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ABSTRACT

This thesis is an analysis of convergence results on Fourier series. Convergence
of Fourier series is studied in two ways in this thesis. The first way is in the
context of Banach spaces, where the set of functions is restricted to a certain
Banach space. Then the problem is in determining whether the Fourier series of a
function can be represented as an element of that Banach space. The second way
is in the context of pointwise convergence. Here, the problem is in determining
what conditions need to be placed on an arbitrary function for its Fourier series to

converge at a point.
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ABREGE

Cette theése est une analyse de résultats de convergence sur les séries de
Fourier. On a deux fagons d’étudier les séries de Fourier. La premiére facon est
dans le contexte des espaces de Banach, oli ’ensemble de fonctions est limité a
un certain espace de Banach. Alors le probleme est en déterminant si la série de
Fourier d’une fonction peut étre représentée comme un élément de cet espace de
Banach. La deuxiéme facon est dans le contexte de convergence simple. Ici, le
probléme est en déterminant quelle conditions doivent étre placées sur une fonction

arbitraire pour que sa série de Fourier converge a un point.
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CHAPTER 1
Introduction

This thesis is a survey of results concerning the summability and convergence
of Fourier series. Specifically, the Fourier series of 2m-periodic complex-valued
functions will be examined. Note that summability is studied in the technical sense
of summability kernels with the focus only on one particular summability kernel
known as the Fejér kernel. In this case, summability is also referred to as Cesaro
summability and corresponds to the study of the Cesaro sums of Fourier series.
This is as opposed to the usual idea of convergence which corresponds to the study
of the partial sums of Fourier series. Furthermore, the concepts of convergence and
summability are related by the facﬁ that the Cesaro sums are just the averages of
the partial sums.

Here, summability and convergence will be explored in two contexts. The first
context is in norm and the second context is pointwise. These will be explained
further down. In both contexts, the problem of summability is much simpler than
the problem of convergence. In fact, many of the results, that we would like to
hold for convergence but do not, actually do hold for summability.

Chapter 2 is a review of background information that will be needed later
in the thesis. The topics include subjects from Functional Analysis, Riemann

integration, and Measure Theory.



Chapter 3 is an analysis of summability and convergence in norm of Fourier
series. In this chapter, a spevcial class of Banach spaces of functions called homo-
geneous Banach spaces is introduced. These ‘Banach spaces will be the primary
spaces of functions that will be used throughout the text. Then the Fourier series
of a function is defined as well as the n-th partial and Cesaro sums of Fourier
series. The n-th partial sums are used for the convergence of Fourier series and the
n-th Cesaro sums are used for the summability of Fourier series. Now, let B be
a homogeneous Banach space and f € B. It can subsequently be shown that the
n—fh partial and Cesaro sums of the Fourier series of f belong to B. Summability
in norm is concerned with showing that the sequence of Cesaro sums converges
in B and convergence in norm is concerned with showing that the sequence of
partial sums converges in B. Then the rest of the chapter deals mainly with what
conditions need to be placed on f and B for summability ahd convergence in norm
to occur.

Chapter 4 is an analysis of pointwise summability and convergence of Fourier
series. Unlike the previous chapter where everything was in the setting of Banach
spaces, this chapter deals with the usual concepts of summability and convergence. -
Pointwise summability is concerned with showing that the sequence of Cesaro
sums converges at a point and pointwise convergence is concerned with showing
that the sequence of partial sums converges at a point. This chapter deals mainly
with what conditions need to be placed on a function f for its Fourier series to be

convergent or summable at a point.



Chapter 5 is about a test, created by Boris Korenblum, for pointwise con-
vergence that generalizes the Dirichlet-Jordan and Dini-Lipschitz pointwise
convergence tests. This test involves Korenblum’s theory of k-entropy, which will
also be presented in this chapter.

Before preceding to the next chapter, two theorems about the pointwise
convergence of Fourier series will be stated. These two theorems are the results
of greatest importance in this entire subject area. Unfortunately, these theorems
are beyond the scope of this thesis and will not be discussed in further detail. The
following theorems are from (Katznelson, 2004, P. 80) and (Edwards, 1979, P.
170). All the notation will be introduced in Chapter 3.

Theorem 1.0.1 (Carleson). If f € L%(T), then nlglgo Sn(f)(t) = f(t) m-a.e.
Theorem 1.0.2 (Carleson-Hunt). If f € L?(T), where 1 < p < oo, then
lim S,.(f)(t) = f(t) m-a.e.

n—oo



CHAPTER 2
Preliminaries

2.1 Banach Spaces and Functional Analysis
This section is a review of some definitions and results in Functional Analysis

from (Folland, 1999). In this’ section, let Z =R or C.
Definition 2.1.1. Let X be a vector space over Z. A norm on X is a function
X —[0,00), z + ||z, z € X st

(i) ||zl =0 <= =z =0, where 0 is the zero vector in X.

(i) Vz € X VA € Z, || \z|| = |A|||z]]

(iii) Vz,y € X, [z +y| < llzll + llyll
(X, ||) is called a normed vector space over Z.
‘Note. X is also a metric space, where d(z,y) = ||z — vy is called the metric induced
by || || or the norm metric. For any normed vector space (X, || ||), the norm is
uniformly continuous because Vz,y € X, |||lz|l — |ylll < ||z — y|| = d(z,y) and s
if 8(¢) = ¢, then d(z,y) < 0(e) = |||zl — |lyll] <e. = 1If 1111_{1;0:::" =z in X, then
lim ] = [l |
Definition 2.1.2. If (X, || ||) is complete w.r.t. the norm metric, then it is called a
Banach space.
Theorem 2.1.1. (X, | ||) is a Banach space <= every absolutély convergent

series converges in X. (3_02 ) ||@all <co=3Jz € X, lim |37, zx —z|| =0.)
n—oo
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Definition 2.1.3. Let (X, || ||.) and (Y,]| ||s) be normed vector spaces over Z.
T: X — Y is linear iff YA € Z V1,25 € X, T(Azy + 25) = AT (21) + T(x2). T is
bounded if 3¢ € [0,00) Vz € X, ||T(z)|ls < cl|z|la-

Definition 2.1.4. Let T: (X, || |l.) = (Y, || |ls) be a bounded linear operator.

17y = s L — s 7)1, = inte € 0, 00) v € X, I @) < el
z£0 llzlla=1

Note. T: (X, || lla) = (Y, || lls) is bounded iff || T'||,, < oo.
Theorem 2.1.2. Let L(X,Y) = {T: X — Y| T is a bounded linear operator.}.
Then L(X,Y) is a normed vector space over Z. If (Y, ]| ||») is a Banach space, then
L(X,Y) is a Banach space.
Notation. Let X* = L(X, Z) be the set of bounded linear functionals, which is a
Banach space by the previous theorem since Z is complete. X* is called the dual
of X. If (X, || lla) = (Y, |ls), then let L(X) = L(X, X).
Theorem 2.1.3 (Principle of Uniform Boundedness). Let (X, || [l) be
a Banach space and (Y, || [|») be a normed vector space over Z. Let F be a
family of bounded linear transformations from X to Y. Suppose that for each
z € X, {||T(z)|ls: T € F} is bounded. Then {||T||o, : T € F} is bounded.
2.2 Riemann Integration of Vector-Valued Functions
In this section, let Z = R or C and note that [a, b] is always a finite closed

interval in R.
2.2.1 Riemann-Stieltjes Integrals

| Before the Riemann integration of vector-valued functions is discussed in the

next subsection, a review of some of the theory of Riemann-Stieltjes integrals will



be presented from (Labute, 2003) and (Bartle & Sherbert, 2000). This is because
the main results here can be generalized in the next subsection. Note that in this
subsection all functions are Z-valued.
Definition 2.2.1. A partition of the closed interval [a,b] is a subset P = {z;}}_,
of [a,b] , wheren€ N, zp = a, z, = b,and Vjs.t. 1 < j < n, z;; < z;. The
norm of a partition P is | P|| = max Ax;, where Az; = x; — zj-1. If P and Q are
partitions of [a, b], then P is finer than @ if @ C P. Note that if P is finer than @,
then || P|| < ||Q||. A tagged partition of [a,b] is a pair (P,t), where P = {z;}}_,
is a partition of [a,b] and t = {t;}}., with z;_; < ¢; < x; is called a tag. If
(P,t),(Q, s) are tagged of partitions of [a, b], then (P, t) is finer than (@, s), i.e.
(P,t) > (Q,s), if P is finer than Q.
Definition 2.2.2. Let f and « be functions defined on [a,b]. If (P,t) is a tagged
partition, then the Riemann-Stieltjes sum of f w.r.t. o for the vtagged partition
(1) is S(P.L, f,0) = S0, f(t5) Ay = Y0, f(t;)aley) - alzm)).

Now, Riemann-Stieltjes integrability will be defined in two ways.
Definition 2.2.3. f is Riemann-Stieltjes integrable w.r.t. «, denoted by
f € R(a,a,b),if 3L Ye > 0 3(Q, s) V(P,t) > (Q, s), |S(P,t, f,a) — L| <.
Definition 2.2.4. f is strictly Riemann-Stieltjes integrable w.r.t. «, denoted by
f € R*(a,a,b),if AL Ve > 0 36 > 0 V(P, 1), |P|| < 6 = |S(P,t, f,a) — L| <e.
Remark. In both cases, L is unique and is called the Riemann-Stieltjes integral of
f w.rt. a. L is denoted by fab fz) da(z).

It is easy to show that the second definition implies the first. When a(z) = z,

the two definitions agree and then f is called Riemann integrable, which is denoted



by f € R(a,b). The second definition is the one that will be generalized in the next

subsection.
Theorem 2.2.1 (Cauchy Criterion). f € R*(a,q,b) <
Ve > 036 > 0V(R L), (P, U)|PIIP|| <6 =|S(Pt f,a) = S(P, U, f,a)] <e

Proof. (=) Let f € R*(a,a,b), f: f(z)da(z) = L, and € > 0. Then,
36 > 0V(P,8), [Pl <6=|S(Pt, fa)~L| < % and so |
V(P1), (PLU), |PILIPN <6 = IS(Pt f,0) = S(P.Y, f,0)| <
IS(P,¢t, f,a) — L| + |L — S(P',t/, f, a)| < 2 (5) <e
- Ve> 036 >0V(Rt), (PLU)LPI NP <8 =
|S(P,t, f,a) — S(P',t, f,a)| < ¢

(<) By induction, a sequence of tagged partitions {( Py, t,)}32, can be defined as
follows: Vn € N, (Prt1,tnt1) > (P, tn),
365, > 0V(P,1), | Pl| < 6n = |S(P,t, f, Q) — S(Pay b, ;)| < % and
[ Pall < bn-
Let n € N. Then Vj > n, (Pj,t;) > (Po,ta) = |15l S Bl < 6n =
1S(By 15 £,0) = S(Pata, 0| < -

Lete>0andn€Nbes.t.%<§. Then Vi, j > n,

(P, ti), (Py,t5) > (B, tn) = |S(Fj, 8, f,0) — S(Biy ti, f, 0|
< |S(Pj, tg, fra) = S(Paytn, fra)| + 1S (P, ta, fr0) = S(F, b, f, @)
1 €

‘v’6>0§ln€N‘v’1]>n|S(P],t],fa a) — S(P,ti, f,a)| <€



= {S(Pn,tn, f, )}, is a Cauchy sequence in Z. Since Z is comple‘te, the
sequence {S( Py, s, f, @)}52, converges in Z to a limit L. Since

1
Vn € NVj > n,|S(P;,t;, f,a) — S(Pn, tn, f,0)| < —, then by letting j — oo,

n
1

-1
Now let € > 0 and n € N be s.t. - < % Let (P,t) be s.t. ||P|| < = dn
. .
—> S(P,,/,0) = S(Payta, f,00| < . = |S(P,t, f,0) = L]

< |S(Pt, f,a) = S(Pp,tn, fy )| + |S(Ppytn, fa) = L| <2 ( ) < €.

1
n
S ALVYe>036>0V(Pt), ||P| < 6= |S(Pt, fa) ~ L| <.

— f € R(a,a,b) and / ’ f(2) dodz) = L.

Note. The second part of the proof depends only on the completeness of Z.
Theorem 2.2.2 (Integration by Parts). If f € R(g,qa,b), then g € R(f,a,b)
and [ f()dg(z) = f(0)g(b) — f(a)g(a) - [, 9(x) df ().
Theorem 2.2.3. Let o be a function on [a, b] with a continuous derivative o/
and f be a bounded function on [a,b]. If g(z) = f(z)&/(z) and g € R(a,b), then
f € R(a,a,b) and fabf(:c) do(z) = fab f(z)d/(z) dz.
2.2.2 Riemann Integration of Vector-Valued Functions

This section is a review of the main results from (Katznelson, 2004, P. 295-
296). In this sectidn, let (B, || ||z) be a Banach space over Z and F': [a,b] — B.

The following is a description of how the Riemann-integral can be defined for



B-valued functions. The same notation can be used from the previous subsection
like (tagged) partitions, etc.

Definition 2.2.5. If (P,t) is a tagged partition given as above, then the Rie-
mann sum of f for the tagged partition (P, t) is S(Pt, F) = 3 7 Az;F(t;) =

2 i1 (T — 25) F ().

Note. Unlike thevprevious section where the Riemann-Stieltjes sum is a number,
S(P,t, F) is a vector, i.e. S(P,t,F) € B. |
Definition 2.2.6. F' is Riemann integrable, denoted by F' € R(a,b), if

3L € BVe> 036 >0V(Pt),||P|| <&=||S(P,t,F) - L|g < e. L is unique and is
called the Riemann integral of F'. L is denoted by fab F(z)dz.

Note. While the Riemann integral of a Z-valued function is an element of Z, the
Riemann integral of a B-valued function is actually an element of B. Also when

B = Z, the definition of the Riemann integral in the last subsection coincides with
the definition in this subsection. Also, the Cauchy Criterion still holds with the
exact same proof except that the absolute value signs are replaced by || ||z and the
completeness of (B, || ||5) is used instead of the completeness of Z.

Theorem 2.2.4 (Cauchy Criterion). F € R(a,b) <

Ve > 036 >0 V(P t),(P,t), |PI,IPl <d=|S(Pt,F)—S(P,t',F)|p <.
Remark. Let F be continuous, i.e. Vz € {a,b] Ve > 0 30,(e) > 0 s.t. [y — z| < d5(€)
= ||[F(y) — F(z)||p < €. Note that since [a,b] is compact and F: [a,b] — B is
continuous, then F': [a,b] — B is uniformly continuous,

ie Ve>030(e)>0s.t. J[y—z| <d(e) = ||F(y)— F)|s <e

Corollary 2.2.5. If F' is continuous, then F' € R(a,b).



Proof. The Cauchy Criterion will be used to show that FF € R(a,b). Let ¢ > 0.
Since F is uniformly continuous, then 3§ = é(¢) > 0s.t. |y - z| < é(e) =

|F(y) — F(z)|ls < ﬁ. Let (P,t) and (P, t') satisfy | P||, | P’|| < 6. Let (@, s)
be a tagged partition of [a,b], where Q = P U P’ and s is any tag for Q. Note that
(@, s) > (P,t) and that (Q,s) > (P',t').

Now consider |S(Q, s, F) — S(P,t, F)||5. Let Q = {z;}}_o, P = {y;}7%, and so
S(Q,s, F) = 37, Az;F(s;). Since (@, s) > (P,t), then S(P, ¢, F') can be written
as S(P,t, F) = Y77, Az;F(u;) for a tag u except that now it may not be true that
Tj-1 < u; < x;. However, itistruethat V1 < j < ndkst. 1 <k < mand

Ye-1 < 855U < Y.

= [s; —uj| < Ay < ||P|| < 6= |F(s;5) — Flug)lls <

2(b —a)
= ||S(Q,s, F) = S(P,t,F)||5 = ZA:::] (s;) ZA% (u))
Jj=1 B
Zij(F(s F(uy) <Z||ij F(u;))|ls

= gmjnF(sj) — Fu;)]lz < Z A (ﬁé’—“‘)) B <2<b—~>) (Z A-‘”)

Similarly, ||S(Q, s, F) — S(P', ¢, F)||5 < % Thus, |S(P,t, F) = S(P', ¢, F)| 5
' € ‘
< |S(P,t,F) - S(Q, s, F)|5 + 1S(Q, s, F) — S(P', ¢, F)||5 < 2 (-2-) -

S Ve>036>0V(Pt), (P, t),|PILIP| <6=|S(PtF)~S(P,t,F)|p<e

10



By the Cauchy Criterion, F' € R(a,b). O

Note. Define H: [a,b] — [0,00) by H(z) = ||F(z)||g. H is continuous because it
is a composition of the continuous functions F: [a,b] — B and || || : B — [0,00).
Here are the main prop‘erties of the Riemann integral.
Theorem 2.2.6. Let F,G € R(a,b) and ¢;,c; € Z. Then,

1) f:(ch(x) + cG(z))dr = fab F(z)dz + ¢ fab G(z) dz

2) Ve € (a,b), [T F(z)dz = [* F(z) dz + [’ F(z)dz
J, F)dz| < [JIF ()]s do

Remark. In 3), the integral on the RHS is the Riemann integral of the real-valued

3)

function H(z) = |F(z)| 5. .
Proposition 2.2.7. Let F be continuous and k: [a,b] — Z be continuous. Define

G: [a,b] — B by G(z) = k(z)F(z). Then G~is continuous and G € R(a,b).

Proof. k(z) and H(z) as described above are continuous on [a,b]. = They are

both bounded, i.e. IM > 0 s.t. Vz € [a,b], |k(z)|, H(z) < M.

[G(y) — G(2)] = k() F(y) — k(2)F(z) = k(u)[F(y) — F(2)] + [k(y) — k(z)]F(2)
= |G(y) — G(@)llz = |k(WIF(y) — F(@)] + [k(y) — k(@)]F(2)]|5

< kW)l 1F(y) = F(2)lls + [k(y) — k()| [F(2)]5

< kW F(y) = F(2)lls + H(z) [k(y) — k()]

< M{||F(y) - F(2)ll5 + [k(y) — k(2)]]

11



Let ¢ > 0. Since F and k are continuous, 39,(¢) > 0 s.t. |y — z| < d,(€) =
|F(y) — F(z)| 5, |k(y) — k(z)| < ﬁ By the previous inequality, if |y — z| < &,(¢),
then |G(y) — G(z)||B < e

. Vx € [a,b] Ve > 0 36,(¢) > 0 s.t. Jy — x| < d,(e) = [|G(y) — G(z)||p < ¢

Hence, G is continuous and by Corollary 2.2.5, G € R(a, b). O

2.3 Measure Theory
This section is a short review of Measure Theory from (Folland, 1999). In this

section,k(X ,9M, 1) is a measure space, where X is a set, M is a o-algebra on X,

and u is a measure on M.

2.3.1 The Riemann Integral and The Lebesgue Integral

Here, (X, M, ) = (R, Bg,m), where m is Lebesgue measure.

Note. The following convention will be made for the remainder of the text. Unless -

otherwise stated, two functions f and g defined on R are said to be equal if they

are equal m-a.e. .

In the following theorem, (X, M, u) = (I, Bg N I,m) for any finite closed

interval / in R and W =R or C.

Theorem 2.3.1. 1) If f: I — W is a bounded Riemann integrable function,
then f € LY(I, B N I,m) and [, f dm = [, f(x) dz, where the LHS of the
equality is the Lebesgue integral of f w.r.t. m over I and the RHS of the
equality is the Riemann integral of f over I.

2) If f: I — W is a bounded function, then f is Riemann integrable iff the set
N = {z € I| f is not continuous at a:} is a m-null set, i.e. f is continuous

m-a.c.

12



Remark. Due to this theorem, no distinction will be made between the Riemann
and Lebesgue integrals of Riemann integrable functions. In particular, if f is a
bounded continuous function on I , then f is Riemann integrable on I and so by
the Theorem, the Riemann and Lebesgue integrals of f agree.
Notation. Let f: R — W be measurable. For simplicity, [ f(t) dm(t) will be
denoted by [ f(t)dt. Let A € Bg and x4 be the indicator function of A, wh‘ich is
measurable. Let a,b € R ahd a < b Lef g1,92 € {X(a,b),X[a,b)vX(a,b],X[d,b]}~ Then
fg1 = fg2 m-a.e. because {x € R: fg1 # fg2} C {a,b} and m({a,b}) = 0.

for= fmmae. = [ 10n@d= [ 1On®d

Let g € {X(ab) Xlab)» X(at]s Xiat} and define [ f(z)dz = [ f(z)g(x)dz and

f, f(z)de = — fab f(z)dz. Note that when a = b, fab f(x)de = [ f(z)dz = 0.
Note. If I is any finite interval in R, then

feLlXI,Bpnl,m) <= fxr€ LY(R,Bg,m).

Definition 2.3.1. f: R — W is locally integrable if f is measurable and f

is integrable over any comﬁact set. Let LfOC(R) be the set of locally integrable
functions.

Note. Let f € LiOC(R) and A € Bg be s.t. A is bounded in R. Then 3N € N s.t.
A C [-N, N]. Since [—N, N] is compact, then [, |f(z)|dz < fivN [f(2)]dz < oo.
Thus, f is integrable over any bounded set in Bg. Also, by the argument used
here, if f: R — W is measurable, then to show f € Lfoc(]R), it is enough to show

that f is integrable over any finite interval since any compact subset A of R is

closed and bounded and so 3N € Ns.t. A C [N, N|.

13



The following proposition just states that certain properties of the Riemann
integral still hold for the Lebesgue integral over finite intervals.
Proposition 2.3.2. Let f € L} (R) and a,b € R.
1) VeeR, [ f(z)dz = [ f(z)dz + [ f(z)dz
2) Ve eR, [0 f(z)dz = [0 fw + ) du
3) VeeR, [’ f(z)dz = [ flc—a)da

Note. By the previous note, if f € L} (R), then Va € {-1,1} V¢ € R,

loc
g9 € Lj.(R), where g: R — W is given by g(z) = f(az + ). This is because if f
is integrable over any finite interval, then g is integrable over any finite interval by
Proposition 2.3.2.(2-3).

Remark. The only hypothesis that is needed for Proposition 2.3.2.(2-3) is

Xy € L'(R, Bg,m), which is equivalent to f € L'({a,b], BN [a, b],m). Also, note

that [a, b] could be replaced by (a,b), [a, b), or (a,b).

z+h

Theorem 2.3.3. If f € L (R), then llm % If(t) — f(z)|dt = 0 m-ae. .
:c+h

Corollary 2.3.4. If f € L} (R), then ILI(I)1+ ) f(t)dt = f(a:) m-a.e. .

