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2 Abstract

We present the construction of infinite flag manifolds as classifying spaces of filtrations of

vector bundles and compute their cohomology groups and rings. With these, we prove results

relating to characteristic classes and extension problems of vector bundles, in particular the

study of Chern classes and their corresponding Schubert cells, as well as studying when

sub-bundles of restricted vector bundles can be extended to the ambient bundle.

Abrégé

Nous présentons la construction des varietés de drapeaux en dimension infinie comme espaces

de classifications pour des filtrations d’espaces fibrés vectoriels et nous calculons leurs groupes

et anneaux de cohomologie. Avec ceux-ci, nous démontrons des résultats concernant les

classes caractéristiques et des problèmes d’extension de fibrés vectoriels, en particulier l’étude

des classes de Chern et des cellules de Schubert, ainsi que le problème de comment des sous-

fibrés de fibrés restreints peuvent être étendus au fibré ambiant.
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3 Introduction

The majority of this thesis is focused on the study of Grassmannians and flag manifolds,

spaces whose objects are vector spaces and filtrations of vector spaces, respectively. These

closed manifolds are ubiquitous in several areas of mathematics, particularly differential

and algebraic geometry. For instance, Grassmannians serve as classifying spaces for vector

bundles, another important class of object studied thoroughly in this thesis. We will see

that, much like Grassmannians, flag manifolds also serve as classifying spaces for filtrations

of vector bundles.

Vector bundles and fiber bundles appear here as important topological tools to study the

structure and properties of flag manifolds. They have historically provided widespread appli-

cations in geometry and topology and have been the focus of extensive research in algebraic

topology. Section 4 presents an overview of these objects as well as introducing the basics

of characteristic classes and obstruction theory, further tools used in the theory of bundles.

Sections 5 and 6 present Grassmannians and flag manifolds, with a particular focus on their

infinite dimensional counterparts. In section 5, besides the cohomology of Grassmannians,

the main result presented is the correspondence result between isomorphism classes of vector

bundles over a base space and homotopy classes of maps into an infinite Grassmannian.

In section 6, the key result is the description of flag manifolds as iterated fiber bundles

constructed from smaller Grassmannians.

Section 7 looks at the cell structure of flag manifolds in terms of Schubert cells and uses

these to study the cohomology of these manifolds, as well as the Chern classes of a natural

vector bundle, the tautological bundle of a flag manifold. Section 8 now turns to generalizing

the result of section 5 to flag manifolds, where isomorphism classes of filtrations of vector

bundles over a base space are in correspondence with homotopy classes of maps into an

infinite flag manifold. A full description of the homotopy groups of infinite flag manifolds is

then presented, based on their iterated fiber bundle structure.

Section 9 looks at problems relating to extending sub-bundles of vectors restricted to sub-

manifolds to the whole ambient manifold, as applications to the previous results. Section 10
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presents a couple miscellaneous and interesting results about vector bundles relevant to the

work presented here, with the main results being summarized as finding important properties

of closed manifolds which admit only trivial vector bundles.

A thorough treatment of the cohomology of principle fiber bundles and homogeneous spaces,

which includes in particular the study of generalized flag varieties, is done by Borel in

his seminal 1953 paper “Sur la cohomologie des espaces fibrés principaux et des espaces

homogènes de groupes de Lie compacts”. A more specialized treatment of flag varieties is

presented later by Bernstein, Gel’fand and Gel’fand in their 1973 paper “Schubert cells and

Cohomology of the Spaces G/P”, where these cells and the corresponding cohomology are

detailed more explicitly.

Although the results are classical, the proofs presented in this thesis for some of the cohomol-

ogy results are original to my supervisor Professor Jacques Hurtubise and I. Overall, these

results and proofs can be obtained as special cases of those in Borel’s paper. These include

all the results in section 7.2 of this thesis, excluding lemma 7.4. We note also that original

proofs are presented in section 6, 8 and 9 as well, in particular those of theorems 6.1, 8.3,

8.10 and 9.2, proposition 9.3 and corollary 9.4. We make no claims as to the originality of

these later results, although a more thorough review of the literature is required to determine

whether some of these appear in said literature.

4 Fiber bundles and vector bundles

4.1 Preliminary definitions and basic results

We shall assume every topological space we’re dealing with is a smooth connected manifold.

Definition 4.1. A fiber bundle consists of three spaces: the base space M , the fiber F and

the total space E, usually written as F → E → M , such that the following holds:

(1) there is a continuous projection map π : E → M ,

(2) for each p ∈ M , π−1(p) ∼= F , and is denoted Fp(E) or Fp, and

(3) the fiber bundle satisfies the local triviality condition:
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For every p ∈ M there exists a neighborhood U and a homeomorphism

h : π−1(U) → U × F

such that the following diagram commutes:

π−1(U) U × F

U

h

π
p1

Ranging over every point in M , a covering set {(π−1(Ui), hi)} is called a local trivialization

of the bundle.

When there is no risk of confusion, we will denote a fiber bundle simply by its total space

E.

In particular, we have that if F is a vector space, we call the fiber bundle E a vector bundle

of rank n, where n is the dimension of F , and we further require that the homeomorphism

h be an isomorphism of vector spaces on every fiber. A rank 1 vector bundle will be called

a line bundle.

The canonical example of a smooth vector bundle is the tangent bundle of a manifold, TM ,

with fibers the tangent spaces TpM .

A bundle is called trivial if E ∼= M × F . A manifold is called parallelizable if its tangent

bundle is trivial. Here are a few early results about trivial bundles.

Proposition 4.2. Every Lie group is parallelizable [4].

This essentially follows from the fact that the tangent space at the identity element is iso-

morphic to the Lie algebra of the Lie group, and then one defines a bundle isomorphism (see

definition 4.3) using the left translation map.

So in particular, since S1 and S3 are Lie groups, they are parallelizable. In fact, the only

other sphere that is parallelizable is S7 [11].
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Definition 4.3. Two vector bundles E1 and E2 over the same base space M are isomorphic

if there exists a homeomorphism ϕ : E1 → E2 such that Fp(E1) is mapped isomorphically as

a vector space to Fp(E2). In particular, this gives a commuting diagram

E1 E2

M

ϕ

π π

This generalizes to arbitrary fiber bundles E1, E2 over distinct bases M,N as follows.

Definition 4.4. A bundle map between fiber bundles E1, E2 over bases M,N respectively is

a pair of maps ϕ : E1 → E2, f : M → N such that the following commutes:

E1 E2

M N

ϕ

π

f

π

Particularly interesting cases are when M = N and f is the identity map, such as it was the

case above for vector bundles.

We now define the pullback of a bundle, which is a way of constructing new vector bundles

out of other ones.

Definition 4.5. The pullback of a bundle E → N over M given a map f : M → N is the

bundle f ∗E → M defined as

f ∗E = {(p, x) ∈ M × E : f(p) = π(x)}.

