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Abstract

Massive multiple-input multiple-output (MIMO) where the base station is equipped with a
large number of antennas, is a key technology in millimeter-wave (mmWave) cellular
communications for the 5th generation wireless networks (5G). Beamforming is a highly
challenging problem in mmWave massive MIMO systems. Conventional fully digital linear
beamforming schemes can achieve near-optimal performance in massive MIMO systems,
but they require that each antenna element be equipped with an individual radio frequency
(RF) chain. The high cost of hardware and consumed power caused by the large number of
RF chains make the use of fully digital beamformer impractical in massive MIMO systems.
In recent years, hybrid beamformers which consist of a small-size digital beamformer
followed by a large-size analog beamformer are considered as the most effective
beamforming solution in massive MIMO systems. The cost of hardware and energy of
hybrid beamformers is highly reduced because involving the analog beamformer reduces
the required number of RF chains. It has been shown that the theoretical spectral
efficiency (SE) performance of a full-array hybrid beamformer can approach that of a fully
digital linear precoder. With a fixed sub-array hybrid beamformer, the cost of hardware
and energy is further reduced at the cost of reducing the SE. To better balance the
trade-off between the SE and the cost of hardware and energy, dynamic sub-array schemes
have been proposed in recent years that use flexible connections between antennas and RF
chains. However, the adaptability for different network configurations of MIMO systems
and hardware architectures of the hybrid beamformer, is not taken into account in most of
previous works.

In this thesis, we develop a manifold-based hybrid beamforming algorithm for various
system models and RF architectures. We show the adaptability of the proposed algorithm
with different network configurations, such as narrowband and wideband MIMO systems,
single-user and multi-user MIMO systems, as well as full-array and sub-array architectures.
Furthermore, we develop a novel dynamic mapping algorithm for dynamic sub-array hybrid
beamformer to achieve better trade-off between the SE and energy efficiency. Numerical
simulations show that the proposed hybrid beamforming algorithm has similar SE and bit
error rate performance to the linear beamformer in different system models. Furthermore, the
proposed dynamic mapping algorithm has similar performance to the state-of-art dynamic
mapping algorithm but requires much less runtime.
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Abrégé

Massive multiple-input multiple-output (MIMO) où la station de base est équipée d’un
grand nombre d’antennes, est une technologie clé dans les communications cellulaires à
ondes millimétriques (mmWave) pour les réseaux sans fil de 5e génération (5G). La
formation de faisceaux est un problème très difficile dans les systèmes MIMO massifs à
ondes millimétriques. Les schémas conventionnels de formation de faisceaux linéaires
entièrement numériques peuvent atteindre des performances quasi optimales dans les
systèmes MIMO massifs, mais ils nécessitent que chaque élément d’antenne soit équipé
d’une châıne de radiofréquence (RF) individuelle. Le coût élevé du matériel et la puissance
consommée causés par le grand nombre de châınes RF rendent l’utilisation d’un formateur
de faisceaux entièrement numérique peu pratique dans les systèmes MIMO massifs. Ces
dernières années, les formateurs de faisceaux hybrides qui consistent en un formateur de
faisceau numérique de petite taille suivi d’un formateur de faisceau analogique de grande
taille sont considérés comme la solution de formation de faisceau la plus efficace dans les
systèmes MIMO massifs. Le coût du matériel et de l’énergie des formateurs de faisceaux
hybrides est fortement réduit car réduit le nombre requis de châınes RF. Il a été démontré
que les performances théoriques d’efficacité spectrale (SE) d’un formateur de faisceau
hybride à matrice complète peuvent approcher celles d’un précodeur linéaire entièrement
numérique. Avec un formateur de faisceau hybride à sous-réseau fixe, le coût du matériel et
de l’énergie est encore réduit au prix de la réduction de la SE. Pour mieux équilibrer le
compromis entre le SE et le coût du matériel et de l’énergie, des schémas de sous-réseaux
dynamiques ont été proposés ces dernières années qui utilisent des connexions flexibles
entre les antennes et les châınes RF. Cependant, l’adaptabilité aux différentes
configurations de réseau des systèmes MIMO et des architectures matérielles du formateur
de faisceau hybride n’est pas prise en compte dans la plupart des travaux antérieurs.

Dans cette thèse, nous développons un algorithme de formation de faisceaux hybride
à base de variétés pour divers modèles de systèmes et architectures RF. Nous montrons
l’adaptabilité de l’algorithme proposé avec différentes configurations de réseau, telles que
les systèmes MIMO à bande étroite et à large bande, les systèmes MIMO mono-utilisateur
et multi-utilisateurs, ainsi que les architectures de réseau complet et de sous-réseau. De
plus, nous développons un nouvel algorithme de cartographie dynamique pour le formateur
de faisceau hybride sous-réseau dynamique afin d’obtenir un meilleur compromis entre la
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SE et l’efficacité énergétique. Des simulations numériques montrent que l’algorithme de
formation de faisceaux hybride proposé a des performances de SE et de taux d’erreur sur
les bits similaires à celles du formateur de faisceaux linéaire dans différents modèles de
système. De plus, l’algorithme de mappage dynamique proposé a des performances similaires
à l’algorithme de mappage dynamique de pointe mais nécessite beaucoup moins de temps
d’exécution.
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Chapter 1

Introduction

1.1 Motivation

Over the past decade, the number of wireless mobile connections and devices has dramatically
increased and will increase continually in the foreseeable future. It is expected that mobile
data traffic will grow by a factor of around 4.4 worldwide by 2027 [4]; supporting such growth
requires more efficient utilization of network resources [5]. As the last generation long-term
evolution (LTE) cellular communication can no longer meet the rapidly increasing demand of
data traffic, the fifth-generation (5G) cellular communication has been introduced. The 5G
cellular communication promises about 1000 times increase on aggregate data rate, 100 times
increase on the peak data rate, 20 times reduction on the latency and 100 times increase
on the number of connected devices in comparison to the current LTE standard [6, 7]. The
deployment of 5G networks started in early 2020, and is expected to be widely by 2025. By
2027, 5G network will carry 62% percent of the world’s smart phone traffic [4].

To meet the targets on data rate and latency, 5G makes use of the millimeter-wave
(mmWave) spectrum from 28GHz to 100GHz [8]. Benefiting from the high carrier
frequencies brought by mmWave spectrum, the bandwidth in 5G is large enough to deliver
data rates in the gigabit-per-second range. However, in addition to multi-path propagation
which causes inter-symbol interference (ISI), transmission in mmWave band suffers from
high propagation losses, such as free space path loss and the rain attenuation which limit
the coverage distance in 5G [9]. To combat the loss and coverage distance problem brought
by use of the mmWave spectrum, a key technology called massive multiple-input
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multiple-output (MIMO) is proposed to improve the transmission distance, spectral
efficiency (SE) and energy efficiency (EE) performance for mmWave communications.

One of the most important approaches in massive MIMO systems to realize the
performance targets of 5G is a signal processing technique called beamforming. This
technique benefits from the large antenna array in massive MIMO, and adapts the
radiation pattern of the antenna towards the users [10] to partly solve the coverage
problem, improve the SE and remove the interference. Beamforming involves two aspects.
Transmit beamforming, or precoding, is used to pre-process the data streams at the
transmitter, while received beamforming, or combiner, is used to post-process the received
data streams at the receiver. Importantly, the designs of the precoder and combiner are
very similar.

There are generally two ways to realize beamforming in massive MIMO system: Fully
digital beamforming and hybrid beamforming. Fully digital beamforming scheme offers
the near-optimal performance [11] but comes with very high hardware cost and system
complexity which make it infeasible for practical massive MIMO systems. As an alternative,
hybrid beamforming scheme [12] has been proposed to reduce the hardware cost. Both fully
digital and hybrid beamforming will be discussed in detail in the next chapter. State-of-art
solutions [1,2,13–18] achieve good performance in simulation, but it is difficult to implement
them for different reason, e.g., the computational complexity is too high to be implemented
in real-time scenarios [1,14,15,18] or the solution is only applicable to specific system model
or hardware architecture [1,2,16,17,19]. Our research objective is to propose a highly flexible
hybrid beamforming algorithm which is applicable to different system models and hardware
architectures in mmWave massive MIMO systems.

1.2 Thesis Overview and Contributions

Many researchers have focused on the hybrid beamforming problem in massive MIMO
systems. Because of involving the analog precoder and combiner, the entries of the analog
precoder and combiner are restricted to be points on the unit circle which is called unit
modulus constraint. Because the unit modulus constraint is non-convex, a popular
approach is to solve the hybrid beamforming problem by transforming the hybrid
beamforming to a convex semi-equivalent problem [15,17,19]. Recently, several papers have
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proposed manifold-based approaches to solve the hybrid beamforming problem as an
unconstrained convex optimization problem, such as the manifold optimization with
alternating minimization (MO-AltMin) [1] and manifold optimization with mean square
error (MO-MSE) [2]. These two manifold-based algorithms achieve better performance in
comparison to other hybrid beamforming solutions and provide convergence guarantees.
However, both algorithms have very high computational complexity and are only
applicable to single-user MIMO systems.

In this thesis, we develop a novel highly adaptive hybrid beamforming algorithm based
on Riemannian manifold optimization to directly optimize the SE for various system
models including a narrowband single-user MIMO system, a wideband single-user MIMO
system and a narrowband multi-user MIMO system. The proposed hybrid beamforming
algorithm achieves similar performance to the fully digital beamforming and has low
computational complexity in comparison to other manifold-based hybrid beamforming
approaches. Benefiting from adopting manifold optimization, it is guaranteed to converge
to a locally optimal solution. We also extend the proposed algorithm to different hardware
architectures including the fixed sub-array hybrid beamformer and the dynamic sub-array
hybrid beamformer. Finally, a low-complexity dynamic algorithm is proposed to construct
the mapping matrix for the dynamic sub-array hybrid beamformer to achieve better
balance between the SE and EE.

1.3 Thesis Outline

The rest of this thesis is organized in seven chapters. Chapter 2 introduces the necessary
theoretical background, including massive MIMO, conventional beamforming, hybrid
beamforming as well the basic mathematical background of manifold optimization.
Chapter 3 presents different system models and formally defines the hybrid beamforming
problem. Chapter 4 presents a comprehensive literature review for the beamforming
schemes. As the core of this thesis, Chapter 5 presents the proposed method for the
full-array hybrid beamforming problem for various system models including single-user
MIMO, multi-user MIMO and wideband MIMO systems. In Chapter 6, we extend the
proposed hybrid beamforming algorithm to the hybrid beamformer with generalized fixed
sub-array architecture and develop a low-complexity dynamic mapping algorithm to
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improve the SE and EE performance. We show the simulation results of the proposed
hybrid beamforming algorithm and dynamic mapping algorithm in Chapter 7. Chapter 8
finishes this thesis with a conclusion and suggestions for the future work.
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Chapter 2

Theoretical Background

In this chapter, we review the theoretical background required throughout this thesis.
Massive MIMO systems and mmWave communications are summarized to gain some
insight for the beamforming problem. Specifically, we discuss what is beamforming, why it
is necessary in mmWave massive MIMO systems and what are the trade-offs involved in
beamforming. Conventional beamforming and hybrid beamforming schemes are also
introduced. Finally, the concept and definition of a manifold is described to provide the
necessary mathematical background for readers.

This chapter is divided into four sections. Section 2.1 introduces the development and
characteristics of mmWave communications and massive MIMO systems. In the following two
sections, the theoretical background of conventional beamforming and hybrid beamforming
is given. Fully digital and analog beamforming are reviewed in Section 2.2 while three
commonly used hybrid beamforming radio frequency (RF) chains architecture taxonomies
are described in detail in Section 2.3. We also discuss the advantages and disadvantages of
different RF architectures. Section 2.4 explains the basic concept of manifold optimization
which is the main optimization approach used in this thesis.
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2.1 Massive MIMO in Next-Generation wireless
Communication

2.1.1 Introduction to massive MIMO

Massive MIMO systems [20] are systems in which the base stations (BSs) are equipped with
a very large number of antennas. A mmWave cellular massive MIMO system where the
BS is equipped with large antenna array is shown in Figure 2.1. Each ellipse shows the
coverage area of a BS. The red arrow denotes the downlink transmission from the BS to the
mobile station (MS) while the blue dotted arrow denotes the uplink from the MS to the BS.
Normally, the distance between every antenna element at the antenna array is at least half of
the carrier wavelength. For a conventional MIMO system in LTE, the operating frequency is
normally sub-6GHz which limits how close the antenna elements can be located. Leveraging
the small wavelength of the mmWave spectrum, the size of the antenna array is reduced and
a large number of antennas can be deployed at the BS.

Base 
stationBSMS

Figure 2.1: A mmWave cellular system model

Because of the large number of antennas, massive MIMO offers several advantages. Better
SE and EE are achieved and the interference between users is easier to remove because of
high degree of freedom brought by the large number of antennas. On the other hand, the
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dependence for the channel gains on the frequency is smaller or even negligible in a massive
MIMO system because of the channel hardening effect [21]. The term channel hardening
describes the fact that as the number of antennas increases, massive MIMO systems achieve
higher reliability [20, 21]. It is one of the most favorable propagation properties brought
by massive MIMO systems. Channel hardening describes the fact that as the number of
antennas grows large, the channel vector is nearly deterministic. Specifically, let the channel
vector between the BS and a single-antenna user be h ∈ CM×1 where M is the number of
antennas at the BS, then [21,22]

‖h‖2
F

E{‖h‖2
F}
→ 1, as M →∞ (2.1)

As the instantaneous effective channel gain is close to its average, the BS can precode the
transmitted signal and the MS can decode the received signal relying on the knowledge of
that statistical average [22].

Many techniques in wireless communications benefit from the channel hardening property.
Firstly, the channel has lower variance and behaves almost like a deterministic channel. This
makes linear beamforming algorithms achieve better performance in massive MIMO systems.
Secondly, since there is less random fluctuation in the propagation channel, ultra reliable
low latency communication (URLLC) is easier to be implemented.

2.1.2 Time Division Duplexing and Frequency Division Duplexing
Systems

Similar to conventional MIMO systems, there are two main duplexing schemes for massive
MIMO systems: Time division duplexing (TDD) and frequency division duplexing (FDD).
In a TDD massive MIMO system, the downlink and uplink channels use the same frequency
band which makes the downlink and uplink channel state information (CSI) almost the same.
This is called channel reciprocity in TDD systems. Hence, the BS can directly obtain the
downlink channel by using the pilot signals transmitted by the MS in the uplink training
phase [23]. In a FDD massive MIMO system, the uplink and downlink channels occupy
different frequency bands, so the CSI for the uplink and downlink channels are different. In
FDD systems, there are two steps to acquire the CSI. The BS first transmits downlink pilot
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signals to the MS. Then, the MS estimates the downlink CSI and transmit the CSI back
to the BS. Obviously, acquiring the downlink CSI is much harder in a FDD system than in
a TDD system. Because the downlink CSI is the most important information required for
beamforming, most research on massive MIMO assumes a TDD system. In this thesis, we
also focus on a TDD massive MIMO system and assume that perfect CSI is available at the
BS.

2.2 Conventional Beamforming

Conventional beamforming is widely used in MIMO systems in LTE standard. In this section,
we mainly discuss the different beamforming schemes for conventional MIMO systems with
small antenna numbers. In this section, we use Nt and Nr to denote the number of transmit
antennas at the BS and the number of receive antennas at the MS, respectively. The number
of transmitted data streams is denoted as Ns.

2.2.1 Fully Digital Beamforming

In a fully digital beamformer, any signal processing operations are completely executed at
the baseband. The schematic diagram of a fully digital beamformer which consists of the
precoder F ∈ CNt×Ns and combiner W ∈ CNr×Ns is shown in Figure 2.2. The fully digital
beamformer enables complete control over the magnitudes and the phases of the entries of
precoder and combiner by assigning each antenna to an individual RF chain [15]. A RF chain
is an electric circuit that processes the transmitted signal at the BS or the received signal
at the MS. It contains different electrical circuit components such as mixer, power amplifier,
low noise amplifier, analog to digital converter (ADC) or digital to analog converter (DAC).
The hardware cost and power consumption is very high because of these components. Most
conventional small-scale MIMO systems are equipped with a fully digital beamformer because
the number of antennas at the BS and the MS are relatively small.

In single-user MIMO systems there is inter-datastream interference (IDI), while in
multi-user MIMO systems, both IDI and inter-user interference (IUI) exist. Fully digital
beamforming provides the most flexibility to remove the interference in both single-user
and multi-user MIMO systems. In addition, it can also improve other performance metrics,
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such as the SE, signal-to-noise ratio (SNR) or mean square error (MSE) at the MS. In
Section 4.1, we review several prominent fully digital beamforming algorithms for
single-user and multi-user MIMO systems in detail.
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Figure 2.2: A fully digital beamformer

2.2.2 Fully Analog Beamforming

In contrast to fully digital beamforming, fully analog beamforming uses only one RF chain
to control all the antennas at the BS and the MS. An analog beamformer is shown in Figure
2.3.
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Figure 2.3: An analog beamformer

In analog beamforming, only the phases of the transmitted signal are controlled by phase
shifters to direct the beam towards the dominant propagation path to achieve the maximal
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antenna array gain and effective SNR [15, 24]. The hardware cost and power consumption
of analog beamforming is low because of the low number of circuit components. However,
fully analog beamforming does not support spatial multiplexing because the transmitted
signal is not processed at the baseband. This means that multi-stream transmission is
not possible with fully analog beamforming. Hence, analog beamforming is mainly used
for single data stream transmission in a point-to-point mmWave system or beam steering
applications [15, 24].

2.3 Hybrid Beamforming

2.3.1 Basic Concept

Beamformer design in mmWave MIMO systems differs from conventional small-scale MIMO
systems. Fully digital beamforming is infeasible in mmWave massive MIMO systems because
of the massive hardware cost and power consumption brought by the large required number
of RF chains (since each antenna would require an individual RF chain). At the same
time, analog beamforming cannot transmit multiple data streams simultaneously which is
necessary in massive MIMO. Hence, a new beamforming scheme called hybrid beamforming
which combines analog beamforming and digital beamforming, has been proposed in [25] to
compensate for the shortages and limitations of fully analog beamforming and fully digital
beamforming and to achieve a balance between hardware cost and performance. Figure 2.4
shows the schematic diagram of a hybrid beamformer with Nt transmit antennas, Nr receive
antennas to transmit Ns data streams. There are N t

RF and N r
RF RF chains at the BS and

MS, respectively. At the BS, FRF ∈ CNt×Nt
RF and FBB ∈ CNt

RF×Ns are the analog precoder
and the digital precoder, respectively. Similarly, WRF ∈ CNr×Nr

RF and WBB ∈ CNr
RF×Ns

are the analog combiner and the digital combiner at the MS, respectively.
Within a hybrid beamformer, interference is removed by the digital beamformer while

the analog beamformer steers the beam to achieve better SE. Because the design of hybrid
precoder and hybrid combiner are very similar, we discuss only the hybrid precoder at the BS
here. In a hybrid precoder, the transmitted data streams are pre-processed at the baseband
by a small-size digital precoder FBB to enable multiple data streams transmission. Then, the
pre-processed data streams are encoded to the carriers using the RF chains at the BS. Finally,
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Figure 2.4: A hybrid beamformer

those RF signals are passed through the analog precoder FRF implemented by phase shifters
prior to transmission by the antenna array. However, the use of phase shifters involves the
unit modulus constraint which as a non-convex constraint makes designing a hybrid precoder
a very difficult problem.

