly degrades the sum-rate performance as
compared to the use of low-resolution PSs (e.g., R(q=1,b=10) ≪ R(q=10,b=1)), (ii) single-layered
array structures (i.e., ULA and UCA) give low sum-rate, whereas, the multi-layered array
structures (i.e., URA and CCA) can approach the sum-rate of FDBF, and (iii) the optimal
sum-rate can be obtained by using different combinations of q and b and thus, offers the
choice to use which combination of low-resolution hardware components for increased sum-
rate. This can also be better understood by the equal-sum-rate contour plots shown in Fig.
3.21. It can be observed that we can get reasonably high sum-rate by using the proposed
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(a) ULA (b) UCA

(c) URA (d) CCA

Figure 3.21. Equal-sum-rate contour plots at SNR = 10 dB: (a) ULA (b) UCA (c) URA
(d) CCA.

HBF with (q ≥ 5, b ≥ 2), which is, in particular, close to that of FDBF for both CCA and
URA. Finally, Table 3.5 gives the comprehensive comparison of spatial, spectral and energy
efficiencies of ULA, UCA, URA, and CCA when using few-bit DACs and PSs.

3.7 Concluding Remarks

In this chapter, we have presented the MU-mMIMO hybrid beamforming (HBF) design
for low-resolution PSs and/or DACs, and investigated its performance using different 2D
antenna array structures. In the HBF design, the RF precoder has been developed via the
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Table 3.5. Performance comparison of ULA, UCA, URA and CCA using low-resolution
PSs and DACs.

ULA UCA URA CCA
Spatial efficiency Low Low High High
Sum-rate using b-bit PSs
(see Figure 3.12 - Figure 3.12) Low High High High
Energy efficiency using
b-bit PSs (see Figure 3.17) Low High High High
Sum-rate using q-bit DACs
and b-bit PSs
(see Figure 3.18 - Figure 3.19) Low Low High High

slow time-varying AoD information, whereas the reduced-size effective CSI is utilized at the
baseband precoder. Considering the hardware complexity, we have considered the following
cases in the HBF design: (i) low-resolution PSs only, and (ii) low-resolution PSs and DACs.
An optimization problem has been formulated to provide an RF beamformer with uniform
gain entities by introducing a transfer block at the baseband stage. Furthermore, we have
proposed an algorithmic solution using OMP to reduce the Euclidean distance between the
HBF with full-resolution PSs and the HBF with low-resolution PSs. Based on OMP, we have
first designed HBF using b-bit PSs and ∞-bit DACs, then constructed the HBF using b-bit
PSs and q-bit DACs to significantly reduce hardware complexity and costs in MU-mMIMO
HBF systems. The spectral and energy efficiencies of ULA, UCA, URA, and CCA have been
compared using Monte Carlo simulations. Illustrative results indicate that the proposed
HBF using both URA and CCA can provide high sum-rates, which are comparable to their
FDBF counterparts. Also, the use of low-resolution PSs and DACs can provide high energy
efficiency. Finally, we have presented different combinations of PS and DAC quantization
levels to achieve near-optimal sum-rate. It has been shown that HBF using only 2-bit PSs
and 5-bit DACs can provide high performance close to FDBF.

3.8 Appendix: Proof of Lemma 3.1

Let the normalization factor NRF g∥∥∥F̂(q)
Dg

T(q)
g

∥∥∥
F

is equal to 1
ρ
. Then, we can write:

∥∥∥F̂(q)
Dg

T(q)
g

∥∥∥
F

= ρNRF g
= ρ

∥∥∥F̂DgTg

∥∥∥
F
. (3.47)
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Using norm inequality, we have:

∥∥∥F̂DgTg − F̂(q)
Dg

T(q)
g

∥∥∥
F
≥

∣∣∣∣∣ ∥∥∥F̂DgTg

∥∥∥
F
−
∥∥∥F̂(q)

Dg
T(q)
g

∥∥∥
F

∣∣∣∣∣,
= |1− ρ|

∥∥∥F̂DgTg

∥∥∥
F
, (3.48)

which is equivalent to
∥∥∥F̂DgTg

∥∥∥
F
≤ 1

|ρ−1|ζ. When ρ ̸= 1, we have
∥∥∥F̂DgTg − F̂(q)

Dg
T(q)
g

∥∥∥
F
̸= 0.

Then,

∥∥∥F̂DgTg − F̂(q)
Dg

T̃(q)
g

∥∥∥
F

=
∣∣∣∣∣∣∣∣F̂DgTg − F̂(q)

Dg
T(q)
g +

(
1− 1

ρ
F̂(q)
Dg

T(q)
g

)∣∣∣∣∣∣∣∣
F
,

≤
∥∥∥F̂DgTg − F̂(q)

Dg
T(q)
g

∥∥∥
F

+
∣∣∣∣∣1− 1

ρ

∣∣∣∣∣ ∥∥∥F̂(q)
Dg

T̃(q)
g

∥∥∥
F
,

≤ ζ + |ρ− 1|
∥∥∥F̂DgTg

∥∥∥
F

≤ ζ + |ρ− 1|
|ρ− 1|ζ,

= 2ζ. (3.49)

From (3.49), we can write as:
∥∥∥F̂DgTg − F̂(q)

Dg
T̃(q)
g

∥∥∥
F

= 2ζ. (3.50)
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Chapter 4

3D Antenna Array Structures in
Hybrid Massive MIMO1

4.1 Introduction

As discussed in Chapter 3, the antenna elements at the BS can be configured in a
number of ways, resulting in narrower beams to reduce MU interference. A comparison of
different 2D array structures in MU-mMIMO is presented in [57, 58], showing higher
spectral and energy efficiencies of uniform rectangular array (URA) and concentric circular
array (CCA) than uniform linear array (ULA) and uniform circular array (UCA). Given
the massive wireless connectivity requirements of IoT, mMTC, and future aerial
applications involving mobile drones, UAVs, satellites, existing array structures lack the
ability to transmit signals in arbitrary location in 3D space. As a result, in future wireless
applications, the 3D configuration of antenna elements will be critical. The design of
uniform spherical array (USA) is presented in [99], which shows significant advantages in
mMIMO. Antenna elements can also be placed in a 3D cylindrical array to increase SE as
shown in [100]. The majority of existing research on HBF solutions in mmWave
MU-mMIMO systems is focused on ULA or URA (e.g., [42, 62, 88, 90]). Therefore,
analyzing the performance of various 3D array topologies remains an unaddressed research
problem.

In this chapter, we compare the spectral and energy efficiencies of three different 3D array
structures in mmWave MU-mMIMO systems., i.e., cylindrical array (CA), hemi-spherical
array (HSA), and spherical array (SA) and analyze the computational complexity as well as

1Parts of this chapter have been published in the IEEE Communications Letters [98].
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robustness of the proposed HBF scheme. The main contributions of this chapter are outlined
as follows:

• SVD-Based HBF Design: We consider the design of HBF for mmWave
MU-mMIMO systems, which involves two stages: (i) RF beamforming based on SVD
of channel matrix, and baseband MU precoding based on the instantaneous effective
baseband channel to mitigate MU-interference by RZF technique.

• Comparison of 3D Antenna Array Structures: We compare the spectral and
energy efficiencies of different 3D antenna array structures in mmWave MU-mMIMO
systems. Particularly, we consider three different 3D array configuration, namely, SA,
HSA, and CA, and compare their performance versus URA (2D array configuration).
We show that in comparison to 2D arrays, 3D array structures can provide high spectral
and energy efficiencies as well as non-varying achievable rate independent from the user
angular location.

• Robustness of HBF to CSI Errors: We compare the effect of channel estimation
error on the sum-rate performance for different array structures and show that the
proposed HBF scheme is not sensitive to the accuracy of CSI.

The rest of this chapter is organized as follows. In Section 4.2, we discuss the system and
channel model for mmWave MU-mMIMO systems. Section 4.3 presents the SVD-based
HBF solution to maximize the total achievable rate. The illustrative results are provided in
Section 4.4 to compare the performance of different 3D array structures. Finally, the chapter
is concluded in Section 4.5.

4.2 System and Channel Model

In this section, we introduce the system and channel models of the proposed hybrid
mmWave MU-mMIMO systems.

4.2.1 System Model

We consider the downlink of a mmWave MU-mMIMO system with HBF structure, as
depicted in Fig. 4.1. The BS employs N antenna elements at the transmitter, which are
fed by NRF RF chains simultaneously communicating with K single-antenna users. At the
BS, the hybrid precoder B = FDBD consists of the digital baseband precoder BD ∈ C

NRF ×K
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Figure 4.1. System model for the proposed mmWave MU-mMIMO hybrid precoding.

and the analog RF beamformer FD ∈ C
NT ×NRF that is implemented using phase shifters

and thus, imposes a constant-modulus contraint., i.e., |FD(i, j)| = 1√
NT
∀i, j. The design of

HBF reduces the number of RF chains from NT to NRF , while satisfying K ≤ NRF ≪ NT .
Assuming the number of data streams S equal to the number of the users K., i.e., S = K,
the precoded signal at the transmitter is given by:

s = FDBDd, (4.1)

where d ∈ CK is the data signal with E{ddH} = IK . The transmitted signal satisfies the
power constraint., i.e., E{∥s∥2

2} ≤ PT , where PT is the transmit power at the BS. Then, the
received signal at kth user is given by:

yk = hH

k Bs + nk,

= hHk FDbdk
dk︸ ︷︷ ︸

Desired Signal

+
K∑
k̂ ̸=k

hHk FDbdk̂
dk̂︸ ︷︷ ︸

IUI

+ nk︸︷︷︸
Noise

, (4.2)

where hk ∈ CNT and sk are the narrowband flat-fading channel vector and data signal for
kth user, respectively, bdk

is the kth column of BD, and nk denotes the additive circular
symmetric Gaussian noise such that nk ∼ CN (0, σ2).

By using (4.1) and (4.2), the instantaneous signal-to-interference-plus-noise ratio (SINR)
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expression at kth user is derived as follows:

SINRk = |hH

k FDbdk
|2∑K

k̂ ̸=k |h
H

k FDbdk̂
|2 + σ2

. (4.3)

By using the instantaneous SINR, the ergodic sum-rate capacity Rsum for the MU-mMIMO
systems is given by:

Rsum =
K∑
k=1

E[log2(1 + SINRk)]. (4.4)

The design of FD,BD aims at maximizing the SE of mmWave MU-mMIMO systems. Then,
the optimization problem can be formulated as follows:

max
FD,BD

Rsum
(
FD,BD

)
(4.5a)

s.t. |FD(i, j)| = 1√
NT

, (4.5b)

E{∥s∥2
2} ≤ PT . (4.5c)

4.2.2 Channel Model

We consider a narrowband clustered channel model, based on the extended
Saleh-Valenzuela model to characterize the sparse scattering of the mmWave
communication channel [88]. We assume the channel matrix H ∈ CNT ×K be the sum of NC

scattering clusters, where each cluster contributes NP propagation paths. Then, the
narrowband channel vector hk for kth user can be written as:

hk =
√
NT

NCL

NC−1∑
m=0

L−1∑
l=0

αm,lk ak(ϕm,lk , θm,lk ), (4.6)

where αm,lk corresponds to the complex gain of the lth multipath ray in the mth cluster,
ak(ϕm,lk , θm,lk ) is the transmit array response vector, where ϕm,lk ∈ [ϕk−δe, ϕk+δe] represents the
mean elevation angle of the corresponding path with angle spread δe and θm,lk ∈ [θk−δa, θk+δa]
represents the azimuth angle of departure (AoD) with azimuth angle spread δa. We assume
complex weights αm,l are i.i.d CN (0, σ2

α,m), where σ2
α,m is the average power of the mth
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cluster such that ∑NC−1
m=0 σ2

α,m =
√

NT

NCL
. The array steering vector is given as [90,99,100]:

a(ϕ, θ) = 1√
NT

[a1(ϕ, θ), a2(ϕ, θ), . . . , aN(ϕ, θ)]T , (4.7)

where an(ϕ, θ) = ej
2π
λ

rT
n u(ϕ,θ), NT is the number of the antenna elements at BS,

rn = [xn, yn, zn]T is the position of the nth antenna element and
u(ϕ, θ) = [cos θ sinϕ, sin θ sinϕ, cos θ]T . Different from the conventional array structures, we
assume the antenna elements arranged in 3D space namely, CA, HSA, and SA, and
compare their performance with that of 2D array i.e., URA, as shown in Fig. 4.2.

4.3 Hybrid Beamforming Design

In this section, we present the design of proposed hybrid precoder B ∈ C
NT ×K, which

maximizes the spectral and energy efficiencies of mmWave MU-mMIMO systems. The HBF is
constructed by concatenating the RF beamformer FD ∈ C

NT ×NRF and reduced-dimensional
MU baseband precoder BD ∈ C

NRF ×K. The HBF solutions presented in literature (e.g.,
[42,62,88]) can achieve a high sum-rate performance but depends on finding the optimal fully
digital precoder Fopt, which increases the computational complexity. Eigen beamforming
(EBF), on the other hand, can give high performance with reduced complexity. However,
the RF beamformer in this case constitutes variable-gain entities and thus, does not meet
the constraint given in (4.5b). To design the constant-modulus RF beamformer while using
EBF is a challenging problem. The simple solution is to formulate the correlation matrix R
based on the array response vector ak [101]. Then, the correlation matrix for kth user can
be written as:

Rk = aka
T

k . (4.8)

By using Karhunen-Loeve decomposition, we let Rk = UkΛkU
H

k . Then, the RF beamformer
can be designed using the dominant eigenvalues., i.e., U∗

k. However, this approach gives low
performance. In [59], a three-stage HBF is designed using EBF but it requires the use of
doubling phase shifter structure. In the proposed HBF design, we introduce a low-complexity
solution, which uses ordered SVD of the mmWave MU-mMIMO channel and achieves high
performance without requiring Fopt [102].
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(a) (b)

(c) (d)

Figure 4.2. mmWave MU-mMIMO array structures: (a) URA (b) CA (c) HSA (d) SA.

4.3.1 RF Beamformer Design

We assume K users are clustered into G groups based on their AoD information, where
each group contains Kg number of users such that K = ∑G

g=1 Kg. The index gk = ∑g−1
g′=1 Kg′ +

k is used to denote the kth user in group g. Then, the channel matrix H(g) for gth group can
be written as:

H(g) = Q(g)Σ(g)VH(g), (4.9)

where Q(g) and V(g) are Kg × Kg and NT × NT unitary matrices, respectively. Σ(g) is a
Kg ×NT rectangular diagonal matrix with non-negative real numbers on the diagonal, and
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Algorithm 4.1 SVD Based RF Beamformer Design
1: Input: [θ(g)

k , ϕ
(g)
k ] for k = 1, . . . , K

2: for g = 1 : G do
3: Compute channel matrix h(g)

k via (4.6)
4: Using (4.9), form the unitary matrices Q(g) and V(g)

5: for n = 1 : NT do
6: Calculate the phase of each entity of V(:, n)(g), i.e., ψ(:, n)(g)

7: Construct the phase vector γ(g)
n

8: end for
9: Formulate Γ(g) via (4.10)

10: Compute W(g) using N (g)
RF via (4.11)

11: end for
12: FD = [W(1),W(2), . . . ,W(G)]

the elements are arranged in decreasing order. Let Γ(g) be the matrix containing NT column
vectors. Then, we can write as:

Γ(g) = [υ(g)
1 , υ

(g)
2 , . . . , υ

(g)
NT

], (4.10)

where υ(g)
n = [ejψ

(g)
1,n , ejψ

(g)
2,n , . . . , ejψ

(g)
N,n ]T ∈ CN is the phase vector of group g, and ψ(g)

m,n is the
phase angle of the (m,n)− th entry of V. Comparing (4.9) and (4.10), we can see that each
entry of υ(g)

n and Vg(n) have the same phase angle., i.e., ψ. Let W(g) be the set containing
N

(g)
RF columns where each nth column represents the nth largest singular value of channel

matrix H(g). We can write W(g) as:

W(g) = [υ(g)
1 , υ

(g)
2 , . . . , υ

(g)
NRF

] (4.11)

The pseudo-code for RF beamformer design is given in Algorithm 4.1.

4.3.2 Baseband MU Precoder Design

After the design of RF beamformer FD, the baseband MU precoder BD can be determined
by using the joint group processing (JGP) [90]. The overall reduced dimensional effective
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channel matrix is expressed as HH = FH

DH. The effective channel H can be written as:

H =


HH(1)F(1)

D HH(1)F(2)

D . . . HH(1)F(G)

D

HH(2)F(1)

D HH(2)F(2)

D . . . HH(2)F(G)

D
... ... . . . ...

HH(G)F(1)

D HH(G)F(2)

D . . . HH(G)F(G)

D

 , (4.12)

where the diagonal matrices HH(g)F(g)

D ∈ C
K(g)×NRF (g) are the effective channel matrix for group

g and the off-diagonal matrices HH(g)F(ĝ)

D ∈ C
K(g)×N

RF ĝ represent the effective interference
channel matrix between groups g and ĝ, ∀ĝ ̸= g. By applying the well-known RZF technique,
BD is defined as:

BD = γTH, (4.13)

where H is the reduced-dimension effective channel as provided in (4.12), T = [HHH +
αNRF INRF

]−1, INRF
∈ C

NRF ×NRF , α is the regularization parameter and γ is the normalization
factor used to satisfy the power constraint, which can be written as:

γ =
√√√√ S

tr{HHTHFH

DFDTH}
. (4.14)

4.4 Illustrative Results

In this section, the Monte-Carlo simulation results are presented based on the proposed
hybrid precoding for various array structures. For the presented results, we assume the
BS is equipped different array configurations as depicted in Fig. 4.2. For URA(CA), we
arrange the antenna elements in 20 rows(rings), where each row(ring) having 10 elements
with a spacing of ds = λ

2 [90, 100]. For HSA and SA, the antenna elements are arranged
having uniform angle spacing [99]. The signal-to-noise-ratio (SNR) is defined as PT

σ2K
and the

regularization parameter α = σ2

PT
[59].

4.4.1 Spectral Efficiency (SE) Comparison

In this section, we compare the spectral efficiency of different 3D array structures in
mmWave MU-mMIMO systems both with 2D array structure (i.e., URA) and HBF solutions
presented in [42,88,101]. In Fig. 4.3, we compare the sum-rate performance of different array
structures, when N = 200. We consider K = 12 users are equally distributed into G = 3
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Figure 4.3. Sum-rate versus SNR comparison for URA, CA, HSA and SA.

Figure 4.4. Sum-rate versus azimuth location θ, ϕ = 73◦, SNR = 10 dB.

groups (i.e., Kg = 4, ∀g), which are located around the BS at mean elevation angle ϕ =
73◦, mean azimuth locations (θ1, θ2, θ3) = (30◦, 90◦, 150◦) with δa = 15◦ and δe = 12.5◦.
Each user having minimum number of RF chains (i.e., NRF g = Kg = 4). For SNR varying
from -10 dB to 30 dB, we plot the sum-rate of URA, CA, HSA and SA in Fig. 4.3. FDBF
achieves higher sum-rate but it requires the utilization of 200 RF chains. On the other hand,
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Figure 4.5. Sum-rate versus number of users K, N = 200, G = 1, NRF = K, ϕ = 73◦, θ =
90◦, (δa, δe) = (±15◦,±12.5◦), SNR = 20 dB.

by using the proposed HBF, the sum-rate capacity of FDBF can be closely achieved with
HBF by only using 12 RF chains., i.e., a 94% reduction of RF chains. Also, the use of 3D
array structure can provide a higher sum-rate when compared to URA (e.g., the sum-rate
increases by approximately 10 bps/Hz via CA, HSA or SA) as well as the HBF schemes
in [42, 88, 101]. In Fig. 4.4, we investigate the variation of sum-rate for different array
structures when the user changes its angular location. We consider single user group., i.e.,
G = 1 having NRF g = Kg = 4. Fig. 4.4 shows the sum-rate versus the mean azimuth
location of a user group θ, where θ varies between [0◦:30◦:180◦] and ϕ = 73◦ at SNR =
10 dB. It can be seen that both HSA and SA can provide a non-varying/uniform sum-rate
irrespective of the angular location θ because of a more symmetrical configuration, whereas
the sum-rate can vary slightly for URA and CA. Also, both SA and HSA provide a higher
sum-rate.

Fig. 4.5 plot the sum-rate versus number of users K for single user group (G = 1) located
at θ = 90◦ and evaluated at SNR = 20 dB. 3D array structures can provide a higher sum-
rate, where in particular SA can offer the highest sum-rate among all the array structures.
Considering the future massive wireless connectivity requirements of IoT and for different
aerial applications (e.g., in UAVs), different 3D array structures can be considered, which
can provide a high sum-rate while supporting more number of users/devices.
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Figure 4.6. Energy efficiency versus transmit power PT .

4.4.2 Energy Efficiency Comparison

In this section, we compare the energy efficiency of the proposed HBF in mmWave MU-
mMIMO systems using different 3D array structures. The energy efficiency ϵ is defined as
the ratio of the sum-rate Rsum and the total power consumption Ptotal, i.e.,

ϵ = Rsum

Ptotal
= Rsum

PT +NRFPRF +NPSPPS

, (4.15)

where PT represents the total transmission power, NRF is the total number of RF chains, PRF
and PPS are the power consumptions of each RF chain and PS, respectively. NPS = NRF×NT

is the total number of PSs used at the RF front end. As in [90], we use PT = 1 W, PRF = 250
mW and PPS = 1 mW. In Fig. 4.6, we plot energy efficiency versus transmit power for single
user group (i.e., G = 1) located at ϕ = 73◦, θ = 30◦. We analyze the performance of different
3D array structures at SNR = 10 dB. FDBF provides very low performance due to use of
large number of RF chains. On the other hand, the proposed HBF can provide a higher
energy efficiency as it uses only a few number of RF chains (in this case, NRF = K = 4).
Furthermore, 3D array structures can give a more energy-efficient HBF design in mmWave
MU-mMIMO systems when compared to 2D array structures.
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Figure 4.7. Sum-rate versus imperfect CSI ζ at SNR = 0, 10, 20 dB.

4.4.3 Complexity Analysis

The design of FDBF requires O(N3 + KN2) operations, where O(KN2) is required for
computation of HHH and matrix inversion requires O(N3). For the proposed HBF, to
obtain RF beamformer FD as given in Algorithm 4.1, the complexity is O(GN), where
NT is the total number of antennas and G is the total number of user groups. Then, the
design of baseband precoder (as given in (4.13)) BD requires O(N3

RF + KN2
RF ) operations,

which makes the computational complexity of the proposed HBF solution as O(GNT +
N3
RF +KN2

RF ). For the HBF solution in [88] and [42], the computational complexity of Fopt

requires O(K2NT ) operations. Thus, the overall complexity becomes O
(
K2NT +N2

TKNRF

)
and O

(
K2NT +kNTN

2
RF

)
, respectively, where k is the number of iterations. As an example,

consider NT = 100, G = 3, K = 3 and NRF = 3, the complexity of the proposed HBF
solution is only about 1 percent of the complexity of the HBF methods in [42,88].

4.4.4 Imperfect CSI

In practical systems, CSI is contaminated by estimation error, therefore, we evaluate the
impact of imperfect CSI on the performance of the proposed HBF solution. The estimated
channel matrix Ĥ is given as [90]:

Ĥ = ζH +
√

1− ζ2E, (4.16)
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where H is the reduced-dimensional effective channel matrix at the baseband, ζ ∈ [0, 1] is
the parameter that controls CSI accuracy and E is the error matrix with entities following
the standard complex Gaussian distribution. In Fig. 4.7, we compare the effect of channel
estimation error on the sum-rate for different array structures and observe that the proposed
HBF scheme is not sensitive to the accuracy of CSI. In particular, SA can provide a higher
sum-rate when compared to HSA, CA and URA with imperfect CSI (e.g., ζ = 0.7).

4.5 Concluding Remarks

In this chapter, we have presented the mmWave MU-mMIMO HBF design and
investigated the performance comparison of different 3D antenna array structures. In the
low-complexity HBF design, the RF beamformer has been developed by using the ordered
SVD of the channel matrix, whereas the baseband precoder is designed using the
reduced-dimensional effective channel matrix via RZF. The simulation results show the
high spectral and energy efficiencies of 3D antenna arrays when compared to URA for the
proposed HBF solution as well as the robustness to the channel imperfections. Among
different 3D configurations introduced in this letter, both HSA and SA can provide high
uniform performance irrespective of the users’ angular location around the BS.
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Chapter 5

Enhancing Capacity in Full-Duplex
Massive MIMO: Hybrid Beamforming
Approach1

5.1 Introduction

In the previous chapters, the HBF techniques have been proposed for the half-duplex
(HD) mMIMO systems. Full-duplex (FD) communications can further extend the expected
impacts of the mMIMO systems since it theoretically doubles the capacity via
simultaneous transmission and reception over the same frequency band. Although FD is
severely affected by the strong self-interference (SI), the recent developments in SI
suppression (SIS) techniques make it more practical [43–45]. For instance, the Tx and Rx
antenna sub-systems can be designed in such a way to isolate the transmit and receive RF
chains as much as possible [46–48]. The practical demonstrations show SI suppression
between -60 and -70 dB based on antenna isolation [49]. On the other hand, active SI
cancellation refers to mitigating SI by subtracting a processed copy of the transmitted
signal from the received signal. Then, based on the signal domain, where the SI signal is
subtracted, active cancellation is divided into digital and analog SI cancellations. Analog
SI cancellation requires the use of specially designed circuitry to reconstruct the SI
counterpart and substract it from the received signal at the analog front-end of the local

1Parts of this chapter have been presented at the 2023 IEEE Global Communications Conference
(GLOBECOM), KualaLumpur, Malaysia [103], the 2024 IEEE Wireless Communications and Networking
Conference (WCNC), Dubai, UAE [104], and published in the IEEE Open Journal of the Communications
Society [105].
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Rx [106–108]. Digital SI cancellation techniques are considered to be the simplest forms of
active cancellation techniques. However, the amount of SI cancellation achieved through
digital techniques is quite limited due to hardware imperfections, particularly transceiver
phase noise and non-linearities that restrict the performance of traditional digital
cancellation techniques [52]. Therefore, antenna isolation, analog and digital SI
cancellation (suppression), and their combinations have been used to suppress the strong
SI signal below the Rx noise floor in FD communications [109–111].

In 5G and beyond systems, there is a growing trend towards utilizing an increased
number of antennas at BS. For instance, 3GPP has been considering configurations with
64-256 antennas [32]. However, the increased number of antennas introduces additional
challenges for analog SI cancellation in FD mMIMO systems. This results in high analog
complexity, which is not affordable. An alternative approach relies exclusively on transmit
beamforming to suppress SI, thereby completely obviating the need for analog
cancelers [112]. The use of large array structures both at the transmitter and receiver in
FD communications can provide additional spatial DoF, which can help to suppress strong
SI and can double the capacity. The existing research studies, for instance [113–120],
consider HBF in FD mMIMO systems to mitigate the strong SI from Tx to Rx. However,
the SI suppression evaluation in these studies relies exclusively on the theoretical SI
channel models. In other words, the studies in [113–120] do not consider the experimental
evaluations to validate the theoretical doubling of capacity/throughput. Instead, the
studies assume both residual near-field SI channel via LoS paths and the far-field SI
channel via the reflected non-line-of-sight (NLoS) paths in a simulated manner. In
practical implementations, real-world platforms inevitably experience SINR loss due to the
impact of strong SI. Therefore, it is important to develop a robust understanding of
beamforming-based SI suppression capabilities by utilizing the experimentally measured SI
channels. Therefore, investigating the effectiveness of beamforming-based SI suppression in
the real-time implementation of FD mMIMO systems becomes essential to bridge this gap
between theory and practical performance.

Additionally, most existing FD studies primarily consider FC-HBF architectures. In
the FC-HBF scheme, each RF chain is connected to all antenna elements, which allows
the RF chain to exploit the full beamforming capability of the antenna array. However,
this leads to increased cost and complexity. On the other hand, SC-HBF architectures
require the connection of each RF chain to a subset of antennas, significantly reducing the
connectivity and implementation cost/complexity. Thus, SC-HBF utilizes fewer RF PSs
circuits compared to FC-HBF, and its use can reduce power consumption at the expense
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of some performance degradation. However, SC-HBF can provide a better spectral-energy
efficiency tradeoff [104,121]. Thus, it is more suitable to deploy SC-HBF structure for future
key enabling technologies, for instance, mmWave and sub-Terahertz (THz) communications
[122–124]. It is worth noting that the SC-HBF architecture is mainly considered in HD
transmission studies, while most research in FD communications has focused on the use of
FC-HBF [113–120]. Therefore, it is important to explore SC-HBF architecture’s potential
in FD mMIMO systems to reveal its advantages and enable its deployment in emerging
technologies.

The main contributions of this chapter are outlined as follows:

• We formulate a multi-objective optimization framework that focuses on maximizing
the total achievable-rate and SI minimization in FD mMIMO systems. To solve this
challenging non-convex MOOP, we propose swarm intelligence-based SI suppression
scheme that optimizes the beam perturbations in the UL and DL UE directions and find
the best Tx and Rx sub-arrays while satisfying the directivity degradation constraints.

• We propose two different SI suppression schemes for the design of UL/DL RF
beamformers, namely maximum-directivity beamforming (MBF) and perturbed
beamforming (PBF) incorporating SAS for MOOP1. The MBF scheme optimizes the
RF beamformers by maximizing the intended signal power and suppressing SI
leakage power using maximum-directivity beams. In the joint PBF with SAS scheme,
we introduce perturbations to the MBF beams to enhance SI suppression. Compared
to the PBF scheme in [117], which uses phase-range constraints, the proposed PBF
scheme uses directivity-loss constraints, which offer greater flexibility in perturbing
the MBF beams while maintaining low directivity loss. Additionally, we jointly select
the best Tx and Rx sub-arrays, optimizing the UL and DL beam directions to further
enhance SI suppression by leveraging the spatial DoF.

• For the practical application purpose, we implement a testbed in an anechoic chamber
to measure the SI channel in the sub-6GHz band. The experimental setup considers
64 Tx and 64 Rx antenna elements as per 3GPP [32] and the measurements are done
without external surrounding reflections (i.e., SI channel is mainly due to “internal”
coupling between Tx and Rx antenna arrays) for a frequency band between 3 GHz and
4 GHz. We formulate RF beamforming stages using the proposed perturbation-based

1It must be noted that the MBF and PBF RF beamformers design in [103] reduces SI only, whereas, in
this work, the MBF and PBF RF beamformers formulation is based on a multi-objective design criteria i.e.,
reducing SI and maximizing the total rate.
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PBF schemes using the measured SI channel for 20 MHz bandwidth (BW). Moreover,
we employ a SC-HBF architecture for both Tx and Rx arrays, and investigate SI
suppression for the measured SI channel. The illustrative results show the significant
SI suppression achieved using the proposed joint PBF with SAS scheme compared to
the MBF scheme. We also demonstrate that using only 4 (1×4) or 8 (1×8) antenna
elements, SI value can be brought down to -78 dB, which shows the spatial suppression
abilities of FD mMIMO systems.

• We provide a realistic capacity gain in FD communications compared to HD
transmissions in mMIMO systems. Specifically, we consider the extreme case when
both UL and DL users are at same angular locations. Our results show that FD
performance degrades significantly when using MBF scheme due to inter-user
interference (IUI). However, using the proposed joint PBF with SAS scheme can
achieve approximately 1.85 times more capacity than HD communications in
real-time implementations.

The rest of this chapter is organized as follows. In Section 5.2, we discuss the channel model
for the FD mMIMO systems. Section 5.3 presents CM HBF design jointly with sub-array
selection scheme., whereas in Section 5.4, we discuss the non-constant modulus (NCM) HBF
design. The illustrative results are provided in Section 5.5 to compare the performance of
the proposed HBF schemes. Finally, the chapter is concluded in Section 5.6.

5.2 Channel Model

In this subsection, we present the intended channel, IUI channel, and the measured SI
channel in an acnechoic chamber.

5.2.1 Intended Channel

Based on the geometry-based 3D channel model [125], the channel vector between the
BS and UE is given by:

hTi =
L∑
l=1

τ−η
il
zilϕi(θil , ϕil) = zTi Φi ∈ CMi , (5.1)

where τ−n
il

and zil ∼ CN
(
0, 1

L

)
are the distance and complex path gain of the lth path, η

is the path loss exponent and ϕi(. .) is the array steering vector with i = {D,U} is the DL
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phase response vector for i = D or the UL phase response vector for i = U . Here, the angles
θil ∈

[
θi − δθi , θi + δθi

]
and ϕil ∈

[
ϕi − δϕi , ϕi + δϕi

]
are the azimuth AoD (AAoD) and elevation

AoD (EAoD) for lth path in ith channel, respectively. θi(ϕi) is the mean AAoD(EAoD) with
angular spread δθi (δ

ϕ
i ). Then, the ith instantaneous channel vector for the user is represented

via the fast time-varying path gain vector zi =
[
τ−η
i1 zi1 , · · · , τ

−η
iL
ziL
]T
∈ CL and the slow

time-varying phase response matrix as:

Φi =


ϕTi
(
θi1 , ϕi1

)
...

ϕTi
(
θiL , ϕiL

)
 ∈ CL×Mi , (5.2)

where Mi ∈ {Mds,Mus} is the Tx/Rx antenna elements.

5.2.2 IUI Channel

Based on the array phase response vectors ϕD and ϕU (as given in (5.2)), the IUI channel
for single antenna uth UL UE and dth DL UE can be written as [117]:

HIUI(u, d) = τ−η
IUIu,d

zIUIu,d
, (5.3)

where τIUIu,d
and zIUIu,d

∼ CN (0, 1) are the distance and path gain for the UL and DL UEs,
respectively.