Definition 2.3.2. If f € LiO’C(R), then the Lebesgue set of f is

] 1 z+h .
Ly = {x €R hll’r(r)l+ o If(t) — f(z)|dt = 0}. By the theorerp, m(L%) = 0,
where L is the complement of Ly.

z—h

Corollary 2.3.5. If f € L (R), then

( [z +1)+ f@—ﬂ)_ﬂﬂ

dt = 0 m-a.e.

h—0+ h

14



Proof. Let z € Ly.

/h (Ler0tse=0) g,

/ 2
[
b

dt

Il

IN

(Lart s, (Ha =t
+
|

[ a:+t — f(=) f(x“t;"f(x)]dt
dt+/0h

f(x—t;—f(x)
[f(z+t) = @) dt+ [ [f(z~1)~ f(z)] dt
/. [ |

a:+t (z) gt

h N
D) {/ |f(t) ~ f(x)] dt + /_h |f(t) — f(x)] dt] [by Proposition 2.3.2]
o+h
~3 [ - s

—h

— o< [|(£HE=D) s as L [0 - sola
Since lim 5. / ") = F(@)|dt = 0, then
hll%1+h/ ( flz+1) +f(a:—t)) (@) dt =o.
Lot § = {xe]R hl%%/h (f(“t);f(“’"t)) ~ f(@) =0}.
Then, hlir&%/oh (f(“t);f(“’"t)) —f(a:)‘ dt = 0 m-a.c.,
i.c. m(8¢) = 0, because Ly C § = §° C L% and m(LS) = 0, 0

Remark. If f is continuous at £ € R, then the limits in the previous theorem and
corollary hold at z. In particular, if f is continuous, then the limits hold Vz € R.
If f is continuous on a finite closed interval 7, then the uniform continuity of f on

I implies that the limits hold uniformly for z € I.-
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VS

2.3.2 | Functions of Bounded Variation
In the next two subsections, Z = R or C and [a, b] is always a finite closed
interval in R. In this subsection, the notation from Section 2.2.1 will be used.
Definition 2.3.3. Let a: [a,b] — Z. Given a partition P of [a,b], define
A(P) = 377 1 |Aqyl. o is said to be of bounded variation on [a, b], denoted
a € BV([a,b]), if sup A(P) < oo, where the supremum is taken over all partitions
P of [a,b]. If a € BPV([a,b]), ‘then Va(Ja, b]) = sup A(P) is called the total variation
of a on [a, b]. ’
Remark. 1t is easy to show that if « is of bounded variation on [a, b], then « is
bounded on [a,b]. |
Theorem 2.3.6. (i) a € BV([a,b]) <= R[a], I[a] € BV ([a,bd])
(i) a € BV([a,b]) = Vz € [a,}], F(z—) = yl_igl_ F(y) and F(z+) = yl_i’r£1+ F(y)
exist.
(ili) @ € BV([a,b]) = {z € [a,b]| f is not continuous at z.} is countable and so
it is an m-null set.
(iv) a € BV([a,b]) = « is differentiable m-a.e. .
Proposition 2.3.7. If o € BV ([a,b]), f € R(x,a,b), and f is bounded by M on

la,b], then | [* f(z) da(az)’ < MV,([a, b)).

2.3.3 Absolutely Continuous Functions
Definition 2.3.4. A function F': R — Z is absolutely continuous if Ve > 0
36(e) > 0 s.t. for any finite set of disjoint intervals {(a;, b;)}}, satisfying

2= m(ag,b5)) = 251 (b —aj) < 6(e), 25 |F(b;) — F(a;)| < e. A function

16



F: la,b] — Z is absolutely continuous on [a, ] if the above condition holds except
that the disjoint intervals all lie in [a, b].
Remark. Tt follows from the definition (let n = 1) that if F' is absolutely contin-
uous, then F is uniformly continuous. It also follows that if F' is differentiable
everywhere and F” is bounded, then F is absolutely continuous.
Theorem 2.3.8. If F is absolutely continuous on [a,b], then F' € BV([a,b]).
Theorem 2.3.9 (The Fundamental Theorem of Calculus for Lebesgue
Integrals). If —0co < a <b < oo and F: [a,b] — Z, then TFAE:

1) F is absolutely continuous on [a, b]. ,

2) F(z) — F(a) = [T f(t)dt for some f € L'([a,b], Br N [a,b], m).

3) F is differentiable m-a.e. on [a,b], F’ € L'([a,b], Br N [a,b],m), and

F(z) — F(a) = [T F'(t)dt

Note. It can be shown that F' = f m-a.e. in the above theorem.
Theorem 2.3.10 (Integration by Parts). If F and G are absolutely continuous
on [a, b], then f: F(z)G'(z) dz = F(b)G(b) — F(a)G(a) - f: G(z)F'(x) dz.
2.4 Miscellaneous Results in Real and Complex Analysis
Notation. Ng = NU {0}

Definition 2.4.1. The signum function sgn: R — R is defined by

-1, ifx<0

sgn(z) =<0, ifz=0-

1, ifx >0

17



2.4.1 Big O and Little o Notation
Definition 2.4.2. Let g: N — C.

O(g(n)) = {f: N— C|3c > 0 and ng € N s.t. Vn > ng, | f(n)| < c|g(n)|}

lim f—@=o}

s (1)

mwm={ﬁN~c

Note. 1) f(n) = O(g(n)) means f(n) € O(g(n)).

2) Since the behaviour as n — oo is considered, it is sometimes written
f(n) = O(g(n)) or f(n) = o(g(n)) as n — co.

3) Also, note that similar definitions can be made if f is a function defined on
R, where the behaviour as z — a is examined for some fixed a € R or f is a
function defined on Z, where the behaviour as |n| — oo is examined.

4) It is easy to show that o(g(n)) C O(g(n))

2.4.2 Trigonometric Functions

(=1)k, ifze (kr,(k+1)m)
Let z € R and k € Z. Then sgn(sin(z)) = .

0, ifx=knm
krn (k+1
| (-1, ifze (—7—,—( i )W)
This implies if ¢ > 0, then sgn(sin(cz)) = ) ¢ ¢ .
0, ifex= &
T 2 U U U
2|, Zu<si < =< )< =
‘v’vue [0, 2], 7Tu_sm(u) <u = Yu € [0,n], - _sm(2) <3
sin (E) sin (T—L)
2o g 2| oy
s s :

U
2
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Yu € [0, 7], OSESSin(—> = 0<csc(z£>§E
T 2 U

Note that the above is okay at u = 0 because lim
u—

Also,Vu € [0, 7r], - (j;;ﬁ> e (%> = o (g) .

sin (E>
2
—g =1L
2

—u T w
2 2 2
U Uu
. 2 Sin (—) —
This implies Yu € [~ 7], = < |—2 22| <land 1< |—2| < =.
™ 5 sin (5) 2

Vu € R,|sinu| < |u] = Y SnY .

< 1; Note that at u = 0, lim
u— U

2
Vu € [071] ,tan(u) > u == Yu € [0, 7], tan (E> ZE = 0 < cot (E) <=
2 ) 2/ =2 2) =

|ul

= Yu € [-7, 7], ’cot (g)

19



CHAPTER 3
Summability and Convergence in Norm of Fourier Series on T

This chapter is a review of the main results from Chapters 1 and 2 of
(Katznelson, 2004).
3.1 The Spaces L*(T) and C(T)

Consider the following equivalence relation :
Example 3.1.1. Let X = R and define xRy if x — y is an integer multiple of 2,
ie. £ —y = 2km, where k € Z. | ‘

Let T= X/R={[z] : z € R} Be the set of equivalence classes.
Ve e R, [z] ={yeR:yRz} ={x+2kn: k€ Z}. Let ce Rand I = [¢c,c+ 2m).
Then T = {[z] : z € I} and all of these elements are distinct because each distinct
z € I corresponds to a unique element [z] of T. Since [¢] = [c + 27], then by
replacing [c] with [c 4+ 27], it follows that T is in bijective correspondence with aﬁy
half-open interval of length 27.
Notation. Let Z be a set. Then [ T—-Z means that f: R — Z is 2m-periodic. In
addition, if Z = C, then it is also assumed that f is measurable.

There are two important measure spaces that will be considered throughout
the rest of the textv. The first is the measure space (R, Bg, \), where A = % and m

is Lebesgue measure. Using the same notation from Section 2.3.1, | f(t)dA(t) =

1 .
gy / F(t)dm(t) = 2% / f(t) dt. The second and maybe more important measure
- :
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space is (I, Bg N I, A), where [ is a fixed interval of length 27. I is usually [—7, 7|
or [0, 27 where at most one of the endpoints might be removed. Since % is a
positive constant, then V 1 < p < oo, LP(I,Bg N I;m) = LP(I,Br N I, )\) except
that now V1 < p < oo, ||fll, = [517?/]|f(x)|” dx] ;. Note that when p = oo, the
oo-norms corresponding to m and A are the same.

The following proposition states that the Lebesgue integral of a 27-periodic
function over an inter\./al of length 27 is independent of which interval of length 27
is chosen.

Proposition 3.1.1. Let f/: T — Cbes.t. f € LY([—m,n],Bgr N [, 7r] m).
Then, f € L} .(R)andVa € {-1,1} Vc € R, [*_f(z)dz = [77 f(z)dz =

[T flax —c)dz.

‘Note. In the hypothesis of the proposition, [—, 7] could have been replaced with
any (not necessarily closed) interval I of length 27 and the proposition would

still hold. Also, the only hypothesis that was needed for the second part of the
proposition is that f: T — C and f € LiOC(R). Also, (f: T— Cand f € LIOC(R))
= f e LY([-m, 7], BrN[-n,7],m).

Now the LP(T) spaces will be defined.

Definition 3.1.1. L}(T) = {f T — cl fe LIOC(R)}

V1< p<oo, LP(T) = {f: ’]I‘—»(C‘ |f|P€L10C(R)}

L®(T) = {f: T— C| f € L*(I,Bg N I, \)}, where I is any half-open interval
of length 2.

Proposition 3.1.2. V1 < p < oo, LP(T) can be identified with L?(I,Bg N I, A),

where [ is any half-open interval of length 2.

21



Proof. First, it will be shown that if f € LP(T), then f € LP(I,Bgr N I,A).
fel’(T) = m” € Lioc(]R) = |f|P € L*(I,BrNI,\) = f e LP(I,BgNI,\)
Now, it will be shown that if f € LP(I,Bg N1, ), then f € LP(T).
If f e LP(I,Bg N I,)\), then extend f periodically to the rest of R. Then,
f: T — C. If p= oo, then it is clear that f € LP(T). Let p < co. Since f: T — C,
then |f|P: T — C.
felP(I,BgnI,N\) = |flPe L}(I,BrknNI,\) = LYI,BgN1,m)
By Proposition 3.1.1, |f|P € Lj__(R) and so f € L?(T). O

Remark. This identification makes V1 < p < oo, LP(T) into a Banach space

because LP(I,Bg N I, ) is a Banach space, where the corresponding norm is
1

given by if p < oo, ||fll, = [517?/1|f(m)|p dm] " and if p = o0, the co-norm on
Le(I,Bg NI, N).
Note. The first part of the the proof of the previous proposition still holds if 7 is
any interval of length 27.
"Corollary 3.1.3. V 1 < p < o0, LP(T) is a Banach space.

By the previous proposition, the following alternative definition could have
been made for LP(T).
Definition 3.1.2. V1 < p < o0, let L¥(T) = {f : T — C| f € LP(I, By N I, \)}

Notation. The notation is for the following theorem. Let 1 < p < 0o and ¢ = p—q—l-
1 1 |
so that — + — = 1. When p = 1, let ¢ = 00 and when p = oo, let ¢ = 1. In both
P g
' 1 1
cases, it is agreed that == 0Oand -+ - =1.
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Using the identification between LP(T) and LP(I,Bg N I, A), then by (Folland,
1999, P. 182, Theorem 6.2) and (Folland, 1999, P: 184, Theorem 6.8.(a)) with
(X, 2, u) = (I, Br N I, A), the following holds.
Theorem 3.1.4 (Holder’s Inequality). Let 1 < p,q,7 < 0o be s.t. %-{— 211- = % It
[ € I2(T) and g € LA(T), then fg € L7(T) and | fll» < | fll gl
Note. When g = oo, then r = p and by the corollary, f € L?(T) and g € L*(T)
= fg€ I(T) and | fglly < 1/ llgles
Corollary 3.1.5. Let 1 < r < p < oo. ThenVf € L*(T), f € L™(T), i.e.

LA(T) € L(T) and ||/l < |If]l,.

Proof. Let g = xg = 1. ThenV 1 < ¢ < o0, g € LYT) and ||g||;, = 1. By the

previous corollary, the result holds. The only thing that needs to be checked is
1 1 1
ifVi<r<p<oodg 2> ls.t.5+a = Note that 1 < r < oo. By the

comments before Definition 3.1.2, if r = 1, then q exists. If » > 1, then divide

v 1 1 1 1
both sides of — + — = — by - to get —— +
p q T r

()

= 1. Then (g) exists and

(g)21=>q=(g>rexistsandq2r21,i.e.qZ1.
r
1 1 1 '
Thus,V1§r<p§ooElq21s.t.5-1—-(;-——;. O

In particular, when r = 1 or p = oo, the following hold:

Corollary 3.1.6. V1 < p < oo, LP(T) € LYT) and Vf € LP(T), ||fll1 < || fll,-
V1<r<oo, L®(T) C L(T) and Vf € L>=(T), || fll» < || f]loo-
Definition 3.1.3. Let C(T) = {f: T — C | f is continuous.}.

The following proposition lists some important properties of C(T).
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Proposition 3.1.7. (i) Define || || : C(T) — [0,00) by || fllec = sup|f(t)].
(C(Tj, | o) is @ Banach space. <
(ii) ¥ 1 < p < o0, C(T) C LX(T)
(iii) Furthermore, if p < 0o, then C(T) is dense in LP(T),
ie. Vf € LP(T) Ve > 039 € C(T) s.t. || f —gll, <€
Remark. It can be shown that on C(T), the co-norm corresponding to L*°(T) is
equal to the co-norm in the first part of the proposition:
Note. (i) Vf € C(T), | fllo = sup|f(t)| = sup|f(¢)|, where J is any interval of
length 27, because f is 27T-I:Zfiodic. <
(ii) If f: R — C is a 2m-periodic function, then to show f € C(T), it is enough to
show that f is continuous on any interval J of lehgth 2.
By the previous corollary and proposition, the following holds.
Corollary 3.1.8. V1 < p < 0o, C(T) C L*(T) C LP(T) C LYT)
Note. Due to this corollary, it will now be assumed that all functions belong to
LY(T).

Notation. The following notation will be used for convenience.

27
Vf € LX(T), let /f(t)dt=/Tf(t) dt = f(sv)d:c:/lf(z)d:c,

0
where [ is any interval of length 27 by Proposition 3.1.1.

Corollary 3.1.9. Vf € L(T) Va € {~1,1} Vc € R, g € L}(T), where g: T — C is
given by g(t) = f(at — ¢) and [ f(t)dt = [ f(at — c) dt.

Proof. Fix a and c. By the note after Proposition 2.3.2, g € Lioc(]R) and also g is

2w-periodic because [ is 2m-periodic. Thercfore, g: T — C and g € L%OC(]R), i.e.
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g € LY(T). By Proposition 3.1.1, [ f(t)dt = [* f(z)dz = [*_f(azx — c)dzx =

J flat —c)dt. O

‘Remark. For a = 1, the corollary is called the translation invariance property of T.
3.2 Fourier Series

Definition 3.2.1. A trigonometric polynomial is a function P: T — C of the form
P(t) = 2N ane™, where N € Ny and a,, € C. The degree of P, deg(P), is the

largest N € Ny s.t. |a_n]| + lan| # 0.

Remark. Since e = cost + isint, then any trigonometric polynomial can be

expressed as a finite sum of sine and cosine terms and vice-versa.

N . N
P(t) = nzZ_N A e™ = 929 + ; (cn, cos(nt) + by, sin(nt))
where V0O < n < N, ¢, = (a_p + ap), by = M, ap = gfﬂ“_é‘bﬂl—)y and
i
2

Note. It is easy to show that if T is the set of trigonometric polynomials, then
T C C(T).
' The following proposition is easy to prove by elementary calculus.

1 . ' 0, fn#0
Proposition 3.2.1. Vn € Z, o / €™ dt = &, 9, where 6,9 = :
™

1, ifn=20
Remark. It follows from the proposition, that if P € T, then the coefficients a,

1 .
of P can be computed by the formula a, = o / P(t)e™** dt. This motivates the
7r

definition of the Fourier coefficients, which will be defined shortly.
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Definition 3.2.2. A trigonometric series is an expression of the form

S~ Z ane™ 30 Z cn, cos(nt) + by, sin(nt))
n=1

where Vn € Z, a,, € C and Vn € Ny, by, ¢, are defined as above. (Note that

here it is not necessarily true that the series converges and that it may even ‘
diverge for all values of t.) The conjugate trigonometric series of S is S ~

Yo oo —t sgn(n)ane™

Definition 3.2.3. Let f € L'(T). Then Vn € Z, the n-th Fourier coefficient of f
is f(n) = i / f(t)e™™ dt and the Fourier series of f is the trigonometric series
S[f] ~ Zn__oo f(n)e™ and S[f](t) will denote the Fourier series of f at the fixed
value £ € R. The conjugate Fourier series of f is the conjugate trigonometric series
of S[f] given by S[f] ~ 30, ~i sgn(n) f(n)e™.

‘Note.

S[f] ~ + Z(cn(f cos(nt) + bn(f )sin(nt)) where Vn € Ny and Vm € N,

cn(f) = f(-n) / f(®) ( mt”—mt) g =1 / F(#) cos(nt) dt
and by,(f) = (_m fm) _ /f ( e - m) dt = %/f(t) sin(mt) ds

{en(f)}32 and {bn(f)}32., are also referred to as the Fourier coefficients of f.

Remark. The conjugate Fourier series will not be referred to again until near
the end of the chapter, where it has an important role in the section concerning

convergence in norm of Fourier series.
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The following theorem is a list of some of the important properties of the
Fourier coefficients such as linearity.
Theorem 3.2.2. Let f,g € L(T) and o € C. Then

1) (af +9)(n) = af(n) + §(n)

)
2) 1f J is the complex conjugate of f, then f(n) = f(—n)
3) Vr € R, let f,(t) = f(t — 7). Then (f,)(n) = f(n)e~in".
4) |f ()] < IIf Il

Corollary 3.2.3. If { fi}¥320 € LY(T) and jllrglo fi = foin L}(T),

ie. jli’nglo |f; — follh =0, then jl_iglo fi(n) = fo(n) uniformly in n.

Proof. The proof follows from the last part of the previous theorem because
1F5(m) = o(m)] = 15 = To)(m)] < 1 = foll-

Theorem 3.2.4. Let f € L' (T) be s.t. [ f(t)dt = 0. Define F: T — Cby

= [Y f(z)dz. Then F € C(T) and Vn € Z s.t. n # 0, Fn) = fz(:)

' Proof. By Proposition 2.3.2.(1), F(y + 27) = (;"H_z” = [¥ f(z)dz +
fyy+2" f(z)dz = F(y) + [ f(t)dt = F(y) + 0 = F(y) and so F is 2m-periodic.
By the note after Proposition 3.1.2, f € LY(T) = L([0, 2n], Bzr N [0, 27}, m).

By Theorem 2.3.9, F' is absolutely continuous on [0, 27] which implies that F is
continuous on [0, 27]. By the note after Proposition 3.1.7, F € C(T) because F'
-is a 2m-periodic function which is continuous on [0, 27]. Also, by Theorem 2.3.9,

—inx
e

.G is

F' = fm-aeon[0,27]. Letn € Zbest.n # 0and G(z) = .
absolutely continuous because G is differentiable everywhere and G'(z) = e~ "®

is bounded in absolute value by 1. Also, G € C(T). Now, by Integration by
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Parts, 21F(n) = [ F(t)e ™ dt = 02” F(z)e " dz = 02" F(z)G'(z)dx =

F(2m)G(21) — F(0)G(0) — 02" G(z)F'(z) dz. Since F and G are 2m-periodic

functions, then F'G is also a 2w-periodic function and F(27)G(27) — F(0)G(0) = 0.

2w 2r _—inz 1 27

€ —inz
A o f(x)de = — fx)e ™™ dx

= L f(t)e—int dt = L(Zﬂ'f(n)) — —‘27Tf(n)

—in —in in
— 21F(n) = 271'-]%%2 — F(n) = fz(:)

G(z)F'(z)dx = /

0

Theorem 3.2.5. Let f,g € L(T). Define h: T — C by

ht) = 5= [ FOoydr =5 [ 5(e=ngtr)ar.

Then h is well-defined m-a.e., h € LYT), ||kl < |f|1llg]l1, and ¥n € Z,
Definition 3.2.4. The function h from the previous theorem is called the

convolution of f and g and is denoted by f * g. By the previous theorem, Vn € Z,

—

(f *g9)(n) = F(n)a(n).
The next theorem is a list of some of the properties of the convolution operator.
Theorem 3.2.6. Let f,g,h € L(T) and o € C. Then

1)v frx(ag+h)=a(fxg)+ f+hand (af +9)*h=a(fxh)+gx*xh

2) frg=9x*f

3) (fg)xh=[fx(gxh)
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4) If f € C(T) or g € C(T), then (f * g)(t) is well-defined V¢ € R and
(f*g) € C(T).
Lemma 3.2.7. Let f € LY(T) and ¢(¢) = "™, where n € Z.
Then (¢  f)(t) = f(n)e™.

N
Corollary 3.2.8. If f € LY(T) and P € T, where P(t) = 3. a,e™, then
n=—N

N fL
(PxNt)= 2 anf(n)e™.

n=N

3.3 Summability in Norm

Following (Katznelson, 2004, P. 14, Definition 1.2.10), a useful class of Banach
spaces called homogeneous Banach spaces on T will now be introduced.
Definition 3.3.1. A Banach space (B, || ||g) is called a homogeneous Banach
space on T if B is a subspace of L!(T) satisfying Vf € B,
(1) [ < /115 |
(H2) vr €R, f, € B and | f-|l5 = | fll5.
(H-3) The function ¢: T — B given by ¢(7) = f, is continuous, i.e.

V7 € R, TIEEO i fr — frllz =0

Remark. (H-2) is referred to as translation invariance and (H-3) is referred to as
the continuity of the translation.
Note. If (H-2) is true, then to show (H-3) is true, it is enough to show (H-3) is true
when 7o = 0 because by (H-2), |fr — frllz = [ fir—m) — fll&-

Lemma 3.3.1. C(T) is a homogeneous Banach space on T.