2.3.2 Taxonomy of Hybrid Beamformer based on RF Architecture

There are three commonly used RF architectures for hybrid beamforming: Full-array, fixed
sub-array and dynamic sub-array. In this section, we give details on these architectures and
discuss their trade-offs. In our discussion, we assume that all hybrid precoders are equipped
with Nt antennas and N t

RF RF chains at the BS and all hybrid combiners are equipped with
Nr antennas and N r

RF RF chains at the MS.

Full-array Hybrid Beamformer

The schematic diagram of the fully-array RF architecture is shown in Figure 2.5. In the
full-array RF architecture, each RF chain is connected to all available antenna elements
through a phase shifter network which contains NtN

t
RF and NrN

r
RF phase shifters for the

hybrid precoder and combiner, respectively.
The large number of phase shifters leads to high power consumption in comparison to

other RF architectures. On the other hand, the RF chains completely control all the antennas
to provide the highest beamforming gain. In fact, it has been proved in [19] that if the
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Figure 2.5: A full-array hybrid beamformer

number of RF chain is twice the number of transmitted data streams, the full-array hybrid
beamformer achieves the same SE performance as fully digital beamformer. Overall, the
full-array hybrid beamformer achieves the highest SE but the lowest EE among all RF
architectures.

Fixed Sub-array Hybrid Beamformer

The schematic diagram of a fixed sub-array hybrid beamformer is shown in Figure 2.6. In
a fixed sub-array hybrid beamformer, the RF chains are connected to fixed non-overlapping
antenna groups where each antenna group contains N t

ant = Nt
Nt
RF

and N r
ant = Nr

Nr
RF

antennas
for the hybrid precoder and combiner, respectively.

The fixed sub-array hybrid beamformer requires only Nt and Nr phase shifters for the
hybrid precoder and combiner, respectively. Hence, the power consumption and hardware
cost is highly reduced in comparison to the full-array hybrid precoder. The EE performance
of sub-array architecture is enhanced at the cost of sacrificing SE performance.

Dynamic Sub-array Hybrid Beamformer

The dynamic sub-array RF architecture incorporates a flexible connection network between
the RF chains and the antennas [26]. The schematic diagram of dynamic sub-array hybrid
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Figure 2.6: A fixed sub-array hybrid beamformer

beamformer is shown in Figure 2.7. The dynamic sub-array aims to provide better SE than
the fixed sub-array at the cost of higher hardware cost while reducing the power consumption
and computational complexity in comparison to full-array hybrid precoder.

Each antenna element is allowed to be connected to only one RF chain at a time in
dynamic sub-array. That means that the Nt antennas are grouped into N t

RF non-empty
disjoint sets for the hybrid precoder (similarly for the hybrid combiner). Different from
the fixed sub-array, the number of elements in each set does not have to be the same.
To implement the flexible grouping, the phase shifter network requires NtN

t
RF and NrN

r
RF

switches for the hybrid precoder and combiner, respectively.

Summary of the RF architectures

The performance-cost trade-off is the most important factor in hybrid beamforming.
Different RF architectures could be selected depending on the requirement of SE, EE or
hardware cost. Table 2.1 summarizes the the performance-cost tradeoff of the three
architectures described earlier.
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Figure 2.7: A dynamic sub-array hybrid beamformer

Phase shifters Switches SE EE

Full-array NtNRF +NrNRF 0 High Low

Fixed sub-array Nt +Nr 0 Low High

Dynamic sub-array Nt +Nr NtNRF +NrNRF Medium Medium

Table 2.1: Summary of different RF architectures

2.4 Manifold Optimization

2.4.1 Introduction to Riemannian Matrix Manifold

Manifold optimization is widely used in applied mathematics, machine learning, signal
processing and wireless communication [27]. In conventional constrained optimization
problems, both the objective function and constraints are described in a Euclidean space E .
It is easy to solve an unconstrained optimization problem because the optimized variable is
free to vary in the search space. However, in practical constrained optimization problems
with non-convex and non-linear constraints, the optimization variables cannot move freely
in the search space. As a result, it is very hard to find even a locally optimal solution for
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constrained optimization problems. The main concept of manifold optimization is solving a
constrained optimization problem on a Riemannian manifold space where all points on that
manifold satisfy the non-convex or non-linear constraint [28]. Thus, the constrained
optimization problem is transformed to an unconstrained problem on the manifold. To
simplify the representation, in the rest of the section, we will focus on the manifold
definition for the Euclidean space E = Cm×n. For detailed manifold optimization theory,
readers may refer to [27–29].

Let us consider a matrix manifoldM with variable X ∈ Cm×n. Mathematically speaking,
matrix manifold optimization is concerned with the following optimization problem

min
X∈M

f(X) (2.2)

where M is a smooth, possibly non-linear, space of dimension m × n that can locally be
approximated by the Euclidean space E [30] and f is a real-valued smooth function on M.
Obviously, the conventional definition of gradient in Euclidean space does not apply for the
manifold. Similarly to a Euclidean space, a tangent vector of a point X on the manifoldM
is defined as [28,29]:

Definition 1. The tangent vector τ X to a manifold M at point X is defined as the vector
for which for any smooth function f on M there exists a curve γ in Euclidean space E with
γ(0) = X and γ̇(0) = τ X where γ̇(·) is the first order Euclidean gradient of curve γ. Such
a curve γ is said to realize the tangent vector τ X .

Then, the derivative of functions along the the tangent vector τ X is defined as:

D f(X)[τ X ] = d
d tf(γ(t))

∣∣∣∣∣
t=0

(2.3)

The set of all tangent vectors to M at point X is called the tangent space to manifold
M at X and is denoted by TXM. The tangent space TXM provides a local vector space
approximation for manifold M in the same way as the derivative of a real-valued function
in Euclidean space E provides a local linear approximation [29].

In a Euclidean space E , the inner product induces a norm which represents the distance
between two points. Since a manifold has its own local coordinate chart, we define the inner
product on a manifold with the help of the tangent space TXM as follows [28]:
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Definition 2. An inner product on TXM is a bi-linear, symmetric, positive definite function
〈·, ·〉X : TXM×TXM→ R. It induces a norm for tangent vectors: ‖τ X‖F =

√
〈τ X , τ X〉X .

Following the definition of the inner product, we define the Riemannian manifold as [28]:

Definition 3. A smooth manifold is a Riemannian manifold M if the inner product 〈·, ·〉X
is smooth for any X ∈M. The inner product is called the Riemannian metric.

In this way, the Euclidean space E is a Riemannian manifold with metric
〈U ,V 〉 = tr(UVH) where U ,V are two points in E . If a Riemannian manifold has the
same Riemannian metric as the Euclidean space, we call it a Riemannian submanifold
embedded in the Euclidean space.

Finally, we define the gradient on a manifold. Similarly to Euclidean space E , the gradient
of a smooth real-valued scalar function f :M→ R on the Riemannian manifoldM is called
the Riemannian gradient and defined as the steepest-ascent direction of f at point X [28].
Specifically, the definition of Riemannian gradient is [28,29,31,32]

Definition 4. The Riemannian gradient ∇Mf(X) of a real-value smooth function f :M→
R at the point X ∈M is the unique tangent vector that satisfies:

∀τ X ∈ TXM, D f(X)[τ X ] = 〈τ X , ∇Mf(X)〉X (2.4)

where D f(X)[τ X ] is the derivative of tangent vector τ X and 〈·, ·〉X is the Riemannian metric
of M.

2.4.2 Riemannian Submanifold

In this thesis, our work space is the Euclidean space E = Cm×n. Throughout the rest of
this thesis, the Riemannian manifold M stands for a Riemannian submanifold which is
embedded in the Euclidean space E . We have the following proposition for the Riemannian
gradient [3, 29]

Proposition 1. The projection of the Euclidean gradient to M is the Riemannian gradient
if the Riemannian manifold M is a submanifold of Euclidean space E, i.e.,

∇Mf(X) = projX(∇Ef(X)) (2.5)
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where the operator proj(·)X is the orthogonal projector with respect to the inner product of
Cm×n. The operator projX(·) projects any point from Cm×n to the tangent space of X ∈M.

Using Proposition 1, the Riemannian gradient can be obtained easily from the
Euclidean gradient. Furthermore, for first order optimization on a Riemannian
submanifold, the critical points of a smooth real-valued scalar function f are exactly those
points where the Riemannian gradient equal to zero [28].

Proposition 2. Let f :M→ R be a smooth function on the Riemannian submanifold M,
then X is a critical point of f(·) if and only if ∇Mf(X) = 0

This proposition ensures that gradient-based approaches for optimization are effective on
a manifold with a proper line search algorithm. In an iterative gradient-based approach, to
utilize the Riemannian gradients from the last iteration, we need to transport the gradient
from last iteration into the tangent space of the variable in the current iteration such that
these gradients can be linearly combined in one tangent space [33]. Hence, we define the
parallel transport function tran(·) on a Riemannian manifold as [33]

Definition 5. The parallel transport function tran : TX1M → TX2M is a smooth map
between two tangent vectors in different tangent spaces of a Riemannian manifoldM satisfies
the following identities:

‖y‖F = ‖ tran(y)‖F , y ∈ TX1M, tran(y) ∈ TX2M

〈y1,y2〉 = 〈tran(y1), tran(y2)〉,y1,y2 ∈ TX1M, tran(y1), tran(y2) ∈ TX2M
(2.6)

Similarly to the Riemannian gradient, since we assume our work space is a Riemannian
manifold, the following proposition for parallel transport is available

Proposition 3. The parallel transport operation tran : TX1M → TX2M in a Riemannian
submanifold is given by

tran(y1) = projX2(y1) (2.7)

where y1 ∈ TX1M and projX2(·) is the projecting operation in Proposition 1 to project any
point to the tangent space of X2 where X2 is a point on the manifold.

To enable searching along the Riemannian gradient, i.e., a tangent vector, an operation
called retraction is introduced to keep the updated point on the manifold. The retraction
operator retr(·) is defined as [28,29]
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Definition 6. A retraction function retr : TXM→M on a manifold M is a smooth map
connecting the tangent space and manifold such that:

retr(0X) = X , where 0X denotes the origin of TXM

d
d t retr(tτ X)

∣∣∣∣∣∣
t=0

= τ X
(2.8)

for all X ∈M and all τ X ∈ TXM.

Every manifold has its own retraction operation. In Figure 5.3, we show the retraction
from tangent space TXM back to manifold M.

𝑿𝑿

𝝉𝝉𝑿𝑿

retr(𝑿𝑿)

Figure 2.8: Retraction on a manifold

2.4.3 Line Search Method on Riemannian Submanifold

Line search is an important concept for gradient-based optimization algorithms [28,29]. The
line search method for manifold optimization is based on the retraction operation in (2.8).
The update formula for the k-th iteration of a gradient-based algorithm on a manifold is

Xk+1 = retr(Xk ± αkDk) (2.9)

where αk is the step-size and Dk is the search direction. Since the retraction operation
is decided by the Riemannian manifold and the search direction is decided by the selected
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gradient based approach, such as Riemannian gradient or conjugate Riemannian gradient,
the only remaining consideration is the choice of αk. To guarantee the convergence of the
gradient-based algorithm on the Riemannian manifold, Armijo backtrack line search method
is introduced to select the step-size αk [29]. In the first iteration, the initial step-size is
selected to be a relatively large number to accelerate the search process. If the step-size is
too large to guarantee the ascent, we shrink the step-size by a factor β ∈ (0, 1). This process
is repeated until a step-size is found or the stopping criterion for the number of iterations
is reached. The convergence to a critical point for the gradient-based method with Armijo
backtrack line search is guaranteed within finite number of iterations [31]. The complete
Armijo backtrack line search algorithm is shown as below.

Algorithm 1: Armijo backtrack line search algorithm
Given: The step-size αk−1 > 0 from last iteration, search direction Dk, shrink
constant β ∈ (0, 1);

let α0 = αk−1 and l = 0;
1: while f(retr(Xk + αlDk)) < f(Xk) + α(l)‖Dk‖2

F do
2: αl+1 = βαl

3: l = l + 1
4: end while

Output: αk = αl

2.5 Summary

In this chapter, we presented hybrid beamforming in mmWave massive MIMO systems and
the necessary mathematical background of Riemannian manifold optimization. We first
covered the core concept of massive MIMO systems and then reviewed the conventional
beamforming and hybrid beamforming in detail. Finally, we presented the introduction to
Riemannian manifold optimization. In the next two chapters, we present the system models
used in this thesis and give a comprehensive literature review of pertinent beamforming
schemes.
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Chapter 3

System Model and Problem
Formulation

Following the introduction to hybrid beamforming in Chapter 2, we formulate the hybrid
beamforming problem as an optimization problem in this chapter . First, we show the
system models and propagation environment model that we will use in the rest of thesis.
In Section 3.1, the system models of the narrowband single-user MIMO, wideband single-
user MIMO and narrowband multi-user MIMO systems are presented and the corresponding
hybrid beamforming problems are formulated. In Section 3.2, a geometric clustered mmWave
channel model based on different antenna layouts is described as the propagation environment
in this thesis.

3.1 System Model and Problem Formulation

3.1.1 Single-user MIMO System

We consider the downlink of a narrowband single-user MIMO system where the BS is
equipped with Nt transmit antennas and NRF RF chains, the MS is equipped with Nr

receive antennas and NRF RF chains as shown in Figure 3.1. The number of RF chains is
assumed to be small in comparison to the number of transmit and receive antennas, i.e.,
NRF � min(Nt, Nr). We assume that a hybrid precoder is deployed at the BS and a hybrid
combiner is deployed at the MS. A total of Ns (≤ NRF ) data streams are transmitted.
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Figure 3.1: System model of a single-user MIMO system

The digital precoder and analog precoder at BS are denoted as FBB ∈ CNRF×Ns and
FRF ∈ CNt×NRF , respectively. To simplify the decoding process, WBB ∈ CNRF×Ns and
WRF ∈ CNr×NRF are involved as digital and analog combiner at the receiver to
post-process the received signal as shown in the right side of Fig 3.1. The analog precoder
and combiner matrices FRF and WRF contain the state of the phase shifters from each RF
chain which means that every element in FRF and WRF has unit norm, i.e.,
|FRF (p, q)| = |WRF (m,n)| = 1, p ∈ {1, . . . , Nt} , q, n ∈ {1, . . . , NRF} ,m ∈ {1, . . . , Nr}.
The digital precoder FBB and combiner WBB are implemented at the baseband. The
transmitted symbols vector is denoted as s ∈ CNs×1 with E[ssH ] = INs [26]. Assuming
that the power is allocated equally across all transmitted data streams, the power
constraints for hybrid precoder and combiner are expressed as ‖FRFFBB‖2

F = Ns,
‖WRFWBB‖2

F = Ns. The received signal y ∈ CNs×1 after post-processing is:

y = WH
BBWH

RF︸ ︷︷ ︸
WH

H FRFFBB︸ ︷︷ ︸
F

s + WH
BBWH

RFn (3.1)

where H ∈ CNt×Ns is the channel matrix, F ∈ CNt×Ns is the full precoding matrix, W ∈
CNr×Ns is the full combining matrix and n ∼ CN (0, σ2

nINr) is the additive white Gaussian
noise (AWGN) matrix. The SE LSE in the single-user MIMO system is given by

LSE = log det(INs + R−1(WRFWBB)HHFRFFBB(FRFFBB)HHHWRFWBB) (3.2)

where R = σ2(WRFWBB)HWRFWBB is the covariance matrix. Using (3.2) as the
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objective function, the hybrid beamforming problem can be formulated as below:

max
FRF ,FBB ,WRF ,WBB

LSE

subject to ‖FRFFBB‖2
F = Ns, ‖WRFWBB‖2

F = Ns

|FRF (p, q)| = 1, p = 1, . . . , Nt, q = 1, . . . , NRF

|WRF (m,n)| = 1, m = 1, . . . , Nr, n = 1, . . . , NRF

(3.3)

3.1.2 Wideband Single-user MIMO System

In many practical applications which exploit the advantage of mmWave massive MIMO
systems, multi-carrier techniques are used to mitigate the frequency-selective fading channel.
In this section, we assume that orthogonal frequency division multiplexing (OFDM) with
K sub-carriers is used in a single-user MIMO system as shown in Figure 3.2. As in the
narrowband case, the BS is equipped with Nt transmit antennas and NRF RF chains and
the MS is equipped with Nr receive antennas and NRF RF chains; the number of RF chains
is smaller than the number of transmit and receive antennas, i.e., NRF � min(Nt, Nr). We
assume that a hybrid precoder is deployed at the BS and a hybrid combiner is deployed at
the MS and a total of Ns (≤ NRF ) data streams are transmitted. Finally, the channel matrix
for the k-th sub-carrier is denoted as H [k] ∈ CNr×Nt .

In the single-user MIMO-OFDM system, each sub-carrier has its own digital precoder and
combiner. After the transmitted signal is processed by the digital precoder, an inverse fast
Fourier transform (IFFT) operation is executed to combine the transmitted data streams of
all sub-carriers together at the BS. At the receiver, a fast Fourier transform (FFT) operation
is executed to separate the received signals of all sub-carriers. Thus, the analog precoder
and combiner are shared by all sub-carriers [34,35].

