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Abstract
This thesis aims to loosely cover the subject of geometric flows, and more specifically a
variant of the mean curvature flow. The subject of geometric flows uses results in PDE
theory theory, more specifically parabolic PDEs, to gain new insight about Riemannian
geometry.

One of the biggest problems often tackled by mean curvature flows is the Isoperi-
metric problem. The Isoperimetric problem asks us to classify the spaces that minimize
perimeter for a given volume (hence the name), the first use of mean curvature flows to
attack this problem was due to Huisken in 1984 [6] who proved it in case of boundaries
of convex domains in Euclidean space, and since then there have been attempts to
push his methods further. More recently, in 2013, Guan and Li [4] constructed a new
normalized flow which allows them to prove the inequality in the case of boundaries
of star-shaped domains in Space forms. Shortly after, in 2018, Guan, Li and Wang
pushed this flow even further which allowed them to prove the result in a certain class
of warped product spaces [5].

Then, concurrently with the writing of this thesis, Li and Pan reframed the tech-
nique in terms of conformal vector fields, allowing them to weaken the assumptions on
the ambient space [11].

This thesis continues the effort to use such flows, together with my collaborator
Joshua Flynn we pushed the flow even further, allowing us to weaken the assumptions
on the ambient space even further and even weaken the star-shapedness assumption,
which was key to all previous results.
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Abrégé
Cette thèse vise à couvrir de manière générale le sujet des flots géométriques, et
plus spécifiquement une variante du flot de courbure moyenne. Le domaine des flots
géométriques utilise des résultats de la théorie des équations aux dérivées partielles
(EDP), plus précisément des EDP paraboliques, pour obtenir de nouvelles perspectives
sur la géométrie riemannienne.

L’un des plus grands défis souvent abordés par les flots de courbures moyennes
est le problème isopérimétrique. Ce problème demande de classer les espaces qui min-
imisent le périmètre pour un volume donné (d’où le nom). La première utilisation des
flots de courbures moyennes pour attaquer ce problème remonte à Huisken en 1984 [6],
qui l’a prouvé dans le cas des frontières de domaines convexes dans l’espace euclidien.
Depuis lors, des tentatives ont été faites pour pousser ses méthodes plus loin. Plus
récemment, en 2013, Guan et Li [4] ont construit un nouveau flot normalisé qui leur
a permis de prouver l’inégalité dans le cas de frontières de domaines en forme d’étoile
dans les formes spatiales. Peu de temps après, en 2018, Guan, Li et Wang ont poussé
ce flot encore plus loin, ce qui leur a permis de prouver le résultat dans une certaine
classe d’espaces de produits déformés [5].

Puis, simultanément à la rédaction de cette thèse, Li et Pan ont reformulé la tech-
nique en termes de champs vectoriels conformes, ce qui leur a permis de relâcher les
hypothèses sur l’espace ambiant [11].

Cette thèse poursuit l’effort d’utiliser de tels écoulements, avec mon collaborateur
Joshua Flynn, nous avons poussé le flot encore plus loin, nous permettant de relâcher
encore davantage les hypothèses sur l’espace ambiant et même affaiblir l’hypothèse de
domaines en forme d’étoile, qui était cruciale pour tous les résultats précédents.

ii



Acknowledgements
First I would like to thank my supervisor, Professor Pengfei Guan, for his regular as-
sistance both before and after the start of my Masters program. He was always there
to help me understand concepts I would otherwise spend weeks grappling with.

Secondly, I would like to thank my collaborator, Doctor Joshua Flynn, without
whom this project would have never happened. Bouncing ideas off one another was one
of the best parts of my Masters.

I would also like to thank my good friends Sammir Rahman, William Holman-
Bissegger, Jenny Xu, Dao-Chen Yuan, Viet Nguyen, Margaret Zhou, Tiffany Yong,
Sam Zeitler, Bart Syroka, Jessie Meanwell, Aaron Shalev, Michael Cimino as well as
the whole of the graduate community at McGill, for making my last year at McGill the
best year of my life.

Finally I would like to thank my family, and especially my mom, for always being
there to help and support me whenever I would feel down and lost.

iii



Contribution
This thesis and each chapter within was written solely by myself, with occasional as-
sistance from colleagues regarding phrasing. The body of the thesis is largely taken
from the paper co-authored by myself and Joshua Flynn.

iv



Chapter 1
Introduction
1.1 Background on the Isoperimetric Problem
The Isoperimetric Problem asks a seemingly simple question:
Among all regions occupying a given volume which has the least perimeter?

In the simple case of 2 and 3 dimensions we all know that the answer is a circle
and a sphere respectively, and when we extend it to 𝑛 dimensions in Euclidean space,
the answer remains the 𝑛 − 1 dimensional hypersphere, for a large variety of various
proofs in this simple case see [1]. However, if we try to generalize this question to a
more general ambient domain, the problem very quickly becomes intractable.

One of the ways to answer such a question is with the method of geometric flows,
we will start with a shape which will likely not be optimal, and then we will morph it
over time to make it optimal.

The thesis will be split into 3 Chapters,
This first chapter will establish all standard theory of Geometric Analysis used in the
results of this thesis.
The second chapter will discuss the method of geometric flows to solve the Isoperimet-
ric problem, as well as the geometric setting introduced by Li and Pan in [11].
The third chapter introduces a more general setting and extends the results to that
setting too, first by computing the evolution equations for various geometric quantities
and then by proving existence of the flow.

This will all lead to the proof of the following theorem.

Theorem 1.1.1 :  Let 𝑁  be an ambient manifold admitting a conformal vector
field 𝑋 and a foliation ℱ, such that both are compatible (see Section 3.2) and
satisfy Assumptions 3.2.1. Then the leaves 𝑆𝛼 of the foliation ℱ are the Isoperi-
metric profile of the class of all hypersurfaces satisfying ⟨𝑋, 𝜈⟩ > 0.

1.2 Concepts and Notation
This document assumes general knowledge of differential and Riemannian geometry,
see [9] and [10] for great introductions, respectively.

For the rest of this document we will use the following notation, 𝑁  is an 𝑛 +
1 dimensional Riemannian manifold with metric 𝑔 within which we have a compact
domain Ω with boundary 𝜕Ω = 𝑀  such that 𝐹 : 𝑀 → 𝑁  is an embedding making 𝑀
a Riemannian hypersurface. We then set 𝑔 ≔ 𝐹 ∗𝑔 to be the induced metric on 𝑀 . We
will in general identify 𝑀  with its image 𝐹(𝑀) and use the two interchangeably. We
will write 𝔛(𝑁) to the set of surfaces that can be defined as above and call any such
surface any such surface an admissible hypersurface.

In general, tensorial constructions defined on 𝑁  will be written with an overline and
their versions on 𝑀  will be written normally. We will write the covariant derivatives
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on 𝑀  and 𝑁  as ∇ and ∇ respectively. We will write the Laplacian on 𝑁  and 𝑀  as Δ
and Δ respectively. We will use Einstein summation notation for all tensor equations.

Often for a matrix 𝑀𝑖𝑗 we will use the notation 𝑀𝑖𝑗 ≥(>) 0 to denote the fact that
𝑀𝑖𝑗 is positive semi-definite (definite), and similarly for 𝑀𝑖𝑗 ≤(<) 0.

We can use the Riemannian metric 𝑔 to take inner products of tangent vectors
in the same tangent space 𝑇𝑝𝑁 , for tangent vectors 𝑋, 𝑌 ∈ 𝑇𝑝𝑁  we will write this as
⟨𝑋, 𝑌 ⟩. Since the metric 𝑔 is just the restriction of 𝑔 onto 𝑇𝑝𝑀  when we think of it as
a subspace of 𝑇𝑝𝑁 , we will use the same notation ⟨𝑋, 𝑌 ⟩ for 𝑋, 𝑌 ∈ 𝑇𝑝𝑀 .

The Riemannian metric 𝑔 defines with it a Riemannian volume form which we will
call d𝑉 , this form can be restricted to Ω to allow us to define

Volume(Ω) = ∫
Ω

d𝑉 ,

we will often write 𝑉 (𝑀) as our Ω can be determined uniquely an orientation by on
𝑀 . Similarly the metric 𝑔 defines a volume form on 𝑀  which we will call d𝑆, using
which we define

Area(𝑀) = ∫
𝑀

d𝑆.

We will often write 𝐴(𝑀) for brevity. We can now define the Isoperimetric profile of
𝑁  to be the function

𝐼(𝑣) ≔ inf{𝐴(𝑀) : 𝑀 ∈ 𝔛(𝑁) and 𝑉 (𝑀) = 𝑣}.

If for some family of surfaces 𝑆𝛼 we have 𝐼(𝑉 (𝑆𝛼)) = 𝐴(𝑆𝛼) then we will also refer to
{𝑆𝛼} as the Isoperimetric profile, the meaning will be clear from context.

The Isoperimetric Problem now asks us to
1. Show there exists a family of hypersurfaces 𝑆𝛼 ∈ 𝔛(𝑁) which is the Isoperimetric

profile.
2. Characterize this family.

In practice the above problem is extremely difficult so we often restrict ourself to a
subclass of surfaces. For a subclass 𝒵 ⊆ 𝔛(𝑁) the Isoperimetric profile of 𝒵 is the
function

𝐼(𝑣) ≔ inf{𝐴(𝑀) : 𝑀 ∈ 𝒵 and 𝑉 (𝑀) = 𝑣}

and the same questions can be asked of this case.
We will now start to build up the concepts that allow us to solve this problem.

1.3 Riemannian Geometry
Recall that since 𝑀  is the boundary of a manifold it must be orientable, it thus has a
canonical ‘outward’ pointing unit normal vector field, which we will call 𝜈.

Working with Riemannian geometry is almost always easier when done with coor-
dinates. In extrinsic geometry, there are two coordinate systems that we will be using
repeatedly so we will list some of their properties.
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Proposition 1.3.1 :  Let 𝑀  be a Riemannian manifold, at any point 𝑝 there
exists a chart (𝑈, 𝜑) with the property that the frame

𝑒𝑖 =
𝜕

𝜕𝑥𝑖

forms an orthonormal basis at the point 𝑝. These are called orthonormal coor-
dinates.

Then we define the second fundamental form ℎ to be the bilinear form given by

ℎ(𝑋, 𝑌 ) = ⟨𝑋, ∇𝑌 𝜈⟩.

This second fundamental form encodes within itself how the manifold 𝑀  lies inside 𝑁 ,
it also carries with it a number of useful properties, the most important of which is
that it is symmetric, see [10, p. 227] for details. Also of much importance is the trace of
this form, taken with respect to the metric, which we write as 𝐻 = ℎ𝑖𝑖, which is called
the mean curvature. Also its eigenvalues 𝜅𝑖 taken with respect to the metric are called
principle curvatures.

Let us write up some properties of the second fundamental form.

Proposition 1.3.2 :  Let 𝑒𝑖 be an orthonormal frame at 𝑝, the following are true:

1. ℎ can be written in coordinates as ℎ𝑖𝑗 = ⟨𝑒𝑖, ∇𝑒𝑗
𝜈⟩.

2. ∇𝑖𝜈 = ℎ𝑖𝑗𝑒𝑗.
3. ∇𝑖𝑒𝑗 = −ℎ𝑖𝑗𝜈.
4. If 𝑓 is a function 𝑁 → ℝ, then Δ𝑓 = Δ𝑓 + Hess𝑓(𝜈, 𝜈) + 𝐻𝜈(𝑓).

Proof :  (a) is directly from definition, to see (b) note that {𝑒1, …, 𝑒𝑛} ∪ {𝜈} form
a basis for the tangent space 𝑇𝑝𝑀  and thus we have

∇𝑖𝜈 = 𝑎𝑗𝑒𝑗 + 𝑏𝜈

for some coefficients 𝑎𝑗, 𝑏 ∈ ℝ. But now consider,

0 = ∇𝑗⟨𝜈, 𝜈⟩ = 2⟨∇𝑗𝜈, 𝜈⟩ = 2𝑏

and so we have 𝑏 = 0. We then get,

𝑎𝑗 = ⟨∇𝑖𝜈, 𝑒𝑗⟩ = ℎ𝑖𝑗

proving the claim.
Now for (c) we note first that ∇𝑋𝑌 = 𝜋(∇𝑌 𝑋) for 𝑋, 𝑌 ∈ 𝑇𝑝𝑀  where 𝜋 is

the orthogonal projection to 𝑇𝑝𝑀 , see, for instance, [7, p. 223]. This will mean
that since 𝑒𝑖 are orthonormal then
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𝜋(∇𝑖𝑒𝑗) = ∇𝑖𝑒𝑗 = 0

for all 𝑖, 𝑗 and so ∇𝑖𝑒𝑗 = 𝑏𝑖𝑗𝜈 for some matrix 𝑏 of coefficients. Now we have

0 = ∇𝑖⟨𝑒𝑗, 𝜈⟩ = ⟨∇𝑖𝑒𝑗, 𝜈⟩ + ⟨𝑒𝑗, ∇𝑖𝜈⟩ = 𝑏𝑖𝑗 + ℎ𝑖𝑗

which proves the claim.
Finally for (d), we have

Δ𝑓 = ⟨∇𝑖∇𝑓, 𝑒𝑖⟩ + ⟨∇𝜈∇𝑓, 𝜈⟩ = ∇𝑖⟨∇𝑓, 𝑒𝑖⟩ − ⟨∇𝑓, ∇𝑖𝑒𝑖⟩ + ⟨∇𝜈∇, 𝜈⟩

= ∇𝑖⟨∇𝑓, 𝑒𝑖⟩ − ⟨∇𝑓, −𝐻𝜈⟩ + ⟨∇𝜈∇, 𝜈⟩

= Δ𝑓 + 𝐻𝜈(𝑓) + ⟨∇𝜈∇, 𝜈⟩

□

Remark : We will also use the notation 𝐴(𝑋) to mean the endomorphism satis-
fying

ℎ(𝑋, 𝑌 ) = ⟨𝐴(𝑋), 𝑌 ⟩

which is given in coordinates by 𝐴𝑖
𝑗 = 𝑔𝑖𝑘ℎ𝑘𝑗 and we will also use the notation

|𝐴|2 to denote the squared norm of ℎ or 𝐴.

We will also need another well known geometric identity,

Lemma 1.3.3 (Codazzi Equation):  We have for any 𝑋, 𝑌 , 𝑍 ∈ 𝑇𝑝𝑀

Rm(𝑋, 𝑌 , 𝑍, 𝜈) = −(∇𝑋ℎ)(𝑌 , 𝑍) + (∇𝑌 ℎ)(𝑋, 𝑍)

in particular in coordinates we have

Rm𝑖𝑗𝑘𝜈 = −∇𝑖ℎ𝑗𝑘 + ∇𝑗ℎ𝑖𝑘

Proof :  See [13, p. 93], note that some references have a similar equation of oppo-
site sign due to a difference in defining the second fundamental form. □

1.4 Conformal Vector Fields
A conformal vector field is a vector field 𝑋 with the property that ℒ𝑋𝑔 = 2𝜑𝑔, where
𝜑 is any smooth function called the conformal factor of 𝑋. The Lie derivative is a little
hard to work with for our purposes so we will follow the calculations of [2] to obtain
better formulations for the properties of conformal vector fields
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Proposition 1.4.1 :  Let 𝑋 be a vector field on 𝑁 , then for any 𝑌 , 𝑍 ∈ 𝑇𝑝𝑁
we have

2⟨∇𝑌 𝑋, 𝑍⟩ = (ℒ𝑋𝑔)(𝑌 , 𝑍) + d𝜂(𝑌 , 𝑍)

where 𝜂 is the dual one form to 𝑋 defined by 𝜂(𝑍) = ⟨𝑋, 𝑍⟩

Proof :  We have by Koszul’s formula ([10, p. 123])

2⟨∇𝑌 𝑋, 𝑍⟩ = 𝑌 (⟨𝑋, 𝑍⟩) + 𝑋(⟨𝑌 , 𝑍⟩) − 𝑍(⟨𝑋, 𝑌 ⟩)
−⟨[𝑋, 𝑌 ], 𝑍⟩ − ⟨[𝑌 , 𝑍], 𝑋⟩ − ⟨[𝑋, 𝑍], 𝑌 ⟩

= ℒ𝑋(⟨𝑌 , 𝑍⟩) + ℒ𝑌 (𝜂(𝑍)) − ℒ𝑍(𝜂(𝑌 ))
−⟨𝑍, ℒ𝑋𝑌 ⟩ − 𝜂(ℒ𝑌 𝑍) − ⟨𝑌 , ℒ𝑋𝑍⟩

= (ℒ𝑋𝑔)(𝑌 , 𝑍) + ℒ𝑌 (𝜂(𝑍)) − ℒ𝑍(𝜂(𝑌 )) − 𝜂(ℒ𝑌 𝑍)
= (ℒ𝑋𝑔)(𝑌 , 𝑍) + (ℒ𝑌 𝜂)(𝑍) − ℒ𝑍(𝜂(𝑌 ))

Now we can use Cartan’s magic formula ([9, p. 372]) applied to the second term
to get

2⟨∇𝑌 𝑋, 𝑍⟩ = (ℒ𝑋𝑔)(𝑌 , 𝑍) + d𝜂(𝑌 , 𝑍) + d(𝜂(𝑌 ))(𝑍) − ℒ𝑍(𝜂(𝑌 ))
= (ℒ𝑋𝑔)(𝑌 , 𝑍) + d𝜂(𝑌 , 𝑍)

□

From this we see that an equivalent characterization of a Conformal vector field is
2⟨∇𝑌 𝑋, 𝑍⟩ = 2𝜑⟨𝑌 , 𝑍⟩ + d𝜂(𝑌 , 𝑍)

We now define the skew-symmetric endomorphism 𝜓 by

d𝜂(𝑌 , 𝑍) = 2⟨𝜓𝑌 , 𝑍⟩

This endomorphism is then called the associated tensor field of 𝑋, and with it we can
rewrite the above equation as

⟨∇𝑌 𝑋, 𝑍⟩ = 𝜑⟨𝑌 , 𝑍⟩ + ⟨𝜓𝑌 , 𝑍⟩.

Note that this is also the decomposition of the ∇𝑋 into its symmetric and anti-sym-
metric parts, that is

Sym(∇𝑋) = 𝜑𝑔 and ASym(∇𝑋) = ⟨𝜓(⋅), ⋅⟩

In the special case that 𝜑 = 0 we call 𝑋 a Killing vector field.
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Definition 1.4.1 :  Given a fixed vector field 𝑋 on 𝑁  we define the support func-
tion 𝑢𝑋 on 𝑀  by

𝑢𝑋 ≔ ⟨𝑋, 𝜈⟩

where 𝜈 is the normal vector to 𝑀 .

To see why conformal vector fields are so useful in the study of the Isoperimetric in-
equality, we will now derive a key result that was the basis of the results by Guan, Li
and Wang and will also be the basis of the results in this thesis.

Lemma 1.4.2 (Conformal Integral Identities):  Let 𝑀 ⊆ 𝑁  be an admissible hy-
persurface as defined above, and let 𝑋 be a conformal vector field on 𝑁  with
conformal factor 𝜑, the following identities hold

∫
𝑀

(𝑛𝜑 − 𝐻𝑢) d𝑆 = 0

and

∫
𝑀

𝐻(𝑛𝜑 − 𝐻𝑢) d𝑆 =
𝑛

𝑛 − 1
∫

𝑀
Ric(𝜈, 𝑋 − 𝑢𝜈) d𝑆 −

1
𝑛

∫
𝑀

𝑢 ∑
𝑖<𝑗

(𝜅𝑖 − 𝜅𝑗)
2 d𝑆

where 𝑢 = ⟨𝑋, 𝜈⟩ is called the support function.

Proof :  First we will define the vector field 𝑌 = 𝑋 − 𝑢𝜈, which is the projection
of 𝑋 onto the tangent space of 𝑀 . Now consider the divergence of 𝑌  on 𝑀 , for
an orthonormal frame 𝑒𝑖 of 𝑀  we have

div𝑀(𝑌 ) = tr(∇𝑗⟨𝑌 , 𝑒𝑖⟩) = tr(∇𝑗⟨𝑋, 𝑒𝑖⟩) = tr(⟨∇𝑗𝑋, 𝑒𝑖⟩ + ⟨𝑋, ∇𝑗𝑒𝑖⟩).