Generalizing the concept of a vector field in a tangent bundle, we have the following.

Definition 4.6. A section of a fiber bundle is a continuous map s : M → E such that

π ◦ s = id.

Although not every fiber bundle admits a section, every vector bundle admits the trivial

zero-section, that which maps to the zero vector in each fiber.
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A parallelizable manifold admits n sections that are linearly independent over every fiber, in

particular they are nowhere zero. But not every manifold admits nowhere zero vector fields.

The classic example is S2 via the hairy ball theorem. This will be further elaborated on

when discussing the Euler class and Euler characteristic.

Definition 4.7. A principal bundle is a fiber bundle G → P → M with fibers homeomorphic

to a topological group G, together with a continuous right action of G on P such that if p ∈ Px,

then pg ∈ Px for all g ∈ G. Furthermore, the action is free and transitive on the fibers such

that for fixed p ∈ Px, the map G → Px sending g to pg is a homeomorphism.

The following result produces many examples of fiber bundles that do not admit any sections.

Proposition 4.8. A principal bundle admits a section if and only if the bundle is trivial.

We now define an orientable vector bundle.

Definition 4.9. A vector bundle E is said to be orientable if every fiber can be given an

orientation as a vector space such that, given suitable local trivializations of the bundle, the

orientations all agree on intersections over the whole manifold.

One must be careful to distinguish the orientability of E as a manifold and as a vector

bundle. For example, the tangent bundle of any manifold is an orientable manifold, but is

orientable as a vector bundle if and only if the base manifold is orientable as a manifold.

We now turn to sub-bundles of vector bundles, which are vector bundles of smaller rank

embedded inside larger ones over a common base manifold.

Definition 4.10. A sub-bundle E1 of E2 over M , denoted E1 ⊂ E2, is a subset of E2 which

is also a vector bundle over M where each fiber Fp(E1) is a linear subspace of the fiber Fp(E2).

In terms of bundle maps, this is more concisely stated as having an injective bundle map

ϕ : E1 → E2 over M .

Basic examples of sub-bundles arise when constructing higher rank vector bundles from

smaller ones via direct summation.

Definition 4.11. Given two vector bundles E1 and E2 over M , of ranks n1, n2 respectively,
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their direct sum E1 ⊕ E2 is a rank n1 + n2 vector bundle over M whose fibers are the direct

sum of the fibers of the smaller bundles; specifically,

E1 ⊕ E2 = {(v1, v2) ∈ E1 × E2 : π1(v1) = π2(v2)}

where π1 : E1 → M and π2 : E2 → M are the bundle projection maps.

An important example is the splitting of trivial vector bundles into a direct sum of line

bundles, i.e. if E is trivial or rank n, then E = εn ∼= ε1 ⊕ . . .⊕ ε1, where ε1 is the trivial line

bundle over a given space.

In particular, a tangent bundle admits a nowhere zero vector field if and only if it admits a

trivial line sub-bundle.

Definition 4.12. A vector bundle E is stably trivial if there exists some k > 0 such that

E ⊕ εk is trivial.

A classic example of a stably trivial vector bundle is the tangent bundle of Sn. Indeed, Sn

embeds into Rn+1 and one can see that its normal bundle is trivial. The sum of the tangent

bundle and the normal bundle is clearly trivial, so TSn is stably trivial.

4.2 Characteristic classes

Definition 4.13. Given a vector bundle E → M , a characteristic class c of E is a coho-

mology class c(E) ∈ H∗(M) that is natural, in the sense that given a map f : N → M ,

c(f ∗E) = f ∗(c(E)) ∈ H∗(N).

The primary characteristic classes are the Stiefel-Whitney classes in mod 2 cohomology for

real bundles, and the Chern classes in Z cohomology for complex bundles. We will focus

on Chern classes for now, which are largely analogous to Stiefel-Whitney classes. We will

present two equivalent approaches, on which defines these classes axiomatically, and another

which uses linear dependence of generic sections of bundles to define them.

Given a complex vector bundle E → M , we define for each k > 0 the kth Chern class of E

to be the unique classes ck(E) ∈ H2k(M,Z) that satisfy naturality and the following three

axioms. We also denote the total Chern class to be c(E) = 1 + c1(E) + . . . ∈ H∗(M,Z).
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(1) ck(E) = 0 if k is larger than the rank of E,

(2) For two bundles E,F over M , c(E⊕F ) = c(E) ⌣ c(F ) = c(E)c(F ) for short, and hence

ck(E ⊕ F ) =
∑
i+j=k

ci(E)cj(F ).

(3) If L is the tautological line bundle over CP 1, c1(L) is non-zero, a generator ofH
2(CP 1,Z).

As for Stiefel-Whitney classes, they are defined analogously: the kth Stiefel-Whitney class of

a real vector bundle E → M is the unique class wk(E) ∈ Hk(M,Z2) that satisfies the same

axioms as the Chern classes, except for axiom 3, with RP 1 replacing CP 1.

The fact that these Chern classes exist and are unique is a theorem. Here are some conse-

quences of the axiomatic approach.

For a trivial bundle εn → M , we immediately get by naturality that c(εn) = 1, since εn is

the pullback of the trivial bundle over a singleton, which has only trivial Chern classes.

Lemma 4.14. For any vector bundle E, c(E ⊕ ε1) = c(E).

Proof. This follows from the formula c(E ⊕ ε1) = c(E)c(ε1) = c(E).

As a corollary, we get that for a stably trivial bundle E, c(E) = 1, since there is some k

such that E ⊕ εk is trivial, and hence 1 = c(E ⊕ εk) = c(E). So already we get elementary

obstruction results, namely to a bundle being trivial or stably trivial.

From an earlier result, we know that TSn is stably trivial, thus its Stiefel-Whitney classes

are trivial.

We also get, from naturality, that if E1
∼= E2, then ck(E1) = ck(E2) for all k.

Now we turn to the second approach, which requires that our manifold be compact and

orientable. First, we need Poincaré duality, a key result for later on.

Proposition 4.15. Let M be a compact orientable manifold and let A be an abelian group.

An orientation of M determines an isomorphism PD : Hk(M,A) → Hn−k(M,A) where

PD(α) = [M ] ⌢ α, [M ] being the fundamental class.
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In particular, if we choose A = Z2, then an orientation of M is not required.

Let E → M be a complex vector bundle of rank r over a compact orientable smooth manifold

of dimension n. Let s : M → E be a generic section, i.e. a section which intersects the zero

section transversally. Two sections are said to intersect transversally if at every point of

intersection, the tangent spaces of the embeddings of M via the two sections generate the

tangent space of E at that point.

Let X(s1, . . . , sk) denote the cycle of points p ∈ M where the generic sections s1(p), . . . , sk(p)

are linearly dependent. By transversality this is a smooth submanifold of M of real codi-

mension k.