Proof. By Proposition 3.1.7, C(T) is a Banach space and C(T) is a subspace of
L*(T). By Corollary 3.1.6, (H-1) holds. (H-2) holds because if f € C(T), then
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fr € C(T) and || frllo = sup |f:({)] = sup [ft—7)[= sup [f(?)] =
t€[0,2n] tef0,2x] te[—7,~7+2r] -
| flloc- Thus, only (H-3) needs to be proven. By the previous note, it is enough
to show if f € C(T), then lin}) 1fr = flloo = 0,ie. Ve > 03d(e) > 0s.t.
7| < 8(e) = |Ifr — fllo < € Lett € [0,27] and 7 € [—2m, 27]. Then
(t — 1) € [-2m, 4r]. f is uniformly continuous on [—27, 47| because f is continuous
on [—2m, 47| and [—27,4n] is compact. Let € > 0. Then 30 < §(¢) < 27 s.t.
Vz,y € [-2mdn], [y —z| < 6(e) = |f(y) — f(2)] < % If |7] < &(€), then
€
v (0,27, |(t=7)~t] = |=7| = |7] < d(e) = |f-(t)=f(O) = |f(t=7)=F ()] < 35
€ ,
and ||f; — fllo = sup |f-(t) = f(¥)| < b <E€
t€[0,27]
S Ve>030(e) >0t |7] < d(e) = |Ifr — flloo <€
Therefore, (H-3) holds and by all of the above, C(T) is a homogeneous Banach

space on T. O

~Theorem 3.3.2. V1 < p < oo, LP(T) is a homogeneous Banach space on T.

Proof. By Corbllary 3.1.3, LP(T) is a Banach space. By Corolléry 3.1.6, LP(T)
is a subspace of L!(T) and (H-1) holds. By Corollary 3.1.9 and noting that

f € LT) <= |fIP € LY(T), (H-2) holds. Thus, only (H-3) needs to be proven.

By the previous note, it is enough to show if f € LP(T), then lir% = Ffll, =0,
ie Ve>03(e) >0s.t. 7] <d(e) = |Ifr = fllp <e
Let € > 0. By Proposition 3.1.7, 3g € C(T) s.t. || f — gllp < § By the previous

lemma, 36(e) > 0s.t. |7] < 8(e) = |lgr — glloo < % By Corollary 3.1.6, if
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7] < 8(6), then llg: — gllp < llg- = glloo < 5.
(f‘r_f):(f‘r"’g‘r)'l"(g‘r_g)'l"(g_f)

= ”fT - f”P < ”f‘r - g‘r“p + ”gr - g”P+ ”g - f“p
=f-gllp +llgr — gllp +11.f = gllp [by H-2]

€ € € 2e
lgr — gllp + 211 f = gll 3+2(3)=3+t3=¢

S Ve>036(e) >0s.t. |7 <b(e) = ||Ifr — fllp <€
Therefore, (H-3) holds and by all of the above, LP(T) is a homogeneous

Banach space on T.

Note. 1t can be shown that L*°(T) is not a homogeneous Banach space on T.
Remark. An important homogeneous Banach space on T is L!(T) because all
functions are assumed to be in L!(T). Another important homogeneous Banach
space on T is C(T). This is because if a certain property needs to be proven
for LP(T), where p < oo, then sometimes, the property can first be proven for
C(T) and then the fact that C(T) is dense in LP(T) can be used to show that the
property holds for LP(T). This argument was used for the proof of (H-3) in the
previous theorem. '
Definition 3.3.2. A summability kernel is a sequence {k,}22, C C(T) satisfy-
ing:

1
(S-1) Vn € Ny, %/kn(t) dt =1

(S-2) 3K >0 Yn € No, ||kal1 < K

2r—4

(S3) V0 <6<, lim / ke (8)] dt = 0
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Remark. A positive summabil'}ty kernel is one s.t. Vn € Ng, k, > 0. Note that for a
positive summability kernel, (S-1) = (S-2). Also,0<d <7 < 0<é <2 —4.
The theory from Sectio’n 2.2.2 will be used now. The following theorem is

from (Katznelson, 2004, P. 10-11, Lemma 1.2.2).
Theorem 3.3.3. Let B be a Banach space, ¢: T — B be continuous, and {k,}32,
be a summability kernel. Then lim i kn(T)¢(T) dT = ¢(0) in B.

n—oo ﬂ'

= 0.

n—o0 B

Proof. It must be shown that lim H— T)p(7) dT — ¢(0)

Let 0 < § < . By (S-1),

[%L/mhw@wh—¢mﬂ={%i/thhﬁh~(%i/%ﬁﬁh>M®]

| / E(1)(8(7) — 4(0)) df}

- |3 [ 060 - s0)ar| = |

¥ =

) H/ B0 = o) dr } [5% /;M kn(7)((7) —¢(0))d7]
= ”—/k mdr—¢(0))| <
o [ e - enar| + o [ oo - s ar B

B
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By Theorem 2.2.6.(3),

|z [ koo - snar| <L [ ko - ool

1 [
<50 [ el 167) = 60)mdr < - / [kl (E&p ot <o>||B) dr
5 |
- (517? /_5 |kn(r)|d7> (li}ls% llp(t) — ¢(0)||B>
< (517; [ o) dr) <E}2§ o) - ¢<o>||3> — lkall (E}é‘% lot) - ¢<o>uB>

<K (ﬁ}i% lp(t) — ¢(0)|IB> .

Define H: T — [0,00) by H(7) = |[¢(7')||B H € C(T) because it is a
composition of the coﬁtinuous functions ¢: T — B and || ||g: B — [0, 00).
== H is bounded, i.e. 3M > 0s.t. V7 € R, H(7) = ||¢(7)|lp £ M.

= V7 R, [[¢(r) — ¢(0)ll5 < llo(7)ll5 + 16(0)]|5 < 2M

2n—§
L / kn()(0(7) — $(0)) dr

2 5

1 2m—§ : 2w —4

<o | I = 6lndr < 5o [T 2Mk ()l ar
o |

-7 (/62”_6 Vo (7)| dT) .
— |55 [ ety o - o

M 27 —6
K (]St}ls% lo(t) — ¢(0)”B) +— ( /5 |kn(T)] dT)

Let ¢ > 0. ¢ is continuous at 7 = 0.

1 276

<5 [kn(T)(6(T) — $(0))l| 5 d7

B._ 27 5

<
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€ €

=> 36> 0517 £ 5= 166) (0l < 5 = s 19() ~6(0)lls < g

27—4
By (S-3), lim / lkn(t)| dt = 0 —>
n—oo fs

e

2n—4 2n—4
3N eNVn > N, l/ Ikn ()] dtl - / () dt < =<,
5 5 2M

< €.

All of the above = ”—2}7? /kn(T)d)(T) dr — ¢(0) N

<€

1
.. Ye>03INeNVn>N, Hé};/kn(T)QS(T) dr — ¢(0) N

Hence, lim

n—o0

= 0. | O
B

L / kn(r) () dr — $(0)

2

Note. (i) It can be shown that the integral in the theorem is independent of
which interval of length 27 is chosen as the interval of integr‘ation so that the
integral is well-defined.

(ii) Let k € C(T) and ¢ be as in the theorem. Define F': T — B by
F(r) = %ﬂ_k(T)d)(T). By Proposition 2.2.7, F' is continuous and Riemann
integrable because ¢: T — B is continuous and %k € C(T). This shows
that the Riemann integral in the theorem exists.

Remark. From now on, B is a homogeneous Banach space on T.

Note. Let F': T — B be Riemann integrable and S(P,t, F') be the Riemann

sum of F' for the tagged partition (P, t), where P is a partition of an interval

of length 27. By Definition 2.2.6, [ F(7)dr is the unique element of B which

satisfies Ve > 036 > 0 V(P,t), |P| < 6 = ||S(P,t,F) — [ F(r)dr||5 < e. Since

|S(p,t,F) - [ F(r)dr||, < ||S(P,t, F) - [ F(r)dr||,, then
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Ve > 035 > 0V(P), |Pll < 6 = ||S(P¢t,F)~ [F(r)dr|, < e Thus, F
is Riemann integrable in L*(T) and since the Riemann integral df F in LY(T) is
unique, then the Riemann integral of F' in B is the same as bthe‘Riemann integral
of F in LY(T). |
Remark. Here, the presentation of homogenecus Banach spaces on T differs from
that in (Katznelson, 2004). In (Katznelson, 2004), the following corollary and
theorems are proven only when B = L(T). Then homogeneous Banach spaces on
T are defined. Finally, Theorem 3.3.3, the first part of the proof of the following
theorem, and the case when B = L!(T) are used to prove the general case. The
following corollary corresponds to (Katznelson, 2004, P. 11, Theorem 1.2.3), the
following lemma and theorem correspond to (Katznelson, 2004, P. 11-12, Lemma
1.2.4), and Theorem 3.3.7 corresponds to (Katznelson, 2004, P. 15-16, Theorem
1.2.11).

In the previous theorem, let ¢ be as in (H-3) of Definition 3.3.1 and note that
#(0) = f. Then, |
Corollary 3.3.4. If f € B and {k,}32, is a summability kernel,
then Jlr&%/kn(T)ff dr=fin B.

In the next lemma, let B = C(T).
Lemma 3.3.5. If k, f € C(T), then %/k(%)ﬂ dr =k x* f.

Proof. Define F: T — C(T) by F(r) = %k(T)(ﬁ(T) = 51;]{3(7')_]“-,-. By the note (ii)

after the previous theorem, F' is continuous and Riemann integrable. Note that

/F(T) dr = %/k(T)f—,- dr and that by Theorem 3.2.6.(2),
T
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JIE@l@ydar = o= [ k)@ dr = (7« B(@) = (b 1))

Thus, to show that - / k(r)f, dr = k% f, it must be shown that
Ve € R, [[ F(r)dr] (z) = [IF(r)](z) dr
By Definition 2.2.6,
Ve > 036 > 0 V(P, t) IP| <& = |S(Pt,F)~ [F(r)dr| <e FixzeR.
Since |[S(P,t, F)l(z) — [ F(r)dr] (z)| < HSPt F)— [ F(r)dr|,, then
\7’6>035>O\7’(, ,1|P||<5=>[[5(PtF — [[ F(r)dr] (z)| <e.
Let f2(r) = f(z — 7). Since f € C(T), then f* € C(T). Define
G:T — CbyG(r) = %R(T) f2(r). G € C(T) because k, [* € C(T).
Also, [F(r)|(w) = 5-k(r)fo(z) = 5-K(r)*(r) = G(r). Let P = {r;}}o,
“where n € N. By Definition 2.2.5, S(P,t, F) = Y7, (rj41 — 73)F(t;) and
ISP, F)@) = [0y (7301 — ) (@) = Sn (130 — T F(](2) =
> i1 (T = 75)G () = S(P, ¢, G).

= Ve>036 >0V(P1),|P|<d=> ‘S(P,t, G) - [/F(T) dT:! (z)

<e€

By Corollary 2.2.5, G is Riemann integrable because G € C(T) and by
Definition 2.2.6, the uniqueness of [ G(r)dr = [G(r)dr = [[ F(r)dr] (z).
Since [ G(7)dr = [[F(7)|(z)dr, then [[ F(r)dr] (z) = [[F(7)](z) dr

Therefore, Vz € R, [ F(7) d7] (z) = [[F(r)|(z) dr

Hence, -é%/k('r)ff dr=kxf.

1
Theorem 3.3.6. If k € C(T) and f € B, then Z—/k('r)fT dr =k=x f in B.
m
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Proof. Let ¢ be as in (H-3) and F be as in the note (ii) after the previous theo-
1
rem. Then, /F(T) dr = Py / k(T)fr dr. By the note before Corollary 3.3.4, the
o .
Riemann integral of F' in B is the same as the Riemann integral of F' in L}(T) and

1
this implies the following. If it is shown that Py / k(T)frdr =k=* f in L(T), then

1
. / k(1) fr dr = k* f in B. Therefore, the theorem only needs to be proven when

B = LY(T).
Let € > 0. By Proposition 3.1.7, 3g € C(T) s.t. ||f — gll1 < 5—“—k||£—'*—"—1- By the
1
previous lemma, % / k(T)grdTr =k % g.
1
5r [ K e )] -
5 [Krar = o [keanar] + G xa) — G )
= |55 [ HOU = adr] + (s~ 1)
— |5z [eosdr = x| < |3 [x2s = abotr| + ko= Dl
1 2 1 ;

By Theorem 2.2.6.(3) and (H-2),

e L R R N e LG

= 55 [ Wi —gllldf = (g / |k<r>tdf) 1 = gl = Iklhallf = gl
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By Theorem 3.2.5, ||k * (g — f)lls < [lkllillg = fllx = Ik llf — gllz.

— H%;/k(f)frdf— (k f)

- (2u2k|:|l:“i 1> e
o [ ) gdr = (o 5)

T

€
S 2kl = glh < 20kl (W)

<e€
1

=0 and %/k(T)fT dr = kx f in LY(T).

S Ve>0,0<

Hence,

l% [ k) trdr = e )

1

|

Note. It follows from the theorem that if k¥ € C(T) and f € B, then (k* f) € B
Also, by Theorem 2.2.6.(3) and (H-2),

||k*fuB—H— Atar| <ok [ikessar = 5o [ ir s dr

= o [ KO Ilsdr = (27 [ wnar ) 1sls = 111

By Corollary 3.3.4 and Theorem 3.3.6, the following holds.

Theorem 3.3.7. If f € B and {k,}22, is a summability kernel,

then nh_{t; (k. * f)= fin B.

Remark. The only summability kernel that will be considered here is the Fejér
kernel. For more examples of summability kernels, see (Katznelson, 2004, P. 16-
17). Before the Fejér kernel is defined, the Dirichlet kernel will be defined because,
even though the Dirichlet kernel is not a summability kernel, the Fejér kernel is
derived from the Dirichlet kernel.

Definition 3.3.3. Vn € Ny, the n-th partial sum of S[f] is S,(f), where
Su(f)() = Si=_s S
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Note. By the remark after Definition 3.2.1 and the note after Definition 3.2.3,
snm =2y )+ b(f) sin(jt
A(0)(E) = T 3 (e () cos(t) + by()sin(i)).
. 7=1 .

Remark. Recall from the note after Definition 3.2.1 that T is the set of trigono-
metric polynomials. Let P € T be as in Definition 3.2.1. By the remark after
Proposition 3.2.1, Vn € Z, P(n): an. This implies that Vn € Ny s.t. n > deg(P),
Sy(P) = P and so S[P] = P.
Definition 3.3.4. The Dirichlet kernel is the sequence {D,}32, C C(T) given by
Dy(t) = 377 _, €. By Corollary 3.2.8, Sp(f) = (Dn * f).

The following proposition lists some properties of the Dirichlet kernel.
Proposition 3.3.8. (i) D,(t) =142 Zn: cos(jt)

J=1
(ii) D, is an even function.

(iii)

Da(t) = § _Sm(£> , it ¢ [0]

|2n+1, if t € [0]

. . 2k 2(k+ U7
(iv) Vk € Z, sgn(D,(t)) is nonzero and constant on <2n R mer) )

Proof. (i) It follows from the remark after Definition 3.2.1.

(ii) This follows from (i) because the cosine function is an even function.
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(iii) If ¢ € [0], then Dy(t)

= Dn(0) = 20 + 1. Now assume ¢ ¢ [0], which implies

that (e — 1) # 0.
n 2n 2n i
o . . o _ i(2n+1)t __ 1
D(t)= D (&) = 3 (Y™ =™y () = e <—“I—)
j=-n j=0 =0 T
el(25)t _ gmi(3)e

_ gin+1)t _ g—int e——%(eiFn+l)t _ e—mt)‘ _ | 2 .

et —1 e’%(eit - 1) er —e’3

‘ 2i

=

(iv) By (iii), if ¢t # (

) km, where k € Z, then sgn(D (t)) is nonzero and

2
+1
2n 4+ 1)t
sgn(Dy(t)) ( (2>> sgn (sm ((TLT+)>> By Section 2.4.2,
( <t>> (=1)%, ifz € (2knm,2(k + 1)7)
sgn | sin 5 =
if = 2km
and
: 2kr 2(k+ 1)w
k .
9 (-1), ifze ( , )
sen (sin(( n+1)t>> _ 2n+1" 2n+1
2 0 ifr= 2k
’ C2n+1
, where k € Z.
This implies that the result holds because sgn (sin and
t 2kmr 2(k+1 ‘
sgn | sin w are constant on T ) (k+ 1)m , where k € Z.
7 2 2n+1" 2n+1
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Note. By the remark after Proposition 3.2.1, the Dirichlet kernel satisfies (S-1).
However, the Dirichlet kernel is not a summability kernel because it can be shown
that (S-2) and (S-3) are not satisfied. (In the next chapter, it will be shown that
(S-2) is not satisfied and more specifically, 111-1_{{.10 ||Dn|l1 = o00.) This is the reason
why the problem of convergence for Fourier series is very difficult compared to the
problem of summability.

The motivation for summability comes from the following lemma which is
proven in (Korner, 1988, P. 4).

Lemma 3.3.9. Let {s,}2, C C. Define the sequence of arithmetic means {o,}32,
1 n

by Op = m Sn-
j=0

(i) If lim s, = s, then lim o, =s.
n—00 n—oo

(i) There exist sequences {s,}2, s.t. lim s, does not exist but lim o, exists.
n—o0 n—oo

Definition 3.3.5. Vn € Ny, the n-th Cesaro sum of S[f] is on(f),

where 0,(f) = n—li- 1 ZSn(f).
j=0

Remark. By the first part of the lemma, if lim S,(f)(t) exists,
then lim o,(f)(t) = lim S,(f)(¢).
Note. By Theorem 3.2.6.(1), 0,(f) =

( 1‘2;;00")*10.‘

An+1
Definition 3.3.6. The Fejér kernel is the sequence {K,}2, C C(T), where

1 . 1

m Zj:O Sn(f) =

= 31 20 (Dnxf) =

1 n 1 n
- Y DTt to see that Kn(t) = —— Y™ Di(t) =
K, n+123=0Dn It is easy to see that K,(t) n+127‘0 (1)
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> (1 - -—|‘—7—|—-—> e't. Since o,(f) = (Kn * f), then by Corollary 3.2.8,

g=-n n+1
n 7] N
n t) = (Kn t)=) ._ l1—-—], ut,
o 1)0) = (e 1)) = -, (1= 25 ) Fe
The following lemma is used to show that the Fejér kernel is a summability
kernel.
Lemma 3.3.10.

. sin((n“gl)t> 2 e

Kn(t) = 4 n+l sin (%)

n+1, if t € [0]

\

Proof. The proof will not be shown because it is very long even though it is

simple. For a proof, see (Katznelson, 2004, P. 12-13) or (Korner, 1988, P. 6-7). [J
Proposition 3.3.11. The Fejér kernel is a positive summability kernel.

Proof. By the lemma, Vn € Ny, K,, > 0. By the remark after Proposition 3.2.1,
(S-1) is satisfied. By the remark after Definition 3.3.2, (S-2) is satisfied. Thus,

it is only necessary to show (S-3). Let 0 < § < mand ¢ € [6,2m — §]. Then,

t ) é ) t d . . _ .

3 € |:-2-,’/T - 5} First, let ¢ € [§, 7]. Then 3 € [5, 5| Since sin(z) is increasing on
i U U t ) )
— i -} > - i — ) > si o

[0, 2] and Yu € [0, 7], sin (2> Z then sin <2> > sin <2) Z

t
Now, let t € [m,2m — §]. Since sin(z) = sin(m — z), then - € [E - 5]’

2 2’
7r——t— € éz and sin E = si 7r——t- >é
D 22 ) =S 2) =1
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t 0
= Vi € [5,27{' - 5],Sin (5) > ;1" > 0 and IKn(t)I = Kn(t) =
. ((n+1)t\1" 2
sin
1 2 1 1 1 T\ 2
< < -] .
n+1 . t “n+1] . t “n+1\0
sin 3 sin 3

_ /:W_5|Kn(t)|dt . /:r—anil (g)th:?Z;? (g)gz 2(;—_:15) (%)2

2n—4
, 2(m —8) ym\2? . 2m—=9) ym\2
< < - L [ ) =
Since 0 /5 |Kn(t)| dt 1 (6) and nhm 1 (6) 0, th‘en

2r—§
lim K (8)| dt = 0.

n—oo 5
2n—46

YO0 <, lim/ |Kn(t)|dt =0
n—oo s

Hence, (S-3) holds and so the Fejér kernel is a positive summability kernel.

By applying Theorem 3.3.7 with the Fejér kernel yields
Corollary 3.3.12. If f € B, then T}Lrgoon(f) = f in B.
Note. Since o,(f) = nL—i—l >_j=0Sn([), it follows that if S[f] converges in B, then
the limit must be f. '
Remark. Due to the corollary, it is said that B admits summability in norm and
that S[f] is summable in norm to f.

The following corollary corresponds to (Katznelson, 2004, P. 16, Theorem
1.2.12).
Corollary 3.3.13. T N B is dense in B.
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Proof. By the note after Theorem 3.3.6, if f € B, then g,(f) = (K, * f) € B and
by Definition 3.3.6, 0,(f) € T, which implies that 0,(f) € T N B. Then the result

follows from the previous corollary. ' O

Remark. If B = C(T) or LP(T), where p < oo, then by the note after Definition
3.2.1 and Corollary 3.1.8, TN B =T. Thus, T is dense in B.

The following corollary and theorems correspond resp. to (Katznelson,
2004, P. 16, Corollary 1.2.12), (Katznelson, 2004, P: 13, Theorem 1.2.7), and
(Katznelson, 2004, P. 13, Theorem 1.2.8).

The next corollary follows from Corollary 3.3.12 with B = C(T).
Corollary 3.3.14 (Weierstrass Approximation Theorem). Every continuous
27-periodic function can be approximated uniformly by trigonometric polynomials.
Theorem 3.3.15 (Uniqueness Theorem). If f € B and Vn € Z, f(n) = 0, then
f=0in B. |

Proof. Since Vn € Ny, 0,(f) =0 and lim 0,(f) = fin B, then f=0in B. -~ O

Remark. The previous theorem is equivalent to the following:

If f,g € B and Vn € Z, f(n) = §(n), then f = g in B.
Theorem 3.3.16 (Riemann-Lebesgue lemma). If f € L}(T),
then lim f(n)=0.

|n]—o0
Proof. Let B = L*(T) and ¢ > 0. By the remark after Corollary 3.3.13, 3P € T
st. |f — Plh < e If |n| > deg(P), then P(n) = 0 and by Theorem 3.2.2.(1),
f(n) = f(n) - P(n) = (F= P)(n). Then, |f(m)] = I(F— BYm)| < IIf — Pl < e
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VS

Let N = (deg(P) + 1). Hence, Ve > 03N € NV |n| > N,|f(n)] < € and so
lim f(n)=0. 0O

In]=ro0
The following remark is from (Katznelson, 2004, P. 14).
Remark. Let C be a compact set in L}(T) and € > 0. Then there exists a
subset {P}L, € Tst.Vfe C3I1 < j < N satisfying | f — Py < e If
[n| > maxi<;<n deg(P;), then Vf € C, |f(n)| < e. Thus, the Riemann—Lebesguei
lemma holds uniformly on compact subsets of L!(T).
3.4 Boundedness of the Fourier Coefficients
Remark. By the note after Definition 3.2.3, if Vn € N, f(n) = —f(—n), then S[f] is
a sine series and if Vn € N, f(n) = f(—n), then S[f] is a cosine series.
The following lemma is a simple application of the Monotone Convergence
Theorem in Measure Theory.
Lemma 3. 4 1. Given {anj};'f’J 1 8t.Yn,j € N, a,; € [0,00] and an; < Gnt1,
then lim Z Z,}E&o
Remark. The followmg theorem uses Fejér’s Theorem, which will be stated and

proven in Section 4.1.