Now we combine the fact that 𝑋 is a conformal vector field and the fact that the
trace of an endomorphism is the same as the trace of its symmetrization, giving
us that

tr(⟨∇𝑗𝑋, 𝑒𝑖⟩) = tr((∇𝑋)
𝑗𝑖

) = tr(Sym(∇𝑋)
𝑖𝑗

) = tr(𝜑𝑔𝑖𝑗)

Now knowing that in our coordinates 𝑔𝑖𝑗 = 𝛿𝑖𝑗 and that the trace of 𝛿𝑖𝑗 is dim 𝑀
we get

div𝑀(𝑌 ) = tr(𝜑𝑔 + ⟨𝑋, −ℎ𝑖𝑗𝜈⟩) = 𝑛𝜑 − 𝐻𝑢

then since 𝑀  is closed we have by divergence theorem

6



∫
𝑀

div𝑀(𝑌 ) d𝑆 = ∫
𝑀

(𝑛𝜑 − 𝐻𝑢) d𝑆 = 0

Secondly we will consider the vector field 𝑌 ′ = (𝐻𝐼 − 𝐴)𝑌 , its divergence gives us

div𝑀 𝑌 ′ = tr(∇𝑗(𝐻𝐼 − 𝐴)𝑖
𝑘𝑌 𝑘) = tr(∇𝑗((𝐻𝐼 − 𝐴)𝑖

𝑘⟨𝑋, 𝑒𝑘⟩))

= tr(⟨𝑋, 𝑒𝑘⟩∇𝑗(𝐻𝐼 − 𝐴)𝑖
𝑘 + (𝐻𝐼 − 𝐴)𝑖

𝑘∇𝑗⟨𝑋, 𝑒𝑘⟩)

= tr(⟨𝑋, 𝑒𝑘⟩(∇𝑗ℎℓℓ𝛿𝑖
𝑘 − ∇𝑗ℎ𝑖𝑘) + (𝐻𝐼 − 𝐴)𝑖

𝑘(𝜑𝛿𝑗𝑘 − 𝑢ℎ𝑗𝑘))

= ⟨𝑋, 𝑒𝑘⟩(∇𝑘ℎℓℓ − ∇𝑖ℎ𝑗𝑘) + 𝐻(𝑛𝜑 − 𝐻𝑢) − 𝐻𝜑 + 𝑢|𝐴|2

= ⟨𝑋, 𝑒𝑘⟩(∇𝑘ℎℓℓ − ∇ℓℎℓ𝑘) + 𝐻((𝑛 − 1)𝜑 − 𝐻𝑢) + 𝑢|𝐴|2

We now use the Codazzi equation to get

div𝑀 𝑌 ′ = ⟨𝑋, 𝑒𝑘⟩ Rmℓ𝑘ℓ𝜈 +𝐻((𝑛 − 1)𝜑 − 𝐻𝑢) + 𝑢|𝐴|2

= ⟨Rm(𝑒ℓ, 𝑌 )𝑒ℓ, 𝜈⟩ + 𝐻((𝑛 − 1)𝜑 − 𝐻𝑢) + 𝑢|𝐴|2

now swapping the last two indices on the Riemann tensor flips its sign gives us
the Ricci tensor, then applying divergence theorem once more gives us

∫
𝑀

𝐻((𝑛 − 1)𝜑 − 𝐻𝑢) d𝑆 = ∫
𝑀

Ric(𝜈, 𝑌 ) d𝑆 − ∫
𝑀

𝑢|𝐴|2 d𝑆

𝑛 − 1
𝑛

∫
𝑀

𝐻(𝑛𝜑 −
𝑛

𝑛 − 1
𝐻𝑢) d𝑆 = ∫

𝑀
Ric(𝜈, 𝑌 ) d𝑆 − ∫

𝑀
𝑢|𝐴|2 d𝑆

∫
𝑀

𝐻(𝑛𝜑 −
𝑛

𝑛 − 1
𝐻𝑢) d𝑆 =

𝑛
𝑛 − 1

∫
𝑀

Ric(𝜈, 𝑌 ) d𝑆 − ∫
𝑀

𝑛
𝑛 − 1

𝑢|𝐴|2 d𝑆

∫
𝑀

𝐻(𝑛𝜑 − 𝐻𝑢) d𝑆 =
𝑛

𝑛 − 1
∫

𝑀
Ric(𝜈, 𝑌 ) d𝑆 − ∫

𝑀

𝑢(𝑛|𝐴|2 − 𝐻2)
𝑛 − 1

d𝑆

∫
𝑀

𝐻(𝑛𝜑 − 𝐻𝑢) d𝑆 =
1

𝑛 − 1
(∫

𝑀
𝑛 Ric(𝜈, 𝑌 ) d𝑆 − ∫

𝑀
𝑢 ∑

𝑖<𝑗
(𝜅𝑖 − 𝜅𝑗)

2 d𝑆)

□

1.5 Partial Differential Equations
The Partial Differential Equations (PDEs) we will be dealing with most in this thesis
are parabolic PDEs, so we will dedicate this section to going over their properties.

Let 𝑇 ∈ (0, ∞] and 𝑈 ⊆ 𝑀  be a smooth open domain, a function 𝑢 : [0, 𝑇 ] × 𝑈  is
said to solve a quasi-linear parabolic PDE if it satisfies a differential equation of
the form

𝜕𝑡𝑢(𝑥, 𝑡) = 𝑎𝑖𝑗(𝑥, 𝑡, 𝑢, ∇𝑢)∇𝑖∇𝑗𝑢 + 𝐺(𝑥, 𝑡, 𝑢, ∇𝑢) (1.1)

where 𝑎 is symmetric positive definite matrix depending smoothly on its inputs and 𝐺
is a function depending smoothly on its inputs.

The equation is said to be in divergence form if it can be written instead as
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𝜕𝑡𝑢(𝑥, 𝑡) = ∇𝑖(𝑏𝑖𝑗(𝑥, 𝑡, 𝑢, ∇𝑢)∇𝑗𝑢) + 𝐺(𝑥, 𝑡, 𝑢, ∇𝑢) (1.2)

We say that the PDE in (1.1) is uniformly parabolic if there exist constants 𝐴, 𝐵 such
that

𝐴|𝑣|2 ≤ 𝑎𝑖𝑗𝑣𝑖𝑣𝑗 ≤ 𝐵|𝑣|2

for all 𝑣 ∈ 𝑇𝑝𝑀  everywhere.
The most important tool in the analysis of parabolic PDEs is the maximum prin-

ciple, a form of which we will now prove.

Proposition 1.5.1 :  Assume 𝑢 solves (1.1) and that at a spacial maximum of 𝑢
the inequality 𝐺(𝑥, 𝑡, 𝑢, ∇𝑢) < 𝑓(𝑡) holds, then we have for all 𝑡 ∈ [0, 𝑇 ]

sup
𝑥∈𝑈

𝑢(𝑥, 𝑡) ≤ sup
𝑥∈𝑈

𝑢(𝑥, 0) + ∫
𝑡

0
𝑓(𝑠) d𝑠 (1.3)

if instead we have 𝐺(𝑥, 𝑡, 𝑢, ∇𝑢) < 𝐵𝑢(𝑥, 𝑡) for some constant 𝐵 ∈ ℝ then we have

sup
𝑥∈𝑈

𝑢(𝑥, 𝑡) ≤ (sup
𝑥∈𝑈

𝑢(𝑥, 0))𝑒𝐵𝑡 (1.4)

Proof :  First for (1.3) consider the auxiliary function

𝑣(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − ∫
𝑡

0
𝑓(𝑠) d𝑠 − sup

𝑥∈𝑈
𝑢(𝑥, 0)

which then solves

𝜕𝑡𝑣(𝑥, 𝑡) = 𝑎𝑖𝑗(𝑥, 𝑡, 𝑣, ∇𝑣)∇𝑖∇𝑗𝑣 + 𝐺(𝑥, 𝑡, 𝑣, ∇𝑣) − 𝑓(𝑡)

and also 𝑣(𝑥, 0) ≤ 0 on 𝑈 . Now assume that (1.3) fails to hold, that is, at some
point (𝑦, 𝑡), we have

𝑢(𝑦, 𝑡) > sup
𝑥∈𝑈

𝑢(𝑥, 0) + ∫
𝑡

0
𝑓(𝑠) d𝑠

then we also have

𝑣(𝑦, 𝑡) > 0

and so the maximum of 𝑣 is positive. But now let (𝑧, 𝑡′) be said maximum, we
have that the maximum is either on the interior of [0, 𝑇 ] × 𝑈  or on the boundary
{𝑇} × 𝑈 , it cannot be on {0} × 𝑈  since there we have 𝑣(𝑥, 0) ≤ 0. Thus we have
that

∇𝑣(𝑧, 𝑡′) = 0, ∇𝑖∇𝑗𝑣(𝑧, 𝑡′) ≤ 0 as well as 𝜕𝑡𝑣(𝑧, 𝑡′) ≥ 0

and so
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0 ≤ 𝜕𝑡𝑣(𝑥, 𝑡) = 𝑎𝑖𝑗(𝑥, 𝑡, 𝑣, ∇𝑣)∇𝑖∇𝑗𝑣 + 𝐺(𝑥, 𝑡, 𝑣, ∇𝑣) − 𝑓(𝑡) < 0

this is a contradiction.
For (1.4) we use an identical argument except that we instead use

𝑣(𝑥, 𝑡) = 𝑒−𝐵𝑡𝑢(𝑥, 𝑡) − sup
𝑥∈𝑈

𝑢(𝑥, 0)

□

The second most important tool is short-time existence, it will be extremely important
as we want to use the derivatives of geometric quantities to characterize them, so we
need the flow to exists for some non-zero amount of time.

Theorem 1.5.2 :  If 𝑢(0, ⋅) is a smooth initial condition and (1.1) is uniformly
parabolic then (1.1) has a solution 𝑢 for some time 𝑇 > 0 which is smooth on
[0, 𝑇 ). Furthermore, if there is an apriori uniform bound

‖𝑢(𝑡, ⋅)‖𝐶1+𝑟 ≤ 𝐾 for all 𝑡 ∈ [0, 𝑠)

for some constants 𝑟 > 0, 𝐾 > 0, then the solution exists on [0, 𝑠) and satisfies
a bound

‖𝑢(𝑡, ⋅)‖𝐶2+𝑟 ≤ 𝐵(𝐾)

where 𝐵 is some constant depending on 𝐾.

Proof :  Proposition 8.2 in [15, p. 411] for the first statement, and Theorem 4.28
in [12, p. 77] for the second statement. □

The last PDE results which we will need are the famous Nash-Moser estimates, for full
details see [15, 8].

Theorem 1.5.3 (Nash-Moser estimates):  Let 𝑢 be a solution to uniformly par-
abolic (1.1) on [0, 𝑇 ) with smooth initial condition, if we know that

‖𝑢(𝑡, ⋅)‖𝐶0(𝑈) < 𝑐1 and ‖∇𝑢(𝑡, ⋅)‖𝐶0(𝑈) ≤ 𝑐2 on [0, 𝑇 )

then on any subdomain 𝑈 ′ with 𝑈 ′ ⊆ 𝑈  we have for some 𝑟 > 0 depending only
𝑐1, 𝑐2, 𝐴, 𝐵 that

‖𝑢(𝑡, ⋅)‖𝐶1+𝑟(𝑈′) ≤ 𝐶(𝑐1, 𝑐2, 𝐴, 𝐵, 𝑑)

where 𝑑 is the distance between 𝜕𝑈 ′ and 𝜕𝑈 .

Proof :  We will use Theorem 1.1 in [8, p. 517], it is enough to show that the
functions
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𝜕𝑥𝑘𝑎𝑖𝑗(𝑥, 𝑡, 𝑣, 𝑝), 𝜕𝑣𝑎𝑖𝑗(𝑥, 𝑡, 𝑣, 𝑝), 𝜕𝑝𝑘𝑎𝑖𝑗(𝑥, 𝑡, 𝑣, 𝑝), 𝐺(𝑥, 𝑡, 𝑣, 𝑝)

are uniformly bounded on the set

{(𝑥, 𝑡, 𝑣, 𝑝) : 𝑥 ∈ 𝑈, |𝑣| ≤ 𝑐1 and ‖𝑝‖ ≤ 𝑐2}.

But this is immediate since these functions depend smoothly on their inputs and
thus are continuous and so since the set above is compact they must attain their
maximum inside that set and thus they are bounded by that maximum. □

1.6 Evolving Hypersurfaces
Now that we are familiar with geometry and PDEs we can start to use them together.
This is done by use of geometric flows.

Definition 1.6.1 :  Let 𝐹 : 𝑀 → 𝑁  be an admissible hypersurface. Let 𝐹𝑡 be a
function 𝐹 : 𝐼 × 𝑀 → 𝑁 , where 𝐼 = [0, 𝑇 ) for some fixed 𝑇  and 𝐹0 = 𝐹  on 𝑀 .
𝐹𝑡 is called a normal flow with normal velocity 𝑓 if

𝜕𝑡𝐹𝑡(𝑥) = 𝑓(𝑡, 𝑥)𝜈(𝑥)

where 𝜈(𝑥) is the normal vector to 𝐹𝑡(𝑀) at 𝐹𝑡(𝑥).

Remark :  We will often refer to 𝐹𝑡(𝑀) as 𝑀𝑡 for brevity. Additionally many
constructions on 𝑀𝑡 will be denoted without explicit reference to 𝑡, i.e 𝑔 instead
of 𝑔(𝑡), even though the metric of 𝑀𝑡 will depend on 𝑡. Keep in mind that any
construction of the metric will also depend on 𝑡.

As a manifold flows it’s various properties, both local and global, will change, the equa-
tions governing these changes are called evolution equations. For ambient objects, i.e.
those objects that are simply restricted to the hypersurface, this evolution is simple.

Proposition 1.6.1 :  Let 𝑇  be any tensor on 𝑁 , then we write 𝑇 |𝑀𝑡
 to denote

the orthogonal projection of 𝑇  onto 𝑇𝑝𝑀𝑡. We then have along the flow 𝑀𝑡

𝜕𝑡(𝑇 |𝑀𝑡
) = (𝑓∇𝜈𝑇)|𝑀𝑡

For objects that depend on the induced metric on 𝑀𝑡, these objects depend on the
embedding of a whole neighborhood of a point, so their evolution equations are more
complicated, but we can still compute them. We will first start with the most important
evolving tensor, the metric.
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Remark :  We will also adapt two important coordinate systems, we will be work-
ing in normal coordinates around a point 𝑝 ∈ 𝑀  which will call these coordinates
𝑥𝑖, we will denote their partial derivatives 𝜕𝑖 or 𝑒𝑖 and the covariant derivatives
with respect to the induced metric ∇𝑖. Secondly we will also have normal coor-
dinates at 𝐹(𝑝) ∈ 𝑁 , we will call these coordinates 𝑦𝑖, their partials 𝜕𝑦𝑖

 or 𝑒𝑖 and
the covariant derivatives ∇𝑖. Note that we can rotate the normal coordinates 𝑦𝑖

so that they align with 𝑥𝑖, in the sense that at the point 𝑝

𝜕𝑖𝐹 = 𝑒𝑖, ∀𝑖 ≤ 𝑛 and 𝜈 = 𝑒𝑛+1

Since we are working in normal coordinates, note that the Christoffel symbols Γ
and Γ both vanish at 𝑝, but their derivatives might not, so we have to be very
careful when working with these expressions.

Proposition 1.6.2 :  The evolution equation for the metric is

𝜕𝑡𝑔 = 2𝑓ℎ

Proof :  We prove by using Fermi coordinates, recall that we define the metric as
the restriction of the ambient metric like so

𝑔𝑖𝑗 = ⟨𝜕𝑖𝐹, 𝜕𝑗𝐹⟩,

and thus we can differentiate in the ambient space to get an expression for the
time derivative of the restriction

𝜕𝑡𝑔𝑖𝑗 = 𝜕𝑡⟨𝜕𝑖𝐹, 𝜕𝑗𝐹⟩ = ⟨𝜕𝑡𝜕𝑖𝐹, 𝜕𝑗𝐹⟩ + ⟨𝜕𝑖𝐹, 𝜕𝑡𝜕𝑗𝐹⟩

= ⟨𝜕𝑖(𝑓𝜈), 𝑒𝑗⟩ + ⟨𝑒𝑖, 𝜕𝑗(𝑓𝜈)⟩

= ⟨∇𝑖(𝑓𝜈), 𝑒𝑗⟩ + ⟨𝑒𝑖, ∇𝑗(𝑓𝜈)⟩ because Christoffel symbols vanish

= ⟨𝑓∇𝑖𝜈 + 𝜈∇𝑖𝑓, 𝑒𝑗⟩ + ⟨𝑒𝑖, 𝑓∇𝑗𝜈 + 𝜈∇𝑗𝑓⟩

= 𝑓⟨∇𝑖𝜈, 𝑒𝑗⟩ + 𝑓⟨𝑒𝑖, ∇𝑗𝜈⟩ by orthogonality

= 𝑓⟨ℎ𝑘𝑖𝑒𝑘, 𝑒𝑗⟩ + 𝑓⟨𝑒𝑖, ℎ𝑘𝑗𝑒𝑘⟩ = 𝑓ℎ𝑗𝑖 + 𝑓ℎ𝑖𝑗 = 2𝑓ℎ𝑖𝑗

where we used Proposition 1.3.2 in the final step. □

Now that we know how the metric evolves there are some immediate consequences that
we can show.
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Proposition 1.6.3 :  The evolution equations for 𝜈, d𝑆 are

𝜕𝑡𝜈 = −∇𝑓 and 𝜕𝑡 d𝑆 = 𝑓𝐻 d𝑆

respectively.

Proof :  First note that 𝜕𝑡⟨𝜈, 𝜈⟩ = 0 and so we have that in Fermi coordinates

𝜕𝑡𝜈 = ⟨𝜕𝑡𝜈, 𝑒𝑗⟩𝑒𝑗

then we also have that for any 𝑗

0 = 𝜕𝑡⟨𝜈, 𝑒𝑗⟩ = ⟨𝜕𝑡𝜈, 𝑒𝑗⟩ + ⟨𝜈, 𝜕𝑡𝑒𝑗⟩

and so

𝜕𝑡𝜈 = −⟨𝜈, 𝜕𝑡𝑒𝑗⟩𝑒𝑗 = −⟨𝜈, 𝜕𝑡𝜕𝑗𝐹⟩𝑒𝑗 = −⟨𝜈, 𝜕𝑗(𝑓𝜈)⟩𝑒𝑗 = −⟨𝜈, 𝑓𝜕𝑗𝜈 + 𝜈𝜕𝑗𝑓⟩𝑒𝑗

= −⟨𝜈, 𝑓ℎ𝑖𝑗𝑒𝑖 + 𝜈∇𝑗𝑓⟩𝑒𝑗 apply orthogonality of 𝜈 and 𝑒𝑖

= −⟨𝜈, 𝜈∇𝑗𝑓⟩𝑒𝑗 = −∇𝑗𝑓𝑒𝑗 = −∇𝑓.

Note that on line 2 we also implicitly used the fact that the Christoffel symbols
vanish in normal coordinates around the point 𝑝.

For the volume form, we know that d𝑆 = √det(𝑔) d𝑥1… d𝑥𝑛 and so we can
compute

𝜕𝑡(d𝑆) = 𝜕𝑡(√det(𝑔)) d𝑥1… d𝑥𝑛.

Now recall that for a parametrized matrix 𝐴(𝑡) we have

𝜕𝑡 det(𝐴(𝑡)) = det(𝐴(𝑡)) tr(𝜕𝑡𝐴(𝑡))

and so

𝜕𝑡(√det(𝑔)) d𝑥… d𝑥 =
1

2√det(𝑔)
𝜕𝑡(det(𝑔)) d𝑥1… d𝑥𝑛

= √det(𝑔) tr(𝜕𝑡(𝑔𝑖𝑗)) d𝑥1… d𝑥𝑛

= √det(𝑔) tr(𝑓ℎ𝑖𝑗) d𝑥1… d𝑥𝑛

= 𝑓𝐻 d𝑆

□

Now that we have evolution equation for some local properties, we can extend those to
evolution equation of global quantities.
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Proposition 1.6.4 :  We have the following evolution equations for 𝑉 (𝑀𝑡) and
𝐴(𝑀𝑡),

𝜕𝑡𝑉 (𝑀𝑡) = ∫
𝑀𝑡

𝑓 d𝑆, 𝜕𝑡𝐴(𝑀𝑡) = ∫
𝑀𝑡

𝐻𝑓 d𝑆

Proof :  First for the volume, extend the vector field 𝑓𝜈 to a global vector 𝑌  field
on 𝑁 . Now by classic geometry theorems [9, p. 425] we get that the change in
volume for a domain evolving under a global vector field is

𝜕𝑡𝑉 (𝑀𝑡) = ∫
Ω

div 𝑌 d𝑉 .

