National Library
I * l of Canada

Acquisilions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibhographic Services Branch des services bibliographiques

395 Wellingtor Stree
Ottawa, Ontano
K1A ONd K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments. -

i1+l

. ada

395, nue Wemhngton
Oftawa (Ontang)

Yows hip Vol rldivpeyc e

Oue M MNP reternee

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grace.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont eté
dactylographiées a l'aide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

ACTION DIAGRAMS: A
METHODOLOGY FOR THE
SPECIFICATION AND VERIFICATION
OF REAL-TIME SYSTEMS

by

Karim Khordoc

Department of Electrical Engineering
McGill University, Montreal
March, 1996

A thesis submitted to the Faculty of Graduate Studies and Research in
partial fulfillment of the requirements of the degree of Doctor of
Philosophy

©XKarim Khordoc, 1996

l* National Library
of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direclion des acquisitions el

Bivliographic Services Branch des services bibliographiques

395 Wellington Street
QOttawa, Ontarnio
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

345, rve Wellington
Ottawa {Ontano)

Your ikt Ve rharmnce

Our i NI setironce

L'auteur a accordé une licence
irrevocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L'auteur conserve la propriéte du
droit d’auteur qui protege sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-12400-2

Canada

To my wife Marie-Claude
and to my children Patrick, Philip, and Valerie

m

ABSTRACT

In this thesis, we address issues in the specification, simulation, and
formal verification cf systems that are characterized by real-time con-
straints and a mix of protocol and data computation aspects. We propose
a novel specification language and modeling methodology - HAAD (Hier-
archical Annotated Action Diagrams). In HAAD, the interface behavior
of a system is captured as a hierarchy of action diagrams. The internal
behavior is modeled by an Extended Finite State Machine (EFSM). A leafl
action diagram defines a behavior (a template) over a set of ports. Pro-
cedures and predicates are attached to actions in order to describe the
functional aspects of the interface.

We propose algorithms and methods {or the automatic generation of
simulation models and response verification scripts from HAAD specifica-
tions. These models perform “on-the-fly parsing” of actions received at
their I/O ports, sequencing through state transitions based on the result
of this parsing, detecting incorrect, or ill-formed interface operations (bus
cycles), verifying that all timing constraints at the input of the model are
met, and driving the model cutputs with appropriate delays.

We formalize the operational semantics of leaf action diagrams un-
der linear timing constraints, based on the concepts of a block machine
and causal block machine. We state the realizability of an action diagram
in terms of the existence of a causal block machine derived from the ac-
tion diagram. We examine the problem of the compatibility of concurrent,
communicating leaf action diagrams described by linear timing constraints
and we show the inaccuracies of known methods that address this prob-
lem. We define the action diagram compatibility problem in terms of the
compatibility of all the possible combinations of causal block machines de-
rived from these action diagrams. We prove that such enumeration is not
needed in answering the compatibility question. This leads to an exact
and efficient compatibility verification procedure.

v

RESUME

Dans cette these, nous traitons de la problématique de la spécifica-
tion, simulation, et vérification formelle de systémes caractérisés par des
contraintes en temps réel et par un mélange d’aspects de protocoles et de
traitement de données. Nous proposons un nouveau langage de spécifi-
cation et une méthodologie de modélisation - HAAD (Hierarchical Anno-
tated Action Diagrams - Diagrammes d’Actions Annotés Hiérarchiques).
En HAAD, le comportement a 'interface d’un systéme est représenté par
une hiérarchie de diagrammes d’actions. Le comportement interne du sys-
téme est représenté par une machine 2 états finis étendue. Un diagramme
d’actions feuille définit un comportement (un gabarit) sur un ensemble de
ports. Des procédures et des prédicats sont attachés aux actions afin de
décrire 1'aspect fonctionnel de 'interface.

Nous proposons des algorithmes et des méthodes pour la génération
automatique, & partir de spécifications HAAD, de modéles de simulation
et de scripts de vérification des réponses du systeme. Ces modeles traitent
“2 la volée” les actions regues sur leurs ports d’entrées / sorties, accomplis-
sent le séquencement d’états approprié, détectent les opérations d’interface
{cycles de bus) mal formées, vérifient que toutes les contraintes temporelles
aux entrées du modeéle sont respectées, et contrdlent les sorties du modele
moyennant les délais appropriés.

Nous procédons a la formalisation de la sémantique opérationnelle des
diagrammes d’actions feuille sous contraintes temporelles linéaires. Cette
formalisation est basée sur les concepts de machine & blocs et machine a
blocs causale. Nous formulons la réalisabilité d’un diagramme d’actions en
terme de 'existence d'une machine a blocs causale dérivée du diagramme
d’actions. Nous examinons le probléme de la compatibilité de diagrammes
d’actions communicants décrits par des contraintes temporelles linéaires, et
nous montrons I'inexactitude des méthodes connues traitant ce probleme.
Nous définissons le probleme de compatibilité de diagrammes d’actions en
terme de la compatibilité de toutes les combinaisons possibles de machines
blocs causales dérivées de ces diagrammes d’actions. Nous faisons la preuve
que cette énumération n’est pas nécessaire pour répondre 2 la question
de compatibilité. Ceci donne lieu & une procédure exacte et efficace de
vérification de la compatibilité.

ACKNOWLEDGMENTS

I am deeply grateful to my thesis supervisors, Drs Nicholas Rumin
and Eduard Cerny for providing me with the opportunity to go through
the Ph.D. program. Working closely with Dr Eduard Cerny has been a
fulfilling and rewarding experience. I cannot thank Dr Cerny enough for
his relentless cnergy, motivation and patience in supervising this work.

Grateful acknowledgments are also made to:

Engineering managers at Bell-Northern Research Ltd., Mr Allan Sil-
burt, Mr Robert Hum and Mr Philip Pownall for their helpful discussions,
encouragements, and continuous support of this research.

Former M.Sc. students at the Université de Montréal, Mr Mario
Dufresne, Mr Philippe-André Babkine, Mrs Simona Gandrabur, and Mr
Andrei Tarnauceanu, for their efforts in carrying the detailed design and
software implementation of the HAAD specification and simulation pack-
ages.

Former post-doctoral fellow Dr Tahar AliYahia for his assistance in
the design and software implementation of the formal static timing verifi-
cation package for leaf action diagrams.

The Natural Sciences and Engineering Research Council of Canada
(NSERC) and Bell-Northern Research Ltd. (BNR) for their financial sup-
port of this research.

I would also like to thank my wife Marie-Claude for sharing the dream
and for her moral support and love. Last, but not least, I am eternally
grateful to my parents who have given me a solid foundation of love, trust
and the desire to pursue success and happiness.

vi

REMARKS CONCERINING THESIS
PREPARATION

In accordance with the Guidelines for Thesis Preparation (September
1994 revision) of the Faculty of Graduate Studies and Research, McGill
University, the following text is cited:

“Candidates have the cption of including, as part of the thesis, the
text of a paper(s) submitted or to be submitted for publication, or the
clearly-duplicated text of a published paper(s). These texts must be bound
as an integral part of the thesis.

If this option is chosen, connecting texts that provide logical bridges
between the different papers are mandatory. The thesis must be written in
such a way that it is more thaan a mere collection of manuscripts; in other
words, results of a series of papers must be integrated.

The thesis tnust still conform to all other requirements of the Guide-
lines for Thesis Preparation. The thesis must include: A Table of Contents,
an abstract in English and French, and introduction which clearly states
the rationale and objectives of the study, a comprehensive review of the
literature, 2 final conclusion and summary, and a thorough bibliography
or reference list.

Additional material must be provided where appropriate (e.g., in
appendices) and in sufficient detail to allow a clear and precise judgment
to be made of the importance and originality of the research reported in
this thesis.

In the case of manuscripts co-authored by the candidate and others,
the candidate is required to make an explicit statement in the thesis as
to who contributed to such work and to what extent. Supervisors must
attest to the accuracy of such statements at the doctoral oral defense.
Since the task of the examiners is made more difficult in these cases, it is
in the candidate’s interest to make perfectly clear the responsibilities of
all the authors of the co-authored papers. Under no circumstances can a
co-author of any component of such a thesis serve as an examirer for that
thesis.”

This thesis consists of seven chapters and three appendices. Chap-

Vil

ters 2 to G are in the form of papers, published or submitted for publication.
Appendix III states for each paper. where and when it was published or
submitted, and what the co-author contributions were. Chapter 1 contains
the connecting texts that provide logical bridges between the difierent pa-
pers.

viii

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION

1 Probiem Description 1-1
2 Relevant Work 1-3
21 Modeling. 0o i e e 1-3
22 Simulation e e e e e . 1-6
23 Formal Verification, 1-7
3 Original Contributions 1-10
4 Thesis Organization and Overview 1-14
References 1-17

CHAPTER 2

A STIMULUS / RESPONSE SYSTEM BASED
ON HIERARCHICAL TIMING DIAGRAMS

Abstract 2-1
1 Introduction 2-2
2 Related Work 2-3
3 The Model 2-4

4 Static Generation of Stimuli 2-6

5 Dynamic Generation of Stimuli 2-7

8 Improved Dynamic Generation 2-10

7 Observation of Responses 2-12

8 Hierarchical Timing Diagrams 2-13

9 Experimental Results 2-16

10 Conclusion 2-19

References 2-19
CHAPTER 3

MODPELING AND EXECUTION OF TIMING
DIAGRAMS WITH OPTIONAL AND
MULTI-MATCH EVENTS

Abstract 3-1
1 Introduction 3-2
2 The Model 3-2
3 Validation of Fully Specified Events 3-5
4 Optional Events 3-6
5 Multi-Match Events 3-7
6 Output Event Generation 3-8

7 Implementation and Results 3-10

8

e |

Conclusion

References

CHAPTER 4

3-10

3-11

INTEGRATING BEHAVIOR AND TIMING IN

EXECUTABLE SPECIFICATIONS

Abstract
Introduction

Interface Svecifications
9

[Q]

(%

The Timing Diagram Interpreter

31 BasicConcepts
32 LeafUpdate
3.3 Hierarchical Update.
34 The Top-Level Process

Procedural linking
A Complete Approach to Modeling
Discussion

Conclusion

.......

A
.2 Composing Timing Diagtams

ooooooo

B Example . .. Lo Lo i e e

.......

4-1

4-2

4-11
4-11
4-12
4-13
4-15

4-16

4-18

4-22

4-23

References

CHAPTER 5

xi

MODELING CELL PROCESSING HARDWARE

WITH ACTION DIAGRAMS

Abstract
1 Introduction

2 Action Diagrams

2.1 Leaf Action Diagrams
2.2 Annotated Leaf Diagrams

3 Example: a Rate Adaptation Queue
4 Example: Auxiliary Cell Insertion
5 Conclusion

References

CHAPTER 6

2.3 Hierarchical Action Diagrams
4 Annotated Hierarchical Diagrams

5-11

5-14

5-18

5-18

SEMANTICS AND VERIFICATION OF ACTION

DIAGRAMS WITH LINEAR TIMING
CONSTRAINTS

Abstract

1 Introduction

6-1

-2

Xii

8

9

10

11

12

Action Diagrams

Problems
31 ComsSISLENCY . v v vt it e e e e e e e e e e
3.2 Compatibility

Block Machines

From Action Diagrams to Block Machines
Formalizing the Concept of Causality

Time Zones

Liveness of Derived Block Machines

Rewriting the past-dominated Condition

Trace Set Conservation

Compatibility of Communicating Action Diagrams

Independence of Input and Output Sub-Partitions

13 Conclusion

1

2

References

CHAPTER 7
GENERAL CONCLUSIONS

Summary

Benefits of our Work

6-12

6-22

6-24

6-25

6-28

6-35

6-40

6-45

6-53

6-55

6-56

7-1

3 Original Contributions T-3
4 Recommendations for Further Research T-4

References -6

APPENDIX I

SYNTACTIC WELL-FORMEDNESS RULES FOR
ACTION DIAGRAMS

1 Introduction I-1
2 Strict Causality in HAAD Simulation I-1
3 Assume Constraints and Input Don’t Care Events I-2

APPENDIX II
THE DEFBEHAVIOR LANGUAGE

1 Introduction II-1
2 Keyed List Languages I1-1

3 Conventions used in the Definition of the Defbehavior Gram-

mar I1-2
4 Semantic Notes II-4
4] GEeRETICS & v vt i i it et e e e e e e e e I1-4
42 Default Constraint Bounds I-5

5 Grammar Definition II-5

Xiv

References 11-9

APPENDIX III
CO-AUTHORS’ STATEMENT

Co-authors’ statement I11-1

CHAPTER 1

INTRODUCTION

1 Problem Description

Due to the increasing complexity of digital systems and to competitive
market pressures, the digital systems industry has witnessed a marked shift
towards higher abstraction levels in the areas of modeling, verification, and
synthesis. Higher-level modeling allows to remove ambiguity from system
specifications. It also allows the designer to concentrate on the “bigger
picture”, rather than getting distracted by details. Furthermore, it is the
starting point for verification and synthesis from higher levels. Verification
at higher levels allows to find design problems earlier. It also enables the
verification of much more complex systems than would have been possible
otherwise. Synthesis from high levels is the key to increased automation,
and hence to productivity gains in the design process.

In this thesis, we address issues in high-level modeling and verifica-
tion. We concentrate on systems that have real-time requirements and
that present a mix of protocol aspects and data computation aspects. The
problems addressed by the thesis are summarized in the following.

Problem: modeling and analysis of real-time systems

Systems that have real-time requirements and a mix of protocol as-
pects and data processing aspects are difficult to design correctly and ver-
ify. When these aspects are intermixed in a computer model of the system,
the model typically becomes hard to understand and too complex to an-
2lyze by computer-aided design (CAD) tools. A more practical approach
is to use dedicated CAD tools and techniques to separately verify differ-
ent aspects (e.g., data processing functions versus protocol handiers) and

1

1-2 CHAPTER 1 - INTRODUCTION

different levels of abstractions of the system behavior. This. nowever, is
possible oa'y if the modeling methodology allows such separation. There
is currently a need for such methodologies.

Problem: system integration

It has often been reported in industry [1} that a large proportion of
the failures that are found in an ASIC (Application Specific Integrated
Circuit) after its fabrication are in fact discovered after the ASIC has been
integrated in the system that it is intended to work with. In addition, many
of these failures are caused by ambiguous specifications of the interface
protocols that govern the transactions between the ASIC and the rest of
the system. According to professionals in the EDA (Electronic Design
Automation) industry [2, 3], there currently is a pressing need for tools
and methodologies that could help alleviate these problems.

Problem: test bench development time

In a typical state of the art ASIC based system design environment,
designers spend anywhere from 25% [1] to 65% [4] of their time developing
“test benches”. These are software procedures that run concurrently with
the (sub-)system model in a simulation environment. The test bench stim-
ulates the model and verifies its responses against the specifications. Due
to some of its aspects that are related to the engineering of communica-
tion protocols, test bench development is an error-prone task. The software
code involves process synchronization primitives (e.g., WAIT statements)
and is hard to debug. It is also difficult to ensure that the test bench
is complete, i.e., whether all the properties that need to be concurrently
verified in a given execution scenario, are indeed checked for. Due to a
lack of structured approach to test bench development (often compounded
with the inherently ad-hoc nature of the set of properties to be verified),
the resulting software is hard to maintain.

For the above reasons, and due to the fact that test bench software
represents as much as 50% of the total software written for a2 hardware
development project [1], test bench development in its present form puts
a substantial burden throughout the life cycle of the product design data.

Problem: linear timing constraints in interface specifica-
tions
When designing a component that is intended to operate in a dis-

tributed real-time system, the designer must make sure that the interact-
ing components of the system have compatible interface protocols, i.e.,

CHAPTER 1 - INTRODUCTION 1-3

that each system component satisfies the rules and assumptions that the
other components make on their environment. The most commonly used
compatibility verification techniques are visual inspection and simulation.
However. due to the often high degree of concurrency in a distributed sys-
tem and due to the min-max intervals that characterize the delays and
timing assumptions in the specifications, the number of cases that needs
to be considered can be overwhelming for computer simulation {let alene
visual inspection). Hence, the interest in potentially more reliable tech-
niques, i.e., formal verification [5, 6, 7, 8, 9].

The timing specifications of interface protocols are often described by
linear constraints. These capture in a declarative and abstract way the set
of allowed behaviors and assumptions of the component. This description
style decouples the specification from the implementation, thus leaving
more flexibility to the interface designer. This decoupling is also desir-
able to vendors publishing the interface specifications of their proprictary
products.

The problem is, however, that linear timing constraints can make
an interface specification non-causal, in the sense that the interface can
be implemented only by a system that “guesses” the future behavior of
other components that interact with it. Non-causality can manifest itself
even when the constraint system is consistent (i.e., its solution set is non-
empty). In addition, non-causality can invalidate the outcome of known
compatibility verification procedures [6]. To the best of our knowledge,
there does not exist 2 tool or methodology that correctly answers the
interface compatibility question in the presence of linear timing constraints.

2 Relevant Work

2.1 Modeling

Behavioral modeling approaches, such as [10, 11], lack the timing con-
straint coustructs and the capability of declaring the assumptions that a
behavior makes on its environment.

Timing diagrams [12] and message sequence charts [13] are event !
(action) based notations that are widely used in the hardware design com-
munity, as well as the communication protocols and distributed systems
design communities. These notations are of a declarative nature. They are

In this thesis, the terms event and action are used interchangeably.

1-4 CHAPTER 1 - INTRODUCTION

convenient for describing families of execution scenarios in terms of event
sequences over time. The notations emphasize the abstract specifications
view of a system, rather than its implementation details In [14], the
timing diagram notation is formalized, and its expressive power extended.
Event values and state variables can be expressed using “extended boolean
expressions” on signals; in addition to the standard boolean connectives,
these include Delay and Latch constructs. Looping and conditional execu-
tions of timing diagrams are supported using extended booleaw expressions
to control the execution. Timing diagrams can be combined concurrently
by specifying synchronization constraints between events in different dia-
grams. The captured specifications are used for the synthesis of interface
circuits.

Interface specifications describe the protocols that govern the inter-
actions between the components of a system. For example, interactions
over a hardware bus consist of operational units called “interface opera-
tions”, or “bus cycles”, such as FETCH, READ, WRITE cycles, etc. Each
interface operation consists of specific event sequences related by timing
constraints. At a higher level of abstraction, e.g., in modeling a distributed
computer system, the operational units are system transactions, e.g., file
transfer operations in which the events model remote procedure calls, con-
nection/ disconnection requests and acknowledgments, start/end of data
transfers etc.

In its simplest form, an interface specification is represented by a
timing constraint graph [15]. This is a weighted directed graph in which
vertices represent interface events and a directed edge of weight A;; from a
vertex a; to a vertex a; represents the linear timing constraint ¢(a;)—t(a;) <
A;;, where #(a;) and t(a;) are the occurrence times of events a; and a;,
respectively, and A;; is a constant. In [16], the model is extended to latest
and earliest constraints. An event related to its causal predecessors by
latest (earliest) constraints will occur only after (as soon as) the last (first)
of the predecessors have occurred. In [5], the behavior of an interface is
expressed as a set of event occurrence rules. Each such rule is described
by a cause-effect relationship and a delay interval between two eveats.
Optionally, a boolean expression on signal states specifies the condition
under which a rule applies. Note, however, that the timing relationships
that can be expressed in this framework are too simple to exhibit the
causality ? problem mentioned in the Section 1.

Interface specifications must be related to the internal aspects of

*The term “causality” in {5] simply indicates the cause-effect nature of the event
occurrence rules.

CHAPTER 1 - INTRODUCTION -5

behavior and to structure. These relations are traditionally of concern
to behavioral synthesis systems. For example, in [17], both the interface
specifications (captured by timing diagrams) and data-flow specifications
{(captured by a textual HDL description) are described in a urified graph in
which nodes represent data-flow operations and interface events, and arcs
represent data dependencies and timing constraints. Data dependency
arcs between input/output event nodes and operation nodes capture the
interrelation between interface and internal behavior. From a specifica-
tion point of view, the interface and data-flow descriptions are related
only through I/O signal names and symbolic data names (i.e., common
name space between the two specifications for I/O signals and symbolic
values on data busses). As a result, the HDL specification contains control-
flow information which could be redundant with respect to that captured
in the interface specification. [18] extends the work of [17] by including
structural domain descriptions in the unified graph: event nodes can be
grouped into “wires” and operation nodes can have either wires or events
as their input/outputs. Also, a more powerful description of event depen-
dencies and timing constraints is supported using a subset of first-order
predicate calculus. The Design Data Structure (DDS) representation of
[19] consists of threc separate graphs: Data-Flow Graph (DFG), Control
and Timing Graph {CTG), and Structure Graph (SG). The graphs arc
related by “bindings”, e.g., the scheduler of the synthesis system binds an
operation of the DFG to an interval arc of the CTG. Causal relations and
timing constraints can be specified between interface events in the CTG.
An interface event can be bound to an interval arc and to a destination
node in the CTG; the arc specifies the time interval in which the event can
occur and the node indicates the destination control point to which pro-
cessing will branch if the event occurs. In addition, a boolean expression
can be associated with the event to specify the condition under which the
event can occur.

More complex interfaces as well as control-oriented real-time _ys-
tems and protocol handlers can be described as timed, communicating
or concurrent abstract entities, each consisting of timed event sequences,
state-dependent causality relations between events, and assertions on state
changes due to event occurrences, and timing requirements. For example,
in [20], the author argues for a specification methodology in which a high-
level implementatior of a system is described as a set of communicating
processes described at the extended state machine level and the properties
(or requirements) that the system must satisfy are described in a declar-
ative style as a set of event ezpressions in a special-purpose timed logic
designated as CPA (Conditionals, Precedence relations, Assertions). Each

1-6 CHAPTER 1 - INTRODUCTION

event expression in CPA consists of a precedence relation defining an order-
ing between two or more events, a logic condition under which the expres-
sion applies, and a logic essertion specifving constraints on the sequence
numbers, values and times of the events named in the expression. Both
the condition and assertion are expressed in first-order predicate calculus
over events, their values and their times. Minimum and maximum timing
constraints can be specified. Events can be identified by indices referring
to particular instances of their occurrence (e.g., in the case of repetitive
events); the indices can be absolute or relative to a designated reference
event in the event expression. Hierarchy is introduced by specifving super-
cvenls which are sequences of atomic events.

In [21], the properties that a system must satisfy are expressed in a
subset of real-time temporal logic (RTTL) [22] (this subset is limited to
properties describing invariance and/or real-time response). The system
itself is described by a finite-state Timed Transition Model (TTM). A
TTM is characterized by a set of variables and a set of transitions that
modify these variables. Each transition is characterized by an enabling
pre-condition (i.e., 2 boolean expression on the TTM variables), lower and
upper time bounds for the delay from the enabling of the transition (when
the pre-condition becomes true) to its uctual firing, and a set of post-
actions (modifications of the TTM variables) that take place upon firing
of the transition. The firing semantics are similar to those used in time
Petri nets [23].

2.2 Simulation

Simulation techniques [24, 25, 26] are very useful in exercising the system
specifications. Interface simulation models are behavioral HDL programs
derived from the interface specifications of the components that form the
system’s environment. The interface simulation model of 2 component
consists in “on-the-fly parsing” of events received at the component’s I/0
ports, sequencing the model through its state transitions based on the
result of this parsing, detecting incorrect, or ill-formed interface opera-
tions (bus cycles), verifying that all timing constraints at the input of the

component are met, and driving the component outputs with appropriate
delays.

The HIDE system [27] generates VHDL interface models from timing
diagrams and state diagrams. The state diagrams specify the interface
control-flow. A VHDL procedure is generated for each interface operation
(such as READ, WRITE etc.). The procedures can then be called from a

CHAPTER 1 - INTRODUCTION 1-7

command file to simulate the interface behavior. This approach, however,
does not seem to be practical for cases such as memory devices, wherein
the choice of the actual interface operation cannot be decided before-hand
(1.e.. the interface control-flow is governed by the environment, e.g.. the
processor).

In [28], 2 VHDL annotation language, VAL+, is proposed to de-
scribe parameterized, hierarchical event patterns. The patterns are used
for matching simulation traces; the idea is to transform (flat) simulation
traces into hierarchical ones, by pattern matching, in order to help the user
in trace debugging and browsing. However, the matching is done off-line.
after the simulation has completed; this requires the storage of the com-
plete simulation trace. In addition, the patterns are used only for trace
matching, not for driving the circuit under simulation.