The digital precoder and combiner at the k-th sub-carrier are denoted as FBB[k] ∈
CNRF×Ns and WBB[k] ∈ CNRF×Ns , respectively. The received signal y[k] at the k-th sub-
carrier is written as [1, 2, 26]

y[k] = WBB[k]HWH
RF︸ ︷︷ ︸

W [k]H

H [k] FRFFBB[k]︸ ︷︷ ︸
F [k]

s[k] + WBB[k]HWH
RFn[k] (3.4)

where s[k] ∈ CNs×1 is the transmitted symbols with E[s[k]sH [k]] = INs ,
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Figure 3.2: System model of a single-user MIMO-OFDM system

W [k] = WRFWBB[k] is the full combiner, F [k] = FRFFBB[k] is the full precoder and
n[k] is an AWGN with variance σ2

k at the k-th sub-carrier. The SE LOFDM,k of the k-th
sub-carrier is

LOFDM,k = log det(INs + 1
σ2
k

(W [k]HW [k])−1W [k]HH [k]F [k]F [k]HH [k]HW [k]) (3.5)

We use the sum-rate of across all sub-carriers as the objective function and we formulate the
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hybrid beamforming problem for the single-user MIMO-OFDM system as

max LOFDM =
K∑
k=1
LOFDM,k

subject to ‖FRFFBB[k]‖2
F = Ns, ‖WRFWBB[k]‖2

F = Ns

|FRF (p, q)| = 1, p = 1, . . . , Nt, q = 1, . . . , NRF

|WRF (m,n)| = 1, m = 1, . . . , Nr, n = 1, . . . , NRF

(3.6)

3.1.3 Multi-user MIMO System

In a narrowband multi-user MIMO system, a group of K users receive signals simultaneously
from the BS. We assume that a hybrid precoder is deployed at the BS and a combiner is
employed at each user. The block diagram of a K-user MIMO system model is shown in
Figure 3.3. Each user is equipped with Nr antennas and N r

RF ≤ Nr RF chains and receives
Nsu ≤ N r

RF data streams. At the BS, Nt ≥ KNr antennas are deployed and N t
RF ≥ KN r

RF

RF chains are available.
We assume that the BS transmits Ns = KNsu data streams. The transmitted signal

vector is denoted as s =
[
sT1 , sT2 , . . . , sTK

]T
∈ CKNsu×1 where sk ∈ CNsu×1 is the transmitted

symbols with E{sksHk } = INsu for the k-th user. The channel matrix H ∈ CKNr×Nt is
structured as H = [H T

1 ,H T
2 , · · · ,H T

K ]T where H k ∈ CNru×Nt is the channel matrix between
the BS and the k-th user. The received signal yk at the k-th user can be written as

yk =
Desired signal of user k︷ ︸︸ ︷

WH
BB,kWH

RF,k︸ ︷︷ ︸
WH

k

H k FRFFBB,k︸ ︷︷ ︸
Fk

sk + WH
BB,kWH

RF,kH k

K∑
i=1,i 6=k

FRFFBB,isi︸ ︷︷ ︸
Inter-user interference at user k

+ WH
BB,kWH

RF,knk

(3.7)

where FRF ∈ CNt×Nt
RF is the analog precoder; FBB,k ∈ CNt

RF×Nsu , WBB,k and WRF,k are
the digital precoder, digital combiner and analog combiner for the k-th user, respectively;
W k ∈ CNru×Nsu is the whole combining matrix, Fk ∈ CNt×Ns is the whole precoding matrix
and nk ∈ CNsu×1 is the AWGN with variance σ2

n at the k-th user. The whole digital
precoding matrix FBB is written as FBB = [FBB,1,FBB,2, · · · ,FBB,K ] while the whole
digital combining matrix WBB is written as WBB = [WBB,1,WBB,2, · · · ,WBB,K ]. The
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Figure 3.3: System model of a multi-user MIMO system
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SE LSE,k at the k-th user is

LmuSE,k = log det(INsu + R−1
k WH

k H kFkFH
k HH

k W k) (3.8)

where Rk is the covariance matrix of the total interference plus noise at the k-th user and
given by:

Rk =
 K∑
i 6=k

WH
k (H kF iFH

i HH
k )W k

+ σ2
nWH

k W k (3.9)

The goal is to maximize the SE of the multi-user MIMO system, i.e., the sum of the SE
LSE,k at k-th user. Hence, the hybrid beamforming problem for multi-user MIMO system is
formulated as

max LmuSE =
K∑
k=1
LmuSE,k

subject to ‖FRFFBB‖2
F = Ns, ‖WRF,kWBB,k‖2

F = Nsu

|FRF (p, q)| = 1, p = 1, . . . , Nt, q = 1, . . . , N t
RF

|WRF,k(m,n)| = 1, m = 1, . . . , Nru, n = 1, . . . , N r
RF

(3.10)

3.2 Channel Model

3.2.1 Antenna Layout

The antenna layout describes how the antenna elements are organized to form the antenna
array. Figure 3.4 shows the two most commonly used antenna layouts: Uniform linear array
(ULA) and square uniform planar array (UPA). The distance between the adjacent antenna
elements is denoted as d. The azimuth angle and elevation angle are denoted as φ and θ,
respectively.

The ULA antenna is easier to be deployed than the square UPA antenna. However, with
a ULA antenna, it is not possible to form beam in the 3D space. In contrast, using a UPA
array provides the flexibility to steer beams towards any point in a 3D space. We assume
that both ULA and square UPA antenna consist of M =

√
M ×

√
M antenna elements

where
√
M is an integer. For a ULA antenna, the array response vector with azimuth angle
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Figure 3.4: Different antenna array

φ is [16]
aULA(φ) = 1√

M

[
1, ej 2π

λ
d sinφ, · · · , ej

2π
λ
d(M−1) sinφ

]T
(3.11)

where λ is the wavelength of the carrier. For a square UPA antenna with azimuth angle φ
and elevation angle θ, the array response vector can be written as [1]:

aSUPA(φ, θ) = 1√
M

[
1, · · · , ej 2π

λ
d(p sinφ sin θ+q cos θ), · · · , ej

2π
λ
d((
√
M−1) sinφ sin θ+(

√
M−1) cos θ)

]T
(3.12)

where λ is the wavelength of the carrier, 0 ≤ p ≤
√
M and 0 ≤ q ≤

√
M are the antenna

indices on the square UPA.

3.2.2 Channel Model

The high path loss of the mmWave channel leads to limited spatial selectivity while the large
tightly-packed antenna arrays of massive MIMO lead to high antenna correlation [12]. As
a result, channel models that are used in conventional MIMO systems, cannot model the
mmWave channel accurately. To better describe the mmWave channel, a clustered channel
model called Saleh-Valenzuela (SV) model for indoor multi-path propagation [36] is adopted.
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In this model, the channel consists of the sum of all propagation paths that are grouped in
Nc clusters and each cluster has same number of rays Nray, for a total of NcNray propagation
paths.

Channel Model of Single-user MIMO System

In this section, we describe the channel model for a single-user MIMO system with square
UPA antennas at both the BS and the MS with Nt and Nr antenna elements, respectively.
The channel H ∈ CNr×Nt for a single-user MIMO system is depicted as [1, 2, 13]:

H =
√

NrNt

NcNray

Nc∑
i=1

Nray∑
l=1

αi,laSUPA(φri,l, θri,l)aHSUPA(φti,l, θti,l) (3.13)

where
√

NrNt
NcNray

is the normalization factor. The factor αi,l is the complex gain of the l-th
ray in the i-th cluster. We assume that the complex gains αi,l are i.i.d random variables
following the standard complex Gaussian distribution, i.e., αi,l ∼ CN (0, 1) [1]. The vector
aSUPA(φri,l, θri,l) is the angle of arrival (AOA) vector at the MS with azimuth angle φri,l and
elevation angle θri,l while aSUPA(φti,l, θti,l) is the angle of departure vector (AOD) at the BS
with azimuth angle φti,l and elevation angle θti,l. Finally, for a mmWave channel the product
NcNray is set to a small number compared to Nt [1, 12].

The channel matrix with ULA antenna at both BS and MS with Nt and Nr antenna
elements is expressed in a similar way:

H =
√

NrNt

NcNray

NcNray∑
i=1

αiaULA(θri )aHULA(θti) (3.14)

where αi ∼ CN (0, 1) is the complex gain of i-th path between the BS and the MS, aULA(θri )
is the AOA vector at the MS with elevation angle θri while aULA(θti) is the AOD vector at
the BS with departure elevation angle θti .

Channel Model of Single-user MIMO-OFDM System

In this section, we describe the channel model for a single-user MIMO-OFDM system with
K sub-carriers. We assume that both BS and MS are equipped with square UPA antenna
with Nt and Nr antenna elements, respectively. Similar to the narrowband case, we assume
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that there are Nc scattering clusters where there are Nray rays in each cluster. Adopting the
SV channel model, the subchannel matrix of the i-th cluster is written as:

H i =
√
NrNt

Nray

Nray∑
l=1

αki,laSUPA(φri,l, θri,l)aHSUPA(φti,l, θti,l) (3.15)

To simplify the wideband channel model, we assume that all the Nray paths from the same
cluster have the same delay, i.e., the number of delay spread is equal to the number of clusters
Nc [34, 37]. Hence, the discrete time impulse response of the the wideband channel is given
by [34,38]:

H [t] =
√

1
Nc

Nc−1∑
i=0

H iδ[t− i] (3.16)

where t is the discrete time index and δ[t− l] is the Kronecker delta function. To simplify the
representation, we use H [k] to denote the k-th subchannel in the frequency domain. Since
the OFDM communication transforms the frequency-selective channel into K flat-fading
subchannels, the k-th subchannel H [k] is written as:

H [k] =
√

1
Nc

Nc−1∑
i=0

H ie
j2πi k

K , 0 ≤ k ≤ K − 1 (3.17)

Thus, substituting (3.15) into (3.17), the channel matrix H [k] is [1, 2]:

H [k] =
√

NrNt

NcNray

Nc−1∑
i=0

Nray∑
l=1

αki,laSUPA(φri,l, θri,l)aHSUPA(φti,l, θti,l)e−j2πi
k
K , 0 ≤ k ≤ K−1 (3.18)

where αki,l ∼ CN (0, 1) are the complex gains of the l-th ray in i-th cluster for the k-th sub-
carrier. The aSUPA(φri,l, θri,l) and aSUPA(φti,l, θti,l) are the AOA vector at the MS and the
AOD vector at the BS, respectively.

Channel Model of Multi-user MIMO System

For a K-user MIMO system, the subchannel matrix H k ∈ CNr×Nt for user k is generated
independently from the other users following the SV channel model. The BS is equipped
with a square UPA antenna with Nt antenna elements while each user is also equipped with
a square UPA antenna with Nru antenna elements. The channel H k between the BS and
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k-th user in the multi-user MIMO is [16]:

H k =
√√√√ NruNt

Nk
cN

k
ray

Nk
c∑

i=1

Nk
ray∑
l=1

αki,laSUPA(φk,ri,l , θ
k,r
i,l )aHSUPA(φk,ti,l , θ

k,t
i,l ) (3.19)

where Nk
c is the number of clusters, Nk

ray is the number of rays and αki,l ∼ CN (0, 1) is the
complex gain of the l-th ray in i-th cluster for k-th user. The aSUPA(φk,ri,l , θ

k,r
i,l ) is the AOA

vector and aSUPA(φk,ti,l , θ
k,t
i,l ) is the AOD vector at BS for the k-th user.

3.3 Summary

In this chapter, we introduced the narrowband single-user MIMO, wideband single-user
MIMO-OFDM and narrowband multi-user MIMO system models for hybrid beamformer.
The beamforming problems were also formulated in preparation for the next chapter which
reviews several conventional and state-of-art beamforming schemes. In the last section, the
configurations of the SV channel model for the single-user MIMO, single-user MIMO-OFDM
and multi-user MIMO systems were presented with the ULA and square UPA antenna,
respectively.
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Chapter 4

Literature Review

In this chapter, we present a concise and comprehensive literature review on beamforming
schemes for both conventional small-scale MIMO systems and state-of-art massive MIMO
systems. The reviewed beamforming schemes are divided in two categories: Conventional
fully digital beamforming approaches, and state-of-art hybrid beamforming approaches. In
Section 4.1, we discuss the conventional beamforming approaches. Several classical near-
optimal but very hardware expensive linear beamforming algorithms for single-user MIMO
and multi-user MIMO systems are reviewed and discussed in detail. In Section 4.2, we
review several state-of-art hybrid beamforming algorithms and discuss their advantages and
drawbacks on performance, adaptability and complexity. In Section 4.3, we derive deeper
into two manifold-based hybrid beamforming algorithms to provide an insight to the use
of manifold optimization which is the main approach in this thesis for hybrid beamforming
problem.

4.1 Fully Digital Beamforming Schemes

Fully digital beamforming has been widely used in conventional MIMO systems in the last
several decades. Generally, the fully digital beamforming algorithms are categorized into
two groups: Linear beamforming and non-linear beamforming. Linear beamforming is
implemented by simple matrix multiplications [39] while non-linear beamforming involves
non-linear operations to process the transmitted signal.
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4.1.1 Non-linear Beamforming Algorithms

Non-linear beamforming algorithms, such as dirty paper coding (DPC) [40, 41] and
Tomlinson-Harashima precoding (THP) [42–44], outperform linear beamforming algorithms
if the channel matrix is perfectly known at the BS [45]. The fundamental idea of DPC and
THP is to compensate for the interference in advance by assuming that the interference is
completely known at the transmitter. Hence, non-linear beamforming is more sensitive to
the imperfect CSI than the linear beamforming schemes. At the same time, the large
number of antennas at the BS in massive MIMO systems leads to very high complexity for
non-linear beamforming because it involves heavy matrix computations. As a result,
non-linear beamforming is not considered to be a practical solution in massive MIMO
systems under the 5G standard. Hence, we mainly focus on linear beamforming algorithms
in the rest of this section.

4.1.2 Linear Beamforming Algorithms

In this section, we review and discuss several commonly used linear beamforming algorithms.

Singular Value Decomposition Beamforming

The singular value decomposition (SVD) beamforming is a near-optimal solution in terms
of SE by eliminating the IDI for the single-user MIMO system. We adopt the single user
MIMO system model from Section 3.1. The channel matrix H ∈ CNr×Nt is decomposed as
H = UΣVH . We use n to denote the AWGN with variance σ2 at the MS and s ∈ CNs×1 to
denote the transmitted signals. We use the first Ns columns from U and V as the precoder
F and the combiner W , respectively, i.e.,

F = V (1:Nt,1:Ns)

W = U (1:Nr,1:Ns)
(4.1)

The precoder F and combiner W are both semi-unitary, i.e., FHF = I and WHW = I .
Substituting F and W back into the system model of the single-user MIMO system model,
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the received signal y ∈ CNs×1 is written as:

y = WHUΣVHFs + WHn

=
(
U (1:Nr,1:Ns)

)H
UΣVHV (1:Nt,1:Ns)s +

(
U (1:Nr,1:Ns)

)H
n

= Σs + ñ

(4.2)

where ñ = WHn is the noise at the output of the combiner and Σ is a semi-diagonal matrix
which contains the singular values of H . Then, (4.2) can be rewritten as:

yk =
Σ(k, k)sk + ñk, k = 1, . . . ,min(Nt, Nr)
ñk, otherwise

(4.3)

where Σ(k, k) is the (k, k)-th element in Σ and sk, yk and ñk are the k-th element in
transmitted signal s, received signal y and noise ñ, respectively. From (4.3), we know that
there are only S = min(Nt, Nr) sub-channels which are able to transfer useful information.
Hence, the number of transmitted signals Ns must be smaller than S, i.e., Ns ≤ S, to avoid
information loss. Because of WHW = I , the noise ñ is still AWGN with distribution
CN (I , σ2). Those S sub-channels are considered as S parallel single-input single-output
(SISO) channels with the k-th channel having capacity Ck, 1 ≤ k ≤ S. Assuming equal
power allocation across the transmitted signals sk, the capacity C for single-user MIMO
system with SVD beamforming is calculated as:

C =
S∑
k=1

Ck =
S∑
k=1

log2

(
1 + Σ(k, k)

σ2

)
(4.4)

Matched Filter Beamforming

The Matched Filter (MF) beamformer is the simplest beamforming algorithm for both single-
user and multi-user MIMO systems. As an example, we use the single-user MIMO system
model from the SVD beamforming. The conjugate transpose matrix of the downlink channel
matrix H , is used as the MF precoder [5]:

FMF =
√
αHH (4.5)
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where α = Ns
tr(FMFFHMF ) is a scaling factor to normalize the power of transmitted signal. With

MF beamforming, the received signal vector yMF is:

yMF =
√
αHHHs + n (4.6)

Conventional linear equalizers can be used as the combiner to post-process the received
signal. The MF beamformer maximizes the SNR at the receiver and is near-optimal when
Nt is much larger than the number of users [5]. It requires very low computational complexity.
On the other hand, the MF beamformer does not remove the IDI or IUI.

Zero Forcing Beamforming

Zero forcing (ZF) beamforming eliminates the interference by transmitting the data streams
intended to a receive antenna while nulling in the directions of other receive antennas [46].
In addition to single-user MIMO systems, it is also applicable to multi-user MIMO systems
even if each user is only equipped with a single antenna, i.e., a multi-user multiple-input-
single-output (MISO) system. We still adopt the single-user MIMO system model as same
as in the SVD beamforming. Since the channel matrix H is a wide matrix, i.e., Nr < Nt in
the massive MIMO systems, the right pseudo-inverse of H is used as the precoder. The ZF
precoder is calculated as [5]:

FZF =
√
αHH(HHH)−1 (4.7)

where α = Ns
tr(FZFFHZF ) is a scaling factor to normalize the power of transmitted signal. Thus,

the received signal vector yZF is stated as:

yZF =
√
αHHH(HHH)−1s + n =

√
αs + n (4.8)

Conventional linear equalizers can be used as combiner to post-process the received signal.
ZF beamforming is optimal when there is no AWGN in the propagation channel. However, ZF
beamforming may amplify noise and suffer from performance loss because the ZF beamformer
is required to satisfy the total transmit power constraint [24]. On the other hand, because
ZF beamforming involves inversion of the channel matrix, when the channel matrix is ill-
conditioned, its pseudo-inverse cannot be calculated precisely.
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Minimum Mean Square Error Beamforming

The minimum mean square error (MMSE) is a widely used linear beamforming scheme. The
goal is to generate the transmit precoder which makes the received signal as close as possible
in the mean square sense to the transmitted signal vector [13]. Adopting the single-user
MIMO system as same as in the SVD beamforming, the MMSE precoder is calculated as:

FMMSE = HH(HHH + σ2NrINr)−1 (4.9)

where α = Ns
tr(FMMSEFHMMSE) is a scaling factor to normalize the power of transmitted signal

and σ2 is the variance of the AWGN at the output. The received signal yMMSE is:

yMMSE =
√
αHHH(HHH + σ2NrINr)−1s + n (4.10)

Conventional linear equalizers can also be used as combiner to post-process the received
signal. As we mentioned earlier, MMSE beamforming aims to have the received signal as
close as possible to the transmitted signal. It does not attempt to optimize the SE directly,
and therefore, it is not the optimal solution in terms of SE.