5.2.3 Measured SI Channel

We consider a measured SI channel based on the measurement setup designed in an
anechoic chamber (i.e., without external surrounding reflections) as shown in Fig. 5.1. The
OTA FD lab setup has following internal dimensions: 1) length = 20 ft (6.096 m); 2) width
= 8 ft (2.438 m); and 3) height = 8 ft (2.438 m). This non-reflective space was large enough
to place our antenna array under test (measuring 84 cm × 32 cm, W×H) on a positioner,
approximately 4 ft away from each of C-RAM SFC-48 absorber covered five walls (reflection
< -45 dB at 3.5 GHz). We did not observe significant changes to the measured SI channel
when slightly rotating the antenna under test. The antenna arrays consisted of 64 right-hand
circular polarization Tx elements and 64 left-hand circular polarization Rx elements. These
elements were designed to minimize cross-polarization, and all antenna elements shared a
common ground plane. Both the Tx and Rx antenna arrays were arranged in an 8×8
URA configuration, with a spacing of 20 cm between these two arrays, enhancing passive
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(a)

(b)

Figure 5.1. OTA FD mMIMO lab setup for SI measurement. (a) Anechoic chamber. (b)
Tx and Rx setup.

isolation. Fig. 5.1 illustrates the mapping of the 64 Tx and 64 Rx antenna arrays. The
S-parameters were measured with vector network analyzer (VNA) Keysight PNA N5247A,
configured with an output power of 10 dBm. To reduce the effect of noise on the expected
high isolation measurements, intermediate frequency (IF) BW should be set 300 Hz (resulting
in an integrated thermal noise power of -149 dBm), and trace smoothing function was set to
1%, the averaging was turned off. The measurement bandwidth was 1 GHz, from 3 GHz to
4 GHz, with a step size of 625 kHz (resulting in 1601 measurement points). The sweep time
for each antenna elements pair was ∼10 sec, thus total measurement time for 64×64 = 4096
combinations, was expected to be 11.5 hrs.
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The Tx and Rx antennas were connected to the VNA via 5m long coaxial cables, and
MCL USB-1SP16T-83H RF absorptive switches, with approximate total insertion loss of
12.5 dB, on both the Tx and Rx sides. To construct the full 64×64 s-parameters matrix, the
measurements were done using two SP16T RF switches (one for Tx and one for Rx) connected
to each 4×4 sub-section at a time. The obtained s-parameters were transmitted to a PC via
Ethernet and post-processed in MATLAB, to de-embed all insertion losses of the test setup,
and to construct 64 Tx by 64 Rx SI channel matrix for further use in analysis and simulations
of the FD mMIMO testbed system. The detailed results of the measured 64 Tx by 64 Rx SI
channel, such as magnitude, phase, and delay are discussed in detail in [126]. The individual
isolation between each Tx and Rx element ranged from approximately 37 dB to 80 dB, thus
the resulting minimum SNR, in front of the VNA receiver, was expected to be approximately
54 dB (10dBm – 12.5dB – 80dB – 12.5 dB + 149dBm). The observed trace variations over
frequency, for fixed RF attenuator of 100dB at VNA ports, were approximately ±0.75 dB,
±3◦, and ±100ps for group delay. This setup is used for SI channel measurement.

The resulting parameters in the form of .S2P file are used to get a 64x64 SI channel
matrix, which is mainly due to internal coupling between Tx and Rx antenna elements (i.e.,
consisting of only LoS path components). Then, the complete SI channel matrix HSI, ALL has
dimensions of 64 × 64 × 1601 for a total of 1601 different frequency points. As mentioned
earlier, we consider a ULA sub-array configurations of 4 and 8 antenna elements for both
Tx and Rx. Hence, the corresponding SI channels for 1×4 and 1×8 sub-array configurations
can be represented as HSI ∈ C4×4×1601 and HSI ∈ C8×8×1601, respectively. As per 3GPP
specification, the UL and DL channel BW can vary from 5 MHz to 100 MHz [127], then
the corresponding SI channel for the given BW can be written as: HSI,B = HSI(:, :, n) ∈
Ci×i×n, where i = {4, 8}, B is the given BW, and n = 1, 2, . . . , N is the sample frequency
point for a total of N frequency points in a given BW. For instance, for a BW of 20 MHz,
n = 1, 2, . . . , 33 for the frequency range from 3.49 GHz to 3.51 GHz. Similarly, for a BW of
100 MHz, n = 1, 2, . . . , 161 for the frequency range from 3.45 GHz to 3.55 GHz.
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Figure 5.2. FD mMIMO system using SC-HBF architecture.

5.3 Constat-Modulus Hybrid Beamforming Design:
Joint Beam-Perturbation and Sub-Array
Selection

5.3.1 System Model

We consider a single-cell FD mMIMO systems for joint DL and UL transmission as
shown in Fig. 5.2. Here, the BS is equipped with transmit/receive uniform rectangular
arrays (URAs), and operates in FD mode to simultaneously serve KD DL and KU UL
single-antenna users over the same frequency band, while the users operate in HD mode due
to the hardware/software constraints (e.g., low power consumption, limited signal processing
and active/passive SI suppression capability). Specifically, the transmit (receive) URA has
ND = N

(x)
D ×N

(y)
D (NU = N

(x)
U ×N

(y)
U ) antennas, where N (x)

D (N (x)
U ) and N (y)

D (N (y)
U ) denote the

number of transmit (receive) antennas along x-axis and y-axis, respectively.
For the proposed FD mMIMO systems, we consider the DL signal is processed through

DL BB stage BD = [bD,1,bD,2, . . . ,bD,KD
] ∈ CNRF D

×KD and DL RF beamformer FD ∈
CND×NRF D , where NRFD

is the number of RF chains such that KD ≤ NRFD
≪ ND and
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bD,k ∈ NRFD
is the BB stage vector for kth DL UE. Similarly, the received UL signal at

BS is processed through UL RF beamformer FU ∈ CNRF U
×NU and UL BB combiner BU =

[bU,1,bU,2, . . . ,bU,KU
]T ∈ CKU ×NRF U by utilizing KU ≤ NRFU

≪ NU RF chains. To further
reduce the complexity and cost, we consider a SC-HBF architecture as shown in Fig. 5.2,
where the Tx (Rx) URA is divided into MD(MU) different sub-arrays in the form of uniform
linear array (ULA). Hence, compared to ND ×NRFD

PSs for Tx (NU ×NRFU
PSs for Rx),

only Nds×NRFD
(Nus×NRFU

) PSs are required as RF chain s is connected to a specific sub-
array, comprising a distinct set of antenna elements. Here, Mds(Mus) represents the number
of Tx (Rx) antenna elements for RF chain s, where ∑MD

s=1 Nds = ND and ∑MU
s=1 Nus = NU . The

mth
D Tx sub-array, for instance, consists of Nds antenna elements numbered from 1 to Nds,

ensuring a sequential distribution of elements within each sub-array. Similarly, the mth
U Rx

sub-array comprises antenna elements numbered from 1 to Nus. This approach ensures an
orderly arrangement of antenna elements within each sub-array. We assume that Nds(Nus)
is an integer value such that each Tx (Rx) sub-array has the same number of antennas. It
must be noted that each sub-array is independent of each other. Thus, we can write the DL
and UL RF beamformers as follows:

FD =


f (1)
D 0 . . . 0
0 f (2)

D . . . 0
... ... . . . ...
0 0 . . . f (LD)

D

 ∈ CND×NRF D , (5.4)

FU =


f (1)
U 0 . . . 0
0 f (2)

U . . . 0
... ... . . . ...
0 0 . . . f (LU )

U



H

∈ CNRF U
×NU , (5.5)

where f (lD)
D ∈ CNds is the DL RF beamformer associated with mth

D Tx sub-array. Similarly,
f (mU )
U ∈ CNus is the UL RF beamformer associated with mth

U Rx sub-array. Here, the UL and
DL RF beamforming stages (i.e., FU and FD) are built using low-cost PSs, which brings the
constant-modulus (CM) constraint due to the use of PSs. Then, the DL channel matrix is
denoted as HD = [hD,1,hD,2, . . . ,hD,KD

]T ∈ CKD×ND with hD,d ∈ CND as the dth DL UE
channel vector. Similarly, HU = [hU,1,hU,2, . . . ,hU,KU

] ∈ CNU ×KU is the UL channel matrix
with hU,u ∈ CNU as the uth UL UE channel vector. Due to the FD transmission, the SI
channel matrix HSI ∈ CNU ×ND is present between Tx and Rx antennas at the BS. For the
DL transmission, the transmitted signal vector at the BS is defined as sD = FDBDdD ∈ CND ,



5. Enhancing Capacity in Full-Duplex Massive MIMO: Hybrid Beamforming
Approach 93

where dD = [dD,1, . . . , dD,KD
]T ∈ CKD is the DL data signal vector such that E{dDdHD} =

IKD
. The transmitted signal vector satisfies the maximum DL transmit power constraint,

which is E{||sD||2} = tr(FDBDBH
DFH

D) ≤ PD, where PD is the total DL transmit power.
The IUI channel HIUI = [hIUI,1, . . . ,hIUI,KD

]T ∈ CKD×KU exists between DL and UL UEs,
where hIUI,d denotes the channel vector from all UL UEs to the dth DL UE. For the practical
FD implementation, we consider the scenario of a single UL UE and a single DL UE (i.e.,
KD = KU = 1) to understand how close the FD systems can achieve in terms of theoretical
doubling of the sum-rate capacity by suppressing strong measured SI based on beamforming
capability of mMIMO systems 2. Then, the received signal at the DL UE is given as follows:

rD = hTDfDbDdD︸ ︷︷ ︸
Desired Signal

+ hTIUIdU︸ ︷︷ ︸
IUI by UL UE

+ nD︸︷︷︸
Noise

, (5.6)

where dU is the UL data signal, fD ∈ CNds×NRF D is the DL RF beamformer, and nD ∼
CN (0, σ2

n) is the additive circular symmetric Gaussian noise. The received signal includes
the desired DL signal, IUI generated by UL UE as well as the noise. Thus, the DL UE
is exposed to IUI from UL UE due to the FD transmission. After some mathematical
manipulations, we derive the instantaneous SINR at the DL UE as follows:

SINRD = |hTDfDbD|2

PU ||hIUI||2 + σ2
n
. (5.7)

Here, PU is defined as the transmit power of UL UE. Similar to the DL data signal, the UL
received signal at BS can be written as follows:

r̃U = bTU fUhUdU︸ ︷︷ ︸
Desired Signal

+ bTU fUHSIfDbDdD︸ ︷︷ ︸
SI

+ ñU︸︷︷︸
Modified Noise

, (5.8)

where ñU = bU fUnU , nU ∼ CN (0, σ2
nINus) is the complex circularly symmetric Gaussian noise

vector and fU ∈ CNRF U
×Nus is the UL RF beamformer. If HSI = fUHSIfD ∈ CNRF U

×NRF D is
the effective SI channel seen from the BB-stage after applying DL and UL RF beamformers,

2In this real-time FD implementation, we consider the scenario of single UL and a single DL UE to
understand how effective SI suppression can be achieved solely based on beamforming capability with SAS
based on a measured SI channel. The proposed perturbation-based PBF scheme can be applied to the case
of multiple UL and DL UEs in real-time systems.
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then the instantaneous SINR for the UL UE can be given as:

SINRU =
PU |bT

U fU hU |2

||bT
U fU ||2

||bT
UHSIbD||2
||bT

U fU ||2 + σ2
n

. (5.9)

5.3.2 Sub-Array Mapping and Problem Formulation

In this section, we discuss the Tx and Rx sub-array mapping for the measured SI channel
as well as the problem formulation using multiple optimization objectives.

5.3.2.1 Sub-Array Mapping

In Fig. 5.3(a), the antenna mapping is shown for both Tx and Rx of BS, which consists
of 8×8 = 64 elements at BS and separated by an antenna isolation block. We present the
sub-array mapping for our FD mMIMO setup in an anechoic chamber by using the following
two different sub-array configurations for Tx and Rx: 1) 1×4 sub-array; and 2) 1×8 sub-
array. Given 64 Tx and 64 Rx antenna elements, we can have 16 distinct Tx sub-arrays and
similarly 16 Rx sub-arrays, each of 1×4 elements, which are arranged in the form of ULA.
The mapping of the 1×4 sub-arrays for Tx and Rx ends can be represented mathematically
as: Let Tx(i, j) represent the (i, j)th element of the 8×8 Tx antenna array, where i denotes
the row index and j denotes the column index. The mapping of the pth 1×4 Tx sub-array,
denoted as Txsub,4(p), can be expressed as follows:

Txsub,4(p) = [Tx(i, j); (i, j) ∈ Sp4 ], (5.10)

where Sp4 represents the set of indices corresponding to the elements in the pth 1×4 Tx sub-
array. Similarly, let Rx(i, j) represent the (i, j)th element of the 8×8 Rx antenna array. The
mapping of the qth 1×4 Rx sub-array, denoted as Rxsub,4(q), can be expressed as follows:

Rxsub,4(q) = [Rx(i, j); (i, j) ∈ Sq4 ], (5.11)

where Sq4 represents the set of indices corresponding to the elements in the qth 1×4 Rx sub-
array. Fig. 5.3(b) depicts the mapping of 16 distinct 1×4 sub-arrays for both Tx and Rx. For
instance, sub-array 1 for Tx and Rx constitutes antenna elements with index values 1,9,17,25.
It can be seen that using 1×4 sub-arrays at Tx and Rx can give rise to 16×16 = 256 possible
combinations for the Tx and Rx sub-array pair selection. Thus, the use of a particular or
a fixed Tx and Rx sub-array in FD mMIMO can not suppress the strong SI effectively
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(a)

(b)

(c)

Figure 5.3. Antenna mapping. (a) 64 Tx and 64 Rx antennas index. (b) 1×4 Tx and Rx
sub-array mapping. (c) 1×8 Tx and Rx sub-array mapping.
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and limits the potential of utilizing the spatial DoF provided due to the use of large array
structures in mMIMO. Hence, finding the optimal Tx and Rx sub-array combination can
result in enhanced SI suppression, which can lead to significant performance gains in FD
communications.

To further explore the realm of sub-array configurations, we consider the use of 1×8 Tx
and Rx sub-arrays. The mapping of the pth 1×8 Tx sub-array, denoted as Txsub,8(p), can be
expressed as follows:

Txsub,8(p) = [Tx(i, j); (i, j) ∈ Sp8 ], (5.12)

where Sp8 represents the set of indices corresponding to the elements in the pth 1×8 Tx
sub-array. Similarly, for the qth 1×8 Rx sub-array, we can write as follows:

Rxsub,8(q) = [Rx(i, j); (i, j) ∈ Sq8 ], (5.13)

where Sq8 represents the set of indices corresponding to the elements in the qth 1×8
sub-array. Fig. 5.3(c) depicts the mapping for different 1×8 sub-arrays for both Tx and
Rx. For instance, sub-array 1 for Tx and Rx now constitutes antennas with indices
1,9,17,25,33,41,49,57. The selection of 1×8 Tx and 1×8 Rx sub-array gives rise to
8× 8 = 64 possible combinations for SAS.

5.3.2.2 Problem Formulation

We aim to address a multi-objective optimization framework that involves two primary
design objectives: 1) minimizing self-interference; and 2) maximizing achievable rate in FD
mMIMO systems. To achieve this, we present a formulation that balances these objectives
within a MOOP framework.

Objective 1 - Minimizing Self-Interference:
We consider minimizing the strong SI caused by simultaneous transmission and reception in
the FD system. We quantify SI by considering the average power of the interference signal
between UL and DL channels. Based on the DL and UL RF beamforming stages, we can
express the total achieved SI for FD mMIMO system as follows:

ASI = −10 log10

( 1
N

∑
n

∣∣∣fTU (θ̂U)HSI(:, :, n)fD(θ̂D)
∣∣∣2). (5.14)

Lemma 5.1. If FD and FU are the DL and UL beamforming stages, respectively. Then, for
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a given (i, j)th DL-UL pair {θDi
, θUj
} in large array structures, the following holds:

FUHSIFD ≈ 0. (5.15)

Proof. See Appendix.

By steering the UL and DL beams to the desirable directions (i.e. θ̂U = θU , θ̂D = θD),
we can get maximum directivity in DL and UL directions, which can be given as:

|ΦT
D(θD)fD(θ̂D)|2 = Nds, |fTU (θ̂U)ΦU(θU)|2 = Nus. (5.16)

For a FD mMIMO system consisting of DL and UL RF beamformers fD and fU , and using
sub-array structures at Tx and Rx of BS, the total achieved SI can be minimized by the
optimization of UL and DL perturbation angles θ̂U , θ̂D jointly with finding best
combination of Tx and Rx sub-arrays. Let p and q represents the sub-array index for Tx
and Rx, respectively, then, we can formulate the optimization problem for achieved SI as
follows:

min
{θ̂D,θ̂U ,p,q}

1
N

∑
n

∣∣∣fTU (θ̂U)HSI,p,q(:, :, n)fD(θ̂D)
∣∣∣2

s.t. C1 : ND − |ΦT
D(θD)fD(θ̂D)|2 ≤ η,

C2 : NU − |fTU (θ̂U)ΦU(θU)|2 ≤ η,

C3 :
∑
q

xpq = 1 ∀p,

C4 :
∑
p

xpq = 1 ∀q, (5.17)

where C1 and C2 refers to the directivity degradation constraints in DL and UL directions,
respectively. In other words, the constraints mean that we limit the degradation of
directivities from the main beam directions θD and θU to a small value η. The constraints
C3 and C4 ensure that exactly one Tx sub-array is selected for each Rx sub-array and vice
versa, resulting in a one-to-one mapping between the Tx and Rx sub-arrays. The
optimization problem defined in (5.17) is non-convex and intractable due to the
non-linearity constraints.

Objective 2 - Maximizing Total Achievable Rate:
The second objective is to maximize the total achievable data rate in FD system. Using
the SINR expressions for both DL and UL (as given in (5.7) and (5.9)), we can write the
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achievable rate for the DL and UL UE as follows:

RD = log2(1 + SINRD)
RU = log2(1 + SINRU)
RT = RD + RU , (5.18)

where RD and RU are the achievable rates for DL and UL UE, respectively. Then, the
optimization problem can be expressed as follows:

max
{θ̂D,θ̂U ,p,q}

RT(θ̂D, θ̂U , p, q)

s.t. C1 − C4. (5.19)

Multi-Objective Optimization Problem:
To balance the conflicting objectives of minimizing self-interference and maximizing
achievable rate, we formulate a multi-objective optimization problem. We introduce a
weighting factor, β, to adjust the trade-off between the objectives. Then, the problem can
be expressed as follows:

min
{θ̂D,θ̂U ,p,q}

1
N

∑
n

∣∣∣fTU (θ̂U)HSI,p,q(:, :, n)fD(θ̂D)
∣∣∣2 − βRT

s.t. C1 − C4. (5.20)

In this formulation, the objective combines the minimized SI term with the weighted negative
logarithm of the total achievable rate to balance the objectives. By varying the weighting
factor β, we can explore different trade-offs between self-interference and achievable rate3.

Remark: This problem formulation is tailored to address the objectives of minimizing
SI and maximizing total achievable rate in an FD communications system. It accounts for
the UL/DL RF beamforming vectors, interference thresholds, and SINR values to guide the
optimization process. The multi-objective optimization approach allows for using mMIMO
spatial DoF to achieve different trade-offs between the objectives.

Our objective in this research work is to consider the practical FD mMIMO
implementation using OTA measured SI channel and to study the capacity gains of FD
mMIMO system over HD transmissions using the data-driven analysis. Therefore, the
proposed solution can help to understand how close the FD systems can achieve in terms of

3Here, our objective is to enhance FD capacity while suppressing SI. Therefore, the optimization of β is
beyond the scope of this research work.
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theoretical doubling of the achievable rate by suppressing strong SI based on beamforming
capability of mMIMO systems. Then, the phase response vectors can be written as follows:

ϕD(θD) = [1, e−j2πdcos(θD), · · · , e−j2πd(Nds−1)cos(θD)]T ∈ CMds×1, (5.21)
ϕU(θU) = [1, ej2πdcos(θU ), · · · , ej2πd(Mus−1)cos(θU )]T ∈ CNus×1. (5.22)

5.3.3 Hybrid Beamforming With SAS

In this section, our objectives are to suppress strong SI and maximize the total achievable
rate solely by utilizing the spatial DoF of the large array structures, which can avoid the
use of costly analog SI-cancellation circuits. In particular, we use a swarm intelligence-based
algorithmic solution and present the HBF design based on beam perturbations jointly with
SAS approach, where the Tx and Rx sub-arrays are selected jointly with perturbed UL and
DL RF beam angles to minimize MOOP (as given in (5.20)) while satisfying the directivity
degradation constraints in the respective directions.

5.3.3.1 RF Stages Design

In the rest of this section, we discuss the proposed HBF with following two schemes: 1)
Maximum-directivity RF beamformer (MBF); and 2) Perturbed RF beamformer with SAS
(PBF).

5.3.3.1.1 MBF RF Stages Design In this scheme, our aim is to suppress the strong
SI and maximize RT via designing the DL RF stage fD, which steers the beam at DL user
jointly with the design of UL RF stage fU for UL user. The objective here is to generate
the maximum-directivity beams, which are steered at the desired DL and UL user, which
are located at θD and θU , respectively. In particular, we use the measured SI channel HSI,
which consists of LoS path components. Then, the effective reduced-size SI channel matrix
as seen from the BB-stages can be written as follows:

HSI(:, :, n) = fTUHSI(:, :, n)fD. (5.23)

Based on the orthogonality principle, we can generate Nds(Nus) maximum-directivity DL
(UL) beams. Here, the design of DL and UL MBF RF stages, which satisfies the maximum-
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directivity property, can be given as follows [117]:

fMBF
D (θD) = 1√

Mds
[1, ej2πdcos(θD), · · · , ej2πd(Nds−1)cos(θD)]T (5.24)

fMBF
U (θU) = 1√

Nus
[1, e−j2πdcos(θU ), · · · , e−j2πd(Nus−1)cos(θU )]T . (5.25)

The use of SC architecture for beamforming simplifies the design of fMBF
D and fMBF

U as
it requires only log2(Nds) and log2(Nus) PSs at Tx and Rx, respectively when compared
to log2(ND) and log2(NU) PSs when using FC antenna array. The MBF RF stages are
formulated using the DL/UL angle pair while satisfying CM constraints.

5.3.3.1.2 PBF RF Beamformer With SAS Design The simulation results in [117]
show that HBF based on PBF RF beamformer stages can achieve better SI suppression
than MBF RF stages, where the latter is formulated using the orthogonal angle pairs. In
this proposed HBF scheme using PBF RF stages, our motivation is to suppress the strong
SI while maximizing the total achievable rate for a FD mMIMO system using a measured
SI channel (i.e., real-time implementation). Particularly, we introduce beam perturbations
jointly with Tx-Rx SAS to design the RF beamforming stages.

Remark 1: The maximum-directivity constraint limits the number of UL and DL beam
pairs that can be supported in a given system, which can become a bottleneck in scenarios
of high user density. As the number of UL and DL users increases, the available
orthogonal/non-overlapping resources may be exhausted, leading to reduced system
capacity and throughput.

Remark 2: Compared to the PBF scheme in [117], which introduces phase-range
constraint scheme, the proposed directivity-loss constraint PBF scheme allows a more
freedom to perturb the maximum-directivity beams while keeping the directivity loss to a
small value. Moreover, the proposed PBF scheme in [117] is limited by the quantized angle
pairs, where the users’ AoD and AoA have to be quantized, and then the DL and UL
beams are steered within the boundary of the quantized angles. Thus, for a small number
of antennas, the quantization process can introduce large errors, which can result in
reduced directivity gain. On the other hand, the quantization error can be low for large
number of antennas, however, the perturbed beams can only be steered within tight
boundaries, so the beamforming-based SI suppression might be limited.

Remark 3: The use of SC Tx and Rx structures enable the creation of a reduced-size SI
channel matrix based on the chosen Tx and Rx sub-array configuration. This reduced-size
matrix captures the SI channel characteristics specific to the selected antennas. By
leveraging the spatial properties of the sub-arrays, the SI channel exhibits improved
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isolation and reduced coupling, leading to a lower level of SI. By choosing the best subset
of antennas, we can increase the spatial separation between the desired signal and the
interfering signals, thereby augmenting the system’s capability to support multiple
independent spatial channels simultaneously. This increased spatial DoF translates into
higher capacity, improved system performance, and efficient management of interference in
FD mMIMO systems.
As a continuation to the SI suppression scheme in [117], we propose to explore the HBF
with PBF RF beamformers jointly with SAS to minimize SI and maximize capacity.
Instead of using the quantized angle pairs, we allow the DL and UL beams to be slightly
steered away from the AoD and AoA angles to minimize the SI power while maintaining
possible degradation in directivity within affordable constraints. In particular, the
proposed PBF with SAS approach optimize the UL and DL RF beamformers via new
perturbed angles as well as selects the best Tx-Rx sub-array pair for enhanced SI
suppression in FD mMIMO systems. For a given maximum-directivity angle pair {θD, θU},
we introduce a perturbation to make them steered at perturbed angle pair to suppress SI
(i.e., the UL and DL RF beamformers steer the non-maximum-directivity beams at
{θ̂D, θ̂U}).

We propose a swarm intelligence inspired particle swarm optimization (PSO)-based
perturbation scheme to solve the challenging non-convex optimization problem (as given in
(5.20)), which can find the optimal DL and UL beam directions θ̂D, θ̂U jointly with Tx and
Rx best sub-array pair {p, q} to minimize SI and maximize total achievable rate while
satisfying the corresponding directivity degradation and SAS constraints C1 − C4. The
algorithm starts with a swarm of Z particles, each with its own position, velocity, and
fitness value, which are randomly placed in optimization search space of perturbation
coefficients. During a total of T iterations, the particle z communicates with each other,
and move for the exploration of the optimization space to find the optimal solution. Let
X(t)
z be the perturbation vector of zth particle during tth iteration, which consists of

optimization variables, and can be given as follows:

X(t)
z = [θ̂zD, θ̂zU , pz, qz], (5.26)

where z = 1, . . . , Z and t = 0, 1, . . . , T . For each zth particle, by substituting (5.26) in (5.24)
and (5.25), the DL and UL PBF RF beamformers fD(X(t)

z ) and fU(X(t)
z ) can be obtained

as function of perturbation angles θ̂zD and θ̂zU , respectively. By using (5.42), MOOP can be
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written as:
1
N

∑
n

∣∣∣fTU (X(t)
z )HSI(X(t)

z )fD(X(t)
z )
∣∣∣2 − βRT(X(t)

z ) (5.27)

Based on the sub-array mapping as discussed in Section 5.3.2.1, each zth particle finds
the best Tx-Rx sub-array indices pz, qz, and uses the corresponding measured SI channel
HSI(X(t)

z ) instead of using the complete measured SI channel HSI,ALL, which greatly reduces
SI. Then, the personal best for the zth particle and the current global best among all particles
at the tth iteration, are respectively found as follows:

X(t)
best,z = arg min

X(t∗)
z ,∀t∗=0,1,··· ,t

1
N

∑
n

∣∣∣fTU (X(t)
z )HSI(X(t)

z )fD(X(t)
z )
∣∣∣2 − βRT(X(t)

z ) (5.28)

X(t)
best = arg min

X(t)
best,z ,∀z=0,1,··· ,Z

1
N

∑
n

∣∣∣fTU (X(t)
best,z)HSI(X(t)

best,z)fD(X(t)
best,z)

∣∣∣2 − βRT(X(t)
best,z) (5.29)

The convergence of the proposed joint PBF scheme with SAS for enhanced SI suppression
depends on the velocity vector vz for both personal best Xbest,z and global best Xbest

solutions, which is defined as follows:

v(t+1)
z = Ω1(X(t)

best −X(t)
z ) + Ω2(X(t)

best,z −X(t)
z ) + Ω(t)

3 v(t)
z , (5.30)

where v(t)
z is the velocity of the zth particle at the tth iteration, Ω1,Ω2 are the random

diagonal matrices with the uniformly distributed entries over [0, 2] and represent the social
relations among the particles, and the tendency of a given particle for moving towards its
personal best, respectively. Here, Ω3 =

(
T−1
T

)
I(2NRF D

+2NRF U ) is the diagonal inertia weight
matrix, which finds the balance between exploration and exploitation for optimal solution
in search space. By using (6.19), the position of each particle during tth iteration is updated
as:

X(t+1)
z = clip

(
X(t)
z + v(t+1)

z ,XLow,XUpp
)
, (5.31)

where XLow ∈ R(2NRF D
+2NRF U ) and XUpp ∈ R(2NRF D

+2NRF U ) are the lower-bound and upper-
bound vectors for the perturbation coefficients, respectively, and are constructed according
to the earlier defined boundaries of each perturbation coefficient given in C1 −C4. Here, we
define clip(x, a, b) = min(max(x, a), b) as the clipping function to avoid exceeding the bounds.
Furthermore, different from the sub-optimal approach, we here consider each perturbation
coefficient as a continuous variable inside its boundary. Then, we can design the PBF RF
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Algorithm 5.1 Proposed Swarm Intelligence-based PBF RF Stages With SAS
1: Input: Z, T , Nds, Nus, HSI , (θD, ϕD), (θU , ϕU).
2: Output: θ̂D, θ̂U .
3: for t = 0 : T do
4: for z = 1 : Z do
5: if t = 0 then
6: Initialize the velocity as v(0)

z = 0.
7: Initialize X(t)

z uniformly distributed in [XLow,XUpp].
8: else
9: Update the velocity v(t)

z via (5.30).
10: Update the perturbation X(t)

z via (5.31).
11: end if
12: Find the personal best X(t)

best,z via (5.28).
13: end for
14: Find the global best X(t)

best as in (5.29).
15: Design RF stages fD, fU via (5.32), (5.33).
16: end for
stages with SAS as follows:

fPBF
D (θ̂D, p) = 1√

N
(p)
ds

[1, ej2πdcos(θ̂D), · · · , ej2πd(N(p)
ds

−1)cos(θ̂D)]T (5.32)

fPBF
U (θ̂U , q) = 1√

N
(q)
us

[1, e−j2πdcos(θ̂U ), · · · , e−j2πd(N(q)
us −1)cos(θ̂U )]T . (5.33)

The design of proposed swarm intelligence-based PBF RF stages utilizing beam perturbations
jointly with SAS is summarized in Algorithm 5.1.

5.3.3.2 BB Stages Design

After designing the RF beamformers fD and fU , the BB precoder stages BD and BU only
employ the reduced-size effective downlink channel matrix HD = HDfD ∈ CKD×NRF D and
uplink channel matrix HU = fUHU ∈ CNRF U

×KU , respectively. Therefore, it remarkably
reduces the channel estimation overhead size in the FD mMIMO systems with large antenna
arrays. Considering that the number of RF chains in the proposed FD SC-HBF scheme is
significantly smaller than the number of antennas (i.e., NRFD

≪ Nds and NRFU
≪ Nus),

the utilization of effective DL/UL channel matrices reduces the total CSI overhead size from
Nds ×KD + Nus ×KU to NRFD

×KD + NRFU
×KU . It is important to highlight that the

instantaneous SI channel matrix HSI is not required in the proposed BB precoder/combiner
design. We here develop BB precoder/combiner via applying regularized zero-forcing (RZF).
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Here, the primary objective is maximizing the intended DL and UL signal power while
suppressing the IUI power. According to the well-known RZF technique, we first define the
BB DL stage as follows:

BD = γDX−1
D HH

D ∈ CNRF D
×KD (5.34)

where γD =
√
PD/ tr

(
HDX−1

D fHD fDX−1
D HH

D

)
is the normalization scalar satisfying the

maximum DL transmit power constraint of PD. According to the RZF technique, we here
define XD = HH

DHD + σ2
w

PD/KD
INRF D

∈ CNRF D
×NRF D , which aims to eliminate IUI by taking

noise power σ2
w into account for the regularization. Similarly, the UL BB stage BU is also

designed as:
BU = HH

U X−1
U ∈ CKU ×NRF U , (5.35)

where XU = HUHH
U + σ2

w

PU
INRF U

∈ CNRF U
×NRF U according to the RZF technique.

5.4 Non Constant-Modulus RF Beamforming Design

In this section, we propose a novel SI suppression scheme in FD mMIMO systems using
a URA SC-HBF architecture. Particularly, the proposed non-constant modulus RF
beamforming-based SI suppression (NCM-BF-SIS) scheme optimizes the uplink and
downlink beam directions jointly with Tx/Rx variable gain controllers while adhering to
the directivity degradation constraints. Our objectives here are twofold: first, to show that
the beam perturbation combined with tuned Tx/Rx gain controllers in RF beamformers
design can significantly improve SI suppression and can bring the SI level close to the noise
floor; and second, to show that the use of URA SC-HBF architecture can provide better
performance than ULA SC-HBF.

5.4.1 System Model

We consider a single-cell FD mMIMO system for joint uplink and downlink transmission
as shown in Fig. 5.4. The BS operates in FD mode to simultaneously serve KD (KU)
downlink (uplink) single-antenna UEs over the same frequency band, while the UEs operate
in HD mode due to the hardware/software constraints on UEs (e.g., low power consumption,
limited signal processing and active/passive SI suppression capability). The BS is equipped
with Tx and Rx URAs. Specifically, the Tx (Rx) URA has ND = N

(x)
D × N

(y)
D (NU =

N
(x)
U × N

(y)
U ) antennas, where N

(x)
D (N (x)

U ) and N
(y)
D (N (y)

U ) denote the numbers of Tx (Rx)
antennas along x-axis and y-axis, respectively.
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Figure 5.4. FD mMIMO system using NCM SC-HBF architecture.
For the proposed FD mMIMO system, we consider the downlink signal processed through

BB stage BD ∈ CNRF D
×KD and RF beamformer FD ∈ CND×NRF D , where NRFD

is the number
of RF chains such that KD ≤ NRFD

≪ ND. Similarly, the received uplink signal at BS is
processed through RF combiner FU ∈ CNRF U

×NU and BB combiner BU ∈ CKU ×NRF U by
utilizing KU ≤ NRFU

≪ NU RF chains. Here, the RF beamforming stages (i.e., FU and FD)
are built using low-cost PSs and variable gain controllers. The downlink channel matrix is
denoted as HD ∈ CKD×ND with hD,k ∈ CND as the kth DL UE channel vector. Similarly,
HU ∈ CNU ×KU is the uplink channel matrix with hU,k ∈ CNU as the kth uplink UE channel
vector. Due to the FD transmission, the SI channel matrix HSI ∈ CNU ×ND is present between
Tx and Rx antennas at the BS. Then, the transmitted signal vector at the BS is defined as
sD = FDBDdD ∈ CND , where dD = [dD,1, · · · , dD,KD

]T ∈ CKD is the downlink data signal
vector such that E{dDdHD} = IKD

. The transmitted signal vector satisfies the maximum
downlink transmit power constraint, which is E{||sD||2} = tr(FDBDBH

DFH
D) ≤ PD, where

PD is the total downlink transmit power. Then, the received downlink signal vector is given
as follows:

rD = HDFDBDdD︸ ︷︷ ︸
Desired Signal

+ HUdU︸ ︷︷ ︸
IUI by uplink UE

+ nD︸︷︷︸
Noise

, (5.36)

where HU ∈ CKD×KU is the inter-user interference (IUI) between the downlink and uplink
UE, and nD = [nD,1, · · · , nD,KD

]T ∼ CN (0, σ2
nIKD

) is the complex circularly symmetric
Gaussian noise vector. Here, we define PU as the transmit power of each uplink UE. Similar
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to the downlink data signal vector, the uplink received signal at BS can be written as:

r̃U = BUFUHUdU︸ ︷︷ ︸
Desired Signal

+ BUFUHSIFDBDdD︸ ︷︷ ︸
SI

+ ñU︸︷︷︸
Modified Noise

, (5.37)

where dU = [dU,1, · · · , dU,KU
]T ∈ CKU is the uplink data signal vector such that E

{
dUdHU

}
=

IKU
and ñU = BUFUwU , where nU = [nu,1, · · · , nU,KU

]T ∼ CN (0, σ2
nIKU

) is the complex
circularly symmetric Gaussian noise vector. The desirable downlink (uplink) beam direction
has elevation and azimuth angles ϕD(ϕU) and θD(θU), respectively. We define the phase-
response vector as:

Φ(θ, ϕ,N (x), N (y)) =
[
1, ej2πd sin(θ) cos(ϕ), . . . , ej2πd(N(x)−1) sin(θ) cos(ϕ)

]T
⊗
[
1, ej2πd sin(θ) sin(ϕ), . . . , ej2π(N(y)−1) sin(θ) sin(ϕ)

]T
,

(5.38)

where θ (ϕ) represents the azimuth (elevation) angle, N (x), (N (y)) denote the number of
antennas along the x (y)-axis, ds is the antenna spacing, and ⊗ is the Kronecker product.