2.3 Formal Verification

The advantage of the simulation techniques outlined in the previous para-
graph is that they handle large and complex models. However they only
provide a partial “coverage” with respect to the model being verified. Com-
plementary techniques that are starting to emerge in the digital design
industry are based on formal methods. These techniques can be seen as
“orthogonal” to the techniques of the previous paragraph in that they can
provide complete coverage of a pertiel model. In this section, we review
some of the formal techniques that are relevant to real-time systems and
interface verification.

One way to decompose the interface verification problem is to exam-
ine “interface scenarios”, i.e., finite unrolled bebaviors (15, 5, 6, 7, 8, 9].

A finite interface scenario described by linear timing constraints is
consistent if there are no cycles of negative weight in the corresponding
constraint graph [15, 6]. In [15], 2 constraint priority scheme defined by
the user, is used to relax some constraints, thus removing inconsistencies
from the interface specification. In [5] where logic conditions can qualify
constraints, the system checks for the logic consistency of paths. However
concurrent state changes of side path variables (i.e., signals that have no
associated events on the considered causal path) are not taken into account,
thus possibly resulting in erroneous analysis.

In [6], the authors propose 2 method based on the shortest path
algorithm [29] for the verification of the interface compatibility of two
communicating system components described by timing diagrams under

1-8 CHAPTER 1 - INTRODUCTION

linear timing constraints. However. their method is too pessimistic (i.e..
it can yield false negative answers to the compatibility question). unless
the communication between the system components is unidirectional (i.e..
one component has no input events, and the other has no output events).
Other works address the issue of efficient algorithms for computing the
maximal time distances between events for more complex forms of timing
constraints in timing diagrams [T7, 8]. For example, efficient methods exist
for computing the shortest distances over linear and max latest constraint
systems [7, 9]. The inclusion of earliest constraints makes the problem
of computing time distances between events NP-complete [7]. In [9], the
authors show how a Constraint Logic Programming (CLP) environment
based on relational interval arithmetics (RIA) [30] can be used to solve
the maximal time distance problem in the cases of 1- linear constraints
only, 2- max-only or min-only constraints, and 3- linear constraints in-
termixed with either max or min constraints. They show that for these
three cases the general CLP/RIA approach has the same worst case time
complexity as the ad-hoc approach of [7]. An additional advantage of the
CLP/RIA approach is that, due to its general purpose nature, it is a bet-
ter vehicle for extensions to the basic problem, e.g., accounting for delay
correlations, or annotating constraints with logic (boolean) conditions in a
unified computational framework. In [31], the authors solve the maximal
time distance computation in cyclic (process like) timing diagrams with
max only constraints (also designated as constraints of the latest type, i.e.,
an event occurs only after the last of its predecessors has occurred}. A
similar problem is solved by Escalente et al. [32] using a combination of
graph-based and linear programming techniques. The authors state that
their approach can be generalized to the mixed min/max problem, but
they do not sufficiently elaborate on that.

None of the methods mentioned in the previous paragraph address
the issue of realizability of timing diagram specifications, i.e., can the spec-
ification be simulated by a causal system. Due to their declarative style (as
opposed to e.g., an operational style), linear constraints make the causality
issue a non-trivial one. In practice, synthesis methods such as [14] that do
not examine the causality issue under linear constraints, may produce sys-
tems that only satisfy mutually incompatible subspaces of their respective
specifications. The consequence is the risk of incompatibility between inde-
pendently developed implementations of the interacting systems. In [33],
the authors define a realizability criterion called well-posedness. However,
it turns out that this criterion is not sufficiently powerful for reasoning on
some of the practical examples that we examined (e.g., interface operations
of a Motorola MC68360 processor). Recently, timed process algebras have

CHAPTER 1 - INTRODUCTION -4

emerged [34] in which the occurrence times of events can be related by
linear conjunctive constraints. However, the underlying semantic models
proposed in these works do not address the causality issue. Hencee, such
methods do not reveal whether the specified system can be built from in-
dependently developed subsystems, each constructed according to its local
specification.

In [21], an automatic procedure is given for verifving whether a sys-
tem described as a Timed Transition Model satisfies a formula in a subset
of Real-Time Temporal Logic (RTTL). A reachability graph is constructed.,
on which the RTTL formula is then checked for validity. In this approuach.
the number of states in the reachability graph grows very rapidly. due to
two factors. First, states are created in the reacnability graph for every
time point in the analysis (time is considered as a TTM variable which is
incremented by unit “ticks™). Second. all real-time realizable ttal orders
oi transition firings are enumerated, whether or not they aflect the validity
of the formula under verification. Other verification approaches based on
timed extensions of process algebras {35, 36] or on time Petri nets [23] are
characterized by similar complete state enumeration.

In [37], the system and the properties to verify are described as an
interconnection of units forming a closed system. Each unit is a “Time
Sequential Machine™. Similarly to [21], a delay bound is associated with
each state transition of a unit. Failure to satisfy a property is indicated by a
given “checking” unit going into an Errorstate. A partial order approach
is used in the reachability analysis of the closed system, thus avoiding
the enumeration of all the possible interleavings of the state transitions
in the units. Furthermore, timing relationships between transitions are
compactly represented by a timing constraint graph, therefore avoiding
the creation in the reachability graph of state nodes for each time “tick”.

A timed automaton is, strictly speaking, an infinite state system (due
to the continuous time model assumption). In [38], the timed automaton
concept is formalized and the author proves that, even under a continuous
time model, there exists a finite representation of the state space of the
original timed automaton. This representation is based on a concept known
as region automaton, wherein each “region” is an equivalence class with
respect to the property being verified. Each region is associated with a
finite constraint graph that implicitly represents the (generaily infinite)
number of states in the given equivalence class. In [39], a branching real-
time temporal logic, TCTL, is defined, and the traditional model-checking
procedure [40] is extended to allow checking of the validity of a TCTL
formula on a timed automaton.

J-10 CHAPTER I - INTRODUCTION

In [41], the semantics of a subset of our timing diagram model are
defined in terms of a timed process algebra, TDA. based on the works of [34]
and [42]. Then. a procedure is given for translating a term of the algebra
into a timed automaton. The timed automata resulting from individual
terms are hierarchically composed to obtain the final timed automaton.

Another technique that efficiently exploits constraint graphs in the
formal analysis of real-time behavior is given in [43]. The system verifies
whether a specification satisfies a given safety assertion, where both the
specification and the safety property are described in a subset of Real
Time Logic (RTL) [44]. However, there is no explicit concept of state
i -the specification paradigm and therefore the method is inadequate for
describing systems with state dependent behavior.

Simulation and formal verification can be advantageously combined
in a unified environment for the analysis of communication protocols. For
example, in [45] a complete verification with respect to a set of properties
is done on a simplified model of the interacting protocols and simulation
is performed on a detailed model. Simulation traces are analyzed on-
the-fiy by an “observer” program that is automatically compiled from a
declarative specification of the properties to be verified, given in first-order
predicate logic.

3 Original Contributions

In this section, we summarize our original contributions towards solving
the problems of Section 1, and we put these contributions in the context of
the other works discussed in Section 2. The original contributions of the
thesis fall into three categories: 1- modeling language and methodology for
real-time systems, 2- executable model generation, and 3- formal timing
verification.

1- In the area of modeling language and methodology for real-time systems,
the original contributions are:

+ Separation of, and links between, interface behavior and
internal behavior:

We propose a novel interface modeling methodology, HAAD - Hier-
archical Annotated Action Diagrams in which the interface behavior
is captured separately from the internal behavior while maintaining
the links between the two. The interface behavior is captured as a

CHAPTER 1 - INTRODUCTION 1-11

hierarchy ° of action diagrams. We assume that the internal behavior
is modeled by an Extended Finite State Machine (EFSM). We pro-
pose to link the interface behavior and internal behavior by shared
variables and synchronization points. This modeling methodology
facilitates the verification of the interface behavior and should also
facilitate that of the internal! behavior.

Separation of, and links between, functional aspects and
protocol/ timing aspects in interface specifications:

One of the main novelties of HAAD is that the data manipulation
aspects of an interface specification are “overlaid” onto the hicrarchy
of action diagrams. This overlay is in the form of HDL procedures,
functions and variables that are attached to actions (designated as
trigger actions) of the action diagram hierarchy. The procedures and
functions are executed when their trigger actions occur. State vari-
ables that are attached to actions provide data-flow links between
the data manipulation procedures and the action diagram protocol
description. This approach facilitates the verification of the system.
In contrast, when modeling interfaces in plain HDL, the timing and
protocol behavior is intermingled with the functional behavior. In
addition, there is no possibility of expressing protocol rules and tim-
ing constraints, except by writing procedural checkers for them (and
in that case, the “how™ of rule checking would be captured instead of
the “what” of the rules themselves). Compared to [17], our approach
is based on directly linking data-flow operations to interface actions.
This avoids the description redundancies of {17].

Combination of a true behavioral hierarchy and a rich set of
timing constructs:

HAAD is the first modeling language that combines a true behavioral
hierarchy and a rich set of timing constructs. In this hierarchy, be-
haviors are composed using operators such as Concatenation, Choice,
Concurrency, Loop and Ezception-Handler. Port maps and parame-
ter maps specify how the operators combine the behaviors. Actions
in leaf action diagrams can be related by weighted (min/max) tim-
ing constraints. The constraints are of essume or commit intent, and

3Here we are using the term action diagram to generically indicate any component,
(whether leaf or not} in this hierarchy. The leaves of a HAAD hierarchy resemble the
more familiar timing diagrams. For historical reasons, in the body of the thesis, the
terms action diagram and timing diagram are used interchangeably.

4Note that internal behavior verification is not explored in this thesis.

1-12

2- In

CHAPTER 1 - INTRODUCTION

they can be combined to form more complex constraints using the
conjunctive, earliest and latest composition operators. Other works
that put the emphasis on behavioral hierarchy ignore the timing as-
pects, e.g., [11], or offer only rudimentary timing support, e.g.. [10].
On the other hand, works that concentrate on timing specifications
ignore behavioral composition [14].

Delayed choice semantics:

HAAD is the first modeling language that proposes the concept of a
delayed choice, whereby the selection of a behavior (choice branch}
is delayed until sufficient information is gathered. This is useful in
supporting the concept of interface operations in “scenario-based”
modeling,.

the area of executable model generation, the original contributions

Dynamic stimulus generation and response validation from
timing diagrams:

Our work [46] is the first to report on the automatic generation of
simulation models and response verification scripts from action di~
agrams. The advantage of this capability is to markedly accelerate
the test bench development process. In addition, since the designer
is now relieved from many of the low-level details of test bench de-
velopment, he/she can concentrate more effectively on what needs to
be verified, rather than how to verify it.

Unified framework for valid and don’t care signal states:

In order to handle valid and don’t care signal states in a unified
modeling and execution framework, we introduce two new action
types: optional and multi-match actions [47]. Simpler alternative
approaches, eg., “data™ stebility windows with respect to “clock”
and “control” signals, are not general enough for expressing complex
timing specifications, e.g., asynchronous RAMs [48]. A concept sim-
ilar to a multi-match action was proposed in [49] for the synthesis
of asynchronous circuits from Signal Transition Graphs, however our
work is the first to consider optional and multi-match actions in the
generation of simulation models and response verification scripts.

. CHAPTER 1 - INTRODUCTION 1-13

3-In

Unified approach to master, slave and mixed behaviors:

Another novel aspect in our test bench and model generation ap-
proach is that it is independent of whether the modeled svstem is
a master (i.c.. autonomously generates requests), slave (i.e., services
requests), or mixed (i.e., exhibits a combination of both master and
slave characteristics). In other works, e.g.. [27]. HDL procedures are
generated for each interface operation (such as READ, WRITE ete.).
The procedures can then be called from a command file to simulate
the interface behavior. This approach, however, is not suited to be-
haviors in which the choice of the actual interface operation cannot
be decided before-hand (e.g.. a slave type of behavior).

the area of formal timing verification, the original contributions are:

Sufficient conditions fo: the well-behavedness of interface
specifications under linear timing constraints:

Qur work is the first to propose technology independent sufficient
conditions for the well-behavedness of interface specifications under
linear timing constraints, such that these conditions: 1- guarantce
that the specifications can be simulated by a causal system, and 2-
are general enough to handle the complex timing of bus interface
specifications. We show that the interface consistency criterion used
in other interface verification works, e.g., [6], or in interface synthesis
e.g., [14], is not a sufficient well-behavedness criterion, while the well-
posedness criterion of [33] is not general enough for some commonly
used bus interfaces.

Operational semantics of interface specifications under lin-
ear timing constraints:

Our work is the first to clearly define operational semantics of action
diagrams under linear timing constraints.

Analysis of false negatives and false positives in known com-
patibility verification methods:

We show that known methods, e.g., [6], for the compatibility verifi-
cation of timing diagrams under linear timing constraints can yield
Jfalse negative answers to the compatibility question in practical situ-
ations. We also show that attempts to correct these known methods
without taking the causality criterion into account can yield false
positive answers to the compatibility question.

1-14 CHAPTER 1 - INTRODUCTION

¢ An accurate compatibility verification procedure:

We develop an accurate compatibility verification procedure for tim-
ing diagrams under linear timing constraints.

4 Thesis Organization and Overview

The thesis consists of seven chapters and three appendices. Chapters 2
to 6 are in the form of papers; the rest of this section provides logical
bridges between these papers. Chapter 7 is the general conclusion of the
thesis. Appendix I summarizes rules that must be followed when modeling
with Velid and Don’t-care valued actions. Appendix II is the grammar,
in extended BNF form, of the HAAD language. Appendix III is the co-
author’s statements.

Chapter 2: A Stimulus/Response System Based on Hi-
erarchical Timing Diagrams

In the course of validating system interfaces by simulation, the de-
signer spends relatively large amounts of time writing “test benches” that
perform stimulus generation and response validation (SGRV). We present
a tool that facilitates this task by capturing the test bench specifications in
the form of hierarchical action diagrams and modeling them using hierar-
chical constraint graphs. The specifications are then used to automatically
perform SGRV. The main advantages of this approach are that many of
the ad-hoc aspects of test bench creation are removed, thus contributing
to the repeatability of the design validation process. Furthermore, since
the overall control structure of the test bench and the correctness criteria
that it uses to validate system responses, are captured declaratively (as
opposed to detailed procedural code that interprets the specification), it
follows that its test bench intent stands out more clearly.

A possible approach to the SGRV problem consists of generating all
the stimuli before simulation, then performing the entire simulation, col-
lecting traces of user specified signals, and, after simulation, validating
circuit responses by pattern matching against the action diagrams. There
are, however, several drawbacks to this “static” approach. First, it is in-
compatible with interactive simulation: for example, it does not support
associating break-points with user specified error conditions. Second, the
amount of data accumulated before and during simulation could become
very large. The biggest drawback of such a static approach is, however,
that it restricts the user from specifying stimuli that depend on the re-

CHAPTER 1 - INTRODUCTION 1-15

sponse time of circuit outputs; for example, it is impossible to describe
simple handshake protocols.

The alternative that we propose is dynamic SGRV (DSGRYV) - i.e.,
an algorithm that traverses the constraint graph hierarchy during simu-
lation to generate stimuli and validate system responses. We discuss a
VHDL-based implementation of the tool and illustrate its usefulness and
limitations in modeling microprocessor bus operations.

Chapter 8: Modeling and Ezecution of Timing Diagrams
with Optional and Multi-Match Events

The algorithm of Chapter 2 requires every specified action to occur
exactly once in a given execution of the enclosing timing diagram. How-
ever, the specification of certain types of timing constraints (e.g., set-up
and hold times) in the context of an action-based model, requires actions
(e.g., on a data bus) with symbolic values such as Valid and Don't-rare
that may or may not actually occur. Actions with such values canno be
handled by the DSGRV algorithm of Chapter 2. In this chapter, we intro-
duce two new action types: optional actions (actions that do not always
have to match actual action occurrences) and multi-match actions (actions
that can match multiple actual action occurrences), and we consequently
extend the execution model of Chapter 2.

Chapter 4: Integrating Behavior and Timing in Eze-
cuteble Spectfications

In this chapter, we extend the set of action diagram composition op-
erators of Chapter 2 to include Choice and Loop operators. We describe a
general algorithmic framework in which it is easy to add new composition
operators. In addition, we extend the specification paradigm to encom-
pass the functional view of the specified system. For behaviors that have
a control-How which is governed primarily by the behavior’s interface with
the external world, this extension is done by allowing procedures and func-
tions in the functional view to be “linked” to action triggers in the action
view. For more general behaviors, the functional view is described by an
EFSM (Extended Finite State Machine) which execution is synchronized

to that of the system’s action model. The synchronization is specified
declaratively by the user.

We illustrate our approach on practical examples, and we show how
we achieve tangible savings in model development time and accuracy.

1-16 CHAPTER 1 - INTRODUCTION

Chapter 5: Modeling Cell Processing Hardware with Ac-
tion Diagrams

In this chapter, timing constraints are explicitly classified into as-
sumplions (i.e., assumptions on the environment of the described sub-
system) and commitments (i.e., timing relaticns that the described sub-
system commits tz). The timing model is generalized to encompass both
linear and non-linear timing constraints; this is done by defining three
types of timing constraint composition operators: latest, earliest and con-
junctive,

Furthermore, the action diagram composition operators are general-
ized as follows:

¢ The Choice composition operator is refined to support both deter-
ministic and non-deterministic delayed choice semantics.

® A new operator is defined for exception handling.

e Port mappings, parameters, and local variables are added to action
diagrams. The operator set now allows to build a true behavioral
hierarchy.

Finally, features are defined to allow modeling at higher abstraction
levels. These features include user-defined abstract data types and the
distinction between message-based and value-based ports (in the former,
actions are the results of an action diagram sending a message on the port,
whereas in the latter actions are the result of value changes on the port).
We illustrate the concepts on the high-level model of a cell-based (e.g.,
packet or ATM) eymmunication sub-system.

Chapter 6: Semantics and Verification of Action Dia-
grams under Linear Timing Constraints

In this chapter, we examine the question of the compatibility of con-
current, communicating leaf action diagrams described by linear timing
constraints. We show that known methods that address this question,
e.g., [6], can yield false negative answers because they do not compose the
interface behaviors of the communicating systems. We show that such
composition must encompass the concept of realizability, or else the com-
patibility question can yield false positive answers.

We then formalize the operational semantics of action diagrams un-
der linear timing constraints. The semantics are based on the derivation,

CHAPTER 1 - INTRODUCTION 1-17

from the action diagram, of a block machine which is characterized by a
partition of the action set of the action diagram. We define the concept of
a causal block machine and we state the realizability of an action diagram
specification in terms of the existence of a causal block machine derived
from the action diagram. We prove that all causal block machines derived
from an action diagram have the same (timed) trace set and this trace set
is equal to that of the action diagram.

We define the compatibility of communicating causal action diagrams
in terms of the compatibility of all the possible combinations of causal
block machines derived from these action diagrams. We prove that we do
not need to enumerate these combinations to answer the action diagram
compatibility question. This leads to an exact and efficient procedure for
the verification of the compatibility of communicating action diagrams.

Finally, we prove that the structure of the partition of the set of
input actions of a causal block machine is independent of that of its output
actions. In addition to being intuitively “reassuring”, this property should
be useful in designing an efficient action partitioning procedure.

References

[1] A. Silburt, Manager, Hardware Systems Modeling Group, Bell-
Northern Research Ltd., Ontario, private communication, December
95.

[2] M. Meredith, Vice-President of Engineering, Chronology Corp.,
Washington, private communication, December 95.

[3] S. Curry, Cadence Design Systems Inc., private communication, De-
cember 95.

[4] 1. Dobson, Director of Research & Development, Tundra Semiconduc-

tor Corporation, presentation at the Université de Montréal, February
96.

[5] A.R. Martello and S.P. Levitan “Causal timing verification”, Ist
ACM Workshop on Timing Issues in the Specification and Synthesis
of Digital Systems, 1990.

[6] J.A. Brzozowski, T. Gahlinger and F. Mavaddat, "Consistency and
Satisfiability of Waveform Timing Specifications”, Networks, Vol. 21,
1991, pp91-107.

[7] K. McMillan and D. Dill, ”Algorithms for Interface Timing Verifica-
tion, Proc. ICCD-92, October 1992.

1-18 CHAPTER 1 - INTRODUCTION

[8] T.M. Burks and K.A. Sakallah, "Min-Max Linear Programming and
the Timing Analysis of Digital Circuits”, Proc. ICCD-93, October
1993, ppl52-155.

[9] P. Girodias, E. Cerny, W.J. Older, "Solving Linear, Min and Max
Constraint Systems Using CLP Based on Relational Arithmetic,” sub-
mitted to Int’l Conf. on Principles and Practice of Constraint Pro-
gramming {CP95), Marseille, September 1995.

[10] S. Narayan, F. Vahid and D. Gajski, “System Specification and Syn-
thesis with the SpecCharts Language™, IEEE Proc. I[CCAD-91, 1991.

[11] D. Drusinsky and D. Harel, “Using StateCharts for Hardware De-
scription and Synthesis”, in JEEE Transactions on Computer-Aided
Design, 1989.

[12] P. Rony “Interfacing fundamentals: Timing diagram conventions™.
Computer Design, pp. 152-153, 1980.

(13] “Message Sequence Charts (MSC)”, Recommendation Z.120, CCITT.

[14] G. Borriello, A New Interface Specification Methodology and its Appli-
cation to Transducer Synthesis, PhD thesis, University of California,
Berkeley, 1988.

{15] S.K. Sherman, “Algorithms for timing requirement analysis and gen-
eration”, ACM/IEEE Proc. 25th DAC, pp. T24-727, 1988.

(16] F. Mavaddat and T. Gahlinger, “On deducing tight bounds from
partial timing specifications”, Ist ACM Workshop on Timing Issues
in the Specification and Synthests of Digital Systems, 1990.

{17] G. Borriello, “Combining event and data-flow graphs in behavioral
synthesis”, IEEE Proc. ICCAD-88, pp. 56-59, 1988.

[18}] T. Amon, G. Borriello and C. Séquin, “Operation/event graphs:
A design representation for timing behavior”, Computer Hardware
Description Languages and their Applications, IFIP, North-Holland,
1991.

[19] S.A. Hayati, A.C. Parker and J.J. Granacki, “Representation of con-
trol and timing behavior with applications to interface synthesis”,
IEEE Proc. ICCD-88, pp.382-387, 1988.

[20] M.C. McFarland, “CPA: Giving an account of timed system behav-
ior”, Ist ACM Workshop on Timing Issues in the Specification and
Synthesis of Digital Systems, 1990.

[21] J.S. Ostroff, “Automatic verification of timed transition models”,
Int’l Workshop on Automatic Verification Methods for Finite State
Systems, LNCS 407, Springer-Verlag 1989.

CHAPTER 1 - INTRODUCTION 1-19

[22] J.S. Ostroff, “Real-time computer control of discrete event systems
modeled by extended state machines: a temporal logic approach”,
Technical Report EE-86-18. University of Toronto, 19386.

[23] B. Berthomicu and M. Menasche. “An enumerative approach for
analyzing Petri nets”, Information Processing 83. Elsevier Science,

North-Holland, 1983.

[24] R.H. Lathrop and R.S. Kirk, “An extensible object-oriented mixed-
mode functional simulation system™, ACM/IEEE Proc. 22nd DAC,
pp. 630-636, 1985.

[25] M. Abramovici, D.T. Miller, J.J. Kulikowski, and P.R. Menon,
“System-level design verification at the AT&T computer division:
Tools™, IEEE Proc. ICCD-89, pp. 548-554, 1989.

[26] A. Silburt, I. Perryman, J. Bergeron, S. Nichols, M. Dufresne and
G. Ward, “Accelerating Concurrent Hardware Design with Behav-
ioral Modeling and System Simulation” ACM/IEEE Proc. 82nd DAC,
1995.

[27] Y.H. Leong and W.P. Birmingham, “The Automatic Generation of
Bus-Interface models”, in ACM/IEEE Proc. 29th DAC, pp. 634-637,
1992.

[28] B.A. Gennart and D.C. Luckham, “Validating discrete event simula-

tions using event pattern mappings”, ACM/IEEE Proc. 29th DAC,
pp- 414-419, 1992.

