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Abstract 

As the population ages, Canada faces a personal, public and financial demand on the 

health system and society. Heterogeneous health outcomes are notable in older 

populations. Identifying this diversity is fundamental to understanding age-related 

health and neuropathology. Magnetic resonance imaging (MRI) is a common non-

invasive procedure to study brain aging. Resting-state functional MRI, which places no 

demands beyond remaining still and awake, effectively measures brain activity in 

subjects of all ages and capacities. The standard static analysis method identifies 

functional connectivity differences across cohorts, however, it is ineffective at 

differentiating within-cohort heterogeneities. We present a data-driven method, with 

which we identify prototypical brain states derived from time-varying functional 

connectivity, to discriminate sub-populations within cohorts. We analyze a healthy 

population of young and old subjects for age-related differences, for differential activity 

during stage 2 non-rapid eye movement sleep (NREM2) and for the impact of differential 

thought content measured during the resting-state procedure. Finally, in a preliminary, 

exploratory analysis we used our methods to compare features of sleep and wakefulness 

across datasets. We demonstrate that our data-driven method derives brain states that 

discriminate between and within cohorts, during both wakefulness and sleep. In both 

cases, we identify older sub-cohorts that explain almost all the variance, between old and 

young populations, found in the static analysis. We observed a cross-over interaction 

effect between thought content scores and age cohort. This may be explained by the 

middle temporal gyrus acting as a compensatory pathway for past thinking in older 

subjects. In our final analysis, we found brain states most correlated across sleep and 

wakeful datasets were associated with the younger population. This was expected, since 

the facility to sleep decreases with age. We also observed less correlation between brain 

states of old and young cohorts during sleep than when awake, highlighting sleep as an 
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interesting source for age-related research. In sum, our method provides insight into 

heterogeneities in older populations beyond standard static analysis. This underscores 

the importance of delineating underlying brain states in aging studies. Further, since the 

method is data-driven, it can be applied to datasets without previous knowledge of 

pathology. Considering the method can be applied across datasets, it offers a promising 

tool to identify biomarkers in future studies.  
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Résumé 

À mesure que la population vieillit, le système de santé et la société du Canada font face 

à des demandes croissantes du public en termes de personnel et de finances.  Les 

populations âgées sont connues pour l’hétérogénéité de leurs états de santé. Caractériser 

cette diversité de trajectoires de vieillissement est fondamental pour comprendre la santé 

et les neuropathologies liées à l'âge. L'utilisation de l'imagerie par résonance magnétique 

(IRM) est une procédure non-invasive typique pour étudier le vieillissement du cerveau. 

L'IRM fonctionnelle « au repos » mesure efficacement l'activité cérébrale chez des sujets 

de tous âges et capacités, car elle n'impose aucune exigence au-delà du fait de rester 

immobile et éveillé. La méthode standard d'analyse statique en IRM fonctionnelle 

consiste à identifier des différences de connectivité moyenne entre cohortes, mais cette 

approche est inefficace pour caractériser l’hétérogénéité présente au sein des cohortes. 

Nous appliquons ici une méthode guidée par les données, avec laquelle nous identifions 

des états cérébraux prototypiques dérivés de la connectivité fonctionnelle variable dans le 

temps, afin de discriminer des sous-populations au sein des cohortes âgées. Nous 

analysons une population saine de sujets jeunes et âgés pour les différences liées à l'âge, 

pour l'activité différentielle pendant le sommeil de mouvement oculaire non-rapide 

(NREM2) et pour l'impact du contenu des pensées spontanées, mesurées pendant la 

procédure de repos. Finalement, dans une analyse exploratoire préliminaire, nous avons 

utilisé nos méthodes pour comparer les caractéristiques du sommeil et de l'éveil. Nous 

démontrons que notre méthode guidée par les données identifie des états cérébraux qui 

discriminent entre et au sein des cohortes, à la fois pendant l'éveil et le sommeil. Dans les 

deux cas, nous identifions des sous-cohortes âgées qui expliquent la quasi-totalité de la 

variance liée à l’âge retrouvée dans l'analyse statique. Nous avons observé un effet 

d'interaction croisée entre les scores du contenu de la pensée et la cohorte d'âge. Cela peut 

être expliqué par le gyrus temporal moyen agissant comme une voie de compensation 
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pour les pensées liées au passé chez les sujets plus âgés. Dans notre dernière analyse, 

nous avons trouvé que les états cérébraux les plus corrélés à travers les bases de données 

de sommeil et de veille étaient associés à la population plus jeune. Cela était prévu, 

puisque la facilité à s’endormir diminue avec l'âge. Nous avons également observé moins 

de corrélation entre les états cérébraux des cohortes jeunes et âgées pendant le sommeil 

que lorsque les participants étaient éveillés, soulignant que le sommeil était une source 

intéressante pour la recherche liée à l'âge. En somme, notre méthode fournit un aperçu 

de l’hétérogénéité du vieillissement du cerveau dans les populations âgées, au-delà de ce 

qui peut être observé au moyen d’une 'analyse standard. Ces résultats soulignent 

l'importance de délimiter les états cérébraux sous-jacents dans les études sur le 

vieillissement. De plus, puisque la méthode est guidée par les données, elle peut être 

appliquée à des bases de données sans connaissance préalable de la pathologie, et offre 

donc un outil prometteur pour identifier les biomarqueurs dans les études futures. 
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Chapter 1  

1 Introduction  

1.1.  Literature Review 

1.1.1.  Background 

With an aging population there is increased interest in understanding the basis for 

maintaining health throughout the lifespan. This demographic change has resulted in 

ever increasing precedence of neurodegenerative related disorders [4]. The personal, 

social and financial burden is a major concern for society. Even without a pathological 

association, healthy aging can lead to manifestations of cognitive decline, affecting 

individuals at different rates and severities [5].  

 

Differentiating healthy aging from neurodegeneration, and by extension those at risk for 

severe forms of pathology is of heightened interest. Consequently, a better understanding 

of the neural basis for healthy aging may highlight pathways to explore 

neurodegenerative illness. A current focus in aging research has been on patient 

populations that already demonstrate some cognitive impairment. The goal is to identify 

features that predict which subjects will transition to more serious illness [6, 7], with the 

intent to identify key bio-markers for the illness. In doing so, heterogeneity in the healthy 

older population may be overlooked. Thus, a challenge that faces researchers exploring 

the heterogeneous nature of aging are the diverse health outcomes, ubiquitous even in 

healthy older populations [8]. Delineating the heterogeneity in healthy populations may 
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provide insight into early disease development that may otherwise be missed [9]. Thus, 

understanding the diversity in healthy aging is fundamental to better understand diverse 

manifestations in pathological aging and neurodegeneration [10].  

 

A common challenge facing research involving older populations is the ability of subjects 

to comprehend and properly complete the research tasks. In recent years, a frequently 

applied procedure that limits this potential confound is the resting-state protocol. The 

resting-state procedure employs magnetic resonance imaging (MRI), a routine approach 

to studying healthy aging throughout the lifespan, to assess functional variations in brain 

activity over time (fMRI). Unlike most fMRI procedures (or even psychometric batteries), 

resting-state protocols are not task-based. Subjects are simply asked to remain still and 

awake in the MRI scanner and allow their minds to wander for a duration of generally 5 

to 20 minutes. Due to the simplicity of the approach and the absence of specific cognitive 

demands placed on the subject, this is well-suited for older subjects. In particular, for 

subjects that may be suffering from known or unknown cognitive deficits a more complex 

task-based approach would be untenable. 

 

To measure the functional (fMRI) activity in the brain over time, changes in the magnetic 

properties of hemoglobin in the blood (when oxygenated or deoxygenated) that result in 

signal variations are detected by the MRI scanner [11]. This is referred to as the blood 

oxygenation level contrast (BOLD) signal. The technique is non-invasive and allows 

researchers to acquire functional images of the brain with high spatial resolution. It is 

important to note that this is an indirect measure of neural activity. Generally, an 

interpretation of fMRI presumes that neural activity leads to energy demands, resulting 

in an increased cerebral blood flow (hemodynamic response) to that brain region [12]. 

Although the specific relationship between neural activity and BOLD measures has not 

been fully elucidated, fMRI is an extremely important tool to investigate brain regions 

involved in cognition and other activities [13].  
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Studies that incorporate resting-state driven paradigms make it possible to assess the 

inter-regional correlations of brain activity across brain regions [14]. The idea that 

spontaneous fluctuations at rest provided insight into underlying relationships between 

brain regions was first demonstrated by Biswal et al. [15]. They found that during rest, 

BOLD measures from one region of the motor cortex correlated with the BOLD activity 

in other motor regions [15]. The method is also well-suited suited for studying 

heterogeneities that impact distributed brain regions [16]. This eventually led to the 

identification of numerous brain networks that often fluctuate in synchrony while an 

individual is at rest [17]. A good test-retest reliability has likewise been demonstrated 

[18].  

 

Traditionally when analysing resting-state data, the correlation coefficient across the time 

series of distinct regions is calculated to provide a measure referred to as functional 

connectivity. Brain regions that demonstrate stronger correlations with one another and 

fluctuate in a coherent fashion can be referred to as networks. A characteristic network 

found during resting-state procedures is the default-mode network (DMN). It is most 

active during periods of rest, consisting of non-task driven activity and thought. The 

DMN comprises regions including the posterior cingulate cortex (PCC), the medial 

prefrontal cortex (mPFC), the precuneus, the angular gyrus (lateral parietal cortex – 

inferior parietal lobule) and lateral portions of the temporal lobe [19]. The hippocampal 

complex is also often considered a part of the network [20]. The DMN has been implicated 

in measures of healthy aging, autobiographical memory, imagining the future, self-

referential thinking, sleep, as well as neurodegeneration [21]. As such, the exploration of 

resting-state with this network and how it varies with age, has become a fundamental 

aspect of aging research. Using these analytic methods to explore heterogeneity in 

populations, as well as at the individual level, are directions within the field both now 

and in the future [22]. 
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1.1.2. Functional neuroimaging research in aging  

In early functional neuroimaging studies on aging Damoiseaux et al. found a reduction 

in connectivity between ten different brain networks, with significant changes observed 

in the DMN [23]. This was supported by findings from Andrews-Hanna et al. (2007) in 

which they found a reduction in connectivity between the posterior and anterior regions 

of the brain in older cohorts of subjects [1]. The regions in which they observed the 

reduced connectivity, the PCC and the mPFC, comprise integral portions of the DMN. In 

fact, some of the earliest observed tissue deterioration and pathogenesis associated with 

cognitive decline and memory deficits occurs in these DMN brain regions, where one 

finds the highest levels of activity during rest [24].  

 

Although much of the research on aging using resting-state procedures has focused on 

the DMN, other networks have also been implicated in age-related changes. The dorsal 

attention network (DAN), most active during goal directed tasks, is anti-correlated with 

the DMN [25]. A deterioration of long-range connectivity within the DAN has also been 

observed as a result of aging processes [26]. In contrast, within the visual and 

somatosensory networks researchers have found no significant deterioration [27]. In our 

own previous research, we have found that significant changes occur throughout the 

brain in aging, which are likewise not limited to the DMN [28]. Similar results in aging 

studies have been found using network modeling [29], topology [30], and co-activation 

models [2].  

 

Age has been identified as a significant factor that effects the variability of functional 

connectivity measures during resting-state [31]. Correspondingly, resting-state has been 

a successful tool for comparing old and young cohorts to identify age-related functional 

changes [32]. To elucidate group differences, studies to date have largely relied on an 

assumption of underlying homogeneity within each given cohort [33]. This, however, is 

not representative of the heterogeneity found in an aging population, even when healthy 
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[5]. As it stands, when there is heterogeneity among subgroupings of subjects within a 

cohort, the differences may not be effectively characterized with the standard 

connectivity analysis.  

 

To capture this heterogeneity, other analytic methods are required [32]. For example, 

data-driven methods that cluster subjects within a cohort or across the dataset, 

independent of group labeling, are better suited to address challenges in characterizing 

heterogeneity within healthy or neurodegenerative older populations [6]. This is 

becoming the focus of current studies that examine neurodegeneration [6, 7]. There is, 

however, very little research combining the heterogeneity of healthy aging, with resting-

state functional connectivity measures.  

1.1.3. Sleep 

A well-known, but little studied consideration in resting-state fMRI is the possibility of 

people sleeping in the scanner and how that might affect the analysis and results. This 

may be of particular concern in aging studies with differences in sleep quality of old and 

young subjects. For example older subjects, as compared to younger subjects, tend to 

sleep less, and less deeply, have less physiologic activity (such as sleep spindles and k-

complexes), less slow-wave sleep and an overall lower quality of sleep [34-36]. If subjects 

sleep in the scanner, these differential sleep qualities could impact the results [37]. 

Heterogeneous sleep qualities within the older population may likewise play a factor.  

Notably, in a study from Horowitz et al. a loss of connectivity between the anterior and 

posterior regions of the brain were observed during sleep [38]. These are important DMN 

regions which have shown similar reduced connectivity in previous resting-state aging 

studies. Such overlapping results underline the importance of considering sleep in any 

resting-state study, particularly when subjects and cohorts comprise different sleep 

profiles.  
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In research that has addressed subject vigilance during resting-state scans, sleep appears 

to be ubiquitous [39]. Using a machine learning classifier able to predict sleep stages in 

the scanner with over 80% accuracy [40], Tagliazucchi et al. estimated, based on over 1000 

resting-state scans, that 30% of subjects fall asleep within 3 minutes of beginning the scan 

[39]. Further, they also found that subjects were not reliable in their subjective assessment 

of whether they slept in the scanner, compared to results validated through 

electroencephalography (EEG) sleep staging. The type of resting-state protocol did 

influence vigilance, with only 10% of subjects falling asleep when the instructions 

included a request to keep the eyes open while focusing on a fixation cross [39].  

 

To reliably measure sleep in the scanner, however, there needs to be a combined 

EEG/fMRI protocol. The combined EEG/fMRI procedure can be time-consuming and 

present other technical and analytic challenges that make it less common. Recently, Wang 

et al explored test-retest reliability of resting-state data, while taking sleep into 

consideration [41]. Rather than an EEG/fMRI protocol, the researchers relied on heart 

rate variability to assess periods in which subjects were more alert, or when they were 

less alert and correspondingly sleepy or potentially sleeping. This transition between 

wakefulness and sleep is a period that has been characterized by changes in brain activity 

and network connectivity [42]. Following removal of these periods, identified as less 

vigilant phases that may involve sleep, they found that the reliability and reproducibility 

of the results was significantly improved [41].  

 

The impact sleep may have on resting-state analysis is an open question. The impact is 

likely amplified when cohorts show fundamentally different sleep patterns, or likewise 

heterogeneity within a given cohort. Notably, in all of the sleep studies discussed above, 

the subjects were comprised of young adults. The impact of sleep during resting-state in 

older adults has not been examined, for classification, frequency, nor reliability of the 

results. Since the qualities of sleep are different between older and younger individuals, 
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there remain many questions regarding the differential impact of sleep during resting-

state in aging studies. An important consideration to address these issues is the dynamic 

aspect of sleep and the variability this presents during a resting-state scan. Subjects can 

sleep at variable times within a scan, with variable lengths, depths and characteristics. 

Accordingly, the analysis method must allow for such variations over time. 

1.1.4. Thought content 

Functional connectivity measures from resting-state procedures are well established and 

robust [18]; yet interpreting and assessing the results while considering the 

unconstrained spontaneous nature of the thoughts that drive the outcome is unclear [43, 

44]. In particular, when performing a contrast between groups that have heterogeneous 

mental states or thought content, an analysis may be impacted by these differences [43]. 

Interpretation of the results is potentially further complicated by the dynamic nature of 

resting-state measures and the resultant heterogeneity of thought even at the individual 

level [43].  

  

Older adults tend to retrieve less episodic detail when thinking about memories from the 

past [45]. Those that display a deficit that corresponds to a lack of detail from the past 

thoughts show a diminished ability to imagine the future [46]. In task-based 

neuroimaging studies, older subjects show less activation in the medial temporal lobe 

and precuneus, when mentally elaborating on past thoughts, and similarly differential 

activation in the medial and temporal regions, including the superior temporal gyrus 

[47]. Studies that report the content of spontaneous thought have found younger subjects 

focus predominantly on future thought [48, 49]. From this perspective, when we consider 

the resting-state procedure as a method to identify age-related differences, the quality 

and content of the underlying thoughts may differ strongly between young and old 

cohorts. 

 



CHAPTER 1.  INTRODUCTION 

 8 

There is an overlap that has been identified between past and future thought content [50]. 

Much of the research has found self-referential thought largely intersects regions of the 

DMN network. As Buckner et al. (2007) outlined these regions are associated with 

autobiographical memory, imagining the future, theory of mind, and moral decision-

making [21]. Follow up studies found that the DMN could be broken down into more 

specific subsystems that would activate differentially based on the type of self-referential 

thinking [51]. In particular, they found that one subset of the DMN was more active for 

self-relevant thoughts, while another set of regions was more prevalent during imagery 

with memory. These regions were seen to combine in activity when participants were 

involved in future thinking and imagining [51]. 

 

To address these issues and explore the inner experience of subjects in the scanner during 

resting-state, distinct approaches to measure thought content have been proposed. These 

methods include sampling throughout the scan [49, 52] and post-scan questionnaires [53-

55].  

 

Using descriptive experience sampling during the scan, Kuhn et al. observed brain 

activation complementary to the described inner events of individual subjects [56]. Since 

the sampling occurred throughout the scan a method of analysis that allows for time-

varying connectivity measures is necessary. Unlike static connectivity, such dynamic 

methods of connectivity analysis can successfully track thought content during resting-

state [57]. Sampling inner thoughts during the scan, however, may raise a conscious 

awareness of the experience, potentially reducing activation levels as compared to being 

left undisturbed and unaware of the mind-wandering [58]. Sampling methods during the 

scan can be biased by the questions asked, which tend to be more limited and less rich 

than is possible when less constrained by time and physical space [59]. Accordingly, 

although sampling thoughts and experience during the scanning session may increase 
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precision, it may also inevitably distort the experience of uninterrupted rest and free 

flowing thought, the core premise of the resting-state procedure.  

 

The benefit of a retrospective post-scan questionnaire is that it allows the spontaneous 

thought to continue uninterrupted. The inclusion in a resting-state protocol also benefits 

from the simplicity of use. By contrast, with post-scan questionnaires there are questions 

of the reliability of subjects’ recollection after sufficient time-delay [44]. There are likewise 

potential biases towards positivity that may arise [60]. In contrast to sampling methods, 

there would also be a loss of temporal precision [59]. The dynamic character of the 

resting-state may still be better characterized in relation to the thought content, than a 

static measure, however, it would no longer be possible to relate specific periods of 

thought to specific time periods during the scan.  

 

Despite the limitations, studies incorporating different post-scan questionnaires have 

reported associations between aspects of the thought content and measures of brain 

activity [53, 61]. In a study from Andrews-Hanna, by varying peripheral stimuli with 

periods of spontaneous thought, a relationship between the DMN and the spontaneous 

fluctuations was confirmed [62]. Results from a post-scan questionnaire could explain a 

significant portion of the variance of connectivity between the medial temporal lobe and 

other brain regions [62]. Recently, a study that incorporated post-scan questionnaires, 

explored thought content during the resting-state scan in relation to aging [63]. In this 

study from Mevel et al., they found the expected functional connectivity changes in the 

DMN as a result of age, however, they did not find a relationship between these changes 

and the inner experience of the subjects in the scanner [63]. A notable limitation of this 

study was the fact the connectivity values were based on an assumption of stationarity, 

and the dynamic variability was not explored.  
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Ultimately, the impact variations in thought content may have on resting-state measures 

remains unclear. Despite the strengths and limitations of methods to measure mentation 

during and after resting-state procedures, the inclusion of some type of thought content 

analysis during resting-state procedures is very relevant. The differential thought content 

between old and young, along with heterogeneity in the old population are factors that 

may impact the results [37, 64]. Thus, particularly when employing resting-state 

procedures that include older populations, both clinical and healthy, measuring and 

potentially controlling for variations in thought content may be pivotal for a better 

interpretation of some of the variance [59].  

1.1.5. Dynamic Connectivity 

There are limitations and challenges that we currently face in resting-state studies. At 

present the vast majority of analysis of resting-state data assumes stationarity. As a result, 

a number of variables may be lost in the analysis. Of importance when differentiating 

healthy and pathological aging, the heterogeneity of older populations may be poorly 

characterized, or lost, when analytic methods assume stationarity.  

 

The assumption of stationarity was first questioned in the literature, in a paper from 

Chang et al. in 2010 [65]. In it, by breaking the calculations of connectivity into 2 to 4 

minute segments, they found notable variation in the connectivity measures over the 

entire time series [65]. A paper from Allen et al. in 2014 raised general awareness of the 

issues and detailed a sliding-window method, similar to Chang et al., that is most 

commonly used in current dynamic connectivity studies [66]. In their paper, Allen et al. 

measured connectivity across a given window of time, sliding the measurement a 

specified number of volumes and repeating, across the entire time-series. The 

connectivity matrices were then clustering using a k-means clustering algorithm, from 

which they identified 7 distinct clusters, representative of brain states. This allowed the 

authors to better characterize the data and infer various states and stages of activity 
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throughout the resting-state procedure. Although these results were notable, original, 

and garnered much interest in the neuroimaging field, they lacked clarity as to what the 

variations and brain states actually meant. Lacking independent measures, such as 

electrophysiological or psychometric data, or other tests to associate the findings, the 

validity of the interpretations were unclear [67].  

 

This led to a number of published articles questioning whether the measured dynamics 

arose as much from noise as it might from signal [68]. In 2012, using simulation methods, 

Handwerker et al. found that noise could evoke the dynamics attributed to signal [68]. 

Similarly, Leonardi et al. showed through simulated data that if the window length 

chosen was too short the data would be susceptible to spurious autocorrelations [69]. 

Although these studies were based on simulated data, the results reinforced the need to 

interpret time-varying connectivity results with caution and to develop statistical 

methods to support the interpretations [67]. 

 

Bolstering dynamic connectivity as a viable analytic procedure, other studies using 

experimental data, have highlighted supporting evidence. For example, in 2015, 

Gonzalez-Castillo et al, used various sliding window parameters and clustering 

techniques to identify the mental tasks of subjects from fMRI data [70]. The subjects were 

given 4 mental tasks throughout the scan, including a standard resting-state, a 

memorization task, a math task and watching a video. Data-driven techniques used to 

identify the task in the given window included clustering via k-means or hierarchical 

clustering methods, different sizing of the windows, and varying the number of regions 

of interest (ROIs) used in the analysis. Overall, the results showed at least 70% accuracy, 

but when the number of ROIs were increased along with the size of the window, this 

increased to ~95% accuracy. Although differences in accuracy were seen between k-

means and hierarchical clustering, when the pre-processed high-pass filter (HPF) value 
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was adjusted to keep the window length greater than the value’s reciprocal (i.e.: 1/HPF), 

as proposed by Leonardi et al. [69] and described above, those differences disappeared. 

 

A relationship between dynamic functional connectivity from fMRI, and EEG measures 

of electrical brain activity has also been demonstrated. In a 2013 study, Chang et al. 

observed an association between the alpha power band and functional connectivity 

measures between and within the DMN and the dorsal attention network [71]. Likewise, 

Tagliazucchi et al. demonstrated a correlation between EEG power bands and 

dynamically derived functional connectivity measures between numerous brain regions 

[72]. 

 

Exploring illness classification using a data-driven dynamic connectivity method, 

Damaraju et al., found that the resulting clusters associated significantly to either the 

healthy controls or schizophrenia patients [73]. Using a sliding window analysis and k-

means clustering procedure, subjects in a given cohort would spend significantly more 

or less time in the corresponding cluster [73]. Further, when comparing the dynamic with 

static connectivity analysis, they uncovered differences in connectivity they would not 

have been able to identify in the static analysis alone.  

 

In 2014, Kucyi et al. found a correlation between self-reported mind-wandering and 

functional connectivity, when it was measured dynamically [57]. They did not observe 

this relationship when using a static functional connectivity analysis. As described 

earlier, Taglizucchi et al. used a dynamic sliding window procedure as the basis for their 

support vector machine classifier [40]. The fact they could successfully identify not only 

sleep or wakefulness, but specific sleep stages as well, further supports the application of 

dynamic analysis on fMRI data. None of this would be possible through standard 

stationary methods. In our own previous research, we found an association between 

sleep stages and brain states [74]. Sleeping subjects were analysed, and we clustered the 
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brain data into 24 different brain states using a whole brain connectome and a k-means 

clustering algorithm. We similarly found that brain states specifically associated with a 

given sleep stage, which we observed from wakefulness through to NREM3 sleep.  

 

In a very recent aging study, the authors looked at the development of the brain during 

childhood up to early adulthood [75]. Using dynamic methods on resting-state data that 

incorporated a sliding winding and k-means clustering procedure, they were able to 

characterize age through brain states most associated with subjects in a given 

developmental period [75]. In another study that likewise examined the brain from 

childhood to adulthood, the mean dwell time and connectivity strength within given 

brain states varied with age [76]. There is only one study that we are familiar with that has 

applied dynamic techniques on resting-state data for the study of healthy aging in an 

older population [32]. In this study, Eavani et al. employed a classifier utilizing both 

supervised and unsupervised learning to successfully isolate two subgroups with 

different connectivity patterns in the older cohort [32]. The older cohort consisted only of 

subjects over 85 years of age, while the younger cohort consisted of subjects less than 60 

years of age. 

 

Analysis of resting-state data with dynamic connectivity methods is still at a nascent 

stage. Initial observations, however, demonstrate that it is a method with considerable 

potential to illuminate the impact of time-varying factors, such as sleep and thought 

content, on the analysis, while characterizing heterogeneous differences between and 

within populations.  

1.1.6. Summary  

The overall goal of my research is to better determine age-related heterogeneity in 

resting-state fMRI data, both by comparing healthy young to old cohorts, as well as 
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within the older cohort itself. To capture the heterogeneity, we will be utilizing dynamic 

connectivity techniques that cluster the results across the entire dataset.  

 

There is one study that has touched on these questions [32]. Aside from methodological 

differences in the analysis, compared to this study, we will be examining different age 

groupings [32]. In that study, the older cohort incorporated was very old (>85 years), 

whereas all our older subjects will be less than 85 years. This is an important distinction 

since the rate of cognitive decline already increases markedly in individuals over 70 years 

[77]. We hope to identify group differences at a much earlier time frame that will have 

more relevance when trying to transfer knowledge from our findings in healthy older 

adults to clinical populations with pathological aging.  

 

Other factors influencing the analysis of resting-state results arise due to the 

unconstrained nature of the procedure. This includes the thought content and the 

potential for sleep in the scanner. These are pertinent factors for any resting-state study, 

but even more so when the cohorts under investigation display differential sleep and 

thought patterns. This is the case in studies of aging. As before, these factors display an 

impact that is variable over time. Thus, in order to better determine age-related 

heterogeneity in resting-state fMRI data, we need to apply dynamic analysis methods 

that account for variable thought content and vigilance throughout the entire acquisition. 

We are unaware of any study that combines the examination of thought content during 

resting-state through dynamic connectivity methods, while considering age-related 

differences. Likewise, we are unaware of any fMRI study that compares differential 

functional connectivity in old and young adults during sleep, and in particular, utilizing 

dynamic connectivity methods.  
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To explore these questions and identify heterogeneity in the populations, we present a 

data-driven method to identify representative brain states, simplify the analysis and allow 

for inter-dataset comparison.  

 

Numerous methods have been proposed to examine dynamic connectivity, however, 

there is a paucity of results on non-simulated data to effectively evaluate their validity 

and appropriateness for our objectives [78]. Although some other methods are more 

sophisticated, the sliding window technique is the most common approach to derive 

connectivity maps [78]. It has been effective in delineating brain states and clinical from 

healthy populations [70, 73]. Our analysis will involve the use of a sliding window 

connectivity analysis method that is complementary in many ways to that described by 

Allen et al. [66]. 

 

We will, however, employ a hierarchical clustering method over the k-means clustering 

method used by Allen et al. [66] and the vast majority of other dynamic connectivity 

studies. This is a key modification, since in contrast to k-means clustering, the hierarchical 

clustering method allows for spatially variable cluster sizes, variable cluster scales (the 

number of clusters does not need to be defined a priori) and provides a deterministic 

result. Imposing spatially equal-sized spherical clusters, as with k-means, causes the 

method to break down with different cluster densities [79]. There is no such assumption 

with hierarchical clustering and it makes little sense to impose this limitation on the data. 

Of the studies that have used hierarchical clustering, one focused on hidden Markov 

models [80], one on a task-based analysis [70], and the other on graph theory [81]. No 

studies have explored hierarchical clustering in relation to fMRI functional connectivity 

values in resting-state of healthy individuals.  