Based on the number of antenna elements in both Tx and Rx sub-arrays, the
corresponding SI channels can be represented as H(sub)

SI ∈ CNus×Nds×1601, where,
Nds(Nus) = ND

LD

(
NU

LU

)
represents the number of Tx (Rx) antenna elements in mth

d (mth
u )

sub-array for md = 1, · · · ,MD(mu = 1, · · · ,MU). As per 3GPP specification, the uplink
and downlink channel bandwidth can vary from 5 MHz to 100 MHz [127], then the
corresponding SI channel for the given BW can be written as: H(sub)

SI,B = H(sub)
SI (:, :, n) ∈

Ci×i×n, where i = {Nds, Nus}, B is the given bandwidth, and n = 1, 2, . . . , N is the sample
frequency point selected from a total of N frequency points for a given bandwidth. For
instance, the 20 MHz band constitutes n = 1, 2, . . . , 33 points for the frequency range from
3.49 GHz to 3.51 GHz. Similarly, for the band of 100 MHz, n = 1, 2, . . . , 161 points in the
frequency range from 3.45 GHz to 3.55 GHz are considered.

5.4.2 URA SC-HBF Architecture and Problem Formulation for
SI Suppression

5.4.2.1 URA SC-HBF Architecture

We consider a URA SC-HBF architecture, where the Tx (Rx) URA is divided into
MD(MU) different sub-arrays in the form of URA. Hence, compared to ND ×NRFD

PSs for
Tx (NU × NRFU

PSs for Rx), only Nds × NRFD
(Nus × NRFU

) PSs are required as each Tx
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(Rx) RF chain is connected to
⌊
ND

MD

⌋(⌊
NU

MU

⌋)
Tx (Rx) antennas, where ⌊.⌋ represents the

largest integer less than or equal to a real number. Then, the downlink and uplink phase
response vectors are given as:

ΦD(θD, ϕD, N (x)
ds , N

(y)
ds ) = Φ(θD, ϕD, N (x)

ds , N
(y)
ds ),

ΦU(θU , ϕU , N (x)
us , N

(y)
us ) = ΦH(θU , ϕU , N (x)

us , N
(y)
us ),

(5.39)

where ΦD(ΦU) is the Tx(Rx) phase response vector as given in (5.38). By controlling the
phase of the signals transmitted or received by the array elements, we can effectively steer
the beam in the desired uplink/downlink UE direction, and maximize the radiated energy
while minimizing interference from other directions. We consider the MU scenario using a
single uplink and a single downlink UE (i.e., KD = ND = 1, KU = NU = 1)4. Moreover,
the Tx (Rx) RF beamformer constitutes gain controllers, which scales the amplitudes of
the signals transmitted (received) from the antennas as shown in Fig. 5.4. Then, the RF
beamformer fD for the single downlink UE can be written as:

fD = 1√
N

(x)
ds N

(y)
ds

ΦD

(
θD, ϕD, N

(x)
ds , N

(y)
ds

)
⊙GD ∈ CNds×1, (5.40)

where GD = [g(x)
1 , . . . , g

(x)
Mds

, g
(y)
1 , . . . , g

(y)
Nds

]T is the vector containing the gain values for Tx
URA with g

(x)
i (g(y)

j ) representing the gain value of ith(jth) antenna for i = 1, · · · , N (x)
ds

(
j =

1, · · · , N (y)
ds

)
. Similarly, the uplink RF beamformer fU can be expressed as follows:

fU = 1√
N

(x)
us N

(y)
us

ΦU

(
θU , ϕU , N

(x)
us , N

(y)
us

)
⊙GU ∈ C1×Nus , (5.41)

where GU = [g(x)
1 , . . . , g

(x)
Nus

, g
(y)
1 , . . . , g

(y)
Nus

] is the vector containing the gain values for Rx URA
with g(x)

p (g(y)
q ) is the gain value of pth(qth) antenna for p = 1, · · · , N (x)

us

(
q = 1, · · · , N (y)

us

)
.

5.4.2.2 Problem Formulation

Based on the downlink and uplink RF beamforming stages, we can write the total
achieved SI as:

ASI = −10 log10

( 1
N

∑
n

∣∣∣fTUH(sub)
SI (:, :, n)fD

∣∣∣2). (5.42)

4Here, we consider a simple scenario with a single uplink and downlink UE to investigate the SI
suppression in FD mMIMO systems. However, the proposed scheme can be applied to multiple uplink
and multiple downlink UEs, which is left as our future work.
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By steering the uplink and downlink beams to the desirable directions (i.e. θ̂U = θU , θ̂D = θD,
ϕ̂U = ϕU , ϕ̂D = ϕD), the Tx and Rx directivities reach their maxima as follows:

|ΦT
D(θD, ϕD, N (x)

ds , N
(y)
ds )fD(θD, ϕD, N (x)

ds , N
(y)
ds )|2 = Nds,

|fTU (θU , ϕU , N (x)
us , N

(y)
us )ΦU(θU , ϕU , N (x)

us , N
(y)
us )|2 = Nus.

(5.43)

For a FD mMIMO system consisting of RF beamformers fD and fU with variable gain
controllers, and using URA SC-HBF architecture at Tx and Rx of BS, the SI can be
minimized by finding the uplink and downlink perturbation angles {(θ̂U , θ̂D), (ϕ̂U , ϕ̂D)}
jointly with Tx/Rx variable gain controller coefficient optimization. Then, we can
formulate the joint optimization problem for SI suppression as:

min{
θ̂D,θ̂U ,ϕ̂D,ϕ̂U
g1,··· ,gMds
g1,··· ,gMus

} 1
N

∑
n

∣∣∣fTU (ϕ̂U , θ̂U ,GU)H(sub)
SI (:, :, n)fD(ϕ̂D, θ̂D,GD)

∣∣∣2

s.t. C1 : Nds − |ΦT
D(θD, ϕD, Nds)fD(ϕ̂D, θ̂D,GD, Nds)|2 ≤ η,

C2 : Nus − |fTU (ϕ̂U , θ̂U ,GU , Nus)ΦU(θU , ϕU , Nus)|2 ≤ η,

C3 : ϕ̂D, ϕ̂U , θ̂D, θ̂U ∈ [0, 2π],
C4 : g1, · · · , gNds

∈ [0, 1],
C5 : g1, · · · , gNus ∈ [0, 1], (5.44)

where C1 and C2 refer to the directivity degradation constraints in downlink and uplink
UE directions, respectively, i.e., to limit the directivity degradation from the main beam
directions {(θU , θD), (ϕU , ϕD)} to a small value η. The constraint C3 limits the perturbed
angles range between 0 and 2π, whereas the constraints C4 and C5 confine the Tx and Rx
variable gains within the continuous range from 0 to 1. The optimization problem defined
in (5.44) is non-convex and intractable due to the non-linearity constraints.

5.4.3 Proposed Non-constant Modulus RF Beamforming-Based
SI Suppression Scheme

We propose a particle swarm optimization (PSO)-based SI minimization scheme, which
optimizes the Tx and Rx variable gain controllers coefficients jointly with the optimal
uplink and downlink beam directions θ̂D, θ̂U while satisfying the constraints of directivity
degradation (C1 and C2), uplink and downlink perturbed beam search space (C3), and
Tx/Rx gain controller values (C4 and C5). The algorithm starts with a swarm of total P
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particles, each with its own position, velocity, and fitness value, which are randomly placed
in optimization search space of perturbation coefficients. During a total of T iterations, the
particle p communicates with others, and move for the exploration of the optimization
space to find the optimal solution. We define the perturbation vector X(t)

z as:

X(t)
z = [θ̂zD, θ̂zU , ϕ̂zD, ϕ̂zU , gz1, · · · , g

p
Nds
, gz1, · · · , gzNus

], (5.45)

where z = 1, . . . , Z and t = 0, 1, . . . , T . For each zth particle, by substituting (5.45) in (5.40)
and (5.41), the downlink and uplink RF beamformers fD(X(t)

z ) and fU(X(t)
z ) can be obtained

as function of perturbation angles (θ̂zD, ϕ̂zD) and (θ̂zU , ϕ̂zU), and gain controller coefficients
(gz1, · · · , gzNds

, gz1, · · · , gzNus
) respectively. By using (5.42), we can write the total achieved SI

suppression as follows:

ASI(X(t)
z ) = −10 log10

( 1
N

∑
n

∣∣∣fTU (X(t)
z )H(sub)

SI (:, :, n)fD(X(t)
z )
∣∣∣2). (5.46)

At the tth iteration, the individual best for the zth particle as well as the current best among
all particles within the swarm are respectively found as follows:

X(t)
best,z = arg min

X(t∗)
z ,∀t∗=0,1,··· ,t

ASI(X(t∗)
z ), (5.47)

X(t)
best = arg min

X(t)
best,z ,∀z=0,1,··· ,Z

ASI(X(t)
best,z). (5.48)

The convergence of the proposed PSO-based joint optimization scheme for enhanced SI
suppression depends on the velocity vector wz for both personal best Xbest,z and global best
Xbest solutions, which is defined as:

w(t+1)
z = Ω1(X(t)

best −X(t)
z ) + Ω2(X(t)

best,z −X(t)
z ) + Ω(t)

3 w(t)
z , (5.49)

where w(t)
z is the velocity of the zth particle at the tth iteration, Ω1,Ω2 are the random

diagonal matrices with the uniformly distributed entries over [0, 2], and represent the inter-
particle relationships and the tendency of each particle to move toward its personal best,
respectively. Additionally, we introduce Ω3 =

(
T−1
T

)
I(2NRF D

+2NRF U ), a diagonal inertia
weight matrix, which helps find the balance between exploration and exploitation for optimal
solution in search space. By using (6.19), the position of each particle is updated as:

X(t+1)
z = clip

(
X(t)
z + w(t+1)

z ,XLow,XUpp
)
. (5.50)
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Algorithm 5.2 Proposed NCM-BF-SIS Algorithm
1: Input: Z, T , H(sub)

SI , (θD, ϕD), (θU , ϕU).
2: Output: θ̂D, θ̂U , ϕ̂D, ϕ̂U , g1, · · · , gMds

, g1, · · · , gMus .
3: for t = 0 : T do
4: for z = 1 : Z do
5: if t = 0 then
6: Initialize the velocity as w(0)

z = 0.
7: Initialize X(t)

z uniformly distributed in [XLow,XUpp].
8: else
9: Update the velocity w(t)

z via (5.49).
10: Update the vector X(t)

z via (5.50).
11: end if
12: Find the personal best X(t)

z,best,n via (5.47).
13: end for
14: Find the global best X(t)

best as in (5.48).
15: end for
Here, we have XUpp ∈ R(2NRF D

+2NRF U ) and XLow ∈ R(2NRF D
+2NRF U ), which represent the

upper and lower boundaries for the perturbation coefficients, respectively and they are
determined based on the predefined limits for each perturbation coefficient specified in
C1-C5. To ensure that the coefficients stay within these boundaries, we employ the clipping
function, defined as clip(y, i, j) = min(max(y, i), j). Also, unlike sub-optimal approach, we
here consider each perturbation coefficient as a continuous variable inside its boundary.
The proposed joint optimization scheme for enhanced SI suppression using PSO is
summarized in Algorithm 5.2.

5.5 Illustrative Results and Discussions

In this section, we present the Monte Carlo simulation results to illustrate the
performance of the proposed HBF with NOBF RF beamformers and SAS scheme in FD
mMIMO systems. In particular, we consider the measured SI channel in an anechoic
chamber to provide realistic SI suppression capability and capacity gain of a practical FD
mMIMO system over HD mMIMO system. We consider ND = NU = 1 RF chain to serve a
single UL and DL UE with 1×4 and 1×8 sub-array configurations for the results presented
hereafter. It is important to mention that the proposed HBF scheme requires only 1 RF
chain as compared to FDBF, which need 4 or 8 RF chains to support single UL and single
DL UE. Thus, the proposed HBF scheme significantly reduces the number of RF chains,
especially when the number of served users increases. For PSO, we use the following
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(a) (b) (c)

Figure 5.5. Achieved SI suppression using 1×4 sub-array with 20 MHz BW. (a) Proposed
PBF with SAS. (b) MBF. (c) SI suppression gain

values: Z = 20,Ω1 = Ω2 = 2, and Ω3 = 1.1.

5.5.1 Self-Interference Suppression

In this subsection, we first present the results of achieved SI using the proposed HBF
scheme for NOBF RF beamformers with SAS, and compare it to HBF scheme with OBF
RF beamformer. In Fig. 5.5, we consider six different angular UE locations (i.e., {θD, θU} ∈
{15◦ : 30◦ : 180◦}) and generate the results using 1×4 sub-arrays for Tx and Rx antenna
elements with a maximum directivity degradation ϵ =1 dB and a bandwidth of 20 MHz. In
MBF scheme, the beams generated by the UL and DL RF beamformers are steered at exact
UE locations (i.e., both fD(θD) and fU(θU) steer the beams at θD and θU , respectively). It
can be seen that the design of RF beamformers fD(θD) and fU(θU) using MBF can achieve
SI suppression ranging from -38.74 dB to -75.05 dB for different UL/DL UE angle pairs. On
the other hand, the proposed PBF scheme with SAS can achieve SI suppression ranging from
-61.59 dB to -77.57 dB. This shows that the design of RF beamformers fD(θ̂D), fU(θ̂U) using
the proposed PBF RF beamformers with SAS can provide an additional SI suppression gain
of 19 dB on average when compared to MBF, and can further reduce SI by a maximum of
33.04 dB (e.g., for θD = 135◦, θU = 45◦, SI suppression improves from -39.91 dB to -72.96
dB). In other words, by introducing beam perturbation in both UL and DL directions and
the selection of the best Tx-Rx sub-array pair can improve SI suppression capability by more
than 82% using the proposed PBF with SAS HBF scheme.

The use of a larger sub-array at Tx and Rx can generate narrower beams and can serve
large number of users. In Fig. 5.6, we compare the achieved SI suppression results using 1×8
sub-array for six different UL and DL UE angular locations and compare the performance
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(a) (b) (c)

Figure 5.6. Achieved SI suppression using 1×8 sub-array with 20 MHz BW. (a) Proposed
PBF with SAS. (b) MBF. (c) SI suppression gain.

of HBF scheme with PBF and SAS versus HBF scheme with MBF RF beamformers. It
is noteworthy to mention that, even though using a larger array structure can narrow the
mainbeam width, however, due to the orthogonality, there is still a limitation on the number
of orthogonal UL/DL beams that can be generated with such large array structures. As a
result, using MBF restricts the maximum number of UL and DL users that can be served
simultaneously in FD mMIMO systems. The proposed HBF with PBF RF beamformers and
SAS can achieve SI suppression ranging between -51.93 dB and -77.45 dB, where the achieved
SI suppression for MBF RF beamformers varies between -37.35 dB to -69.05 dB. Thus, the
proposed HBF scheme with PBF RF stages and SAS can provide an additional SI suppression
gain of around 15.43 dB (on average) with a maximum SI suppression improvement of around
-31.11 dB, which represents an enhanced SI suppression capability of 78.69%.

5.5.2 FD-to-HD Achievable Rate Ratio

In this subsection, we compare the achievable rate of FD mMIMO system versus the HD
mMIMO system for UL and DL transmission. In particular, the UL and DL transmissions
are operated separately in the case of HD communications, where the received DL signal
given in (5.6) does not include IUI by UL UE. Similarly, the received UL signal given in
(5.8) does not experience the strong SI. As a benchmark scheme, we consider the angular-
based HBF technique in [90], which considers the DL transmission via applying OBF at
the RF-stage and RZF at the BB-stage. Similarly, for the UL transmission, we develop
the angular-based HC technique using [90] to compare both HD UL and DL rate with FD
rate of the proposed HBF scheme. Since the HD DL and UL transmissions are carried out
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(a) (b) (c)

Figure 5.7. FD-to-HD rate ratio versus BS/UE transmit power using MBF with 1× 4
sub-array at 20 MHz. (a) Total. (b) DL. (c) UL

over either different time-slots or different frequency bands, therefore, the DL, UL and total
achievable rate in the HD transmission are normalized as: RD,HD = 1

2RD, RU,HD = 1
2RU ,

and RTotal, HD = RD,HD + RU,HD respectively. To better compare the achievable rate of FD
and HD transmission, we use the FD-to-HD rate ratio, which is defined as RatioD = RD,FD

RD,HD
,

RatioU = RU,FD
RU,HD

, and RatioT = RT,FD
RT,HD

, where RD,FD, RU,FD and RT,FD are the DL, UL and
total achievable rates in FD communications and can be calculated using (5.18). In Fig. 5.7,
we compare the DL, UL and total FD-to-HD rate ratio versus BS transmit power PD and
UL UE transmit power PU using the measured SI channel. Given the maximum BS transmit
power as 44 dBm at sub-6 GHz band [128], the BS transmit power range is considered as
PD ∈ [0, 40] dBm. For simplicity, we consider the same range for the UL UE transmit power
(i.e., PU ∈ [0, 40] dBm) though BS and UE have different hardware constraints. Here, we
depict the results for the proposed HBF scheme using OBF RF beamformers to compare the
FD-to-HD performance at different BS and UE power levels and to provide understanding
of how different power levels can impact the FD achievable rate at a fixed angular location
(i.e., θD = 135◦, θU = 15◦).

In Fig. 5.7(a), the total rate ratio is analyzed, which shows that FD transmission can
double the capacity with respect to the conventional HD transmission at low power levels of
BS and UL UE. Though the FD-to-HD total rate ratio (RatioT ) decays for very high UL UE
transmit power, the proposed HBF scheme can still provide higher capacity (≥ RT,HD) even
for the extreme case of very high UL UE power (i.e., at PU = 40 dBm, RatioT > 1.0). As
shown in Fig. 5.7(b), the DL rate ratio improves when PD increases and only drops below the
unity ratio for PU ≥ 35 dBm and low PD values (i.e., for PD ∈ [0, 10] dBm, RatioT ∈ [0.8, 1].
This means HD transmissions can provide higher capacity than FD communications in such
cases), where the large UL power boosts the IUI power in comparison to the low DL intended
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(a) (b) (c)

Figure 5.8. FD-to-HD total rate ratio at different UL/DL UE angular locations with
1× 8 sub-array at 20 MHz. (a) PBF with SAS. (b) PBF. (c) MBF.

signal power (please see (5.6)). Similarly, the UL rate ratio as depicted in Fig. 5.7(c) shows
that the increased SI power due to the high BS transmit power negatively affect the UL
transmission. For instance, at PU = 30 dBm, the FD-to-HD uplink rate ratio (RatioU) is
exactly 2.00 and 1.12 for PD = 0 dBm and PD = 40 dBm, respectively.

Fig. 5.8 depicts the FD-to-HD total rate ratio (RatioT ) for a fixed BS and UL UE transmit
power (i.e., PD = 30 dBm and PU = 20 dBm)5. Here, we consider six different angular
locations for the DL and UL UE (i.e., {θALL

D , θALL
U } ∈ {15◦ : 30◦ : 180◦}) and compares

RatioT using 1×8 sub-arrays with 20 MHz BW and maximum directivity degradation ϵ =1
dB for the following three cases: 1) Proposed HBF with PBF RF beamformers with SAS
(MOOP); 2) Proposed HBF with PBF RF beamformers (SOOP)6; and 3) Proposed HBF
with MBF RF beamformers. Fig. 5.8 shows that HBF with MBF scheme results in poor
FD-to-HD rate ratio when both UL and DL UE have same angular locations (on average
the total rate ratio is around 0.74). By using the HBF with PBF RF stages (SOOP) can
significantly increase the rate ratio at most angular locations, however, due to SI channel
characteristics and the use of a fixed Tx-Rx sub-array pair, we can see that SOOP can
still result in low FD total rate at few angular locations (e.g., {θD, θU} = {75◦, 105◦}, and
HD transmissions can provide better total rate than FD communications at these angular
locations). Moreover, the use of a larger sub-array can still suffer from low FD-to-HD total
ratio at certain angular locations, and the number of such angle pairs with low FD-to-HD

5From Fig. 5.7, we can see that high values of BS and UL UE transmit power can significantly reduce
RatioT for MBF scheme. Our motivation is to show that using the proposed HBF with PBF with SAS
scheme, we can enhance the total rate in FD communications even for the extreme case of very high power
UL UE values, thus achieving RatioT close to 2.

6In this approach, we design PBF RF beamformers for single objective optimization problem (i.e., to
minimizing SI). We consider fixed Tx-Rx sub-arrays (without SAS) and find the optimal beam perturbations
only.
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(a)

(b)

Figure 5.9. FD-to-HD total rate ratio improvement with 1× 8 sub-array at 20 MHz. (a)
PBF with SAS. (b) PBF.

rate ratio can increase for even larger array structures. This issue can be resolved by using
HBF with PBF RF beamformer jointly with SAS, which can provide spatial DoF to improve
FD rate at all UL/DL UE angular locations. In Fig. 5.8(a), we can see the mean total
FD-to-HD rate ratio is around 1.88 {θALL

D , θALL
U } and 1.79 {θSAME

D , θSAME
U }, which represents

an increase of around 11.6% and 142.3%, respectively when compared to MBF total rate
ratio.

Fig. 5.9 plots the FD-to-HD total rate ratio improvement using 1×8 sub-array. Fig.
5.9(b) shows the percentage gain in FD-to-HD total rate ratio for the proposed HBF with
PBF RF stages (SOOP) over MBF. We define the percentage improvement in FD-to-HD
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(a)

(b)

Figure 5.10. FD-to-HD total rate ratio versus angular separation with 1× 4 sub-array at
20 MHz. (a) PBF with SAS. (b) MBF.

total rate ratio as follows:

Ratio Gain(%) =
(RatioT,s − RatioMBF

RatioMBF

)
× 100, (5.51)

where s = {PBF (SOOP),PBF with SAS (MOOP)}. We can see from Fig. 5.9 that
compared to the mean gains of 6.57% for {θALL

D , θALL
U } and 87.8% for {θSAME

D , θSAME
U } with

SOOP, MOOP can provide the mean gains of 11.6% for {θALL
D , θALL

U } and 142.3% for
{θSAME

D , θSAME
U }.

In Fig. 5.10, we present the FD-to-HD total rate ratio versus the angular spacing between
both UL and DL UE for a fixed power levels usig 1×4 sub-array. Here, we consider the DL
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(a)

(b)

Figure 5.11. FD-to-HD total rate ratio versus angular separation with 1× 8 sub-array at
20 MHz. (a) PBF with SAS. (b) MBF.

UE is located at fixed θD = 75◦ and the UL UE varies its angular location (i.e., θU ∈
{75◦ : 1◦ : 135◦}). Thus, the angle separation between UL/DL UE can vary from 0◦ to
60◦. It can be seen that by using the proposed HBF with PBF RF stages jointly with SAS
(MOOP) can achieve FD-to-HD total rate ratio ≥ 1.5 with minimum angle separation of
0◦. In other words, the proposed PBF with SAS (MOOP) can give atleast 1.5 times the
total achievable rate of HD transmissions irrespective of UL and DL UE locations in FD
mMIMO systems, whereas, with MBF scheme, a minimum angle separation of 7◦ is required
to achieve the rate ratio of at least 1.5. For RatioT ≥ 1.8, we need angle separation of at least
14◦ with MBF scheme. However, with the proposed PBF scheme, we require a minimum
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Figure 5.12. Total achievable rate versus transmit power with 1× 4 sub-array.

angle separation of 3◦. Similarly, Fig. 5.11 compares the minimum angle separation for the
case when both Tx and Rx are equipped with 1×8 sub-array for DL UE located at fixed
θD = 15◦ and the UL UE varies its angular location (i.e., θU ∈ {15◦ : 1◦ : 75◦}). Compared
to the minimum angle separation of 3◦ and 6◦ for MBF scheme to achieve ratio ≥ 1.5 and
1.8, respectively, the proposed HBF scheme with PBF RF beamformers and SAS (MOOP)
scheme only requires 0◦ and 5◦ of UL/DL UE angular separation. It must be noted that the
use of larger sub-array can generate narrow beams for UL and DL UE, which can reduce IUI,
and thus reducing minimum angle separation. In Fig. 5.12, we compare the total achievable
rate versus transmit power of our proposed schemes (i.e., PBF with SAS (MOOP) and PBF
(SOOP)) with MBF as well as the HBF solutions presented in [115, 129, 130]. We consider
KD = KU = 1, which are located at azimuth angle θD = 75◦, θU = 135◦. By using 1× 4 Tx
and Rx sub-arrays, it can be seen that compared to MBF and HBF solutions in [115,129,130],
the proposed PBF schemes can significantly increase the total achievable rate by suppressing
the strong SI. For example, PBF can provide an increase of 1-2 bps/Hz when compared to
MBF, however, by using the proposed PBF with SAS, we can achieve a gain of around 3-4
bps/Hz. It is noteworthy to mention that our proposed PBF with SAS can significantly
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(a)

(b)

Figure 5.13. SI suppression bound comparison using 1×8 sub-array. (a) Achieved SI
versus θU . (b) Achieved SI versus θD.

increase the total achievable rate, especially when operating under the following conditions:
1) harnessing a larger sub-array (i.e., 1 × 8); and 2) accommodating a greater number of
users. This highlights the scalability and adaptability of our approach, offering promising
performance enhancements in FD mMIMO systems.

5.5.3 Constrained Versus Unconstrained SI Suppression
Comparison

In this section, we compare the achieved SI using 1×8 sub-array for the following schemes:
1) HBF with MBF RF beamformers; 2) HBF with PBF RF beamformers (PBF-SOOP); 3)
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HBF with PBF RF beamformers (PBF-MOOP); and 4) HBF with PBF RF beamformers
jointly with SAS (PBF-MOOP-SAS). For the NOBF schemes, we compare the results for
directivity degradation of ϵ = 1 dB. In Fig. 5.13(a), we plot the achieved SI versus different
UL UE angular locations (i.e., θU ∈ {15◦ : 30◦ : 180◦}) for a fixed DL UE location (θD =
165◦). The results show that MBF scheme can provide very low SI suppression with a
minimum value of around -55 dB. In comparison, both PBF schemes (PBF-SOOP and PBF-
MOOP) can achieve better SI suppression levels at all UL-DL UE angle pairs with a minimum
SI suppression of around -63 dB. However, the use of SAS jointly with PBF for MOOP (PBF-
MOOP-SAS) can reduce SI as low as -76 dB, which is very close to lower bound values of SI
suppression. Here, the lower bound for SI suppression level can be achieved by considering
the loose directivity degradation limits (i.e., ϵ =∞). In other words, this loose bound can be
considered as an unconstrained optimization, which can allow beam perturbations in both
UL and DL directions with high directivity degradation. Our objective here is to show that
by using the proposed PBF-MOOP-SAS with a tight bound of ϵ = 1 dB, we can closely
approach the unbounded SI suppression (ϵ =∞). Compared to the mean difference of 28.3
dB, 24.1 dB of MBF and PBF-SOOP (PBF-MOOP) schemes from the lower bound, PBF-
MOOP-SAS has a mean difference of only around 3.81 dB. Similarly, Fig. 5.13(b) depicts
the bounded versus unbounded SI suppression comparisons for different DL UE angular
locations (i.e., θD ∈ {15◦ : 30◦ : 180◦}) for a fixed UL UE location (θU = 15◦). Here, we can
see that PBF-MOOP-SAS scheme can achieve SI suppression level close to the bound with
an average difference of around 5.2 dB. Thus, we can see that ASI,PBF-MOOP-SAS(ϵ = ∞) ≃
ASI,PBF-MOOP-SAS(ϵ = 1) ≪ ASI,PBF-SOOP(ASI,PBF-MOOP) ≤ ASI,MBF.

5.5.4 Achieved SI and Achievable Rate Ratio Tradeoff

In this section, we compare the achieved SI as well as FD-to-HD total rate ratio for
six different UL and DL locations (i.e., {θD, θU} ∈ {15◦ : 30◦ : 180◦}), which generates 36
possible UL-DL angle pairs. Fig. 5.14(a) evaluates the frequency (number of occurrences)
of UL-DL angle pairs while satisfying certain performance metric. For instance, using MBF
scheme, we can achieve SI suppression < -50 dB together with FD-to-HD total rate ratio
> 1.5 for a total of 21

36 UL-DL angle pairs, which represents 58.3% of the total available
angle pairs. However, there is 1

36 UL-DL angle pair to achieve SI < -70 dB jointly with rate
ratio > 1.5. On the other hand, the proposed PBF-MOOP-SAS scheme can provide 34

36 and
23
36 UL-DL angle pairs for (achieved SI < -50 dB & Ratio > 1.5) and (achieved SI < -70
dB & Ratio > 1.5), respectively. Similarly, Fig. 5.14(b) depicts the performance tradeoff
using 1×8 sub-array. The MBF scheme results in 0

36 UL-DL angle pairs to achieve SI < -70
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(a)

(b)

Figure 5.14. Achieved SI and FD-to-HD total rate ratio tradeoff using MBF and PBF
with SAS schemes. (a) 1×4 sub-array. (b) 1×8 sub-array.

dB & Ratio > 1.5, whereas, the proposed PBF-MOOP-SAS scheme can provide 20
36 UL-DL

angle pairs to achieve SI < -70 dB & Ratio > 1.5. Thus, the proposed PBF-MOOP-SAS
scheme can achieve high SI suppression jointly with increased FD-to-HD rate ratio for 55%
of the UL-DL angle pairs as compared to 0% in the case of MBF scheme. The detailed
performance comparison of the proposed PBF schemes versus MBF for 1 × 4 and 1 × 8
sub-array is summarized in Table 5.1 and Table 5.2, respectively.
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Table 5.1. Performance Comparison: PBF with SAS versus MBF (1×4 and 20 MHz
BW).

Performance Metrics
HBF Scheme Improvement using PBF HBF

MBF PBF
SOOP MOOP with SAS SOOP versus MBF MOOP + SAS versus MMBF

Achieved SI(dB)
Best5 -75.05 -75.9 -77.57 16.25 33.04
Worst -38.74 -40.01 -61.59 0.569 1.25
Avg -52.6 -59.69 -71.96 7.07 19.33

FD-to-HD Total Rate Ratio
(All UL/DL UE locations) [15◦ : 30◦ : 165◦]

Best 1.930 1.929 1.948 225.8 261.1
Worst 0.514 0.597 1.598 -6.18 -5.887
Avg 1.650 1.780 1.886 7.87 14.3

FD-to-HD Total Rate Ratio
(Same UL/DL UE locations) [15◦ : 30◦ : 165◦]

Best 0.879 1.674 1.885 225.8 261.1
Worst 0.514 0.597 1.598 1.56 83.51
Avg 0.730 1.371 1.774 87.6 143

Table 5.2. Performance Comparison: PBF with SAS versus MBF (1×8 and 20 MHz
BW).

Performance Metrics
HBF Scheme Improvement using PBF HBF

MBF PBF
SOOP MOOP with SAS SOOP versus MBF MOOP + SAS versus MBF

Achieved SI(dB)
Best -69.0 -77.46 -77.45 17.3 31.11

Worst -37.35 -38.9 -51.93 1.16 4.24
Avg -55.0 -62.59 -70.43 7.58 15.43

FD-to-HD Total Rate Ratio
(All UL/DL UE locations) [15◦ : 30◦ : 165◦]

Best 1.939 1.936 1.952 217.1 239
Worst 0.5481 0.864 1.694 -2.19 -2.13
Avg 1.689 1.80 1.886 6.57 11.6

FD-to-HD Total Rate Ratio
(Same UL/DL UE locations) [15◦ : 30◦ : 165◦]

Best 0.873 1.738 1.872 217.1 239
Worst 0.548 0.864 1.69 -1.03 104.5
Avg 0.741 1.392 1.796 87.8 142.3

5.5.5 SI Suppression with NCM URA SC-HBF

In this section, we present the achieved SI suppression results using the proposed NCM-
BF-SIS scheme (as discussed in Section 5.4) at different uplink and downlink UE angular
locations. In Fig. 5.15, we present the achieved SI using 2×2 URA SC-HBF architecture over
a bandwidth of 20 MHz, and compare the performance of NCM-BF-SIS with the following
two SI suppression schemes: 1) maximum-directivity-based beamforming scheme (MD-BF-
SIS), and 2) constant-modulus RF beamforming scheme (CM-BF-SIS)7. In Fig. 5.15(a), we
plot the achieved SI suppression for varying uplink and downlink azimuth locations (i.e.,
{ϕD, ϕU} ∈ {0◦ : 30◦ : 180◦}) for fixed uplink and downlink elevation angles (i.e., θD =
θU = 90◦). It can be seen that compared to MD-BF-SIS, both NCM-BF-SIS and CM-BF-
SIS schemes can provide more uplink-downlink angle-pairs for an enhanced SI suppression.
However, the proposed NCM-BF-SIS can achieve the best SI suppression when compared

7In MD-BF-SIS, fD and fU steer the beams at exact user locations (i.e., (θD, ϕD) and (θU , ϕU ) while
in CM-BF-SIS, beam angles are optimized (i.e., θ̂D, ϕ̂D, θ̂U , ϕ̂U ) to construct the RF stages with fixed gain
controllers.
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Table 5.3. SI Suppression performance Comparison of NCM-BF-SIS, CM-BF-SIS,
MD-BF-SIS scheme.