[29] R. E. Tarjar, Data Structures and Network Algorithms, SIAM, 1983.

[30] W. Older and A. Vellino, “Constraint Arithmetic on Real Intervals”,
Constraints Logic Programming: Selected Research, 1993.

[31] T. Amon, H. Hulgaard, G. Borriello, S. Burns, "Timing Analysis of
Concurrent Systems: An Algorithm for Determining Time Separation
of Events”, Proc. ICCD-93, October 1993.

[32] M. A. Escalente and N. J. Dimopoulos, “Assessing the Feasibility of
Hardware Interface Designs in Microprocessor-based Systems”, Tech-
nical Report ECE-95-1, EE Dept., University of Victoria, 1995.

[33] D. C. Ku and G. De Micheli, High Level Synthesis of ASICs Under
Timing and Synchronization Constraints, Kluwer Academic Publish-
ers, 1992,

‘ [34] A.S. Klusener, Models and Azioms for a Fragment of Real-Time Pro-

cess Algebra, Ph.D. Thesis, Centrum voor Wiskunde en Informatica,
Amsterdam, 1993.

[35] G.J. Milne, “The formal description and verification of hardware tim-
ing”, IEEE Trens. Computers, vol. 40, no. 7, pp. 811-826, 1991.

1-20 CHAPTER 1 - INTRODUCTION

[36] R. Cleaveland, J. Parrow, and B. Steffen, “The concurrency work-
bench: A semantics-based verification tool for finite-state systems”,
Proc. Workshop on Automated Verification Methods for Finite-State
Systems, LNCS 407, Springer-Verlag, 1989.

[37] T. Yoneda, K. Nakade, and Y. Tohrna. “A fast timing verification
method based on the independence of units™, JEEE Proc. 19th FTCS.
pp. 134-141, 1989.

[38] D. Dill, “Timing assumptions and verification of finite-state concur-
rent systems”, Workshop on Automatic Verification Methods for Fi-
nite State Systems, Lecture Notes in Computer Science 407, Springer-
Verlag, 1939.

[39] R. Alur, C. Courcoubetis, D. Dill, “Model checking for real-time sys-
tems”, Proceedings of the fifth IEEE Sympostum on Logic in Computer
Science, pp. 414-425, 19980.

[40] E. M. Clarke and E. A. Emerson, “Characterizing properties of par-
allel programs as fixpoints™ Seventh International Colloquium on Au-

tomata, Languages, and Programming, Lecture Notes in Computer
Science 85, 1981.

[41] B. Berkane, S. Gandrabur, and E. Cerny, “Timing diagrams: seman-
tics and timing analysis™, Proceedings of the Asien Pacific Conference
on Computer Herdware Description Languages, 1996.

[42] X. Nicolin et al., “From ATP to timed graphs and hybrid systems”,
Acta Informatica, V30, 1993.

[43] F. Jahanian and A.K.L. Mok, “A graph-theoretic approach for timing
analysis and its implementation”, JEEE Trans. Computers, C-36(8),
pp. 961-975, 1987.

[44] F. Jahanian and A.K.L. Mok, “Safety analysis of timing properties
in real-time systems”, JEEE Trans. Software Eng., vol. SE-12, no. 9,
pp- 890-904, 1986.

[45] R. Groz, Vérification de propriéiés logiques des protocoles et systémes
repartis par observation de simulation, Ph.D. thesis, Université de
Rennes 1, France, 1989.

[46] K. Khordoc, M. Dufresne, and E. Cerny, “A stimulus/response system
based on hierarchical timing diagrams”, IEEE Proc. ICCAD-91, pages
358-361, 1991.

[47] K. Khordoc, E. Cerny, and M. Dufresne, “Modeling and execution of
timing diagrams with optional and multi-match events®, Proc. 2nd

ACM Workshop on Timing Issues in the Specification and Synthesis
of Digital Systems, 1992.

CHAPTER 1 - INTRODUCTION 1-21

48] Texas Instruments Incorporated. Supplement to MOS Memory Dala
p
Book, Texas Instruments, Houston, Texas, 1954.

[49] C.W. Moon, P.R. Stephan, and R.K. Brayton. “Synthesis of hazard-
free asynchronous circuits from graphical specifications™, JEEE Proc.
ICCAD-91, pages 322-325, 1991.

[50) IEEE Stendard 1076-1987, VHDL Language Reference Manual,
IEEE, 1987.

[51] K. Khordoc, M. Dufresne, E. Cerny, P.A. Babkine and A. Silburt,
“Integrating Behavior and Timing in Executable Specifications™, in
IFIP Conference on Hardware Description Languages and their Ap-
plications (CHDL}, 1993.

[52] K. Khordoc and E. Cerny, “Modeling Cell Processing Hardware with
Action Diagrams”, in IEEE International Symposium on Circuits and
Systems (ISCAS), 1994.

[53] K. Khordoc and E. Cerny, “Semantics and verification of action di-
agrams with linear timing constraints”, submitted to ACM Transac-
tions on Design Automation of Electronic Systems, 1995.

CHAPTER 2

A STIMULUS / RESPONSE
SYSTEM BASED ON
HIERARCHICAL TIMING
DIAGRAMS

ABSTRACT

We present a tool that facilitates timing verification in the context
of behavioral simulation. The tool captures timing specifications from hi-
erarchical timing diagrams and models them using hierarchical constraint
graphs. Qur main contribution is a new algorithm that dynamically tra-
verses the constraint graph hierarchy during simulation to generate stimuli
and validate system responses. We discuss a VHDL-based implementation
of the tool and illustrate its usefulness and limitations in modeling micro-
processor bus operations.

2.2 CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM
1 Introduction

A number of static timing analysis tools {1, 2, 3] have been proposed for the
verification of digital designs. These tools adequately address the real
of gate-level synchronous circuits. However, they are inadequate for large
scale designs, where higher-level abstractions of timing properties must
be used, in order to reduce the large amounts of data to be dealt with,
or simply because such low-level data is not available (e.g.. in the case
of off-the-shelf VLSI components). Furthermore, with the increasing use
of synthesis tools, the designer has less control over the gate-level imples
mentation; therefore. any useful analysis tool must provide highei-level
diagnostics which the designer can relate to. Finally. the design might be
asynchronous at the system level (e.g.. asynchronous bus interfaces), thus
requiring other timing verification techniques.

As a consequence. there is presently a need for timing verification
tools that address svstem level design. Although formal methods are begin-
ning to emerge, e.g., extensions of predicate logic [4], graph based methods
[5]. timed automata [6] and concurrent process calculus {7]. system level
timing verification still relies on dynamic checking using behavioral simu-
lation 8, 9, 10]. The problem with this approach is that designers spend a
relatively large amount of time writing both the stimuli to drive the system
inputs and the validation procedures to check whether the system verifies
its timing and functional specifications.

In this paper, we propose a new tool that facilitates the timing ver-
ification of complex systems in the context of behavioral simulation. The
tool captures timing specifications in the form of a hierarchy of formalized
timing diagrams {11]. These diagrams are based on the concept of tim-
ing constraints, and thus they represent a set of allowable behaviors - the
specifications - rather than one particular instance of behavior. Moreover,
the diagrams resemble those supplied by component manufacturers and
are well-understood by hardware designers. The proposed tool uses the
timing specifications extracted from these diagrams to automatically per-
form Stimulus Generation and Response Validation (SGRV), relieving the
designer from this tedious task.

A possible approach to the SGRV problem consists of generating all
the stimuli before simulation, then performing the entire simulation, col-
lecting traces of user specified signals, and, after simulation, validating
circuit responses by pattern matching against the timing diagrams (TDs).
There are, however, several drawbacks to this “static” approach. First,itis
incompatible with interactive simulation: for example, it does not support

CHAPTER 2- A STIMULUS / RESPONSE SYSTEM 2-3

associating break-points with user specified error conditions. Second, the
amount of data accumulated before and during simulation could become
very large. The biggest drawback of such a static approach is, however.
that it restricts the user from specifying stimuli that depend on the re-
sponse time of circuit outputs; for example, it is impossible to describe
simple handshake protocols.

In this paper, we consider the dynamic SGRV (DSGRV) problem,
i.e., the problem of generating stimuli and verifying circuit responses dur-
ing the simulation run-time. We propose a solution based on:
- capturing timing specifications using hierarchical timing diagrams,
- modeling timing specifications using a hierarchical extension to the con-
straint graph model 5, 12], and
- using the constraint graph hierarchy to stimulate the circuit and validate
its responses dynamically.

Our main contribution is a2 new algorithm that dynamically tra-
verses the constraint graph hierarchy during simulation to generate stim-
ulus events and validate circuit responses. Although there are tools that
perform static stimulus generation from a set of timing constraints [13], this
is, to the best of our knowledge, the first published work that addresses
the DSGRV problem. To demonstrate our ideas, we have implemented the
DSGRYV system as a VHDL [14] process that dynamically interacts with
the simulated circuit.

The paper is structured as follows: Section 2 reviews related work.
Section 3 presents our model and terminology. Sections 4 to 7 introduce
the DSGRYV algorithm in a gradual manner: static (Section 4) and dy-
namic (Sections 5 and 6) event generation, followed by response validation
(Section T) and hierarchical DSGRV (Section 8). Section 9 contains exper-
imental results and discussions of the limitations of the system. Section 10
concludes the presentation.

2 Related Work

Timing constraints are typically supported by languages oriented towards
the synthesis of interface circuits [11], however they are absent from stimu-
lus/response description languages [15, 16, 17] which zre oriented towards
simulation and test.

Recently, a number of timing analysis systems [5, 12, 18, 19] bave
used a model in which hardware modules are represented by interface op-

2-4 CHAPTER 2- A STIMULUS / RESPONSE SYSTEM

erations consisting of a set of events interelated by timing constraints,
These constraints are represented by a directed constraint graph. where
nodes represent events, and a directed edge of weight @ from node X to
node Y represents the timing constraint: ty — ty > a. with £y and #y
representing the occurrence times of events X and Y, respectively.

A problem of interest is the consistency of an interface operation.
i.e., whether there exists an assignment of event times such that all con-
straints are satisfied. This problem can be solved [12, 18] by detecting
cycles of positive weight in the graph. In [18], a constraint priority scheme
defined by the user, is used to relax some constraints, thus removing the
inconsistencies from the interface operation.

Another problem is the satisfiability of safety constraints by causal-
ity constraints, i.e., whether all possible time assignments that satisfy the
causality constraints also satisfy the safety constraints. This problem is
solved (12, 19] by comparing longest paths between pairs of events in the
constraint graph. In [5] and [6], the satisfiability problem is solved un-
der more expressive specification paradigms: first order logic and timed
automata, respectively.

Finally, the problem considered in [13] is the generation of event times
from a set of timing constraints specified as Prolog rules. The method
uses the built-in backtracking mechanism of Prolog, however there is no
provision for generating stimulus events in increasing time order, or in
reaction to circuit responses.

In the next section, we introduce onr model and the terminology used
in the rest of the paper.

3 The Model

The timing specification of an interface operation consists of a set of signals
and a set of timing constraints. Each signal is characterized by a name
and a direction (input or output), and is composed of a totally ordered
sequence of events. Bidirectional signals are modeled by separating their
input and output components. An event value indicates the value of the
corresponding signal after the occurrence of the event. Event values are
in the set V = B U {s,u,z}, where B is the domain of the given signal
subtype, e.g., B = {0,1} for a bit signal and B = {0,...,255} for an 8-bit
bus signal; s (Stable) represents any arbitrary value from B that does not
change for a specified period of time, its actval value being irrelevant to the

CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM 2-5

timing specification; = stands for high-impedance, and u means Don't-care
or Unknown. A timing constraint (or constraint for short) relates a pair
of events. There are two types of constraints: PREC (precedence) and

CONC (concurrency).

PREC represents event causality or event occurrence order in general,
and is characterized by 2 minimum and a maximum time: X PREC(min,
maz) Y means that event Y must occur after event X by at least min
units of time and at most maz units of time. The PREC constraint can be
expressed as:

ty — iy > min
and (1)
tx —ly 2 —maz

where ty and ty are variables that represent the occurrence times of
events X and Y, respectively, and min and maz are integers satisfying 0 <
min < maz. The graph representation of (1) is in Fig. 1(a). The notation
X PREC(min) Y is used when maxz is not specified (i.e., maz = oo); when
min is not specified, the relation represents X PREC(0, maz) Y.

CONC stands for concurrency: X CONC(maz) Y means that the
occurrence times of X and Y must be separated by at most maz units of
time. This is expressed as:

ty — iy 2 —mazx
and (2)

tx -ty > —maz

where maz is an integer such that maz > 0. The graph representation
of (2) is in Fig. 1(b).

min -max
E— e
{a) (b)

Figure 1: Graph representation of constraints. (a) PREC constraint. (b)
CONC constraint.

In the rest of this paper, an event and the graph node representing
it are used interchangeably. A “path” from event X to event Y means a
directed path from X to Y in the constraint graph. Similarly a “cycle” in
the graph stands for a directed cycle. The “weight” of a path (cycle) is
the sum of the weights of the edges forming the path (cycle). The term

2-6 CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM

“positive path™ (“negative path™) stands for a path with weight strictly
greater than zero (smaller or equal to zero). The notation LP(XY) in-
dicates the weight of the longest path, i.e.. the path of maximum weight.
from event X to event Y. The term “stimulus event™ (“response event™)
indicates an event that the DSGRYV system must generate (observe), i,
an input (output) of the system being verified. The set of constraints is
said to be consistent if there exists a time assignment to the events of the
graphs such that all constraints are satisfied. It is well-known [5, 20] that
this consistency property holds if and only if there are no positive cycles
in the constraint graph (CG). A positive cycle can be detected as a side
effect of the longest paths computation [21].

When the constraint graph is constructed, an “Origin” event O is
created to represent time 0, and a PREC(0) relation is added from O to
the first event of every signal, and between any two successive events of
the same signal if no other PREC relation was specified between them.
Furthermore, an End event is added with a PREC(0) relation from the
last event of every signai to the End event.

4 Static Generation of Stimuli

In this section, we consider the problem of fixing even. times in a static
fashion, i.e., outside the simulation context, such that all timing constraints
are satisfied. Qnly stimulus events are considered in this static context.
As events are assigned occurrence times, the constraint system is modified;
indeed, fixing the occurrence time of an event X to a time tx is equivalent
to adding edges of weight ¢ty and —ix from events O to X and X to O,
respectively. In the following, a “free event” designates an event which
has not yet been assigned an occurrence time. The event becomes a “fixed
event” once it is assigned an occurrence time.

Lemma 1: Given a consistent constraint system and a free event
X picked arbitrarily from the set of free events, the constraint system
remains consistent when fixing X iff ¢x is chosen such that: LP(OX) <
tx < -LP(XO0).

Proof: Let LP(OX) and LP(XO) be the weights of the longest
paths from event O to event X and from event X to event O, respectively
(Fig. 2). Note that the two paths form a cycle of negative weight due to

the consistency of the system prior to fixing X. Therefore, the following
Liolds:

[-]
)
-1

CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM

LP(OX) £ -LP(X0) (3)

If we now fix X at some time tx, we add the two edges of weight ¢x and
—~ty (Fig. 2). The maximum weight cycle involving the —tx edge is of
weight: LP{OX) — ty; it is of maximum weight because it involves the
longest path from O to X. To maintain consistency of the system, the
weight of this cycle must be negative; therefore:

tx 2 LP(OX) (4)

Similarly, the maximum weight cycle involving the .x edge is of weight
tx + LP(X0). To maintain consistency of the system, this weight must
be smaller or equal to 0; therefore:

tx £ ~LP(XO0) (3)

It follows from (4) and (5) that LP(OX) < tx € —LP(X0). Note that
this interval is non-empty due to (3). Similarly, it can be easily shown that
any value of tx outside this interval creates a positive cycle and thus an
inconsistent system.

Q.E.D.

LP{X0)

LE(O0X)

Figure 2: Occurrence interval of event X.

In the following, the time interval of Lemma 1 is designated as the
“occurrence interval” of the event.

5 Dynamic Generation of Stimuli

In this section, we consider the problem of dynamically fixing event oc-
currence times during simulation. We assume an HDL based behavioral
simulation environment with support for concurrent processes, such as
found in VHDL {14]. Processes have their own internal variables and

L
[#.4]

CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM

data-structures. Inter-process communication is performed using signals:
a process reads the values of its input signals and drives values on its out-
put signals with a delay greater or equal to zero which may result in the
scheduling of events. There is one global simulation time clock in the sys-
tem; processes execute with simulation time frozen and return control to
a global scheduler using the “WAIT™ synchronization primitive. WAITs
have resume conditions associated to them such as timeouts, specific event
occurrences on signals, or combinations of these. The scheduler advances
simulation time depending on the temporal latency of the system and gives
control back to the processes for which the WAIT conditions have become
true.

In this model, we view the DSGRYV as a process which communicates
with the circuit being simulated via a set of I/O signals. A question then
arises as to the synchronization of the DSGRV process with the system
under verification. There are three basic options: 1- one extreme is to
schedule all events in the future when the DSGRV process takes control; 2-
the other extreme is to fix the occurrence instant of at most one event every
time the DSGRV process resumes its execution; then, when the current
time reaches that occurrence instant, drive the corresponding signal with
zero delay; finally 3- is some intermediate solution whereby each time the
DSGRYV process takes control, it schedules groups of events in the future.
Obviously, option 1 does not meet the requirements for DSGRYV as outlined
in Section 1. Furthermore, in order to simplify the DSGRV algorithm, we
choose option 2 over option 3.

In order to generate events dynamically, requirements additional to
those presented in Section 4 must be placed on the generation process
(Rules 1 to 3 below). We use the term “past event” instead of “fixed
event” and “future event” instead of “free event”, to indicate the existence
of a forward running time clock.

Rule 1: I two future events X and Y are such that LP(XY) > 0,
then X must be generated before Y.

In the following, a future event X is “feasible” if for all future events
Y # X : LP(YX) < 0. Note that given a non-empty set S of future
events, it is always possible to find a feasible event in S, otherwise there
would be a positive cycle in the constraint graph.

Rule 2: Given two future events X and Y, where X is a feasi-
ble event (i.e., LP(Y X) < 0), the occurrence time of X must be chosen
such that no positive path is created from Y to X, ie., the inequality
LP(Y X) < 0 must be preserved.

CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM 2.9

Informally, Rule 2 means that the occurrence time of X must not be
chosen in the future of ¥'. This rule can be applied using the following
lemma.

Lemma 2: For two future events X and Y, such that LP(Y' X) £
0, the relation LP({Y X) < 0 is preserved upon the occurrence of X iff the
occurrence time ¢y of X satisfies: ty < ~LP(YO).

Proof: The occurrence of X at fy creates a new Y to X path
of weight LP(Y Q) + tx (Fig. 3). In order to prevent this path from
being positive, we must have: LP(YO) + tx <0, te., tx < =LP(YO).
Note that it is always possible to satisfy Lemma 1 and the bound tx <
~LP(Y). This is because these two bounds are conflicting only when
~-LP(YO) < LP(OX), i.e., LP(YO)} 4+ LP(OX) > 0. Since LP(YX) 2>
LP(YO)+LP(0OX), it follows that LP(Y X) > 0, which is in contradiction
with the assumption LP(Y X) £0.

Q.E.D.

Figure 3: Occurrence of X creates new Y to X path.

Rule 3: The occurrence time ty of a future event Y must be such
that: ¢y > tx, where ty is the occurrence time of a past event.

In the following lemma we show that it is always possible to find a
time ty in the occurrence interval of Y, such that Rule 3 is respected.

Lemma3: Givena futureevent Y and a past event X, it is always
possible to make Y occur at some time ¢y that satisfies the bounds of both
Rule 3 ({y > tx) and Lemma 1 (LP(OY) <ty < =LP(YO)).

Proof: Rule 3 contradicts Lemma 1 only when —LP(YO) < iy,
ie., ~LP(YO) < LP(OX) {because LP(OX) = tx after the occurrence
of X). This yields LP(YO)+ LP(OX) > 0. Since LP(Y X) > LP(YO) +
LP(OX), it follows that LP(Y X) > 0. This is a contradiction because:
1- LP(Y X) was < 0 before the occurrence of X (otherwise X would not
have been chosen to occur before Y), and,

2-10 CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM

2- LP(Y X} is guaranteed to stay < 0 after the occurrence of X, due to
Rule 2 and Lemma 2.

Q.E.D.

The following theorem specifies the allowed time interval for the dy-
namic generation of an event. This interval is designated as the “feastbility
interval™ of the event.

Theorem 1: Let {P;} and {F;} be the set of past and future
cvents, respectively. An event X € {F;} may be dynamically generated
with the constraint system remaining consistent. iff X is chosen such that
VF; € {F:}. LP(F;X) <0 and the occurrence time ty of X is chosen such
that: max(LP{OX), max;(tp)) < tx € min{—LP(XO).miny(-LP(F.0)))

Proof: 1t follows directly from Rule 1. Lemmas 1 to 3, and the fact
that it is impossible that a future event F; is such that: ~LP(F.0) < tp,.
where P; is a past event (the proof is exactly the same as in Lemma 3,
with P; and F; being respectively the X and ¥ events of Lemma 3).

Q.E.D.

6 Improved Dynamic Generation

The approach suggested in the previous section for the solution of the
dynamic generation problem is relatively inefficient due to the computation
of longest paths between all pairs of future events, required by Rule 1. In
this section we propose two improvements that allow the reduction of the
number of future events to be considered in the application of this rule.

Consider the graph CG" obtained by ignoring the CONC constraints
and by representing each PREC constraint of the form X PREC(min, mez)
Y as an (unweighted) directed edge from X to Y. The resulting graph is
acyclic (otherwise the original graph CG would contain a positive cycle).
Furthermore, CG" connects all events of CG and there is a directed path in
CG-" from the Origin to every event of CG, because by construction there is
a PREC relation between the Origin and the first event of each signal, and
between any two consecutive events of the same signal. The PREC relation
thus defines a topological sort on the event set. In the following, we say that
X is a “predecessor” of Y (or Y is a “successor” of X), f X PREC Y;
similarly, we say that X is an “ancestor” of Y if there exists Z,...2Z,
such that X PREC Z,,Z; PREC Z;,fori = 1...n,andZ, PREC Y.
Furthermore, the term “frontier” designates the subset of future events for

CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM 2-11

which all predecessors have occurred.

The first improvement limits the computation of longest paths to
the pairs of elements of the frontier. Initially, the frontier contains the
Origin event only; it is then updated incrementally by traversing CG™ in
a PERT fashion {22), i.c., by inserting an event X in the frontier when
all its predecessors have occurred and removing X when it occurs. Using
Rule 1 of Section 5 and the fact that X PREC Y implies LP(XY) > 0, we
deduce that a necessary condition for an event to be feasible is that all its
predecessors have occurred; thus the set of feasible events, designated as
the “feasible set™, is a subset of the frontier. However, membership in the
frontier is not a sufficient condition for an event to be feasible. For example.
in Fig. 4, assume event V has just occurred, and all other events in the
figure are future events. Event X is in the frontier, since all its predecessors
have occurred. However, X is not feasible, because there exists a positive
path (of weight 10) from future event Y to X (note that Y is not even in
the frontier). In the previous section, the order of occurrence “Y before
X" was established by examining the longest paths between all pairs of
future events. Lemma 4 below assures that, even when we restrict the LP
computations to pairs of elements of the frontier, we cannot inadvertently
“forget” such Y events, and thus the correct order of event occurrences is

preserved.

Frontier
0

-10
s (1
N—

10
20

Figure 4: Frontier event X is not feasible.

Lemma4: If for some event X in the frontier there exists a future
event Y, such that LP(Y X) > 0, then either Y is in the frontier, or some
ancestor Z of Y is in the frontier such that LP(ZX) > 0.

Proof: It stems from the conjunction of the following two facts:
1- The PREC relation defines a partial order on the events. Furthermore,
due to the connectivity property of CG* and the manner in which the
frontier is built, the frontier is a maximal unordered set (by the PREC

2-12 CHAPTER 2- A STIMULUS / RESPONSE SYSTEM

relation). Therefore any future event ¥ which is not in the frontier must
be ordered by the PREC relation with respect to some element Z in the
frontier. Since Y™ has not occurred yet. it cannot precede Z, hence it must
follow Z. As a result, any future event ¥ which is not in the frontier must
have an ancestor Z in the {rontier.