We then define the kth Chern class to be the Poincaré dual of the fundamental class of

X(s1, . . . , sr−k+1), that is, ck(E) = PD([X(s1, . . . , sr−k+1)]) ∈ H2k(M). It can be shown to

be independent of the choice of sections. We further define c0(E) = 1 as well.

This reveals that a Chern class is an obstruction to finding a set of everywhere linearly

independent sections of a vector bundle.

We now turn to the construction of the Euler class of a vector bundle. This class is unique

in the sense that it depends on the rank of the bundle.

Let E be a rank n complex oriented vector bundle over M . The Euler class e(E) is the

element of Hn(M,Z) corresponding to the top Chern class of E. Given E = TM , and e its

Euler class, evaluating it on its fundamental class gives e[M ] = χ(M), its Euler characteristic.

Along with naturality and the Whitney-sum formula, the Euler class satisfies two further

properties.

(1) If E possess a nowhere zero section, then e(E) = 0,

(2) If Ē is E with the opposite orientation, then e(Ē) = −e(E).

It is possible for a vector bundle to have zero Euler class but no nowhere-zero sections.

Using the tools from section 5 on infinite Grassmannians, one can show that, over S4, all

rank 1 and rank 2 real vector bundles are trivial, but there are Z worth of real rank 3 vector

bundles. Take a non-trivial vector bundle of rank 3 over S4. Since H3(S4) = 0, its Euler
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class is zero. If E were to have a nowhere-zero section, it would split as a direct sum L⊕ F

of a line sub-bundle L and a rank 2 sub-bundle F . But both must be trivial, hence E would

have to be trivial, a contradiction.

Finally, we construct the Pontryagin classes.

Definition 4.16. The complexification of a real vector bundle E → M , denoted E ⊗ C, is

the complex vector bundle over M obtained from replacing each fiber Ep with Ep ⊗ C.

Note that the underlying real vector bundle (E ⊗ C)R is canonically isomorphic to E ⊕ E

[9].

Definition 4.17. The kth Pontryagin class

pk(E) ∈ H4k(M,Z)

is defined to be equal to (−1)kc2k(E ⊗ C).

Similarly, the total Pontryagin class is defined to be

p(E) = 1 + p1(E) + . . .+ p[n/2](E),

where [n/2] is the largest integer less than or equal to n/2.

It can be shown that the Pontryagin classes satisfy naturality as before, but care must be

taken when trying to invoke the previous axioms of the Chern and Stiefel-Whitney classes.

Proposition 4.18. Given two vector bundles E1, E2 over M , the total Pontryagin class

p(E1 ⊕ E2) is congruent to p(E1)p(E2) modulo elements of order 2. [9]

4.3 Examples of obstructions

Using the Euler class, we can find an obstruction to even dimensional spheres admitting

non-trivial sub-bundles of their tangent bundles.

Proposition 4.19. The tangent bundle of an even dimensional sphere S2n does not admit

a sub-bundle of rank k, 0 < k < 2n.
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We are grateful to Mark Grant for providing the following proof in his answer to a Math-

Overflow question.

Proof. Assume that TS2n ∼= E1 ⊕ E2 for non-trivial vector bundles E1 and E2 over S2n of

dimensions k and l, respectively. Thus 0 < k, l < 2n. Both bundles must be oriented since

S2n is simply connected, and so we can obtain Euler classes:

e(E1) ∈ Hk(S2n,Z), e(E2) ∈ H l(S2n,Z),

but for dimension reasons both are zero.

We also get that

e(TS2n) = e(E1)e(E2) = 0,

however,

2 = χ(S2n) = ⟨e(TS2n), [S2n]⟩ = 0,

a contradiction.

Next, we turn to the question of whether every element of a homotopy group of a smooth

manifold can be represented by an immersion. If dim(M) = n, then for k ≤ n/2, every

α ∈ πk(M) has a representative f : Sk → M that is an immersion by transversality. But

this inequality turns out to be strict.

Proposition 4.20. There exists a simply-connected closed 6-manifold M with a homotopy

class α ∈ π4(M) which does not contain an immersion.

The proof is also attributed to Mark Grant and his colleague Diarmuid Crowley as an answer

to a question of mine on MathOverflow.1 The obstruction this time arises from a Pontryagin

class.

Proof. According to C. T. C. Wall in [13], there exists a simply connected 6-manifold M

such that H∗(M,Z) ∼= H∗(CP 3,Z), where the cup product

H2(M)×H2(M) → H4(M)

1https://mathoverflow.net/q/375919/143629
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is trivial, and the first Pontryagin class p1(M) ∈ H4(M) is non-zero.

We first need to show that the Hurewicz map π4(M) → H4(M) is surjective.

Due to the cohomology isomorphism, M has the homotopy type of a CW-complex with one

cell in each even dimension between 0 and 6, since that is the case for CP 3. From the trivial

cup product described above, the cup square of the generator in H2(M) is trivial, and this

implies that the attaching map S3 → S2 of the 4-cell has trivial Hopf invariant, so is also

trivial. This can be seen with a Mayer-Vietoris argument. This means M (4) ∼ S2 ∨ S4,

which proves that the Hurewicz map is surjective.

Next, let α ∈ π4(M) be a homotopy class whose image via the Hurewicz map is a generator

x ∈ H4(M). For contradiction, assume that α is represented by an immersion f : S4 → M .

We get

f ∗(TM) ∼= ν(f)⊕ TS4,

where ν(f) is the normal bundle of the immersion. Since ν(f) has rank 2 over S4 and

π4G(2) ∼= π3O(2) = 0 (see section 5 on infinite Grassmannians), we have that ν(f) is trivial.

Furthermore, TS4 is stably trivial. From the bundle isomorphism and the naturality of

Pontrygin classes, we get that

f ∗(p1(M)) = p1(f
∗(TM)) = p1(ν(f)) + p1(S

4) = 0 ∈ H4(S4).

Finally,

0 = ⟨f ∗(p1(M)), [S4]⟩ = ⟨p1(M), f∗[S
4]⟩ = ⟨p1(M), x⟩,

but this means p1(M) = 0, a contradiction.

5 Finite and Infinite Grassmannians

The real (resp. complex) Grassmannian Gr(k, n) is the closed manifold whose elements are

all the dimension k subspaces in Rn (resp. Cn). It is naturally diffeomorphic to Gr(n−k, n)

by taking subspace complements. The classic example where k = 1 gives the projective space

Pn−1.
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One obtains in general that Grassmannians are homogeneous spaces. In the real case,

Gr(k, n) ∼= O(n)/(O(k)×O(n− k)),

and in the complex case,

Gr(k, n) ∼= U(n)/(U(k)× U(n− k)).

This gives it a dimension of k(n− k).

From here on out, we will be looking at the complex Grassmannian exclusively.

