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Abstract 

ABSTRACT 

Food or dietary intake is very essential for human life. However, dietary-related illnesses such as obesity, 

chronic heart diseases and diabetes are among the leading causes of deaths in the world today. In the past 

decade, dietary intake monitoring has increasingly become an important step in achieving a healthy 

lifestyle. 

Conventional pen-and-paper methods of gathering and evaluating dietary intake data often used to monitor 

dietary intake include 24-Hour Dietary Recall (24HDR), Food Record (FR), Food Frequency 

Questionnaires (FFQs), and several others. The 24HDR method relies on a user’s cognitive ability to 

remember and note down the food he or she consumed over the last 24 hours. The Food Record method 

requires that the user manually keep a record of the food consumed over a specified period of time. The 

FFQs method is designed to evaluate dietary intake patterns by gathering data about the frequency with 

which certain food items were consumed over a specified duration. 

These approaches are expensive, tedious, time-consuming and prone to errors due to human subjectivity 

and hence, necessitate the need to develop automatic dietary or diet quality assessment and monitoring 

systems that are reliable, accurate and place a lower burden on users. 

Image-based Artificial Intelligence (AI) techniques such as computer vision and machine learning offer a 

cornucopia of useful approaches that can help mitigate diet monitoring and assessment challenges that 

otherwise defy conventional methods. The aim of this study was to develop a system that employed image-

based computer vision and machine learning techniques for automatic dietary intake assessment and 

nutritional or diet quality evaluation of food consumed by a user. To this end, two approaches were 

implemented. In the first approach, traditional computer vision features extraction algorithms were 

employed to extract high-level visual representations such as texture, color, as well as feature descriptors 

such as Scale Invariant Feature Transform (SIFT) features and orientation of gradients from captured 
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images of single foods (such as Bagel, Avocado and Croissant). These features were then analyzed in 

different combinations to build food recognition models using five different classical machine learning 

algorithms (K-Nearest Neighbors, Logistic Regression, Random Forest, Support Vector Machine, and 

Linear Discriminant Analysis) as well as an ensemble of all the algorithms. 

Results showed that the ensemble model performed better than the individual models and was able to 

recognize test food images with an overall accuracy of 90.32% and with precision and recall values 

ranging from 85 −  95%. Following the recognition of the test food, the Score of nutritional adequacy of 

individual foods (SAIN) and score of nutrients to be limited (LIM) were computed using the SAIN-LIM 

nutrient profiling model. The SAIN-LIM scores measured the diet quality of the food and were computed 

using the weight and nutrients composition of the food retrieved from the Food and Nutrient Database for 

Dietary Studies (FNDDS). Based on the results, there were occasional misclassifications due to 

similarities in the color and textural patterns in the foods, which were the main factors that inhibited the 

system’s performance. 

The second system experimented on captured images of Composite or Mixed food with more complex 

and overlapping visual features. The methodology relied on Deep Convolutional Neural Networks (CNNs) 

that extracted a large number of abstract features from food images to produce better representation of the 

food. Concretely, a Transfer Learning approach was implemented to develop the food recognition model 

(using 15 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 composite food images containing 16, 035 training set and 2000 validation 

set) which achieved an accuracy of 98.10% on the held-out 2000 test food images. Finally, the SAIN-

LIM nutrient profiling model was used to estimate the nutritional adequacy and healthiness significance 

of the food. 

Although future plans must include increasing the number of food categories considered as well further 

developing the system into a mobile application, the results of this study have shown that the system can 

be used to adequately monitor and assess quality of diets consumed by individuals and communities. 

Index Terms: Dietary Assessment, Computer Vision, Machine Learning, Deep Learning, Neural Networks, 

Transfer learning, Nutrient Profiling, Nutritional Status Evaluation, Nutritional Benefit Estimation  
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Résumé 

RÉSUMÉ 

La nourriture ou l'apport diététique est très essentiel à la vie humaine. Cependant, les maladies liées à l'alimentation 

telles que l'obésité, les maladies cardiaques chroniques et le diabète sont parmi les principales causes de décès dans 

le monde aujourd'hui. Au cours de la dernière décennie, la surveillance de l'apport alimentaire est devenue de plus 

en plus une étape importante vers un mode de vie sain. 

Les méthodes conventionnelles de collecte et d'évaluation des données par papier et stylo sur l'apport alimentaire 

souvent utilisées pour surveiller l'apport alimentaire, comprennent le rappel alimentaire de 24 heures (24HDR), le 

dossier alimentaire (FR) et les questionnaires de fréquence alimentaire (FFQ). La méthode 24HDR repose sur la 

capacité cognitive d'un utilisateur à se souvenir et à noter la nourriture qu'il a consommé au cours des dernières 24 

heures. La méthode d'enregistrement des aliments exige que l'utilisateur conserve manuellement un enregistrement 

des aliments consommés pendant une période de temps spécifiée. La méthode FFQ est conçue pour évaluer les 

schémas d'apport alimentaire en collectant des données sur la fréquence à laquelle certains aliments ont été 

consommés pendant une durée spécifiée. 

Ces approches sont coûteuses, fastidieuses, chronophages et sujettes à des erreurs dues à la subjectivité humaine et 

nécessitent par conséquent la nécessité de développer des systèmes automatiques d'évaluation et de surveillance de 

l'alimentation qui soient fiables, précis et imposent moins de charge aux utilisateurs. 

Les approches d'intelligence artificielle (IA) basées sur l'image telles que la vision par ordinateur et l'apprentissage 

automatique offrent une corne d'abondance d'approches utiles qui peuvent aider à atténuer les problèmes de 

surveillance et d'évaluation du régime alimentaire qui, autrement, défient les méthodes conventionnelles. Le but de 

cette étude était de développer un système utilisant des techniques de vision par ordinateur et d'apprentissage basées 

sur l'image pour l'évaluation automatique de l'apport alimentaire et l'évaluation de la qualité nutritionnelle des 

aliments consommés par un utilisateur. À cette fin, deux approches ont été mises en œuvre. Dans la première 

approche, des algorithmes d'extraction de caractéristiques de vision par ordinateur traditionnels ont été utilisés pour 

extraire des représentations visuelles de haut niveau telles que la texture, la couleur, ainsi que des descripteurs de 

caractéristiques tels que les caractéristiques de transformation de fonction invariante à l'échelle (SIFT) et 
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l'orientation des dégradés à partir d'images capturées d'un seul aliments (comme le bagel, l'avocat et le croissant). 

Ces caractéristiques ont ensuite été analysées dans différentes combinaisons pour créer des modèles de 

reconnaissance des aliments à l'aide de cinq algorithmes d'apprentissage automatique classiques différents (k plus 

proches voisins, régression logistique, forêt aléatoire, machine à vecteurs de support, et analyse discriminante 

linéaire) ainsi qu'un ensemble de tous ces algorithmes. 

Les résultats ont montré que le modèle d'ensemble fonctionnait le mieux et était capable de reconnaître les images 

des aliments testés avec une précision globale de 90,32% et avec des valeurs de précision et de rappel allant de 85 

à 95%. Suite à la reconnaissance de l'aliment testé, le score d'adéquation nutritionnelle des aliments individuels 

(SAIN) et le score des nutriments à limiter (LIM) ont été calculés à l'aide du modèle de profil nutritionnel SAIN-

LIM. Les scores SAIN-LIM mesuraient la qualité nutritionnelle de l'aliment et ont été calculés à l'aide du poids et 

de la composition en nutriments de l'aliment extraits de la base de données sur les aliments et les nutriments pour 

les études diététiques (FNDDS). Sur la base des résultats, il y a eu des erreurs de classification occasionnelles dues 

à des similitudes dans la couleur et latexture des aliments. Ce sont les principaux facteurs qui ont inhibé les 

performances du système. 

La deuxième approche a expérimenté des images capturées d'aliments composites ou mixtes avec des 

caractéristiques visuelles plus complexes et se chevauchant. La méthodologie s'est appuyée sur des réseaux 

neuronaux convolutifs profonds qui ont extrait un grand nombre de caractéristiques abstraites des images 

alimentaires pour produire une meilleure représentation de la nourriture. Concrètement, une approche 

d’apprentissage par transfert a été mise en œuvre pour élaborer un modèle de reconnaissance des aliments (en 

utilisant une formation composite de 15 classes, 16035 formations, 2000 images des aliments composites de 

validation) qui a atteint une précision de 98,10% sur les 2000 images des aliments d’essai. Enfin, le modèle de 

profilage nutritionnel SAIN-LIM a été utilisé pour estimer l'adéquation nutritionnelle et l'importance pour la santé 

de l'aliment. 

Bien que les plans futurs doivent inclure l’augmentation du nombre de catégories d’aliments envisagées ainsi que 

le développement du système en une application mobile, les résultats de cette étude ont montré que le système peut 

être utilisé pour surveiller et évaluer adéquatement la qualité des régimes alimentaires consommés par les individus 

et les communautés. 

Termes d'index: évaluation diététique, vision par ordinateur, apprentissage automatique, apprentissage profond, 

réseaux de neurones, apprentissage par transfert, profilage des nutriments, évaluation de l'état nutritionnel, 

estimation des avantages nutritionnels.
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Introduction 

1. INTRODUCTION 

 BACKGROUND 
Technology advancement has brought about several improvements in the agricultural and food related 

sectors such as plant breeding, mechanization of agriculture, food processing and storage, and several 

others. This made food readily available and less expensive especially in developed countries and as such 

hoisted such countries from the dismal era of food scarcity to one of food excess and food wastage (Lee 

et al., 2013). Conversely, nutrient deficiency diseases became increasingly scarce while complex chronic 

diseases related to excess food consumption, tobacco and alcohol use, poor diets, and physical inactivity 

such as obesity, heart disease, diabetes, cancer, are now the mainstream leading causes of death and 

disability in many parts of the world (Lee et al., 2013). 

It has become a salient fact that an increasing amount of people is becoming overweight or obese. Research 

has shown that there has been a massive global increase in body mass index from 1980 𝑡𝑡𝑡𝑡 2010 (0.4 

mg/kg2 per decade (95% Uncertainty Interval (UI): 0.2 −  0.6)) for men and 0.5 𝑚𝑚𝑚𝑚/𝑘𝑘𝑘𝑘2 per decade 

(95% 𝑈𝑈𝑈𝑈: 0.3 −  0.7) for women (Finucane et al., 2011). In 2016, the global prevalence of obesity was 

reported to have approximately tripled that of 1975. In that same year, WHO (2018) reported that there 

were more than 1.9 billion adults aged 18 and over that are overweight, out of which more than 650 million 

ones were obese. This drift clearly demonstrates that access and consumption of calories have drastically 

increased. 

While food wastage does not, right-off-the-bat have a direct impact on human health, unhealthy dietary 

intake poses greater risks to human existence. According to the report on the study of Global Burden of 

Disease published by Afshin et al. (2019), globally, in 2017, risks related to poor diet were responsible for 

1 
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11 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (95% 𝑈𝑈𝑈𝑈: 10– 12) deaths (22% [95% 𝑈𝑈𝑈𝑈: 21– 24] of all deaths among adults) and 

255 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (234– 274) Disability Adjusted Life Years (DALYs) (15% [14– 17] of all DALYs among 

adults). Cardiovascular disease was the leading cause of diet-related deaths (10 million [9–10] deaths) and 

DALYs (207 million [192– 222] 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷), followed closely by cancer (913, 090 [743 345–1 098 432] 

deaths and 20 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 [17– 24] 𝐷𝐷𝐴𝐴𝐿𝐿𝑌𝑌𝑠𝑠) and type 2 diabetes (338, 714 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑠𝑠 [244 995– 447 003] and 

24 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 [16– 33] 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷). Over 5 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (95% 𝑈𝑈𝑈𝑈 5– 5) diet-related deaths (45% [43– 46] of total 

diet-related deaths) and 177 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (163– 192) diet-related DALYs (70% [68– 71] of total diet-related 

DALYs) occurred among adults below 70 years of age. The above facts reinforced the importance of the 

need to develop strategies and tools as well as leverage existing initiatives that will facilitate effective 

dietary monitoring and maintenance of good healthy living. 

Global trends of dietary intake monitoring and diet quality assessment are still a major challenge not only 

because of their inherent complexity, but also because of the limitations of the tools available for collecting 

dietary data (Allman-Farinelli et al., 2017; Cade, 2017). Traditional dietary intake data collection and 

assessment tools such as 24-Hour Dietary Recall (24HDR), Food Record (FR), Food frequency 

Questionnaire (FFQ) as well as the Minimum Diet for Women (MDD-W) are some of the widely used 

available tools. These tools are designed to capture details about an individual’s food intake in the past 24 

hours (24HDR), record of food consumed over a prescribed duration (FR), capture an individual’s usual 

food consumption by querying the frequency at which the user consumed certain food items based on a 

predefined food list (FFQ) (Gibson, 2005; Lee et al., 2013), as well as capture the diversity of the food 

consumed by the user (MDD-W) in the previous day or night (Hanley-Cook et al., 2020). These methods 

of collecting dietary data are mostly deployed using traditional pen and paper-based approach and hence, 

highly reliant on the literacy and cognitive capacity of the user for quality data. This however, makes the 

methods very tedious, expensive, prone to reporting errors, time-consuming, biased and place a lot of 

burden on clients, and dietary researchers (Amoutzopoulos et al., 2018; Cade, 2017; Illner et al., 2012). 

Recent advancements in current and emerging technology present broad and vast opportunities to improve 

the methods of collecting dietary data with the aim to reduce cost, improve the quality and efficiency of 

the data collected and methods deployed respectively, as well as reduce the burden on dietary researchers 

and clients (Amoutzopoulos et al., 2018). New prominent technology-based dietary assessment tools 

include web-based software, wearable devices, and smart mobile device applications according to 

literature have proven beyond reasonable doubts to have the capacity to improve accuracy and reduce cost 



3 
 

and burden associated with dietary data collection and processing and hence, overcome the inherent 

limitations of traditional methods (Amoutzopoulos et al., 2018; Eldridge et al., 2019). In the past five 

years, global smartphone penetration rate has increased significantly with over 3.2 billion smartphone 

users in 2019 and projected to surpass 3.8 billion in 2021 (Arne, 2019). The increased accessibility of 

smart mobile device has led to the exponential increase in the demand and prevalence of mobile 

applications. Consequently, this has expanded the possibility of the use of smart mobile devices in several 

ways including gathering dietary intake data in order to determine nutritional adequacy and deficiency of 

food materials, perform dietary researcher -led or self-administered nutritional, fitness and health status 

analysis as well as to conduct small or large-scale epidemiological studies and nutritional surveys 

(Klurfeld et al., 2018). It is however expected that, the mobile device-based tools need be accurate, reliable 

and efficient to ensure confidence when gathering dietary data. This can only be achieved through 

intensified interest and research to understand and engineer the “core” entity of the mobile device-based 

dietary intake assessment spectrum – analysis and interpretation of collected data. Food attributes such as 

type, nutrients composition, volume/ portion size, ingredients, and processing methods are major concerns 

for a healthy diet (Zhou et al., 2019). Several smart mobile device-based dietary assessment tools have 

been developed to guide users to capture image(s), video or record voice notes of all the food and drinks 

consumed during eating occasions. (Assessment, 2018; Boushey et al., 2015; Hemalatha et al., 2020; 

Illner et al., 2012; Khanna et al., 2010).  To this end, there has been a lot of successes in the usage of food 

images due to the readily availability of sophisticated image processing, computer vision and machine 

learning algorithms as well as high-end computing resources for analyzing image data (Hemalatha et al., 

2020; Min et al., 2019). The rapid pace in the development of mobile-based dietary assessment tools can 

be attributed to the convergence of innovation in several disciplines including data mining, computer 

vision, machine learning, software engineering, human eating habits, food science, and nutrition. 

 HYPOTHESIS 
Current conventional dietary assessment methods provide error-prone qualitative data which are highly 

reliant on the cognitive capacity of the user as well as the dietary diversity or group of the food consumed 

by the user. In this work the following hypothesis are made, 

• An image-based system can be developed to identify, analyze, and profile the nutrients composition 

of simple and complex food products in order to provide an accurate quantitative diet quality 

assessment. 
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• A deep convolutional neural network system can be developed to produce accurate classification of 

captured images of consumed foods especially for complex or mixed food products and this system 

can then be incorporated into a self-administered image based dietary assessment tool. 

 

 RESEARCH OBJECTIVES 
The overall objective of this research is to develop a food recognition and diet quality assessment system 

that can aid dietary intake monitoring, and evaluation of nutritional adequacy and health benefits or level 

of recommendation of the food consumed by a user. This objective entails the following sub-objectives: 

1. Develop an automatic recognition and nutrient profiling system for single foods such as Bagel, 

Avocado and Croissant based on computer vision image analysis techniques and machine learning. 

2. Develop a deep learning assisted techniques to extend the food recognition and diet quality 

assessment system to detect and classify mixed or complex composite foods such as beef salad, rice 

& beans, and lasagna, consumed by a user, and also evaluate the nutritional adequacy and the 

contribution of the food to the health of the user. 
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Current, Emerging, and Future 
Technology Trends in Dietary Assessment 

2. CURRENT, EMERGING, AND FUTURE TECHNOLOGY TRENDS IN DIETARY 
ASSESSMENT 

ABSTRACT 
Traditional dietary assessments can be very tedious, time-consuming and expensive because they are 

mostly conducted using pen and paper-based methods. In addition to the complexity and the burden on 

dietary researchers, and clients, the results generated can also be prone to variations in interpretation, 

under-reporting as well as recording errors. Technology advancement has been a major component in 

every research knowledge space and traditional dietary assessment methods have benefitted immensely 

from it. New technology-based methods such as mobile device-based, web-based and sensor-based 24-

hour dietary recall, food record and food frequency questionnaire have emerged and have become 

increasingly popular and more accurate alternatives for collecting dietary intake data. However, these 

methods have inherent limitations in delivering the desired degree of accuracy. The need to reduce burden 

on users, increase dietary intake data gathering accuracy, and improve health or quality of life of growing 

population, necessitates the adoption of current and emerging technology concepts such as data analysis, 

computer vision, and machine learning to achieve a higher degree of accuracy and reliability in dietary 

data gathering processes. The purpose of this study is to review current developments in technology-based 

dietary assessment as well as explore the potential impacts of emerging technology trends. 

Index Terms: Dietary assessment, Food Frequency Questionnaire, 24-hour Dietary Recall, computer 

vision, image-based, machine vision, smart mobile device, Artificial Intelligence  
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 INTRODUCTION 
Dietary behaviors and intake have been linked to nutritional-related illnesses, deaths, and several chronic 

diseases in the world today. Measuring dietary intake is a method used to evaluate eating patterns and 

behaviors, actual or usual intake, as well as to assess the adequacy of a person’s diet. However, the method 

comes with several challenges. The task is accompanied by flaws in data-gathering techniques, human 

subjective attitude, intense burden on client or the dietary researcher, daily variations in a user’s dietary intake 

and limitations of nutrient composition tables and databases. Conventional methods of gathering behavioral 

and dietary intake data such as 24-Hour Dietary Recall (24HDR), Food Record (FR), Food Frequency 

Questionnaires (FFQs) and Diet History are often used for research purposes. The methods make use of self-

reporting and interviewing mechanism as well as require the user to be literate, perform difficult cognitive 

tasks and the dietary researcher to perform loads of manual analysis on the dietary data using information 

provided in the nutrient intake database (Burrows et al., 2019; Vila-Real et al., 2016).  

However, in recent years, advancement in technology has bolstered its application into the medium and 

methods of delivering conventional nutrition assessment. It has also brought about the development of several 

innovative methods through current and emerging technological concepts such as data analytics, computer 

vision, machine learning, internet of things, robotics, augmented reality and several others. Numerous 

technology-based methods for dietary assessment have emerged. The conventional methods have also been 

equipped with a fair share of technological applications to leverage existing initiatives. At present, there are 

several computer-based 24HDR, FR, and FFQ tools that have been developed, tested, validated and designed 

to be deployed through web-based platforms and as standalone software with cross-platform operating system 

compatibility (Timon et al., 2016). The tools are either self-administered, whereby a user completes dietary 

information in the absence of a dietary researcher, or interviewer-administered, where the researcher uses the 

tool to collect/analyse dietary data in the presence of a client being examined. The new and innovative 

technology-based dietary assessment methods mostly are available as software application on smart devices 

such as smartphones, tablets, etc., and have been widely used for self-monitoring of dietary intakes and 

for communicating dietary researchers or clinicians. Others methods are available on, web-based 

platforms, scanner or sensors-based tools (Burrows et al., 2019; Cade, 2017), Although these technology-

based methods have played significant roles, they have not yet fully replaced some traditional methods 

because of their inherent limitations which include inadequate rendering or coding of data, internet 

bandwidth, usage complexity, etc. however, they have become increasingly popular and more accurate 

alternatives for collecting dietary intake data when compared with the traditional pen and paper-based 
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methods of assessment (Ambrosini et al., 2018; Vila-Real et al., 2016). The purpose of this paper is to 

review recent developments in technology-based methods of dietary assessment as well as explore the 

potential impacts of emerging technology trends.  

 GENERAL OVERVIEW OF NUTRITIONAL ASSESSMENT METHODS 
Over time, the concept of nutritional assessment has relied on four methods to determine the nutritional 

status of a person. These methods are based on several anthropometry, biochemical, clinical and dietary 

observations used either alone or in combination (Gibson, 2005). These methods have further been 

improved with increasing emphasis on reduction in the risk of chronic disease, health maintenance, and 

effective decision-making. 

 Anthropometry 
This method measures the physical dimensions and gross composition of the body which include, height, 

weight, head circumference, as well as taking the measurement of skinfold thickness, body density, air-

displacement plethysmography, magnetic resonance imaging, and bioelectrical impedance in order to estimate 

fat and lean tissue proportion in the body (Lee et al., 2013). The results obtained are often validated using 

reference data obtained from the measurement of many subjects. The measurements depend largely on age 

(and sometimes sex and race) and nutrition composition especially in cases where chronic imbalances of 

protein and energy are to be determined. Anthropometry measurement is a quick, easy and reliable method 

that has the capacity to identify mild and severe levels of malnutrition and also have the distinguishing potential 

of providing information about previous nutritional history, which can rarely be provided by other assessment 

methods (Gibson, 2005). Anthropometric measurements are of two types, growth and body composition, and 

have been widely used for the assessment of the nutritional status of both children and adults. These measuring 

methods are prone to systematic and random error types which are usually as a result of inadequate and 

improper training of personnel, difficulties in measurement of certain anthropometric characteristics such as 

skinfolds, and instrumental or technical errors. The errors can be minimized by proper training of personnel to 

use standardized, validated techniques and by frequent calibration of instruments, thus improving the accuracy 

and precision of the measurement. The most common anthropometric measurements used for estimating 

nutritional status as described in Table 2.1 are weight, height and body composition (Gibson, 2005; Lee et 

al., 2013).  
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Table 2.1: Description, benefits and challenges of anthropometric measurements 

Sources: (Ball et al., 2014; Gibson, 2005; Lee et al., 2013) 

Anthropometry Method (s) Description Pros/ Cons 
Weight Ideal Body Weight 

(Hamwi equations) 
For males: 106 pounds for 5 feet plus 6 pounds per inch above 5 feet. 

For females: 100 pounds for 5 feet plus 5 pounds per inch above 5 feet. 

*Add 10% for large frame. Subtract 10% for small frame 

Pro: Simple and quick to use at relatively low cost  

Con:  not suitable for large group studies 

 Adjustable Body 

Weight (ABW) 
Actual Body Weight - Ideal Body Weight × .25 + Ideal Body Weight. 

Used to monitor obesity, i.e., when their body mass index (BMI) 

exceeds 30 

Pro: Effective and easy, inexpensive for minimal population 

Con:  not suitable for large group studies 

Height  Measurement from 

head to feet of a person 
Measured without shoe with the back against the wall or measuring 

board, standing erect and looking ahead 
Pro: Simple and quick to use, effective when with large population 

Con: Highly prone to variations 
Body 

Composition 
Skinfold thickness Quick and simple method of measuring the amount of subcutaneous 

body fat. 
Pro: Simple and quick, effective with large population 

Con: not suitable for single persons and groups 

 Body Mass Index 

(BMI) 
Measures and specifies an individual’s weight status as simply being 

underweight, average weight or overweight based on height. BMI = 

Weight (kg)/Height (m2) 

Pro: Quick and easy to use Con: not precise for assessing body 

composition 

 Waist circumference Measures waist circumference for assessing abdominal fat Pro: Very effective for measuring abdominal fat  

Con: poorly measures internal visceral fat 
 Bioelectrical 

Impedance Analysis 

(BIA) 

Measures how the body resist flow of through it and also estimates body 

fat from body water using appropriate equations 
Pro: Simple and quick to use, relatively low cost 

Con: but usually effective with large population and poorly 

effective with specific, poor accuracy in individuals and groups 

 Hydrostatic Weighing Uses the comparison between an individual normal bodyweight 

(outside water) bodyweight while completely underwater to estimate 

his/ her body density and body composition 

Pro: Accurate and easy to use  

Con: expensive and not convenient. 

 Dual-Energy X-Ray 

Absorptiometry (DXA) 
Uses passage of high- and a low-energy X-ray beam to determine 

mineral density and body composition. 
Pro: Very accurate and safe 

Con: weight limitations, expensive, need for regular cross-

standardization 

 3D Body Scan Maps the body and its component parts and then estimate the body fat 

through a corresponding app 
Pro: Accurate, easy to use 

Con: not very convenient as it requires the user to be naked. 
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 Biochemical methods 
Biochemical method as a method for assessing nutritional status of an individual measures nutrients or its 

metabolite in blood, feces or urine. It also measures other blood components and tissues such as albumin 

and serum protein (protein indicator) and hemoglobin (iron indicator) (Gibson, 2005; Lee et al., 2013). 

Biochemical measurements often give result of the most recent nutrient intake or the effect produced by 

prolonged nutrient deficiency. The result obtained is usually helpful in determining the extent of 

nutritional deficiency (Burrows et al., 2017). While the method is easy to perform, inexpensive and with 

a good degree of accuracy, it comes with its own limitations. The test lacks specificity and its result is 

easily rendered unusable by problems such as pathological conditions, usage of prescribed medication and 

human and technical error. Due to the drawback associated with biochemical test, it is often a good 

practice to use it in combination with other nutritional assessment tools in order to improve validity and 

confidence level of the nutritional data (Temple et al., 2003). 

 Clinical methods 
Physical signs and symptoms of nutritional deficiency associated with family and medical histories such 

as delayed growth, pallor of skin, palm surface and hair colour are indicators often used to detect health 

problems and nutritional deficiencies (Indumathi et al., 2017; Lee et al., 1996). Examining nutritional 

status using the clinical method does not require much expertise because of the obvious nature of the signs 

and symptoms. Clinical method is termed to be generic as it fails to specify nutritional deficiency 

components (Lee et al., 2013). Some of the problems encountered during clinical assessment of nutritional 

status include relatively low general occurrence in developed countries except in high-risk groups, non-

specificity of clinical signs, and high susceptibility to errors due to human subjectiveness (Indumathi et 

al., 2017; Lee et al., 2013). Used in a cautious manner, in conjunction with other nutrition assessment 

methods such as dietary and biochemical methods, it may aid in accurate and more elaborate assessment 

of nutritional status of the individual. 

 Dietary methods 
Dietary methods of assessment involve taking account of past or current nutrients intake from food by 

individuals or across large geographically dispersed populations in order to determine their nutritional 

status. Measuring dietary intake is the most commonly used method for determining an individual’s 

nutritional status (Lee et al., 1996). There are several methods of collecting dietary assessment data, which 

include face-to-face interviews, telephone interviews, by email or self-administrated. The deployed 
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method is usually a function of social and economic context, available resources, as well as the 

demographic characterization of the participants in question (Vila-Real et al., 2016). Dietary assessment 

methods can be classified into two major groups: retrospective and prospective methods. The retrospective 

methods include the 24-Hour Dietary Recall (24HDR), the Food-Frequency Questionnaire (FFQ), and the 

Dietary History (DH), while prospective methods include Food Records (FR) (Thompson et al., 1994). 

Their usage is often based on the purpose for which they are needed, the participant involved, as well as 

the validity and reliability of the tool (Andreoli et al., 2011). The purpose of use may be to measure 

nutrients, foods or eating habits of a user, group of people or large population and if the purpose is to 

measure the nutrient or food intake, a diet record or 24HDR is most suitable. A diet record completed over 

several days has a higher potential of generating accurate intake data than a single 24HDR. On the other 

hand, if capturing eating habit especially in retrospect is the goal, the FFQ is more appropriate. 

 24-HDR, Food-Frequency Questionnaire (FFQ) and Food Record (FR) 

24HDR and FFQ are the two commonly used dietary assessment tools and in some cases, they are often 

used in combination (Vila-Real et al., 2016). 24HDR and FFQ, as the most used dietary methods, rely on 

the user’s cognitive ability; hence, it is pertinent to first conduct a cognitive survey of the intended users 

before deploying the assessment tools (Vila-Real et al., 2016; Wirfält, 1998). The 24HDR, in about 20 – 

30 minutes, can collect data about foods and beverages consumed in the past 24 hours while the FFQ gives 

an account of a long-term assessment of how frequently certain food and beverage items were consumed. 

The Food Record (FR) is a very flexible and easy to use tool for gathering detailed information about food 

consumed with focus on short-term intake. Similar to 24HDR, it collects data such as food preparation 

methods, the kinds of ingredients used, amount consumed and the brand name or place of purchase (Shim 

et al., 2014). 

Collecting valid and reliable dietary data as well as analyses of dietary intakes especially for dietary 

assessment methods that rely on user’s memory is a very sensitive task and needs to be administered by 

well-trained personnel with broad perception and knowledge-base (Shim et al., 2014). In most cases, the 

interviewer needs to be a nutritionist, a dietary researcher or a nutrition student who had been previously 

trained by experts (Vila-Real et al., 2016; Willett, 2012; Wirfält, 1998). Furthermore, a well-trained 

interviewer is equipped with skills to create a conducive atmosphere for the participant, as well as to ask 

relevant questions that improve the ability of the participants to remember their nutrient intake easily 

(Willett, 2012). 
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In a study carried out by Ma et al. (2009), to determine how many 24HDR data will be sufficient enough 

to analyze an individual’s nutrient intake, their results showed that acquiring the data over three days is 

usually appropriate. They found out that if less than three, there would be significant differences in energy 

estimation and when more than three there was no significant improvement (Ma et al., 2009; Vila-Real et 

al., 2016). However, there are cases where there is difficulty in carrying out more than one recalls. For 

instance, when considering cases where participants’ diets appear to be monotonous, or if the number of 

participants to be considered is large, a single recall would be enough to estimate a participant’s dietary 

intake. 