Block Diagonalization Beamforming

The block diagonalization (BD) algorithm is a widely used near-optimal beamforming
solution in multi-user MIMO systems where both IDI and IUI are present. We adopt the
multi-user MIMO system model from Section 3.1 here. In contrast to SVD beamforming
that only removes the IDI, the BD algorithm eliminates both the IDI and IUI by executing
SVD twice on the channel H where H k ∈ CNr×Nt is the subchannel matrix between the BS
and the k-th user. Because the k-th user in the multi-user MIMO system has its own
combiner W k ∈ CNr×Nsu and precoder Fk ∈ CNt×Nsu , BD algorithm calculates all
precoding and combining matrices for each user independently. The following steps are
executed for the k-th user [47,48]:

1. First, the SVD is applied on H̃ k ∈ C(K−1)Nr×Nt =
[
H T

1 , · · · ,H T
k−1,H T

k+1, · · · ,H T
K

]T
which is the whole channel matrix excluding the channel of user K as shown below [47]:

H̃ k = Ũ kΣ̃k

[
Ṽ (1)

k Ṽ (0)
k

]H
(4.11)
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where Ṽ (0)
k contains vectors corresponding to the zero singular values and Ṽ (1)

k

contains the singular value vectors corresponding to non-zero singular values. Hence,
the columns in Ṽ (0)

k form an orthogonal basis for the null space of H̃ k [47–49].

2. To further remove the interference, SVD is applied once more on H kṼ
(0)
k :

H kṼ
(0)
k = U k Σk

[
V (1)

k V (0)
k

]H
(4.12)

where V (0)
k contains the vectors corresponding to the zero singular values and V (1)

k

contains the singular value vectors corresponding to the non-zero singular values. The
combining matrix W k of the k-th user is formed by the first Nsu columns of U k,
i.e., W k = U (1:Nr,1:Nsu)

k . Then, the precoding matrix Fk is obtained by the first Nsu

columns of the matrix Tk = Ṽ (0)
k V (1)

k , i.e., Fk = T (1:Nt,1:Nsu)
k . .

The complete BD algorithm is summarized in Algorithm 2 below [47,48,50].

Algorithm 2: BD beamforming algorithm
Input: channel matric H , number of users K;

1: for k = 1, 2, . . . , K do
2: Calculate the SVD on H̃ k using (4.11)
3: Calculate the SVD on H̃ kṼ

(0)
k using (4.12)

4: Calculate combiner W k

5: Calculate the initial precoder Tk

6: Calculate the precoder Fk

7: k ← k + 1
8: end for

Output: F = [F1, · · · ,FK ], W = blkdiag(W 1, · · · ,WK)

Summary of Linear Beamforming Algorithms

In this section, we summarize the discussed beamforming algorithms in this chapter. Table
4.1 summarizes the goal and the computational complexity of different linear beamforming
algorithms.
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Goal Relative complexity

MF maximize SNR Very low

SVD remove IDI High

ZF remove IDI Medium

BD remove IUI and IDI Very high

MMSE reduce MSE Medium

Table 4.1: Characteristics of linear beamforming algorithms

4.2 Hybrid Beamforming Schemes

In comparison to the fully digital beamforming, hybrid beamforming is an effective method
to balance the performance-cost trade-off in massive MIMO systems. In this section, several
state-of-art hybrid beamforming algorithms are reviewed and categorized to provide insight
into the hybrid beamforming problem.

4.2.1 Hybrid Beamforming Schemes

Matrix decomposition based Hybrid Beamforming

The matrix decomposition (MD) approach, also called matrix factorization, attempts to
minimize the distance between the product of digital precoder and analog precoder FRFFBB

and the optimal precoder Fopt ∈ CNt×Ns , i.e., ‖Fopt − FRFFBB‖2
F . In MD approaches, the

analog and digital combiners are computed in the same way as their precoding counterparts
by approximating the optimal combiner W opt ∈ CNr×Ns . For representation simplicity, we
only discuss the hybrid precoder here.

The orthogonal matching pursuit (OMP) [12] is the first proposed algorithm for hybrid
beamformer with full-array RF architecture in massive MIMO systems. The OMP
algorithm reformulates the hybrid beamforming problem as a sparsity constrained matrix
reconstruction problem. It aims to minimize ‖Fopt − FRFFBB‖2

F by determining the
columns in the analog precoder one by one. Each column in the analog precoder is selected
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from the AOD vectors at the transmitter. Hence, it is also considered as a semi
codebook-based algorithm with the AOD vector taken as the codebook. Another MD
based approach is MO-AltMin [1]. The authors exploit Riemannian manifold optimization
to transform the constrained matrix decomposition problem into an unconstrained problem
on a complex circle (CC) manifold. The analog precoder and combiner are obtained by the
conjugate gradient (CG) method. MO-AltMin is applicable to both narrowband and
wideband single-user MIMO systems. In [1], the authors also propose a semi-definite
relaxation (SDR) based hybrid beamforming algorithm for fixed sub-array architecture.
In [51], the authors combine the AOD vector at transmitter with the discrete Fourier
transformation (DFT) codebook to determine the best low dimensional representation of
the optimal matrix Fopt. In [52], the authors proposed a semi-dynamic sub-array hybrid
beamforming algorithm to compensate the drawbacks of the fixed sub-array and dynamic
sub-array architectures. The antenna array is divided into several fixed subsets as the fixed
sub-array architecture. However, the RF chain is allowed to connect to different subsets.
The hybrid beamforming solution in [52] is based on matrix decomposition.

SE-based Hybrid Beamforming

Since the MD algorithm requires calculation of the optimal precoder and combiner and
consequently has very high computational complexity, several algorithms have been
proposed to directly optimize the SE of the equivalent channel
H eq ∈ CNRF×NRF = WH

RFHFRF using a two-stage optimization strategy. In this two-stage
optimization framework, the digital precoder and combiner are used to eliminate the
interference and divide the equivalent channel H eq into several sub-channels while the
analog precoder and combiner aim at maximizing the capacity of H eq. Heuristic
approximations to determinant and singular values are commonly used to relax the SE
optimization problem to a convex optimization problem. However, the approximation
usually results in performance loss and high computational complexity brought by the
required matrix computations.

In [19], the SE maximization problem is relaxed through heuristic approximations from
linear algebra to a convex optimization problem for single-user MIMO and multi-user
MISO systems. SVD and ZF beamforming are used to compute the digital precoder and
combiner for single-user MIMO and multi-user MISO systems, respectively. In [15, 17], the
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BD algorithm is applied on the equivalent channel H eq in a multi-user MIMO system to
eliminate the IUI. The SE maximization problem is relaxed through different heuristic
approximation to a norm maximization problem which maximizes the Frobenius norm of
the equivalent channel H eq. An algorithm based on penalty dual decomposition (PDD) is
proposed in [14] to penalize and dualize the unit modulus constraint into the objective
function in a multi-user MIMO system and then iteratively optimize the objective function
by solving the augmented Lagrangian problem without using any approximation. The PDD
algorithm is guaranteed to converge and and has very high SE performance. However, its
complexity is very high because it involves numerous matrix computations in every
iteration. Several hybrid beamforming algorithms with sub-array RF architecture [53, 54]
also use the SE as their objective function and relax the SE maximization problem to a
convex maximization problem. In [26], the hybrid beamforming algorithm is based on SE
maximization by extracting the phases from the optimal precoder. Then, a dynamic
mapping algorithm is proposed using top-down clustering strategy to map the RF chains
and the antennas in the dynamic sub-array. The authors of [16] use DFT codebook to
design the analog precoder and combiner in a multi-user MIMO system and aim to
maximize the SE. In [55], the authors propose a manifold optimization based fixed
sub-array hybrid precoding (MO-SA) approach to optimize the columns in FRFFBB

independently in a single-user MIMO system. MO-SA divides the hybrid precoding
problem into NRF sub-problems and each sub-problem aims to maximize the SE between
the channel matrix H and the i-th column in FRFFBB. Thus, the digital precoder and
analog precoder are updated jointly. In [56], a manifold-based hybrid beamforming
algorithm is proposed to directly optimize the SE of a multi-user MISO system. The analog
precoder and digital precoder are optimized jointly. In [57], the authors reformulate the SE
maximization problem in the fixed sub-array hybrid beamformer using weighted MMSE
equivalence. The equivalent weighted MMSE problem is solved by manifold optimization.

MSE-based Hybrid Beamforming

Besides SE, another important performance metric is the MSE between the transmitted
signal and the received signal. In a practical scenario, the transmitted signal is modulated
by several modulation and coding schemes instead of a Gaussian code. MSE is a suitable
objective function because it indicates the reliability of received code after propagation
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through the channel. It has been shown that the optimization based on different MSE
variants, such as sum-MSE at different user, layer MSE, weighted MSE, improves the SNR
and BER performance [2].

Therefore, MSE is taken as an alternative objective function in many hybrid beamforming
designs [2, 13]. Based on the MO-AltMin algorithm, the authors of [2] proposed the MO-
MSE algorithm to optimize the MSE between transmitter and receiver. In [13], a hybrid
beamforming algorithm is proposed to minimize the sum-MSE and weighted sum-MSE for
multi-user MIMO system. The sum-MSE and weighted sum-MSE minimization problems are
reformulated into matrix reconstruction problems and solved by a modified OMP algorithm.

4.2.2 Summary of Hybrid Beamforming Schemes

In this section, we summarize the hybrid beamforming algorithms reviewed up to this point.
In Table 4.2, the different highlighted hybrid beamforming algorithms in this chapter are
summarized. We can see that it is hard to extend the MSE-based approach to sub-array
RF architecture. The SE is the most generalized objective function for different hardware
architectures and system models. However, we found that few researchers have addressed
the adaptability and generality of SE-based hybrid beamforming. Many SE-based hybrid
beamforming algorithms are only compatible with specific system model or RF architecture.
In the next chapter, we present the system models used in this thesis.

4.3 State-of-Art Manifold-based Algorithms

As discussed before, the biggest challenge for solving the hybrid beamforming problem is
the non-convex unit modulus constraint at the analog precoder and combiner. However,
with the help of manifold optimization, the unit modulus constraint is eliminated on a CC
manifold. In the aforementioned hybrid beamforming algorithms, there are three state-
of-art manifold-based hybrid beamforming approaches: MO-AltMin [1], MO-MSE [2] and
MO-SA [55] discussed briefly in the previous section. In this section, these two manifold-
based algorithms are discussed in detail to provide an insight for manifold optimization in
hybrid beamforming in a single-user MIMO system and motivate the algorithm proposed in
this thesis.
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RF architecture System model Scheme
[1] Full-array& sub-array Single-user MIMO

MD
[12] Full-array Single-user MIMO & multi-user MIMO

[51] Full array Multi-user MIMO

[52] Semi-dynamic sub-array Single-user MIMO

[14,16,17] Full-array Multi-user MIMO

SE

[19] Full-array Single-user MIMO & multi-user MISO

[56] Full-array Multi-user MISO

[15] Full-array & sub-array Single-user MIMO

[26,54] Dynamic sub-array Single-user MIMO

[53] Dynamic sub-array Multi-user MISO

[55] Fixed sub-array Single-user MIMO

[57] Fixed sub-array Single-user MIMO

[2] Full-array Single-user MIMO
MSE

[13] Full-array Multi-user MIMO

Table 4.2: Taxonomy table of hybrid beamforming algorithms

4.3.1 MO-AltMin

MO-AltMin [1] divides the hybrid beamforming problem into two matrix decomposition
problems as discussed in Section 4.2. Because MO-AltMin aims to maximize the SE, it
uses the SVD beamforming to compute the optimal beamformer as input. Since the analog
precoder and combiner are calculated using the same way in MO-AltMin, we only present
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the subproblem for calculating the analog precoder here:

min fMO(FRF ,FBB) = ‖Fopt − FRFFBB‖2
F

subject to: ‖FRFFBB‖2
F = Ns

|FRF (p, q)| = 1, p = 1, . . . , Nt, q = 1, . . . , NRF

(4.13)

where Fopt ∈ CNt×Ns is the fully digital precoding matrix computed by SVD beamforming.
MO-AltMin uses the alternating minimization strategy to approximate the decomposition
of Fopt on a CC manifold. In each iteration, the analog precoder FRF is updated using
the CG method on the CC manifold while keeping FBB constant. MO-AltMin projects the
Euclidean gradient of the cost function onto the CC manifold to eliminate the unit modulus
constraint. The corresponding Euclidean gradient is calculated as:

∇EfMO(vec(FRF )) = −2(FT
BB ⊗ INt)

[
vec(Fopt)− (FT

BB ⊗ INt)vec(FRF )
]
. (4.14)

where the operator vec(·) represents row-wise vectorization. The Riemannian gradient is
obtained by projecting the Euclidean gradient onto the manifold. The unnormalized F̂BB is
calculated as least squares solution with the help of Fopt as:

F̂BB = F†RFFopt (4.15)

Then, the digital precoder is normalized by the power constraint as:

FBB =
√
Ns

‖FRF F̂BB‖F
F̂BB (4.16)

4.3.2 MO-MSE

Different from MO-AltMin which minimizes the distance function fMO, MO-MSE [2] uses
the MSE between transmitted signal s and received signal y from (3.1) as the objective
function. The MSE in a single-user MIMO system is calculated as:
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MSE , E{‖β−1y − s‖2}

= tr(β−2WHHFFHHHW − β−1WHHF

− β−1FHHHW + σ2β−2WHW + INs)

(4.17)

where β is the normalization factor to be jointly optimized with the hybrid precoder [2].
To further simplify (4.17), the analog and digital combiner are replaced by the fully digital
MMSE combiner, i.e., WRFWBB = WMMSE. MO-MSE is an iterative method and it
derives the unnormalized digital precoder F̂BB by applying MMSE beamforming on
FRFHWMMSE. Hence, the normalization factor β is calculated as:

β =
(

tr
(

FRF F̂BBF̂
H

BBFH
RF

))− 1
2

(4.18)

Then, we substitute WRFWBB = WMMSE, F̂BB and β back to (4.17) to obtain the
problem formulation for FRF as:

max fMSE(FRF )=tr
((

I N s + 1
σ2w

HH
1 FRF

(
FH
RFFRF

)−1
FH
RFH 1

)−1)
subject to : |FRF (p, q)| = 1, p = 1, . . . , Nt, q = 1, . . . , NRF

(4.19)

where w , tr(WHW ) and H 1 , HHWRFWBB.
The Euclidean gradient of fMSE(FRF) is calculated as:

∇EfMSE(FRF) = 1
σ2w

(
FRF

(
FH
RFFRF

)−1
VH

RF − INt
)

H 1P−2HH
1 FRF

(
FH
RFFRF

)−1

(4.20)
where P = INs + 1

σ2w
HH

1 FRF (FH
RFFRF )−1H 1. Same as in MO-AltMin, MO-MSE projects

the Euclidean gradient ∇fMSE(FRF ) onto the CC manifold and uses the CG method to
search for a near-optimal solution. After obtaining the analog precoder FRF and digital
precoder FBB, MO-MSE substitutes FRF and FBB back into (4.17) and calculates WRF

and WRF in the same way.



4. Literature Review 44

4.3.3 MO-SA

MO-SA [55] is proposed specifically for the fixed sub-array hybrid precoder in a single-user
MIMO system. It does not include any combining process at the MS. MO-SA assumes
that the analog precoder FRF satisfies the unit modulus constraint and is a block diagonal
matrix, i.e., FRF =

[
f RF,1, · · · , f RF,2

]
= blkdiag(f 1, · · · , fNRF ). In MO-SA, the number

of the transmitted data streams Ns is fixed to NRF and it assumes the digital precoder
is a diagonal matrix, i.e., FBB ∈ CNRF×NRF = diag(d1, d2, · · · , dNRF ). In MO-SA, the
analog precoder and digital precoder are optimized jointly by using G = FRFFBB as the
optimization variable to maximize the SE:

max fSA(G) = log det(I + 1
σ2 HGGHHH)

subject to: ‖G‖2
F = Ns

(4.21)

where σ2 is the variance of the complex AWGN. MO-SA divides Problem (4.21) to NRF

sub-problems by optimizing the NRF columns in G independently. The i-th sub-problem
uses gi ∈ CNt×1 = diFRF,i which is the i-th column of G as the optimization variable to
maximize the SE of Hgi. The i-th sub-problem is written as:

f iSA(gi) = log det(I + 1
σ2 HgigHi HH) (4.22)

With Sylvester’s determinant identity:

det(I + AB) = det(I + BA) (4.23)

f iSA(gi) is rewritten as:
f iSA(gi) = log

(
1 + 1

σ2 gHi HHHgi
)

(4.24)

The Euclidean gradient of f iSA(gi) is:

∇Ef iSA(gi) = 2
σ2 ln(2)

(
1 + 1

σ2 gHi HHHgi
)HHHgi (4.25)
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Then, MO-SA uses the CG method to update gi iteratively. Because f i only contains
Nant = Nt

NRF
non-zero elements, MO-SA extracts and normalizes the corresponding Nant non-

zero elements from gi to build f i. After FRF is obtained, MO-SA uses the power constraint
to calculate FBB.

4.3.4 Summary of State-of-art Manifold Hybrid Beamforming
Algorithm

In this section, we summarize and evaluate the two manifold-based hybrid beamforming
algorithms based on three criteria: Performance, complexity and adaptability.

1. MO-AltMin:

(a) Performance:
MO-AltMin offers excellent performance in terms of the SE in a single-user MIMO
system. It has very similar performance to fully digital SVD beamforming and
significantly outperforms the OMP algorithm.

(b) Complexity:
The computational complexity of MO-AltMin is very high because it involves
the Kronecker product computation. At the same time, MO-AltMin requires
calculating both optimal precoder and combiner as inputs which involves
additional computational complexity.

(c) Adaptability:
MO-AltMin works with wideband single-user MIMO system. However, in
sub-array analog beamforming matrices, each column contains only few non-zero
elements. MO-AltMin has to optimize the whole analog beamforming matrices
and then set most entries to zero instead of only optimizing the non-zero
elements. The computational complexity of the sub-array architecture is still
same as the full-array architecture. Hence, the author of [1] proposed a
sub-array hybrid beamforming algorithm based on SDR instead of manifold
optimization. Furthermore, MO-AltMin is not suitable for multi-user MIMO
systems. MO-AltMin requires both the optimal precoder and combiner as
inputs. To calculate the near-optimal precoder and combiner for a multi-user
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MIMO system, BD beamforming is adopted. However, BD beamforming
requires very high computational complexity and leads to heavy additional
computation. It makes MO-AltMin impractical for multi-user MIMO systems.

2. MO-MSE:

(a) Performance:
Because MO-MSE uses MSE as the objective function, it offers excellent
performance on MSE. However, the SE performance of MO-MSE is not
near-optimal.

(b) Complexity:
Due to the need to calculate the optimal precoder and combiner as input, MO-
MSE also involves additional computational complexity. However, because MO-
MSE avoids the computation for Kronecker product, its computational complexity
is lower than MO-AltMin.

(c) Adaptability:
It has been shown that MO-MSE works with wideband single-user MIMO system
[2]. However, same as MO-AltMin, it is inefficient to extend MO-MSE to sub-array
architecture. At the same time, it is also hard to extend MO-MSE to a multi-
user MIMO system as it requires optimal MMSE precoder and combiner as input.
In [49], the author pointed out that there does not exist a closed-form solution
for MMSE precoder and combiner in a multi-user MIMO system. Although there
exists MSE duality for uplink and downlink which simplifies MMSE beamforming
for multi-user MIMO system, the MMSE beamforming still requires either an
interior point solver or an alternating optimization framework to compute the
fully digital MMSE precoder and combiner [58]. This leads to heavy computation
overhead for computing the required optimal precoder and combiner in MO-MSE.
Hence, MO-MSE is impractical for multi-user MIMO systems.