The tautological bundle of Gr(k, n) is the rank k vector bundle E with total space

{(V, v) ∈ Gr(k, n)× Cn : v ∈ V },

that is, the fibers correspond to the elements of the Grassmannian.

One also constructs a complementary bundle F or rank n − k, with total space also lying

in Gr(k, n) × Cn, whose fibers are the orthogonal complements of the fibers of E. Then

immediately one gets that E ⊕ F = Gr(k, n)× Cn is trivial.

Thus, we get the following relation between the total Chern classes of E and F , which will

be useful in constructing the cohomology ring of Grassmannians:

c(E)c(F ) = 1.

Taking the direct limit of Gr(n,m) with respect to m gives the infinite Grassmannian

G(n,C∞) of n-planes in C∞. It yields many important properties that classify vector bun-

dles. Thus it is called a classifying space.

The important results are the following, see [9].

Proposition 5.1. There is a correspondence between isomorphism classes of rank n vector

bundles over a manifold M and homotopy classes of maps from M to G(n,C∞). Specifically,

two maps f, g : M → G(n,C∞) are homotopic if and only if the vector bundles E and F

corresponding to f and g are isomorphic.
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Let c1, . . . , cn be the Chern classes of the tautological bundle of G(n,C∞), where ci ∈

H2i(G(n,C∞),Z).

Proposition 5.2. The integral cohomology ring of G(n,C∞) is isomorphic to Z[c1, ..., cn],

the polynomial algebra freely generated by the Chern classes of the tautological bundle, where

the ci are of degree 2i.

For the case of finite Grassmannians, we have

Proposition 5.3.

H∗(Gr(k, n),Z) ∼= Z[c1, . . . , ck]/⟨c̄n−k+1, . . . , c̄n⟩,

where c̄i is the dual of ci subject to the relation cc̄ = 1.

As for the cohomology groups, we first need the following. Let p(a; b, c) be the number of

partitions of the integer a into at most b parts of size at most c.

Proposition 5.4. H2r(Gr(k, n),Z) is torsion free and its dimension is equal to p(r; k, n−k),

while the odd degree cohomology groups are all trivial.

Letting n tend to infinity in the direct limit also gives the dimension of the cohomology

groups of the infinite Grassmannian G(k,C∞) with the same formula.

6 Finite and Infinite Flag Manifolds

Similar to how Grassmannians are defined, the complex flag manifold Fl(n1, . . . , nk,Cm) is

the closed manifold whose elements are flags of subspaces in Cm of dimensions n1 < . . . < nk,

denoted by V1 ⊂ . . . ⊂ Vk.

Taking the direct limit of m to infinity, we get the infinite flag manifold F (n1, . . . , nk,C∞)

of flags in C∞.

An important property of flag manifolds that allows us to prove many results is that they

are the total spaces of special fiber bundles.

Theorem 6.1. In the finite dimensional case, Fl(n1, . . . , nk,Cm) is the total space of a fiber

bundle with base space Gr(nk,m) and with fiber the “smaller” flag manifold Fl(n1, . . . , nk−1,Cnk).
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In the infinite dimensional case, F (n1, . . . , nk,C∞) has base space G(nk,C∞) and fiber

Fl(n1, . . . , nk−1,Cnk).

Outline of Proof. Begin with the principal bundle

U(nk) → V (nk,Cm) → Gr(nk,m).

Take the quotient of the fiber and the total space by the subgroup U(n1) × U(n2 − n1) ×

. . . × U(nk − nk−1). The fiber and the total space now become the required flag manifolds

and we are left with the required fiber bundle. The infinite dimensional case is obtained by

taking the direct limit with respect to m.

There are k natural projection maps on the infinite flag manifold, given by

ρi : F (n1, . . . , nk,C∞) → G(ni,C∞)

where a flag is projected to the ni-dimensional subspace of C∞ in it.

Lemma 6.2. The existence of a section of ρ2 : F (n1, n2,C∞) → G(n2,C∞) is equivalent to

the existence of a non-trivial sub-bundle of the tautological bundle of G(n2,C∞).

Proof. Let s : G(n2,C∞) → F (n1, n2,C∞) be a section. This is equivalent to the existence of

a continuous map f : G(n2,C∞) → G(n1,C∞) sending each V ∈ G(n2,C∞) to a dimension

n1 subspace of V . This furthermore is equivalent to a rank n1 sub-bundle of the tautological

bundle over G(n2,C∞).

Proposition 6.3. For all natural n, the tautological bundle over G(n,C∞) has no non-trivial

rank k sub-bundles for all 1 ≤ k < n.

Corollary 6.4. Thus, the fiber bundle map ρ2 above does not admit a section for all natural

n1, n2.

Proof of proposition 6.3. Assume that the tautological bundle T n splits as a direct sum E1⊕

E2 of sub-bundles of ranks k and n− k. Then we get the following factorization of the total

Chern class of T n:

(1 + c1 + . . .+ cn) = (1 + c′1 + . . .+ c′k)(1 + c′′1 + . . .+ c′′n−k).
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Since H∗(G(n,C∞),Z) = Z[c1, . . . , cn], each ci is a generator of degree 2i, and we get cn =

c′kc
′′
n−k as the only term. But since cn is a generator, it cannot be the product of lower degree

terms, which gives the required contradiction.

One can easily use this argument to also show the following.

Corollary 6.5. None of the projection maps ρk : F (n1, . . . , nk,C∞) → G(nk,C∞) admit

sections.

7 Cell Structure and Cohomology of Flag Manifolds

7.1 Schubert Cells and Cell Structure

Recall that

Fl(n1, . . . , nk,Cm) ∼= U(m)/U(n1)× U(n2 − n1)× . . .× U(m− nk).

This is equivalent to the description of flag manifolds as the quotient of GL(m,C) by lower

block-triangular matrices with invertible blocks in the diagonal.

Let G = GL(m,C), P be the upper block triangular matrices with invertible blocks in the

diagonal, and X = Fl(n1, . . . , nk,Cm), so that X = G/P .

Let B be the Borel subgroup contained in P , which in general is the maximal Zariski closed

and connected solvable algebraic subgroup of an algebraic group. In this case, B is the

invertible upper triangular matrices. Let B̄ be the lower triangular version.

Let N̄ be the unipotent radical of B̄, that is, the largest normal subgroup of B̄ consisting

entirely of unipotent elements, elements x which satisfy (x−I)n = 0 for some n. This equals

the subgroup of B̄ consisting of elements whose diagonal entries are all equal to 1.

Let W be the Weyl group of G and WP be the corresponding Weyl group of P , a subgroup

of W .

The Schubert cells of X are then defined as follows. Let o ∈ X be the image of P in X.

Let w represent a class of W/WP . Then Xw = N̄wo ⊂ X, as w varies, decomposes X into
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N̄ -orbits [8]. These give us the Schubert cells.

We will now explicitly describe the cell structure with matrices, following section 50 of [5].