Now by the divergence theorem we get that

∫
Ω

div 𝑌 d𝑉 = ∫
𝑀𝑡

⟨𝑌 , 𝜈⟩ d𝑆,

but we know that 𝑌 = 𝑓𝜈 along 𝑀𝑡 so

𝜕𝑡𝑉 (𝑀𝑡) = ∫
𝑀𝑡

𝑓 d𝑆.

For the area, we get

𝜕𝑡𝐴(𝑀𝑡) = 𝜕𝑡 ∫
𝑀𝑡

d𝑆 = ∫
𝑀𝑡

𝜕𝑡 d𝑆 = ∫
𝑀𝑡

𝑓𝐻 d𝑆.

□

We have one final evolution equation to find, and that is the one for the second funda-
mental form ℎ𝑖𝑗.

Proposition 1.6.5 :  We have the following evolution equations for ℎ𝑖𝑗

𝜕𝑡ℎ𝑖𝑗 = −∇𝑖∇𝑗𝑓 + 𝑓(ℎ𝑖ℓ𝑔ℓ𝑘ℎ𝑘𝑗 − 𝑅𝜈
𝜈𝑖𝑗)

Proof :  Recall that ℎ𝑖𝑗 = ⟨𝑒𝑖, ∇𝑗𝜈⟩ = ⟨𝜕𝑖𝐹, ∇𝑗𝜈⟩. Then since 𝜈 is orthogonal to
all 𝜕𝑖𝐹 ’s we get

0 = ∇𝑗⟨𝜕𝑖𝐹, 𝜈⟩ = ⟨𝜕𝑖𝐹, ∇𝑗𝜈⟩ + ⟨∇𝑗𝜕𝑖𝐹, 𝜈⟩

and thus

⟨∇𝑗𝜕𝑖𝐹, 𝜈⟩ = −ℎ𝑖𝑗.
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With this in mind we can compute

−𝜕𝑡ℎ𝑖𝑗 = 𝜕𝑡⟨∇𝑗𝜕𝑖𝐹, 𝜈⟩ = ⟨𝜕𝑡∇𝑗𝜕𝑖𝐹, 𝜈⟩ + ⟨𝜕𝑗𝜕𝑖𝐹, 𝜕𝑡𝜈⟩

= ⟨𝜕𝑡(𝜕𝑗𝜕𝑖𝐹 + Γ𝑘
𝜌𝜎𝜕𝑖𝐹 𝜌𝜕𝑗𝐹𝜎𝑒𝑘), 𝜈⟩ + ⟨𝜕𝑗𝜕𝑖𝐹, 𝜕𝑡𝜈⟩

= ⟨𝜕𝑗𝜕𝑖(𝑓𝜈) + (𝜕𝑡Γ
𝑘
𝜌𝜎)(𝜕𝑖𝐹 𝜌𝜕𝑗𝐹𝜎)𝑒𝑘 + Γ𝑘

𝜌𝜎𝜕𝑡(𝜕𝑖𝐹 𝜌𝜕𝑗𝐹𝜎𝑒𝑘), 𝜈⟩

− ⟨𝜕𝑗𝜕𝑖𝐹, ∇𝑓⟩

now the Christoffel symbols vanish at 𝑝, so wherever they appear without a time
derivative they vanish there, we hence get

−𝜕𝑡ℎ𝑖𝑗 = ⟨𝜕𝑗(𝜈𝜕𝑖𝑓 + 𝑓𝜕𝑖𝜈) + (𝑓𝜕𝜈Γ𝑘
𝜌𝜎)(𝜕𝑖𝐹 𝜌𝜕𝑗𝐹𝜎)𝑒𝑘, 𝜈⟩ − ⟨𝜕𝑗𝜕𝑖𝐹, ∇𝑓⟩

= ⟨(𝜕𝑗𝜈)𝜕𝑖𝑓 + (𝜕𝑗𝑓)𝜕𝑖𝜈 + 𝜈(𝜕𝑗𝜕𝑖𝑓) + 𝑓𝜕𝑗(𝜕𝑖𝜈) + (𝑓𝜕𝜈Γ𝜈
𝜌𝜎)(𝜕𝑖𝐹 𝜌𝜕𝑗𝐹𝜎)𝜈, 𝜈⟩

−⟨−ℎ𝑖𝑗𝜈, ∇𝑓⟩

Now using the fact that 𝜈 is orthogonal to any derivation of 𝜈 (since it is a unit
vector), the expression above simplifies to

−𝜕𝑡ℎ𝑖𝑗 = 𝜕𝑖𝜕𝑗𝑓 + 𝑓⟨𝜕𝑗𝜕𝑖𝜈, 𝜈⟩ + 𝑓(𝜕𝜈Γ𝜈
𝜌𝜎)𝜕𝑖𝐹 𝜌𝜕𝑗𝐹𝜎

= 𝜕𝑖𝜕𝑗𝑓 + 𝑓⟨𝜕𝑗(∇𝑖𝜈 − Γ𝑘
𝜌𝜎𝜕𝑖𝐹 𝜌𝜈𝜎𝑒𝑘), 𝜈⟩ + 𝑓(𝜕𝜈Γ𝜈

𝜌𝜎)𝜕𝑖𝐹 𝜌𝜕𝑗𝐹𝜎

= 𝜕𝑖𝜕𝑗𝑓 + 𝑓⟨𝜕𝑗(ℎ𝑖𝑘𝜕𝑘𝐹 − Γ𝑘
𝜌𝜎𝜕𝑖𝐹 𝜌𝜈𝜎𝑒𝑘), 𝜈⟩ + 𝑓(𝜕𝜈Γ𝜈

𝜌𝜎)𝜕𝑖𝐹 𝜌𝜕𝑗𝐹𝜎

= 𝜕𝑖𝜕𝑗𝑓 + 𝑓(𝜕𝜈Γ𝜈
𝜌𝜎)𝜕𝑖𝐹 𝜌𝜕𝑗𝐹𝜎

+ 𝑓⟨ℎ𝑖𝑘𝜕𝑗𝜕𝑘𝐹 + (𝜕𝑗ℎ𝑖𝑘)(𝜕𝑘𝐹) − (𝜕𝑗Γ
𝑘
𝜌𝜎)𝜕𝑖𝐹 𝜌𝜈𝜎𝑒𝑘 − Γ𝑘

𝜌𝜎𝜕𝑗(𝜕𝑖𝐹 𝜌𝑣𝜎𝑒𝑘), 𝜈⟩

but now again the Christoffel symbols vanish and since 𝜈 is orthogonal to all
tangent vectors, the second and fourth term in the inner product vanish and so
we are left with

𝑓⟨ℎ𝑖𝑘𝜕𝑗𝜕𝑘𝐹 − (𝜕𝑗Γ
𝑘
𝜌𝜎)𝜕𝑖𝐹 𝜌𝜈𝜎𝑒𝑘, 𝜈⟩ = −𝑓ℎ𝑖𝑘ℎ𝑗𝑘 − 𝑓(𝜕𝑗Γ

𝜈
𝜌𝜎)𝜕𝑖𝐹 𝜌𝜈𝜎.

Now recall that in orthonormal coordinates the Riemann tensor is given by

𝑅𝑙
𝑖𝑗𝑘 = 𝜕𝑖Γ𝑙

𝑗𝑘 − 𝜕𝑗Γℓ
𝑖𝑘

and so we get

−𝜕𝑡ℎ𝑖𝑗 = 𝜕𝑖𝜕𝑗𝑓 + 𝑓(𝜕𝜈Γ𝜈
𝜌𝜎)𝜕𝑖𝐹 𝜌𝜕𝑗𝐹𝜎 − 𝑓(𝜕𝑗Γ

𝜈
𝜌𝜎)𝜕𝑖𝐹 𝜌𝜈𝜎 − 𝑓ℎ𝑖𝑘ℎ𝑗𝑘

= 𝜕𝑖𝜕𝑗𝑓 − 𝑓ℎ𝑖𝑘ℎ𝑗𝑘 + 𝑓𝑅𝜈
𝜈𝑖𝑗

which then since we are in orthonormal coordinates we know that 𝜕𝑖𝜕𝑗𝑓 = ∇𝑖∇𝑗𝑓 ,
and since the middle term is not tensorial we make it tensorial by contracting
with the metric and so we get the desired result. □
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Corollary 1.6.5.1 :  Immediately from Proposition 1.6.5 we get the following
evolution equation for 𝐻

𝜕𝑡𝐻 = −Δ𝑓 − 𝑓(|𝐴|2 + Ric(𝜈, 𝜈))

Proof :  We have 𝐻 = 𝑔𝑖𝑗ℎ𝑖𝑗 in coordinates so

𝜕𝑡𝐻 = 𝜕𝑡(𝑔𝑖𝑗ℎ𝑖𝑗) = ℎ𝑖𝑗𝜕𝑡(𝑔𝑖𝑗) + 𝑔𝑖𝑗𝜕𝑡(ℎ𝑖𝑗)

= ℎ𝑖𝑗(−2𝑓ℎ𝑖𝑗) + 𝑔𝑖𝑗(−∇𝑖∇𝑗𝑓 + 𝑓(ℎ𝑖𝑘ℎ𝑘𝑗 − 𝑅𝜈
𝜈𝑖𝑗))

= −2𝑓|𝐴|2 − Δ𝑓 + 𝑓(ℎ𝑖𝑘ℎ𝑖𝑘 − 𝑅𝜈
𝜈𝑖𝑖)

= −Δ𝑓 − 𝑓|𝐴|2 − 𝑓 Ric(𝜈, 𝜈)

□

15



Chapter 2
Constrained Geometric Flow Method
With the preliminaries out of the way we can begin to discuss how we can attempt to
attack the Isoperimetric problem. This is formalized in the flow method.

This method was first used by Gage and Hamilton in their curve shortening flow
in ℝ2 [3]. Then in 1984 Huisken extended these methods to the case of convex hyper-
surfaces in ℝ𝑛 [6].

Most recently Guan-Li used instead the constrained flow method to relax the
convexity requirement to star-shapedness [4].

This constrained method highly depends on the Minkowski Identities which allows
us to get a handle on the change in area and in volume along a special class of flows.

Theorem 2.1 (Constrained Flow Method):  Consider two classes of admissible
hypersurfaces 𝒵, 𝒫 such that the following conditions hold.
1. For each hypersurface 𝑀 ∈ 𝒵 we can define a flow 𝑀𝑡 which exists for all time.
2. 𝑉 (𝑀𝑡) is constant and 𝐴(𝑀𝑡) is non-decreasing.
3. The flow converges to a hypersurface 𝑀𝑡 → 𝑀∞ with 𝑀∞ ∈ 𝒫.

Then 𝒫 is the Isoperimetric profile of 𝒵, in the sense that for each 𝑀 ∈ 𝒵 there
is a hypersurface 𝑆 ∈ 𝒫 with

𝑉 (𝑀) = 𝑉 (𝑆) and 𝐴(𝑀) ≥ 𝐴(𝑆)

Proof :  Let 𝑀𝑡 be the flow of 𝑀 . Then 𝑀𝑡 → 𝑆 for some hypersurface 𝑆 ∈ 𝒫
and so

𝑉 (𝑀) = 𝑉 (𝑀𝑡) = lim
𝑡→∞

𝑉 (𝑀𝑡) = 𝑉 (𝑆)

and

𝐴(𝑀) ≥ lim
𝑡→∞

𝐴(𝑀𝑡) = 𝐴(𝑆)

which proves the theorem. □

We will now consider two previous uses of this method that will motivate our use of it
in the third chapter.

2.1 Warped Product Spaces
Warped products are in essence a generalization of the Polar coordinates in ℝ2 so let
us first look at those. The Polar coordinates (𝑟, 𝜃) in ℝ2 are defined implicitly in terms
of standard Euclidean coordinates, through (𝑥, 𝑦) = (𝑟 cos(𝜃), 𝑟 sin(𝜃)), where we have
𝑟 > 0 and −𝜋

2 < 𝜃 < 𝜋
2 . Now the Euclidean metric is given by 𝑔 = d𝑥2 + d𝑦2 and so we

can compute its form in polar coordinates as
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𝑔 = d𝑥2 + d𝑦2 = (d(𝑟 cos 𝜃))2 + (d(𝑟 sin 𝜃))2

= (cos 𝜃 d𝑟 − 𝑟 sin 𝜃 d𝜃)2 + (sin 𝜃 d𝑟 + 𝑟 cos 𝜃 d𝜃)2

= cos2 𝜃 d𝑟2 − 2𝑟 cos 𝜃 sin 𝜃 d𝑟 d𝜃 + 𝑟2 sin2 𝜃 d𝜃2

+ sin2 𝜃 d𝑟2 + 2𝑟 sin 𝜃 cos 𝜃 d𝑟 d𝜃 + 𝑟2 cos2 𝜃 d𝜃2

= d𝑟2 + 𝑟2 d𝜃2

Note that if we instead consider the function (𝑟, 𝜃) → (𝑟 cos(𝜃), 𝑟 sin(𝜃)) as a function
from ℝ+ × 𝑆1 → ℝ2, where 𝑆1 is the unit circle, then this almost gives us a decompo-
sition

𝑔ℝ2 = 𝑔ℝ + 𝑟2𝑔1
𝑆

Note that this is not exactly the case because we first need to project a given vector
down to its components in ℝ and 𝑆1 respectively and then apply the appropriate met-
rics. That is we actually have

𝑔ℝ2 = 𝑔ℝ ∘ 𝜋1 + 𝑔1
𝑆 ∘ 𝜋2

where 𝜋1, 𝜋2 are projections onto the tangent spaces of ℝ and 𝑆1 respectively.
A similar constructions works in higher dimensions, where we have ℝ𝑛 = ℝ+ ×

𝑆𝑛−1.
It is this decomposition that we aim to generalize with the warped product space.

Definition 2.1.1 :  Let (𝑀, 𝑔𝑀) and (𝑁, 𝑔𝑛) be Riemannian manifolds, we can
define a metric on 𝑀 × 𝑁  by

𝑔(𝑥, 𝑦) = 𝑔𝑀(𝑥) ∘ 𝜋1 + 𝑓2(𝑥)𝑔𝑁(𝑦) ∘ 𝜋2,

where 𝑥, 𝑦 are points of 𝑀  and 𝑁  respectively. This is called the warped product
space with the warping factor 𝑓 being a function 𝑓 : 𝑀 → ℝ>0, it is often denoted
𝑀 ×𝑓 𝑁

Note that in practice we will always suppress the projections 𝜋1 and 𝜋2 for clarity.
The most common warped product spaces we see in practice are those of the form

ℝ+ ×𝑓 𝑁  for some 𝑁 , for example the 3 space forms, 𝑆𝑛, ℝ𝑛, ℍ𝑛, are of the form

ℝ+ ×sin 𝑟 𝑆𝑛, ℝ+ ×𝑟 𝑆𝑛, ℝ+ ×sinh 𝑟 𝑆𝑛

respectively.
These spaces carry a lot of nice properties, but the most important one for us is

that they carry a natural conformal vector field.

Proposition 2.1.1 :  Let ℝ+ ×𝑓 𝑁  be a warped space and let 𝑟 be a coordinate
on ℝ+, then the vector field 𝑋 = 𝑓(𝑟)𝜕𝑟 is a conformal vector field with conformal
factor 𝑓 ′(𝑟). Furthermore its associated tensor 𝜓 vanishes.
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Proof :  Let us compute the Lie derivative ℒ𝑋𝑔,

ℒ𝑋𝑔 = ℒ𝑋(𝑑𝑟2 + 𝑓2(𝑟)𝑔2
𝑁) = 2𝑑𝑟ℒ𝑋(𝑑𝑟) + 𝑔2

𝑁ℒ𝑋(𝑓2(𝑟))
= 2𝑑𝑟(𝑑(ℒ𝑋𝑟)) + 2𝑔2

𝑁𝑓2(𝑟)𝑓 ′(𝑟) = 2𝑑𝑟(𝑑𝑓(𝑟)) + 2𝑓 ′(𝑟)𝑓2(𝑟)𝑔2
𝑁

= 2𝑓 ′(𝑟)𝑑𝑟2 + 2𝑓 ′(𝑟)𝑓2(𝑟)𝑔2
𝑁 = 2𝑓 ′(𝑟)(𝑑𝑟2 + 𝑓2(𝑟)𝑔2

𝑁).

Note that if we set Φ(𝑟) = ∫𝑟
0

𝑓(𝑠) d𝑠 then ∇Φ(𝑟) = 𝑓(𝑟)𝜕𝑟 and so ⟨∇𝑌 𝑋, 𝑍⟩ is
just Hess𝑓(𝑌 , 𝑍) and so it is symmetric and so its anti-symmetric component
vanishes. □

Note that since its a gradient, 𝑋 in the above proposition is closed.
Recall that in Euclidean space spheres are the optimal shapes for the Isoperimetric

inequality, in polar coordinates spheres take the simple form of sets where 𝑟 = 𝑟0 for
some fixed 𝑟0. Using the geometric properties of warped product spaces and the vector
field 𝑋, Guan, Li and Wang were able to use the flow method to prove that this is
fact generalizes, the Isoperimetric profile for a large class of warped product spaces are
exactly the level sets of the projection onto ℝ.

Theorem 2.1.2 (Guan, Li, Wang):  Let 𝑁 = ℝ+ ×𝑓 𝐵 with 𝐵 closed and 𝑓 sat-
isfying some technical conditions. Then among the admissible hypersurfaces such
that ⟨𝑓(𝑟)𝜕𝑟, 𝜈⟩ is everywhere positive, the Isoperimetric profile consists of level
sets of 𝑟.

The proof is detailed in [5], we will not consider these details too much as they will
quickly get generalized by the next work.

2.2 Manifolds Admitting Compatible Conformal
Vector Fields
Now it turns out that these closed conformal vector fields characterize warped prod-
ucts of the form we saw in the previous section, namely, if a manifold admits a closed
conformal vector field then it can locally be written in the form ℝ+ ×𝑓 𝑁  for some
manifolds 𝑁  and function 𝑓 , see [14, Lemma 1.2]. This suggests that if we want to
weaken the conditions of Guan, Li and Wang we should perhaps consider the case of
non-closed conformal vector fields.

This idea was first explored by Li and Pan [11], where they formalized the neces-
sary conditions on the ambient manifold in terms of a conformal vector field, and used
this to weaken the assumptions on the vector field. They also derive a number of key
properties for a conformal vector field satisfying their conditions.

They start with with a conformal vector field 𝑋 on 𝑁  with conformal factor 𝜑
which is non-zero on an open dense set 𝑈 . They then assume 𝑋 satisfies the following
conditions.

Conditions 2.2.1 :
1. The distribution 𝒟(𝑋) ⊆ 𝑇𝑈  defined by 𝒟(𝑋)|𝑝 = {𝑣 ∈ 𝑇𝑝𝑁 | ⟨𝑣, 𝑋⟩ = 0} is

integrable on the set 𝑈 .
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2. 𝜑 > 0 everywhere on 𝑈 .
3. The integral surfaces of 𝒟(𝑋) are compact level sets of ‖𝑋‖

𝜑  on U.
4. 𝜑2 − 𝑋(𝜑) > 0 everywhere on 𝑈 .
5. The normal vector 𝒩 to the integral surfaces of 𝒟(𝑋) is the only direction of

minimal Ricci curvature, that is for every unit vector 𝑣 which is not colinear
with 𝒩 we have

Ric(𝒩, 𝒩) < Ric(𝑣, 𝑣).

They consider the class 𝔜 of admissible hypersurfaces which is star-shaped with respect
to 𝑋, that is admissible hypersurfaces 𝑀  for which 𝑢 = ⟨𝑋, 𝜈⟩ is positive along 𝑀 .
They define the normal flow with velocity 𝑓 = 𝑛𝜑 − 𝐻𝑢 and prove the following results
about this flow.

Lemma 2.2.1 :
1. For a hypersurface 𝑀 ∈ 𝔜 the normal flow with velocity 𝑓 = 𝑛𝜑 − 𝐻𝑢 exists

for all time 𝑡 ∈ [0, ∞).
2. Along this flow volume is fixed and area is non-increasing.
3. The flow converges in the limit to an integral hypersurface of 𝒟(𝑋).