3. MO-SA:

(a) Performance:
MO-SA uses SE as the objective function. It has good EE performance as a fixed
sub-array hybrid precoder. However, there is a large gap on the SE performance



4. Literature Review 47

between MO-SA and any full-array hybrid beamforming algorithms, such as OMP
and MO-AltMin.

(b) Complexity:
Although MO-SA adopts the fixed sub-array RF architecture, the computational
complexity is still the same as in the full-array architecture because it optimizes
all columns in FRF and then extracts the Nant non-zero elements.

(c) Adaptability:
MO-SA is only applicable to a single-user MIMO system. It does not consider the
combining process at the MS. At the same time, the number of transmitted data
streams must be equal to the number of RF chains. MO-SA assumes a digital
precoder with diagonal structure and optimizes the analog precoder and digital
precoder jointly. Thus, MO-SA cannot remove the interference and it also cannot
be extended to multi-user MIMO systems where IUI and IDI are present. Overall,
the adaptability of MO-SA is very limited due to its joint optimization strategy.

In Table 4.3, the advantages and drawbacks of MO-AltMin, MO-MSE and MO-SA are
summarized. Clearly, the three manifold-based algorithms all involve heavy computation
overhead and lack on adaptability. To overcome these drawbacks, a novel manifold-based
algorithm is proposed in this thesis. Our goal is to develop a highly adaptive algorithm
which has low computation overhead to solve the hybrid beamforming problem in mmWave
massive MIMO systems. In the next chapter, we propose an algorithm which uses SE as
the objective function and does not require pre-calculation of optimal beamformer. The
proposed algorithm is applicable to different system models; namely, narrowband single-
user MIMO system, wideband single-user MIMO-OFDM system and narrowband multi-user
MIMO system.
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MO-AltMin MO-MSE MO-SA
Input linear beamformer Necessary Necessary Not required

SE High Medium Low

EE Low Low High

MSE Low High Low

Relative complexity High Medium Medium

Wideband support Yes Yes Yes

Sub-array support Inefficient Inefficient Inefficient

Multi-user MIMO support No No No

Table 4.3: Characteristics of the manifold-based algorithms
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Chapter 5

The Proposed Hybrid Beamforming
Approach

In this chapter, we present our proposed approach to solve the hybrid beamforming problem
for the system models presented in Section 3.1. As discussed in Section 4.2, there have
been many works on optimizing hybrid beamformers. However, these works focus on specific
fixed settings and are not concerned with adaptability to different system models and RF
architectures. As we will see, our proposed approach reduces the computational complexity
while maintaining the performance with different wireless system models.

This chapter is divided into five sections. In Section 5.1, we introduce the proposed
algorithm in detail for a narrowband single-user MIMO system. In Section 5.2, we investigate
the convergence of the proposed algorithm and analyze the computational complexity of the
proposed algorithm. We also compare the complexity of the proposed algorithm with several
state-of-art hybrid beamforming algorithms. In Sections 5.3 and 5.4, we extend the proposed
algorithm to a wideband single-user MIMO-OFDM system and a narrowband multi-user
MIMO system, respectively. In the last section, a short summary is presented.

5.1 Proposed Algorithm: Single-user MIMO System

Inspired by the three manifold-based algorithms reviewed in the last chapter, the proposed
algorithm solves the hybrid beamforming problem on the CC manifold to eliminate the
unit modulus constraint. To overcome the weaknesses of state-of-art manifold-based
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algorithms, we use a two-stage optimization strategy. First we divide the hybrid
beamforming problem into analog processing problem and digital processing problem. In
the proposed algorithm, the analog precoder and combiner aim to maximize the SE while
the digital precoder and combiner aim to eliminate the interference. Then, we adopt the
alternating optimization strategy to optimize the analog precoder and combiner to solve
the analog processing problem. In the end, the SVD beamforming is applied to obtain the
digital precoder and combiner. In this section, we adopt the narrowband single-user MIMO
system in Section 3.1 as the system model.

Since Problem (3.3) involves four different variables and the non-convex unit modulus
constraint brought by the analog precoder and combiner, it is difficult to obtain an optimal
solution directly. Hence, we use a two-stage optimization strategy to tackle Problem (3.3)
by splitting it into two independent sub-problems: the analog beamforming problem and the
digital beamforming problem. Referring to Figure 5.1, in the analog beamforming problem,
the analog precoder FRF and combiner WRF are optimized first without involving FBB

or WBB to maximize the SE of equivalent channel H eq = WH
RFHFRF . After FRF and

WRF are computed, a linear beamforming approach is applied on H eq to solve the digital
beamforming problem. This means that we calculate the digital precoder and combiner only
once and no precalculation of the optimal digital precoder is needed.

𝑭𝑭𝐵𝐵𝐵𝐵 𝑭𝑭𝑅𝑅𝑅𝑅 𝑯𝑯 𝑾𝑾𝑅𝑅𝑅𝑅
𝐻𝐻 𝑾𝑾𝐵𝐵𝐵𝐵

𝐻𝐻

𝑯𝑯𝒆𝒆𝒆𝒆

𝒔𝒔

𝒏𝒏

𝒚𝒚

Figure 5.1: Equivalent channel model for a single-user MIMO system



5. The Proposed Hybrid Beamforming Approach 51

5.1.1 Analog Processing

In the proposed two-stage optimization strategy, we formulate the analog beamforming
problem which aims to maximize the SE of H eq as:

max
FRF ,WRF

log det(INRF + R−1
eq WH

RFHFRFFH
RFHHWRF )

subject to: |FRF (p, q)| = 1, p = 1, . . . , Nt, q = 1, . . . , NRF

|WRF (m,n)| = 1, m = 1, . . . , Nr, n = 1, . . . , NRF

(5.1)

where Req = σ2WH
RFWRF is the covariance matrix of the equivalent noise ñ = WH

RFn.

Problem Relaxation

To relax Problem (5.1), a widely used lemma in hybrid beamforming is presented below
[1,12,19,59,60].

Lemma 1. SVD beamforming is the near-optimal beamforming algorithm in terms of the
SE for single-user MIMO systems. The SVD precoder Fopt and combiner W opt are both
semi-unitary matrices. Similar to the optimal precoding matrices, the analog precoder has
semi-unitary structure, i.e., FH

RFFRF ≈ NtINRF . This approximation also holds for the
analog combiner WRF , i.e., WH

RFWRF ≈ NrINRF .

With the help of Lemma 1, we substitute WH
RFWRF = NrINRF into Problem (5.1).

Thus, the equivalent noise σ2WH
RFWRF is approximated by Req = σ2NrINRF . Hence,

Problem (5.1) is simplified to:

max
FRF ,WRF

log det(INRF + 1
σ2Nr

WH
RFHFRFFH

RFHHWRF )

subject to: |FRF (p, q)| = 1, p = 1, . . . , Nt, q = 1, . . . , NRF

|WRF (m,n)| = 1, m = 1, . . . , Nr, n = 1, . . . , NRF

(5.2)

To maximize the SE of H eq, we adopt the alternating optimization strategy. The analog
precoder FRF and combiner WRF are initialized randomly and then updated alternately.
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We first optimize the SE of H eq using WRF as variable with fixed FRF as:

max
WRF

fAC(WRF ) = log det(INRF + 1
σ2Nr

WH
RFH 1HH

1 WRF )

subject to: |WRF (m,n)| = 1, m = 1, . . . , Nr, n = 1, . . . , NRF

(5.3)

where H 1 = HFRF . Then, we optimize the SE of H eq using the analog precoder FRF as
variable with fixed WRF . The optimization problem for analog precoder FRF is formulated
as:

max
FRF

fAP (FRF ) = log det(INRF + 1
σ2Nr

H 2FRFFH
RFHH

2 )

subject to: |FRF (p, q)| = 1, p = 1, . . . , Nt, q = 1, . . . , NRF

(5.4)

where H 2 = WH
RFH .

Analog Combiner Design

To solve Problem (5.3), we optimize the analog combiner WRF on the CC manifold MCC

where
Mcc = {x ∈ CNrNRF×1 : |xi| = 1, i = 1, . . . , NrNRF} (5.5)

The CC manifold Mcc is a specific Riemannian manifold whose points satisfy the unit
modulus constraint. It could be seen as a Cartesian product of NrNRF unit-radius complex
circles C × C . . . × C where C = {x ∈ C : |x| = 1} is a single complex circle as shown in
Figure 5.2. The tangent space TxMcc is the Cartesian product of all TxiC.

𝑥𝑥1
𝜑𝜑1 𝜑𝜑2 𝜑𝜑𝒙𝒙𝑁𝑁𝑟𝑟𝑁𝑁𝑅𝑅𝑅𝑅

𝑥𝑥2

𝑥𝑥𝑁𝑁𝑟𝑟𝑁𝑁𝑅𝑅𝑅𝑅

…

Figure 5.2: Complex circle manifold Mcc as a product of NrNRF complex circles C
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Since Problem (5.3) is an unconstrained convex optimization problem on Mcc, it can
be solved by gradient-based methods. In this thesis, we use the CG method because it
converges in fewer iterations than the steepest descent (SD) method [1, 2, 61]. To calculate
the Riemannian gradient, the Euclidean gradient of fAC(WRF ) is derived firstly. With the
help of complex matrix calculus, we have the following theorem [62–64]:

Theorem 1. If f(Z) : CM×N → R is a smooth function of a complex matrix Z , then the
complex conjugate gradient matrix ∇f(Z) is given by:

∇f(Z) = 2df(Z)
dZ∗

= ∂f(Z)
∂<Z

+ j
∂f(Z)
∂=Z

(5.6)

Because fAC(WRF ) is a real scalar smooth function of WRF , i.e., fAC : CNr×NRF →
R, the complex conjugate gradient ∇EfAC(WRF ) ∈ CNr×NRF in the Euclidean space is
calculated with the help of Theorem 1 as [62,64]:

∇EfAC(WRF ) = 2∂fAC(WRF )
∂W ∗

RF

= ∂fAC(WRF )
∂<(W ∗

RF ) + j
∂fAC(WRF )
∂=(WRF )

= 2
σ2Nr

H 1HH
1 WRF (WH

RFH 1HHWRF )−1

(5.7)

However, the dimension of WRF and ∇EfAC(WRF ) is Nr × NRF while the dimension
of Mcc is NrNRF × 1. To fit ∇EfAC(WRF ) onto the CC manifold Mcc, it is necessary to
vectorize WRF and the gradient ∇EfAC(WRF ) to vectors with dimension NrNRF × 1. To
simplify the presentation, we use ∇Ef vecAC (WRF ) to represent the vectorized Euclidean
gradient vec(∇EfAC(WRF )) and W vec

RF to represent the vectorized analog combiner
vec(WRF ). Because the Euclidean gradient ∇EfAC(WRF ) is calculated based on the
partial gradient of the real part and imaginary part of fAC(WRF ) separately, the row-wise
vectorization does not change the position relationship between the scalar fAC(WRF ) and
the gradient ∇EfAC(WRF ). Therefore, we have:

∇Ef vecAC (WRF ) = 2∂fAC(WRF )
∂ vec(W ∗

RF ) (5.8)

The vectorized Euclidean gradient ∇Ef vecAC (WRF ) is projected onto the tangent space
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TW vec
RF
Mcc of point W vec

RF to obtain the Riemannian gradient ∇MfAC ∈ CNrNRF×1 using
Proposition 1 in Section 2.4. To project a point w which does not lie on the CC manifold
to the tangent space at v where v is a point on the CC manifold, the orthogonal projection
operation projv(w) : CNrNRF×1 → CNrNRF×1 is used which is defined as [29]:

projv(w) = w −<{w ◦ v} ◦w (5.9)

Thus, the Riemannian gradient ∇MfAC is computed as:

∇MfAC(W vec
RF ) = projW vec

RF
(∇Ef vecAC (WRF )) (5.10)

Once ∇MfAC(WRF ) is obtained, a classical Polak-Ribiere CG method [29, 65] is used
to update the analog combiner WRF iteratively. We use xi = W vec,i

RF and di−1 to denote
the obtained vectorized analog combiner and search direction from the (i − 1)-th iteration,
respectively. The updating formulations for the Polak-Ribiere CG method in the i-th
iteration are shown below.

1. Transport the search direction di−1 from Txi−1Mcc to TxiMcc by using the proj(·)
operator with Proposition 3. The transported search direction is denoted as d+

i−1:

d+
i−1 = projxi(di−1) (5.11)

2. Calculate the Polak-Ribiere parameter βi [65]:

β̂i = <(∇MfAC(xi)(∇MfAC(xi)−∇MfAC(xi−1)))
<(∇MfAC(xi−1)∇MfAC(xi−1))

βi = max(0, β̂i)
(5.12)

3. Compute the new search direction di for point xi with the help of the transported
search direction d+

i−1 and the Riemannian gradient ∇MfAC(xi):

di = −∇MfAC(xi) + βid+
i−1 (5.13)

4. Use Armijo backtrack line search algorithm to get a step-size αi which can guarantee
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the update of objective function is non-increasing:

x̂i+1 = xi + αidi (5.14)

5. Use retraction operation to normalize x̂i+1 to keep it on the CC manifold. The
retraction of a CC manifold with dimension N × 1 is defined as the element-wise
normalization for a vector v ∈ CN×1:

retr(v(n)) = v(n)
|v(n)| , 1 ≤ n ≤ N (5.15)

Hence, we use (5.15) to update xi to make sure that the new point still lies on the CC
manifold.

xi+1 = retr(x̂i+1) (5.16)

In Figure 5.3, the steps above for updating the k-th element in W vec,i
RF onMcc are shown

graphically. The green spot is the initial point W vec,i
RF (k) on the unit circle with phase φ1. The

black line outside the circle is the tangent space TW vec,i
RF (k)Mcc. Along the search direction di

which is marked with the dotted green line, the k-th element is updated by Armijo step-size
αi to a new point Ŵ

vec,i

RF (k). Then, the red dashed line denotes the retraction operation on
Ŵ

vec,i

RF (k) to compute the updated point W vec,i+1
RF (k) with phase φ2 which is presented as

the red spot.
The searching process is repeated until the norm of the Riemannian gradient

‖∇MfAC(xi)‖ reaches a very small δ. Limiting the number of iterations or increasing the
stopping threshold δ could be used to control the runtime. Finally, we summarize all the
previous steps in Algorithm 3.

Analog Precoder Design

After WRF is obtained, FRF is calculated with the same approach. Since WRF is given,
we substitute WRF into Problem (5.4) and use Sylvester’s determinant identity in (4.23) to
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𝑾𝑾𝑅𝑅𝑅𝑅
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Figure 5.3: Updating a single element on the CC manifold

reformulate Problem (5.4) as:

max f̂AP (FRF ) = log det(I + 1
σ2Nr

FH
RFHHWRFWH

RFHFRF )

subject to: |FRF (p, q)| = 1, p = 1, . . . , Nt, q = 1, . . . , NRF

(5.17)

The Euclidean gradient ∇E f̂AP (FRF ) is calculated as:

∇E f̂AP (FRF ) = 2
σ2Nr

HWRFWH
RFHHFRF (FH

RFHWRFWH
RFHHFRF )−1 (5.18)

Clearly, Problem (5.17) has the same structure as Problem (5.3). Hence, Algorithm 3
can be used to calculate the analog precoder FRF . We only need to change the objective
function from fAC(WRF ) to f̂AP (FRF ) in Algorithm 3. All other steps are the same.
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Algorithm 3: Proposed manifold-based algorithm using the CG method
Input: H , iteration number I, stopping threshold δ;
Initialize: x1 by random phases with unit norm, β0 = 0, d+

0 = 0 ;
1: for i = 1, . . . , I do
2: Compute Euclidean gradient ∇EfAC(xi) using (5.7)
3: Compute vectorized Riemannian gradient ∇MfAC(xi) using (5.9)
4: if ‖∇MfAC(xi)‖ ≤ δ then
5: Break;
6: else
7: Continue;
8: end if
9: Compute Ploak-Ribiere parameter βi using (5.12)

10: Compute conjugate searching direction di using (5.13)
11: Apply Algorithm 1 to find Armijo step-size αi
12: Update x̂i+1 using (5.14)
13: Compute xi+1 with retraction operation using (5.16)
14: Compute transported search direction d+

i using (5.11)
15: end for
16: Reshape xI+1 to obtain WRF

Output: WRF

5.1.2 Digital Processing and Complete Algorithm

To compute the digital precoder FBB and combiner WBB given FRF and WRF , we apply
SVD beamforming on the equivalent channel H eq to eliminate the interference. The
unnormalized digital beamformer is calculated as:

H eq = U eqΣVH
eq

F̂BB = V (1:NRF ,1:Ns)
eq

ŴBB = U (1:NRF ,1:Ns)
eq

(5.19)
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Then, we normalize both F̂BB and ŴBB to meet the power constraint as:

FBB =
√
Ns

‖FRF F̂BB‖F
F̂BB

WBB =
√
Ns

‖WRFŴBB‖F
ŴBB

(5.20)

We summarize the complete hybrid beamforming algorithm for a single-user MIMO
system in Algorithm 4. Because we optimize the analog combiner and precoder alternately,
when the SE of H eq increases with a very small increment µ or the number of iterations
reaches a stopping threshold I, we stop the alternating optimization process.

Algorithm 4: Proposed hybrid beamforming algorithm for single-user MIMO
Input: H , stopping threshold µ, iteration number I;
Initialize: WRF and FRF by random phases;

1: repeat
2: Calculate WRF by solving Problem (5.3) using Algorithm 3 with fixed FRF

3: Calculate FRF by solving Problem (5.17) using Algorithm 3 with fixed WRF

4: until a stopping criterion triggers
5: Apply SVD beamforming on the equivalent channel H eq to calculate FBB, WBB

Output: FRF , WRF , FBB and WBB

5.2 Algorithm Analysis

5.2.1 Convergence Analysis

Since we use the CG approach with Armijo backtrack line search on the CC manifold, locally
optimal solutions for Problem (5.3) and Problem (5.4) are guaranteed within a finite number
of iterations by Proposition 2 and the convergence guarantee of Armijo backtrack line search
as discussed in Section 2.4. Hence, the proposed Algorithm 4 is guaranteed to converge to a
locally optimal solution within finite iterations.
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5.2.2 Step-wise Complexity Analysis

In the proposed algorithm, all calculations are executed in the complex domain. Hence, the
computational complexity should be multiplied with a factor 4 for matrix multiplication and
a factor 2 for addition. To simplify the presentation, we assume this is the i-th iteration to
update the analog combiner xi = W vec,i

RF . The complexity of calculating the cost function
fAC(W i

RF ) in (5.3) is:

OW
cost = 4(NtNrNRF +N2

RFNt + 2N3
RF ) (5.21)

During every iteration of Armijo backtrack line search, the cost function is calculated twice.
Thus, the complexity of Armijo backtrack line search is:

OW
α = Lα(2OW

cost + 8NrNRF ) (5.22)

where Lα is the number of iterations of Armijo backtrack line search. The computational
complexity of calculating the Euclidean gradient ∇EfAC(W i

RF ) in (5.7) is:

OW
Egrad = 4

[
2NtNrNRF +N2

RF (Nr +Nt) + 2N3
RF )

]
(5.23)

We summarize the computational complexity for each step of the i-th iteration for Algorithm
3 in Table 5.1.