Sub-Array
Configuration

Proposed MD-BF-SISNCM-BF-SIS CM-BF-SIS

2× 2
(URA)

Best -79.6 -77.2 -74.2
Worst -36.6 -34.6 -32.2
Avg -70.2 -67.3 -49.3

4× 4
(URA)

Best -79.6 -78.2 -74.2
Worst -36.7 -35.4 -33.1
Avg -72.3 -69.4 -54.4

1× 4
(ULA)

Best -78.69 -76.6 -67.3
Worst -34.2 -33.4 -30.2
Avg -61.8 -57.4 -49.2

to MD-BF-SIS and CM-BF-SIS schemes, and can bring SI level down to -79.5 dB. The
proposed NCM-BF-SIS can further reduce the SI level by around -20 dB and -4 dB versus
MD-BF-SIS and CM-BF-SIS schemes, respectively. In Fig. 5.15(b), we compare the achieved
SI for varying uplink and downlink elevation angles (i.e., {θD, θU} ∈ {0◦ : 30◦ : 90◦})
for fixed ϕD = ϕU = 90◦. The results show that the proposed NCM-BF-SIS scheme can
achieve an SI suppression of -75 dB or lower for almost 70 % of the (θD, θU) angle-pairs.
Similarly, Fig. 5.15(c) depicts the SI levels for varying downlink angular locations (i.e.,
θD ∈ {0◦ : 30◦ : 90◦}, ϕD ∈ {0◦ : 30◦ : 180◦}) for fixed uplink angular location θU = ϕU = 90◦.
The proposed NCM-BF-SIS scheme can achieve SI suppression upto -80 dB. Thus, compared
to MD-BF-SIS and CM-BF-SIS schemes, jointly optimizing beam angles with gain controller
coefficients in NCM-BF-SIS can significantly enhance SI suppression.

In Fig. 5.16, we present the achieved SI using a 4 × 4 URA SC-HBF architecture at
20 MHz bandwidth, and compare the performance of NCM-BF-SIS with MD-BF-SIS and
CM-BF-SIS schemes. In Fig. 5.16(a), the achieved SI suppression for varying uplink and
downlink azimuth locations for fixed uplink and downlink elevation angle θD = θU = 90◦ is
presented, which shows the proposed NCM-BF-SIS can achieve the best SI suppression at all
ϕD−ϕU angle-pairs. Moreover, compared to 2× 2 URA, a 4× 4 URA sub-array can provide
better performance as the 4 × 4 array can generate narrower beams than 2 × 2 sub-array,
which results in enhanced SI suppression. Similarly, Fig. 5.16(b) compares the achieved
SI suppression for different uplink/downlink angle-pairs. The results show that NCM-BF-
SIS diminishes the strong SI for any uplink and downlink angle-pair. For instance, the SI
can be reduced by -70 dB or lower for any uplink-downlink angle-pair (θD, θU) for a fixed
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(a) (b)

(c)

Figure 5.15. Achieved SI suppression of proposed NCM-BF-SIS with 2×2 sub-array at 20
MHz bandwidth. (a) versus ϕD and ϕU for fixed (θD = θU = 90◦). (b) versus θD and θU for

fixed (ϕD = ϕU = 90◦). (c) versus ϕD and θD for fixed (θU = ϕU = 90◦).

ϕU = ϕD = 90◦. In Fig. 5.16(c), we show the achieved SI levels for different downlink user
locations (i.e., {θD, ϕD} ∈ {0◦ : 30◦ : 180◦}) for fixed uplink user location θU = ϕU = 90◦.
It can be seen that the proposed NCM-BF-SIS scheme can attain the SI suppression of -75
dB or lower at all (θD, ϕD) angle-pairs, whereas MD-BF-SIS scheme can bring the SI level
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(a) (b)

(c)

Figure 5.16. Achieved SI suppression of proposed NCM-BF-SIS with 4×4 sub-array at 20
MHz bandwidth. (a) versus ϕD and ϕU for fixed (θD = θU = 90◦). (b) versus θD and θU for

fixed (ϕD = ϕU = 90◦). (c) versus ϕD and θD for fixed (θU = ϕU = 90◦).

down to -75 dB or lower for only a single (θD, ϕD) angle-pair. Thus, the proposed NCM-
BF-SIS significantly alleviate SI for any uplink-downlink user location (for instance, out of
28 possible (θD, ϕD) angle-pairs, NCM-BF-SIS achieve SI suppression of ≤ -75 dB for all 28
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pairs, whereas MD-BF-SIS can provide SI suppression of ≤ -75 dB for only a single angle-
pair). As a result, NCM-BF-SIS can provide more DoF in enhancing FD communications
performance irrespective of uplink and downlink user locations.

Finally, Table 5.3 presents the detailed comparison of achieved SI suppression using
different URA SC-HBF sizes (2 × 2 and 4 × 4) for NCM-BF-SIS, CM-BF-SIS, and
MD-BF-SIS schemes over a bandwidth of 20 MHz. Here, we consider varying uplink and
downlink azimuth locations (i.e., {ϕD, ϕU} ∈ {0◦ : 30◦ : 180◦}) for fixed uplink and
downlink elevation angles (i.e., θD = θU = 90◦), and provide the results for best, worst, and
average SI suppression. The analysis can be summarized as follows: 1) we can achieve the
best SI suppression of around -80 dB by using the proposed NCM-BF-SIS scheme when
using either 2 × 2 or 4 × 4 URA sub-array; 2) increasing the number of antennas can
provide an enhanced SI suppression (for instance, 4 × 4 URA sub-array can provide more
uplink-downlink UE angle-pairs for increased SI suppression than a 2 × 2 URA sub-array);
3) the proposed NCM-BF-SIS can provide an average SI suppression gain of around -20 dB
and -4 dB when compared to MD-BF-SIS and CM-BF-SIS schemes, respectively; and 4)
the URA sub-array configuration can minimize SI more effectively than ULA sub-array (for
example, an average SI suppression of 2 × 2 is around -9 dB lower than 1 × 4 ULA
sub-array).

5.6 Concluding Remarks

This chapter considers a FD mMIMO system using a sub-array-based HBF architecture
and investigates the capacity gains of FD communications over HD transmissions in a
real-time implementation. In particular, the strong SI is suppressed by designing the RF
beamformers jointly with SAS to utilize the spatial DoF in large array structures, thus
avoiding the use of costly analog SI-cancellation circuits. To achieve capacity gains in FD
communications, a multi-objective design framework is considered to minimize SI and
maximize the total achievable rate. Based on OTA measured SI channel, we have proposed
a novel HBF scheme that applies perturbations to the orthogonal beams in UL and DL
beam directions and jointly finds the best Tx-Rx sub-array pair. To solve this challenging
non-convex problem, we have proposed a swarm intelligence-based algorithmic solution to
find the optimal perturbations and Tx-Rx indices while satisfying the directivity
degradation constraints for the UL and DL beams. Illustrative results show that the
proposed HBF scheme with PBF RF stages jointly with SAS can achieve high SI
suppression compared to MBF for both 1×4 and 1×8 sub-array configurations and can
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mitigate SI to -78 dB in real life implementations for FD mMIMO systems. Moreover, the
proposed HBF scheme can achieve an average capacity gain of around 1.8 for any angular
location of UL-DL UE.

5.7 Appendix: Proof of Lemma 5.1

Let fU and fD be the UL and DL RF beamformers for ith DL UE and jth UL UE,
respectively. Then, we can express the RF beamformers as:

fD(θDi
) = 1√

ND

[1, ej2π∆cos(θDi
), · · · , ej2π∆(ND−1)cos(θDi

)]T , (5.52)

fU(θUj
) = 1√

NU

[1, e−j2π∆cos(θUj
), · · · , e−j2π∆(NU −1)cos(θUj

)]T . (5.53)

Then, we can rewrite the expression for fTUHSIfD as:

fTUHSIfD

= 1√
ND

fTUHSI [1, ej2πd cos(θDi
), · · · , ej2πd(ND−1) cos(θDi

)]T

= 1√
NU

[1, e−j2πd cos(θUj
), · · · , e−j2πd(NU −1) cos(θUj

)]HSI

1√
ND

[1, ej2πd cos(θDi
), · · · , ej2πd(ND−1) cos(θDi

)]T

= 1√
NDNU

NU∑
nu=1

ND∑
nd=1

hnu,nd
e−j2πd(nu cos(θUj

)−nd cos(θDi
)), (5.54)

where hnu,nd
is the (nu, nd)-th element of HSI . Since | cos(θUj

)|, | cos(θDi
)| ≤ 1, the term

inside the exponent of (5.54) is bounded as follows:

|nu cos(θUj
)− nd cos(θDi

)| ≤ nu| cos(θUj
)|+ nd| cos(θDi

)|
≤ nu + nd ≤ Nus +Nds − 2, (5.55)

where the last inequality follows because nu and nd both range from 1 to NU and ND,
respectively. Now, let us consider the term hnu,nd

. Considering the large array structures,
the path loss between the transmit and receive antennas within the same device is generally
low due to the short distance between them. Thus, the SI channel, which is the channel
from the transmit antenna to the receive antenna in the same device, is expected to be very
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strong in magnitude. Hence, we can assume that hnu,nd
has non-negligible values. Next, we

analyze the magnitude of the expression fTUHSIfD. Applying the triangle inequality, we can
write as follows:

|fTUHSIfD|

= 1√
NDNU

∣∣∣∣∣∣
NU∑
nu=1

ND∑
nd=1

hnu,nd
e−j2πd(nu cos(θUj

)−nd cos(θDi
))

∣∣∣∣∣∣
≤ 1√

NDNU

NU∑
nu=1

ND∑
nd=1
|hnu,nd

|

≤ 1√
NDNU

(NU +ND − 2) max
nu,nd

|hnu,nd
|, (5.56)

where the last inequality holds due to the bounds on the indices nu and nd. Based on the
assumption that the path loss is significant and the SI channel is strong, we can infer that
the maximum absolute value of the SI channel coefficients maxnu,nd

|hnu,nd
| is very small.

Consequently, we can approximate the expression as follows:

|fTUHSIfD| ≈ 0. (5.57)

This approximation is valid when SI channel is strong, the path loss is significant, and the
array dimensions NU and ND are sufficiently large. It suggests that the design of DL and UL
RF beamforming stages, represented by FD and FU respectively, can effectively eliminate
the interference caused by the SI channel. Hence, we conclude that for a given UL-DL angle-
pair θDi

, θUj
in large array structures, the approximation FUHSIFD ≈ 0 holds, indicating

the suppression of SI interference.
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Chapter 6

UAV-Assisted Terrestrial Massive
MIMO Systems for Enhanced
Coverage and Capacity1

6.1 Introduction

In the previous chapters, different HBF solutions have been proposed for both
half-duplex (HD) and full-duplex (FD) communications in mMIMO systems. With the
advent of advanced wireless communications and networking technologies, it is expected
that billions of low-power consumption devices, such as wireless sensors will be connected
to the internet through the IoT framework, which will significantly increase capacity and
coverage needs in mMIMO systems [21]. However, deploying IoT effectively and extensively
still poses significant challenges, including efficient information transfer between wireless
nodes and gateways. Due to the limited coverage and fixed deployment of terrestrial
networks, the integration of UAVs offer key advantages of rapid deployment especially in
emergency situations. To address this issue, various routing schemes have been proposed,
including direct transmission or relay structures. Nonetheless, when the distance between
the IoT end node and the gateway is substantial, direct transmission may not be feasible or
may consume excessive power. In such cases, communication through relay can be a more
power-efficient alternative. Moreover, deploying cellular stations in urban areas can be a

1Parts of this chapter have been presented at the 2022 IEEE 96th Vehicular Technology Conference
(VTC2022-Fall), London/Beijing [131], the 2023 IEEE 97th Vehicular Technology Conference (VTC2023-
Spring), Florence, Italy [132], the 2023 IEEE Global Communications Conference (GLOBECOM),
KualaLumpur, Malaysia [133] and published in the IEEE Internet of Things Journal [134].
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Table 6.1. A brief comparison of the related literature.

Literature
Contents

UAV Operation Mode Propagation Environment MIMO Relay Transmission Radio Resource Management Deep LearningAs BS As Relay No Fading (LoS) Fading (LoS + NLoS) SU-MIMO MU-MIMO With Buffer Without Buffer UAV Positioning/Trajectory Power Allocation Beamforming
[135,136] ✓ ✓ ✓ ✓ ✓

[137] ✓ ✓ ✓ ✓ ✓ ✓

[139] ✓ ✓ ✓ ✓ ✓ ✓

[140] ✓ ✓ ✓ ✓ ✓

[141] ✓ ✓ ✓ ✓ ✓

[142] ✓ ✓ ✓ ✓ ✓

[143] ✓ ✓ ✓ ✓ ✓

[144] ✓ ✓ ✓ ✓ ✓

[148,152,154] ✓ ✓ ✓ ✓ ✓ ✓

[149–151] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[153] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[154] ✓ ✓ ✓ ✓ ✓ ✓

This work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

costly and challenging task, which can further complicate the communications coverage
issue in the IoT framework [22].

The deployment of UAVs as a relay has garnered significant research attention in recent
years, with the objective of designing UAV-assisted systems that maximize throughput or
minimize transmit power [135–144]. Most existing research studies on the use of UAVs to
assist in communications has overlooked the potential benefits of beamforming solutions,
as evidenced by studies such as [135–147]. While some studies have explored beamforming
solutions, they have been limited to single-hop communications scenarios and have only
examined its application in single links, such as in studies [148–155], where UAVs act as
flying BSs rather than relays, making the beamforming solutions inapplicable for dual-hop
or relaying structures. The joint optimization of UAV location, power allocation (PA),
and HBF design for a dual-hop mmWave MU-mMIMO IoT communications networks is an
unaddressed problem, presenting a significant opportunity to advance the field of UAV-based
wireless communications. To address this gap in literature, this chapter aims to highlight
the full potential of beamforming, and its ability to enhance performance in dual-hop UAV
communications networks1 The main contributions of this work are summarized as follows:

• We propose three novel optimization schemes for maximizing total capacity in
UAV-assisted MU-mMIMO IoT systems: 1) joint HBF and optimal PA for fixed UAV
location (J-HBF-PSOPA-FL); 2) joint HBF and UAV location optimization for equal
PA (J-HBF-PSOL-EQPA); and 3) joint HBF, UAV location optimization and PA
(J-HBF-PSOLPA). Using swarm intelligence-based particle swarm optimization
(PSO), we tackle the challenging non-convex problem with high-dimensional variable
matrices and fractional programming variables, while adhering to constraints like
UAV deployment span, total transmit power, PA, and CM. In particular, the RF
stages are formulated using slow time-varying angle-of-departure

1It is worth noting that, unlike prior literature that employs a single antenna in UAV-assisted systems,
this study considers large antenna arrays deployed in the mmWave band to consider beamforming issues
in fading scenarios. In non-fading situations, for instance, LoS channels, the proposed HBF solutions can
further improve performance by providing higher directional gain and reducing interference.
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(AoD)/angle-of-arrival (AoA) information, while the BB stages use the
reduced-dimension effective channel information with RZF. In J-HBF-PSOPA-FL, we
allocate optimal power for multiple IoT users with fixed UAV location, and design
the RF and BB stages for maximum capacity. In J-HBF-PSOL-EQPA, we optimize
UAV location for equal PA, whereas, in J-HBF-PSOLPA, we jointly optimize both
UAV location and PA, and design HBF stages for both UAV and BS. The illustrative
results show that J-HBF-PSOLPA can achieve higher total rate compared to
J-HBF-PSOL-EQPA and J-HBF-PSOPA-FL schemes.

• To overcome the high computational complexity of J-HBF-PSOLPA, we propose a
novel low-complexity DL-based joint HBF, UAV location optimization and PA (J-
HBF-DLLPA) algorithm for a UAV-assisted MU-mMIMO IoT systems. The proposed
J-HBF-DLLPA-based solution can achieve AR of J-HBF-PSOLPA, while reducing the
runtime by 98− 99 %. In particular, the proposed J-HBF-DLLPA is built via a fully-
connected DNN consisting of two phases: 1) offline supervised learning via the optimal
allocated powers and UAV locations calculated with J-HBF-PSOLPA; and 2) real-time
prediction of optimal power values and UAV location via the trained DNN.

• We analyze the performance of UAV DF relaying with and without buffering. Most
existing studies have explored the option of forwarding the received signal without
buffering the data, which fails to fully leverage the UAV’s mobility [135–141, 148–
155]. The proposed solutions incorporate signal buffering at the UAV, enhancing the
relaying performance significantly. Particularly, we analyze the average delay of delay-
unconstrained and delay-constrained transmissions, which can be significantly reduced
by J-HBF-PSOLPA compared to fixed UAV deployment and equal PA (FL-EQPA).

The rest of this chapter is organized as follows. Section 6.2 discuss the channel model of
mmWave UAV-assisted mMIMO systems. In Section 6.3, we present the HBF solution for
a single-hop UAV-assisted mMIMO system. Section 6.4 discuss the UAV-assisted amplify-
and-forward (AF) relaying followed by the decode-and-forward (DF) relaying in Section 6.5
for a point-to-point mMIMO system. Section 6.6 introduces the UAV-assisted DF relaying
for a MU-mMIMO system. The illustrative results are provided in Section 6.7. Finally, the
chapter is concluded in Section 6.8.
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6.2 Channel Model

While LoS channel models can be useful for simple scenarios, they can be limited in
their ability to capture the channel complexities (e.g., multi-path fading and shadowing).
On the other hand, mmWave channel models can provide a more accurate representation of
the channel characteristics, including the impact of non-LoS (NLoS) paths and obstacles on
the signal propagation in UAV-assisted communications. Therefore, we consider mmWave
channels for both links. The channel between BS and UAV is modeled based on the Saleh-
Valenzuela channel model [156], and is given as:

H1 =
C∑
c=1

L∑
l=1

z1cl
τ−η

1cl
a(r)

1 (θ(r)
cl , ϕ

(r)
cl )a(t)T

1 (θ(t)
cl , ϕ

(t)
cl )

= A(r)
1 Z1A(t)

1 ,

(6.1)

where C is the total number of clusters, L is the total number of paths, η is the path
loss exponent, and z1cl

is the complex gain of lth path in cth cluster. Here, a(j)
1 (·, ·) is the

corresponding transmit or receive array steering vector for uniform rectangular array (URA),
which is given as [90]:

a(j)
1 (θ, ϕ) =

[
1, e−j2πdsin(θ) cos(ϕ), · · · , e−j2πd(Nx−1)sin(θ) cos(ϕ)

]
⊗
[
1, e−j2πdsin(θ) sin(ϕ), · · · , e−j2πd(Ny−1)sin(θ) sin(ϕ)

]
,

(6.2)

where j = {t, r}, d is the inter-element spacing, Nx(Ny) is the horizontal (vertical) size of
corresponding antenna array at BS and UAV, Z1 = diag(z1,1τ

−η
1,1 , . . . , z1,Lτ

−η
1,L) ∈ CL×L is

the diagonal gain matrix, A(r)
1 ∈ CNr×L and A(t)

1 ∈ CL×NT are the receive and transmit
phase response matrices, respectively. Here, the angles θ(t)

cl ∈
[
θ(t)
c − δ

θ(t)
c , θ(t)

c + δ
θ(t)
c

]
and

ϕ
(t)
cl ∈

[
ϕ(t)
c − δϕ(t)

c , ϕ(t)
c + δϕ(t)

c

]
are the azimuth AoD (AAoD) and elevation AoD (EAoD)

for lth path in channel H1, respectively. θ(t)
c is the mean AAoD and δ

θ(t)
c represents the

AAoD spread, whereas ϕ(t)
c is mean EAoD with spread δϕ(t)

c . Similarly, the angles θ(r)
cl ∈[

θ(r)
c − δθ(r)

c , θ(r)
c + δθ(r)

c

]
and ϕ

(r)
cl ∈

[
ϕ(r)
c − δϕ(r)

c , ϕ(r)
c + δϕ(r)

c

]
are the azimuth AoA (AAoA)

and elevation AoA (EAoA), where θ(r)
c and ϕ(r)

c are the mean AAoA and EAoA with angular
spread δθ(r)

c and δϕ(r)
c , respectively. Then, the channel vector between the UAV and the kth

IoT user can be written as follows:

hT2,k =
∑L

l=1 z2,kl
τ−η

2,kl
a(θkl

, ϕkl
)

= zT2,kA2,k ∈ CNt ,
(6.3)
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where L is the total number of downlink paths from UAV to IoT nodes, z2,kl
∼ CN (0, 1

L
) is

the complex path gain of lth path in second link, a(·, ·) ∈ CNt is the UAV downlink array
phase response vector. As expressed in (6.3), the intended downlink channel constitute two
parts: 1) fast time-varying path gain vector z2,k = [z2,k1τ

−η
2,k1 , · · · , z2,kL

τ−η
2,kL

]T ∈ CL; and 2)
slow time-varying downlink array phase response matrix A2,k ∈ CL×Nt with the rows of
a(θkl

, ϕkl
). Then, the channel matrix for second link is written as:

H2 = [h2,1, · · · ,h2,K ]T = Z2A2 ∈ CK×Nt , (6.4)

where Z2 = [z2,1, · · · , z2,K ]T ∈ CK×L is the complete path gain matrix for all downlink IoT
nodes.

6.3 Joint HBF and UAV Deployment in Single-Hop
mMIMO Systems

In this section, we propose a novel SI-based joint HBF and UAV positioning scheme
(JHBFP) to maximize the overall system capacity in mmWave MU-mMIMO systems. Based
on the 3D geometry-based mmWave channel model, a two-stage architecture is designed
for the proposed JHBFP technique: (i) RF beamformer, and (ii) BB precoder. The RF
beamformer is designed by using SVD of channel matrix followed by the BB precoder utilizing
the reduced-size effective channel matrix seen from the BB-stage. Both RF and BB stages
aim to mitigate the multi-user interference (MU-I) among the users, while reducing the
number of RF chains. Afterwards, we present a novel PSO-based UAV location (PSO-L)
algorithm for the optimal UAV positioning to maximize ASR of the mmWave MU-mMIMO
systems. Here, our primary motivation is to address non-convex UAV placement problem via
the proposed PSO-L algorithm. We also propose hemi-spherical (HSA) array configuration
for the UAV communications as compared to URA, which is a preferred array structure in the
existing UAV studies ( [149,157–161]). Illustrative results indicate that, the proposed JHBFP
of UAV using PSO-L can significantly enhance the system spectral and energy efficiencies.

6.3.1 System Model

We consider a cellular network in an urban environment consisting of a set of non-
vehicular cellular users/IoT devices. Due to possible obstructions (e.g., high-rise buildings.,
etc.), the direct communication between BS and the users located in a certain geographical
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Figure 6.1. UAV-assisted mmWave MU-mMIMO system.

area is not possible as shown in Fig. 6.1. We consider integrating UAV as a flying relay into
the existing cellular network that connects the BS with users located at a far distance r.
We assume the UAV is placed at a height Du > Db, where Db is the height of the BS. Let
K represents the set of users that needs to be served by BS via UAV relay. Let (xu, yu, Du)
and (xk, yk, zk) denote the locations of the UAV and kth user, respectively.

We assume the channel HA between UAV relay and BS has sufficient capacity for BS-
UAV data transfer to serve the users in K. Moreover, the UAV relay is assumed to employ
a hybrid precoder/beamformer with an NT element antenna array and NRF RF chains for
simultaneously communicating with K single-antenna users. We consider UAV location
optimization jointly with HBF design for UAV-UE link to maximize ASR while the design
of BS-UAV link is left for future work. The hybrid beamformer B = FDBD consists of
the digital baseband precoder BD = [b1, · · · ,bK ] ∈ CNRF ×K and the analog RF beamformer
FD = [f1, · · · , fNRF

] ∈ CNT ×NRF that is implemented using phase shifters and thus, imposes a
constant-modulus (CM) constraint., i.e., |FD(i, j)| = 1√

NT
∀i, j. The design of HBF reduces

the number of RF chains from NT to NRF , while satisfying K ≤ NRF ≪ NT . Considering
K data streams, the precoded signal at UAV relay is given by:

s = FDBDd, (6.5)

where d ∈ CK is the data signal with E{ddH} = IK . The transmitted signal satisfies the
power constraint., i.e., E{∥s∥2

2} ≤ PT , where PT is the transmit power at the UAV relay.
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Then, the received signal at kth user is given by:

yk = hH
k Bs + nk,

= hH
k FDbkdk︸ ︷︷ ︸

Desired Signal

+
K∑
k̂ ̸=k

hH
k FDbdk̂

dk̂︸ ︷︷ ︸
IUI

+ nk︸︷︷︸
Noise

, (6.6)

where hk ∈ CN is the narrowband flat-fading mmWave channel vector between UAV relay
and users, sk is the data signal for kth user, bk is the kth column of FD, and nk denotes the
additive circular symmetric Gaussian noise such that nk ∼ CN (0, σ2). By using (6.5) and
(6.6), the instantaneous signal-to-interference-plus-noise ratio (SINR) expression at kth user
is derived as follows:

SINRk = |hH
k FDbk|2∑K

k̂ ̸=k |h
H
k FDbk̂|2 + σ2 . (6.7)

By using the instantaneous SINR, the ergodic sum-rate capacity Rsum for UAV-assisted
mmWave MU-mMIMO systems is given by:

Rsum (FD,BD, xu, yu) =
K∑
k=1

E[log2(1 + SINRk)]. (6.8)

For the case where the ground BS is directly serving the users, the ASR can be maximized
by designing FD and BD. However, in a UAV-assisted cellular system, where the UAV is
deployed at a fixed height zu and relaying data to the users, the ASR can be maximized by
the joint optimization of FD,BD and x = [xo, yo] ∈ R2, where x represents UAV position to
be optimized within the given UAV flying span. By using (6.5) and (6.6), the ASR is written
as:

max
{FD,BD,xo,yo}

Rsum (FD,BD, xu, yu)

s.t. C1 : |FD(i, j)| = 1√
NT

,

C2 : E{∥s∥2
2} ≤ PT ,

C3 : xmin ≤ xo ≤ xmax, ymin ≤ yo ≤ ymax,

(6.9)

where C1 refers to the CM constraint due to the use of phase shifters, C2 indicates the
transmit power constraint at UAV and C3 implies UAV positioning within the given flying
span. Here, [xmin, xmax] and [ymin, ymax] represent the UAV relay deployment range in x-axis
and y-axis, respectively. The optimization problem defined in (6.9) is non-convex. To solve
this problem, we sequentially develop FD and BD and apply PSO-L to optimize xo and yo.



6. UAV-Assisted Terrestrial Massive MIMO Systems for Enhanced Coverage
and Capacity 136

(a) (b)

Figure 6.2. UAV-relay array structures: (a) URA (b) HSA.

6.3.2 Low-Complexity Hybrid Beamforming Design

In this section, we first decouple the optimization problem (as given in (6.9)) and present
the design of proposed low-complexity hybrid beamformer B ∈ C

NT ×K, which maximizes the
spectral and energy efficiencies of a UAV-assisted mMIMO system. In particular, the HBF is
constructed by concatenating the RF beamformer FD ∈ C

NT ×NRF and reduced-dimensional
MU baseband precoder BD ∈ C

NRF ×K. Compared to the existing HBF solutions for UAV-
assisted mMIMO systems (e.g., [149, 161]), the proposed HBF design can achieve a high
sum-rate and energy efficiency with reduced complexity by using ordered SVD of the MU-
mMIMO channel between UAV relay and ground users [98].

6.3.2.1 RF Beamformer Design

We assume K users are clustered into G groups based on their AoD information, where
each group contains Kg number of users such that K = ∑G

g=1 Kg. The index gk = ∑g−1
g′=1 Kg′ +

k is used to denote the kth user in group g. Then, the channel matrix H(g) for gth group can
be written as:

H(g) = [h1, · · · ,hKg ]T = Q(g)Σ(g)VH(g) ∈ CKg×N , (6.10)

where Q(g) and V (g) are Kg × Kg and NT × NT unitary matrices, respectively. Σ(g) is a
Kg ×NT rectangular diagonal matrix with non-negative real numbers on the diagonal, and
the elements are arranged in decreasing order. For each group g, the low-complexity RF
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beamformer Fg ∈ CNT ×NRF g is constructed by utilizing SVD of the channel matrix H(g).
Then, the complete RF beamformer is given as follows:

FD =
[
F1, · · · ,FG

]
∈ CNT ×NRF . (6.11)

Let ϕ(g)
n = [ejυ

(g)
1,n , ejυ

(g)
2,n , . . . , ejυ

(g)
N,n ]T ∈ C

NT be the phase vector of group g, where υ(g)
m,n is the

phase angle of the (m,n)− th entry of V. Then, we can formulate the phase matrix Φ(g) as:

Φ(g) = [ϕ(g)
1 , ϕ

(g)
2 , . . . , ϕ

(g)
N ] ∈ CNT ×NT . (6.12)

Comparing (6.10) and (6.12), we can see that each entry of ϕ(g)
n and Vg(n) have the same

phase angle. Then, using NRF g RF chains for each group, the RF beamformer for gth group
can be given as:

F(g) = [ϕ(g)
1 , ϕ

(g)
2 , . . . , ϕNRF g

] ∈ CNT ×NRF g . (6.13)

Using NRF = ∑G
g=1 NRF g , we can then generate the complete RF beamformer as given in

(6.11). Then, H = [HT
1 , · · · ,HT

G]T ∈ CK×N is the complete channel matrix between UAV
relay and K users. Using (6.10), (6.11), the effective channel matrix as seen from the BB-
stage is given as:

H = HF =


H1FD,1 H1FD,2 . . . H1FD,G

H2FD,1 H2FD,2 . . . H2FD,G

... ... . . . ...
HGFD,1 HGFD,2 . . . HGFD,G

 ∈ CK×NRF , (6.14)

where the diagonal matrices Hg = HgFg = ZgAgFD,g ∈ CKg×NRFg are the effective channel
matrix for group g and the off-diagonal matrices Hĝ = HĝFg = ZĝAĝFD,g ∈ CKĝ×NRF g

represent the effective interference channel matrix between groups g and ĝ, ∀ĝ ̸= g.

6.3.2.2 BB-Stage Design

After designing the RF-stage, the reduced-size effective CSI H given in (6.14) is employed
for the BB precoder. We consider joint-group-processing (JGP) technique as designed in [90].
The design of BB precoder W not only reduces the intra-group interference but also mitigate
the residual inter-group interference remaining after RF beamformer design. By applying
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the well-known RZF technique, W is defined as:

BD = γTHH , (6.15)

where T = [HHH + αNRFINRF
]−1, INRF

∈ C
NRF ×NRF , α is the regularization parameter and

γ is the normalization factor used to satisfy the power constraint, which can be written as:

γ =
√√√√ S

tr{HHTHFHFTH}
. (6.16)

6.3.3 UAV Deployment with PSO-L

After the design of F and W, the optimization problem given in (6.9) can be reformulated
as:

max
{xo,yo}

Rsum (FD,BD, xu, yu)

s.t. C3 : xmin ≤ xo ≤ xmax, ymin ≤ yo ≤ ymax.
(6.17)

Though, the constant modulus constraint for F (i.e., C1 in (6.9)) is satisfied via the solution
of RF beamformer design as discussed in Section. 6.3.2.1, however, the resulting problem in
(6.17) is still an NP hard [162] because the optimization variables {xo, yo} are jointly located
in both the numerator and denominator of the SINR expression given in (6.7).

We propose a PSO based algorithm for optimization of the UAV relay location (PSO-L)
to maximize the capacity of UAV-UE link. PSO is capable of searching the global optimum
iteratively for vastly complex spaces and has a faster convergence time. In a UAV-assisted
cellular system, the number of feasible UAV positions required to search space is(
xmax−xmin

Mx

)
×
(
ymax−ymin

My

)
, where Mx and My represents the search space resolution.

PSO-L makes use of multiple agents called particles to search the objective function space,
which is given in (6.17). PSO-L solves the problem by employing Z particles, which
represent the potential solutions for UAV locations. Initially, a swarm of particles, each
with its own position, velocity, and fitness value are randomly placed in search space.
PSO-L algorithm solves the optimization problem by iteratively updating particle
positions; a particle moves to the next position using the best position experienced by the
particle and the best position experienced by all the particles. Hence, PSO-L algorithm
solves the optimization problem by updating particle positions during T iterations.

In PSO-L, a particle represents the candidate position of UAV and the location is
represented by a certain point (x, y) in the search space. Then, the potential position of ith
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particle during tth iteration is given as:

U(t)
i = [x(t)

i , y
(t)
i ], (6.18)

where t = 0, 1, · · · , T represents the iteration index. Thus, each particle calculates the
corresponding objective function as given in (6.17), evaluates its personal best solution,
communicates with other particles for the global best solution, and moves from U(t) to U(t+1)

until t approaches T . Let U(t)
i and V(t)

i be the position and velocity of ith particle during tth

iteration, respectively. The position U(t)
i is uniformly distributed between [xmin, xmax] and

[ymin, ymax] while the velocity V(t)
i is adjusted to V(0)

i = 0. Then, during the iterations, both
U and V of ith particle are updated as follows:

V(t+1)
i = ωV(t)

i + µ1A(t)
1 (U(t)

best −U(t)
i ) + µ2A(t)

2 (U(t)
best,i −U(t)

i ), (6.19)
U(t+1)
i = U(t)

i + V(t+1)
i , (6.20)

where ω denotes the inertial weight factor, µ1 and µ2 are the learning parameters for the
global best U(t)

best and the personal best U(t)
best,i, A(t)

1 and A(t)
2 are the matrices with entries

uniformly distributed in [0, 1]. The function of ω is to control the impact of previous
velocity history on current velocity, thus, it is considered vital for convergence as it
manages the particle’s tradeoff between global and local exploration. By applying (6.8) as
the objective function, the personal and global best solutions for ith particle during tth

iteration are obtained as:

U(t)
best,i = arg max

U(t∗)
i ,∀t∗=0,1,··· ,t

Rsum(F,W,U(t∗)
i ), (6.21)

U(t)
best = arg max

U(t∗)
best,i

,∀i=0,1,··· ,Np

Rsum(F,W,U(t)
best,i). (6.22)

Algorithm 6.1 summarizes the proposed joint hybrid beamformer and UAV positioning
(JHBFP) scheme using using PSO-L Algorithm.
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Algorithm 6.1 Proposed Joint HBF Design and UAV Positioning (JHBFP) Algorithm
Using PSO-L

1: Input: Z, T,G, µ1, µ2, ω, [θ(g)
k , ϕ

(g)
k ] for k = 1, . . . , K.