 

We will also pursue a voxel-wise seed-based analysis, rather than the more common 

network analyses in dynamic connectivity studies. The main advantage in doing so is the 
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analysis will not be constrained to predetermined functional regions, since these are not 

always representative in older populations [82]. We likewise anticipate the visualization 

of voxel-wise brain maps will provide us with more tangible and biologically 

interpretable results. Finally, we will use the voxel-wise result to correlate a spatial 

similarity score between window maps across the dataset, and in relation to the 

representative brain states. This will allow us to statistically assess our results within the 

dataset, and permit comparison across datasets. For this purpose, we will specifically 

target a comparison between a dataset containing resting-state data and a dataset 

comprised of sleep data confirmed through EEG measures. This is also made possible by 

using the same network atlas to derive seed regions across each dataset.  

 

This analytic approach will permit us to address our research questions (see Research 

Studies) and further our understanding of healthy aging, heterogeneity and resting-state 

analysis. Combining these analyses, we hope to identify and characterize potential age-

related differences that can have an impact on resting-state results. The result of these 

studies may establish a foundation that will be of significant benefit and importance for 

future studies in aging.  
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1.2.  Research Studies 

1.2.1. Study#1 – Aging  

In the first study our objective is to apply our method as a proof-of-concept. We intend 

to analyze resting-state data of old and young subjects to identify age-related differences 

using both a static and dynamic analysis approach. The static analysis will provide a 

benchmark for the dynamic analysis, and insight for any interpretation of the data. There 

has been sufficient literature in this area that this study will serve to support our method. 

Additionally, we hope to identify heterogeneity in the older population that may convey 

biological relevance. We will utilize posterior and anterior regions of the brain as seeds 

of interest (PCC and mPFC). These seed regions will best serve to confirm our results in 

relation to the literature, where a reduction in connectivity between the regions in healthy 

older subjects, as compared to young subjects, has been consistently observed [1]. In this 

study we have three basic objectives. 

 

 Compare and analyze resting-state data of young and old subjects. 

 Assess the outcomes using static analysis as a benchmark. 

 Apply dynamic analysis methods to delineate brain states and compare with the 

static results. 

 

Since the dynamic analysis is data-driven, it involves pooling all the data without 

differentiating cohorts. Through the clustering method we will derive representative 

mean clusters, which we will refer to as brain states. These states will characterize a mean 

of connectivity patterns that we most-frequently observe across all subjects. We 

nonetheless expect the heterogeneity between the age cohorts to emerge from our 

analysis. Thus, we hypothesize the following: 
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Hypotheses: 

 Individual brain states will associate with young and old subjects, respectively. 

 A brain state that typifies DMN connectivity found in the literature [21] will be 

identified. 

 A brain state will associate with only a subset of the older population, 

differentiating it from old subjects not associated with the state. 

 This brain state will be characterized by the reduced posterior-anterior connectivity 

described in the literature [1]. 

 

The importance of this analysis is to confirm that we will uncover results consistent with 

what is observed through static analysis. Further, it is important that we are able to 

delineate heterogeneity in the older population through brain states driven by the data. 

Such results will support the added value of this method, as compared to the benchmark 

static analytic procedures. This will support the method for further application to other 

studies.  
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1.2.2. Study#2 – Sleep  

For the second study we will apply our analytic methods to data derived from cohorts of 

young and older subjects while they sleep in the scanner. Once again, we intend to 

identify age-related differences using both a static and dynamic analysis approach, 

whereby the static analysis serves as a baseline analytic benchmark. We will look 

specifically at non rapid eye movement stage 2 sleep (NREM2). During this sleep stage 

electrophysiological events that include k-complexes, sleep spindles and some slow-

wave sleep activity are prevalent [34].  The k-complex, identified using EEG, results from 

synchronous neural excitation [83]. Sleep spindles often follow k-complexes and are 

characterized by short periods of oscillatory activity as observed with EEG, and originate 

in the reticular nucleus of the thalamus [84]. During slow-wave sleep, the EEG-measured 

activity reflects slow synchronous wave activity up to 4Hz [85]. As a result of differential 

age-related activity during these processes [36], we anticipate measurable outcomes 

using our dynamic method. We will utilize the thalamus and insula as seed regions.  The 

thalamus serves as an important seed region due to its strong association with sleep 

regulation [86, 87], k-complex activity [83] and sleep spindles [84], while the insula region 

has been implicated in the origin of slow-waves during sleep [85]. These sleep oscillations 

are also altered with age [85]. Our objectives are as follows: 

 

 Relate the fMRI data to the NREM2 sleep stage. 

 Assess the age-related differences using static analysis. 

 Dynamically delineate brain states during NREM2 sleep. 

 Assess the age-related differences in NREM2 brain states and compare with the 

static results.  

 

Due to age-related differences in electrophysiological measures of sleep qualities 

(quantity and quality of k-complexes, sleep spindles, slow-wave sleep) that have been 

observed in EEG-related and other MRI studies, described above, we anticipate observing 
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differences in the fMRI analysis. We also anticipate a different connectivity pattern in 

older subjects due their difficulty entering and maintaining deeper stages of sleep [36]. 

Specifically, we hypothesize the following: 

 

Hypotheses: 

 An individual brain state will be associated with the older cohort during NREM2 

sleep.  

 The older population will display brain state heterogeneity during NREM2 sleep 

(i.e. divergent sub-cohorts across multiple brain states). 

 A brain state associated with the older population will be characterized by greater 

connectivity to the DMN during NREM2, found typically in awake subjects.  

 

This study raises important questions in regards to the interpretation of resting-state data. 

If we consider sleep an ubiquitous event in resting-state procedures, then any analysis of 

resting-state inevitably includes periods of sleep. If the qualities of sleep are consistent 

across cohorts, the impact may be limited to dampening or modulating results with no 

sleep. However, if there are cohort wide differences that may include length or quality, 

this could impact the results. Thus, we hope to better determine whether there are 

distinguishable age-related differences in sleep under fMRI. Likewise, the heterogeneity 

within a cohort, in this case our interest lies in the older cohort, may impart important 

effects on an overall analysis. This is not limited to studies in aging, as there may be strong 

differences in sleep between many healthy and clinical populations. If we determine there 

are significant age-effects, or heterogeneous effects, this would highlight the importance 

of controlling for sleep, when exploring age-related studies using resting-state 

procedures.  
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1.2.3. Study#3 – Thought Content 

In the third study our objective is to apply our analytic methods to measure the 

relationship between thought content and brain states, and its association to the young 

and old age cohorts. We will apply a static analysis as a baseline analysis, and then apply 

data-driven clustering to establish representative brain states found across all subjects. We 

hypothesize that certain brain states may reflect more or less detailed thought content, and 

seek to determine if these states differentiate by age, or subgroups within the cohorts. For 

this purpose, we will use the middle temporal gyrus and superior temporal gyrus as seed 

regions. In previous studies both the middle temporal gyrus and superior temporal gyrus 

have been implicated in remembering the past and imagining the future in both young 

and old subjects [46, 50]. In addition to mediating thoughts about the past and imagining 

the future [46, 88], compensatory activity has been observed in these regions in older 

adults, to counteract age-related memory deficits [89]. In addition, the superior temporal 

gyrus has been associated with though content variations in a previous preliminary study 

[61]. These seed regions, with their relationship to thinking about the past and imagining 

the future, are well-suited for this analysis. Our objectives are as follows: 

 

 Assess correspondence between thought content scores and static connectivity 

results. 

 Identify brain states that correlate with high or low thought content scores.  

 Explore interaction between thought content scores, connectivity, and age (using 

both static connectivity and brain states) 

 

Due to age-related differences during the elaboration of past and future thoughts, we do 

expect to find corresponding differences in the resting-state analysis. In particular, we 

anticipate that the clustering analysis will better highlight age and thought related 

differences than we would otherwise find with a static analysis alone. We would 
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additionally anticipate a heterogeneity within the older population that will be 

identifiable in the dynamic analysis. Specifically, we hypothesize the following: 

 

Hypotheses: 

 Identify connectivity differences, from the seed regions, with thought content as 

the variable of interest, in the static analysis 

 A brain state will be associated with higher or lower thought content scores.  

 An interaction between age and thought content scores in relation to connectivity 

and brain states. (Due to compensatory activity found in these regions during past 

and future thought [89], we hypothesize greater connectivity in older subjects as a 

compensatory mechanism.)   

 

We anticipate that older subjects will have lower thought content scores for both past and 

future thought, as has been found in the literature [45-47]. This is particularly relevant if 

we find a significant difference in connectivity measures across cohorts, or sub-cohorts. 

This would highlight the importance of controlling for thought content, when cohort-

related differences in content may be determining factors in connectivity. On the other 

hand, compensatory mechanisms that allow for similar content scores across cohorts, 

while otherwise hiding brain alterations are of particular interest. Although we anticipate 

an interaction between age and thought content scores, this has not been demonstrated 

in the literature using resting-state procedures. In both cases, the results may confirm the 

need to control for thought content scores within the analysis of future resting-state 

studies.  
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1.2.4. Study#4 – Dataset Comparison 

As a final study we propose an exploratory, preliminary analysis to compare brain states 

derived from our analytic method across datasets. In particular, we will compare data 

from an independent resting-state dataset to the imaging data from the sleep study in 

Study#2. We will focus again on sleep stage NREM2. During this sleep stage subjects are 

falling in a deeper sleep that is easier to differentiate than NREM1 [40]. The deeper 

NREM3 sleep stage requires more time for subjects to enter, and would be less common 

in typical short resting-state scans [39]. To address the impact population differences can 

have on the data, we match the cohorts for age and sex.  To maintain continuity with our 

earlier studies, we will focus our attention on one seed region from each of the first 

studies (PCC and MTG), respectively; and on both seed regions from our sleep study 

(thalamus and insula). The PCC seed region displays a reduction of connectivity to the 

DMN with increasing sleep depth, in particular to the anterior regions of the DMN [90]. 

The MTG region is most associated with past and future thought in both young and old 

subjects [46]. Aside from responding to unexpected and meaningful auditory events 

during sleep, the MTG has not known for specific sleep-related activity [91, 92]. We will 

use this seed region as a control, and accordingly expect to find less notable observations. 

Along with an association with sleep, the thalamus also displays alterations in activity 

related to periods of wakefulness and brief sleep [93]. Since we conjecture this is common 

during resting-state procedures, the thalamus is a relevant seed region for both sleep and 

resting-state studies. We also include the insula as a seed region, as, along with the 

thalamus, activity in this region increases during resting wakefulness with eyes closed 

[94]. This may capture periods of the resting-state scan where subjects are unable to 

maintain eyes open while fixated on the cross-hair. Since this is an exploratory analysis, 

we have selected broad seed regions from each study. Our objectives are as follows: 

 

 Assess the feasibility of comparing brain states across datasets 

 Explore correlational relationships between sleep and resting-state brain states.  
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 Evaluate the characteristics of inter-dataset brain states that show an association 

(i.e.: an association between NREM2 sleep and apparent wakefulness brain states).  

 

Since it is estimated that during resting-state procedures 10 – 30% of subjects will sleep 

in the first 3 minutes [39], we expect to find some resting-state brain states that correlate 

strongly to brain states delineated during NREM2 sleep. Likewise, due to age-related sleep 

differences we anticipate age to be a factor in correlating the brain states across the sleep 

and resting-state datasets. Specifically, we hypothesize the following: 

 

Hypotheses: 

 A brain state from the resting-state analysis will be associated with an inter-dataset 

NREM2 sleep brain state.  

 These brain state will correspond according to age.  

(i.e.: a brain state associated with older subjects in resting-state will associate to 

NREM2 sleep brain states that likewise associates more with older subjects.) 

 The associations across datasets will be lower in the MTG seed region.  

 

Despite the preliminary nature of the analysis, the implications from this study are of 

great importance. First, we are presenting a simple method of comparing results across 

datasets. This may be of immense benefit for vast research in aging, as well as other areas 

of study that incorporate resting-state. If we find a correlation across datasets of a brain 

state in resting-state with an NREM2 sleep brain state, it supports our conjecture that a 

brain-state derived from resting-state data may show characteristics of sleep. Likewise, 

this would suggest that through data-driven methods alone we may be able to delineate 

sleep influenced brain states in resting-state data. Further, this would align with previous 

research that has found sleep to be ubiquitous in resting-state research.  
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If brain states correlated across the sleep and resting-state datasets retain age associations, 

this would support our proposition that age-related heterogeneity in sleep is of 

fundamental importance when researching age with resting-state analysis. Such age-

related differences in sleep measurements may impact the outcomes of research that does 

not take this into account.  
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Chapter 2 

2 Methodology  

2.1  Datasets 

2.1.1 Enhanced Nathan Kline Institute Rockland Sample 

Subjects 

The enhanced Nathan Kline Institute Rockland (NKI-e) sample is a publicly available 

dataset that consists of multiple measures per participant, including neuroimaging data 

[95]. The data collection is ongoing and the community sample currently consists of over 

1000 participants across the lifespan [96].  For this work, we pre-processed and analysed 

the first five releases of data (n=418). Participants who reported or tested positive for 

medical, neurological or psychiatric disorders, severe head injury (one or more 

concussions), anxiety, depression and obesity (body mass index >29) were excluded 

(n=201). We then identified the participants that satisfied the age criteria for the older and 

younger cohorts, specific to each study. The ages and composition of the cohorts varied 

based on the constraints and objectives of each study.  

 

In the aging study, our objective in part was to establish a proof of concept for our analytic 

methods. To accentuate age-related changes, we selected a higher age range for the older 

cohort than the other studies. This study comprised 116 subjects (Old: 38 subjects (37% 

male), 65-85yrs, 72.6±5.97yrs; Young: 78 subjects (50% male), 18-35yrs, 23.8±4.61yrs). In 

the thought content study, only participants that completed the post-scan questionnaire 
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were included. To balance the cohort size, we included older participants as of age 56 

years. This study comprised 145 subjects (Old: 68 subjects (31% male), 56-85yrs, 

66.4±7.86yrs; Young: 77 subjects (49% male), 18-35yrs, 23.8±4.61yrs). In the cross-dataset 

study, we matched the NKI-e participants to those of the sleep dataset. For the resting-

state component, this study comprised 153 subjects (Old: 75 subjects (29% male), 50-69yrs, 

58.4±5.85yrs; Young: 78 subjects (50% male), 18-35yrs, 23.8±4.61yrs); see also Table 2.1. 

 

fMRI Acquisition: 

The fMRI resting-state data was acquired using a 3.0-Tesla scanner (Magnetom TrioTim, 

Siemens) with an echo planar imaging sequence (voxel size = 3.0 x 3.0 x 3.0 mm³; 38 

transversal slices; repetition time [TR] = 2500 ms; echo time [TE] = 30 ms; flip angle = 80°; 

field of view [FOV] = 216 mm; delay = 0 ms, TA = 5:05). The structural T1-weighted image 

was acquired with a magnetization-prepared rapid gradient echo sequence (voxel size = 

1.0 x 1.0 x 1.0 mm³; 176 sagittal slices; TR = 1900 ms; TE = 2.52 ms; flip angle = 9°; FOV = 

250 mm, TA = 4:18).  

 

The NKI-e protocol included two other multi-band resting-state sequences (TR=645ms, 

TR=1400ms), enabled through simultaneous multiple-slice acquisition techniques. For 

our studies, we selected the standard imaging sequence (TR=2.5s) to provide a 

complementary sequence for analysis and comparison across the datasets (NKI-e: 

TR=2500ms vs Sleep: TR=2460ms).    

 

Psychometric Measures: 

The NKI-e study includes a wide range of assessments and cognitive batteries [95]. This 

comprises tests for cognitive and executive functioning, short-term memory and working 

memory. Many of the tests, however, were not completed by all subjects and were 

excluded from the analysis. To determine if any characteristics measured from the 

remaining tests associated with our results, we ran Student's t-tests with Bonferroni 
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corrections. This included testing against results from the Wechsler Abbreviated Scale of 

Intelligence, the NEO Five Factor Inventory, the Pittsburgh Sleep Quality Index, along 

with physiological measures (age, sex, handedness, blood pressure, pulse, and body-

mass index).  

 

In the thought content study, a post-scan questionnaire – the New York Cognition 

Questionnaire (NYC-Q) – was utilized to measure a subject’s thought content while in 

the scanner. Previously, this measure has been used in conjunction with other analytic 

methods to identify relationships between the thought content of mind wandering and 

brain activity (fractional amplitude of low frequency fluctuations, regional homogeneity, 

and degree centrality) [53].  

 

Immediately following MRI, the NYC-Q self-report questionnaire was given to each 

participant. It consisted of 31 questions, of which 30 have been retained (one questions 

was inadvertently included and deemed redundant) [53]. The questionnaire expands on 

aspects of the Dundee Stress State Questionnaire that investigates self-generated thought 

[97] and has previously been used to identify neural processes related to thought content 

[53]. Participants responded to questions about what they were thinking and how they 

felt during the scan, and the degree to which the questions describe their internal 

experience. The questionnaire is divided into two sections. The first section explores 

questions that break down the content of thoughts the participant had while in the 

scanner (e.g.: Q#7: I thought about an interaction with somebody that took place in the past; 

Q#12: I thought about something that happened a long time ago in the past). The second part of 

the questionnaire surveys the manner in which the content is articulated in the mind of 

the individual (e.g.: Q30: Vague and non-specific) (see [53], for a complete list of all 

questions). The questionnaire is defined by 8 data-driven factors that best describe the 

self-generated thought [53]. In our study, we focused on the first section (22 questions) 

that examine thought content. From the five factors that best describe the results from 
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this section, we selected past and future thought as our factors of interest [53]. The three 

remaining factors that we did not include in this study comprised positive and negative 

thoughts, along with thoughts of close social relationships.   

2.1.2.  Sleep dataset 

Subjects 

The sleep dataset comprised thirty older and younger subjects. The participants were 

divided into two groups: an older cohort (n=14 (36% male), 52-69yrs, 59.5±5.9yrs) and a 

young cohort (n=16 (50% male), 20–30yrs, 23.3±3.3yrs); see also Table 2.1. Participants 

who reported sleep, medical, neurological or psychiatric disorders or suffered from 

extreme sleeping or waking times [98], excessive sleepiness (during the day) [99], 

consistently poor sleep quality [100], anxiety [101], depression [102] and obesity (body 

mass index >27) had been excluded. Medication that could affect the nervous system, 

working night shifts (in the previous year) and travel across more than one time-zone (in 

the previous 3 months) were likewise exclusion criteria. All participants were right-

handed, non-smokers and consumed only a moderate quantity of caffeine or alcohol. 

Preceding acquisition, all participants were tested to rule out sleep apnea, periodic leg 

movements or other relevant medical conditions.  

 

There was no significant difference between the younger and older cohorts for sleep 

quality, anxiety, depression, or body mass index. The older participants, however, went 

to bed and woke earlier, and slept less than the younger participants. Likewise, the older 

participants scored higher on measures of morning alertness. The study received ethics 

approval from the Regroupement Neuroimagerie Québec (RNQ) and all participants 

provided written informed consent. 
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Pre-acquisition 

In the week prior to scanning, participants maintained a regular bedtime and waking 

schedule that remained no more than ±30 minutes within their usual sleep and wake 

times. Participants arrived at the laboratory the day before the scanning, 12 hours after 

their waking time. Participants were instructed to avoid naps, engaging in intense 

physical activity, and beverages that contained caffeine or alcohol for that entire day. 

After arrival, the participants remained awake in dim light (<15 lux) for the next 14 hours. 

In total, the participants sustained 26 hours of sleep deprivation before entering the 

scanner (2 hours after their usual waking time). In the scanner, the participants were 

instructed to relax and allow themselves to sleep. The data was acquired simultaneously 

with EEG-fMRI. 

 

EEG Acquisition 

Scalp-surface EEG was recorded using a 64-electrode cap (BrainCap MR; Brain Products; 

referenced to FCz) while electrocardiography was recorded using 3 bipolar electrodes 

(Brain Products). Electrode-skin impedance was maintained at a level below 5 kΩ (plus 

10 kΩ built-in resistors) using an abrasive paste (Nuprep; Weaver and Company) and an 

electrode gel (Electro-gel; Electro-cap International). These steps stabilized the data 

acquisition throughout the longer than typical acquisition time. Two 32-channel 

amplifiers (BrainAmp MR plus, Brain Products) were utilized to record the EEG signals, 

while one 16-channel amplifier (BrainAmp ExG MR, Brain Products) was incorporated 

to record the ECG signals. The signal information from both the EEG and ECG was 

transmitted via fiber-optic cable to a computer outside the scanning room. The scanner 

clock was used to synchronize the EEG/ECG acquisition. The data was analog-filtered 

(0.016-250 Hz) and digitized (5 kHz sampling rate; 500 nV resolution) using a BrainVision 

Recorder 1.20 (Brain Products). The participant’s sleep was simultaneously monitored 

online with BrainVision RecView (Brain Products).  
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fMRI Acquisition 

The head was immobilized to minimize movement and the resultant artifacts. This was 

achieved using a vacuum pad in the head coil. To minimize scanner gradient artifacts 

that could impact EEG measures, the participant’s axial position was shifted 40 mm 

(relative to the standard iso-center position) in the direction of the feet [103]. The fMRI 

data was acquired using a 3.0-Tesla scanner (Magnetom Trio, Siemens) with an echo 

planar imaging sequence (voxel size = 3.4 x 3.4 x 3.0 mm³; 32 transversal slices; repetition 

time [TR] = 2460 ms; echo time [TE] = 40 ms; flip angle = 90°; field of view [FOV] = 220 

mm; delay = 0 ms). The structural T1-weighted image was acquired with a 

magnetization-prepared rapid gradient echo sequence (voxel size = 1.0 x 1.0 x 1.0 mm³; 

176 sagittal slices; TR = 2300 ms; TE = 2.91 ms; flip angle = 9°; FOV = 256 mm) at a 

previous visit. The EEG-fMRI acquisition time varied from subject to subject, but did not 

exceed 100 minutes  

2.2  Pre-processing 

The EEG data was analyzed using BrainVision Analyzer (Brain Products) [104] and a 

commercial software (Harmonie, Stellate System). The fMRI data was processed using 

the NeuroImaging Analysis Kit version 0.12.18 [105], (NIAK release: [3]), under CentOS 

with Octave (http://gnu.octave.org) version 3.6.1 and the Minc toolkit [106] version 

0.3.18. The analyses were implemented on a network supercomputer (Guillimin) [107], 

using the pipeline system for Octave and Matlab (PSOM 1.0) [105].  

2.2.1 EEG data 

In order to remove scanner gradient artifacts from the EEG recordings, the adaptive 

subtraction function from BrainVision Analyzer [104] was applied. The residual gradient 

artifacts were removed with independent component analysis (ICA). An algorithm from 
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the FAST toolbox based on constrained independent component analysis (cICA) [108], 

was incorporated for ballistocardiographic artifact correction. An automatic algorithm 

was used to detect movement artifacts [109]. Finally, visual inspection identified any 

other artifacts. The EEG data was downsampled to 250Hz. It was then low-pass filtered 

using an infinite impulse response filter (-48dB at 0.3-50Hz), and then re-referenced from 

FCz to linked mastoids (i.e.: TP9 and TP10). An experienced technician visually scored 

the sleep stages in 20-second epochs. Standard criteria [110] and commercial software 

(Harmonie, Stellate System) were applied.  

 

In addition to sleep staging, the density of slow-wave sleep (SWS) was assessed during 

NREM2 and NREM3 sleep. The SWS was determined by an automatic algorithm on 

periods of uninterrupted NREM2 and NREM3 sleep. This detection process took place 

through left parasagittal derivations: Fp1, F3, C3, P3, and O1. A bandpass filter between 

0.3 and 4.0 Hz using a linear phase Finite Impulse Response filter (–3 dB at 0.3 and 4.0 

Hz) was applied to the data, as previously published [111-113]. Periods of artifact-free 

NREM sleep were utilized to detect the SWS. The criteria for detection comprised: a) 

negative peak <–40 µV; b) peak-to-peak amplitude >75 µV; c) duration of negative 

deflection >125 ms and <1500 ms; and d) duration of positive deflection <1000 ms. The 

density of SWS was calculated by the number of SWS per minute of either NREM2 or 

NREM3 sleep. 

2.2.2 fMRI data 

The fMRI datasets underwent correction for slice timing and rigid-body motion. The 

rigid-body motion was estimated for each time frame of the functional run, as well as 

between functional data and the T1 scan for each subject [114]. The T1 scan was non-

linearly co-registered to the Montreal Neurological Institute ICBM152 stereotaxic 

symmetric template [115] using the CIVET pipeline [116]. The rigid-body, fMRI-to-T1 and 

T1-to-stereotaxic transformations were combined to resample the fMRI in MNI space at 
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3 mm isotropic resolution. To minimize motion artifacts, volumes showing a frame 

displacement (FD) of greater than 0.5-mm were censored, along with adjacent volumes 

[117]. Nuisance covariates were regressed out from fMRI time series. This comprised 

slow time drifts (basis of discrete cosines with a 0.01 Hz high-pass filter cut-off), average 

signals in conservative masks of the white matter and the lateral ventricles, along with 

the first principal components (accounting for 95% variance) of the six rigid-body motion 

parameters and their squares [118]. Lastly, the fMRI volumes were spatially smoothed 

with a 6-mm isotropic Gaussian kernel. A detailed description of the pipeline can be 

found on the NIAK website [119]. 

 

There was a statistical difference between the number of volumes by subject in each 

cohort subsequent to the censoring (scrubbing) process in the NKI-e dataset (Table 2.1) 

however, there was no significant difference between the number of windows between 

cohorts (see Dynamic Connectivity). In the sleep dataset neither the number of volumes 

(Table 2.1), nor the number of windows by subject (see Table 2.2) were significantly 

different between cohorts. In both datasets, there was significantly more motion in the 

older cohorts across the entire scan. In the sleep dataset, this observation remained 

independent of sleep stage. Likewise, following the removal (censoring) of volumes with 

high degrees of motion, older subjects still moved significantly more than the younger 

subjects in both datasets (Table 2.1). 
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Table 2.1. Demographic information for all studies after censoring. (sd = standard deviation, 
FD=frame displacement in mm after censoring) 

 

Study Cohort N  
N 

Cohort 
N Male 

(%) 
Age 

Range 
Mean 

Age (sd) 
FD (sd) 

Volumes 
(sd) 

Study#1: 
Aging 
(NKI-e) 

Older 

116 

38 
14 

(37%) 
65 - 85 72.6 (6.0) 

0.208 
(0.044) 

100.53 
(15.45) 

Young 78 
39 

(50%) 
18 - 35 23.8 (4.6) 

0.168 
(0.051) 

106.90 
(14.64) 

t-test      p<0.001 p<0.05 

Study#2 
& 4: Sleep 
/ Cross-
Dataset 
(NREM2) 

Older 

30 

14 5 (36%) 52 - 69 59.5 (5.9) 
0.23 

(0.05) 
1449 
(518) 

Young 16 8 (50%) 20 - 30 23.3 (3.3) 
0.18 

(0.05) 
1583 
(448) 

t-test      p<0.001 p>0.4 

Study#3: 
Thought 
Content 
(NKI-e) 

Older 

145 

68 
21 

(31%) 
56 - 85 66.4 (7.9) 

0.207 
(0.051) 

100.38 
(16.43) 

Young 77 
38 

(49%) 
18 - 35 23.8 (4.6) 

0.167 
(0.050) 

107.17 
(14.56) 

t-test      p<0.001 p<0.01 

Study#4: 
Cross-
Dataset 
(NKI-e) 

Older 

153 

75 
22 

(29%) 
50 - 69 58.4 (5.9) 

0.207 
(0.051) 

100.65 
(16.89) 

Young 78 
39 

(50%) 
18 - 35 23.8 (4.6) 

0.168 
(0.051) 

106.90 
(14.64) 

t-test      p<0.001 p<0.05 
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2.3  Analysis 

Brain Parcellation Atlas 

To analyze the functional data, we utilized the MIST brain atlas derived from the publicly 

available Cambridge sample, part of the 1000 Functional Connectome Project [120] 

(Figure 2.1). The brain atlas was generated from the resting-state fMRI data of 198 young 

healthy subjects (75M, 18-30yrs) using a bootstrap analysis of stable clusters (BASC, 

[121]). Through BASC, the Cambridge network atlas provides a functionally derived 

parcellation, which can improve upon anatomically delineated atlases [122]. 

 

 

Figure 2.1. Axial view of the MIST-36 sample brain atlas showing each region of interest. 

 

We chose specific seed regions for each aspect of our investigation. We described the 

basis for these selections in detail in the Introduction (see Research Studies). In our study 

investigating age-related differences in brain connectivity, the seed regions of interest 

comprised the posterior cingulate cortex (PCC, region#4 [120]) and the medial prefrontal 

cortex (mPFC, region#18 [120]; see Figure 3.1). In our study investigating age-related 

differences in functional brain connectivity during NREM2 sleep, we considered the 

thalamus-caudate seed region (TC, #8) and the insula (INS, #28; see Figure 3.12). In the 

study we examined age-related associations of thought content and brain connectivity, 

we included the middle temporal gyrus (MTG, region#31, [120]) and the superior 

temporal gyrus (STG, region#25, [120]) as seed regions (see Figure 3.25). Finally, for the 
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cross-dataset comparison, we included both seed regions from the sleep study (TC and 

INS), and one region each from the other studies (PCC and MTG).  