24HDR and FR have inherent advantages and disadvantages. While the FR does not require the users to 

recall information about food consumed, it places a lot of burden on them demanding them to self-record 

food consumed in real-time (Shim et al., 2014; Vila-Real et al., 2016). On the other hand, the 24HDR also 

imposes a huge burden on the users because the data gathered relies on their cognitive ability as well as 

the skills of the interviewer. FFQ, though also has an absolute reliance on user’s memory, when compared 

with 24HDR and FR, it gives a better idea of the user’s typical nutrient intake because it has a larger 

retrospective period (Vila-Real et al., 2016). 

 Dietary History (DH) 

The dietary history tool was developed specifically by Burke (1947) in order to gather data about long-

term dietary intake of a user (Shim et al., 2014). This tool requires a very knowledgeable dietary researcher 

to engage the participant to complete a 24HDR, 3-day food diary, and checklist of foods usually consumed 

through an in-depth interview that can take nearly 90 minutes to complete (Shim et al., 2014; Vila-Real et 

al., 2016). 

Table 2.2 gives a summary of the above four dietary assessment methods with focus on their method and 

type of data collected, strengths and limitations. 
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Table 2.2: Summary of the Assessment Methods 

Source: (Shim et al., 2014; Vila-Real et al., 2016) 

 

 24-Hour Dietary Recall Food Record Food Frequency Questionnaire Dietary History 

Descriptio

n 

A subjective and open-ended 

dietary data collection tool that 

uses specially designed 

questionnaires and administered 

by well-trained interviewer 

Subjective collection of dietary data 

collection using open-ended, self- 

administered questionnaires 

Subjective measure of dietary intake 

using a predefined, self- or interviewer-

administered survey tool 

Subjective collection of dietary data 

collection using open- and closed-ended 

questionnaires administered by a trained 

interviewer 

Type of 

data 

collected 

Actual dietary intake data over 

the last 24 hours 

Actual dietary intake information over a 

specific period 

Estimate of usual intake over a relatively 

long period 

Dietary intake over a relatively long period 

Duration Takes 20 – 30 minutes to 

complete; Often deployed over 1 

– 3 days, but can be flexible 

depending on the study design 

Often takes 3 – 7 days to complete, but can 

be flexible depending on the study design 

Takes 30 – 60 minutes to complete; can 

deployed over a duration of 1 month to 

1 year 

Takes nearly 90 minutes to complete; 

deployed over a long time  

Strengths Collects extensive data about 

dietary intake; imposes relatively 

small burden on users; does not 

require literacy; easy-to-use and 

deploy; can be self-administered 

Provides detailed dietary intake data in real 

time; no recall bias; no interviewer 

required 

Simple and easy to deploy; cost-

effective and timesaving; most suitable 

for large population study such as 

epidemiological studies 

Gather data about long-term dietary intake 

of users 

Limitation

s 

Possibility of bias during recall; 

require trained interviewer; 

possible interviewer bias; 

expensive and time-consuming; 

multiple data collection days 

required to accurately measure 

actual dietary intake; tendency of 

altering user’s eating habits 

Places huge burden on users; require good 

level of literacy; required; there is 

possibility of under-reporting; very 

expensive and time-consuming; require 

multiple days for effective data collection; 

possibility of modifying user’s diet due to 

repeated measures 

Study- or research-specific; 

questionnaire is closed-ended; not very 

accurate due to recall bias; time-

consuming; easily influenced by 

ethnicity, culture, user’s economy etc.  

Expensive to deploy; time-consuming; not 

suitable for population study such as 

epidemiological studies 
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 TECHNOLOGY-BASED DIETARY ASSESSMENT 
As reviewed in the previous section, many existing traditional methods of dietary assessment have inherent 

merits, associated errors and practical difficulties as encountered by dietary researchers and clients in their 

respective usage. Hence, this implies that there is a need for continuous innovative research and development 

in order to come up with systems with better efficiency, performance, and accuracy. 

Advancement in technology has bolstered its application into many research fields and knowledge space 

including dietary assessment and this has brought about evolution and disruption of the existing initiatives. In 

recent years, there have been great improvements in the methods of collecting dietary intake data due to 

increased usage and access to the internet and the popularity of smart mobile devices (Burrows et al., 2017). 

A lot of these have been and will continuously be made possible through current and emerging technological 

concepts such as computer vision, electronic sensor, data analytics, machine learning, cloud computing and 

internet of things. 

In this section, we reviewed technological-based dietary assessment approaches, which leveraged existing 

traditional concepts (such as web-based 24HDR, FFQ, Food record, Diet history), as well as approaches which 

adopted new principles in their dietary data collection method. Several technology-based dietary assessment 

methods have been developed and continuously researched and been improved upon (Illner et al., 2012). 

Publications on recent advanced technology applications in dietary assessment within 2008 – 2019 were 

examined and classified into three innovative categories namely: Scanner- /Sensor-based technologies, Web-/ 

Computer-based technologies, and. Mobile device-based technologies. 

 Scanner- and sensor-based technologies 
Several scanner- and sensor-based tools for dietary recording exist today. The scanner can be used to scan 

barcodes of items purchased in stores. The wearable sensor is designed to record or monitor dietary intakes 

at set intervals which can then be used to analyze and estimate nutrient intake (Forster et al., 2016; 

Stumbo, 2013). Microsoft SenseCam is a popular wearable sensor worn around the neck in order to record 

dietary intakes. Once turned on, it begins image capturing every 20 seconds when it detects movements, 

heat and light (Boushey et al., 2017; Gemming et al., 2015). Evidence has shown that it is most effective 

when used in combination with other methods such as traditional 24HDR and food record methods of 

dietary assessment as a means of improving the accuracy by capturing incorrectly estimated or unreported 

information such as leftovers and unrecalled food (Forster et al., 2016; Gemming et al., 2015; O'Loughlin 

et al., 2013). Some of the limitations faced with the usage of the SenseCam include poor image quality as 
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a result of inconsistency in the angle of the camera as well as low-light and hence, require further research 

(Boushey et al., 2017). Another popular recently developed wearable sensor tool is eButton, a very small 

and lightweight device, worn on the chest, integrated with a camera to capture food images every 2 

seconds (Forster et al., 2016; Sun et al., 2014). It has built-in food segmentation, volume estimation, 

modeling functionality and capability to automatically estimate the nutrient composition of food items 

(Sun et al., 2014). Although e-Button has a promising future in estimating nutrient intake, it still needs a 

lot of research modifications that would limit the complexity and errors involved in automatically 

estimating nutrient intake from images of wide range of regularly and irregularly shaped foods items 

(Forster et al., 2016). Automatic Dietary Monitoring (ADM) was developed by Amft et al. (2009) to 

estimate the weight of every food bites taken in order to reduce the burden associated with self-reporting. 

ADM was designed to use the body’s sensors to monitor the weight of the user’s bites of food through 

recording chewing cycles and food types. This is done through input data fed through a wrist-worn 

acceleration sensor, and a microphone in the external ear canal (Amft et al., 2009). Nishimura et al. (2008) 

developed a wearable sensor system, which uses a microphone integrated into a Bluetooth headset to 

record chewing sounds in order to detect engineering properties of food such as crunchiness, and to also 

help users reduce their reliance on their cognitive abilities. Sensor systems generally face the limitation of 

being a burden to users because they find it rather uncomfortable to wear a sensor around their neck, chest 

or ear canal. They are however considered to be outdated or not widely used and have generally been 

replaced by more recent tools. 

 Web-/ computer-based approaches 
As a substitute to the traditional pen-and-paper dietary assessment methods (24HDR, FFQ, Food record and 

diet history), researchers have developed several computer- and web-application-based versions which have 

proven to be less expensive, reduced user’s burden, efficient, user-friendly and easy to self-administer, suitable 

for small and large-scale research purposes (Subar et al., 2012; Timon et al., 2016). However, a greater 

percentage of the technology-assisted dietary assessment tools developed to date are centered around 24HDR 

and FFQ, and are web-based, due to global increases in internet access, usage and penetration (Forster et al., 

2016; Hutchesson et al., 2015). 

Extensive research (Cade, 2017; Forster et al., 2014; Hutchesson et al., 2015; Subar et al., 2012) has shown 

that 24HDRs and FFQ best collect dietary data with high degree of accuracy, hence making them the most 

desired tool for monitoring the diets of populations, individuals, and more progressively for diet and diseases 

associated researches and control. The Web-based methods focus largely on 2HDR method and FFQ, and they 
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have been successful due to a number of factors including the ease of collecting data in a remote environment, 

the organised sequence of questioning, the use of digital portion size assessment graphical aids, automated 

analysis of data collected as well as the ability to generate quick dietary feedback (Timon et al., 2016). The 

Web-based 24HDR tools have been used for dietary data collection for various population groups including 

young children, adolescents, and adults and it is modeled on the Automated Multiple Pass Method (AMPM) 

(Subar et al., 2012; Timon et al., 2016). The tool guides and prompts the user to recall and record food and 

drink consumed in the last 24-Hour. The tool comprises of unique features such as, food and beverage lists, 

nutritional composition data, prompts and pictorial portion size assessment aids (Subar et al., 2012). However, 

there are distinguishing characteristics incorporated in the tools by researchers based on target populations, 

demographics, and available resources. 

The National Cancer Institute (NCI), in collaboration with Subar et al. (2012), developed the Automated Self- 

Administered 24-hour dietary recall (ASA24). ASA24 is an open-source, web-based tool available to 

researchers, clinicians, and educators. It was developed to contain two web-based applications, the client and 

researcher websites. The client website is used by clients to complete 24HDRs using a dynamic and user-

friendly web-interface. It consists of animated guides, audio and visual cues, eating occasion, time of 

consumption, eating-engagements (if the meal was consumed with a friend or if a computer or TV was used 

during the meal) selection mechanism. It is also possible for the clients to give account of the food consumed 

by browsing a food category or searching from a list of food and drink for keywords, as well as manually 

inputting desired food and drink at several stages of the recall session. ASA24 also consists of a researcher’s 

(or clinicians, educators) website which is well-equipped with the capabilities to analyze recall data, generate 

reports, produce nutrient information data files as well as statistical schedules of complete, incomplete and 

upcoming recalls for clients (CDC, 2006; Koegel et al., 2013; Subar et al., 2012; USDA-ARS, 2010). 

In a related development, some researchers (Baranowski et al., 2014), came up with a self-administered 

multiple-pass-computerised 24HR using a tool they called the Food Intake Recording Software System 

(FIRSSt) (Baranowski et al., 2002), and with its more recent version (FIRSSt4), renamed to ASA24-Kids but 

is no longer available for use.(Baranowski et al., 2014; National Cancer Institute, 2018a). The tool was 

adapted from the ASA24, equipped with 10 000 + food images to quantify portion size estimation, and 

simplified specifically for children of age ten and above to comfortably self-administer a 24HDR. Table 2.3 

and Figure 2.1 further describe some popular web-based dietary intake assessment tools such as online ASA24, 

INTAKE24 and DHQIII.  
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Table 2.3: Summary of some popular web-based dietary intake assessment tools 

  

Platform Description Method Features  Limitation References 
ASA24 Freely available web-based 

tool for epidemiologic, 

interventional, behavioral, or 

clinical research that allows 

for multiple automatically 

coded self-administered 24-

hour recalls and food records 

24HDR, 

Food 

Record 

Enable researchers, clinicians, and teachers to register a study, set study 

parameters, manage study logistics, and obtain output files; guides 

participant using visual aids and other memory prompts to complete 

24HDR or single or multiple day food records and to collect details about 

food form, preparation, portion size, and other additions; allows for ease 

of adding and modifying food, drink, and supplement choices at multiple 

points during the recall or record; available in 3 languages: English, 

Spanish and French; allows researchers to monitor study progress and 

obtain a variety of reports, including statistics for complete, incomplete, 

and upcoming recalls or records for users; contains about 65 nutrients and 

37 food groups 

Requires stable and 

reliable internet; 

require users to be 

literate. 

Depends on the 

cognitive ability of 

the user 

(National 

Cancer 

Institute, 

2018b; Subar 

et al., 2012) 

INTAKE24 Intake24 is a self-completed 

computerized 24HDR system 

developed for use with users 

aged 11 years and over 

(including older adults). Its 

development was an iterative 

made up of a 4-stage user 

interaction and refinement. 

24HDR Online, engaging and intuitive 24-hour dietary recall system based on the 

multiple pass 24-hour recall; Database contains more than 2500 foods and 

over 2500 portion size images which have been extensively validated in a 

feeding study and against 4-day weighed diaries; 20-minute average 

completion time; Contains custom search algorithms that are highly 

tolerant to spelling mistakes; Equipped with extensive range of prompts 

for items commonly forgotten and consumed together; Can be access on 

desktop, laptop, tablet & mobile devices; Fully customizable visual style 

(using CSS) allowing addition of study logos; Simple integration of 

customized additional questions; Automatic coding to nutrient data 

Requires stable and 

reliable internet; 

require users to be 

literate; 

Depends on user’s 

memory 

(Simpson et al., 

2017) 

DHQIII Diet History Questionnaire 

(DHQ) is an open source food 

frequency questionnaire 

(FFQ) used by researchers, 

clinicians, or educators to 

assess food and dietary 

supplement intakes. 

FFQ DHQIII consists of 263 food and beverage line items and 26 dietary 

supplement questions; contain questions on cooking methods, frequency, 

portion size information about food and beverage consumed over a period 

of 1 month or year; takes about 30 to 60 minutes to complete 

Requires stable and 

reliable internet; 

require users to be 

literate; time-

consuming 

(National 

Cancer 

Institute, 

2018c) 
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Figure 2.1: (a) Automated Self-Administered 24-Hour (ASA24) (National Cancer Institute, 2018b), (b) Diet History Questionnaire III 
(National Cancer Institute, 2018c), (c) Intake24 (Simpson et al., 2017) 

  

(a) 

(b) (c) 
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 Mobile device technologies 
The use of mobile devices such as Personal Digital Assistants (PDAs), smartphones, and smart tablets, for 

dietary assessment has gained wide recognition in recent years. They have been very efficient in solving 

dietary data gathering accuracy limitations such as recall bias, data errors, delayed data entries and missing 

information, thus allowing for graphical, real-time and on-demand data assessment (Seebregts et al., 

2009). Mobile devices are also known to provide hitch-free communication platform between a client and 

dietary researcher as well as a user-friendly and comfortable tool for children (Oliver et al., 2013). 

 Personal Digital Assistants (PDAs) 

The use of PDAs in dietary assessment has evolved in its concepts, architecture (software and hardware 

integration), and its applications over the last two decades since its first usage in the mid 1990s (Comrie 

et al., 2009; Illner et al., 2012). The device has been well-equipped and upgraded from the older versions 

which were integrated with about 180 food items to the much recent versions with food items up to 4000. 

The system is also equipped with some portion-size tools that users can use to estimate their food intake 

(Illner et al., 2012). PDA consists of specialized software with the integrated food items in colored images 

and different portion-sizes which help the user to effectively quantify the amounts of food intake. One 

variant of PDA is the Japanese ‘Well-Navi’ instrument, which guides the users to take digital photos of 

their foods and drinks before and after consumption and afterward send the pictures to a dietary researcher 

via internet for further analysis (Fowles et al., 2008; Illner et al., 2012). Studies have shown that PDA is 

a reliable tool for gathering dietary data (Acharya et al., 2011), however, progressive increase in the usage 

and popularity of smartphones have resulted in the disruption of PDA as a foremost tool for dietary 

assessment since it can render the same functionalities and much more (Illner et al., 2012; Recio-

Rodríguez et al., 2014). 

 Smartphones, tablets and notebooks 

The evolution of mobile phones is by far one of the fastest iterative advancements that mankind has ever 

witnessed. The growing needs and expectations of users across a wide age-range facilitated the evolution 

of the smartphone and its functional features from being just a gadget for communication to becoming a 

personal companion and a tool for executing basic tasks such as financial transaction, navigation, 

multimedia and most importantly dietary assessment. The capacity and capabilities of smartphones have 

led to a great deal of research focused on the development of innovative solutions for the use of 

smartphones to quantify dietary intakes using mobile applications (mobile apps) and digital image-based 
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approaches (Weiss et al., 2010). 

Mobile application monitoring approach 

There are several diet apps available for use on smartphones, however, very limited studies have examined 

their use as tools for dietary assessment (Jospe et al., 2015). The apps available for monitoring dietary 

intake can be classified as a standalone dietary record app or as one being integrated into other apps. The 

dietary record apps are basically the digital versions of their traditional counterparts but have several key 

features for both users and dietary researchers to record food consumption, and to review and analyze 

recorded intakes respectively. Some of these app features include well-integrated food composition 

databases, memory prompters, search functionality, and suggested food lists, saved favorite foods and 

recipes, and barcode scanners (Allman-Farinelli et al., 2017). On the other hand, where the dietary record 

is combined with capacities to tracking multiple aspects of health. They have also integrated features such 

as physical activity monitors and body weight scales, as well as tracking of health parameters such as 

blood glucose, blood pressure, and sleep in for example, MyFitnessPal, MyFatSecret, LoseIt, and 

MyPlate. (Allman-Farinelli et al., 2017; Forster et al., 2016; Gilhooly, 2017). Although there is a growing 

availability of apps for tracking dietary intake, many are still limited and targeted to some specific group 

of people e.g. people with diabetes mellitus (Allman-Farinelli et al., 2017; Rusin et al., 2013). Other 

limitations also include burden on user, database limitation, incomplete nutrient composition, difficulty in 

getting database for food groups and supplements, difficulty in exporting data from the mobile apps for 

research purposes, difficulty in estimating portion size, lack of flexibility on how portions are entered, 

incomplete nutrient profiles, presence of unnecessary or confusing information that are unhelpful for 

research purpose, etc. Hence, there is a need for more studies to further expand the usage and capabilities 

of mobile apps for dietary assessment. Table 2.4 below further describes some existing dietary assessment 

mobile applications. 
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Table 2.4: Summary of some popular dietary assessment mobile applications 

 

.

Mobile App Features  Limitation Reference 

MyFitnessPal Barcode scanner; Recipe importer; Track all major ingredients; Built-

in step tracker; Exercise entry; 20 languages supported; Personalized 

goals; Easy links with other apps and devices; 5 million+ food items 

Adjusting serving sizes time-consuming; 

manually entering nutrition information is 

prone to error; multiple repetitions of 

food items in the database 

(Chen et al., 2017; MyFitnessPal, 2018) 

MyPlate Barcode scanner; Personalized goals for major nutrients; Meal time 

reminders; Track water intake; Easy creation of custom foods and 

meals; Easily integrates with Apple’s health app; Exercise entry; 

Social support features; Data exporting; Bilingual (English and 

Spanish); 2 million+ items 

Diet logging is tedious; insufficient food 

varieties in database 

(MyPlate, 2018); 

https://www.everydayhealth.com/diet-

nutrition/experts-what-are-the-flaws-of-

myplate.aspx 

Lose It Barcode scanner; Calorie tracking; Exercise Tracking; Community 

Access; Apple Health & Google Fit Sync; Wi-Fi Scale Support; 

Activity Tracker Support (Fitbit, etc.); Fitness App Support (Nike+ 

Run Club, etc.); Macronutrient Goal Setting & Tracking; Nutrition 

Insight Reporting; Data Analysis & Recommendations; Meal 

Planning; Meal Plan, Recipe & Workout Library; Water Tracking; 

Custom Themes; 7 million+ food items 

Doesn’t keep track of common vitamins 

and minerals; Popular food brands 

missing in the database 

(LoseIt, 2018); 

https://www.healthline.com/nutrition/10-

best-weight-loss-apps#section1  

Healthwatch 360 Barcode scanner; Track 500+ symptoms and health conditions; Track 

30+ nutrients; Nutrition score; Recipe builder; Reports and trends; 

Data collection and export with researcher portal 

Insufficient food varieties in app database (HealthWatch 360, 2018) 

Easy Diet Diary Barcode scanner; extensive and easy-to-browse database; easily track 

calorie and energy intake  

Insufficient food in database; lacks 

integration with other apps 

(Easy Diet Diary, 2018) 

Carbs and Cals – 

Diabetes and Diet 

Personalized goals for major nutrients; Contains easy-to-browse 

3500+ photos of food & drink with up to 6 portions for each food; 

Personalized goals for major nutrients; Visual format makes diet 

monitoring easy; Customizable food database 

Insufficient food in database (Carbs & Cals, 2018) 
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Digital imaging approach  

The advancement in smartphone technology, especially in the computing power and digital camera 

integration, has facilitated its usage as a tool for dietary assessment. According to a review by Sharp et al. 

(2014), the focus of most of the studies since 2002 on smartphone usage for dietary assessment has been 

largely on digital imaging or image-based approaches. When dealing with the image-based approach, there 

are usually two major steps carried out on the image of the food captured namely: food recognition & 

classification and volume/ portion size estimation. The two steps involved in imaged-based approach can 

either be one that requires manual intervention of a trained image analyst or one that is automated/ 

technology-assisted i.e. does not require human intervention. The manual intervention requires the dietary 

researcher to carefully analyze the food images using pre-existing templates in order to obtain information 

such as class of food, volume of food, nutrients composition, etc. The automated approach relies on 

computer vision and machine learning assisted techniques to identify the class and volume of food in the 

images. The image-based approaches are known to reduced burden to users when compared to other forms 

of dietary intake recording methods, however, they are still liable to errors due to under-reporting 

especially if users capture poor quality images or forget to capture images of the food before consumption 

(Forster et al., 2016).  

The idea behind the manual or human-assisted method is that, users take pictures of their food using their 

smartphone and send the pictures remotely to a secure central server application where a trained image 

analyst can access and compare the sent images with stored images of food items in order to analyze and 

classify the food, and further estimate the portion size/ volume of food intake and nutrient intake 

information (Boushey et al., 2017; Martin et al., 2012). Some drawbacks of this approach are that it would 

be very unproductive if the user lacks internet and the excessive time it will take if the study were to be 

for a large epidemiological study. In addition, it is also very expensive because it requires the services of 

a well-trained and knowledgeable dietary researcher.  

The automated/ technology-assisted method uses built-in image classification, analysis and visualization 

as well as volume estimation tools to automatically estimate the portion size and volume of food consumed 

from images of food taken before and after consumption, with a fiducial marker placed near the food. This 

principle was adopted in the work of some researchers and yielded reliable accuracy (Almaghrabi et al., 

2012; Anthimopoulos et al., 2015; Zhu et al., 2010). They developed an interactive system that requires 

the user to capture an image (at 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 45° 𝑜𝑜𝑜𝑜 60°) of their food before and after meal through the 
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integrated camera on their smartphone using a specially developed mobile application for their 

smartphone. The image is then sent to a dedicated backend server were a special software analyzes the 

image using pre-configured computer vision and machine learning models to identify the type of food, 

estimate the portion size and estimate the energy and nutrient intake from corresponding nutrient databases 

(Boushey et al., 2017). 

One crosscutting limitation of the automated/ technology-assisted method is its inability to differentiate 

between food with similar shape and color, for example, butter and margarine, brownies and chocolate 

(Forster et al., 2016; Zhu et al., 2010). In order to mitigate errors associated with automated food item 

classification, there are several research considerations to incorporate features such as voice recognition 

which will allow the user give further voice description of the food during consumption. With the growing 

number of researches in the use of image-based methods in smartphones, there is no doubt that it would 

soon be widely and commercially available for use by the general public and dietary researchers. 

 DIGITAL IMAGE-BASED APPROACH FOR DIETARY ASSESSMENT 

 Food recognition 
Developing a reliable Food recognition or classification system strongly depends on the availability of 

food image databases. The quality and size of food image dataset determine the performance and 

robustness of food recognition algorithms, therefore building a reliable database cannot be 

overemphasized. Several food image datasets have been developed and published in literature for different 

applications such as dietary assessment (Boushey et al., 2017; Liu et al., 2016), food recognition (Ciocca 

et al., 2017; Farinella et al., 2016; Subhi et al., 2019), food ingredients prediction (Bolaños et al., 2017), 

food quantity or volume estimation (Chen et al., 2012; Subhi et al., 2018), calorie estimation (Liang et 

al., 2018) and several others.  

 Features extraction and classification 
The efficiency and accuracy of a good food recognition system depend on the quality and relevance of the 

selected visual features of the food. An essential step in solving food recognition problem is to adequately 

represent the extracted visual information and store them as feature space or vector in an appropriate 

database. As evidenced in a number of research publications (Choras, 2007; He et al., 2013; Nguyen et 

al., 2014; Subhi et al., 2019), Global features such as Color, shape, texture, etc. and local features such as 

Scale Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF), Local Binary pattern 
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(LBP) are crosscutting feature descriptors that are often extracted from food images and used to learn or 

train a food classification or recognition models. This is a machine learning technique that gives the model 

the capabilities to identify and predict the classes to which a set of unknown food belongs to, based on the 

food image features used as the input data in the learning phase. The feature descriptors used are largely 

due to their inherent properties such as invariance to geometric and photometric transformation, 

translation, rotation and scaling (P. Pouladzadeh et al., 2014). A study carried out by Chen et al. (2012) 

employed LBP and SIFT features individually on a food image dataset, their results showed that the 

accuracy of 53% was achieved with using SIFT features alone  while using the LBP features only resulted 

in 46% accuracy. However, combining both features, along with additional Gabor filter and color features, 

increased the accuracy to 68%. A different study (Beijbom et al., 2015), using the same dataset, extracted 

SIFT, LBP HOG, MR8 filter, and color features, and using a SVM classifier, obtained an accuracy of 

77.4%. In more recent research works, deep learning-based methods, a subset of machine learning, have 

been employed to learn and train more robust and effective neural networks. Convolutional Neural 

Network (CNN) is a considerably stable and broadly used deep learning-based algorithm, and it has been 

employed for food recognition by several researchers, however, it requires huge amounts of data to build 

(Aguilar et al., 2017; Christodoulidis et al., 2015b; Hassannejad et al., 2016; Mezgec et al., 2017a; Yanai 

et al., 2015a). CNN significantly improved classification accuracy on large food image datasets. An 

accuracy of 89% was achieved on Food101 (Bossard et al., 2014) and 83.15% on UECFood256 (Martinel 

et al., 2018). 

 Food weight and nutrient estimation 
Before the corresponding nutrients information of food in a recognized food image can be estimated, the 

volume or weight has to be known or calculated (Subhi et al., 2019). The nutrient content can be estimated by 

computing the actual mass of the food based on the estimated volume and the density of the recognized food 

as well as calorie information obtained from nutritional databases such as the USDA Food Composition 

Database (Liang et al., 2017; Subhi et al., 2019; USDA, 2010). A method of estimating the amount of nutrients 

in a food consumed by an individual is to express the food in terms of the serving or portion size (Abramovitch 

et al., 2012; Lu et al., 2018; Yang et al., 2018). The nutrient contents of nearly all popular, commonly 

consumed, and publicly sold food items for instance, the ones contained in food and nutritional databases such 

as United States Department of Agriculture Food and Nutrient Database for Dietary Studies (FNDDS),  

(Montville et al., 2013; USDA, 2010), Canada Nutrient File (Health Canada, 2015), and several others were 

computed based on a per 100g serving size or ready-to-eat form of the food. Food and Nutrient Database for 
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Dietary Studies (FNDDS), the database used to code food intake and calculate nutrients intake for the What-

We-Eat-In-America (WWEIA), dietary component of the National Health and Nutrition Examination Survey 

(NHANES). The FNDDS also consist of portions and weights of commonly consumed foods and beverages 

as reported in the WWEIA database. FNDDS contains over 8000 food and beverages, 65 nutrient components 

for each of the food and over 30000 typical portion weights (Montville et al., 2013; Rhodes et al., 2017). The 

weight and nutrient composition of foods obtained from the FNDDS can further be used for various 

applications such as being an integral part of an image-based nutritional status evaluation system. 

Estimating food volume from 2-dimensional image(s) can be very challenging because food portion comes in 

different sizes and shapes, or served as single or mixed portion, thus, contribute to variations in extracted image 

features. In a research carried out by Sun et al. (2008), a reference card is placed in the field of view of the 

camera while capturing the image of the food items. While the reference card helped to estimate the pose and 

scaling factor, the user still needs to manually select the food area upon capturing the food image. Once the 

food area is known, the volume can then be estimated based on multiple camera parameters which included 

the focal length, position, and other intrinsic parameters. Sun et al. (2015) presented a virtual reality (VR) 

approach which uses pre-built 3D models of food with known volumes. In its application, a user needs to 

superimpose the model onto the food items in the real scene and by scaling, translating, and rotating the models 

to fit the food items in the image, the food volumes can then be estimated, and nutrient content further 

computed. Advancements in computing power and artificial intelligence tools and algorithms have paved way 

for the application of deep learning approaches to estimate food volume from food images. Recently, a research 

team at Google developed a deep learning-based framework for estimating food volume. The idea behind their 

work relies on reconstructing 3D models of single RGB image of food based on inferred depth maps trained 

by convolutional neural networks (CNN). An advantage of the proposed work is the fact that it does not require 

the user to capture multiple images of food or to place a fiducial marker in the field of view of the camera as 

proposed in other research. Despite several achievements presented in literature to estimate nutrient content of 

food from single RGB image, there are still several issues such as occlusion, blurred inferred depth map, and 

several others (Lo et al., 2018; Meyers et al., 2015). This indicates that there is need for more work to be done. 

 NUTRIENT PROFILING FOR NUTRITIONAL STATUS EVALUATION 
Nutrient profiling (NP) is a scientific approach for categorizing or ranking foods based on their nutritional 

composition for the purpose of preventing disease and promoting health (WHO, 2010). Nutrient profiling has 

in the past decade leveraged technology to support dietary assessment. It has been used for several applications 

including health and nutrition claims, product labelling logos or symbols, information and education, provision 
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of food to public institutions, and as a self-administered dietary intake monitoring tool (Koen et al., 2016; 

WHO, 2010). As a dietary intake monitoring tool, common applications of nutrient profiling include 

description of nutrient levels in foods (e.g. high fat, low fat, source of fiber, energy dense, nutrient poor, etc.), 

or description of the effects of nutrient consumption (e.g. healthy, healthier option, less healthy, etc.). 

In designing a reliable nutrient profiling model, two major approaches exist which are based on carefully set 

parameters (Drewnowski et al., 2008; Scarborough et al., 2007):  

1. Across-the-board approach; one which food are scored or classified using the same algorithm in an 

account to identify healthiness in foods. 

2. Category-/ food-group specific approach; one which unique algorithms are adopted for different food 

groups in order to identify healthy diets within the group. 