Applying this to Theorem 2.1 they then prove the following

Theorem 2.2.2 (Li and Pan):  Let 𝑁  be an ambient manifold admitting a con-
formal vector field 𝑋 satisfying Conditions 2.2.1, then for any star-shaped hyper-
surface 𝑀  there exists an integral surface 𝑆 of 𝒟(𝑋) with

𝑉 (𝑆) = 𝑉 (𝑀) and 𝐴(𝑀) ≥ 𝐴(𝑆)

2.3 Quasi-Closed Conformal Vector Fields
In this section we will rewrite some of the conditions of Li and Pan and the results that
follow from those conditions in a form that is easier to use.

Let us recall the setting, we let 𝑁  be the complete ambient manifold which admits
a conformal vector field 𝑋 on some open subset 𝑈  which does not vanish on that subset,
with conformal factor 𝜑.

We will start with the first condition.

Proposition 2.3.1 :  Let 𝑋 be a conformal vector field 𝑋 such that condition 1
holds, then the associated tensor field 𝜓 satisfies

⟨𝜓(𝑣), 𝑤⟩ = 0 for 𝑣, 𝑤 ∈ 𝒟(𝑋) eveywhere on 𝑈
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Proof :  By definition the one form defined by 𝜔(𝑣) = ⟨𝑋, 𝑣⟩ annihilates 𝒟(𝑋),
then by the one form condition for integrability [9, p. 495] we get that d𝜔 also
annihilates 𝒟(𝑋), that is d𝜔 restricts to zero on 𝒟(𝑋), hence by definition of the
associated tensor field, we get the result above. □

We see then that such a conformal vector field is ‘almost’ closed since its associated
tensor field ‘almost’ vanishes.

Definition 2.3.1 :  We will call a conformal vector field 𝑋 satisfying condition 1,
a quasi-closed conformal vector field.

The rest of this section will be devoted to properties of quasi-closed conformal vector
fields. We will fix a point 𝑝 ∈ 𝑈  and an arbitrary vector 𝑌 ∈ 𝑇𝑝𝑈 . We will denote 𝒩 =
𝑋

‖𝑋‖  the normal vector to the integral surfaces of 𝒟(𝑋). We will also refer to 𝒟(𝑋) as
𝒟 for brevity. We will start with a key property regarding the integral surfaces of 𝒟.

Proposition 2.3.2 :  Let 𝑆 be an integral surface of 𝒟, then 𝑆 is totally umbilical,
that is at every point 𝑝 ∈ 𝑆 we have

ℎ𝑖𝑗 = 𝑓(𝑝)𝑔𝑖𝑗,

for some function 𝑓 on 𝑆. Furthermore we have 𝑓 = 𝜑
‖𝑋‖ .

Proof :  We have in coordinates on 𝑆,

ℎ𝑖𝑗 = ⟨∇𝑖𝒩, 𝑒𝑗⟩ = ⟨∇𝑖
𝑋

‖𝑋‖
, 𝑒𝑗⟩ = ⟨

∇𝑖𝑋
‖𝑋‖

−
𝑋

‖𝑋‖2 (∇𝑖‖𝑋‖), 𝑒𝑗⟩

then since 𝑋 is orthogonal to the tangent vector 𝑒𝑗 we get

ℎ𝑖𝑗 = ⟨
∇𝑖𝑋
‖𝑋‖

, 𝑒𝑗⟩ =
1

‖𝑋‖
⟨∇𝑖𝑋, 𝑒𝑗⟩ =

1
‖𝑋‖

(𝜑𝑔𝑖𝑗 + ⟨𝜓(𝑒𝑖), 𝑒𝑗⟩)

then by Proposition 2.3.1 we get

ℎ𝑖𝑗 =
𝜑

‖𝑋‖
𝑔𝑖𝑗

□

Now we want the integral surfaces 𝑆 of 𝒟 to be our Isoperimetric profile, hence they
should be critical points of the surface area functional with respect to fixed volume.
Hence by Proposition 1.6.4 we need to have 𝐻 = 𝑛 𝜑

‖𝑋‖  be constant, which motivates
condition 2.
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Corollary 2.3.2.1 :  If 𝑋 satisfies condition 2, then the integral surfaces of 𝒟 are
totally umbilical with constant mean curvature 𝐻 = 𝑛 𝜑

‖𝑋‖ .

Definition 2.3.2 :  We will call quasi-closed conformal vector field 𝑋 symmetric
if it satisfies condition 2.

Now consider, for a moment, the spheres in ℝ𝑛 of radius 𝑟. They are the integral sur-
faces for the orthogonal distribution to 𝑋 = 𝑥𝑖𝜕𝑖 which is a closed conformal vector
field with factor 𝜑 = 2. We see that their mean curvature is 𝐻 = 2𝑛

𝑟 , we thus see that
the mean curvature is inversely proportional to a certain ‘scale’ function, in this case 𝑟.
This scale function will turn out to be extremely useful in many of our future calcula-
tions, so we give it a name here.

Definition 2.3.3 :  Wherever 𝜑 ≠ 0 on 𝑈 , we will call the following function the
scale function for 𝑋

𝜆 =
‖𝑋‖2

𝜑2

Since we know 𝜆 is constant on integral surfaces, its gradient must be colinear with 𝑋,
that is ∇𝜆 = 2Λ𝑋 for some function Λ. We note a convenient expression for Λ.

Proposition 2.3.3 :  Where 𝜆 is defined, we have

∇𝜆 = 2Λ𝑋 = 2
𝜑2 − 𝑋(𝜑)

𝜑3 𝑋

Proof :  We see that

∇𝜆 = ⟨∇𝜆, 𝒩⟩𝒩 = 𝑋(𝜆)
𝑋

‖𝑋‖2 = 𝑋(
‖𝑋‖2

𝜑2 )
𝑋

‖𝑋‖2

=
2⟨∇𝑋𝑋, 𝑋⟩

𝜑2
𝑋

‖𝑋‖2 + (−
2
𝜑3 )𝑋(𝜑)𝑋 = 2

𝜑⟨𝑋, 𝑋⟩
𝜑2

𝑋
‖𝑋‖2 − 2(

𝑋(𝜑)
𝜑3 )𝑋

= 2
𝜑2 − 𝑋(𝜑)

𝜑3 𝑋

□
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Now as we saw, for a quasi-closed conformal vector field we have that ⟨𝜓(𝑣), 𝑤⟩ vanishes
on 𝒟 and this turns out to be enough to get a precise equation for 𝜓 even when 𝑣, 𝑤
are not in 𝒟.

Proposition 2.3.4 :  We have

𝜓(𝑌 ) =
⟨𝑌 , ∇‖𝑋‖⟩𝑋 − ⟨𝑌 , 𝑋⟩∇‖𝑋‖

‖𝑋‖
.

Furthermore if 𝑋 symmetric, then wherever 𝜑 ≠ 0 we have

𝜓(𝑌 ) =
⟨𝑌 , ∇𝜑⟩𝑋 − ⟨𝑌 , 𝑋⟩∇𝜑

𝜑
.

Proof :  Recall that ⟨𝜓(𝑌 ), 𝑍⟩ is anti-symmetric in 𝑌 , 𝑍 so we may assume WLOG
one of the two is in 𝒟 and hence also WLOG assume that it is 𝑌 . Then by
Proposition 2.3.1 we may assume that 𝑍 is colinear with 𝑋. We thus have
⟨𝑌 , 𝑍⟩ = 0 so

⟨∇𝑌 𝑋, 𝑍⟩ =
⟨𝑍, 𝑋⟩
‖𝑋‖2 ⟨∇𝑌 𝑋, 𝑋⟩ =

1
2

⟨𝑍, 𝑋⟩
‖𝑋‖2 ∇𝑌 ⟨𝑋, 𝑋⟩

=
1
2

⟨𝑍, 𝑋⟩
‖𝑋‖2 ⟨𝑌 , ∇‖𝑋‖2⟩ =

⟨𝑍, 𝑋⟩
‖𝑋‖

⟨𝑌 , ∇‖𝑋‖⟩

We can then anti-symmetrize this to get that for arbitrary 𝑌 , 𝑍

⟨𝜓(𝑌 ), 𝑍⟩ =
⟨𝑍, 𝑋⟩⟨𝑌 , ∇‖𝑋‖⟩ − ⟨𝑌 , 𝑋⟩⟨𝑍, ∇‖𝑋‖⟩

‖𝑋‖

which gives us the first result.
For the second result, we compute

𝜓(𝑌 ) =
⟨𝑌 , ∇(𝜑 ⋅ ‖𝑋‖

𝜑 )⟩𝑋 − ⟨𝑌 , 𝑋⟩∇(𝜑 ⋅ ‖𝑋‖
𝜑 )

‖𝑋‖

=
⟨𝑌 , ‖𝑋‖

𝜑 ∇𝜑 + 𝜑∇( ‖𝑋‖
𝜑 )⟩𝑋 − ⟨𝑌 , 𝑋⟩( ‖𝑋‖

𝜑 ∇𝜑 + 𝜑∇( ‖𝑋‖
𝜑 ))

‖𝑋‖

=
⟨𝑌 , ∇𝜑⟩𝑋 − ⟨𝑌 , 𝑋⟩∇𝜑

𝜑
+ 𝜑

⟨𝑌 , ∇( ‖𝑋‖
𝜑 )⟩𝑋 − ⟨𝑌 , 𝑋⟩∇( ‖𝑋‖

𝜑 )

‖𝑋‖
.

Now we recall that ‖𝑋‖
𝜑  is constant along integral surfaces and thus its gradient is

colinear with 𝑋. At the point 𝑝 we then write ∇( ‖𝑋‖
𝜑 ) = 𝑎𝑋 and get
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𝜓(𝑌 ) =
⟨𝑌 , ∇𝜑⟩𝑋 − ⟨𝑌 , 𝑋⟩∇𝜑

𝜑
+ 𝜑

⟨𝑌 , 𝑎𝑋⟩𝑋 − ⟨𝑌 , 𝑋⟩𝑎𝑋
‖𝑋‖

=
⟨𝑌 , ∇𝜑⟩𝑋 − ⟨𝑌 , 𝑋⟩∇𝜑

𝜑
+ 0

which gets us the second result. □

We note here two other useful ways to write the covariant derivative of 𝑋

Corollary 2.3.4.1 :  Where 𝜑 = 0 we have

∇𝑌
𝑋

‖𝑋‖
= −

⟨𝑋, 𝑌 ⟩
‖𝑋‖

∇‖𝑋‖

if 𝑋 is symmetric then where 𝜑 ≠ 0 we have

∇𝑌
𝑋
𝜑

= 𝑋 −
⟨𝑋, 𝑌 ⟩

𝜑2 ∇𝜑

Proof :  We prove directly, for the first case

∇𝑌
𝑋

‖𝑋‖
=

1
‖𝑋‖

∇𝑌 𝑋 −
𝑋

‖𝑋‖2 ∇𝑌 ‖𝑋‖

=
1

‖𝑋‖
(

⟨𝑌 , ∇‖𝑋‖⟩𝑋 − ⟨𝑌 , 𝑋⟩∇‖𝑋‖
‖𝑋‖

) −
𝑋

‖𝑋‖2 ∇𝑌 ‖𝑋‖

= −
⟨𝑌 , 𝑋⟩∇‖𝑋‖

‖𝑋‖2 .

And in the second case

∇𝑌
𝑋
𝜑

=
1
𝜑

∇𝑌 𝑋 −
𝑋
𝜑2 ∇𝑌 𝜑

=
1
𝜑

(𝜑𝑋 +
⟨𝑌 , ∇𝜑⟩𝑋 − ⟨𝑌 , 𝑋⟩∇𝜑

𝜑
) −

𝑋
𝜑2 ∇𝑌 𝜑

= 𝑋 −
⟨𝑌 , 𝑋⟩∇𝜑

𝜑2 .

□
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Corollary 2.3.4.2 :

(𝜓(𝑌 ), 𝑍) = 2
ASym(∇‖𝑋‖♭ ⊗ 𝑋♭)(𝑌 , 𝑍)

‖𝑋‖
.

Furthermore if 𝑋 is symmetric, wherever 𝜑 ≠ 0 we have

(𝜓(𝑌 ), 𝑍) = 2
ASym(∇𝜑♭ ⊗ 𝑋♭)(𝑌 , 𝑍)

𝜑
.

Here ♭ represents raising an index and ASym represents the anti-symmetrization.

Proof :  Immediate from Proposition 2.3.4. □
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We can also rewrite some of the Riemann and Ricci curvatures of the ambient manifold
in terms of 𝑋.

Proposition 2.3.5 :  Wherever 𝜑 = 0 we have

𝑅(𝑌 , 𝑋, 𝑌 , 𝑋) = −‖𝑋‖⟨∇𝑌 ∇‖𝑋‖, 𝑌 ⟩ +
⟨𝑋, 𝑌 ⟩2

‖𝑋‖
⟨∇𝒩∇‖𝑋‖, 𝒩⟩

Ric(𝑋, 𝑌 ) = −
⟨𝑋, 𝑌 ⟩
‖𝑋‖

(Δ‖𝑋‖ − ⟨∇𝒩∇𝜑, 𝒩⟩)

and in addition, if 𝑌 ∈ 𝒟

‖𝑋‖ Ric(𝑋, 𝑌 ) = ⟨∇𝑌 ∇‖𝑋‖, 𝑋⟩ = ⟨∇𝑋∇‖𝑋‖, 𝑌 ⟩ = 0 (2.5)

If 𝑋 is symmetric, then wherever 𝜑 ≠ 0 we have

𝑅(𝑌 , 𝑋, 𝑌 , 𝑋) = −𝜑⟨∇𝑌 ∇𝜑, 𝑌 ⟩ +
⟨𝑋, 𝑌 ⟩2

𝜑
⟨∇𝒩∇𝜑, 𝒩⟩

Ric(𝑋, 𝑌 ) = −
⟨𝑋, 𝑌 ⟩

𝜑
(Δ𝜑 − ⟨∇𝒩∇𝜑, 𝒩⟩)

(2.6)

and in addition, if 𝑌 ∈ 𝒟

𝜑 Ric(𝑋, 𝑌 ) = ⟨∇𝑌 ∇𝜑, 𝑋⟩ = ⟨∇𝑋∇𝜑, 𝑌 ⟩ = 0 (2.7)

Proof :  For the first case, we will consider 𝑅(𝑒𝑖, 𝑒𝑗, 𝑋
‖𝑋‖ , 𝑒𝑘), then we will use

linearity of the Ricci tensor to remove the denominator, we start with a use of
Corollary 2.3.4.1

𝑅(𝑒𝑖, 𝑒𝑗,
𝑋

‖𝑋‖
, 𝑒𝑘) = ⟨∇𝑖∇𝑗

𝑋
‖𝑋‖

− ∇𝑗∇𝑖
𝑋

‖𝑋‖
, 𝑒𝑘⟩

= ⟨∇𝑖(−
⟨𝑒𝑗, 𝑋⟩∇‖𝑋‖

‖𝑋‖2 ) − ∇𝑗(−
⟨𝑒𝑖, 𝑋⟩∇‖𝑋‖

‖𝑋‖2 ), 𝑒𝑘⟩

= −∇𝑖(
⟨𝑒𝑗, 𝑋⟩
‖𝑋‖2 )𝑒𝑘(‖𝑋‖) + ∇𝑗(

⟨𝑒𝑖, 𝑋⟩
‖𝑋‖2 )𝑒𝑘(‖𝑋‖)

−
⟨𝑒𝑗, 𝑋⟩
‖𝑋‖2 ⟨∇𝑖∇‖𝑋‖, 𝑒𝑘⟩ +

⟨𝑒𝑖, 𝑋⟩
‖𝑋‖2 ⟨∇𝑗∇‖𝑋‖, 𝑒𝑘⟩.

Now let us deal with the first two terms, expanding gives us

𝑒𝑘(‖𝑋‖)(
⟨∇𝑗𝑋, 𝑒𝑖⟩ − ⟨∇𝑖𝑋, 𝑒𝑗⟩

‖𝑋‖2 + 2
⟨𝑋, 𝑒𝑗⟩𝑒𝑖(‖𝑋‖) − ⟨𝑋, 𝑒𝑖⟩𝑒𝑗(‖𝑋‖)

‖𝑋‖3 ),
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then by definition the left denominator here is 2⟨𝜓(𝑒𝑗), 𝑒𝑖⟩ which we can expand
by Proposition 2.3.4, this quickly shows that these terms exactly cancel the other
terms in this above expression.

Now we are left with

𝑅(𝑒𝑖, 𝑒𝑗,
𝑋

‖𝑋‖
, 𝑒𝑘) =

⟨𝑒𝑖, 𝑋⟩
‖𝑋‖2 ⟨∇𝑗∇‖𝑋‖, 𝑒𝑘⟩ −

⟨𝑒𝑗, 𝑋⟩
‖𝑋‖2 ⟨∇𝑖∇‖𝑋‖, 𝑒𝑘⟩, (2.8)

by linearity we can substitute 𝑒𝑖 = 𝑒𝑘 = 𝑌  and 𝑒𝑗 = 𝑋, this gives us

𝑅(𝑌 , 𝑋,
𝑋

‖𝑋‖
, 𝑌 ) =

⟨𝑌 , 𝑋⟩
‖𝑋‖2 ⟨∇𝑋∇‖𝑋‖, 𝑌 ⟩ −

⟨𝑋, 𝑋⟩
‖𝑋‖2 ⟨∇𝑌 ∇‖𝑋‖, 𝑌 ⟩

we now multiply by ‖𝑋‖ to get

𝑅(𝑌 , 𝑋, 𝑋, 𝑌 ) = −‖𝑋‖⟨∇𝑌 ∇‖𝑋‖, 𝑌 ⟩ +
⟨𝑌 , 𝑋⟩
‖𝑋‖

⟨∇𝑋∇‖𝑋‖, 𝑌 ⟩ (2.9)

Next consider the integral hypersurface 𝑆 of 𝒟 that passes through 𝑝, we
know that ℎ𝑖𝑗 is identically zero everywhere on this hypersurface. Hence, by
Lemma 1.3.3, we have for any 𝑒𝑖, 𝑒𝑗, 𝑒𝑘 ∈ 𝑇𝑝𝑆

𝑅(𝑒𝑖, 𝑒𝑗, 𝑒𝑘, 𝒩) = −∇𝑖ℎ𝑗𝑘 + ∇𝑗ℎ𝑖𝑘 = 0

and so in particular, by taking trace over 𝑗, 𝑘 and using linearity to substitute
𝑒𝑖 = 𝑌  we get

Ric(𝑌 , 𝑋) = 0

for any 𝑌 ∈ 𝒟.
Now by using (2.8) but tracing over 𝑒𝑖 and 𝑒𝑘 and plugging in 𝑒𝑗 = 𝑌  gives us

Ric(𝑌 , 𝑋) = −
⟨𝑌 , 𝑋⟩
‖𝑋‖

Δ‖𝑋‖ +
1

‖𝑋‖
⟨∇𝑌 ∇‖𝑋‖, 𝑋⟩ (2.10)

then for any 𝑌 ∈ 𝒟 we get

0 = −
⟨𝑌 , 𝑋⟩
‖𝑋‖

Δ‖𝑋‖ +
1

‖𝑋‖
⟨∇𝑌 ∇‖𝑋‖, 𝑋⟩ =

1
‖𝑋‖

⟨∇𝑌 ∇‖𝑋‖, 𝑋⟩

which gives us (2.5).
Now plugging (2.5) into (2.9) gives us

𝑅(𝑌 , 𝑋, 𝑋, 𝑌 ) = −‖𝑋‖⟨∇𝑌 ∇‖𝑋‖, 𝑌 ⟩ +
⟨𝑌 , 𝑋⟩
‖𝑋‖

⟨∇‖𝑋‖𝒩∇‖𝑋‖, 𝒩⟨
𝑋

‖𝑋‖
, 𝑌 ⟩⟩

= −‖𝑋‖⟨∇𝑌 ∇‖𝑋‖, 𝑌 ⟩ +
⟨𝑌 , 𝑋⟩2

‖𝑋‖
⟨∇𝒩∇‖𝑋‖, 𝒩⟩

which is the first result.
For the second result we do the same thing with (2.10), we get
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Ric(𝑌 , 𝑋) = −
⟨𝑌 , 𝑋⟩
‖𝑋‖

Δ‖𝑋‖ +
1

‖𝑋‖
⟨∇𝒩⟨𝒩,𝑌 ⟩∇‖𝑋‖, 𝒩‖𝑋‖⟩

= −
⟨𝑌 , 𝑋⟩
‖𝑋‖

(Δ‖𝑋‖ − ⟨∇𝒩∇‖𝑋‖, 𝒩⟩)

which is our second result.
Finally for the case where 𝜑 ≠ 0, we start off similarly

𝑅(𝑒𝑖, 𝑒𝑗,
𝑋

‖𝑋‖
, 𝑒𝑘) = ⟨∇𝑖∇𝑗

𝑋
𝜑

− ∇𝑗∇𝑖
𝑋
𝜑

, 𝑒𝑘⟩

= ⟨∇𝑖(𝑒𝑗 −
⟨𝑒𝑗, 𝑋⟩∇𝜑

𝜑2 ) − ∇𝑗(𝑒𝑖 −
⟨𝑒𝑖, 𝑋⟩∇𝜑

𝜑2 ), 𝑒𝑘⟩

We now note that ∇𝑖𝑒𝑗 and ∇𝑗𝑒𝑖 are both zero because we are working in normal
coordinates. After that the calculation is identical to the first case. □
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Chapter 3
Main Results
3.1 Motivation
As we saw in the previous section, already with quasi-closed conformal vector fields
we can prove a strong result regarding Isoperimetric inequalities. However, there are
still cases which we would expect these techniques to be applicable to which cannot be
reached with their approach.