2.3.1 Static Connectivity  

Connectome-wide association and network analysis 

For all participants, we calculated the connectivity between networks (MIST-36 brain 

atlas [120]) by first averaging the time series across voxels in each network. We calculated 

the Pearson’s correlation between the average time series for each network pair, and then 

a Fisher transform was applied on the coefficient to reduce its variance and make its 

distribution across individuals more normal [123]. The within-network connectivity was 

calculated by taking the average of the Fisher-transformed pairwise correlations between 

all voxel time series inside the network.  Thus, with the MIST-36 brain atlas, individual 

subject-level connectomes comprised 36 x 36 symmetrical matrices, with 36x35/2=630 

distinct inter-network connectivity measures, and 36 distinct intra-network connectivity 

measures.  

 

We evaluated network connectivity with the seed regions (networks selected for this 

study) for significant age-cohort differences. To provide a stringent threshold for 

statistical significance, the p-values were corrected for multiple comparisons at the level 

of the full connectome, i.e. 666 tests for each distinct connectivity measure.  

 

Statistics 

For each inter- and intra-network connectivity measure, a group-level general linear 

model (GLM) was used to assess age associations. The age cohort was the variable of 

interest, while sex was considered a confounding covariate in the model. Movement, 

defined by the average residual frame displacement (subsequent to censoring) was not 

included in this model. There is a strong association between age and movement [124], 
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which was also present in our samples (see Table 2.1). Thus, including movement as a 

covariate may have undermined detection of age-related variation.  

 

For the GLM analysis, we utilized the GLM-connectome pipeline available in NIAK 

package11 [125]. The parameters of the model were estimated through minimum least-

squares. A t-test with associated p-value was derived under a Gaussian, independent and 

identically distributed assumption on the residuals. A Benjamini-Hochberg false 

discovery rate (FDR) correction for multiple comparisons [126] (q< 0.05) tested the 

significance of the number of discoveries against the global null hypothesis of no 

association (permutation test with family wise error, p˂0.05; [125]). The connectome-wide 

association analysis provided an overview of age-related differences in static 

connectivity. 

 

2.3.2 Dynamic Connectivity  

2.3.2.1 Sliding windows 

We studied the temporal variability of functional connectivity with a sliding time 

window approach [66]. The window size was set to 40 volumes (~100seconds). The 

minimum window length was calculated as the multiplicative inverse (reciprocal) of the 

high-pass filter cut-off applied during preprocessing (i.e. 1/0.01 sec). We chose this value 

to limit spurious fluctuations and autocorrelation that may occur in window lengths that 

fall below this cut-off frequency [69]. The window was advanced 4 volumes for every 

new measure (90% overlap between consecutive connectivity measures). This step size 

was selected to match half the length of the epoch used to determine sleep stages in the 

sleep analysis (20-second epochs). Since we planned for eventually running analyses 

across datasets, we also applied this step size for the NKI-e analyses. For windows that 

comprised volumes censored due to excessive motion, we discarded those with less than 
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20 uncensored volumes (i.e.: windows were discarded if <50sec of measures). In previous 

published reports, a window length of 45 seconds is common [66, 70, 78]. The maximum 

number of windows per subject in the NKI-enhanced dataset was 21, with a minimum of 

5 for the few subjects that had time series with extensive censoring (20.26  2.49). There 

was no significant difference between cohorts for the number of windows in all studies 

(All, p>0.3, T-test).  

 

In the sleep dataset, the duration of each participant’s acquisition was variable. As a 

result, the number of windows incorporated in the analysis varied from subject to subject. 

The total number of windows that comprised exclusively one sleep stage are listed in 

Table 2.2. Since only the NREM2 sleep stage provided both a sufficient and balanced 

numbers of windows between the younger and older cohorts, we performed all analyses 

exclusively on the NREM2 sleep stage. 

 

 Awake NREM1 NREM2 NREM3 

 

Older 236 14 1900 58 

Young 99 19 1893 1622 

Table 2.2. Number of 100s time windows for each sleep stage, by cohort. Only time windows that 
contain volumes exclusively from the indicated sleep stage, are counted. 

 

For each time window, we calculated the Pearson correlation coefficient voxel-wise 

between the average time series of the seed region and every other voxel in the grey 

matter mask, and Fisher transformed the results. This provided a representative 

connectivity map for each time window, with >50,000 measures between the seed region 

and all voxels across the brain. We repeated this computation for all windows across the 

time-series for each participant. The connectivity maps provide a measure of temporal 
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variability in every participant and across the dataset. We calculated this for each seed 

region specific to the dataset and analysis.  

2.3.2.2 Clustering 

We generated pairwise spatial similarity scores (Pearson’s correlation) across all 

connectivity maps in the dataset. The resultant matrix represented the spatial similarity 

of each connectivity map to one another, corresponding to all the time points of the 

windows across all subjects. This defined a (Wtot x Wtot) square similarity matrix, where 

(Wtot = total time windows) and which varied in size in each study. 

 

Using a hierarchical clustering procedure with Ward’s criterion (as implemented in 

NIAK; [3]) the maps were organized into a series of nested homogeneous subgroups. We 

cut the resultant branching of the hierarchy to generate a parcellation of maps 

representing four clusters. Our rationale for selecting four clusters was based on the 

relatively short duration of the time-series in the NKI dataset (5:05 minutes, providing a 

maximum of 21 sliding windows per subject), as well as our exclusive focus on NREM2 

in the sleep study. We anticipated variations due to brain activity associated with the 

NREM2 sleep stage, however, we did not expect a large number of brain states. For more 

detail, see also the Discussion (section: 4.7.   Limitations). 

 

Partitioning the hierarchically clustered connectivity maps into brain states involved 

assigning a State ordinal to each map. Thus, a prototypical connectivity map 

representative of each brain state was calculated the mean of all maps assigned to the 

given State. The nomenclature we use in this text to identify the brain states is prefixed by 

the acronym for the seed region, followed by the cluster (or state) number (i.e.: PCC#4 

refers to the 4th brain state derived from the posterior cingulate cortex seed region). 
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For each connectivity map – corresponding to the time windows across all subjects – we 

computed the spatial Pearson correlation coefficient with each brain state. We used this 

matrix, of size (Wtot) x (number of brain states), as a weighted measure to statistically test 

the variability of the brain states over time, and across subjects and cohorts. 

 

To better visualize the brain states and how they differ from the average across all subjects, 

we calculated a z-map for each State. We displayed the z-maps in each results section for 

both brain states and average cohort maps. By construction, z-maps for two cohorts are 

symmetrical with one another in relation to the average connectivity across all subjects.  

2.3.3 Brain state transitions 

The probability of transitioning between brain states, or remaining in the same State, was 

measured for each time window in all subjects. We measured both the likelihood of a 

transition in general, as well as to between specific states (e.g. PCC#1  PCC#1, PCC#1 

 PCC#2 … PCC#4  PCC#3, PCC#4  PCC#4). The average transition probability 

between given states was evaluated across all subjects. This analysis was performed on 

each cohort (young and old) independently. We measured significance of observed 

differences using a z-test on two population proportions [127]. In the two proportion z-

test, we test the null hypothesis that the proportion of older subjects that transition is 

equal to the transition probability of the younger cohort, against the alternative 

hypothesis that they are not equal.  

 

In addition, we measured the probability of simply switching states. The cohorts were 

examined independently and we again measured the significance of any cohort 

differences with a two proportion z-test, as described above [127]. 

 

Finally, in order to determine whether mean connectivity higher than average would 

increase the likelihood of remaining in (or transitioning from) a given brain state, we 
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assessed the relationship between connectivity and transition probabilities. For every 

time window, we assessed whether there was a change of state. We averaged the 

connectivity across subjects and cohorts that remained in a brain state, as well as for those 

that transitioned to a different brain state. We ran a GLM on these values using age cohort 

as the variable of interest, while controlling for sex as a covariate.  

2.3.4 Statistics 

To assess whether a brain state was significantly associated by age cohort we applied two 

main methods of analysis: permutation testing and a general linear model. 

 

2.3.4.1 Permutation Tests: 

For each of the brain states, we performed a permutation test to assess whether the 

proportion of older and younger subjects associated with the given brain state was 

significantly different than what we would expect by chance. 

 

In this analysis, we test the null hypothesis that the proportion of time spent by subjects 

from the older cohort in a given brain state is equal to that of the younger cohort. We test 

this against the alternative hypothesis that these proportions are not equal. We permuted 

the cohort assignments randomly across subjects, n=100,000. This provided us with a p-

value for the observed value in each brain state representing the proportion of time spent 

in the given brain state. We performed this test with regards to age cohort in each study, 

as well as with high and low thought content groupings in the Thought Content study. 
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2.3.4.2 General Linear Modelling 

Weight scores 

A general linear model [125] was applied to the weight scores (the spatial Pearson 

correlation coefficient of each time window’s connectivity map to each brain state). The 

age cohort was the variable of interest, with sex included as a covariate.  

 

As previously, the parameters of the model were estimated through minimum least-

squares, and a t-test with an associated p-value that was derived under a Gaussian, 

independent and identically distributed assumption on the residuals. A Benjamini-

Hochberg false discovery rate (FDR) correction for multiple comparisons on each of the 

states [126] (q< 0.05) tested the significance of the number of discoveries against the global 

null hypothesis of no association (permutation test with family wise error, p˂0.05, [125]).  

 

2.3.4.3.    Z-Test for Two Population Proportions 

In order to assess the significance of measures that involved proportions, or transition 

probabilities, a two proportion z-test was applied [127]. This determined the significance 

of the difference in proportions measured. Significance was applied at p<0.05. 

2.4  Study–specific Methods 

2.4.1 Aging  

In order to determine the impact brain states significantly associated with the older cohort 

may have on connectivity, we performed a post-hoc analysis. We determined the 

association of each subject to given brain states by their weight scores. We delineated high 

and low association by the median value of the weight scores to the given brain state. To 

test the relationship of high or low association to a brain state with connectivity, we 
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repeated the static analysis twice, excluding either the high or low association groups for 

each run alternately.  

2.4.2 Sleep  

The sleep recordings were acquired in the morning 2 hours after the usual waking time 

and a total of 26 hours of sleep deprivation. Although sleeping in the scanner is well 

documented [39], it can be difficult to enter deeper stages of sleep, in particular for older 

subjects [111]. Thus, sleep deprivation helped participants falling asleep and augmented 

their sleep duration in the scanner.  

 

After excluding windows with excessive movement (censoring of more than 20 volumes), 

the windows were categorized by sleep stage. Each volume was assigned a sleep stage 

label consisting of Awake, NREM1, NREM2 or NREM3. A window was defined 

exclusively by one of these sleep stages, or a mixture thereof. Only windows that 

comprised volumes scored exclusively as NREM2 sleep were utilized. This selection was 

governed by the equal distribution of windows between the older and younger subjects, 

and the time spent in NREM2, which was greater than any other sleep stage (see Table 

2.2).  

 

In addition, we explored the relationship of slow-wave sleep (SWS) density to the brain 

states for each network in the sleep dataset. We utilized linear regression for this purpose. 

We associated the proportion of time each subject spent in the given brain state, to the 

density of SWS during NREM2. 

  

The transition calculations described in the general methods section took into account 

transitions in and out of each state, as observed in each dataset. In the sleep dataset, the 

transitions also included those that went out of the sleep stage studied (NREM2) to other 

sleep stages and mixed sleep stages. Thus, in the transition analysis for the sleep dataset 
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we addressed the probability of switching from a state to another state, of staying in the 

same state, as well as transitioning into or out of NREM2 sleep completely. We quantified 

both specific brain state and sleep stage transitions, as well as the overall total transitions 

to other brain states or out of NREM2 sleep, in general. 

 

As with the aging analysis (see above), we performed a post-hoc analysis to measure the 

impact sub-cohorts of subjects may have on the analysis. In this instance, we repeated the 

static analysis while excluding subjects from one of the older cohorts, and again while 

removing an equal number of subjects that most closely resembled these subjects – by 

age, sex and movement in the scanner.  

2.4.3 Thought Content 

To measure thought content, the NYC-Q – a self-report questionnaire – was administered 

following the MRI sequence [53]. To quantify the results, we multiplied the individual 

response scores to each question by a weighting-matrix that was computed to measure 

the relevance of each question to each of the factors that defined the thought content [53]. 

In this study, the factors of interest were past and future thought content. Thus, for each 

question the corresponding relevance (weight) to past and future thought was multiplied 

by the respondent’s numerical assessment. The sum of these weighted-scores provided a 

total score for past and future thought content by subject.  

 

In the static connectivity general linear model analysis, we included these content scores 

(past, and future) as variables of interest, with sex as a covariate to test for the relationship 

between observed connectivity and thought content scores. Further, we tested the 

interaction between thought content scores and age as variables of interest, with sex as a 

covariate. We used these models to test for an interaction between thought content and 

age on the functional connectivity of the networks.  
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For the dynamic analysis, a general linear model was likewise applied with the content 

scores as the variable of interest, along with the interaction between age and thought 

content, with sex as a covariate. We explored the effect of these variables on the mean-

weighted scores by subject (i.e. the mean of the weighted scores of each window specific 

to the subject). For each subject, there were four weighted scores, each corresponding to 

one of the State maps.  

 

To better identify the relationship between thought content and age, we performed 

additional post-hoc analysis. We delineated each cohort into sub-cohorts with high or 

low thought content scores, in both past and future measures. We defined the high or low 

classification by scoring above or below the median scores across the sample and by 

cohort, respectively. We determined the time spent in each brain state, by the high and 

low content score groups across the sample and by cohorts. As described previously, we 

assessed the significance of this distribution using permutations tests (q<0.05, FDR 

corrected). We ran the tests across the sample and by cohort. In addition to testing brain 

state transitions by age cohort, we also performed the tests by high and low thought 

content sub-groupings, with respect to the entire sample and age cohort. 

2.4.4 Cross-dataset Analysis 

To provide an overview of the relationship between brain states across datasets, we 

calculated the pairwise Pearson correlation coefficient for all brain state maps and group 

average maps across and within two datasets. This comprised the NKI-e resting-state 

dataset, with awake subjects, and the sleep dataset of subjects in NREM2 sleep.  
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Chapter 3 

3 Results 

3.1.  Aging 

3.1.1.  Introduction 

In this study our objective is to analyze resting-state data of old and young subjects, 

largely as a proof of concept to our methods. We apply both a static and dynamic analysis. 

We expect to replicate a reduction in connectivity between the posterior and anterior 

regions of the brain (PCC and mPFC), which has reliably been observed in the literature 

[1]. To recap, our objectives are as follows:  

 

 Compare and analyze resting-state data of young and old subjects. 

 Assess the outcomes using static analysis as a benchmark. 

 Apply dynamic analysis methods to delineate brain states and compare with the 

static results. 

 

We expect the dynamic analysis to be consistent with common static analysis results. 

Likewise, since the dynamic method involves pooling of all the data indiscriminate of age 

group, we anticipate we will identify heterogeneity in the older cohort. This result would 

demonstrate the importance of including a dynamic analysis in resting-state studies. To 

recap, our hypotheses are as follows: 
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Hypotheses: 

 Individual brain states will associate with young and old subjects, respectively. 

 A brain state that typifies DMN connectivity found in the literature [21] will be 

identified. 

 A brain state will associate with only a subset of the older population, 

differentiating it from old subjects not associated with the state. 

 This brain state will be characterized by the reduced posterior-anterior connectivity 

described in the literature [1]. 

 

We analyzed the standard acquisition resting-state data from the NKI-e dataset using two 

different ROIs from the Cambridge-36 functional network atlas [120], representative of 

anterior and posterior regions of the default-mode network. These seeds, selected as 

described above to replicate past results, comprised the posterior cingulate cortex (PCC, 

region#4) and the medial prefrontal cortex (mPFC, region#18) (Figure 3.1).  

 

 

Figure 3.1. MIST-36 regions of interest. A) The posterior cingulate cortex seed (region of interest 
#4). B) The medial prefrontal cortex seed (region of interest #18). 

 

We analyzed 116 subjects (Old: 38 subjects (37% male), 65-85yrs, 72.6±5.97yrs; Young: 78 

subjects (50% male), 18-35yrs, 23.8±4.61yrs) from the NKI-e dataset. 
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3.1.2.  Results 

3.1.2.1.  Static Connectivity 

We applied a general linear model to assess the significance of age to connectivity 

variations from the two seed regions (Figure 3.2). The age cohort was the variable of 

interest and sex was used as a covariate. From the PCC seed region, we found a significant 

(FDR, q<0.05) reduction in connectivity to the superior temporal pole, the superior 

temporal gyrus, medial orbitofrontal cortex, the medial prefrontal cortex, the anterior 

cingulate, the hippocampal complex and the fusiform gyrus in the older cohort, as 

compared to the young (Figure 3.2.A. Top panel).  

 

 

Figure 3.2. Age-related changes in connectivity between (A) posterior cingulate cortex seed and 
(B) medial prefrontal cortex and the entire brain, during resting-state. The general linear model 
was run on the MIST-36 network atlas comparing network connectivity with the age cohort as 
the variable of interest, while controlling for sex as a covariate. (Upper panels) Significant 
differences between cohorts (FDR, q<0.05). (Bottom panels) The map of the t-statistic. 

 

From the mPFC seed region, we observed a significant reduction in connectivity to the 

frontal and parietal lobes, including to the posterior cingulate cortex, as well as to the 

superior temporal pole, and the superior temporal gyrus, in older, as compared to 

younger subjects (q<0.05, Figure 3.2.B. Top panel). The t-maps (bottom panels) highlight 

areas that showed increases and decreases in connectivity albeit not all significant under 

q<0.05.  
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3.1.2.2.  Dynamic Connectivity 

To examine the connectivity from the seed regions using a dynamic perspective, we first 

computed the mean connectivity of our ROIs with all other regions across all windows, 

to determine the voxel-wise connectivity of each ROI with the rest of the brain (Figure 

3.3. Top panel). The same procedure was applied to each age cohort separately. We then 

calculated the corresponding z-maps for each cohort (Figure 3.3. Middle and bottom panels). 

With the PCC seed, the older cohort showed a reduced connectivity to anterior regions 

of the brain, namely in the medial prefrontal cortex, anterior cingulate and the orbital 

frontal cortex; along with diminished connectivity to the posterior regions themselves, 

including within the PCC (i.e.: seed region average in a voxel-wise comparison); and 

likewise the superior temporal gyrus, the middle temporal gyrus and the hippocampal 

complex, as compared to the average connectivity across all subjects. The younger cohort 

showed the opposite connectivity differences. 

 

 

Figure 3.3. Voxel-wise connectivity from the (A) posterior cingulate cortex seed and medial 
prefrontal cortex seed during resting-state. The overall connectivity (top panels) is the mean 
connectivity of all windows across all subjects. The Old cohort (middle panels) section represents 
the Z-map of the connectivity in the older cohort relative to the mean connectivity across all 
subjects. The Young cohort (bottom panels) section represents the Z-map of the connectivity in 
the younger cohort relative to the mean connectivity across all subjects. 
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In the mPFC seed the diminished connectivity seen in older subjects, as compared to the 

average connectivity across all subjects, extended beyond the typical anterior and 

posterior regions to most regions throughout the brain. Regions that showed increased 

connectivity included the orbital section of the superior frontal gyrus, opercular regions 

of the inferior frontal gyrus, and some cerebellar regions.   

 

To identify brain states to which the subjects converged, we performed a hierarchical 

clustering procedure (Ward’s criterion) on the correlation between each window map 

with all the other window maps (Figure 3.4. Left panels). This procedure assigned an 

associated cluster or state (n=4) to each given window map (Figure 3.4. Right panels).  
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Figure 3.4. Hierarchical clustering of the correlation of each window map to all other window 
maps across all subjects. Each window map represents the connectivity between the (A) posterior 
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cingulate cortex (#4) seed to the entire brain and (B) medial prefrontal cortex (#18) to the entire 
brain. (Left panels) The similarity matrix ordered with hierarchical clustering of the correlation 
of all window maps to one another under Ward’s criteria. The dendogram is shown above the 
similarity matrix. (Right panels) The clusters defined by the selection of four States. The numbers 
listed (i.e.: S#3, S#2, etc.) refer to the State numbers referenced in the text.  

 

After clustering, the window maps associated with each state were averaged to provide 

mean brain state maps. To reiterate, in this text we use the acronym for the seed region, 

followed by the cluster (or state) number, to identify the brain states (i.e.: PCC#4 refers to 

the 4th mean brain state derived from the PCC seed region). To visualize the difference of 

each map with the average connectivity map across all subjects and windows, a z-map 

was calculated from the brain state maps (Figure 3.5). In the brain state PCC#3 (Figure 

3.5.A.), we found less correlation to the default mode network, while we observed greater 

correlation to other regions, as compared to the average map. In contrast, the opposite 

correlation map was observed in PCC#4, where there was increased connectivity to the 

DMN and diminished connectivity to other regions, as compared to the average map 

across all subjects. In PCC#1, we observed a similar pattern of connectivity as with 

PCC#3. In PCC#1, we observed low connectivity to the medial prefrontal cortex region, 

and high connectivity to the cerebellar areas and the thalamus caudate region, as 

compared to the average map. In PCC#2, we observed a moderate reduction of 

connectivity to the PCC region itself, as well as to the occipital lobe and cerebellum, while 

there was a mild increase in connectivity to most other regions, as compared to the 

average connectivity across all subjects.  
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Figure 3.5. Z-maps of each brain state relative to the average voxel-wise connectivity between (A) 
the posterior cingulate cortex seed and the entire brain (B) the medial prefrontal cortex seed and 
the entire brain. State-wise connectivity is calculated as the average of the voxel-wise connectivity 
within all windows that correlate most with the given brain state of interest.  

 

From the mPFC seed region (Figure 3.5.B.), in the brain state mPFC#3 we found an 

increase in connectivity to the DMN and a reduced connectivity to other regions, as 

compared to the average map across all subjects. This resembled our observations in 

PCC#4, and best describes the anticipated connectivity patterns observed from DMN 

seed regions during resting-state acquisition. In mPFC#1 we observed reduced 

connectivity to regions of the DMN, and increases in connectivity to other brain areas; 

however, the reduction in connectivity to the DMN was less pronounced to the mPFC 

region itself. The connectivity map for mPFC#1 bore a resemblance to a pattern of 

connectivity observed in PCC#3. In mPFC#2, we observed an increase in connectivity 

throughout the brain, excluding the mPFC region itself, as compared to the average 

connectivity map across all subjects. This mPFC brain state shows little resemblance to 

any brain states from the PCC. In mPFC#4 there is an extensive reduction in connectivity 

to most regions, except in areas of the occipital lobe, the cuneus, and the middle temporal 

gyrus.  
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The brain state maps provide insight into how the connectivity varies from the given seed 

region to the rest of the brain over the dataset, but does not provide information about 

the distribution of time spent in the brain state, by subject or cohort. In order to determine 

how the window maps were distributed across subjects, cohorts and time-series for each 

state, we differentiated the information in the following two figures. In Figure 3.6, the 

windows across subjects for each brain state are represented both as a bar graph and a 

boxplot. In Figure 3.7, the distribution of windows by cohort and brain state are shown.  
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Figure 3.6. Distribution of window maps by brain state and cohort. The upper panels (A & B) 
represent the posterior cingulate cortex seed and the lower panels (C & D) the medial prefrontal 
cortex seed. In (A) & (C) the number of window maps that are most correlated to the given brain 
state by subject. The dashed line demarcates the older and younger cohorts, with the older cohort 
to the left of the dashed line. In (B) & (D) boxplots show the distribution of the number of 
windows for each subject associated with the given brain state, by cohort. Permutation testing on 
the proportion of windows distributed across subjects and cohorts (n=100,000) determined the 
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brain states that had a significant tendency to associate preferentially to either older or younger 
subjects (Posterior cingulate cortex: PCC#1 & PCC#4: p<0.01; Medial prefrontal cortex: mPFC#1: 
p<0.01, mPFC #4: p<0.001). 

 

We ran permutation tests to determine the significance (p<0.05, n=100,000) of the age-

related differences in state composition we observed. For the PCC seed region, the 

association of the subject windows to the brain states PCC#1 and PCC#4 were 

significantly different between the old and young cohorts (both, p<0.01). The brain state 

PCC#1 was comprised largely by older subjects, while PCC#4 was associated 

predominantly with younger subjects (Figure 3.7.A). From the mPFC seed region, there 

was a significant association by age cohort of subject windows to mPFC#1 and mPFC#4 

(p<0.01 and p<0.001, respectively). The mPFC#1 brain state was comprised primarily of 

younger subjects, while mPFC#4 was largely associated with the older subjects (Figure 

3.7.B). These results show that differences in the connectivity profiles of certain brain states 

are sufficient to be distinguished significantly by age cohort.  

 

 

Figure 3.7. Proportional distribution of windows by brain state for (A) the posterior cingulate 
cortex seed and (B) the medial prefrontal cortex seed. The proportion of time spent in each 
window by cohort (this is equivalent to the probability of spending time in the given state, by 
cohort). The significance of the results is based on permutation testing the proportion of windows 
distributed across subjects and cohorts (n=100,000; * p<0.05, ** p<0.01, *** p<0.001).  
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Each time window was assigned to a given brain state following the clustering procedure. 

Despite this a given window may maintain similar, albeit slightly less, correlation to other 

brain states as to the assigned brain state. In order to better understand the relationship 

between the window map and its association to the mean state maps, we computed the 

correlation between the window map and each of the brain state maps. This provided a 

weight, measuring the strength of association to each of the brain states from each window 

map.  

 

The strength of the weight scores varied over time, yet revealed consistently greater 

scores for one brain state over another in most subjects. The weight scores obtained from 

PCC and mPFC, are displayed across all windows and brain states, for each cohort in 

Figure 3.8 (Left panels). The distribution of weight scores by brain state and cohort is 

displayed on the right panels. 

 

We ran a general linear model (GLM) on the mean weight values computed from each 

subject for each brain state. The variable of interest was age cohort, while sex was 

controlled for as a covariate. In the PCC seed region, weight values were similar between 

age cohorts for all brain states, however we observed a trend identifying age-related 

differences in PCC#3 and PCC#4 (p<0.1). For the mPFC seed region, we found a 

significant difference between weight values by age cohort in mPFC#1 and mPFC#2 

(p<0.01 and p<0.001, respectively), but no difference in the other brain states. In both seed 

regions, we found the brain states that were significantly associated with the older, but 

not the younger, cohort did not differentiate significantly when comparing weight scores. 

This may be a result of the different sample sizes of young and old subjects in this 

analysis.  
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Figure 3.8. Correlation of each brain state across windows and cohorts  (i.e.: weight) for both (A) 
the posterior cingulate cortex seed and (B) the medial prefrontal cortex seed. The left panels show 
a visual representation of each state (columns) and the correlation to all windows (rows), by 
cohort. This is ordered by State, with the bright green line demarcating areas where the given 
State shows the greatest correlation to the respective windows as compared to the other States. 
The right panels show boxplots of the distribution of the weights for each State across cohorts. 
We analyzed the weight scores using a general linear model with the age cohort as the variable 
of interest, and sex as a confounding factor, where (*) q<0.1, * q<0.05, ** q<0.01, *** q<0.001.  

 

The relationship (correlation) of each brain state map to one another is listed in Figure 3.9. 

The mean of the correlations was lower for the mPFC seed region than the PCC seed 

region (0.675 vs 0.743), but not significant (p=0.27).  

 

 

 

Figure 3.9. The correlation of each of the brain states with one another.  

 

We assessed the relevance the association of brain states to time windows, across subject 

and cohorts, may have on our original static GLM analysis with age as the variable of 

interest. We identified mPFC#4 as the brain state that most significantly differentiated 

(p<0.001) between the old and young subjects (Figure 3.7.B). We then removed half of the 

older subjects that were most associated with the mPFC#4 brain state (i.e. weight value 
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greater than the median) and repeated the static analysis. We hypothesized these subjects 

would explain more of the variance we found between age groups from the initial static 

analysis, than those whose weight values were less than the median.  

 

 

Figure 3.10. Post-hoc GLM analysis of age-related changes in connectivity when excluding sub-
groups of old subjects that are highly or poorly associated with mPFC#4. Connectivity is 
measured between the seed-region (A) posterior cingulate cortex (#4) and (B) medial prefrontal 
cortex (#18) and the entire brain, during resting-state. The general linear model is run on the 
MIST-36 network atlas comparing network connectivity with the age cohort as the variable of 
interest, while controlling for sex as a covariate. (Upper panels) The original GLM analysis 
included all subjects. (Middle panels) The GLM analysis excluding the sub-group of older 
subjects that has a greater association to mPFC#4 than the median value. (Bottom panels) The 
GLM analysis excluding the sub-group of older subjects that has less association to mPFC#4 than 
the median value. Significant differences between cohorts (FDR, q<0.05). 