Theorem 3.4.2. If f € L}(T)and Vn € N, f(n) = —f(—n) > 0, then

Proof. W.L.O.G. f(0) = 0 [Otherwise, replace f by g, where g(t) = f(t) — £(0).
By Theorem 3.2.2.(1) and the remark after Definition 3.3.3, §(0) = 0 and

Vn e Z\{0}, §(n) = f(n).] Then [ f(t)dt = 2rf(0) = 0. Define F: T — C
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by F(y) = [ f(z)dz. By Theorem 3.2.4, F € C(T) and Vn € Zs.t. n # 0,

F(n) = i("—)
in
VneN, F-n) =M IO S0 5o
i(—n) —in in
By Fejér’s Theofem, lim o,(F)(0) = F(0) = 0 because F is continuous at y = 0.

n—oo

=ﬁ*(0)+2§1<1—nil)F(J)zﬁ((;)+2é(1—nil> (%)
ro 5 (- o) (12)

n

— limZ(l—nil

j=1

Define {an,;}5;-, as follows.
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It is easy to see that {an,;}3=1 satisfies the conditions of the previous lemma. By

‘the lemma, hm Zam Z lim ap, ;.
n—oo

7=1 7=1

[o.9)
a o0
Corollary 3.4.3. If Vn € N, a, > 0 and Z (7") = 00, then ) a, sin(nt) is not
: n=1 n=1 .
a Fourier series. Hence there exist trigonometric series with coefficients tending to

0 which are not Fourier series.

[o.9) « '
sin{nt nn) . /
Remark. By the corollary, E ——(——2 = —1 E %Tz—lemt is not a Fourier series.
n=2 In|>2

Definition 3.4.1. F: T — C is absolutely continuous if 3f € L!(T) s.t

I f(t)dt = 0 and F(y) )+ [y f(z)dz. Let AC( ) be the set of absolutely
continuous functlons.

Note. By the argument used in the proof of Theorem 3.2.4, AC(T) C C(T). Also,
it can be shown that ' € AC(T) iff F is absolutely continuous on an interval of
length 27.

Theorem 3.4.4. If F' € AC(’T), then F(n) = o (%) as |n| — oo.

Proof. F € AC(T) = 3f € Li(T) st. [ f(t)dt = 0 and F(y) )+ f3 S (

By the remark after Definition 3.3.3, Theorem 3.2.2.(1), and Theorem 3.2.4,
f(n)

VneZst. n#0, F(n)= o By the Riemann-Lebesgue Lemma,

lim nf(n) = lim f(n) _1 lim f(n) =0 and the result holds. 0

|nj—o0 |nj—o0 2 1 |nj—o0
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The following remark is from (Katznelson, 2004, P. 26).
Remark. If f is k-times differentiable and f*-1 e AC(T), then by repeated
application of the previous theorem, f (n) = o(n7%) as |n| — co. Moreover, if
0 < j <k, then f(n) = (in)? (FO(n)) and s0 |f(n)] < Inl~4]| FO.
Theorem 3.4.5. If f is k-times differentiable and f*~Y € AC(T), then
[ R , : ; - F9

—~. If f is infinitely differentiable, then |f(n)| < min ——.
0<j<k  |nld 20 |n|d
The notation from Section 2.3.2 will be used for the following definitions. The

following definition is from (Edwards, 1979, P. 33).
Definition 3.4.2. f: T — C is of bounded variation if V(f) = sup A(P) < oo,
where the supremum is taken over all partitions P of intervals of lzngth 2m. Let
BV(T) be the set of functions of bounded variation.
Note. f € BV(T) = f € BV(I) for any interval I of length 27. Also, according
to (Edwards, 1979, P. 16, 33), it can be shown that if f: T — C is of bounded
variation on some interval of length 27, then f is of bounded variation on all
intervals of length 27, f € BV(T), and for any interval I of length 27, V3(I) =
v(f).

Thus, BV(T) could be defined alternatively as follows:
Definition 3.4.3. BV(T) = {f: T — C |f € BV(I)}, where I is any interval of‘

length 27.
Proposition 3.4.6. BV(T) C L*(T) and so BV(T) C L*(T).

Proof. f € BV(T) = f € BV(|0,2x]) By the remark after Definition 2.3.3,

f is bounded on [0, 27|. Since f is 27-periodic, then f is bounded on R. Then
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f € L*(T) because f is bounded. Hence, BV(T) C L*(T) and by Corollary 3.1.6,

the last part holds. : |

Remark. By Theorem 2.3.8 and the notes after Definitions 3.4.1 and 3.4.2,
AC(T) € BV(T).

Theorem 3.4.7. 1f f € BV(T), then ¥ € Z\{0}, |/(n)| < ;;(’J; )|
Proof.
27 _
f(n) = % /f(t)e—int dt = —;7; A f(t)e—int dt

f e BV(T) = f‘ € BV/([0,27]); By Theorem 2.3.6.(iii), f is continuous m-a.e.

on [0, 2n] because f € BV([0,2~x]). Since e™* is continuous on [0, 27], then

f(t)e~™* is continuous m-a.e. on [0,27]. f(t)e”™ is bounded on [0, 27] because

e~ is bounded and f is bounded by the proof of the previous proposition. By
Theorem 2.3.1, f(t)e~* is Riemann integrable and the Lebesgue integral in the
above equality is a Riemann integral.

—int

aft) = is a function with a continuous derivative o/(¢t) = e ™ and f is

—in
bounded on [0, 27]. By Theorem 2.2.3, f € R(«, a,b) and

fy =2 [ rema =2 [ rwawyde= = / " 1(t) da(t).

2 Jo 21w Jo 2m

By Integration by Parts, a € R(f,a,b) and

2w

[ 116)da®) = flam)atzn) - 10)a(0) - / " alt) dr (t).
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Since f and « are 27-periodic functions , then [f(2m)a(27) — f(0)a(0)] = 0 and so

/%ft da(t) =—/2"a(t)df(t)= %/O%e‘i"tdf(t).
- / F)da(®) = 5o [ e T e ap )

By Proposition 2.3.7’and noting that e~ is bounded by 1 & V¢([0, 271]) = V(),

£ _ 1 o —'Ln 1 o —zn 1 . V(f)
= | [ e 0] = | [ e 0] < v - 20
, : V(f)
Ve Z\{0}, |f(n)] < omlnl
Definition 3.4.4. For f € C(T), the modulus of continuity of f is w(f,h) =
sup If(t+n) — f(t)]le and for f € L}(T), the integral modulus of continuity of
Ini<h
Fis Q1k) = sup /() = S By (-0 with B = C(T), ¥/ € C(T),
Q(f, k) < w(f, h). |
Proposition 3.4.8. Vn € Z\{0}, |f(n)| < % <f, |n|>
Proof. By Corollary 3.1.9,
27r/f —mtdt _/f t+ —znt+)
:____/f t-l— —mtdt
_f()+f(n)_ 171 m —in
= =" = [5;/(1‘(”;;) - 1) tdt]
P 1 T 1 m
= 1o < 3 s (t+5) - o], < 50 (h7)
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3.5 Fourier series of Functions in L?(T)
The main results concerning Fourier series of L%(T) functions in this section
are just corollaries of some theorems in the theory of Hilbert spaces. Thus, a
review of Hilbert spaces will be presented before the main result.
3.5.1 Hilbert Spaces
All the results in this section are from (Katznélson, 2004, P. 29-31) and
(Folland, 1999, P. 171-177).
Definition 3.5.1. A complex vector space V is called an inner product space if
there is a complex-valued function (-,-) on V x V that satisfies the following four
conditions for all z,y,z € V and a € C :
(i
(i
(iii) {(az,y) = ofz,y)
(iv) (z,9) = {y,2)

Note. An inner product space V is also a normed vector space where the norm

z,z) > 0 with equality <= z =0.

) |
) (@ +v,2) = (2,2)+ {8,2)
) (o
) (z,

induced by the inner product is given by ||z|| = (=, a:)%.

Definition 3.5.2. An inner product space V is called a Hilbert space if (V| ||) is
a Banach space.

Remark. For the rest of this subsection, V is always a Hilbert space.

Definition 3.5.3. Let z,y € V and X C V. z is orthogonal to y if (z,y) = 0. y is
orthogonal to X if y is orthogonal to every element of X. X is called orthogonal if
any two distinct vectors in X are orthogonal to each other. An orthogonal set X is

called an orthonormal system if Vz € X, (z,z) = 1.
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Lemma 3.5.1. If {¢,}_, is a finite orthonormal system and {a,}¥_; C C, then

2
Hzﬁ—“—l Unnll = 277:1 |an|?.
Corollary 3.5.2. If {¢,}32, is an orthonormal system and {a,}3°; C C is s.t.

Y oo i lan]? < oo, then the series > oo | and, converges in V.

Lemma 3.5.3. If {¢,}Y_; is a finite orthonormal system, z € V, and {a,}_; CC
2

is defined by ap = (z, ¢n), then 0 < |[o = 220 anga| = ll2l® = £, Jaa.

Corollary 3.5.4 (Bessel’s Inequality). Let {¢,}aca be an orthonormal system,

z € VandVa € A, aq = (z,¢a). Then ), 4las)* < |lz||*> and the set

{a € A: a, # 0} is countable.

Definition 3.5.4. A complete orthonormal system is an orthonormal system with
the condition that the only vector orthogonal to it is 0.

" Theorem 3.5.5. If {#a}aca is an orthonormal system, then TFAE:

1) {¢pa}aca is complete.

2) Ve eV, ||z|* = Xoea l(z, da)

) Ve eV, z =3 4(T,¢a)Pa, where the sum on the right has only countably
many nonzero terms and converges in the norm topology no matter how
these terms are ordered.

Lemma 3.5.6 (Parseval). Let {@,}aca be a complete orthonormal system and
2,y € V. Then (2,3) = Yaes (@, 6a) (far V).
Note. By Bessel’s Inequality, the sum iﬁ the above lemma is a countable sum

because the sets {a € A: (z, o) # 0}, {a € A : (Pa,y) # 0} are countable.
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3.5.2 The Hilbert Space L2(T)

Now let V = L2(T). It is easy to show that LQ(T) is a Hilbert space where the
inner product is given by (f,g) = — / (@) dt and the norm induced by the -
inner product is the 2-norm.

Proposition 3.5.7. {e™}% __ is a complete orthonormal system.

Proof. {e™}% __is an orthonormal system because by Proposition 3.2.1,
imt int 1 zmt z(m n)t
Ym,n € Z, ("™, e ) = 271_ emt df = — dt = 5(m_n) 0= 5mn

Let f € L*(T) and assume that Vn € Z, {f,e™™) = 0.

(f, ey = / f)emtdt = — / fe ™ dt = f(n)

Thus, Vn € Z, (n) = 0. By the Uniqueness Theorem with B = L?(T), f = 0
in L?(T). Therefore, the only vector orthogonal to the set {e**}>° __ is the zero

n=—o

vector. Hence, {e™}% _  is a complete orthonormal system. O
Now the main results from the Hilbert space section can be applied to L?(T)
with the complete orthonormal system {e™}22 _

Remark. Let f € L%(T). By the proof of the proposition, Vn € Z, (f, &™) = f(n).

n o0

= Vn € Ny, S.(f) = Z (f, e™ et and S[f] ~ Z (f, ety

j=—n " p=-—00
The following theorem is from (Katznelson, 2004, P. 32, Theorem 1.5.5).
Theorem 3.5.8. Let f € L%(T). Then,

> 1P = o [1rora

n=—00
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2) lim Su(f) =/ in L*(T)

3) For any square summable sequence {a,}32 . of complex numbers, that is,

— 00

s.b. 302 |aa|? < oo, there exists a unique f € L*(T) s.t. a, = f(n).

4) Let f,g € L*(T). Then % / fBg@®ydt = > f(n)g(n).

n=—oo

3.6 Convergence in Norm
Definition 3.6.1. Let f € B. S[f] converges.in norm to f if T}LI{.IO Sa(f) = fin B.
B admits convergence in norm if Vf € B, S[f] converges in norm to f.

By Theorem 3.2.6.(1) and the note after Theorem 3.3.6, the following proposi-
tion holds. ‘
Propbsition 3.6.1. Let kK € C(T). Define K:B— B by K(f) = k * f. Then
K € L(B) and [Klop < Ikl
Notation. When k = D,,, K is denoted by S,, and S,.(f) = (D, * f) = S.(f).

The following theorem is from (Katznelson, 2004, P. 68, Theorem 2.1.1) and
the proof is basically reproduced as in the book.
Theorem 3.6.2. B admits convergence in norm <= {||S,||op}5>, is bounded,

ie. 3K >0Vne Ny VS € B, |S.(f)lz < K|l 5.

Proof. (=) Vf € B, lim 8,(/) = [0 B. = lim IS.(D)lls = Il =
{IISr(f)llB}, is bounded in R. By the Principle of Uniform Boundedness,
{Sn}2y € L(B) and Vf € B, {||Sa(f)llB}>, is bounded in R =
{lISnllop}ey is bounded.

(«=) Let f € B and ¢ > 0. By Corollary 3.3.13, 3P € TN B s.t.
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€
K+1

If—Pls < . Let N =deg(P) and n > N. Then S,(P) = P and

[Sn(f) = f1 = [(Sa(f) = Sa(P)] + [P = f] = [Salf — P)]+ [P - f]
= |1Sa(f) = fll < IS2(f = P)llz + |1P = flls < KlIf = Pz + 1P - fl
=K||f-Pls+Ilf - Pls = (K+1)|f - Plls <e

s Ve>03N eNVn > N, |S.(f) ¥f[|B <e

= Vf € B, lim ||S,(f) - fllz = 0, i.e. S[f] converges in norm to f.

Hence, B admits convergence in norm.

The following notation will be used from (Katznelson, 2004, P. 68).
Notation. Yn € Ny, let L, = ||Dpll1. {Ln}52, are called the Lebesgue constants.
In the next chapter, it will be shown that 111Ln010 'L, = oo like a constant multiple of
log n.
Note. By the previous proposition, Vn € Ny, ||Su|lep < L.
Suppose AN € NgVn > N, |Sullop = Ln. ThenVn > N, ||Sallop = Ln and
{IISnllop}o, is not bounded because nlinolo L, = oo. By the previous theorem,
B does not admit convergence in norm. Hence, to show that B does not admit
convergence in norm, it is enough to show that AN € Ny Vn > N, |IS,|lop > Ln.
The following proposition and theorem are stated and proven informally on
(Katznelson, 2004, P. 68-69). The proof of the proposition is basically reproduced
as in the book.

Proposition 3.6.3. L!(T) does not admit convergence in norm.
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Proof. By the note, it is enough to show that 3N € Ny Vn > N, [|S,|lop = La.
Fix n € Ny. Since the Fejér kernel is a positive summability kernel, then by
(S8-1), YN € Ny, ||Kn|j1 = 1. By Theorem 3.2.6.(2), Sp(Kn) = D, * Ky =
Ky * Do = on(Dn). By Definition 2.1.4, YN € Ny, [|Sallop > [|Sn(En)ll1 =
lon(Dn)|l1. By Corollary 3.3.12 with B = L!(T), Jim gx(Dy) = Dy in LY(T).
= lim [[ox(Da)llv = [ Dnlly = Ln = [|Sallop 2 Ln.

Hence, Vn € Ny, [[Snllop 2 La. O

Theorem 3.6.4. C(T) does not admit convergence in norm.

As the proof is long, a quick summary of the proof will be presented first
which is basically the proof presented on (Katznelson, 2004, P. 69).
Summary. A sequence {1,}32, € C(T) can be constructed s.t. ||¢s]|c0c = 1 and
Yn(t) = sgn(D,(t)) except in small intervals around the points of discontinuity of

sgn(Dy(t)). If the sum of the lengths of these intervals is less than 5%, then

[Sull 2 a0l 2 1806001 = |5 [ Dulalt)t] > £

Since € > 0 is arbitrary, then ||S,|lop > Ln. Thus, Vn € N, ||Sullop = Ln-
Remark. The proof here contains all the details that were omitted in (Katznelson,
2004) like the construction of the sequence {1, }52 ;. The proof is based on a

careful examination of sgn(D,(t)), which was suggested by Professor Klemes.

Proof. By the note, it is enough to show that Vn € N, ||S,|lo, > L,. Fixn € N.
The proof will be split up into four parts.
(i) Define ¢,: R — C by ¢,(t) = sgn(Dx(t)). ¢n is a simple function becaﬁse
& (R) = {-1,0,1}. ¢, is measurable because, by Proposition 3.3.8,
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$.1({—=1}), 671 ({1}) € Bg as they are each countable unions of intervals

and ¢-1({0}) € Bg because it is a countable set. ¢, is an even 27-periodic
function because D, is an even 27m-periodic function. (Therefore, ¢,: T — C
and ¢, is an even function.) = ¢, ohly needs to be examined on [0, 7]. By

Proposition 3.r3.8.(iii) and the proof of Proposition 3.3.8.(iv), ¢,(0) = 1 and

vz € (0,7], 6n(t) = sgn <sin (Q%W)) 45 sgn (si.n (-é-)) ~1.

Let o = U and note that M = 7.
2n+1
,
1, iftel0,a)
0, ift=ko, wherel <k<n
¢n(t) = 9

(-1)F, ifte (ka,(k+1)a), where 1 <k <n-—1

(-1, ifte€ (na,n]
\
This implies that the points of discontinuity of ¢,, on [0, 7] are {ka}f;.
Let € > 0. Let ¢y > 0 be sufficiently small. ¢; will be chosen later.

n

Let A= |J [ka — €y, ka + €] and
k=1

B = [0,a — )] UnL_Jl [ka + €, (kK + 1)a — €] U [na + €, 7).

The union in eac}];=01f A and B is assumed to be disjoint and AU B = [0, 7).
Now v, € C(T) will be defined as follows. wn will be an even 27-periodic
function so that it only needs to be defined on [0, 7]. ¥, (t) = ¢,(t) on B and

is extended linearly on A.
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§
1, ‘ ifte[O,a—eo]
(=1)* :
- (t — ka), ifte [ka— e, ka+ ), where 1 <k < n.
0
Yn(t) = § (~1)*, if t € [ka + o, (k + Do — €],
where 1 <k <n-1.
(-1, ift € [na+ e, m

From the\above, 1, is continuous on [0, 7]. Since v, is an even function, then
¥y, is continuous on [—m, 7]. By the note after Proposition 3.1.7, ¢, € C(T)
because ¥, is a 2m-periodic function which is continuous on [—m, 7].

(iii) Let ¢y = ¥n — @n. dn € L=(T) because ¢, is bounded. By Corollary 3.1.8,
€ C(T) = 9, € L®(T). Then ¢, € L(T) because Y, ¢ € L=(T). cy
is an even function because ¢, and 1, are even functions. On B, ¢, = 0 and
on A, |c,| < 1.

By Definition 2.1.4, [[¥nllcc =1 = [|Sullop = [1Sn(¥n)lloo = 1Sn(¥r)(0)].

Yn = bn+ = Su(¥n)(0) = Sn(6)(0) + Sn(ca)(0)
= |Sn(1)(0)] = |Sn(¢n)(0)] = |Sn(cn)(0)]

5,(62)(0) = (D% 62)(0) = o= [ Du(~)6u(0t = 5= [ Dttt

because D, is an even function. Since ¢,(t) = sgn(Dy(t)), then Dy, = |Dy|

ond S3(6)0) = 5= [ IDa(O]dt = Lo = [Su(8n)(O)] = S1(6)0) =
By the above argument with ¢, replaced by c,,

then S,(c,)(0) = % / Dy (t)c,(t) dt.
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Dy, is an even function because D,, and ¢, are even functions.

8 /D )t = %/_ Da(t)en(t) dt
=§1;[2/0 Duenlt) | = 2 / Da(t)ea(t) di

Note that |Dy,(t 'ZJ__H evt| < ij_n|e”t| Y- al=2n+1
Dypc, =0o0n B, ancnl =|Dnl| lcn| < |Dn] <2n+1on A, and

m(A) =Y e s m(lka — ey, ka + €]) = D, 260 = 2nep.

|—‘ / Dy (t)en(t dt’ l /Dn(t)cn(t)dt‘
/1D (6)|dt < 1/(2n+1)dt= <2n:1>m(A)

(e £ -2

. Now the conditions on ¢ will be chosen.

The first condition is thaf 0 < (a — ¢), i.e. ¢¢ < a. The second condition
is that [ka + €] < [(k+ 1) — €], 1.e. ¢g < %. The third condition is that
(na + ¢) < 7, 1e g < (7 —na) = % which is the same as the second
condition. These conditions imply that the union in each of A and B is

o

4neg
disjoint. The last condition is that — < € i.e g < "

Now, assume 0 < ¢y < min (%’ g——) Then all the conditions hold.
n

= |S,(cn)(0)] < % < € and |Sp(¥n)(0)] > Ly, — |Sn(cn)(0)] > Ly — €

= |ISallop = |Sn(¥n)(0)| > Ln —¢
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Since € > 0 is arbitrary, then ||S,||,p = Ln.

Hence, Vn € N, |Sullop 2 L.

The following lemma is a generalization of Corollary 3.2.3.

Lemma 3.6.5. If lim f; = f in B, then lim f](n) = f(n) uniformly in n.
J—Dm J—}m.

= lim f; = f in L}(T). By Corollary 3.2.3, the result holds.
j—00

Although C(T) does not admit convergence in norm, there is a simple case

when S[f] does converge in norm to f in C(T). The following proposition corre-

sponds to (Korner, 1988; P. 32-33, Theorems 1.9.1-1.9.2). Due to the assumption

that two functions f and g are equal if they are equal m-a.e., the additional hy-

pothesis in (Korner, 1988, P. 32, Theorem 1.9.1) that f € C(T) is removed. The
proof is reproduced as in the book except that the Theory of Banach spaces is
applied instead of the Weierstrass M test in (Korner, 1988).