We will first introduce the general computation by means of specific examples.

Take X = Fl(2, 4,C6). Consider the following matrix, which represents a dimension 12

(codimension 0) cell, the orbit of I under N̄ .



1 0 0 0 0 0

0 1 0 0 0 0

∗ ∗ 1 0 0 0

∗ ∗ 0 1 0 0

∗ ∗ ∗ ∗ 1 0

∗ ∗ ∗ ∗ 0 1


The rules are as follows. Below all 1’s, we put stars, which represent the free values, each

adding one to the dimension count. Each star is a “copy” of C. Above all 1’s there are

0’s. On the right of every 1, there should only be 0’s. On the left of every 1 within two

consecutive vertical lines, there should be 0’s.

Now we want to permute the columns to obtain different cells with different number of stars

at various positions following the above rules. Note that permutations interchanging columns

within two consecutive vertical lines amounts to no significant change. By convention we

will arrange every column in decreasing order of 1’s between each such line.

Let’s look at the cell obtained from permuting columns 2 and 3, i.e. about the first vertical

line.
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

1 0 0 0 0 0

∗ 0 1 0 0 0

0 1 0 0 0 0

∗ ∗ 0 1 0 0

∗ ∗ ∗ ∗ 1 0

∗ ∗ ∗ ∗ 0 1


We see that it has 11 stars, so is of codimension 1 and so its closure will correspond to a

first Chern class of a tautological bundle (see section 8).

The second and last cell of codimension 1 corresponds to the permutation of the 4th and

5th column, about the second line:



1 0 0 0 0 0

0 1 0 0 0 0

∗ ∗ 1 0 0 0

∗ ∗ ∗ 0 1 0

∗ ∗ 0 1 0 0

∗ ∗ ∗ ∗ 0 1


Now for codimension 2 cells, we have 5 of them. This number can be verified by counting

the dimension of the 4th cohomology group, using corollary 7.6 later on.



1 0 0 0 0 0

∗ 0 1 0 0 0

∗ 0 0 1 0 0

0 1 0 0 0 0

∗ ∗ ∗ ∗ 1 0

∗ ∗ ∗ ∗ 0 1


,



0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

∗ ∗ 0 1 0 0

∗ ∗ ∗ ∗ 1 0

∗ ∗ ∗ ∗ 0 1


,



1 0 0 0 0 0

0 1 0 0 0 0

∗ ∗ 0 0 1 0

∗ ∗ 1 0 0 0

∗ ∗ 0 1 0 0

∗ ∗ ∗ ∗ 0 1


,
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

1 0 0 0 0 0

0 1 0 0 0 0

∗ ∗ 1 0 0 0

∗ ∗ ∗ 0 1 0

∗ ∗ ∗ 0 0 1

∗ ∗ 0 1 0 0


,



1 0 0 0 0 0

∗ 0 1 0 0 0

0 1 0 0 0 0

∗ ∗ ∗ 0 1 0

∗ ∗ 0 1 0 0

∗ ∗ ∗ ∗ 0 1


.

The reason these matrices represent the correct cells of the flag manifold is as follows. First

start with the trivial permutation matrix (the identity matrix).



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


Acting on this by N̄ places stars underneath each 1 as arbitrary elements in the orbit.



1 0 0 0 0 0

∗ 1 0 0 0 0

∗ ∗ 1 0 0 0

∗ ∗ ∗ 1 0 0

∗ ∗ ∗ ∗ 1 0

∗ ∗ ∗ ∗ ∗ 1


But taking into consideration the action by elements of the parabolic group P , we see that

within columns separated by the vertical lines, we may do column reductions, and the stars

on the left of the 1’s get replaced by 0’s after normalization, leaving us with
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

1 0 0 0 0 0

0 1 0 0 0 0

∗ ∗ 1 0 0 0

∗ ∗ 0 1 0 0

∗ ∗ ∗ ∗ 1 0

∗ ∗ ∗ ∗ 0 1


as desired when we begin with the trivial permutation. Choosing different starting elements

of W/WP , i.e. different permutation matrices, with 1’s in descending order withing two

vertical lines, gives us every cell in the flag manifold. Note that each element of W/WP has a

representative that allows the 1’s to be in descending order between the appropriate vertical

lines.

7.2 Cohomology of Flag Manifolds

Theorem 7.1. The integral cohomology ring H∗(F (n1, . . . , nk,C∞)) is isomorphic to

H∗(Fl(n1, . . . , nk−1,Cnk))⊗H∗(G(nk,C∞)).

Proof. From the results of section 5, we see that there is no torsion in the fiber bundle, since

H∗(G(nk,C∞)) is free and finitely generated.

By applying the Serre spectral sequence, we see that at the E2 page, it collapses for degree

reasons, since all the cohomology groups of the fiber and base space lie in even degrees. So

this immediately gives us the required ring structure as a tensor product.

This gives the following two corollaries.

Corollary 7.2. The integral cohomology ring H∗(Fl(n1, . . . , nk,Cm) is isomorphic to

H∗(Gr(n1, n2))⊗ . . .⊗H∗(Gr(nk−1, nk))⊗H∗(Gr(nk,m)).

Thus, the integral cohomology ring H∗(F (n1, . . . , nk,C∞)) is isomorphic to

H∗(Gr(n1, n2))⊗ . . .⊗H∗(Gr(nk−1, nk))⊗H∗(G(nk,C∞)).
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Corollary 7.3. The integral cohomology groups satisfy

Hm(F (n1, . . . , nk,C∞)) ∼=⊕
p1+...+pk=m

Hp1(Gr(n1, n2))⊗ . . .⊗Hpk−1(Gr(nk−1, nk))⊗Hpk(G(nk,C∞)).

In particular, its cohomology groups in odd dimensions are all trivial, and are all torsion free

in even dimensions.

We can count the number of Schubert cells of Grassmannians and flag manifolds [9].

Lemma 7.4. The total number of Schubert cells of Gr(n,m) is
(
m
n

)
.

Corollary 7.5. The total number of Schubert cells of Fl(n1, . . . , nk,Cm) is(
n2

n1

)
· · ·

(
nk

nk−1

)(
m

nk

)

=

(
m

n1, n2 − n1, . . . ,m− nk

)
where the large term in the equality is a multinomial coefficient.

This formula is obtained from the fact that the number of cells of a product of CW-complexes

is the product of their number of cells, generalized to the previously shown fact that flag

manifolds are iterated fiber bundles.

Recall that p(a; b, c) denotes the number of partitions of a into at most b parts of size at

most c, and that the dimension of H2r(Gr(n,m),Z) equals p(r;n,m− n).