 

Following the removal of the older subjects most associated with the mPFC#4 brain state, 

we noted fewer significant differences in connectivity between the old and young subjects 

in the GLM analysis (Figure 3.10, Middle row). From the PCC seed region there were no 

longer any significant age-related differences in connectivity (q<0.05; Figure 3.10.A, 

middle row). Likewise, from the mPFC seed region only connectivity within the region 

itself remained significantly different between old and young subjects (q<0.05; Figure 

3.10.B, middle row). The age-related differences we observed across the majority of the 

frontal and parietal lobes in the original analysis (Figure 3.10.B., upper row), were no 

longer significant (q<0.05). 
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To confirm that these observations did not simply arise from a reduced sample size, we 

repeated the analysis by removing the same number of old subjects with weight values 

that fell below the median for mPFC#4.  

 

By contrast with the previous test, there was an increase of significant age-related 

findings (q<0.05; Figure 3.10, Bottom row) from both the PCC and mPFC seed regions, as 

compared to the original GLM assessment with all subjects (q<0.05; Figure 3.10, Top row). 

From the PCC seed region, we observed a significant difference within the region itself 

that we did not previously find (Figure 3.10.A, Bottom row), while from the mPFC seed 

region, we identified significant age-related connectivity differences in all brain regions, 

including the cerebellum, but excluding the occipital lobe (Figure 3.10.B, Bottom row). 

 

To determine if any psychometric or physiologic characteristics might significantly 

associate with either of the excluded older groups, we ran a Student's t-test with a 

Bonferroni correction for multiple samples. The NKI-e dataset is a rich dataset that 

provides many psychometric measures, including tests for cognitive and executive 

functioning, short-term memory and working memory. Despite this, many of these tests 

were not complete for all subjects and we needed to exclude a number of them from the 

analysis. This included the Rey Auditory Verbal Learning Test, the Digit Span test and 

the Delis-Kaplan Executive Functioning System battery. We were able to include results 

from the Wechsler Abbreviated Scale of Intelligence, the NEO Five Factor Inventory, the 

Pittsburgh Sleep Quality Index and physiological measures that included age, sex, 

handedness, blood pressure, pulse, and body-mass index.  

 

Even before multiple comparison correction, however, we did not find any significant 

relationship between any of these variables and the sub-groups of older subjects that 

were either highly or weakly associated to mPFC#4 (All, p>0.188, uncorrected). We 
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likewise found no association between movement in the scanner (measured as average 

frame displacement after censoring) and these older sub-groups (p= 0.915).     

 

3.1.2.3.  Transitions: 

To explore the dynamics of the functional connectivity measures, we computed the state 

transition probabilities for each cohort (Figure 3.11). Transition probabilities that showed 

significant age-related differences (‘Old’ minus ‘Young’) are highlighted in the bottom 

panels (p<0.05). Negative values (blue background) indicate higher transition 

probabilities for the young cohort, while positive values (white background) indicate 

more transitions for the old cohort. The brain state PCC#4 was significantly associated 

with the younger cohort, and we found a significantly greater likelihood of younger 

subjects remaining in this state than older subjects. By contrast, mPFC#4 was significantly 

associated with the older cohort, and correspondingly we found a significantly greater 

likelihood that older subjects remained in this state as compared to younger subjects. 

Further, we found there was a significantly greater likelihood that younger subjects 

would transition from mPFC#4 to mPFC#1, as compared to the older subjects. The brain 

state mPFC#1 was associated significantly with the younger cohort of subjects, as 

compared to the older cohort. We also observed trends (p<0.1), whereby older subjects 

transitioned more frequently from mPFC#1 to mPFC#4, and younger subjects were more 

likely to remain in mPFC#1, as compared to the older subjects.  
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Figure 3.11. Transition probabilities between brain states for older, younger and the difference 
between cohorts, for (A) the posterior cingulate cortex seed and (B) the medial prefrontal cortex 
seed. In the top panels the transition probabilities between brain states for the older cohort are 
listed. In the middle panels the transition probabilities between brain states for the younger cohort 
are shown. The bottom panels show the difference in transition probabilities between cohorts 
(Older minus Younger; thus the negative values highlighted in blue depict a higher value for the 
younger cohort and vice-versa for the older cohort). Only significant differences are shown 
(p<0.05). 
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In Figure 3.11, we only displayed transitions between brain states. We did not include 

periods that were censored from the time-series due to excessive movement. This 

accounted for only 0.85% of the transitions in the NKI-dataset. In the PCC seed region, 

none of these transitions differed significantly by the age cohort. In the mPFC seed region, 

however, younger subjects were significantly more likely to transition from periods of 

movement into mPFC#1 (p<0.05), while older subjects were significantly more likely to 

transition into mPFC#3 (p<0.05) from periods of movement, than were the younger 

subjects. There was no significant difference in terms of age group in regards to the 

transition frequencies from a given State to periods of movement (All, p>0.05).  

 

We next investigated the overall frequency each cohort switched states. In the PCC seed 

region, switches between states were not significantly different between the old and 

young cohorts (13.8% vs 12.0%, p=0.22). Similarly, in the mPFC seed region, there was no 

significant difference for the frequency of transitions between states between the old and 

young cohorts (11.2% vs 11.9%, p=0.61).  

 

We then assessed the impact that remaining in a brain state and transitioning from a brain 

state would have on mean connectivity for each of the seeds. In the PCC, there was no 

significant difference in overall mean connectivity for transitions out of or remaining in 

a brain state, in either cohort (All, p>0.1). When looking at individual brain states, we found 

greater mean connectivity in PCC#1 for the older cohort for remaining in, rather than 

transitioning out of the brain state (0.224 vs 0.186, p=0.037). Likewise, for PCC#3, we 

found a greater mean connectivity in younger subjects and overall for those subjects that 

remained in the brain state, than the subjects that transitioned to another brain state 

(Young: 0.276 vs 0.235, p<0.001, All: 0.263 vs 0.220, p<0.001).  

 

In the mPFC, we did not observe any significant difference in overall mean connectivity 

for transitions out of or remaining in a brain state, across subjects and cohorts (all, p>0.4). 
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When looking at individual brain states, we found a significantly greater mean 

connectivity in older subjects that remained, rather than transitioned from mPFC#2 (0.330 

vs 0.272, p=0.017). 

 

3.1.2.4.  Summary: 

In this study, we analyzed the resting-state data of young and old subjects using static 

and dynamic methods. We identified the expected age-related reduction in connectivity 

between the posterior and anterior regions of the brain using both methods. With the 

dynamic methods, we were able to identify brain states that were significantly associated 

to one of the age cohorts. We also identified brain states from each seed region that 

displayed typical DMN activity (PCC#4, mPFC#3), as we anticipated. The brain state 

mPFC#4 was most associated with older subjects that explained the age-related variance 

from the static analysis. As compared to the average across all subjects, this brain state 

was characterized by a diminished connectivity throughout the brain, except in areas of 

the occipital lobe, the cuneus, and the middle temporal gyrus. These results are consistent 

with our original hypotheses.   
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3.2.  Sleep 

3.2.1.  Introduction 

For this study, we analyse fMRI data from young and older subjects sleeping in the 

scanner. Our goal is to identify age-related differences using both static and dynamic 

analyses. The static analysis will again serve as a baseline analytic benchmark. Our focus 

will be on EEG-confirmed non rapid eye movement stage 2 (NREM2) sleep. To recap, our 

objectives are as follows: 

 

 Relate the fMRI data to the NREM2 sleep stage. 

 Assess the age-related differences using static analysis. 

 Dynamically delineate brain states during NREM2 sleep. 

 Assess the age-related differences in NREM2 brain states and compare with the 

static results 

 

Due to differential age-related activity (k-complexes, sleep spindles, slow-wave sleep) 

during NREM2 [36], we anticipate measurable differences in our analyses. Older subjects 

also have greater difficulty entering and remaining in deeper stages of sleep [36], which 

we anticipate will impact connectivity patterns. Such a result would highlight the 

importance of measuring and controlling for sleep in age-related resting-state studies, 

and in general. To recap, our hypotheses are as follows: 

 

Hypotheses: 

 An individual brain state will be associated with the older cohort.  

 The older population will display brain state heterogeneity (i.e. divergent sub-

cohorts across multiple brain states). 
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 A brain state associated with the older population will be characterized by greater 

connectivity to the DMN, found typically in awake subjects.  

 

The data from the sleep stage NREM2 will be analyzed from two different ROIs from the 

Cambridge-36 functional network atlas [120]. These seeds comprised the thalamus-

caudate (TC, region#8) and the insula (INS, region#28) (Figure 3.12). The thalamus is 

associated with sleep regulation [86, 87], k-complex activity [83] and sleep spindles [84]. 

The insula region is believed to be a region of origin for slow-wave sleep [85]. 

 

 

Figure 3.12. MIST-36 regions of interest. A) The thalamus-caudate seed (region of interest #8). B) 
The insula seed (region of interest #28). 

 

We analyzed 30 subjects (Old: 14 subjects (36% male), 52-69 years, 59.5±5.9yrs; Young: 16 

subjects (50% male), 20-30 years, 23.3±3.3yrs) during NREM2 sleep.  

 

3.2.2.  Results 

3.2.2.1.  Static Connectivity 

We applied a general linear model to assess the significance of age to connectivity 

variations within the ROIs (Figure 3.13). The age cohort was the variable of interest and 

sex was used as a covariate. In the TC a significant (FDR, q<0.05) reduction in connectivity 

to the cerebellum was observed in the older cohort, as compared to the young cohort 
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(Figure 3.13,A, Top panel). No significant differences in connectivity due to age cohort 

differences were found between the INS and other brain regions (q<0.05, Figure 3.13.B. 

Top panel). The t-maps (bottom panels) highlight areas that showed differences albeit not 

significant under q<0.05.  

 

 

Figure 3.13. Age-related changes in connectivity between (A) the thalamus-caudate seed and (B) 
the insula seed, and the entire brain, during NREM2 sleep. The general linear model was run on 
the MIST-36 network atlas comparing network connectivity with the age cohort as the variable of 
interest, while controlling for sex as a covariate. (Upper panels) Significant differences between 
cohorts (FDR, q<0.05). (Bottom panels) The map of the t-statistic. 

 

3.2.2.2.  Dynamic Connectivity 

To first examine the ROIs from a dynamic perspective during NREM2, we computed the 

mean pairwise connectivity of the selected ROIs from the MIST-36 brain atlas to all the 

voxels within the functional brain mask, across time windows. This provided us with the 

voxel-wise connectivity of each ROI with the rest of the brain (Figure 3.14, Top panel). The 

same procedure was applied to each age cohort separately. To visualize these results, we 

calculated the corresponding z-maps for each cohort (Figure 3.14, Middle and bottom 

panels). In the older cohort we generally observed low connectivity between the 

thalamus-caudate and the rest of the brain, excluding the orbital frontal cortex and the 

angular gyrus in which higher connectivity was observed, as compared to the mean 

connectivity across all subjects. The younger cohort showed the opposite connectivity 

differences. In contrast, the INS seed generally showed high connectivity to the rest of 
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the brain in older subjects as compared to the mean connectivity across all subjects. 

Specifically, the older cohort showed high connectivity from the insula seed to the 

parietal lobe, as well as areas of the default mode network. The younger cohort by 

contrast maintained high connectivity between the insula and the cerebellum, along with 

the thalamic region during NREM2 sleep, as compared to the average across all subjects. 

 

 

Figure 3.14. Voxel-wise connectivity from the (A) thalamus-caudate seed and (B) insula seed 
during NREM2. The overall connectivity (top panels) is the mean connectivity of all NREM2 
windows across all subjects. The Old cohort (middle panels) section represents the Z-map of the 
connectivity in the older cohort relative to the mean connectivity across all subjects. The Young 
cohort (bottom panels) section represents the Z-map of the connectivity in the younger cohort 
relative to the mean connectivity across all subjects. 

 

To identify brain states to which the subjects converged, we performed a hierarchical 

clustering procedure (Ward’s criterion) on the correlation between each window map 

with all the other window maps (Figure 3.15, Left panels). This procedure assigned an 

associated cluster or state (n=4) to each given window map (Figure 3.15, Right panels).  
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Figure 3.15. Hierarchical clustering of the correlation of each window map to all other window 
maps across all subjects. Each window map represents the connectivity between (A) the 
thalamus-caudate seed to the entire brain and (B) the insula seed to the entire brain. (Left panels) 
The similarity matrix ordered with hierarchical clustering of the correlation of all window maps 
to one another under Ward’s criteria. The dendogram is shown above the similarity matrix. (Right 
panels) The clusters defined by the selection of four States. The numbers listed (i.e.: S#3, S#2, etc.) 
refer to the State numbers referenced in the text.  

 

After clustering, the window maps, associated with each state, were averaged to provide 

brain state maps. To visualize the difference of each map from the average connectivity 

map across all subjects and windows, a z-map was calculated from the brain state maps 

(Figure 3.16). In the TC seed (Figure 3.16.A.) the TC#2 and TC#4, respectively, showed 

maps of broadly less and more correlated regions with the ROI seed, as compared to the 

average map. The brain state TC#3, although largely uncorrelated with the parietal lobe, 

tended to be more correlated in regions of the default-mode network. In TC#1, areas of 

the occipital lobe and cerebellum showed greater connectivity, whereas other regions 

tended to show less connectivity, as compared to the average connectivity map.  

 

 

Figure 3.16. Z-maps of each brain state relative to the average voxel-wise connectivity between (A) 
the thalamus-caudate seed and (B) the insula seed, and the entire brain, during NREM2 sleep. 
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State-wise connectivity is calculated as the average of the voxel-wise connectivity within all 
windows that correlate most with the given brain state of interest.  

 

In INS#1, from the insula seed region, we found greater correlation with most other parts 

of the brain, excluding the cerebellum, motor areas and the thalamus, as compared to the 

mean connectivity across all subjects (Figure 3.16.B). The brain state INS#2 generally 

showed less correlation than the average, except to areas of the precuneus, occipital lobe 

and the cerebellum. The INS#3 brain state showed a small increase in correlation between 

the insula and the cerebellum, the thalamic region and within the insula area itself, as 

compared to the average. Otherwise, we observed a decreased connectivity to other 

areas. This map resembles the average connectivity maps across young subjects (Figure 

3.14.B, Bottom panel). In INS#4, aside from the connectivity to the cerebellum and insula 

itself, we observed an overall increase in connectivity between the insula and the rest of 

the brain, as compared to the average connectivity across all subjects.  

 

The brain state maps provide insight into how the connectivity varies from the given ROI 

with the rest of the brain over the dataset, but does not provide information as to the 

subject composition of each State. In order to determine how the window maps were 

distributed across subjects, cohorts and time-series for each state, we differentiated the 

information in the following two figures. In Figure 3.17, the windows across subjects for 

each state are represented both as a bar graph and boxplot. In Figure 3.18, the distribution 

of windows by subject and state, along with the proportional distribution of State by 

subject are shown. Of note, TC#2, INS#1 and INS#2 were driven mainly by two, one and 

one subjects respectively (Figure 3.17.A and C.). As a result, different color scales were 

applied to the corresponding displays in Figure 3.16, due to the increased variance from 

single subjects.  
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Figure 3.17. Distribution of window maps by brain state and cohort. The upper panels (A & B) 
represent the thalamus-caudate seed and the lower panels (C & D) the insula seed. In (A) & (C) 
the number of window maps that are most correlated to the given State by subject. The dashed 
line demarcates the older and younger cohorts, with the older cohort to the left of the dashed line. 
In (B) & (D) boxplots show the distribution of the number of windows for each subject associated 
with the given state, by cohort. Permutation testing the proportion of windows distributed across 
subjects and cohorts (n=100,000, * p<0.05, ** p<0.01, *** p<0.001) showed all brain states had a 
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significant tendency to associate preferentially to either older or younger subjects, except the brain 
states driven by only one or two subjects (TC#2; INS#1, INS#2). 

 

Permutation testing on the likelihood of observing these age-related differences by 

chance showed that all brain states, excluding those driven by only one or two subjects 

were significantly against the null hypothesis. For the TC seed, average window map 

associations to TC#1, TC#3, and TC#4 were significantly different between the old and 

young cohorts (#1: p<0.001, #3: p<0.01, #4: p<0.05). For INS, the window maps were 

differentially associated to INS#3 and INS#4 by cohort (p=0.001, in both cases). These 

results demonstrate that young and old cohorts differ significantly in the amount of time 

they spent in the different States. 
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Figure 3.18. Proportional distribution of windows by state and subject for (A) the thalamus-
caudate and (B) the insula seed. The (left panels) represent the proportion of time spent in each 
window by cohort (this is equivalent to the probability of spending time in the given state, by 
cohort). The (right panels) represent the proportion of time spent in each state by subject. The 
older and younger cohorts are demarcated by the dashed line. The significance of the results is 
based on permutation testing the proportion of windows distributed across subjects and cohorts 
(n=100,000; * p<0.05, ** p<0.01, *** p<0.001).  

 

Every window was assigned to a given state following the clustering procedure. Despite 

this a given window may maintain similar, albeit slightly less, correlation values to other 

states as to the assigned state. In order to better understand the relationship between the 

window map and its association to the mean state maps, we computed the correlation 
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between the window map and each of the state maps. This provided a weight measure 

of the strength of this relationship. An example of how this window-state correlation 

varied over time within subjects is shown in Figure 3.19. 

 

 

Figure 3.19. The correlation of each State to the window maps measured across time by subject. 
Each time iteration represents 9.84sec; whereby each window of time advances 4 volumes with a 
repetition time of 2.46s between each volume. The same three example subjects are chosen for 
both the (A) thalamus-caudate seed and (B) the insula seed. The dashed line signifies periods in 
which the subject no longer is in NREM2 sleep, while the number above the line denotes the 
number of windows the subject spent outside NREM2 during this period. The subjects provide a 
sample of some the variability seen over time, both in terms of how the association to each State 
can show consistency and unevenness over time, as well as, the impact of leaving and entering 
NREM2.  

 

The strength of these weight scores (correlation to brain state) varied over time, yet 

revealed one dominant state in time in most subjects (albeit the dominant state differed 

across subjects). The weight scores obtained from TC and INS, are displayed across all 
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windows and states, for each cohort in Figure 3.20 (Left panels). The distribution of weight 

scores by State and cohort is displayed on the right panels. 

 

A general linear model was run on the mean weight values computed from each subject. 

The variable of interest was age cohort, while sex was controlled for as a covariate. The 

GLM revealed a significant difference between the TC connectivity weight values of the 

old and young cohorts for TC#1 and TC#4 (p<0.001 and p<0.01, respectively), while 

TC#3 showed a trend (p=0.055). In contrast, weight values for INS connectivity were 

similar between age cohorts for all the States. 
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Figure 3.20. Correlation of each brain state across windows and cohorts (i.e.: weight) for both (A) 
the thalamus-caudate seed and (B) the insula seed. The left panels show a visual representation 
of each state (columns) and the correlation to all windows (rows), by cohort. This is ordered by 
brain state, with the bright green line demarcating areas where the given brain state shows the 
greatest correlation to the respective windows as compared to the other brain states. The right 
panels show boxplots of the distribution of the weights for each brain state across cohorts. A 
general linear model using the age cohort as the variable of interest, while maintaining sex as a 
confounding factor, where (*) q<0.1, * q<0.05, ** q<0.01, *** q<0.001.  

 

The relationship (correlation) of each mean state map to one another is listed in Figure 

3.21. In line with these GLM results the mean of the correlation between the States was 

greater in the INS than in the TC seed (0.6 vs 0.49), however, this difference was not 

significant (p=0.32).  

 

 

Figure 3.21. The correlation of each of the brain states with one another.  

 

3.2.2.3.  Slow-Wave Sleep 

We assessed the relationship between State and other measures of sleep beyond sleep 

stage. We used linear regression analysis to evaluate slow-wave sleep (SWS) density and 

its relationship to the time spent in each state (Figure 3.22). We only analyzed the brain 
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states TC#4, and INS#3, as data in the other states were insufficient for analysis. When 

the cohorts were combined, we found significant positive correlations emerged (TC: 

p<0.01; INS: p<0.05) suggesting that the time spent in these brain states increased as SWS 

density increased. When we analyzed these findings by cohort, however, we found only 

a non-significant trend in TC#4 for the older cohort (p=0.055) and less so with the 

younger cohort (p=0.139; Figure 3.22.A.). For INS#3, we did not observe any significant 

linear relationship between the time spent in brain state and SWS density (p>0.1; Figure 

3.22.B.). The result from the TC#4 cohort analysis may be influenced by the relatively 

small sample size. Likewise, the cohort-level results in INS#3, and potentially TC#4, may 

be confounded by the relationship between SWS and age, whereby SWS density 

decreases with age. In both of these brain states younger subjects spent significantly more 

time in the state, than subjects from the older cohort (Figure 3.18). 
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Figure 3.22. Linear regression of the probability of spending time in the given state versus the 
density of slow-wave sleep during NREM2. In (A) applied with TC#4 and in (B) applied with 
INS#3.  

 

3.2.2.4.  Transitions: 

To explore the dynamics of the functional connectivity measures, we computed the 

between-state transition probabilities within NREM2 for each cohort (Figure 3.23). 

Transition probabilities that showed significant age-related differences (Old minus 

Young) are highlighted in the bottom panels (p<0.05). Negative values (blue background) 

indicate higher transition probabilities for the young cohort, while positive values (white 

background) indicate more transitions for the old cohort.  
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When we explored the transitions between brain states derived from TC connectivity, we 

found TC#1 strongly associated with the younger cohort. Young subjects were 

significantly more likely to remain in the state than older subjects. On the contrary, older 

subjects were more strongly associated with TC#2 and TC#3 and more likely to remain 

in these states compared to the young cohort. Further, there was a significantly greater 

probability that younger subjects will transition to TC#1 from all other States, as 

compared to the older cohort. Likewise, younger subjects were significantly more likely 

to transition from TC#3 to TC#4. This transition was consistent with TC#3 being 

comprised of a significantly greater number of older subjects that spend more time in the 

state, and TC#4 being comprised with a significantly greater number of younger subjects.  
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Figure 3.23. Transition probabilities between States for older, younger and the difference between 
cohorts, for (A) the thalamus-caudate seed and (B) the insula seed. In the top panels the transition 
probabilities between brain states for the older cohort are listed. In the middle panels the transition 
probabilities between brain states for the younger cohort are shown. The bottom panels show the 
difference in transition probabilities between cohorts (Older minus Younger; thus the negative 
values highlighted in blue depict a higher value for the younger cohort and vice-versa for the 
older cohort). Only differences that are significant are shown (p<0.05). 
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From the INS seed region, we observed very few transitions in and out of INS#1 and 

INS#2. This is likely due to differences in connectivity from both INS#1 and INS#2 that 

were driven by a single subject, respectively (see Figure 3.17.C.). Accordingly, none of the 

transitions to or from either of these states showed significant age-related differences. The 

brain state INS#3 was associated more strongly with the younger cohort and showed a 

significantly greater likelihood of younger subjects remaining in the state with older 

subjects significantly more likely to transition out of the brain state to INS#4. Conversely, 

in INS#4, a brain state associated more with older subjects (Figure 3.18.B.), there was a 

significantly greater likelihood the older subjects would remain in this brain state, as 

compared to the younger cohort. Further, the younger subjects were significantly more 

likely to transition out of the state to INS#3, as compared to the older cohort (Figure 3.23).  

 

Since the focus of this analysis was on NREM2, some transitions entered other sleep 

stages, a mixture of sleep stages (over the period of the window) and periods of 

movement. Likewise, transitions into NREM2 may have originated from any of these 

periods. A chart of all observed transitions is shown in Figure 3.24.A. The difference in 

transition probabilities that were significantly different between cohorts are shown 

(Figure 3.24.B. and C.) for both ROIs. 
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Figure 3.24. Transition probabilities entering and exiting NREM2 to and from other sleep stages 
or periods of movement removed during pre-processing. A) The overall map of all possible 
transitions that were observed entering or exiting NREM2. The windows referenced all contained 
mixed staging assignments, such that through sleep staging different volumes in the same 
window were assigned a different sleep stage. Unknown refers to windows where the sleep 
staging could not be assessed. Movement refers to periods that were removed due to excessive 
frame displacement. B) The left panel shows the results from the thalamus-caudate seed and the 
right panel from the insula seed. The difference (Older minus Younger) in transition probabilities 
between cohorts is shown in both panels. A negative value (highlighted in blue) denotes a greater 
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transition probability of the younger cohort. Only statistically significant differences are listed 
(p<0.05). 

 

In TC connectivity, there were numerous transitions from TC#4 out of NREM2 

completely, that significantly differed by age cohort. For the older cohort, this included 

significantly more transitions to periods of wakefulness mixed with NREM2 and to 

periods of movement that had been censored from the data. Younger subjects on the other 

hand had a greater probability of transitioning to undetermined sleep stages mixed with 

NREM2. The transitions from periods of movement showed a significantly greater 

probability that older subjects, as compared to younger subjects, enter NREM2 in TC#4. 

In TC#2, older subjects were significantly more likely to transition out of NREM2 to 

wakefulness mixed with NREM2, as well as to periods of excessive movement, as 

compared to the younger cohort. Likewise, older subjects were significantly more likely 

to transition into NREM2 in TC#2 from periods of NREM1 mixed with NREM2, and from 

periods of excessive movement, as compared to the younger subjects. The brain states 

TC#1 and TC#3 showed no significant difference between cohorts for transitions into and 

out of NREM2.  

 

INS connectivity showed that older subjects were significantly more likely to transition 

into both INS#3 and INS#4 from periods of movement and vice-versa, as compared to 

the younger cohort. Although INS#4 was more associated with older subjects there were 

still significantly more young subjects that transitioned from NREM2/NREM3 into the 

state than older subjects. Despite a single subject driving INS#2, there were significantly 

more transitions into Awake/NREM2 from the older cohort, as compared to the young.  

 

 

We next investigated the overall frequency each cohort switched states. In the TC seed, 

NREM2 switches between states were significantly greater in the young, as compared to 

the older cohort (11.4% vs 5.2%, p<0.001). Switches from one of the states out of NREM2 
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to a different or mixed sleep stage were not significantly different between cohorts (3.9% 

vs 4.9%, p=0.126). Combining all transitions within and external to NREM2 revealed a 

significantly greater frequency of switching in the younger cohort, as compared to the 

older cohort (15.3% vs 10.2%, p<0.01). 

 

In the INS seed, we found overall fewer transitions compared to the TC. The frequency 

of switches between states within NREM2 was significantly different between the young 

and old (2.8% vs 4.9%, p<0.001), and likewise for all switches in and out of NREM2 (6.7% 

vs 9.9%, p<0.001). Thus, in contrast to the TC, the younger cohort transitioned 

significantly less than the older cohort. The brain states INS#1 and INS#2 were driven by 

single subjects from the older cohort. Of the remaining states only INS#3 was associated 

with the younger cohort, resulting in a relative reduction of transitions in the younger 

group. The older cohort maintained comparable transition probabilities to the TC seed. 

Similar to the TC seed, when measured from the INS switches that transitioned into or 

out of the sleep stage were not significantly different between cohorts (p=0.126). 

 

We then assessed the impact that remaining in a state and transitioning from a state 

would have on mean connectivity for each of the seeds. In the TC, there was no significant 

difference in overall mean connectivity for transitions out of or remaining in state, in 

either cohort (p=0.164). When looking at individual states, we found greater mean 

connectivity for TC#4 in both cohorts for remaining in, rather than transitioning out of 

the state (Young: 0.165 vs 0.143, p=0.011; Old: 0.177 vs 0.146, p=0.020; Combined: 0.170 

vs 0.144, p=0.0005). For TC#3, the opposite was observed, whereby younger subjects that 

remained had a significantly lower mean connectivity compared to those that 

transitioned to other states (0.043 vs 0.100, p=0.0037). Older subjects revealed similar 

mean connectivity (p=0.182). In TC#1 no significant differences were observed for either 

cohort (all p>0.2), while in TC#2 data was driven by only two older subjects and hence 

insufficient to analyze. 
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In the INS, there was a significant difference in overall mean connectivity for transitions 

out of or remaining in state found in the older cohort (0.249 vs 0.218, p<0.001), but not in 

the young (p=0.1444). In INS#1 and INS#2 the data was essentially driven by only one 

older subject in each state, thus it was deemed insufficient to analyze. In INS#3 no 

significant differences were observed for either cohort (all, p>0.3). In INS#4 the older 

cohort revealed a significant difference between the mean connectivity of subjects that 

remained in the state and those that transitioned from the state (0.284 vs 0.246, p<0.001). 

This indicates that older subjects with a higher connectivity were significantly more likely 

to remain in the state. By contrast, although younger subjects were less likely to spend 

time in INS#4 than the older subjects the younger subjects that remained showed a trend 

towards a lower mean connectivity than those that transitioned to a different state (0.242 

vs 0.278, p=0.0517). Overall, INS#4 shows a higher connectivity seen in their z-maps, as 

compared to the average (see Figure 3.16.B.).   