2- Since LP(ZY’) > 0 (because Z is an ancestor of Y) and LP(YX) > 0
{by assumption), then LP(ZX) > 0 (because LP(ZX) > LP(ZY) +
LP(Y X)).

Q.E.D.

Note that the size of the frontier is bounded above by the number of
signals in the timing specification. Since this number is in general much
smaller than the number of future events, the pairs longest paths compu-

tation on the frontier proceeds substantially faster than on the complete
set of future events.

Let {G} designate the frontier. The second improvement to the dy-
namic generation method consists of eliminating from the feasible set any
frontier event G; such that LP(OG;) > ming(—LP(Gi0)). This is because
if there exists an event Gy € {G} such that LP(OG;) > —LP(G.0), then
LP(Gi,G1) > 0 (the proof is trivial). For an event G so eliminated, we do
not need to compute LP(GiG:), VGi € {Gk}.

7 Observation of Responses

In this section, we add the validation of system responses to the dynamic
generation process and present the complete DSGRYV algorithm (Fig. 5). In
addition to timeouts for generating stimulus events, the WAIT condition
in this algorithm considers response event activity and timeouts for the
absence of expected response events. There are two types of response
errors. The first type is signaled by the procedure match-events and is due
to the occurrence of a response event that does not match any event in
the list ezpected-R-events (this list is the expected respounse events subset
of the feasible set). Matching is based on signal name, event value and
occurrence time, i.e., the occurrence time of a response event must be in
the occurrence interval (Lemma 1) of the corresponding expected event.
The second type of response error is signaled by the procedure response-
time-out-error when the DSGRV process is woken up due to a response
timeout (i.e., T = maz-R-time) and no response event has occurred; a
response timeout error is then indicated for all events with expired time
intervals. Note that maz-R-time is the smallest of the upper bounds of the

CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM 2-13

occurrence time intervals in ezpected-R-events.

The procedure update updates the frontier and the longest paths,
and it computes the feasible set and maztime, where maztime is used in
the computation of feasibility intervals and is equal to ming(—LP(G:0)).
Gy € Frontier. The notation inf(X) and sup(X) indicates the quantities
LP(OX) and —LP(X0), respectively. The Origin and End nodes are
treated as pseudo stimulus events (in the sense that they are assigned oc-
currence times); however their generation does not produce any simulator
event activity.

At this point, it is useful to note that DSGRYV is intended to be
a relatively low-level utility on which “intelligent” simulation-based ser-
vices can be built. For example, choosing event occurrence times to test
“marginal” or “average” conditions is an interesting problem. The interface
of the DSGRV with the analysis tool that addresses this problem can be
done through the function choose-from-interval. In our current prototype
implementation of DSGRV, we simply choose the mid-point of (closed) in-
tervals. In case of semi-infinite intervals (i.e. when LP(X0) = —0), we
choose a constant offset from the interval’s lower bound. Random choice
is another possibility.

8 Hierarchical Timing Diagrams

The objectives of a hierarchical specification of timing diagrams are twofold:
1- facilitate the re-use of previously defined TDs when defining more com-
plex specifications, and 2- minimize the computation time needed for
longest paths updates in complex timing diagrams.

We have defined two basic TD composition operations: horizon-
tal, i.e. concatenation along the time axis (TDConcat) and vertical, i.e.
putting TDs in concurrency (TDConcur). These composition operations
are expressed in terms of hierarchical graphs (hgraphs), as shown in Fig. 6.
In this model, the direct subgraphs (e.g. the @Q.’s in Fig. 6) of a given
graph (e.g. P in Fig. 6) are represented by their Origin and End event
nodes. Constraints can be placed between Origin/End nodes of Q;’s and
P; constraint edges are allowed to “traverse” a TD “boundary” only at its
Origin and End nodes. The value of a signal before its first event in a TD
is taken to be equal to the signal value after its last event in a previous
TD, or unknown if such a previous event does not exist.

In TDConcat (Fig. 6(2)), any event in Q; occurs after all events in

2-14 CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM

Q:-1 have occurred: more specificauy, O;. the Origin event of a given Q,
is generated with a delay between a; and b; when E,_,. the End event of
(2i-1 occurs (or, in the case of 1 = 1, after O, the Origin of P. occurs).

In TDConcur (Fig. 6(b)). we note that:

VQ: € PVQ; € P: LP(0;,0;) = LP(0;,0;) = —c

where ¢ is the concurrency time of TDConcur; this implies that: O;
CONC(c) O;. FurthLermore, O;, the Origin event of a given Q; is gencrated
with a delay between 9 and ¢ when O, the Origin event of P, occurs. Note
that. for a TDConcur composition to be meaningful, the @Q;'s must be
defined over disjoint sets of signals.

The advantage of the hgraph model is that it offers unified represen-
tation and processing of leaf and composite TDs. However, such a model
taken in its full generality, would be unable to limit the ripple effects of
longest paths updates to within the graph where a given event occurs and
thus, would not achieve the efficiency objective stated at the beginning
of this section. Instead, we take advantage of the special characteristics
of TDconcat and TDConcur to define hgraph®, a restricted hgraph model
for which an efficient LP update algorithm can be defined. This is done
while at the same time, conserving the advantage of a unified r ‘presenta-
tion and processing of leaf and composite TDs. Furthermore, the hgraph*
model is general enough to support the definition of new TD composition
operations.

In the following, Q; is a direct subgraph of a graph P, O and F
designate the Origin and End events of P, and O; and E; designate the
Origin and End node of @;. Furthermore the notation QO; designates a
path from O to O; and w(Q0;) designates the weight of this path. For
the purpose of characterizing the Agraph* model, we consider a reduced
hierarchical graph in which each leaf graph Q; is represented by its O; and
E; nodes and by the two arcs O;E; and E;O; of weight LP(O;E;) and
LP(E;O;) respectively, where these longest paths are computed strictly
inside Q;. The characteristics of a graph Q; in the Agraph* model are as
follows:

1. Only PREC relations are used if Q; is a non-leaf graph (i.e. no CONC
relations are allowed; note however that TDConcur is allowed at any
level of the hierarchy).

2. 300,. VOO; w(00;)2 0and 0O; is strictly outside Q;.

CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM 2-15

3. 30E.. VYO.E:, w(O.-—E.-) > 0 and O:E.- is strictly inside Q.

4. YOE;, O-E.- is a concatenation of a O0; and a O;E;, where these
two paths are according to the above two characteristics.

5. VE:O.-, if such (a) path(s) exist(s), E,-b,- is surictly inside Q.
6. 3E;E. VEE, w(EE)>0.

The above characteristics imply that for any event X in a non-leaf
Q:, LP(OX) and LP(XO) depend strictly on events of P which are in the
past of O;, and on events of @; which are in the past of X (in the case of 2
leaf-level Q;, these longest paths can also depend on events of Q; which are
in the future of X, however they do not depend on future events outside

Qi)

Another consequence of the above characteristics is that, for any
pair of frontier events X; in ¢4 and X; in @, LP(X 1 X3) = LP(X,0) +
LP{OX:). This is because there are no X1X paths that pass through the
future of X or X and because all predecessors of X; and X, have occurred
(since X, and X; are frontier events). As a result, longest paths between
pairs of frontier events of different subgraphs need not be computed in
determining feasible sets. Instead, to determine if there is a positive path
between X; and Xj, it is sufficient to compare LP(X,Q) to LP(0X,).

Using bottom-up recurrence across the hierarchy, it can be easily
proved that the longest paths properties of the non-leaf graph @Q; can be
extended to LP(0’X) and LP(XO’) where O’ is the Origin of any graph
which recursively contains @;. The consequence of this is that when event
X occurs, longest paths update operations need be performed only in Q.
Actually, the update operation can be limited to the events in the (up-
dated) frontier of this graph and can be performed in O(1) time (assuming
a “constant” fan-out degree of event nodes).

The hierarchical DSGRV process starts at the root TD and pro-
gressively advances its frontier, recursively opening lower level TDs in a
top-down fashion, as the Origin events of these TDs occur, then closing
the TDs in a bottom-up fashion, as their Ead events occur. Each TD in
the hierarchy stores its frontier, feasible set, maxtime, and list of active
children. A child of a TD is said to be active if its Origin event has already
occurred, and its End event has not occurred yet. The frontier of 2 TD
contains events that are strictly local to the TD, while the feasible set and
maxtime of the TD are cumulative for the whole subtree headed by the
TD.

2-16 CHAPTER 2- A STIMULUS 7 RESPONSE SYSTEN!

When an event occurs. update operations are performed by the pro-
cedure h-update (Fig. 7), i.e. the call to updatefevent, TD) in Fig. 5 is
replaced by the call to h-updete(event, TDPath{event)). TDPAth is an
ordered list of TDs. from the root to the “owner™ TD of the event, where
the owner is the TD that had requested execution of the event. The up-
date operation consists first of locally updating the LPs and the frontier
in the owner TD. Note that the procedure update-frontier-and-LPs has
different methods of longest path computation in leaf TDs and composite
TDs (since in leaf TDs the longest paths can depend on events of the TD
which are in the future of the TD’s frontier).

Then, if the event is the Origin of a child TD, the parent TD re-
moves the event from its frontier. puts the corresponding child TD (trig-
geredTD(event)) on its active list of children and initiates the child TD
for execution. If on the other hand, the event that occurred is the End
event of a TD, the TD removes its End node from its local frontier. The
parent TD recognizes that one of its children has terminated execution
when it receives an empty feasible set from that child TD; the parent TD
then removes the terminated child TD from its active list of children and
puts the successor(s) of the occurred End event in its frontier. For conve-
nience, an Origin (resp. End) event is represented by two distinct objects
in both the TD it starts (resp. ends) and in the parent TD; the accessor
associated-event(event) allows to pass from one representation to the other.

Next, feasible set update operations (implemented by h-compute-
feasible-set, Fig. 8) are performed bottom-up from the owner TD; at each
ancestor of that TD, the feasible set is combined with the feasible set of
other branches of that ancestor, and with the local frontier of the ances-
tor. Note that pairs longest paths are computed only in the case of leaf
TDs. The feasible set that results at the root TD is then used for stimulus
generation and response validation, as in the “flat” algorithm.

Finally, note that all event times and longest paths are with respect
to the Origin of the root TD; this is done by initjalizing irf(Origin) and
sup(Origin) of 2 given TD to the actual occurrence time of the Origin,
instead of zero as was done in the “flat™ case.

9 Experimental Results

We have implemented the DSGRV algorithm in VHDL and run experi-
ments using different microprocessor bus operations. One series of exam-
ples we present here is the simulation of READ transactions between an

CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM 2-17

Intel 8085 CPU [23] (Fig. 9 and Table 1) and an 8355 ROM WITH 1/0 (23]
(Fig. 10 and Table 2). The experiments are performed on a SUN 3/260
running Intermetrics VHDL.

Each chip is modeled as a separate DSGRV process using the speci-
fications of Figures 9 and 10 and Tables 1 and 2. The READ operation is
performed without wait states {i.e. the READY signal is not used). The
IOW input line of the 8335 is not modeled, since it is used only for the I/O
section of the chip. The CE (chip enable} bit of the ROM is driven by bit
Aq of the CPU Address bus. Bits A2 to A;s of the CPU Address bus are
left unconnected (they are outside the address range of the ROM). The
rest of the Address bus and the AD (multiplexed Address/Data bus) are
modecled as integer types (i.e. one “line” carrying an integer value for each
bus). The other connections between the CPU and the ROM are evident
from the corresponding port names. The input events that correspond to
the beginning of expected valid Address/Data windows {windows labeled
ADDRESS, DATA and DATA IN in Figures 9 and 10} are assigned the
symbolic value Stable. The corresponding output Data or Address transi-
tions generated by the DSGRV process on the driving side, are replaced
by constants (address to be read and data content at this address); these
constants are passed as arguments to the TDs at instantiation time of the
TD hierarchy.

In the first experiment, a singie READ operation is performed. Each
DSGRYV process contains a single “fiat™ graph describing the corresponding
READ operation (Figures 9 and 10). The event activity resulting from the
simulation is given in Table 3.

In the second experiment, two consecutive READ operations are per-
formed. Each DSGRV contains a “flat” graph consisting of a “fat™ con-
catenation of two READ operations.

In the third experiment, the same two consecutive READ opera-
tions are performed. However this time, each DSGRV contains an hgraph
consisting of a TDConcat composition of two READ operations. It is in-
teresting to note that the CPU specification is such that there are events
near the end of the READ operation that impose constraints on events
at the beginning of the next READ. For example, the rising edge of ALE
(Address Latch Enable) at the beginning of a READ operation must be
after the rising edge of the RD signal in the previous READ operation
by a minimum of i¢y, (50 ns). Similarly, the stable Address transition at
the beginning of a READ must be after the rising edge of the RD signal
in the previous READ operation by a minimum of ¢4 (120 ns). Such
constraints cannot be represented since, in the hierarchical graph model,

2-18 CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM

all inter-TD . nstraints must pass through Origin or End nodes of TDs.
The specification of the CPU was therefore slightly modified as follows:
A separation of 2 minimum of {¢g (30 ns) was specified between the two
concatenated READ operations and an edge of weight {cq — top (70 ns)
was added from the Origin event of the READ TD to the Address Sta-
ble transition. Further investigation is needed to determine how to handle
such cases without modifying the specifications nor flattening the hierarchy
(which would yield slower DSGRV run-times).

The number of nodes and =dges used in each DSGRV process and the
run-time of the experiments are shown in Table 4. The columns labeled
Nodes and Edges in this table account for all graph nodes and edges. respec-
tively, 1n the corresponding DSGRYV process, including those attributed to
the different Origin/End nodes. The column lakeled events/sec shows the
“true” performance of the simulation, i.e. it accounts only for the cvents
which generate simulation activity (this therefore excludes Origin/End
“events”). We can see from Table 4 that in the case of “fat™ specifi-
cations, the number of events processed per second decreases by the same
factor as that of the increase in the size of the TD. This is of course due
to the longest path algorithm in leaf TDs. However, in the case of hierar-
chical specifications, the performance of the DSGRV process in number of

processed events per second, is practically independent of the size of the
data set.

We conclude this section by outlining other limitations that we have
encountered while using the DSGRV system.

e The DSGRV system is presently unable to model OR-type con-
straints (i.e. earliest firing events). For example, it is not uncommon
to sev the output bus drivers of DRAM chips be controlled by two
signals such that, as soon as one of the two control signals is disabled,
it turns the drivers off. Handling such cases requires a generalization
of the longest paths algorithm. As for frontier updates, the rule for
early firing events would be to put the event iz the frontier as soon
as one of its predecessors occurs.

e Another limitation of the DSGRYV system is the absence of condition-
als and states in the semantics of the model. Although we have im-
plemented a2 TDChoice composition operation, the branching mecha-
nism is under sole control of the user (through a user-written VHDL
procedure which-does the actual choice during the simulation run-
time, with the help of the standard VHDL signal predicates). In
order to improve the functionality of TDChoice, the system must

CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM 2-19

be able to automatically “match™ multiple TDs in parallel, against
observed events, and progressively eliminate those TDs which do not
match the observed activity (such functionality is needed for exam-
ple in the case of a memory component which must “decide™ which
operation the CPU is requesting). This functionality is, however,
quite simple to integrate with the DSGRV algorithm presented here.

10 Conclusion

We have presented a novel approach to stimulus generation and response
validation, based on timing constraint graphs. The merit of our approach
is that it allows the stimulus/response system to dynamically interact with
the circuit during the simulation run-time, thus allowing the generation of
stimuli that depend on the response time of circuit outputs. We have ex-
tended the stimulus/response system to hierarchical constraint graphs and
shown that this extension improves the simulation run-time at the expense
of some loss in power of expression, namely that constraints that cross hier-
archical boundaries cannot be expressed without some modifications to the
original specifications. Finally, we have identified areas of future work such
as the extension of the model to include conditional execution semantics
and early firing events.

References

[1] R.B Hitchcock. Timing verification and the timing analysis problem.
In ACM/IEEF Proc. 19th DAC, pages 534-604, 1982,

[2] T.G Szymanski. LEADOUT: A static timing analyzer for MOS cir-
cuits. In JEEE Proc. ICCAD-86, pages 130-133, 1986.

[3] M.R Dagenais and N.C Rumir. On the calculation of optimal clocking
parameters in synchronous circuits with level-sensitive latches. JEEFE
Trensactions on CAD, 8(3):268-278, March 1989.

[4] G.V Bochman. Hardware verification with temporal logic: An ex-

ample. JEEE Transactions on Computers, C-31(3):223 231, March
1982.

(5] F. Jahanian and A.K.L Mok. A graph-theoretic approach for timing
analysis and its implementation. JEEE Transactions on Computers,
C-36(8), August 1987.

2-20 CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM

[6] K. Nakade. T. Yoneda. and Y. Tohma. A fast timing verification
method based on the independence of units. In [EEE Proc. 19th
FTCS. pages 134-141, 1989.

[7] G.J Milne. Timing constraints: Formalizing their deseription and
verification. In Proc. 9th IFIP Symposium on CHDLs, pages 103-
116, 1989.

[§] R.H Lathrop and R.S. Kirk. An extensible object-oriented mixed-
mode functional simulation system. In ACM/IEEE Proc. 22nd DAC.
pages 630-636, 1985.

[9] Y. Huh, D.C Luckham, L.M Augustin, B.A Gennart. and A.G Stan-
culescu. Verification of VHDL designs using VAL. In ACM/IEEE
Proc. 25th DAC, pages 48-53, 1988.

{10] D.T Miller, M. Abramovici, J.J Kulikowski, and P.R Menon. System-
level design verification at the AT&T computer division: Tools. In
IEEE Proc. ICCD-89, pages 548-554, 1989.

[11] G. Borriello. A New Interface Specification Methodology and its Appli-

cation to Transducer Synthesis. PhD thesis, University of California,
Berkeley, 1988.

[12] T. Gahlinger, J.A Brzozowski, and F. Mavaddat. Consistency end
satisfiebility of waveform timing specifications. Research Report CS-
88-24, University of Waterloo, 1988.

[13] R. Rastogi, A. Kara, and K. Kawamura. TDS: An expert system to
automate timing design for interfacing VLSI chips in microcomputer
systems. In IEEE Proc. ICCAD-86, pages 362-365, 1986.

[14] IEEE. IEEE Standerd 1076-1987, VHDL Lenguage Reference Man-
ual IEEE, 1987.

[15] R. Mathews .M Watson, J.A Newkirk and D.B Boyle. ICTEST: A
unified system for functional testing and simulation of digital IC’s. In
" IEEE Proc. ITC-82, pages 499-502, 1982.

[16] J. Ivie and K. Lai. STL: A high-level language for simulation and test.
In Proc. 23rd DAC, pages 517523, 1986.

[17] A. Gilman. Logic modeling in WAVES. IEEE Design and Test of
Computers, pages 49-55, June 1990.

CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM 2-21

[18] S.K Sherman. Algorithms for timing requirement analysis and gener-
ation. In ACM/IEEE Proc. 25th DAC, pages T24-727, 1988.

[19] S.P Levitan, A.R Martello, and D.M Chiarulli. Timing verification
using HDTV. In ACM/IEEE Proc. 27th DAC, pages 118-123, 1990.

[20] E.L Lawler. Combinatoria! Optimization: Networks and Matroids.
Holt, Rinehart, and Winston, New York, 1976.

[21] R.E Tatjan. Data Structures and Network Algorithms. SIAM,
Philadelphia, 1983.

[22] J.J Moder and C.R Phillips. Project Maenagement with CPM and
PERT. Van Nostrand, New York, 1970.

[23] Intel Corporation. MCS-85 User’s Manual Intel, Santa Clara, CA,
1978.

o
£
o

CHAPTER 2- A STIMULUS / RESPONSE SYSTEM

PROCESS DSGRV(TD, stimulus_signals, response_signals)
S_event := origin(TD); S_time := 0; feasible_set := {S_event};
expactad_R_events := NULL; max_R_time := +infinity;

while feasible_set not empty do
T := get_current_simulation_time();

/+ GENERATIE =/
it ((T = $_time) and (S_event =/ NULL))

then occur_now(S_evert); /* make X occur with 0 delay »/
end if;

/* OBSERVE & VALIDATE =/
actual_R_events := gat_actual_R_events(); /» query sim. */
if actual_R_events
then
occurred_R_events :=
match_events(actual _R_events, expocted_R_events);
elseif (T = max_R_time)
then
response_time_out_error{expected _R_covents);
end if;

/+ UPDATE =/
loop for event in {S_event} U occurred_R_events
do
(feasible_set, maxtime) := update(event, TD);
end loop;
expected_R_events := get_response_events(feasible_set);
max_R_time := min over_[X in expected_R_events] (sup(X));

/* CHOOSE =/

S_event := choose_stimulus_event(feasible_set):

S_time := choose_%rom_interval [max(inf(S_event), T),
min(sup(S_event), maxtime)];

/= WAIT »/
timeout := (min (max_R_time, S_time)) - T;
wait on response_signals for timeout;
end while;
aend DSGRV.

Figure 5: DSGRV Algorithm.

CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM 2.23
P
at a2 02
o o a E1 Qe E2 4 E
-b1 b2 |
@
=)
El
a1 0
E
E2
Q2 4]
(b}

Figure 6: TD composition. (a) TDConcat composition. (b) TDConcur
composition

2-24 CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM

PROCEDURE h_update(event, TDPath)
1D := tirst(TDPath);
if (rest(TDPath)) /* event belongs to a lower level TD =/
then /+ recursive call on child TD =/
(childFeasible_set, ChildMaxtime) :=
h_update{event, rest(TDPath));
if (empty(childFeasible_set))
/* avent was the End event of the child TD =/
then
/* remove the child TD from
the active children list of this TD =/
activeChildren(TD) :=
activeChildren(ID) - first(rest:(TDPath));
/+ get successors, in this TD,
of the terminated child TD »/
update_frontier_and_LPs(associated_event(event), TD);
andif;
else /* avent belongs to this TD =/
/* get successors of event in this TD »/
update_frontier_and_LPs(event, 1D);
triggerediD := triggeredID(event);
if triggeredID /= NULL
/* i.e., event is also Origin event of a child TD «/
then
/* 2dd child to active children list of this TD «/
activeChildren(TD) :=
activeChildren(TD) U {triggeredID};
/* update the child TD =/
h_update(associated_event(event), list(triggeredTD));
endif;
aendif;
(feasible_set, maxtime) := h_compute _feasible_set(ID);
return(feasible_set, maxtime);
end h_update.

Figure 7: Hierarchical graph update algorithm.

CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM 2-25

PROCEDURE h_compute_feasible_set(TD)
maxtime(TD):=
min(min_over_[X in frontier(TD)](sup(X)),
min_over_[Child in activeChildren(TD}] (maxtime(Child))});
feasible_set := union{frontier(TD),
union_over.[Child in activeChildren(TD)]
(feasible_set(Child)));
foasible_set =
remove_from{feasible_set, (X | inf(X) > maxtime));
if (QeafTD(TD))
then
compute_pairs_longest_paths(feasible_sat);
foasible_set =
remove _from({feasible_set,
(X | thereExists(X'}) and LP(X’X) > 0));
endif;
foasible_set(TD) := feasible_set;
return(feasible_set(TD), maxtime(TD));
end h_compute_feasible_set.

Figure 8: Hierarchical feasible set computation algorithm.

'nd Lex I- --_;Lm‘
o ol [e n
Lfarty '
e ot G
— tLDR—
soonor = .Ufhﬁﬂi—
AE wo—ter Lo —t L
ROWTA Rl —
READY

Figure 9: CPU READ - Timing Diagram.

2-26 CHAPTER 2- A STIMULUS / RESPONSE SYSTEM

Table 1: CPU READ - Timing Constraints.