Thus we can compute the dimensions of the cohomology groups of flag manifolds in terms

of those of Grassmannians, which corresponds to the number of Schubert cells of a given

codimension.
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Corollary 7.6.

dim H2r(Fl(n1, . . . , nk,Cm))

= dim

[ ⊕
2q1+...+2qk=2r

H2q1(Gr(n1, n2))⊗ . . .⊗H2qk(Gr(nk,m))

]

=
∑

q1+...+qk=r

[
dim H2q1(Gr(n1, n2)) · . . . · dim H2qk(Gr(nk,m))

]
=

∑
q1+...+qk=r

[
p(q1;n1, n2 − n1) · . . . · p(qk;nk,m− nk)

]
.

8 Classifying Spaces of Bundle Filtrations

8.1 Correspondence theorem

Let F (n1, . . . , nk,C∞) be an infinite flag manifold. We will show that, similar to the infinite

Grassmannians, infinite flag manifolds are classifying spaces of filtrations of vector bundles.

Definition 8.1. A bundle filtration is a filtration of vector bundles over a common manifold,

i.e. bundles E1, . . . , Ek of increasing ranks n1 < . . . < nk such that

E1 ⊂ E2 ⊂ . . . ⊂ Ek

as sub-bundles.

Definition 8.2. Two bundle filtrations E1 ⊂ E2 ⊂ . . . ⊂ Ek and F1 ⊂ F2 ⊂ . . . ⊂ Fk

over M are isomorphic if there exists bundle maps gi, bi, hi such that the following diagram

commutes, where the gi and hi are injective and the bi are bundle isomorphisms.

E1 E2 · · · Ek

F1 F2 · · · Fk

g1 g2 gk−1

b1

h1 h2 hk−1

bkb2

The main result is as follows.

Theorem 8.3. There is a bijective correspondence between bundle filtrations over M and

homotopy classes of maps f : M → F (n1, . . . , nk,C∞). In particular, two bundle filtrations

are isomorphic if and only if the corresponding maps are homotopic.
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Definition 8.4. The tautological bundle of G(n,C∞) is

T n = {(V, v) ∈ G(n,C∞)× C∞ : v ∈ V }.

By abuse of notation, we denote the rank ni tautological bundle of F (n1, . . . , nk,C∞) to be

T̃ ni = {(P, v) ∈ F (n1, . . . , nk,C∞)× C∞ : v ∈ ρi(P )},

where ρi : F (n1, . . . , nk,C∞) → G(ni,C∞) is the previously defined projection map.

So in particular,

f ∗T̃ n1 = {(p, x) ∈ M × T̃ n1 : f(p) = π(x)}

where π : T̃ n1 → F (n1, . . . , nk,C∞) is the projection map of the tautological bundle.

We can now generalize theorem 5.6 in [9].

Theorem 8.5. Any filtration E1 ⊂ . . . ⊂ Ek over a paracompact base space B admits k

bundle maps f1, . . . , fk such that

E1 E2 . . . Ek

T̃ n1 T̃ n2 . . . T̃ nk

i i

j j j

f2 fkf1

i

commutes, where i, j are the inclusion maps.

Proof. The proof follows that of lemma 5.3 in [9].

Since B is paracompact, there exists a locally finite open cover {Uj}∞j=1 such that each Ek|Uj

is trivial. There also exists another such open cover {Vj}j with V̄j ⊂ Uj. Similarly, there

exists {Wj}j such that W̄j ⊂ Vj.

Let λj : B → R be a bump function that takes on the value of 1 on W̄j and 0 outside of Vj.

Since Ek|Uj
is trivial, there exists maps

hij : Ei|Uj
→ Cni

which are linear isomorphisms when restricted to each fiber in the domain, with 1 ≤ i ≤ k.
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Next, set

h′
ij : Ei → Cni

which sends e to λj(π(e)) · hij(e). This is linear on each fiber, since on each fiber, λj(π(e))

is constant.

Set

f̂i : Ei → C∞

which sends e to

(h′
11(e), h

′
12(e), . . .))

∈ Cni × Cni × . . .

∼= C∞.

Finally, let πi : Ei → B be the projection maps, and Vj(e) be the fiber in Ej passing through

πi(e) for e ∈ Ei, j arbitrary. Then set

fi : Ei → T̃ ni

which sends e to

(f̂1(V1(e)) ⊂ . . . ⊂ f̂k(Vk(e)), f̂i(e)).

This completes the construction of the fi and it is readily verified that the diagram commutes

with these maps.

We now generalize theorem 5.7 in [9].

Definition 8.6. Two bundle maps f, g : E → F are called bundle homotopic if there is a

homotopy H : E × [0, 1] → F between them such that for each t ∈ [0, 1], H(·, t) is a bundle

map.

Theorem 8.7. Let E1 ⊂ . . . ⊂ Ek be a bundle filtration of ranks n1 < . . . < nk over a

common paracompact base space B. Let {f1, . . . , fk} and {g1, . . . , gk} be bundle maps that

make the following diagram commute when inserted into the vertical arrows:
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E1 E2 . . . Ek

T̃ n1 T̃ n2 . . . T̃ nk

i i

j j j

i

Then each fi and gi are bundle homotopic via k homotopies

Hi : Ei × [0, 1] → T̃ ni

such that for each t, the k maps Hi(·, t) make the diagram commute.

The proof is entirely similar to that of theorem 5.7 in [9] and we omit the details.

Corollary 8.8. Let E1 ⊂ . . . ⊂ Ek be a bundle filtration over a paracompact base space B

of ranks n1 < . . . < nk. Then this filtration determines a unique homotopy class of maps

f : M → F (n1, . . . , nk,C∞).

This follows immediately from theorems 8.5 and 8.7.

We can now prove the main theorem.

Proof of Theorem 8.3. It remains to show that given two homotopic maps

f, g : B → F (n1, . . . , nk,C∞),

they correspond to isomorphic bundle filtrations over B.

We will start with the case k = 2. Let G → P → F (n1, n2,C∞) be the principal bundle

with fiber G the parabolic subgroup of GL(n2,C) of block upper triangular matrices, with

diagonal blocks of size n1 and n2 − n1.

Recall the classical result, as found in [12] section 11, that given a principal bundle P → X

and homotopic maps f, g : B → X, that the pullback bundles f ∗P and g∗P are isomorphic.

Setting X = F (n1, n2,C∞) and P the principal bundle above, we have that the principal

bundle f ∗P naturally induces two vector bundles E1 and E2 of ranks n1, n2, respectively, as

follows.
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Let G act on Cn1 by the natural action induced by the first n1×n1 diagonal block. Similarly

G acts on Cn2 by the action of the whole matrix group. Then let E1 and E2 be the associated

bundles obtained by taking the quotients of these two actions, respectively, on f ∗P × Cn1

and f ∗P × Cn2 . This gives that E1 = f ∗P ×G Cn1 is a sub-bundle of E2 = f ∗P ×G Cn2 .

Similarly, we obtain bundles F1 and F2 from g∗P .