 

Finally, using linear regression analysis, we assessed the relationship between mean 

connectivity and the consecutive time spent in a given state, which was based on the 

duration of the time period without transitions. In the TC, overall there was no significant 

relationship between connectivity and consecutive time that either cohort spent in a state 

(p=0.246). At the state level, this relationship varied according to the level of connectivity 

associated with the given state. For example, in TC#2, where the z-maps show lower 

connectivity, we observed a significant negative correlation between mean connectivity 

and time spent in the state (p=0.019). In contrast, in TC#4, where overall connectivity is 

high, we observed a significant positive correlation between connectivity and consecutive 

time spent in the state (p=0.020). In the INS seed, there were no significant associations 

between mean connectivity and time spent in a given state. This was true for all states 

individually, as well as combined (all, p>0.05). 
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3.2.2.5.  Summary  

In this study, we analyzed NREM2 sleep data of young and old subjects using static and 

dynamic methods. We identified a significant reduction in connectivity between the TC 

seed region and regions of the cerebellum in the older cohorts, as compared to younger 

subjects. With the dynamic methods, we were able to identify brain states that were 

significantly associated by age cohort. Essentially, all brain states that comprised more 

than two subjects differentiated significantly by cohort. We also identified a brain state 

(TC#2) primarily associated with two subjects that explained the age-related variance in 

connectivity that we observed from the static analysis. The brain state TC#3 displayed 

more connectivity to the DMN than other brain states, while older subjects spent 

significantly more time than younger subjects in this brain state. We observed an 

association between SWS and the brain states.  
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3.3.  Thought Content 

3.3.1.  Introduction 

In this study our objective is to analyze the relationship between thought content and 

connectivity, and to identify any age-related associations from these findings.  As in the 

other studies, we apply both a static and dynamic analysis, with the static analysis 

serving as a benchmark. We do anticipate that through clustering we will be better able 

to discern the effects of an interaction between age and thought on connectivity, than 

with a static analysis alone. To recap, our objectives are as follows: 

 

 Assess correspondence between thought content scores and static connectivity 

results. 

 Identify brain states that correlate with high or low thought content scores.  

 Explore interaction between thought content scores, connectivity, and age (using 

both static connectivity and brain states) 

 

Since elaborating past and future thoughts may differ by age, we anticipate identifying 

associated connectivity differences in this analysis [46, 50]. We are similarly motivated by 

possible compensatory mechanisms that may account for comparable content scores 

across cohorts. Despite the potential interaction between age and thought content scores, 

this has not been reported in the literature in association with resting-state analysis. To 

recap, our hypotheses are as follows: 

 

Hypotheses: 

 Identify connectivity differences, from the seed regions, with thought content as 

the variable of interest, in the static analysis 

 A brain state will be associated with higher or lower thought content scores.  



CHAPTER 3.  RESULTS 

 91 

 An interaction between age and thought content scores in relation to connectivity 

and brain states. (Due to compensatory activity found in these regions during past 

and future thought [89], we hypothesize greater connectivity in older subjects as a 

compensatory mechanism.)   

 

We analyzed the standard acquisition resting-state data from the NKI-e dataset using two 

different ROIs from the Cambridge-36 functional network atlas [120]. The seed regions 

comprise the middle temporal gyrus (MTG, region#31) and the superior temporal gyrus 

(STG, region#25) (Figure 3.25). These regions have been associated with past and future 

thought elucidation [46, 50, 61, 88], as well as compensatory activity in older adults [89].  

 

 

Figure 3.25. MIST-36 regions of interest. A) The middle temporal gyrus seed (region of interest 
#31). B) The superior temporal gyrus seed (region of interest #25). 

 

For this analysis we analyzed subjects from the NKI-e dataset, for which complete 

thought content score data existed. We focused on past and future thought content 

scoring. We analyzed 145 subjects (Old: 68 subjects (31% male), 56-85yrs, 66.4±7.86yrs; 

Young: 77 subjects (49% male), 18-35yrs, 23.8±4.61yrs). 
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3.3.2.  Results 

3.3.2.1.  Thought Content Scoring 

To derive a specific subject-level score for thought content we utilised the participant’s 

subjective responses to the post-scan questionnaire and weighted it according to values 

established for each question and theme [53]. We found a significant difference with 

future thought content scores, but no difference for past thought content scores between 

age cohorts (Figure 3.26.A; p=0.157 (past) and p<0.01 (future), controlling for sex, 

respectively). 

 

 

Figure 3.26. Thought content scores. A) Distribution of thought content scores by age cohort for 
past and future thought. B) Linear relationship between scores for past and future thought 
content across all subjects. (In (A), ** p<0.01). 

 

We also observed a strong relationship between the scores from the past and future 

content measures (Figure 3.26.B). This relationship between past and future content 

scores was maintained for each cohort when examined separately (not shown).  

 



CHAPTER 3.  RESULTS 

 93 

3.3.2.2.  Static Connectivity  

We applied a general linear model to assess the significance of age, scores for the past 

and future content of thoughts, and the interaction between them to connectivity 

variations from the two seed regions (Figure 3.27). In each model sex was used as a 

covariate. From the MTG seed region, using age as the variable of interest we found a 

significant (FDR, q<0.05) reduction in connectivity to the inferior parietal lobule and 

angular gyrus, the posterior region of the middle frontal gyrus and the superior frontal 

gyrus, the temporal pole and to the middle temporal gyrus itself. (Figure 3.27.A. Top 

panel). From the STG seed region, we found a significant (FDR, q<0.05) reduction in 

connectivity to the temporal pole, to the precentral gyrus and the posterior region of the 

superior frontal gyrus, along with posterior portions of the insula. We found a significant 

increase in connectivity with age as the variable of interest in to the middle occipital gyrus 

and the anterior portion of the insula (Figure 3.27.B. Top panel).  

 

We did not find any significant differences from either seed region, when using the scores 

for past or future content as the variable of interest (Figure 3.27, Middle panels).  

 

We explored the relationship between the interaction of age and content scores to 

connectivity variations, and found significant findings in both seed regions for past 

content scores. In the MTG, we found much of the occipital and parietal lobes, excluding 

DMN related structures – the inferior parietal lobule and the posterior cingulate cortex – 

displayed significant interactions (q<0.05, Figure 3.27.A. Third and fourth panels from 

the bottom). From the STG seed region, we observed a significant positive interaction to 

the calcarine (q<0.05, Figure 3.27.B. Third and fourth panels from the bottom); as we 

likewise observed from the MTG seed region.  
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Figure 3.27. General linear model of age and thought content related changes in connectivity 
between (A) middle temporal gyrus and (B) superior temporal gyrus seed and the entire brain, 
during resting-state (top two panels). Significant age-related differences between cohorts (Top 
panel, FDR, q<0.05). The map of the t-statistic (second panel). Thought content related changes 
in connectivity (third to sixth panels). The significant differences are followed by the t-statistic 
maps for past and future content. The interaction between age and thought content scores 
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(bottom four panels). The significant differences followed by the t-statistic map for interactions 
between age-past content and age-future content scores.  

 

We did not find any significant interactions between age and thought content scores on 

connectivity for future thought (q<0.05, Figure 3.27, Bottom two panels). This is in 

contrast to the future content scores alone, in which we found a significant difference 

between age cohorts. In each of the GLM tests we show the t-maps below the maps of 

significant findings to highlight areas that show increases and decreases in connectivity 

despite not passing significance under q<0.05. 

 

3.3.2.3.  Dynamic Connectivity 

To examine the seed regions from a dynamic perspective, we first computed the mean 

connectivity of our ROIs with all voxels within the functional brain mask, across all 

windows. This provided us with the voxel-wise connectivity of each ROI with the rest of 

the brain (Figure 3.28, Top panel). The same procedure was applied to each age cohort 

separately. The corresponding z-maps for each cohort was then calculated (Figure 3.28, 

Middle and bottom panels). In the MTG seed, the older cohort showed a reduced 

connectivity to most regions of the brain, including the MTG region itself, along with the 

mid- and frontal superior gyrus. We observed high connectivity to regions that included 

the occipital lobe and anterior regions of the parietal lobe, as compared to the average 

across all subjects. This included a high connectivity, relative to the average connectivity 

across the entire sample, to the inferior parietal lobule, portions of the inferior frontal 

gyrus and the thalamus. The younger cohort accordingly showed opposite connectivity 

differences, relative to the average across all subjects. 
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Figure 3.28. Voxel-wise connectivity from the (A) middle temporal gyrus and (B) superior 
temporal gyrus seed during resting-state. The overall connectivity (top panels) is the mean 
connectivity of all windows across all subjects. The Old cohort (middle panels) section represents 
the Z-map of the connectivity in the older cohort relative to the mean connectivity across all 
subjects. The Young cohort (bottom panels) section represents the Z-map of the connectivity in 
the younger cohort relative to the mean connectivity across all subjects. 

 

In the STG seed, we also found increased connectivity to the occipital lobe and portions 

of the parietal lobe in the older cohort, as compared to the average across the sample. We 

observed diminished connectivity to the putamen, motor regions, the superior frontal 

gyrus and most regions of the frontal lobe. Correspondingly, we observed the opposite 

connectivity patterns in the younger cohort, as compared to the average.  

 

To better interpret the role thought content scores may play on the interaction effect 

between age cohort and content scores on connectivity, observed in the static analysis, 

we differentiated groups that had higher and lower content scores. We did this for the 

entire sample, as well as separately within each cohort. In each case, subjects that scored 

above the median thought content score were assigned to the high content group, and 

those that scored lower than the median were assigned to the low content group. We 

repeated this for past, as well as future content scores (Figure 3.29: MTG seed region; 

Figure 3.30: STG seed region). 
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We found similar connectivity patterns between past and future brain maps at both high 

and low content scores, which is consistent with the strong relationship we observed 

between the past and future content scores (Figure 3.26.B). This was observed in both 

seed regions.  

 

From the MTG seed region, in the older cohort we found high connectivity within the 

group with higher content scores, as compared to the average. We found generally low 

connectivity in the lower content score group, as compared to the average. The opposite 

was seen in the younger cohort. These observations suggest that the variation in 

connectivity we found in the static analysis as part of the interaction between age cohort 

and content scores is explained through a cross-over (qualitative) interaction. Thereby, 

younger subjects with high content scores have low connectivity from the seed regions 

to other brain regions as compared to high content scoring older subjects; with the reverse 

finding for low content scores across cohorts.  
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Figure 3.29. Z-maps of voxel-wise connectivity, from the middle temporal gyrus seed during 
resting-state, of thought content groups. The high content (left panels) and low content (right 
panels) groups show the Z-map of the connectivity in the given content group relative to the 
mean connectivity across all subjects. The subjects are assigned to the content group based on the 
median of the cohort examined (All, Old or Young). The groups are separated by Past and Future 
thought content scores.  

 

In the older cohort, the middle and superior occipital gyrus, the calcarine and the lingual 

gyrus, maintain a greater correlation with the MTG seed region in both high and low 

content groups, as compared to the average or the younger cohort. By contrast we found 
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connectivity to the thalamus from the older cohort was diminished, while it was 

increased in the younger cohort as compared to the average overall connectivity.  

 

 

Figure 3.30. Z-maps of voxel-wise connectivity, from the superior temporal gyrus seed during 
resting-state, of thought content groups. The high content (left panels) and low content (right 
panels) groups show the Z-map of the connectivity in the given content group relative to the 
mean connectivity across all subjects. The subjects are assigned to the content group based on the 
median of the cohort examined (All, Old or Young). The groups are separated by Past and Future 
thought content scores.   
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From the STG seed region, in the high content score group we generally observed high 

correlation to the occipital and parietal lobe regions in older cohorts, and low correlation 

to the frontal lobe, as compared to the average. By contrast the young cohort displayed 

opposite correlation patterns in those regions. In the future content group of the younger 

cohort, however, there was diminished connectivity to the medial prefrontal cortex and 

the posterior cingulate cortex, as compared to the overall average connectivity to the STG 

seed region. As we observed with the MTG seed region, connectivity to the STG seed 

region was low to the thalamus in the older cohort, as compared to the younger cohort, 

across both high and low content groups; and the connectivity to the occipital gyrus, the 

calcarine and the lingual gyrus was high across both high and low content in the older 

cohort, as compared to the young cohort. This corresponds to our observations during 

the static analysis. 

 

3.3.2.4.  Clustering 

To identify brain states to which the subjects converged, we performed a hierarchical 

clustering procedure (Ward’s criterion) on the correlation between each window map 

with all the other window maps (Figure 3.31, Left panels). This procedure assigned an 

associated cluster or state (n=4) to each given window map (Figure 3.31, Right panels).  
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Figure 3.31. Hierarchical clustering of the correlation of each window map to all other window 
maps across all subjects. Each window map represents the connectivity between the (A) middle 
temporal gyrus (#31) seed to the entire brain and (B) superior temporal gyrus (#25) to the entire 
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brain. (Left panels) The similarity matrix ordered with hierarchical clustering of the correlation 
of all window maps to one another under Ward’s criteria. The dendogram is shown above the 
similarity matrix. (Right panels) The clusters defined by the selection of four States. The numbers 
listed (i.e.: S#3, S#1, etc.) refer to the State numbers referenced in the text.  

 

After clustering, the window maps associated with each state were averaged to provide 

mean brain state maps. To visualize the difference of each map from the average 

connectivity map across all subjects and windows, a z-map was calculated from the mean 

brain state maps (Figure 3.32). From the MTG seed region (Figure 3.32.A), in MTG#3, we 

found a stronger correlation to regions of the default mode network, while we observed 

less correlation to other brain regions, as compared to the average map. In contrast, the 

opposite correlation map was observed in MTG#4, where there was decreased 

connectivity to the DMN and increased connectivity to other regions and a reduced 

connectivity to the thalamic region, as compared to the average map across all subjects. 

In the brain state MTG#1, we observed an overall reduction in connectivity to the rest of 

the brain, although with some increased to medial regions of the thalamus; whereas with 

MTG#2, we found an overall increase in connectivity, except to the middle temporal 

gyrus itself, the angular gyrus, and the pre- and post-central gyri, as compared to the 

average connectivity across all subjects.  
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Figure 3.32. Z-maps of each brain state relative to the average voxel-wise connectivity between (A) 
the middle temporal gyrus and (B) the superior temporal gyrus seed and the entire brain, during 
resting-state. State-wise connectivity is calculated as the average of the voxel-wise connectivity 
within all windows that correlate most with the given brain state of interest.  

 

From the STG seed region (Figure 3.32.B), in STG#3 we found an overall decrease in 

connectivity to most brain regions and an even greater decrease to the DMN, as compared 

to the average map across all subjects. By contrast in in STG#4, we found an overall 

increase in connectivity throughout the brain, as compared to the average. In STG#1 we 

found an increase in connectivity to the occipital lobe and the prefrontal cortex, while 

there was diminished connectivity to most other brain regions, when compared to the 

average across all subjects. In STG#2, we observed a reduced connectivity to most regions 

of the occipital and parietal lobe, along with lateral regions of the frontal lobe, while 

excluding regions of the DMN.  
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Figure 3.33. Distribution of window maps by brain state and cohort. The upper panels (A & B) 
represent the middle temporal gyrus seed and the lower panels (C & D) the superior temporal 
gyrus seed. In (A) & (C) the number of window maps that are most correlated to the given brain 
state by subject. The dashed line demarcates the older and younger cohorts, with the older cohort 
to the left of the dashed line. In (B) & (D) boxplots show the distribution of the number of 
windows for each subject associated with the given brain state, by cohort. Permutation testing on 
the proportion of windows distributed across subjects and cohorts (n=100,000) determined the 
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brain states that had a significant tendency to associate preferentially to either older or younger 
subjects (MTG#1: q<0.001; MTG#2 & MTG#3: q<0.01; STG#1 & STG#2: q<0.001). 

 

The brain state maps provide insight into how the connectivity varies from the given seed 

region to the rest of the brain over the dataset, but does not provide information about 

any age-related association of each brain state. In order to determine how the window 

maps were distributed across subjects, cohorts and time-series for each state, we 

differentiated the information in the following two figures. In Figure 3.33, the windows 

across subjects for each state are represented both as a bar graph and a boxplot. In Figure 

3.34, the distribution of windows by cohort and brain state are shown. 

 

We ran permutation tests to determine the significance (q<0.05, FDR corrected) of the 

age-related differences in state composition we observed. For the MTG seed region, the 

association of the subject windows to MTG#1, MTG#2 and MTG#3 were significantly 

different between the old and young cohorts (q<0.001, q<0.01 and q<0.01, respectively). 

The brain states MTG#1 and MTG#2 were comprised of significantly more older subjects, 

while MTG#3 was associated with significantly more younger subjects (Figure 3.34.A). 

In the STG seed region, there was a significant association by age cohort to subject 

windows in STG#1 and STG#2 (both, q<0.001). The brain state STG#1 was comprised of 

significantly more windows from older subjects, while STG#2 was associated with 

significantly more windows from the younger subjects (Figure 3.34.B).  
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Figure 3.34. Proportional distribution of windows by state for (A) the middle temporal gyrus and 
(B) the superior temporal gyrus seeds. The proportion of time spent in each window by cohort 
(this is equivalent to the probability of spending time in the given brain state, by cohort). The 
significance of the results is based on permutation testing the proportion of windows distributed 
across subjects and cohorts (n=100,000; ** q<0.01, *** q<0.001).  

 

We also investigated the distribution of thought content scores according to brain state 

and cohort. As previously, we divided the sample by those that scored higher or lower 

than the median thought content score across all subjects, and again separately within 

each cohort. We repeated this analysis for both past and future thought content scores. 

We then calculated the proportional distribution of the high and low content score groups 

across brain states and cohorts (Figure 3.35).  

 

To assess the relevance of any differences in high and low content score distribution 

between the states that we observed, we likewise ran permutation tests to determine 

significance (q<0.05, FDR corrected). We ran the tests across the sample, as well as within 

each cohort separately.  
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Figure 3.35. Proportional distribution of windows within each brain state by content score for (A) 
the middle temporal gyrus and (B) the superior temporal gyrus seeds. The proportion of time 
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spent in each window is depicted relative to high or low content scores in either Past or Future 
thought. The left panels show the results across all subjects, the middle panels for subjects only 
in the older cohort, and right panels for subjects only in the young cohort. The high or low content 
groupings are determined by cohort, demarcated by the median content scores for the cohort. We 
determined significance based on permutation tests on the proportion of windows distributed 
across subjects and content groups (n=100,000; FDR corrected; * q<0.05). 

 

From the MTG seed region, we found a significant association between the low content 

group and MTG#1 across the entire sample and within the older cohort (q<0.05; Figure 

3.35.A). This was significant for both past and future content scores. Within the older 

cohort, we found a significant association between high content scores and MTG#4 for 

both the past and future scores (q<0.05; Figure 3.35.A). In the older cohort, we also 

observed a relatively consistent distribution of subjects with low content scores across all 

brain states, for both the past and future scores. In the younger cohort, we did not find 

any significant associations.  

 

From the STG seed region, we only found a significant association when looking at past 

content scores between the high content group and STG#4, within the older cohort 

(q<0.05; Figure 3.35.B). We did not observe any other significant associations in the young 

cohort, nor across the sample as a whole.  

 

Every window was assigned to a given state following the clustering procedure. Despite 

this a given window may maintain similar, albeit slightly less, correlation values to other 

states as to the assigned brain state. In order to better understand the relationship between 

the window map and its association to the mean state maps, we computed the correlation 

between the window map and each of the state maps. This provided a weight to measure 

the strength of association to each of the states, from each window map.  

 

The strength of the weight scores (correlation to brain state) varied over time, yet revealed 

consistently greater scores for one state over another in most subjects. The weight scores 
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obtained from MTG and STG, are displayed across all windows and brain states, by age 

cohort in Figure 3.36 (Left panels). The distribution of weight scores by brain state and 

cohort is displayed on the right panels. 

 

We ran a general linear model (GLM) on the mean weight values computed from each 

subject for each brain state. We first ran age cohort as the variable of interest, while sex 

was controlled for as a covariate. In the MTG seed region, weight values were similar in 

MTG#1 and MTG#2, however, in MTG#3 and MTG#4 we found significant age-related 

differences (q<0.001 and q<0.05, respectively). For the STG seed region, we found a 

significant difference between weight values by age cohort in all brain states (STG#1 and 

STG#2, q<0.001; and State STG#3 and STG#4, q<0.05).  

 

When we tested content scores as the variable of interest on the mean weight values, 

likewise controlling for sex, we did not find any significant effects in either of the seed 

regions. We came to the same conclusion with the static GLM analysis (Figure 3.27).  
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Figure 3.36. Correlation of each brain state across windows and cohorts (i.e.: weight) for both (A) 
the middle temporal gyrus and (B) the superior temporal gyrus seeds. The left panels show a 
visual representation of each brain state (columns) and the correlation to all windows (rows), by 
age cohort. This is ordered by brain state, with the bright green line demarcating areas where the 
given brain state shows the greatest correlation to the respective windows as compared to the 
other brain states. The right panels show boxplots of the distribution of the weights for each brain 
state across cohorts. In the general linear model analysis on the weight scores, with age as the 
variable of interest, and sex as a confounding factor, where (*) q<0.1, * q<0.05, ** q<0.01, *** 
q<0.001.  

 

We tested the interaction between age and content (for both past and future thought 

scores) in the GLM and likewise did not find any significant effects for either seed region, 

however, we found a trend in MTG#1 and MTG#4 (q<0.1) for the interaction between 

past content scores and age, as well as the interaction between future content scores and 

age in MTG#1. This overlaps in part with the findings from the permutation testing 

(Figure 3.35.A). We did not find any association from the superior temporal gyrus 

between any of the States and the interaction between age and content, in either past or 

future scores. 

 

Due to the overlapping results from the weight analysis and the permutation analysis, 

we decided to analyze this further. We took the older subjects most associated with 

MTG#4 (n=24) and tested them against the remainder of the subjects in the older cohort 

(n=44) for any psychometric or physiologic characteristics differences. As described in 

the previous results section, we tested differences in subject results from the Wechsler 

Abbreviated Scale of Intelligence, the NEO Five Factor Inventory, the Pittsburgh Sleep 

Quality Index and in physiological measures that included age, sex, handedness, blood 

pressure, pulse, and body-mass index. We also tested for differences in movement in the 

scanner.  
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After correcting for multiple comparisons we did not observe any association between 

the subjects associated with MTG#4 and the psychometric or physiologic measures and 

the subjects not associated with MTG#4.  

 

The relationship (correlation) of each mean state map to one another is displayed (Figure 

3.37). The mean of the correlations was lower for the MTG seed region than the STG seed 

region (0.6 vs 0.688), however, this difference was not significant (p=0.299).  

 

 

 

Figure 3.37. The correlation of each of the brain states with one another.  

 

3.3.2.5.  Transitions: 

To explore the dynamics of the functional connectivity measures, we computed the state 

transition probabilities for each cohort (Figure 3.38). Transition probabilities that show 

significant age-related differences (‘Old’ minus ‘Young’) are highlighted in the bottom 

panels (p<0.05). Negative values (blue background) indicate higher transition 
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probabilities for the young cohort, while positive values (white background) indicate 

more transitions for the old cohort.  

 

In the MTG, we found a significantly greater likelihood of older subjects remaining in 

MTG#1, MTG#2 and MTG#4 than the younger subjects (Figure 3.38.A). Only MTG#1 

and MTG#2 were significantly associated with the older cohort, while MTG#4 did not 

show a significant relationship with either the older or younger cohorts (Figure 3.34.A). 

Both past and future content scores, however, did show an association with the older 

cohort in MTG#1 and MTG#4. Younger subjects were significantly more likely to 

transition from MTG#2 and MTG#4, to MTG#3 than were the older subjects. Similarly, 

we found younger subjects were significantly more likely to transition from MTG#1 and 

MTG#2 to MTG#4, than the older subjects (Figure 3.38.A). The brain state MTG#3 was 

significantly more associated with younger subjects than old, and as noted above, we 

found no significant association with either age-cohort to MTG#4 (Figure 3.34.A). 

 

 



CHAPTER 3.  RESULTS 

 114 

 

Figure 3.38. Transition probabilities between brain states for older, younger and the difference 
between cohorts, for (A) the middle temporal gyrus and (B) the superior temporal gyrus seeds. 
In the top panels the transition probabilities between brain states for the older cohort are listed. In 
the middle panels the transition probabilities between brain states for the younger cohort are 
shown. The bottom panels show the difference in transition probabilities between cohorts (Older 
minus Younger; thus the negative values highlighted in blue depict a higher value for the younger 
cohort and vice-versa for the older cohort). Only significant differences are shown (p<0.05). 
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For the STG seed region, we found a significantly greater likelihood that older subjects 

would transition from STG#3 and STG#4 to STG#1, than were younger subjects (Figure 

3.38.B). STG#1 was significantly associated with the older cohort (Figure 3.34.B). We also 

found significantly more of the older subjects transition from STG#1 to STG#2 than 

younger subjects (Figure 3.38.B), despite STG#2 being significantly associated with the 

younger cohort (Figure 3.34.B). The brain state STG#1, however, consisted of almost no 

younger subjects (Figure 3.33.B), which may explain this observation. We observed 

significantly more of the younger subjects transition to STG#2 from STG#4, than older 

subjects. 

 

In Figure 3.38, we only displayed transitions between brain states. We did not include 

periods that were censored from the time-series due to excessive movement. This 

accounted for 0.85% of the transitions in the NKI-dataset. In the MTG seed region, we 

found older subjects were significantly more likely to transition both to and from MTG#1 

within periods of movement (p<0.05). In the STG seed region, older subjects were 

significantly more likely to transition from periods of movement into STG#1 (p<0.05), as 

compared to younger subjects.  

 

We extended the transition analysis to explore the relationship grouping by high and low 

content (as described previously) may have on the results (Figure 3.39). When looking at 

past content scores in the MTG, we found the high content group tended to stay in 

MTG#3 significantly more than the low content group across all subjects, and within the 

young cohort. (p<0.05, Figure 3.39.A). Although the difference was not significant, there 

were more subjects with high content scores associated to MTG#3 in the young cohort 

and across all subjects. When we compared high and low content scores in the old cohort 

group, we found the transition from MTG#1 to MTG#4 was significantly higher for low 

content subjects (p<0.05). The lack of subjects with high content scores associated to 

MTG#1 may be a factor in this result, as we observed this when looking at future content 
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scores as well. Across all subjects there were significantly more participants with high 

content that transitioned from MTG#1 to MTG#2. In the older cohort and across all 

subjects we found that low-content score subjects were significantly more likely to 

transfer from MTG#1 to periods of movement. In the older cohort, subjects with high-

content scores were significantly more likely to transition both to and from MTG#4, 

within periods of movement (p<0.05). These observations were consistent for both past 

and future content scores. In contrast, subjects with low-content scores in the younger 

cohort were significantly more likely to transition from MTG#4 to periods of movement 

(p<0.05). All of these significant transitions to and from periods of movement, were 

replicated when analyzing future content scores as well.  

 

In the STG, when we examined the past content scores, we found the high content group 

remained in STG#4 with a significantly greater frequency than the low content group 

across all subjects and in the older cohort (p<0.05; Figure 3.39.B). We also observed a 

significantly higher probability that high content subjects transitioned from STG#2 to 

STG#3 than low content subjects, again across all subjects and in the older cohort 

(p<0.05). In the younger cohort, we did not find any significant difference between low 

and high content groups for past content scores.  
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Figure 3.39. Transition probabilities by content group between brain states for all, older and 
younger subjects, for (A) the middle temporal gyrus and (B) the superior temporal gyrus seeds. 
All panels only show when there is a significant difference (p<0.05) in the transition probabilities 
between higher content score groups and low content score groups. The values are depicted as 
High vs. Low; thus the negative values highlighted in blue represent a value for the lower content 
group and vice-versa for the high content group. The results are shown for Past and Future 
content scores separately, for all subjects, as well as for only subjects in the old or young cohorts.  

 

For the future content scores in the STG, we found significant differences in each cohort 

and across all subjects. In the younger cohort, subjects in the high content group were 

significantly more likely to transition from STG#2 to STG#3, than the subjects in the low 
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content group (p<0.05; Figure 3.39.B). In the older cohort, we found subjects in the high 

content group were significantly more likely to transition from STG#4 to STG#1, than the 

subjects in the low content group (p<0.05). By contrast, we found the opposite across all 

subjects with those in the low content group significantly more likely to transition from 

STG#4 to STG#1, than the high content group (p<0.05; Figure 3.39.B). Across all subjects, 

we also found significantly more high content subjects switching from STG#2 to STG#3 

than low content subjects, as observed with the younger cohort. In addition, lower 

content subjects transitioned significantly more from STG#3 to STG#1, and higher 

content subjects were significantly more likely to remain in STG#4, that the reciprocal 

groups (all p<0.05; Figure 3.39.B).  

  

We next investigated the overall frequency each cohort switched states. In the MTG seed 

region, we observed subjects from the older cohort switched between states significantly 

less than did subjects in the young cohort (8.97% vs 11.74%, p=0.013). By contrast, in the 

STG seed region, there was no significant difference for the frequency of transitions 

between states between the old and young cohorts (10.34% vs 10.48%, p=0.901).  

 

Within the MTG, when we explored these relationships broken down into content 

groups, we found no significant relationship in the past content score group, between 

either high and low content scores and switching behaviour. This was true across all 

subjects and within cohorts (All: 10.07% vs 10.83%, p=0.499; Old: 8.43% vs 9.52%, p=0.477; 

Young: 10.6% vs 12.18%, p=0.325). When we examined high and low scores for future 

content, we found similar results with no significant differences in switching frequencies 

between high and low content groups, across all subjects and cohorts (All: 10.15% vs 

10.69%, p=0.631; Old: 8.12% vs 9.52%, p=0.357; Young: 10.69% vs 13.02%, p=0.154). 