2: Output: xo, yo, FD,BD.
3: for g = 1 : G do
4: Compute channel matrix h(g)

k via (6.3).
5: Using (6.10), form the unitary matrices Q(g) and V (g).
6: for n = 1 : N do
7: Calculate the phase of each entity of V(:, n)(g), i.e., ψ(:, n)(g).
8: Construct the phase vector υ(g)

n .
9: end for

10: Formulate Γ(g) via (6.12).
11: Find F(g)

D using N (g)
RF via (6.13).

12: FD = [F(1)
D ,F(2)

D , . . . ,F(G)
D ].

13: Compute BD using (6.15).
14: for i = 1 : Z do
15: Initialize the velocity as V(0)

i = 0.
16: Diagonal entries of U(0)

i are uniformly distributed in [0, 1].
17: Set the personal best U(0)

best,i = U(0)
i .

18: end for
19: Find the global best U(o)

best as in (6.22).
20: for t = 1 : T do
21: for i = 1 : Zp do
22: Update the velocity V(t)

i as in (6.19).
23: Update the position U(t)

i as in (6.20).
24: Find the personal best U(t)

best,i as in (6.21).
25: end for
26: Find the global best U(t)

best as in (6.22).
27: end for
28: end for
29: Update FD,BD for xo, yo using steps 1-10.

6.4 Joint HBF and UAV Deployment in Dual-Hop
mMIMO Systems: Amplify-and-Forward (AF)
Relaying

In this section, we present a novel joint optimization scheme to maximize the
end-to-end throughput in a UAV-assisted mmWave mMIMO communications systems
using two different SA configurations, namely spherical array equal-angle (SAEA) and
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(a) (b)

Figure 6.3. Spherical array configurations: (a) equal-angle (EA) (b) uniform-space (US).

spherical array uniform-space (SA-US) as shown in Fig. 6.3. In particular, the UAV acts as
an amplify-and-forward (AF) relay between a BS and an IoT gateway and the challenging
non-convex optimization problem is solved using swarm intelligence (SI)-based particle
swarm optimization (PSO) method to find optimal UAV relay positioning within a given
deployment region [163]. Then, HBFs for the BS and IoT gateway are designed using an
orthogonal matching pursuit (OMP)-based algorithmic solution, whereas, for the UAV
relay, both transmit and receive RF beamformers are formulated using singular value
decomposition (SVD) of the channel matrices.

6.4.1 System Model

We consider IoT devices and IoT gateway are located in a remote area, which is difficult
to access directly by BS (eNodeB) due to obstacles, and UAV is used as AF relay to improve
the situation as shown in Fig. 6.4. We assume the UAV relay is placed at a height hu > h1,
where h1 is the height of the BS. Let (xu, yu, hu), (x1, y1, h1) and (x2, y2, h2) denote the
locations of UAV, BS and gateway, respectively.

In the system model as shown in Fig. 6.5, we consider the BS is equipped with N1

transmit antennas, UAV relay with Nu,r(Nu,t) antennas for receiving (transmitting) signals
and gateway with N2 antennas. Both BS and gateway adopt HBF architecture, where BS
consists of a RF beamforming stage F1 ∈ CN1×NRF 1 and BB stage B1 CNRF 1 ×NS , where NS

represents the data streams from the BS and NRF 1 is the RF chains such that NS ≤ NRF 1 ≤
N1 to guarantee multistream transmission. Considering half-duplex (HD) UAV AF relaying,
BS sends NS data streams through channel H1 ∈ CNu,r×N1 in first time slot. Using Nu,r
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Figure 6.4. UAV-assisted mMIMO IoT communications system.

antennas, the UAV relay receives signals with an RF combiner Fu,r ∈ CNRF u ×Nu,r . We assume
UAV relay transmits the data in the second time slot using RF beamformer Fu,t ∈ CNu,t×NRF u

through channel H2 ∈ CN2×Nu,t . The received signal at gateway is processed through RF
stage F2 ∈ CNRF 2 ×N2 and BB stage B2 CNS×NRF 2 . Here, all RF beamforming and combining
stages are implemented using phase shifters (PSs) and thus, impose a constant-modulus (CM)
constraint, i.e., |Fi(j, k)| = 1√

Ni
(i = 1, 2), |Fu,r(j, k)| = 1√

Nu,r
, |Fu,t(j, k)| = 1√

Nu,t
∀j, k.

The use of RF beamforming and combining stages for BS, UAV relay and gateway greatly
reduces the number of RF chains from: 1) N1 to NRF 1 ; 2) Nu,r(Nu,t) to NRFu ; and 3) N2 to
NRF 2 , respectively. Considering the data signal is d = [d1, d2, . . . , dNS

]T with E{ddH} = INS

∈ CNS×NS , then the signal transmitted by BS can be written as follows:

s = F1B1d. (6.23)

The power constraint at BS can be expressed as ∥F1B1∥2
F = P1, where P1 denotes the total

transmit power of BS. Then, the received signal at UAV relay is given as follows:

yu,r = H1s + n1,

= H1F1B1d + n1,
(6.24)

where n1 ∈ CNu,r denotes the zero-mean complex circularly symmetric Gaussian noise vector
at UAV relay with covariance matrix E{n1nH1 } = σ2

1INu,r ∈ CNu,r×Nu,r . Then, the received
signal after RF combining at UAV relay is written as follows:

ỹu,r = Fu,rH1F1B1d + Fu,rn1. (6.25)
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Figure 6.5. UAV-assisted mmWave mMIMO AF relaying architecture.

Ignoring the delay constraints, the transmit signal at UAV relay is given as follows:

yu,t = Fu,tFu,rH1F1B1d + Fu,tFu,rn1. (6.26)

The power constraint of tranmsitted signal at UAV relay can be expressed as ∥Fu,tFu,r∥2
F =

Pu, where Pu denotes the total transmit power of UAV. The received signal at IoT gateway
can be expressed as follows:

yd = H2Fu,tFu,rH1F1B1d + H2Fu,tFu,rn1 + n2, (6.27)

where n2 denotes the additive circular symmetric Gaussian noise such that n2 ∼
CN (0, σ2

2IN2). After HBF at IoT gateway, the received signal can be written as follows:

ỹd = W2H2Fu,tFu,rH1W1d︸ ︷︷ ︸
Desired Signal

+ W2H2Fu,tFu,rn1︸ ︷︷ ︸
UAV Relay Noise

+ W2n2︸ ︷︷ ︸
Gateway Noise

, (6.28)

where W1 = F1B1 and W2 = B2F2. Then, the spectral efficiency can be calculated as:

R = 1
2 log2

∣∣∣∣INS
+ 1
NS

Q−1
n

(√
PuP1W2H2Fu,tFu,rH1W1

)(√
PuP1W2H2Fu,tFu,rH1W1

)H ∣∣∣∣ .
(6.29)

where Q−1
n = σ2

n

[
(
√
PuW2H2Fu,tFu,r)(

√
PuW2H2Fu,tFu,r)H + W2WH

2

]−1
is the covariance

matrix of Gaussian noise at UAV relay. For a UAV-assisted mMIMO IoT system, where the
UAV is deployed at a fixed height hu and relaying data to the gateway, the total achievable
rate (AR) can be maximized by the joint optimization of F1, B1, Fu,t, Fu,r, F2, B2, and
x = [xo, yo] ∈ R2, where x represents UAV relay position, which is to be optimized within
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the given UAV flying span. Then, we can formulate the joint optimization problem as:

max
{F1,B1,Fu,t,Fu,r,F2,B2,xo,yo}

R(F1,B1,Fu,t,Fu,r,F2,B2, xo, yo)

s.t. C1 : |Fu,t(i, j)| =
1√
Nu,t

, |Fu,r(i, j)| =
1√
Nu,r

, ∀i, j,

C2 : |F1(i, j)| =
1√
N1

, |F2(i, j)| =
1√
N2

, ∀i, j,

C3 : E{∥s∥2
2} ≤ P1,E{∥yu,t∥2

2} ≤ Pu,

C4 : xmin ≤ xo ≤ xmax, ymin ≤ yo ≤ ymax,

(6.30)

where C1 and C2 refer to the CM constraints due to the use of PSs for UAV and BS/gateway,
respectively. C3 indicates the transmit power constraint for UAV relay and BS, and C4

implies UAV positioning within the given deployment region. Here, [(xmin, ymin) , (xmax, ymax)]
represents the UAV flying span in x-y plane. The optimization problem defined in (6.30)
is non-convex and intractable. To solve this problem, we sequentially develop beamforming
stages for BS, UAV and gateway based on arbitrary fixed UAV location to optimize {xo, yo}
using PSO. Then, based on optimal UAV relay position, we re-formulate RF and BB stages
for BS and gateway as well as RF beamformer/combiner for UAV based on instantaneous
channel matrices H1 and H2.

6.4.2 Joint Beamforming and UAV Positioning

To maximize the spectral efficiency (as given in (6.30)), we consider ABF for UAV
relay, where we design both transmit and receive RF beamformer/combiner and optimize
UAV location together with HBF (i.e., design of RF beamformer and BB stage) for BS and
gateway. Since the optimization problem is intractable, we first design F1,B1,
Fu,t,Fu,r,F2,B2 based on arbitrary fixed UAV location, and then re-formulate RF
beamformers and baseband stages for optimal UAV location using PSO. Since SVD-based
beamforming design is considered optimal for point-to-point mMIMO systems [164],
therefore the design of HBF stages for BS and gateway can be found by minimizing the
Frobenius norm of the difference between optimal unconstrained beamformers and the
corresponding HBF stages as follows:

min
{Fi,Bi}

∥Fopt,i − FiBi∥F

s.t. C2, C3,
(6.31)
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where Fopt,i is the unconstrained beamformer (combiner), which is derived from SVD of
channel matrix between BS and UAV (between UAV and gateway). Using SVD, H1 can be
written as follows:

H1 = Q1Σ1VH
1 ∈ CNu,r×N1 , (6.32)

where Q1 and V1 are Nu,r × Nu,r and N1 × N1 unitary matrices, respectively. Σ1 is a
Nu,r × N1 rectangular diagonal matrix with non-negative real numbers on the diagonal.
Then, the unconstrained optimal beamformer for BS is formulated as Fopt,1 = V1,1, where
V1 = [V1,1V1,2] ∈ CN1×N1 [164]. Using SVD, the channel matrix H2 can be written as follows:

H2 = Q2Σ2VH
2 ∈ CN2×Nu,t . (6.33)

Then, the optimal uncostrained combiner for gateway can be formulated as Fopt,2 = V2,1,
i.e., right singular vectors of H2. The HBF stages F1,B1,F2,B2 are designed using an OMP-
based algorithmic solution, which is outlined in Algorithm 6.1. For UAV relay, we design
transmit and receive RF beamformer and combiner based on angular location of UAV and
gateway, respectively. Let ψn = [ejυ1,n , ejυ2,n , . . . , ejυNu,r,n ]T ∈ CNu,r is the receive phase
vector, where υm,n is the phase angle of the (m,n)− th entry of Q1. Then, we can formulate
the receive phase matrix Ψr

u as follows:

Ψr
u = [ψ1,ψ2, . . . ,ψNu,r ] ∈ CNu,r×Nu,r . (6.34)

Comparing (6.32) and (6.34), we can see that each entry of ψn and Q1(n) have the same
phase angle. Using NRFu RF chains at UAV relay, the receive RF combiner can be formulated
as:

Fu,r = [ψ1,ψ2, . . . ,ψNRF u
]T ∈ CNRF u ×Nu,r . (6.35)

Following a similar approach, the transmit RF beamformer at UAV can be formulated by
using SVD of H2. Then, the transmit phase matrix Ψt

u can be written as follows:

Ψt
u = [φ1,φ2, . . . ,φNu,t ] ∈ CNu,t×Nu,t , (6.36)

where φn = [ejφ1,n , ejφ2,n , . . . , ejφNu,t,n ]T ∈ CNu,t is the transmit phase vector, where φm,n is
the phase angle of the (m,n)− th entry of V2. Then, using NRFu RF chains at UAV relay,
the transmit RF beamformer can be formulated as:

Fu,t = [φ1,φ2, . . . ,φNRF u
] ∈ CNu,t×NRF u . (6.37)
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After the design of RF and BB stages, the optimization problem given in (6.30) can be
reformulated as follows:

max
{xo,yo}

R(xo, yo)

s.t. C4 : xmin ≤ xo ≤ xmax, ymin ≤ yo ≤ ymax.
(6.38)

The resulting optimization problem in (6.38) is still an NP hard and remains a
computationally challenging task. Therefore, we propose a PSO-based algorithmic solution
to optimize UAV position and sequentially update the RF and BB stages for BS, UAV, and
gateway. Initially, Z particles are randomly placed in search space, each with its own
position, velocity, and fitness value. Then, during tth iteration, the position X(t)

z and
velocity Y(t)

z of each zth particle are updated as follows [163]:

X(t+1)
z = X(t)

z + Y(t+1)
z , (6.39)

Y(t+1)
z = ωY(t)

z + µ1C(t)
1 (X(t)

best −X(t)
z ) + µ2C(t)

2 (X(t)
best,z −X(t)

z ), (6.40)

where ω, µ1, µ2 are tuning parameters and C(t)
1 and C(t)

2 are the matrices with entries
uniformly distributed in [0, 1]. Here, each zth particle represents the candidate position of
UAV and it iteratively updates its personal best X(t)

best,z and global best X(t)
best solution

during a total of T iterations as follows:

X(t)
best,z = arg max

X(t∗)
z ,∀t∗=0,1,··· ,t

R(F1,B1,Fu,t,Fu,r,F2,B2, X
(t∗)
z ), (6.41)

X(t)
best = arg max

X(t∗)
best,z

,∀i=0,1,··· ,Zp

R(F1,B1,Fu,t,Fu,r,F2,B2, X
(t)
best,z). (6.42)

After T iterations, we assign x = X(T )
best. Algorithm 6.2 summarizes the proposed beamforming

and UAV deployment scheme.

6.5 Joint HBF and UAV Deployment in SU-mMIMO
Systems: Decode-and-Forward (DF) Relaying

In this section, we propose a novel approach to optimize the performance of UAV relay
systems in a dual-hop mMIMO communications network. By jointly optimizing the UAV
location and HBF design, our approach maximizes the end-to-end throughput of a UAV-
assisted mMIMO IoT communications system.
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Algorithm 6.2 Joint Beamforming and UAV Positioning
1: Input: Z, T , (θ, ϕ), (x1,y1,z1), (x2,y2,z2), (xu,yu,zu).
2: Output: x, F1,B1, Fu,t, Fu,r,F2,B2.
3: for i = 1 : 2 do
4: Compute Hi using (6.1).
5: Find the unitary matrices Qi and Vi using SVD.
6: Fi = [ ], Fres,i = Fopt,i.
7: for j = 1 : NRF i

do
8: Υi = (Ai)TFres,i.
9: Find the index k which maximizes (ΥiΥ∗

i ).
10: Fi =

[
Fi | (AT

i )(k)
]
.

11: Bi =
(
FH
i Fi

)−1
FH
i Fopt,i.

12: Fres,i = Fopt,i−FiBi

∥Fopt,i−FiBi∥F
.

13: end for
14: Bi =

√
Pi

Bi

∥FiBi∥F
.

15: end for
16: for n = 1 : NRFu do
17: Calculate the phase of each entity of Q1, V2.
18: Construct the phase vectors ψn, φn.
19: end for
20: Formulate Ψr

u, Ψt
u via (6.34), (6.36).

21: Construct Fu,r, Fu,t using NRFu via (6.35), (6.37).
22: for z = 1 : Z do
23: Initialize the velocity as Y(0)

z = 0.
24: Each entry of X(0)

z is uniformly distributed in [0, 1].
25: Set the personal best X(0)

best,z = X(0)
z .

26: end for
27: Find the global best X(0)

best as in (6.42).
28: for t = 1 : T do
29: for z = 1 : Z do
30: Update the velocity Y(t)

z as in (6.40).
31: Update the position X(t)

z as in (6.39).
32: Find the personal best X(t)

best,z as in (6.41).
33: end for
34: Find the global best X(t)

best as in (6.42).
35: end for
36: Update F1,F2,B1,B2,Fu,t,Fu,r for x using steps 1-19.
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Figure 6.6. UAV-assisted mMIMO DF relaying.

6.5.1 System Model

We consider the case in which an IoT gateway is connected to various IoT devices via wire
or wireless links. IoT devices and IoT gateway are located in a remote area, which is difficult
to access directly by BS (eNodeB) due to obstacles (e.g., buildings, mountains., etc.), and
UAV is used as a dual-hop DF relay to improve the situation as shown in Fig. 6.6. Unlike
traditional static relaying, which uses fixed relay locations, we presumptively use a UAV as
DF relay. In this chapter, we underline the potential of UAV relays in future mMIMO-enabled
IoT systems with no direct link possible between BS and gateway. Let (x1, y1, z1), (xu, yu, zu)
and (x2, y2, z2) denote the locations of BS, UAV relay and gateway, respectively. Then,
τh,i =

√
(xu − xi)2 + (yu − yi)2 and τv,i = |zu − zi| are the horizontal and vertical distance

between UAV & BS (i = 1) or UAV & gateway (i = 2), and τh =
√

(x1 − x2)2 + (y1 − y2)2

is the horizontal distance between BS and gateway.
In the system model shown in Fig. 6.7, we consider BS is equipped with N1 antennas,

UAV relay with Nu,r(Nu,t) antennas for receiving (transmitting) signals and gateway with N2

antennas. We consider HBF for all nodes (i.e., BS, UAV and gateway), where BS consists of
a RF beamforming stage F1 ∈ CN1×NRF 1 and BB stage B1 CNRF 1 ×NS . Here, NS represents
the data streams from BS and NRF 1 is the RF chains such that NS ≤ NRF 1 ≤ N1 to
guarantee multi-stream transmission. We consider half-duplex (HD) DF relaying, whereas
the use of full-duplex (FD) UAV relaying is left as our future work. During the first time
slot, NS data streams are transmitted through channel H1 ∈ CNu,r×N1 . Using Nu,r antennas,
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Figure 6.7. UAV-assisted mMIMO HBF system model.

UAV receives signals with RF stage Fu,r ∈ CNRF u ×Nu,r and BB stage Bu,r ∈ CNS×NRF u .
We assume UAV transmits the data in the second time slot using RF beamformer Fu,t ∈
CNu,t×NRF u and BB stage Bu,t ∈ CNRF u ×NS through channel H2 ∈ CN2×Nu,t . The received
signal at gateway is processed through RF stage F2 ∈ CNRF 2 ×N2 and BB stage B2 CNS×NRF 2 .
Here, all RF beamforming/combining stages are implemented using phase shifters and thus,
impose a constant-modulus (CM) constraint, i.e., |F1(i, j)| = 1√

N1
, |Fu,r(i, j)| = 1√

Nu,r
,

|Fu,t(i, j)| = 1√
Nu,t

, |F2(i, j)| = 1√
N2
∀i, j. The design of HBF for UAV DF relaying reduces

the number of RF chains from Nu,r(Nu,t) to NRFu , N1 to NRF 1 and N2 to NRF 2 while
satisfying: 1) NS ≤ NRF 1 ≪ N1; 2) NS ≤ NRFu ≪ Nu,r(Nu,t); and 3) NS ≤ NRF 2 ≪ N2.
Considering the transmitted signal is d = [d1, d2, . . . , dNS

]T with E{ddH} = INS
∈ CNS×NS ,

then the signal transmitted by BS is given as follows:

s1 = F1B1d. (6.43)

The power constraint of the beamforming matrices can be expressed as ∥F1B1∥2
F = PT ,

where PT denotes the total transmit power of BS. Then, the received signal at UAV is given
as follows:

y1 = H1s1 + n1,

= H1F1B1d + n1,
(6.44)

where n1 ∈ CNu,r denotes the zero-mean complex circularly symmetric Gaussian noise vector
at UAV relay with covariance matrix E{n1nH1 } = σ2

nINu,r ∈ CNu,r×Nu,r . Then, the received
signal after baseband processing at UAV relay is written as:

ỹ1 = Bu,rFu,rH1F1B1d + Bu,rFu,rn1. (6.45)
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UAV as DF relay uses ỹ1 to decode the information and encodes it again for transmission in
second time slot. Then, the signal transmitted by UAV is given as:

s2 = Fu,tBu,td̂, (6.46)

where d̂ is the re-encoded signal at UAV relay. After transmitting via channel H2, the
received signal at gateway can be written as follows:

ỹ2 = B2F2H2Fu,tBu,td̂ + B2F2n2, (6.47)

where n2 denotes the additive circular symmetric Gaussian noise such that n2 ∼
CN (0, σ2

nIN2). Then, the achievable rate of first link (i.e., BS → UAV) is given as follows:

R1 = log2

∣∣∣INS
+ Q−1

1 Bu,rH1B1BH
1 HH

1 BH
u,r

∣∣∣ , (6.48)

where Q−1
1 = (σ2

nBu,rFu,r)−1FH
u,rBH

u,r and H1 = Fu,rH1F1. Similarly, the achievable rate for
the second link (i.e., UAV → gateway) is given as follows:

R2 = log2

∣∣∣INS
+ Q−1

2 B2H2Bu,tBH
u,tHH

2 BH
2

∣∣∣ , (6.49)

where Q−1
2 = (σ2

nB2F2)−1F2
HBH

2 and H2 = F2H2Fu,t. For a dual-hop mMIMO IoT system,
where the UAV DF relay is deployed at a fixed height zu and relaying data to gateway, the
achievable rate can be maximized by the joint optimization of F1, B1, Fu,t, Fu,r, Bu,t, Bu,r,
F2, B2 and τh,1, where τh,1 represents the horizontal distance between UAV and BS, which is
to be optimized within the given UAV flying span. Then, we can formulate the optimization
problem as:

max
{F1,B1,Fu,t,Bu,t,Fu,r,Bu,r,F2,B2,τh,1}

1
2 min(R1,R2)

s.t. C1 : |Fu,t(i, j)| =
1√
Nu,t

, |Fu,r(i, j)| =
1√
Nu,r

, ∀i, j,

C2 : |F1(i, j)| =
1√
N1

, |F2(i, j)| =
1√
N2
∀i, j,

C3 : E{∥s1∥2
2} ≤ PT ,E{∥s2∥2

2} ≤ PT ,

C4 : τh,min ≤ τh,1 ≤ τh,max,

(6.50)

where C1 and C2 refers to the CM constraint due to the use of phase shifters for UAV, BS
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and gateway, respectively, C3 indicates the transmit power constraint for UAV and BS, and
C4 implies UAV positioning within the given flying span. Here, [τh,min, τh,max] represents the
UAV DF relay deployment range in x-axis and y-axis. The optimization problem defined in
(6.50) is non-convex and intractable. To solve this problem, we first develop HBF stages for
BS, UAV and gateway based on arbitrary UAV location to optimize τh,1 using PSO. Then,
based on optimal UAV relay location, we re-design RF and BB beamforming stages.

6.5.2 Joint UAV Relay Positioning & Hybrid Beamforming

In this section, our objective is to jointly optimize the UAV relay location and hybrid
beamforming to reduce the channel state information (CSI) overhead size while maximizing
the throughput of a dual-hop UAV-assisted mMIMO IoT system. First, we design the RF
stages F1,Fu,r,Fu,t,F2 based on the slow time-varying AoD and AoA. Then, the BB stages
B1,Bu,r,Bu,t,B2 are developed by using SVD.

6.5.2.1 RF-Beamformers Design

We first define AoD and AoA supports as:

AoD =
{
sin (θ) [cos (ϕ) , sin (ϕ)]

∣∣∣θ ∈ θt, ϕ ∈ ϕt}, (6.51)

AoA =
{
sin (θ) [cos (ϕ) , sin (ϕ)]

∣∣∣θ ∈ θr, ϕ ∈ ϕr}, (6.52)

where θi =
[
θi − δθi , θi + δθi

]
and ϕi =

[
ϕi − δϕi , ϕi + δϕi

]
denote the azimuth and elevation

angle supports, respectively. To exploit all degrees of freedom provided by the channel to
maximize the transmit (receive) beamforming gain in either channel link, we consider
selecting the columns of F1(Fu,r) and Fu,t(F2) from the subspace spanned by at(ar) in first
and second link, respectively

(
i.e., Span {F1,Fu,t} ⊂ Span (at) and Span {Fu,r,F2} ⊂

Span (ar)
)
. Then, the transmit RF beamformers are constructed via transmit steering

vector et (θ, ϕ) = 1
Mt

[
1, ej2πdsin(θ) cos(ϕ), · · · , ej2πd(Mx,t−1)sin(θ) cos(ϕ)

]T
⊗[

1, ej2πdsin(θ) sin(ϕ), · · · , ej2πd(My,t−1)sin(θ) sin(ϕ)
]T

, where Mt = {N1, Nu,t}. We define N

orthogonal steering vectors via generating the quantized angle-pairs as λux,t = −1 + 2u−1
Mx,t

for
u = 1, · · · ,Mx,t and λky,t = −1 + 2k−1

My,t
for k = 1, · · · ,My,t. The use of quantized

angle-pairs minimizes the RF chain utilization while covering the complete AoD and AoA
supports. Then, the quantized angle-pairs inside the AoD support satisfying (7.14) are
obtained as:

(λux,t, λky,t)
∣∣∣ sin(θ) cos(ϕ) ∈ λux,t, sin(θ) sin(ϕ) ∈ λky,t, (6.53)
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where λux,t =
[
λux,t − 1

Mx,t
, λux,t + 1

Mx,t

]
is the boundary of λux,t, and

λky,t =
[
λky,t − 1

My,t
, λky,t + 1

My,t

]
is the boundary of λky,t. By using (7.14) and (6.53), the

transmit RF beamformers for BS and UAV are found as:

F1 =
[
et
(
λu1
x,t, λ

k1
y,t

)
, . . . , et

(
λ
uNRF,1
x,t , λ

kNRF,1
y,t

)]
∈ CN1×NRF,1 (6.54)

Fu,t =
[
et
(
λu1
x,t, λ

k1
y,t

)
, . . . , et

(
λ
uNRF,u

x,t , λ
kNRF,u

y,t

)]
∈ CNu,t×NRF,u (6.55)

Following similar approach, the receive RF beamformers can be designed via receive
steering vector er (θ, ϕ) = 1

Mr

[
1, e−j2πdsin(θ) cos(ϕ), · · · , e−j2πd(Mx,r−1)sin(θ) cos(ϕ)

]T
⊗
[
1, e−j2πdsin(θ) sin(ϕ), · · · , e−j2πd(My,r−1)sin(θ) sin(ϕ)

]T
, where Mr = {N2, Nu,r}. Using

quantized angle-pairs as λux,r = −1 + 2u−1
Mx,r

for u = 1, · · · ,Mx,r and λky,r = −1 + 2k−1
My,r

for
k = 1, · · · ,My,r, we can formulate the receive RF beamformers for U and D as:

Fu,r =
[
er
(
λu1
x,r, λ

k1
y,r

)
, . . . , er

(
λ
uNRF,u
x,r , λ

kNRF,u
y,r

)]T
∈ CNRF,u×Nu,r (6.56)

F2 =
[
er
(
λu1
x,r, λ

k1
y,r

)
, . . . , er

(
λ
uNRF,1
x,r , λ

kNRF,1
y,r

)]T
∈ CN2×NRF,2 , (6.57)

where the quantized angle-pairs inside the AoA support satisfying (7.15) are obtained as:

(λux,r, λky,r)
∣∣∣ sin(θ) cos(ϕ) ∈ λux,r, sin(θ) sin(ϕ) ∈ λky,r, (6.58)

where λux,r = [λux,r − 1
Mx,r

, λux,r + 1
Mx,r

] is the boundary of λux,r, and
λky,r = [λky,r − 1

My,r
, λky,r + 1

My,r
] is the boundary of λky,r.

6.5.2.2 BB-Stage Design and UAV Deployment

After designing the transmit and receive RF beamformers for BS, UAV and gateway, the
effective channel matrices for first and second link as seen from the BB-stages are given as:

H1 = Fu,rH1F1 (6.59)
H2 = F2H2Fu,t (6.60)

By using SVD of effective channel matrix as Hi = UiΣiVH
i , where Ui ∈ CNRF,R×rank(Hi) and

Vi ∈ CNRF,T ×rank(Hi) are tall unitary matrices and Σi is the diagonal matrix with singular
values in the decreasing order. Here, NRF ,T = {NRF,1, NRF,u} and NRF ,R = {NRF,2, NRF,u}
represents the transmit and receive RF chains, respectively. Assuming rank(Hi) ≥ NS, Vi
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can be partitioned as Vi = [Vi,1,Vi,2] with Vi,1 ∈ CNRF,T ×NS . Then, the optimal B1 and
Bu,r in first link can be obtained as [165]:

B1 =
√
PT
NS

V1, Bu,r = UH
1 . (6.61)

Similarly, the optimal B2 and Bu,t in second link can be obtained as:

Bu,t = UH
2 , B2 =

√
PT
NS

V2. (6.62)

The design of RF and BB stages reduces the optimization problem given in (6.50) by
satisfying the constraints C1 −C3. Then, the optimization problem can be reformulated as:

max
τh,1

1
2 min

(
R1,R2)

s.t. C4 : τh,min ≤ τh,1 ≤ τh,max.

(6.63)

This resulting problem in (6.63) is still NP hard as the UAV location affects the channel
state information, which, in turn, affects the beamforming design of the RF and BB stages.
Therefore, the problem is combinatorial and involves a large search space, making it difficult
to find the optimal solution within a reasonable time frame. Hence, we propose a PSO-based
algorithmic solution for jointly optimizing UAV location and sequentially updating both RF
and BB stages for BS, UAV, and gateway. The algorithm starts with a swarm of Z particles,
each with its own position, velocity, and fitness value, which are randomly placed in search
space. Let τ (t)

i and W
(t)
i be the position and velocity of ith particle during tth iteration,

respectively. Then, during the iterations, both τ
(t)
i and W

(t)
i of ith particle are updated as

follows:

W
(t+1)
i = ωW

(t)
i + µ1z1(τ (t)

best − τ
(t)
i ) + µ2z2(τ (t)

best,i − τ
(t)
i ), (6.64)

τ
(t+1)
i = τ

(t)
i +W

(t+1)
i , (6.65)

where ω, µ1, µ2 are tuning parameters and z1 and z2 are random numbers between 0 and
1. Each ith particle represents the candidate position of UAV and it iteratively updates its
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Algorithm 6.3 Proposed Joint HBF and UAV Positioning and HBF Algorithm
1: Input: Zp, T , (θ, ϕ), (x1, y1, z1), (x2, y2, z2), (xu, yu, zu).
2: Output: τh,1, F1, B1, Fu,t, Bu,t, Fu,r, Bu,r, F2, B2.
3: Formulate transmit RF beamformers using (6.54), (6.55).
4: Formulate receive RF beamformers using (6.56), (6.57).
5: Using (6.59), (6.60), form the unitary matrices Ui and Vi.
6: Construct BB stages via (6.61), (6.62).
7: for i = 1 : Zp do
8: Initialize the velocity as W (0)

i = 0.
9: Each entry of τ (0)

i is uniformly distributed in [0, 1].
10: Set the personal best τ (0)

best,i = τ
(0)
i .

11: end for
12: Find the global best τ (0)

best as in (6.67).
13: for t = 1 : T do
14: for i = 1 : Zp do
15: Update the velocity W (t)

i as in (6.64).
16: Update the position τ

(t)
i as in (6.65).

17: Find the personal best τ (t)
best,i as in (6.66).

18: end for
19: Find the global best τ (t)

best as in (6.67).
20: end for
21: Update B1,B2,Bu,t,Bu,r for τh,1 using steps 1-4.

personal best and global best solution during a total of T iterations as:

τ
(t)
best,i = arg max

τ
(t∗)
i ,∀t∗=0,1,··· ,t

1
2 min

(
R1(τ (t∗)

i ),R2(τ (t∗)
i )

)
, (6.66)

τ
(t)
best = arg max

τ
(t∗)
best,i

,∀i=0,1,··· ,Zp

1
2 min

(
R1(τ (t)

best,i),R2(τ (t)
best,i)

)
. (6.67)

After T iterations, we assign τh,1 = τ
(T )
h,1,best. Algorithm 6.3 summarizes the proposed joint

HBF and UAV relay deployment scheme. The developed algorithm is applicable to both
fixed and movable nodes.
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6.6 Joint HBF and UAV Deployment in MU-mMIMO
Systems: Decode-and-Forward (DF) Relaying

In this section, we consider a UAV-assisted MU-mMIMO systems, where a DF relay in the
form of a UAV facilitates the transmission of multiple data streams from BS to multiple IoT
users. A joint optimization problem of HBF, UAV relay positioning, and power allocation
(PA) to multiple IoT users to maximize the total achievable rate (AR) is investigated. The
study adopts a geometry-based mmWave channel model for both links and proposes three
different swarm intelligence-based algorithmic solutions to optimize: 1) UAV location with
equal PA; 2) PA with fixed UAV location; and 3) joint PA with UAV deployment. The
radio frequency (RF) stages are designed to reduce the number of RF chains based on the
slow time-varying angular information, while the BB stages are designed using the reduced-
dimension effective channel matrices. Then, a novel DL-based low-complexity joint hybrid
beamforming, UAV location and power allocation optimization scheme (J-HBF-DLLPA) is
proposed via fully-connected DNN, consisting of an offline training phase, and an online
prediction of UAV location and optimal power values for maximizing the AR.