Example :  Consider 𝑁 = ℝ𝑛+1 with the following conformal vector field

𝑋(𝑥1, …, 𝑥𝑛) = 𝑥𝑖𝜕𝑖 − 𝑥2𝜕1 + 𝑥1𝜕2

this is indeed a quasi-closed conformal vector field with conformal factor 𝜑, but
its integral surfaces are not compact and they do not have fixed mean curvature.
Thus we have no hope of attaining a useful Isoperimetric inequality for star-
shaped surfaces with respect to this flow.

We could instead work with 𝑌 = 𝑥𝑖𝜕𝑖 but then there are hypersurfaces that
will never be star-shaped with respect to 𝑌  but are star-shaped with respect to
𝑋, we really need star-shapedness since it is needed to guarantee convergence and
to guarantee that area decreases. An example of such a surface can be seen in
Figure 1.

𝑥

𝑦

0

Figure 1: Hypersurface in ℝ2 which is star shaped with respect to 𝑋 but not 𝑌

We will shortly introduce the tools we will need to deal with this issue, but before we
do that we want to motivate these tools a little. We can think of the quasi-closedness
condition on 𝑋 as a compatibility condition between 𝑋 and a foliation 𝑆𝛼, namely that
𝑋 is everywhere orthogonal to 𝑆𝛼.

28



We can then try to consider foliations which are in some sense ‘compatible’ with
𝑋 given in the example above.

Example :  Consider the foliation ℱ of ℝ𝑛+1 \ 0 given by spheres 𝑆𝛼 centered at
the origin, this foliation is not everywhere orthogonal to 𝑋, however, the foliation
is fixed under the normal flow 𝑛𝜑 − 𝐻𝑢 and the foliation induces a decomposition
𝑋 = 𝑋⟂ + 𝑋⊤ where 𝑋⟂ is orthogonal to 𝑆𝑟 and 𝑋⊤ is tangent to 𝑆𝑟.

Now importantly 𝑋⟂ is just 𝑌  and thus is also a conformal vector field, and
thus since 𝑋⊤ = 𝑋 − 𝑋⟂ then 𝑋⊤ is also conformal. Now 𝑋⟂ is a quasi-closed
conformal vector field which we can manage with the preexisting techniques, so
our goal is to find a way to use this decomposition to reduce to the case of just
𝑋⟂.

3.2 Setting
We will consider a complete 𝑛 + 1 dimensional Riemannian manifold 𝑁 , with 𝑛 ≥ 2.
On this manifold we consider a complete conformal vector field 𝑋 which is non-zero
on an open set 𝑈 , along with a foliation ℱ. We assume the two are are compatible, in
the sense that the foliation ℱ induces a decomposition 𝑋 = 𝑋⟂ + 𝑋⊤ where 𝑋⟂ is a
quasi-closed symmetric conformal vector field with integral surfaces 𝑆𝛼 ∈ ℱ and 𝑋⊤ is
a quasi-closed Killing vector field, that is its conformal factor is zero.

We will associate with 𝑋⟂ its conformal factor 𝜑 which is the same as that of
𝑋, we will also associate the scale function (Definition 2.3.3) 𝜆 and its derivative
Λ (Proposition 2.3.3). We will denote by 𝜓⟂ and 𝜓⊤ the associated tensor fields
(Proposition 2.3.4) of 𝑋⟂ and 𝑋⊤ respectively. We will also define

𝒩⟂ =
𝑋⟂

‖𝑋⟂‖
and 𝒩⊤ =

𝑋⊤

‖𝑋⊤‖

We will also make the following assumptions

Assumptions 3.2.1 :
1. The conformal factor 𝜑 of 𝑋⟂ is positive on 𝑈 .
2. The function Λ (Proposition 2.3.3) is positive on 𝑈 .
3. The function Λ𝜑3 + 𝑋⊤(𝜑) is positive on 𝑈 .
4. The integral hypersurfaces 𝑆𝛼 are compact.
5. The directions 𝑋⟂ and 𝑋⊤ are both of least Ricci curvature, that is for any

unit vector 𝑌 ∈ 𝑇𝑝𝑈  we have

Ric(𝑌 , 𝑌 ) ≥ Ric(𝒩⟂, 𝒩⟂) = Ric(𝒩⊤, 𝒩⊤)

The first condition informally means that 𝑋⟂ is a dilation-like vector field, because
under its first order vector field flow volumes increase.
The second condition informally means that our scale function 𝜆 is increasing in the
direction of 𝑋⟂, so just like in Euclidean space as balls increase in radius their mean
curvature decreases.
The third and fourth conditions are technical conditions needed for convergence. The
last condition is necessary for area to decrease along the normal flow we will construct.

Our flow will consist of two steps,
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1. First we will use a time dependent conformal vector field 𝑋(𝑡) = 𝑋⟂ + 𝑋⊤(1 − 𝑡
𝑇0

)
for some constant 𝑇0, we will consider the flow with velocity

𝑓 = 𝑛𝜑 − 𝐻⟨𝑋(𝑡), 𝜈⟩, (3.11)

we will run this flow until 𝑡 = 𝑇0.
2. If the flow survives after 𝑡 = 𝑇0 we will stop the flow, and then set 𝑋(𝑡) = 𝑋⟂, we

then continue with the flow

𝑓 = 𝑛𝜑 − 𝐻⟨𝑋⟂, 𝜈⟩

for however long the flow lasts.

Note that in this setting, 𝑢’s definition depends on time but we will drop this depen-
dence in our notation and only explicitly mention it when it comes up. Note that, if
𝑢 > 0 when 𝑡 = 𝑇0, then at that point in time the surface is star-shaped with respect
to just 𝑋⟂ so we can apply the methods of Li and Pan.

For now we will assume that the flow exists on some interval [0, 𝑇 ), we will show
this must be the case later, in Proposition 3.7.6. We will also assume that 𝑢 remains
positive on [0, 𝑇 ), this will be proven in Section 3.5. We will now start computing the
evolution of various geometric quantities along our flow. For convenience we will define
the factor

Ξ(𝑡) = (1 −
𝑡

𝑇0
).

We will also define the parabolic operator

𝐿 = 𝜕𝑡 − 𝑢Δ

as well as the functions

𝑢⟂ = ⟨𝑋⟂, 𝜈⟩, 𝑢⊤ = Ξ(𝑡)⟨𝑋⊤, 𝜈⟩.

Notice 𝑢 = 𝑢⟂ + 𝑢⊤.
Finally we will also use the notation

𝜋(𝑋⟂), 𝜋(𝑋⊤)

to denote the orthogonal projection of these vector fields onto 𝑇𝑝𝑀𝑡, notice that

𝜋(𝑋⟂) = 𝑋⟂ − 𝑢⟂𝜈 = ⟨𝑋⟂, 𝑒𝑖⟩𝑒𝑖 and
𝜋(𝑋⊤) = 𝑋⊤ − 𝑢⊤𝜈 = ⟨𝑋⊤, 𝑒𝑖⟩𝑒𝑖.

For some calculations we will assume 𝑡 ≤ 𝑇0, for 𝑡 > 𝑇0 we can simply set Ξ(𝑡) =
Ξ′(𝑡) = 0 and the calculations still follow.

3.3 Variation of Area and Volume
Information about the variation of area and volume along our flow is crucial to the
success of the fow method, so we will start with that.
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Proposition 3.3.1 :  Let 𝑀𝑡 be a solution to the flow for 𝑡 ∈ [0, 𝑇 ), we have

𝜕𝑡𝑉 (𝑀𝑡) = 0 and 𝜕𝑡𝐴(𝑀𝑡) ≤ 0.

It thus follows that volume is fixed and area is non-increasing.

Proof :  We Proposition 1.6.4 to calculate the variation of volume and area. For
volume we have due to Lemma 1.4.2

𝜕𝑡𝑉 (𝑀𝑡) = ∫
𝑀𝑡

𝑓 d𝑆 = ∫
𝑀𝑡

𝑛𝜑 − 𝐻𝑢 d𝑆 = 0.

For area we get

𝜕𝑡𝐴(𝑀𝑡) = ∫
𝑀𝑡

𝐻𝑓 d𝑆 = ∫
𝑀𝑡

𝐻(𝑛𝜑 − 𝐻𝑢) d𝑆

=
𝑛

𝑛 − 1
∫

𝑀𝑡

Ric(𝜈, 𝑋(𝑡) − 𝑢𝜈) d𝑆 −
1
𝑛

∫
𝑀𝑡

𝑢 ∑
𝑖<𝑗

(𝜅𝑖 − 𝜅𝑗)
2 d𝑆

now we write 𝑋(𝑡) = 𝑋⟂ + Ξ(𝑡)𝑋⊤ and 𝑢 = 𝑢⟂ + 𝑢⊤ to get

Ric(𝜈, 𝑋(𝑡) − 𝑢𝜈) = Ric(𝜈, 𝑋⟂ − 𝑢⟂𝜈) + Ric(𝜈, Ξ(𝑡)𝑋⊤ − 𝑢⊤𝜈)

= Ric(𝜈, 𝑋⟂) + Ξ(𝑡) Ric(𝜈, 𝑋⊤) − (𝑢⟂ + 𝑢⊤) Ric(𝜈, 𝜈)

then by (2.5) we get

Ric(𝜈, 𝑋(𝑡) − 𝑢𝜈) = ⟨𝜈, 𝑋⟂⟩ Ric(𝒩⟂, 𝒩⟂) + ⟨𝜈, Ξ(𝑡)𝑋⊤⟩ Ric(𝒩⊤, 𝒩⊤)

− (𝑢⟂ + 𝑢⊤) Ric(𝜈, 𝜈)

= 𝑢⟂ Ric(𝒩⟂, 𝒩⟂) + 𝑢⊤ Ric(𝒩⊤, 𝒩⊤) − (𝑢⟂ + 𝑢⊤) Ric(𝜈, 𝜈).

Now due to assumption 5 we get that Ric(𝒩⟂, 𝒩⟂) = Ric(𝒩⊤, 𝒩⊤) and so

Ric(𝜈, 𝑋(𝑡) − 𝑢𝜈) = (𝑢⟂ + 𝑢⊤) Ric(𝒩⟂, 𝒩⟂) − (𝑢⟂ + 𝑢⊤) Ric(𝜈, 𝜈).

= 𝑢(Ric(𝒩⟂, 𝒩⟂) − Ric(𝜈, 𝜈)).

Plugging this into the variation of area we get

𝜕𝑡𝐴(𝑀𝑡) =
𝑛

𝑛 − 1
∫

𝑀𝑡

Ric(𝜈, 𝑋(𝑡) − 𝑢𝜈) d𝑆 −
1
𝑛

∫
𝑀𝑡

𝑢 ∑
𝑖<𝑗

(𝜅𝑖 − 𝜅𝑗)
2 d𝑆

=
𝑛

𝑛 − 1
∫

𝑀𝑡

𝑢(Ric(𝒩⟂, 𝒩⟂) − Ric(𝜈, 𝜈)) d𝑆 −
1
𝑛

∫
𝑀𝑡

𝑢 ∑
𝑖<𝑗

(𝜅𝑖 − 𝜅𝑗)
2 d𝑆.

But now again by assumption 5 we get that the term Ric(𝒩⟂, 𝒩⟂) − Ric(𝜈, 𝜈) is
always non-positive and the term (𝜅𝑖 − 𝜅𝑗) is clearly always non-positive so both
of these integrals are non-positive and thus 𝜕𝑡𝐴(𝑀𝑡) ≤ 0. □
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By this theorem we get the second condition of Theorem 2.1.

3.4 Evolution Equation for 𝜆
The first result we will prove is arguably the most important result, as it will guarantee
our hypersurface remains within a compact subset.

Proposition 3.4.1 :  The evolution equation for 𝜆 under the flow is

𝐿𝜆 = −2Λ𝑛𝜑𝑢⊤ − 2𝑢⟨∇Λ, 𝑋⟂⟩.

Proof :  First we compute the time derivative of 𝜆, since it is an ambient quantity
this is easy by Proposition 1.6.1. We get

𝜕𝑡𝜆 = (𝑛𝜑 − 𝐻𝑢)∇𝜈𝜆 = (𝑛𝜑 − 𝐻𝑢)⟨𝜈, ∇𝜆⟩ = (𝑛𝜑 − 𝐻𝑢)2Λ⟨𝜈, 𝑋⟂⟩

= 2(𝑛𝜑 − 𝐻𝑢)Λ𝑢⟂.

For the induced Laplacian we get

Δ𝜆 = ∇𝑖∇𝑖𝜆 = ∇𝑖(2Λ⟨𝑋⟂, 𝑒𝑖⟩) = 2Λ(∇𝑖⟨𝑋⟂, 𝑒𝑖⟩) + 2⟨𝑋⟂, 𝑒𝑖⟩∇𝑖Λ

= 2Λ(⟨∇𝑖𝑋⟂, 𝑒𝑖⟩ + ⟨𝑋⟂, ∇𝑖𝑒𝑖⟩) + 2⟨∇Λ, 𝜋(𝑋⟂)⟩.

Now since the trace of a tensor is the same as the trace of its symmetrization so

⟨∇𝑖𝑋⟂, 𝑒𝑖⟩ = tr(∇𝑋⟂) = tr(Sym(∇𝑋⟂)) = tr(𝜑𝑔𝑖𝑗) = 𝑛𝜑.

Next by Proposition 1.3.2 we know that ∇𝑖𝑒𝑖 = −ℎ𝑖𝑖𝜈 = −𝐻𝜈. Combining these
we get that

Δ𝜆 = 2Λ(𝑛𝜑 − 𝐻⟨𝑋⟂, 𝜈⟩) + 2⟨∇Λ, 𝑋⟂⟩ = 2Λ(𝑛𝜑 − 𝐻𝑢⟂) + 2⟨∇Λ, 𝑋⟂⟩.

Finally we compute

(𝜕𝑡 − 𝑢Δ)𝜆 = 2Λ((𝑛𝜑 − 𝐻𝑢)𝑢⟂ − (𝑛𝜑 − 𝐻𝑢⟂)𝑢) − 2⟨∇Λ, 𝑋⟂⟩
= 2Λ(−𝑛𝜑𝑢⊤) − 2⟨∇Λ, 𝑋⟂⟩ = −2Λ𝑛𝜑𝑢⊤ − 2⟨∇Λ, 𝑋⟂⟩

□

Corollary 3.4.1.1 :  For all 𝑡 ∈ [0, 𝑇 ) and all 𝑝 ∈ 𝑀𝑡 we have

min
𝑝∈𝑀0

𝜆(𝑝, 0) ≤ 𝜆(𝑝, 𝑡) ≤ max
𝑝∈𝑀0

𝜆(𝑝, 0)

Proof :  At a maximal or minimal point of 𝜆 we have by Lagrange multipliers
that ∇ is colinear with 𝜈, so we must have that 𝑋⟂ is colinear with 𝜈 and thus
𝜋(𝑋⟂) = 0. Also since 𝑋⊤ is orthogonal to 𝑋⟂ we have that at a maximal or
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minimal point 𝑋⊤ is orthogonal to 𝜈 and thus 𝑢⊤ = 0. Thus we get that at a
maximal or minimal point 𝐿𝜆 = 0 and so by Proposition 1.5.1 applied to 𝜆 and
−𝜆 we get

min
𝑥∈𝑀0

𝜆(𝑥, 0) ≤ 𝜆(𝑥, 𝑡) ≤ max
𝑥∈𝑀0

𝜆(𝑥, 0)

□

Corollary 3.4.1.2 :  Given a hypersurface 𝑀 , there is a compact region Γ such
that 𝑀𝑡 is contained in Γ for as long as it exists.

Proof :  We use Corollary 3.4.1.1 along with Proposition 3.7.2. □

3.5 Evolution Equation for 𝑢
This next evolution is nearly as important, our parabolic operator has a 𝑢 factor and
so it ceases to be uniformly parabolic if we do not have a uniform lower bound on 𝑢.

Proposition 3.5.1 :  The evolution equation for 𝑢 under the flow is

𝐿𝑢 = 𝑛(Λ𝜑3 − Ξ(𝑡)𝑋⊤(𝜑)) + Ξ′(𝑡)𝑢⊤ − 2𝜑𝐻𝑢 + |𝐴|2 𝑢2 + 2𝑛𝑢𝜈(𝜑)

+ 𝑢2 Ric(𝜈, 𝜈) + 𝐻⟨𝑋, ∇𝑢⟩

Proof :  This is quite the long calculation so we will split it into multiple steps,
first for the time derivative

𝜕𝑡𝑢 = 𝜕𝑡⟨𝑋⟂ + Ξ(𝑡)𝑋⊤, 𝜈⟩ = ⟨𝜕𝑡(𝑋⟂ + Ξ(𝑡)𝑋⊤), 𝜈⟩ + ⟨𝑋⟂ + Ξ(𝑡)𝑋⊤, 𝜕𝑡𝜈⟩

= (𝑛𝜑 − 𝐻𝑢)⟨∇𝜈(𝑋⟂ + Ξ(𝑡)𝑋⊤), 𝜈⟩ + Ξ′(𝑡)⟨𝑋⊤, 𝜈⟩

+ ⟨𝑋⟂ + Ξ(𝑡)𝑋⊤, −∇(𝑛𝜑 − 𝐻𝑢)⟩.

Using the fact that 𝑋⟂ + Ξ(𝑡)𝑋⊤ is conformal with factor 𝜑 we can simplify the
first term and continue calculating

𝜕𝑡𝑢 = 𝜑(𝑛𝜑 − 𝐻𝑢) + Ξ′(𝑡)𝑢⟂ + ⟨𝑋⟂ + Ξ(𝑡)𝑋⊤, −∇(𝑛𝜑 − 𝐻𝑢)⟩
= 𝜑(𝑛𝜑 − 𝐻𝑢) + Ξ′(𝑡)𝑢⟂ − 𝑛⟨𝑋, ∇𝜑⟩ + 𝐻⟨𝑋, ∇𝑢⟩ + 𝑢⟨𝑋, ∇𝐻⟩
= 𝜑(𝑛𝜑 − 𝐻𝑢) + Ξ′(𝑡)𝑢⟂ − 𝑛⟨𝑋, ∇𝜑⟩ + 𝑛𝑢𝜈(𝜑) + 𝐻⟨𝑋, ∇𝑢⟩ + 𝑢⟨𝑋, ∇𝐻⟩.

(3.12)

Now we switch to the Laplacian, it will be helpful to decompose 𝑢 = 𝑢⟂ + 𝑢⊤.
First we deal with 𝑢⟂.
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Claim 3.5.1 :  We have

Δ𝑢⟂ = −𝑛𝜈(𝜑) − 𝑢⟂ Ric(𝜈, 𝜈) + ⟨∇𝐻, 𝑋⟂⟩ + 𝜑𝐻 − |𝐴|2 𝑢⟂

We start with computing from definitions

Δ𝑢⟂ = ∇𝑖∇𝑖⟨𝑋⟂, 𝜈⟩ = ∇𝑖(⟨∇𝑖𝑋⟂, 𝜈⟩ + ⟨𝑋⟂, ∇𝑖𝜈⟩).