Proposition 3.6.6. Let f € L'(T) be s.t. 3°° ___|f(n)| < co. Then f € C(T)

and S[f] converges in norm to f in C(T).
Proof. Vn € Ny, let s, = Z;.L:_n |f(g)| By Theorem 3.2.6.(4),
S.(f) = (D * f) € C(T) because D,, € C(T) and f € L(T).
Let m,n € Ng be s.t. m > n. Then, Vi € R,
1Sm(£)©) = SalHAW=| Y fGe*| < > 1fG) = lsm— sal-
nt1<]]<m n+1<fjl<m

= VYm,n € Ny s.t. m >n, [|[Sp(f) = Sn(f oo < |Sm — Sal
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Since {s,}52, converges, then {s,}5°, is a Cauchy sequence. This implies that

{Sn(f)}52, is a Cauchy sequence in C(T). Since C(T) is a Banach space, then g =

jl_iérg) S;(f) exists in C(T). By the previous lemma, §(n) = jl_iér& ST(? )(n) uniformly
in n. Since V5 > |n|, .ST(?)(n) = f(n), then Vn € Z, j(n) = ]1—11& .ST(?)(n) = f(n).
Thus, Vn € Z, §(n) = f(n) By the Uniqueness Theorem with B = L}(T), g = f in
LT). = |lg=fli=0 = g=f mae = g=f.

Hence, f € C(T) and S[f] converges in norm to f in C(T). O

The following remark corresponds to (Korner, 1988, P. 34, Theorem 1.9.6)
Remark. By the remark after Theorem 3.4.4, if f is twice differentiable and
f' € AC(T), then f(n) = O(n~2) as |n| — oo which implies 3>°°___|f(n)| < oo.
By the proposition, S[f] converges in norm to f in C(T). A special case is when f
is twice continuously differentiable.

As on (Katznelson, 2004, P. 69, Definition 2.1.4), the following definitions are
made.
Definition 3.6.2. Let f € L}(T). If 3g € L'(T) s.t. S[g] = S[f], i.e. Vn € Z,
§(n) = —i sgn(n) f(n), then g is called the conjugate function of f and is denotedA
by f . B admits conjugation if Vf € B, f exists in B.

The following theorem is stated and proved on (Katznelson, 2004, P. 70,
Theorem 2.1.4).
Theorem 3.6.7. Assume Vf € BVn € Z, ¢ f € B and ||e™ f||g = || f||z- Then,
B admits conjugation iff B admits convergence in norm.

The following theorem is from (Katznelson, 2004, P. 71, Theorem 2.1.5).

Theorem 3.6.8. If 1 < p < 00, then LP(T) admits convergence in norm.
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Remark. Only an outline of the proof will be presented. The detailed proof
involves a whole lot of theory in the subject of conjugation, which cannot be

discussed here due to the constraints of this paper.

Proof. 1t is easy to see that L?(T) satisfies the assumption of the previous theo-
rem. In (Katznelson, 2004, Chapter 3), it is shown that LP(T) admits conjugationl.

By the previous theorem, LP(T) admits convergence in norm. a

Note. The case p = 2 is just Theorem 3.5.8.(2).
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CHAPTER 4
Pointwise Summability and Convergence of Fourier Series on T

4.1 Pointwise Summability of S ViR
Definition 4.1.1. S[f](t) is summable to s € C if lim o,(f)(t) = s.

Lemma 4.1.1. (i) K, is an even function.

(i) VO< <, lim ( sup Kn(t)) = 0.

=00\ tels,2n—4)

Proof. (i) By the remark after Definition 3.2.1,

n+1

cosine function is an even function.

Kn(t) =1+2 Z (1 7 ) cos(jt). Then the result follows because the
j=1

‘ 1 9
(ii) By the proof of Proposition 3.3.11, 0 < sup K,(t) ] < (f) and
t€(6,2m—4] n+1\4

1 2
then the result follows because lim [ (z) ] = 0.
nooo [N+ 1\0

The following theorem is from (Katznelson, 2004, P. 19-20, Theorem 1.3.1).
The proof is essentially the same as in the book.
Theorem 4.1.2 (Fejér). Let f € LY(T).

1) Let to € R and assume that hlirg1+ [f(to+ h) + f(to — h)] exists. Then,
f(to+h) + f(to = h)

Jim aa(f)(to) = lim 5

of continuity of f, then lim o,(f)(t0) = f(to).

]. In particular, if ¢y is a point
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2) If every point of a clbsed interval 7 is a point of continuity for f, then
on(f)(t) converges to f(t) uniformly on I.
3) Let f be real-valued and mo, M € R. If f > my m-a.e., then o,(f) > my.

Similarly, if f < M m-a.e., then o,(f) < M.

Proof. 1) Let0<é&<m, e>0,and f(to) = hlirg+ [f(to +h) + flto - h)}.

2
By Theorem 3.2.6.(2),

7o £)ta) = (o Plts) = (7 4 Kn)lto) = 5= [ Ka()f(ta = 7).

By the argument used in Theorem 3.3.3 with ¢(7) and ¢(0) replaced By
f(to—7) and f(to) resp.,
ontDe0) = T = [ [ K70 =7) - Fao)
2m—48
tom [ Kt =)= Fit) df} .

== |Un(f (to) — tO l <

/ Ka(r)(f(to — 7) — F(to)) dr

27 -8
= KUt =)= f()dr

+
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27—6 ‘
| K)o =) - o)) ar
276

<o [ 1Kl =) - o)l dr

1 27—6 .
=5 5 Ko ()| f(to — T) — f(to)| dr

1 27§ .
< oy < sup Kn(ﬂ) |f(to —7) — f(to)| dT

T™Js tels,2x—b]

te[8,2m—4)

2m—~6
:( sup K,(t) i/ |f(t0‘“7')—f(t0)|d7-

IN

2n
< sup  Kan(t) —/ |f(to —7) = f(to)| dr
te[6,2m—4]

= ( sup  Kn(t) —/If to — ) — f(to)| dr

te[6,2m— 8]

= ( sup Kn( ) /|f — f(to)| dr [by Corollary 3.1.9.]

te[6,2m—4)

= llf—f(to)||1< sup  Kn(t )> < (Il + 1 o)) (t [Sup K (t)>

t€[8,27—4] 2m—4]

= (|| fll + |f(to)|) ( sup Kn(t)> [because f(to) is a constant.]

te[s,2m—48)

By Proposition 2.3.2.( / Ko (1) {(f(to — 7) — f(to)) dr =

_/ Ko(7)(f(to —7) — F(t0) d¢+——/K )(f(to —7) — J(to)) dr.
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By Proposition 2.3.2.( / Ko (T)(f(to — 7) — f(to)) dr

)
= %L Kn(”“T) t0+T / K t0+7' f(t())) dT,

where the last equality follows from Lemma 4.1.1.(i).

Let gy, (7) = Kf(tOJ“T) +/{to _T)) _ f(to)J. Then

2

/K f(to — 1) = f(to)) dr
/K flto+7) = f(t)) dT—I—-—~—/K f(to—7) = f(to)) dr

/K to-—l—T +f(t0—T))—2f(t0]d’T*‘ /K gto( )d

Since K, is an even function, then —/ Kn( 271_ [ / K }
1 i3
2w

By the argument used at the beginning of the proof,

1 b
—2~7;/ Ko (r)(f(to — 1) — to ))dr| = ‘ /K )9t (T

( / Kn( ) (tz%p&] |90 (¢ )I) = <t23)%] Igto(t)l)-

"~ loa(f)(to) = f(to)l < (tzml Igto(t)|> + ([l + 1/ o)) ( sup Kn(t))

t€[8,2m—d]

K, (7)dr =1, where the last equality is by (S-1).

_ f(to+h)+ f{to — h) : _
O — Jim (1) =0
= 3(5>Os.t.0<7<(5=>lgtO(T)|<bE => | sup |g(t)] SE<-€—
3 te(0,6] 3 2
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By Lemma 4.1.1.(ii), lim ( sup Kn(t)> =0 = INeNVn>N,

MO0\ te[b,2m -4

sup Ky(t)
te[8,2m—6)

€
- <te§,‘§¥3.a] K"“)> BT + 17G) + 1]

All of the above == |0 (f)(to) — f(to)] < e.

- Ye>03IN e NVn > N, |on(f)(t) — f(to)] < e

Hence, lim o,(f)(t0) = f(to).
2) Assume f is continuous on I. Then Vt, € I, f(to) = f(to). f is uniformly

continuous on I because f is continuous on I and I is compact. Let ¢ > 0.

— 35>0\7’x,y€[,1$—y|<5'=>|f($)—f(y)|<% —

\7’O<T<5\7’toel,|(i0j:7-)—t0|=!7-|=7-<5 —

g0 (r) = |(LEEL =D

2
_ ’ (f(to+ 1) — f(to)) + (f(to — 7) — f(t0))
1 » :
|f(to +7) — f(to)| + | f(to ~ 7) — f(to)] 2¢
= < 2 ) DR

S Ve>036>0V€IVY0<T<E,|gr(T)] <€

Hence, Tli.I(I)1+ gt,(7) = 0 uniformly in ¢, € I and this implies that § in (1)
can be chosen independently of tg € I. Also, f is continuous on [ = f is
bounded on I by some M > 0. Since (|| f|l: + 1£ (o)) = (£l + |f(t0)]) <
(I1£lls + M), then (|| f{l1 + | f(to)l) can be replaced by (||f{l + M) in (1).

By all of the above, nhnolo on(f)(te) = f(to) uniformly in ¢, € I.
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ol F)(E) = (Kn % (1 /K f(t—1)dr

> 27T/moK T)dT ="My (2—7T/Kn(7-)d7-) =my

, ie. on(f)(t) > mg because f > mg m-a.e. and K,, > 0. By a similar

argument, o,(f)(t) < M.

Note. The proof of Theorem 4.1.2.(1) can be modified so that Theorem 4.1.2.(1)

still holds even if hli%1+ [f(to+ h) + f(to — h)] = o0.

2
Lemma 4.1.3. V¢ € [0, 7], K,(t) < min (n +1, (n-j—r—l)t?>
Proof. By the proof of Lemma 4.1.1.(1) and Lemma 3.3.10,

t)=1+2é;( 1)wdﬁ)§1+2§?(1—5%j):Jﬁm)=n+L

AV ESVANE
AN 1 PP\ 2
Since V¢t € [0, ], sin (§> > - > 0, then K,(t) =

1 sin E
2

2
Hence, Vi € [0, 7], Kn(t) < min (n +1, #ﬁ)
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y to+h —h
It is easy to show that Fejér’s condition, f(t) = hlir61+ fto+ 1) —; f{to )

1 [h
implies hlir51+ 7 / |gs,(7)| d7 = 0. By Corollary 2.3.5, this new condition holds for
- 0
m-a.a. to € R with f(to) = f(to)
The following theorem is from (Katznelson, 2004, P. 21, Theorem 1.3.2). The

proof is the same as in the book except that the proofs of

T On
lim [l K. (7)g(7) dT:| = 0 and lim {l/ Kn(1)g(T)dr| = 0 are given here

n—oo | T Js n—oo | T J1
™ n

( s
in full detail. The elements of the proof of lim [— K,(1)g(7) dT] = 0 arose in

n—oo | J1
n

a discussion with Professor Klemes.

Theorem 4.1.4 (Lebesgue). Let f € LY(T), {, € R, f(to) € C, and

() = [(f(td”);f(t"”)) —f(to)]. I hg%l+%/(Jh lg(r)|dr = 0, then

nll'r{.lo on(f)(to) = f(to). In particular, nh_'ngo an(f)(t) = f(t) m-a.e.

Proof. By the argument used in Theorem 4.1.2.(1) with 6 = =,

onl D) = Fto)] = 5= [ Kal?)(flta =) = flw) dr = = [ Kot o

m

Now, let 4, = n-i. By Proposition 2.3.2.(1),

on($lte) = Ft)] = 3 [ Kalrlg(r)dr

: o y
- [%/0 Ko(m)g(7) df] + [;1; Kn(1)g(7) deI + [l K (m)g(7) dT]

1 ™ Ja,

v

To show that lim o,(f)(to) = f(to), it is enough to show that as n — oo each
n—ooo

of the three integrals on the RHS of the previous equation tend to 0.
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First, it will be shown that lim [l/ K, (m)g(1) dT:} =0.

n—oo | T
1 m
- / Kn(1)g(7)
m Sn

/|K dr =2 /K ) dr
< %/ (@%’“) lg(7)] dr [by Lemma 4.1.3.] < / (—————(n f;(snz) lg(r)} dr
< (i) (5 [ ooner) < (57) (3 [ woner)

_ (ﬁ;—) (% l9(r)| dr ):%

Note that f € LY(T) = g € LY(T) = ||glh < .

‘ 2
/ K 27 ”9”12
( +1)6,

: , 2Ilglll . i
Since nh_rg) [m] = 0, then nh_.ngo [;/5 K. (m)g(7) dr} =0.

Now, it will be shown that lim l: / Kn( } = (.

n—oo

Let ®(h) = foh lg(7)| dr. By Theorem 2.3.9, ® is absolutely continuous on [0, 7]

because g € LY(T) = g € Lloc(R) = g¢ LY([0, 7], B N [0, 7], m).

! [ atryar| < X [ matir =1 [F kil

g;/g (n+1)|g(7)| d7 [by Lemma 4.1.3.]

-0 () = 0 (1)
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n—o0 nm ™

then lim <("+1) [ncb (%) ) = 0.
2 riwrar < S0 o (1)
Since i (u [,@ (1)]) o g [ [* Kt ]

1 5’".
Now, it is only necessary to show that lim { / K. (m)g(T) dT:I = 0.

On On
/ Kooy dr| < - [ Kangldr = 1 [T Ko(olg(r)ldr

< _Ln ((_WQ_) lg(T)| d7 [by Lemma 4.1.3.] ’= T /_" |g£ il dr

T n+1)r2 n+1

1 1 o
Since lim (ii_——) = — and (l'm ﬂ =0 = lim {n@ (l>} = 0) ;
r—0+t h n—oo n

. 0L

S|
I
e

Let h(7) = l? Then K/ (7) = ——2—3.‘ Va € (0,7), h is absolutely continuous
T . T
on [a, 7] because on [a, 7], h is differentiable and A’ is bounded. Also, by Theorem

2.3.9, &' = |g| m-a.e on [a, w|. By Integration by Parts,

/" la(r )Idf._[n BT (7)dr = [W(T)(D)][, —/jn B(r)H(r) dr

o(7) ®(dn)  ®(7)
[ ] 3 dr < 5.2 + 2 L 3 dr.
On
| narl < 2 (70,
T J1 n+1/1 T2
57!.
< O 6 2m / (1) dr
n+1 R n+1 178
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Let € > 0. lim <I>_(h_,2=0 = 36>0V0<h<6,w<—6——
h—0t+ h 3T

limé,=0=>3INeNVn>N, 6, <6 = V0O<7<4, <9, ¢()<3i
n—oo T T

Also, 0 < 51—- <n.

n

= 5] < @) (7)< () () <5

8n . 5
e < () ) [ e () ) [
o))

1

~Ve>03INeNVn> N, l;lr- Kn(T)g(T)dr

(S'n.
Hence, lim [—1—/ K.(m)g(7) d'r} = 0.
n—oo | T J1

By all of the above, lim a,(f)(to) = f(to). O

The following corollary is from (Katznelson, 2004, P. 20, Corollary 1.3.1).
Corollary 4.1.5. If f € L!(T) and S[f] converges on a set E of positive measure,
then S[f] = f m-a.e. on E. In particular, if S[f] converges to 0 m-a.e., then f =0
and all the Fourier coefficients must vanish. |
4.2 Pointwise Divergence of S{f]

The following theorem is from (Katznelson, 2004, P. 72-73, Theorem 2.2.1).

Two proofs will be presented which are basically reproduced as in the book.
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The first proof uses the Principle of Uniform Boundedness to show that f exists
without giving an example of such a f. The second proof is the construction

of a concrete example. Both proofs will use the proof of Theorem 3.6.4. Here,
B = C(T).

Theorem 4.2.1. 3f € C(T) s.t. S[f] diverges at a point.

Proof 1. Define Vn € Ny, E,: C(T) — C by E.(f) = [Sa()](0) = S.(f)(0). E, is
linear because S, is linear. E, is bounded because S, is bounded since V f e C(T),
|Ea( )] € 1Sn{f)lloo € L || flloo- Thus, E, € C(T)* and ||Eys|lop £ Ln. Now, let

n € Nand € > 0. By Deﬁnition.2.1.4, | Eullop 2 |En{¥n)] = |Sa(®n)(0)] > L, — €
because 1, € C(T) and ||¢s]lc = 1. Since € > 0 is arbitrary, then ||E,||,p = Ly
and so ||Ep|lsp = Ln. Therefore, C(T) is a Banach space, {E,}52, € C(T)*

and {||Enlop}, is not bounded. By the Principle of Uniform Boundedness,

3f € C(T) s.t. {|E. ()|} = {ISa(f)(0)]}22, is not bounded. Since the sequence
{ISn(£)(0)|}2, is not bounded, nll»r{olo Sn{f)(0) does not exist. Hence, S[f] diverges
unboundedly when ¢ = 0. O

L
Proof 2. In the proof of Theorem 3.6.4, let € = > Then 3{,}22, C C(T) s.t.

L, logn
[¥nllo = 1 and [S,($) Q)] > 5" > 1g0

is a trigonometric polynomial of degree n?. By the note after Theorem 3.3.6 and

. Let pp = gp2(¥n) = (Kp2 x ¢,) which

(S-1), llpnlleo < ||Knzll1||¥nlloo =1 -1 = 1. By Theorem 3.2.2.(4) and (H-1), Vj € Z,
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@) < s < [nfloo = 1.

V15l < n, [8a) = A5)] = Bals) - (1 . +’ 1) ¥ald) = ( 'j+' ) ¥nld)

1
— 5,00 - 5.0 = 3 [R) - 0] e = Y () Tae
— - | | z]t
— 15,0600 = Sulo0] < | Y (7 ) Tate
<3 <n2'+'1)wn< e ,_z_ <n2'+'1) 0
=~ il _ n(n+1)
_ ”fl’;:ll) < "(”njl) = (1+%> <2

Since Sn(pn)(o) = Sn(’(/ln)(O) - [Sn(wn)(o) - Sn(pn)(O)],,

then |Su(pe)(O)] 2 18:(6)(0)] = 15 wn>(o>—sn<pn><o>|>1°g”—2.

10

p'\" . Since A, € N, then

Let A, = 2% and f(¢) =
pr.(Ant) € C(T) and ||px, (An t)”oo = ||PAnHoo < 1. By Theorem 2.1.1, f € C(T)

because

et

n=1

’ Z”PA Ant)lloo Z_z_

Now it will be shown that S| f] diverges at t = 0 by showing that it diverges
unboundedly when ¢ = 0. py,();t) is a trigonometric polynomial of degree
A;° because py;(Mjt) = Y. px,(m)e*™™. This implies Sy 2(pa, (Ant))(0) =

Im|<);2

Sx, (P2 )(0). Also, A2 < A2 = Ajpy < Ajur’.
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n2
j=1 j=n+1
| S = 0y, (0) 2
= [S5,:(NO)] > | == ’ > h > B
j=1 Jj=n+1

Note that |py,(0)] < |loa;llee <1 and |5y, (0)] < |loa; 1l < [loaslloe < 1.

S,\n(p,\n)(O)’ _ Su(e)0)] | 1 (logz\n _2> _ 1 (3"log2 _ 2)

n? 10

n—1 o0 ——
3"log2 2 py; (0) Px;(0)
- < 10n?2 n2) D Z 72
j=1 j=n+1
n—1 (o) — n—1 o0 —
p/\j(o) p/\j(O) |p/\1(0)| |p/\j(0)|
S j2 + Z j2 S Z ]'2 + Z ]'2
j=1 j=n+1 j=1 j=n+1
n—1 o] oS
1 1 1 72
S H+Y 5<Yi-%
— 2 2 2
j=1 J Jj=n+l1 J j=1 J 6

—_ |5An2(f)(0)|><3—bg—2——2->—%2<3 og2_3>,

10n2 n? 10n2

2 3"log2
where n > 2 because Vn > 2, 1 + T < 3. Since lim 082 _ 3) =00
v n2 6 n—oo \  10n?
then lim |Sy,2(f)(0)] = oo. = {IS,,2(f)(0)]}22, is not bounded. ==

{15.(£)(0)]}22, is not bounded. Hence, S[f] diverges unboundedly when ¢t =0. O

The following remark is from (Katznelson, 2004 P. 73).
/\ t) /\ t
Remark. From the second proof vm € N, f(t) Z p" Z Pn

n=m+1
The first term on the RHS is a trigonometric polynomlal and so does not affect the
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2
convergence of S[f]. The second term on the RHS is periodic with period =T since

" onj 2mj
Am
where j,m € N. To obtain divergence at every rational multiple of 27, redefine

(M}, by Ag = ni23",

Vk > m, A, divides A¢. This implies {S,(f)(t)}22, is not bounded when ¢ =

4.3 The Modified Dirichlet Kernel

1
Lemma 4.3.1. Let k € C(T) be an even function that satisfies Py k(t)dr =1,
s

f e IMT), K(f) = (k+ f), and ¢ € R. Let () = [f(t“);f(t—f)}and

our) = r) - o) = | (LI )>—f( )] Then,
6) KN = 5 / Fle £ 7)k(r)dr = o / Bilr |
(1) KO = J0)] /[ftir F(e)1k() Tz_ﬂ/@mkmm:

;/0 o (T)k(T) d

Proof.- (i) By Theorem 3.2.6.(2), K(f)(t) = (f * k)( /f(t - T)

Since k is even, then by Corollary 3.1.9, K(f /f(t +7)

/ f(t + 7)k(7) dr. By taking the average of the previous two equahtles it

follows that K(f)(t) = / Bu(r)k(r) dr

1
(ii) Since f(t) = f(t) (—;r—/ > /f(t T)dr, then by subtract-
ing this equation from the equation in ( ), the first two equalities in (ii)

hold. Since ¢; and k are even functions, then ¢k is an even function and

KOO - £0] = 5 [ emkrar = 5 (2 | e dT) _
%/OW o (T)k(T) dr
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Note. The Dirichlet (Fejér) kernel satisfies the hypotheses of the lemma a?,nd then
K(f) = 5a(f) (on(f) resp.).

Following (Zygmund, 1977, P. 50), the modified Dirichlet kernel and the v
modified n-th partial sums of S[f] will be presented.
Definition 4.3.1. The modified Dirichlet kernel is the sequence {D:}, C C(T)
given by D7 (t) = D,(t) — cos(nt) and Vn € N, the modified n-th partial sum of
SUfl s S3(f) = (Dj + f).

Proposition 4.3.2. (i) D} is an even function.