In the past few years, a number of nutrient profiling algorithms have been developed and validated following 

globally acceptable best practices and standards all of which take into cognizance certain crosscutting 

characteristics, namely: 

1. The types and number of nutrients selected for usage in nutrient profiling algorithms in an effort to define 

food healthiness. These can be identified as qualifying nutrients (or positive nutrients, which are of good 

benefits to one's health), and disqualifying nutrients (or negative nutrients or nutrients to be limited). 

2. The recommended values of the selected nutrients for nutrient profiling. This is often subject to national 

or international nutritional regulatory standards (Masset, 2012; Tharrey et al., 2017). 

3. The optimal reference base upon which the nutrient content is computed. It is often expressed per 100 g 

or 100 kcal of food or per standard serving size which indicates the quantity of food considered for the 

computation (AFSSA, 2008). Research have shown that references based on 100 kcal and on serving 

sizes better represent positive nutrients while the negative nutrients were preferably expressed as per 100 g 
(AFSSA, 2008). 

4. The nutrient profiling algorithm to be used for effective combination of the recommended reference base 

and the nutrient content information (Drewnowski et al., 2008). 

5. The threshold to distinguish healthy and unhealthy foods for effective nutrient profiling (AFSSA, 2008; 

Masset, 2012) 

Table 2.5 below highlights a cross-section of some popular published nutrient profiling models which adopted 

a blend of the characteristics stated above. 
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Table 2.5: A cross-section of some published “across-the-board” nutrient profiling models (Masset, 2012; Tharrey et al., 2017) 

Abbreviations: %𝑫𝑫𝑫𝑫𝒊𝒊, percent of daily value (recommended intake) for a nutrient in the reference amount or in amount i; SFA, saturated fatty acids; MUFA, Mono-unsaturated fatty acids; ALA, α-
linolenic acid. a w, weight given to individual nutrients. b Nutrient: nutrient content per serving. c ED, energy density. d RACC, reference amount customarily consumed, LIM, the score of nutrients to be 
limited, SAIN, score of nutritional adequacy of individual food (Masset, 2012; Tharrey et al., 2017) 

Name Algorithm Reference 

Base 
Qualifying Nutrients (+ve) Disqualifying 

Nutrients (-ve) 
References 

Nutritious Food 

Index (NFI)a 
𝐍𝐍𝐍𝐍𝐍𝐍 = ��w. %DVpositive +  w. %DVnegative� Serving Fibre, Calcium, Iron, Zinc, 

Magnesium, Potassium, 

Phosphorus, Niacin, Folate and  

Vitamins A, C, B1 and B2.  

Total fat, SFA, 

Cholesterol, Sodium 

(Gazibarich et al., 1998) 

Ratio of 

recommended to 

restricted food 

components (RRR)b 

𝐑𝐑𝐑𝐑𝐑𝐑 =  
∑�NutrientsGood

6� � 

∑  �Nutrientsrestricted
5� �

 
Serving Protein, fibre, Calcium, Iron and 

Vitamins A and C. 

Energy, SFA, total 

sugar, cholesterol, 

Sodium. 

(Scheidt et al., 2004) 

Calories for 

Nutrient (CFN)d 
𝐂𝐂𝐂𝐂𝐂𝐂 =  

ED
�∑  %DV100g13

1 �
13
�

 1000kcal Protein, Calcium, Iron, Zinc, 

Magnesium, folate, niacin and 

Vitamins A, C, B1, B2, B6 and B12 

 (Zelman et al., 2005) 

Food Quality Score 

12, and 3 (FQS 

1,2,3) 

𝐅𝐅𝐅𝐅𝐅𝐅 𝟏𝟏/𝟐𝟐/𝟑𝟑 =   
∑ %DV𝟏𝟏/𝟐𝟐/𝟑𝟑

n1/n2/n3�n1/n2/n3
1  

∑  %DV
5�

5
1   

 

 

2000kcal n1: fibre, Vitamins A, C, E, D, and 

B12, folate, Calcium, Magnesium, 

Iron, Potassium. n2: same, but 

category specific. n3: n1 + Protein, 

Phosphorous, Zinc, Copper, niacin, 

Pantothenic acid, Vitamins B1, B2, 

Kand B6, Manganese, Selenium. 

 Denominator: energy, 

SFA, cholesterol, 

sodium, and energy 

from fats 

(Kennedy et al., 2008) 

SAIN, LIM 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 =  ∑  𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐢𝐢𝐢𝐢
𝟏𝟏
𝐢𝐢

 × 100;  ratioi =  � nutrienti
 RVi

�  ×  100
E

  

𝐋𝐋𝐋𝐋𝐋𝐋 =  
∑  𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐣𝐣𝟑𝟑
𝟏𝟏

𝟑𝟑
 × 100;  ratioj =  � nutrienti

MRVj
�  ×  100 

100kcal / 

100g 

5 nutrients from Protein, fibre, 

Calcium, Iron, ALA, MUFA, 

Vitamins C, D, and E 

Sodium, SFA, added 

sugar 

(Darmon et al., 2009; Tharrey et 

al., 2017) 

Nutrient Rich 

Food (NRF9.3) 
𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍.𝟑𝟑 =  

∑ %𝐃𝐃𝐃𝐃9
1 

9
− LIM 

100kcal 

or 

RACC 

Protein, fibre, Calcium, Iron, 

Magnesium, Potassium and 

Vitamins A, C, E and B12. 

SFA, added (or 

total) sugar, Sodium 

(Fulgoni et al., 2009) 
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The key components required to obtain the nutrient profile in food include the type and composition of 

nutrients in the food, the weight or portion size of the food, as well as the daily recommended values 

(DRV) of nutrients present is such food. While the nutrient composition, standard weight/ portion size and 

DRVs of a large variety of most common foods can be retrieved from publicly available food databases 

such as USDA Food and Nutrient Database for Dietary Studies (FNDDS) (Montville et al., 2013), 

Canadian Nutrient File (Health Canada, 2015), food weight or volume can also be computed manually 

(Dehais et al., 2017; Yang et al., 2018). However, estimating volume from food image is still a challenging 

task (Min et al., 2019). 

 The SAIN, LIM model 

The SAIN, LIM model is one of the most popular nutrient profiling models that defines food products in 

terms of their nutritional adequacy and healthiness based on an individual’s recommended consumption. 

The SAIN, LIM nutrient scoring system which was developed by the French food safety agency, AFSSA 

(2008) has proven to be an highly effective tool among researchers. This system is based on two previously 

published indicators: the Nutrient Density Score (NDS), based on qualifying nutrients (i.e. positive 

nutrients), and the LIM score, based on disqualifying nutrients (i.e. the nutrient to be limited) (Darmon et 

al., 2005; Maillot et al., 2007). A primary threshold value was assigned to the two scores which further 

defined a four “nutrient profile classes” for the model. The SAIN score, computed (using Equation 2.1) 

for 100 kcal of food, is an un-weighted arithmetic mean of the percentage adequacy for five qualifying 

nutrients (plus 1 optional nutrient) in the food composition tables and for which a daily recommended 

value (DRV) existed. 

 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =

⎝

⎜
⎜
⎜
⎛�

�𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒65 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹25 +  𝑉𝑉𝑉𝑉𝑉𝑉 𝐶𝐶110 + 𝐶𝐶𝐶𝐶
900 + 𝐹𝐹𝐹𝐹12.5 + 𝑉𝑉𝑉𝑉𝑉𝑉 𝐷𝐷5 − min 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�

5  × 100�

𝐸𝐸

⎠

⎟
⎟
⎟
⎞

 × 100 (2.1) 

Where: 

Protein = protein content in g/100g;   Fibre = fibre content in g/100 g; 

Vit C = vitamin C content in mg/100g;  Ca = Calcium content in mg/100g; 

Fe = Iron content in mg/100 g;   Vit D = vitamin D content in µg/100g 

E = energy density in kcal/edible 100g;  Minimum ratio (min ratio) = the lowest of the 6 

[nutrient/DRV] ratios. 
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The LIM score (computed using Equation 2.2) is the mean of the percentages by which a particular food 

exceeds the recommended nutritional value (Table 2.6) for each of the nutrients taken into account in the 

food, namely: Sodium, added sugars, and saturated fatty acids (SFA) and it is expressed per 100g of 

cooked or rehydrated food (Darmon et al., 2009; Tharrey et al., 2017). 

 𝑳𝑳𝑳𝑳𝑳𝑳 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =  �
𝑁𝑁𝑁𝑁

3153 +  𝑆𝑆𝑆𝑆𝑆𝑆22 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
50

3
�  × 100 (2.2) 

 

Table 2.6: Daily Recommended values (DRVs) used to compute each food’s nutrient density score (SAIN) and limited nutrient 
score (LIM), respectively (Darmon et al., 2009) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

These values are based on French (Martin, 2001) and European (Eurodiet Core Report, 2000) nutritional recommendations. a If added sugars 
are not available, “free sugars”, as defined by the WHO are used (World Health Organization, 2003). b Salt added at the table was not 
included. 
 

 Defined threshold values for SAIN and LIM score  

SAIN score was computed based on 2000 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 reference daily energy intake. The optimum value for the 

SAIN is 100% for 2000 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, which corresponds to 5% for 100 kcal (100 2000)⁄  food. Hence, a SAIN 

value ≥ 5 indicates a good nutrient density. On the other hand, the LIM was calculated for 100 𝑔𝑔 while 

the reference value used to compute the threshold value is based on food intake rather than on energy 

intake. The LIM score was computed based on 1340 𝑔𝑔/𝑑𝑑 mean daily food intake. The maximal value for 

the LIM score is 100% for 1340 g (100 1340)⁄ , which is equivalent to 7.5% for 100 𝑔𝑔 food. Therefore, 

Score Nutrient  DRV 

Nutrient density score (SAIN) Protein (g)  65 

 Fibre (g) 25 

 Vitamin C (mg) 110 

 Calcium (mg) 900 

 Iron (mg) 12.5 

 Vitamin D (µg) 5 

 Vitamin E (mg) 12 

 α-linolenic acid (g) 1.8 

 Mono-unsaturated fatty acids (g) 44.4 

Limited nutrient score (LIM) Saturated fatty acids (g) 22 

 Added sugars (g) a 50 

 Sodium (mg)b 3153 
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a LIM value < 7.5 indicates a minimal amount of nutrients to be limited (AFSSA, 2008; Darmon et al., 

2009). 

Based on its SAIN and LIM values and the thresholds defined for each score, each food can be classified 

into 1 of 4 possible SAIN, LIM classifications as shown in Figure 2.2. Class 1 SAIN ≥ 5 and LIM < 7.5; 

class 2, SAIN < 5 and LIM < 7.5; class 3, SAIN ≥ 5 and LIM ≥ 7.5; and class 4, SAIN < 5 and LIM 

≥  7.5. Class 1 represent foods with the most recommendable nutrient profile (i.e. high nutrient density 

and low content of limited nutrients), whereas class 4 comprised of foods with the least recommendable 

nutrient profile (low nutrient density and high content of nutrients worth limiting). Foods from class 2 and 

class 3 are intermediate in terms of nutritional quality (Darmon et al., 2009; Tharrey et al., 2017).  

 
Figure 2.2: SAIN, LIM Food distribution chart 

 



30 
 

  HOW EMERGING TECHNOLOGIES CAN IMPACT DIETARY ASSESSMENT 
The age-old understanding and recognition of the limitations associated with self-reporting measures of 

dietary assessment has facilitated extensive application of current and emerging technology concepts such 

as computer vision and machine learning in order to continually improve accuracy, as well as reduce 

researcher and client burden. This growing success is making self-reporting easy and usable across all 

ages and genders, for instance, development of web app platforms and smart mobile device apps for food 

record and diet monitoring that can be easily used by adolescents and aged users for estimation of portion 

size, food recognition, nutrient profiling, etc. through analysis of food images. These emerging technology 

concepts can be classified as, (i) Techniques (for extracting desired features from food images) and (ii) 

Tools (driving potential). 

 Techniques 

 Artificial Intelligence (AI) techniques and Algorithms 

In the past decade, Artificial Intelligence (AI) techniques such as computer vision, machine learning 

(including sub-fields such as deep learning), and natural language processing have been increasingly used 

for several applications such as face & voice recognition, spam email filtering, real-time navigation, etc. 

on popular web-platforms such as Facebook, Google, as well as in robotics, health care systems, drones 

and self-driving cars. Conventional computer vision techniques comprised of using feature extraction 

algorithms to extract desired visual features from captured images of food items. Global features such as 

color, shape, texture, etc. and local features such as Scale Invariant Feature Transform (SIFT), Speeded 

Up Robust Features (SURF), Local Binary pattern (LBP) are common feature descriptors that are often 

extracted from food images and  used to learn or train a food classification or recognition models. This is 

a machine learning technique used to develop classification model which can be used to identify and 

predict the classes to which a set of unknown food belongs to, based on the food image features used as 

the input data to train the model. The feature descriptors used is largely due to their inherent properties 

such as invariance to geometric and photometric transformation, translation, rotation and scaling (P. 

Pouladzadeh et al., 2014). A study carried out by Chen et al. (2012) employed LBP and SIFT features 

individually on a food image dataset, their results showed that the accuracy of 53% was achieved with 

using SIFT features alone  while using the LBP features only resulted in 46% accuracy. However, 

combining both features, along with additional Gabor filter and color features, increased the accuracy to 

68%. A different study (Beijbom et al., 2015), using the same dataset, extracted SIFT, LBP HOG, MR8 
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filter, and color features, and using a SVM classifier, obtained an accuracy of 77.4%. 

In the last decade, advancement in computing and processing power available in recent computers have 

largely contributed to the development of powerful deep learning (Goodfellow et al., 2016; LeCun et al., 

2015; Schmidhuber, 2015) algorithms such as Deep Convolutional Neural Network (CNN), Recurrent 

Neural Networks (RNNs), Generative Adversarial Networks (GANs), and Autoencoders. These 

algorithms have found successful applications in food image classification and has proven to be very 

promising for image-based dietary assessment (Ahn et al., 2019; Mandal et al., 2018; Mezgec et al., 

2017b). 

 Cloud computing 

Cloud computing generally refers to physical data centers which provides computing power, data storage, 

software, etc. to users all over the world, and are available over the internet (cloud). The rapid growth in 

cloud computing in recent decade can be attributed to the advancement in computing and storage 

equipment production. This has made it easy and inexpensive to host mobile and web applications in the 

cloud in place of on-premise hosting which are very expensive to set up, scale, and maintain. This has in-

turn led to rapid increase in the development of several dietary data gathering and analysis applications 

which relies on the cloud for reliable storage, compute, and analysis of dietary data, thereby taking the 

burden off the mobile devices. There is no doubt that cloud computing will continue to provide long-

lasting solutions to dietary assessment problems. 

 Augmented Reality (AR) and Virtual Reality (VR) 

Augmented and virtual reality are two emerging technologies that are rapidly gaining popularity in dietary 

assessment. They have recently been deployed as techniques for estimating the portion size or volume of 

food in real time. While augmented reality tries to integrate digital information with the user's environment 

i.e. overlays new information on top of the environment in real time, virtual reality attempts to create a 

completely artificial environment. Though still in early research and development stages, several 

researchers have employed augmented and virtual reality for food volume estimation. In researches carried 

out by Domhardt et al. (2015) and Stütz et al. (2014), mobile augmented reality applications which can 

assist users in self-reporting their nutrient intake were developed. Yang et al. (2018) also tried to solve 

problems associated with perception while capturing images of food for nutrient intake estimation. They 

developed a virtual reality food volume estimation method that would not require the user to place a 
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fiducial marker in the field of view while capturing images of food. The complexity and error margins 

showed that there are still much more improvements and research to be done. 

 Resources and tools 
Resources such as image dataset and emerging computing tools and platforms such as Graphical 

Processing Unit (GPU), Quantum Computing, 5G, and Internet of Things (IoT) are driving potential or 

wheel upon which the emerging techniques will thrive in order to deliver desired overarching goals and 

objectives fast-advancing technological era. 

 Image dataset 

Data has never been more available, and it has progressively become the ‘plethoric oil’. Particularly, ease 

of generating image data from different kind of devices have witnessed tremendous growth in recent years 

which is indicative of the leap into the Big Data and Internet of Things (IoT) era of technology where data 

and computing capabilities are readily available and easily accessible. This recent growth have spurred a 

great deal of researches toward the application of deep learning to solve problems in various fields such 

as robotics navigation (Pierson et al., 2017), self-driving cars (Bojarski et al., 2016), agricultural 

production (Kamilaris et al., 2018), remote sensing (Cheng et al., 2016), medical imaging analysis (Shen 

et al., 2017), and food detection and recognition (Aguilar et al., 2017; Christodoulidis et al., 2015a). 

Popular image database, ImageNet, with over 14 million images gave rise to the development of several 

well-known open source CNN architectures including, AlexNet (Krizhevsky et al., 2012). VGGNet 

(Simonyan et al., 2014), GoogLeNet (Szegedy et al., 2015), and ResNet (He et al., 2016). The impressive 

classification accuracies derived from these architectures subsequent to being trained on huge dataset 

motivated the concept of Transfer Learning (Pan et al., 2009) which deals with repurposing the knowledge 

(learned parameters) acquired from training a CNN on huge dataset to a different but related task with 

smaller dataset. 

In food images recognition tasks, the major challenges are the large variations in food (both single and 

composite foods) due to shape, color, texture, volume, ingredients, composition, as well as image 

background noise (Zhou et al., 2019). The successes and popularity of CNN architectures as well as the 

increasingly publicly available food image datasets contributed to the growing success in the application 

of deep learning for food recognition, detection, and to aid dietary intake assessment (Min et al., 2019). 

Furthermore, researchers can now (e.g. using deep learning API libraries (Tensorflow, Pytorch, Keras, 

etc.) implement transfer learning by fine-tuning and retraining open source pre-trained models (with 
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inherent ability to extract features such as texture, color, high-level abstract representations, etc.) on their 

own food image dataset. This approach has proven to significantly reduce training time and increase 

accuracy (Sahoo et al., 2019; Zhou et al., 2019). Table 2.7 describe performance of popular deep learning 

architectures on publicly available dataset. 

Table 2.7: Popular benchmark food image datasets 

 

 Graphical Processing Unit (GPU) 

GPU is a programmable logic chip (processor) specialized for display functions. It is optimized 

exclusively for data computations and to renders images, animations and video for the computer's screen. 

The inherent ability of GPUs to perform massive parallel computations made it possible for it to effectively 

handle the popular dense linear algebra matrix-vector multiplication steps in neural networks (Pierson et 

al., 2017). The growing availability and application of GPUs makes the parallel processing faster, cheaper, 

and more efficient and it is responsible for the persistent breakthroughs in deep learning algorithms and 

models. With these, deep learning training that could take weeks, days and hours can be significantly 

reduced to take just few hours and minutes. Further considerations of deep learning applications in image-

based dietary assessment may lead to faster and better accuracy in image-based food classification and 

recognition, as well as in determining the nutrient information of food from captured images. 

Dataset Dataset Description and Source Research work ref 
DL 

Architecture 

Top-1% & Top-5% 

accuracies 

UECFood-256: 

(Yanai et al., 

2015b) 

• Popular foods in Japan and other countries 
• 256/ 31397 images each with a bounding 

box indicating the location of the food item 
in the image. 

• http://foodcam.mobi/dataset256.html 

Martinel et al. (2018) WISeR 83.15 | 95.45 

Food-101: 

(Bossard et al., 

2014) 

• Popular food in USA 
• 101/ 101,000 images 
• https://data.vision.ee.ethz.ch/cvl/datasets_e

xtra/food-101/ 

Martinel et al. (2018) WISeR 90.27 | 98.71 

UECFood-100: 

(Matsuda et al., 

2012) 

• Popular Japanese food 
• 100/9060 images each with a bounding box 

indicating the location of the food item in 
the image. 

• http://foodcam.mobi/dataset100.html  

• Martinel et al. (2018) 

• H. Hassannejad et al. 

(2016) 

• WISeR 

• Inception 

v3 

• 89.58 | 99.23 

• 81.50 | 97.30 

Food-475: (G. 

Ciocca et al., 

2017) 

• Popular food in USA, China and Japan 
• 475/ 247,636 
• http://www.ivl.disco.unimib.it/activities/fo

od475db/  

Ciocca et al. (2018) ResNet-50 81.59 | 95.50 

VIREO Food172: 

(Chen et al., 2016)  
• Popular Chinese dishes 
• 172/ 110241 
• http://vireo.cs.cityu.edu.hk/VireoFood172/  

Ciocca et al. (2018) ResNet-50 85.86 | 97.32 

http://foodcam.mobi/dataset256.html
https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/
https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/
http://foodcam.mobi/dataset100.html
http://www.ivl.disco.unimib.it/activities/food475db/
http://www.ivl.disco.unimib.it/activities/food475db/
http://vireo.cs.cityu.edu.hk/VireoFood172/
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 Quantum computing 

Another promising emerging technological advancement that would in the nearest future revolutionize 

our world and by extension improve technological applications in dietary assessment is the Quantum 

Computing. The concept of Quantum Computing involve developing computers including smart mobile 

devices that adopt quantum physics principles and capable of seamlessly performing computing 

operations in billion-fold realms and beyond (Rouse et al., 2010). Quantum computers will have the 

capacity to analyze data in order to provide feedback much faster and efficiently than regular classical 

computers. This would in no doubt truncate the learning curve for artificial intelligence machines (IBM 

Research Lab, 2018). Though still in conceptual and research stages, Quantum Computing is predicted to 

mainstream in 2023 and hence, might be deployed to solve complex dietary assessment problems, develop 

intuitive algorithms to accurately predict nutrient information and several other dietary challenges. 

 5th Generation (5G) mobile networks technology  

The 5th generation mobile networks (5G) are the next generation of mobile internet connectivity, offering 

faster speeds, seamless, low-latency and more reliable connections on smartphones and other smart 

devices than ever before (Qualcomm, 2018; Techradar, 2018). With its expected launch across the world 

by 2020, its application in dietary assessment would be very mind-blowing. Web-based dietary assessment 

methods such as FFQs and 24HDR would be significantly transformed through seamless and low-latency 

interactions with food images and nutrient information databases. Image-based dietary assessment 

methods deployed on smart mobile devices would experience flawlessness in data query from cloud 

databases regardless of the location around the world. 

 Internet of Things (IoT) 

Dietary assessment is also expected to benefit extensively from the limitless possibilities of the emerging 

Internet of Things (IoT). With its global widespread expectation by 2025, thanks to cheap processors and 

wireless networks, IoT promises seamless communication and interconnectivity capabilities that add 

layers of digital intelligence to all passive and active things which may include computing devices, 

mechanical and digital machines, objects, animals or people that have been provided with unique 

identifiers and the ability to transfer data over a network without specifically requiring human-to-human 

or human-to-computer interaction. With IoT application in dietary assessment, for instance, complex 

nutrient information determination steps such as volume estimation might be discarded due to tendencies 

that food plates might be equipped with sensors that can accurately and automatically measure the volume 
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of food served on the plate. 

These technological tools and techniques and the ones yet to be developed are expected to revolutionize 

our digital society and our daily activities. However, much more research work needs to be done to enable 

technology-aided dietary assessment methods to harness and integrate the capabilities of the emerging 

technologies. In addition, despite the promising benefits of these emerging technologies, there are still 

challenges mostly common in developing countries, and unserved or underserved parts of developed 

countries that need to be addressed, such as low internet penetration, poor literacy level, and data security 

implications. 

 CONCLUSION 
Continuous improvement on the existing methods of dietary assessment remains an active area that 

requires constant research and development. Further validation of usability as well as enhancement of 

newly adopted methods using current, emerging and future technology concepts certainly requires more 

adept research focus, given researcher’s primary aim to reduce burden on users and dietary researchers 

and also to improve nutrient data collection accuracy. Smart mobile devices have established a solid 

bedrock for personalized dietary assessment and have also created room for the inclusion of exciting new 

ideas such as personalized nutrition advice, dietary lifestyle monitoring, physical fitness guide, and several 

others. It is unequivocally clear that tech-based dietary assessment methods such as the web-based and 

smart mobile device-based methods are on a path to a very promising and productive future. However, as 

technology advancement further ripples across the existing technologies, recursive integration and 

iteration of innovative studies, coupled with well-designed experimentation are highly recommended in 

order to have seamless alignment between the existing and future technologies. 
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Preface to chapter 3 

PREFACE TO CHAPTER 3 
This chapter describes the image dataset used in this thesis in terms of how they were acquired, the steps 

involved in processing the data and how they were utilized. The dataset contains a total of ~ 18, 500 food 

images out of which ~ 5500 are images of single foods belonging to 10 food categories (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹10 dataset). 

The remaining ~ 13000 images are of mixed or composite food product and are categorized into 15 types 

of food (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹15 dataset). The 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓10 dataset was used to traditional train machine learning algorithms 

while the 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓15 dataset was used to train a deep convolutional neural network. 
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Food Image Dataset Preparation for Diet 
Quality Assessment Research 

3. FOOD IMAGE DATASET PREPARATION FOR DIET QUALITY ASSESSMENT RESEARCH 

ABSTRACT 
This paper introduces a food image dataset suitable for development of image-based diet quality assessment 

systems. The dataset was derived partly from publicly available food images datasets as well as downloaded 

from the web. The dataset contains a total of ~ 18, 500 food images out of which ~ 5,500 are images of single 

foods belonging to 10 food categories (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹10 dataset). The remaining ~ 13,000 images are of mixed or 

composite food product and are categorized into 15 types of food (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹15 dataset). In addition, the paper also 

described how images were acquired and the steps involved in preprocessing and preparing the dataset for food 

image recognition model development. The dataset has the potential of being used for several image-based 

dietary related researches. The dataset will further be made publicly available via the following cloud API: 
https://food-image-dataset.s3.amazonaws.com/Composite_food_dataset.zip  

Index Terms: Food image dataset, image-based, computer vision, machine learning, diet quality assessment 

 

 

3 

https://food-image-dataset.s3.amazonaws.com/Composite_food_dataset.zip
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 INTRODUCTION 
Image-based food recognition is a very beneficial approach to improve diet quality assessment systems. 

However, it can be a challenging task since food is intrinsically deformable and complex as it contains a lot of 

visual variabilities such as color, texture, shape, etc. In addition, developing a food image recognition model 

require a fairly large amount of image dataset with adequate visual representation of the food. The work 

presented in this paper described how images were acquired and the steps involved in preprocessing and 

preparing the dataset for food image recognition model development. The dataset contains a total of ~ 18, 500 

food images out of which ~ 5,500 are images of single foods belonging to 10 food categories (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹10 

dataset). The remaining ~ 13,000 images are of mixed or composite food product and are categorized into 15 

types of food (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹15 dataset). The 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓10 dataset was used for the development of food image recognition 

model as a component part of an image-based nutrient scoring system (see Chapter 4), by employing computer 

vision features extraction algorithms such as SIFT, HOG, LBP, Color Histogram to build a robust feature 

vector which can then be used to train machine learning algorithms including random forest, KNN, LDA, 

SVM, as well as the ensemble of the 5 machine learning algorithms. In a similar context, the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹15 dataset 

was used to train a deep convolutional neural network as a component part of diet quality assessment system 

(see Chapter 5). Table 6.1 (Appendix C) shows some popular benchmark publicly available dataset. The entire 

dataset is further be made available in the cloud for further image-based diet quality assessment researches 

(see Appendix D). 

 MATERIALS AND METHODS 

 Dataset preparation pipeline 

 Image data acquisition 

The dataset contains a total of ~ 18, 500 colored food images out of which ~ 5,500 are images of single foods 

belonging to 10 food categories (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹10 dataset). The remaining ~ 13,000 images are of mixed or composite 

food product and are categorized into 15 types of food (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹15 dataset). There are three resources for the 

dataset namely: (i) web images (images downloaded from the internet), (ii) single-serving food images 

selected from the publicly available UECFOOD256 dataset (Kawano et al., 2014), and (iii) randomly 

selected composite food images from the Food101 (Bossard et al., 2014). The 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹10 dataset and its 

respective number of images per class are given as follows: 𝐶𝐶1: Avocado (777), 𝐶𝐶2: Bagel (324), 𝐶𝐶3: 

Banana (790), 𝐶𝐶4: Cheeseburger (601), 𝐶𝐶5: Coconut (791), 𝐶𝐶6: Cooked beans (322), 𝐶𝐶7: Cooked rice 

(603), 𝐶𝐶8: Croissant (257), 𝐶𝐶9: Pizza (312), and 𝐶𝐶10: Spaghetti (536). The 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹15 dataset contained 
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13,030 composite food images with ~ 870 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 as given below: Lasagna, 

Steak_with_mashed_potatoes, Spaghetti_beef_tomato-sauce, Macaroni_and_cheese, Fried_rice, 

Fish_and_chips, Chicken_curry, Hot_dog, Rice_and_beans, Beef_salad, Pizza, Egusi_Soup, Pad_thai, 

Waffles_and_fruits, Cheeseburger. Figure 3.1 shows examples of images in the Food15 dataset. 

 
Figure 3.1: Examples of images in the Food15 dataset 

 Data pre-processing 

Data cleaning, formatting and labelling 

Since the dataset was acquired from different sources, it contained different inconsistencies such as 

background noise, wrong labels, unsupported image formats, duplicated images, variations in image size 

and dimensions, etc. In this step, images with irregular height or width (too large or too small) which 

usually are irrelevant images were first removed. The cleaning steps also involved manually going through 

all the images in the dataset in order to get rid of false positive images, that is images that were likely to 

confuse the machine/ deep learning algorithms or compromise the quality of the dataset. These false 

positive images included very blurry images, corrupt images, images with unsupported format, images 

with excessive background noise, etc.). The images also consisted of several kinds of image formats (.jpg, 

.tiff, .png, .gif, .webp, etc.) which were not all suitable for recognition model development or might slow 
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down the computation processes. In order to maintain uniformity, all images were converted to the 

supported .png image format due to the image quality preservation capacity of the image format. Particular 

attention was placed on processes involved in the image data labelling workflow. In order to automate the 

labelling process and to also make sure the labels do not have any noise in them, a script was written in 

python which helped to reduce the amount of time that would have been spent on manual labelling.  

Image resizing 

The dataset consisted of images with different resolutions, however for effective performance of the 

algorithms, it was important to establish a base image size that ensured that images with constant input 

dimensionality were used for model development. To ensure that the images had the same size and aspect ratio, 

the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹10 and the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹15 images were resized to a fixed resolution of 128 ×  128 pixels and 

300 ×  300 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 respectively. 