The computational complexity of calculating FRF in a single iteration of Algorithm 3 is
analyzed in the same way. The complexity of calculate the cost function for FRF in (5.17)
is:

OF
cost = 4(NtNrNRF +N2

RFNr + 2N3
RF ) (5.24)

The complexity for calculating the Euclidean gradient for FRF in (5.18) is:

OF
Egrad = 4(2NtNrNRF + 2N2

RFNt + 2N3
RF ) (5.25)

Thus, the total complexity of updating FRF in a single iteration is:

OFRF = Lα(2OF
cost + 8NtNRF ) +OF

Egrad + 28NtNRF (5.26)
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Step Description Formulation Time complexity
1 Update ∇EfAC(W i

RF ) (5.7) OW
Egrad

2 Update ∇MfAC(W vec,i
RF ) (5.9) 6NrNRF

3 Update d+
i−1 (5.11) 6NrNRF

4 Update βi (5.12) 8NrNRF

5 Update di (5.13) 4NrNRF

6 Update Armijo step-size αi Algorithm 1 OW
α

7 Update xi+1 (5.16) 4NrNRF

Total complexity of steps 1-7 OWRF
= OW

α +OW
Egrad + 28NrNRF

Table 5.1: Step-wise complexity of updating the analog combiner in the i-th iteration

where Lα is the number of iterations in Armijo backtrack line search.

5.2.3 Complexity Comparison

The computational complexities of several hybrid and fully digital beamforming approaches
for single-user MIMO system are shown in Table 5.2. Specifically, we show the complexity
of SVD beamforming, OMP [12], MO-AltMin [1], MO-MSE [2] as baselines for comparison.
The parameter Nin represents the number of inner iterations which is the number iterations
of the CG method for the three manifold-based algorithms, namely, MO-AltMin, MO-MSE
and the proposed algorithm. Since alternating optimization is used in these three manifold-
based algorithms, a second loop is required to optimize the objective functions, i.e., the
distance function fMO in MO-AltMin, the MSE in MO-MSE and the SE in the proposed
algorithm. We use Nout to represent the number of iterations during the second loop. To
simplify the presentation, we assume that Nt > Nr � NRF = Ns and only keep the largest
term of the computational complexity.

Both MO-AltMin and MO-MSE calculate their digital beamformer Nout times and the
optimal beamformer once, which leads to high computational overhead. MO-AltMin has
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Algorithm Analog Precoder Analog Combiner Digital Processing

SVD O(NtN
2
r )

Proposed NoutNinO(NtNrNRF ) NoutNinO(NtNrNRF ) O(N3
RF )

MO-MSE [2] NoutNinO(N2
t NRF ) NoutNinO(N2

rNRF ) Nout(O(NtNrNRF ) +O(N2
rNRF ))

MO-AltMin [1] NoutNinO(N2
t N

2
RF ) NoutNinO(N2

rN
2
RF ) Nout(O(NtN

2
RF ) +O(NrN

2
RF ))

OMP [12] NRFO(N2
t NRF ) NRFO(N2

rNRF ) NRF (O(NtN
2
RF ) +O(N2

rNRF ))

Table 5.2: Complexity comparison of different beamforming algorithms in single-user
MIMO system

the highest complexity in each inner iteration because of involving a Kronecker product to
project ∇EfMO onto the CC manifold. The OMP algorithm has the lowest computational
complexity because of adopting the semi-codebook approach. It requires only NRF iterations.

Compared to the other two manifold-based algorithms, our proposed algorithm does
not require to calculate the optimal precoder and combiner as inputs or calculate the digital
precoder and combiner multiple times. In the proposed algorithm, the computation of digital
precoder and combiner requires only O(N3

RF ) which is from applying SVD beamforming on
the equivalent channel H eq. Although the complexity of calculating the analog combiner
in the proposed algorithm for a single iteration is higher than in MO-MSE and OMP, the
proposed algorithm is the only algorithm whose complexity does not scale with N2

t for
calculating the analog precoder. When Nt is very large, the computational complexity of
other hybrid beamforming approaches increases rapidly because of involving the term N2

t

while the proposed algorithm still maintains a relatively low complexity.

5.3 Extension to Wideband MIMO-OFDM System

In this section, we extend the proposed algorithm to the wideband single-user MIMO-OFDM
system discussed in Section 3.1. It is worth noting that although the wideband single-user
MIMO system model is adopted here, the proposed algorithm is also compatible with a
wideband multi-user MIMO system.
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5.3.1 Analog Processing

As in the single-user MIMO system, we adopt the two-stage optimization strategy first to
simplify the hybrid beamforming problem. We first optimize the sum-rate of K equivalent
channel matrices H eq[k] = WH

RFH [k]FRF . Lemma 1 is used to approximate the equivalent
noise as complex AWGN. Hence, Problem (3.6) is simplified to:

max
FRF ,WRF

K∑
k=1

log det(INs + 1
σ2
nNr

WH
RFH [k]FRFFH

RFHH [k]WRF )

subject to: |FRF (p, q)| = 1, p = 1, . . . , Nt, q = 1, . . . , NRF

|WRF (m,n)| = 1, m = 1, . . . , Nr, n = 1, . . . , NRF

(5.27)

The analog combiner is firstly optimized to maximize the sum-rate of ∑K
k=1 WH

RFH [k]FRF

with fixed FRF . The problem for optimizing WRF is formulated as

max fOFDMAC (WRF ) =
K∑
k=1

log det(INs + 1
σ2
nNr

WH
RFH [k]FRFFH

RFHH [k]WRF )

subject to: |WRF (m,n)| = 1, m = 1, . . . , Nr, n = 1, . . . , NRF

(5.28)

The Euclidean gradient ∇fOFDMAC (WRF ) is calculated in the same way as in the
narrowband single-user MIMO case as:

∇fOFDMAC (WRF ) = 2
σ2
nNr

K∑
k=1

H [k]FRFFH
RFHH [k]WRF (WH

RFH [k]FRFFH
RFHH [k]WRF )−1

(5.29)
Clearly, Problem (5.28) can be solved using Algorithm 3 if we replace the objective function
fAC(WRF ) with fOFDMAC (WRF ). After the analog combiner WRF is computed, the analog
precoder FRF is obtained by solving Problem (5.30) below using Algorithm 3.

max fOFDMAP (FRF ) =
K∑
k=1

log det(I + 1
σ2
nNr

FH
RFH [k]HWRFWH

RFHH [k]FRF )

subject to: |FRF (p, q)| = 1, p = 1, . . . , Nt, q = 1, . . . , NRF

(5.30)



5. The Proposed Hybrid Beamforming Approach 63

5.3.2 Digital Processing and Complete Algorithm

Because each sub-carrier has its own digital precoder and combiner, SVD beamforming is
applied on each subcarrier to obtain the unnormalized digital beamformer. In the end, we
normalize the digital beamformer to meet the power constraint as in (5.20). The complete
algorithm is summarized in Algorithm 5 below.

Algorithm 5: Proposed algorithm for hybrid beamforming and combining in single-
user MIMO-OFDM system

Input: H , stopping threshold µ, iteration number I;
Initialize: WRF and FRF by random phases;

1: repeat
2: Calculate WRF by solving Problem (5.3) using Algorithm 3 with FRF as given
3: Calculate FRF by solving Problem (5.17) using Algorithm 3 with WRF as given
4: until a stopping criterion triggers
5: for k = 1, · · · , K do
6: Apply SVD beamforming on H eq[k] to calculate F̂BB[k], ŴBB[k]
7: Normalize F̂BB[k], ŴBB[k] to obtain FBB[k] and WBB[k]
8: end for

Output: FRF , WRF , FBB and WBB

5.4 Extension to Multi-user MIMO System

In the previous sections, we saw that the proposed algorithm is applicable to both
narrowband and wideband single-user MIMO systems. In this section, we further extend
the proposed algorithm to the narrowband multi-user MIMO system in Section 3.1.

5.4.1 Problem Relaxation

Clearly, optimizing the sum-rate LmuSE of the multi-user MIMO system in Section 3.1 is a
non-convex problem. Therefore, it is very hard to obtain an optimal solution because of
involving the covariance matrix of the total IUI plus noise at the k-th user Rk and unit
modulus constraint. Before we adopt the two-stage optimization strategy, we assume that
the BD algorithm is used as the digital processing algorithm to eliminate the IUI in Problem
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(3.10).
As discussed in Section 4.1, the BD algorithm can fully remove the IUI and IDI in a multi-

user MIMO system. Hence, we use the matrix H eq ∈ CNt
RF×KN

r
RF = [H T

eq,1, · · · ,H T
eq,K ]T

where H eq,k = WRF,kH kFRF as the equivalent propagation channel matrix and apply the
BD algorithm on H eq. When the number of RF chains at the BS N t

RF is greater than the
total number of transmitted data streams and the number of RF chains at each user N r

RF

is greater than the number of received data streams at each user, i.e., KNsu < N t
RF and

Nsu < N r
RF , applying BD algorithm on H eq fully removes the IUI [16, 17]. Thus, the SE of

the multi-user MIMO system using BD algorithm for digital processing is written as:

LBDSE =
K∑
k=1

log det(INsu + 1
RBD,k

WH
BB,kWH

RF,kH kFRFFBB,kFH
BB,kFH

RFHH
k WRF,kWBB,k)

(5.31)
where FBB,k and WBB,k are the digital precoder and the digital combiner at the k-th
user which are calculated by BD algorithm; RBD,k = σ2

n(WRFWBB,k)HWRFWBB,k is the
simplified covariance matrix of the interference plus noise matrix at the k-th user. Then, the
analog processing problem with two-stage optimization strategy is formulated as:

max
FRF ,WRF,k

K∑
k=1

log det(INr
RF

+ 1
σ2
nWH

RF,kWRF,k

WH
RF,kH kFRFFH

RFHH
k WRF,k)

subject to: |FRF (p, q)| = 1, p = 1, . . . , Nt, q = 1, . . . , N t
RF

|WRF,k(m,n)| = 1, m = 1, . . . , Nru, n = 1, . . . , N r
RF

(5.32)

5.4.2 Analog Processing

Because the fully digital BD precoder and combiner are both unitary, we relax the Problem
(5.32) with the help of Lemma 1 as:

max
FRF ,WRF,k

K∑
k=1

log det(INr
RF

+ 1
σ2
nNr

WH
RF,kH kFRFFH

RFHH
k WRF,k)

subject to: |FRF (p, q)| = 1, p = 1, . . . , Nt, q = 1, . . . , N t
RF

|WRF,k(m,n)| = 1, m = 1, . . . , Nru, n = 1, . . . , N r
RF

(5.33)
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We adopt the alternating optimization strategy to solve problem (5.33). We first fix FRF

to optimize WRF . Because of the block diagonal structure of WRF , Problem (5.33) can be
divided into K independent sub-problems and each sub-problem is solved using Algorithm
3 as in the single-user MIMO case. After the analog combiner
WRF = blkdiag(WRF,1,WRF,2, · · · ,WRF,K) is obtained, the problem for optimizing FRF

in the multi-user MIMO system is formulated as:

max
FRF

log det(INRF + 1
σ2
nNr

FH
RFHHWRFWH

RFHFRF )

subject to: |FRF (p, q)| = 1, p = 1, . . . , Nt, q = 1, . . . , N t
RF

(5.34)

Clearly, Problem (5.34) can also be solved using Algorithm 3 by a simple change of the
objective function.

5.4.3 Digital Processing and Complete Algorithm

As discussed before, BD beamforming is applied on the equivalent channel H eq to compute
the unnormalized digital precoder F̂BB and digital combiner ŴBB. Then, we normalize the
F̂BB and ŴBB as in (5.20). Although adopting BD algorithm in multi-user massive MIMO
systems is impractical because of its high computational complexity brought by the double
SVD operation in Algorithm 2, the computational complexity in the proposed algorithm is
acceptable because BD beamforming is applied on the small-size equivalent channel H eq ∈
CNt

RF×KN
r
RF instead of on H . The complete algorithm for hybrid beamforming in multi-user

MIMO system is summarized in Algorithm 6.

5.5 Summary

In this chapter, we proposed a flexible manifold-based hybrid beamforming algorithm using
the SE as the objective function for a single-user MIMO system. We adopted both
two-stage optimization strategy and alternating optimization strategy to overcome the
drawbacks of MO-AltMin, MO-MSE. We analyzed the proposed algorithm and showed its
guaranteed convergence. In Section 5.2, we analyzed the computational complexity of the
proposed algorithm step-wise and presented its advantage over benchmark hybrid
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Algorithm 6: Proposed algorithm for hybrid beamforming in multi-user MIMO
Input: H , user number K;
Initialize: WRF = blkdiag(WRF,1,WRF,2, ...,WRF,k) and FRF by random phases;

1: repeat
2: for k = 1, . . . , K do
3: Calculate WRF,k by solving the k-th sub-problem of Problem (5.33) using

Algorithm 3 with fixed FRF

4: end for
5: Calculate FRF by solving Problem (5.34) using Algorithm 3 with fixed WRF

6: until a stopping criterion triggers
7: Apply BD beamforming in Algorithm 2 on H eq to calculate F̂BB and ŴBB

8: Normalize F̂BB and ŴBB to obtain FBB and WBB

Output: FRF , WRF , FBB and WBB

beamforming algorithms. In the last two sections, we extended the proposed algorithm to a
wideband MIMO-OFDM system and a narrowband multi-user MIMO system to show the
adaptability. We further extend the proposed algorithm to sub-array RF architecture in
the next chapter.
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Chapter 6

Hybrid Beamforming with Sub-Array
Architecture

In this chapter, we first extend the proposed manifold-based algorithm to generalized RF
chain-antenna layouts. Then, a low-complexity dynamic mapping algorithm is proposed to
improve the SE and EE performance for a dynamic sub-array hybrid beamformer.

This chapter is divided into four sections. In Section 6.1, we show the generalized system
model for sub-array hybrid beamformer. In Sections 6.2 and 6.3, we introduce the proposed
fixed sub-array hybrid beamforming manifold-based algorithm and the dynamic mapping
algorithm, respectively. The last section provides a short summary for this chapter.

6.1 System Model

In this chapter, we assume that a hybrid precoder is deployed at the BS and a fully digital
combiner is deployed at the MS. We assume a narrowband single-user MIMO system to
simplify the presentation. Because in a massive MIMO system the BS is equipped with
more antennas than the MS , the sub-array RF architecture is more effective at the BS. We
note that although we use a fully digital combiner at the MS, the proposed algorithm can
be easily extended for the hybrid combiner using the alternating optimization framework as
in Section 5.1.

In a sub-array architecture, the set of all antennas S = {1, 2, 3, · · · , Nt} is partitioned
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into NRF antenna subsets:

S =
NRF⋃
i=1
Si

with Si ∩ Sj = ∅, for i 6= j, 1 ≤ i, j ≤ NRF

Si 6= ∅, for 1 ≤ i ≤ NRF

(6.1)

where Si is the set of antennas connected to the i-th RF chain. The received signal can be
written as:

y = WHH (FRF ◦M T )︸ ︷︷ ︸
FRF,eq

FBBs + WHn (6.2)

where H ∈ CNr×Nt , M ∈ CNRF×Nt is the binary mapping matrix for the sub-array analog
precoder, W ∈ CNr×Ns is the fully digital combiner, s ∈ CNs×1 is the transmitted symbols
with E[ssH ] = INs and n is a complex AWGN with noise power σ2. Finally, FRF,eq ∈
CNt×NRF is the equivalent sub-array analog precoder. The mapping matrix M represents
the connection status between the RF chains and the antennas. Specifically, if the j-th
antenna is connected to the i-th RF chain, i.e., j ∈ Si, then the (i, j)-th element of M is set
to 1 and all the other elements in the j-th row of M are set to 0 as:

M (i, j) =

1, if j ∈ Si
0, otherwise

1 ≤ i ≤ NRF , 1 ≤ j ≤ Nt (6.3)

Thus, the equivalent analog precoder FRF,eq is written as:

FRF,eq = FRF ◦M T

= [f RF,1 ◦mT
1 , f RF,2 ◦mT

2 , · · · , f RF,NRF ◦mT
NRF

]
= [f̂ RF,1, f̂ RF,2, · · · , f̂ RF,NRF ]

(6.4)

where f RF,i ∈ CNt×1 is the i-th column of FRF , mi ∈ C1×Nt is the i-th row in M and f̂ RF,i
is the i-th column in FRF,eq. We note that there are only |Si| non-zero element in f̂ RF,i.
Hence, we extract the |Si| non-zero elements from f̂ RF,i in (6.4) to build an equivalent analog
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precoding vector f eq,i ∈ C|Si|×1 as:

f eq,i = [f̂ RF,i(n1), f̂ RF,i(n2), · · · , f̂ RF,i(n|Si|)] (6.5)

where 1 ≤ i ≤ NRF and Si = {n1, n2, · · · , n|Si|}.