 

In the STG, except for the old cohort in future content scores we found no significant 

differences in switching activity between high and low content groups for both past and 
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future, across all subjects and both cohorts. (Past: All: 10.41% vs 10.36%, p=0.964; Old: 

9.57% vs 11.11%, p=0.345; Young: 10.6% vs 10.38%, p=0.887; Future: All: 10.22% vs 

10.55%, p=0.769; Young: 10.82% vs 10.16%, p=0.670). In the old cohort, however, when 

looking at the future content scores, subjects in the low content group transitioned to 

other brain states significantly more than subjects in the high content group (Future: Old: 

8.55% vs 12.16%, p=0.027). 

 

We then assessed the impact that remaining in a brain state and transitioning from a brain 

state would have on mean connectivity for each of the seeds. In the MTG, we only 

observed an overall significant difference in mean connectivity for transitions out of or 

remaining in a given state, in the older cohort (0.255 vs 0.220, p=0.0018). When looking at 

individual states, we found greater mean connectivity in MTG#4 for both cohorts 

combined and individually for subjects that remained in, rather than transitioned out of 

the state (All: 0.313 vs 0.280, p=0.0010; Old: 0.315 vs 0.264, p=0.0146; Young: 0.312 vs 0.287, 

p=0.0187). In MTG#2, we found an association with the older cohort and across all 

subjects (All: 0.320 vs 0.292, p=0.0181; Old: 0.315 vs 0.277, p=0.0250). By contrast in 

MTG#3 we found the reverse, whereby the younger cohort and all subjects combined 

were significantly more likely to transition out of the brain state with a higher 

connectivity, than if they were to remain (All: 0.192 vs 0.212, p=0.0206; Young: 0.204 vs 

0.233, p=0.0101).  

 

When we examined the relationship between mean connectivity and past content scores 

in the MTG, we found a lower connectivity in high content scoring individuals that 

remained in MTG#3, than those that switched (High Content: 0.187 vs 0.211, p=0.045); 

and a higher connectivity in subjects that remained in MTG#4 that had lower content 

scores, than those that transitioned to a different brain state (Low Content: 0.310 vs 0.269, 

p=0.045).  When we examined the impact on mean connectivity within each cohort, we 

found the high content group in the older cohort had an overall higher connectivity when 
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subjects remained in a given brain state, than those that transitioned to other brain states 

(High Content: 0.289 vs 0.248, p=0.015).  We also found a significantly higher mean 

connectivity in the subjects with high content scores that remained in MTG#4, than those 

that transitioned to a different brain state (High Content: 0.336 vs 0.285, p=0.044). In the 

younger cohort we did not observe any significant relationship between the mean 

connectivity when remaining or transitioning from a brain state and the past content 

scores.  

 

For the future content score groups, across all subjects we found a greater mean 

connectivity in subjects from both high and low content scoring groups that remained in 

MTG#4, than those that transitioned to a new brain state (High: 0.321 vs 0.293, p=0.046; 

Low: 0.304 vs 0.266, p=0.006). Within the older cohort, subjects with high content scores 

overall had a significantly higher connectivity mean when they remained in a brain state, 

as opposed to transitioning from it (High: 0.282 vs 0.243, p=0.018). Subjects with scores 

in the low content group had a significantly higher mean connectivity when they 

remained in MTG#2, than those that transitioned to a new brain state (Low: 0.325 vs 0.276, 

p=0.018). In the younger cohort, subjects with high content scores had a significantly 

higher connectivity mean when they remained in MTG#4, as opposed to transitioning 

from to a different brain state (High: 0.309 vs 0.274, p=0.038). By contrast, younger subjects 

that were in the low content group had a significantly lower mean connectivity when 

they remained in MTG#3, than if they transitioned to a new brain state (Low: 0.207 vs 

0.239, p=0.046). 

 

In the STG, we did not observe any significant difference in overall mean connectivity for 

transitions out of or remaining in state across subjects and age cohorts (all, p>0.05). When 

looking at individual states, we found a significantly greater mean connectivity in older 

subjects, and for all subjects combined, that remained rather than transitioned from 

STG#4 (All: 0.351 vs 0.312, p<0.001; Old: 0.349 vs 0.290, p<0.001). We observed the reverse 
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patterns in which the older cohort and all subjects combined had a significantly lower 

mean connectivity when they remained in STG#3, than when they transitioned from the 

brain state (All: 0.198 vs 0.212, p<0.0383; Old: 0.184 vs 0.202, p<0.0486). 

 

When looking at the STG using the high and low content scores for past and future 

thoughts, we found a significantly lower mean connectivity for subjects with high content 

scores that remained in STG#3, as compared to those that transition to a different brain 

state. This was observed for both past and future content scores, across all subjects, as 

well as in the older cohort alone (All-Past: 0.198 vs 0.230, p=0.001; All-Future: 0.200 vs 

0.226, p=0.007; Old-Past: 0.184 vs 0.218, p=0.005; Old-Future: 0.191 vs 0.217, p=0.035). By 

contrast in STG#4 subjects from both low and high content groups, as a whole and in the 

older cohort alone, had a significantly higher mean connectivity when they remained in 

the brain state, as opposed to when the transitioned to a different brain state (High Content 

Score: All-Past: 0.349 vs 0.312, p=0.005; All-Future: 0.351 vs 0.319, p=0.016; Old-Past: 0.359 

vs 0.292, p=0.001; Old-Future: 0.353 vs 0.286, p=0.003; Low Content Score: All-Past: 0.356 

vs 0.314, p=0.001; All-Future: 0.350 vs 0.305, p=0.0002; Old-Past: 0.326 vs 0.289, p=0.039; 

Old-Future: 0.342 vs 0.294, p=0.0035). In the younger cohort, we found no significant 

relationship between the mean connectivity for remaining or transitioning from a brain 

state, for any content group or brain state (all, p>0.05). In the older cohort for past content 

scores, we found a significantly higher mean connectivity for the subjects in the high 

content group across all brain states that remained, compared to those that transitioned 

(0.270 vs 0.237, p=0.033).   

 

3.3.2.6.  Summary: 

In this study, we correlated thought content of young and old subjects to resting state 

connectivity using static and dynamic methods. We did not find a significant main effect 

of thought content on connectivity, however, we did find a significant cross-over 
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interaction between age and past thought content from both seed regions. We identified 

a significant increase in connectivity the occipital and parietal lobes from the MTG, and 

a significant increase to the calcarine from the STG seed region. Through the dynamic 

analysis we observed that older subjects with high content scores displayed high 

connectivity, while young subjects with high content scores were characterized by lower 

connectivity than the average across all subjects. We observed the inverse with low-

content scores. Older subjects with high content scores were significantly associated with 

MTG#4. This brain state was characterized by diminished connectivity to the DMN and 

thalamus and increased connectivity to other regions, as compared to the average. By 

contrast, younger subjects spent significantly more time than older subjects in MTG#3. 

Younger subjects with higher content scores were more associated to this state, however, 

this did not reach significance. The brain state was characterized by a higher connectivity 

to the DMN and reduced connectivity to other brain regions, as compared to the average 

across all subjects. A compensatory pathway via the MTG for older subjects when 

thinking about the past, may explain these observations. These are encouraging results 

that offer support for our original hypotheses.  
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3.4.  Cross-Dataset Comparison 

3.4.1.  Introduction 

In this exploratory, preliminary analysis our objective is to compare brain states derived 

from our analytic method across datasets. Since awake subjects may sleep inadvertently 

during a resting-state procedure, we are interested in associations between the brain states 

of awake (resting-state) subjects and those during NREM2 sleep. We calculate the 

Pearson correlation coefficient for all possible combinations of brain state and average 

cohort maps, across and within datasets. We anticipate some correspondence between 

resting-state and NREM2 brain states. To recap, our objectives are as follows: 

 

 Assess the feasibility of comparing brain states across datasets 

 Explore correlational relationships between sleep and resting-state brain states.  

 Evaluate the characteristics of inter-dataset brain states that show an association 

(i.e.: an association between NREM2 sleep and apparent wakefulness brain states).  

 

Due to differential age-related activity during sleep, we expect corresponding 

associations between brain states linked with similar age cohorts, across datasets. This 

would support our argument that along with sleep, age-related heterogeneous activity 

during sleep may have an important impact on resting-state results. We present a simple 

data-driven method to compare brain states across datasets. To recap, our hypotheses are 

as follows:  

 

Hypotheses: 

 A brain state from the resting-state analysis will be associated with an inter-dataset 

NREM2 sleep brain state.  

 These brain state will correspond according to age.  
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(i.e.: a brain state associated with older subjects in resting-state will associate to 

NREM2 sleep brain states that likewise associates more with older subjects.) 

 The associations across datasets will be lower in the MTG seed region.  

 

To maintain continuity with our earlier studies, we focused our attention on four ROIs 

from the Cambridge-36 functional network atlas [120]. The posterior cingulate cortex 

(PCC, region#4), the middle temporal gyrus (MTG, region#31), and both seed regions 

from the sleep study, comprising the thalamus caudate (TC, region#8) and the insula 

(INS, region#28). 

 

From the PCC, we expect diminished connectivity to the DMN following sleep [90]. The 

MTG is not known for specific sleep-related activity [91, 92], and will serve as a control. 

The TC is sensitive to drifting between wakefulness and sleep, along with sleep activity 

[93]. The INS has been related to slow-wave sleep activity, as well variations in activity 

according to eyes open and closed conditions [94]. Excluding the control seed region, we 

anticipate these regions will provide sufficient variation between wakefulness and sleep 

to identify corresponding vigilance across brain states.  

 

To make this assessment as analogous between datasets, we matched subject cohorts by 

age and sex. As a result, the cohorts of subjects from the NKI-e dataset differ somewhat 

from those in previous results sections. For this analysis, from the NKI-e dataset we 

analyzed 153 subjects (Old: 75 subjects (29% male), 50-69yrs, 58.4±5.85yrs; Young: 78 

subjects (50% male), 18-35yrs, 23.8±4.61yrs). This is matched with our previously 

described Sleep dataset of 30 subjects (Old: 14 subjects (36% male), 52-69 years, 59.5±5.9 

years; Young: 16 young subjects (50% male), 20 – 30 years, 23.3±3.3 years).  
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3.4.2.  Results 

For readability, the results are organized by seed region. Further, within each section we 

first present a figure describing the cross-dataset comparison, followed by figures 

describing the results of the clustering analysis, the composition of the states and a figure 

that displays the brain maps across datasets. The figures are explained in greater detail 

in the first section (posterior cingulate cortex), thus the reader may refer to this section 

for additional information to better read and interpret the figures in subsequent parts of 

this chapter.  

 

3.4.2.1.  Posterior cingulate cortex 

For the cross-dataset comparison, we calculated the Pearson correlation coefficient for all 

brain state maps and group average maps across and within the datasets that comprised 

awake subjects during resting-state and the sleeping subjects during NREM2 (NKI-e and 

Sleep dataset, respectively; Figure 3.40).  

 

The cross-dataset comparison figure is mirrored along the diagonal. We have divided the 

figure into four quadrants (demarcated by the green dashed lines) and most easily 

interpreted by reading across rows. With this in mind, the upper-left quadrant illustrates 

the intra-dataset relationship of all NKI-e maps to those within the same dataset. Reading 

across rows, each row then highlights the relationship of one of the NKI-e States or Group 

Averages across the NKI-e dataset. In the bottom-right quadrant the within-dataset 

relationship of all Sleep (NREM2) maps is represented, and can be read across rows as in 

the upper-left quadrant.  

 

The upper-right and lower-left quadrants are mirror images that illustrate the inter-

dataset relationship of each map from the NKI-e dataset to each map of the Sleep 

(NREM2) dataset. When reading across rows, in the upper-right quadrant each row 
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highlights the relationship of one of the NKI-e States or Group Averages across those 

from the Sleep (NREM2) dataset, and vice-versa reading across rows in the lower-left 

quadrant each row represents one of the Sleep (NREM2) States or Group Averages and 

its relationship to those from the NKI-e dataset. 

 

We present the cross-dataset comparison derived from the posterior cingulate cortex seed 

for both the NKI-e and Sleep (NREM2) datasets in Figure 3.40.  
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Figure 3.40. Cross-dataset correlation map for the posterior cingulate cortex seed comparing both 
within and across NKI-e and Sleep (NREM2) datasets. A color-coded, Pearson correlation 
coefficient is listed for all comparisons between each mean brain state map and group average 
maps for all, old and young subjects. The green dashed lines separate the two datasets and 
highlight the four quadrants of the correlation map; the black dashed lines divide the brain state 
data from the Group Averages. 

 

In the upper-right quarter (Figure 3.40), we observed that PCC#3 (NKI-e) correlates 

comparably to the brain states across both datasets (Mean: 0.775 vs 0.777, respectively). 

When comparing PCC#3 (NKI-e) to the group averages, we found a slightly lower mean 

correlation with the Sleep (NREM2) dataset as compared to the NKI-e dataset (Mean: 0.85 

vs 0.897). This brain state correlated most with PCC#4 (NREM2) and with the young 

(NREM2) cohort (0.85 and 0.87, respectively).  From the Sleep dataset, we observed that 

PCC#4 (NREM2) correlates more to PCC#3 (NKI-e) and PCC#4 (NKI-e) (0.85 and 0.81, 

respectively), than to all other Sleep states (≤0.75 for all; Figure 3.40, lower-left and -right 

quarters). The brain state PCC#4 correlated more to the Sleep (NREM2) group averages 

for all and young cohorts, but less to the old cohort, as compared to the NKI-e group 

averages (All: 0.89 vs 0.85; Young: 0.91 vs 0.85; Old: 0.81 vs 0.83).  

 

When we examined the Group Averages, we found a greater correlation between the 

young and old cohort maps in the awake NKI-e dataset, than from the Sleep (NREM2) 

dataset (0.94 vs 0.86, respectively).  

 

With both datasets we applied a hierarchical clustering procedure (Ward’s criterion) on 

the correlations between each window map with all the other window maps, resulting in 

a similarity matrix (Figure 3.41, left panels). Based on these similarity matrices, four states 

were assigned (Figure 3.41, right panels). In the NKI-e dataset, one cluster comprised over 

half of all windows, while the remaining three clusters were of comparable size. In the 

Sleep (NREM2) dataset, the procedure resulted in three comparably sized clusters, with 

one clusters driven by less data.  
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Figure 3.41. A) Hierarchical clustering in the NKI-e dataset. Left: Similarity matrix: Hierarchical 
clustering of the correlation of each window map to all other window maps across all subjects 
under Ward’s criteria. Each window map represents the connectivity between the posterior 
cingulate cortex seed to the entire brain. The dendogram is shown above the similarity matrix. 
Right: The clusters defined by the selection of four brain states. The numbers listed (i.e.: S#1, S#2, 
etc.) refer to the State numbers referenced in the text. B) Same as in A) for the Sleep dataset during 
NREM2. 

 

In the NKI-e dataset we observed that the probability of spending time in two of the states 

was significantly different between cohorts (Figure 3.42, left panel). Old subjects spent 

more time in State#2 (p<0.001), while PCC#3 (NKI-e) had significantly more young 

subjects than old subjects associated with it (p<0.01). We found that PCC#4 (NKI-e) 

contains approximately half of the windows from both age cohorts, with no significant 

difference between the presence of the old and young subjects (Figure 3.42), whereas 

PCC#4 (NREM2) was associated significantly more with younger than older subjects 

(p<0.05).  

 

 

Figure 3.42. Probability of time spent in a brain state for young (red) and old (blue) cohorts 
computed for the posterior cingulate cortex seed in the NKI-e dataset (left) and the Sleep 
(NREM2) dataset  (right). Significance was assessed using permutation tests (n=100,000; * p<0.05, 
** p<0.01, *** p<0.001). 
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In the Sleep dataset, only PCC#1 (NREM2) did not associate significantly with either age 

cohort (Figure 3.42, right panel). In PCC#2 (NREM2), we observed a greater association 

to the subjects in the younger cohort (p<0.05). In PCC#3 (NREM2) by contrast, we found 

significantly more of the older subjects associated to the State than young (p<0.01), while 

comprising almost 60% of all windows from the older cohort.  

 

When we examined the distribution of window maps across subjects and cohorts (Figure 

3.43), we confirmed that PCC#1 (NREM2) dataset was driven by a single older subject 

(Figure 3.43.C). 
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Figure 3.43. Distribution of window maps by brain state and cohort in the posterior cingulate 
cortex seed. A) The number of window maps that are most correlated to the given brain state by 
subject for the NKI-e dataset. The dashed line demarcates the older and younger cohorts, with 
the older cohort to the left of the dashed line. B) Corresponding boxplots show the distribution 
of the number of windows for each subject associated with the given brain state, by cohort. C) and 
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D) The same as in A) and B) for the Sleep (NREM2) dataset. Significance was assessed using 
permutation tests (n=100,000, where * p<0.05, ** p<0.01, *** p<0.001). 

 

In Figure 3.44, we display brain maps resulting from the PCC seed for each of the brain 

states and Group Averages in both datasets. Specifically, we computed the mean of the 

voxel-wise connectivity across windows and subjects, both while awake in the NKI-e 

dataset and while sleeping in NREM2 in the sleep dataset (Figure 3.44, row 5: “Mean”). 

All other maps were then z-standardized in relation to this average map. State-wise 

connectivity (rows 1-4) was calculated as the average of the voxel-wise connectivity 

within all windows that correlate most with the given brain state of interest. The limits 

used for the figure were kept constant across the datasets for each row of data, except in 

cases where a brain state was driven by only one or two subjects. Brain states that bear 

similarity to one another across datasets do not necessarily appear adjacent to one 

another. Finally, we computed the z-maps of the connectivity in the older and younger 

cohorts relative to the mean connectivity across all subjects in each respective dataset 

(Figure 3.44, rows 6 and 7). 
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Figure 3.44. Brain connectivity maps between the posterior cingulate cortex seed and the entire 
brain in (A) the NKI-e dataset and (B) the Sleep (NREM2) dataset. The upper four rows show z-
maps of each brain state relative to the average voxel-wise connectivity depicted in the fifth row 
(“Mean”). The bottom two rows illustrate the z-maps of the connectivity in the older and younger 
cohorts, respectively. 

 

In PCC#3 (NKI-e), a brain state significantly associated with younger subjects (Figure 

3.42.A.), we observed a lower connectivity to the default-mode network (DMN), whereas 

a higher connectivity to all other brain regions as compared to the dataset average. The 

brain state PCC#4 (NKI-e) displays typical DMN connectivity expected from a PCC seed. 

There is generally an increased connectivity to the DMN and a reduction in connectivity 

to other brain regions, as compared to the average. There is no significant difference in 
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the number of older or younger subjects in PCC#4 (NKI-e), There is also a reduction of 

connectivity in PCC#4 (NREM2), but this is observed more extensively throughout the 

brain, as compared to the average. There are significantly more younger subjects in 

PCC#4 (NREM2) (Figure 3.42).  

 

Looking at the average connectivity across the NKI-e dataset, there is greater connectivity 

between the anterior and posterior regions of the brain, from the PCC seed, as compared 

to the sleep average. The younger population shows this connectivity to a greater degree 

than the older population, while these apparent age-related differences are more notable 

during sleep than wakefulness (Figure 3.44. Bottom panels). 

 

In summary, PCC#3 (NKI-e) shows the greatest correspondence to the Sleep (NREM2) 

data, and most specifically to PCC#4 (NREM2). Both of these brain states are significantly 

associated to younger over older subjects. We observed that both of these brain states have 

a greater inter-state, as opposed to intra-state correspondence, but correlate more to intra-

dataset group averages.  

 

3.4.2.2.  Thalamus-caudate 

In Figure 3.45, we show the results from the cross-dataset comparison with the thalamus-

caudate seed region. As in the previous section, we calculate the Pearson correlation 

coefficient of each mean brain state map, along with the average maps across all, old and 

young subjects from the NKI-e dataset to that of the Sleep (NREM2) dataset. For a more 

extensive explanation, refer to the analogous figure in the posterior cingulate cortex 

section (Figure 3.40). 

 

The highest correlation we observed between States (0.65), was found between TC#3 

(NKI-e) and TC#4 (NREM2) (Figure 3.45: Upper-right quarter). In TC#2 (NREM2), we 
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observe almost no correlation to any of the states in NKI-e  (Figure 3.45: Bottom-left 

quarter). We observed the greatest correspondence between the young cohort group 

average in NKI-e, when compared to the overall and young cohort group averages in the 

Sleep (NREM2) dataset (0.71 and 0.70, respectively; Figure 3.45: Upper-right quarter).  

 

 

Figure 3.45. Cross-dataset correlation map for the thalamus-caudate seed comparing both within 
and across NKI-e and Sleep (NREM2) datasets. A color-coded, Pearson correlation coefficient is 
listed for all comparisons between each mean brain state map and group average maps for all, old 
and young subjects. The green dashed lines separate the two datasets and highlight the four 
quadrants of the correlation map; the black dashed lines divide the brain state data from the Group 
Averages. 
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As seen in the PCC seed, the correlation between the older and younger cohort maps is 

greater in the NKI-e dataset than in the Sleep (NREM2) dataset (0.86 vs 0.72; Figure 3.45: 

Upper-left and bottom-right quadrants). 

 

As described in the previous section, we applied a hierarchical clustering procedure 

(Ward’s criterion) to both datasets on the correlations between each window map with 

all the other window maps, resulting in a similarity matrix (Figure 3.46, left panels). We 

derived the clusters based on the similarity matrix, after we assigned four States to the 

data (Figure 3.46, right panels). In the NKI-e dataset, the clusters are of comparable size, 

whereas in the Sleep (NREM2) dataset, the procedure resulted in three main clusters, 

with one smaller cluster.  
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Figure 3.46. A) Hierarchical clustering in the NKI-e dataset. Left: Similarity matrix: Hierarchical 
clustering of the correlation of each window map to all other window maps across all subjects 
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under Ward’s criteria. Each window map represents the connectivity between the thalamus-
caudate seed to the entire brain. The dendogram is shown above the similarity matrix. Right: The 
clusters defined by the selection of four brain states. The numbers listed (i.e.: S#1, S#2, etc.) refer 
to the State numbers referenced in the text. B) Same as in A) for the Sleep dataset during NREM2. 

 

We assessed the probability of spending time in a given brain state for each cohort (Figure 

3.47) along with the respective distributions of the window maps by brain state across 

subjects and cohorts (Figure 3.48). In Figure 3.48.A.&C., the window distributions for 

both datasets are shown, demarcated by a dashed line between the older subjects on the 

left and younger subjects on the right. The boxplots are shown in Figure 3.48.B.&D.  

 

 

Figure 3.47.  Probability of time spent in a brain state for young (red) and old (blue) cohorts 
computed for the thalamus-caudate seed in the NKI-e dataset (left) and the Sleep (NREM2) 
dataset  (right). Significance was assessed using permutation tests (n=100,000; * p<0.05, ** p<0.01, 
*** p<0.001). 

 

In the NKI-e dataset, we found that age association to TC#1 and TC#3 differed 

significantly by cohort. The old cohort spent significantly more time than the young 

cohort in TC#1 (p<0.01), while the younger cohort spent significantly more time than the 

old cohort in TC#3 (p<0.05; Figure 3.47). In the Sleep (NREM2) dataset, each state was 

significantly associated with either the old or young cohort, expect TC#2 (NREM2). When 
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we examined the distribution of windows by subject we found this state to be driven by 

only two older subjects and thus did not reach significance (Figure 3.48). In essence the 

Sleep (NREM2) dataset was characterized by three states, when excluding TC#2 

(NREM2).  

 

The brain state TC#4 (NREM2) associated significantly with younger subjects than old 

(p<0.05), as did TC#1 (NREM2) (p<0.001). We found that TC#3 (NREM2) was 

significantly associated to older subjects (p<0.01), as compared to younger subjects, and 

these older subjects spent a little less than half the time in this state (Figure 3.47, Right 

panel).  
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Figure 3.48.  Distribution of window maps by brain state and cohort in the thalamus-caudate seed. 
A) The number of window maps that are most correlated to the given brain state by subject for the 
NKI-e dataset. The dashed line demarcates the older and younger cohorts, with the older cohort 
to the left of the dashed line. B) Corresponding boxplots show the distribution of the number of 
windows for each subject associated with the given brain state, by cohort. C) and D) The same as 



CHAPTER 3.  RESULTS 

 141 

in A) and B) for the Sleep (NREM2) dataset. Significance was assessed using permutation tests 
(n=100,000, * p<0.05, ** p<0.01, *** p<0.001). 

 

In Figure 3.49 we show the maps for the TC seed, of resting-state subjects in the NKI-e 

dataset and sleeping subjects (NREM2) in the Sleep dataset. Figure 3.49 is organized, and 

described more extensively, as in the previous section (Figure 3.44).  

 

 

Figure 3.49. Brain connectivity maps between the thalamus-caudate seed and the entire brain in 
(A) the NKI-e dataset and (B) the Sleep (NREM2) dataset. The upper four rows show z-maps of 
each brain state relative to the average voxel-wise connectivity depicted in the fifth row (“Mean”). 
The bottom two rows illustrate the z-maps of the connectivity in the older and younger cohorts, 
respectively. 
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In TC#3 (NKI-e), in which younger subjects spend significantly more time than the 

subjects from the old cohort (Figure 3.47), there is a general increase in connectivity 

throughout most regions of the brain, as compared to the average. This increase is less in 

regions of the DMN, while there is a reduced connectivity to the cerebellum Figure 3.49.  

 

As we observed in TC#3 (NKI-e), there is a general increase in connectivity to the rest of 

the brain in TC#4 (NREM2), as compared to the average during NREM2 sleep. This 

increase is less pronounced to regions of the DMN and slightly reduced to the angular 

gyri. As with TC#3 (NKI-e) there are significantly more young subjects that spend time 

in TC#4 (NREM2) as compared to the older cohort. (Figure 3.47).  

 

There was a small increase in connectivity from the TC seed across the brain in the 

younger cohort of the awake (NKI-e) dataset. This excludes the occipital lobe and PCC 

which showed slight decreases in connectivity as compared to the average (Figure 3.49). 

We observed some overlap in how the younger cohort in the Sleep (NREM2) dataset 

differed from the average, however, the decreases were more focused in the angular gyri 

region, as opposed to the occipital lobe, and the increases in connectivity were stronger 

as compared to the NKI-e dataset.  

 

In summary, there was some association between TC#3 (NKI-e) and TC#4 (Sleep), 

however, the correlation was lower than seen in inter-dataset relationships we observed 

with the posterior cingulate cortex seed (0.65 vs 0.85). We found both of these brain states 

were significantly associated with younger, rather than old subjects. This was supported 

by the relatively strong correlation between the group averages of the younger cohorts, 

as compared to other brain states (0.70).  
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3.4.2.3.  Insula 

We computed the cross-dataset comparison with the Insula seed region (Figure 3.50). As 

in each of the previous sections, we preformed this comparison by calculating the Pearson 

correlation coefficient of each brain state map, along with the average maps across all, old 

and young subjects from the NKI-e dataset to that of the Sleep (NREM2) dataset. For a 

more extensive explanation, refer to the analogous figure in the posterior cingulate cortex 

section (Figure 3.40). 

 

From the upper-right quarter of Figure 3.50, we observed that INS#2 (NKI-e) correlated 

more to INS#3 (NREM2), than any other NKI-e States or Group Averages (0.89 vs ≤0.87, 

Mean: 0.802). We also found that INS#2 (NKI-e) correlated more to the young and all 

subject group averages across datasets in the Sleep (NREM2) dataset, than to the group 

averages within the NKI-e dataset (inter vs. intra: 0.89 vs 0.87 (young) and 0.88 vs. 0.87 

(all)).  

 

From the Sleep (NREM2) dataset, we found INS#1 and INS#2 correlated poorly to all 

brain states or Group Averages across both datasets. As observed in the previous analyses, 

the intra-correlation between the older and younger cohort maps were greater in the NKI-

e dataset than in the Sleep (NREM2) dataset (Figure 3.50, Upper-left and bottom-right 

panels; 0.94 vs 0.88). 
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Figure 3.50. Cross-dataset correlation map for the insula seed comparing both within and across 
NKI-e and Sleep (NREM2) datasets. A color-coded, Pearson correlation coefficient is listed for all 
comparisons between each mean brain state map and group average maps for all, old and young 
subjects. The green dashed lines separate the two datasets and highlight the four quadrants of the 
correlation map; the black dashed lines divide the brain state data from the Group Averages.  

 

As in the previous sections, we applied a hierarchical clustering procedure (Ward’s 

criterion) to both datasets on the correlations between each window map with all the 

other window maps, resulting in a similarity matrix (Figure 3.51, left panels). We 

assigned four States to the data based on the similarity matrix (Figure 3.51, right panels). 