Image denoising and smoothening 

The database contained images with random variation of brightness or color information (image noise). The 

two types of image noise observed in the dataset were, i) Gaussian noise (resulting from poor illumination 

and/ or high temperature due to faulty camera sensor or circuitry during digital image acquisition or image 

transmission; ii) Salt and pepper noise (random speckles of dark (with 0 pixel value) and random bright (with 

255 pixel value) colors all over an image resulting from sharp and sudden disturbances in the image signal due 

to faulty memory location or malfunctioning of camera’s sensor cell during image acquisition). The gaussian 

noise and the salt and pepper noise were removed by filtering all the images in the dataset using gaussian filter 

and mean filter respectively. The gaussian filter also serve the purpose of smoothening the images. 

Data splitting 

The 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹10 dataset was partitioned into training and held-out test set in the ratio 𝟖𝟖𝟖𝟖: 𝟐𝟐𝟐𝟐, respectively while 

the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹15 was partitioned into training, validation and test sets in the ratio [70%: 15%: 15%] respectively. 

The training set was further split into training and validation set. The training was used to fit the model in order 

to learn unique patterns peculiar to the dataset. The validation set was used for tuning the parameters of the 

model, evaluate the predictive quality of the trained model, as well as select the best performing model(s). The 

held-out test set was used to report the performance of the resulting machine learning model.  
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Feature scaling 

The images in the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹15 dataset were scaled to be homogeneous i.e. scaled to take small values in order 

to improve the numerical operations and performance of the optimization function during the training of 

the neural network. For the feature scaling technique called the min-max scaling or normalization 

(computed using Equation 3.1), the features (image pixels) were casted to float32 and then scaled from 

range of [0 –  255] to have a range of [0 and 1]. This was done by subtracting the min value and dividing 

by the difference between the max and min values. The image normalization was carried out at the point 

of feeding the images to the network algorithm. 

 𝑧𝑧 =
𝑥𝑥 − 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) −𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥)
 (3.1) 

Where 𝑧𝑧 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 normalized value for pixel value x, 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) are the minimum and 
maximum values in 𝒙𝒙 given its range 

 DISCUSSION 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹10 dataset was used to develop recognition model by employing computer vision and classical machine 

learning algorithms. Global and local features such as color, shape, and texture were extracted from every 

image in the dataset using color histogram, histogram of oriented gradients (HOG), and local binary 

patterns (LBPs) feature descriptor algorithms, respectively. Each feature descriptor stored the extracted 

features as feature vectors. These vectors were then combined or concatenated together into a single robust 

feature vector which was then used to train the machine learning algorithms during the model 

development. 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹15 dataset was used to train a deep convolutional neural network using the transfer learning approach. 

Five different pre-trained networks namely: VGG16, VGG19, ResNet101V2, InceptionV3, and Xception (see 

Appendix C) were repurposed and trained on the 70% 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹15training set using the Fine-tuning approach and 

their performance were evaluated on the 15% validation set. 

 CONCLUSION 
A robust dataset containing single-serving food images and as well as mixed or complex food images 

(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹15) has been presented. The dataset is capable of promoting open research in training image recognition 

models for the development of image-based dietary quality assessment systems. The dataset can also be 

expanded to accommodate more food categories and hence used to create larger and more accurate food 

recognition model.  
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Preface to chapter 4 

PREFACE TO CHAPTER 4 
A comprehensive review of literature showed that image-based approaches to monitoring and assessing 

dietary intake area rapidly evolving area of study with a lot of promising potential. 

This chapter explores hand-engineered Computer Vision features extraction algorithms to extract high-

level visual representation of food such as texture, color, as well as feature descriptors such as Scale 

Invariant Feature Transform (SIFT) features and orientation of gradients. This chapter describes how these 

features, classified in different combinations, using machine learning algorithms as well as their ensemble 

can be assessed to build a food recognition system that can aid dietary intake monitoring and profiling of 

a user. 
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Development of an Image-based Food 
Recognition and Nutrient Profiling System 

4. DEVELOPMENT OF AN IMAGE-BASED FOOD RECOGNITION AND NUTRIENT PROFILING SYSTEM 

ABSTRACT 
Diets have high impact on nutrition-related illnesses (e.g. diabetes, obesity, cancer) and incidence of 

mortality among different population groups around the world. Dietary and nutritional status 

assessment currently rely on monitoring procedures that are very prone to flaws from data-gathering 

practices, human subjective attitude, and daily variations in a user’s dietary intake. The procedures are 

also expensive, tedious and time-consuming. In this paper, an approach of dietary intake assessment 

and nutritional status evaluation based on artificial intelligent (AI) tools such as computer vision and 

machine learning is presented. A combination of techniques such as preprocessing, features extraction, 

classification, and nutrient profiling were deployed to estimate the nutrient factor from users’ meal. In 

the approach, unique features such as color, gradients of orientations and texture were extracted from 

food images database belonging to 10 classes. These features were used as training and validation 

dataset for the classification model. In its application, the user captures image of the food before 

consumption using a smart mobile device. The developed classification model identifies the class of 

the food in the image as well as its nutrient composition. The nutritional profiling score were then 

computed using the SAIN-LIM nutrient profiling model and data obtained from dietary composition 

database. The developed system can serve as a useful tool that enables users to self-administer and 

evaluate their single or multi-day food records as well as enables dietary researchers to track and 

analyze nutrition goals of clients and population groups. Results showed that assessing and estimating 

the SAIN-LIM scores of user’s meal from its image will improve and facilitate proper control of dietary 

intake and overall maintenance of healthy diet. 

Index Terms: Dietary assessment, computer vision, machine learning, nutrient profiling, nutritional 

status evaluation 

4 



44 
 

 INTRODUCTION 
Inappropriate dietary intake has come into focus in the past decade as part of the leading causes of 

nutrition-related illness and death in the world. For instance, it has been associated as a major 

contributor to the development of chronic heart diseases, diabetes, and other vascular syndromes. 

The entry steps in addressing these challenges are to measure, analyze and monitor dietary intakes 

in order to determine an individual’s nutritional status. The procedures often employ either 

traditional methods of gathering dietary intake data such as 24-Hour Dietary Recall (24HDR), 

Food Record (FR), Food Frequency Questionnaires (FFQs) or a recent approach which involves 

examination of images of consumed foods sent to a dietary researcher by a client in order for the 

researcher to carefully analyze the food images using pre-existing templates to obtain information 

such as class of food, volume of food, nutrients composition, etc., (Ainaa et al., 2018; Ambrosini 

et al., 2018; Lee et al., 2013).There are several challenges associated with these methods. These 

include but are not limited to flaws in data-gathering techniques, intense burden on client or the 

dietary researcher, and daily variations in client’s dietary intake. The variations may be attributed 

to the fact that they utilize or rely on tedious, subjective, error-prone and time-consuming self-

reporting, interviewing, and data-gathering mechanisms that require the user to be literate, perform 

difficult cognitive tasks and the dietary researcher to perform loads of manual data entry and 

analysis on the dietary data using the information provided in a nutrient intake database (Vila-Real 

et al., 2016). The need to improve the accuracy of dietary intake data and data-gathering processes 

as well as mitigate the evolving nutrition-related chronic diseases has continued to gain significant 

attention in the nutrition and health research community. For these reasons, there has been a 

progressive realization and incessant demand for the development of a sophisticated systems to 

automatically carry out tasks associated with nutrient intake and nutritional status determination, 

such as food recognition, food type classification, volume estimation, and, nutrient profiling (Subhi 

et al., 2019). These have been the principal theme of several research efforts in the nutrition and 

health research knowledge space. 

So far, broad spectrum of innovative and advanced technology-assisted solutions have been 

developed, validated and presented in literature. These solutions have been seen to leverage the 

recent increasing computational efficiency in mobile devices, advancement in computer vision and 
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machine learning algorithms as well as breakthroughs in cloud computing and cloud-based mobile 

technology. 

The computer vision frontier is still in its developmental stage. There are still several challenges 

such as occlusion, variations in photometric properties and viewpoint especially when applied to 

food and nutrition assessment. The problem has further been exacerbated by the complexity and 

variations in the geometrical structure and appearance (color, shape, and texture) as well as 

intrinsic deformability of food. This makes recognition or classification of food images a difficult 

tasks for several classification models, and hence a subject of concern for computer vision 

researchers. A popular recognition or classification technique that has in the past decade gained 

popularity and veritable applications due to advancement in computational efficiencies of 

computer hardware is the Ensemble Method. Single models derived from training machine 

learning algorithms (such as logistic regression, decision tree, etc.) on some data often do not yield 

good results, especially when dealing with a dataset with dynamic features. Ensemble method 

takes several single models as inputs and combines them into one single predictive model in order 

to achieve more reliable and accurate results. 

The main objective of this study was to develop an automatic recognition and nutrient profiling 

system for single foods such as bagel, avocado and croissant based on computer vision image 

analysis techniques and machine learning. The study also covered an objective to develop a food 

image database comprising of single foods which can be further used in subsequent supervised 

learning studies. 
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 MATERIALS AND METHODS 

 Dataset protocol 

 Image data acquisition for the food recognition system 

The food image dataset used in this study comprised of 5313 color images of single-serving food 

belonging to 10 categories or classes of food. There are two resources for the dataset namely: web 

images (images downloaded from the internet) and a cross-section of the publicly available 

UECFOOD256 dataset (Kawano et al., 2014). The 10 food classes and their respective number of 

images per class are given as follows: 𝐶𝐶1: Avocado (777), 𝐶𝐶2: Bagel (324), 𝐶𝐶3: Banana (790), 

𝐶𝐶4: Cheeseburger (601), 𝐶𝐶5: Coconut (791), 𝐶𝐶6: Cooked beans (322), 𝐶𝐶7: Cooked rice (603), 

𝐶𝐶8: Croissant (257), 𝐶𝐶9: Pizza (312), and 𝐶𝐶10: Spaghetti (536). The images obtained were from 

different internet sources and contained a lot of visual differences which potentially introduced 

photometric and geometric variabilities (such as multiple scaling, rotation, difference in 

illumination, difference in viewpoint, image blurring, compression and background noise) in the 

dataset. 

 Data preprocessing 

Pre-processing referred to the set of transformations and feature engineering practices applied to 

the dataset in order to enhance the features of the images before feeding them to the machine 

learning algorithm. The following preprocessing steps were carried out on the dataset. 

Data cleaning, formatting, and labelling 

Since the dataset was acquired from different sources, it contained different inconsistencies such 

as background noise, wrong labels, unsupported image formats, duplicated images, variations in 

image size and dimensions, etc. In this step, images with irregular height or width (too large or too 

small) which usually are irrelevant images were first removed. The cleaning steps also involved 

manually going through all the images in the dataset in order to get rid of false positive images, 

that is images that were likely to confuse the machine learning algorithms or compromise the 

quality of the dataset. These false positive images included very blurry images, corrupt images, 

images with unsupported format, images with excessive background noise, etc.). The images also 

consisted of several kinds of image formats (.jpg, .tiff, .png, .gif, .webp, etc.) which were not all 

suitable for computer vision algorithms or might slow down the computation processes of the 
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computer vision and machine learning algorithms. In order to maintain uniformity, all images were 

converted to the supported .png image format due to the image quality preservation capacity of 

the image format. Another foreseen challenge that might hinder the performance of the machine 

learning model was the problem of incorrect image labelling. Particular attention was placed on 

processes involved in the image data labelling workflow. In order to automate the labelling process 

and to also make sure the labels do not have any noise in them, a script was written in python 

which helped to reduce the amount of time that would have been spent on manual labelling.  

Cropping, resizing and patch selection 

The dataset consisted of images with different resolutions, however for effective performance of the 

algorithms, it was important to establish a base image size that ensured that images with constant input 

dimensionality were fed to the machine learning algorithm. Firstly, the important portion of the image 

often called region of interest (ROI) was cropped out while discarding the excess pixels and unwanted 

background noise. This in turn will contribute to rapid processing of the image data by the computer 

vision algorithms. To ensure that the images had the same size and aspect ratio, the images were further 

resized to a fixed resolution of 128 ×  128 pixels. Concretely, given a sample rectangular image, the 

ROI was first cropped and then resized such that the shorter side was of length 128 pixel, resulting into 

a central image patch with resolution of 128 ×  128 pixels. 

Image denoising and smoothening 

The database contained images with random variation of brightness or color information (image noise). 

The two types of image noise observed in the dataset were, i) Gaussian noise (resulting from poor 

illumination and/ or high temperature due to faulty camera sensor or circuitry during digital image 

acquisition or image transmission; ii) Salt and pepper noise (random speckles of dark (with 0 pixel 

value) and random bright (with 255 pixel value) colors all over an image resulting from sharp and 

sudden disturbances in the image signal due to faulty memory location or malfunctioning of camera’s 

sensor cell during image acquisition). The gaussian noise and the salt and pepper noise were removed 

by filtering all the images in the dataset using gaussian filter and mean filter respectively. The gaussian 

filter also serve the purpose of smoothening the images. 

Data splitting 

Dataset splitting was necessary in order to eliminate bias while training the machine learning 

algorithms. The classification accuracy of a machine learning algorithm depends largely on the size of 
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the training dataset, that is, larger numbers of training dataset would usually enable the classifiers to 

produce better generalization. The dataset was partitioned into training and held-out test set in the ratio 

𝟖𝟖𝟖𝟖: 𝟐𝟐𝟐𝟐, respectively. The training set was further split into training and validation set. The training 

was used to fit the model in order to learn unique patterns peculiar to the dataset. The validation set 

was used for tuning the parameters of the model, evaluate the predictive quality of the trained model, 

as well as select the best performing model(s). The held-out test set was used to report the performance 

of the resulting machine learning model. The predictive performance of the model was evaluated by 

comparing predictions on the test set with true values (known as ground truth) using the accuracy, 

precision and recall performance metrics. 

Some of the images in the database used in this study are shown in Figure 4.1. 

         

          

Figure 4.1: Sample of the images in the dataset. The dataset consists of 5313 food images organized into 10 food 
classes: (a) Avocado, (b) Bagel, (c) Banana, (d) Cheeseburger, (e) Coconut, (f) Cooked beans, (g) Cooked rice, (h) 
Croissant, (i) Pizza, and (j) Spaghetti. All images in the dataset are color RGB images. 

 

 System architecture and model development 
The development of the machine learning model to be used for classification in the food 

recognition system followed a series of steps as to make up the proposed system as shown in Figure 

4.2. 

(a) (b) (c) (d) 

(f) (g) (h) (i) (j) 

(e) 
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Figure 4.2: Overview of the Proposed System Architecture 

 Features extraction 

The feature extraction procedure was responsible for the extraction of useful visual features that 

was used for image perspective understanding, interpretation, and classification. Global and local 

features such as color, shape, and texture were extracted from every image in the dataset using 

color histogram, histogram of oriented gradients (HOG), and local binary patterns (LBPs) feature 

descriptor algorithms, respectively. Each feature descriptor stored the extracted features as feature 

vectors. These vectors were then combined or concatenated together into a single robust feature 

vector which was then used for training the machine learning algorithms. The three feature 

extraction algorithms are further described below. 

Color histogram  

Color features was extracted from the images by first finding the color space which best described 

the color array. Hue, Saturation, and Value (HSV) color features was used to describe colors in 

terms of the degree of color, vibrancy and brightness of the image which conforms seamlessly 

with how the human eye tend to perceive colors (Singha et al., 2011). In order to extract the color 

histogram in the HSV color space, the images were first transformed from the default RGB color 

space into HSV color space (Su et al., 2011) using Equation 4.1. Each of the images were then 

divided into 4 ×  4 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and a 96 − 𝑏𝑏𝑏𝑏𝑏𝑏 HSV color histogram was extracted for each image. 

Each HSV channel was then quantized into 32 − 𝑏𝑏𝑏𝑏𝑏𝑏 resulting into an 8 ×  8 × 8 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. In total, 

1536 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (32 × (4 ×  4) 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ×  3 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) color feature vector was extracted 

from each image. 
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;  

𝑉𝑉 =  
1
3

(𝑅𝑅 +  𝐺𝐺 +  𝐵𝐵) 

(4.1) 

Where, 

H = Hue; represent the true color, e.g., red, yellow, green, cyan, blue, magenta, etc. and it is 

measured in degrees from 0 and 360 with 0 being red. 

S = Saturation; represent the amount of true color used. A color with 100% saturation will be the 

purest color possible, while 0% saturation produces grayish color 

V = The Value; represent an analog of brightness of the color. A color with 0% brightness is pure 

black while a color with 100% brightness has no black mixed into it 

Histogram of Oriented Gradients (HOG) 

In order to detect precise edges and other relevant dense features within the images, 

2 ×  2 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 which covers an 8 ×  8 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 cell neighborhood with 50% overlap between 

a block and the next block and binned over 8 angular directions histogram (every 45° along a unit 

circle) spanning from 0 𝑡𝑡𝑡𝑡 180 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 was used in the study. This resulted in a HOG feature 

descriptor with 2048 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (16 ×  16 ×  8 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). HOG feature 

descriptor takes into consideration the occurrence of gradient orientation in local regions of an 

image and hence, it is invariant to geometric and photometric transformations (Dalal et al., 2005). 

Local Binary Patterns (LBPs) 

Local Binary Patterns (LBP) (Ojala et al., 2002) is a powerful and efficient non-parametric representation 

of the texture component of an image as a texture descriptor. The following steps were implemented in 

constructing LBP texture descriptor for each image as: 

i. The image was first converted to grayscale 

ii. For each pixel p in the grayscale image, a neighborhood of size r (3 ×  3) surrounding the center 

pixel was selected as shown in Figure 4.3, the center pixel was thresholded against its remaining 8 

neighborhood pixels. 

iii. The LBP value for the center pixel was then computed and stored in a 2D array output with the same 

width and height as the input image. It then followed that, if the intensity of the center pixel was 



51 
 

greater-than-or-equal to that of its neighbor, then its value was set to 1; else, it was set to 0. This 

generated a set of binary values stored as an 8-bit array, which was then converted to a decimal value. 

A total of  28  =  256 possible combinations of LBP codes was obtained from the 8 surrounding 

pixels. This step of thresholding, coding binary values, and storing the output decimal value in the 

LBP array was iterated for every pixel in the input image. 

iv. Finally, the histogram was then computed over the output LBP array. Since a 3 ×  3 neighborhood 

had 2 8 =  256 possible patterns, the LBP 2D array thus had a minimum value of 0 and a maximum 

value of 255, which yielded a 256 − 𝑏𝑏𝑏𝑏𝑏𝑏 histogram of LBP codes as the final feature vector. 

 

Figure 4.3: An illustration of the LBP descriptor 

Scale Invariant Feature Transform (SIFT) 

The Scale Invariant Feature Transform (SIFT) descriptor extracts local features at key points which have 

high informative content, stable under local and global noise, as well as substantially robust to a wide range 

of image translation, scaling, rotation, changes in 3D viewpoint, and partially invariant to illumination 

changes, and affine distortion (Lowe, 1999, 2001; Lowe, 2004) The SIFT features were extracted using the 

following four steps: 

i. Scale-Space Extrema Detection: This is a filtering stage that involved the use of Difference of 

Gaussian function to detect stable keypoint locations in scale space which are invariant to changes in 

scale and orientation. The scale-space extrema, 𝐷𝐷(𝑥𝑥,𝑦𝑦,𝜎𝜎), was detected by computing the Difference 

of Gaussian of two images, one with scale k times the other as given in the Equation 4.2 (Gonzalez 

et al., 2018; Lowe, 2004) below, 

 
𝐷𝐷(𝑥𝑥,𝑦𝑦,𝜎𝜎) = [𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑘𝑘𝑘𝑘) − 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝜎𝜎)] ⋆ 𝐼𝐼(𝑥𝑥,𝑦𝑦) 

𝐷𝐷(𝑥𝑥,𝑦𝑦,𝜎𝜎) = 𝐿𝐿(𝑥𝑥, 𝑦𝑦,𝑘𝑘𝑘𝑘) − 𝐿𝐿(𝑥𝑥,𝑦𝑦,𝜎𝜎) 
(4.2) 

Where " ⋆ " is the convolution operator, 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝜎𝜎) is a variable-scale Gaussian, 𝐿𝐿(𝑥𝑥,𝑦𝑦,𝜎𝜎) is the scale-space 

representation and 𝐼𝐼(𝑥𝑥,𝑦𝑦) is the input image. 
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ii. Keypoint Localization: The keypoint localization was performed in order to reject unstable points 

from the list of keypoints by eliminating those that have low contrast or are poorly localized on an 

edge. 

iii. Orientation Assignment: A consistent orientation was then assigned to each keypoints based on 

local image properties. This allowed for ease of representing a keypoint, relative to its orientation, 

and hence achieving invariance to image rotation. 

iv. Keypoint Descriptor: Finally, the, feature descriptor vector was computed for each keypoint. The 

gradient information was rotated to align with the orientation of the keypoint and then weighted by a 

Gaussian weighting function with a variance of 1.5 ×  𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. This data was then used to 

generate multiple histograms over a window centered on the keypoint. The descriptor computed uses 

a set of 16 histograms, aligned in a 4 × 4 subregion, each with 8-directional bins (the bins are 

multiples of 45°), one for each of the main gradient directions and one for each of the mid-points of 

the directions. This resulted in a feature vector containing 128 elements known as SIFT keys were 

used as part of the training features to train the machine learning algorithms. 

 Image classification model (hyperparameter tuning, model selection, and model 

evaluation) 

In order to identify the machine learning algorithm that is best suited for the dataset, seven different 

machine learning classification algorithms (Random Forrest, Logistic Regression, Linear 

Discriminate Analysis, K-Nearest Neighbor, Classification and Regression Tree, Gaussian Naïve Bayes 

and Support Vector Machine) were trained using the training set. Different combinations of the 

algorithm’s hyperparameters were compared and tested for the purpose of selecting the top-

performing ones. 

Hyperparameter tuning and model selection 

Different sets and combinations of hyperparameters were experimented on during the training of 

the seven algorithms considered and were used to produce a set of classification models. The best 

set of hyperparameters and the top-five-performing models were selected using K-fold Cross-

validation and learning curves approaches. In addition to selecting hyperparameters and model, 

these approaches also helped to obtain the right balance between bias and variance that best yield 

an optimal model performance. 
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a. 10-fold Cross-validation 

In this approach, the training data (80% of the dataset) was shuffled and randomly split into 

10 groups. As illustrated in Figure 4.4, one group was used for validation and the rest for 

training. The process was repeated until all the ten groups have been used for validation once. 

 

Figure 4.4: Illustration of 10-fold cross-validation 

 

b. Learning curve:  

In the learning curve, the performance of the models both on the training and validation set was 

plotted as a function of the training set size. The learning curve was used to observe the effect of 

the varying size of the training data on the generalization performance of developed classification 

models. This helped to further tune the parameters of the models and to select top performing 

models. 

Model evaluation 

The selected models were evaluated in order to estimate the generalization ability of the selected 

model on unseen data or on the held-out test set, i.e., how well the selected model performed on 

unseen data using specific evaluation metrics. Accuracy, precision, and recall computed using 

Equation 4.3, 4.4, and 4.5), were the three (3) main model evaluation metrics used to report the 

performance of the model on the held-out test set. Accuracy described how often the models were 
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correct overall, precision described how precise or how often the models were able to correctly 

predict the actual or correct labels, and recall (also known as sensitivity) described how sensitive 

or how often the models were able to detect the correct or actual labels. 

 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 
 ;   (4.3) 

  𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 
 ;   (4.4) 

 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 
 (4.5) 

Where TP indicates True Positives (foods correctly detected); FP indicates False Positives (foods 

incorrectly detected or misclassified foods); TN indicates True Negatives (food not detected). 

Confusion matrix was further used to display the performance of the models on the test set by 

matching the predicted classes with the actual classes. The diagonal elements of the confusion 

matrix showed the fractions of food images that were correctly predicted while the off-diagonal 

elements represented misclassified food images. 

 Model classification strategy 

Two different strategies of deploying classification models namely: Single and Ensembled 

classifier strategy, were used in this study. 

Study A: Single classifier strategy 

Using the feature extraction algorithms (e.g. Color Histogram, HOG, LBP), every image in the 

training set was represented by a collection of corresponding feature vector(s) and their associated 

class label. In the single classifier strategy, the feature vectors were used to independently train 

and build the classification models from the selected classification algorithms (K-Nearest 

Neighbors, Logistic Regression, Random Forest, Support Vector Machine, and Linear 

Discriminant Analysis). In addition, the single classifier strategy also involved training the models 

on different combinations of the feature vectors and then compare the results. The algorithm of 

some of the selected classifiers are described in Appendix A. 

Study B: Multiple or ensemble classifier strategy 

In the ensemble strategy illustrated in Figure 4.5, the 5 selected classification or learning 

algorithms were trained on the extracted feature vectors and then combined or ensembled to form 
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a single classification model. Furthermore, different combinations of the feature vectors were also 

used to train and build ensemble models in order to compare their performances. The ensemble 

method used called Voting method involved three steps. Firstly, the selected classifiers were 

trained independently on the training set. In the step that followed, each of the models returned for 

a testing instance, a probability vector for each predicted food class i.e. probabilities of predicting 

the food classes being considered. Finally, the final class label was selected by first computing the 

linear combination of the weights w and the predicted class probabilities p and then selecting the 

class with the highest probability as seen in Equation 4.6. 

 𝑦𝑦� = arg max 
𝑖𝑖

 
1
𝑛𝑛
�𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

 (4.6) 

 

Where, 𝑦𝑦� = final predicted class, wi = weight assigned to the jth classifier, 𝑝𝑝𝑖𝑖 = predicted probability 

for the jth classifier 

n = number of classifiers 

 

Figure 4.5: Architecture of the Ensemble method 

 Weight and nutrient estimation 
The weights and nutrients composition of the food items considered in this study were obtained 

from the Food and Nutrient Database for Dietary Studies (FNDDS). The FNDDS also consist of 
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known serving size and weights of commonly consumed foods and beverages as reported in the 

What We Eat in America (WWEIA) database. As a typical illustration, as shown in Table 4.1, the 

portion weight of a single medium serving size of a regular croissant is 57 𝑔𝑔 as reported in the 

FNDDS database. The portion weight of the food can be varied to account for larger food portions 

or multiple serving based on the quantity consumed by multiplying the portion weight by a factor 

e.g. 1, 1.5, 2, 3 etc. The weight and the nutrient values obtained for each of the food class were 

further used as part of the input data for the nutrient profiling.  

Table 4.1: Nutrient information of the 10 foods retrieved from the FNDDS 

 

 Nutrient profiling  

 The SAIN, LIM model 

Following the food recognition using the food recognition model, and its corresponding nutrient 

values retrieved from the FNDDS, the nutrient scoring and nutrient profiling steps were then 

carried out using the SAIN, LIM model (Equation 4.7 and 4.8 respectively). In this study, the 

SAIN, LIM model was used to categorize the recognized foods based on their degree of healthiness 

and unhealthiness and then distributed them into one of the four different classes (or quadrants) as 

follows: i. Recommended for good health; ii. food with neutral or balanced health benefits; iii. 

recommended in less quantities or to be consumed occasionally; iv. consumption should be limited. 

  Portion 
description 

Estimated 
portion 
weight  

Energy Protein Fiber Calcium, 
Ca Iron, Fe 

Ascorbic 
acid, Vit. 

C 

Vitamin 
D 

Sodium, 
Na 

Saturate
d Fatty 

Acid 

Added 
Sugar 

 
   65 25 900 12.5 110 5 3153 22 50 

Food item   (g) (kcal) (g) (g) (mg) (mg) (mg) (μg) (mg) (g) (g) 

Avocado 1 regular 
size 201 321.6 4.02 13.467 24.12 1.1055 20.1 0 14.07 4.2733 1.3266 

Egg, cheese 
and ham on 
bagel 

2 servings 436 522 25.72 2 248 3.82 2.8 1.2 1508.00 8.1240 6.1800 

Banana (raw) 1 medium 
(7" long) 118 105.02 1.2862 3.068 5.9 0.3068 10.266 0 1.18 0.1322 14.4314 

Cheeseburger 2 regular 
(medium) 290 780.1 22.0545 1.74 259.55 1.479 0.435 0.145 856.95 10.1979 5.2200 

Coconut 1 serving 80 283 2.664 7.2 11.2 1.944 2.64 0 16 23.758 4.984 

Cooked beans 1 serving 250 210 10.725 6 106.25 6.25 20.625 0 306.25 0.6738 0.7750 

Cooked rice 1 serving 153 253.98 7.8948 0.153 168.3 1.377 0.306 0.459 492.66 4.5365 0.1530 

Croissant 3 medium 
size 171 694.26 14.022 4.446 63.27 3.4713 0.342 0 798.57 19.9369 19.2546 

Pizza 
2 slices (1/8 
of the 
whole 12") 

250 705 29.35 5.75 382.5 6.3 2.25 0 1712.50 12.7300 8.1500 

Spaghetti 1 serving 260 218.4 14.612 9.256 59.8 2.808 28.6 0 899.60 3.5230 37.0240 
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 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =

⎝

⎜
⎜
⎜
⎛�

�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃65 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹25 +  𝑉𝑉𝑉𝑉𝑉𝑉 𝐶𝐶110 + 𝐶𝐶𝐶𝐶
900 + 𝐹𝐹𝐹𝐹12.5 + 𝑉𝑉𝑉𝑉𝑉𝑉 𝐷𝐷5 − min 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�

5  × 100�

𝐸𝐸

⎠

⎟
⎟
⎟
⎞

 × 100 (4.7) 

Where: 

Protein = Protein content in 𝑔𝑔/100 𝑔𝑔; 

Fibre = Fibre content in 𝑔𝑔/100 𝑔𝑔; 

Vit C = Vitamin C content in 𝑚𝑚𝑚𝑚/100 𝑔𝑔; 

Ca = Calcium content in 𝑚𝑚𝑚𝑚/100 𝑔𝑔; 

Fe = Iron content in 𝑚𝑚𝑚𝑚/100 𝑔𝑔; 

Vit D = vitamin D content in µ𝑔𝑔/100 𝑔𝑔 

E = energy density in kcal/edible 100 𝑔𝑔; 

Minimum ratio (min ratio) = the lowest of the 6 [nutrient/DRV] ratios. 

 𝑳𝑳𝑳𝑳𝑳𝑳 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =  �
𝑁𝑁𝑁𝑁

3153 + 𝑆𝑆𝑆𝑆𝑆𝑆22 +  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
50

3
�  × 100 (4.8) 

 

 Algorithm implementation 
All the analysis were carried out using Python programming (Van Rossum, 2007) within the 

Jupyter Notebook environment equipped with computer vision, machine learning, and data 

visualization libraries such as OpenCV (Bradski, 2000), Scikit-learn (Pedregosa et al., 2011), and 

Matplotlib (Hunter, 2007), respectively. The functions to execute the feature extraction and 

machine learning algorithms were pre-installed as part of the OpenCV and Scikit-learn 

respectively. The machine used was equipped with an Intel Core i7 7th generation CPU, Geforce 

GTX1050 NVIDIA graphic card and 16 GB of RAM. 