6.2 Hybrid Precoding with fixed sub-array
architecture

As discussed in Section 4.2, in a fixed sub-array hybrid precoder, each RF chain is
connected to |Si| = Nant = Nt

NRF
antennas. There are different ways to construct the

mapping matrix M . In Figure 6.1 we show three popular layouts where the squares are
antenna elements and the numbers inside the squares are the antenna indexes. Many fixed
sub-array hybrid precoding algorithms [1, 15, 66, 67] support only the horizontal RF
chain-antenna layout because they leverage on the semi block diagonal structure of
FRF,eq = blkdiag(f eq,1, f eq,2, · · · , f eq,NRF ). However, FRF,eq does not have such a block
diagonal structure when the RF chain-antenna layout is vertical or interlaced allocated.
Hence, it is hard to extend these sub-array algorithms to dynamic sub-array hybrid
beamformers. Motivated by this, in this section we develop a hybrid beamforming
algorithm for fixed sub-array that can be used with any generalized RF chain-antenna
layout. We note that the RF chain-antenna layout with square UPA antenna highly
depends on the number of RF chains. In this thesis, to control the impact of the different
layouts, we implement only the three layouts for a square UPA in Figure 6.1c while set NRF

to
√
N where N is the number of antenna elements and NRF is the number of RF chains.
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1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

(a) Horizontal layout

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

(b) Vertical layout

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

(c) Interlaced layout

1st RF chain 2nd RF chain 3rd RF chain 4th RF chain 5th RF chain 6th RF chain

Figure 6.1: Different RF chain-antenna layouts for a square UPA with N = 36 antennas

6.2.1 Problem Formulation

As in the previous chapter, we use SE as the objective function and formulate the fixed
sub-array hybrid beamforming problem as:

max
FRF,eq ,FBB

log det(INs + 1
σ2WHW

WHHFRF,eqFBBFH
BBFH

RF,eqHHW )

subject to: |FRF,eq(p, i)| = 1, i = 1, · · · , NRF , p ∈ Si
|FRF,eq(p, i)| = 0, i = 1, · · · , NRF , p ∈ S\Si
‖FRFFBB‖2

F = Ns, ‖W‖2
F = Ns

(6.6)

We adopt the two-stage optimization strategy here. The analog precoder aims to maximize
the SE of the channel H while the digital precoder and combiner aim to remove the
interference. Because we assume that a fully digital combiner is deployed at the MS, the
optimization problem for the equivalent analog precoder FRF,eq is formulated as:

max fAP,sub(FRF,eq) = log det(INs + 1
σ2 HFRF,eqFH

RF,eqHH)

subject to: |FRF,eq(p, i)| = 1, i = 1, · · · , NRF , p ∈ Si
|FRF,eq(p, i)| = 0, i = 1, · · · , NRF , p ∈ S\Si

(6.7)
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The mapping matrix M does not have any influence on the gradient computation because
of the element-wise matrix multiplication between FRF and M T . The Euclidean gradient
of fAP,sub(FRF,eq) is:

∇fAP,sub(FRF,eq) = ∇fAP,sub(FRF ) ◦M T (6.8)

However, optimizing over the full-array analog precoder FRF leads to high computation
overhead. There are only Nt non-zero elements in FRF,eq but FRF has dimensions Nt×NRF .
To calculate the Euclidean gradient, we are only concerned with the Nt non-zero elements
in FRF,eq. Hence, we redesign the proposed manifold-based hybrid precoding algorithm to
optimize over the NRF equivalent analog precoding vectors f eq,i ∈ CNant×1. We first divide
the channel matrix H to column vectors as:

H = [h1,h2, · · · ,hNt ] (6.9)

where hi ∈ CNr×1 is the i-th column of H . The equivalent channel matrix H eq ∈ CNRF×Nt =
HFRF,eq is:

H eq =


H S1f eq,1
H S2f eq,2

...
H SNRF f eq,NRF

 (6.10)

where the i-th sub-channel matrix H Si ∈ CNr×Nant can be written as:

H Si = [hn1 ,hn2 , · · · ,hnNant ] (6.11)

where Si = {n1, n2, · · · , nNant}. Instead of maximizing the SE of the channel matrix H
using FRF,eq as variable, we independently maximize the capacity of every sub-channel H Si

using the corresponding equivalent analog precoding vector f eq,i as variable. This strategy is
called optimization per RF chain and is commonly used for the sub-array hybrid beamforming
[26,55,57,68,69]. Thus, Problem (6.7) is reformulated as:

max
f eq,i

NRF∑
i=1

log det(INr + 1
σ2 H Sif eq,ifHeq,iHH

Si)

subject to: |f eq,i(p)| = 1, p = 1, · · · , Nant

(6.12)
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6.2.2 Analog Processing and Digital Processing

Clearly, Problem (6.12) consists of NRF independent sub-problems. With the help of
Sylvester’s determinant identity in (4.23), the i-th sub-problem

max
f eq,i

log det(INr + 1
σ2 H Sif eq,ifHeq,iHH

Si)

subject to: |f eq,i(p)| = 1, p = 1, · · · , Nant

(6.13)

is simplified to:
max
f eq,i

log(1 + 1
σ2 fHeq,iHH

SiH Sif eq,i)

subject to: |f eq,i(p)| = 1, p = 1, · · · , Nant

(6.14)

Since log(·) is a monotonically increasing function, Problem (6.14) is further simplified as:

max
f eq,i

f isub(f eq,i) = 1
σ2 fHeq,iHH

SiH Sif eq,i

subject to: |f eq,i(p)| = 1, p = 1, · · · , Nant

(6.15)

Similarly to the full-array hybrid precoding, manifold optimization is used to solve Problem
(6.15). The Euclidean gradient of the objective function f isub is:

∇Ef isub(f eq,i) = 2
σ2 HH

SiH Sif eq,i (6.16)

Algorithm 3 is used to solve Problem (6.15) with the Euclidean gradient ∇Ef isub(f eq,i).
We note that the update equations for the sub-array architecture are the same as in MO-
SA discussed in Section 4.3 even though the problem we consider is different. Instead of
optimizing the whole column FRF,i of the analog precoder with the full channel matrix H ,
we update f eq,i which has only Nant elements with the sub-channel H Si . Thus, there is a
reduction on the computational complexity in our proposed sub-array hybrid beamforming
algorithm. Furthermore, in MO-SA the digital precoder only allocates the power and is
updated jointly with the analog precoder, while in the proposed algorithm the precoder is
calculated independently by adopting the two-stage optimization strategy and eliminates the
interference. Finally, MO-SA assumes NRF = Ns while our proposed algorithm can handle
the case Ns ≤ NRF .
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Since we have adopted the narrowband single-user MIMO system model, SVD
beamforming is applied on H eq to compute the unnormalized digital precoder F̂BB and
fully digital combiner W . Then, we normalize F̂BB as in (5.20) to meet the power
constraint. The complete algorithm is summarized in Algorithm 7.

Algorithm 7: Proposed algorithm for hybrid beamforming with fixed sub-array
architecture

Input: H , NRF , mapping matrix M ;
Initialize: f eq,i by random phases;

1: for i = 1, . . . , NRF do
2: Calculate f eq,i by solving Problem (6.15) using Algorithm 3
3: end for
4: Construct FRF using f eq,i
5: Apply SVD beamforming on the equivalent channel H eq to compute FBB and W .
6: Normalize FBB to meet the power constraint.

Output: FRF , FBB and W

6.2.3 Complexity Analysis

Because the dimension of the optimization variable is reduced from a matrix with dimension
Nt ×NRF in the full-array architecture to NRF vectors with dimension Nant × 1 in the sub-
array architecture, the computational complexity is also reduced. The complexity of the cost
function in (6.15) is:

Ocost = 8NantNr (6.17)

The complexity of the Euclidean gradient in (6.16) is

Ograd = 4NantNr +Nr (6.18)

Similarly to the complexity analysis in Section 5.2, the complexity of solving the i-th
analog precoding vector f eq,i is approximately O(NantNr) and the complete complexity
Osub is approximated as:

Osub ≈ NRFO(NantNr) (6.19)
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6.3 Dynamic Mapping Algorithm

In a dynamic sub-array hybrid beamformer, the mapping matrix M depends on the
channel matrix H . As discussed in Section 2.3, in a dynamic sub-array hybrid precoder,
each antenna is connected to one RF chain and the number of antenna subsets is equal to
the number of RF chains NRF . In [26], a dynamic mapping algorithm is proposed based on
top-down clustering to reduce the searching complexity. However, the complexity of the
top-down dynamic mapping algorithm is still very high. Motivated by this, we propose a
low-complexity dynamic mapping algorithm based on bottom-up clustering strategy to
accelerate the searching process. We still adopt the single-user MIMO system with fully
digital combiner and hybrid precoder from Section 6.1 as the system model.

Normally, the number of antennas in each subset does not have to be equal to Nant = Nt
NRF

for a dynamic sub-array hybrid precoder [26, 52, 69]. However, allowing a flexible number
of elements in the antenna subsets highly increases the computational complexity of the
searching process in dynamic mapping. In this thesis, we fix the number of elements in each
subset to Nant, i.e., |Si| = Nant. Because the top-down clustering requires a function to
split the set during the clustering process which involves extra computational complexity,
we adopt the bottom-up clustering approach to solve the dynamic mapping problem. At
the same time, fixing the number of elements in the antenna subsets makes the bottom-up
clustering is easier to be implemented than the top-down clustering. We will show in Section
7.3.3 that fixing the number of elements significantly reduces the computational complexity
while it keeps the SE performance at the same level in comparison to the top-down dynamic
mapping algorithm [26].

6.3.1 Problem Formulation

Using the two-stage optimization strategy, we assume that the digital precoding and
combining removes the interference and the analog precoding maximizes the SE of the
equivalent channel H eq = HFRF,eq. Proceeding as in Section 6.2.1 we divide the channel
matrix H into NRF non-empty subchannels corresponding to the antenna subsets, i.e.,
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H =
[
H S1 , · · · ,H SNRF

]
and use f eq,i to optimize the SE of H Sif eq,i as:

max
f eq,1,··· ,f eq,NRF
S1,··· ,SNRF

NRF∑
i=1

fHeq,iHH
SiH Sif eq,i

subject to: |f eq,i(p)| = 1, p = 1, · · · , Nant

(6.20)

where the i-th subchannel H Si is denoted as:

H Si = [hn1 ,hn2 , · · · ,hnNant ] (6.21)

where Si = {n1, n2, · · · , nNant}. Because HH
SiH Si is a symmetric positive definite matrix, we

have the following inequality [26]:

fHeq,iHH
SiH Sif eq,i ≤ λmax(HH

SiH Si)‖f eq,i‖2
F (6.22)

where λmax(A) represents the largest singular value of a matrix A. Since the term ‖f eq,i‖2
F is

equal to Nant because of the unit modulus constraint, we use the sum of the largest singular
values of the NRF matrices RSi ∈ CNant×Nant = HH

SiH Si as the objective function [26,69]:

max
S1,··· ,SNRF

NRF∑
i=1

λmax(RSi) (6.23)

The following function λ̂(·) is used to approximate the largest singular value of a matrix [26]:

λ̂(RSi) = 1
|Si|

|Si|∑
m=1

|Si|∑
n=1
|RSi(m,n)| = 1

Nant

Nant∑
m=1

Nant∑
n=1
|RSi(m,n)| ≈ λmax(RSi) (6.24)

where ∑Nant
m=1

∑Nant
n=1 |RSi(m,n)| is the Minkowski l1 norm of RSi . Because the Minkowski l1

norm is the summation of the absolute value of all elements in RSi , (6.24) can be written
as:

λ̂(RSi) = 1
Nant

∑
m∈Si

∑
n∈Si
|hHmhn| =

1
Nant

∑
m∈Si

∑
n∈Si
|R(m,n)| (6.25)
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where the vectors hm and hn are the m-th and n-th column in H , respectively, and R =
HHH . Then, the dynamic mapping problem is simplified to:

max
S1,··· ,SNRF

NRF∑
i=1

λ̂(RSi) (6.26)

Clearly, the optimal solution of Problem (6.26) can be obtained by exhaustive search.
However, the complexity of exhaustive search is very high because of the large antenna
number Nt. Indeed, the total number of possible combinations number is given by [26]:

1
NRF

NRF∑
k=0

(−1)NRF−k
NRF

k

 kNt (6.27)

With Nt = 16 and NRF = 4, the computational complexity is about 1.7× 108 [26]. Clearly,
it is impossible to search for the optimal solution for practical massive MIMO systems.

6.3.2 Proposed Dynamic Mapping Algorithm

In the proposed algorithm, we follow the bottom-up strategy. Initially, each antenna is
clustered in its own cluster, i.e., S = {S1,S2, · · · ,SNt} where Sj = {j} is a single-element
cluster containing the j-th antenna element. In the first iteration, we randomly select a
cluster S1 and then remove it from S. Then, we search for the cluster Sj that maximizes
the normalized Minkowski l1 norm of RS1∪{j}. Finally, we merge Sj into S1 and we remove
the cluster Sj from S. We repeat this process until there are Nant elements in S1, i.e.,
|S1| = Nant. In that case, we select another single-element cluster S2 randomly from S and
repeat the steps above. When there are only Nant single-element clusters remaining in S, i.e.,
|S| = Nant, we combine them to form SNRF and end the clustering process. The mapping
matrix M is built by the obtained NRF clusters {S1, S2, · · · ,SNRF }.

With the help of (6.24) and (6.25), the approximated largest singular value of RSi is
calculated as [26,69]:

λ̂(S i) = 1
|S i|

∑
m∈Si

∑
n∈Si
|R(m,n)| (6.28)

Because we always combine the cluster S i with a single-element cluster Sj, the approximated



6. Hybrid Beamforming with Sub-Array Architecture 77

largest singular value of RS1∪{j} is written as:

λ̂(S i ∪ {j}) = 1
|S i|+ 1

λ̂(S i) + 2
∑
m∈Si

|R(m, j)|
 (6.29)

Because the first term λ̂(S i) in (6.29) is a constant given S i, we use the second term∑
m∈Si |R(m, j)| as the objective function to measure the increase of the largest singular

value by merging a single-element cluster Sj into S i:

fdyna(j,S i) =
∑
m∈Si

|R(m, j)| (6.30)

In comparison to (6.28), using (6.30) as the objective function reduces the computational
complexity because there is only one loop in (6.30). The proposed dynamic mapping
algorithm is summarized in Algorithm 8.

Algorithm 8: Proposed dynamic mapping algorithm
Input: H , Nt, Nant, NRF ;
Initialize: Initial cluster available set S = {Si = {i}|i ∈ 1, . . . , Nt} ;

1: for m = 1, · · · , NRF − 1 do
2: Select Sm randomly from S
3: for n = 1, · · · , Nant − 1 do
4: r̂ = argmax

Sr∈S
fdyna(r,Sm)

5: Sm ∪ Sr̂
6: S\Sr̂
7: end for
8: end for
9: SNRF = ⋃

Si∈S Si
10: Regroup {S1, S2, · · · , SNRF } to build the mapping matrix M by (6.3)
Output: The mapping matrix M

6.3.3 Complexity Analysis

In the proposed dynamic mapping algorithm, we first calculate the matrix R with complexity
O0 = 4N2

t Nr. To find out the first single-element cluster in the all NRF − 1 iterations, the
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cost function fdyna is calculated N1 times where

N1 =
NRF−1∑
i=1

Nt − 1− (i− 1)Nant = (Nt + 2Nant − 2)(NRF − 1)
2 (6.31)

Similarly, we can find out N2, N3, · · · , NNant−1. Because the objective function fdyna only
has a single loop, the computational complexity of fdyna when merging the j-th element is
2j where 1 < j < Nant − 1. Hence, we write the complexity Odyna of the proposed dynamic
mapping algorithm as:

Odyna = O0 +
Nant−1∑
j=1

2jNj

= 4N2
t Nr + (NRF − 1)

2 [Nant(Nant − 1)(Nt + 2Nant − 2)− 2(Nant + 1)(Nant − 2)]
(6.32)

6.4 Summary

In this chapter, we extended the hybrid beamforming algorithm proposed in the previous
chapter from full-array to sub-array RF architecture. We formulated the fixed sub-array
hybrid beamforming problem and exploited the per RF chain optimization strategy to
redesign the proposed full-array hybrid beamforming algorithm for the fixed sub-array
hybrid beamformer. Finally, we proposed a low-complexity dynamic mapping algorithm for
RF chain-antenna mapping to improve the SE performance in comparison to the fixed
sub-array hybrid beamformer. In the next chapter, we show numerical results of the
proposed hybrid beamforming algorithm and dynamic mapping algorithm with different
system models and RF architectures.
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Chapter 7

Simulation Results

In this chapter, we provide simulation results to illustrate the performance of our proposed
hybrid beamforming approach and dynamic mapping algorithm with various system models
and RF architectures.

This chapter is divided into four sections. In Section 7.1, we illustrate the performance of
the proposed hybrid beamforming algorithm in comparison to the fully digital beamforming
approaches and several state-of-art hybrid beamforming approaches in both the narrowband
single-user MIMO and the single-user MIMO-OFDM system. Then, in Section 7.2, we
test our proposed algorithm in a narrowband multi-user MIMO system. In Section 7.3 the
proposed generalized sub-array hybrid beamforming algorithm and the dynamic mapping
algorithm are tested in a narrowband single-user MIMO system. Lastly, we summarize this
chapter in Section 7.4.

7.1 Single-user MIMO System

In this section, we evaluate the performance of the proposed full-array hybrid beamforming
algorithm in a narrowband single-user MIMO system and a wideband single-user
MIMO-OFDM system. We assume that the BS and MS are equipped with the full-array
hybrid precoder and combiner, respectively. Quadrature phase keying shift (QPSK) is used
to modulate the transmitted signal at the BS. The proposed algorithm applies the SVD
beamforming on the equivalent channel H eq to compute the digital precoder and combiner.

For all simulations in this chapter, the antenna array at the BS and the MS are both
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square UPA. We assume that the azimuth and elevation angles follow a Laplacian distribution
with uniformly distributed mean angles over [0, 2π) [1, 2]. The angular spread is 10 degrees
for every cluster. All results are based on 500 channel realizations. The simulations were
done in Matlab 2019b on a laptop with a 2.8 GHz Intel i7-7700HQ CPU and 16 GB RAM.

7.1.1 Benchmark Algorithms and Performance Metric

For both narrowband and wideband system simulations, we use five different beamforming
schemes as baselines; namely, SVD beamforming and iterative MMSE beamforming [39] as
fully digital beamforming baselines, MO-AltMin [1], MO-MSE [2] and OMP [12] as hybrid
beamforming baselines. For the three manifold-based approaches, i.e., MO-AltMin, MO-
MSE and the proposed algorithm, we set the number of allowable iterations in the CG method
to Nin = 20. Further, for the stopping trigger of these three manifold-based algorithms with
alternating optimization framework, we set the allowable number of iteration of the outer
loop to Nout = 5, We also set the stopping threshold to 5% which means that when the
increment of the cost function in the current iteration is less than 5% in comparison to the
last iteration, we end the optimization process. As our performance metrics, we use the SE
in (3.2), bit error rate (BER) and MSE in (4.17).

7.1.2 Narrowband Single-user MIMO Systems

In this section, two simulations are presented to examine the impact of different values of
SNR and NRF . We set the number of transmit antennas to Nt = 144, receive antennas to
Nr = 36 and transmitted data streams to Ns = 4. In the SV channel model, the number of
clusters is set to Nc = 5 and the number of rays in each cluster is set to Nray = 10.

Performance as a Function of SNR

In Figure 7.1, we investigate the impact in terms of SE, BER, MSE and runtime for the SNR
ranging from -20dB to 0dB . In this simulation, we set the number of RF chain NRF to Ns,
i.e., NRF = Ns = 4.