(i)
t
cot (—) sin(nt), ift ¢ [0]
Dit)=4q \?
2n, if t € [0]
2
(iii) Vt € R, |D;(t)| < 2n and V¢ € [—m, 7], |D;(t)] < i
1
(IV 2—/
Proof. (i) Dy is an even function because D, and cos(nt) are even functions.
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(i) If t € [0], then D(t) = D:(0) = D,(0) — cos(0) = (2n + 1) — 1 = 2n. Now

By Proposition 3.3.8.(iii), Du(t) = - (%) .
| (3)
Since sin ((2”—;1”> — sin (nt + %) — cos(nt) sin (%) + cos (%) sin(nt),
s 3)
()
)=

= D} (t) = Dy(t) — cos(nt

assume t €. [0].

t
then D,(t) = cos(nt) sin{nt) = cos(nt) + cot (2) sin(nt).

cot () st

(iii) By Proposition 3.3.8.(i), Du(t) =1+2 E cos(jt) which implies D} (t) =

j=1
n-1 n-—1
1+ 25" cos(jt) + cos(nt). Then |Dx(t)] < 1+ 2 Y |cos(jt)| + | cos(nt)| <
Jj=1 7=1
n—1 t
1423 1+41=2n. Since Vt € [-—7r 7], |cot ( ) ﬂ and |sin(nt)| < 1,
j=1
Y\ . t . 2
then | D} (t)| = |cot 3 sin(nt)| = |cot 5 | sin(nt)| < ok
int + e—int

(iv) Let P,(t) = cos(nt) = ) By Theorem 3.2.2.(1) and the remark

2
. 1 —~

after Definition 3.3.3, D} = [D, — P,] = —2—7;/D:;(7') dr = Dx(0) =

Da(0) = Po(0) =1 -0 = 1.

|

Note. By the proposition, the modified Dirichlet kernel satisfies the hypotheses of
the previous lemma and then K(f) = S;(f).
Theorem 4.3.3. Vf € LY(T), lim ||Sa(f) — Si(f)llco =0

n—o0
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Proof.

By Theorem 3.2.6.(1), D, = [D, — Po] = Si(f) = (Di* f) = (Dyp x f) — (Py % f).
f(__n)e—mt+ f(,n)eint

By Corollary 3.2.8, (P, x f)(t) = and (D, x f) = Sa(f).

2
= 5N = S0 — | L (‘”)e_mff(n)e’nt}
[ f(=n)e=mt 4 f(n)eint
= [Su(f)(t) = Si(H ()] = f(=n) 2+ fn) }

~

fleme ™ + f(me
2

|/ (=m)] + | ()
2

= 0 [[Sn(f) = Sn(Nlleo = igﬁlsn(f)(t) — SHAHE)| < |f(_”)l2+ |f(n)]

= [Sa(N)(#) = Sa(NO)] < <

By the Riemann-Lebesgue Lemma, lim
n—oo

2
= lm [S.() = SNl =0 o

[|f(—n>| + |f(n>|] .

Remark. By the theorem, [S,(f) — Sk(f)] converges uniformly to 0. This implies
that to show Jin;o Sn(f)(t) = f(t), it is enough to show that Jl»n;o Sx(H)®) = f(t)
and that if the second limit holds uniformly, then so does the first. This idea will
be used in the rest of this chapter. As will be seen later, ’many results can be
obtained from this minor substitution.

Except for the last section, the rest of this chapter is concerned with results

on the pointwise convergence of Fourier series.
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4.4 Dini’s Test and the Principle of Localization

Two different versions of Dini’s Test will be présented. Although they appear
distinct, they are actually equivalent. The first version is (Zygmund, 1977, P. 52,
Theorem 6.1). Unlike in (Zygmund, 1977), a formal proof will be given.
Lemma 4.4.1. If f € L}(T), then Jim en(f) = lim b.(f) = 0.

Proof. By the note after Definition 3.2.3, c,(f) = f(-n) + f(n) and b,(f) =

i(_:_n)l_ﬂ By the Riemann-Lebesgue Lemma, the the result follows. O

Note. By the remark after the Riemann-Lebesgue Lemma, the above lemma holds
uniformly on compact subsets of L!(T). |

Theorem 4.4.2 (Dini’s Test : Version 1). Let f € L}(T) and t € R. If
/ |¢t(7' cot ) dr < 00, then lim Sn(H)(@) = f(1).

Proof. By Lemma 4.3.1.(ii), [S:(f)(¢) /qﬁt T) dr. By Proposi-
tion 4.3.2.(ii), V7 ¢ [0], DX(7) = cot (2) s1n(nT) Since [0] is an m-null set, then
(S:0O = 18] = 5= [ eurycot () sintrr) .

Define h: T — C by h(7) = ¢:(7) cot ( ) [Note that on the m-null set {0],
h(r) = 0 because ¢:(7) = 0 and that h: T — C because A is a product of 27r-
periodic measurable functions.] h is an odd function because ¢; is an even function

' T : :
and cot (5) is an odd function. This implies that |h| is an even function.

— 7]l = l/lh(T)IdT= i/r 1h(r)1dr=% (2/01r|h(7)|d¢>

/ |h(7) IdT— / |2 (7) lcot( )dT<oo = h e LYT)
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Then [SE(f)(t) — / h(r)sin(nt)dr = b"éh). By the previous

lemma, nlgl;lo b, (h) = 0 which 1mphes hm Sx(A)() = f(1©).
Hence, nll_{glo Sn(f)(t) = f(t). , O

The second version is (Katznelson, 2004, P. 74-75, Lemma 2.3 and Theorem

.5). Unlike the proof of the lemma in (Katznelson, 2004), it is shown here that
t
%) < oo and h € LY(T), where %t) will be defined shortly and h is as
1 1
in the following lemma. Also, unlike in (Katznelson, 2004), a formal proof will be

given for the theorem.

Notation. In the following lemma and theorems, dt < oo means that the

5@
t

1f()l
Lt

t
integral of over an interval around 0 is bounded. Although (@) ¢ LY(T)

as g(t) = t is not a 2m-periodic function, the following notation will be used for

f(t) L (M@
125—7;/—1r Tt

— dt
t
Lemma 4.4.3. Let f € LY(T). If/

convenience. n

i—(tt—)’ dt < oo, then lim S,(f)(0) =0.

1 n—o0
Proof. / ol dt < oo = Jc e (0,7] s.t. /C @1dt(<oo
Let ¢ < |t|<7r sothatl_glg1
t] ~ ¢
1 f@) .1 ()] 1 |70
—2—7; Je<|t|<n T‘ d= —2; <Lt |t at < 27 /<|t|<1r at
1 1 1 1 T
e /csltlglf(t)ldt) <2 (5 [Crenar) =3 (5 [roie)
||f||1
f(t) @) @) f(@)
= ” 1 27T/ t ‘ 271' t ldt+27r/csms,r T‘dt<oo
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Define h: T — C by A(t) = f(t) cot (%) [Note that on the m-null set [0], &
can be redefined so that it is well-defined on all of R and that h: T — C because h

is a product of 27-periodic measurable functions.]

(1)
o () sven(2) -5

= Vte [-ma], |ht)] = |f ()] ) 2]
= = 5 [ hola= 5 [ ot 2| 50

2
< Z

vt € [-m, 7], ST

<oo = he LYT)

| and f(t)D,(t) = f(t) cos(nt) + h(t)sin(nt). By Lemma 4.3.1.(i), S (f)(O

/f =—/f cosntdt+—-/h sin(nt) d (f)

By the previous lemma, lim ¢,(f) = lim b,(h) =0 = lim S,(f)(0) =0. O

n—oo n—od

t
By the proof of Proposition 4.3.2.(ii), Vt ¢ [0], D,(t) = cos(nt) + cot (—2-> sin(nt)
) =
+ b (h)
5 .

Theorem 4.4.4 (Dini’s Test : Version 2). Let f € L'(T) and ¢, € R.

If/l f(t+toz—f(to)

Proof. Define g: T — C by g(t) = f(t + to) — f(to). Then, g € L*(T) and

i
1| ¢
¥n € No, Sn(9)(0) = [Sn(f)(to) — f(to)]. This implies lim [S,(f)(to) = f(to)] = 0
which implies 7L1Ln()1° Sn(f)(to) = f(to)- d

dt < 00, then lim 5,(f)(to) = f(to)-

dt < oco. By the previous lemma, lim S,(¢)(0) = 0. By Lemma 4.3.1,

The following remark from (Zygmund, 1977, P. 52) briefly explains why the

two versions of Dini’s Test are equivalent.
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o (5

Remark. Since lin%) —5 | = 1, then the integral in the first version can be
;

" (7))

replaced by 2 / — 7 and consequently it can be shown that the two versions
are equivalent, ’

The following lemma is stated and proved on (Zygmund, 1977, P. 52-53,
Lemma 6.3).
Lemma 4.4.5. Let f € LY(T), g € L>(T). Then the Fourier coefficients of the
function h(7) = f(t + 7)g(7) tend to 0 as |n| — co uniformly in ¢.
Theorem 4.4.6 (Principle of Localization). Let f € Ll('H‘). If f vanishes in
an open interval I, then S,(f)(t) converges to 0 for ¢ € I and the convergence is
uniform on closed subsets of I.
Remark. Two proofs of the uniform convergence will be presented. The first proof
is from (Katznelson, 2004, P. 75, Theorem 2.4). This proof was worked out in
detail in many discussions with Professor Klemes. The proof differs from the proof
in (Katznelson, 2004) as follows. Here, it is shown that Vi, € I, nan;o Sn(f)(te) = 0.
In (Katznelson, 2004), f(t — tg) should be replaced by f(t + to), which is done

here. The continuity of ® and ¥ is shown here which is the justification for the

compactness of ®(Io) and ¥(Ip).

Proof 1. Let ty € I. Since I is an open interval, 3r > 0 s.t. (to — r,to +7) C I.

Then V¢ € (—r,7), f(t +t) = 0 and so /T f{t+to)

-7

lim S,(f)(to) = 0. Therefore, Vto € I, lim S,(f)(to) = 0.

dt = 0 < co. By Dini’s Test,

Now, let I be a closed subinterval of I. By (H-3) with B = L*(T),
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¢: T — LYT) is continuous. = &: T — LY(T) is continuous where
B(tg) = By, = d(—to), Le. Py(t) = fi—to)(t) = f(t +to). ®: Iy — L(T) is
continuous because Iy C R. ®(ly) = {Py, }1,e1, is compact because Iy is compact
and ®: Iy — L(T) is continuous.

Vtg € Iy, define ¥y : T — C by ¥y, (t) = @y, (£) cot (%) By the above, with
| Py, (¢)

r

to € Iy and r as given, / dt =0 < 0o. By the pfoof of Lemma 4.4.3 with

-r

f =&, ¥, € LYT). Define ¥: Iy — L}(T) by ¥(tg) = Ty,

Suppose it is shown that ¥: Iy — L*(T) is continuous. ¥(ly) = { Uy, }toer, iS
compact because Iy is compact and U: [y — L(T) is continuous. By Lemma

4.3.1 and the proof of Lemma 4.4.3, Yty € Iy, So(f)(to) = Sn(®4,)(0) =
Cn(q)to) + bn(\pto)
2
= lim ¢,(®;,) = lim b,(¥s,) = 0 uniformly for tg € fy. = lim S,(f)(to) =0

. By the note after Lemma 4.4.1, ®(1,) and ¥ () are compact

uniformly for ¢y € I. Hence, lim S,(f)(¢t) = 0 uniformly on Iy.

Thus, it is enough to show ¥: Iy — L(T) is continuous. Let I = (c, d)
‘ min(d — b,a — ¢, 7)
2
< min{d — b,a — ¢). Let ty € Iy. Then

and Iy = [a,b], wherec < a < b < d. Letr = . Then,
min(d — b,a — c)
2

c=a—(a—c)<a—r1<to+r<b+r<b+(d-b)=d ie c<tg—r<ty+r<d

O<r_<_-72£<7randr§
and so (tg — 7,to + 7) C (¢,d) = I. Therefore, Vtg € Iy Vt € (—r,7), Oy (t) = 0.

Now, let tg, 59 € Ig and g = [®y, — Py, ]. VI € (=7, 7), g(t) = [D4, (1) — s, (£)] =0
and [y, (£) — U, (1)] = g(t) cot (g)
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By the proof of Lemma 4.4.3 with f and c replaced by ¢ and r,

t T
”@ — g()‘df+ 1/ g—(tl‘dt=0+~1— @‘dt
t 1 2 t 27 refti<n t 2r r<|t|<w ¢
1 t
_Lf a0 g s
27 Jrgyen | ¢ r

By the proof of Lemma 4.4.3 with f, c, and h replaced by g,r, and [¥;, — ¥,],

g(t) 2 2
LAY | R gl == —
2. < Pl = 212 - 2,

. 2 2
ie. [U(to) = ¥(so)ll = Wt = Vaolli < [Pt = Pooflr = =[O (t0) = S(s0)l1-
Therefore, Vg, so € Io, || U(te) — U(so)|l1 < %H@(to) — ®(sg)||1, which implies that

”\I]to - \1]50”1 <2

¥: Iy — LY(T) is continuous because ®: Iy — L(T) is continuous.

Hence, ¥: I - L}(T) is continuous and the theorem holds. : O

The second proof is from (Zygmund, 1977, P. 52-53, Theorem 6.3). The proof

is essentially the same as in (Zygmund, 1977).

Proof 2. Let Iy be as above. By the first proof, 3r € (0,7) Vtq € Iy Vt € (—r,7),
f(to+t) = 0. By Lemma 4 3.1.(i) and the argument used in the proof of Dini’s Test
(Version 1), Sx(f)(to /f to+1¢ D*( t)dt = —/f to+t) cot <2) sin(nt) dt.
t
Define ¢g: [—m,m] — C by g(t) = 0on (—r,r) and g(t) = cot (—2—> if
r < |t| < 7. Extend g 2m-periodically so that g: T — C. g is bounded because on

2
(—r,7), |g] = 0 and if r < |t| <, then |g( < =< —2~ This implies g € L=(T).

]
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Let h(t) = f(to +t)g(t). Then S} (f /f to + t) cot < ) sin(nt) dt
= __/ f(to +t)cot <;> sin(nt) dt = % f(to + t)g(t) sin(nt) d¢
= % —: h(t)sin(nt)dt = —/ sin(nt) dt = b éh)

By the previous lemma, 1111_{1010 by(h) = 0 uniformly for t, € . =
nll'nolo Sr(f)(to) = 0 uniformly for t, € Iy. Hence, nh_'rglo Sn(f)(t) = 0 uniformly
on Ij. A a
The following remark is from (Katznelson, 2004, P. 75).
Remark. The Principle of Localization can be restated as follows: Let f,g € L*(T)
and assume that f(t) = g(t) in some neighbourhood of a point £;. Then S[f](to)
and S[g](to) are either both convergent and to the same limit or both divergent
and in the same manner.
The following definition is from (Zygmund, 1977, P. 42).
Definition 4.4.1. Let f € L}(T) and I be a closed interval. Then the function

w: [0,00) = [0, 00} defined by w(d) = w(f,d) = sup |f(z2) — f(x1)] is called the
I.’l:mzlla.’:l:zleléJ

modulus of continuity of f on I. f is continuous on I iff 5li%1+ w(d) =0.

Remark. If f € C(T) and [ is an interval of length 27, then the modulus of

continuity of f on I is the same as the modulus of continuity of f as defined in

Definition 3.4.4.
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The following theorem is from (Zygmund, 1977, P. 54, Theorem 6.8). The
proof is basically the same as in (Zygmund, 1977) except for the following différ-
2 [Pt
ences. Unlike in (Zygmund, 1977), the proof that |P| < ——/ é(t—) dt is presented
‘ T™Jo
6 p—
et =Sy,

to

/ b+ ti — /)l dt was provided by Professor Klemes. Also, here it is shown in

here. The part of the proof where it is shown that

detail that lim @ = 0 uniformly for z € I.

n—o0 .
Theorem 4.4.7. Let f € L}(T). Let f be continuous on a closed interval I and w
be the modulus of continuity of f on I.

Let I = [a,5] and £(t) = w(t) +1£(@) ~ fa— )| +1/(b+0)~ FB)]. 1f / "Wy <o,
0
then le Sn(f)(z) = f(z) uniformly for z € 1.

| Proof. Let € > 0. By Lemma 4.3.1.(ii),

™

2@~ 1@ = 5= [1fa+)-f@Di0 = o= [ 1fa+t) - @D

Let 6 € (0,7 be arbitfary. Then [S:(f)(z) — f(z)] = P + @, where
§
P-o [fa+) - f@Di0dmd o= o [ @ @00

27 Je<iti<n

l\.')

By Proposition 4.3.2.(iii), V¢ € (=§,8), |D(¢)] < m

) 1)
= IPl< 5 [ I+ - f@IDi0ld = 5 [ 17+ - @) D0

lf (c+0)- 10,
4

If (2 +8) =[O, _ /“ ICEDETION
t

First, consider ]
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Fix x € I and let tg be s.t. z + tg =bb. Then tp=(b—z) >0and x =b~ty. If
t € [0,%0], then |f(z +t) — f(z)] < w(t) and if ¢ € [to, ], then |f(z + t) — f(z)| <
[f(@+2)= fO)+]f(0) = f(2)] < |f(z+t) = f(O)|+w(t) = [f(b+(t—t0)) = f(b)|+w(t).

=>/If z+t) - f(z ©lfz+t) - f(x)ldt+ 5|f($+t)—f(w)|dt
t 0 o t
/to if it "|fb+t—t0 b|+u(t)dt
/ / b+t—t0 (b)|dt
By Proposition 2.3.2.(2), GG _tt")) = SO 4
to
=/‘H" If(b+t)—f(b)ldt</5‘t° lf(b+t)—f(b)|dt</‘s [fo+1t) - f)
0 t+to = Jo t = Jo t ’

. /“ lf<x+t)—f<x)|dt</"g@dt+/“ If(b+t1—f(b)ldt
0

SYECEGIE b)ldt</§ "
t

s :
lfa:—l—t dt / |fx+t t)ldtg/ -g—g—)-dt
2| t
By a similar argument, If T+Tt| dt< / £
-5
=>/ |fa:+t dt O\ flz+1t)— dt+ (fx+t
|t] ltl l¢]

<[ 804 |p|_<__/ 0,
0 t m™ Jo t
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£(t)

Since / e dt < oo, then ¢ € (0, 7] can be chosen sufficiently small so that
0
2 [t '
|P| < —/ §(t—) dt < % and this is independent of z € I.
v 0 :

Define g: [-m, 7] — C by g(t) = 0 on (—4,0) and g(t) = cot (E) on

2
[—7, 7]\(=9, 6). Extend g 27-periodically so that g: T — C. g is bounded because
n (-4, 9), |g| =0 and on [—m, 7]\(=9,6), |g(t)] < % < % This implies g € L>(T)
and by Corollary 3.1.6, g € L*(T). v
1
=5 [f(z +t) — f(z)] Dy(t) dt
T Je<ti<n
1 _ AN
=5 65“‘9[]"(3: +t) — f(x)] cot (-2-> sin(nt) dt
1 [" , 1 .
=5 | fle+t) = f@)lg(t)sin(nt) dt = o— /[f(w +1) — f(@)]g(¢) sin(nt) dt

_ % / (& +£)g(t) sin(nt) dt — f(z) (51; / o(t) sin(nt) dt)

— g(x)bn(g)) Since f is
continuous on I, then f is bounded and so IM > 0 s.t. |f(z)|] < M. This implies
[ba (W) + If (@] 0n(9)] _ [6a(R)] + M|bn(g)|

and Lemma 4.4.1, lim [bn(R)] + M]bn(g)|

n—00 2

Let h(t) = f(z + t)g(t). Then Q@ = (b"(h)

0<1Q] <

. By the previous lemma

} = 0 uniformly for z € I. This implies

lim Q = 0 uniformly for z € I.

— 3NeNvVselvn2NIQ| <7
— 1))~ S = 1P+ @l < P+ 1@l <2 (5) =€
5 Ye>03INeNVzelIvVn> N,|S:Hf)x) - f(z)] <e

Therefore, lim Sy (f)(z) = f(z) uniformly for z € 1.
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Hence, lim S,(f)(z) = f(z) uniformly for z € I. O

n=00
4.5 Dirichlet-Jordan Test

The following theorem is from (Katznelson, 2004, P. 73-74, Theorem 2.2.2).
The proof here differs from the one in (Katznelson, 2004) as follows. The following
lemmas are used implicitly in the proof of the theorem and are nbt stated or
proved in (Katzﬁelson, 2004). Heré, it is shown in detail that for ¢ > 1 sufficiently

close to 1,

1 j . y
len} +1 Z <1 L) f(j)e”"| can be made as small as possible and

R ANNCORE
y [en] + 1 - n+1 )
lim {[cn] — na[cn](f)(t) - fon] = nan(f)(t)} = o(f)(t). Also, a full explanation

is given on why S,,(f)(t) converges uniformly on some set if o,,(f)(t) converges
uniformly on that same set.
Notation. For the next lemmas and theorem only, let Vz € R, [z] denote the

greatest integer less than or equal to . Note that z — 1 <[z] L =.

Lemma 4.5.1. Let ¢c € R and ¢ > 0. Then lim%zc.
n—o0
Proof.
. 1 ) 1
¥n € N, cn—lg[cn]gcn:c-—-—swgc:——g[ ]—— <0
n n n n
n n
Since lim — =0, then lim — =c. - O
n—oo N n—co 71

Remark. In the lemma, let ¢ > 1. Then IN € N vn >N,[en]>cn—1>n.
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Lemma 4.5.2. Let ce Rand ¢ > 1. Then AN € NVn > N,

s+t 3 (1- ) fge

len] =m e fen] +1
- rw00 - (0,

Proof. Let N be as in the remark and n > N. Then ([cn] — n) > 0.

RHS — [[%—%G[cn](f)(t) - [CT;L]%

an()(1)

[en]

_ fen]+1 |41 oo ntl - __|_ﬂ__ £y it
"~ en)=n ,_z_; | (1 - [en] + 1) fG)e [en] — nj;n (1 n+ 1) J(j)e

:i_% ([cn[]cjl_]l_nm) J@)e - EH: (%E%) F(eit

fen] j=n

[en +1—|]|) it (cn +1—|]|> it
( [en] —n * n<§cn] [en] —n f(])
n+1-— |]|) it
cn] -n

) z_?t [cn]]-_ - Z ([C’ﬂ] +1— ‘]' z]t

n<|j|<fen]

N\ gt len] + 1 |51 oo ijt

=5+ S (1o B jrer - s

n<lji<len] [on] +1

- 1
Theorem 4.5.3. Let f € L*(T) and assume that f(n) = O (_ﬁ) as |n| — oo.
Then S,(f)(t) and o,,(f)(t) converge for the same values of ¢ and to the same

limit. Also, if o,(f)(t) converges uniformly on some set, then so does S,(f)(%).
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Proof By the remark after Definition 3.3.5, if lim S,(f)(¢) exists,
then lim o,(f)(t) = lim S,(f)(t). Now assume lim o,(f)(t) exists.
n—oo

n—oo n—o0

Let 0= o(f)(t) = lim on(/)(2).