Now for the first term 𝑒𝑖 is orthogonal to 𝜈 and thus it simplifies to ⟨𝜓⟂(𝑒𝑖), 𝜈⟩,
we continue computing,

Δ𝑢⟂ = ∇𝑖(⟨𝜓⟂(𝑒𝑖), 𝜈⟩ + ⟨𝑋⟂, ℎ𝑖𝑗𝑒𝑗⟩). (3.13)

Let us now deal with the first term, we use Corollary 2.3.4.2

∇𝑖(⟨𝜓⟂(𝑒𝑖), 𝜈⟩) = ∇𝑖
⎝
⎜⎛

2 ASym(∇𝜑♭ ⊗ 𝑋⟂♭)(𝑒𝑖, 𝜈)
𝜑 ⎠

⎟⎞

= (
∇𝑖2 ASym(∇𝜑♭ ⊗ 𝑋⟂♭)(𝑒𝑖, 𝜈)

𝜑

+
2 ASym(∇𝜑♭ ⊗ 𝑋⟂♭)(∇𝑖𝑒𝑖, 𝜈)

𝜑

+
2 ASym(∇𝜑♭ ⊗ 𝑋⟂♭)(𝑒𝑖, ∇𝑖𝜈)

𝜑

−
2 ASym(∇𝜑♭ ⊗ 𝑋⟂♭)(𝑒𝑖, 𝜈)

𝜑2 ∇𝑖𝜑.

We notice that since ∇𝑖𝑒𝑖 = −𝐻𝜈 the second term will have two 𝜈 inputs into
an anti-symmetrization, making it vanish. Similarly, since ∇𝑖𝜈 = ℎ𝑖𝑗𝑒𝑗 the third
term will have the inputs (𝑒𝑖, 𝑒𝑗) symmetrized by ℎ𝑖𝑗 and thus will also vanish.
We are thus left with

∇𝑖(⟨𝜓⟂(𝑒𝑖), 𝜈⟩) =
(∇𝑖2 ASym(∇𝜑♭ ⊗ 𝑋⟂♭))(𝑒𝑖, 𝜈)

𝜑
− ⟨𝜓⟂(𝑒𝑖), 𝜈⟩

∇𝑖𝜑
𝜑

. (3.14)

Now we can compute the covariant derivative of the anti-symmetrization

2 ASym(∇𝜑♭ ⊗ (𝜑𝑒𝑖 + 𝜓⟂(𝑒𝑖))
♭) + 2 ASym(∇𝑖∇𝜑♭ ⊗ 𝑋⟂♭),

now when we plug this back into (3.14) we get
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(∇𝑖𝜑)⟨𝜓⟂(𝑒𝑖), 𝜈⟩
𝜑

− ⟨𝑒𝑖, 𝑒𝑖⟩𝜈(𝜑) + Hess𝜑(𝑒𝑖, 𝑒𝑖)
𝑢⟂

𝜑
− Hess𝜑(𝑒𝑖, 𝜈)

⟨𝑋⟂, 𝑒𝑖⟩
𝜑

−⟨𝜓⟂(𝑒𝑖), 𝜈⟩
∇𝑖𝜑
𝜑

,

which simplifies into

−𝑛𝜈(𝜑) + Hess𝜑(𝑒𝑖, 𝑒𝑖)
𝑢⟂

𝜑
−

Hess𝜑(𝜋(𝑋⟂), 𝜈)
𝜑

.

Now this Hessian term is almost the ambient Laplacian of 𝜑, so we can rewrite
this as

−𝑛𝜈(𝜑) + Δ𝜑
𝑢⟂

𝜑
− 𝑢⟂ Hess𝜑(𝜈, 𝜈)

𝜑
−

Hess𝜑(𝜋(𝑋⟂), 𝜈)
𝜑

,

but now since 𝑋⟂ = 𝜋(𝑋⟂) + 𝑢⟂𝜈 we further simplify this into

−𝑛𝜈(𝜑) + Δ𝜑
𝑢⟂

𝜑
−

Hess𝜑(𝑋⟂, 𝜈)
𝜑

.

and then we use (2.7) to get

−𝑛𝜈(𝜑) + Δ𝜑
𝑢⟂

𝜑
− ⟨𝑋⟂, 𝜈⟩

Hess𝜑(𝒩⟂, 𝒩⟂)
𝜑

= −𝑛𝜈(𝜑) +
𝑢⟂

𝜑
(Δ𝜑 − (Hess𝜑(𝒩⟂, 𝒩⟂))).

This form allows us to use (2.6) to get

−𝑛𝜈(𝜑) − Ric(𝑋⟂, 𝜈). (3.15)

Next for the second term of (3.13) we get

∇𝑖(ℎ𝑖𝑗⟨𝑋⟂, 𝑒𝑗⟩) = (∇𝑖ℎ𝑖𝑗)⟨𝑋⟂, 𝑒𝑗⟩ + ℎ𝑖𝑗⟨∇𝑖𝑋⟂, 𝑒𝑗⟩ + ℎ𝑖𝑗⟨𝑋⟂, ∇𝑖𝑒𝑗⟩

= (∇𝑖ℎ𝑖𝑗)⟨𝑋⟂, 𝑒𝑗⟩ + ℎ𝑖𝑗(𝜑⟨𝑒𝑖, 𝑒𝑗⟩ + ⟨𝜓⟂(𝑒𝑖), 𝑒𝑗⟩)

−ℎ𝑖𝑗ℎ𝑖𝑗⟨𝑋⟂, 𝜈⟩.

Since ℎ𝑖𝑗 is symmetric the third term here vanishes and so we are left with

∇𝑖(ℎ𝑖𝑗⟨𝑋⟂, 𝑒𝑗⟩) = (∇𝑖ℎ𝑖𝑗)⟨𝑋⟂, 𝑒𝑗⟩ + 𝜑𝐻 − |𝐴|2 𝑢⟂. (3.16)

Now plugging (3.15) and (3.16) into (3.13) gives us

Δ𝑢⟂ = −𝑛𝜈(𝜑) − Ric(𝑋⟂, 𝜈) + (∇𝑖ℎ𝑖𝑗)⟨𝑋⟂, 𝑒𝑗⟩ + 𝜑𝐻 − |𝐴|2 𝑢⟂ (3.17)

now we can use Lemma 1.3.3 to get
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(∇𝑖ℎ𝑖𝑗)⟨𝑋⟂, 𝑒𝑗⟩ = (Rm𝑗𝑖𝑖𝜈 +∇𝑗ℎ𝑖𝑖)⟨𝑋⟂, 𝑒𝑗⟩ = (Ric(𝑒𝑗, 𝜈) + ∇𝑗𝐻)⟨𝑋⟂, 𝑒𝑗⟩

= Ric(𝜋(𝑋⟂), 𝜈) + ⟨∇𝐻, 𝑋⟂⟩

= Ric(𝑋⟂, 𝜈) − 𝑢⟂ Ric(𝜈, 𝜈) + ⟨∇𝐻, 𝑋⟂⟩

which we can plug back into (3.17) to get

Δ𝑢⟂ = −𝑛𝜈(𝜑) − 𝑢⟂ Ric(𝜈, 𝜈) + ⟨∇𝐻, 𝑋⟂⟩ + 𝜑𝐻 − |𝐴|2 𝑢⟂

Now we deal with 𝑢⊤

Claim 3.5.2 :  We have

Δ𝑢⊤ = −𝑢⊤ Ric(𝜈, 𝜈) + ⟨∇𝐻, 𝑋⊤⟩ − |𝐴|2 𝑢⊤

Again we compute from definitions, we will use 𝑋⊤ instead of Ξ(𝑡)𝑋⊤ since that
does not change any of the calculations and both are Killing vector fields,

Δ𝑢⊤ = ∇𝑖∇𝑖⟨𝑋⊤, 𝜈⟩ = ∇𝑖(⟨∇𝑖𝑋⊤, 𝜈⟩ + ⟨𝑋⊤, ∇𝑖𝜈⟩).

Now for the first term 𝑒𝑖 is orthogonal to 𝜈 and thus it simplifies to ⟨𝜓⊤(𝑒𝑖), 𝜈⟩,
we continue computing,

Δ𝑢⊤ = ∇𝑖(⟨𝜓⊤(𝑒𝑖), 𝜈⟩ + ⟨𝑋⊤, ℎ𝑖𝑗𝑒𝑗⟩). (3.18)

Let us now deal with the first term, we use Corollary 2.3.4.2

∇𝑖(⟨𝜓⊤(𝑒𝑖), 𝜈⟩) = ∇𝑖
⎝
⎜⎛

2 ASym(∇‖𝑋⊤‖♭ ⊗ 𝑋⊤♭)(𝑒𝑖, 𝜈)
‖𝑋⊤‖ ⎠

⎟⎞

=
∇𝑖2 ASym(∇‖𝑋⊤‖♭ ⊗ 𝑋⊤♭)(𝑒𝑖, 𝜈)

‖𝑋⊤‖

+
2 ASym(∇‖𝑋⊤‖♭ ⊗ 𝑋⊤♭)(∇𝑖𝑒𝑖, 𝜈)

‖𝑋⊤‖

+
2 ASym(∇‖𝑋⊤‖♭ ⊗ 𝑋⊤♭)(𝑒𝑖, ∇𝑖𝜈)

‖𝑋⊤‖

−
2 ASym(∇‖𝑋⊤‖♭ ⊗ 𝑋⊤♭)(𝑒𝑖, 𝜈)

‖𝑋⊤‖2 ∇𝑖‖𝑋⊤‖.

We notice that since ∇𝑖𝑒𝑖 = −𝐻𝜈 the second term will have two 𝜈 inputs into
an anti-symmetrization, making it vanish. Similarly, since ∇𝑖𝜈 = ℎ𝑖𝑗𝑒𝑗 the third
term will have the inputs (𝑒𝑖, 𝑒𝑗) symmetrized by ℎ𝑖𝑗 and thus will also vanish.
We are thus left with
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∇𝑖(⟨𝜓⊤(𝑒𝑖), 𝜈⟩)

= 2
(∇𝑖 ASym(∇‖𝑋⊤‖♭ ⊗ 𝑋⊤♭))(𝑒𝑖, 𝜈)

‖𝑋⊤‖
− ⟨𝜓⊤(𝑒𝑖), 𝜈⟩

∇𝑖‖𝑋⊤‖
‖𝑋⊤‖

.
(3.19)

Now we can compute the covariant derivative of the anti-symmetrization

2 ASym(∇‖𝑋⊤‖♭ ⊗ (𝜓⊤(𝑒𝑖))
♭) + 2 ASym(∇𝑖∇‖𝑋⊤‖♭ ⊗ 𝑋⊤♭),

now when we plug this back into (3.19) we get

(∇𝑖‖𝑋⊤‖)⟨𝜓⊤(𝑒𝑖), 𝜈⟩
‖𝑋⊤‖

+ Hess‖𝑋⊤‖(𝑒𝑖, 𝑒𝑖)
𝑢⊤

‖𝑋⊤‖
− Hess‖𝑋⊤‖(𝑒𝑖, 𝜈)

⟨𝑋⊤, 𝑒𝑖⟩
‖𝑋⊤‖

−⟨𝜓⊤(𝑒𝑖), 𝜈⟩
∇𝑖(‖𝑋⊤‖)

‖𝑋⊤‖
,

which simplifies into

Hess‖𝑋⊤‖(𝑒𝑖, 𝑒𝑖)
𝑢⊤

‖𝑋⊤‖
−

Hess‖𝑋⊤‖(𝜋(𝑋⊤), 𝜈)
‖𝑋⊤‖

.

Now this Hessian term is almost the ambient Laplacian of ‖𝑋⊤‖, so we can rewrite
this as

Δ‖𝑋⊤‖
𝑢⊤

‖𝑋⊤‖
− 𝑢⊤ Hess‖𝑋⊤‖(𝜈, 𝜈)

‖𝑋⊤‖
−

Hess‖𝑋⊤‖(𝜋(𝑋⊤), 𝜈)
‖𝑋⊤‖

,

but now since 𝑋⊤ = 𝜋(𝑋⊤) + 𝑢⊤𝜈 we further simplify this into

Δ‖𝑋⊤‖
𝑢⊤

‖𝑋⊤‖
−

Hess‖𝑋⊤‖(𝑋⊤, 𝜈)
‖𝑋⊤‖

.

and then we use (2.7) to get

Δ‖𝑋⊤‖
𝑢⊤

‖𝑋⊤‖
− ⟨𝑋⊤, 𝜈⟩

Hess‖𝑋⊤‖(𝒩⊤, 𝒩⊤)
‖𝑋⊤‖

= −
𝑢⊤

‖𝑋⊤‖
(Δ‖𝑋⊤‖ − Hess‖𝑋⊤‖(𝒩⊤, 𝒩⊤)).

Now we use (2.6) to get

− Ric(𝑋⊤, 𝜈). (3.20)

Next for the second term of (3.18) we get

∇𝑖(ℎ𝑖𝑗⟨𝑋⊤, 𝑒𝑗⟩) = (∇𝑖ℎ𝑖𝑗)⟨𝑋⊤, 𝑒𝑗⟩ + ℎ𝑖𝑗⟨∇𝑖𝑋⊤, 𝑒𝑗⟩ + ℎ𝑖𝑗⟨𝑋⊤, ∇𝑖𝑒𝑗⟩

= (∇𝑖ℎ𝑖𝑗)⟨𝑋⊤, 𝑒𝑗⟩ + ℎ𝑖𝑗(⟨𝜓⊤(𝑒𝑖), 𝑒𝑗⟩) − ℎ𝑖𝑗ℎ𝑖𝑗⟨𝑋⊤, 𝜈⟩.
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Since ℎ𝑖𝑗 is symmetric the third term here vanishes and so we are left with

∇𝑖(ℎ𝑖𝑗⟨𝑋⊤, 𝑒𝑗⟩) = (∇𝑖ℎ𝑖𝑗)⟨𝑋⊤, 𝑒𝑗⟩ − |𝐴|2 𝑢⊤. (3.21)

Now plugging (3.20) and (3.21) into (3.18) gives us

Δ𝑢⊤ = − Ric(𝑋⊤, 𝜈) + (∇𝑖ℎ𝑖𝑗)⟨𝑋⊤, 𝑒𝑗⟩ − |𝐴|2 𝑢⊤ (3.22)

now we can use Lemma 1.3.3 to get

(∇𝑖ℎ𝑖𝑗)⟨𝑋⊤, 𝑒𝑗⟩ = (Rm𝑗𝑖𝑖𝜈 +∇𝑗ℎ𝑖𝑖)⟨𝑋⊤, 𝑒𝑗⟩ = (Ric(𝑒𝑗, 𝜈) + ∇𝑗𝐻)⟨𝑋⊤, 𝑒𝑗⟩

= Ric(𝜋(𝑋⊤), 𝜈) + ⟨∇𝐻, 𝑋⊤⟩

= Ric(𝑋⊤, 𝜈) − 𝑢⊤ Ric(𝜈, 𝜈) + ⟨∇𝐻, 𝑋⊤⟩

which we can plug back into (3.22) to get

Δ𝑢⊤ = −𝑢⊤ Ric(𝜈, 𝜈) + ⟨∇𝐻, 𝑋⊤⟩ − |𝐴|2 𝑢⊤

which proves the claim.
Combined with the previous claim we get that

Δ𝑢 = −𝑛𝜈(𝜑) − 𝑢 Ric(𝜈, 𝜈) + ⟨∇𝐻, 𝑋⟩ + 𝜑𝐻 − |𝐴|2 𝑢

and then combining with (3.12) we get

𝐿𝑢 = 𝑛𝜑2 + Ξ′(𝑡)𝑢⊤ − 𝑛𝑋(𝜑) + 2𝑛𝑢𝜈(𝜑) + 𝐻⟨𝑋, ∇𝑢⟩ + 𝑢2 Ric(𝜈, 𝜈)
−2𝜑𝑢𝐻 + |𝐴|2 𝑢2

= 𝑛(𝜑2 − 𝑋⟂(𝜑) − Ξ(𝑡)𝑋⊤(𝜑)) + Ξ′(𝑡)𝑢⊤ + 2𝑛𝑢𝜈(𝜑) + 𝐻⟨𝑋, ∇𝑢⟩ + 𝑢2 Ric(𝜈, 𝜈)
−2𝜑𝑢𝐻 + |𝐴|2 𝑢2

= 𝑛Λ𝜑3 − 𝑛Ξ(𝑡)𝑋⊤(𝜑) + Ξ′(𝑡)𝑢⊤ + 2𝑛𝑢𝜈(𝜑) + 𝐻⟨𝑋, ∇𝑢⟩ + 𝑢2 Ric(𝜈, 𝜈)
−2𝜑𝑢𝐻 + |𝐴|2 𝑢2.

This finishes the proof. □

Now we can start to analyse this evolution equation to get results about 𝑢.

Corollary 3.5.1.1 :  There is a constant 𝜀 > 0 such that for any 𝑡 ∈ [0, 𝑇 )

min
𝑝∈𝑀𝑡

𝑢(𝑝, 𝑡) ≥
𝜀

1 + max𝑝∈𝑀𝑡
|𝐻(𝑝, 𝑡)|

Proof :  At a minimum point of 𝑢 we have that ∇𝑢 vanishes and so we get

𝐿𝑢 = 𝑛(Λ𝜑3 − Ξ(𝑡)𝑋⊤(𝜑)) + Ξ′(𝑡)𝑢⊤ + 2𝑛𝑢𝜈(𝜑) + 𝑢2(Ric(𝜈, 𝜈)) − 2𝜑𝑢𝐻 + |𝐴|2 𝑢2,
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now recall that all ambient objects are uniformly bounded for all time, so there
exists a constant 𝑀  such that

𝐿𝑢 ≥ 𝑛(Λ𝜑3 − Ξ(𝑡)𝑋⊤(𝜑)) + Ξ′(𝑡)𝑢⊤ − 𝑢𝑀 − 2𝜑𝑢𝐻 + |𝐴|2 𝑢2.

By our assumptions both Λ𝜑3 and Λ𝜑3 − Ξ(𝑡)𝑋⊤(𝜑) are positive, we thus have
that any convex combinations of them is positive so since these are ambient quan-
tities they must be uniformly bounded and so

𝑛(Λ𝜑3 − Ξ(𝑡)𝑋⊤(𝜑)) ≥ 𝜀1 > 0

for some 𝜀1. We thus have

𝐿𝑢 ≥ 𝜀1 + Ξ′(𝑡)𝑢⊤ − 𝑢𝑀 − 2𝜑𝑢𝐻 + |𝐴|2 𝑢2.

Now we are free to pick 𝑇0 such that ‖𝑋⊤‖
𝑇0

≤ 𝜀1
2 . Then we can use the Newton-

Maclaurin inequality to get

𝐿𝑢 ≥ 𝜀2 + Ξ′(𝑡)𝑢⊤ − 𝑢𝑀 − 2𝜑𝑢𝐻 + 𝐻2 𝑢2

𝑛
.

Now assume that 𝑢 < 𝜀
1+ max|𝐻(𝑝,𝑡)| , then

𝐿𝑢 ≥ 𝜀2 + Ξ′(𝑡)𝑢⊤ − 𝜀𝑀 − 2𝜑𝜀

so by setting 𝜀 < 𝜀2
2(𝑀+2𝜑)  then

𝐿𝑢 ≥ 𝜀3 + Ξ′(𝑡)𝑢⊤

now we can pick 𝑇0 so that |Ξ′(𝑡)| < 1
‖𝑋⊤‖  and we get

𝐿𝑢 ≥ 𝜀4.

Thus by using Proposition 1.5.1 we get that

𝑢 ≤
𝜀

1 + max𝑝∈𝑀𝑡
𝐻(𝑝, 𝑡)

implies min
𝑝∈𝑀𝑡

𝑢(𝑝, 𝑡) ≥ min
𝑝∈𝑀0

𝑢(𝑝, 0)

and so by choosing 𝜀 appropriately we get the desired result. □

Now that we can bound 𝑢 using 𝐻, we just need to show that 𝐻 grows sufficiently
slowly, to guarantee the flow exists until 𝑡 = 𝑇0.
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3.6 Evolution Equation for 𝐻

Proposition 3.6.1 :  The evolution equation for 𝐻 is

𝐿𝐻 = 2⟨∇𝐻, ∇𝑢⟩ + 𝐻⟨𝑋, ∇𝐻⟩ − 𝜑(𝐻2 − 𝑛 |𝐴|2)

+𝑛(Hess𝜑(𝜈, 𝜈) − Hess𝜑(𝒩⟂, 𝒩⟂)) + 𝑛𝜑(Ric(𝒩⟂, 𝒩⟂) − Ric(𝜈, 𝜈))

Proof :  We use Corollary 1.6.5.1 to get

𝜕𝑡𝐻 = −Δ(𝑛𝜑 − 𝐻𝑢) − (𝑛𝜑 − 𝐻𝑢)(|𝐴|2 + Ric(𝜈, 𝜈))

then simplifying this we get

𝐿𝐻 = −𝑛Δ𝜑 + 2⟨∇𝐻, ∇𝑢⟩ + 𝐻Δ𝑢 − (𝑛𝜑 − 𝐻𝑢)(|𝐴|2 + Ric(𝜈, 𝜈))

then using the results of Proposition 3.5.1 we get

𝐿𝐻 = −𝑛Δ𝜑 + 2⟨∇𝐻, ∇𝑢⟩ − 𝐻𝑛𝜈(𝜑) − 𝐻𝑢 Ric(𝜈, 𝜈) + 𝐻⟨∇𝐻, 𝑋⟩ + 𝜑𝐻2

− 𝐻|𝐴|2 𝑢 − (𝑛𝜑 − 𝐻𝑢)(|𝐴|2 + Ric(𝜈, 𝜈))

= −𝑛Δ𝜑 + 2⟨∇𝐻, ∇𝑢⟩ − 𝐻𝑛𝜈(𝜑) + 𝐻⟨∇𝐻, 𝑋⟩ + 𝜑𝐻2 − 𝑛𝜑(|𝐴|2 + Ric(𝜈, 𝜈))

= −𝑛Δ𝜑 + 2⟨∇𝐻, ∇𝑢⟩ − 𝐻𝑛𝜈(𝜑) + 𝐻⟨∇𝐻, 𝑋⟩ + 𝜑(𝐻2 − 𝑛|𝐴|2) − 𝑛𝜑 Ric(𝜈, 𝜈).