We can now clearly see that the following diagram commutes with the natural maps in each

arrow:

E1 E2

F1 F2

It thus follows that the filtrations obtained from f ∗P and g∗P are isomorphic as in definition

8.2.

The proof for general k then follows similarly.

We will describe two sub-bundles F1, F2 of the same vector bundle E as being homotopic

if they are isomorphic as bundles and if their embeddings into E are bundle homotopic as

bundle maps.

8.2 Computations of homotopy groups of infinite flag manifolds

Theorem 8.9. In the real case, the higher homotopy groups πnF (1, 2,R∞) are trivial for all

n ≥ 2.

Proof. We begin with the case n = 2. Let f : S2 → F (1, 2,R∞) be any map. This

corresponds to a line sub-bundle L of a plane bundle E over S2. Since S2 is simply connected,

any line bundle must be trivial. Otherwise, there exists a circle where the restricted bundle

is non-orientable, and contracting that circle to a point yields a contradiction.

So L must be trivial. Now, E = L ⊕ L⊥ and L⊥ must also be trivial, thus E is trivial

too. It remains to show that any two embeddings of L into E are bundle-homotopic. This
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follows from a winding number argument. If there is a non-trivial embedding of L into E,

one can find a circle where the restricted bundle winds around a non-zero number of times.

Contracting that circle yields again a contradiction.

Now for n > 2, we pass to the long exact sequence of homotopy groups from the fiber bundle

structure of F (1, 2). We have

· · · πnGr(1, 2) πnF (1, 2,R∞) πnG(2,R∞) · · ·ρ2∗

and Gr(1, 2) ∼= RP 1 ∼= S1, so for n > 2, πnGr(1, 2) = 0. So this gives πnF (1, 2,R∞) ∼=

πnG(2,R∞). But, πnG(2,R∞) ∼= πn−1O(2) ∼= πn−1S
1 = 0 for n > 2. Thus πnF (1, 2,R∞) = 0

for n > 2 as required.

In general, we have the following.

Theorem 8.10. For the complex case,

πmF (n1, . . . , nk,C∞) ∼= πm−1(U(n1)× U(n2 − n1)× . . .× U(nk − nk−1)).

Proof. We will first start with the case k = 2. There is a principal U(n1)×U(n2−n1)-bundle

given by the projection

π : V (n2,C∞) → F (n1, n2,C∞)

sending

(u1, . . . , un1 , un1+1, . . . , un2)

to

(Span{u1, . . . , un1}, Span{u1, . . . , un2}).

The proof then follows immediately from the long exact sequence of homotopy groups for

this principal bundle, since V (n2,C∞) is contractible. The case of general k is identical.

In particular, we get that π3F (1, 3,R∞) = 0. This means that any two line sub-bundles of

a trivial (the only possible) 3-bundle over S3 are homotopic. It’s interesting to note that
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there is another result in [6] that says that the homotopy class of nowhere vanishing vector

fields over S3 (without passing through the origin at each fiber) is in bijection with Z. This

shows that, even though one can obtain a line sub-bundle from a nowhere vanishing vector

field, there is some subtlety that differentiates between the two.

9 Bundle Extension Problems

9.1 Sub-bundle extension problem

Let N,M be manifolds with N embedded in M . Consider the following diagram, where i is

the embedding map.

N F (k, n,R∞)

M G(n,R∞)

h

i

f

ρ2g

If the surrounding square commutes, then the map g exists and makes the two triangles

commute if and only if the following situation holds. Given the rank n bundle E2 induced

by f , which restricts to a bundle E1 over N , and which has a rank k sub-bundle L given by

h, then L extends to a sub-bundle over all of M .

One can find obstructions to this extension problem when passing to cohomology as in the

following diagram.

H∗(N) H∗(F (k, n,R∞))

H∗(M) H∗(G(n,R∞))

h∗

i∗

f∗

ρ∗2g∗

As a first simple result, we have:

Lemma 9.1. Let g exist so as to make everything commute, and let the embedding i be

nullhomotopic. Then h∗ must be the 0 map.
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Proof. Since i is nullhomotopic, i∗ is the 0 map. Then h∗ = i∗ ◦ g∗ = 0.

So in this special case, when i is nullhomotopic, the obstruction is whenever

h∗ : Hr(F (k, n,R∞)) → Hr(N)

is not the 0 map for some r.

As a hand-wavy example, let N = S1, M = T 2 the 2-torus, k = 1, n = 2. Let i and f be

nullhomotopic. Thus the bundle over T 2 is trivial. If h : S1 → F (1, 2) is also nullhomotopic,

the picture is that of a contractible circle on the torus, the ambient bundle of T 2 being

the tangent bundle (since it is trivial), and parallel lines placed at each point of the circle

representing the trivial sub-bundle. Since the winding number of these lines is 0, one easily

sees that this sub-bundle extends over the entire torus in a simple way.

However, if h is not nullhomotopic, then the lines about the circle have non-zero winding

number, which makes it clear that they cannot extend continuously to cover the whole torus,

as they cannot extend to the entire interior disc of the circle.

One also notices that if the embedding of S1 is non-trivial, e.g. one of the standard generators

of homology, then by simply “sliding” the knot around the other generating circle, we cover

the whole torus as in a foliation, and so any sub-bundle on the knot extends to the whole

torus.

Next we turn to studying possible extensions of the tangent bundle of complex projective

spaces.

Theorem 9.2. The tangent bundle TCP n−1 does not extend to a rank n − 1 complex sub-

bundle of TCP n.

Proof. By the Lefschetz hyperplane theorem for complex projective varieties, if Y ⊂ X, X

and n-dimensional complex projective algebraic variety and Y a hyperplane section of X

such that X − Y is smooth, then, in particular, we have that i∗ : Hk(X,Z) → Hk(Y,Z) is

injective for k ≤ n− 1.
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Setting X = CP n and Y = CP n−1 with the natural inclusion, the above result holds. Now

assume TY , a sub-bundle of TX|Y , has a rank n − 1 complex bundle extension E over X,

i.e. E|Y = TY . Then i∗c(E) = c(TY ), and by injectivity we get c(E) = c(TY ) = (1 + a)n

for a a generator of H2(CP n−1,Z).

It turns out that (1+ a)n = 1+ na+
(
n
2

)
a2 + . . .+ nan−1, with the last expected term of the

expansion killed due to dimension reasons. Now let N be a complementary sub-bundle to E

inside TX, i.e. c(E)c(N) = c(TX). N must be a line bundle with c(N) = 1 + a. So

c(E)c(N) = (1 + a)n(1 + a)

= (1 + na+

(
n

2

)
a2 + . . .+ nan−1)(1 + a)

= 1 + (n+ 1)a+

(
n+ 1

2

)
a2 + . . .+

(
n+ 1

n− 1

)
an−1 + nan,

yet

c(TX) = (1 + a)n+1

= 1 + (n+ 1)a+

(
n+ 1

2

)
a2 + . . .+

(
n+ 1

n− 1

)
an−1 + (n+ 1)an,

a contradiction.