Symbol | Parameter Miu, | Max. | Units
Teve CLK Cycle Period 320 | 2000 ns
t CLK Low Time 30 ns
s CLK High Time 120 ns
tag Address Valid before

Trailing Edge of ALE 110 ns
tra Address Hold Time After ALE 100 ns
tre ALE Width 140 ns
trow ALE Low During CLK High 100 ns
trc Trailing Edge of ALE to

Leading Edge of Control 130 ns
tAFR Address Float After

Leading Edge of READ(INTA) 0 ns
taD Valid Address to Valid Data In 5 ns
trD Read (or INTA) to Valid Data 300 | ns
troy Data Hold Time After READ (INTA) 0 ns
tRAE Trailing Edge of READ

to Re-Enabling of Address 150 ns
tca Address (A8-A15) Valid After Control 120 ns
tow Data Valid to Trailing Edge of WRITE 420 ns
twp Data Valid After Trailing Edge of WRITE | 100 ns
tec Width of Control Low (RD, WR, INTA) | 400 ns
ter Trailing Edge of Control

to Leading Edge of ALE S0 ns
tary | READY Valid From Address Valid 220 | ns
trys READY Setup Time

to Leading Edge of CLK 110 ns
trYH READY Hold Time 0 ns
tLDR ALE to Valid Data In 460 ns
trv Control Trailing Edge to Leading

of Next Control 400 ns
tac Address Valid to Leading Edge of Control | 270 ns

CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM 2-27

jo———t_CcYc——~ f—T1=—eje—T2—+]

acalll enm— TR —
|-—1_HD—-
1 AI_AD
L_1 —t_LA LWD
AL— ROE |+ p———rt DW————=e t_RDF
ADO-AD7 = X DATA B
CE Y Y
4—_CL:
ALE J—t_Lt—=tet_LC™ —t_Cl—
—t_RV—=]
RO — | oammme—
ow .o —

Figure 10: ROM READ - Timing Diagram.

Table 2: ROM READ - Timing Constraints.

Symbol | Parameter Min. | Max. | Units
Teve CLK Cycle Period 320 ns
T CLK Low Time 80 ns
T CLK High Time 120 ns
tar Address to Latch Set Up Time 50 ns
tra Address Hold Time After Latch 80 ns
tre Latch to READ/WRITE Control 100 ns
trRD Valid Data Out Delay from Read Control 170 ns
tap Address Stable to Data Out Valid 400 ns
| tLL Latch Enabie Widih 100 ns
inpr Data Bus Float After Read 0 100 ns
ter READ/WRITE Control to Latch Enable | 20 ns
tcc | READ/WRITE Control Width_ 250 ns
tow Data In to WRITE Set Up Time 150 ns
twp Data In Hold Time After WRITE 10 ns
trRv Recovery Time between Controls 300 ns
tRDE Data Out Delay from READ Control 10 ns

CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM

Table 3: Event activity for one READ iransaction.

Generated by CPU: CLK =low at 0 nx
Generated by CPU: ALE = high at 30 ns
Generated by CPU: A[8-10] =5 at 60 ns
Generated by CPU: AD[0-7] =230 at 60 ns
Generated by CPU: CE =low at 60 nx
Generated by CPU: CLK = high at 140 ns
Generated by CPU: ALE =low at 185 ns
Generated by CPU: CLK =low at 320 ns
Generated by CPU: CE = high at 332 ns
Generated by CPU: RD =low at 332 ns
Generated by CPU: AD[0-7) =2 at 332 s
Generated by ROM: AD[0-T] =U at 337 ns
Generated by ROM: AD[0-7] =123 at 398 ns
Generated by CPU: CLK = high at 460 ns
Generated by CPU: CLK =low at 640 ns
Generated by CPU: CLK = high at 780 ns
Generated by CPU: RD = high at 845 ns
Generated by ROM: AD[0-7] =2 at 895 ns

Table 4: Run-time performance of DSGRV.

Experi- Nodes Edges time | event/
ment | CPU | ROM | CPU [ROM | (sec.) | sec.
1 READ 20 20 66 68 5.0 72
2 READ 38 38| 140 142 | 199 3.6
flat

2 READ 42 42 138 142 | 104 7.0
hgraph

CHAPTER 3

MODELING AND EXECUTION
OF TIMING DIAGRAMS WITH
OPTIONAL AND MULTI-MATCH
EVENTS

ABSTRACT

We present a tool that captures the interface specification of a hard-
ware module from a set of timing diagrams. The specification is interpreted
as an operational model. Upon execution, the model validates the module
input events and produces its output events. Our main contribution is the
extension of an existing event-based specification method to support the
concepts of optional events (events that do not always have to match actual
event occurrences) and multi-match events (events that can match multi-
ple actual event occurrences). These concepts are necessary in specifying
the interface behavior of most digital systems.

31

3.2 CHAPTER 3 - OPTIONAL & MULTI-MATCH EVENTS
1 Introduction

An abstraction paradigm that is gaining acceptance in the timing anal-
vsis of large systems, is that of an interface specification [1. 2, 3. 4. 5i.
This is an event-based description that captures the causality and timing
relations between events at the [/O ports of (usually high-level) modules
of the system under verification. In {6]. the interface specification of a
module is captured in the form of a hierarchy of timing diagrams (TDs)
[7] and is internally represented by a hierarchical constraint graph. The
specification is then interpreted as an executable (simulation) model. Dur-
ing the execution. the constraint graph hierarchy is traversed in order to
validate the module input events and produce its output events according
to the specifications. The algorithm of [6] is adequate for fully specified
values, e.g.. 0, 1, or z bit values. In such a model. every specified event
must be matched once. and only once in a given execution of the TD.
However. the specification of certain types of timing constraints (e.g.. sct-
up and hold times) in the context of an event-based model, requires the
use of symbolic event values such as Valid and Don’t-care. Events with
such values cannot be handled by the approach of [6]. In this paper, we
introduce two new event types: optional events (events that do not always
have to match actual event occurrences) and multi-match events (events
that can match multiple actual event occurrences), and we consequently
extend the execution model of [6]. A concept similar to a multi-match
event was proposed in [8] for the synthesis of asynchronous circuits from
Signal Transition Graphs.

The rest of the paper is structured as follows: Section 2 presents our
model and terminology. Section 3 presents the input validation algorithm
for the restricted case of fully specified logic patterns. Sections 4 and 5
address the problems related to optional and multi-match events, respec-
tively. Section 6 extends the system to output events. Section 7 discusses
limitations of the system, and Section § concludes the presentation.

2 The Model

An interface specification consists of a set of signals and a set of timing
constraints. Each signal is composed of an ordered sequence of events,
designated as spec events. Given a spec event £ on a signal S, the notation
next(E) designates the spec event which is next to E in the sequence of
spec events of S.

CHAPTER 3 - OPTIONAL & MULTI-MATCH EVENTS 3-3

An event value indicates the value of the corresponding signal after
the occurrence of the event. Event values are in the set V = BU {z,v,u}.
where B is the domain of the given signal subtype, e.g., B = {0,1} for a
bit signal or B = {0,...,255} for an $-bit bus signal; = stands for high-
impedance; v (Valid) represents any arbitrary value from B that doss not
change for a specified period of time, its actual value being irrelevant to the
interface specification; and u means Unspecified, Unknouwn, or Don’t-care.
It is assumed that for any spec event E, E and next(E) have distinct values.
Event values other than u and v are said to be fully specified values. A spec
cvent whose value is fully specified is a fully specified event. The direction
mode of a spec event is “input” or “output™. Unidirectional signals have
a singlec mode of spec events (input only or output only). Bidirectional
signals can have both modes.

Timing constraints are represented by a directed constraint graph,
where nodes represent events, and a directed edge of weight e from node
X to node Y represents the timing constraint: ty — ix > a, with iy
and y representing the occurrence times of events X and Y, respectively.
There are two primitives for specifying timing constraints (Fig. 1): PREC
(precedence) and CONC (concurrency). X PREC(min, maz) Y means
that event ¥ must occur after event X by at least min units of time and
at most maz units of time. The PREC constraint can be expressed by the
two inequalities: ty — iy > min and ty — ty > —maz, where min and
maz satisfy 0 € min < maz. The notation X PREC(min) Y is used when
maz is not specified (i.e., maz = o0). X CONC(ma<) Y means that the
occurrence times of X and Y must be separated by at most maz units
of time. This is expressed by the two inequalities: ¢ty — ix > —meaz and
tx — ty > —maz, where maz > 0.

min -max
G E—O
(=) (®)

Figure 1: Graph representation. (2) PREC. (b) CONC.

An “Origin” pseudo-event O is created to represent time 0, and a
PREC(0) relation is added from O to the first spec event of every signal,
and between any spec event E and next(E) (if there is a next{E)). Fur-
thermore, an End pseudo-event is added with a PREC(0) relation from
the last event of every signal to the End eveat. The notation LP(XY) in-
dicates the weight of the longest (i.e., of maximum weight) directed path,
from event X to event Y. An event X is said to be a predecessor of an

3-4 CHAPTER 3 - OPTIONAL & MULTI-MATCH EVENTS

event Y, if X PREC Y, or if there exists Z, ... Z, such that X PREC Z,.
Z; PREC Z;,,,fori=1...n.and Z, PREC Y. Furthermore, event X
is a generalized predecessorof ¥, if LP(XY") > 0. Note that this does not
imply that X is a predecessor of Y, e.g.. in Fig. 2{(a). LP(XY) =20 and X
is not a predecessor of Y. The consistency of an interface spccification. i.e.,
whether ihere exists an assignment of event times such that all constraints
are satisfied, is solved [2, 3] by detecting cycles of positive weight in the
graph. The satisfiability of safety constraints by causality constraints, i.c..
whether all possible time assignments that satisfy the causality constraints
also satisfy the safety constraints, can be solved [1, 2] by comparing longest
paths between pairs of events in the constraint graph.

3

»

(2 ()

Figure 2: Event X is a generalized predecessor of Event Y. (a) Specifica-
tion. (b) Y occurs at t = 100.

We assume an HDL based behavioral simulation environment with
concurrent processes, such as in VHDL [9]. Processes relinquish control to
a scheduler using “WAIT” instructions that have resume conditions such
as timeouts and/or specific event occurrences on signals. The scheduler
advances time depending on the temporal latency of the system and gives
control back to the processes for which the WAIT conditions have become
true. In this context, the executable model of an interface specification is a
process which communicates with other processes via its set of [/O signals.
Events which occur during the simulation are designated as actual events;
they must be matched against spec events. The rules for value matching
are given in Table 1 for the case of bit values. These rules can be easily
generalized to bus signals by substituting 0...2" — 1, where n is the bus
size, for {0,1} in Table 1. When the intent is clear, we will simply use the
term event to designate a spec or an actzal event.

When an actual event is matched against a spec event X at time
tx, two edges of weight ¢x and —tx from events O to X and X to O,
respectively are inserted in the CG. From this, the following result can be
easily proven [10].

Lemma 1: The constraint system remains consistent when X is

. CHAPTER 3 - OPTIONAL & MULTI-MATCH EVENTS 3-5

Table 1: Event value matching.

spec values | matching actual values
0 0
1 1
z z
v 0,1, v
u 0,1,z,v, u

matched at tx iff ¢y is such that: LP{OX) <itx £ —-LP(X0).

In the following, the time interval of Lemma 1 is designated as the
occurrence interval of event X and is denoted by [X]. The notation inf(X)
(resp. sup(X)) stands for LP{OX) (resp. -LP(XO)) The current event
(CE) of a given signal is the spec event following the last occurred spec
event on the signal. The CE is nil if all spec events for that signal have
occurred. The current event set (CES) is the set of current events over the
signal set.

3 Validation of Fully Specified Events

In this section, we consider the problem of input validation restricted to
Jully specified events. The validation algorithm is shown in Fig. 3. The
process iterates until the current event set is empty. At each iteration,
the process WAIT's for actual input event activity, and if no such activity
occurs before the time T = maz-time, a timeout occurs. Maz-time is the
smallest sup(X;), where X; spaas the set of current events. The procedure
update in Fig. 3 updates the longest paths and the current event set (i.e.,
if a spec event E of a signal S is matched, CE(S) is assigned the value
next(E)).

There are three types of invalid situations. The first type, signaled
by the procedure match-or-error, is due to the occurrence of an input
event that does not match the current spec event of the corresponding
signal. Matching is based on signal name, event value and occurrence
time, as giver by Lemma 1. The second type (time-oui-error) occurs
when the process is woken up due to a timeout (i.e., T = maz-time) and
no input event has occurred. The third type (precedence-error) is due to

. the occurrence of an event Y that violates a generalized precedence relation
with respect to some yet unoccurred event X (i.e., X should have occurred

3-6 CHAPTER 3 - OPTIONAL & MULTIMATCH EVENTS

before Y). The effect of Y's occurrence is that sup(N) becomes smaller
than the current simulation time. For example, in Fig. 2(b). event Y
occurs at ¢ = 100, making the sup of the vet unoccurred event X take
on the value sup(X) = 80 (i.e.. smaller than the current time t = 100).
We say that X is “projected into the past”. In order to detect precedence
errors, it is sufficient to check whether there exists a current event that has
a sup value smaller than the current simulation time. Indeed, since there
is a PREC(0) relation between any event E and next(E). the sup of the
signal’s current event is the smallest of the sup of zll unoccurred events of
the signal.

4 Optional Events

In general, not all spec events have to match an actual event occurrence
during execution. An example of this is a data change event E; that pre-
cedes a clock event E; by a required minimum set-up time t,, (Fig. 4(2)}).
However the data change does not need to occur. Such spec events are
designated as optional events. An event which is not optional is said to
be necessary. Note that whether a spec event is optional or necessary,
cannot always be determined statically. For example if two spec events E
and F have values v and 1, respectively, and F is next(E), then F could

be optional or necessary, depending on the value of the actual event that
matches E.

In order to handle optional events, we relax the “timeout error” rule.
The new rule states that it is legal to reach a timeout for a spec event
E (i.e., to have the current simulation time advance to sup(E) with no
actual event activity on the corresponding signal) if the current value of
the signal matches the spec event value. It is an error if the values do not
match. For example, in Fig. 4(b) assume that E, and E; are the CE’s of
the data and clock signals, respectively. Assume further that the zontext
of execution is such that [E)] = [10,90] and [E,] = [50,100]). At time
t =90, a timeout occurs for event E;. The actual signal value of the data
must be tentatively matched against the spec value, v, of spec event E;.
If the match is successful (this is the case if the data is ore of {0,1,v}),
the timeout is accepted and the CE for the data signal becomes Es, else
an error is flagged.

The “precedence error” rule needs to be relaxed in a similar manner.
The new rule states that it is acceptable for a spec event E to be “projected
into the past” (i.e., to have sup(E) smaller than the current simulation

CHAPTER 3 - OPTIONAL & MULTI-MATCH EVENTS 3-7

time) if the current value of the signal matches the spec event value. 1t is
an crror if the values do not match. Consider again the example of Fig. 4(b)
(£, and E, are the CE’s of the data and clock signals, respectively. with
[E:] = [10.90] and [E.] = [50,100]). However, assume now that a rising
clock event occurs at { = T0 (see Fig. 4(c)); this event matches Es value-
wise and time-wise. After the graph update, [E)] is equal to [10,60]: E|
is therefore projected into the past. This is correct as long as the actual
signal! value of the data matches the value of E; (i.e., is one of {0,1,2}).
Assuming this is the case, the current events of the clock and data signals
become E,; and Ej. respectively. Note that in general, a sequence of events

on a given signal can be projected into the past (the sequence starts at the
signal’s CE).

5 Multi-Match Events

A given spec event can match multiple actual events. This is a character-
istic of don’t care (u) value spec events. For example, in Fig. 4(a), event
E5 expresses the fact that the data signal can undergo a sequence of tran-
sitions of arbitrary length (including zero). Spec events such as Ej are
designated as multi-match cvents (note that, by definition, a multi-match
event ic also an optional event). We interpret constraint edges incident on
a multi-match event as being with respect to the first transition (if any)
of the matching sequence. Note that by transitivity, the constraint edge
of weight ¢, in Fig. 4(a) applies to tho whole event sequence that eventu-
ally matches E3;. However, this would not be the case for constraint edges
outgoing from a multi-match event.

Assume that E is 2 multi-match event (Fig. 5(a)), F is next(E), and
the constraints on E (resp. F) are represented, without loss of generality,
by two edges of weight a and b (resp. ¢ and d). G represents the rest of
the constraint graph. Assume, that E matches a sequence of actual events
Ey...E,. I we knew beforehand the length of this sequence, we could
represent the specification as in Fig. 5(b) (note that in order to simplify
the notation, we are using the same symbol E;,7 = 1...n to stand for
both the actual event and its associated spec event). Upon matching of
events Ey ... E, at times ¢, ...t, during simulation, the graph of Fig. 5(c)
would be obtained. It can be easily shown that, by transitive closure, this
graph is equivalent to the one in Fig. 5(d). By “equivalent”, we mean
that this transformation preserves, at all times, LP(XY), for all X,Y other
than the “internal” events E.... E,_,. Note that the edge of weight —¢,
can be dropped because it only affects paths which have the sequence

3-8 CHAPTER 3 - OPTIONAL & MULTIMATCH EVENTS

E, = E, = O at their tail end: howg\'cr. this sequence is dominated, in
terms of longest paths, by the edge EyO. of weight —1; (since =t > -1,,).
The motivation for dropping the edge of weight =4, will become clear in
the following.

The generalized validation algorithm handles the model in Fig. 5(a)
as {ollows: During the graph initialization that precedes the actual simula-
tion, event £ is “split” into E; and E,. In fact E itself stands for £, and
a new spec cvens is inserted between £, and F to represent £,. During
simulation, when E) is the CE. and an actual matching event occurs at
time ¢; on the corresponding signal. edges of weight ¢; and —¢; are inserted
in the graph, E, is considered as cccurred, and the CE of the signal is set
to E,. Then, when an actual event matches E, at time ¢; . {; > t,. a sin-
gle edge of weight ¢; is inserted from O to E,. and the CE remains equal
to E.. Subsequently, at every successive match of E,, the weight of this
edge is simply increased to the new occurrence time of the matching actual
event (and the CE remains equal to E,). No edge of weight —¢; is inserted
because such an edge would reduce sup(E,) to t;, therefore prohibiting
any further matches of subsequent actual events against E,. Finally, E,
is considered as occurred and the CE is updated to next(E,), when one of
the following occurs: 1) E, times out, 2} E, is “projected into the past™.
These two situations are handled exactly as seen in Section 4.

Note that when E,; is the CE it can also time out or be projected into
the past. The same thing then happens to E,, if the path which starts at
E; and which caused the timeout or projection of E)| into the past passes
through the d edge (Fig. 5(d)); if, however, the path goes through the b
edge, E, becomes the CE.

6 Output Event Generation

In this section we extend the system to specifications that contain both
input and output events. We need to address two issues: 1) how to choose
an output event to be generated at a given point in the simulation, and 2)
how to fix the occurrence time of the chosen event. Note that the tool we
are presenting in this paper is a utility on which simulation-based timing
analysis services can be built. For example, choosing event occurrence
times to test “marginal” or “average” conditions could be implemented
on top of the system, but its development is outside the scope of this
presentation. Therefore, in cases where there are choices to be made, they
are made arbitrarily within the timing intervals that maintain consistency

CHAPTER 3 - OPTIONAL & MULTI-MATCH EVENTS 3-9

of the constraint system.

Let us first address the problem of choosing an output event: At any
point in the simulation, an output event S to be generated must be cho-
sen from the output subset of the current event set. However additional
restrictions must be placed on the choice of S: In the simple case of fully
specified events, all generalized predecessors of S must have already oc-
curred. If this condition is met, S is said to be a feasible output event.
However, in the general case, this “feasibility condition” is too strong; for
example, in Fig. 4(a), if E; were an input event and E» an output event,
then this condition could possibly prevent the correct generation of E», or
at best in the case where E; or E; have a “natural timeout” (such as in
Fig. 4(b)), it would result in the generation of E; at the latest possible
time, which is too restrictive.

The solution to this problem is to define an cutput event to be {easible
if, and only if, all its necessery generalized predecessors have occurred. The
predicate feastble-p() (Fig. 6) precisely formulates the feasibility condition.

Let us now turn to the problem of fixing the occurrence time of a
feasible output event E. The occurrence time {g of £ must be chosen
from a sub-interval of [E], as given in the following lemma, in which i,
indicates the current simulation time and smallestSup is defined as the
smallest sup(F;), where F; spans the set of future (unoccurred) necessary
events;

Lemma 2: max(inf(E).{;) < tg < min(sup(E), smallestSup).

The proof of Lemma 2 stems from the following two facts. 1) Events
must occur in forward running time, thus the need for tightening the
lower bound of [E] by .. 2) tg must not exceed smallestSup, otherwise it
would project a necessary event into the past. smallestSup is computed by
Jeasible-p() (Fig. 6).

Note that all the timeout and “projection into the past” rules apply
equally well to output events, i.e., it is acceptable for an output event to
time out or to be projected into the past, as long as the event’s value
matches the current value of the signal.

The generalized specification interpreter is given in Fig. 7. The ter-
mination criterion of the main loop of the process is the occurrence of the
End event (which is treated as a pseudo output event and occurs as soon as
it is feastble-p; in the case of hierarchical TDs [6], the End event can also be
projected into the past due to the occurrence of an event in the following
TD). Out-event and out-time form the output event to be generated in a

3-10 CHAPTER 3 - OPTIONAL & MULTI-MATCH EVENTS

given iteration of the process. In the first such iteration, the Origin event
(treated as a pseudo output event) is "generated” at time 0. Then, in sub-
sequent iterations, the function determine-output-event arbitrarily selects
a feasible out-even! (if any) using the feasible-p criterion. and randomly
chooses an out-time in the interval given by Lemma 2. Then, when the
process times out at time oul-time, the procedure occur-now-and-update
generates the event with zero delay and updates the graph consequently.

7 Implementation and Results

We interfaced our system [11] to the SHADOW graphic waveform editor
developed at Bell-Northern Research Ltd. The editor has a built-in LISP
interpreter that allows easy access and modification to the waveforms data-
base. Hierarchical compositions [6] of timing diagrams are specified in a
LISP syntax, using two basic primitives: TDConcat and TDConcur, for
sequential and concurrent execution of timing diagrams, respectively.

We have run a number of experiments in which our system sim-
ulated VHDL interface models of entities from their hierarchical timing
diagram descriptions. The simulation run-time performance of the system
averaged T processed events per second of CPU time on a SUN 3/260 run-
ning Intermetrics VHDL. We have identified timing behaviors that cannot
be expressed in the current framework. Consider for example modules
which perform a combinational mapping from their level-sensitive latched
inputs to their (unlatched) outputs. Then, every time a latched data in-
put changes (i.e., the input multi-match event is matched) during the ac-
tive clock phase, the corresponding output must change accordingly (this
change matches the output multi-match event). In order to express this
type of behavior, we could define a new type of timing constraint, called
a multi-match follower (MMF) constraint. We are also in the process of
implementing a TDChoice composition primitive, which allows the speci-
fication of branching behavior. In order to support this operation, we are
extending our algorithm to match multiple TDs in parallel.

8 Conclusion

We have extended the system presented in [6] to specifications containing
optional and multi-match events, i.e., specified events that match at most
one, or any number of actual event occurrences, respectively. Our system

CHAPTER 3 - OPTIONAL & MULTI-MATCH EVENTS 3-11

captures the interface specification of a hardware module from a set of tim-
ing diagrams. The specification is then interpreted as an executable model.
We have identified the limitations of the multi-match event model and we
are presently working on further generalizations of the type of timing re-
lations that can be expressed. The direct application of our system is in
the simnulation of specifications. Other applications are in the verification
of interfaces using operational models (e.g., {12]).

References

(1] A.R. Martello and S.P. Levitan “Causal timing verification™, First International
Workshop on Timing Issues in the Specification and Synthesis of Digital Systems,
(TAU 90), Vancouver, Canada, 1990.

[2] J.A. Brzozowski, T. Gahlinger, and F. Mavaddat, Consistency and satisfiabil-
ity of wavcform timing specifications, Research Report CS-8§8-24, University of
Waterloo, 1988.

(3] S.K. Shermanr, “Algorithms for timing requirement analysis and generation™,
ACM/IEEE Proc. 85th DAC, pages T24-727, 1988.

[4] A. Kara, R. Rastogi, and K. Kawamura, “TDS: An expert system to automate
timing design for interfacing VLSI chips in microcomputer systems”, IEEE Proc.
ICCAD-86, pages 362-365, 1986.

[5] F.Jahanian and A.K.L. Mok, “A graph-theoretic approach for timing analysis and
its implementation”, IEEE Transactions on Computers, C-36(8), August 1987.