 RESULTS AND DISCUSSIONS 

 Model selection and optimization results 
The result (accuracy and standard deviation) of the 10-folds cross-validation for the considered 

classifiers on the training set is displayed in Table 4.2. The result showed that out of the seven 
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classification models, the top 5 performing ones were Random Forest, Logistic Regression, Linear 

Discriminate Analysis, K-Nearest Neighbor, and Support Vector Machine. 

 Table 4.2: Result of 10-folds cross-validation of the classifier on the training set 

 

The learning curve was used to further analyze the performance of the models on the training set 

in terms of their tendency to overfit or underfit the data. The learning curve compared the 

performance of the classification models on the training and validation set as a function of 

increasing size of the training set. With the learning curves, as shown in Figure. 4.6, it was 

observed that the validation score was first gradually increasing with increasing training set size. 

However, the validation score started to decline at about 84% which was indicative of the fact that 

the model had started to pick up noise from the training data (overfitting) due to insufficient 

training data and this can result to failure of the model to generalize to unseen dataset. The 

overfitting was mitigated by regularizing the model using the data augmentation technique which 

was carried out by artificially increasing and balancing the size of the training set by applying 

computer vision image transformation technique such as rotation, translation, shifting, and scaling 

on the training data. As a result, the regularization step applied to the training data increased the 

size by 20% which in turn improved the validation score as shown in Figure. 4.7. 

Classifiers Mean Accuracy (%) Standard deviation 

Random Forest 91.82 0.0089 

Support Vector Machine 90.46 0.0113 

Logistic Regression 88.82 0.0153 

Linear Discriminant Analysis 87.30 0.0142 

K-Nearest Neighbors 82.00 0.0187 

Classification and Regression Tree 79.21 0.0204 

Gaussian Naïve Bayes 72.51 0.0106 
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Figure. 4.6: Learning curve before data augmentation regularization step  
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Figure. 4.7: Learning curve indicating improved model performance based on increased training dataset size 
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 Performance evaluation of the classification algorithms and features 

extraction algorithm on model generalization 

 Study A: Results of comparing the performance of individual classification models 

on individual and combined feature descriptors 

This section presents the performances of individual classification models (Random Forest, 

Logistic Regression, Linear Discriminate Analysis, K-Nearest Neighbor, and Support Vector 

Machine) built from using the HOG, SIFT, color histogram, and LBP feature descriptors when 

used individually and in combination as the input feature vectors for training the classification 

models.. Table 4.3 shows the comparative results of the performance of each of the classifiers on 

the individual feature descriptors (HOG, Color Histogram (CH), SIFT, and LBP). The results 

revealed low accuracy, precision and recall when the classifiers are trained on the individual 

feature descriptors. This implied that the image features generated using the individual features 

descriptor were insufficient to train the machine learning algorithms (underfitting) and thus, the 

model performed low on the validation set and is very likely to further fail to generalize to the test 

data. Table 4.4 presents the results of different combinations of the feature descriptors which 

included HOG + SIFT, HOG + LBP, HOG + CH, HOG + CH + SIFT, HOG + CH + LBP, and 

HOG + CH + SIFT + LBP used to train the selected classifiers. This showed better improvement 

over the individual feature descriptors in term of accuracy, precision and recall across the machine 

learning algorithms. This indicated that concatenating the feature vectors extracted using the 

individual machine learning algorithms into a single robust feature vector provided a better visual 

representation of the foods in the image dataset. This however implied that increasing the 

robustness of the training features by concatenating the feature vector has the potential to improve 

the performance of the classification models and also lead to better generalization to the test data. 

The results showed that the combination of HOG, Color Histogram, and LBP was best as the 

feature descriptors to consider for building the models which also aligns with the results presented 

in the work of Pouladzadeh et al. (2014) and Christodoulidis et al. (2015a)  .
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Table 4.3: Classification accuracy, precision, and recall (or sensitivity) of the classifiers on single feature descriptors 

 

Table 4.4: Classification accuracy, precision, and recall (or sensitivity) of the classifiers on combined feature descriptors 

Classifiers KNN LDA LR RF SVM 
Features 
descriptors Acc. (%) Pr. (%) Rc. (%) Acc. (%) Pr. (%) Rc. (%) Acc. (%) Pr. (%) Rc. (%) Acc. (%) Pr. (%) Rc. (%) Acc. (%) Pr. (%) Rc. (%) 

HOG 65.58 70.18 64.05 59.90 60.88 58.64 63.71 63.91 62.14 68.52 69.45 67.43 68.27 67.75 67.07 

CH 75.02 74.32 73.32 64.46 66.93 62.51 67.27 67.44 65.17 84.70 84.19 83.71 75.01 74.36 73.15 

SIFT 47.59 48.41 45.78 50.09 49.78 49.93 48.90 47.34 47.87 59.17 59.21 58.16 53.35 52.31 52.24 

LBP 59.09 59.68 57.16 52.34 50.81 50.78 42.49 31.41 39.15 65.40 65.67 64.05 42.35 32.21 39.35 

Classifiers KNN LDA LR RF SVM 

Features 
descriptors Acc (%) Pr. (%) Rc (%) Acc (%) Pr. (%) Rc (%) Acc (%) Pr. (%) Rc (%) Acc (%) Pr. (%) Rc (%) Acc (%) Pr. (%) Rc (%) 

HOG + SIFT 47.59 48.41 45.78 69.13 69.25 68.20 58.67 58.02 57.99 72.70 74.29 71.43 53.29 52.27 52.16 

HOG + LBP 65.83 70.41 64.32 69.08 69.76 68.09 66.15 66.26 64.70 75.14 77.59 74.03 70.14 69.69 68.96 

HOG + CH 73.34 77.16 72.01 78.33 79.52 77.56 81.20 80.75 80.33 86.63 86.48 85.73 83.64 83.09 82.82 

HOG + CH + 
SIFT 47.59 48.41 45.78 82.41 82.84 81.83 62.93 62.28 52.12 87.54 87.33 86.68 53.29 52.27 52.16 

HOG + CH + 
LBP 73.27 77.13 71.95 82.76 83.40 82.26 81.50 81.89 81.05 89.19 88.76 88.66 84.39 83.86 83.64 

HOG + CH + 
SIFT + LBP 47.59 48.41 45.78 84.16 84.15 83.65 63.18 62.56 63.25 89.29 88.88 88.76 53.29 52.27 52.15 
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 Study B: Comparison of individual classification models and ensemble model on 

selected combination of feature descriptors 

In this study, the five classifiers (Random Forest, Logistic Regression, Linear Discriminant Analysis, K-

Nearest Neighbor, and Support Vector Machine) were individually trained on the combined HOG, color 

histogram (CH) and LBP training feature vectors and then used to develop the ensemble classification 

model. The comparative result of the performance of the developed models on the validation set using the 

individual and the ensembled model is presented in Table 4.5. The result showed that the ensemble model 

achieved highest accuracy, precision and recall compared to using the classifiers individually. This pointed 

out the capability of the ensemble model to systematically harmonize the predictive capacity of each of the 

classification models as well as to mitigate their individual classification errors. The results further implied 

that ensemble model has higher potential than individual classification model in term of accuracy, precision 

and recall for developing accurate classification models to better represent the visual features of the food 

image dataset as well as to produce improved generalization to the test data. A similar ensemble technique 

was also employed in the work of Pandey et al. (2017). 

Table 4.5: Classification accuracy, precision, and recall of the individual vs ensemble model on HOG + CH + LBP feature descriptors 

 

 Model performance comparison and evaluation 
Using classifiers and feature descriptors individually to develop the models led to underfitting and poor 

generalization performance to the unseen data (held-out test set) as shown in study A and B.  As observed, 

the high bias and low training and validation accuracies were due to inadequacy of the model to learn 

enough features from the training data. However, the performance of the models increased when the feature 

descriptors were combined, and with the combination of HOG, color histogram, and LBP producing the 

highest across-board classification result while the combination of HOG and SIFT performed the lowest. 

Random forest (RF) and support vector machine (SVM) with global accuracies of 89.19% and 84.13% 

respectively, performed well when the classifiers were considered individually but the ensemble method 

displayed a much more significant performance with the combination of HOG, color histogram, and LBP 

with global accuracy of 90.3%. The results obtained were higher than that obtained in the work presented 

Classifiers [HOG + CH + LBP] KNN LDA LR RF SVM Ensemble 
model 

Accuracy (%) 73.27 82.76 81.5 89.19 84.39 90.32 

Precision (%) 77.13 83.4 81.89 88.76 83.86 90.13 

Recall (%) 71.95 82.26 81.05 88.66 83.64 89.95 
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by Anthimopoulos et al. (2014); Yanai et al. (2015a) and Farinella et al. (2016). However, the results were 

in line with results obtained in the work of  Pouladzadeh et al. (2015), E Silva et al. (2018) and Ahmed et 

al. (2019). This shows that the combination of HOG, color histogram, and LBP feature descriptors, which 

extracted gradient-based features, color space-orientation and textural features respectively were good 

visual descriptors that enabled the model to maintain a good balance of variance and bias and to also 

generalize well to the unseen dataset with a considerable level of accuracy, precision and recall as compared 

to other combinations of feature descriptors experimented on. The concatenation of these feature vectors 

into a single and robust feature vector gave rise to a good and rich feature descriptor with wide range of 

varying image data representation. The performance of selected feature descriptor combination was further 

compared on the basis of individual models as well as the ensemble model on each class of food as seen in 

Table 4.6. The table shows the results of comparing the classification performance of the individual 

classifiers and the ensemble method on the food classes. Figure 4.8 (a and b) shows the confusion matrices 

for the classification of the 10 unique foods in the test set using the ensemble model and the best performing 

model among the 5 single classification models. The diagonal elements of the confusion matrices indicated 

the fractions or percentages of food items that were correctly classified or predicted while the off-diagonal 

elements represent misclassified food items. The misclassifications, even though in infinitesimal 

percentages, were majorly a result of similarities in the appearance (color and texture) of the food items 

which can be mitigated by collecting more training images. Figure 4.9 shows samples of food that were 

misclassified due to similarities in their features. Figure 4.10 (a) and (b) presents a graphical representation 

of the comparative results.  

Table 4.6: Classification precision and recall (sensitivity) of the individual classifiers and the Ensemble method (EM) on each food 

 

Classifiers LR RF SVM EM 

Foods 
Precision 

(%) 
Recall 

(%) 
Precision 

(%) 
Recall 

(%) 
Precision 

(%) 
Recall 

(%) 
Precision 

(%) 
Recall 

(%) 

avocado 96 97 99 99 96 99 99 98 
bagel 74 72 78 83 75 76 78 87 
banana 93 90 97 97 93 94 97 94 
cheeseburger 85 83 85 93 83 85 90 91 
coconut 100 89 99 92 97 94 100 93 
cookedBeans 82 68 87 86 86 69 93 88 
cookedrice 84 93 90 91 87 87 91 93 
croissant 69 67 81 79 71 76 85 79 
pizza 63 72 86 87 77 75 90 89 
spaghetti 68 79 87 79 73 82 78 87 
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Figure 4.8: Confusion matrix of (a) Random forest model (b) Ensemble model for the classification of the 10 food products in the dataset

(a) (b) 
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Figure 4.9: Examples of incorrectly classified food images (a) bagel classified as croissant (b) pizza classified as 
cheeseburger (c) cooked beans classified as spaghetti 

Figure 4.10 (a and b): Graphical representation of the performance comparison between individual classifiers ensemble 
method on the foods 

 

(a) (b) (c) 

(a) 

(b) 
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 Nutrient profiling 

 Evaluating and implementing the nutrient scoring model 
Table 4.7 shows the food items considered in this study, their portion description, respective serving or 

portion size weight and as well as their SAIN and LIM scores. As an illustration using Equation 4.7 and 

4.8, Cooked beans with serving size of 𝟐𝟐𝟐𝟐𝟐𝟐 𝒈𝒈, contains Energy: 210 kcal, Protein: 10.725 𝑔𝑔, Fibre: 6 𝑔𝑔, 

Ca: 106.25 𝑚𝑚𝑚𝑚, Fe: 6.25 𝑚𝑚𝑚𝑚, Vit C: 20.625 𝑚𝑚𝑚𝑚, Vit D: 0 𝜇𝜇𝜇𝜇, Na: 306.25 𝑚𝑚𝑚𝑚, SFA: 0.674 𝑚𝑚𝑚𝑚, Added 

sugar: 0.775 𝑔𝑔. The SAIN and LIM scores were computed as follows: 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑺𝑺𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 =
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 × 100 

= �
�(1.2105 − 0.118)
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� × 100 
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� × 100 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = 𝟏𝟏𝟏𝟏.𝟒𝟒𝟒𝟒𝟒𝟒 

 

𝑳𝑳𝑳𝑳𝑳𝑳 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =  �
306.25
3153 + 0.674

22 +  0.775
50

3
�  × 100 

=  �
0.1432

3
�  × 100 

𝑳𝑳𝑳𝑳𝑳𝑳 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = 𝟒𝟒.𝟕𝟕𝟕𝟕𝟕𝟕 

From the above analysis, once cooked beans have been recognized using the ensemble classification 

model, the diet quality of the food was then analyzed using the SAIN-LIM nutrient profiling model. 

Cooked beans have a SAIN Score and LIM score computed as 𝟏𝟏𝟏𝟏.𝟒𝟒𝟒𝟒𝟒𝟒  and 𝟒𝟒.𝟕𝟕𝟕𝟕𝟕𝟕 respectively. This 

result shows that cooked bean has high SAIN score which is indicative of a relatively high amount of 

qualifying nutrients such as Protein, Calcium and Fiber while the low LIM score indicated that the cooked 

beans contained minimal amount of the disqualifying nutrients or nutrients to be consumed in less 

quantities such as Sodium, SFA, and Added Sugar.  
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The results however implied that the diet quality of consumed food (e.g. cooked beans) in terms of their 

healthiness significance can be modeled by estimating and analyzing the presence of certain nutrients 

present in food (qualifying and disqualifying nutrients). Similar findings were also deduced from the study 

carried out by Darmon et al. (2009). 

Table 4.7: Computed SAIN, LIM scores for the 10 foods  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Nutrient profile visualization 
In order to verify the ability of the food recognition and nutrient profiling system, the 10 classes of food considered 

in this study were presented as a food record plan indicating a set of foods consumed by a user during lunch over a 

period of ten days. The results obtained support the following discussion. Firstly, the image features were extracted 

and classified for the 10 foods into their respective classes with reliable accuracies. Secondly, the adoption of the 

SAIN, LIM nutrient profiling model enabled the classification of the foods based on their healthy’’ and 

‘‘unhealthy’’ benefits to the diets of the user over the pre-defined food record duration using the calculated SAIN 

and LIM scores. The values obtained by computing the SAIN and LIM scores for all the 10 food items were also 

used to visualize the nutrient profile of the foods as shown in Figure 4.11. The figure illustrated the SAIN and LIM 

nutrient profile of the 10 foods considered in the 10-day food record (Avocado, Bagel, Banana, Cheeseburger, 

Coconut, Cooked beans, Cooked rice, Croissant, Pizza, and Spaghetti) on a logarithmic scale. The logarithmic scale 

was used both for the LIM and the SAIN scores, due to the ease of response of the scale to skewness towards large 

  Portion 
description 

Estimated 
portion 
weight  

SAIN - LIM 

 
     

Food item   (g) Min ratio SAIN LIM 
Avocado 1 regular size 201 0.0268 5.4210 7.5038 
Egg, cheese and ham 
on bagel 2 servings 436 0.0255 4.9688 32.3716 

Banana (raw) 1 medium (7" 
long) 118 0.0066 4.9587 9.8337 

Cheeseburger 2 regular 
(medium) 290 0.0040 2.1654 27.9909 

Coconut 1 serving 80 0.0124 3.5937 39.4888 
Cooked beans 1 serving 250 0.1181 10.4048 4.7752 
Cooked rice 1 serving 153 0.0028 4.0676 12.1838 

Croissant 3 medium size 171 0.0031 2.1363 51.4862 

Pizza 2 slices (1/8 of 
the whole 12") 250 0.0205 4.5689 42.8257 

Spaghetti 1 serving 260 0.0664 9.8872 39.5311 
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values; i.e., in cases where one or a few values are much larger than the majority of other values of the two scores, 

especially the SAIN. 

 

Figure 4.11: Graphic representation of the classification of selected foods with the SAIN,LIM (score of nutritional adequacy of the 
individual foods, and score of nutrients to be limited) model and their position within the 4 nutrient profile classes (on log scales) 

Thirdly, the portion weight retrieved from the FNDDS database for Avocado and Cooked beans were 201 𝑔𝑔 and 

250 𝑔𝑔 respectively and their associated  SAIN scores (5.42 and 10.41 respectively) were greater than 5 but their 

LIM scores (7.50 and 4.78 respectively) were not more than 7.5. This implied that the foods have high nutrient 

density, i.e. rich in nutrients recommended for healthy living and low in nutrients that are considered to be unhelpful 

to the body. Spaghetti in the 3rd quadrant is high in both the SAIN and LIM scores (9.89 and 39.53 respectively) 

is considered to be less beneficial in terms of nutritional contribution and hence, recommended in less quantities or 

to be consumed occasionally. The SAIN scores for Bagel, Banana, Cheeseburger, Coconut, Cooked rice, Croissant, 

and Pizza (4.97, 4.96, 2.17, 3.59, 4.07, 2.14 𝑎𝑎𝑎𝑎𝑎𝑎 4.57 respectively) in the 4th  quadrant were less than 5 and their 

LIM scores (32.37, 9.83, 27.99, 39.49, 12.18, 51.49, and 42.83 respectively) were all greater than 7.5. This is 

indicative of the high constituents of the nutrients considered to be unhealthy namely: sugar, Sodium and saturated 

fat and are therefore, based on the quadrant they fall into, recommended to be consumed in very limited quantities. 

Hence, the results obtained implied that the approach has good practical value in terms of determining the quality 

of the dietary intake of users and hence potentially manage the nutritional value of their food intakes. 
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 CONCLUDING REMARKS 
In this study, a food recognition and image-based nutrient profiling system that is capable of predicting the class of 

a captured food image and then assessing the nutritional benefits of the food to the diets of the user or a population 

group under study has been presented. The approach first trained and validated a food recognition model developed 

for single foods using state-of-the-art hand-engineered computer vision feature extraction algorithms (HOG, color 

histogram, and LBP ) and machine learning classification algorithms (Random Forrest, Logistic Regression, Linear 

Discriminant Analysis, K-Nearest Neighbor, and Support Vector Machine) by experimenting on different cross-

sections of the dataset provided. The developed model was used to make reasonable prediction or generalize to new 

food image data or unseen data presented to it. Furthermore, the diet quality of the recognized food was then 

assessed using the SAIN, LIM nutrient profiling model. The proposed system has the potential of being 

implemented on smart mobile devices and as such becoming a reliable and convenient tool for daily self-

administered dietary intake monitoring, recording, and nutritional status assessment. The experimental results 

proved the effectiveness of the system which produced satisfactory results for recognizing food with high precision 

and recall values ranging from 75 −  100%. The computer vision features extraction and machine learning strategy 

adopted for the development of the recognition model is very promising and is often beneficial in events where the 

dataset size is small and computational capacity is limited as is the case this study. The strategy was easy to deploy 

to extract visual image features which were classified by the mainstream machine learning algorithms. 

As observed in this study, the greater the number of features extracted from images of food and the more distinct 

those features are, the better the performance of the recognition system. In future work, there are intentions to 

improve the food recognition system by integrating deep neural network-based approaches including transfer 

learning to improve the performance of the image recognition component of the system. Another possible direction 

for future work is to cover more food and meal instances in the database to support more mixed or composite foods. 
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Preface to chapter 5 

PREFACE TO CHAPTER 5 
An interesting lesson from the study in the previous chapter was that, the greater the features extracted 

from food images and the more distinct those features are, the better the performance of the recognition 

system. However, this is very tedious and time-consuming. So, this now begs the question, “can an 

approach to generate or extract or learn unlimited abstract features from images, provide a quality visual 

representation of the object(s) in the image… and can this be done automatically?”  

Careful review of literature revealed that there have been promising advances in the application of Deep 

Learning for image classification and object recognition. 

Chapter 4 explored Deep Learning techniques, specifically Deep Convolutional Neural Networks and 

established how they can be used for food recognition to better aid dietary intake monitoring and 

nutritional status evaluation. In particular, this chapter deals with evaluating the nutrients present in 

Composite or Mixed foods (from images) with complex and overlapping features. 
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Deep Learning Assisted Composite Food 
Recognition and Diet Quality Assessment System 

5. DEEP LEARNING ASSISTED COMPOSITE FOOD RECOGNITION AND 
NUTRIENT SCORING SYSTEM 

ABSTRACT  
Poor dietary intake is implicated in the occurrence of ill health and deaths around the world. Researchers 

attempts to address these challenges by measuring, analyzing and monitoring dietary intakes. However, 

the process comes with a lot of challenges. Conventional methods often fail due to the inherent complexity 

and inaccurate reporting by users. In the past decade, image-based diet monitoring and assessment 

approaches is fast becoming the most promising methods for managing diets and assessing diet-related 

diseases. 

Computer vision and machine learning offer a cornucopia of useful ways to aid diet monitoring challenges 

that otherwise defy conventional approaches. This study presents a deep learning assisted diet quality 

assessment system capable of recognizing and evaluating the nutritional adequacy and healthiness benefits 

or level of recommendation of a food consumed by a user. 

Concretely, a transfer learning approach was implemented to develop a food recognition system capable 

of recognizing a food from a captured image with very reliable accuracy while the SAIN-LIM model was 

used to assess the diet quality of the food in order to determine the nutritional adequacy and healthiness 

significance of the food. Experimental results showed a promising potential use of the system by dietary 

researcher to track and analyze the quality of a client's diet as well as by any user to self-administer a well-

controlled and maintained healthy diet. 

Index Terms: Dietary quality assessment, computer vision, deep learning, deep convolutional neural networks, 

transfer learning, artificial intelligence, image-based, nutrient profiling, nutritional status evaluation 

5 
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 INTRODUCTION 
Conventionally, smart mobile-based dietary assessment tools attempt to solve the problem of food intake 

monitoring in four fundamental approaches namely: recognize or detect the food, classification of the type 

of food in image, manually compute volume or weight estimation, and then estimate or retrieve the 

nutrients information in the food from publicly available food and nutrient databases (Dehais et al., 2017; 

Hamid et al., 2016; Heravi et al., 2015; Lo et al., 2018). Previous studies (Anthimopoulos et al., 2015; 

Zawbaa et al., 2014) focused largely on the conventional food image recognition approaches which 

involve extraction of visual features from food images using several combinations of specialized 

traditional computer vision algorithms such as Gabor filters, Scale Invariant feature Transform (SIFT), 

Color Histograms, Local Binary Pattern (LBP), Histogram of Oriented Gradients (HOG), and several 

others. The feature vectors extracted were then used to train and validate classification models developed 

from classical machine learning algorithms such as Support Vector Machine (SVM), Random forest, and 

Logistic Regression, in order which can be used to classify new food images. In the work of Chen et al. 

(2012), accuracy of 46% and 53% were obtained when SIFT and LBP features extracted from food image 

dataset were used independently to train a multi-label SVM classifier. When the features were combined 

in addition to Gabor filter and color histogram features, the accuracy was improved to 68%. In a similar 

study by Beijbom et al. (2015), on the same published dataset, SIFT, LBP and color features were extracted 

in combination with other hand-engineered computer vision features extraction algorithm such as HOG 

and MR8 filter and the accuracy improved to 77.4%  

Food items generally tend to show intra-class variation depending upon the method of preparation, as well 

as the ingredients used. This leads to complex variations in terms of shape, size, texture, and color. 

Traditional features perform considerably well on small to medium size homogeneous dataset with few 

variations in the feature space. However, the features tend to fail if there are no adequate training images 

to capture complex variations in the feature vector especially in mixed or composite food images (Heravi 

et al., 2015; Subhi et al., 2019). The importance of automatically generating complex and meaningful 

visual feature from food images using much more robust feature engineering tools cannot be 

overemphasized, hence the need for deep learning. 

In the last decade, computer hardware resources and computational power has grown tremendously, and 

researchers now use graphical processing units (GPUs) for parallel computations during the 

implementations of artificial neural networks (Oh et al., 2004). The inherent ability of GPUs to perform 

massive parallel computations made it possible to effectively handle the popular dense linear algebra 
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matrix-vector multiplication steps in neural networks (Pierson et al., 2017). In a similar manner, data has 

never been more available, and progressively becoming the ‘plethoric oil’. Particularly, ease of generating 

image data from different kind of devices have witnessed tremendous growth in recent years which is 

indicative of the leap into the Big Data and Internet of Things (IoT) era of technology where data and 

computing capabilities are readily available and easily accessible. These recent breakthroughs have 

spurred a great deal of research toward the application of deep learning (Goodfellow et al., 2016; LeCun 

et al., 2015; Schmidhuber, 2015) to solve problems in various fields such as robotics navigation (Pierson 

et al., 2017), speech recognition (Noda et al., 2015), natural language processing (Zhang et al., 2019), 

self-driving cars (Bojarski et al., 2016), agricultural production (Kamilaris et al., 2018), remote sensing 

(Cheng et al., 2016), medical imaging analysis (Shen et al., 2017), and food detection and recognition 

(Aguilar et al., 2017; Christodoulidis et al., 2015a). Deep learning implementations particularly Deep 

Convolutional Neural Network (CNN, or ConvNet) (Krizhevsky et al., 2012) have been seen to surpass 

human performance on the popular object recognition benchmark dataset, ImageNet (He et al., 2015). The 

idea behind ConvNets is that, it progressively passes input images through sequence of convolutional 

(feature extraction) and pooling layers, assign importance parameters (learnable weights and biases) to 

various aspects or objects in the image in order to perform classification. ImageNet gave rise to the 

development of several well-known open source CNN architectures including, AlexNet (Krizhevsky et al., 

2012). VGGNet (Simonyan et al., 2014), GoogLeNet (Szegedy et al., 2015), and ResNet (He et al., 2016). 

The impressive classification accuracies derived from these architectures subsequent to being trained on 

huge dataset motivated the concept of Transfer Learning (Pan et al., 2009) which deals with repurposing 

the knowledge (learned parameters) acquired from training a CNN on huge dataset to a different but 

related task with smaller dataset. 

In food images recognition tasks, the major challenges are the large variations in food due to shape, color, 

texture, volume, ingredients, composition as well as image background noise (Zhou et al., 2019). The 

successes and popularity of CNN architectures as well as the increasingly publicly available food image 

datasets contributed to the growing success in the application of deep learning for food recognition (see 

Appendix C), detection, and to aid dietary intake assessment (Min et al., 2019). Furthermore, researchers 

can now (e.g. using deep learning API libraries (Tensorflow, Pytorch, Keras) implement transfer learning 

by fine-tuning and retraining open source pre-trained models (with inherent ability to extract features such 

as texture, color, high-level abstract representations, etc.) on their own food image dataset. This approach 

has proven to significantly reduce training time and increase accuracy (Sahoo et al., 2019; Zhou et al., 

2019). 
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Composite food (e.g. pasta dishes, sandwiches, salad, etc.) can be described as foodstuff intended for 

human consumption that contain a compound of different food products either from animal origin or plant 

based, consumed in processed, semi-processed or unprocessed/ raw form (UK Food Standards Agency, 

2017). Composite foods contain several combinations and overlapping of foods and ingredients which 

give rise to numerous blends of visual features including color, shape, and texture. Images generated from 

composite foods contain complex variations of visual features which tends to be difficult for classical 

machine learning algorithm or simple ConvNets to adequately represent or classify. Researchers such as,  

Heravi et al. (2015), and Subhi (2018) have presented recognition systems to aid different applications 

where they utilized dataset with food images that contain single food, or foods with distinctive shape, 

colors, and textures (often of uniform pixels), or datasets that contain images of very few composite food 

and several single food combinations. However, in recent time, there is a need for systems that can 

recognize composite foods since these days people sometimes tend to consume more of composite foods 

compared to single foods (Figure 5.1). However, this research area has received very minimal research 

attention due to complexity involved in manipulating the highly varying visual features. To this end, 

recognizing composite foods requires food recognition systems to adopt, not just convNets, but state-of-

the-art deeper convolutional neural network architectures or through the implementation of transfer 

learning to extract robust high-level visual features that can be effectively used to recognize food from 

images.  

    
(a) (b) (c) (d) 

Figure 5.1: Comparison between Single food (a) & (b) and Composite or Mixed food (c) & (d)  

In light of the current context, the objective of this study was to develop a deep learning assisted composite 

food recognition and diet quality assessment system. 
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 MATERIALS AND METHODS 

 Dataset protocol 

 Image data acquisition for the food recognition system 

A 15-class composite food images dataset was used in this study and was obtained from two sources, 

namely: (i) randomly selected composite food images from the Food101 (Bossard et al., 2014), (ii) 

composite food images collected by crawling image search engines like Google Images, Bing Images, and 

Pinterest, using an open source web crawling tool (Fatkun, 2019).  

 Image pre-processing 

The preprocessing steps employed in order to ensure the dataset is compatible and indeed suitable for the 

recognition model development are as follows. 

Data formatting, cleaning, labelling and partitioning 

The food images in the dataset (especially the ones in unsupported image formats) were first converted into 

Portable Network Graphic (PNG) formats because of the inherent characteristics of preserving the quality of 

the original images and preventing data loss which in turn makes the pre-processing easy. The images were 

then resized (i.e. to 300 × 300 with an intuitive foresight that, the models considered in this study require 

input images with size of either 244 × 244 or 299 × 299 which can be further resized and delivered in 

batches of image tensors to the models during the training phase), labelled and partitioned in the ratio 

[70%: 15%: 15%] into training, validation and test sets each containing 15 classes of food. Image Dataset 

Pre-Processing algorithm (see Appendix A) was used for this pre-processing step. This resulted into a well-

balanced and distributed dataset with 13,030 images which contained 15 classes of randomly selected 

composite food images, and by popular nomenclature, the dataset was referred to as 𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭. In details, the 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹15 dataset contained 9,030 training set (602 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) and 2000 (133 images per class) 

validation and test sets belonging to 15 classes, namely: Lasagna, Steak_with_mashed_potatoes, 

Spaghetti_beef_tomato-sauce, Macaroni_and_cheese, Fried_rice, Fish_and_chips, Chicken_curry, Hot_dog, 

Rice_and_beans, Beef_salad, Pizza, Egusi_Soup, Pad_thai, Waffles_and_fruits, Cheeseburger, which cut 

across dishes from different regions including Asia, West Africa, and North America. Figure 5.2 shows 

examples of images in the Food15 dataset. 
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Figure 5.2: Examples of images in the Food15 dataset 

Feature scaling 

The images in the dataset were scaled to be homogeneous i.e. scaled to take small values in order to 

improve the numerical operations and performance of the optimization function during the training of the 

neural network. For the feature scaling technique called the min-max scaling or normalization (computed 

using Equation 5.1), the features (image pixels) were casted to float32 and then scaled from range of 

[0 –  255] to have a range of [0 and 1]. This was done by subtracting the min value and dividing by the 

difference between the max and min values. The image normalization was carried out at the point of 

feeding the images to the network algorithm. 