Clearly, the proposed algorithm has the best SE and BER performance among the four
hybrid beamforming algorithms. Our algorithm has nearly the same SE and BER
performance in comparison to SVD beamforming. Although MO-AltMin has also similar
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Figure 7.1: Performance in single-user MIMO as a function of SNR

SE performance to SVD beamforming, our proposed algorithm has better BER
performance than MO-AltMin because we apply the SVD beamforming on the equivalent
channel while MO-AltMin approximates the SVD beamformer by the least squares
solution. Because MMSE and MO-MSE use MSE as the objective function, their MSE
performance is the best among all algorithms but their SE and BER performance are not.
OMP and MO-AltMin use the distance between SVD precoder/combiner and hybrid
precoder/combiner as their objective function. Because SVD beamforming is considered as
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the optimal solution for maximizing SE in a single-user MIMO system, MO-AltMin and
OMP use the SE as their objective function implicitly. Hence, the proposed algorithm,
MO-AltMin and OMP have similar MSE performance to SVD beamforming.

Because MMSE beamforming and MO-MSE uses the MSE as objective function and the
SNR influences the MSE at the receiver, their runtime is influenced by the SNR value. As
the SNR increases, the runtime of MMSE and MO-MSE decreases because the less noise
leads to smaller MSE between the transmitted signal and the received signal. Because the
noise power is only a constant factor in calculating the Euclidean gradient in the proposed
algorithm, the runtime of the proposed algorithm is robust to different SNR value. The
proposed algorithm and MO-MSE has similar runtime. At the same time, MO-AltMin
has the highest complexity among these hybrid beamforming schemes. Although the OMP
algorithm has the lowest runtime among the hybrid beamforming schemes, it performs badly
on both SE and BER because of the limitation of the semi-codebook framework.

Performance as a Function of the Number of RF Chains

In this simulation, we fix the SNR to −15dB and vary NRF from 4 to 7. The results are shown
in Figure 7.2. The SVD and MMSE beamforming are fully digital beamforming schemes, we
include them as baselines using red and green dotted lines, respectively.

The SE and BER performance of the proposed algorithm increases slightly as NRF

increases. This means that the proposed algorithm only requires the minimal number of
the RF chains, i.e., NRF = Ns. However, this also means that the proposed algorithm may
not take full advantage of the large number of available RF chains as the other hybrid
beamforming schemes. The BER performance of the proposed algorithm is still the best
among all hybrid beamforming schemes and there is only a very small gap between the
proposed algorithm and the SVD beamforming. Because MO-AltMin and OMP are both
matrix decomposition methods, using more RF chains increases the degrees of freedom for
matrix reconstruction. Hence, their SE and BER performance increases with NRF .
MO-AltMin outperforms the proposed algorithm on the SE when NRF is large. However,
the runtime of MO-AltMin also increases rapidly. From Table 5.2, we know that the
approximated complexity of the proposed algorithm and MO-MSE has the term NRF while
MO-AltMin has the term N2

RF . Hence, the runtime of the proposed algorithm and
MO-MSE is only increases slightly as NRF increases. Regarding the MSE performance,
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Figure 7.2: Performance in single-user MIMO as a function of NRF

MO-MSE is very close to MMSE beamforming while the other hybrid beamforming
algorithms are close to SVD beamforming.

Convergence

In this simulation, we examine the convergence of the proposed algorithm. We only stop the
optimization process when the number of iterations reaches the maximum allowable number.
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We set NRF = Ns = 4 and SNR to −10dB in this simulation. In Figure 7.3, we show the SE
of H eq with different Nin in Algorithm 3 and Nout in Algorithm 4, respectively.
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Figure 7.3: Convergence

We first take a look at the convergence speed of our proposed CG method in Algorithm
3 during the first alternating optimization iteration, i.e., Nout = 1. In Figure 7.3(a), the red
line and purple line show the SE of the equivalent channel H eq by solving Problem (5.3) using
the analog combiner WRF as variable and solving Problem (5.17) using analog precoder FRF

as variable, respectively. The SE converges within 15 iterations for both optimizing FRF

and WRF . As discussed in Section 5.2, adopting the CG method and Armijo backtrack line
search on the CC manifold provides for fast convergence. In Figure 7.3(b), we set the inner
iteration to Nin = 20 and investigate the performance with different Nout value in Algorithm
4. We see that within three iterations of the outer loop, the proposed algorithm reaches
about 95% of the performance at Nout = 10. Algorithm 4 also has a fast convergence.

7.1.3 Single-user MIMO-OFDM System

In this section, we evaluate the performance of the proposed hybrid beamforming algorithm
in a single-user MIMO-OFDM system. Similar to the narrowband case, two simulations are
conducted to see the impact of the SNR and NRF . As before, we use Nt = 144 transmit
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antennas, Nr = 36 receive antennas to transmit Ns = 4 data streams. We set the number
of sub-carriers to K = 64. For the channel matrix H [k] at the k-th sub-carrier where
1 ≤ k ≤ K, we adopt the SV channel model from Section 3.2 and set the number of clusters
to Nc = 5 and the number of rays in each clusters to Nray = 10.

Performance as a Function of SNR

In Figure 7.4, we investigate the performance over different SNR values ranging from −20dB
to 0dB. We fix the number of RF chains to NRF = Ns = 4 in this simulation.

The relative performance of the different beamforming algorithms are similar to the
narrowband case. The proposed algorithm still has the best SE and BER performance among
all hybrid beamforming algorithms while MO-AltMin cannot achieve the same near-optimal
BER performance as in the narrowband system because of the limitation of the least squares
solution. The MO-MSE still has similar MSE performance to MMSE beamforming with low
SNR. However, when SNR is large, MO-MSE cannot get as close to the MSE performance
as in the narrowband system. The other hybrid beamforming algorithms have similar MSE
performance to SVD beamforming. OMP still has lowest runtime but poor performance on
SE and BER. Finally, the runtime of the proposed algorithm is robust to SNR and lower
than MO-MSE and MO-AltMin.

Performance as a Function of the Number of RF Chains

In Figure 7.5, we fix the SNR to −15dB and vary NRF from 4 to 7 to see the impact of
different value of NRF . The number of transmitted data streams is fixed to Ns = 4.

Because SVD beamforming and MMSE beamforming are both fully digital beamforming
schemes, we include the SVD and MMSE beamformers as baselines with red and green
dotted lines, respectively. Similar to the narrowband case, the SE and BER performance of
the proposed algorithm increases slightly in contrast to MO-AltMin and OMP with larger
NRF . As discussed in the narrowband case, the large NRF provides high degrees of freedom
for the MO-AltMin and OMP, the SE and BER performance of MO-AltMin and OMP
increases a lot with NRF . At the same time, the SE and BER performance of MO-MSE
is slightly better with large NRF . In terms of the MSE performance, MO-MSE is closer to
MMSE beamforming as NRF increases while the other hybrid beamforming algorithms are
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Figure 7.4: Performance in single-user MIMO-OFDM as a function of SNR

similar to SVD beamforming regardless of NRF . The runtime of the proposed algorithm is
still robust while the runtime of MO-AltMin increases rapidly with NRF .
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Figure 7.5: Performance in single-user MIMO-OFDM as a function of NRF

7.2 Multi-user MIMO System

In this section, we evaluate the performance of the proposed hybrid beamforming algorithm
in a narrowband multi-user MIMO system. We assume both BS and MS are equipped with
the full-array hybrid precoder and combiner, respectively. QPSK is used to modulate the
transmitted signal at the BS for each user. The proposed algorithm applies BD beamforming
on the equivalent channel H eq to compute the digital precoder and combiner as summarized
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in Algorithm 6. We adopt a multi-user MIMO system which serves K = 8 users where each
user is equipped with Nr = 4 receive antennas and N r

RF = 2 RF chains to receive Ns = 2
data streams. We assume that the BS is equipped with Nt = 144 transmit antennas. The
number of the total transmitted streams is fixed to Ns = KNsu = 16. As discussed in Section
3.2, the channel matrix between the BS and each user is generated using the SV channel
model independently with Nc = 5 and Nray = 10 as discussed in Section 3.2.

7.2.1 Benchmark Algorithms and Performance Metrics

We use the BD fully digital beamforming, OMP [12] and hybrid BD [16] as the baselines.
Because all algorithms use the SE as the objective function either implicitly or explicitly, we
use the SE and BER to evaluate the performance. We note that the hybrid BD algorithm
is only applicable when the number of RF chains at the BS is equal to the total number
of transmitted signals, i.e., N t

RF = KN r
RF . Hence, we do not show its performance in the

simulation when N t
RF 6= KNs. For the stopping trigger of our proposed algorithm, we set

the number of outer iteration to Nout = 5 and the stopping threshold to 0.05 as in Section
7.1.

7.2.2 Simulation Results

Performance Analysis with Different SNR

In Figure 7.6, we show the SE and BER performance with SNR ranging from −20dB to 0dB.
We set the number of RF chains at the BS to N t

RF = KNs = 16. The proposed algorithm
has the best SE and BER performance in comparison to OMP and hybrid BD. In [16, 17],
it has been proven that hybrid beamforming algorithm may outperform BD beamforming
in a multi-user MIMO system since BD is a near-optimal solution. The proposed algorithm
has a small advantage over fully digital BD beamforming in terms of the both SE and EE
performance.

Performance with Different Number of RF chains

In Figure 7.7, we show the performance with different value of the number of RF chains N t
RF .

We set the SNR to -15dB and vary N t
RF from 16 to 24. Similar to the single-user MIMO
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Figure 7.6: Performance in multi-user MIMO as a function of SNR

case, the proposed algorithm benefits slightly with large N t
RF . However, it still outperforms

hybrid BD, OMP and even BD beamforming in terms of both SE and BER. OMP has better
SE and BER performance with large N t

RF but there is still a large gap in comparison to the
proposed algorithm.
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Figure 7.7: Performance in multi-user MIMO as a function of NRF
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7.3 Sub-array Architecture

In this section, we investigate the performance of the proposed generalized sub-array hybrid
beamforming algorithm and then show the performance of the proposed dynamic mapping
algorithm in a narrowband single-user MIMO system. As discussed in Section 6.1, we assume
that there is a hybrid precoder deployed at the BS and a fully digital combiner deployed at
the MS.

7.3.1 Performance Metrics

Besides the SE, the EE is used to evaluate the performance of different RF architectures
in this section. To calculate the EE, we use the power consumption of the various circuit
components in a precoder or combiner shown in Table 7.1 [1, 70].

Component RF chain phase shifter switch other components

Power (Watts) 0.2 0.01 0.002 0.48

Table 7.1: Power consumption

As discussed in Section 3.1, the power for transmitting Ns data streams signal is
assumed to be Ns Watts. Hence, the total power consumption is the summation of all
circuit components power and the transmitting power. The EE for precoding at the BS is
calculated as

EE = SE
consumed power = SE

Ns + 0.2NRF + 0.002Nps + 0.48(bits/s/Hz/Watt) (7.1)

where Nps is the number of phase shifters in the different RF architecture as shown in Table
2.1.

7.3.2 Fixed Sub-array Architecture

In this section, we set the number of transmit antennas to Nt = 144, receive antennas to
Nr = 36 and transmitted data streams to Ns = 4. We use the fixed sub-array algorithm
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SDR [1] and the proposed full-array algorithm as baseline. Because various RF chain-antenna
layouts may be used in a square UPA and each layout changes with different NRF , we set
the number of RF chains to NRF = 12 and use the three layouts discussed in Section 6.1
for a fair comparison. Hence, we only discuss the performance over different SNR in this
section. We note that the SDR algorithm only supports the horizontal layout.

Performance as a Function of SNR

In this simulation, the SNR is ranging from -30dB to 0dB. The results are shown in Figure
7.8. Clearly, all the sub-array hybrid beamforming approaches have an edge on EE over the
full-array hybrid beamforming and the fully digital beamforming. The proposed algorithm
with the horizontal layout has the best SE and EE performance. The SDR has similar
performance to our proposed algorithm.
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Figure 7.8: Performance for fixed sub-array as a function of SNR

7.3.3 Dynamic Sub-array Architecture

In this section, we investigate the performance of several RF architectures: the fully digital
beamforming, the full-array hybrid beamforming, the fixed sub-array hybrid beamforming
and the dynamic sub-array hybrid beamforming. We still use the same system model from
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Section 6.1, i.e., we set the number of transmit antennas to Nt = 144, receive antennas to
Nr = 36 and the transmitted data streams to Ns = 4.

For a fair comparison, we use only the proposed algorithm as the hybrid beamforming
approach for all RF architectures. Two simulations are conducted to show the impact of SNR
and the number of RF chains NRF . Since we found that the horizontal layout has the best
performance in Section 7.3.2, we use the proposed sub-array algorithm with the horizontal
layout as the fixed sub-array RF architecture baseline. The dynamic mapping algorithm
based on top-down clustering strategy [26] is used as baseline for our proposed dynamic
mapping algorithm. Because the horizontal layout is only applicable when NRF =

√
Nt = 12,

we do not show the sub-array hybrid beamforming with the horizontal layout as baseline in
the simulation with different NRF .

Performance as a Function of SNR

In this simulation, we fix the number of RF chains to NRF = 12 as in Section 6.1 and vary
SNR from −20dB to 0dB. The results are shown in Figure 7.9.

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

SNR in dB

5

10

15

20

25

30

35

40

S
E

 (
bi

ts
/s

/H
z/

W
at

t)

SVD
Proposed full-array
Horizontal sub-array
Benchmark dyna-array
Proposed dyna-array

(a) SE

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

SNR in dB

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

E
E

 (
bi

ts
/s

/H
z/

W
at

t)

SVD
Proposed full-array
Horizontal sub-array
Benchmark dyna-array
Proposed dyna-array

(b) EE

Figure 7.9: Performance for dynamic sub-array as a function of SNR

Clearly, the dynamic sub-array architecture significantly outperforms the fixed sub-array
in terms of SE and is closer to the full-array hybrid beamforming. At the same time, because
the switches in dynamic sub-array consume more power, the EE performance of the dynamic
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sub-array is not as good as the fixed sub-array but still better than the full-array. The
dynamic sub-array achieves a balance point between the fixed sub-array and the full-array on
the SE and EE performance. On the other hand, our proposed dynamic mapping algorithm
has very similar performance to the benchmark dynamic mapping algorithm. Because the
runtime of these two dynamic mapping algorithms is independent of SNR, we will discuss
the time analysis for them in the next simulation over NRF .

Performance as a Function of the Number of RF chains

In this simulation, we vary the NRF from 4 to 18 and set SNR to -15dB to show the influence
of RF chains on the dynamic mapping algorithm. We note that NRF must be a divisor of
Nt. In Figure 7.10, we show the performance of the hybrid beamformer with various RF
architectures over different NRF .

As NRF increases, there are more antenna groups in the dynamic sub-array and each
group contains fewer antenna elements, the SE performance of dynamic sub-array hybrid
beamforming increases rapidly. When NRF is small, the benchmark dynamic mapping
algorithm outperforms the proposed dynamic mapping algorithm on SE. However, after
NRF increases to 12, our proposed algorithm has better SE performance. The proposed
dynamic mapping algorithm is robust and has very low runtime over different value of NRF

while the benchmark dynamic mapping algorithm has much higher runtime. Overall, the
proposed dynamic mapping algorithm has similar performance to the benchmark algorithm
while maintaining a very low runtime.

7.4 Summary

In this chapter, we presented simulation results to illustrate the performance of the
proposed hybrid beamforming approach for various system models and RF architectures.
The proposed algorithm has similar SE and BER performance to the SVD beamforming in
both narrowband and wideband single-user MIMO systems. For the multi-user MIMO
system, the proposed algorithm has better SE and BER performance than BD
beamforming and state-of-art hybrid beamforming algorithms. The proposed hybrid
precoding algorithm also achieves better EE with fixed sub-array architecture than the
full-array architecture. In summary, the advantages of the proposed hybrid beamforming
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Figure 7.10: Performance for dynamic sub-array as a function of NRF

algorithms over the state-of-art schemes are the high adaptability, low computation
overhead and near-optimal performance in terms of SE and EE. At the same time, the
proposed dynamic mapping algorithm has similar performance but requires much less
runtime in comparison to the state-of-art dynamic mapping scheme. In the next chapter,
we conclude this thesis and provide several potential research directions for future research
based on this thesis.
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Chapter 8

Conclusions and Future Work

In this thesis, we proposed a highly adaptive algorithm based on manifold optimization to
solve the hybrid beamforming problem in mmWave massive MIMO systems with various
system models and hardware architectures. Indeed, instead of transforming the hybrid
beamforming problem to a semi-equivalent convex optimization problem, we adopted the
CG approach on a CC manifold to directly optimize the SE without loss of generality.
With the help of manifold optimization and Armijo backtrack line search, a local optimal
solution is guaranteed within a finite number of iterations. Then, we extended the
proposed hybrid beamforming algorithm to generalized fixed sub-array RF architecture
without involving any computation overhead. Finally, we developed a low-complexity
dynamic mapping algorithm based on bottom-up clustering for dynamic sub-array hybrid
beamformers. It provides better trade-off between the SE and EE for dynamic sub-array in
comparison to the fixed sub-array and full-array RF architectures.

Our simulation results are very encouraging. However, the proposed hybrid
beamforming algorithm and dynamic mapping algorithm in this thesis are developed under
certain assumptions and setups. Therefore, there are several potential directions for future
research upon our work, including:

• Hybrid beamforming with imperfect CSI:
In this thesis, we assumed that there is perfect and instantaneous CSI available at
the BS. However, in practical cellular communication systems, it is very challenging
to obtain accurate instantaneous CSI. It would be interesting to design the hybrid
beamformer using the imperfect CSI so that the hybrid beamformer is robust for
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practical scenarios.

• Hybrid beamforming in multi-cell cellular systems:
In this thesis, we adopt the system models in a single-cell massive MIMO system.
However, in a practical multi-cell massive MIMO system, there exists inter-cell
interference. This makes the hybrid beamforming problem in the multi-cell massive
MIMO systems more difficult to be solved. Therefore, studying the hybrid
beamforming in a multi-cell massive MIMO system by considering the inter-cell
interference in the system model is another interesting direction for the future
research.

• Deep learning based hybrid beamforming:
In recent years, machine learning and deep learning have achieved huge success in
different fields, such as computer vision and natural language processing. Many
researchers are investigating ways to exploit the advantage of machine learning to
solve problems in wireless communications. A technique called deep unfolding [71]
unfolds an iterative algorithm to a deep neural network to reduce the computational
complexity while maintaining the performance. It appears attractive to further
reduce the computational complexity by using a deep neural network which is
obtained by unfolding the proposed algorithm to compute the hybrid beamformer.

• Machine learning based dynamic mapping:
In this thesis, the dynamic mapping algorithm is developed based on the bottom-up
clustering and we assumed that every cluster has the same number of antennas to
simplify the mapping problem and reduce computational complexity. However, this
assumption also potentially limits the SE performance. It is interesting to exploit
machine learning to develop a low-complexity dynamic mapping algorithm without
limiting the number of elements in a cluster. The dynamic mapping algorithm can
be taken as a classification problem where the antenna elements are categorized to
different RF chains. Machine learning algorithms, such as decision tree and random
forest, can be used to solve the mapping problem.
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