[6] K. Khordoc, M. Dufresne, and E. Cerny, “A stimulus/response system based on
hierarchical timing diagrams”, IEEE Proc. ICCAD-91, pages 358-361, 1991.

(7] G. Boriello, A New Interface Specification Methodology and its Application to
Transducer Synthesis, PhD thesis, University of California, Berkeley, 1988.

[8) C.W. Moon, P.R. Stephan, and R.K. Brayton, “Synthesis of hazard-free asyn-
chronous circuits from graphical specifications”, IEEE Proc. ICCAD-9i, pages
322-325, 1991.

[S) IEEE, IEEE Stendard 1076-1¢87, VHDL Language Reference Manual, IEEE,
1987,

[10] K. Khordoc, M. Dufresne, and E. Cerny, “A stimulus/response system based
on hierarchical timing diagrams® Publication 770, Dept. 1L.R.Q., Université de
Montréal, 1991.

[11] M. Dufresne, K. Khordoc, and E. Cerny, “Using formalized timing diagrams in
VHDL simulation”, Froe. Second European Conference on VHDL Methods, pages
-?-"'31; 1991.

. 3-12 CHAPTER 3 - OPTIONAL & MULTI-MATCH EVENTS

{12} T. Yoneda, K. Nakade, and Y. Tohma, “A fast timing verification method based
on the independence of units™, [EEE Proc. [9th FTCS, pages 134-141, 1989,

. CHAPTER 3 - OPTIONAL & MULTI-MATCH EVENTS 3-13

PROCESS VALIDATE_INPUTS(TD, signals)
TD_init(TD); /= compute LPs and initialize current events »/
max_time := min_over_[sig in signals]
(sup(current_evant(sig)))
while (current_event_set not empty) do
current_time := gat_current_simulation_time();
activity? := validate_input_events_and_update(signals);
it ((not activity?) and (T = max_time))
then time_out_error(signals);
end if;
max_time := min_over_[sig in signals]
(sup(current_event(sig)))
loop for sig in signals do
if (sup{current_event(sig)) < current_time)
then precedence_error{sig);
. endif;
end loop;
timeout := max_time — current_time;
wait on signals for timeout;
ond while;
end VALIDATE_INPUTS.

PROCEDURE validate_input_events .and_update(signals)
actual _input_events :=
query_simulator_for_input_events(signals);
loop for actual_event in actual_input_events do
spec_event := current_event{event_signal(actual _event));
match_or_error(spec_event, actual_event, current_time);
update(spec_event, current_time);
aend loop;
return{actual_input_events);
end validate_input_events_and_update.

Figure 3: Restricted input validation algorithm.

3-14 CHAPTER 3 - OPTIONAL & MULTIMATCH EVENTS

(e

Figure 4: A timing diagram with u and v valued events. (a) Specification.
(b) Timeout for E; at ¢ = 90. (c) Rising clock at t = 70.

¥ ¥ W

Figure 5: The multi-match event model. (2) Specification. (b) Equivalent
representation. (¢) Actual events occurrences. (d) Transitive closure.

o CHAPTER 3 - OPTIONAL & MULTI-MATCH EVENTS 3-15

function feasible_p(E)
foasible := true;
smallestSup := +infinity;
loop for sig in (signals - {sig(E}}) do
loop for F from CE(sig) then next(F)
and while (inf(F) <= sup(E)) /» efficient aexit test»/
do
if (not(match(F, signal_value(sig)))) /* F necassaryx/
then LP(FE) := compute_LP(F,E)
. if (LP(FE) > 0)
then feasible := false; /*do not generate E */
else smallestSup := min(swp(F), smallestSup);

end if;
exit; /* exit inner loop =/
end if;
end loop;
if (feasible = false) then exit; /* exit outer loop »/
end loop:

return(feasible, smallestSup);
end feasible_p.

Figure 6: Feasible output event predicate.

. 3-16 CHAPTER 3 - OPTIONAL & MULTEMATCH EVENTS

PROCESS EXECUTE_SPECIFICATION(TD, signals)
TD_init(TD); out_event := origin(TD);
out_time := 0; max_time := +infinity;
while (End_svent(TD) not occurred) do
current_time := get_current_simulation_time()};
if (({T = out_time) and (out_event /= NIL)))
/» make X occur with zero delay =/
then occur_now_and_update(out_event);
and if;
validate_input_events_and_update{signals);
max_time := min_over_[sig in signals]
(sup(current_avent(sig)))
validate_timed_out_and_projected_events(signals);
(out_event, out_time) := determine_output_event{signals)
. timeout := max_time - current_time;
wait on signals for timeout;
end while;
end EXECUTE_SPECIFICATION.

PROCEDURE validate_timed_out_and_projected_events(signals)
loop for sig in signals do
loop for event from current_event(sig) then next(event) do
it (sup(event) <= current.time)
then match_values_or_error(event, sigl:
else set_current_event(sig, event);
exit; /+ exit from inner loop */
end if;
end loop;
end loop;
end validate_timed_out_and_projected_events.

Figure 7: The Generalized Specification Interpreter.

CHAPTER 4

INTEGRATING BEHAVIOR AND
TIMING IN EXECUTABLE
SPECIFICATIONS

ABSTRACT

We present a modeling methodology and tool set for the rapid devel-
opment of executable HDL models. The method is based on the separate
capture of interface specifications, functional specifications and che rela-
tion betweea them. HDL models are generated in a layered iashion, at
different levels of abstraction, in which layers can be easily inserted and
removed, thus facilitating the validation of different aspects of the design.
HDL interface models are automatically generated from the specifications.

4-1

4-2 CHAPTER + - INTEGRATING BEHAVIOR AND TIMING
1 Introduction

Informal specifications are often unclear. ambiguous and incomplete. Ex-
ecutable HDL models are useful in formalizing. experimenting with, and
“animating” specifications; such models can become an integral part of
the documentation generated at product inception and act as a golden
reference for understanding the specifications. Then, as the system is de-
signed, it must be validated against the specifications. The executable
HDL model thus cortinues to act as a golden reference throughout the
design cycle. Formal verification methods, are useful in that they provide
a complete “coverage” with respect to the mudel being verified. How-
ever, these techniques are limited to partial models of small size relative
to the total state space of the design. They are usually complemented by
simulation techniques, e.g., the implementation is simulated against the
specification and the results are compared. Furthermore, the designed sys-
tem must be simulated in its environment in order to verily whether the
behavior is us expected (i.e., integration testing). In order to achieve this,
executable models of standard, but often quite complex, off-the-shelf VLSI
components must be developed easily and rapidly.

Integration testing does not proceed in a monolithic fashien (simu-
lation would be too time consuming, huge amounts of useless information
would have to be browsed through, etc.). In practice, different aspects of
the system need to be verified, eg., the functional behavior, the interface
and timing behavior, leading to the need for different models. This often
results in the ad-hoc development of a muititude of models, unrelated to
each other, implying inconsistencies between the different views of the sys-
tem, and making the final phases of integration testing impossible (since
these different models cannot be “glued” together).

Of particular importance to integration testing is interface verifica-
tion. Interface specifications capture the fact that components are accessed
in specific ways, e.g., in operational u:nits called “interface operations”, or
“bus cycles”, such as FETCH, READ, WRITE cycles etc. Each interface
operation consists of specific event sequences related by timing constraints.
Interface analysis methods [1, 2, 3, 4, 5] address the problem of verifying
that two interface specifications are compatible with each other. However,
in order to use these techniques, the interface specification of the designed
system must be extracted from the implementation. This is a non-trivial
problem for which no standard automatic procedure is known (except for
the special case of strictly synchronous interfaces), and it is usually solved
by manual techniques that introduce unverified assumptions; this in turn

' CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING 4-3

affects the degree of confidence in the result.

Although the above type of interface analysis is valuable, it must
be complemented by other techniques, e.g., running simulations of the
system’s implementation against HDL inierface models of the system’s
environment. These interface models are behavioral HDL programs derived
from the interface specifications of the components that form the system’s
cnvironment. The interface model of a component consists in “on-the-
fly parsing” of event: received at the component’s I/O ports, sequencing
the mode! through its state transitions based on the result of this parsing,
detecting incorrect, or ill-formed interface operations (bus cycles), verifying
that all timing constraints at the input of the component are met, and
driving the component outputs with appropriate delays. In the rest of
this paper, the term interface model will englobe both of the checking
and driving aspects. Unfortunately, developing HDL interface models is a
tedious, time-consuming and error-prone tasks. The developed code must
usually make heavy use of process synchronization primitives (e.g. WAIT
statements) and is hard to debug. It is also very difficult to ensure that
the model is comnlete, e.g., whether all constraints are checked under all

. rele.ant event sequences.

In this paper we present the modeling methodology and tool set that
we have developed in response to the above problems:

e Our approach allows the rapid development of executable HDL mod-
els.

e The method is based on the separate capture of interface specifica-
tions, functional specifications and the relations between these two
forms.

® The methodology and tool set allow the generation of HDL models
in a layered fashion, at different levels of abstraction, in which layers
can be easily “plugged in” or removed, thus facilitating the validation
of different aspects of the design.

e HDL interface models are automatically generated from the above
specifications.

There are three major components in the tool set.

‘ 1. The specification capture tools: the hierarchical timing diagram ed-
itor graphically captures interface specifications. The hierarchical

4-4 CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING

EFSAM editor* (Extended Finite State Machine) captures functional
specifications. The functional link editer captures (in a mix of graph-
ics and text) the relationships between the functional and interface
aspects of the specifications.

[S]

. The model generator produces executable HDL models (more specif-
ically VHDL {7] models), at the desired level of abstraction, from the
captured specifications.

3. The run-time tools: the timing diagram interpreter (TDI) and EFSM
interpreter implement, during the simulation run-time, the exccutable
semantics of the captured specifications.

The rest of this paper is structured as follows: Section 2 presents
the interface specification method and illustrates it on an example. Sec-
tion J explains the algorithm that controls the execution of the timing
diagram hierarchy. Section 4 presents a functional specification method
for entities with simple internal controi-flow; the method is illustrated on
an example. Section 5 extends the modeling approach to arbitrary behav-
iors and illustrates it on an example. Section 6 reviews related work and
puts our contribution in that perspective. Finally, Section 7 concludes the
presentation by discussing some future orientations of our work.

2 Interface Specifications

2.1 Timing Diagrams

A timing diagram (TD) specification consists of a set of signals and a set
of timing constraints between signal transitions. Each signal consists of an
ordered sequence of events, designated as spec events. The direction mode
of a spec event is “input” or “output”. Unidirectional signals have a single
mode of spec events (input only or output only). Bidirectional signals can
have events of both modes. Event values are in the set V = BU {z,v,u},
where B is the domain of the given signal subtype, e.g., B = {0,1} for a
Wit signal or B = {0,...,255} for an 8-bit bus signal; z stands for high-
impedance; v (Valid) represents any arbitrary value from B that does not
change for a specified period of time, its actual value being irrelevant to the
interface specification; and u means Unspecified, Unknown, or Don’t-care.

1A graphic interface is planned. At the present time, the fuuctional specifications
are captured in textual format only.

CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING 4-5

Timing constraints capture min/max time relationships between events.
and are represented by a directed constraint graph in which nodes represent
events, and a directed edge of weight a from node X to node }" represents
the timing constraint: iy — {x > a, where ty and !y are the occurrence
times of events X' and Y, respectively.

I THS4161 surly writs cyele |
: tal R !
LT3 _F
: R LA :
H 0 =t RO]
.V -3 1
[of LS LY 5
H ; - 1aal W00 i
: =i s a LW : .
b - §alRLLA) H I
s lIRLRR i
E‘:lnfw:_‘ s :. M
to=a T4 ul TR 1121 2.] i
=t oal TRY K HE
i e | AL P
e i
: : —t b LW I
i : MR I
H It —tal Yo
: - bl I
B R e T (4] : H
: —— VR : i
i i Wt ; i
: P 4t D) 3 HH
@ -
g—+ z =
' - oD :
: e, o, R e ey
ctrl > '{E

Figure 1: VRAM Write cycle.

The Timing diagram specification is captured graphically using the
SHA DOW waveform editor (e.g., Fig. 1, Write cycle of a dynamic memory
[11]) developed at Bell-Northern Research Ltd. The specification is com-
piled into an executable model. During execution (i.e., simulation), the
model validates its input events and produces its output events according
to the logic and timing specifications of the timing diagram. Events which
occur during the simulation are designated as actual events. An actual
event is a triplet (signel, value, time), i.e., the signal on which the event
occurred, the new value of the signal, and the time of occurrence of the
event, respectively. Match errors are flagged when actual events cannot
be matched (in terms of timing, or logic value) to the specifications; this
is the “checker” aspect of the executable model.

A spec event of value v is said to be an optiona! event [9]; such an
event does not necessarily have to match an actual event occurrence. A

4-6 CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING

spec event of value u is said to be a multi-maich event [9): such an event
can match a sequence of actual transitions of arbitrary length (including
zero). For example. in Fig. 2(a). £ is an optional event, and Ey is a
multi-match event.

E.., E,
CLOC L
lma 10 1= 10
DATA X v X v
E; E;
(@)

Figure 2: A timing diagram with u and v valued events. (a) Specification.
{b) Execution context before clock event. (¢) Rising clock at ¢ = 70.

Simpler alternatives to optional and multi-match events were con-
sidered, such as, for example, defining stability windows for “data” signals
and restricting the spec event concept to “clock” and “control” signals.
However, the present model was chosen for the following reasons:

o It is not always possible to easily make the difference between clock,

CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING 4-7

CAS A\
o1, (WO L) vt
th(WLD)

D 7 VALID KL

Figure 3: Excerpt from VRAM Write cycle.

control and data.

o The model with optional and multi-match events expresses more gen-
eral constraints.

The two above points are illustrated in Fig. 3 (extracted from the
Write cycle of Fig. 1). At the start of the cycle, the W signal has a
“don’t care” value and it has a setup time ¢,,(WCL) with respect to
the falling edge of CAS (i.e. , W acts as a “data” signal). However
the D line (input data to the memory) has a hold time ¢, (WLD) with
respect to the falling edge of W (i.e., W acts as a “clock” signal)

¢ Due to the consistent event based semantics, our model offers a uni-
fied framework for linking procedures to both “clock”™ and “data”
events (this will be explaine ! in Section 4).

The main data structure supporting the execution is a timing con-
straint graph (also called event graph) [6, 8], extended as in [9], for the
processing of optional and multi-match events. Detalls relative to the
propagation of timing constraints in the event graph, using longest path
computations, can be found in [10]. The rules for matching the value of an
actual event to that of a spec event, are given in Table 1 for the case of bit
values. These rules can be easily generalized to bus signals by substituting
0...2" —1, where n is the bus size, for {0,1} in Table 1. When the intent
is clear, we will simply use the term event to designate a spec or an actual
event.

2.2 Composing Timing Diagrams

Timing diagrams can be composed recursively to describe interface spec-
ifications. The composition operators are: Concatenation, Loop, Concur-
rency, and Choice. In Fig. 4, symbols A,,..., A, refer to timing diagrams

®

4-8 CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING

Table 1: Event value matching.

spee values | matching actual values
0 0
1 1
2z z
v 0,1, v
u 0,1i,z.v,u

CONCATENATION LOoOP

FE-N] RE—[REA A
() (b)

CHOICE CONCURRENCY
. 3

[

(d)

Figure 4: Timing diagram composition operations.

that are composed to form a more complex timing diagram, @Q; naturally,
A1, ..., An can themselves be the result of other compositions, etc.

For all operators, except Choice, a mealch errorin one of A;,..., A,
unconditionally translates into an error in Q. In the case of Choice, the
semantics is slightly more complex (explained below). The interpretative
sernantics of each composition operation is described in the following,.

Concatenation: A,,..., A, are defined on the same set of signals. A,
starts when Q starts. A, starts when A; terminates. @ terminates when
Ap terminates.

Loop: The semantics are similar to Concatenation with Ay,..., A,
being identical copies. Two modes are supported: Loop with a fixed num-
ber of iterations, and infinite Loop.

Choice: A;,...,A, are defined on the same set of signals; they rep-
resent alternative (branching) behaviors. Ay,...,A, start when @Q starts.

CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING 4-9

Whenever a match error is found in an A;, A; is terminated. IHf one of
Ay, ..., A, terminates frec of match errors, then Q immediately terminates
free of match errors, else terminates with a match error.

Concurrency: Ay,..., A, are defined on mutually disjoint subsets of
signals; they represent concurrent activity taking place on these subsets.
Ay, ..., A, start when Q starts. @ terminates when all of 4,...., 4, ter-
minate.

2.3 Example

The control-flow of an interface specification describes what timing dia-
gram is to be “executed” next, what events can be generated/received and
at what time. The composition operators presented above allow the de-
scription of a subclass of interface behaviors for which the outcomes of the
high-level control-flow branches (namely what TD to execute in 2 Choice
operation) are determined by the environment of the entity. Dynamic
RAMs are good candidates for modeling with this approach because, in
addition to meeting this interface control-flow criterion, these devices have
a quite complex interface behavior, which however, can be easily expressed
using hierarchical timing diagrams.

TAS—»-
RAS—p
Ag-A7—» RANDOM
TRGE—» MEMORY [—»o
W—p]
D

S K+ |SHIFT REGISTER}—»sout

SOE
Figure 5: VRAM block diagram.

As an example, we show the modeling of the interface behavior of
the TMS4161 [11] dual-port Video RAM (VRAM). A block diagram of
the device is given in Fig. 5. The random access port behaves as in a
normal dynamic random access memory (it supports access cycles such as
READ, WRITE, READ-MODIFY-WRITE etc.). It is controlled by RAS
(Row Address Strobe), CAS (Column Address Strobe) and W (Write).
D, Ap — A; and Q are the input Data, Address and output data buses,
respectively; Q can be tri-stated under the control of QF (Q Enable). The

4-10 CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING

sequential access port behaves as a shift register controlled by SCLA (Shift
Clock). SIN and SOUT are the register Shift In and Shift Out data lines,
respectively. SOUT can be tri-stated under the control of SOE. A transfer
cycle allows to internally “parailel load™ the shift register of the sequential
access port with a given row of the random access memory. A transfer
cycle is determined by a low 7R (i.e.,a low TR/QE during the BAS falling
edge; TR and QF are multiplexed into a single line that is interpreted as
TR at the faliing edge of RAS. and as QF the rest of the time). The
two ports operate concurrently and asynchronously to each other. except
during transfer cycles. During such a cycle, there are timing constraints
between control signals of the two ports (more specifically between EAS
and SCLK) and the behavior of SOUT is different from the case without
transfer (as a new row of data is loaded into the shift register).

CONCURRENCY
LOOP

CHOICE

LOOP

CHOICE

Figure 6: VRAM interface specification.

A high-level view of the VRAM interface, modeled using the TD
composition operators, is shown in Fig. 6. The model top-level puts the
random port in Concurrency with the sequential port. The raudom port
is modeled as an infinite Loop of 2 Choice of random access cycles (each of
these cycles is described in [11] by a timing diagram). The READ, WRITE
and TRANSFER cycles are modeled as leaf-level timing diagrams (e.g.,
WRITE is shown in Fig. 1). Each “page mode” cycle shown in Fig,. 6 (i.e.,
PAGE-MODE-READ and PAGE-MODE-READ-MODIFY-WRITE) is in
fact broken down into three subcycles (beginning, middle, and end of the
given page mode cycle). Each »f these subcycles is put in as a direct child
of the random access Choice TD, in place of the original page mode cycle.

The sequential port is implemented as a Choice between a “normal
shift” cycle (PLAIN-SHIFT) and a “shift cycle during transfer” (SHIFT-
AND-TRANSFER). These two cycles discriminate on the value of TR/QE
on the falling edge of RAS to determine whether there is a transfer. (To

CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING 4-11

work around the rule of disjoint signal subsets in the Concurrencyoperator.
we created a wrapper around the VRAM entity which forked an extra copy
of cach of the RAS and TR/QE signals.)

In the next section, we present the algorithm that controls the exe-
cution of the timing diagram hierarchy. Then, in Section 4 and Section 5
we extend the modeling approach to include the functional behavior of the
modeled entity.

3 The Timing Diagram Interpreter

3.1 Basic Concepts

During stinulation, the Timing Diagram Interpreter (TDI) validates the
input events of the modeled entity, and generates its output events. ac-
cording to the (hierarchical) timing diagram specifications. In order to
explain the TDI algorithm, a few definitions are useful.

The current event of a signal is the spec event following the last
occurred spec event on the signal. The current event set is the set of
current events over the signal set.

The notation LP(XY) denotes the weight of the longest (i.e., maxi-
mum weight) directed path in the timing constraint graph (associated with
some leaf TD) from event node X to event node Y. A valid timc interval
of occurrence, denoted [E], is associated with each spec event £ . The
lower and upper bounds of this interval are denoted inf(E) and sup(E),
respectively; they are computed as LP{OE) and —LP(EQ), respectively,
where O is an “Origin” pseudo-event representing the start time of the TD
{10].

When an event E occurs on a signal S at the current simulation, it
can make the sup time of the yet unoccurred spec event sequence P, ... P,,
on a signal S’ other than S, become smaller than the current time, i.e.,
sup(P;) < current time, for i = 1...n. We say that P,... P .re “pro-
Jected into the past”. Each such spec event Pi,1 = 1l...n is said to
be legally projectable (or simply “projectable”), if, and only if, its value
matches the current actual value of §’, and P;_1).¢ > 1 is projectable.
Consider, for example, Fig. 2(b) in which E, and E; are the current
events of the data and clock signals, respectively, with [Ey] = [10,90]
and [E,] = [50,100]. Assume that a rising clock. event occurs zt ¢ = 70
(Fig. 2(c)); this event matches E, value-wise and time-wise. After the

4-12 CHAPTER + - INTEGRATING BEHAVIOR AND TIMING

graph update, [E}] is equal to [10,60]: E, is thercfore projected into the
past. This is correct as long as the actual signal value of the data matches
the value of £y (i.c.. is one of {0.1.v}). Assuming this is the case. the
current events of the clock and data signals become E; and £4. respec-
tively. Note that in general. a sequence of events on a given signal can
be projected into the past (the sequence starts at the current event of the

signal).

The definition of a projectable event is extended to a timing diagran:
a TD is projectable if all its unoccurred spec events are projectable.

A current event sel, match error and projectable attribute are as-
sociated with each TD in the hierarchy. The task of the TDI consists
essentially in updating these attributes when events occur. This update is
done in a single (post-order) traversal of the TD hierarchy for each actual
event occurrence. An update method is associated with each TD class: the
classes are: Leaf, Choice, Concurrency, Concatenation, and Loop. The in-
put parameters of the update methods are: self (the TD object to update)
and event (the actual event being validated). In the following, we explain
the update method of each TD class.

3.2 Leaf Update

The leaf update method is shown in Fig. 7. The match error flag is
true in any one of the following cases:

1. The actual event does not match the spec event (1.e., either their
values do not match, or the occurrence time of the actual event is
not within the interval of occurrence of the corresponding spec event).

2. The actual event projects into the past a non-projectable spec event.

The rules for current events are as follows:

1. The current event of each signal is initially set to the first spec event
in the spec event sequence of that signal in the leaf.

2. When an input multi-match event is current, it remains so until it is
projected into the past.

3. When a current event (other than an input multi-match event) matches
an actual event during the execution, the next spec event in the spec

. CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING 4-13

event sequence of the signal (or NIL if there is no next event) becomes
the current event.

4. For all signals which have events that are projected into the past (due
to the occurrence of an event on another signal). their spec event is
advanced to the first event of the signal that has a sup time bound
greater than, or equal to, the current time.

The procedure updates the longest paths in the leaf event graph, as ex-
plained in [10).

3.3 Hierarchical Update

In this section, we explain the update methods for each non-leaf TD class.
In the following, the predicate empty(TD) returns True for a TD that has
an empty current event set.

The update method for a Choice TD is given in Fig. §. The TD
maintains a list of active children. A child is ective if it has no match
. errors and is not empty. The Choice TD performs a recursive update on
all its active children (i.e., all still matching branches must be validated).
A child is de-activated (i.e., removed from the active children list) when
its match error attribute becomes true (as a result of the child update).
The Choice TD is projectable if one of its active children is projectable.
The TD sets its match errorattribute to True if all its active children have
match errors. The current event set of the TD is obtained by appending
together the current event sets of its active children. The current event set
is emptied (set to NIL), signifying successful termination, when a child of
the Choice TD becomes empty and has no match errors.