Now we use Proposition 1.3.2 to get

𝐿𝐻 = −𝑛Δ𝜑 + 𝑛 Hess𝜑(𝜈, 𝜈) + 2⟨∇𝐻, ∇𝑢⟩ + 𝐻⟨∇𝐻, 𝑋⟩ + 𝜑(𝐻2 − 𝑛|𝐴|2)

− 𝑛𝜑 Ric(𝜈, 𝜈)

but now we use (2.5) to get

𝐿𝐻 = 𝑛(𝜑 Ric(𝒩⟂, 𝒩⟂) − Hess𝜑(𝒩⟂, 𝒩⟂)) + 𝑛 Hess𝜑(𝜈, 𝜈) + 2⟨∇𝐻, ∇𝑢⟩

+𝐻⟨∇𝐻, 𝑋⟩ + 𝜑(𝐻2 − 𝑛|𝐴|2) − 𝑛𝜑 Ric(𝜈, 𝜈)

= 2⟨∇𝐻, ∇𝑢⟩ + 𝐻⟨∇𝐻, 𝑋⟩ + 𝜑(𝐻2 − 𝑛|𝐴|2) + 𝑛𝜑(Ric(𝒩⟂, 𝒩⟂) − Ric(𝜈, 𝜈))

+ 𝑛(Hess𝜑(𝜈, 𝜈) − Hess𝜑(𝒩⟂, 𝒩⟂))

□

Corollary 3.6.1.1 :  There are constants 𝑎, 𝑏 > 0 such that for any 𝑡 ∈ [0, 𝑇 )

max
𝑝∈𝑀𝑡

𝐻(𝑝, 𝑡) ≤ 𝑎 + 𝑏𝑡
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Proof :  At a maximum point of 𝐻 we have ∇𝐻 = 0, hence the evolution equation
simplifies to

𝐿𝐻 = 𝜑(𝐻2 − 𝑛|𝐴|2) + 𝑛𝜑(Ric(𝒩⟂, 𝒩⟂) − Ric(𝜈, 𝜈))

+ 𝑛(Hess𝜑(𝜈, 𝜈) − Hess𝜑(𝒩⟂, 𝒩⟂)),

but then again using the Newton-Maclaurin inequality we get

𝐿𝐻 ≤ 𝑛𝜑(Ric(𝒩⟂, 𝒩⟂) − Ric(𝜈, 𝜈)) + 𝑛(Hess𝜑(𝜈, 𝜈) − Hess𝜑(𝒩⟂, 𝒩⟂)).

Now on the right hand side these are all ambient objects and thus are uniformly
bounded by some constant 𝑀 , hence we have

𝐿𝐻 ≤ 𝑀.

Hence by Proposition 1.5.1 we get that 𝐻 ≤ max𝑝∈𝑀0
𝐻(𝑝, 0) + 𝑀𝑡, proving the

desired result. □

With this linear bound we get an inverse linear lower bound on 𝑢.

Corollary 3.6.1.2 :  There exists 𝜀 > 0 such that

𝑢(𝑝, 𝑡) ≥
𝜀

1 + 𝑇0

for all 𝑡 ∈ [0, 𝑇 ) and 𝑝 ∈ 𝑀𝑡.

Proof :  Combining Corollary 3.6.1.1 with Corollary 3.5.1.1 we immediately get
the desired result. □

3.7 Existence and Convergence
We now have everything we need to prove the flow exists until 𝑡 = 𝑇0.

Proposition 3.7.1 :  If a surface 𝑀  which is star-shaped with respect to 𝑋⟂ +
𝑋⊤ admits a flow 𝑀𝑡, then 𝑀𝑡 remains star-shaped with respect to 𝑋(𝑡) for all
𝑡 ∈ [0, 𝑇0), furthermore if the flow exists at 𝑡 = 𝑇0 then there the surface is star-
shaped with respect to 𝑋⟂.

Proof :  We have showed that 𝑢 is uniformly bounded for 𝑡 ∈ [0, 𝑇0), hence it is
also uniformly bounded in the limit 𝑡 = 𝑇0. □

We now shift out focus to rewriting this flow as a flow of functions instead of hyper-
surfaces, which will allow us to apply the results of Section 1.5 to it. We want to write
our hypersurface as a graph over an integral hypersurface of 𝑆𝜆 where

𝑆𝜆 = {𝑝 ∈ 𝑁 : 𝜆(𝑝) = 𝜆},
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since this is not a warped product space we need to be careful with this construction.
We will fix a starting hypersurface 𝑀 , and set

𝜆0 = min
𝑝∈𝑀

𝜆(𝑝) and 𝜆1 = max
𝑝∈𝑀

𝜆(𝑝),

and we want to construct nice coordinates on

𝐷 ≔ {𝑝 ∈ 𝑁 : 𝜆0 ≤ 𝜆(𝑝) ≤ 𝜆1} (3.23)

We will start with proving that 𝐷 is compact, allowing us to lower bound important
quantities uniformly.

Proposition 3.7.2 :  For any 𝜆1 > 𝜆0 > 0 in the image of 𝜆, the subset 𝐷 defined
by (3.23) is compact.

Proof :  First we will show that 𝐷 is a fiber bundle over [𝜆0, 𝜆1], to see this fix 𝜆 ∈
[𝜆0, 𝜆1], then set 𝑆𝜆 = {𝑝 ∈ 𝑁 : 𝜆(𝑝) = 𝜆}, it is an integrable hypersurface of 𝑋⟂

and is compact. Then consider the flow of 𝑋⟂, since 𝑆𝜆 is compact we can pick
𝜀 > 0 such that the flow of 𝑋⟂ exists for 𝑡 ∈ [−𝜀, 𝜀] for all points 𝑝 ∈ 𝑆𝜆. Now
the image of 𝑆𝜆 under this flow is another integrable hypersurface, this is because
𝑋⟂ is a conformal vector field and so under its flow, itself and orthogonality are
preserved. Hence the flow of 𝑋⟂ fixes its orthogonal distribution 𝒟(𝑋⟂), and
thus also its foliation. Hence for some 𝜆′ < 𝜆 < 𝜆″ we can reparametrize the flow
of 𝑋⟂ to get the homeomorphism

ℱ : 𝑆𝜆 × [𝜆′, 𝜆″] → 𝜆−1([𝜆′, 𝜆″]),

and thus 𝐷 is a fiber bundle.
We now prove a lemma regarding compactness of fiber bundles.

Lemma 3.7.3 :  If (𝐸, 𝐵, 𝐹) is a fiber bundle with 𝐸, 𝐵, 𝐹  metric spaces
and 𝐵, 𝐹  compact, then 𝐸 is also compact.

Proof :  Let 𝑥𝑛 be a sequence of points in 𝐸, since 𝜋(𝑥𝑛) is a sequence of
points in 𝐵 it has a convergence subsequence 𝜋(𝑥𝑛𝑘

). Assume that it con-
verges to 𝑥, then let 𝑈  be a neighborhood of 𝑥 which trivializes the bundle
𝐸, in the sense that 𝜋−1(𝑈) = 𝑈 × 𝐹 . Consider a precompact subset 𝑉 ⊆
𝑈 , then since 𝜋(𝑥𝑛𝑘

) → 𝑥 we know that 𝜋(𝑥𝑛𝑘
) is eventually always con-

tained in 𝑉 , hence 𝑥𝑛𝑘
 is eventually always contained in 𝜋−1(𝑉 ) = 𝑉 ×

𝐹 . Now there is a subsequence of 𝑥𝑛𝑘
 which is entirely contained in 𝑉 × 𝐹

which is a product of compact sets hence compact, so 𝑥𝑛𝑘
 has a convergent

subsequence in 𝐸, which is also a convergent subsequence of 𝐸. Hence 𝐸 is
compact. □
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Now in our situation we have 𝐷 as a fiber bundle over [𝜆0, 𝜆1] with fiber 𝑆𝜆 which
are both compact, hence 𝐷 is compact which proves the proposition. □

We can now use these lower bounds to construct a nice coordinate system for 𝐷, we
will do this by flowing the surface 𝑆𝜆0

 to cover the entirety of 𝐷. For brevity we will
shorten 𝑆𝜆0

 to 𝑆.

Proposition 3.7.4 :  For any 𝜆 ∈ [𝜆0, 𝜆1], and any point 𝑝 ∈ 𝑆𝜆 there exists an
integral curve of 𝑋(𝑡) going through 𝑝 which intersects 𝑆 at exactly one point.

Proof :  First we prove existence, consider the flow of −𝑋(𝑡) acting on 𝑝, lets call
this flow ℱ. Notice that

𝜕𝑡𝜆(ℱ(𝑝, 𝑡)) = −2Λ < 0

and so this function is decreasing. Then at some point 𝜆(ℱ(𝑝, 𝑡)) = 𝜆0 since oth-
erwise ℱ(𝑝, 𝑡) remains forever in 𝐷 where −2Λ < −𝜀 < 0 for some positive 𝜀 which
is a contradiction.

To show uniqueness assume that the flow ℱ(𝑝, 𝑡) intersects 𝑆 at more than
one point. Then we have 𝜆(ℱ(𝑝, 𝑡1)) = 𝜆(ℱ(𝑝, 𝑡2)) and so by Rolle’s theorem we
have that 𝜕𝑡𝜆(ℱ(𝑝, 𝑡3)) = 0 which contradicts the fact that −2Λ < 0. □

Using the unique intersection point we found above as a ‘projection map’ onto 𝑆 we
get a diffeomorphism 𝐹𝑡 : 𝐷 → 𝑆 × [𝜆0, 𝜆1]. Note that this diffeomorphism depends on
𝑡 because 𝑋(𝑡) depends on 𝑡.

We can now convert our hypersurface flow into a flow of functions.

Proposition 3.7.5 :  A hypersurface 𝑀  contained in 𝐷 is star-shaped with re-
spect to 𝑋(𝑡) if and only if it can be identified using 𝐹𝑡 with a graph of smooth
function 𝑓 : 𝑆 → [𝜆0, 𝜆1].

Proof :  First assume that 𝑀  can be identified with the graph of 𝑓 , then set 𝐹 :
𝑆 → 𝑆 × [𝜆0, 𝜆1] be the embedding of the graph

𝐹 : 𝑦 ↦ (𝑦, 𝑓(𝑦)).

One can easily compute that for 𝑣 ∈ 𝑇𝑝𝑆

𝐹∗𝑣 = ̂𝑣 + 𝑣(𝑓)𝜕𝜆

where ̂𝑣 is the extension of 𝑣 over the integral curve containing 𝑝 through the
flow of 𝑋(𝑡). Then let 𝑣 be the unit vector which maximizes the length of the
orthogonal projection of 𝑋(𝑡) onto 𝐹∗𝑣, this length is

⟨𝑣 + 𝑣(𝑓)𝜕𝜆, 𝑋(𝑡)⟩
‖𝑣 + 𝑣(𝑓)𝜕𝜆‖

=
⟨𝑣 + 𝑣(𝑓)𝜕𝜆, 𝑋(𝑡)⟩

‖𝑣 + 𝑣(𝑓)𝜕𝜆‖
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now orthogonally decompose 𝑣 as 𝑣 = 𝑎𝜕𝜆 + 𝑏𝑧 where 𝑧 is a unit vector orthogonal
to 𝜕𝜆 and by extension also 𝑋(𝑡). We then have

⟨𝑎𝜕𝜆 + 𝑏𝑧 + 𝑣(𝑓)𝜕𝜆, 𝑋(𝑡)⟩
‖𝑎𝜕𝜆 + 𝑏𝑧 + 𝑣(𝑓)𝜕𝜆‖

=
⟨𝑏𝑧 + (𝑎 + 𝑣(𝑓))𝜕𝜆, 𝑋(𝑡)⟩

‖𝑏𝑧 + (𝑎 + 𝑣(𝑓))𝜕𝜆‖

=
(𝑎 + 𝑣(𝑓))⟨𝜕𝜆, 𝑋(𝑡)⟩

√𝑏2 + (𝑎 + 𝑣(𝑓))2‖𝜕𝜆‖2

=
(𝑎 + 𝑣(𝑓))

√ 𝑏2

‖𝜕𝜆‖2 + (𝑎 + 𝑣(𝑓))2
‖𝑋(𝑡)‖.

Now since we are on a compact surface we have uniform bounds on 𝑣(𝑓) and 𝑏 is
non-zero (since 𝑣 is not colinear with 𝑋(𝑡)) we have

(𝑎 + 𝑣(𝑓))

√ 𝑏2

‖𝜕𝜆‖2 + (𝑎 + 𝑣(𝑓))2
< 1 − 𝜀

for some 𝜀 > 0. Now from this we get that the projection 𝜋 of 𝑋(𝑡) onto 𝑀  sat-
isfies

‖𝜋(𝑋(𝑡))‖2 < ‖𝑋(𝑡)‖2 (1 − 𝜀′)

and so we have

𝑢2 = ‖𝑋(𝑡)‖2 − ‖𝜋(𝑋(𝑡))‖2 > ‖𝑋(𝑡)‖2𝜀′

and so up to a change of orientation our surface is star-shaped.
On the other hand assume that a surface is star-shaped, then first we prove

that it intersects every integral curve of 𝑋(𝑡) at most once, to see this note that
if it were to intersect it twice, then we would have ⟨𝜈, 𝑋(𝑡1)⟩ be positive and
⟨𝜈, 𝑋(𝑡2)⟩ be negative or vice versa, where 𝑡1, 𝑡2 are the intersection times. But
this directly contradicts the fact that it is star-shaped. We thus have an injective
map 𝜋 : 𝑀 → 𝑆 since the all the integral curves intersect 𝑆 at exactly one point.

It will be enough to show that 𝜋 is also a diffeomorphism, as then its inverse
will exactly be the embedding of the graph of a function. It in fact suffices just to
show it is a local diffeomorphism, since then it is a bĳection onto its image and
thus a diffeomorphism onto its image. Now we check that this is indeed the case,
fix a point 𝑝 ∈ 𝑀  and take an orthonormal frame 𝑒1, …, 𝑒𝑛 of 𝑆 centered at 𝑓(𝑝)
and extend it to 𝑛 vector fields ̂𝑒1, …, ̂𝑒𝑛, ̂𝜈 of 𝐷 through the flow of 𝑋(𝑡). Now
at the point 𝑝 consider the projection 𝑃 : 𝑇𝑝𝑁 → Span( ̂𝑒1, …, ̂𝑒𝑛) induced by the
frame ̂𝑒1, …, ̂𝑒𝑛, 𝑋(𝑡) (i.e. the projection with kernel Span(𝑋(𝑡))). If we restrict
this map to 𝑇𝑝𝑁  the projection kernel of this linear map is zero since anything
in the kernel must be colinear with 𝑋(𝑡) and thus cannot be in 𝑇𝑝𝑀  since that
would mean ⟨𝑋(𝑡), 𝜈⟩ = 0 which contradicts star-shapedness.

Now we see that the projection is precisely the differential of 𝜋 and it is a
linear isomorphism and thus 𝜋 is a local diffeomorphism. □
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In fact, by the first argument in the proof above we get that lower bounds on 𝑢 are
equivalent to upper bounds on ‖∇̃𝑓‖ where ∇̃ is the connection on 𝑆>

Corollary 3.7.5.1 :  There are functions 𝑀(𝜀) and 𝜀(𝑀) such that

sup
𝑆

‖∇̃𝑓‖ < 𝑀 ⇒ inf
𝑆

𝑢 > 𝜀(𝑀) and

inf
𝑆

𝑢 > 𝜀 ⇒ sup
𝑆

‖∇̃𝑓‖ < 𝑀(𝜀)

We will now construct the flow in the following way, first we use Proposition 3.7.5 to
identify our initial surface 𝑀0 with a graph of the function 𝜆 over 𝑆. Then 𝑀𝑡 solving
(3.11) is equivalent to it being the graph of a function 𝑓 solving

{
𝐿𝑓 = −2Λ𝑛𝜑𝑢⊤ − 2𝑢⟨∇Λ, 𝑋⟂⟩,
𝑓(𝑥, 0) = 𝜆(𝑥), (3.24)

up to an appropriate diffeomorphism that handles points changing which integral curve
they are on (this is alright as all normal flows are diffeomorphism invariant). This
identification is through 𝐺 : (𝑥, 𝑡, 𝜆) ↦ 𝐹𝑡(𝑥, 𝜆).

Next we solve this (3.23) purely in function space. We then apply appropriate dif-
feomorphisms to convert this solution to a solution of our normal flow.

Proposition 3.7.6 (Short Time Existence):  For any star-shaped hypersurface
𝑀0, the normal flow with velocity 𝑛𝜑 − 𝐻𝑢 with initial condition 𝑀0 exists for
some time interval [0, 𝑇 ).

Proof :  By the processed described above it is enough to show that (3.23) has a
solution for some time interval [0, 𝑇 ).

To see this we need to rewrite all geometric objects of the PDE in terms of
𝑤 and its derivatives. We will work with in normal coordinates 𝑥1, …, 𝑥𝑛 on 𝑆, in
which the induced metric is given by

𝑔𝑖𝑗 = ⟨𝐹∗𝑒𝑖, 𝐹∗𝑒𝑗⟩ = ⟨ ̂𝑒𝑖, ̂𝑒𝑗⟩ + 𝜕𝑗𝑓⟨ ̂𝑒𝑖, 𝜕𝜆⟩ + 𝜕𝑖𝑓⟨ ̂𝑒𝑗, 𝜕𝜆⟩ + (𝜕𝑖𝑓)(𝜕𝑗𝑓)⟨𝜕𝜆, 𝜕𝜆⟩.

Notice that all 4 inner products in the expression are smooth functions of (𝑥, 𝜆)
and so the entries are smooth functions of 𝑥, 𝑓, 𝐷𝑓 . We then immediately get that

𝑔𝑖𝑗(𝑥, 𝑓, 𝐷𝑓), det(𝑔)(𝑥, 𝑓, 𝐷𝑓)

are both also smooth functions of their inputs. Now by the Gram-Schmidt method
we get that the normal vector to the graph can be given by

𝜈 = 𝑋(𝑡) − ∑
𝑖

⟨ ̂𝑒𝑖 + 𝜕𝑖𝑓𝜕𝜆, 𝑋(𝑡)⟩
⟨ ̂𝑒𝑖 + 𝜕𝑖𝑓𝜕𝜆, ̂𝑒𝑖 + 𝜕𝑖𝑓𝜕𝜆⟩

( ̂𝑒𝑖 + 𝜕𝑖𝑓𝜕𝜆)
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appropriately normalized, which is once again a smooth function of 𝑥, 𝑓, 𝐷𝑓 , hence
𝑢⊤ and 𝑢 are also smooth functions of 𝑥, 𝑓, 𝐷𝑓 . Finally all ambient objects like
𝑋⟂, Λ, 𝜑 are all smooth functions of 𝑥, 𝜆 and hence 𝑥, 𝑓 . We can thus rewrite
(3.24) as

𝜕𝑡𝑓 = −𝑢(𝑥, 𝑓, 𝐷𝑓)Δ𝑓 + 𝐵(𝑥, 𝑓, 𝐷𝑓). (3.25)

At first glance this seems like a standard parabolic PDE but in fact our Laplacian
is with respect to the induced metric which depends on the gradient of 𝑓 in a
complicated manner. To counteract this we will use a technique called DeTurcks
trick, which will allow us to exploit the diffeomorphism invariance of our geomet-
ric flow to sidestep this complexity.