6.6.1 System Model

The present study delves into a challenging scenario where multiple IoT devices are
connected to an IoT gateway through either wired or wireless links. This setup is situated
in a remote area that is difficult to access directly by BS/eNodeB due to various obstacles
such as buildings, mountains, etc. Then, a UAV is introduced as a dual-hop DF relay to
access the IoT users, as depicted in Fig. 6.8. We assume that there is no direct link between
BS and IoT devices due to severe blockage. In contrast to traditional static relaying, which
relies on fixed relay locations, we investigate the potential of using UAVs as DF relays for
future mMIMO-enabled IoT systems where direct link communication between BS and IoT
node ends is not feasible. It is important to note that the algorithms proposed in Sections III
and IV are not only limited to fixed/static node locations but can be applicable to movable
nodes (i.e., dynamic environment). Let (xb, yb, zb), (xu, yu, zu) and (xk, yk, zk) denote the
locations of BS, UAV relay and kth IoT node, respectively. We define the 3D distances for a
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Figure 6.8. Network model of UAV-assisted relaying in MU-mMIMO IoT systems.

UAV-assisted mmWave MU-mMIMO IoT system as follows:

τ1 =
√

(xu − xb)2 + (yu − yb)2 + (zu − zb)2

τ2,k =
√

(xu − xk)2 + (yu − yk)2 + (zu − zk)2

τk =
√

(xb − xk)2 + (yb − yk)2 + (zb − zk)2

(6.68)

where τ1, τ2,k and τk are the 3D distance between UAV & BS, between UAV and kth IoT
node, and between BS and kth IoT node, respectively.

In the system model shown in Fig. 6.9, we consider BS equipped with NT antennas, UAV
relay with Nr antennas for receiving and Nt antennas to serve K single-antenna IoT nodes
clustered in G groups, where gth group has Kg IoT nodes such that K = ∑G

g=1 Kg. For the
downlink transmission of NS = K data streams, we consider HBF for BS and UAV, where BS
consists of a RF beamforming stage Fb ∈ CNT ×NRF b and BB stage Bb ∈ CNRF b

×K . Here, NRF b

is the RF chains such that NS ≤ NRF b
≤ NT to guarantee multi-stream transmission. We

consider half-duplex (HD) DF relaying, whereas the use of full-duplex (FD) UAV relaying
is left as our future work. During the first time slot, K data streams are transmitted
through channel H1 ∈ CNr×NT . Using Nr antennas, UAV receives signals with RF stage
Fu,r ∈ CNRF u ×Nr and BB stage Bu,r ∈ CK×NRF u . We assume UAV transmits the data in
the second time slot using RF beamformer Fu,t =

[
fu,t,1, · · · , fu,t,NRF u

]
∈ CNt×NRF u , BB

stage Bu,t = [bu,t,1, · · · ,bu,t,K ] ∈ CNRF u ×K , and MU PA matrix P = diag(√p1, . . . ,
√
pK) ∈

CK×K through channel H2 ∈ CK×Nt , where pk reflects the allocated power to kth user. The
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Figure 6.9. System model of UAV-assisted DF relaying in MU-mMIMO IoT networks.

implementation of all RF beamforming/combining stages involves the use of PSs and thus,
impose a CM constraint, i.e., |Fb(i, j)| = 1√

NT
, |Fu,r(i, j)| = 1√

Nr
, |Fu,t(i, j)| = 1√

Nt
∀i, j. The

design of HBF greatly reduces the number of RF chains, for instance, from NT RF chains to
NRF b

for BS, from Nt(Nr) RF chains to NRFu for UAV whilst satisfying: 1) K ≤ NRF b
≪ NT ;

and 2) K ≤ NRFu ≪ Nr(Nt). For the data signal d = [d1, d2, . . . , dK ]T with E{ddH} = IK
∈ CK×K , the signal transmitted by BS is given as follows:

s1 = FbBbd. (6.69)

Let PT be the total transmit power of BS. The design of Fb and Bb satisfies the power
constraint ∥FbBb∥2

F = PT . Then, the received signal at UAV is:

y1 = H1s1 + n1,

= H1FbBbd + n1,
(6.70)

where n1 ∈ CNr denotes the zero-mean complex circularly symmetric Gaussian noise vector at
UAV relay with covariance matrix E{n1nH1 } = σ2

nINr ∈ CNr×Nr . Subsequently, the received
signal after baseband processing at UAV relay is written as follows:

ỹ1 = Bu,rFu,rH1FbBbd + Bu,rFu,rn1. (6.71)

UAV as DF relay uses ỹ1 to decode the information and re-encodes it for transmission in
second time slot. Then, the signal transmitted by UAV is:

s2 = Fu,tBu,tPd̂, (6.72)
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where d̂ is the re-encoded signal at UAV relay. After transmitting via channel H2, the
received signal at kth IoT node in gth group can be written as:

ygk
= hT2,gk

s2 + n2,gk
= hT2,gk

Fu,tBu,tPd̂ + ngk
,

= √pgk
hT2,gk

Fu,tbu,t,gk
d̂gk︸ ︷︷ ︸

Desired Signal

+
Kg∑
k̂ ̸=k

√
pgk̂

hT2,gk
Fu,tbu,t,gk̂

d̂gk̂︸ ︷︷ ︸
Intra-group interference

+
G∑
q ̸=g

Kg∑
k̂=1

√
pqk̂

hT2,gk
Fu,tbu,t,qk̂

d̂qk̂︸ ︷︷ ︸
Inter-group interference

+ ngk︸︷︷︸
Noise

,

(6.73)

where gk = k +∑g−1
g′=1 Kg′ is the IoT node index, h2,gk

∈ CNt is the channel vector between
UAV and corresponding IoT node, and ngk

denotes the complex circular symmetric Gaussian
noise distributed as CN (0, σ2). Then, the achievable rate of first link (between BS and UAV)
is:

R1 (Fb,Bb,Fu,r,Bu,r) = log2

∣∣∣IK + Q−1
1 Bu,rH1BbBH

b HH
1 BH

u,r

∣∣∣ , (6.74)

where Q−1
1 = (σ2

nBu,rFu,r)−1FH
u,rBH

u,r and H1 = Fu,rH1Fb. Similarly, the total AR for the
second link (between UAV and multiple IoT nodes) is based on the instantaneous SINR,
which is given as:

SINRgk
=

pgk
|hH2,kFu,tbu,t,gk

|2∑Kg

k̂ ̸=k pgk̂
|hH2,kFu,tbu,t,gk̂

|2 +∑G
q ̸=g

∑Kg

k̂ ̸=k pqk̂
|hH2,kFu,tbu,t,qk̂

|2 + σ2
. (6.75)

By using the instantaneous SINR, the ergodic sum-rate capacity of the second link R2 for
the UAV-assisted mmWave MU-mMIMO IoT systems can be written as:

R2 (Fu,t,Bu,t,P, xu, yu) = E
{

G∑
g=1

Kg∑
k=1

E[log2(1 + SINRgk
)]
}
. (6.76)

6.6.2 Problem Formulation

Considering the UAV is positioned at a fixed height zu, and operates as DF relay, the
total AR can be maximized by the joint optimization of the beamforming stages Fb, Bb, Fu,t,
Fu,r, Bu,t and Bu,r with optimal PA matrix P and UAV positioning xo = [xo, yo]T ∈ R2.
Here, xo represents the 2-D UAV deployment in a given flying span. Then, we can formulate
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the optimization problem as follows:

max
{Fb,Bb,Fu,t,Bu,t,Fu,r,Bu,r,P,xo}

RT

s.t. C1 : |Fu,t(i, j)| =
1√
Nt

, |Fu,r(i, j)| =
1√
Nr

, ∀i, j,

C2 : |Fb(i, j)| =
1√
NT

, ∀i, j,

C3 : E{∥s1∥2
2} ≤ PT ,

C4 : E{∥s2∥2
2} =

∑K

k=1 pkb
H
u,t,kFH

u,tFu,tbu,t,k ≤ PT ,

C5 : pk ≥ 0, ∀k,
C6 : xmin ≤ xo ≤ xmax,

(6.77)

where RT = 1
2 min(R1,R2) is the total transmission rate from BS to multiple IoT devices

under DF protocol, C1 and C2 refers to the CM constraint due to the use of PSs for UAV
and BS, respectively, C3 and C4 represents the transmit power constraint for BS and UAV,
respectively, C5 is the non-negative allocated power to each IoT node, and C6 implies UAV
deployment within the given flying span. Here, [xmin,xmax] = [(xmin, ymin), (xmax, ymax)]
represents the UAV deployment range in 2-D space. The optimization problem defined in
(6.77) is non-convex and intractable due to the following reason: 1) the CM constraint at
each RF stage; and 2) fractional programming variables are entangled with each other. To
solve this challenging problem, we propose three different PSO-based algorithmic solutions
in Section 6.6.3, which can achieve a near-optimal solution in finding optimal PA P and UAV
deployment xo. Then, in Section IV, we introduce a novel low-complexity DL-based solution,
which can reduce the runtime while providing similar performance to proposed PSO-based
solutions.

6.6.3 Joint HBF, PA and UAV Location Optimization

In this section, our objectives are to reduce the CSI overhead and the number of RF
chains, while mitigating the inter-user interference to maximize the total achievable rate of
a dual-hop UAV-assisted MU-mMIMO IoT systems. In this regard, we consider the joint
optimization of the UAV location, PA to multiple IoT users, and HBF design for BS and
UAV. Since the optimization problem is intractable, we first design
Fb,Bb,Fu,t,Fu,r,Bu,t,Bu,r based on some fixed UAV location, and then re-formulate RF
and BB stages for the optimal UAV location as well as adjusting the allocated power in the
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MU PA block P by using three different algorithmic schemes: 1) optimal PA for fixed UAV
location; 2) UAV location optimization for equal PA; and 3) joint UAV location
optimization and optimal PA.

6.6.3.1 RF-Beamformer Design

The design of RF stages Fb,Fu,r,Fu,t intends to maximize the beamforming gain for the
desired signals expressed in (6.71) and (6.73). We design the RF stages Fb,Fu,r,Fu,t based
on the slow time-varying AoD and AoA. By using (6.1), the effective channel for first link
can be written as follows:

H1 = Fu,rH1Fb = Fu,rA
(r)
1 Z1A

(t)
1 Fb (6.78)

To maximize the transmit (receive) beamforming gain and exploit all degrees of freedom
(DoF) provided by the first channel, the columns of Fb(Fu,r) should belong to the subspace
spanned by A(t)

1 (A(r)
1 ). Thus, we should satisfy Span (Fb) ⊂ Span(A(t)

1 ) and Span (Fu,r) ⊂
Span(A(r)

1 ). Here, it is worthwhile to mention that the transmit (receive) phase response
matrix A(t)

1 (A(r)
1 ) is a function of slow time-varying AoD(AOA) information. Thus, the AoD

and AoA supports for first channel are defined as follows:

AoD =
{
sin(θ)[cos(ϕ), sin(ϕ)]

∣∣∣θ ∈ θ(t)
1 , ϕ ∈ ϕ(t)

1

}
, (6.79)

AoA =
{
sin(θ)[cos(ϕ), sin(ϕ)]

∣∣∣θ ∈ θ(r)
1 , ϕ ∈ ϕ(r)

1

}
, (6.80)

where θ(t)
1 = ∪Cc=1[θ

(t)
1,c − δ

(t)θ
1,c , θ

(t)
1,c + δ

(t)θ
1,c ] and ϕ(t)

1 = ∪Cc=1[ϕ
(t)
1,c − δ

(t)ϕ
1,c , ϕ

(t)
1,c + δ

(t)ϕ
1,c ] denote

the azimuth and elevation AOD supports of first channel, respectively. Similarly, θ(r)
1 =

∪Cc=1

[
θ

(r)
1,c − δ

(r)θ
1,c , θ

(r)
1,c + δ

(r)θ
1,c

]
and ϕ(r)

1 = ∪Cc=1

[
ϕ

(r)
1,c − δ

(r)ϕ
1,c , ϕ

(r)
1,c + δ

(r)ϕ
1,c

]
represent the azimuth

and elevation AoA supports of the channel between BS and UAV, respectively. Then, the
transmit RF beamformer Fb is constructed via transmit steering vector as follows:

e(t)
b (θ, ϕ) = 1√

Nx,T

[
1, ej2πdsin(θ) cos(ϕ), · · · , ej2πd(Nx,T −1)sin(θ) cos(ϕ)

]T
⊗

1√
Ny,T

[
1, ej2πdsin(θ) sin(ϕ), · · · , ej2πd(Ny,T −1)sin(θ) sin(ϕ)

]T
. (6.81)

To reduce the RF chains utilization while covering the complete AoD and AoA supports,
we define the quantized angle-pairs as: λ

n(t)
x,b = −1 + 2n−1

Nx,T
for n = 1, · · · , Nx,T and

λ
k(t)
y,b = −1 + 2k−1

Ny,T
for k = 1, · · · , Ny,T . Here, Nx,T and Ny,T are the antenna elements along
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x and y axis, respectively. Then, the quantized angle-pairs inside the AoD support
satisfying (6.79) are obtained as:

(λn(t)
x,b , λ

k(t)
y,b )

∣∣∣ sin(θ) cos(ϕ) ∈ λn(t)
x,b , sin(θ) sin(ϕ) ∈ λk(t)

y,b , (6.82)

where λ
n(t)
x,b =

[
λ
n(t)
x,b − 1

Nx,T
, λ

n(t)
x,b + 1

Ny,T

]
is the boundary of λ

n(t)
x,b , and

λ
k(t)
y,b =

[
λ
k(t)
y,b − 1

Ny,T
, λ

k(t)
y,b + 1

Ny,T

]
is the boundary of λk(t)

y,b . By using (6.79) and (6.82), Fb

can be written in the form of transmit steering vector as:

Fb =
[
e(t)
b

(
λ
n1(t)
x,b , λ

k1(t)
y,b

)
, · · · , e(t)

b

(
λ
nNRF b

(t)
x,b , λ

kNRF b
(t)

y,b

)]
∈ CNT ×NRF b . (6.83)

Following similar approach, we can design the UAV receive RF stage via receive steering
vector as follows:

e(r)
u (θ, ϕ) = 1√

Nx,r

[1, e−j2πdsin(θ) cos(ϕ), · · · , e−j2πd(Nx,r−1)sin(θ) cos(ϕ)]T⊗

1√
Ny,r

[1, e−j2πdsin(θ) sin(ϕ), · · · , e−j2πd(Ny,r−1)sin(θ) sin(ϕ)]T . (6.84)

Using quantized angle-pairs as λn(r)
x,u = −1 + 2n−1

Nx,r
for n = 1, · · · , Nx,r and λk(r)

y,u = −1 + 2k−1
Ny,r

for k = 1, · · · , Ny,r, the UAV receive RF stage can be formulated as:

Fu,r =
[
e(r)
u

(
λn1(r)
x,u , λk1(r)

y,u

)
, · · · , e(r)

u

(
λ
nNRF u

(r)
x,u , λ

kNRF u
(r)

y,u

)]T
∈ CNRF u ×Nr , (6.85)

where the quantized angle-pairs to provide AoA support while satisfying (7.15) are obtained
as:

(λn(r)
x,u , λ

k(r)
y,u )

∣∣∣ sin(θ) cos(ϕ) ∈ λn(r)
x,u , sin(θ) sin(ϕ) ∈ λk(r)

y,u , (6.86)

where λn(r)
x,u =

[
λn(r)
x,u − 1

Nx,r
, λn(r)

x,u + 1
Nx,r

]
is the boundary of λn(r)

x,u , and
λk(r)
y,u =

[
λk(r)
y,u − 1

Ny,r
, λk(r)

y,u + 1
Ny,r

]
is the boundary of λk(r)

y,u . After the design of Fb,Fu,r RF
stages, the UAV transmit RF stage is designed to support K IoT users, which are clustered
into G groups based on their AoD information. Here, each group g contains Kg number of
IoT users such that K = ∑G

g=1 Kg. The index gk = ∑g−1
g′=1 Kg′ + k is used to denote the kth

IoT user in group g. According to the user groups, we design G different sub-blocks for the
UAV transmit RF stage as Fu,t = [Fu,t,1,Fu,t,2, · · · ,Fu,t,G] ∈ CNt×NRF u , where
Fu,t,g ∈ CNt×NRF u,g denotes the RF beamfomer for group g such that NRFu = ∑G

g=1 NRFu,g .
Then, H2 = H2Fu,t ∈ CK×NRF u is the reduced-size effective channel matrix seen from UAV
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transmit baseband stage Bu,t. By defining H2 =
[
HT

2,1, · · · ,HT
2,G

]T
∈ CK×Nt , the effective

channel matrix for second link can be expressed as:

H2 =


H2,1Fu,t,1 H2,1Fu,t,2 . . . H2,1Fu,t,G

H2,2Fu,t,1 H2,2Fu,t,2 . . . H2,2Fu,t,G

... ... . . . ...
H2,GFu,t,1 H2,GFu,t,2 . . . H2,GFu,t,G

 , (6.87)

where the diagonal block-matrix H2,g = H2,gFu,t,g = Z2,gA2,gFu,t is the effective channel
matrix for group g and the off-diagonal block-matrix H2,ĝ = H2,gFu,t,g = Z2,ĝA2,ĝFu,t is the
effective interference channel matrix between groups g and ĝ,∀ĝ ̸= g. The RF beamformer
matrices are designed to eliminate inter-group interference as:

A2,ĝFu,t,g ≈ 0, ∀ĝ ̸= g and ĝ, g = 1, · · · , G. (6.88)

To design Fu,t, which can satisfy the above zero condition, the columns of Fu,t,g should
belong to the intersection of the null spaces of A2,ĝ, i.e., Span (Fu,t,g) ⊂ ∩ĝ ̸=g Null (A2,ĝ).
Moreover, in order to maximize the beamforming gain, the columns of Fu,t,g should belong
to the subspace spanned by A2,g, i.e., Span (Fu,t,g) ⊂ Span (A2,g). Thus, the intersection
of Span (A2,g) and Null (A2,ĝ) ,∀ĝ ̸= g, should not be empty to obtain the RF beamformer
matrix satisfying the above conditions. Similar to the design Fb, the AoD support of the
group g can be expressed as the union of AoD supports for all IoT user in the corresponding
group as:

AoDg =
{
sin(θ)[cos(ϕ), sin(ϕ)]

∣∣∣θ ∈ θ2,g, ϕ ∈ ϕ2.g
}
, (6.89)

where θ2,g =
[
θmin

2,g , θ
max
2,g

]
=
[
min2,gk,ĝ θ2,gk,ĝ,max2,gk,ĝ θ2,gk,ĝ

]
is the elevation angle support

for group g and ϕ2.g =
[
ϕmin

2,g , ϕ
max
2,g

]
=
[
min2,gk,ĝ ϕ2,gk,ĝ,max2,gk,ĝ ϕ2,gk,ĝ

]
is the azimuth angle

support for group g. To achieve Span (Fu,t,g) ⊂ Span (A2,g), the columns of the UAV
transmit RF beamformer for the group g can be constructed as:

Fu,t,g = {e(t)
u (φ, ϑ)

∣∣∣ (φ, ϑ) ∈ AoDg}, (6.90)

where φ = sin θ cosϕ and ϑ = sin θ sinϕ represent the beam directions for the UAV transmit
steering vector for uniform rectangular array (URA), which is defined as follows:

e(t)
u (φ, ϑ) = e(t)

x,u(φ)⊗ e(t)
y,u(ϑ). (6.91)
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Then, we can construct the UAV transmit RF beamformer for each group g based on the
quantized angle-pairs as:

Fu,t,g =
[
e(t)
u (λn1(t)

x,u , λk1(t)
y,u ), · · · ,

· · · , e(t)
u (λ

nNRF u,g
(t)

x,u , λ
kNRF u,g

(t)
y,u )

]
∈ CNt×NRF u,g ,

(6.92)

where λni(t)
x,u =

[
λni(t)
x,u − 1

Nx,t
, λni(t)

x,u + 1
Nx,t

]
is the boundary of λni(t)

x,u , and
λki(t)
y,u =

[
λki(t)
y,u − 1

Ny,t
, λki(t)

y,u + 1
Ny,t

]
is the boundary of λki(t)

y,u . The BS and UAV RF-stage
designs do not require the fast time-varying instantaneous CSI and it is only based on the
slow time-varying AoD/AoA information. Particularly, the design of BS and UAV RF
beamformers require only four angular parameters, which are the mean of elevation and
azimuth AoD (AoA) and their angular spread.

6.6.3.2 BB-Stage Design

After designing the RF beamforming stages, we design the BB stages Bb and B(m)
u,r

based on the effective channel matrix H1 (as given in (6.78)). By using singular value
decomposition (SVD), we can write:

H1 = U1Σ1VH
1 , (6.93)

where U1 ∈ CNRF u ×rank(H1) and V1 ∈ CNRF b
×rank(H1) are tall unitary matrices and Σ1 is

the diagonal matrix with singular values in the decreasing order such that
Σ1 = diag(σ2

1, · · · , σ2
rank(H1)) ∈ Crank(H1)×rank(H1). Assuming rank(H1) ≥ K, V1 can be

partitioned as V1 = [V1,1,V1,2] with V1,1 ∈ CNRF b
×K . Then, the BB stages Bb and Bu,r for

BS and UAV can be obtained as follows [165]:

Bb =
√
PT
K

V1 ∈ CNRF b
×K , (6.94)

Bu,r = UH
1 ∈ CK×NRF u . (6.95)

Similarly, the reduced-size effective CSI H2 given in (6.87) is employed for the UAV transmit
BB stage design. We consider joint-group-processing (JGP) technique as designed in [90,
98,166]. The design of BB stage Bu,t not only reduces the intra-group interference but also
mitigate the residual inter-group interference remaining after RF beamformer design. By
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applying the RZF technique, Bu,t is defined as follows:

Bu,t = (HH
2 H2 + βNRFuINRF u

)−1HH
2 ∈ CNRF u ×K , (6.96)

where β = σ2

PT
is the regularization parameter and INRF u

∈ CNRF u ×NRF u . The power
constraint (i.e., C4 in (6.77)) will be adjusted by designing multi-user PA block P in
Section 6.6.3.3.

6.6.3.3 UAV Deployment and Multi-User Power Allocation

After the formulation of RF beamformers Fb, Fu,r, Fu,t and BB stages Bb, Bu,t, Bu,r,
the optimization problem for maximum achievable rate can be formulated as follows:

max
{P,xo}

RT (Fb,Bb,Fu,t,Bu,t,Fu,r,Bu,r,P,xu)

s.t. C4 : E{∥s2∥2
2} =

∑K

k=1 pkb
H
u,t,kFH

u,tFu,tbu,t,k ≤ PT ,

C5 : pk ≥ 0, ∀k,
C6 : xmin ≤ xo ≤ xmax,

(6.97)

where RT is defined in (6.77). Even though the CM constraints for the RF beamformers and
transmit power constraint for BS (i.e., C1, C2 and C3 given in (6.77)) are satisfied via the RF
and BB stages developed in Section 6.6.3.1 and 6.6.3.2, the updated optimization problem
in (6.97) is still non-convex due to the joint dependence of both the allocated powers pk,
and the UAV location xo = [xo, yo]T on the SINR expression in (6.75), which is used in the
sum-rate R2 calculation as given in (6.76). To overcome this challenge, we propose different
PSO-based algorithmic solutions, which employ multiple agents, called particles, to explore
the search space of objective function given in (6.97). Initially, Zp particles are randomly
placed in search space, where each particle communicates with other particles to share their
personal best solution and update the current global best solution for the objective function.
The particles then move iteratively for T iterations to reach the global optimum solution.
Our PSO-based algorithms rely on two components, deterministic and stochastic, to guide
the motion of the particles. The deterministic component utilizes knowledge from global
and personal best solutions, while the stochastic component involves random movements.
The proposed PSO-based algorithmic schemes are as follows: 1) optimal PA for fixed UAV
location; 2) UAV positioning for equal PA; and 3) joint UAV positioning and optimal PA.



6. UAV-Assisted Terrestrial Massive MIMO Systems for Enhanced Coverage
and Capacity 165

6.6.3.3.1 Optimal PA for Fixed UAV Location In this problem, we allocate optimal
MU power values P for a fixed UAV location xu. Then, the ith particle at the tth iteration
represents an instance of the PA matrix as follows:

P(t)
i = diag(

√
p

(t)
1,i, · · · ,

√
p

(t)
K,i) ∈ RK×K , (6.98)

where, i = 1, · · · , Zp and t = 0, 1, · · · , T are the particle index and iteration index,
respectively. The objective function RT (Fb,Bb,Fu,t,Bu,t,Fu,r,Bu,r,P(t)

i ,xu) is calculated
after evaluating the personal best and communicating for the global best solutions for each
ith particle. The particles move from P(t)

i to P(t+1)
i until the maximum number of iterations

is reached. To satisfy the transmit power constraints C4 and C5 given in (6.97), we define
the following:

κ
(t)
i =

√√√√√ PT

E
{ ∥∥∥Fu,tBu,tP̂(t)

i d̂
∥∥∥2

2

} (a)=
√√√√ PT∑K

k=1 p̂
(t)
k,ibHu,t,kbu,t,k

, (6.99)

where (a) follows the unitary property of UAV transmit beamformer (i.e., FH
u,tFu,t = INRF u

).
The normalized PA matrix is given as: P̂(t)

i = diag(
√
p̂

(t)
1,i, · · · ,

√
p̂

(t)
K,i) ∈ RK×K with p̂

(t)
k,i ∈

[0, 1]. Here, P(t)
i satisfies the transmit power constraints for any P̂(t)

i by defining P(t)
i =

κ
(t)
i P̂(t)

i . The PSO-based optimal PA solution is defined by two variables: the position
P̂(t)
i ∈ RK×K and velocity W(t)

i ∈ RK×K . Initially, the diagonal entries of P̂(0)
i are uniformly

distributed over the range [0, 1], while the velocity is set as W(0)
i = 0. During the iterations,

the velocity and position matrices of ith particle are updated as follows:

W(t+1)
i = γ1Y(t)

1 (P̂(t)
best − P̂(t)

i ) + γ2Y(t)
2 (P̂(t)

best,i − P̂(t)
i ) + γ

(t)
3 W(t)

i , (6.100)

P̂(t+1)
i = clip(P̂(t)

i + clip(W(t+1)
i , [wmin , wmax ]), [0, 1]), (6.101)

where γ1 and γ2 are the learning parameters for the global best P(t)
best and the personal best

P(t)
best,i, γ

(t)
3 = µ − t

T
(µu − µl) is the inertia parameters with the upper bound µu and lower

bound µl for decreasing the velocity as the number of iterations increases, Y(t)
1 and Y(t)

2

are the random diagonal matrices with the uniformly distributed entries over [0, 1], wmin and
wmax denote the minimum and maximum acceptable velocity for the particles, respectively.
Here, clip (x, [a, b]) = max(a,min(x, b)) is used to prevent exceeding the maximum/minimum
acceptable velocity and normalized power. Then, at tth iteration, the personal best of the
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Algorithm 6.4 Proposed Joint HBF and Optimal PA for Fixed UAV Location (J-HBF-
PSOPA-FL) Algorithm

1: Input: Z, T , (θ, ϕ), (x1, y1, z1), (xu, yu, zu).
2: Output: P, Fb, Bb, Fu,t, Bu,t, Fu,r, Bu,r.
3: Formulate BS RF and BB stages using (6.54), (6.94).
4: Formulate UAV receive HBF stages using (6.56), (6.95).
5: Construct UAV transmit HBF stages via (6.92), (6.96).
6: for i = 1 : Z do
7: Initialize the velocity as W(0)

i = 0.
8: Each entry of P̂(0)

i is uniformly distributed in [0, 1].
9: Set the personal best P̂(0)

best,i = P̂(0)
i .

10: end for
11: Find the global best P̂(0)

best as in (6.103).
12: for t = 1 : T do
13: for i = 1 : Z do
14: Update the velocity W(t)

i as in (6.100).
15: Update the position P̂(t)

i as in (6.101).
16: Find the personal best P̂(t)

best,i as in (6.102).
17: end for
18: Find the global best P̂(t)

best as in (6.103).
19: end for
20: P = κ

(T )
bestP̂

(T )
best

ith particle and the global best over Zp particles are respectively obtained as follows:

P̂(t)
best,i = arg max

P̂(t∗)
i ,∀t∗=0,1,··· ,t

RT (Fb,Bb,Fu,t,Bu,t,Fu,r,Bu,r, κ
(t∗)
i P̂(t∗)

i ,xu), (6.102)

P̂(t)
best = arg max

P̂(t)
best,i,∀i=0,1,··· ,Zp

RT (Fb,Bb,Fu,t,Bu,t,Fu,r,Bu,r, κ
(t)
best,iP̂

(t)
best,i,xu), (6.103)

Finally, the multi-user PA matrix can be derived as follows:

P = κ
(T )
bestP̂

(T )
best, (6.104)

where κ(t)
best can be calculated by substituting P̂(T )

best into (6.99). The summary of the proposed
PSO-based optimal PA for fixed UAV location with HBF is outlined in Algorithm 6.4.
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6.6.3.3.2 UAV Positioning for Equal PA In this problem, we optimize UAV location
xu = [xu, yu]T in a given deployment span for fixed MU PA matrix P, which is defined as:

P = εIK ∈ CK×K , (6.105)

where ε is the normalization factor used to satisfy the power constraints C4, C5, and can be
written as follows:

ε =
√√√√ PT

trE{d̂HH
2 THFH

u,tFu,tTH2}
, (6.106)

where T = (HH
2 H2 +αNRFuINRF u

)−1. Since the number of feasible UAV positions required
to search space is

(
xmax−xmin

∆x

)
×
(
ymax−ymin

∆y

)
, where ∆x and ∆y represents the search space

resolution, hence, we propose a PSO-based algorithmic solution to find optimal UAV position
while maximizing RT . Following a similar approach as in Section 6.6.3.3, the ith particle at
the tth iteration now represents an instance of the UAV location as:

X(t)
i = [x(t)

i , y
(t)
i ]T ∈ R2. (6.107)

Here, the corresponding particle i represents the candidate UAV position and calculates the
objective function as RT (Fb,Bb,Fu,t,Bu,t,Fu,r,Bu,r,P,X(t)

i ). Then, the position X(t)
i and

velocity V(t)
i are updated as follows:

X(t+1)
i = X(t)

i + V(t+1)
i , (6.108)

V(t+1)
i = γ1Y(t)

1 (X̂(t)
best − X̂(t)

i ) + γ2Y(t)
2 (X̂(t)

best,i − X̂(t)
i ) + γ

(t)
3 V(t)

i (6.109)

Then, the personal and global best solutions for ith particle during tth iteration are obtained
as follows:

X(t)
best,i = arg max

X(t∗)
i ,∀t∗=0,1,··· ,t

RT (Fb,Bb,Fu,t,Bu,t,Fu,r,Bu,r,P,X(t∗)
i ), (6.110)

X(t)
best = arg max

X(t)
best,i,∀i=0,1,··· ,Zp

RT (Fb,Bb,Fu,t,Bu,t,Fu,r,Bu,r,P,X(t)
best,i), (6.111)

After T iterations, we update xo = X(T )
best. The pseudo-code is given in Algorithm 6.5, which

summarizes the proposed PSO-based UAV positioning for equal PA with HBF.
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Algorithm 6.5 Proposed Joint HBF and UAV Deployment for Equal PA (J-HBF-PSOL-
EQPA) Algorithm

1: Input: Zp, T , (θ, ϕ), (x1, y1, z1), (xu, yu, zu).
2: Output: xo, P, Fb, Bb, Fu,t, Bu,t, Fu,r, Bu,r.
3: Formulate BS RF and BB stages using (6.54), (6.94).
4: Formulate UAV receive HBF stages using (6.56), (6.95).
5: Construct UAV transmit HBF stages via (6.92), (6.96).
6: for i = 1 : Zp do
7: Initialize the velocity as V(0)

i = 0.
8: Each entry of X(0)

i is uniformly distributed in [0, 1].
9: Set the personal best X(0)

best,i = X(0)
i .

10: end for
11: Find the global best X(0)

best as in (6.111).
12: for t = 1 : T do
13: for i = 1 : Zp do
14: Update the velocity V(t)

i as in (6.109).
15: Update the position X(t)

i as in (6.108).
16: Find the personal best X(t)

best,i as in (6.110).
17: end for
18: Find the global best X(t)

best as in (6.111).
19: end for
20: xo = X(T )

best
21: Update Bb, Bu,t, Bu,r for xo.

6.6.3.3.3 Joint UAV Positioning and Optimal PA In this problem, we jointly
optimize UAV location xu = [xu, yu]T and P, which are given by (6.98) and (6.107),
respectively. To solve this non-convex optimization problem, we propose a PSO-based
algorithmic solution to optimize xu and P whilst maximizing the total achievable rate RT .
Here, the ith particle at the tth iteration now represents an instance of the UAV location
and multi-user PA matrix, which is given as follows:

J(t)
p,i = [X(t)

i , P̂
(t)
i ]T = [x(t)

i , y
(t)
i ,

√
p̂

(t)
1,i, · · · ,

√
p̂

(t)
K,i]T ∈ RK+2, (6.112)

where each particle i represents the candidate UAV position and PA to K IoT users, and
calculates the objective function as RT (Fb,Bb,Fu,t,Bu,t,Fu,r,Bu,r, κ

(t)
i P̂(t)

i ,X
(t)
i ). Here,

P̂(t)
i = diag(

√
p̂

(t)
1,i, · · · ,

√
p̂

(t)
K,i) ∈ RK×K is the normalized PA matrix with p̂

(t)
k,i ∈ [0, 1] and

similar to Section III-C1, the transmit power constraints for any P̂(t)
i are satisfied by

defining P(t)
i = κ

(t)
i P̂(t)

i . Then, the position J(t)
p,i and velocity J(t)

v,i for ith particle during tth
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Algorithm 6.6 Proposed Joint HBF, UAV Location Optimization and PA (J-HBF-
PSOLPA) Algorithm

1: Input: Z, T , (θ, ϕ), (x1, y1, z1), (xu, yu, zu).
2: Output: xo, P, Fb, Bb, Fu,t, Bu,t, Fu,r, Bu,r.
3: Formulate BS RF and BB stages using (6.54), (6.94).
4: Formulate UAV receive HBF stages using (6.56), (6.95).
5: Construct UAV transmit HBF stages via (6.92), (6.96).
6: for i = 1 : Z do
7: Initialize the velocity as J(0)

v,i = 0.
8: Each entry of J(0)

p,i is uniformly distributed in [0, 1].
9: Set the personal best J(0)

p,best,i = J(0)
p,i .