The update method t.r a Concurrency TD is given in Fig. 9. The chil-
dren of a Concurrency TD are defined over disjoint signal subsets. There-
fore, the recursive update is performed for the only child defined over the
concerned signal. The match error attribute of the Concurrency TD is set
to True if the child is empty before the update, or if the child declares a
match error as a result of the update. The Concurrency TD is projectable if
all its children are projectable. The current event set of the TD is obiained
by appending together the current event sets of its children.

The update method for a Concatenation TD is given in Fig. 10.

The TD maintains a pointer io its current child (i.e., the child which is

. presently executing). The current event set of the Concatenation TD is
nominally equal to that of its current child. In addition, if the current child

1-14 CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING

is projectable, the current event set of the Concatenation T is extended
(extend-cur-cvents in Fig. 10) to the next child of the Concatenation T1).
This extension® is done only for signals which have exhausted their spec
events in the current child,

Actual events are matched in the current child until it becomes empty,
or in the case of a projectable current child. until an actual event occurs on
a signal which has a spec event in the next child extension of the current
event set (in this latter case, the current child is projected into the past).
The current child pointer is then updated to the next child. The match
error attribute of the Concatenation TD is set to that of the child in which
the event was matched. The Concatenation TD is projectable if its current
child is its last child and is projectable. Finally, note that by enforcing
the reasonable assumption that each leaf timing diagram contains at lcast
one “necessary” (i.c., neither optional nor multi-match) event, the curcent
event set extension discussed above need not go beyond the nezt child ol
the Concatenation TD.

The Loop class is a subclass of Concatenation. The Loop update
method is exactly the same as that in Fig. 10. The differences in the
processing of a Loop TD with respect to a Concatenation are as follows:

1. The children list is implemented as a circular list of two identical
child subtrees®.

2

. The SET method for advancing the current child (Fig. 10) swaps the
current and next pointers and performs an appropriate re-initialization
of the former current sub-tree, so that it can be re-used. In the case
of the fixed number of iterations subclass of Loop, the SET method
also increments an iteration counter.

3. The next-child accessor and the is-last-child predicate (Fig. 10) are
specialized methods for the Loop class. In the case of the fixed num-
ber of iterations subclass of Loop, they test the iteration count. In
the case of the infinite Loop subclass, they return the successor child
in the circular list and False, respectively.

2To be precise, the extension is actually done for signals which have exhausted their
spec events in at least one Choice branch in the subtree rooted at the current child of
the Concatenation TD. In the actual implementation, the TDs propagate during the
update traversal, signal attributes which indicate this information; these details are
omitted from the update methods of Figs 7 to 10.

3Two instances, one for the current child, and one for the next child, are sufficient as
a result of the assumption made above, of one necessary event per leaf iming diagram.

CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING +-15

Finally. note that a hierarchical event trace is optionaliy maintained
by the TDI. These details are omitted from the pseudo-code of Figs 7 to 10.
To maintain this trace, a history instance of the hierarchy is progressively
built as TDs (at any level of the hierarchy) are matched. This hierarchi-
cal history instance differs from the original hierarchical specification in
that events have fixed time-value pairs (multi-match cvents have a list of
time-value pairs in general), loops ~re “unfolded” (i.e.. their subtrees are
instantiated as many times as necessary), and choices are “linearized™ (only
the matching branch is kept). The user has control over the “trace period™
by specifying, for each Loop TD, the number of iterations for which the
trace is to be kept before it is overwritten by subsequent iterations. The
user also has control over the “trace density” by specifying which TDs in

the hierarchy ought to be considered leafs from a trace history point of
view,

3.4 The Top-Level Process

The top-level control loop of the TDI algorithm is shown in Fig. 11. The
TD parameter is the root of the timing diagram hierarchy. The process
iterates until the current event set is empty, or there is a match error. At
each iteration, the following is performed:

1. The process queries the simulator for actual input events and collects
the result in the list actual-events.

to

If an output event must be generated at the current time (this was
determined in some previous iteration of the process), the event is
made to occur with zero delay (occur-now). The event is also ap-
pended to the actual-events list.

3. For each signal that has an input spec event E in cur-events(TD)
(i.e., the current event set) with sup(E) equal to the current time,
and that has no event in the actual-events list, the procedure eppend-

. lime-out-eventls appends a “fake™ actual event (with value equal to
the current value of the signal and time equal to the current time) to
the actual-events list. This is done to force an update for this signal
(and as a possible result flag errors, e.g., for events that should have,
but have not actually occurred).

4. A recursive update (i.e., Figs 7 to 10) is performed for each event in
actual-events.

1-16 CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING

. The procedure compute-oulput-event chooses an output event for gen-
eration. This is done by randomly assigning an occurrence time
(time(£}} in the time interval [E], for each output cvent £ in cur-
events, and then selecting the output event with the smallest assigned
occurrence time.

-l

6. The process WAITSs for actual input event activity, or for a time-out
to occur, where the time-out is computed as the minimum of the
output event time and the smallest sup in the current event set.

4 Procedural linking

In this section, we extend the modeling approach to include the internal
(i.c., functional) behavior of the modeled entity. We concentrate on the
class of entities which are characterized by the following two properties:
1- the interface control-flow is dominated by the environment, and 2- the
internal control-flow follows quite closely the interface control-flow. For
these entities, what remains to be described in order to obtain a complete
model, can be achieved with the help of the simple, yet powerful paradigm
of linking procedures and functions to events (this will be generically re-
ferred to as “procedural linking” in the rest of this document). This linking
is specified by pointing to the desired “trigger event” in the timing dia-
gram editor, and by specifying the name and interface of the procedure or
function to be linked (the body is edited separately using a text editor).

We distinguish two classes of procedural linking, defined in the fol-
lowing.

1. Procedures (linked to input or output events): A procedure linked
to an input (resp. output) event (referred to as the “trigger event”)
is called by the Timing Diagram Interpreter when it matches (resp.
generates) the event during the simulation. The procedure is called
for its side effects. The parameters of the procedure can be signal
names (they stand for the signal values at the time the procedure
is called) and/or variables of the internal model. The procedure is
allowed to modify only these variables. Such procedures are often
used to provide operands to the data-flow operations of the internal
behavior.

For example, in Fig. 12, the read_column procedure, which is linked
to the CAS falling edge event, stores the value of the column ad-
dress into the column variable. This variable will then be used as

. CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING =17

an operand to the memory access operation (which is essentially a
data-flow operation). More generally, linked procedures can modify
variables that determine the control-flow of the internal model. Note,
however. that this allows only simple internal control-flow (i.c., that
differs only slightly from the interface control-flow).

[

. Qutput computation functions (linked to output events only): A
function linked to an output trigger event, is called by the Timing
Diagram Interpreter when this latter generates the event during sim-
ulation. The function returns a signal value to the TDI; the TDI uses
this value to generate the event. Such functions essentially model the
data-flow operations of the internal behavior (e.g.. some arithmetic
computation, or memory /register access).

For example, in Fig. 12, the function compute_daia, which is linked
to the Q Valid event, is called by the TDI when the Q data must be
put on the bus. The function performs the memory access operation
and returns the value to the TDIL.

More generally, there can be some control-flow in the function, e.g.,
branching to different computations depending on the value of some

. state variable (again, this is typically suitable for entities with an
internal control-flow that diverges only slightly from the interface
control-flow).

In the case of a trigger event that is matched by the TDI in multiple
branches of a Choice operation, the attached procedure or function is exe-
cuted only once. When events are projected into the past, the procedures
or functions attached to them are not executed. The linked procedures
and functions do not manage time, nor process synchronization, time outs
etc. (e.g., they do not use WAIT statements). These aspects are handled
by the TDI; this facilitates the quick development of executable models.

Memory devices are typical examples of entities with an internal
control-flow that follows closely the interface control-flow. As a result,
it is quite simple to obtain a complete behavioral model of the VRAM
by augmenting its interface model (given in Section 2.3) with appropriate
procedural linking. For example, we conducted a case study wherein we
assigned two students the task of developing a complete VHDL behavioral
model for the VRAM, including timing checks, using the technical specifi-
cations of [11]. The first student, who had more than 2 year of experience
in VHDL behavioral model development was asked to develop the VRAM

. model using the VHDL language only. The second student, who had no
prior knowledge of VHDL, nor of the timing diagram tools, was asked to

4-18 CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING

use the hierarchical timing diagram editor. procedural linker and model
generator to develop the behavioral model. Apart from the difference in
VHDL experience, the two students had similar backgrounds. At the end
of the semester. the first student had written about 1,000 lines of VHDL
code; this code modeled only the “simple” cycles (i.e., it excluded the page
mode cycles.) The second student had specified the VRAM interface, in-
cluding the page mode cycles, as described in Section 2.3, and had written
less than 35 lines of VHDL code in order to complete the behavioral model.
This code was essentially made up of small, easy to debug procedures and
functions (e.g., Fig. 12).

5 A Complete Approach to Modeling

The requirements for extending the modeling paradigm to arbitrary be-
haviors, are as follows:

(R1) Allow the control-flow of the interface behavior to be governed by the
internal behavior (without, on the other hand, losing the capability
of letting the environment govern the control-flow, if desired, as was
done in Section 2.2).

(R2) Offer full-fledged modeling capabilities for the internal behavior (both
control-flow and data-flow) using an easy and intuitive paradigm for
the capture of specifications.

(R3) Define a clear and simple model for the interelation and synchroniza-
tion between the internal behavior and the interface behavior.

We are presently conducting a2 modeling case study on the 8085 pro-
cessor [13], using the following solutions to the above requirements.

(S1) To achieve Requirement R1, a choose function and a loop predicate
are linked to the CHQICE and LOOP timing diagram composition
operators, respectively. The input parameters of these functions and
predicates can be any subset of the state variables of the internal
model. The choose function returns the instance name of the child
of the Choice TD to be executed by the TDI. The boolean value
returned by the loop predicate indicates whether a new iteration is
to be executed by the TDI. In the case of a Choice TD with no
choose function, the semantics are as in Sections 2 to 4, i.e., parallel
matching of the child TDs.

CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING 1-19

(S2) The modecling of the internal behavior (Requirement R2) is done

using an Extended Finite State Machine (EFSM) model. State tran-
sitions are labeled with conditions on EFSM variables. Each state
of the EFSM contains a list of actions to be performed “in parallel™.
These actions consist of variable (register) assignments and simple
built-in operations (such as Add. Shift, etc.). Note that this level
of abstraction is higher than RTL (Register Transfer Level), in that
the states of the EFSM can have variable time durations. For exam-
ple, in the case of a synchronous entity, different states can require
diflerent numbers of clock cycles to execute.

(S3) An EFSM state can be labeled with a synchronization point; this

indicates that the TDI must take control of the model execution
once the EFSM actions in this state are performed. Synchronization
points can also label TDs of the timing diagram hierarchy. When a
timing diagram labeled with a synchronization point terminates its
execution, it rmust return control to the EFSM.

Operationally, the cooperative execution of the EFSM (which models

the internal behavior) and the TDI (which models the interface behavior)
proceeds as follows.

o The actions in the present state of the EFSM are executed “instan-

taneously” (i.e., zero elapsed time).

Then, if this state is labeled with a synchronization point, control
is passed to the TDI. Execution under the TDI then proceeds as
explained in Section 3, with the addition of linked procedures and
functions (Section 4), as well choose functions and loop predicates.
The TDI execution will, in general, affect state variables of the EFSM
(through calls to procedures linked to events) and allow time to ad-
vance.

The TDI executes until a timing diagram labeled with a synchroniza-
tion point has terminated its execution. Note that the TDI “remem-

" bers” all its state attributes defined in Section 3, so that the next

time it regains control, it will proceed from where it left off.

Control is then returned to the EFSM. The EFSM evaluates its state
transition conditions and proceeds to the next state.

Fig. 13 shows the EFSM model for the internal behavior of the

8085 processor [13] for a small subset of four instructions: MOVM (Move

4-20 CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING

from memory), ADI (Add immediate), DCRM (Decrement memory). and
CALL. Plain state transition arrows in the figure indicate that their source
state is labeled with a synchronization point. Dashed arrows indicate in-
stantancous transitions (control is not given to the TDI). Fig. 14 shows
the interface specification of the processor. In the following we illustrate
the cooperative execution of the EFSM and the TDI for the DCRM in-
struction.

1. Initially the EFSM is in the leftmost state of Fig. 13. In this state,

there is only one action: the content of the PC is loaded into the
Address variable.

o

. Control is then passed to the TDI. The “choose function™ CH(IFlag)
which labels the Choice TD in Fig. 14, chooses between a Fetch or an
Interrupt machine cycle. Assuming ther= were no interrupt requests
IFlag = False), the TDI executes a Fetch cycle, using the Address
value that was set by the EFSM. During the execution of this cycle,
the TDI latches the data bus at the proper time and writes the data
value into the Data variable of the EFSM (through procedural linking
in the Fetch timing diagram). The Fetch timing diagram (lower left
corner of Fig, 14) is labeled with a synchronization point (pictorially
represented by a small dark box in the lower right corner of the Fetch
TD). The TDI thus returns control to the EFSM.

3. The EFSM (Fig. 13) then evaluates the state transition conditions;
these test the Date variable for the valid instruction opcodes; (the
conditions are denoted 4, B, C and D in Fig. 13; see bottom of figure
for their precise meaning). Assume for illustration purposes, that the
C condition evaluates to True (DCRM instruction). The EFSM thus
moves to the next state which is enabled by the C condition. In
this state, the EFSM sets the Address variable to the content of the
H & L register pair (this is the address from/to which the data must
be read then written back). The EFSM also sets the variables NRead,
NWrite, and NEmpty. These indicate the number of Read machine
cycles, Write machire cycles, and idle clock cycles, respectively, to
be performed in the execution of the instruction. In the case of
the DCRM instruction, the data must be read (NRead set to 1),
decremented, then written back (NWrite set to 1); no idle cycles are
needed (NEmpty set to 0).

4. Control is then passed to the TDI. The TDI resumes where it left off
previously, i.e., at the second child of the Concatenation operation

CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING 4-21

labeled Instruction Cycle (Fig. 14). This child is a Loop of NRead it-
erations. The first Read (i.e., child of the Loop TD) is thus performed
by the TDI. using the Address value that was set by the EFSM. Dur-
ing the execution of this cycle, the TDI latches the data bus at the
proper time and writes that value into the Data variable of the EFSM
(through procedural linking in the Read timing diagram). Since the
Read timing diagram is labeled with a synchronization point. the
TDI returns control to the EFSM.

w

. The EFSM advances to the next state {the absence of state transi-
tion condition signifies a universally True condition). The actions in
this state consist of decrementing the Data variable and accordingiy
setting the Z (zero), S (sign), P (parity) and AC (auxiliary carry)
condition flags.

6. Control is then passed to the TDI. Since NRead was 1, Loop{NRcad)
is now over. The TDI thus resumes at the third child of the Con-
catenation operation labeled Instruction Cycle (Fig. 14). This child
is a Loop of NWrite iterations. The first Write (i.e., child of the Loop
TD) is thus performed by the TDI, using the Address value that was
set by the EFSM. Since the Write timing diagram is labeled with a
synchronization point, the TDI returns control to the EFSM.

. The EFSM advances to uext state. The action in this state consists of
incrementing the PC by 8. Then, since this state is not labeled with
a synchronization point (the outgoing is a dashed line), the EFSM
performs the state transition to the next state which in this case is
the initial state. The EFSM is thus ready for the next instruction.

Since NWrite was 1 and NEmpty was 0, the next time the TDI re-
gains control {(i.e., on the next instruction), it will perform no Empty
cycles, therefore the Concatenation TD labeled Instruction Cycle will
be determined to be empty, and the TDI will resume execution at
the next iteration of the top-level TD (i.e., the Loop labeled “8085™.

-

The advantage of the modeling methodology illustrated above is that
the interface behavior is clearly separated from the functional (internal)
bebavior. This allows different possibilities for the generated model. For
example, to perform a high-level simulation of the 8085, the interface speci-
fication (Fig. 14) can be simply removed and replaced by atomic procedure
calls (“Fetch”, “Read”, or “Write”) which access an array data structure
representing the main memory of the processor.

4-22 CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING

6 Discussion

Semtconductor ard subsystem manufacturers often supply timing diegrams
to describe the interface specifications of their products. This notation is
convenient for describing signal behavior over time, and hardware design-
ers are familiar with it. In [6], the timing diagram notation is formalized,
and its expressive power extended. Looping and conditional executions
of timing diagrams are supported; the control-flow of these executions is
captured with “extended boolean expressions” on signals; in addition to
the standard boolean connectives, these expressions include signal Delay
and Latch constructs to capture state infcrmation across timing diagrams.
Timing diagrams can also be put in concurrency; synchronization and tim-
ing constraints can be expressed between concurrent timing diagrams. In
comparison, our approach to capturing interface specifications is quite sim-
ilar. In [6], the specifications are used for the synthesis of interface circuits,
whereas we use the specifications to generate executable (simulation) mod-
els.

In [12], the specification methodology is based on the separation of
interface specifications (which are captured as in [6]) from internal data-
flow specifications (captured with a textual HDL program). The approach
is suitable for entities for which the overall control-flow follows closely the
interface control-flow. From a specification point of view, the two descrip-
tions are related only through 1/O signal names and symbolic data names
(1.e., common name space between the two specifications for I/O signals
and symbolic values on data busses). As a result, the HDL specification
contains control-flow information which could be redundant (e.g., Fig. 1
in [12]) with respect to that captured in the interface specification. In
comparison, our approach which is based on directly linking data-flow op-
erations to interface events (“procedural linking”), avoids this redundancy.

In [14], 2 VHDL annotation language, VAL+, is proposed to de-
scribe parametrized, hierarchical event patterns. The patterns are used
for matching simulation traces; the idea is to transform (flat) simulation
traces into hierarchical ones, by pattern matching, in order to help the
user in trace debugging and browsing. However, the matching is done
ofi-line, after the simulation has completed; this requires the storage of
the complete simulation trace. This also implies that the approach of [14]
cannot be used for checking state assertions of the modeled entity (since
such checks require knowledge of the execution context). Furthermore, the
VAL+ patterns are used only for trace matching, not for driving the circuit
under simulation. In comparison, our TDJ approach consists of on-the-fly

CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING 4-23

hierarchical matching; the complete simulation trace is not stored, instead
only the most recent trace history is kept (under user control). Qur hierar-
chical patterns are used for both driving simulated entities and matching
their responses. Qur on-the-fly matching techrique, coupled with proce-
dural linking, forms the basis for specifying state assertions to be checked
during simulation. Finally, by acting on the simulated model itself (rather
than just on its stimulus/response specifications), our approach also allows
to conveniently carry simulations at different levels of abstraction. e.g.. the
generated models can perform atomic operations that stand for complete
patterns of lower level events.

The HIDE system [15] generates VHDL interface models from timing
diagrams and state diagrams. The state diagrams specify interface control-
flow, similarly to our choose functions and a loop predicates in CHOICE
and LOOP, respectively. A VHDL procedure is generated for each inter-
face operation (such as READ, WRITE etc.). The procedures can then
be called from a command file to simulate the interface behavior. This
approach, however, does not seem to be practical for cases such as mem-
ory devices, wherein the choice of the actual interface operation cannot
be decided before-hand (i.e., the interface control-flow is governed by the
environment, e.g., the processor). Moreover, HIDE does not support hi-
erarchical TD compositions, and its timing specification method does not
support cases such as that illustrated in Fig. 3.

7 Conclusion

We have presented a modeling methodology and tool set for the rapid
development of executable HDL models. The method is based on the
separate capture of interface specifications, functional specifications and
the relation between them. HDL models are generated in a layered fashion,
at different levels of abstraction, in which layers can be easily inserted and
removed, thus facilitating the validation of different aspects of the design.
HDL interface models are automatically generated from the specifications.

In the future, we intend to perform additional case studies and ex-
tend the modeling methodology, e.g., to pipelined architectures. We also
intend to improve the usefulness of the timing diagram interpreter, e.g.,
by experimenting with error recovery schemes (presently, the TDI halts its
execution when an error is propagated up to the top-level). Furthermore,
we intend to implement conditional trace matching in the TD], i.e., repeat-
edly “hunting” for a specific pattern pre-condition (no errors are flagged

4-24 CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING

when this pattern is not matched) and starting matching only when the
pre-condition is fulfilled. This is useful in checking state assertions in the
modeled entity.

References

[1] A.R. Martcllo and S.P. Levitan, “Temporal specification verification via causal
reasoning”, Proc. 2nd ACM Workshop on Timing [ssues in the Specification and
Synthesis of Digital Systems, 1992,

[2] K. McMillan and D.L. Dill, “Algorithms for interface timing verification™, Proc.
2nd ACM Workshop on Timing Issucs in the Specification and Synthesis of Digital
Systems, 1992,

(3] F. Mavaddat and T. Gahlinger, “On deducing tight bounds from partial timing
specifications”, Proc. Ist ACM Workshop on Timing Issues in the Specification
and. Synthesis of Digital Systems, 1990,

[4] J.A. Brzozowski, T. Gahlinger, and F. Mavaddat, Consistency and salisfiabil-
ity of waveform timing specifications, Research Report CS-88-24, University of
Waterloo, 1988.

{5] S.K. Sherman, “Algorithms for timing requirement analysis and generation™,
ACM/IEEE Proc. 25th DAC, pp. T24-727, 1988.

[6]) G. Borriello, A New Interface Specification Methodology and its Application to
Transducer Synthesis, PhD thesis, University of California, Berkeley, 1988,

[7] IEEE, IEEE Standard 1076-1987, VHDL Language Reference Munual, IEEE,
1987,

i8] K. Khordoc, M. Dufresne, and E. Cerny, “A stimulus/response system based on
hierarchical timing diagrams”, IEEE Proc. ICCAD-91, pages 358-361, 1991.

9] K. Khordoc, E. Cerny, and M. Dufresne, “Modeling and execution of timing
diagrams with optional and multi-match events”, Proc. 2nd ACM Workshop on
Timing Issues in the Specification and Synthesis of Digital Systems, 1992.

{10] K. Khordoc, M. Dufresne, and E. Cerny, “A stimulus/response system based
on hierarchical timing diagrams™ Publication 770, Dept. LR.Q., Université de
Montréal, 1991.

[11] Texas Instruments Incorporated, Supplement to MOS Memory Date Book, Texas
Instruments, Houston, Texas, 1984.

[12] G. Borriello, “Combining event and data-flow graphs in behavioral synthesis”,
IEEE Proc. ICCAD-88, pp. 56-59, 1988.

[13] Intel Corporation, MCS-85 User's Manual, Intel, Santa Clara, CA, 1978.

[14] B.A. Gennart and D.C. Luckham, “Validating discrete event simulations using
event pattern mappings”, ACM/IEEE Proc. 29th DAC, pp. 414-419, 1992.

{15] Y.H. Leong and W.P. Birmingham, “The automatic generation of bus-interface
models”, ACM/IEEE Proc. 29th DAC, pp. 634-637, 1992.

CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING 4-25

method update(class: leaf) (self, event)
spec_avent := current_event{signal(event)))
match_error(self) := value_mismatch(spec_event, event)
OR time._.mismatch(spec_event, avent);
update_longast_paths(spec_event, tima(event));
if (not (is_multi_match(spec_event) and is_input(spec_event}))
then set current_event(sig) to next{spec_event);
end if;

/* validate projected events in self: «/
loop for sig in (signals(self) - signal(event)) do
loop for spec_event from current_event_of_signal(sig)
then next({spec_event) do
if (sup(spec_event) < time(event))
than match_error(self) :=
match_error(self) or value_mismatch(spec_event, sig);
else /* advance current_evenc beyond projected events */
set current_event({sig) to spec_event;
exit; /= projection completed for sig =/
end if;
end loop;
end loop;

/* self is projectable if all its unoccurred events
are projectable »/
projectable(self) := true; /* until proven false =/
loop for sig in signals(self) do
loop for spec_event from current_event_of_signal(sig)
then next(spac_avent) do
if value_mismatch(spec_event, sig))
then projectablae(self) := false;

axit;
end if;
end loop;
if projectable(self) := false then exit; end if;
end loop;

end update(class: leaf).