 𝑧𝑧 =
𝑥𝑥 − 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) −𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥)
 (5.2) 
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Where 𝑧𝑧 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 normalized value for pixel value x, 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥)𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) are the minimum and 

maximum values in 𝒙𝒙 given its range. 

 Experimental setup: system architecture and model development 

 Model training and optimization experiments 

The successful application of deep learning to computer vision task contributed to the development and 

popularity of the convolutional neural networks (CNNs). CNNs models have outperformed the 

conventional food image recognition approaches which involve extraction of visual features from food 

images using several combinations of specialized traditional computer vision algorithms such as Gabor 

filters, Scale Invariant feature Transform (SIFT), Color Histograms, Local Binary Pattern (LBP), 

Histogram of Oriented Gradients (HOG), and several others. With deeper and deeper architectures as well 

as through transfer learning approach, CNNs have achieved higher and reliable accuracies far better than 

the conventional approaches. 

The process of building a deep neural network model (See Appendix D) involved first choosing an appropriate 

network architecture and then training the network on the available training set. In this study, deep 

convolutional neural network was employed and repurposed through the transfer learning approach. 

The training process involved estimating the weight parameters of the network by solving a non-convex 

optimization algorithm problem. The purpose of the network optimization algorithms was to continuously 

update the weights of the network as a function of the errors made by the model during training until it attained 

convergence. In this study, three standard optimization algorithms namely: Stochastic Gradient Descent 

(SGD), RMSprop and Adam(See Appendix C) were used and compared to solve the optimization problem in 

order to come up with the model that best represents the Food15 training set and as well generalize to never-

before-seen test set. 

Features extraction, model fine-tuning and model selection 

Due to the low-to-medium size of the Food15 dataset and also to avoid undue demand for computing resources 

and training time required to train a ConvNet from scratch the popular state-of-the-art Transfer Learning 

approach was used to develop accurate deep convolutional neural network model in time-saving manner. 

Concretely, five different pre-trained networks namely: VGG16, VGG19, ResNet101V2, InceptionV3, and 

Xception (see Appendix C) were repurposed and trained on the 70% Food15 training set using the Fine-tuning 

approach and their performance were evaluated on the 15% validation set. 
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Figure 5.3: Transfer learning: Repurposing pretrained ConvNets 

Each of the pre-trained models was made up of a convolutional base (feature extraction layer) and a customized 

densely connected classification layer trained to classify the 1000 classes in the ImageNet dataset. The 

convolutional bases as illustrated in Figure 5.3 above, consisted of several sequence of parameterized 

convolutional and pooling layers arranged in different structures based on the model’s architecture. Earlier 

layers, i.e. layers deep down in the convolutional bases of the models have already been encoded with highly-

generic and reusable features or feature maps such as visual edges, textures and colors, etc., whereas layers at 

the top of the convolutional bases were encoded with more-specialized features containing patches such as 

those of “mashed potatoes”, “spaceship”, “dog eye”, etc. based on the ImageNet database on which the models 

were trained. Since Food15 has only 15 classes of food items, the first step of the fine-tuning approach was to 

remove the classification layer on top of each of the five pre-trained models and then replaced them with a 

custom-built classifier consisting of a 512-hidden units dense or fully-connected layer with a ReLU activation 

function as illustrated in Figure 5.4, followed by a 50% dropout layer as well as the dense output layer with 

15 hidden units (representing the number of classes) and a softmax activation function. Intuitively, it was more 

useful to consider beginning fine-tuning from the higher-up layers with the more-specialized features and not 

the deeper layers because they are flexible and could easily be repurposed for classifying the Food15 dataset. 

In the second step, the convolutional base was frozen for each network in order to train the randomly initialized 

weights in the top custom-built classifier that was newly added. This was done to prevent the process of training 

the fresh classifier from propagating large error gradients through the entire network which could destroy the 

previously learned or encoded feature representations in the layers of the convolutional base. In the steps that 

followed, the fresh classifier for each of the model was mildly and separately trained using the RMSprop 
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(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: 1𝑒𝑒 − 3)  Adam (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: 1𝑒𝑒 − 3) and SGD (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: 1𝑒𝑒 − 2)  and for 𝟏𝟏𝟏𝟏 

epochs. After this, the top layer was considered to have been trained and harmless to the convolutional base. 

Next, some of the top layers in the convolutional base of the models that were encoded with features more 

specialized to the ImageNet dataset were strategically unfrozen in order for them to re-adjust to or learn 

features more relevant to the Food15 dataset. It would be counter-productive to unfreeze the entire 

convolutional base of the pre-trained models because of the massive computing resources and long duration 

of time that would be required to train the loads of parameters of the network from scratch and the high risk of 

overfitting. Finally, the unfrozen layers and the added dense classifier were jointly re-trained on the training 

set for 𝟑𝟑𝟑𝟑 more epochs and at very low (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: 1𝑒𝑒 − 4 𝑡𝑡𝑡𝑡 1𝑒𝑒 − 6)  to further improve or fine-tune 

the performance of the model. A low learning rate was used in order to minimize the magnitude of the updates 

made to the features being adjusted. The entire process was repeated for each of the model using the three 

different optimization algorithms, their performances were evaluated on the validation set, and the top 3 

performing models were selected for further analysis. 

 

Figure 5.4: Model Fine-tuning 
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 Model regularization: reducing overfitting and maximizing generalization 

During the training phase, millions of parameters were generated by each of the five architectures. 

Learning such huge number of parameters introduced high risk of the overfitting as the performance of 

the model on the validation set began to decline at accuracy range of 88% which implied that the models 

had begun to learn patterns that could be misleading or irrelevant for generalization. The overfitting was 

mitigated by implementing the following Regularization techniques (See Appendix C for detailed 

description of the regularization techniques). 

Data augmentation 

Data augmentation is an easy and very popular method to mitigate overfitting. It involves artificially 

increasing the size of the training set in order to improve the performance of the model. Two distinct forms 

of data augmentation were employed, both of which helped transform the original training images with 

very minimal computation. The first form of data augmentation involved generating new images by 

performing geometric transformation methods on the training set as follows: i) Image rotation in the range 

[−𝟑𝟑𝟑𝟑°, +𝟑𝟑𝟑𝟑°], and ii) Zooming factor of 𝟎𝟎.𝟐𝟐. The images generated were saved directly to disk thereby 

increasing the training set size by 44% (from 9000 𝑡𝑡𝑡𝑡 16000), a value similar to that achieved in Chen 

et al. (2019) but less than what was achieved in Krizhevsky et al. (2012). The second form of data 

augmentation involved further transforming the images during the model training process i.e. the images 

were transformed as they were being served in batches to the network. The transformation techniques 

adopted include: i) Image rotation in the range [−𝟒𝟒𝟒𝟒°, +𝟒𝟒𝟒𝟒°], ii) Width and height shifting range 

(𝑜𝑜𝑜𝑜 𝟎𝟎.𝟏𝟏 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), iii) Zooming factor of 𝟎𝟎.𝟐𝟐, iv) Random 

horizontal flipping. The transformed images were generated and queued temporarily on the CPU while 

the Graphical Processing Unit (GPU) is training on the previous batch of images. The augmentation not 

only increased the size of the training set, it also further improved the robustness of the model by making 

it invariant to rotation, translation, and viewpoint.  

Dropout and weight regularization 

A dropout rate of range [𝟎𝟎.𝟏𝟏 − 𝟎𝟎.𝟓𝟓] and  𝓵𝓵𝟐𝟐 norm (or weight decay) parameter constraint of 

[𝟎𝟎.𝟏𝟏,𝟎𝟎.𝟎𝟎𝟎𝟎,𝒂𝒂𝒂𝒂𝒂𝒂 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎] were applied to the added classifier and experimented on individually and in 

combination during the training process. 

 Summary of learning: stochastic gradient descent with momentum 

Following the choice of Stochastic Gradient Descent as the main optimization algorithm, and after several 

experimentation and hyper-parameter tuning as described above, the summary of the training process is 
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represented by Equation 5.2 below. The parameters used included a batch size of 𝟏𝟏𝟏𝟏 examples, momentum 

of 𝟎𝟎.𝟗𝟗, learning rate of 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 and weight decay of 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 which also served as a regularization term to 

help reduce training error. The momentum term as the name implied was added to the gradient descent 

algorithm in order to speedup or introduce velocity in the algorithm. The basic idea behind the role of the 

momentum was to compute an exponentially weighted average of the gradients at each iteration, 𝒕𝒕, and 

then use the average to update the weights instead of updating it with the classical gradient descent weight 

update method at the end of each iteration. As shown in the contour plots in Figure 5.5, the black arrow 

indicated the large up and down oscillations of the classical gradients which tend to prolong the rate of 

convergence (or learning) while the red path (towards the center of the contour or global minimum) 

indicated the faster and quicker gradients steps (faster learning) as a result of the momentum. Hence, the 

gradient descent update rule (with momentum) for the weight 𝑾𝑾 at 𝒕𝒕 iteration and on the current mini-

batch was: 

 

 

 

 

 

 

 

 

 

 

 

𝑣𝑣𝜕𝜕𝑊𝑊 ∶= 𝛽𝛽𝑣𝑣𝜕𝜕𝜕𝜕 + (1 − 𝛽𝛽)𝜕𝜕𝜕𝜕 

𝑣𝑣𝜕𝜕𝜕𝜕 ∶= 0.9𝑣𝑣𝜕𝜕𝜕𝜕 + (1 − 0.9)𝜕𝜕𝜕𝜕 

𝑣𝑣𝜕𝜕𝜕𝜕 ∶= 0.9𝑣𝑣𝜕𝜕𝜕𝜕 + 0.1𝜕𝜕𝜕𝜕 

𝑊𝑊 ∶= 𝑊𝑊 − 𝛼𝛼𝑣𝑣𝜕𝜕𝜕𝜕     (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑊𝑊 ∶= 𝑊𝑊 − 𝛼𝛼𝛼𝛼𝛼𝛼)  

𝑊𝑊 ∶= 𝑊𝑊 − 0.001(0.9𝑣𝑣𝜕𝜕𝜕𝜕 + 0.1𝜕𝜕𝜕𝜕) 

𝑊𝑊 ∶= 𝑊𝑊 − 0.009𝑣𝑣𝜕𝜕𝜕𝜕 − 0.0001𝜕𝜕𝜕𝜕 

(5.3) 

 
Figure 5.5: Contour plots of SGD with momentum 
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Where   

𝑣𝑣𝜕𝜕𝜕𝜕 = momentum variable, 𝜶𝜶 is the learning rate, 𝜷𝜷 is the momentum term, and 𝝏𝝏𝝏𝝏 is the average over 

the last iteration gradients. 

The models were trained for 50 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 each over the 𝟏𝟏𝟏𝟏 𝟎𝟎𝟎𝟎𝟎𝟎 training images on Google Colab equipped 

with 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐾𝐾80 𝐺𝐺𝐺𝐺𝐺𝐺 and 12 𝐺𝐺𝐺𝐺 𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑅𝑅. 

Figure 5.6 shows an illustration of the 𝟔𝟔𝟔𝟔 activation maps of size 𝟏𝟏𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟏𝟏, the feature representations 

learned by the 𝟒𝟒𝟒𝟒𝟒𝟒 convolutional layer of the Xception model from the sample input image. 

 

 

Figure 5.6: Activation maps (each image size, 109 ×109; total number, 64) of the 4th convolutional layer of the Xception model 
used as sample test images 
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 Metrics for performance evaluation of recognition model 

In this study, the performances of the models were measured by monitoring the rate at which the models 

correctly predicted the class of each food image in the test set using the following metrics. 

Classification accuracy 

This represented the number of correctly classified food images made as a ratio of all food images 

classification made. It was computed using Equation 5.3. 

 
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (5.4) 

Where, TP (True positive) and TN (True negative) are the number of food images that the models correctly 

classified into their actual classes, FP (False positive) and FN (False Negative) represent the number of 

food images misclassified by the models. 

A variant of classification accuracy metric called Top-K-Categorical-Accuracy was also used. Using the 

Top-K-Categorical-Accuracy, the model was considered to have correctly predicted a test food image if 

the predicted probability of that food image falls within the Top-K of all predicted probabilities for that 

class. 

Confusion matrix and error matrix 

The confusion matrix was used to plot the performance of the models on the test set by matching the 

classes of the predictions with their actual classes, making it easy to identify misclassified items. The 

diagonal elements of the confusion matrix showed the fractions of food images that were correctly 

predicted while the off-diagonal elements represented misclassified food images. In a similar context, the 

error matrix was used to indicate the error or uncertainty in a reported measurement. 

 Food portion size and nutrient estimation 
The 15 composite foods (Beef_salad', 'Cheeseburger', 'Chicken_curry', 'Egusi_Soup', 'Fish_and_chips', 

'Fried_rice', 'Hot_dog', 'Lasagna', 'Macaroni_&_cheese', 'Pad_thai', 'Pizza', 'Rice_and_beans', 

'Spaghetti_beef_tomato-sauce', 'Steak_with_mashed_potatoes', and 'Waffles_and_fruits’) considered in this 

study cut-across cuisines from different regions of the world including Asia, West Africa, and North America. 

The serving size weights, and nutrients composition of the food items considered in this study were obtained 

from the Food and Nutrient Database for Dietary Studies (FNDDS). The database also consisted of known 

portion size and weights of commonly consumed foods and beverages as reported in the What We Eat in 

America (WWEIA) database. 
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The FNDDS contains over 8000 food and beverages, 65 nutrient components for each of the food and over 

30000 typical portion weights. For instance, according to the database, a typical portion weight of the single 

serving size of a home-made beef salad is 182 𝑔𝑔. The portion weight of the food can then be varied to account 

for larger food portions or multiple serving based on the quantity consumed by multiplying the portion weight 

by a factor e.g. 1.5, 2, 3 etc. The serving size weight and the nutrient values obtained for each of the food class 

(as seen in Table 5.1) were further used as part of the input data for the SAIN-LIM nutrient profiling model. 

Table 5.1: Nutrient information of the 15 foods retrieved from the FNDDS  

 

 

  Portion 
description 

Estimated 
portion 
weight  

Energy Protein Fibre Calcium, 
Ca Iron, Fe 

Ascorbi
c acid, 
Vit. C 

Vitamin 
D 

Sodium, 
Na 

Saturated 
Fatty 
Acid 

Added 
Sugar 

 
   65 25 900 12.5 110 5 3153 22 50 

Food item   (g) (kcal) (g) (g) (mg) (mg) (mg) (μg) (mg) (g) (g) 

Beef salad 1 serving 182 473.2 32.58 0.73 34.58 2.95 1.456 0.182 609.7 7.01 3.82 

Cheeseburger 2 serving 400 1232 66.04 8 476 10.84 0.6 0.4 2060 25.89 19.52 

Chicken curry 1 serving 233 191.06 13.35 3.50 74.56 1.72 20.97 0.47 0 1.56 3.43 

Egusi soup 1 serving 130 543.4 6.29 0.98 137.45 1.53 0 0 19.071 3.80 0 

Fish and chips 1 serving 250 1087.5 51.00 5.50 122.50 4.38 23.50 13 2145.00 26.36 5.23 

Fried rice with 
shrimps 1 serving 130 215.57 8.91 1.17 31.12 0.79 4.15 0 448.84 0.69 0.62 

Hot dog 2 serving 114 332.88 11.66 0 127.68 1.25 21.546 0.798 1112.64 9.10 3.31 

Lasagna 1 serving 375 742.5 53.10 6 1083 4.13 3 0.75 1515 19.95 7.23 

Mac & Cheese 1 serving 120 265.04 10.28 1.44 202.96 1.27 0 0.72 436.70 6.31 3.03 

Pad Thai 1 serving 250 362.5 17.00 3.00 83 1.45 12.25 0.5 875 2.81 10.70 

Pizza 3 standard 
slices 321 850.65 32.68 5.78 426.93 7.67 8.67 0 1335.36 19.87 17.05 

Rice and 
beans 1 serving 150 185.77 6.04 5.40 51.03 2.42 5.10 0 265.48 0.82 1.56 

Spaghetti with 
beef & 
tomato-sauce 

1 serving 260 218.40 15.39 3.64 59.80 2.81 28.60 0 899.60 3.52 9.26 

Steak with 
mashed 
potatoes 

1 serving 320 491.35 44.85 2.01 47.08 5.50 0 0.27 1129.89 8.08 0.84 

Waffles and 
fruits 1 serving 180 630 11.86 4.86 324 2.45 1 1.44 1112.40 7.45 15.77 
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 Nutrient profiling  

 The SAIN, LIM model 

The portion size and nutrient content values retrieved from the FNDDS for each recognized food were used 

by the SAIN, LIM model to perform nutrient scoring and profiling analysis. The SAIN and the LIM nutrient 

scoring models were used to classify the foods based on their degree of healthiness and unhealthiness and 

then categorized them into one of the four different classes as follows:  

i. Foods recommended to be consumed and that supports good health (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 > 5 𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿𝐿𝐿𝐿𝐿 < 7.5);  

ii. Food with neutral or balanced health benefits (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 < 5 𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿𝐿𝐿𝐿𝐿 < 7.5);  

iii. Foods recommended in less quantities or to be consumed occasionally (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 > 5 𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿𝐿𝐿𝐿𝐿 > 7.5); and  

iv. Foods that their consumption should be limited (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 < 5 𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿𝐿𝐿𝐿𝐿 > 7.5).  

The SAIN score (computed using Equation 5.4), computed for 100 kcal of food, is an un-weighted arithmetic 

mean of the percentage adequacy for five qualifying nutrients (plus 1 optional nutrient) in the food composition 

tables and for which a daily recommended value (DRV) existed. The nutrients needed for computing SAIN 

score include Protein, Calcium, Iron, fiber, and Vitamin C, were obtained from the FNDDS. 

 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =

⎝

⎜
⎜
⎜
⎛�

�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃65 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹25 + 𝑉𝑉𝑉𝑉𝑉𝑉 𝐶𝐶110 + 𝐶𝐶𝐶𝐶
900 + 𝐹𝐹𝐹𝐹12.5 + 𝑉𝑉𝑖𝑖𝑖𝑖 𝐷𝐷5 − min 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�
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⎟
⎟
⎟
⎞

 × 100 (5.5) 

Where: 

Protein = protein content in 𝑔𝑔/100 𝑔𝑔; 

Fibre = fibre content in 𝑔𝑔/100 𝑔𝑔; 

Vit C = vitamin C content in 𝑚𝑚𝑚𝑚/100 𝑔𝑔; 

Ca = calcium content in 𝑚𝑚𝑚𝑚/100 𝑔𝑔; 

Fe = Iron content in 𝑚𝑚𝑚𝑚/100 𝑔𝑔; 

Vit D = vitamin D content in µ𝑔𝑔/100 𝑔𝑔 

E = energy density in kcal/edible 100 𝑔𝑔; 

Minimum ratio (min ratio) = the lowest of the 6 [nutrient/DRV] ratios. 

The LIM score (computed using Equation 5.5) is the mean of the percentages by which a particular food 

exceeds the recommended nutritional value for each of the nutrients present in the food, namely: Sodium, 

added sugars, and saturated fatty acids (SFA) and it is expressed per 100g of cooked or rehydrated food. 
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For analysis, tested foods were considered to have healthy or unhealthy profile based on their SAIN and LIM 

score. The higher the SAIN score in relation to the LIM score indicated that the food contained more of 

qualifying nutrients (Protein, Calcium, Iron, fiber, and Vitamin C) than the disqualifying ones and hence, the 

healthier the food is. Conversely, the higher the LIM score relative to the SAIN score indicated that the food 

consisted of more disqualifying nutrients (e.g. Saturated fatty acid, etc.) and hence the food was termed as 

threatening to the health of the consumer and its consumption should be reduced. In addition, Nutrient Score, 

a ratio of the SAIN score to the LIM score was further used to convey the healthiness and unhealthiness 

relationship of a food. The nutrient score (Equation 5.6) held comprehensible information about the healthiness 

of a food based on the computed SAIN and LIM scores. The higher the nutrient score, the healthier the food 

becomes and vice versa. 

 Codes and experimental environment 
The analysis in this study were conducted using Tensorflow 2.1.0 (Abadi et al., 2016) deep learning framework 

which comes with Keras 2.3.0 (Chollet, 2015) high-level API integration and deployed in Python 3.6.9  (Van 

Rossum, 2007) programming language. The robustness of the framework made it easy to process the images, 

construct deep convolutional neural networks, acquire pretrained model’s weight, as well as evaluate the 

developed models used in this research. Majority of the computation was done on Google Colab (Bisong, 2019) 

equipped with 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐾𝐾80 𝐺𝐺𝐺𝐺𝐺𝐺 and 12 𝐺𝐺𝐺𝐺 𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑅𝑅 and with easy access to the above frameworks. Some of 

the computations were also done within Jupyter Lab (Pérez, 2014) running on an Anaconda (Anaconda, 2018) 

virtual environment and on a Windows 10 OS MSI machine equipped with Intel Core i7 7th generation CPU, 

Geforce GTX1050 NVIDIA graphic card and 16 GB of RAM as well as the above frameworks. PyQt5 designer 

(Willman, 2020) was used to design and develop an interactive graphical user interface (GUI) application for 

the system to facilitate easy understanding and usage of the system. The application as illustrated in Figure 

5.15 has four display windows as follows: (i) Query or test image window which displays a preview of the test 

image, (ii) Prediction image which displays the Top-5 predictions of the test image, (iii) Food nutrients analysis 

and scoring window which displays the weight, nutrients composition, SAIN, LIM, and nutrient scores of the 

food, and (iv) Nutrient distribution window which displays the distribution or profile of the nutrients 

composition by their individual percentage. 

 𝑳𝑳𝑳𝑳𝑳𝑳 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =  �
𝑁𝑁𝑁𝑁

3153 +  𝑆𝑆𝑆𝑆𝑆𝑆22 +  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
50

3
�  × 100 (5.6) 

 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺
𝑳𝑳𝑳𝑳𝑳𝑳 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

 (5.7) 
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 RESULTS AND DISCUSSIONS 

 Model training, selection and optimization results 
In this study, the best performing optimization function and deep learning model were investigated. Three 

optimization functions (Stochastic Gradient Descent (SGD), RMSprop and Adam) were employed to train five 

pre-trained networks (VGG16, VGG19, ResNet101V2, InceptionV3, and Xception). Altogether, 15 deep 

learning models with different combinations of hyperparameters were investigated in order to select the best 

performing model, optimizer, and set of hyperparameters. All the five models were trained using the three 

optimization algorithms. Generally, the three optimizers performed well for the training process.  However, 

with a more critical focus on evaluating the models in terms of the level of convergence and generalization, it 

was discovered that the Stochastic gradient descent (SGD: (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: 1𝑒𝑒 − 5,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚: 0.9)) 

optimizer performed best for both the training and validation followed by the Adam (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: 1𝑒𝑒 −

5 )  optimizer as evidenced in their respective accuracies during the process of training the five models 

considered (see Table 5.2). In particular, the stochastic gradient descent (SGD) optimizer did a very neat job 

at fitting the data to the models and with the least validation error which resulted in Xception being the best 

performing model. Although the RMSprop optimizer had similar performance, its performance was not as 

good as the other optimizers regardless of the model it was used to train. Table 5.2 presents the empirical 

training and validation accuracies of the three algorithms on the five models experimented on. In addition, the 

trends of the training and validation losses over the 𝟒𝟒𝟒𝟒 epochs for the best performing model (Xception) were 

also monitored as shown in Figure 5.7 (a – d). The results obtained and trends of the losses showed that SGD 

generally converged better to global optimum as well as have better ability to generalize regardless of the 

model it was used to train. This was also evident in the study carried out by Krizhevsky et al. (2012) and Wu 

et al. (2019). 

Table 5.2: Empirical training and validation accuracies of the three algorithms on the five models 

 

Optimizers Adam RMSprop SGD 
Pre-trained 
models 

Train Acc 
(%) Val Acc (%) Train Acc 

(%) Val Acc (%) Train Acc (%) Val Acc (%) 

VGG16 99.38 94.35 97.90 92.95 97.72 93.85 

VGG19 99.48 94.35 98.26 92.50 98.95 93.950 

Xception 95.71 90.25 88.05 81.50 99.07 94.40 

InceptionV3 88.58 84.15 90.83 83.80 98.57 88.05 

ResNet101V2 92.98 88.10 93.85 87.80 96.74 88.15 
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Figure 5.7: Trends of the training and validation losses of the Xception model over the three Optimization algorithms  
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Further investigation into the training process of the five models showed that the models began to overfit 

the training data at about 𝟐𝟐𝟐𝟐 − 𝟐𝟐𝟐𝟐 epochs. This implied that the models’ performance on validation set 

started declining or getting worse compared to their performance on the training set which consistently 

improved as training progressed. This could have great effect on the generalization performance of the 

models on the never-before-seen data (test set). The result of the steps carried out towards mitigating 

overfitting and maximizing generalization are presented next. 

 Model regularization result: reducing overfitting and maximizing generalization 
The results of the regularization techniques carried out on the model are given below. 

 Data augmentation 

The augmentation strategy adopted resulted in an increase in the size of the training set as presented in 

Table 5.3. 

Table 5.3: Reducing overfitting through Data Augmentation 

 

 Dropout and weight regularization 

It was observed that applying both the dropout and the 𝓵𝓵𝟐𝟐 norm (weight decay) individually did not lead 

to any significant improvement in the result, however, when both techniques are used in combination, it 

led to a further increase in the validation accuracies. 

Several combinations and parameter tuning results, underlining the best strategy to reduce overfitting the 

data, showed that data augmentation, a dropout rate of 𝟎𝟎.𝟐𝟐 and weight decay of 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 were the best 

supporting training parameters for the SGD optimizer and a dropout rate of 𝟎𝟎.𝟓𝟓 and weight decay of 

𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 for the Adam optimizer. These parameters were used to further re-train and validate the top three 

models repeatedly for five times in order to get reliable statistics. 

Table 5.4 presented below shows the results of comparison between non-regularized top three performing 

models namely: VGG16, VGG19, and Xception with their corresponding regularized artifacts in term of 

data augmentation, dropout, and weight decaying, over the Adam and the Stochastic Gradient Descent 

optimization algorithms. Figure 5.8 (a - f) shows graphical representation of the trends of how the 

Data Train set Validation set  Test set  Total 

Before Augmentation 
[70: 15: 15] ~ 9000 2000 2000 13000 

After Augmentation 
[80: 10: 10] ~ 16000 2000 2000 20000 
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regularization strategies improved the performance of the Xception model when trained with the SGD 

algorithm. The results implied that the model regularization strategies were effective in improving the 

performance of the classification models. 

Table 5.4: Results of Regularization Strategies on the models 

 

 

Optimizers Adam SGD 

Pre-trained 
models No regularization Augmentation 

Aug + Dropout + 
Weight Decay 

(WD) 
No regularization Augmentation 

Aug + Dropout + 
Weight Decay 

(WD) 

 Train Acc 
(%): 

Val Acc 
(%): 

Train Acc 
(%): 

Val Acc 
(%): 

Train Acc 
(%): 

Val Acc 
(%): 

Train Acc 
(%): 

Val Acc 
(%): 

Train Acc 
(%): 

Val Acc 
(%): 

Train Acc 
(%): 

Val Acc 
(%): 

VGG16 99.38 94.35 99.42 95.25 99.62 95.00 97.72 93.85 97.82 93.80 97.15 94.45 

VGG19 99.48 94.35 99.15 94.30 99.26 93.90 98.95 93.95 99.53 94.95 96.61 94.40 

Xception 95.71 90.25 99.37 95.65 99.84 97.70 99.07 94.40 98.52 96.35 98.55 96.65 
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(a) (b) (c) 

(d) (e) (f) 

Figure 5.8: (a – f): Empirical illustrations of how regularization strategies improved the performance of the Xception model using SGD 
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 Measure of generalization 

 Classification accuracies 

Table 5.5 represents the average validation and test accuracies obtained over the five repetitions. It 

compares the average performances in term of Top-1 and Top-3 validation and test accuracies of the three 

models alongside a baseline Vanilla CNN on the validation and test set. It was observed that the Top-1 

and Top-3 of the three models are well above 90% with Xception model performing impressively on the 

test set with 98.10% and 99.80% on the Top-1 and Top-3 test accuracies respectively. Similar result were 

also obtained in other works (Attokaren et al., 2017; Bootkrajang et al., 2020). These authors also 

observed that deep convolutional neural networks are more appropriate for image classification compared 

to traditional features extraction and classification algorithms. The 5-layer CNN baseline model trained 

from scratch, was validated and tested on the Food15 dataset for about 80 epochs. As shown in Figure 

5.9, it took about 12 hours for the 5-layer network to achieve a Top-1 accuracy of 85.90% using the SGD 

with momentum optimization algorithm before the training was stopped due to overfitting, compared to 

the pre-trained models which took an average of 3 − 4 hours training time. To achieve accuracies similar 

to those of the pre-trained models, the baseline model would need huge (hundreds of thousands or 

millions) of images and much more layers, which however will require huge computation power and 

longer training time (days).  

Table 5.5: Comparison of performances in term of Top-1 & Top-3 validation and test accuracies of the 3 models alongside a baseline CNN 

 

Optimizers Adam SGD 

Pre-trained 
models 

Validation acc (%) Test acc (%) Validation acc (%) Test acc (%) 

Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 

VGG16 95 99 97.70 99.69 94.45 99.35 96.75 99.90 

VGG19 93.90 99.35 97 99.70 94.40 99.15 97.20 99.85 

Xception 97.35 99.85 98.10 99.85 96.90 99.65 98.10 99.80 
 Baseline 

(Vanilla) CNN 81.35 94.80 92.55 98.20 85.90 96.95 93.85 98.60 
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(a) (b) 
Figure 5.9: (a) Baseline CNN Training and Validation accuracy and, (b) Baseline CNN Training and Validation loss 

 
 Confusion matrix and error matrix 

Figure 5.10 represents a confusion matrix of the performance of the Xception model on the test set. From 

the matrix, it can be deduced that the Xception model was able to correctly predict a large portion of the 

test set. However, few challenges exist where the model misclassified some food items such as Rice and 

beans as Fried rice, or Pad Thai as Beef salad as shown in Figure 5.11. This was as a result of the similar 

visual properties such as color and texture associated with the two foods as the food items can almost 

equally be misclassified by human observation. Figure 5.12 shows an Error matrix of all misclassified 

food items.  
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Figure 5.10: Confusion matrix of the performance of the Xception model on the test set. 