M
n

fn)=0 <%) as |n| = 0o = IM > 0 3ng € NV|n| > ng, |f(n)| <

Let n € N and c € R, where ¢ > 1.'By the previous lemma, AN e Nvn > N,

[en] + 1 n+1

S.()(0) = (O — ()
[C"]+1 _ |51 Br oy it
e~ ;H (1 [cn]+1)f(”e '

Let Ny = max(ng, N) and n > Nj.

> (- i) foe

n<|j{<[en]

= 2 (1—[CTJfL1)|f(j)IS z; <1~[—c71|]_j|1_1>

n<ijl<len] 1
: 1 i o\1
W (g T ()
n<}j|<[en] [C’I’L] +1 Ijl n<j<[en) [Cn] +1 J
[en] : 1 [en] n+1 1
= - - <9 =
2M,Z 1 [C’I’L]-l-].)j M Z ( cn]+1>n

j=n+l1

(
= () 3 L (o) 2o
)

«(ffzs) o= (e e ()

92



1—-

(-l
(e > (e

< ({2t (2 sy -

Let € > 0. Choose ¢ > 1 st 2M(c—1) < 5 Then, Yn > Ny,

n<IJ| [en]

[C?’L]-i—]. _ |-7| ijt _ _6_
[en] —nn<§ﬂm} (1 [cn]+1> J@)e?| <2M(e-1) < 2
cn 1 1
5 en] +1 [71 n_ C d 1 n+1 I 1+}Z 1
nin;o[cn]—n oo [_C_?ﬂ_l Te-1 ™" nl—»nolo[cn]—n 'n.l—vIEoLC_n]‘l c~-1
lim on()t) =0 = lim oe(F)(®) = 0
: [cn]+1(I _ntl
— Jim [0 - o)
c 1 c—-1 Y
(1) o= (1) - (=) -
— 3meNVn>m [m—i_la[m](f)(t)—%an(f)(t)] ~al<s

Let My = max{Nog,m} and n > M.

[Sn(f)(E) — o] = <[@—+—laxm](f)(t) - Iﬁil—an( f)(t)] - a)

[en] —n cn) —n
: [en] + 1 |71 R ijt
o n(%ﬁ:{m] (1 RS 1) f(G)e
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— 15,700 = ol < || R o)) - om0 - 0
s > (-2 fe| <2 (5) =<

n<IJ’lS[0flI

o Ve>03IMy e NVn > My, |Sp(f)(t) —o] <e

Thus, lim S,(f)(t) = ¢ = lim 0,(f)(t). Therefore, if lim o,(f)(t) exists,

n—oo n—o0

then 7}3{)10 Su(f)(t) = nll’r(r:o on(f)(t). Hence, S,.(f)(t) and o,(f)(t) converge for the
same values of ¢ and to the same limit.

Now, assume that o, (f)(t) converges to o(f)(t) uniformly on some set A. In
the above, ng is independent of { and N depends on ¢ which depends only on e.

This implies that Ny depends only on €. m depends on the rate of convergence of

Jl»n;o —[[g%]—j—i—a[cn](f)(t) - [CT:L]%lnan(f)(t) = o(f)(t), which only depends on

. fen]+1 ¢

i n = , 1 - ’
the rates of convergence of nh_{&d (NHE) = a(H(2) lim ol —n " oo1 and
1 1
lim [n]+ — = because {ocn)(f)(t)}52, is a subsequence of {on(f)(t)}32,;.

The last two rates of convergence depend only on ¢ which depends only on €. The
rate of convergence of T}LHC}O an.(f)(t) = o(f)(t) depends only on ¢ and €. This
implies that m depends only on ¢ and ¢ and that m can be made independent of
¢ if the rate of convergence of nh—»rilo an(f)(t) = o(f)(t) is made independent of

t. Since My depends on Ny and m, then M, can be made independent of ¢ if m

is made independent of t Since o, (f)(t) converges to o(f)(t) uniformly on A,

then m can be chosen independently of ¢ and it follows that S,(f)(t) converges
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to o(f)(t) uniformly on A. Hence, if 0,,(f)(t) converges uniformly on A, then

Sn(f)(t) converges uniformly on A. O

The following corollary is from (Katznelson, 2004, P. 74, Corollary 2.2.2). The
proof is essentially the same as in the book.

Corollary 4.5.4 (Dirichlet-Jordan Test). Let f € BV(T). Then V¢t € R,

sim sa(n)(p) = L ELED)

of continuity . The convergence is uniform on closed intervals of continuity of f.

. In particular, lim S,(f)(t) = f(t) at every point

Proof. By Proposition 3.4.6 and Theorem 3.4.7, f € BV(T) = f € LY(T) and
fln)y =0 (%) as [n| — oo. Thus, f satisfies the hypotheses of the previous
| theorem. Let t € R and I = [t — m,t + 7] which is an interval of length 27 that
contains ¢. By the note after Definition 3.4.2, f € BV(I). By Theorem 2.3.6.(ii),
F(t+), f(t—) exist and so lim, [f(t+B)+ f(t — b)) = [f(+) + [(t=)]. Then the

results follow from Fejér’s Theorem and the previous theorem. O

Remark. An alternate proof of the Dirichlet-Jordan Test can be found in (Zyg‘-
mund, 1977, P. 57-58, Theorem 8.1).

The following theorem is from (Zygmund, 1977, P. 60, Theorem 8.14). The
proof is basically the same as in the book. ,
Theorem 4.5.5. Let f € L(T) and I be an open interval. If f € BV(I), then
i e 1, tim sa()(e) = L)

2
convergence is uniform on closed subsets of I.

. Moreover if f is continuous on I, then the

Proof. First note that if m(I) > 2, then f € BV(T) and the Dirichlet-Jordan

Test can be applied to get the result. Now assume m(I) < 2x. Let J be a
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closed interval of length 27 s.t. I C J. By the Principle of Localization, f can
be replaced by a function g € L}(T) s.t. g = fon I and g = 0 on J\I. Then
f € BV(I) = g € BV(T) and the result follows by the Dirichlet-Jordan Test. O

4.6 Dini-Lipschitz Test
The following lemma is stated and proved on (Folland, 1999, P. 89, Corollary
3.6).
Lemma 4.6.1. Let (X,M, 4) be a measure space and f € L'(X,9M, u). Then
Ve>030>0VE €M, u(E) <6 = |[,fdu| <e
Remark. The lemma will be applied when (X, 9, u) = (R, Bg, A). The hypothesis
that f € L'(R, Bg, \) can be replaced by the hypothesis f € LiOC(R) because only
sets of finite measure are considered. Also, f will be replaced by |f| in the result.
The following theorem is from (Zygmund, 1977, P. 62, Theorem 10.1). The
proof is essentially the same as in the book except for the following differences.
Unlike in (Zygmund, 1977), complete details are given in showing the bounds for
|I1] and |I5|. The application of the previous lemma in the proof of the bound for
|I| was suggested by Professor Klemes. Also in the proof of the bound for |I5|, it
is explained why the bound is o(1) uniformly in every interval where f is bounded.
Theorem 4.6.2. Let f € L'(T),z €e R,n e N, = %, and ¢ = ¢, be as in
Lemma 4.3.1. Then, |S:(f)(z) — f(z)| is majorized by

/ 16(2) t+7l)|dt_|_ / '¢t)’dt+n/2"! $(t)| dt + o(1),
0

where the o(1) term is uniform in every interval where f is bounded.
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Proof. By Lemma 4.3.1.(ii), H(z) = [Sk(f) / ¢(t)Dx(t) dt. By
Proposition 2.3.2.(2),

/¢ t) Dy (t) dt = / ot +n) D (t +n) dt.

(z)+ H(z) _ 1

= H)= ——7——;5fawwm+—/ $(t+m)Dj(t +n) de

=§;T—[/¢(t dt+/ $(t) D2 (t) dt + / S()Dx (L) ]
+— [/ ot +n)D;, (t+n)dt+/ ¢(t+n)D*(t+n)d] =L+ L+ I3+ Iy
n
where I = ——~/ ot +n)Dr(t+n)dt, I, = i/7r ¢(t)D;(tj dt,
=N
Ig—-—/d) t)dt,and Iy = —/ ¢(t +n)D,(t +n)dt.
= [H(@)| < |h]+[L2] + [I5] + | L4
By Proposition 4.3.2.(iii), Vt € R, |Dy(t)] < 2n.
=HM<—/W @Nat < 5- [lenDiona < 3 Mo
== t)|dt < = £)| dt
> [Mote) _n0W|

1 /" 21
By Proposition 2.3.2.(2), Iy = 5;/ ot +n)Dy(t+n)dt = o d(t)Dr(t) dt
-n
1 [
By the argument used for I3, |I4| < 7 l(t)]| dt.

0

2 [
=émummg/wwm
1]
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Consider I5. Let n > 2.

By Proposition 4.3.2.(iii), V¢ € [0, 7], |DX(t)] <

SR

':> Vter—n,7l, tZ(?T—T])Z(TF——Z-)=7T<1—-—> Zg—Zl

and [6(0D3(0)] = (O] 1030 < 1600 () < 20)

:2‘<f(x+t)-;—f(x—t))_f(z),zz)f(x-i—t)-i—f(;—t)—Zf(x)

—f(e4t) + f@—1) = 2/()] < |[(z + O] + |1 — )] +20£ ()],
— 112|<i/ |¢<t>D*<t>|dts—1—/ 1/ (z+ 0] + 1z — )] + 2 f () e

2
——/ x+t|dt+——-/ x—tldt-i— )|f( )
=
27 7,_,, n
. 1 i i 1 z+7
By Proposition 2.3.2.(2)-(3), — |f(z+t)|dt = — |f(®)| dt
2m = 2 T+m—n

T z——1r+?7
and — [ |f(e—t)|dt = -/ 17(8)] dt.

27 Jrey

z+w T—7+47
= hi<g [ s [ wla H

2T Jagn—n

By the previous lemma,

1
feELXT) = Ye>030 >0VE € Bg, M(E) <§ => ’5;/|f(t)|dt <€

1 1
Since /\((x+7r—n,x+7r))=/\((x——jr,x—w-i—n))=%=—271—and lim é-ﬁzo,

1 1 z4+7 1 T—T+M d
1 J— =1 — t -
then nLngo |:27T /:1:+7\'—7I lf(t)‘ dt:| T}Ln;lo |:27T /:z——-rr lf( )| t:|

and the convergence is uniform in z.
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Also, lim |/ 57 il =0. If f is bounded by a positive constant M in an interval I,
|f=)| M M _
then Vz € I, - < - and lim — = 0 independently of z.
1
Letan(z)=[—/ |f(z+t|dt+——-/ |dt+lf( )l}
» 27 Jrn
1 [ M
— —t)|dt+ —] .
and by (z) = [%/M| o+ 1)l di+ / (z )|d+nJ

Thus, |I5] < an(z) and Jl{goan(z) = 0, i.e. a,(z) = o(1). Moreover, if
f is bounded by a positive constant M in an interval I, then |I;| < b,(z) and
bn(x) = o(1) uniformly for z € I. Therefore, |I2| < o(1), where the o(1) term is
uniform in every interval where f is bounded.

Now consider ;. Let n > 2. By Proposition 4.3.2.(ii), Vt € (0, 7],
D (t) = cot (%) sin(nt). Note that Vt € [n, 7 — 7], (t+7) € [2n,7] C (0, 7).

") sin(n(t + n)) = cot (t J; 1
ot (t : "> sin(nt) and [$()DA(¢) + @(t +n) Dyt + )]
= [qﬁ(t) cot (%) sin(nt) — (¢ + 1) cot (t b 77) Sin(nt)]

2
_ [¢(t) cot (%) — $(t + 1) cot (12"-)] sin(nt)

= [#(t) — ¢(t + )] cot (t + ”) sin(nt) + ¢(t) [cot (%) o (t—;—”ﬂ sin(nt)

) sin(nt + )

99



+
E
/‘\
DO | o+
N’
|
o
e}
t
TN

S
w‘-l—
3
N—

< |g(t) — B(t + )| cot<’

As (t+n) € (0,7, |cot (

= |p(t) Dy (t) + ¢t + ) Dy (t +m)| <

2|¢(t) — (¢ + )| (W%) |#(8)]

— (Bl <5 [ ODMO + o+ D+ )l e

1™ [2]8(t) — ¢t + 1)l lg(t)]
= 5’"/ [ : * ( 2 ) ] .
1 [T $(t) — o(t + )] ™ |¢(t |
=z, t Ry / “
s% ™ o(t) ~ t(t+n dt 4 / le®1
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= |Sp(f)(z) = f@)] < || + | o] + T3] + | 1]
1 [T () — ¢t +n)| " |p(2)] 2 (%
S_/,, : dt+n/n Tdt+7—}/0 6(t)] dt + o(1),

Y

where the o(1) term is uniform in every interval where f is bounded. O

The following lemma corresponds to (Zygmund, 1977, P. 14, Theorem 8.1).

‘Lemma 4.6.3. Let (a,b] be a half-open interval in R, h, g: (a,b] — C be s.t.

Ve € (a,b), h,g € L'((¢c,b), Br N (c,b),m), and g > 0. Define H,G: (a,b] — C by
H(z) = f:f(t) dt and G(z) = f:g(t) de. If zll’rza G(z) = oo and h(z) = o(g(x)) as
z — at, then H(z) = o(G(x)) as = — a*.

The following theorem is from (Zygmund, 1977, P. 63, Theorem 10.3). Unlike
in (Zygmund, 1977), a full proof is given here and in particular, it is explained why
each term in the sum which majorizes |S;(f)(z) — f(z)| from the previous theorem
converges uniformly to 0.

Theorem 4.6.4 (Dini-Lipschitz Test). Let f € C(T) and w be the modulus of
continuity of f. If w(§) = o([logd]™!), i.e. JE%I+ w(d)logd = 0, then S[f] converges

in norm to f in C(T).

Proof. By the note after Theorem 3.3.6, Sx(f) = (D, * f) € C(T) because

Dy, f € C(T). By the remark after Theorem 4.3.3, it is enough to show

lim S;(f) = f in C(T), ie. lim ||Si(f) = fllo = 0. Since

ISx(f) = flloo = sup ]S,*L(f)(a:) — f(z)|, where J is a closed interval of length
zeJ

2, then z can be restricted to J. This implies that it is enough to show that

lim S}(f)(z) = f(z) uniformly for z € J because convergence in norm in C(T) is
n—o0
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the same as uniform convergence. By the previous theorem, it is enough to show
that each term in the sum, which majorizes |S}(f)(z) — f(z)|, converges uniformly
to 0 forz € J.

feC(T) = fis bounded = The o(1) term is uniform.

Consider —/ [#(t) ~ ¢(t+n)|dt
T Jy t |
16() — (¢ + 7)] = ‘(f(xﬂ)—;f(z—t)) 3 <f(x+t+n)—2+f(x—t—n)>‘
=’(f(av+t)~f(x+t+77))+(f(93~t)—f(ﬂv—t—n))‘
. 2 A
(If(:v+t) —f(:v+t+n)|-2FIf(x—t)—f(x—t-nﬂ) < 2w2(77) — w(n)
logw w(n )logn |
o<t / 6(t) t+n)|dt§w(n);ogﬂ_w('n)ﬂlogn

Since w(d) = o([logd]™), f e C(T) = éli%l"' w(d) =0, and lim =0, then

= [ wlmlogr _ i) log"} o

n—oo

= 0 which implies

o(t
lim — / |¢ + )l dt = 0 uniformly for z € J.

n—oo
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2 [ |
Consider 7 / |¢(t)| dt. By the remark after Corollary 2.3.5, f € C(T)

0
1 rh
= lim iz-/ |¢(t)| dt = 0 uniformly for z € J. This implies, as lim 7 = 0,
0

h—0+ n—00

2 ™ 1 [
lim —/ |p(t)| dt = lim 4 (—/ |p(2)] dt) = ( uniformly for x € J.
n—oo 7 Jo . n—oo \ 27 Jg .

Tlo(t
Finally, consider n / ‘—%%—n dt. Now the previous lemma will be applied with
"7 .

t 1
(a,b] = (0, 7], h(t) = |¢;(—2)|, and g(t) = 7 Note that g > 0.

Since f is bounded, then ¢ is bounded, say by a positive constant M.
" (1 1) T—u
=|l-—=)= <00
s u um

Yu € (0, ], G(u)z/uﬂzlz-dtz [__]
andH(u)=[£’%§”dt§MAW%dtzMG(u)<oo

t

— VYu € (0,7), h,g € L'((u,n), Bg N (u,7), m)

It is easy to see that ulir(r)l+ G(u) = oo.

feC(T) = tl_i,réi |¢(t)| = 0 and the uniform continuity of f on finite closed
intervals implies that tl_i,réi |¢(t)] = 0 uniformly for z € J. = h(t) = o(g(t))
uniformly for x € J as t — 07.

Since the hypotheses of the previous lemma are satisfied, then H(t) = o(G(t))

ast — 07 and by a careful examination of the proof of the previous lemma,

: . . H(u)
- , OF
H(t) = o(G(t)) as t — 0" uniformly forz € J. = uhr(r)1+ G

= 0 uniformly for
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e H(u) um T —u)
S = d li =11 1
ince G (W — u) H(u) an Jim < - ) 1 independently of z,
then lim |{ 21—~ Hw _ lim wH (u) = 0 uniformly for z € J
u—0+ m G(u)|  u—o+ B ylors e
Since lim n =0, then lim nH(n) = lim 17/ Id)t(;)l dt = 0 uniformly for z € J.
n—o0 n—od n—od n

O

The following theorem is from (Zygmund, 1977, P. 63, Theorem 10.5). The
proof is basically reproduced as in the book.
Theorem 4.6.5. Let f € LY(T), I be a closed interval, and w be the modulus of
continuity of f on I. If w(6) = o([log §]~1), then T}Lngo Sn(f)(z) = f(z) uniformly on
I

Proof. Since w(8) = o[log 6]™') and éggl+ [log 6]~1 = 0, then

ég%l+ w(f) = ali%i (w(6) log d) [log 8]7! = 0. This implies that f is continuous on I.
First note that if m(I) > 2=, then the Dini-Lipschitz Test can be applied to

get the result because its hypotheses are satisfied. NOW assume m(I) < 2m. Let

J be a closed interval of length 27 s.t. I C J. By the Principle of Localization,

f can be replaced by a function ¢ € C(T) s.t. g = f on I and g is extended

linearly on J\I. By the Dini-Lipschitz Test, the result follows because g satisfies

its hypotheses. O

4.7 Lebesgue’s Test

The following notation will be used in this section.
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Notation. Let f € LY(T), z € R, ¢ = ¢, be as in Lemma 4.3.1. Vh € [0, 00), let

O (h
®(h) = ®,(h) = foh |¢(t)] dt. By Corollary 2.3.5, hlir(r)1+ ————}(;——2 = 0 for m-a.a. x € R.
By the remark after Corollary 2.3.5, if f is continuous on a finite closed interval I,
&, (h
then lim —x(——z = 0 uniformly for x € I.
h—0+ h

The following theorem is from (Zygmund, 1977, P. 65, Theorem 11.5). The

proof is basically reproduced as in the book.

Theorem 4.7.1 (Lebesgue’s Test). Let f € L(T) and z € R. If lim f{_)__(}_)}f,)_ =0

. h_.>0+
T p(t) — P(t
e [T180) — e+ )
n—oo [, t
is uniform on any closed interval of continuity of f where the second condition

dt = 0, then lim S,(f)(z) = f(z). The convergence

holds uniformly.

Proof. Let I be a closed interval of continuity of f where the second condition

holds uniformly, i.e. lim |6(t) — 6(t + 1)l

n—oo [, 14

remark after Theorem 4.3.3, it is enough to show that lim S}:(f)(z) = f(z) and

dt = 0 uniformly for x € I. By the

that the convergence is uniform on I. By Theorem 4.6.2, it is enough to show that
each term in the sum, which majorizes |S:(f)(z) — f(x)|, converges to 0 and that
the convergence is uniform on I.

First, note that f is bounded on I because f is coﬁtinudus on I. This implies

that the o(1) term is uniform on 1.
T o) — o(t
By hypothesis, lim l/ 0] f( + 1)l dt =
n

-0 and the convergence is
n—oo M

uniform on I.

2 [ (2 @ '
Consider ;/0 lp(t)|dt = 4 (%) Since hl_i*r(r)l+ —% = 0 and 1}1_{20 2n=0,

2 [
then lim ; / |¢(t)| dt = 0 and, by the statement before the theorem, the
n—o0 0

convergence is uniform on /.
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SN

. . " e(t .
Finally, consider 5 / |¢;(—2)i dt. By Integration by Parts and the exact same
n

argument used in Theorem 4.1.4 w1th , On, and g replaced resp. by 7, 7, and ¢,

[0 [0 3]

()

5 ) 1 = 0 and the convergence is uniform

Since lim 7 = 0, then lim
n—o0 n—oo

on I because (@(;r)
T

®(n)

Also, lim T = 0 and, by the statement before the theorem, the convergence
n—oo
o(h)

is uniform on /. Since lim L = = 0 and the convergence is uniform on I,
h—0+

then by the argument used in the proof of the Dini-Lipschitz Test to show that

lim 77/ |¢( )| dt = 0 with |@(t)| replaced by ggf)—, lim <217/ %gt—)-dt> = 0 and
n n—ee 7

) is uniformly bounded for z € I as f is bounded on I.

n—o0

the convergence is uniform on /.

lo(d)l
t2

on /. O

All of this implies lim 7 / dt = 0 and that the convergence is uniform
n

n—oo

The following remark is from (Zygmund, 1977, P. 66).
Remark. Although the most important tests for the pointwise convergencé of
Fourier series are Dini’s Test, the Dirichlet-Jordan Test, and the Dini-Lipschitz
Test, it can be shownv that they aré all included in Lebesgue’s Test. The main dif-
ficulty of applying Lebesgue’s Test is that the second condition in Lebesgue’s Test
does not correspond to any simple condition on f. Also, while both conditions of

Lebesgue’s Test are necessary for S[f](x) to be convergent to f(z), only the first
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condition of Lebesgue’s Test is necessary for S[f](z) to be summable to f(z) by
Lebesgue’s Theorem (Theorem 4.1.4).

The following definition is from (Zygmund, 1977, P. 45).

Definition 4.7.1. For f € L?(T), where 1 < p < o0, the integral modulus of
continuity of f in LP(T) is w,(0) = wy(f,d) = sup || f(t + h) — f(O)||,-

The following theorem is from (Zygmund,lhlls‘;??, P. 66, Theorem 11.10). The
proof is basically reproduced as in the book. |
Theorem 4.7.2. Let f € LP(T), where 1 < p < oo, and z € R. If w,(6) = o(57)

®(h) | |

and lim — =0, then lim S,(f)(z) = f(z). The convergence is uniform on any
-0t h n—oo , _ .

closed interval of continuity of f.