We recall that in coordinates the Laplacian takes the form

Δ𝑓 = 𝑔𝑖𝑗(𝜕𝑖𝜕𝑗𝑓 − Γ𝑘
𝑖𝑗𝜕𝑘𝑓)

where both the inverse metric and the Christoffel Symbols depend on the induced
metric. Now let us fix some other metric, for example the metric on 𝑀0, we will
call this metric ̃𝑔 and its Christoffel symbols Γ̃. We recall that object

Γ𝑘
𝑖𝑗 − Γ̃𝑘

𝑖𝑗

is actually coordinate independent and is a tensor. Hence we can define the time
dependent vector field

𝑉 𝑘(𝑡) = 𝑔𝑖𝑗(𝑡)(Γ𝑘
𝑖𝑗(𝑡) − Γ̃𝑘

𝑖𝑗).

We will now apply a time-dependent diffeomorphism Φ𝑡 to our flow to see how it
changes. Assume that 𝑓 solves (3.25), then we get that ℎ := 𝑓 ∘ Φ−1

𝑡  solves

𝜕𝑡(ℎ ∘ Φ𝑡) = −𝑢(Φ𝑡(𝑥), ℎ ∘ Φ𝑡, 𝐷(ℎ ∘ Φ𝑡))Δ(ℎ ∘ Φ𝑡) + 𝐵(Φ𝑡(𝑥), ℎ ∘ Φ𝑡, 𝐷(ℎ ∘ Φ𝑡))

now recall that the right hand side here is actually (𝑛𝜑 − 𝐻𝑢)⟨∇𝜆, 𝜈⟩ and is ac-
tually a geometric quantity, hence it does not depend on parametrization and so
we can rewrite the right hand side as

(−𝑢(𝑥, ℎ, 𝐷ℎ)Δℎ + 𝐵(𝑥, ℎ, 𝐷ℎ)) ∘ Φ𝑡

and so ℎ solves

𝜕𝑡(ℎ ∘ Φ𝑡) = (−𝑢(𝑥, ℎ, 𝐷ℎ)Δℎ + 𝐵(𝑥, ℎ, 𝐷ℎ)) ∘ Φ𝑡.

But now we can simplify the left hand side by chain rule to get

(𝜕𝑡ℎ) ∘ Φ𝑡 + (𝑑ℎ ∘ Φ𝑡)(𝜕𝑡Φ𝑡) = (−𝑢(𝑥, ℎ, 𝐷ℎ)Δℎ + 𝐵(𝑥, ℎ, 𝐷ℎ)) ∘ Φ𝑡.

Next we assume that 𝜕𝑡Φ𝑡 = (𝑢(𝑥, ℎ, 𝐷ℎ)𝑉 (𝑡)) ∘ Φ𝑡, this gives us

(𝜕𝑡ℎ) ∘ Φ𝑡 + (𝑢(𝑥, ℎ, 𝐷ℎ)𝑑ℎ(𝑉 (𝑡))) ∘ Φ𝑡 = (−𝑢(𝑥, ℎ, 𝐷ℎ)Δℎ + 𝐵(𝑥, ℎ, 𝐷ℎ)) ∘ Φ𝑡

𝜕𝑡ℎ + 𝑢(𝑥, ℎ, 𝐷ℎ)𝑑ℎ(𝑉 (𝑡)) = −𝑢(𝑥, ℎ, 𝐷ℎ)Δℎ + 𝐵(𝑥, ℎ, 𝐷ℎ),

and from the definition of 𝑉 𝑘(𝑡) we get
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𝜕𝑡ℎ = −(𝑢𝑔𝑖𝑗)(𝑥, ℎ, 𝐷ℎ)(𝜕𝑖𝜕𝑗ℎ − Γ̃𝑘
𝑖𝑗𝜕𝑘ℎ) + 𝐵(𝑥, ℎ, 𝐷ℎ).

Now importantly in this PDE Γ̃ is fixed and (𝑢𝑔𝑖𝑗)(𝑥, ℎ, 𝐷ℎ) is uniformly positive
semi-definite since they are uniformly positive semi-definite at 𝑡 = 0 and are also
positive-semi-definite for some non-zero time interval. Hence by Theorem 1.5.2
we get that this PDE does have a solution for some time interval [0, 𝑇 ).

Once we have this solution ℎ, we can use it to construct the diffeomorphism Φ𝑡
by simply considering the flow of the time dependent vector field 𝑢(𝑥, ℎ, 𝐷ℎ)𝑉 (𝑡)
which exists for all time by standard ODE theory. Then ℎ ∘ Φ𝑡 is a solution to
(3.25) which proves short time existence. □

Now that we showed short-time existence we can use Corollary 3.6.1.2 along with
Corollary 3.7.5.1 to get that as long as 𝑇 ≤ 𝑇0

‖∇𝑓‖ < 𝜀

for all 𝑡 ∈ [0, 𝑇 ). This along with Theorem 1.5.3 this gives us estimates on ‖∇𝑓‖𝐶1+𝑟

which then together with Theorem 1.5.2 gives us a stronger existence statement.

Corollary 3.7.6.1 :  For any star-shaped hypersurface 𝑀0, the normal flow with
velocity 𝑛𝜑 − 𝐻𝑢 with initial condition 𝑀0 exists on [0, 𝑇0].

Proof :  We will again first pass to the function space and consider the evolution of
the graph of the function 𝑓 . Existence on [0, 𝑇0) is immediate by Theorem 1.5.2
along with Theorem 1.5.3. Then to get existence at 𝑡 = 𝑇0 we will take a sequence
𝑡𝑛 → 𝑇0 with 𝑓(𝑡, ⋅) → 𝑔 and use Arzelà–Ascoli Theorem to prove 𝑔 is smooth.
Bounds on 𝑓𝑡 then imply that 𝑓 cannot infinitely oscillate in 𝑡 and so 𝑔 is inde-
pendent of choice of sequence 𝑡𝑛.

To use Arzelà–Ascoli like this, we will need uniform bounds on all derivatives
of 𝑓 , here we will use Theorem 1.5.2 once again. Note that by the second part of
Theorem 1.5.2 we get that

‖𝑓(𝑡, ⋅)‖𝐶2+𝑟 ≤ 𝐵(‖𝑓(𝑡, ⋅)‖𝐶1+𝑟)

and so by setting 𝑟′ = 1 + 𝑟 we can repeat this process to get bounds on higher
and higher derivatives of 𝑓 , which completes the proof. □

We now know that the flow survives until 𝑡 = 𝑇0. When the flow reaches this point we
stop it and change the flow by removing the tangential component 𝑋⊤ entirely, only
leaving 𝑋⟂. With this simpler flow Li and Pan [11] showed that 𝑢 is uniformly bounded
from below for all time and thus our results prove that the flow exists for all 𝑡 ∈ [0, ∞).

Proposition 3.7.7 :  The flow described in Section 3.2 exists for all time 𝑡 ∈
[0, ∞).

This proves the first condition of Theorem 2.1.
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We now want to show that the limit of this flow is precisely an integral hypersurface
𝑆𝜆, to do this we will use a trick where we take a limit of an entire interval of our flow.
To be more precise assume that 𝐹 : 𝑀 × [0, ∞) → 𝑁  solves the flow, then consider the
functions 𝐹𝑛 : 𝑀 × [0, 1] → 𝑁  defined by

𝐹𝑛(𝑡, 𝑝) = 𝐹(𝑛 + 𝑡, 𝑝).

These are all solutions to the flow and by Arzelà–Ascoli we can, after passing to a
subsequence, get that

𝐹𝑛 → 𝐹∞

for some function 𝐹∞ : 𝑀 × [0, 1] → 𝑁  which is also a solution to the flow.

Proposition 3.7.8 :  If 𝑄 is a positive continuous geometric property of an em-
bedding 𝐹 : 𝑀 → 𝑁  such that 𝑄(𝐹(𝑡, ⋅)) is non-increasing, then 𝑄(𝐹∞(𝑡, ⋅)) is
constant on [0, 1].

Proof :  Since for any 𝑡 ∈ [0, 1] the sequence 𝑄(𝐹𝑛(𝑡, ⋅)) is positive non increasing
and thus its limit exists. Hence we have

𝑄(𝐹∞(𝑡, ⋅)) = lim
𝑛→∞

𝑄(𝐹𝑛(𝑡, ⋅))

which after plugging in 𝑡 = 0, 1 gives us

𝑄(𝐹∞(0, ⋅)) = lim
𝑛→∞

𝑄(𝐹𝑛(0, ⋅)) = lim
𝑛→∞

𝑄(𝐹(𝑛, ⋅)),

𝑄(𝐹∞(1, ⋅)) = lim
𝑛→∞

𝑄(𝐹𝑛(1, ⋅)) = lim
𝑛→∞

𝑄(𝐹(𝑛 + 1, ⋅)),

which immediately gives us that 𝑄(𝐹∞(0, ⋅)) = 𝑄(𝐹∞(1, ⋅)). But now 𝑄 is non-
increasing along the flow and thus 𝑄(𝐹∞(𝑡, ⋅)) is constant. □

We now first apply this to the surface area 𝐴(𝑀𝑡). Since it is clearly continuous and
non-increasing by Proposition 3.3.1, the above proposition implies that 𝐹∞(𝑡, ⋅) has
constant surface area. Due to the variation formula for surface area we get that

0 = ∫
𝑀

=
𝑛

𝑛 − 1
∫

𝑀
𝑢(Ric(𝒩⟂, 𝒩⟂) − Ric(𝜈, 𝜈)) d𝑆 −

1
𝑛

∫
𝑀

𝑢 ∑
𝑖<𝑗

(𝜅𝑖 − 𝜅𝑗)
2 d𝑆

and so we get that 𝜅𝑖 = 𝜅𝑗 for all 𝑖, 𝑗 and so 𝐹∞(𝑡, ⋅) is totally umbilical. Secondly we
get that Ric(𝒩⟂, 𝒩⟂) = Ric(𝜈, 𝜈), this is important due to the following lemma.
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Lemma 3.7.9 :  Let 𝑆 be a symmetric bilinear form and ⟨⋅, ⋅⟩ an inner product
on a vector space 𝑉 . If 𝑋 is a unit vector with respect to ⟨⋅, ⋅⟩ such that 𝑆(𝑋, 𝑋)
is minimal/maximal among all other such unit vectors, then 𝑋 is an eigenvalue of

𝑇 (𝑆(𝑋, ⋅))

where 𝑇  is the isomorphism 𝑉 ∗ → 𝑉  induced by ⟨⋅, ⋅⟩.

Proof :  Since 𝑆 is symmetric bilinear it has a basis of eigenvectors 𝑒𝑖 that is or-
thonormal with respect to ⟨⋅, ⋅⟩. Let 𝜆𝑖 be their eigenvalues which we can assume
are ordered in increasing order. For all unit vectors 𝑣 = 𝑎1𝑒1 + … + 𝑎𝑛𝑒𝑛 we have

⟨𝑣, 𝑣⟩ = 𝑎2
1 + 𝑎2

2 + … + 𝑎2
𝑛 = 1

and we also have

𝑆(𝑣, 𝑣) = 𝜆1𝑎2
1 + 𝜆2𝑎2

2 + … + 𝜆𝑛𝑎2
𝑛 ≤ 𝜆𝑛𝑎2

1 + 𝜆𝑛𝑎2
2 + … + 𝜆𝑛𝑎2

𝑛 = 𝜆𝑛

and so since 𝑆(𝑒𝑛, 𝑒𝑛) = 𝜆𝑛 we have that 𝑒𝑛 is a unit vector with 𝑆(𝑒𝑛, 𝑒𝑛) max-
imal. Now assume that 𝑣 is another unit vector with 𝑆(𝑣, 𝑣) also maximal, then
we must have 𝑆(𝑣, 𝑣) = 𝜆𝑛 and so since

𝜆𝑛 = 𝑆(𝑣, 𝑣) = 𝜆1𝑎2
1 + 𝜆2𝑎2

2 + … + 𝜆𝑛𝑎2
𝑛 = 𝜆𝑛 + (𝜆1 − 𝜆𝑛)𝑎2

1 + … + (𝜆𝑛−1 − 𝜆𝑛)𝑎2
𝑛−1

and since we know that 𝜆𝑖 − 𝜆𝑛 is always negative and 𝑎2
𝑖  always positive, we

must have that for each 𝑖 < 𝑛, either 𝜆𝑖 = 𝜆𝑛 or 𝑎𝑖 = 0. We thus have that 𝑣 can
be written as a sum of eigenvectors all with eigenvalue 𝜆𝑛 and thus 𝑣 is itself also
an eigenvector. □

Applying this lemma to our situation we get that 𝜈 is an eigenvector of the Ricci tensor
since it is symmetric bilinear. We can use this along with Lemma 1.3.3 to get that

0 = Ric(𝜈, 𝑒𝑖) = Rm(𝑒𝑖, 𝑒𝑗, 𝑒𝑗, 𝜈) = −(∇𝑖ℎ)(𝑒𝑗, 𝑒𝑗) + (∇𝑗ℎ)(𝑒𝑖, 𝑒𝑗)

t Now since 𝐹∞(𝑡, ⋅) is totally umbilical we know that ℎ = 𝐻
𝑛 𝑔𝑖𝑗 and so we have

∇𝑘ℎ =
∇𝑘𝐻

𝑛
𝑔𝑖𝑗

which when plugged into the equation above gives us

0 = −(∇𝑖ℎ)(𝑒𝑗, 𝑒𝑗) + (∇𝑗ℎ)(𝑒𝑖, 𝑒𝑗) = −
∇𝑖𝐻

𝑛
⟨𝑒𝑗, 𝑒𝑗⟩ +

∇𝑗𝐻
𝑛

⟨𝑒𝑖, 𝑒𝑗⟩ = −∇𝑖𝐻 +
∇𝑖𝐻

𝑛

= −∇𝑖𝐻
𝑛 − 1

𝑛

and so ∇𝐻 = 0 so we get that 𝐻 is constant along 𝐹∞(𝑡, ⋅) (though not necessarily
constant in time).
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Next we get apply Proposition 3.7.8 to max𝑀 𝜆, this is also a non-increasing quan-
tity due to Proposition 3.4.1 and is continuous so this is valid, and so we get that
max𝑀 𝜆(𝐹∞(𝑡, ⋅)) is constant on [0, 1].

Proposition 3.7.10 :  At 𝑡 = 1
2  there is at least one maximal point which

is stationary, that is we have a point 𝑝 with 𝜕𝑡𝜆(𝑡, 𝑝) = 0 and 𝜆(1
2 , 𝑝) =

max𝑀 𝜆(𝐹∞(1
2 , 𝑝)).

Proof :  For brevity we will write 𝜆max(𝑡) ≔ max𝑀 𝜆(𝐹∞(𝑡, 𝑝)). We prove by con-
trapositive, assume that there are no stationary maximal points, if any maximal
point 𝑝 satisfies

𝜕𝑡𝜆(
1
2
, 𝑝) > 0

then we have

𝜆max(
1
2

+ ℎ) ≥ 𝜆(
1
2

+ ℎ, 𝑝) = 𝜆(
1
2
, 𝑝) + ℎ(𝜕𝑡𝜆(

1
2
, 𝑝)) + 𝑂(ℎ2)

and so for small enough ℎ > 0 we get that 𝜆max(𝑡) is not constant.
Otherwise we have that 𝜕𝑡𝜆(1

2 , 𝑝) < 0 for all maximal points 𝑝 let 𝑆 denote
the set of all maximum points, since 𝑆 is the preimage of 𝜆max(1

2) under a con-
tinuous function it is closed and thus compact in 𝑀 . Hence there is positive 𝜀
such that 𝜕𝑡𝜆(1

2 , ⋅) < −𝜀 on 𝑆. We can now define the open set

𝑈 ≔ (𝜆(
1
2
, ⋅))

−1

((𝜆max(
1
2
) − 𝜀, 𝜆max(

1
2
) + 𝜀))

which is clearly a neighborhood of 𝑆. Now the set 𝑀 \ 𝑈  is closed, hence com-
pact, hence on it 𝜆(1

2 , ⋅) achieves a maximum. But this maximum cannot be
𝜆max(1

2) since this set does not contain 𝑆 and so on 𝑀 \ 𝑈  we have that 𝜆(1
2 , ⋅

) < 𝜆max(1
2) − 𝜀′ for some positive 𝜀′ > 0 and also on 𝑀 \ 𝑈  we have 𝜕𝑡𝜆(1

2 , ⋅) <
𝐵 for some large positive 𝐵. But then we get that for 𝑡 = 1

2 + ℎ we have

𝜆(
1
2

+ ℎ, 𝑝) ≤
⎩{
⎨
{⎧𝜆max(1

2) − ℎ𝜀 + 𝑂(ℎ2) : 𝑝 ∈ 𝑈

𝜆max(1
2) − 𝜀′ + 𝐵ℎ : 𝑝 ∈ 𝑀 \ 𝑈

and so by picking small enough positive ℎ we get that

𝜆(
1
2

+ ℎ, 𝑝) < 𝜆max(
1
2
)

everywhere and so we again get that 𝜆max(𝑡) is not constant.
By contrapositive we get that since it is constant at least one stationary max-

imal point exists. □

Now at a stationary maximal point we know that
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0 = 𝜕𝑡𝜆(𝑡, 𝑝) = 2(𝑛𝜑 − 𝐻𝑢)Λ𝑢

and so since Λ and 𝑢 are positive we must have that 𝑛𝜑 − 𝐻𝑢 = 0. Now again, at a
maximum point, we know that 𝜈 is colinear with the gradient of 𝜆 and so 𝜈 = 𝒩⟂ and
so 𝑢 = ‖𝑋⟂‖. This then gives us that

0 = 𝑛𝜑 − 𝐻𝑢 = 𝑛𝜑 − 𝐻‖𝑋⟂‖ = 𝜑(𝑛 −
𝐻(‖𝑋⟂‖)

𝜑
) = 𝜑(𝑛 − 𝐻𝜆1

2 )

and so since 𝜑 is positive we get that 𝑛 − 𝐻𝜆1
2 = 0 and thus 𝐻 = 𝑛𝜆−1

2  at a stationary
maximal point. But now we recall that 𝐻 is constant along 𝑀  for any fixed time and
so at 𝑡 = 1

2  we get that

𝐻 = 𝑛(𝜆max)
−1

2 .

We can now calculate that at any point 𝑝 of 𝑀  at 𝑡 = 1
2  we have

𝑛𝜑 − 𝐻𝑢 ≥ 𝑛𝜑 − 𝑛(𝜆max)
−1

2 ‖𝑋⟂‖‖𝜈‖ = 𝑛𝜑
⎝
⎜⎛1 − (

𝜆
𝜆max

)
1
2

⎠
⎟⎞.

and so the speed function is nowhere negative. But now by Lemma 1.4.2 we get that

∫
𝑀

(𝑛𝜑 − 𝐻𝑢) d𝑆 = 0

and so since it is nowhere negative the speed function must be everywhere zero and so
we must have 𝜆 = 𝜆max on all of 𝑀 . Since 𝜆min is also constant on [0, 1] we get that 𝜆
is constant on all of 𝑀  for all time [0, 1] and thus the limit of the flow is an integral
hypersurface 𝑆𝜆.

Proposition 3.7.11 :  The limit as 𝑡 → ∞ of 𝑀𝑡 is an integral hypersurface 𝑆𝜆

This proves the last condition of Theorem 2.1, and thus proves Theorem 1.1.1.

3.8 Conclusion
The result of Theorem 1.1.1 provides is the best known result for the Isoperimetric
inequality using the flow method. And we suspect that it is unlikely to be improved
without a major change of approach. The reason is that already the evolution equations
are quite difficult to handle and require a 2 step flow which is extremely rare in the
literature. Because of this the author does not believe that there are many fruitful
research directions stemming from this specific result

However, many of the tricks and methodologies used to prove this result are novel
and not specific to this setup. For example, the proof of Proposition 3.7.11 used a novel
from linear algebra applied along with the Codazzi equation to greatly reduce the nec-
essary conditions for convergence, this trick is likely to be useful in other extrinsic flows
like Inverse Mean Curvature Flow. The aforementioned 2 step flow could also likely be

51



used in other geometric flows to ‘smooth out’ the target manifold before applying a
known canonical flows. An interesting case could be the normalized Ricci flow which
shares many of the properties of Mean Curvature Flow.
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