CHAPTER 3.  RESULTS 

 145 

In the NKI-e dataset, the clusters were of comparable size with INS#3 the largest and 

INS#4 the smallest. In the Sleep (NREM2) dataset, the procedure resulted in two main 

clusters, with the two remaining clusters driven by little data.  
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Figure 3.51. A) Hierarchical clustering in the NKI-e dataset. Left: Similarity matrix: Hierarchical 
clustering of the correlation of each window map to all other window maps across all subjects 
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under Ward’s criteria. Each window map represents the connectivity between the insula seed to 
the entire brain. The dendogram is shown above the similarity matrix. Right: The clusters defined 
by the selection of four brain states. The numbers listed (i.e.: S#1, S#2, etc.) refer to the State 
numbers referenced in the text. B) Same as in A) for the Sleep dataset during NREM2. 

 

As in the previous sections, we assessed the probability of spending time in a given state 

for each cohort (Figure 3.52). In addition we explored the respective distributions of 

window maps by brain state across subjects and cohorts (Figure 3.53).  

 

In both datasets, we found the probability of time spent in INS#3 and INS#4 was 

significantly different between cohorts. The brain states INS#3 (NKI-e and NREM2) had 

significantly more young than old subjects associated with it, and vice-versa in INS#4 

brain states (all, p<0.001). In INS#3, both datasets comprised more of the young subjects, 

with >90% of all windows from young subjects associated with this brain state in the Sleep 

(NREM2) dataset.  

 

 

Figure 3.52. Probability of time spent in a brain state for young (red) and old (blue) cohorts 
computed for the insula seed in the NKI-e dataset (left) and the Sleep (NREM2) dataset  (right). 
Significance was assessed using permutation tests (n=100,000; * p<0.05, ** p<0.01, *** p<0.001). 
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Due to the limited data that was associated with INS#1 and INS#2 of the Sleep (NREM2) 

dataset, we verified the distribution of windows to those states. We found that in both 

cases essentially only one subject from the old cohort (Figure 3.53) drove this finding. 

This explains the limited correlation of these two states to the other maps across the 

datasets. As a result, the Sleep (NREM2) dataset was essentially clustered into two main 

groups (see Figure 3.51.B.). 
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Figure 3.53. Distribution of window maps by brain state and cohort in the insula seed. A) The 
number of window maps that are most correlated to the given brain state by subject for the NKI-
e dataset. The dashed line demarcates the older and younger cohorts, with the older cohort to the 
left of the dashed line. B) Corresponding boxplots show the distribution of the number of 
windows for each subject associated with the given brain state, by cohort. C) and D) The same as 
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in A) and B) for the Sleep (NREM2) dataset. Significance was assessed using permutation tests 
(n=100,000; * p<0.05, ** p<0.01, *** p<0.001). 

 

We determined the brain maps for the Insula seed, of resting-state subjects in the NKI-e 

dataset and sleeping subjects (NREM2) in the Sleep dataset (Figure 3.54). The 

organization of the figure is described more extensively in the posterior cingulate cortex 

section (Figure 3.44).  

 

In INS#2 (NKI-e) we observed stronger connectivity from the insula seed to the DMN, in 

particular to the posterior cingulate cortex and the medial prefrontal cortex, when 

compared to the average connectivity. We also observed a reduced association to the 

occipital lobe and cerebellum (Figure 3.54). The analysis also revealed greater voxel-wise 

connectivity to the insula seed region itself and to the superior temporal gyrus as 

compared to the average, which was also evident in the younger cohort of the Sleep 

(NREM2) dataset (Figure 3.54). In INS#3 (NREM2), we observed a slight reduction in 

connectivity to the DMN areas described, as compared to the average. The average 

connectivity during Sleep (NREM2), however, appears to be greater to these regions than 

during resting-state wakefulness in the NKI-e dataset (Figure 3.54, Mean: fifth row). 
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Figure 3.54. Brain connectivity maps between the insula seed and the entire brain in (A) the NKI-
e dataset and (B) the Sleep (NREM2) dataset. The upper four rows show z-maps of each brain state 
relative to the average voxel-wise connectivity depicted in the fifth row (“Mean”). The bottom 
two rows illustrate the z-maps of the connectivity in the older and younger cohorts, respectively. 

 

In summary, INS#2 (NKI-e) of awake subjects showed a strong correlation across the 

Sleep (NREM2) dataset, and a strong correlation to the All and Young Group Averages. 

In particular, the correlation of this brain state to INS#3 (NREM2) was greater than the 

within brain state comparisons in the NKI-e dataset. The brain state did show a trend 

toward comprising more young than old subjects (Figure 3.52, Left panel; p=0.0664), 
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which may explain the greater correlation to the young sleep cohort (0.89) as compared 

to that of the older sleep cohort (0.82; see Figure 3.50). 

 

3.4.2.4.  Middle temporal gyrus 

In Figure 3.55 we show the results from the cross-dataset comparison with the middle 

temporal gyrus as the seed region. As described in the first section (posterior cingulate 

cortex seed, see Figure 3.40) for the cross-dataset comparison we calculated the Pearson 

correlation coefficient from each brain state and group average maps across all, old and 

young subjects to the equivalent maps across and within both datasets. 

 

For the NKI-e dataset, we observed that MTG#4 was most correlated to the Sleep 

(NREM2) dataset than the other NKI-e states (Figure 3.55, Upper-right quarter). The brain 

state MTG#4 (NKI-e) revealed particularly high correlations to the young cohort group 

(0.80), to MTG#2 (0.77) and MTG#4 (0.79) of the Sleep (NREM2) dataset. The brain state 

MTG#2 (NKI-e), likewise, showed a stronger relationship to MTG#3 (NREM2) than other 

states (0.78), but less to the Sleep (NREM2) dataset group averages (Mean: 0.653). Overall, 

the young cohort group from the NKI-e dataset showed the highest correlations across 

all states and groups of the Sleep (NREM2) dataset (Mean: 0.78). 

 

Of the states from the Sleep (NREM2) dataset, MTG#1 showed little correlation across 

both datasets (Mean: 0.536 for NKI-e and 0.655 for Sleep (NREM2)), whereas MTG#3 

(NREM2) overall had the greatest average correlation across all NKI-e states and group 

averages (Mean: 0.726; Figure 3.55, Bottom-left quarter). 
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Figure 3.55. Cross-dataset correlation map for the middle temporal gyrus seed comparing both 
within and across NKI-e and Sleep (NREM2) datasets. A color-coded, Pearson correlation 
coefficient is listed for all comparisons between each mean brain state map and group average 
maps for all, old and young subjects. The green dashed lines separate the two datasets and 
highlight the four quadrants of the correlation map; the black dashed lines divide the brain state 
data from the Group Averages. 

 

Unlike the other seed regions, we did not observe a greater correlation between the older 

and younger cohort group average maps in the NKI-e dataset as compared to the Sleep 

(NREM2) dataset (0.93 vs 0.93; Figure 3.55, Upper-left and bottom-right panels). 
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Following the hierarchical clustering procedure (Ward’s criterion) to both datasets on the 

correlations between each window map and all the other window maps, we established 

a similarity matrix (Figure 3.56, left panel). We assigned four States from this procedure 

(Figure 3.56, right panel). We found the cluster for MTG#1 (NKI-e) dataset to be smaller 

than the other comparably sized clusters, while in the Sleep (NREM2) dataset, we 

observed three main clusters, with one additional cluster (MTG#1) driven by little data. 
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Figure 3.56. A) Hierarchical clustering in the NKI-e dataset. Left: Similarity matrix: Hierarchical 
clustering of the correlation of each window map to all other window maps across all subjects 
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under Ward’s criteria. Each window map represents the connectivity between the middle 
temporal gyrus seed to the entire brain. The dendogram is shown above the similarity matrix. 
Right: The clusters defined by the selection of four brain states. The numbers listed (i.e.: S#1, S#2, 
etc.) refer to the State numbers referenced in the text. B) Same as in A) for the Sleep dataset during 
NREM2. 

 

As previously described, we computed the probability of spending time in a given state 

for each cohort (Figure 3.57), followed by evaluating the distribution of the window maps 

by brain state, across subjects and cohorts (Figure 3.58).  

 

In the NKI-e dataset we observed that the probability of spending time in three of the 

brain states was significantly different between cohorts (Figure 3.57, left panel). Old 

subjects spent more time in MTG#1 (NKI-e) and MTG#3 (NKI-e) (p<0.05 and p<0.01, 

respectively), while MTG#4 (NKI-e) had significantly more young subjects than old 

subjects associated with it (p<0.001).  

 

 

Figure 3.57. Probability of time spent in a brain state for young (red) and old (blue) cohorts 
computed for the middle temporal gyrus seed in the NKI-e dataset (left) and the Sleep (NREM2) 
dataset  (right). Significance was assessed using permutation tests (n=100,000; * p<0.05, ** p<0.01, 
*** p<0.001). 
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In the Sleep (NREM2) dataset, although MTG#1 was associated significantly more with 

old subjects than younger subjects (p<0.05, Figure 3.57, right panel), it was driven by a 

single older subject (Figure 3.58.C and D) and was not representative of other older 

subjects when comparing states (Figure 3.55). The clustering of the Sleep (NREM2) 

dataset fell essentially into three States. Of these three remaining States, we only observed 

a significant association in MTG#2 (NREM2) to young subjects (p<0.05).  

 



CHAPTER 3.  RESULTS 

 158 

 

Figure 3.58. Distribution of window maps by brain state and cohort in the middle temporal gyrus 
seed. A) The number of window maps that are most correlated to the given brain state by subject 
for the NKI-e dataset. The dashed line demarcates the older and younger cohorts, with the older 
cohort to the left of the dashed line. B) Corresponding boxplots show the distribution of the 
number of windows for each subject associated with the given brain state, by cohort. C) and D) 



CHAPTER 3.  RESULTS 

 159 

The same as in A) and B) for the Sleep (NREM2) dataset. Significance was assessed using 
permutation tests (n=100,000; * p<0.05, ** p<0.01, *** p<0.001). 

 

We show the brain maps derived from the middle temporal gyrus seed, for the resting-

state subjects in the NKI-e dataset and the sleeping subjects (NREM2) in the Sleep dataset 

in Figure 3.59. A more extensive explanation of organization of the figure is described in 

the posterior cingulate cortex section (Figure 3.44).  

 

In MTG#4 (NKI-e), we found reduced correlation to most brain regions, however, there 

was a higher correlation to the DMN, and within the middle temporal gyrus itself, as 

compared to the average correlation across all subjects in the NKI-e dataset (Figure 3.59). 

We likewise observed an increase in connectivity within the middle temporal gyrus, as 

compared to the group average, in the young cohort of the Sleep (NREM2) dataset as 

compared to the average correlation across all subjects in the Sleep dataset. Further, in 

MTG#2 (NREM2), we observed comparable reductions in correlation to most brain 

regions, but with smaller increases in connectivity to some DMN regions, as compared 

to the average.  

 

In MTG#2 (NKI-e), we found a slightly reduced correlation to the DMN as compared to 

the average across all subjects, while there was an increase to other regions, excluding the 

cerebellum, which showed a greater reduction in correlation as compared to the average. 

In MTG#3 (NREM2), there was a similar pattern, however, there was only a slightly 

reduced correlation to the cerebellum, as compared to the average across subjects in the 

Sleep (NREM2) dataset. The correlation to the DMN was slightly greater than the 

average, but less than to the other regions. 

 

In summary, we observed the greatest correlation to the Sleep (NREM2) dataset from 

MTG#4 (NKI-e).  The brain state was comprised of significantly more young than old 

subjects (p<0.05). The strongest inter-dataset correlation we found from MTG#4 (NKI-e) 
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was with the young sleep cohort (0.80) in the Sleep (NREM2) dataset. We also observed 

a higher correlation to MTG#2 (NREM2) (0.77), which comprised significantly more 

young subjects (p<0.05) and MTG#4 (NREM2) (0.79), which had no significant difference 

in cohort composition (p=0.142), than the other state comparisons.  

 

In MTG#2 (NKI-e) and MTG#3 (NREM2), in which we found a greater correlation to one 

another than in other inter-State comparisons, we observed no difference in the 

distribution by cohort (p=0.653 and p=0.316, respectively).  

 

 

Figure 3.59. Brain connectivity maps between the middle temporal gyrus seed and the entire brain 
in (A) the NKI-e dataset and (B) the Sleep (NREM2) dataset. The upper four rows show z-maps 
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of each brain state relative to the average voxel-wise connectivity depicted in the fifth row 
(“Mean”). The bottom two rows illustrate the z-maps of the connectivity in the older and younger 
cohorts, respectively. 

 

Finally, we observed a relatively high correlation in the inter-dataset comparison of 

Group Averages (Mean from each NKI-e dataset group average across all Sleep (NREM2) 

dataset group averages: NKI-e, All –  0.807; Old – 0.76; Young – 0.83). 

 

3.4.2.5.  Summary: 

In this preliminary, exploratory analysis we compared brain states across datasets. Age 

and sex were matched in cohorts across datasets, from an eyes-open resting-state 

procedure and an EEG-validated NREM2 sleep procedure in the scanner. There were 

brain states from the resting-state scan that correlated to the sleep data more than others. 

These tended to be associated with the younger cohort. The brain state PCC#3 (NKI-e) 

correlated most with PCC#4 (NREM2), while young subjects spent significantly more 

time in both these brain states, than did the older subjects. The relationship across datasets 

was difficult to discern from the MTG seed region. The TC#3 (NREM2) brain state was 

significantly associated with older subjects. It displayed greater connectivity to DMN 

regions than the rest of the brain. In the resting-state procedure this brain state was most 

associated with TC#4 (NKI-e), likewise characterized by more connectivity to DMN 

regions than the rest of the brain. We observed a pattern of equal or more correlation 

between old and young group average connectivity profiles during wakefulness, than 

during sleep. This raises the possibility more age-related differences may be detected 

during sleep. This analysis is preliminary and requires further investigation with EEG-

monitoring during the resting-state. Despite numerous limitations our basic hypotheses 

were satisfied.  



 162 

Chapter 4 

4 Discussion 

 

We explored functional connectivity differences in resting-state and sleep data between 

young and old subjects, using both static and dynamic analysis of fMRI brain networks. 

Through the dynamic approach, we were able to identify heterogeneity within cohorts. 

The data-driven method allowed us to delineate subgroups of older subjects that 

explained essentially all of the significant functional connectivity variability between the 

old and young cohorts in both the resting-state and sleep dataset. We identified possible 

compensatory pathways, to explain high thought content scores of older subjects. We also 

observed sub-significant connectivity profiles that associated significantly with either old 

or young subjects. These observations may provide a basis to identify new imaging 

biomarkers of heterogeneous aging pathways that previously would be overlooked. 

Finally, we demonstrated that our methods are transferable across datasets, to relate 

different brain states to cohort connectivity patterns.  

4.1.  Heterogeneity and aging 

In the resting-state and aging study, we centred our attention on establishing a suitable 

approach to questions of aging and heterogeneity. Our focus was on two seed regions 

(PCC and mPFC) sensitive to age-related changes in connectivity [2]. The overall decrease 

in connectivity we observed from these seed regions (Figure 3.2), when comparing young 

and old cohorts with static connectivity, is consistent with other studies in aging [2]. We 
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then applied a data-driven dynamic analysis based on hierarchical clustering of data, and 

discovered brain states that preferentially associated with older or younger subjects. 

Further, we delineated subgroups within the older cohort by connectivity profiles that 

displayed contrasting aging effects. One subgroup of older subjects presented almost no 

significant aging effect compared to young subjects, whereas from the other equal-sized 

subgroup we found significant aging effects that were more widespread than described 

in the literature [1]. 

 

It has been consistently shown and understood that there is a significant deterioration in 

connectivity in older populations, as compared to young [2, 23]. The fact that we could 

explain essentially all the variability between the age cohorts, by delineating the older 

cohort into two equally sized subgroups was more profound than we anticipated. This 

meant that approximately half the older sample displayed no significant connectivity 

differences with the younger cohort. To explain this type of heterogeneity, two 

overlapping concepts have commonly been described in the literature: successful aging 

and cognitive reserve. 

 

The concept of successful aging, as opposed to usual aging, has been discussed in the 

literature for decades [128]. Within this framework, the effects of aging are less impactful 

when factors under a person’s control, such as diet, exercise and other lifestyle habits are 

cultivated effectively. Poor diet and nutrition are believed to lead to a decline in cognitive 

performance [129], in particular when there is an insufficient intake of vitamins [130, 131]. 

That exercise may have an impact on cognitive performance has been observed in studies 

in aging for both short and long-term exercise regimens [132, 133]. This relationship has 

likewise been observed between aerobic exercise and resting-state connectivity, with 

significant increases in connectivity seen in older subjects that exercise [134]. As a result, 

according to this theory, aging leads to strong heterogeneous outcomes impacted by 

controllable factors governed largely by life choices [128]. Based on this, we would 
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conclude that the delineation we observed between those showing no significant 

connectivity differences with the younger cohort, and those with widespread significant 

connectivity differences would follow different behavioral or life habits. Due to the 

structure of the study, we could not correlate measures of life choices with our results, 

thus we can make no definitive claim how representative the theory is of our 

observations. Likewise, there is currently insufficient epidemiological data to estimate 

the prevalence of successful aging in the population [135], thus we cannot confirm 

whether the distribution of our results is consistent with this model for aging. We would 

propose that measures that focus on these factors be included in future studies. 

 

This concept has led to recent interest in studies of neurodegeneration [136]. The objective 

of these studies is to identify neural characteristics of so-called superagers that 

differentiate them from characteristics of normal (or usual) aging. Superagers in this case, 

however, have been defined as older subjects that perform on par with younger subjects 

in memory and cognitive testing [135], meaning a direct link to lifestyle behaviours is left 

unexplored. For example, studies have found brain areas of superagers show significant 

differences in connectivity within the DMN and salience network (SN) during resting-

state to subjects that age normally, while no significant differences were observed within 

these networks when compared to younger subjects [137]. Although these results are 

compatible to our own, the basis for these observations is unclear. Other studies have 

extended the use of successful aging to include subjects that suffer from MCI and AD to 

further differentiate the neural characteristics specific to superagers [136-139].  

 

The issue in these studies is whether the continued youthful cognitive performance 

observed in superagers (or successful aging) is a result of a brain that maintains its 

structure and function through life choices, hereditary or other means; or rather better 

performance results through effective compensatory brain mechanisms that hide 

underlying deterioration [140]. This latter concept of compensatory brain mechanism is 
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often referred to as cognitive reserve. It was first introduced to account for older 

individuals that were found to have significant neurodegeneration typical of Alzheimer’s 

disease post-mortem, without showing any clinical symptoms before death [141]. The 

idea of cognitive reserve has been explored in the course of normal aging, as well as in 

relation to neurodegeneration. This has been performed using various methods (global 

connectivity, network topology, EEG, etc.) to characterize cognitive reserve in older 

subjects [140, 142, 143] and through resting-state measures [140, 144].  

 

If a compensatory model better captures the basis for successful aging, we would expect 

connectivity differences between successfully aging older subjects and younger subjects 

that reflect the development and utilization of different pathways of cognition [144]. This 

is complicated by the need for a post-mortem examination to fully account for possible 

deterioration, in relation to possible cognitive reserve [145]. Despite extensive research, 

no studies have effectively established the relationship between theorized cognitive 

reserve and an improved brain efficiency [146]. In our results (see 3.3.  Thought Content), 

however, we do observe age-related differences in the lateral temporal lobe that may 

underlie a compensatory pathway. Older subjects with high thought content scores 

displayed higher connectivity from this brain region than the younger subjects, 

potentially supporting a cognitive reserve theory.  

 

In contrast to this possible example of cognitive reserve we found no specific relationship 

with the subgroups of older subjects, to scores measuring intelligence using the Wechsler 

Abbreviated Scale of Intelligence (WASI-II, [147]). Overlapping somewhat with 

successful aging, an individual’s capacity to develop cognitive reserve is believed to be 

impacted by education, occupational status and the Intelligence Quotient (IQ), among 

other factors [146].  
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Another factor that could be linked to our observations through the BOLD measures and 

perhaps underlying the concepts of successful aging or compensatory reserve, is 

cardiovascular health. This comprises variations in cerebral blood flow and 

cerebrovascular reactivity with age [82]. Cerebral blood flow (CBF) is an important factor 

in resting-state, since the measure of activity is directly related to deoxygenated 

hemoglobin in the blood. It is wholly possible that the divisions we are finding between 

age groups may bear some relationship to differential CBF and the resultant levels of 

connectivity and activity. The impact of differential CBF on connectivity and 

performance has previously been observed [148, 149]. A differential cerebral blood flow 

due to age [150] is also potentially associated with cognitive decline and 

neurodegeneration [151]. A relationship between cerebral blood flow changes in aging 

appear to depend in part on vascular factors [150], along with other factors that may be 

related to neurodegeneration [152]. Supporting these heterogeneous aging concepts 

(successful aging), exercise notably has an impact on cerebral blood flow as measured by 

arterial spin labelling [153]. To investigate the relationship of cerebral blood flow to our 

results, we propose future studies to include arterial spin labelling flow as an appropriate 

measure [150].   

4.2.   Characterization of brain states 

The PCC and mPFC are primary hubs of the DMN. Based on past studies, we expected a 

significant connectivity difference between these posterior and anterior regions [1, 2, 23]. 

As we also expected, through both clustering analyses a brain state (PCC#4 and mPFC#3) 

emerged that largely characterized the connectivity associated with the DMN. This 

featured higher connectivity to DMN regions and lower connectivity to other brain 

regions as compared to the average connectivity throughout the scan. During the resting-

state scan individuals spent about 40% of the time in this brain state; measured from both 

the PCC and mPFC seeds. Young subjects, however, spent more time in the DMN state 
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compared to older subjects measured from both seeds. When computed from the PCC 

seed region this difference was significant. The time spent in the DMN may be a 

reasonable indicator of aging effects at both a group and an individual level.  

 

It was, however, through the connectivity profile of brain state mPFC#4 that we could 

effectively delineate the older cohort into successful and usual aging categories. The 

subjects’ connectivity profiles that most highly correlated with mPFC#4 displayed the 

greatest loss in DMN connectivity, as compared to the young. We found that overall older 

subjects spent significantly more time in the mPFC#4 brain state, as compared to younger 

subjects. This represented slightly less than 40% of the total time spent by older subjects 

in all states, while younger subjects spent only 10% of their time in this state. This brain 

state most notably showed a reduced connectivity relative to the default-mode network 

activity usually found during resting-state procedures and an increase, relative to the 

average connectivity across all subjects, between the occipital lobe and the mPFC seed 

region (see Figure 3.5.B.).  

 

These observations are consistent both with decline expected through natural aging [1], 

as well as in studies of neurodegeneration [154]. Less has been examined in relation to 

the visual cortex and the increase in connectivity we observed there. Small age-related 

decreases in connectivity from the visual cortex, however, have previously been noted 

[37]. Studies that have found increases in connectivity in relation to aging have explained 

these results through compensatory activity [37]. Compliance may also be a factor in our 

observations. We will discuss this further (see 4.4.   Thought content and aging), however, 

simply closing the eyes can cause variations in brain activity and connectivity with the 

visual cortex and other regions [155-158]. Since this resting-state procedure included 

asking subjects to keep their eyes open while focusing on a fixation cross [95], any cohort-

wide difference in compliance may have resulted in connectivity differences to the visual 

cortex.  
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The discrepancy found between time spent in the DMN (mPFC#3) as compared to in 

mPFC#4 – the brain state associated with subjects that drove the age-related differences – 

may provide a potential marker for successful aging. This, and simply identifying time 

spent in the DMN state, as potential markers is a notable improvement over standard 

static connectivity analysis, where no heterogeneity can be identified. It is plausible, that 

even before there is a significant decline in connectivity that is measurable through static 

methods, a decrease in time spent in a typical DMN brain state (mPFC#3), or other 

potentially pathological state (e.g. mPFC#4), may be assessed at a subject level. This is 

viewed as key to future aging and clinical studies [22]. Notably, this may also allow us to 

identify sub-significant connectivity differences as potential bio-markers. A connectivity 

profile may be significantly associated with a given cohort, even when the differences 

between connectivity profiles are not significant. Thus, by using specific brain states, or 

prototypical connectivity profiles for a given quality (e.g. age-related decline, 

neuropathologies, other clinical measures), we can correlate a subject’s connectivity 

patterns to a set of connectivity profiles. This underscores a subtle yet important 

difference in the future for potentially identifying early subject-level bio-markers for 

diagnostic purposes. 

 

Here too, our findings may be explained through concepts of cognitive reserve, or 

successful aging, or an intersection of both. We observed the preservation of connectivity 

pathways in an older sub-cohort that does not differ significantly from the younger 

subjects that could support a successful aging explanation. By contrast, in a subsequent 

section on thought content (see 4.4.   Thought content and aging) we observe a potential 

compensatory pathway in older subjects with high thought content scores that could 

support cognitive reserve as an underlying mechanism. There are not, however, sufficient 

measures related to either theory to confirm their applicability to our observations. We 

did attempt to identify factors that may explain the differences we found in the older sub-
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cohorts. Of these, we explored age, sex, intelligence, emotional measures, and movement 

in the scanner. Even before correction for multiple comparisons, we found no significant 

impact from any of these factors.  

 

Previous work has delineated heterogeneity in older populations over 85 years [32], but 

our study is the first to use a dynamic method of analysis to successfully delineate the 

heterogeneity in an old population beginning at a relatively younger age (>65 years). This 

confirms that heterogeneity can be observed already at this age, and likely younger still. 

This work naturally lends itself to expand on current work focused on identifying early 

biomarkers of neurodegeneration [6, 7]. Confirmatory studies, along with additional 

psychometric analysis (cognitive based studies), behavioural measures and cerebral 

blood flow assessment, are necessary to validate our findings and explore other factors 

that may characterize the basis for the important connectivity differences we identified. 

4.3.   Sleep and aging 

When we examined data from old and young subjects during NREM2 sleep, we 

discovered important age-related differences in both our static and dynamic connectivity 

analyses. In the static analysis, we observed significantly lower connectivity from the 

thalamus-caudate seed to regions of the cerebellum in the older cohort, as compared to 

the young (Figure 3.13). This supports our hypothesis that there are significant 

connectivity differences between older and young adult subjects during sleep. To our 

knowledge this has not previously been measured using fMRI connectivity analyses. This 

observation is important in relation to resting-state analysis. It reinforces our premise that 

not only does sleep need to be a consideration during the procedure, but also the age of 

the participants. This is in addition to different age-related propensities to sleep, and the 

duration and sleep-stage variations within sleep.  
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The reduced connectivity in older subjects between the cerebellum and the thalamus-

caudate seed region is consistent with the literature that exists. The cerebellum does play 

a role in sleep, although it is poorly understood [159]. When the cerebellum does not 

function as expected, sleep-wake cycle perturbations [159] and other sleep disorders may 

arise [160]. The cerebellum has also been identified as an important source of activity 

during slow-wave sleep [161]. As part of the dynamic analysis, we found a relationship 

between some brain states and slow-wave sleep density. When cohorts were combined 

we found a correlation between time spent in the brain state TC#4 and slow-wave sleep 

density (Figure 3.22.A). Younger subjects likewise spent significantly more time in this 

brain state. The connectivity to the cerebellum in this brain state is generally more than the 

average across all subjects, based on the static connectivity results. There are, however, 

inherent differences in slow-wave sleep densities observable between old and young 

populations, with greater densities found in younger subjects, as compared to older 

subjects [111]. As a result, the relationship between slow-wave sleep and TC#4 may in 

part arise due to the distribution of subjects in the state, or vice-versa the distribution of 

subjects in the state may be a result of slow-wave sleep. It is therefore unclear whether 

the reduced connectivity between thalamus-caudate seed region and the cerebellum is 

ultimately related to the slow-wave sleep seen in the TC#4 brain state. 

 

In our dynamic analysis, we discovered a brain state from the thalamus-caudate seed 

region that essentially only comprised two older subjects who spent time in the state. 

Notably, when we removed these subjects from the static analysis, we no longer observed 

any age-related significant differences in connectivity. By contrast, removing two other 

older subjects that best matched the sleep and movement characteristics of these subjects 

maintained the significant age-related differences we previously observed. Although the 

sample size of this dataset was much smaller than that used in our resting-state analysis, 

in both cases we were able to identify a sub-group of older subjects that explained the 

variation in age-related connectivity differences we observed in the static connectivity 
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analysis. As in our previous resting-state analysis, exploring the dynamic connectivity 

changes using our data-driven method we were able to delineate the sleep results into 

brain states that were associated significantly with either old or young subjects, and sub-

cohorts thereof. This demarcation into age-related brain states was more pronounced in 

the NREM2 sleep data.  

 

In contrast to resting-state, while in NREM2 it was the older subjects that spent 

significantly more time in a brain state (TC#3) that displayed the most connectivity to the 

DMN network. In fact, from the TC seed region older subjects spent over 40% of their 

time in this state, while younger subjects spent less than 10% of their time in this state. 

Although this result is perhaps unsurprising considering older subjects have been 

described as sleeping less deeply than younger subjects [35], and more likely to switch 

between sleep stages [36], it is important to note that our analysis is exclusive to NREM2. 