Proof. By Lebesgue’s Test, it is enough to show that the second condition in

Lebesgue’s Test holds unifofmly on R

From the proof of the Dini-Lipschitz Test,

[8(0) — 9+ = 3lf (@ +0) — Szt t+m)] + 3 1)~ [ —t=m)]. =
19(6) ~ (¢ + My < 517 +0) = @+ L+l + 517 =) = fa =t =)l
By Corollary 319, |z + 1) — f(z + 1t + 1)l = £z — 1) = Sz L= )],

= 1+ ) = SOl Sal): = 16) = 6+ 1)l <2 (252 ) =yt
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By Holder’s Inequality ((Folland, 1999, P. 182, Theorem 6.2))

with (X, 9, u) = ([, 7}, Br N [, 7], m),

/'¢ “”7 dt<[/ 6(t) — (t+n)|PdtrU:t—1q-dtr,

where1,<q=~£——<oo.
p—1

1

[ 1600t mpa” =t [ 2 [0 - s +mpa]

< (21)7[|6(t) — ¢t + M)llp < (27)7w,(n)

[/f%"tr - H"@#] —

;J - [(qi 1) ((7;‘1 - ﬂ‘}”)r

<[ ! F-— L 1 as p= 9

= (g —1)ne? (= 1D)ine  (q—1)ins g—1

= 0</ [#() t+n)|dt§C(%—(32>’ where C' = (27T)pl.
ne (g—1)a

Since wp(d) = 0(5%) and lim n =0, then lim C (‘%}(j)) = 0, which implies

n—00 n—o0 ,’7 P

lim / [#() - f(t + 1)l dt = 0 uniformly for z € R.

n—o0

Hence, the second condition in Lebesgue’s Test holds uniformly on R. d

4.8 Lebesgue Constants

Let {L,}, be the sequence of Lebesgue constants as defined in Section 3.6.
The following theorem is proved on (Zygmund, 1977, P. 67). The proof is

essentially reproduced as in the book.
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4
Theorem 4.8.1. Vn € N, L, = — logn + O(1); In particular, lim L, = oo.
T

n—soo

Proof. Let n € N. Since D, is an even function, then |D,| is an even function and

= 1Dulh = 5 /tD ()] dt = —/ |Dn(8)] dt = ( / |Dn(t|dt)
=—7;./0 |Dalt)] dt.

vt & [0,7], IIDn(t N =Dl < |Dn(t) — DL(t)] = [ cos(nt)] <1

L= 2 [i01a = |2 [10u01 - 100114
<[ a0 - D3l < - [Tae=1

— [Ln—%/oﬂw;(t)ldt} ~0(1) = Ln=-71; /OF_ID;(t)|dt+O(1)

sin(nt) cot (%) ‘

= |sin(nt)| cot (t) Since [0] is an m-null set, then —/ |D;(t)] dt

/ | sin(n)| cot( )dt — L, / | sin(ni)| cot( >dt+0()

=

By Proposition 4.3.2.(ii), Vt € (0,7], |D.(t)| =
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On [0, 7], [cot <%) - —ﬂ is bounded, i.e. IM > 0 V¢t € [0, 7], |cot (%) - %\ <M

|sin(nt)| [cot (g) - -ﬂl — [sin(nt)] |cot (%) - %’ <1-M=M
= ’ / | sin(nt) cot( )dt / lsm dt’

:i;/o |sin(nt)|[cot(2> ]dt ﬂ/o |sm(nt)|[cot (%)—%Hdt
< %/OﬂMdt': M |

— {1 /"|sin(nt)1cot (E> dt——z—/oﬂm)ldt] — o(1)

= / | sin(nt)] cot< )dt 2/0"ls'inlgnt)ldH-O(l)

. ( /Mdt+0(1))+0(1) 2/OﬂMdt+O(1)

T t

—
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By Section 2.4.2, Vt € [0, ;7;-] , | sin(nt)| = sin(nt).
(1)

/w [sin(nt)] . _ “Z‘l / |sin(nt)| .
0 t k=0 & ¢

(k+1)7 . ( t |
Fix 0 < k£ < n—1 and consider / |Smtn ) dt.

(etlyw T, kn
By Proposition 2.3.2.(2), / LSEM dt = / |s1n (n (¢ + n ))' dt.
0

5 t (t+ &)
k
Vit € [o, -Z-] , |sin (n (t + %)) = |sin(nt + kr)| = |(=1)* sin(nt)]
' (k1)

o — sinln = |sin(nt)] ,  [n sin(nt)
= |sin(nt)| = sin(nt) = . ; dt—/0 i+ &) dt

™ | sin(nt)| = /% sin(nt) /— sin(nt) /% sin(nt)
= e L dt = dt = dt + dt
L ) w1 L) e

n

_ /Oﬁ Lﬂiﬁ_t) dt + /0% sin(nt) [nz_l (t + k%) _1] dt

Vte[O,z, sin(nt) <1 — sin(nt) <n

n nt t

== /nwdt S/n M dtS/nndtzn(zT-)zﬂ
0 t 0 t 0 n

~ sin(nt)
= /0 — dt = O(1)
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k=1 n
n~1 -1 n—1 n-1
Vvt € [0, Zr—] , Ya(t) < (lff> — ki _n % and
n k=1 n k=1 T 4 k=1
n-1 -1 n—-1 -1 n -1 n
B (o) Bl ) -5
k=1 n n k=1 n k=2 n k=2 ﬂ'
N1 n nl 1
:Vte[O,—],— —-<Y,(t) < = b
T k T k
k=2 k=1

; |
By (Zygmund, 1977, P. 15), lim [ . log n] exists.
k=

n-—00 1
n— 11 n 1
= lim [ P - log n] and 11 [ i log n} exist.
31 1 d ! | = 0(1
= ZE——- ogn ) an 7~ logn = 0(1)
k=1 =2
n—1
1
= 7= logn—I—O ) and Z—zlogn—i-O()
k=1 k=2
m n
= < <
= vte [0,5], 2flogn+O(1)] < Ya(t) < = [logn+O(1)
— Vte [0, %] Yo (t) = g[logn—l—o(l)]

" 1 - 1 1 2
i = )|y = ~—[cos T — cos 0] = —=(~2) = =
/ sin(nt) dt - [cos(nt)]| g n[cos7r cos 0] (-2) -

0 - . n
— /%sin(nt) Ez_:i <t+ %)_ } dt = /0" sin(nt)Y,(t) dt

=/ sin(nt) logn—I—O( )]) dt = (g[logn—l—O(l)]) /% sin(nt) dt

0

= (g[logn + O(l)]) (%) = %logn + %O(l) = %logn + O(1)
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— /”S_‘n-ﬁ”i)—'dt —0(1) + (-2-1ogn+0(1)) — 2logn+0(1)
0 t T T
— [, (zlogn + 0(1)) +0(1) = = logn + 20(1) + O(1)
"oa\rw w2 T
= il—log;n +0(1)+0Q) = 4 logn + O(1)
2 2

4
. L, = ;r;logn+0(1)
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CHAPTER 5
k-Entropy

This chapter is a brief summary of the main results from (Korenblum, 1983)
and (Korenblum, 1985). The purpose of this chapter is to generalize the Dirichlet-
Jordan Test so that it includes the Dini-Lipschitz Test by using the notion of
K-entropy.

5.1 k-Entropy

Note. Let & be a positive nondecreasing concave function on [0, 1] s.t. £(0) =0
and k(1) = 1. It can be shown that  is continuous on (0,1] and Vs € [0, 1],

s < k(s) £ 1.

Definition 5.1.1. Let £ = {z;}}_; be a finite subset of an interval of length
2w, which means F is a partition of an interval of length at most 27, where
neNV1I<j<n-11; <z and 2, < 21 + 27 Let {I;}7_; be the
complementary intervals of E whereV1 < j < n —1, I; = (zj,2;41) and

I, = (Zn, 71 + 27). Then the x-entropy of E is x(E) = 3%, k(A(I;)), where
A is defined as in Section 3.1. If E = {), then x(E) is defined to be 0. If E is
an infinite closed subset of an interval of length 2, i.e. su% |z — y| < 2, then
k(E) = sup{x(Ey) : E, is a Vﬁriite subsét of E}. "

The following theorem is a list of some Qf the important properties of fc—éntropy.
Theorem 5.1.1. (i) «(E) =1if |E| =1, where |F} is the cardinality of E.
| (i) If k(s) # s and |E| > 1, then k(E) > 1.
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(i) If k(s) = s and E # 0, then k(E) = 1.
) If k(s) = 1, then x(E) = |E|.
) (E) < |E].

(vi) L CF, == k(F) < K&(F)
) K
)

(iv
(v) If E# 0, then 1 <k
(vii) K(E1U E3) < k(Er) + K(Es)
(vill) Vt € R, k(E +t) = k(E)
Here are three special examples of k-entropy.
Example 5.1.1. (i) «(s) = s(1 — logs); The corresponding k-entropy is called
the Shannon entropy.
(i) k(s) = s*, where a € (0,1); Here, k-entropy is called the Lipschitz entropy.
(iii) w(s) = (1 - %log s>-_1; Here, x-entropy is called the Dini entropy. This is
the most important example.
5.2 C, |
Definition 5.2.1. Let RC(T) be the subset of C(T) consisting of real-valued
functions. If f € RC(T), then the k-norm of f is || f||. = ffooo k(Ey[f) 0 J)dy,
where E,[f] = {T € R: f(r) = y} and J is an interval of length 2.
Note. (i) By the fact that f is 27w-periodic and by Theorem 5.1.1.(viii),
k(Ey[f] N J) is independent of the choice of J.
(ii) If k(s) = s, then the xk-norm of f is denoted by || f|c and
I flle = max f(r) - 13161111} f(7). If k(s) = 1, then the x-norm of f is denoted
by | fllv and ||f|lv = V(f), where V(f) is defined as in Section 3.4. By
Theorem 5.1.1.(v), | flo < [Ifllx < [Ifllv- |
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Remark. It can be shown that if £(0+) > 0, then the x-norm is equivalent to the

(s)

V—norm and if sl_i.%l»r l—{-;— < 00, then the x-norm is equivalent to the C-norm. It
will now be assumed that x(0+) =0 andiiga lj@ =00

Definition 5.2.2. Let RC, = {f € RC(T) : || f||« < oc}.

Note. The following assumption will now be used for the rest of this chapter. Two
functions f,g € RCj are considerpd to be equal if they differ by a constant, i.e.
JdeeRst.g=f+c.

The following theorem is from (Korenblum, 1985, P. 538, Corollary 3.6).
Theorem 5.2.1. With the above assumption, (RC,, || ||x) is a separable Banach
space over R and T N RC, is dense in RC,.

Remark. The assumption is needed because Vf € RC(T), ||fllx = 0iff fis a
constant function. In (Korenblum, 1983, P. 216), instead of using this assumption,
the k-norm of f is redefined as || f{|% = [[fllcc + [[f|[«. Then the above theorem is
true with || ||, replaced by || ||, The reason why this convention is not being used
is'because the argument from (Korenblum, 1985) is being used.

Definition 5.2.3. Let Cx = {f € C(T) : f = z + iy, where z,y € RC,.}. With f

as given, then the k-norm of f is ||fll. = sup [\ — Aoy||2 + [ A2z + Myll2]2.
XedB(0,1) :

Remark. It can be shown that Vf € Cy, [Ilzli2 + [wl2]Z < IFlle < Izl + (¥l
The following theorem follows from the previous theorem.
Theorem 5.2.2. (Cy, || ||x) is a separable Banach space over C and T N C is

dense in C\.
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5.3 Premeasures and the s«-Integral

Definition 5.3.1. Let J be the collection of all intervals in R of length at most
27 with 0 and all one-point sets. All elements of J will be called intervals. A
premeasure is a function p: J — C satisfying :

(i

) u(@) = p(I) = 0 where I is any interval of length 27
(11) Vie RVYI €3, u(l +1t) = p(l)
(i) VI, I, € Ist. [N, =0, p([1 U L) = p(l) + p(le)
(iv) If {1}, C J is a decreasing sequence of intervals and ﬂ I, = 0, then
lim pu(l,) =0. "
n—0oo .
Note. A premeasure as defined here is not the same as the usual premeasure in
Measure Theory, as in (Folland, 1999), for example.
Remark. Let u be a premeasure. Define ji: T — C by ji(t) = u((0,]) on (0,2x]
.and extend [i periodically. Then ji is right-continuous, V¢t € R, ji(t—) exists, and
vt € [0], ii(t) = 0, where [0] is the equivalence‘class of 0 as defined in Section 3.1.

Definition 5.3.2. The k-variation of a premeasure y is
> i1 lu(1)]
k(P)

P of intervals of length 27 and {/;}}_, are the complementary intervals of P.

Var,u = Sl}ljp , Where the supremum is taken over all partitions

If Var,u < oo, then p is called a premeasure of bounded x-variation and fi is
called a function of bounded «-variation. Let V, be the set of all premeasures of
bounded k-variation and RV, be the set of all real-valued premeasures of bounded
K-variation. |

Note. If u E.Vm then p can be extended to all open and closed sets /’ which are

subsets of an interval of length 27 and satisfy x(9F) < oo.
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Theorem 5.3.1. (V| ||) is a Banach space over C and (RV,, || ||) is a Banach
space over R, where Y € Vi, ||u|| = Varpu.

Definition 5.3.3. Let peV.,.If fe ERCK, then the k-integral of f w.r.t. u

is [ fdu = [Z w(F,[f] N J)dy, where F,[f] = {t € R : f(t) > y} and

J is an interval of length 2m. If f € C,, then the x-integral of f w.r.t. u is

[ fdu= [zdu+i[ydu, where z and y are as in Definition 5.2.3.

Note. By the fact that f is 27m-periodic and by Definition 5.3.1.(ii), u(F,[f] N J) is
independent of the choice of J.

Remark. If f € RC., then {F,[f]}yer are called the Lebesgue sets of f. The
Lebesgue sets of f have no relation to the Lebesgue set of f which is defined only

for fe LI (R).

loc
The following theorem is from (Korenblum, 1985, P. 540, Proposition 4.2).

Theorem 5.3.2. The k-integral is bilinear in f € C, and p € V. If f € RC, then

Var, 2
[ s < (V) e ana it £ € O then | [ 1] < ﬁ) Varau| 17l
The following theorem is from (Korenblum, 1985, P. 540, Theorem 5.1).

Theorem 5.3.3. 1) RV, = (RC,)*
In more detail, VF € (RC,)* 3u € RV, s.t. F(f) = [ fdu and conversely
every 4 € RV, defines an F' € (?RCK_)* by the same formula. Moreover,
Fllop =
2) Vo= (Co)5
In more detail, VF € (Cx)* 3 € Vi s.t. F(f) = [ fdu and conversely

every it € V defines an F' € (Cy)* by the same formula. Moreover,

(555) Varus < 1Pl < (?) Varu
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5.4 Generalization of the Dirichlet-Jordan and Dini-Lipschitz Tests
The motivation for the generalization comes from the following remark from
(Korenblum, 1985, P. 527). |
Remark. The hypothesis of the Dirichlet-Jordan Test, f € BV(T), is a restrictive
condition to impose on f to ensure the pointwise convergence of S[f]. This is
shown by the Dini-Lipschitz Test because the hypothesis that w(8) = o([logé]™?),
where w is thé modulus of continuity of f, is a weaker condition. This le\d to
the question of whether the Dirichlet-Jordan Test could be generalized so that
it includes the Dini-Lipschitz Test. This question was answered affirmatively in
(Korenblum, 1983; Korenblum, 1985).
Some of the notation from Section 2.3.2 will be used here.
The only K-entropy that will be considered here is the Dini entropy where
Cy = Cy and V; = V. Also, instead of working with premeasures of bounded Dini-
variation directly, functions of bounded Dini-variation will be focused on. This
means that if f is a function of bounded Dini-variation, then it will be written
f € V; and that the Dini-variation of f is Vargf = Sl}lJp (—13%), where the
supremum is taken over all partitions P of intervals of length 2.
Note. If f € Vg, then Vargf = Vargu, where y is a premeasure of bounded
Dini-variation s.t. fi = f.
Proposition 5.4.1. (i) BV(T) € V; and Vf € BV(T), Vargf < V(f).
(ii) Vi C L*°(T) and so V; C LY(T).
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Proof. (i) Let f € BV(T) and P be a partition of an interval of length 27. By
Theorem 5.1.1.(v), P # 0 = «(P) > 1.

A(P)
k(P)

— 28 < APy < V() = Varaf = sup (i@) <V(f) <o feVe

K(P)
Hence, BV(T) C V,; and Vf € BV(T), Varyf < V().

(ii) By Corollary 3.1.6, it is enough to show V; C L>®(T). Let f € V; and
t € [0,2m). Let P = {0,t, 27} which is a partition of [0, 27] satisfying
2 < |P| £ 3. By Theorem 5.1.1.(v), k(P) < |P] < 3. Then

|f(t) — f(O)] < A(P) = k(P) (M) < 3Varyf and

K(P)
IfO1 < 1FO)] +1£(t) = £(O) < |f(0)} + 3Varaf.
Thus, Vt € [0,27), |f(t)| < |f(0)| + 3Var,f. By the identification between
L®(T) and L*°([0,27), Bg N [0,27), A), || flleo < |f(0)] + 3Varsf < 0.

Hence, f € L*(T) and V3 C L*°(T).

Note. It shall also Abe assumed that every f € Vj; is normalized so that V¢ € R,
o = D10

The following remark is from (Korenblum, 1983, P. 217) and (Korenblum,
1985, P. 549).
Remark. The proof of the Dirichlet-Jordan Test, like the one in (Zygmund, 1977,
P. 57-58, Theorem 8.1), is based on the classical C(T) — BV(T) duality. The

generalized test is obtained by using the (Dini-entropy-norm)-(Dini-variation)

duality, i.e. Cy — Vj duality.
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Before the generalized test is presented, the following theorem from (Koren-
blum, 1985, P. 551, Theorem 9.2) will be stated because a uniform bound on the
partial sums of S[f] is given with the only assumption being f e Vg
Theorem 5.4.2. If f € V,, then Vn € Ng, [|Sn(H)llos < |Iflloo + -27—Vardf. '
Definition 5.4.1. Let f € V3, t € R, d > 0 and g¢(7) = [(f(T) — f(t))X(t-6.4+8)(T)]-
f is of vanishing d-variation at t if Jl_i'r(1;1+ Vargg, = 0. If Vt € J, where J is a closed
interval of length 27, f is of vanishing d-variation at ¢, then f is of vanishing
d-variation on T.

The following remarks are from (Korenblum, 1985, P. 551, Remarks 1 and 3).
Remark. (i) Let f € BV(T) andt € R. If f is continuous at ¢, then f is

of vanishing d-variation at . Moreover, if f € C(T) as well, then f is of
vanishing d-variation on T.

(ii) Let f € C(T) and w be the modulus of continuity of f.
If w(d) = O([logd]™?), then f € V; and if w(d) = o([log é]™*), then f is of
vanishing d-variation on T.

The following theorem is from (Korenblum, 1983, P. 218, Theorem 3)
and (Korenblum, 1985, P. 552, Theorem 9.3). This is the generalization of the
Dirichlet-Jordan Test and the Dini-Lipschitz Test.

Theorem 5.4.3. 1) If f is of vanishing d-variation at ¢,
then lim S.(/)() = /(1).
2) If f is of vanishing d-variation on T, then T}I_I;Iolo Sn(f)(t) = f(t) uniformly on
R.
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Note. By the previous remarks, it follows that the generalized test includes the

Dirichlet-Jordan Test and the Dini-Lipschitz Test.
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CHAPTER 6
Conclusion

In conclusion, this thesis was a summary of some important results in the
convergence of Fourier series. Specifically, the Cesaro summability and convergence
of Fourier series was examined. Here, summability was viewed in connection with
summability kernels. The only summability kernel that was used in this text was
the Fejér kernel and in this event, summability was also called Cesaro summability.
In addition, while convergence of Fourier series was an investigation of the partial
sums of Fourier series, summability of Fourier series was ah investigation of the
Céséro sums of Fourier series.

Before the main subject of Fourier series was discussed, a brief review in
Chapter 2 was given of topics that would be needed later on in the text. First, the
Riemann integral was defined for complex-valued functions and then the definition
was generalized for vector-valued functions. Next, a short comparison was given of
the Riemann and Lebesgue integrals. Finally, three significant classes of functions
were introduced. These classes were locally integrable functions, functions of
bounded variation, and absolutely continuoué functions.

In Chapter 3, the summability and convergence in norm of Fourier series was
studied. To begin with, the Banach spaces of functions L? (T), where 1 < p < o0,
and C(T) were presented. These Banach spaces of functions were the most

important classes of functions in this text. One reason is that all functions
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considered here were assumed to be in at least one of these classes. Next, the
Fourier coefficients and Fourier series were defined. Then homogeneous Banach
spaces on T were introduced. It was soon proven that rr (T), where 1 < p < 00,
and C(T) belong to this collection of Banach spaces. Following this, the n-th
partial and Cesaro sums of Fourier series Were defined. Subsequently, it was shown
that all homogeneous Banach spaces on T admit summability in norm. This result
wés probably the most substantial result of this chapter. This fesult also gave

rise to two consequential theorems which were the Weierstrass Approximatibn

" Theorem and the Riemann-Lebesgue lemma. Afterwards, the Banach space L2(T)
was studied in more detail because of the special properties it inherits as a Hilbert
space. Lastly, convergence in nofm was defined and discussed.

In Chapter 4, the pointwise summability and convergence of Fourier series was
studied. First, pointwise summability was discussed and in particular, Lebesgue’s
Theorem which states that Vf € L!(T), the Fourier series of f is pointwise
summable to f m-a.e. . Later, an example was given of a continuous function
whose Fourier series diverges at a point. Finally, the thre¢ most important tests
for pointwise convergence, Dini’s Test, the Dirichlet-Jordan Test, and the Dini-
Lipschitz Test, were presented.

In Chapter 5, a generalization, due to Boris Korenblum, of the Dirichlet-
Jordan Test and the Dini-Lipschitz Test was studied. All the results in this
chapter were presented from the papersA of Korenblum, (Korenblum, 1983) and
(Korenblum, 1985). The Dirichlet-Jordan Test was generalized to give a new

pointwise convergence test that included the Dini-Lipschitz Test. To obtain
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the generalized test, first thé notion of k-entropy was introduced. Then the x-
norm and an associated Banach space of functions denoted by C} were defined.
Thereupon, premeasures and the s-integral were introduced. At the end, the
generalized test was stated.

If I continue my current research, I would investigate the following. Initially, I
would study Theorem 3.6.8 and its proof in more detail. I would also see if there
are alternate proofs that do not involve the theory of conjugation. After, I would
explore the theory of k-entropy more carefully so that I could understand the proof
of the generalized test. Ultimately, I would analyze the proofs of the Carleson and

| Carleson-Hunt theorems and see if they could be simplified or generalized.
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