  

 

  

  

 

  
(a) Top: Fried rice, Bottom: Pad Thai  (b) Top: Rice and beans, Bottom: Beef salad 

Figure 5.11: Samples of misclassified food items (Fried rice misclassified as Rice & beans; Pad Thai misclassified as Beef Salad) 
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Figure 5.12: Error plot of misclassified food items 
In summary, the results of several combinations and experimentations involving fine-tuning of the parameters 

and hyperparameters of the five pre-trained models and the baseline convolutional neural networks are 

presented. It can be inferred that out of the five models (VGG16, VGG19, Xception, InceptionV3, and 

ResNet101V2) considered in this study, VGG16, VGG19, and Xception performed generally well in resulting 

a good representation of the dataset (Table 5.4). Furthermore, Adam and Stochastic Gradient Descent (SGD) 

with momentum out of the three optimization algorithms considered were the best two suited for efficiently 

training the networks. Based on the results, InceptionV3, and ResNet101V2 as well as the third optimizer, 

RMSprop did not hold satisfactory performance on the dataset. The strategy to reduce overfitting of the model 

using the combination of data augmentation, dropout, and weight decay when training the models using the 

SGD optimizer with momentum is considered to have performed best overall. The Xception model achieved 

a Top-1 validation and test accuracy of 96.90% 𝑎𝑎𝑎𝑎𝑎𝑎 98.10% respectively as well as a Top-3 validation and 

test accuracy of 99.65% 𝑎𝑎𝑎𝑎𝑎𝑎 99.80% respectively with the SGD while training the Xception model with 

Adam optimizer also achieved high accuracy with a slight Top-1 validation accuracy improvement of 0.45% 

over the SGD on the validation and test set. However, SGD was preferred due to is ease of interpretability and 

speed of generalization. 
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 SAIN-LIM model for nutrients profiling and scoring 
Table 5.6 shows the 15 classes of food items considered in this study including their portion description, individual 

weight per portion size, as well as their SAIN and LIM scores. The SAIN score and the LIM score, were computed 

using Equation 5.4 (described above) respectively while the nutrient score was computed using Equation 5.5. As 

an illustration, Beef salad with serving size of 𝟏𝟏𝟏𝟏𝟏𝟏 𝒈𝒈, and Energy: 473.2 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, Protein: 32.58 𝑔𝑔, Fibre: 

0.73 𝑔𝑔, Ca: 34.58 𝑚𝑚𝑚𝑚, Fe: 2.95 𝑚𝑚𝑚𝑚, Vit C: 1.46 𝑚𝑚𝑚𝑚, Vit D: 0.18 𝜇𝜇g, Na: 609.7 𝑚𝑚𝑚𝑚, SFA: 7.01 𝑔𝑔, Added 

sugar: 3.82 𝑔𝑔, contains: 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =

⎝

⎜
⎜
⎜
⎛�

�32.58
65 +  0.73

25 +  34.58
900 + 2.95

12.5 + 1.46
110 + 0.18

5 − 0.013�
5 × 100�

473.2

⎠

⎟
⎟
⎟
⎞

 × 100 

= �
�(0.8539 − 0.013)

5 × 100�

473.2
� × 100 

= �
16.818
473.2

� × 100 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = 𝟑𝟑.𝟓𝟓𝟓𝟓 

 

𝑳𝑳𝑳𝑳𝑳𝑳 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =  �
609.7
3153 +  7.01

22 +  3.82
50

3
�  × 100; =  �

0.58837
3

�  × 100 

 𝑳𝑳𝑳𝑳𝑳𝑳 𝑺𝑺𝒄𝒄𝒐𝒐𝒐𝒐𝒐𝒐 = 𝟏𝟏𝟗𝟗.𝟔𝟔𝟔𝟔 

 

𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺
𝑳𝑳𝑳𝑳𝑳𝑳 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

 

=
𝟑𝟑.𝟓𝟓𝟓𝟓
𝟏𝟏𝟏𝟏.𝟔𝟔𝟔𝟔

 

𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = 𝟎𝟎.𝟏𝟏𝟏𝟏 

From the above analysis, once Beef salad has been recognized using the deep learning classification model, 

the diet quality was further analyzed using the SAIN-LIM nutrient profiling model. The result indicated that 

the consumed Beef Salad had a low Nutrient Score of 𝟎𝟎.𝟏𝟏𝟏𝟏 which was majorly as a result of high amount of 

calorie as well as high disqualifying nutrients such as Sodium, Saturated fat and Added sugar with respect to 

low amount of the qualifying nutrients such as Protein, Calcium, etc. Hence, with this, based on the quantity 
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consumed in term of nutrients, relative to the daily recommended value (DRV), the results implied that a 

recommendation for Beef salad to be consumed in limited quantity was made in order to maintain a healthy 

diet. 

The results further implied that the diet quality of consumed foods (e.g. Beef salad) in terms of their healthiness 

benefits can be modeled by estimating and analyzing the presence of qualifying and disqualifying nutrients 

present in food which was also evident in the conclusions drawn from the study presented by Darmon et al. 

(2009). 

Table 5.6: Weight, nutrient composition, and SAIN, LIM (score of nutritional adequacy of individual foods, and score of 
nutrients to be limited) of individual foods 

  Portion 
description 

Estimated 
portion 
weight  

SAIN - LIM 

 
     Weighted by 10 

Food item   (g) Min ratio SAIN LIM Nutrient score 

Beef salad 1 serving 182 0.013 3.555 19.610 1.81 

Cheeseburger 2 serving 400 0.005 4.565 74.022 0.62 

Chicken curry 1 serving 233 0.083 8.029 4.645 17.28 

Egusi soup 1 serving 130 0 1.514 5.953 2.54 

Fish and chips 1 serving 250 0.136 7.482 66.096 1.13 

Fried rice with 
shrimps 1 serving 130 0.035 2.644 6.212 4.26 

Hot dog 2 serving 114 0 4.669 27.754 1.68 

Lasagna 1 serving 375 0.027 7.381 51.064 1.45 

Mac & Cheese 1 serving 120 0 5.185 16.199 3.20 

Pad Thai 1 serving 250 0.092 3.911 20.645 1.89 

Pizza 3 standard 
slices 321 0.079 4.284 55.587 0.77 

Rice and beans 1 serving 150 0.046 6.017 5.085 11.83 

Spaghetti with 
beef & tomato-
sauce 

1 serving 260 0.066 7.940 21.019 3.78 

Steak with 
mashed potatoes 1 serving 320 0 5.362 24.755 2.17 

Waffles and fruits 1 serving 180 0 3.875 33.558 1.15 
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 Nutrient profile visualization 
Figure 5.13 illustrated a 4-quadrant-based graphical representation of the health benefits and implications 

of the 15 classes of food based on their respective SAIN and LIM scores on a logarithmic scale. A 

logarithmic scale was chosen both for the SAIN and the LIM scores, in order to ensure easy response of 

the scale to skewness towards large values. The serving size or portion weight for Chicken curry and Rice 

and beans were 233 𝑔𝑔 and 150 𝑔𝑔 respectively and their associated SAIN score (8.03 and 6.02 

respectively) were greater than 5 but their LIM scores (4.65 𝑎𝑎𝑎𝑎𝑎𝑎 5.09 respectively) were less than 7.5. 

This is indicative of the fact that the foods have high nutrient density, i.e. rich in nutrients recommended 

for healthy living and low in nutrients considered to be unhealthy, hence, their consumption supports 

good health. Egusi soup (portion weight: 130 𝑔𝑔, SAIN score: 1.51, LIM score: 5.94) and Fried rice & 

shrimps (portion weight: 130 𝑔𝑔, SAIN score: 2.64, LIM score: 6.21) in the 2𝑛𝑛𝑛𝑛 quadrant has low SAIN 

and low LIM scores are considered to be neutral or balanced in term of their contribution to health 

benefits. Spaghetti with beef & tomato-sauce (portion weight: 260 𝑔𝑔, SAIN score: 7.94, LIM score: 

21.02), Macaroni & cheese (portion weight: 120 𝑔𝑔, SAIN score: 5.19, LIM score: 16.20), Fish & chips 

(portion weight: 250 𝑔𝑔, SAIN score: 7.48, LIM score: 66.10), Lasagna (portion weight: 375 𝑔𝑔, SAIN 

score: 7.38, LIM score: 51.06), and Steak with mashed potatoes (portion weight: 320 𝑔𝑔, SAIN score: 

5.36, LIM score: 24.76) in the 3𝑟𝑟𝑟𝑟  quadrant were high in both SAIN and LIM scores and hence should 

be consumed in limited quantity or occasionally. Pad Thai (portion weight: 250 𝑔𝑔, SAIN score: 3.91, LIM 

score: 20.65), Pizza (portion weight: 321 𝑔𝑔, SAIN score: 4.28, LIM score: 55.59), Waffles & fruits 

(portion weight: 180 𝑔𝑔, SAIN score: 3.88, LIM score: 33.56), beef salad (portion weight: 180 𝑔𝑔, SAIN 

score: 3.56, LIM score: 19.61), Cheeseburger (portion weight: 400 𝑔𝑔, SAIN score: 4.57, LIM score: 

74.02), and Hot dog (portion weight: 114 𝑔𝑔, SAIN score: 4.67, LIM score: 27.75) in the 4𝑡𝑡ℎ quadrant 

all have their SAIN score less than 5 and their LIM scores are greater than 7.5 which implied that 

consuming these foods in their respective quantities could lead to chronic dietary related health problems 

such as cancer, diabetes, and heart disease. Therefore, it is recommended that the foods should be 

consumed in very limited quantities to ensure healthy living. Figure 5.14 shows the general overview of 

the proposed system including all components. 

These results further implied that the deep learning assisted dietary assessment approach has significant 

value for determining the quality of the dietary intake of a user. 
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Figure 5.13: Graphic representation of the classification of selected foods with the SAIN,LIM (score of nutritional adequacy of the individual foods, and 

score of nutrients to be limited) model and their position within the 4 nutrient profile classes (on log scales) 

Figure 5.15 showed the interactive computer-based application designed for the proposed food recognition 

and nutrient scoring system. In its operation, the application takes in captured “query or test food image”, 

predicts the type of food present in the image, analyzes the diet quality of the food using the SAIN-LIM 

model and then displays the results of the analysis (estimated weight, nutrients composition, SAIN, LIM, 

and nutrient scores) as well as the distribution of the nutrients present in the food. The application can 

serve as a valuable computer-based user-friendly tool for self-assessment of diet quality of food consumed 

by a user. For more convenient self-administered diet quality assessment, the system can be alternatively 

be integrated into mobile app (Android, iOS, etc.) or web application, and deployed using smart mobile 

devices.
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 Overview of system pipeline 

 

Figure 5.14: General Overview of the Deep Learning Assisted Composite Food Recognition and Diet Quality Assessment System 
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 An interactive computer-based application designed for the proposed system 

 
Figure 5.15: The Graphical User Interface (GUI) of the interactive computer-based application designed for the proposed 

System  
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 Conclusion and future work 
In this study, an images-based food recognition system based on deep convolutional neural networks, 

along with a diet quality assessment system was presented as a non-destructive tool for classifying and 

evaluating the healthiness benefits of foods consumed by a user. In the implementation of the recognition 

system, the deep convolutional neural network model was deployed through transfer a learning approach 

to develop an automatic, reliable and accurate Xception model to classify food images before the nutrient 

contents is being assessed using the SAIN, LIM nutrient profiling model. 

Based on the results obtained, the system can promptly and accurately recognize composite or mixed 

dishes (which is often a challenging food recognition task) when carrying out dietary assessment tasks 

such as food record. In particular, out of the five pre-trained CNN models repurposed and an additional 

vanilla baseline CNN model trained from scratch for this study, the Xception model fine-tuned on the 

Food15 training set generalized best both with Adam and Stochastic Gradient Descent optimization 

algorithm with test accuracies 98.10% and 98.10% (Table 5.5) respectively. 

With an accurate food recognition component of the system already developed, the deep learning assisted 

diet quality assessment system can further effectively evaluate and analyze the nutrient contents present 

in the food consumed by its user thus yielding a reliable nutrient score for the food. The score can 

sufficiently serve as a rubric for evaluating the nutrient quality and contribution of the food to the user’s 

diet. In its application, the system presented in this study can be effectively used as a tool to self-administer 

daily dietary intake monitoring, recording, and quality assessment of dietary intake as well as keeping up 

with nutrition goals of the user. The system is capable of outperforming traditional pen-and-paper based 

approaches for administering 24-hour dietary recall and food record for dietary assessment purposes. 

For future studies, there are plans to expand the size of food database to cover more classes of food and 

this will bring about the need for fine-tuning deeper layers of the pre-trained models. In addition, further 

integration of more mainstream diet quality assessment and dietary diversity indicators is also envisioned 

in parallel in order to better assess the nutritional status and the diet quality of the food consumed by a 

user. Deploying the system presented in this study on cross-platform mobile device applications in order 

to enhance self-administering of the tool is also a key area of consideration. 
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Summary, General Conclusion and 
Recommendations for Future Studies 

6. SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE 
STUDIES 

 SUMMARY AND GENERAL CONCLUSION 
Dietary intake remains a major subject of concern as part of the leading causes of nutrition-related illnesses 

such as chronic heart diseases, diabetes, vascular syndromes, and death in the world today. Measuring, 

analyzing and monitoring dietary intakes in order to investigate the diet quality has become a major area 

of study among researchers. 

This study demonstrated the potential of using image-based technology-assisted techniques to monitor 

and analyze dietary intake of consumed foods. The first objective was met by utilizing mainstream 

computer vision image analysis and machine learning techniques to develop an automatic food recognition 

and nutrient profiling system for single foods such as Avocado, Bagel, and Croissant. The recognition 

model developed produced satisfactory results for recognizing food with high precision and recall values 

ranging from 75 −  100%. After this, the diet quality of the recognized food was then obtained using the 

SAIN-LIM nutrient profiling model. 

The second objective deployed deep convolutional neural network assisted techniques to extend the food 

recognition and nutrient profiling system to detect and classify more complex composite foods such as 

beef salad, rice & beans, and lasagna. Five pre-trained CNN models were repurposed and an additional 

vanilla baseline CNN model (trained from scratch) were evaluated for this study. The Xception model 

fine-tuned on the Food15 training set generalized best both with Adam and Stochastic Gradient Descent 

optimization algorithm with test accuracies 98.10% and 98.10% respectively. This served as a better food 

recognition model for the nutrient system and also indicative of the fact that deep learning assisted image-

4 6 
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based techniques performed better and is more reliable than the conventional computer vision image 

features analysis technique deployed in chapter 3. This was made possible due to the availability of the 

expensive and highly efficient computation capacity to deploy the deep convolutional neural network 

recognition models used in chapter 4. 

Generally, the results obtained were indicative of the fact that both techniques are promising methods to 

adopt for the development of image-based dietary assessment and nutritional status evaluation. 

 RECOMMENDATION FOR FUTURE STUDIES 
1. Large-scale Standard and Global Food-image Dataset: Like the huge ImageNet dataset which 

consists of several classes of general everyday objects mostly applicable in the computer vision 

domain, there is need for a large-scale ImageNet-type of dataset for food images which covers cuisines 

from all around the world. This can serve as a major resource for the development of advanced 

applications such as food-image search engines, robust classification and food image scene 

understanding, ingredients recognition system, as well as high-level image-based nutritional 

assessment systems.  

2. Large-scale Pre-trained Networks from Food Images: In recent times, deep learning architectures 

such as Xception, VGG networks, etc. have been developed and have played significant roles in the 

field of computer vision and several others. It will be of great benefits to have pre-trained networks 

designed for food images from which representational knowledge can be acquired and transferred to 

similar tasks with small dataset. There are large RGB-D depth estimation datasets which are being 

repurposed to estimate volume of food from images. Results obtained from majority of these studies 

are very unreliable. Pretrained models developed from actual food volumes as ground-truth data would 

be very useful in better estimating volume of food from images for dietary assessment and nutritional 

status evaluation purposes. 

3. Robust and Unified Dataset of Nutrient Composition for Developing Countries: It has become 

pertinent for developing countries e.g. as present in Africa to focus more attention on developing 

indigenous unified and reliable database of all commonly consumed food and inherent nutrients 

information in order to better account for an individual dietary intake and that of the population at 

large.  
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Appendices 

7. APPENDICES 

 APPENDIX A: MACHINE LEARNING CLASSIFICATION ALGORITHMS 
Source: Lindholm et al. (2019) 

 

 

 

 

 

 

 

Algorithm 1: Logistic Regression (LR) 
Given: Training data {𝐱𝐱𝐢𝐢, 𝐲𝐲𝐢𝐢}𝐧𝐧𝐢𝐢=𝟏𝟏  (with output classes  𝐲𝐲 = 𝟎𝟎,𝟏𝟏 ) and test input  𝐱𝐱𝐧𝐧𝐧𝐧𝐧𝐧  
Result: Predicted test output 𝐲𝐲� 

 

Learning:  
1. Compute :𝓵𝓵(𝐰𝐰) =  ∑ 𝐲𝐲𝐢𝐢𝐧𝐧

𝐢𝐢=𝟏𝟏 = 𝐥𝐥𝐥𝐥(𝛔𝛔(𝐰𝐰𝐓𝐓𝐱𝐱𝐢𝐢)) + (𝟏𝟏 − 𝐲𝐲𝐢𝐢) 𝐥𝐥𝐥𝐥(𝟏𝟏 − 𝛔𝛔(𝐰𝐰𝐓𝐓𝐱𝐱𝐢𝐢)) 
 
Prediction: 
2. Compute loglikelihood  𝐩𝐩(𝐲𝐲 =  𝟏𝟏 | 𝐱𝐱𝐧𝐧𝐧𝐧𝐧𝐧)  =  𝟏𝟏

𝟏𝟏+ 𝐞𝐞𝐰𝐰𝐓𝐓𝐱𝐱
;  𝐩𝐩(𝐲𝐲 =  𝟎𝟎 | 𝐱𝐱𝐧𝐧𝐧𝐧𝐧𝐧) = 𝟏𝟏 − 𝟏𝟏

𝟏𝟏+ 𝐞𝐞𝐰𝐰𝐓𝐓𝐱𝐱
;   

3. 𝐈𝐈𝐈𝐈  𝐩𝐩(𝐲𝐲 =  𝟏𝟏 | 𝐱𝐱𝐧𝐧𝐧𝐧𝐧𝐧) >  𝐩𝐩(𝐲𝐲 =  𝟎𝟎 | 𝐱𝐱𝐧𝐧𝐧𝐧𝐧𝐧), 𝐬𝐬𝐬𝐬𝐬𝐬 𝐲𝐲� ← 1, otherwise set  𝐬𝐬𝐬𝐬𝐬𝐬 𝐲𝐲� ← 0 

Algorithm 2: k-nearest neighbor, (k-NN) 
Given: Training data {𝐱𝐱𝐢𝐢, 𝐲𝐲𝐢𝐢}𝐧𝐧𝐢𝐢=𝟏𝟏  (with output classes  𝟏𝟏, …𝐊𝐊 ) and test input  𝐱𝐱𝐧𝐧𝐧𝐧𝐧𝐧  
Result: Predicted test output 𝐲𝐲� 

 

Learning: Nothing to do! (Just store the data). 
 

Prediction: 
1. Find the 𝐤𝐤 training data point(s) 𝐱𝐱𝐢𝐢 which has the shortest Euclidian distance 

‖𝐱𝐱𝐢𝐢 −  𝐱𝐱𝐧𝐧𝐧𝐧𝐧𝐧‖ 𝐭𝐭𝐭𝐭  𝐱𝐱𝐧𝐧𝐧𝐧𝐧𝐧 
2. Decide 𝐲𝐲� with a majority vote among those  𝐤𝐤 nearest neighbors 

4  
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Algorithm 3: Linear Discriminant Analysis (LDA) 
Given: Training data {𝐱𝐱𝐢𝐢, 𝐲𝐲𝐢𝐢}𝐧𝐧𝐢𝐢=𝟏𝟏  ( with output classes  𝟏𝟏, …𝐊𝐊 ) and test input  𝐱𝐱𝐧𝐧𝐧𝐧𝐧𝐧  
Result: Predicted test output 𝐲𝐲� 

 

Learning:  
1. for 𝐤𝐤 = 𝟏𝟏, …𝐊𝐊 do: 
2. Compute :𝛑𝛑�𝐤𝐤 =  𝐧𝐧𝐤𝐤

𝐧𝐧
; and 𝛍𝛍�𝐤𝐤 =  𝟏𝟏

𝐧𝐧𝐤𝐤
∑ 𝐱𝐱𝐢𝐢𝐢𝐢:𝐲𝐲𝐢𝐢=𝐤𝐤  

3. end 
4. Compute:  

 𝚺𝚺� =
𝟏𝟏

𝐧𝐧 − 𝐊𝐊
� � (𝐱𝐱𝐢𝐢 − 𝛍𝛍�𝐢𝐢)(𝐱𝐱𝐢𝐢 − 𝛍𝛍�𝐢𝐢)⊺

𝐢𝐢:𝐲𝐲𝐢𝐢=𝐤𝐤

𝐊𝐊

𝐤𝐤=𝟏𝟏

 

Prediction: 
5. for 𝐤𝐤 = 𝟏𝟏, …𝐊𝐊 do: 
6. Compute: 

 𝐩𝐩(𝐲𝐲 = 𝐤𝐤 | 𝐱𝐱𝐧𝐧𝐧𝐧𝐧𝐧) =
𝐞𝐞−

𝟏𝟏
𝟐𝟐 (𝐱𝐱𝐢𝐢−𝛍𝛍�𝐢𝐢)⊺∑−𝟏𝟏(𝐱𝐱𝐢𝐢−𝛍𝛍�𝐢𝐢) 

(𝟐𝟐𝛑𝛑�)
𝐦𝐦
𝟐𝟐    |∑|

𝟏𝟏
𝟐𝟐

  

7. end 
8. Find largest  𝐩𝐩(𝐲𝐲 = 𝐤𝐤 | 𝐱𝐱𝐧𝐧𝐧𝐧𝐧𝐧) and set 𝐲𝐲�𝐧𝐧𝐧𝐧𝐧𝐧 to that k 

Where: 𝛑𝛑�𝐤𝐤 and 𝛍𝛍�𝐤𝐤 = relative occurrence of class k in the training data and mean feature 
vector; ∑ = shared covariance matrix for the entire dataset 
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 APPENDIX B: IMAGE DATASET PRE-PROCESSING TOOL 

 

  

Algorithm 4: Image Dataset Pre-Processing Tool  

Input: Entire image dataset, D {𝒙𝒙𝒊𝒊}𝐧𝐧𝐢𝐢=𝟏𝟏 

Output: 3 sets of datasets belonging to m order of classes (e.g. 15) each with n number 

of x images and contain: 

1. Training set: {𝒙𝒙𝒊𝒊,𝒚𝒚𝒊𝒊}𝐧𝐧𝐢𝐢=𝟏𝟏   
2. Validation set: {𝒙𝒙𝒊𝒊,𝒚𝒚𝒊𝒊}𝐧𝐧𝐢𝐢=𝟏𝟏` 
3. Test set: {𝒙𝒙𝒊𝒊}𝐧𝐧𝐢𝐢=𝟏𝟏 

Dataset 

preprocessing 

outline 

Procedure:  

1. for each image 𝒙𝒙𝒊𝒊in D, do: 

2. if 𝒙𝒙𝒊𝒊 (is a) supported image format: 

3. 𝒙𝒙𝒊𝒊 (.𝒑𝒑𝒑𝒑𝒑𝒑)  ←   𝒙𝒙𝒊𝒊 (.𝒙𝒙𝒙𝒙𝒙𝒙) 

4. else delete 𝒙𝒙𝒊𝒊 (.𝒙𝒙𝒙𝒙𝒙𝒙) 

5. end 

Covert each 

image to .png 

format and 

delete if 

unsupported 

6. for each new image 𝒙𝒙𝒊𝒊: 

7. 𝒙𝒙𝒊𝒊 (𝐩𝐩 × 𝐪𝐪) ←  𝒙𝒙𝒊𝒊  (𝐫𝐫 × 𝐬𝐬) 

8. Append resized images as new dataset, D 

9. end 

Resize from 

(𝑟𝑟 × 𝑠𝑠) width 

and height to 

(𝑝𝑝 × 𝑞𝑞) 

10. Randomly shuffle and divide new dataset, D into three sets in ratio: 

𝟕𝟕𝟕𝟕%:𝟏𝟏𝟏𝟏%:𝟏𝟏𝟏𝟏% each belonging to m order of classes. 

11. Set the 𝟕𝟕𝟕𝟕% to be the training set and explicitly map each image 𝒙𝒙𝒊𝒊 to label 

𝒚𝒚𝒊𝒊:such that Training set = {𝒙𝒙𝒊𝒊,𝒚𝒚𝒊𝒊}𝐧𝐧𝐢𝐢=𝟏𝟏 

12. Set the a 𝟏𝟏𝟏𝟏% to be the validation set: {𝒙𝒙𝒊𝒊,𝒚𝒚𝒊𝒊}𝐧𝐧𝐢𝐢=𝟏𝟏.  

13. Set the last 𝟏𝟏𝟏𝟏% to be the test set with no label mapping: {𝒙𝒙𝒊𝒊}𝐧𝐧𝐢𝐢=𝟏𝟏 

14. End 

Dataset splitting 

and annotation 

15. Before feeding data to CNN 

 
Feature scaling 
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 APPENDIX C: PERFORMANCE OF BENCHMARK DEEP LEARNING 

ARCHITECTURES ON POPULAR FOOD IMAGE DATASETS 
Table 7.1: Top Performances of Deep learning models on Publicly available Dataset 

 

 APPENDIX D: OVERVIEW OF DEEP NEURAL NETWORKS  
A Neural network architecture attempt to solve a supervised machine learning task in which, given a set of training 

examples (training set) of the form {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖); 𝑖𝑖 = 1, 2, … ,𝑛𝑛}, such that 𝑥𝑥𝑖𝑖 is the feature vector of  𝑖𝑖𝑡𝑡ℎ example also called 

the input variable and 𝑦𝑦𝑖𝑖 is the desired output or target variable. The goal is, given the training set, to learn a function 

𝑓𝑓:𝑋𝑋 → 𝑌𝑌 which maps the input variables to the target so that 𝑓𝑓(𝑥𝑥) also called the Hypothesis is considered to be a good 

predictor for the corresponding value of 𝑦𝑦. 

In understanding how neural networks work, it is a common approach to resort to first principle where it was originally 

inspired by the goal of modeling biological neurons found in the human brain. A biological neuron is the basic 

computational unit of the brain. It is composed of a cell body containing the nucleus and most of the cell’s complex 

components, many branching extensions called Dendrites as well as a very long extension called the Axon. 

Dataset Dataset Description and Source 
Research work 

ref 

DL 

Architecture 

Top-1% & Top-

5% performance 

UECFood-256: 

(Yanai et al., 

2015b) 

• Popular foods in Japan and other countries 
• 256/ 31397 images each with a bounding box 

indicating the location of the food item in the image. 
• http://foodcam.mobi/dataset256.html 

Martinel et al. 

(2018) 
WISeR 83.15 | 95.45 

Food-101: 

(Bossard et al., 

2014) 

• Popular food in USA 
• 101/ 101,000 images 
• https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-

101/ 

Martinel et al. 

(2018) 

WISeR 90.27 | 98.71 

UECFood-100: 

(Matsuda et al., 

2012) 

• Popular Japanese food 
• 100/9060 images each with a bounding box indicating 

the location of the food item in the image. 
• http://foodcam.mobi/dataset100.html  

Martinel et al. 

(2018) 

WISeR 89.58 | 99.23 

UECFood-100: 

(Matsuda et al., 

2012) 

• Popular Japanese food 
• 100/9060 images each with a bounding box indicating 

the location of the food item in the image. 
• http://foodcam.mobi/dataset100.html 

H. Hassannejad et 

al. (2016) 

Inception v3 81.50 | 97.30 

Food-524: (G. 

Ciocca et al., 2017) 

• Popular food in USA, China and Japan 
• 524/ 247,636 
• http://www.ivl.disco.unimib.it/activities/food524db/  

G. Ciocca et al. 

(2017) 

ResNet-50 81.34 | 95.45 

Food-475: (G. 

Ciocca et al., 2017) 

• Popular food in USA, China and Japan 
• 475/ 247,636 
• http://www.ivl.disco.unimib.it/activities/food475db/  

Ciocca et al. 

(2018) 

ResNet-50 81.59 | 95.50 

VIREO Food172: 

(Chen et al., 2016)  
• Popular Chinese dishes 
• 172/ 110241 
• http://vireo.cs.cityu.edu.hk/VireoFood172/  

Ciocca et al. 

(2018) 

ResNet-50 85.86 | 97.32 

http://foodcam.mobi/dataset256.html
https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/
https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/
http://foodcam.mobi/dataset100.html
http://foodcam.mobi/dataset100.html
http://www.ivl.disco.unimib.it/activities/food524db/
http://www.ivl.disco.unimib.it/activities/food475db/
http://vireo.cs.cityu.edu.hk/VireoFood172/
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Figure 7.1: Mathematical model representation of Biological neuron 

Approximately 86 billion neurons can be found in the human nervous system and they are connected with approximately 

1014 −  1015 synapses. Figure 7.1 shows an image if a biological neuron (left) and a mathematical model representation 

(right). Each neuron receives input signals from its dendrites and gives an output signal along its axon. An artificial 

neuron is a mathematical function based on a model of biological neurons. In modeling the biological neuron, the signals 

that travel along the axons (aka input features 𝒙𝒙𝒊𝒊) interact in a multiplicative manner (e.g. 𝒘𝒘𝒊𝒊𝒙𝒙𝒊𝒊) with dendrites of other 

neurons based on the synaptic strength at that synapse (aka 𝒘𝒘𝒊𝒊). In the basic model, the dendrites carry the weighted 

signal to the cell body where they all get summed. If the final sum is above a particular threshold, the neuron can fire, 

sending an impulse along its axon. The firing rate of the neuron can be modeled with an activation function f(.), which 

represents the frequency of the impulse along the axon.  