9.2 Extension of sub-bundles over spheres

Now consider the following commutative diagram involving the n-sphere Sn.

F (1, n+ 2,R∞)

Sn G(n+ 2,R∞)

g

f

ρ2

I want to show that, given a homotopy class of f , there is at most one homotopy class of

the lift g that makes the diagram commute up to homotopy.
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This is equivalent to showing the following.

Proposition 9.3. For all n ≥ 1, the induced homomorphism

ρ2∗ : πnF (1, n+ 2,R∞) → πnG(n+ 2,R∞)

is injective.

This implies that, if there is such a lift g, then any two line sub-bundles inside the rank n+2

bundle E induced by f over Sn are homotopic, in the previously defined sense that their

bundle maps are bundle homotopic.

Proof. We have the following long exact sequence for fiber bundles:

· · · πnGr(1, n+ 2) πnF (1, n+ 2,R∞) πnG(n+ 2,R∞) · · ·ρ2∗

Now since Gr(1, n + 2) ∼= RP n+1, and πnRP n+1 ∼= πnS
n+1 = 0, This proves that π∗ is

injective since its kernel is 0.

In particular, we get the following result. By two line bundles of the same orientability, we

mean that either both are orientable or they both aren’t.

Corollary 9.4. If Sn is embedded in a manifold M , E is a rank n + 2 bundle over M

containing a line sub-bundle L, and L′ is a line sub-bundle of E|Sn of the same orientability

of L, then L′ extends to another line sub-bundle over all of M .

Proof. Let L′′ be the restriction of L to Sn inside E|Sn . Then by the previous proposition,

L′′ is homotopic to L′. So we can homotope L to a new line sub-bundle L̃ of E such that its

restriction equals L′.

10 Miscellaneous Problems and Results

We first state the following result, called the “real cancellation theorem”, as a useful tool for

later on.
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Lemma 10.1. If E is a rank r vector bundle over M , with r > n = dim(M), then E has

a rank r − n trivial sub-bundle. Furthermore, for any other rank r vector bundle F and for

any k ∈ N, if E ⊕ εkM
∼= F ⊕ εkM , then in fact E ∼= F .

The proofs of the following theorems are attributed to Michael Albanese and Jason DeVito

on MathOverflow, to whom I extend my gratitude for their time and answers to my questions.

2 3

I began by asking for examples and properties of spaces that admit only trivial vector bundles,

such as S3. We can rule out closed manifolds of dimensions 1 and 2: if M is such a manifold,

we would get H1(M,Z2) = 0 since this group classifies line bundles. This implies that every

bundle of any rank is orientable over M . Furthermore, orientable rank two bundles over M

are classified by H2(M,Z), which must equal 0. These two points contradict the fact that

in dimensions 1 and 2, either H1 or H2 must be non-zero.

We now look at the case where dim(M) = 3.

Theorem 10.2. Let M be a closed 3-manifold. Every vector bundle over M is trivial if and

only if M is an integral homology sphere.

Proof. Let M have only trivial vector bundles. By Poincaré duality and the previous results,

H1(M,Z) ∼= H2(M,Z) = 0, and we have H3(M,Z) ∼= Z. Thus M is an integral homology

sphere.

Now let M be an integral homology sphere. Then, since H1(M,Z) ∼= H2(M,Z) = 0, all

bundles of rank 1 and 2 are trivial. Let E be a rank 3 bundle. Since it is orientable, we

can define its Euler class e(E). As dim(M) = rank(E), one result is that e(E) is the only

obstruction to a nowhere zero section. Another result is that since E has odd rank, e(E)

must be two-torsion, see section 9 in [9]. But e(E) ∈ H3(M,Z) ∼= Z which is torsion-free,

hence e(E) = 0. This implies that E has a trivial line sub-bundle, i.e. E ∼= E0 ⊕ ε1 with E2

of rank 2. But E0 must then be trivial, so E is trivial as well.

Lastly, assume E has rank greater than 3. Then by the real cancellation theorem above,

2https://mathoverflow.net/q/416977/143629
3https://math.stackexchange.com/q/4409482/354855
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E ∼= E0 ⊕ εk for some rank 3 bundle E0. Since E0 has just been shown to be trivial, E is

also trivial. Thus every bundle over M is trivial.

Theorem 10.3. Let M be a closed manifold with only trivial vector bundles. Then each of

the following hold:

1. M must be orientable

2. M must have odd dimension

3. The first integral homology group is 0

4. M is a rational homology sphere.

Proof. Property 1 has been shown in the previous theorem.

Property 2: IfM were even dimensional and orientable, we can construct a non-trivial bundle

as follows. One can define a map f : M → Sn, where n = dim(M), of degree 1. Since TSn

has non-trivial Euler class, so does f ∗TSn, hence is non-trivial.

Property 3: Assume that H1(M,Z) ̸= 0, and that it contains a torsion element. By the

universal coefficient theorem, H2(M,Z) must also contain a torsion element. Since H2

classifies complex line bundles, there is a non-trivial map f : M → CP∞ corresponding to

the torsion element. Pulling back the tautological bundle over CP∞ gives a vector bundle

over M whose Euler class is this same torsion element. Thus this vector bundle is non-trivial.

So wlog H1(M,Z) is torsion free. But being non-zero implies that H1(M,Z2) is non-trivial,

which gives a non-trivial line bundle over M , a contradiction.

Property 4: Given that M is orientable and odd dimensional, assume that Hk(M,Q) ̸= 0

for some 0 < k < n. Using both Poincaré duality and universal coefficients, we have that

Hk(M,Q) and Hn−k(M,Q) must be non-trivial as well. Jason DeVito then cites a paper

of Belegradek and Kapovitch [1] which shows there is a vector bundle over such an M with

non-trivial Euler class in either degree d or n− d, whichever is even. But one of them must

be even due to parity reasons, so we reach a contradiction since this produces a non-trivial

vector bundle over M .
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The proofs of the next two results are beyond the scope of this thesis and will be omitted,

but can be found in the two previously mentioned posts.

Theorem 10.4. Let M be a closed simply connected manifold of dimension n which admits

only trivial vector bundles. Then M cannot be a Z2-homology sphere, unless n = 3.

A brief sketch of the proof involves working wlog with n = dim(M) ≥ 5, and M being ori-

entable and odd dimensional. For contradiction one assumes that all the torsion in H∗(M,Z)

is of odd order, and then constructing appropriate non-trivial bundles over M as pullbacks

of non-trivial bundles over Sn that have even torsion.

Corollary 10.5. Every closed simply connected 5-manifold admits a non-trivial vector bun-

dle.

Essentially the proof of the corollary would be to show that if a 5-manifold M with only

trivial vector bundles exists, it must be a Z2-homology sphere, and thus the result would

follow from the previous theorem.
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