10: end for
11: Find the global best J(0)

p,best as in (6.116).
12: for t = 1 : T do
13: for i = 1 : Z do
14: Update the velocity J(t)

v,i as in (6.114).
15: Update the position J(t)

p,i as in (6.113).
16: Find the personal best J(t)

p,best,i as in (6.115).
17: end for
18: Find the global best J(t)

p,best as in (6.116).
19: end for
20: xo = J(T )

p,best, P = κ
(T )
bestP̂

(T )
best

21: Update Bb, Bu,t, Bu,r for xo.
iteration are updated as follows:

J(t+1)
p,i = J(t)

p,i + J(t+1)
v,i , (6.113)

J(t+1)
v,i = γ1Y(t)

1 (J(t)
p,best − J(t)

p,i) + γ2Y(t)
2 (J(t)

p,best,i − J(t)
p,i) + γ

(t)
3 J(t)

v,i, (6.114)

Finally, the personal and global best solutions for ith particle during tth iteration are obtained
as follows:

J(t)
p,best,i = arg max

J(t∗)
p,i ,∀t∗=0,1,··· ,t

RT (Fb,Bb,Fu,t,Bu,t,Fu,r,Bu,r, κ
(t∗)
i P̂(t∗)

i ,X(t∗)
i ), (6.115)

J(t)
p,best = arg max

J(t)
p,best,i,∀i=0,1,··· ,Zp

RT (Fb,Bb,Fu,t,Bu,t,Fu,r,Bu,r, κ
(t)
best,iP̂

(t)
best,i,X

(t)
i ), (6.116)

After T iterations, we update xo = X(T )
best and P = κ

(T )
bestP̂

(T )
best. Algorithm 6.6 gives the

pseudo-code of the proposed PSO-based joint UAV positioning and optimal PA with HBF.
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Figure 6.10. Block diagram of offline supervised learning and real-time prediction in
J-HBF-DLLPA algorithm.

6.6.3.4 Low-Complexity DL-Based Joint Power Allocation and UAV
Positioning

The proposed joint HBF, PA and UAV location schemes can achieve near-optimal
capacity for a UAV-assisted MU-mMIMO IoT systems. Additionally, compared to the
computationally expensive exhaustive search method, the proposed solutions offer higher
computational efficiency. However, as the number of IoT users increases, the proposed
PSO-based solutions require more iterations and longer run time, which may render them
impractical for real-time online applications of UAV-assisted MU-MIMO IoT systems. To
address this challenge, we propose a low-complexity DL-based algorithm, called
J-HBF-DLLPA, which can achieve a near-optimal AR while maintaining a reasonable run
time. The proposed algorithm has two phases, as illustrated in Fig. 6.10: 1) Phase 1
applies the offline supervised learning via the optimal allocated power and UAV location
values calculated by J-HBF-PSOLPA; and 2) Phase 2 runs the trained J-HBF-DLLPA
algorithm for predicting the allocated powers and UAV location in the real-time online
applications. Therefore, the remaining part of this section focuses on the deep neural
network (DNN) architecture, loss functions, dataset preparation, and training process for
the proposed low-complexity J-HBF-DLLPA algorithm.

6.6.3.4.1 Proposed Deep Neural Network Architecture We employ a
fully-connected DNN architecture with four hidden layers as depicted in Fig. 6.11, which
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aims to predict the optimal allocated powers for K IoT users as well as UAV optimal
location in a given deployment span. We consider Li neurons in each ith hidden layer (HL)
with i = 1, · · · , 4. As shown in Fig. 6.10, the proposed J-HBF-DLLPA algorithm uses the
effective channel matrix between UAV and K IoT users H2 ∈ CK×NRF u given in (6.4), and
the UAV transmit BB stage Bu,t ∈ CNRF u ×K given in (6.96) as inputs, which are first
subject to feature scaling and vectorization operations. Subsequently, the input layer
feature vector is derived as:

z0 =



ω1zh̃2,1...
ω1zh̃2,K

ω2zbu,t,1
...

ω2zbu,t,K

ω3zBBu,t

ω4zBB,inv,u,t



∈ RL0 , (6.117)

where L0 = (2Nt+2NRFu +2)K is the input feature size, zh̃2,k
= [Re(h̃T2,k), Im(h̃T2,k)]T ∈ R2Nt ,

zbu,t,k
= [Re(bTu,t,k), Im(bTu,t,k)]T ∈ R2NRF u , zBBT

u,t
= [bHu,t,1bu,t,1, · · · ,bHu,t,Kbu,t,K ]T ∈ RK and

xBB,inv,u,tT = [ 1
bH

u,t,1bu,t,1
, · · · , 1

bH
u,t,Kbu,t,K

]T ∈ RK are respectively the non-scaled input feature
vectors for the effective channel, UAV transmit BB stage, the gain of each BB precoder vector
and its inverse. By implementing the maximum absolute scaling [167], the corresponding
scaling coefficients are calculated as:

ω1 = max
(
|zTh̃2,1

|, · · · , |zTh̃2,K
|
)−1

(6.118)

ω2 = max
(
|zTb̃u,t,1

|, · · · , |zTb̃u,t,K
|
)−1

(6.119)

ω3 = max
(
bHu,t,1bHu,t,1, · · · ,bHu,t,KbHu,t,K

)−1
(6.120)

ω4 = max
(
bHu,t,1bHu,t,1, · · · ,bHu,t,KbHu,t,K

)
. (6.121)

The proposed algorithm utilizes the maximum absolute scaling technique to scale the input
feature vector between -1 and 1 (i.e., z0 ∈ (−1, 1]), which prevents certain features from
dominating the learning process. In the offline supervised learning process, the optimal
power allocation and UAV location values are calculated as the output labels via the
computationally expensive J-HBF-PSOLPA algorithm. Similar to the input features, we
also apply the maximum absolute scaling to the optimal allocated powers and UAV
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Figure 6.11. Deep neural network architecture for J-HBF-DLLPA algorithm.

location as follows:

x̄o = xo
max(xo, yo)

∈ [0, 1] (6.122)

ȳo = yo
max(xo, yo)

∈ [0, 1] (6.123)

p̄k = popt
k

max(popt
1 , · · · , popt

K )
∈ [0, 1]. (6.124)

To perform non-linear operations, we adopt the rectified linear unit (ReLU) as the activation
function in the hidden layers (i.e., fr(z) = max(0, z). Therefore, using the input feature
vector of z0 given in (6.117), the output of ith hidden layer is computed as zi = fr(Ui−1zi−1 +
bi−1) ∈ RLi , where Ui−1 ∈ RLi×Li−1 and bi−1 ∈ RLi are the weight matrix and bias vector,
respectively. To ensure that the predicted output values are between 0 and 1, we apply the
sigmoid function at the output layer (i.e., fσ(z) = 1

1+e−∞ ). Thus, the predicted power and
UAV location values via the DNN architecture are written as follows:

[p̂1, p̂2, · · · , p̂K , x̂o, ŷo] = fσ(U4z4 + b4)
= fσ(U4fr(U3fr(U2fr(U1fr(U0x0 + b0) + b1) + b2) + b3) + b4).

(6.125)
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6.6.3.4.2 Loss Functions We here consider two loss functions by using the predicted
and optimal power values: 1) mean square error (MSE); and 2) mean absolute error (MAE).
When there are Sr network realizations in the dataset, the MSE loss function is given by:

LMSE = 1
SrK

Sr∑
i=1

K∑
k=1

(p̄k,i − p̂k,i)2 + 1
Sr

Sr∑
i=1

(x̄o − x̂o)2 + 1
Sr

Sr∑
i=1

(ȳo − ŷo)2. (6.126)

Similarly, the MAE loss function is written as:

LMAE = 1
SrK

Sr∑
i=1

K∑
k=1
|p̄k,i − p̂k,i|+

1
Sr

Sr∑
i=1
|x̄o − x̂o|+

1
Sr

Sr∑
i=1
|ȳo − ŷo|. (6.127)

The weight matrices Ui and bias vectors bi of the DNN architecture are updated by back-
propagating the gradients of the loss function from the output layer to the input layer. This
helps in reducing the loss and accurately predicting the optimal allocated power and UAV
location values, and thus, maximizing the total AR as expressed in (6.97).

6.6.3.4.3 Data Generation & Training Process We generated a dataset of Sr =
100.000 = 105 network realizations to train the proposed DNN architecture, as shown in
Fig. 6.10. For each realization, we randomly varied the path gains, AoD parameters, and
UE location to generate the channel vector for each UE as given in (6.3). The corresponding
optimal allocated powers and UAV location are calculated via the J-HBF-PSOLPA algorithm
6.6 (Section 6.6.3.3.3) and stored in the dataset. The total available dataset was split into
80% for training and 20% for validation for the offline supervised learning process (i.e., Phase
1). After completing the offline supervised learning process, the online power allocation and
UAV location (i.e., Phase 2) is tested with a purely new test dataset. The DNN architecture
for the proposed J-HBF-DLLPA algorithm is implemented using the open-source DL libraries
in TensorFlow [168].

6.7 Illustrative Results

In this section, we present the Monte-Carlo simulation results based on the proposed
algorithmic solutions. Table 6.2 outlines the simulation setup based on the 3D micro-cell
scenario [90] for the results discussed hereafter. Moreover, for PSO-based results, we use
Zp = 20, γ1 = γ2 = 2 and γ3 = 1.1.
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Table 6.2. Simulation Parameters

Number of antennas (NT , Nt, Nr) = 144
Number of paths Path loss exponent L = 10 3.6

Frequency Channel Bandwidth 28 GHz 100 MHz
Noise PSD Reference Path Loss α −174 dBm/Hz 61.34 dB

BS/Gateway height UAV height 10 m 20 m
User groups # of users per group G = 1 or 2 Kg = K

G

UAV x-axis range UAV y-axis range [xmin, xmax] = [0, 100]m [ymin, ymax] = [0, 100]m
Mean AAoD/AAoA (1st link) Mean AAoD (2nd link) 120◦ ϕg = 21◦ + 120◦(g − 1)
Mean EAoD/EAoA (1st link) Mean EAoD (2nd link) 60◦ θg = 60◦

Azimuth/Elevation Angle Spread # of network realizations ±10◦ 2000
Minimum horizontal distance τh,min Maximum horizontal distance τh,min 0 100 [m]

6.7.1 Spectral Efficiency

In this section, we compare the spectral efficiency of the proposed PSO-based algorithmic
solutions for a UAV-assisted MU-mMIMO IoT systems. To achieve this, we first analyze the
rate of each link individually for a fixed UAV location and transmit power PT = 20 dBm.
Specifically, we consider that the BS is located at (xb, yb, zb) = (0, 0, 10), the UAV is deployed
at fixed location (xu, yu, zu) = (50, 50, 20) and the IoT users are randomly distributed and
located at a far distance from BS (xk, yk) ∈ [50, 100]. We then compare the optimal UAV
location for maximizing the capacity of the first link using two schemes: 1) exhaustive search;
and 2) the proposed PSO-based UAV deployment and equal PA (J-HBF-PSOL-EQPA) over
a given deployment span of [(xmin, ymin), (xmax, ymax)] = [0, 100]. The results show that the
optimal location for the UAV to maximize the capacity of the first link is close to the BS, as
demonstrated in Fig. 6.12(b). Furthermore, the proposed J-HBF-PSOL-EQPA can find the
global optimal solution for almost 95% of the realizations, as shown in 6.12(a). Fig. 6.13
plots the rate of first link R1 using J-HBF-PSOL-EQPA versus different 2-D UAV locations,
which shows similar performance to exhaustive search solution presented in Fig. 6.12(b).

Fig. 6.14 analyzes the total rate of second link R2 for exhaustive search and J-HBF-PSOL-
EQPA. Due to the randomness in the placement of the IoT users, finding a single optimal
UAV location that covers all IoT users while minimizing interference is a challenging task.
However, the proposed J-HBF-PSOL-EQPA can find optimal UAV placement close to global
solution as depicted in Fig. 6.14(a). Fig. 6.15 plots the AR of second link versus different
UAV 2-D locations for PT = 20 dBm, which shows that UAV placement by the proposed
J-HBF-PSOL-EQPA can give higher AR when compared to UAV deployed at some fixed
location. Fig. 6.16 compares the AR versus transmit power PT of the proposed HBF
solution for four cases: 1) PSO-based UAV location and PSO-based PA (J-HBF-PSOLPA);
2) PSO-based UAV location and equal PA (J-HBF-PSOL-EQPA); 3) fixed UAV location and
PSO-based PA (J-HBF-PSOPA-FL); and 4) fixed UAV location and equal PA (FL-EQPA).
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(a) (b)

Figure 6.12. Comparison of AR R1. (a) Number of realizations for best UAV location
using J-HBF-PSOL-EQPA. (b) Contour plot using exhaustive search.

Figure 6.13. Achievable rate R1 versus (x− y)-coordinates at PT = 40 dBm.

The results show that all proposed algorithmic schemes can increase the total capacity of a
UAV-assisted MU-mMIMO IoT systems when compared to the FL-EQPA case. Comparing
the single optimizations (i.e., PSO location-EQ PA and fixed location-PSO PA), we can
see that optimizing UAV location only can provide a higher AR than allocating optimal
power to multiple IoT users. However, in a highly dynamic environment, where the IoT
users are far located and randomly distributed, the joint optimization of UAV location and
power allocation can achieve higher spectral efficiency (i.e., RPSOL−PSOPA ≥ RPSOL−EQPA ≫
RFL−PSOPA). Moreover, compared to FL-EQPA case at PT = 40 dBm, the proposed J-HBF-
PSOPA-FL, J-HBF-PSOL-EQPA, and J-HBF-PSOLPA schemes can increase the total AR
by 77%, 155%, and 200%, respectively. We also compare the performance with the existing
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(a) (b)

Figure 6.14. Comparison of AR R2. (a) Number of realizations for best UAV location
using J-HBF-PSOL-EQPA. (b) Contour plot using exhaustive search.

Figure 6.15. Achievable rate R2 versus (x− y)-coordinates at PT = 40 dBm.

HBF solutions. For instance, compared to HBF schemes presented in [70,130], the proposed
J-HBF-PSOLPA can provide a higher AR. Similarly, compared to the iterative successive
approximation (ISA) algorithmic solution in [169], which requires full CSI, the proposed
J-HBF-PSOLPA can provide better performance with reduced CSI overhead size.

6.7.2 Buffer-Aided Transmission

Section 6.7.1 of this study presents a comparison of different proposed PSO-based
algorithms for conventional relaying in UAV-assisted wireless systems, i.e., UAV receives
the data transmitted by BS in first time slot, decode the data, and then forwards it to
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Figure 6.16. Total AR RT versus PT for different proposed algorithmic schemes.

multiple IoT users in the second time slot. This pre-scheduled approach may not perform
well in UAV-assisted wireless systems because the channel qualities (i.e., H1 and H2) can
vary significantly with time, preventing the UAV relay from exploiting the best
transmitting and receiving channels. In addition, unlike static relays, UAVs can fly close to
BS, store the data in a buffer, and then fly close to multiple IoT users. The results in
Section 6.7.1 are based on a fixed optimized location for the UAV relay, which can increase
the rate of one link but may degrade the rate for other link 2. To fully exploit the potential
of a mobile relay and to further maximize the capacity of a UAV-assisted MU-mMIMO IoT
systems, we propose a buffer-aided UAV relay that can store the data in a buffer while
transitioning from one optimal location for link 1 to an optimal location for link 2. By
considering two possible locations for UAV, we can maximize the SINR for each link,
leading to a higher total rate.

In Fig. 6.17, we compare AR versus transmit power for UAVs with buffer and without
buffer. For the buffer-aided UAV, we consider two scenarios for delay-unconstrained
applications. In FL-EQPA, we consider UAV is deployed at fixed location (xu, yu = 50, 50)
and multiple IoT users have equal PA. However, the UAV does not transmit in consecutive

2Since R2 is the minimum of (R1, R2), therefore UAV is deployed close to multiple users to maximize
R2, however, it increases the pathloss for first link, which results in slight rate degradation for R1 (Fig. 6.12
- 6.15).
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Figure 6.17. Total AR RT versus PT for buffer-aided transmissions.

time slots. In the second scenario, J-HBF-PSOLPA, we consider two different UAV
locations (close to BS for link 1 and close to multiple IoT users for link 2) and do not use
pre-scheduled transmissions. The results show that using buffers at UAV can significantly
increase the capacity (e.g., from 10 bps/Hz for FL-EQPA (without buffer) to 62 bps/Hz for
J-HBF-PSOLPA (with buffer) at PT = 40 dBm, which represents more than five fold
increase in capacity). It is important to note that we assume a buffer size as B = ∞, and
thus, it represents a performance upper bound for a UAV-assisted MU-mMIMO IoT
system in a delay-constrained transmissions. For delay-unconstrained transmissions, the
average delay tends to ∞ as B → ∞. However, with the simple heuristic modifications
proposed in this subsection, the proposed algorithmic solutions for delay-unconstrained
transmission can also be employed for delay-constrained transmission at the expense of a
small performance degradation due to the delay constraint. Let D denote the waiting time
(delay) experienced for a bit transmitted from the BS to the multiple IoT users via UAV
relay equipped with buffer and having queuing size Q bits. Then, for the HD UAV-assisted
MU-mMIMO IoT systems, we use Little’s Law to relate D to Q. Let λ = min(R1,R2) be
the arrival rate, then we can express D as [170]:

D = Q

min(R1,R2)
. (6.128)
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Figure 6.18. Average delay D versus transmit power PT .

We assume a first-in-first-out (FIFO) queuing mechanism for the UAV buffer, where the
UAV receives data from the BS at a rate of R1, and transmits it to the IoT users at rate of R2

incurring a delay D due to queuing bits Q of buffer 3. Fig. 6.18 plots the average delay versus
transmit power PT for the cases of: 1) FL-EQPA; and 2) J-HBF-PSOLPA. It can be seen
that for a fixed queuing size of Q = 2 bits, increasing PT can result in reduced average delay
due to an increased AR for both cases. However, the proposed J-HBF-PSOLPA can reduce
the average delay by approximately 50% when compared to FL-EQPA. In Fig. 6.19, we plot
average delay versus queuing size Q for a fixed transmit power PT = 20 dBm. As expected,
higher queuing size results in increased delay. However, by utilizing the proposed J-HBF-
PSOLPA, we can decrease D by more than 140% (e.g., at Q = 8 bits, D can be reduced
from 0.48s to 0.2s). Finally, we compare the average delay versus PT and Q for FL-EQPA
and J-HBF-PSOLPA in Fig. 6.20. Our results show that the proposed J-HBF-PSOLPA
can significantly reduce the average delay for any combination of PT and Q. Thus, it can
be applied to both delay-unconstrained and delay-constrained applications in UAV-assisted
MU-mMIMO IoT systems.

3It is important to note that the arrival rate R1 is greater than the departure rate R2 for the given
system (i.e., R1 > R2), the stability of the system is still guaranteed due to the assumption of min(R1, R2)
being used as the arrival rate. This ensures that the overall arrival rate is always less than or equal to the
departure rate, which is necessary for the stability of the system.
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Figure 6.19. Average delay D versus queuing size Q.

6.7.3 Low-Complexity DL-Based Performance

In this section, we present the results obtained using the proposed low-complexity J-
HBF-DLLPA algorithm and compare its performance with that of J-HBF-PSOLPA. Table
6.3 outlines the hyper-parameters for the proposed DNN architecture, which is given in
Fig. 6.11. Fig. 6.21 exhibits the MSE performance for training and validation datasets
under varying learning rates α = {0.001, 0.01, 0.03, 0.1} over a total of 15 epochs. The
larger values of α, such as 0.1 and 0.03 result in higher validation error, which requires a
significant number of iterations to converge. In contrast, smaller values of α = 0.01 and
0.001 can provide lower MSE for validation dataset, even with a few epochs. Notably,
MSEα=0.001 < MSEα=0.01 < MSEα=0.03 ≪ MSEα=0.1, which emphasizes the importance of
appropriately choosing the learning rate. Similarly, Fig. 6.22 compares the MSE performance
for training and validation datasets with different number of hidden layers (HL) in DNN
architecture. We evaluate the error for 15 epoch for HL = {2, 3, 4}. It can be seen that DNN
with 2 or 3 HL can achieve low MSE. However, it may require a large number of epochs to
converge. By using HL = 4, we can achieve a better MSE performance for validation dataset
(MSEHL=4 < MSEHL=3 < MSEHL=2).
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Figure 6.20. Average delay D versus transmit power PT and queuing size Q.

Table 6.3. DNN Parameters

Regularizer L2
1st hidden layer size 2nd hidden layer size L1 = 1024 L2 = 512
3rd hidden layer size 4th hidden layer size L3 = 256 L4 = 128

Optimizer Learning Rate ADAM 0.001
Dataset Size Test Data Sr = 100, 000 St = 1, 000
Batch Size Epoch Size 32 15

To avoid over-fitting of the training data, our proposed DNN architecture incorporates
regularization techniques. In Fig. 6.23, we compare the MSE performance of the training
and validation datasets for the following cases: 1) no regularization; 2) L1 regularization;
and 3) L2 regularization. The use of either L1 or L2 regularization techniques prevent
over-fitting, and can predict the power and location values close to optimal solution on test
data 4. Another important factor in optimizing the DNN architecture is selecting an
appropriate batch size (BS), which can have a significant impact on memory usage,
convergence speed, training stability, and model generalization. In Fig. 6.24(a), we
compare the MSE performance of the validation dataset for BS = {2, 4, 16, 32, 64}. Our

4When there is no regularization, then the DNN architecture gives very low MSE for training dataset
but its performance on validation dataset degrades after a few epochs.
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(a) (b)

Figure 6.21. MSE loss versus epoch for different learning rates. (a) Validation error. (b)
Training error.

(a) (b)

Figure 6.22. MSE loss versus epoch for different hidden layers. (a) Validation error. (b)
Training error.

results indicate that BS = 4, 16, or 32 can provide lower MSE, but the runtime for BS = 4
and 16 can be significantly longer than BS= 32, especially for larger datasets with 100, 000
realizations. Therefore, we use BS = 32, which can provide a lower MSE with low
computational complexity.

Fig. 6.25 compares the total AR of J-HBF-PSOLPA with low-complexity DL solutions,
namely, J-HBF-DLLPA with MSE, and J-HBF-DLLPA with MAE, for G = 1, K = 3 at
PT = 20 dBm. We provide the AR performance evaluations for training, validation, and test
datasets. For benchmark comparison, we compare the proposed DL-based solutions with
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(a) (b)

Figure 6.23. MSE loss versus epoch for regularization. (a) Validation error. (b) Training
error.

(a) (b)

Figure 6.24. MSE loss versus epoch for different batch sizes. (a) Validation error. (b)
Runtime.

J-HBF-PSOLPA and FL-EQPA. The numerical results show that both DL-based solutions
can achieve AR close to PSO-based solution for all datasets and outperform FL-EQPA.
For instance, J-HBF-DLLPA with MSE and MAE can provide the total AR of 14.3 and
14.2 bps/Hz, which is 98.6% and 97.4% of the total capacity achieved by J-HBF-PSOLPA,
indicating a performance difference of only 1.3% and 2.06%, respectively. Furthermore,
compared to FL-EQPA, both DL-based solutions show more than two-fold increase in AR.
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Figure 6.25. Total AR evaluation on training, validation and test dataset for
J-HBF-PSOLPA and J-HBF-DLLPA.

6.7.4 Complexity Analysis

In this section, we compare the computational complexity of several proposed solutions
for UAV-assisted MU-mMIMO IoT systems. Specifically, we compare: 1)
J-HBF-PSOPA-FL; 2) J-HBF-PSOL-EQPA; 3) J-HBF-PSOLPA; and 4) J-HBF-DLLPA.
In Fig. 6.26, we present the runtime results for different numbers of IoT users for G = 2,
where K = {2, 4, 6, 8}. We provide the runtime for 1000 network realizations for test data.
It is noteworthy to mention that the offline trained DNN architecture for J-HBF-DLLPA
algorithm run on MATLAB5. The proposed J-HBF-DLLPA outperforms the computational
complex J-HBF-PSOLPA, J-HBF-PSOL-EQPA, and J-HBF-PSOPA-FL algorithms by
significantly reducing the runtime. For example, for a small number of IoT users (K = 2),
J-HBF-PSOLPA, J-HBF-PSOL-EQPA, and J-HBF-PSOPA-FL take approximately 489,
234, and 376 sec to predict K + 2 values, whereas with J-HBF-DLLPA, only about 2 sec
are enough to predict the optimal UAV location and power allocation values. This means
that the proposed J-HBF-DLLPA with MSE requires only about 0.4% − 0.8% of the
runtime of different PSO-based algorithmic solutions without impacting the total AR

5For the MATLAB runtime results, we implement both PSO-based J-HBF-PSOLPA and DL-based J-
HBF-DLLPA via a PC with Intel Core(TM) i7-4770 CPU @ 3.4 GHz and 32 GB RAM.
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Figure 6.26. Runtime comparison of proposed HBF solutions for different numbers of
users.

performance. When the number of IoT users are increased to K = 8, then
J-HBF-PSOLPA, J-HBF-PSOL-EQPA, and J-HBF-PSOPA-FL can take around 1725, 976,
and 1453 sec, representing an increase of approximately 252%, 317%, and 287%,
respectively, whereas with the proposed J-HBF-DLLPA, the predictions take only about
2.2 sec, which is ≈ 0.127% of runtime of J-HBF-PSOLPA. Then, we consider the
computational complexity of the proposed angular-based HBF design. For the RF
beamformers Fb and Fu,r require O(NT ) and O(Nr) operations, respectively. Meanwhile,
for Fu,t, the complexity is O(GNt) to serve G different IoT user groups. For BB stages Bb

and Bu,r, we require O(N3
RF b

) and O(N3
RFu

) operations, respectively. For Bu,t, the
complexity is O(N3

RFu
+ KN2

RFu
), where O(KN2

RFu
) is for computation of HH

2 H and
O(N3

RFu
) is for matrix inversion. Overall, the HBF design for BS and UAV requires

O(NT + Nr + GNt + N3
RF b

+ N3
RFu

+ KN2
RFu

) operations. Let us consider the
J-HBF-PSOPA-FL algorithm, which requires O(Zp) to initialize particles and O(K2Zp)
operations to find K global solutions. Then, for a total of T PSO iterations, we need
O(TZp(N3

RFu
+ KN2

RFu
)). Ignoring the small computational terms (for instance, matrix
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multiplication, matrix inversion), the overall computational complexity of
J-HBF-PSOPA-FL is O(TZp(N3

RFu
+ KN2

RFu
)). Similarly, the complexities of

J-HBF-PSOL-EQPA and J-HBF-PSOLPA are computed as
O(TZp(NT + Nr + GNt + N3

RF b
+ N3

RFu
+ KN2

RFu
) and

O(TZp(NT +Nr +GNt +N3
RF b

+ (N3
RFu

+KN2
RFu

)2), respectively. Now, let us discuss the
proposed DNN architecture with the hyper-parameters provided in Table 6.3. The
complexity of the training phase can be calculated as follows:

• Forward Pass: 1) the input layer has (2Nt+2NRFu+2)K neurons, and computing the
output of the input layer requires O((2Nt + 2NRF u + 2)K) operations; 2) there are
four HL with 1024, 512, 256 and 128 neurons, respectively, and the total complexity
of computing the output of each HL can be computed as follows: O(1024) (layer 1),
O(512) (layer 2), O(256) (layer 3), O(128) (Layer 4). Therefore, the total complexity
of computing the output of all HL is O(1024 + 512 + 256 + 128) = O(1920); 3) the
output layer has K + 2 neurons, so the complexity of final layer is O(K + 2). The
overall complexity of the forward pass is O((2Nt + 2NRFu + 2)K + 3840 + K + 2) =
O((2Nt + 2NRF u + 2)K).

• Backward Pass: The backward propagation involves computing gradients of the loss
function with respect to the weights and biases of the DNN. The overall complexity of
the backward pass is O(Nparams), where Nparams is the total number of parameters in
the DNN 6.

• Assuming a batch size of 32 and 15 epochs, the total number of forward and backward
passes would be Nbatch ·Nepochs = 480. Therefore, the total computational complexity
of the DNN during training phase can be approximated as O(NparamsNbatchNepochs) ≈
O(3.42 · 1011).

Compared to different proposed solutions using PSO, the DNN architecture has a higher
computational complexity during training phase, however, once fully trained, the proposed
DNN architecture requires onlyO(1) operations for predicting K+2 output values for a input
feature vector of size (2Nt + 2NRFu + 2)K. This is because the complexity is proportional to
the number of layers and neurons in each layer, which is a constant value for a trained DNN.
Thus, the proposed J-HBF-DLLPA offers a low-complexity solution for real-time applications
in UAV-assisted MU-mMIMO IoT systems.

6The total number of parameters in the DNN can be calculated as follows: (i) input layer to HL 1 :
(2Nt + 2NRF u

+ 2)K × 1024, (ii) HL 1 to HL 2 : 1024× 512, (iii) HL 2 to HL 3 : 512× 256, (iv) HL 3 to HL
4 : 256× 128, (v) HL 4 to output layer: 128
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6.8 Concluding Remarks

In this chapter, a UAV-assisted MU-mMIMO IoT communications system has been
considered, where the UAV operates as a decode-and-forward relay between BS and
multiple IoT users. The problem of jointly designing the hybrid beamforming stages for BS
and UAV together with UAV deployment and optimal power allocation to multiple users is
taken into consideration. For this challenging non-convex problem, we have proposed three
different PSO-based algorithmic solutions to optimize the UAV location, and the power
allocated to IoT users, which are not directly accessible to BS. Then, based on the
optimized UAV location, and power allocation, the hybrid beamforming stages for BS and
UAV transmit and receive are sequentially updated for a maximum total achievable rate.
In particular, the RF stages are designed using the angular location of nodes, reducing the
number of RF chains, while the BB stages are designed using reduced-dimension effective
channel, which significantly reduces MU interference among IoT nodes. Then, a deep
learning-based low-complexity joint hybrid beamforming, UAV location optimization and
power allocation scheme (J-HBF-DLLPA) has been proposed for maximizing the achievable
rate. The results illustrate that the proposed PSO-based solutions can significantly
enhance the capacity of a UAV-assisted MU-mMIMO IoT system as well as reduce the
average delay for delay-constrained transmissions. Additionally, the proposed
J-HBF-DLLPA can closely approach the capacity of PSO-based solutions and greatly
reducing the runtime by 99%, which makes the implementation suitable for real-time online
applications in UAV-assisted MU-mMIMO IoT systems.
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Chapter 7

Multiple UAV-Assisted Cooperative
DF Relaying for Enhanced Coverage
and Capacity1

7.1 Introduction

In the previous chapter, we consider a single UAV operating as a relay between BS and
obscured users, which can provide only limited user coverage and access. On the other hand, a
network of multiple UAVs can efficiently enlarge the coverage region and increase the number
of served users [172–174]. The authors in [172] propose a multi-UAV relaying system, and
compared the performance of a single multi-hop link and multiple dual-hop links. In [173],
the position of multiple UAV-mounted BS is optimized to enhance the coverage area, while
satisfying quality-of-service (QoS) requirements. Similarly, the placement and the number of
UAVs are optimized in [174], while adhering to network capacity and coverage constraints.
Research works such as [131,132,137,149,172–174] have ignored the direct link between the
BS and IoT users. However, it is well known that when direct link is non-negligible or not
too weak, the spatial diversity can be enhanced via direct and cooperative multiple path
(through UAV relays). In practice, assuming no direct link simplifies the design of the joint
source-relay beamforming.

In this chapter, we consider a more practical cooperative transmission approach,
integrating both the direct link from BS to IoT devices and the indirect links via multiple
UAV relays to IoT users in MU-mMIMO IoT systems to enhance the capacity and

1Parts of this chapter have been presented at the 2024 IEEE International Conference on
Communications, Denver, USA [171].
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overcome the coverage issues. Our objectives here are twofold: first, to show that the use of
multiple UAVs as relays can significantly increase the sum-rate capacity; and second, the
optimization of UAV location, user association, and power allocation (PA) at BS and UAVs
combined with HBF design can provide better performance than fixed UAV locations with
equal PA.

The main contributions of this work are summarized as follows:

• We consider multiple UAVs-assisted cooperative DF relaying mMIMO system, where
the users received the signals from both BS and via UAVs. When the direct link is
involved, the received signals via source-to-destination link and multiple UAV relay-
to-destination links are combined at the destination (user terminal) to enhance the
overall signal strength. As such, the beamforming vector design at the BS needs to
take into account both of these links. Furthermore, the optimization problem becomes
more complex, which is solved using nature-inspired optimization solutions.

• The joint optimization of multiple UAV placements, PA at the BS, and the design of
HBF for both the BS and UAVs is considered in this work. To solve the challenging
non-convex problem, we utilize structured sequential optimization to address the
multi-faceted optimization problem by splitting it into two subproblems. First,
K-means-based user clustering is used for UAV-users association based on the 3D
geometry-based millimeter-wave (mmWave) channel model. Then, the location of
each UAV is optimized jointly with PA using swarm intelligence. The RF
beamforming stages for BS and UAVs are designed based on the slow time-varying
angle-of-departure (AoD)/angle-of-arrival (AoA) information, and BB stages are
formulated using the reduced-dimensional effective channel matrices.

• The illustrative results show that multiple UAV-assisted cooperative relaying systems
outperform a single UAV system in practical user distributions. Moreover, compared to
fixed positions and equal PA of UAVs and BS, the joint optimization of UAV location
and PA substantially enhances the total achievable rate.

The rest of this chapter is organized as follows. Section 7.2 presents the system and channel
model of multiple UAV-assisted mMIMO system. In Section 7.3, we present the HBF design
jointly with PA and UAV deployment. The illustrative results are provided in Section 7.4.
Finally, the chapter is concluded in Section 7.5.
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7.2 System and Channel Model

In this section, we introduce the system and channel models of the proposed multi-UAV-
assisted relaying and the HBF design for a multiple dual-hop MU-mMIMO IoT system.