 The perceptron 

Perceptron (also called a Single-layer neural network) is one of the simplest artificial neurons or artificial neural network 

(ANN) architecture. As illustrated in Figure 7.2, it is a type of binary classification algorithm that makes its predictions 

based on a linear combination of a set of real-valued weights, bias and corresponding input feature vector, i.e. it computes 

a weighted sum of its inputs (𝑧𝑧 = 𝑤𝑤1𝑥𝑥1 +𝑤𝑤2𝑥𝑥2 + ⋯+ 𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑤𝑤𝑇𝑇𝑥𝑥) along with the bias term b and then passed the sum 

through a threshold or step function or activation function and obtain the results: ℎ𝑤𝑤(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧), where  𝑧𝑧 = 𝑤𝑤𝑇𝑇𝑥𝑥. 

The idea behind the step function given in Equation 7.1 is that, if the summed input gets above certain threshold (for 

example 0.5), then the neuron outputs a value of 1.0, otherwise it would output 0.0. To put it in more precise algebraic 

terms: 

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = �0, 𝑖𝑖𝑖𝑖 𝑤𝑤 ∙ 𝑥𝑥 + 𝑏𝑏 ≤ 0
1, 𝑖𝑖𝑖𝑖 𝑤𝑤 . 𝑥𝑥 + 𝑏𝑏 > 0  (7.1) 
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Figure 7.2: (a) Perceptron (b) Feed-forward Neural Network 

A big draw-back with single-layer perceptron is that it can only classify linearly separable sets of vectors. Hence, if the 

vectors are not linearly separable, classification may never be achieved. An improvement on the single-layer perceptron, 

called a multi-layer perceptron (MLP) or multi-layer neural network or feed-forward neural network (FFNN) is one 

which has the capacity to learn non-linear functions. A feedforward neural network is a structure composed of one input 

layer, several hidden layers of neurons with outputs serving as the inputs of the neuron of the next layer, as well as an 

output layer. When all the neurons in a layer are connected to every neuron in the previous layer (i.e. the input neurons), 

the layer is referred to as fully connected layer or dense layer. For deeper knowledge of feedforward neural network, see 

(Goodfellow et al., 2016; LeCun et al., 2015).  

 Building a feedforward neural network  

Building a feedforward neural network involve four major steps namely: selecting a network architecture, determining 

the choice of hyperparameters, training the neural network, and regularizing the network. 

 Selecting a network architecture 

This involve choosing a layout for the neural network which largely depends on the task at hand. A popular variant of 

feedforward neural network is the convolutional neural network which can be used for classification of input data that 

have grid-like topology e.g. for image classification and audio signal classification. 

 The choice of parameters and hyperparameters 

This involve setting parameters such as the weights and biases needed for the model to learn as well as the 

hyperparameters which are needed to train the model including the number of input neurons/ units (a function of the 

dimension of the input feature vector), number of hidden units per (per hidden layers), and the number of output units (a 

function of the number of classes). Other major hyperparameters are discussed as follows: 

Choice of Non-linear Activation functions 

In selecting an activation functions for a feedforward neural networks, non-linearity is needed because its aim is to 

produce a nonlinear decision boundary through non-linear combinations of the weight and inputs. There are several 

activation functions in existence as illustrated in Figure 7.3, the three most common are: 
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a. Sigmoid (𝝈𝝈(𝒛𝒛)): The key idea underlying sigmoid is that, it takes a real-valued number and “squeezes” it into 

an interval [0; 1] using Equation 7.2. It has a property that, when 𝑧𝑧 = 𝑤𝑤 ∙ 𝑥𝑥 + 𝑏𝑏 is large and positive, the output 

from the sigmoid neuron is approximately equal to 1 (𝑒𝑒−𝑧𝑧 ≈ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎(𝑧𝑧) ≈ 1). In the same manner, when 𝑧𝑧 =

𝑤𝑤 ∙ 𝑥𝑥 + 𝑏𝑏 is very negative, the output tends to infinity (𝑒𝑒−𝑧𝑧 ≈ ∞ 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎(𝑧𝑧) ≈ 0). The sigmoid function is affine 

close to 𝑧𝑧 = 0 and saturates at 0 and 1 as 𝑧𝑧 decreases or increases. This is a major limitation that leads to the 

problem of vanishing gradients and slow convergence which have restricted sigmoid’s popularity from usage on 

hidden layers to only on output layer. 

 𝜎𝜎(𝑧𝑧) =
1

(1 + 𝑒𝑒−𝑧𝑧) (7.2) 

b. Hyperbolic tangent (tanh(z)): tanh(z) squashes a real-valued number into an interval [-1, 1] using Equation 7.3. 

Unlike sigmoid, it has a zero-centered output which makes learning even faster. However, like the sigmoid 

function, it still suffers from the problem of vanishing gradients. 

  𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑧𝑧) =
𝑒𝑒𝑧𝑧 + 𝑒𝑒−𝑧𝑧

𝑒𝑒𝑧𝑧 + 𝑒𝑒−𝑧𝑧
 (7.3) 

c. Rectified Linear Units (ReLU): ReLU has become very popular in recent years and now the standard choice 

in most neural network models. It has a linear non-saturating form and has been proven to have 6 times 

improvement in convergence over tanh function. It has a very simple and efficient mathematical form given as 

Equation 7.4; 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑧𝑧) = 𝑚𝑚𝑚𝑚𝑚𝑚 (0, 𝑧𝑧) (7.4) 

  
(a) (b) 
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(c) 

Figure 7.3: Activation functions [(a) Sigmoid (b) Tanh (c) ReLU] 

The usage of any particular activation function depends on the task at hand. This research work 

comprised of a multiclassification task, hence the use of the ReLU activation function in all hidden 

layers and Softmax function in the output layer. The Softmax function is a categorical probability 

distribution function that is applied to the output scores of the neurons before the loss computation. It 

attempts to squeeze the output of each output neuron such that the total sum is equal to 1. For a given 

class, the Softmax function is computed using Equation 7.5: 

 𝑷𝑷(𝒌𝒌 | 𝒙𝒙𝒊𝒊) = 𝒇𝒇(𝒔𝒔(𝒙𝒙))𝒌𝒌 =
𝒆𝒆𝒔𝒔𝒌𝒌(𝒙𝒙)

∑ 𝒆𝒆𝒔𝒔𝒋𝒋(𝒙𝒙)𝑲𝑲
𝒋𝒋=𝟏𝟏

 (7.5) 

Where: 

K = total number of classes; 

𝒔𝒔(𝒙𝒙) = a vector of all individual scores 𝒔𝒔𝒌𝒌 for each class k for each instance x; 

𝒔𝒔𝒋𝒋 = scores inferred by the network for each class k in K 

𝑃𝑃(𝑘𝑘 | 𝑥𝑥𝑖𝑖) = estimated class probability that an example x belongs to class k, given the scores for each 

class for that example. 

Learning rate (lr) 

This is a tuning hyperparameter (required in an optimization algorithm during network training process) which 

must be set manually to control how much the network weights are being adjusted with respect to the loss 

gradient. It determines the length of the gradient step (at every iteration) or how far to move while moving 

towards the global optimum of a loss function for a batch or mini-batch of the training inputs. 
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Figure 7.4: Plot of one-dimensional optimization problem using gradient descent of a cost function. (a) too low learning rate, 

(b) too high learning rate, (c) good learning rate 

As illustrated in Figure 7.4, a learning rate which is too low leads to slow learning or convergence of the model 

to global optimum, and one which is too big may make the learning process overshoot (diverge) the global 

optimum (or bounce around indefinitely) and never converge since the step is too long. 

A good strategy to find a good learning rate is to reduce (decay) it when the error keeps getting worse or increase 

it if the error becomes fairly constant or too slow. An illustration is given in Figure 7.4 above. 

 Training (learning) a feedforward neural network  

After selecting a network architecture, including the number of inputs, hidden and output neurons, the process of training 

and making predictions using neural network involve solving a numerical optimization problem to find a good set of 

weights 𝒘𝒘�  that minimizes the error (cost function) at the output of the network usually of the form given in Equation 7.6: 

 

𝑤𝑤� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑤𝑤

𝑱𝑱(𝒘𝒘)  where, 

𝑱𝑱(𝒘𝒘) = 𝒍𝒍𝒍𝒍𝒍𝒍𝑷𝑷(𝒚𝒚𝒊𝒊 | 𝒙𝒙𝒊𝒊;𝒘𝒘) = −
𝟏𝟏
𝒎𝒎
��𝒚𝒚𝒊𝒊𝒊𝒊

𝑲𝑲

𝒌𝒌=𝟏𝟏

𝒍𝒍𝒍𝒍𝒍𝒍 𝑷𝑷(𝒌𝒌 | 𝒙𝒙𝒊𝒊;𝒘𝒘) 
𝒎𝒎

𝒊𝒊=𝟏𝟏

 
(7.6) 

Where:  

𝒚𝒚𝒊𝒊 = K-dimensional one-hot encoding vector for 𝑖𝑖𝑡𝑡ℎ  target belonging to K classes 

𝒚𝒚𝒊𝒊𝒊𝒊 = elements of the one-hot encoding vectors (the target (ground-truth) probability that the 𝑖𝑖𝑡𝑡ℎ example or instance 

belongs to class k) 

𝑲𝑲 = number of classes 

𝑷𝑷(𝒌𝒌 | 𝒙𝒙𝒊𝒊;𝒘𝒘) = Output of the Softmax function = predicted probability that the example x belongs to class k given the 

scores of each class for that example (parameterized by w) 

Equation 6.6 is known as the Cross-Entropy Cost Function (often used for error computation in a Multiclassification 

task in machine learning). 

The system of operation of any numerical optimization algorithm, require the parameters of such algorithm to be updated 

in an iterative manner. In deep learning, the most popular and effective optimization algorithm and as well the ones 
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experimented on in this research work include: Stochastic Gradient Descent (SGD), Root Mean Square Propagation 

(RMSprop), and Adaptive Momentum Estimation (Adam). 

 

Stochastic Gradient Descent (SGD) 

A summary of the implementation or pseudocode for the SGD Algorithm is given below: 

Algorithm 5: Stochastic gradient descent  

1. Initialize all weights 𝐰𝐰𝐣𝐣 to small random numbers Weight 

initialization 

2. Repeat until convergence: 
a. Pick a training example, x at random from the dataset 
b. Feed example through network to compute output y for the given x 

Forward pass 

c. For the output unit, compute the correction/ loss function: 
𝛛𝛛𝛛𝛛

𝛛𝛛𝐰𝐰𝐨𝐨𝐨𝐨𝐨𝐨
= 𝛛𝛛𝐨𝐨𝐨𝐨𝐨𝐨𝐱𝐱 

d. For each hidden unit j, compute its share of the correction: 
𝝏𝝏𝝏𝝏
𝝏𝝏𝒘𝒘𝒋𝒋

=
𝟏𝟏
𝒎𝒎
�(𝒍𝒍𝒍𝒍𝒍𝒍 𝑷𝑷(𝒌𝒌 | 𝒙𝒙𝒊𝒊)  −  𝒚𝒚𝒊𝒊𝒊𝒊)
𝒎𝒎

𝒊𝒊=𝟏𝟏

𝒙𝒙𝒊𝒊 

Backpropagation 

(backward pass) 

e. Use gradient checking to confirm if backpropagation worked. Then disable 
gradient checking. 

Gradient checking 

f. Update each network weight: 
𝐰𝐰𝐣𝐣 ∶= 𝐰𝐰𝐣𝐣 − 𝛂𝛂 𝛛𝛛𝛛𝛛

𝛛𝛛𝐰𝐰𝐣𝐣
 ∀ 𝐣𝐣,          𝐰𝐰𝐨𝐨𝐨𝐨𝐨𝐨 ∶= 𝐰𝐰𝐨𝐨𝐨𝐨𝐨𝐨 − 𝛂𝛂 𝛛𝛛𝛛𝛛

𝛛𝛛𝐰𝐰𝐨𝐨𝐨𝐨𝐨𝐨
 Gradient descent 

• 𝛛𝛛𝛛𝛛,𝛛𝛛𝐰𝐰𝐨𝐨𝐨𝐨𝐨𝐨,𝛛𝛛𝐨𝐨𝐨𝐨𝐨𝐨 = derivatives of loss, weight of the output neuron and 
error signal at the output neuron respectively. 

• 𝐰𝐰𝐣𝐣,𝐰𝐰𝐨𝐨𝐨𝐨𝐨𝐨 = weight of the neuron at the jth layer and output layer 
respectively 

• 𝛂𝛂 = 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 

 

 

 

Stochastic gradient descent is a FFNN optimization algorithm that computes error on a single training example for every 

completed pass through the dataset (one epoch). Two other alternative methods exist, namely: Batch gradient descent 

and Mini-batch gradient descent. In batch gradient descent, the error is computed on all training examples per epoch. It 

loops through the training data, accumulate the weight changes and then update all the weights. In mini-batch gradient 

descent, the error is computed on randomly selected small subset (mini-batch), of the dataset before weights update. 

The idea behind the Backpropagation algorithm is that, after a forward pass of the training example through the 

network (when making predictions), it goes from the output layer to the input layer, propagating the error gradient 

on the way. Once the algorithm has computed the gradient of the cost function in relation to each parameter in 

the network, it then performs a gradient descent step to update each parameter with the computed gradients. 
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Going into mathematical details of gradient descent and backpropagation is beyond the scope of this research 

work, for deeper contents, please see (Bishop, 2006; Goodfellow et al., 2016; LeCun et al., 2015).  

Root Mean Square Propagation (RMSprop) 

RMSprop (Tieleman et al., 2012) is an unpublished, yet one of the most widely known gradient descent optimization 

algorithm for deep learning. It was developed to address the problem of aggressive, monotonically decreasing learning 

rates as well as the problem of large increments or decrements in the magnitude of the gradient of successive mini batches 

of training data. The RMSProp algorithm (Géron, 2017) is given below: 

 

 

 
 

 

 

 

 

Adaptive Momentum Estimation (Adam) 

Adam is an optimization algorithm that leverages the power of adaptive learning rates methods to find individual learning 

rates for each parameter of the model. The Adam algorithm (Géron, 2017) is given below: 

 

 

 

 

 

 

 

 

 Model regularization (handling overfitting) 

The flexible structure of deep neural network makes it possible to generate tens or hundreds of thousands or even millions 

of parameters. These excess parameters can sometimes result to the model memorizing the training set which then, 

however, reduces the capacity of the model to generalize to new dataset. This phenomenon is referred to as Overfitting 

(the training set). A technique to mitigate overfitting is called Regularization. Several regularization techniques exist, the 

popular and best performing technique implemented in this research include batch normalization, early stopping, and 

dropout. 

Algorithm 6: RMSProp 

3. 𝐬𝐬 ← 𝛃𝛃𝛃𝛃+ (𝟏𝟏 − 𝛃𝛃) 𝛁𝛁𝐰𝐰𝐉𝐉(𝐰𝐰)⨂𝛁𝛁𝐰𝐰𝐉𝐉(𝐰𝐰) 
 

4. 𝐰𝐰 ← 𝐰𝐰−∝ 𝛁𝛁𝐰𝐰𝐉𝐉(𝐰𝐰)⊘√𝐬𝐬 + 𝛆𝛆 
 

𝐉𝐉(𝐰𝐰) = cost function, 𝛁𝛁𝐰𝐰𝐉𝐉(𝐰𝐰) = gradient of cost function as a function 

of weight, ∝ = learning rate,  𝐬𝐬 = gradient vector,  𝛆𝛆 = smoothing term, 

⨂ and ⊘ = element-wise multiplication and division respectively 

Algorithm 7: Adam 

1. 𝐦𝐦 ← 𝛃𝛃𝟏𝟏𝐦𝐦+ (𝟏𝟏 − 𝛃𝛃𝟏𝟏) 𝛁𝛁𝐰𝐰𝐉𝐉(𝐰𝐰) 
2. 𝐬𝐬 ← 𝛃𝛃𝟐𝟐𝐬𝐬+ (𝟏𝟏 − 𝛃𝛃𝟐𝟐) 𝛁𝛁𝐰𝐰𝐉𝐉(𝐰𝐰)⊗𝛁𝛁𝐰𝐰𝐉𝐉(𝐰𝐰) 
3. 𝐦𝐦� ← 𝐦𝐦

𝟏𝟏−𝛃𝛃𝟏𝟏
⊺ 

4. 𝐬𝐬� ← 𝐬𝐬
𝟏𝟏−𝛃𝛃𝟐𝟐

⊺ 

5. 𝐰𝐰 ← 𝐰𝐰+∝ 𝐦𝐦� ⊘  √𝐬𝐬� + 𝛆𝛆 
𝛃𝛃 =  𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦, 𝐦𝐦 = momentum vector,   𝐬𝐬 = gradient vector,  𝛆𝛆 =

 smoothing term, ⊘ = element-wise multiplication and division 

respectively 
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Batch normalization 

This is technique used to improve the speed, performance, and stability of a FFNN (also addressing the problem of 

vanishing and exploding gradients (Ioffe et al., 2015)). It does this by adding a zero-centering and normalizing as well 

as a scaling and shifting operation before or after the activation function of each hidden layer. This operation gives the 

model the capability to learn the optimal scale and mean required for each input at the hidden layer.  

Early Stopping 

Early stopping (Ruder, 2016) is most commonly used form of regularization in deep learning. The process of 

implementing early stopping involve training the model for a fixed number of epochs that is sufficient enough for the 

model to reach convergence, while periodically checkpointing to record the validation error or accuracy and to optionally 

save a copy of the model parameters to file at the end of certain specified number of epochs. The model is said to start 

overfitting when the parameters of the model has stopped improving over the best saved ones or when the validation 

error stops decreasing or start increasing as seen in Figure 7.5. At that point, the training must be stopped, indicating the 

point of optimal model performance.  

 

Figure 7.5: Early Stopping indication point of optimal model performance 
Weight Regularization 

This is a simple method to mitigate overfitting by penalizing or placing constraints on the parameters (i.e. weights) of 

the network such that they are forced to take smaller values and hence resulting in a simpler model that is less likely to 

overfit. The 𝓵𝓵𝟐𝟐 norm (Neyshabur et al., 2014) and weight decay (similar to 𝓵𝓵𝟐𝟐 norm but can be re-parameterized to 

become identical based on learning rate and purpose of implementation (Loshchilov et al., 2017)) are the most common 

regulation terms often added to the loss function during cost computation in order to regularize the weights. An 𝓵𝓵𝟐𝟐 norm 

regularized cost function is given as Equation 7.7: 

 𝐽𝐽𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐽𝐽(𝑤𝑤) + 𝜆𝜆��𝑊𝑊(𝑖𝑖)�
2

𝑁𝑁

𝑖𝑖=1

 (7.7) 

Regularization 
term 

Loss 
function 
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Dropout: To a first approximation, dropout (Srivastava et al., 2014) is a simple and powerful method of reducing 

overfitting or to reduce the problem of high variance and improve model generalization beyond the training set. The 

intuition behind dropout is that, at every training step, a random subset of every neuron (excluding the output neurons) 

in the network are either temporarily dropped or ignored with a probability or drop rate of 𝒑𝒑 or kept with a probability 

of  𝟏𝟏 − 𝒑𝒑 after training as illustrated in Figure 7.6. The hyperparameter 𝒑𝒑 is usually set between 𝟏𝟏𝟏𝟏%− 𝟓𝟓𝟓𝟓% and mostly 

30%− 50% for FFNN and its variants. The technique has proven to reduce overfitting in a variety of problems involving 

image classification, image segmentation, etc. 

 

Figure 7.6: (a) A standard FFNN with two hidden layers and, (b) The same FFNN with dropped units. The units marked "×" 
have been dropped or turned off (Srivastava et al., 2014) 

 Convolutional Neural Networks (CNN) Architecture 

Convolutional Neural Networks (CNN) are special case of feedforward neural networks designed for problems where the input 

data has a known grid-like topology, e.g. audio waveform and time-series data (1D-topology), image data (2D-topology), 

volumetric data e.g. CT scans or video data (3D-topology). A Convolutional network is simply feedforward neural networks 

that uses convolution instead of general matrix multiplication in at least one of its layers. 

 
Figure 7.7: A typical Convolutional Neural Networks (CNN) Architecture 

As illustrated in Figure 7.7, the CNN architecture used for building the food image classification model was made up of 

four major building blocks or layers, namely: input layer, convolutional layer, activation layer, and pooling layer. 

a. Input layer: The input layer of the CNN architecture was a 3D tensor  (2𝐷𝐷 𝑖𝑖𝑖𝑖𝑖𝑖𝑔𝑔𝑒𝑒 × 3 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)  or simply 

an input image volume (a matrix of pixel values) with dimensions: [𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ ×  ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 ×  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ] e.g. 

[32 ×  32 ×  3], where the depth represents the RGB channels of the image. Unlike FFNN, the input variables 
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(pixel values) were not vectorized. If this was done, a lot of information in the input image would be lost. 

Conversely, the CNN preserves key information by representing input image as a tensor. 

b. Convolutional layer: The convolutional layer consisted of a set of small size grid-like filters (or kernels) whose 

parameters need to be learned. Each filter was convolved with the input tensor to generate an activation map or 

feature map made of neurons. This was achieved by sliding the filter starting from the top-left corner horizontally 

and vertically across the input and then compute the dot products between the filter and the input tensor at every 

spatial position. The output tensor of the convolutional layer was then obtained by stacking the activation maps 

of all the filters along the depth axis. The convolution layer leveraged two key ideas namely: (i) Local 

connectivity, and (ii) Parameter sharing. 

i. Local connectivity: Also referred to as Sparse interaction. As illustrated in Figure 7.8, is a property 

that each hidden unit or neuron in the output activation map is sparely or scarcely connected only to a 

small local patch of the input tensor called receptive field (unlike in feedforward neural network where 

all the neurons are fully or densely connected), which is usually of same size as the filter. Local 

connectivity helped to reduce the number of parameters for the model and helped improve its statistical 

efficiency. The position of each neuron in the activation map is directly related to the position of the 

local patch. This implies that, if a neuron is moved by one or two pixels (called Stride), the 

corresponding patch also moves to the right by one or two strides. However, for neurons on the border, 

the corresponding patch is partly located outside the input image and hence, results in shrinkage in the 

size of the output. This case where the size of the output is less than that of the input is referred to as 

valid convolution. If the network can contain as many convolutional layers as the available computing 

resources can support, a technique called zero-padding is applied to fill the missing pixel on the border 

to keep the size of the output equal to the size of the input. The is referred to as same convolution. 

 
Figure 7.8: Illustration of Local connectivity, a property that each hidden unit or neuron in the output 

activation map is sparely connected only to a small local patch of the input tensor (William L., 2019). 
ii. Parameter sharing: Unlike a feedforward neural networks where all the neurons are fully connected, 

in convNets, the parameters (weights) within a filter can be reused or shared across the neurons in the 

same feature map as illustrated in Figure 7.9. In other words, this implies that the weights of the 

connections between certain hidden units in a given hidden layer and the receptive field input from the 
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previous layer will be the same. The intuition here is that, if for instance, the same pattern is present, 

say at the top-left and at bottom-left receptive fields of an input image, then it makes sense to apply the 

same weight (filter) on such receptive fields to compute their corresponding activations. Parameter 

sharing helped to reduce more parameter space and hence, memory requirement. It also resulted in a 

nice translation property called equivariance which helped the model to generalize edge, texture, shape 

detection in different locations. 

 
Figure 7.9: Parameter sharing illustrating that parameters (weights) within a filter can be reused or shared across the neurons 

in the same feature map (William L., 2019) 

c. Activation layer: After each convolution operation in the convolutional layer, the activation of the feature map 

is computed in order to introduce non-linearity (e.g. tanh, ReLU).. The ReLU function used in this study returns 

𝒙𝒙 for all values of 𝒙𝒙 >  𝟎𝟎, and returns 0 for all values of 𝒙𝒙 ≤  𝟎𝟎. 

d. Pooling layer: In the pooling layer illustrated in Figure 7.10, the output of the convolutional layer is further 

modified. The pooling operation is performed to progressively reduce the spatial dimensions of the feature map, 

while still preserving the most critical feature information. This in turn helped reduced the number of parameters 

as well as mitigated overfitting. There are two variants of pooling function namely: maximum pooling (max 

pooling) or average pooling. Max pooling (used in this study) computes the maximum, or largest value in each 

patch of each feature map while average pooling computes the average value. 

 
Figure 7.10: Variations of Pooling Function 

CNN architectures fundamentally consist of several stacks of the four building blocks e.g. [Convolutional layer (+ReLU) 

+ Pooling layer + Convolutional layer (+ReLU) + Pooling layer, + … + Fully connected layers (+ReLU) + Prediction 

layer (Softmax)]. In recent years, several sophisticated variants of this fundamental architecture have evolved and has 

brought about countless cutting-edge achievements in many fields. The popularity of GPU computing and birth of the 
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open source ImageNet dataset have inspired continuous progress in deep learning researches and its applications. In this 

study, five of the popular architectures namely: VGG16, VGG19, ResNet101V2, InceptionV3, and Xception  were 

explored for building the classification model utilized in the food recognition system. 

 Pre-trained models and transfer learning for deep CNNs 

It is currently a no-brainer that data is the new oil. The huge success of deep learning and convolutional neural networks 

today is considered to have been fueled by the massive availability of training data and the technological advancement 

in the computing resources for processing and generating data. However, this success is accompanied by expensive and 

tedious challenges such as data collection strategy, data cleaning, data labelling, and high cost computing resources 

especially in tasks like object recognition using deep convolutional neural network architectures. Hence, this begs the 

question: “In order to minimize these efforts, how much data is enough for training a deep neural network?”. One state-

of-the-art approach that has successfully provided a ubiquitous answer is Transfer Learning (Pan et al., 2009). To this 

end, deep neural networks need not to be trained from the scratch.  

It is now a common practice to reuse an existing deep neural network (CNNs) that accomplishes a similar task to the 

target task and has been pre-trained on large dataset, e.g. ImageNet, which contained 1.2 million images with 1000 

categories, (either as an initialization or a fixed feature extractor) for the task of interest (often with smaller dataset and 

less computational power requirement). In this study, five pre-trained models namely: VGG16, VGG19, ResNet101V2, 

InceptionV3, and Xception were experimented on in order to select the best model to be utilized as the classification 

model in the food recognition system. 

There are two major approaches to implementing transfer learning as follows: 

a. Fixed feature extractor: This involve removing the last fully-connected (FC) layer of a desired pre-trained 

CNN, i.e. the output layer as illustrated in Figure 7.7 above and the rest of the layers can be trained to serve as a 

fixed feature extractor for new database. 

b. Fine-tuning: This approach involves first removing the fully-connected layer and replacing it with a new fully-

connected layer(s) that matches the number of classes in the target dataset as illustrated in Figure 7.7. Next, the 

weights of the new fully-connected layer is initialized randomly while the rest of the layers of the pre-trained 

model is being frozen (making the weights non-trainable). The fully-connected layer can then be trained mildly 

(warmed up) while the performance of the model is being monitored. Based on the size of the available training 

set, one or two top (or all other) hidden layers can further be unfrozen and the training continued to give room 

for backpropagation to adjust their weights to improve the performance of the model. It is often a useful step to 

reduce the learning rate when unfreezing the hidden layers in order to improve model convergence. 

 CNN architectures 

1. VGGNet (Simonyan et al. (2014))  

Developed in the Visual Geometry Group (VGG) research lab at Oxford University, VGGNet was the runner-up in the 

ILSVRC 2014 ImageNet challenge. It had a very simple yet efficient structure with multiple sets of 2 and 3 block of 
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convolutional and poling layers amounting to 16 or 19 convolutional layers depending on the version of the network 

(VGG16 or VGG19). The model achieved a top-5 error rate of 7.3% on the ImageNet dataset. 

 
Figure 7.11: VGGNet Architecture 

2. ResNet (He et al. (2016)) 

Kaiming He et al of Microsoft won the 2015 ILSVRC ImageNet competition with an amazing top-5 error rate of 3.57% 

(which was considered better than human classification accuracy (Russakovsky et al., 2015)) with their Residual Network 

(ResNet). The basic building block for ResNets are the conv and identity blocks. The novelty in their network is the use 

of batch normalization and Skip or shortcut connections to bypass the input to the next layer when training deeper 

architectures. Each residual unit consist of 2 convolutional layers (without pooling), with batch normalization and ReLU 

activation, using 3 × 3 filters and preserving spatial dimensions (stride 1, “same” padding). 

 
Figure 7.12: A building block of ResNet Architecture 

3. GoogLeNet (Inception) Szegedy et al. (2015) 

The inception architecture (as illustrated in Figure 7.13) was developed by researchers at Google and it won the 2014 

ILSVRC ImageNet competition with a top-5 error rate of 7%. The model is comprised of a basic unit called Inception 

module where series of convolution are performed, and their results aggregated. This helps to drastically reduce the 

number of parameters and hence, reduce computing requirement. In order to reduce computational demand, 1 × 1 

convolutions are used to reduce the depth of the input channel. For each of the inception module, a set of 1 × 1, 3 × 3, 

and 5 × 5 convolutional filters are learned which has the capacity to extract features at different scales from the input. 
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Figure 7.13: GoogleNet Architecture (Géron, 2019) 

4. Xception (Chollet, 2017) 

An extension of the inception architecture called Xception (Extreme Inception) was proposed by François Chollet, the 

author of the Keras library. Xception combines the ideas of GoogLeNet and ResNet but it was designed to replace the 

standard inception module in the inception architecture with depth-wise separable convolution layer. Regular 

convolutional layer uses filters that simultaneously capture spatial patterns and cross-channel patterns; however, a 

separable convolutional layer assumes that spatial patterns and cross-channel patterns can be modeled distinctly.  

 APPENDIX E: REPRODUCIBILITY AND RESOURCE AVAILABILITY 
The results presented in this thesis has high degree of reproducibility and replicability given the hypothesis, original data, 

codes and computational resources. In addition, similar or consistent results can be obtained looking at the same scientific 

question but with different data. The image dataset that supported the findings in this study are available for public 

download via the following cloud storage API:  

• https://food-image-dataset.s3.amazonaws.com/Composite_food_dataset.zip  

All Python scripts used in this study for the deep learning model development (selection, training, fine-tuning, validation, 

and testing) and diet quality assessment of the 15 food categories considered are available on file via the following cloud 

storage APIs:  

(i) Model development script: https://food-image-dataset.s3.amazonaws.com/Model+development+script.py 

(ii) Food image recognition and diet quality assessment script: https://food-image-

dataset.s3.amazonaws.com/Food+recognition+and+diet+quality+assessment+script.py   

https://food-image-dataset.s3.amazonaws.com/Composite_food_dataset.zip
https://food-image-dataset.s3.amazonaws.com/Model+development+script.py
https://food-image-dataset.s3.amazonaws.com/Food+recognition+and+diet+quality+assessment+script.py
https://food-image-dataset.s3.amazonaws.com/Food+recognition+and+diet+quality+assessment+script.py
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