Thus, this result implies that even while exclusively in a verified NREM2 sleep stage, 

significantly more of the older subjects display traits more typical of wakeful-rest than 

do younger subjects.  

 

Supporting this observation, we found a similar result as part of the cross-dataset 

comparison (see 3.4.2.1.  Posterior cingulate cortex) from the PCC seed region. During 

NREM2 sleep, one brain state that significantly associated with the older subjects was 

characterized by patterns that most resembled DMN association (PCC#1), as compared 

to the other brain states. The other brain state significantly associated with the older cohort 

was characterized by a higher connectivity throughout the brain (PCC#3; see Figure 

3.5.A). These brain states were most correlated with brain states during wakeful rest that 

were significantly associated with the younger cohort (PCC#3 in NKI-e), and one (PCC#4 

in NKI-e) that most resembled a typical DMN connectivity profile (see Figure 3.44). 

Together, this supports the premise that not only do the older subjects sleep less deeply 

(enter deeper sleep stages less than younger subjects), but within a given sleep stage, 
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comparatively, may experience it less deeply. In the case of NREM2, this may underlie 

differences that are seen in the quantity of sleep-related activity, such as k-complexes, 

sleep spindles and some slow-wave sleep densities [36]. This raises the interesting 

prospect that the connectivity differences observed between wakefulness and NREM2 

sleep, may largely be a function of these sleep-related dynamics and activity. Thus, older 

subjects may experience NREM2 more closely to wakefulness – in the context of brain 

dynamics – than a younger subject that experiences a greater density of typical sleep-

related activity (i.e. k-complexes, sleep spindles, etc.).  

 

In the INS#4 brain state, in which widespread higher connectivity was observed from the 

insula seed region throughout the brain, older subjects spent a significantly greater 

amount of time (just under 60%) in this state than did the younger subjects (just over 5%). 

In the awake brain widespread high connectivity has been related to lower levels of 

arousal [162]. The dispersion of connectivity may in the future be an interesting measure 

to differentiate low arousal and activity from brain dynamics in the sleeping brain. The 

brain state (TC#4) that showed a correlation with slow-wave density, generally had a 

higher connectivity throughout the brain than the average. This was particularly 

observed in the parietal and occipital lobes, including the motor cortex. In TC#2, the brain 

state representative of the two older subjects that drove the significant differences, for the 

most part we observed the inverse connectivity relationships to TC#4.  

 

An important result from our analysis of the sleep data, is that we did not find any 

significant differences between the old and young subjects during NREM2 utilizing the 

insula seed region. During the dynamic analysis, however, we did identify brain states 

(INS#3 and INS#4) which were associated more with young or old cohort subjects 

respectively. To highlight this, younger subjects spent approximately 90% of their time 

in INS#3, whereas older subjects only spent a little over 20% of their time in this brain 

state. By contrast, older subjects spent almost 60% of their time in INS#4, while in younger 
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subjects it only accounted for less than 10% of their time. As we noted in our analysis of 

the resting-state data, this type of sub-threshold connectivity observations may 

nonetheless represent important group differences that have practical application in early 

identification of biomarkers of illness or other group differences.  

 

There are various limitations in this study. The sample size limits our ability to generalize 

beyond our observations. To appreciate whether reduced cerebellar connectivity is a 

consistent age-related result, a greater sample size would be necessary. Further 

investigation and confirmatory studies would be of benefit. The subjects were sleep 

deprived before entering the scanner. This permits subjects to sleep more readily in the 

scanning environment, however, this can have an impact on neural activity [163] and 

connectivity measures [164], as compared to baseline. This, or likewise the sample size, 

may have an impact on the increased age-related differences we observed, as compared 

to the resting-state study. Our older cohort may realistically be considered middle-aged, 

thus the degree of identifiable age-related differences is notable. Due to the technical 

challenges of competing measuring systems (EEG and fMRI), however, we were unable 

to acquire reliable k-complex or sleep spindle activity. In future studies technical 

adjustments to avoid confounds in these frequency bands would be of interest to link this 

activity to the derived brain states. 

 

Age-related sleep differences have been described using different methods, yet to our 

knowledge this is the first time they have been characterized using an EEG/fMRI 

procedure. We found significant differences in connectivity and different characteristic 

brain states between the old and young. We did anticipate this finding due to different 

densities of activity during NREM2 sleep, however, the demarcations were stronger than 

we expected. These findings will be of particular importance for age-related resting-state 

studies. In this regard, any techniques designed to automatically identify sleep in resting-

state [40], age-related parameters, features of interest and heterogeneity would require 
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special attention. A relationship between electrical activity has been shown in some 

studies, but the relationship between EEG activity and fMRI has only begun to be 

established [71, 72]. The fact that we identified brain states that were specific to old and 

young subjects, as we found in the resting state analysis supports the premise that 

coupling exists between EEG and fMRI measures, as previously noted in EEG [36]. 

Likewise, the possible relationship we observed between slow-wave sleep densities and 

the TC#4 brain state, derived through our dynamic analysis, suggests this method can 

provide a more comprehensive characterization of such associations. The distinct age-

related demarcations we observed between brain states supports the use of fMRI sleep 

studies as an alternative strategy to identify biomarkers sensitive to early connectivity 

variations in aging populations. 

4.4.   Thought content and aging 

When we investigated the thought content of spontaneous mind wandering during the 

scan procedure, we observed a strong, albeit expected [46] relationship between scores 

for past and future thought content. We found significantly higher future thought content 

scores in the young cohort, than in the older subjects. Higher past thought content scores 

were similarly observed in the younger subjects than in the older cohort, however, this 

was not significant (Figure 3.26.A). Despite a previous non-finding in the literature [63], 

due to the age-related thought content score differences, we had anticipated a possible 

main effect of past or future thought content scores on connectivity. From our static 

analysis on our seed regions (MTG and STG), however, we found no significant main 

effect (Figure 3.27). By contrast, when we examined the interaction effect of age and 

thought content on connectivity through static analysis, we did find significant 

differences from both seed regions in relation to past content, but not future thought 

content scores (Figure 3.27). From the MTG, we observed significant increases in 

connectivity to the occipital and parietal cortices. We likewise observed a significant 



CHAPTER 4.  DISCUSSION 

 175 

increase in connectivity to the visual cortex – in the calcarine sulcus and the lingual gyrus 

– from the STG seed region.  

 

To explore further. we performed a dynamic analysis and found an association between 

thought content scores and the MTG#1 brain state, along with an interaction between age 

and thought content associated with additional brain states. When we differentiated high 

and low past content scores, we observed significantly more subjects with low- than high-

content scores in MTG#1. Older subjects, however, spent significantly more time (~12%) 

than younger subjects (<3%) in this brain state. When we considered the interaction 

between age cohort and thought content scores, we found that older subjects with high 

content, in both past and future thought, spent significantly more time in MTG#4 and 

significantly less time in MTG#1. There was no significant difference between thought 

content scores in MTG#1 for the younger subjects, suggesting the original association 

with content scores was driven by the older cohort. Notably, older subjects with low 

content scores were evenly distributed for the time spent in each MTG brain state. This 

implies the differences we observed were driven by older subjects that maintained high 

thought content scores. The MTG#4 brain state was characterized by a lower connectivity 

to the DMN regions, but higher connectivity to other regions including the occipital lobe, 

when compared to the average across all subjects.  

 

By contrast, younger subjects with high content scores spent the most time in MTG#3, in 

which there was a more typical DMN profile, with high connectivity to the DMN and 

lower connectivity to other regions. The younger cohort spent significantly more time in 

this brain state than did subjects from the older cohort. In MTG#1, the brain state 

significantly associated with older subjects with low content scores, there was a reduced 

connectivity throughout the brain. When we analysed the data from the STG seed region, 

older subjects with high past content scores spent significantly more time in the STG#4 

brain state than did older subjects with low past content scores (Figure 3.35.B). This brain 
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state was characterized by a higher connectivity throughout the brain, as compared to the 

average (Figure 3.32.B).   

 

By considering the dynamic results and the connectivity differences when averaged 

across age and high or low content scores, we found the variance in connectivity was 

explained through a cross-over (qualitative) interaction between age and the thought 

content scores. Thereby, the younger cohorts displayed comparatively lower connectivity 

from the seed regions to other brain regions than the older subjects when they scored 

highly for past and future thoughts and vice-versa for low content scores. Thus, in older 

subjects, when thought content scores were higher, the connectivity also increased.  

 

There are a few possibilities that may explain these results. One is that older subjects 

compensate locally, requiring more effort to maintain equivalent thought content, and 

thus maintain higher connectivity to achieve the same result. In a study using near-

infrared spectroscopy to measure hemodynamic effects of tasks on old and young adults, 

the authors likewise observed opposing effects in young versus older adults and 

compensation by older adults to attain similar performance outcomes [149]. Our 

observations from the STG#4 that displayed a higher connectivity throughout the brain 

for older subjects could support this interpretation. Yet, this does not fully explain our 

finding that younger subjects have a higher connectivity associated with lower thought 

content scores and vice-versa for low connectivity.   

 

An intriguing possibility to explain the inverted results we found in the old and young 

could result from compensatory pathways. In other words, it could be related to 

differential recruitment of these regions for processing past or future thinking. In 

previous studies, older subjects were found to incorporate the medial and lateral regions 

of the temporal lobe more than younger subjects when mentally elaborating 

autobiographical memories [47]. The premise that older subjects may use this as a 
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compensatory pathway is also supported by our observation that older subjects with high 

content scores displayed a lower connectivity to the DMN and higher connectivity to 

other brain regions, while younger subjects with high content scores tended to maintain 

the expected connectivity to the DMN. Hence, this observation may underlie, and be 

indicative of cognitive reserve, whereby subjects that age successfully are recruiting these 

different brain pathways to achieve the same or similar scores as the younger subjects. 

The younger subjects by contrast utilize the expected DMN pathway, explaining the 

apparently contradictory cross-over interaction. Thus, it is not that younger subjects are 

necessarily accessing memories with less neural activity, rather, the focus of the neural 

underpinnings of their mentation may be elsewhere, following different pathways in the 

brain.  

 

Questions of compliance to the scan instructions and vigilance are likewise important 

considerations. Compliance in this context is specific to keeping the eyes open while 

focused on a fixation cross, as requested during the procedure. Even though resting state 

is considered to be task-free, an eyes open or eyes closed instruction, along with the 

compliance to it, can have an impact on connectivity [157]. This is particularly the case if 

simple compliance to the instructions may vary between cohorts. Numerous studies have 

found different connectivity patterns based on whether the eyes are open, or closed [155-

158], which may have an unintended effect on this analysis.  

 

Beyond eye closures, drifting between wakefulness and sleep can likewise have an effect 

on connectivity for subjects that are rested, as well as sleep deprived [42]. As we have 

described sleep can also lead to differential connectivity profiles. Young subjects sleep 

more easily than older subjects [35], and when asleep we have already found that 

younger and older subjects appear to display significantly different connectivity patterns. 

A portion of subjects (10 – 30% by published estimates) will experience a loss of vigilance 

and drift in and out of sleep during the scan [39]. 
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A direct connection from the temporal to the occipital lobe has been described [165], 

which may account for the significant age-related connectivity differences found between 

the visual cortex and both temporal lobe seeds. Little in the literature describes how the 

connectivity between these regions may vary based on eyes open or closed, however, 

studies have looked at variations between the visual cortex and the thalamus. For 

example, the eyes open on a fixation cross condition, as compared to eyes closed, leads 

to reduced BOLD activity in both the visual cortex and thalamus [156, 166], and likewise 

overall lower connectivity between the two regions [158]. This, however, can vary 

depending on the specific visual and thalamic regions [156]. Measures of alpha power 

through EEG, associated to the thalamus and visual cortex, likewise show an increase in 

the alpha band [167] and in connectivity with eyes closed [158].  

 

As part of our cross-dataset analysis we examined the results from the thalamus seed 

region. Utilizing these results to compare connectivity to that described in eyes open or 

closed scenarios, we found an equivocal impact. Wang et al. linked connectivity states in 

fMRI to the state of vigilance, using degree of eyelid closure as a proxy measure [168]. 

They found that changes in functional connectivity were associated with arousal; an 

observation that has been recently outlined [162]. In contrast to other studies that 

measured connectivity to the thalamus, there was a reduced connectivity (when 

interpreting anti-correlation as described here [169]) between the visual network and the 

DMN when eyes were closed, as compared to when open [168]. In our analysis, this 

would support younger subjects having their eyes closed more than the old. 

 

Without combined EEG measures in the resting-state study, however, we are not in a 

position to confidently assess vigilance or compliance. Since older subjects generally have 

a more difficult time sleeping the scanner, and different connectivity profiles when they 

do sleep, as a minimum a video camera should be installed to observe the subject for 
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compliance. An interesting consideration, beyond variations in connectivity that may 

result from compliance is how light sleep may impact self-reported thought content. As 

subjects may not even realize they have slept in the scanner, the thought content may 

unexpectedly be rich in detail, or similarly less detailed due to forgetfulness. There are 

no studies to our knowledge that have characterized these possible differences, however, 

dream-like thoughts, while not actually asleep as confirmed by EEG recordings, have 

been characterized [170]. Relating wakefulness and vigilance to spontaneous thought 

generation by age may prove a fruitful avenue of research.  

 

In a study that looked at the relationship between connectivity and spontaneous mind-

wandering measured with a post-scan questionnaire, a decrease in connectivity between 

the superior temporal gyrus and the right-caudate was found for subjects that spent more 

time in a thought domain [61]. This is complementary to our observations, however, it is 

unclear how their thought content measures correspond to our scores of past and future 

thought. An earlier study with the NKI-e dataset, utilizing subjects between 18 and 60 

years, explored spontaneous mind-wandering during the resting-state scan using other 

methods [53]. The study was not focused on age-related differences, but they did find 

that older subjects reported greater specificity of thoughts. In addition, they found that 

greater future thought scores resulted in greater heterogeneity in regions of the occipital 

lobe. Thoughts that were more vague resulted in greater homogeneous activity in the 

visual cortex and heterogeneous activity in the medial occipital cortex. Some of the 

heterogeneity may be age-related, as we have observed in our analysis. In particular, this 

may result from the strong connectivity differences we observed in the occipital lobe 

when testing for the interaction between thought content and age. The vague thoughts 

and homogeneous activity found in the visual cortex, may likewise relate to possible 

periods of sleep, assuming subjects that sleep would provide less detailed descriptions of 

their thoughts. This interpretation supports our concern that vigilance and compliance 

are factors that need to be assessed in future studies.  
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An important limitation in our analysis is the degree to which subjects, in particular when 

older, may forget their thoughts when responding to the post-scan questionnaire. This 

may simply strengthen connectivity differences that we already observe between older 

subjects with higher and lower thought content scores, but the potential impact requires 

further investigation. Specific cognitive tests, such as the Logical Memory subtest of the 

Wechsler Memory Scale [171], may serve as an important control measure in this regard. 

Further, the NYC-Q may not fully reflect important aspects of thought content specific to 

older subjects. Questions that explore nostalgia and sentimentality [172], along with 

agency over one’s life [173], may align well with preoccupations of older subjects. 

 

Difficulty truly assessing thought content and the corresponding dynamics exist both 

with probes during the scan that disrupt what one attempts to measure [168], along with 

post-scan questionnaires that may suffer from distorted memory attributions. Treating 

thought content as a nuisance factor may allow us to better tease apart the factors 

impacting changes in connectivity through age [59]. The interaction of age, thought 

content and possible differences resulting from compensatory pathways in distributed 

seed regions, however, along with cohort heterogeneity requires a clearer understanding 

before including thought content as a covariate [64].  

 

Our findings merit further investigation. If the lateral temporal lobe regions form a basis 

for compensatory pathways, this suggests there is potential to utilize this information to 

better identify early biomarkers. It remains to be seen whether such biomarkers would 

best identify early elements of cognitive decline or a basis for successful aging through 

compensatory pathways. If these temporal pathways are not compensatory in nature, 

then the increase in connectivity may likewise provide a point of entry to uncover other 

compensatory regions.  
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4.5.   Brain state Transitions  

As part of our dynamic analysis, we considered state transition frequencies relative to 

age and thought content. We also measured the overall frequency of state transitions by 

cohort and the mean connectivity relative to the transition type. We did find a consistency 

between the state transitions and the cohorts most associated with the given brain state. 

That is to say, a cohort that spent significantly more time in a given brain state, also tended 

to transition out of the state significantly less than subjects from the other cohort. 

Likewise, there was a tendency for subjects from the cohort to transition significantly 

more often to the brain state in which they spent significantly more time.  

 

For example, the PCC#4 brain state was characterized by connectivity patterns that most 

closely represents DMN activity. Younger subjects spent significantly more time than 

older subjects in this state, and accordingly they tended to transition out of the state 

significantly less than older subjects. Likewise, in mPFC#4, where older subjects spent 

significantly more time than younger subjects, they also transitioned significantly less 

from this state than did the younger subjects. The younger subjects transitioned 

significantly more from this state to mPFC#1, where they spent significantly more time, 

than did the older subjects. Similar results were found in the sleep dataset analysis.  

 

These observations are noteworthy. A difference in the time spent in a brain state may 

simply be representative of the propensity to enter a brain state in the first place. The 

differing transition frequencies, however, provide support to the underlying dynamic 

basis for these results, and the dynamic quality of the fMRI data. 

 

The overall frequency of switching, conversely, did not show any particular consistency 

and seemed largely dependent on the seed region. During wakefulness there was no 

difference between old and young with the PCC or mPFC and STG as seed regions, while 
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from the MTG region older subjects switched states significantly less than younger 

subjects. By contrast, during sleep we found the older subjects transitioned significantly 

more when measured from the INS seed region and significantly less from the TC region. 

In an aging study that looked at young populations, there was likewise no association 

found between the frequency of switching states and age [76]. We would tend to interpret 

any differences in transition frequency with caution. It appears that the transition 

frequency had more of a relationship to the underlying brain states, than an overall 

attribute of age. Thus, an association between age and transition frequencies was best 

observed through the time spent in the brain states.  

 

This was also true of cohorts delineated by content score, taking age into consideration, 

as well as independent of age. We found no significant differences in overall transition 

frequencies, except in the older group from the STG seed. In this case, the low content 

score group transitioned significantly more than the high content group.  

 

The relationship between mean connectivity and state transitions, likewise was 

inconsistent overall. In our results, we did find relationships, however the mean 

connectivity would often be significantly higher in subjects that remained in a given state, 

while significantly lower in another state. In an aging study, they did find some 

associations to dynamic connectivity states [76], however, we found the strength of the 

mean connectivity for subjects remaining in the state was largely defined by the 

characteristic connectivity of the brain state. Thus, a brain state with a generally lower 

connectivity displayed a greater likelihood of lower mean connectivity for subjects that 

remained in the state, and vice-versa for higher connectivity. This did not seem to be 

impacted by the age cohort that spent significantly more time in the given brain state. This 

is an important consideration for studies that look at transitions across the entire time 

series. It suggests the subgroupings of low and high connectivity may provide more 

information to the dynamics than overall observations.  
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Our analysis is limited by the short duration of the resting-state scan and the limited 

sample size in the sleep dataset. Although there were sufficient datapoints for the 

analysis, an increased power and number of transition points would help validate our 

observations.  

4.6.   Cross-dataset comparison 

Lastly, as a preliminary analysis, we compared brain states across datasets. We matched 

age groups and utilized data from the eyes-open resting-state procedure and compared 

this to data from EEG-validated NREM2 sleep in the scanner. We did find a 

correspondence between datasets for brain states associated with the same age cohort. 

Likewise, we observed that brain states associated with the younger cohort, along with 

the average brain state of the young cohort itself, showed greater correspondence between 

the resting-state and sleep datasets, than those of older cohorts.  

 

For example, the PCC#3 brain state from NKI-e resting-state procedure correlated most 

with PCC#4 from the NREM2 sleep dataset. Young subjects spent significantly more time 

in both these states than did the older subjects. The connectivity profile found in PCC#3 

(NKI-e) displayed a pattern that may be indicative of periods of sleep, while in resting-

state. As compared to the average across all subjects, there was less connectivity to the 

DMN regions and more connectivity across other regions of the brain, excluding the 

thalamus. This suggests an overall dispersion of connectivity throughout the brain, as we 

would anticipate during sleep [90]. Since we expect younger subjects to show a greater 

facility to sleep in the scanner [34], this result was expected and adds credibility to our 

analysis.  
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The relationship between datasets was less differentiable when looking at connectivity 

from the MTG seed region. Since the MTG is not related to sleep processes, we did not 

anticipate any specific relationships to be uncovered. From the insula seed region, we did 

find a stronger relationship between specific brain states (INS#2 in NKI-e and INS#3 in 

NREM2 sleep) across datasets, as compared with other brain states. The INS#2 (NKI-e) 

brain state was similarly more correlated with the average young brain state from the 

NREM2 dataset. Although younger subjects spent more time in this brain state than the 

older cohort, the difference was not significant. This brain state was characterized by 

reduced connectivity to the occipital lobe and cerebellum as compared to the average 

across all subjects. Previously, increased BOLD signal and alpha power to the insula, with 

reductions to the occipital lobe has been observed [94]. Drowsiness has been proposed as 

an explanation [94] along with increased alpha power to insular regions during slow-

wave sleep [174].  

 

The strongest correlation across datasets from the thalamus-caudate seed regions was 

found between TC#3 (NKI-e) and TC#4 (NREM2), both brain states characterized by 

higher connectivity throughout the brain excluding portions of the cerebellum and 

inferior parietal lobule. Both were significantly associated with the younger subjects. 

Although the correlation is less, this is consistent with our comparisons from other seed 

regions. By contrast, the TC#3 (NREM2) brain state is significantly associated with older 

subjects. It displays greater connectivity to DMN regions than the rest of the brain (Figure 

3.16.A). This brain state associated most with TC#4 (NKI-e), which was likewise 

characterized by more connectivity to DMN regions than the rest of the brain. The TC#4 

(NKI-e) brain state was, however, associated equally with young and old subjects. Rather 

than evidence of sleep, this correlation may support our speculation that older subjects 

in NREM2 sleep display connectivity that constitutes wakeful-rest (see also 4.3.   Sleep 

and aging).  
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We expected stronger correlations across datasets from the thalamus-caudate seed region 

to infer sleep or drowsiness during resting-state. This may be moderated, however, by 

the relatively longer length of the windows we used to derive the brain states (100sec). 

Short duration changes when drifting between wakefulness and sleep would be less 

detectable with window correlation maps comprised of wakefulness and sleep together. 

In the sleep analysis, we intentionally left out transition periods, in order to make a 

distinct NREM2 analysis. A mixed brain state, however, may better correlate to the 

resting-state results than our current analysis allows. A future analysis with a smaller 

window that allows mixed sleep stages may prove fruitful. Despite possible spurious 

auto-correlations, the majority of studies have successfully identified relevant brain states 

using shorter time windows [78]. Likewise, we have previously used a 45-second 

window to successfully delineate different characteristics of NREM sleep stages and 

mixed stages [74].  

 

As part of the cross-dataset comparison we correlated the connectivity profiles of the old 

and young cohorts. An interesting pattern began to emerge, whereby the old and young 

cohort connectivity profiles were either equally or more correlated during wakefulness 

(the resting-state procedure), than during NREM2 sleep. This suggests there may be more 

age-related differences that are being detected during sleep, which are not observed 

during wakeful rest. There are a few possible explanations for this result. It is possible 

that age-related functional connectivity differences can simply be discerned more readily 

during sleep. This may also result, or be amplified, from the sleep deprivation aspect of 

the study procedure. Since sleep deprivation causes variations in connectivity, this may 

be more pronounced in older subjects [42]. The different sample sizes of the datasets may 

also be a factor. As a result, a larger sleep dataset would be necessary to help confirm or 

refute these initial observations. The possibility that connectivity measurements during 

sleep provide potential biomarkers more sensitive to differential aging is an intriguing 

consideration. This is even more pertinent considering we observed these differences 
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with an older cohort that was younger than in our previous analyses, ranging in age from 

50 to 69 years. 

 

This analysis is preliminary and suffers from certain limitations. Without additional 

measures with EEG-monitoring during the resting-state, it is difficult to fully assess and 

validate the relevance of our observations. Comparing results across sites may result in 

some error, although test-retest results across multiple sites with older subjects has 

shown some reliability, with the least error found from the PCC seed region [175]. In this 

cross-site comparison, the scanners were the same model, but there were small 

differences in the acquisition parameters. As with resting-state connectivity [164, 176], a 

lack of sleep impacts connectivity during sleep [42]. Thus, if the non-sleep-deprived 

subjects in the resting state scan fall asleep, it is possible their connectivity profiles during 

sleep would be different from those of their sleep deprived counterparts, during the same 

sleep stage.  

4.7.   Limitations  

There are limitations we have discussed in our analyses that are study specific, while 

others can have an impact across studies. As we have mentioned, the length of our 

windows is greater than in most studies using dynamic connectivity and sliding 

windows [78]. The effectiveness of this window length has been confirmed [70] and it 

allowed us to avoid spurious autocorrelations [69], but resulted in certain limitations 

when analyzing sleep and thought content. Alternations between sleep stage or thought 

content shorter than the window length would result in a mixture of brain states. Future 

studies would benefit from exploring the results with a shorter time window. This would 

increase the number of datapoints, and likewise allow us to increase the number of brain 

states. Our choice of 4 brain states, reflected both the length of the time series we examined 

and the number of subjects in the study. By increasing the number of brain states it might 



CHAPTER 4.  DISCUSSION 

 187 

be possible to characterize finer variations and heterogeneity within the data. Another 

possible technique to increase the number of datapoints and reliable brain states is the 

sampling rate, or repetition time (TR) during the fMRI data acquisition. In our datasets 

we used a relatively standard TR length for the acquisition. This allowed us to better 

compare between datasets, however, when looking at dynamic variability a fast-sequence 

TR would be of interest.  

 

We approached our analysis with discrete age groupings, rather than across the lifespan. 

As described above, the limited number of brain states we used to characterize 

differences in our populations, would be insufficient to capture the variability 

throughout the lifespan. Although age-related decline has been described as a gradual 

linear process  [177], our own previous results and other studies suggest a step-wise, non-

linear deterioration that occurs in middle- and very old-age periods [28, 178]. Future 

studies spanning young adulthood to old age could complement our results. We would 

anticipate heterogeneous aging trajectories that nonetheless intersect with corresponding 

brain states at cross-sections along the lifespan.  

 

As we have discussed it is unclear the impact cerebral blood flow may have on our 

analyses. In order to address these concerns, we recommend future studies include 

arterial spin labeling measures [150]. Another age-related confound we did not add as a 

covariate in our analyses was motion in the scanner. Since motion in the scanner increases 

with age, it may also limit our ability to detect other factors that explain the age-related 

variance [82]. To address this limitation, we tested for motion differences between cohorts 

in each analysis. Although we found this was not a significant factor in the results, it 

would be of interest to include motion as a covariate in future studies. As with most fMRI 

studies, and considering the heterogeneity in the older population, a greater sample size 

will be of benefit. Further, successfully completed cognitive and behavioural measures 
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are essential for future studies, to ascertain a relationship between those measures and 

the connectivity profiles we identify.  
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Chapter 5 

5 Conclusion 

 

In this body of work, we identified cohort level heterogeneity using data-driven methods. 

This allowed us to delineate sub-cohorts that explained the age-related variance we 

observed during wakeful-rest and NREM2 sleep connectivity. The significant differences 

in connectivity we found between the age cohorts, during NREM2 sleep, has not been 

described previously in fMRI studies. Further, we identified possible compensatory 

pathways that older subjects, who measured highly in thought content scores, utilized 

during resting-state spontaneous cognition.  

 

The consequential delineation of sub-significant connectivity profiles that nonetheless 

show significant association by age cohort may equally be of importance. These findings 

may be representative of important age-related differences before they reach typical 

significance by other methods. In addition to differentiating cohort level heterogeneity, 

our methods will allow for an evaluation at the individual level. We can correlate the 

relationship of an individual’s brain state connectivity profile to specific group averages 

or prototypical states. This deserves further investigation, and could have practical use 

in elucidating underlying disease or neurodegenerative mechanisms, as well as, provide 

a statistical basis for individual diagnostic profiling of subjects through prototypical 

connectivity mappings.  

 

Our results further support the use of dynamic connectivity analyses to elucidate the 

relationship between functional connectivity measures and aging. Despite clear 
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advantages to using a dynamic connectivity framework to analyze the resting-state data, 

we did find it advantageous to preserve a static analysis. The static analysis acted as a 

benchmark for the more extensive dynamic investigation and provided a framework to 

aid with the interpretation of our results. Our results also highlight the importance of 

accounting and controlling for sleep during all resting-state procedures. 

 

Based on recent findings, our analysis methods may be transferable to task-based fMRI 

in addition to resting-state analysis [179]. There is potential to use our methods as a tool 

with widespread application to identify bio-markers in neurodegeneration, psychiatric 

and neurological disorders [78]. Neuroimaging data analysed from a data-driven 

perspective using regions of interest as a primary starting point [180], combined with 

behavioural and psychometric data to establish subject-level profiles, is the current 

driving force in the field [22]. Our methods provide a basis to continue to address these 

questions.  
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