7.2.1 System Model

We consider a downlink MU-mMIMO IoT network, where a large number of
non-overlapping IoT devices are connected to an IoT gateway via wire or wireless links.
Due to severe shadowing and blocking effect, many ground IoT devices experience low
signal-quality from the BS/eNodeB that is equipped with a large array having Nb antenna
elements. To address this challenging scenario, we consider a cooperative relaying system
model as shown in Fig. 7.1(a), to serve K = {1, · · · , K} single-antenna IoT nodes, which
are clustered in G groups, where gth group has Kg IoT nodes such that K = ∑G

g=1 Kg.
Then, Mu different UAVs, indexed by the set U = {u1, u2, · · · , uMu}, are deployed to serve
K = MuKm IoT users, where Km is number of users served by mth UAV, which operates as
DF relay between BS/eNodeB and IoT node1. Let (xb, yb, zb), (x(m)

u , y(m)
u , z(m)

u ) and
(xk, yk, zk) denote the locations of BS, mth UAV relay, and kth IoT user, respectively. Then,
we define the 3D distances for multiple UAV-assisted MU-mMIMO IoT system as follows:

• τ
(m)
1 =

√
(x(m)

u − xb)2 + (y(m)
u − yb)2 + (z(m)

u − zb)2,

• τ
(m)
2,k =

√
(x(m)

u − xk)2 + (y(m)
u − yk)2 + (z(m)

u − zk)2,

• τk =
√

(xb − xk)2 + (yb − yk)2 + (zb − zk)2,

where τ (m)
1 , τ (m)

2k
and τk are the 3D distance between mth UAV & BS, between mth UAV and

kth IoT node, and between BS and kth IoT node, respectively. Each UAV is equipped with
Nr(Nt) antennas for receiving (transmitting) signals from (to) BS (IoT users). For simplicity,
we assume a homogeneous fleet of UAVs with consistent specifications and functionality.
Unlike traditional static relaying, which uses fixed relay locations, we presumptively use
multiple UAVs as a movable relays.

For the downlink transmission of NS = K data streams, we consider HBF for BS and
all UAV relays as shown in Fig. 7.2. The BS consists of RF beamforming stage Fb ∈
CNb×NRF b , BB stage Bb ∈ CNRF b

×K , and MU PA matrix Pb = diag(√pb1 , · · · ,
√
pbK

) ∈
CK×K . Here, NRF b

is the RF chains such that NS ≤ NRF b
≤ Nb to guarantee multi-stream

1We assume equal UAV-user clustering for simplicity. However, it can be applicable for unequal user
clustering, which is left as our future work.
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(a)

(b)

Figure 7.1. Multiple UAV-assisted MU-mMIMO IoT communications. (a) network
model. (b) UAV as DF relay transmission phases.

transmission. We consider half-duplex (HD) DF relaying for each UAV. Therefore, each
round of information transmission from BS to IoT nodes can be divided into two phases:
1) source phase (SP); and 2) relay phase (RP) as illustrated in Fig. 7.1(b). In SP, BS
transmits K data streams to the following: 1) K IoT users through channel HD ∈ CK×Nb ;
and 2) each mth UAV via channel H(m)

1 ∈ CNr×Nb . Using Nr antennas, each UAV receives
signals with RF stage F(m)

u,r ∈ CNRF u ×Nr and BB stage B(m)
u,r ∈ CK×NRF u . In RP, each

UAV decodes the received information and then forwards the decoded information to K

IoT nodes using RF beamformer F(m)
u,t ∈ CNt×NRF u , BB stage B(m)

u,t ∈ CNRF u ×K , and MU
PA matrix P(m)

u = diag(
√
p

(m)
u1 , · · · ,

√
p

(m)
uK ) ∈ CK×K through channel H(m)

2 ∈ CK×Nt , where
p(m)
uk

reflects the allocated power to kth user from mth UAV. The implementation of all RF
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Figure 7.2. Multiple UAV-assisted MU-mMIMO HBF system model.
beamforming/combining stages involves the use of phase-shifters (PSs) and thus, impose a
constant-modulus (CM) constraint, i.e., |Fb(i, j)| = 1√

Nb
, |F(m)

u,r (i, j)| = 1√
Nr

, |F(m)
u,t (i, j)| =

1√
Nt
∀i, j,m. For the data signal d = [d1, d2, · · · , dK ]T with E{ddH} = IK ∈ CK×K , the

signal received at mth UAV (after BB processing) during SP is given as follows:

ỹ(m)
u = B(m)

u,r F(m)
u,r H(m)

1 FbBbPbd + B(m)
u,r F(m)

u,r n(m)
u , (7.1)

where n(m)
u ∈ CNu,r denotes the zero-mean complex circularly symmetric Gaussian noise

vector at mth UAV relay with covariance matrix E{nunHu } = σ2
nu

INu,r ∈ CNu,r×Nu,r . Then,
the signal transmitted by mth UAV during RP is given as:

ŝ(m) = F(m)
u,t B(m)

u,t P(m)
u d̂(m), (7.2)

where d̂(m) is the re-encoded signal at mth UAV relay. Each IoT node receives signal from
BS and each mth UAV during SP and RP, respectively. Then, the received signal at kth IoT
node from BS and mth UAV can be written as:

y
(m)
k = yk,SP + y

(m)
k,RP ,

= hTD,kFbBbPbd̂k + nDk
+ hT (m)

2,k F(m)
u,t B(m)

u,t P(m)
u d̂

(m)
k + n

(m)
2k
,

= √pbk
hTD,kFbBbPbd̂k +√

p
u

(m)
k

hT (m)
2,k F(m)

u,t B(m)
u,t P(m)

u d̂
(m)
k︸ ︷︷ ︸

Desired Signal

+

K∑
k̂=1

√
pbk̂

hTD,kFbBbPbd̂k̂ +
K∑
k̂=1

√
p
u

(m)
k

hT (m)
2,k F(m)

u,t B(m)
u,t P(m)

u d̂
(m)
k̂︸ ︷︷ ︸

Total MU-interference

+ nDk
+ n

(m)
2k︸ ︷︷ ︸

Total Noise

,

(7.3)
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where nDk
∼ CN (0, σ2

nD
) and n(m)

2k
∼ CN (0, σ2

n2) are the additive circular symmetric Gaussian
noise at kth IoT node. The power constraint of the beamforming matrices can be expressed
as ∥FbBbPb∥2

F = PT and ∥F(m)
u,t B(m)

u,t P(m)
u ∥2

F = P (m)
u , where PT and P (m)

u denote the total
transmit power of BS and mth UAV, respectively. Then, the achievable rate of first link (i.e.,
BS → mth UAV) is given as follows:

R(m)
1 = log2

∣∣∣IK + Q−1(m)
1 B(m)

u,r H
(m)
1 BbBH

b H
H(m)
1 BH(m)

u,r

∣∣∣ , (7.4)

where Q−1(m)
1 = (σ2

nu
B(m)
u,r F(m)

u,r )−1FH(m)
u,r BH(m)

u,r and H(m)
1 = F(m)

u,r H(m)
1 Fb. The signal-to-

interference-plus-noise ratio (SINR) of kth IoT node via mth UAV is given as [175]:

γ
(m)
k =

pbk
|hHDk

Fbbbk
|2∑̂

k ̸=k
pbk̂
|hHDk

Fbbbk̂
|2 + σ2

nD

+
p(m)
uk
|hH(m)

2k
F(m)
u,t b(m)

u,tk |2∑̂
k ̸=k

p
(m)
uk̂
|hH(m)

2k
F(m)
u,t b(m)

u,tk̂
|2 + σ

2(m)
n2

. (7.5)

The achievable rate for the mth second link (i.e., from mth UAV to Km users) can be written
as:

R(m)
2 = E

{Km∑
i=1

log2(1 + γ
(m)
i )

}
. (7.6)

For multiple dual-hop MU-mMIMO IoT system, where each mth UAV is deployed at a fixed
height zmu , and relaying data to Km IoT nodes, the total achievable rate can be maximized
by the joint optimization of Fb, Bb, F(m)

u,t , F(m)
u,r , B(m)

u,t , B(m)
u,r , Pb, P(m)

u and the UAV location
x(m) = [x(m)

o , y(m)
o ]T ∈ R2, which is to be optimized within the given deployment area. Then,

we can formulate the optimization problem as:

max{
Fb,Bb,F

(m)
u,t ,B

(m)
u,t ,F

(m)
u,r ,B

(m)
u,r ,Pb,P

(m)
u ,x(m)

} RT

s.t. C1 : |F(m)
u,t (i, j)| = 1√

Nt

, |F(m)
u,r (i, j)| = 1√

Nr

, ∀i, j,m,

C2 : |Fb(i, j)| =
1√
Nb

,∀i, j,

C3 :
⋃

m∈Mu

Km = K, ∀m,

C4 : E{∥s1∥2
2} ≤ PT ,E{||ŝ(m)||22} ≤ PT , ∀m,

C5 : pbk
≥ 0, p(m)

uk
≥ 0, ∀k,m,

C6 : xmin ≤ x(m)
o ≤ xmax, ∀m,

(7.7)
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where RT = ∑Mu
m=1(1/2) min(R(m)

1 ,R(m)
2 ) is the total achievable rate, C1 and C2 refers to the

CM constraint due to the use of PSs for UAV and BS, respectively, C3 ensures that the total
user count is consistent with the counts for each UAV, C4 indicates the total transmit power
constraint for UAV and BS, C5 represents the non-negative allocated power to each IoT node
from BS and each UAV, and C6 implies UAV deployment within the given flying span. Here,
[xmin,xmax] = [(xmin, ymin), (xmax, ymax)] represents the deployment range for each UAV in
2-D space. The optimization problem defined in (7.7) is non-convex and intractable. Thus,
we develop a sub-optimal solution for (7.7) in Section III.

7.2.2 Channel Model

We consider mmWave channels for both links. The channel between BS and mth UAV is
modeled based on the Saleh-Valenzuela channel model, and is given as:

H(m)
1 =

NC∑
c=1

L∑
l=1

z
(m)
1cl
τ

−ηo(m)
1cl

a(m)
1,r (θ(m)

rcl
, ϕ(m)

rcl
)aT (m)

1,t (θ(m)
tcl
, ϕ

(m)
tcl

), (7.8)

where NC is the total number of clusters, L is the total number of paths, ηo is the path
loss exponent, z(m)

1cl
is the complex gain of lth path in cth cluster for mth UAV, and a(m)

1,j (·, ·)
is the corresponding transmit or receive array steering vector for uniform rectangular array
(URA), which is given as [134]:

a(m)
1,j (θ(m), ϕ(m)) =

[
1, · · · , e−j2πd(Nx−1)sin(θ(m)) cos(ϕ(m))

]
⊗
[
1, · · · , e−j2πd(Ny−1)sin(θ(m)) sin(ϕ(m))

]
,

(7.9)
where j = {t, r}, d is the inter-element spacing, and Nx(Ny) is the horizontal (vertical) size
of corresponding antenna array at BS and UAV. Here, the angles
θ

(m)
jcl
∈
[
θ

(m)
jc − δ

θ(m)
jc , θ

(m)
jc + δ

θ(m)
jc

]
and ϕ

(m)
jcl
∈
[
ϕ

(m)
jc − δ

ϕ(m)
jc , ϕ

(m)
jc + δ

ϕ(m)
jc

]
are the azimuth

and elevation AoD(j = t) or AoA (j = r) for lth path in channel H(m)
1 , respectively. Here,

θ
(m)
jc and ϕ

(m)
jc are the mean azimuth and elevation angles, respectively with δ

θ(m)
jc (δϕ(m)

jc )
represents the azimuth(elevation) angle spread. The channel vector between the UAV(or
BS) and the kth IoT node can be written as:

hTi,k =
∑Q

q=1 zi,kqτ
−η
i,kq

a(θkq , ϕkq) = zTi,kAi,k ∈ CN , (7.10)

where i = {D, 2}, Q is the total number of downlink paths from UAV(or BS) to IoT nodes,
zi,kl
∼ CN (0, 1

L
) is the complex path gain of lth path, a(·, ·) ∈ CN is the downlink array

phase response vector. Then, the complete channel matrix for K IoT nodes can be written
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as:
Hi = [hi,1, · · · ,hi,K ]T = ZiAi ∈ CK×Nt , (7.11)

where Zi = [zi,1, · · · , zi,K ]T ∈ CK×L is the complete path gain matrix for all downlink IoT
nodes and Ai,k ∈ CL×N is the slow time-varying array phase response matrix.

7.3 Proposed Joint User Association, Multiple UAV
Positioning, PA & Hybrid Beamforming

In this section, our objective is to optimize each UAV location jointly with PA from
BS and UAV, and sequentially design HBF stages for BS and each UAV to reduce the
channel state information (CSI) overhead size while maximizing the throughput of a multiple
UAV-assisted MU-mMIMO IoT system. First, we discuss the UAV-user association using
K-means-based user clustering.

7.3.1 UAV-User Association

The proposed scheme leverages K-means-based user association to assign Km users to
nearest mth UAV while maintaining exclusive user-UAV associations. The objective is to
minimize the sum of squared distances between users and their assigned mth UAV (i.e.,
min∑M

m=1
∑K
k=1 zkm||xk − x(m)

u ||2). Here, zkm is the assignment variable, which is defined as:

zkm =

1, if user k is assigned to UAV m,

0, otherwise.
(7.12)

7.3.2 Joint UAV Deployment, Optimal PA and HBF Design

In this section, our objective is to design the HBF stages for BS and M UAVs by using
sequential optimization. Initially, both RF and BB stages are constructed using some fixed
UAV locations. Then, we employ swarm intelligence to optimize each UAV location as well
as PA from BS and each UAV for maximum total achievable rate. Finally, the RF and BB
stages are re-formulated for the optimal UAV location as well as the allocated power in the
MU PA blocks Pb and P(m)

u .
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7.3.2.1 RF & BB Stage Design

The RF beamforming stage for BS and each UAV (both transmit and receive) are designed
as:

F =
[
ej
(
λu1
x , λ

k1
y

)
, · · · , ej

(
λ
uNRF
x , λ

kNRF
y

)]
∈ CNT ×NRF , (7.13)

where j = {t, r} and e(·, ·) is the corresponding transmit or receive steering vector, which
is defined as e (θ, ϕ) = 1

Nt

[
1, ej2πdsin(θ) cos(ϕ), · · · , ej2πd(Nx,t−1)sin(θ) cos(ϕ)

]T
⊗[

1, ej2πdsin(θ) sin(ϕ), · · · , ej2πd(Ny,t−1)sin(θ) sin(ϕ)
]T

, where NT = {Nb, Nt, Nr}. Here, the RF
beamformers are constructed via quantized angle-pairs, which are defined as
λux = −1 + 2u−1

Nx,t
for u = 1, · · · ,Nx,t and λky = −1 + 2k−1

Ny,t
for k = 1, · · · ,Ny,t. The quantized

angle-pairs reduces the number of RF chains at BS and each UAV while providing
complete AoD/AoA supports, which are defined as:

AoD =
{
sin (θ) [cos (ϕ) , sin (ϕ)]

∣∣∣θ ∈ θt, ϕ ∈ ϕt}, (7.14)

AoA =
{
sin (θ) [cos (ϕ) , sin (ϕ)]

∣∣∣θ ∈ θr, ϕ ∈ ϕr}, (7.15)

where θi =
[
θi − δθi , θi + δθi

]
and ϕi =

[
ϕi − δϕi , ϕi + δϕi

]
denote the azimuth and elevation

angle supports, respectively. After designing the transmit and receive RF beamformers for
BS, and each UAV, the effective channel matrices H(m)

1 and H(m)
2 as seen from the BB-stages

are given as follows:
H(m)

1 = F(m)
u,r H(m)

1 Fb = U(m)
1 Σ(m)

1 VH(m)
1 , (7.16)

H(m)
2 =


H(m)

2,1 F(m)
u,t,1 . . . H(m)

2,1 F(m)
u,t,G

... . . . ...
H(m)

2,GF(m)
u,t,1 . . . H(m)

2,GF(m)
u,t,G

 , (7.17)

where U(m)
i ∈ CNRF u ×rank(H(m)

1 ) and V(m)
i ∈ CNRF b

×rank(H(m)
1 ) are tall unitary matrices and

Σ(m)
1 is the diagonal matrix with singular values in the decreasing order for mth UAV. Then,

B(m)
u,r for mth UAV is defined as:

B(m)
u,r = UH(m)

1 . (7.18)

The reduced-size effective CSI H(m)
2 given in (7.17) is employed for designing B(m)

u,t by using
regularized zero-forcing (RZF) technique, and is defined as follows:

B(m)
u,t = (HH(m)

2 H(m)
2 + α(m)NRFuINRF u

)−1HH(m)
2 , (7.19)
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where α(m) = σ2(m)

P
(m)
T

is the regularization parameter and INRF u
∈ CNRF u ×NRF u . The optimal

design of Bb is formulated using an effective channel H1D, which constitutes all channel
components from BS (i.e., HD and H(m)

2 , ∀m = 1, · · · ,M). Then, the total effective channel
can be written as:

H1D = [HD,H(1)
1 ,H(2)

1 , · · · ,H(M)
1 ] ∈ C(MNr+K)×K . (7.20)

By using SVD of effective channel H1D, we can design Bb by using tall unitary matrix V1D

∈ CNRF b
×rank(H1D) as [134]:

Bb =
√
PT
K

V1D ∈ CNRF b
×K . (7.21)

7.3.2.2 Joint Multiple UAV Positioning and Optimal PA

After the design of RF and BB stages for BS and UAVs, the optimization problem given
in (7.7) can be reformulated as:

max{
Pb,P

(m)
u ,x(m)

} RT

s.t. C4 − C6.

(7.22)

This resulting problem in (7.22) is still non-convex due to the joint dependence of both
the allocated powers pbk

, p(m)
uk

and the UAV location x(m) = [x(m)
o , y(m)

o ]T on the SINR
expression in (7.5), which is used in the sum-rate R(m)

2 calculation as given in (7.6). To
overcome this challenge, we propose sequential optimization using swarm intelligence, which
employs multiple agents, called particles, to explore the search space of objective function
given in (7.22). Initially, Z particles are randomly placed in search space, where each particle
communicates with other particles to share their personal best and update the current global
best solution for the objective function. The particles then move iteratively for T iterations
to reach the global optimum solution. In particular, each UAV location x(m)

u = [x(m)
u , y(m)

u ]T

and Pb, P(m)
u are optimized by using particle swarm optimization (PSO)-based algorithmic

solution while maximizing the total achievable rate. Here, the zth particle at the tth iteration
now represents an instance of the each UAV location and multi-user PA matrices, which is
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given as follows:

J(t)
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]T ∈ R2K+2M ,

(7.23)

where each particle z represents the Mu UAV positions and PA to K IoT users from BS
and each mth UAV, and calculates the objective function as
RT (Fb,Bb,F(m)

u,t ,B
(m)
u,t ,F(m)

u,r ,B(m)
u,r , κ

(t)
bz

P̂(t)
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P̂(t)
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,X(t)

z ). We define
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,
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∈ [0, 1]. Then, the transmit power constraints for P̂(t)
bz

and P̂(t)
uz

are satisfied by
defining P(t)

bz
= κ

(t)
bz

P̂(t)
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and P(t)
uz

= κ(t)
uz

P̂(t)
uz

. The position J(t)
pz

and velocity J(t)
vz

for ith

particle during tth iteration are updated as follows:

J(t+1)
pz

= J(t)
pz

+ J(t+1)
vz

, (7.24)
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(t)
3 J(t)
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Finally, the personal and global best solutions for zth particle during tth iteration are obtained
as follows:

J(t)
pbestz

= arg max
J(t∗)

pz ,∀t∗=0,1,··· ,t
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(7.26)
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After T iterations, we update x(m) = X(T )
best, Pb = κ

(T )
best,bP̂

(T )
best,b and P(m)

u = κ
(T )
best,uP̂

(T )
best,u.

7.4 Illustrative Results

In this section, the Monte-Carlo simulation results are presented based on the proposed
scheme. Table I outlines the simulation setup based on the 3D micro-cell scenario [134] for the
results discussed hereafter. The PSO parameters are chosen as: Np=20, γ1=γ2= 2 and γ3=
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Table 7.1. Simulation Parameters

Number of antennas (Nb, Nr, Nt) = 64
Number of paths Path loss exponent L = 10 3.6

Frequency Channel Bandwidth 28 GHz 100 MHz
Noise PSD Number of UAVs M −174 dBm/Hz 2 or 3

BS UAV height 10 m 20 m
UAV x-axis range UAV y-axis range [xmin, xmax] = [0, 100]m [ymin, ymax] = [0, 100]m

Azimuth AoD/AoA (1st link) Azimuth AoD/AoA (2nd link) 120◦ 150◦

Elevation AoD/AoA (1st link) Elevation AoD/AoA (2nd link) 60◦ 30◦

Azimuth/Elevation Angle Spread # of network realizations ±10◦ 2000

(a) (b)

Figure 7.3. Achievable rate R2 versus (x− y)-coordinates at P (m)
T = 20 dBm. (a) Single

UAV deployment (Mu = 1). (b) Multiple UAV deployment (Mu = 2).

1.1. In Fig. 7.3(a), we compare the achievable rate R2 versus transmit power for the following
two cases: 1) a single UAV (M = 1) deployed at initial fixed location (xu, yu) = (50, 50);
and 2) multiple UAVs (M = 2) deployed at initial fixed locations (x(1)

u , y(1)
u ) = (50, 50),

(x(2)
u , y(2)

u ) = (100, 50). We consider a practical user distribution scenario where the users
are located at multiple locations (i.e., (xk, yk) ∈ [50,100]) from BS, which is located at
(xb, yb) = (0, 0). It can be seen from Fig. 7.3(a) that the proposed scheme can optimize
the UAV location, however, it can only achieve a sub-optimal solution as a single UAV can
not be positioned optimally to support a large number of users. Moreover, each kth user
experience interference from K − 1 users, which leads to low achievable rate. To improve
the performance, a multiple UAV-assisted system (i.e., M = 2) is used in Fig. 7.3(b), where
each UAV can support Km = K/M users based on the proposed scheme and find the optimal
deployments close to its associated Km users. It can be seen that using the proposed PSO-
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Figure 7.4. Total AR RT versus PT for single and multiple UAV system.

based UAV location and PA (J-HBF-PSOLPA) scheme, each UAV can optimally cluster its
users, and then find the optimal deployment while achieving the maximum achievable rate.
Thus, a multiple UAV-assisted MU-mMIMO system can overcome the coverage and capacity
limitation of a single UAV in more practical scenarios.

Fig. 7.4 compares the achievable rate of a multiple UAV system versus a single UAV
system for the following cases: 1) J-HBF-PSOLPA with direct link from BS (we consider
optimal PA at each UAV while considering equal PA from BS); 2) J-HBF-PSOLPA without
direct link from BS; and 3) fixed UAV location and equal PA (FL-EQPA). It can be seen
that by using M = 2 UAV can provide approximately 2.5 times the achievable rate when
compared to a single UAV case (M = 1). For instance, the achievable rate at PT = 50 dBm
is increased from 27 bps/Hz to 58 bps/Hz, which indicates around 250% increase in total
achievable rate. Moreover, compared to FL-EQPA, the proposed scheme can significantly
enhance the performance by optimizing the UAV locations and the allocated powers. The
inclusion of direct link from BS to users (i.e., cooperative relaying) can provide an additional
4 to 5 bps/Hz rate improvement for all cases. Fig. 7.5 compares the achievable rate for
different number of UAVs (i.e., for M = 2 or M = 3) for the following four cases: 1) J-HBF-
PSOLPA with direct link and optimal PA at BS and each UAV; and 2) J-HBF-PSOLPA
with direct link and optimal PA at each UAV only; 3) J-HBF-PSOLPA without direct link;
and 4) J-HBF-FL-EQPA. The analysis can be summarized as follows: 1) the optimal PA
from BS and each UAV can provide an improved performance (e.g., an increase of ≈ 10%
rate) when compared to only optimal PA at each UAV; 2) by increasing the number of UAVs,
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Figure 7.5. Total AR RT versus PT for 2 and 3 UAV system.

we can achieve a higher achievable rate (e.g., the rate can be increased by 5-7% when M

is increased from 2 to 3). Moreover, by increasing the number of UAVs, we can further
improve the performance as each UAV cluster less number of users, which leads to reduced
MU interference, and thus, an increased achievable rate. However, it must be noted that
optimizing the number of UAVs is beyond the scope of this research, and is left as our future
work.

7.5 Concluding Remarks

In this chapter, we considered a MU-mMIMO IoT cooperative relaying system, where
multiple UAV DF relays connect the BS to a large number of users. We have proposed a
sequential optimization scheme that employed swarm intelligence to assign users to UAVs
through K-means clustering, and optimized the UAV locations and power allocation from
BS and each UAV, followed by the design of RF and BB stages for maximum achievable
rates. The RF stages are designed using the angular information of UAVs and users, while
BB stages are designed using reduced-dimension effective channel matrices. Our findings
show that multiple UAV-assisted cooperative relaying system works better than single UAV,
especially when taking into account the practical user distributions. Moreover, compared to
fixed positions and equal power distribution of UAV, the optimization of UAV locations and
power allocation substantially improves the achievable rate.
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Chapter 8

Conclusions

In this chapter, we first present a detailed summary of the main contributions in this
thesis, then discuss some potential research directions as future works.

8.1 Summary

Massive MIMO is a pivotal technology for enhancing coverage and capacity in 5G and
beyond wireless communications networks. By using large antenna arrays at BS, mMIMO
enables 3D beamforming, leading to improved capacity, higher energy efficiency, and
reduced interference. However, conventional single-stage fully digital beamforming
techniques face challenges such as high hardware cost and substantial channel estimation
overhead due to the need for dedicated RF chains per antenna. Two-stage hybrid
beamforming (HBF) is proposed as a solution, employing fewer RF chains to interconnect
analog RF beamformers and digital baseband precoders/combiners, thereby addressing
these issues. However, despite effective HBF solutions, future wireless systems require
supporting a large number of users (both terrestrial and aerial) for different IoT
applications. Most traditional mMIMO systems often use uniform linear arrays (ULA),
which are spatially inefficient and limited in their ability to illuminate both azimuth and
elevation angles, thus unable to support aerial communications. This limitation also affects
the ability to serve a large number of users, especially in varying angular locations (e.g., to
serve ground users as well as aerial users simultaneously). According to ITU’s IMT-2030
(6G) framework, which highlights the need for enhanced capabilities (e.g., peak data rate,
latency, connection density, mobility, and reliability) and new capabilities (e.g., ubiquitous
coverage, sensing, sustainability, resilience, and positioning), the future wireless networks
are expected to adopt integrated terrestrial and non-terrestrial network (NTN)
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architectures, which can provide high data rates with enhanced coverage. In this thesis, we
have proposed different HBF techniques for both terrestrial and UAV-assisted terrestrial
communications for mMIMO systems to address various objectives, such as interference
mitigation, sum-rate maximization, energy efficiency, enhanced SIS, and low channel
estimation overhead.

In Chapter 3, we have investigated different 2D array configurations to be used at BS
for enhanced capacity in mMIMO systems. We have considered three different HBF
architectures, which are as follows: (i) HBF using full-resolution PSs and DACs with a
baseband transfer block for constant-modulus RF beamformer, (ii) HBF using b-bit PSs
and full-resolution DACs with an orthogonal matching pursuit (OMP) based algorithm
that can approach the optimal unconstrained RF beamformer, and (iii) HBF using b-bit
PSs and q-bit DACs, which takes into account the DAC quantization noise. In these
proposed HBF schemes, our objectives are not only to reduce the hardware
cost/complexity by utilizing a limited number of RF chains but also to lower the CSI
overhead size by designing RF-stage via slow time-varying CSI (i.e., angular information).
Then, we have used the reduced-size effective CSI to design the BB-stage for reduced
multi-user interference (MUI). The illustrative results compare the spatial, spectral and
energy efficiencies of HBF designs for different antenna-arrays. Specifically, the concentric
circular array (CCA) can achieve much higher performance than other 2-D array
configurations. Furthermore, we also show that the proposed HBF schemes achieve higher
sum-rate and energy efficiency than other HBF benchmarks.

Chapter 4 has extended the comparison to different three-dimensional (3D) array
structures in mMIMO systems. Here, we have studied the performance of uniform
rectangular array (URA), cylindrical array (CA), hemi-spherical array (HSA), and
spherical array (SA). The proposed HBF scheme involves two stages: (i) RF beamforming
based on singular value decomposition (SVD) of the channel matrix, and baseband MU
precoding based on the instantaneous effective baseband channel to mitigate
MU-interference by a regularized zero-forcing (RZF) technique. The illustrative results
show that, in comparison to 2D arrays, 3D array structures can provide high spectral and
energy efficiencies as well as non-varying achievable rate independent from the user angular
location. Thus, 3D structures can be useful in supporting both terrestrial and aerial
communications.

In Chapter 5, we have proposed different novel full-duplex hybrid beamforming (FD-
HBF) techniques to enhance the overall capacity in mMIMO systems based on over-the-air
(OTA) measurements of the self-interference (SI) channel. Here, we leverage the spatial
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degrees of freedom (DoF) in mMIMO systems to enhance FD capacity without the need for
expensive analog SI-cancellation circuitry. For a single uplink, single downlink user setup,
we have developed both constant modulus (CM) and non-constant modulus (NCM) RF-
stages via slow time-varying angular information to maximize the intended signal power and
suppress the strong SI power. Particularly, both CM and NCM RF-stages are constructed to
suppress the strong SI power by introducing beam perturbations within an allowed directivity
degradation. Additionally, we also utilized the sub-array configurations at BS to select the
best Tx/Rx indices jointly with beam perturbation for enhanced SI suppression. Afterwards,
the BB-stages have been built via the reduced-size effective intended channel. It is shown that
FD-HBF significantly suppresses the strong SI power by achieving upto 80 dB SI suppression
capability, which remarkably improves the achievable rate capacity when compared to its
half-duplex (HD) counterpart.

In Chapter 6, we have introduced a UAV-assisted terrestrial system to enhance both
coverage and capacity in mMIMO systems. Here, the UAVs operate as relaying structures
to extend the coverage area of BS for obscured users. We considered UAV as amplify-and-
forward (AF) relay as well as decode-and-forward (DF) relay in both SU-mMIMO and MU-
mMIMO systems, where the overall capacity is maximized by jointly optimizing the UAV
placement, power allocation (PA) to users and by utilizing angular-based HBF solutions for
both BS and UAV. We have introduced two AI/ML-based algorithms for the joint UAV
deployment and PA. Firstly, we develop a particle swarm optimization based joint UAV
location and PA (PSOLPA) algorithm, which achieved near-optimal sum-rate capacity at
the expense of longer runtime for the larger number of users. Secondly, we have introduced
a novel deep learning based UAV location and PA (DLLPA) algorithm for faster and more
robust prediction of UAV deployment and PA. The illustrative results depict that DLLPA
closely approaches the optimal sum-rate capacity with remarkably reduced runtime.

Chapter 7 has extended the UAV-assisted communications to the multiple
UAVs-assisted terrestrial networks to support a large number of users, enhancing both
coverage and capacity. We have considered multiple UAVs operating as DF relays, which
connect the BS to a large number of IoT devices and utilized structured sequential
optimization to address the multi-faceted optimization problem by splitting it into two
sub-problems. Here, first we have used K-means-based user clustering for UAV-users
association. Then, the location of each UAV is optimized jointly with PA using swarm
intelligence. The RF stages are designed based on the slow time-varying angular
information, while BB stages are designed utilizing the reduced-dimension effective channel
matrices. In the results, we have shown that multiple UAV-assisted cooperative relaying
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systems outperform a single UAV system in practical user distributions, thus supporting a
large number of users for future IoT applications.

8.2 Potential Future Works

This thesis has presented various HBF solutions to overcome the technical challenges
towards the practical implementation of mMIMO systems in the terrestrial and UAV-assisted
terrestrial communications networks. While concluding this thesis, we would like to point
out possible avenues for the future research directions:

• Integrated Wireless Information and Power Transfer (IWIPT): It is
expected that the number of smart devices will surpass 25.4 billion by 2030 . With
billions of low-power consumption devices, such as wireless sensors, connecting to the
internet through the IoT framework, there is a significant increase in both energy
demand and data traffic. RF transmissions have long been utilized as a means of
wireless information transfer (WIT). Recent advancements in energy harvesting (EH)
circuit design have made RF signals a feasible source of power for wireless
devices [176–178]. In contrast to traditional wireless networks, where nodes are
powered by fixed energy sources, such as batteries, which must be replaced or
replenished manually when they run out, RF-enabled wireless power transfer (WPT)
eliminates the problem of battery replacement by ensuring a constant supply of
energy. As a result, WPT is particularly appealing for applications in which replacing
batteries is inconvenient (e.g., for IoT applications) or even impractical (e.g., for
implanted devices in human body). In the context of this thesis, the proposed HBF
solutions for mMIMO systems can be further extended to optimize both power and
information transfer. This includes designing adaptive EH mechanisms, managing
interference effectively, and creating resource allocation algorithms that dynamically
balance power and data needs. Additionally, conducting real-world experiments to
validate these schemes would further solidify IWIPT’s practical applications.

• Near-Field Communications (NFC): Recently, NFC has gained significant
attention as it possess the potential for high-capacity, low-latency communication
over short distances. This is particularly important in densely populated
environments, IoT networks, and UAV-assisted communication systems, where
efficient and secure data transfer is crucial [179–181]. The research work of this thesis
can be extended to focus on developing HBF techniques tailored for NFC, optimizing
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signal focusing and spatial efficiency. This includes exploring NFC applications in
UAV-assisted systems, developing methods to mitigate interference, designing
energy-efficient solutions, and integrating NFC in IoT devices for improved
communication between sensors and actuators.

• Joint Sensing and Communications (JSAC): JSAC is a promising area that
merges data transmission with environmental sensing, providing a unified platform
for both communication and situational awareness. This convergence is crucial for
applications such as autonomous vehicles, smart cities, and advanced surveillance
systems, where real-time data and environmental context are essential [182,183]. The
HBF solutions presented in this thesis can be extended to simultaneously optimize
communication and sensing tasks. This includes designing beamforming strategies
that adapt based on real-time sensing data, integrating multiple sensing modalities,
and exploring UAV-assisted sensing to enhance coverage and accuracy. Additionally,
implementing these techniques in practical hardware and ensuring real-time
adaptability in dynamic environments would significantly advance JCAS applications.

• Reconfigurable Intelligent Surface aided HBF design: The recent emergence
of reconfigurable intelligent surfaces (RIS) has significantly enhanced propagation
environments in wireless communications [184, 185]. RIS utilizes numerous passive,
low-cost reflective elements to alter the phase of incoming signals, thereby improving
the limited scattering typically encountered in mmWave and terahertz frequency
bands. The proposed HBF solutions in this thesis can be further extended to
RIS-assisted mMIMO systems. Furthermore, most of the existing RIS studies in the
literature considers a fixed deployment. In a dynamic environment, single or multiple
movable RIS can be used to serve a large number of users. Additionally, together
with UAV-assisted DF relay, a hybrid reflector-relay structure can be used to achieve
high spectral-energy efficiency tradeoff when compared to either RIS or relay
structure operating alone.
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