Figure 7: Leaf update method.

4-26 CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING

mothod update(class: choice) (self, event)

match_error{self) := true; projectable(self) := false;
cur_events{self) := nil;
loop for each child in active_children(self) do

update(child, evenz);

match_arror(self) :=

match_error{zelf) and match_error(child);
projectable(self) :=
projectable(self) OR projectable(child);
cur_events(self) := APPEND cur_events(child)
TO cur_events(self);
if match_erroxr(child)
then REMOVE child FROM active_children(self);
elseif empty(child)
then set cur_events{self) to NIL;
/* Choice has successfully terminated */
exit; /* no need to continue loop */

end if;

end loop;
end update(class: choice).

Figure 8: Choice update method.

method update(class: concurrency) (self, event}
child := the child in children(self) which is
defined over signal(evant)
if empty(child) /+ i.e., the child defined over the signal
had already terminated »/
then match_error(self) := true
elsa
update(child, event);
match_error(self) := match_error(child);
projectable(self) :=
{all child in children(self) are projectable(child));
cur_events(self) := APPEND together the cur_events
of all children(self);
end if;
end if;
end update(class: concurrency).

Figure 9: Concurrency update method.

CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING

method update(class: concatenation) (self, event)
if (projectable(current_child(self))
and next_child(current_child(self)) /= nil
and signal(event) has a spec event in
cur_events(next_child{current_child(self))})
then /* project current_child(self) into the past: »/

127

SET current_child(salf) TD next_child{current_child(self));

update{current_child(self), event);
match_error(self) := match_errorf{current_child{self));

elseif signal(event) has a spec event in

cur_events(current _child(self))

then
update(current_child(self), event);
match_error(self) := match_error{current_child(seif)};

else /+* illegal attempt to project =/
match_error{self) := true;
end if;

if empty(current_child(self))
then SET current_child(self)
TO next_child(current_child(self));
end if;

projectable(self) := (is_last_child(current_child(self))

AND projectable{current.child(self)));

if (projectable(current_child(self))
and next._child(current_child(self)) /= nil)
then

cur_eovents(self) := extend_cur_events(current_child(self),
next_child(current_child(self)));

alse
cur_events(self) := cur_events{current_child(self));
and if;
end update(class: concatenation).

Figure 10: Concatenation update method.

4-28 CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING

process hierarchical_timing diagram_interpreter(TD)
initialize(TID); output_event = nil;
repeat
current_time := get_current_simulation_time();
actual_events ;= get_input_events_from_simulator();
if (output_event /= NIL)
and {current_time = time(output_event))
then
oceur_now(output_event);
append cutput_event to actual_events;
end if;
append_time_out_svents(actual_events);
loop for each event in actual_events do
update(TD, event);
if match_error(TD)
then
erroxr_message(event);
exit;
end if;
and loop;
output_event := compute_output_event{cur_events(ID));
timeout := min(time(output_event),
smallest_sup(cur_events(ID)))
- current_time;
wait on signals(input_event_subset(cur_events(ID)))
for timeout;
until empty(TD) or match_error(ID);
end hierarchical_timing diagram_interpreter.

Figure 11: The TDI process.

. CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING 1-29

¥

{unction compute_data (memaory, column, row);
return memory(column,row}:
end compute_oata;

Y

procedure read_column (AD_A7,column):
column := AQ_AT:
end read_column;

. Figure 12: Example of procedure binding in VRAM.

A NRead <- ; NWriee <- 0 ; NEpry <- 0 Address <- ((HNL)) ; Register <- DDD (Register) <- Dats ; {PC}<- (FCY = 8 -

B
_..l NRaud <- 1 ; NWris «- 0 ; NEmpry «= 0 ; Addras <= (PC)+ B l—.l(A)-o-(A)vD.u;ﬂQq.[m.m;mwl— -l

v]|C
._p.’ N‘R«lldt-l;N’Mﬁml;ﬂhﬂy@ﬂ;hﬁmo(l“)ﬂ.})l—.{;om.g;Hmm'_—llmotm.g I— -

o
“Nl NRaed <- 2 ; NWrita <= 0 ; NEmpry < £ ; Addrms <= (PC) + 3

Imt.-:.bun;auuom-uh

[Akt < Do (051 11 <= PCH (51 1< P33P <= (571 2 P - Ade |t

Asno Datp = MOV M om0 Diata » 00000110 € «tm Duta = Dor M «n Data = 00110108
B «<n> Dath @ ADI sumber < Dita = 1100010 D «0w> Duta = Call Addde <=0 Duta = 11005101

Figure 13: Excerpt from the 8085 internal behavior specification.

[

4-30 CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMING

Address Dala
o] s |

]
/

Addren Data Address. Dats Address Duta
TDChosee CritiFug)| | | [TOLoop NRead| TLoopNwrite| | | frDLoop KEmpey

J

i | TDLeas [Clu:kcy\:lc l

Figure 14: Interface specification of the 8085.

CHAPTER 5

MODELING CELL PROCESSING
HARDWARE WITH ACTION
DIAGRAMS

ABSTRACT

In this paper we address the behavioral modeling of cell processing
hardware (e.g., packet /| ATM switching systems). We propose a mod-
eling methodology, Action Diagrams, in which the timing and protocol
aspects are specified in a nearly “orthogonal” way to the data manipula-
tion aspects, while maintaining the links between the two. We show the
novel aspects of this specification paradigm and we illustrate its use on cell
processing applications.

5-2 CHAPTER 5 - MODELING CELL PROCESSING HARDWARE

1 Introduction

When designing complex hardware systems consisting of multiple ASICs.
the high level design must be verified before it is refined into an RTL design.
Therefore behavioral models of the system must be developed. Although
it is generally accepted that the next step in raising design productivity
and reducing time to market of large systems resides in behavioral model-
ing, there is strong reluctance in the industrial design community to adopt
behavioral modeling. This is due to the lack of established behavioral
modeling methodologies. Such methodologies are bound to be applica-
tion dependent (as opposed to, for example, RTL modeling methodologies
which, to a great extent, are application independent).

In this paper we address behavioral modeling issues for hardware
systems in packet or ATM (Asynchronous Transfer Mode) switching ap-
plications. We designate this class of systems generically as “cell processing
hardware™ (wherein a cell is a packet or an ATM cell). These applications
are characterized by:

e A balanced mix of protocol aspects and data computation aspects.
The protocol aspects consist, for example, of flow control mecha-
nisms, merging and synchronization of different cell streams, pro-
cessing of the handshake information embedded in the cells and the
effects of this processing on the cell flow through the system. These
aspects have the advantage that they can be validated independently
of the payload (data) carried by the cells (which therefore facilitates
the validation). A major difficulty, however, is that these protocol as-
pects span the system as a whole, and therefore cannot be validated
locally. The data computation aspects, on the other hand, consist,
for example, of algorithmic descriptions of CRC (Cyclic Redundancy
Checks) and other error checking codes, etc. These data computa-
tion aspects can be typically validated locally and independently of
the overall cell flow in the system.

‘e Real-time requirements. For example, when exploring different ATM
switch architectures, latencies in the system are a concern for CBR
(Constant Bit Rate) traffic, e.g., voice traffic. It is therefore im-
portant to capture timing information and timing constraints at the
behavioral level.

Behavioral modeling approaches, such as [1, 2], lack the timing con-
straint constructs and tite capability of declaring the assumptions that a

’ CHAPTER 5 - MODELING CELL PROCESSING HARDWARE 5-3

behavior makes on its environment. We found that such constructs and ca-

pabilities are important in validating the protocol aspects of cell processing
applications.

Interface modeling approaches such as [3, 4. 3], are adequate when
interfaces are completely defined down to physical ports and true timing.
However, in the design methodology that we are considering, behavioral
models must be developed well before the interfaces between ASICs are
specified in detail. Furthermore, the detailed interfaces, when they are
specified, are too low-level to reveal the important characteristics of sys-
tem interactions in a manner that would be amenable to validation of the
protocol aspects of the system.

In this paper, we propose a behavioral modeling methodology in
which the timing and protocol aspects are specified in a nearly “orthog-
onal” way to the data manipulation aspects, while maintaining the links
between the two. We show the novel aspects of the specification paradigm
and we illustrate its use on cell processing applications. The methodol-
ogy is based on Action Diagrams, which is an extension of the Timing
Diagrams of [3] and [4]. In comparison to [3, 4], we have introduced im-

. portant modeling concepts suitable for behavioral level modeling:

s A true behavioral hierarchy with port mappings, parameters and
local variables in Action Diagrams.
e Message-based and value-based ports.

e Choice semantics supporting both deterministic and non-deterministic
choice.

¢ An exception handling mechanism.

e A powerful functional annotation mechanism for data computation
aspects.

o User-defined data types for ports and actions.
e Separation of timing constraints into assume and commit constraints.
¢ Timing constraint composition operations for multiple causal prede-

cessors of an action: latest, earliest and conjunctive composition.

. We bave implemented a specification capture system based on Action
Diagrams, and we a1 : now implementing a model generator which produces

54 CHAPTER 5 - MODELING CELL PROCESSING HARDWARE

a behavioral VHDL model from Action Diagram specifications. We are also
performing modcling experiments on industrial applications.

The rest of this paper is structured as follows: In Section 2 we
overview the Action Diagrams specification method. In Sections 3 and 4
we illustrate the method on cell processing applications. Finally, Section 5
concludes the paper by discussing some future orientations of our work.

2 Action Diagrams

An Action Diagram specification represents the behavior of a system as a
behavioral hierarchy. Leaf Action Diagrams and their annotated extension
{for functional specifications) are presented in Section 2.1 and Section 2.2,
respectively. Hierarchical Action Diagrams and their annotated extension
are presented in Section 2.3 and Section 2.4, respectively.

2.1 Leaf Action Diagrams

We informally introduce the essential features of Leaf Action Diagrams by
way of an example shown in Fig. 1. A Leaf Action Diagram is defined over
a set of ports, e.g., In-port, Qut-port and w-buff-full. The type of a port can
be any VHDL compatible type. For example, In-port and Qut-port are of
type cell-type (a user-defined type) and w-buff-full is of type binary. Ports
have a direction, e.g., in, out, and inout, for In-port, Out-port and w-buff-
full, respectively. Internal ports can also be specified; their semantics are
similar to out ports, except that their behavior is not visible from outside
the action diagram.

The behavior of a port is captured as a sequence of actions. An action
has a direction; in the case of in, out and internal ports, the direction is
inherited from the port; in the case of inout ports, the direction of the
action must be specified, e.g., that of the first action on w-buff-full is out,
and the second one is in.

Actions are labeled. The label can be:

e A constant, or a symbol denoting a constant of the corresponding
data type indicating that the port will take on that value and then
remain stable. For example, the first action on w-buff-full is labeled
low. :

CHAPTER 5 - MODELING CELL PROCESSING HARDWARE 5-5

INSERT_OK(w_buff)
[0.Tg-rdd (Teetr Tarte Teeir Tarn)
redicate is_empty(in_cell)

In_port > in_cell

_cell(in_cell,w_buff, onit_cell)

[Ta1Taad \ o [o,i[-
w_buff_l‘ull? i\ VALID

Figure 1: Example action diagram.

e The special symbol valid, indicating that the port will take on any
value of the data type, and then remain stable. For example, the
action labeled valid on w-buff-full indicates that the port can remain
low, or become high (driven by the environment, as indicated by
the in direction of the action) and then remain high. In the case
of an output, the value valid-val(port) is used (the function valid-val
must be defined for each port data type carrying valid labeled output
actions).

o The special symbol dont-care, indicating arbitrary or unspecified be-
havior of the port. In the case of an input action, the action can
match an arbitrary number (including zero) of actual action occur-
rences on the port. In the case of an output action, and for modeling
purposes, the port is driven to the value dont-care-val(port). The
function dont-care-val must be defined for each port data type car-
rying dont-care-val labeled output actions.

Initial value labels can be specified for in and inout ports. These
labels are the same as action labels. When specified, they indicate what
the value of the port must be when the action diagram starts. For example,
w-buff-full specifies a low initial value, while In-port does not specify an
initial value.

A port can be value-based or message-based (this is designated as
the interpretation of the port). In the former case, the action diagram
in effect declares that it expects to be notified of the occurrence of an

5-6 CHAPTER 5- MODELING CELL PROCESSING HARDWARE

input action on the given port, only if that action modifies the value of
the port. For example, w-buff-full is value-based. If it remains low after
out-cell occurs {which is allowed by the wvalid action on w-buff-full). no
actual input action need be received (and actually none will) in order to
match the action labeled valid. In the latter case (message-based), action
signaling is independent of action values. For example, In-port and Qut-
port are message-based. An action must be actually received on In-port in
order to match the specified in-cell action, independently of the value of
the previous cell received on the port. Similarly, out-port must be updated
at cach out-cell.

Virtual Start and End actions (represeuted by the left and right ver-
tical boundaries of the action diagram) delimit the scope of the action
diagram. The Start action precedes all actions and the End action suc-
ceeds all actions of the action diagram.

Actions can be related by weighted (min/max) timing constraints.
Timing constraints can be of assume or commit intent, indicated by empty-
headed and black-headed arrows, respectively. Commit timing constraints
specify the order and/or timing in which output actions are generated by
the action diagram. Assume timing constraints specify assumptions that
the action diagram makes on the order and/or timing of actions. For
example, there is an assume timing constraint of weight [0, Ty 7] from the
Start action to the in-cell action on In-port. This indicates that a cell
must be received on In-port within a delay Ty s, from the beginning (Start
action) of the action diagram. There is a commit timing constraint of
weight [T, T.2] from the action on In-port to the action on w-buff-full,
indicating that, when a cell is received on In-port, the w-buff-full signal
will be driven low after a minimum delay T,,, and a maximum delay T,,.

Consider a set S = {Cy,...,Cn} of timing constraints, such that the
elements of S are all of the same intent (commit or essume) and are all
incident on the same action E (Fig. 2). The interpretation of the timing
constraints can be one of three kinds (specified by the user): conjunctive
(all predecessors determine the occurrence of the action), earliest or latest
(only the earliest or the latest arriving predecessor determines the occur-
rence of the action). More precisely, let E; (resp. [,u;]) be the source
action (resp. weight) of constraint C;, and let ¢; be the occurrence time of
E;, 1 =1...n. Then ¢, the occurrence time of E, is as follows:

() Conjunctive(Ch,...,Co): Vi, i+ L <t <ti+w;
(b) Latest(C,..-,Cx): mazi(t; + L) < t € mazi(t +w)
(c) Earliest(Cy, ..., Ch): mingt; + ;) <t < mini(t +w)

CHAPTER 5 - MODELING CELL PROCESSING HARDWARE 57

[, ual

Figure 2: Multiple constraints with the same action sink.

The operational semantics of an action diagram are defined in terms
of its execution in an environment which drives the diagram’s in and inout
ports and observes its out and inout ports. During such an execution, the
action diagram is said to be in a satisfying status when:

e its initial value specifications are satisfied
e its specified input actions are matched, i.e.,

— they satisfy the specified action sequences on ports,
— they satisfy the assume timing constraints, and

— they satisfy the value specifications given by the action labels.

When an action diagram takes on 2 non-satisfying status, it is dis-
abled, i.e., its execution is terminated. The implications of this depend on
the instantiation context of the action diagram; this is further elaborated
in Section 2.3. If, however, the action diagram maintains a satisfying sta-
tus until it fires its End action, we say that the action diagram completes
(its execution).

The simple concepts explained above, such as action sequences, as-
sume timing constraints, and action labels, lead to a natural and easy way
of specifying more complex and useful properties. For example, the low
to valid pattern on w-buff-full combined with the [0,00] assume timing
constraint from out-cell to valid w-buff-full states that if w-buff-full is re-
asserted (driven High), then it can happen only after out-cell has been sent
out.

58 CHAPTER 5 - MODELING CELL PROCESSING HARDWARE

2.2 Annotated Leaf Diagrams

Action diagrams can have parameters. In Fig. 1, w-buff is an in parameter

(of type cell-type). More generally, out and inout parameters can also be
defined.

The action and initial value label set is extended to arbitrary symbols,
in addition to those denoting constants introduced in Section 2.1. The
semantics are the same as in the case of the valid label, and in addition, the
symbolic label has the effect of declaring a verieble of the corresponding
data type and of local scope to the action diagram. In the case of an
input action, the actual value of the port is latched into that variable. For
example, the label in-cell on the action of In-port declares a variable of
cell-type that will, at the occurrence of the action, be assigned the value
of the cell received on the In-port. For an output action, the value of
the variable is used to drive the port. For example, the label out-cell on
the action of Out-port declares a variable of cell-type, whose value will be
assigned to Qut-port at the time of the occurrence of the action.

Additional variables, not directly related to port actions can be spec-
ified. They typically serve as place holders for the results of intermediate
computation in the action diagram.

Predicates and procedures (written in VHDL), having as input pa-
rameters variables {which include those declared by action symbols) and for
parameters of the action diagram, can be attached to an action (in, out,
internal and Stert/ End actions). These predicates and procedures are com-
puted in “zero time” at the time instant at which the corresponding action
occurs, and they must contain no reference to time, delays, nor synchro-
nization {e.g., WAIT statements). Predicates extend in a natural way the
satisfaction semantics of action diagrams. For example, the predicate is-
empty attached to the action labeled in-cell on In-port in Fig. 1, has as
input parameter the variable in-cell, and tests whether the cell is “empty™;
if this is not the case (i.e., the cell is not empty), the action diagram is
disabled. Procedures can have output and inout parameters (in addition
to input parameters), and can modify the variables and parameters (out
and inout) of the action diagram. For example, the procedure insert-cell
attached to the action labeled out-cell in Fig. 1, takes as in parameters
the variable in-cell and the parameter w-buff (of the action diagram). The
procedure then computes a2 new cell, and puts the result in the variable
out-cell. There can be at most one procedure attached to any given action
(for more than one procedure, an additional level of procedural nesting
must be used, which will then determine the correct order of execution).

. CHAPTER 5 - MODELING CELL PROCESSING HARDWARE 5-9

The execution semantics at the time of occurrence of an action (or
of multiple actions occurring at the same time) are:

1. Update all variables associated with input actions that have occurred
at the current time instant.

1o

Evaluate all predicates attached to actions in 1, and to ou! and in-
ternal actions chosen to occur at the current time instant.

3. Execute (in arbitrary order) all procedures attached to actions in 2
(in, out, and interndl).

4. Update all ports corresponding to out and internal actions occurring
at the current time instant.

2.3 Hierarchical Action Diagrams

CONCATENATION LOOP

’ QAR [Ad Q [a]| — | [A]A]---[A]

(a) (b)

CONCURRENCY

QAl
&

S —— |

(d)

Figure 3: Action diagram composition operations.

Action diagrams can be hierarchically composed. A hierarchical action
diagram @Q is defined by a set of ezxternal ports (i.e., in, out, inout ports), 2
set of internal ports, an ordered list of child action diagrams (Ay,...,As),
a hierarchical composition operation, and a port map for each A;, i =
1,...,n. The composition operations (Fig. 3) are: Concatenation, Loop,
Concurrency and Choice. The port map establishes the correspondence
between the external ports of A; and the ports of @ (both external and

. internal).

510 CHAPTER 5 - MODELING CELL PROCESSING HARDWARE

For all operators, except Choice, a status of non-satisfaction in one of
Al...., An, unconditionally translates to a status of non-satisfaction for Q.
In the case of Choice, the semantics are slightly more complex {explained
below).

Concalenation: A, starts when Q starts. A,y starts when A; com-
pletes. Q completes when A, completes.

Loop: The semantics are similar to Concatenation with an infinite
number of identical A;’s.

Concurrency: Ai,..., A, start when @Q starts. Q completes when all
of Ai,...,An complete. When multiple A;’s write to the same port, the
resulting behavior is similar to that of a multiple-writer shared variable,
i.e., at all times, the value of the shared port is that of the last value
written. If multiple writes occur at the same time instant, the result is
unpredictable (the write actions are serialized, and the last one “wins™).

Choice: A,,...,An represent alternative (branching) behaviors. The
behavior of @ is governed by concurrent choice semantics in which all
of the A,,..., A, execute concurrently. A,,...,A, start when Q starts.
When an A; takes on a non-satisfying status, it is disabled (its execution
is terminated). If all the A,’s take on a non-satisfying status, Q takes on
a non-satisfying status as a result. Two kinds of choice are supported:
deterministic and non-deterministic. The user specifies the desired kind
for each usage of the Choice construct.

In the following, an action diagram is said to produce a side effectat a
given time instant, if it produces an output action or executes a procedure
that could modify an out or inout parameter of the action diagram at that
time instant.

o Deterministic Choice: When a choice branch A; produces a side
effect or completes (whichever comes first), A; must be the only still
enabled branch in that Choice (i.e., all other branches must have had
already been disabled). Otherwise, it is an error.

o Non-Deterministic Choice: When a choice branch A4; is about to
complete or produce a side effect at the current time instant, if A; is
not the only still enabled branch in that Choice, a non-deterministic
selection of one of the still enabled choice branches is made, and all
other branches are disabled. The execution of the selected choice
branch then proceeds normally.

The two Choice constructs thus allow a delayed choice, whereby the

CHAPTER 5 - MODELING CELL PROCESSING HARDWARE 511

selection of a choice branch is delayed until sufficient information is gath-
ered. This is useful in supporting “scenario-based™ modeling. Further-
more, a simple modification to the deterministic delayed choice semantics
leads to the definition of an exception handling mechanism. This is {urther
explained in Section 3.

2.4 Annotated Hierarchical Diagrams

A selection function can be optionally associated with a Choice action dia-
gram Q. The in parameters of the function can be any subset of the input
parameters of Q. The function is evaluated when the Choice is entered
and returns a subset of m choice branches (designated as the “selected”
branches) out of the n possible branches (1 < m < n). After thit initial
selection, the semantics of the Choice are the same as in Section 2.3.

Similarly, a loop predicate P can be associated with a Loop action
diagram Q. The in parameters of the predicate can be any subset of
the variables of the action diagram that contains Q. The semantics are:

(WHILE P (LOOP Q)), i.e., the predicate P is evaluated before every
iteration.

3 Example: a Rate Adaptation Queue

This class of queue is typical of cell processing applications. Its behavior
is as follows:

e Cells arrive on a write-port {input of type cell), and are queued.

¢ Cells depart on a read-port at a constant rate.

e When the queue is empty, “empty” cells (cells with no real payload,
and with a special identifier in the header) are output. Note that in
this application, it is known that, on average, the queue input rate
is slower than the output rate.

e A reset can occur at any time during system operation.
The architecture of the model is:

e Concurrent Read/Write accessors.

5-12 CHAPTER 5 - MODELING CELL PROCESSING HARDWARE

e A central storage shared by the accessors,
e Read & Write procedures.

e An cxception handler for system Reset.

The behavior of the queue in the absence of exception conditions
is given by the hierarchical action diagram QUEUE-Running (Fig. 4).
Read-port and Write-port are out and in ports, respectively, both being
message-based. Queue is an inout parameter of type queue-type (a data
structure containing the actual queue object and its head and tail point-
ers). QUEUE-Running is composed of two concurrent infinite loops over
the leaf action diagrams WRITE-A-CELL (Fig. 5) and READ-A-CELL
(Fig. 6).

QUEUE_Running (Read_port, Write_port, queue)
CONCURRENCY

— WRITE_A_CELL —-|

—L = READ_A_CELL J

Figure 4: Action diagram for “normal” behavior of queue.

In Fig. 5, the assume timing constraint of weight [Tw,,,,, 0] declares
the maximum rate at which the queue can be written into. The WRITE
procedure saves cell-in (in parameter of WRITE) in the queue (inout pa-
rameter of WRITE) and updates its tail pointer. The commit timing
constraint of weight [0, 0] has the effect of ending the WRITE-A-CELL ac-
tion diagram (therefore enabling the next iteration of WRITE-A-CELL),
as soon as cell-in is received on the Write-port.

Cells are output from the queue at 2 constant rate given by the
commit timing constraints of weight [T, Tg] and [0,0] in Fig. 6. When the
head and tail pointers of the queue coincide, The READ procedure sets

CHAPTER 5 - MODELING CELL PROCESSING HARDWARE 5-13

WRITE_A_CELL { queue)

WRITE(quete, CELL_IN)

Write_port P { CELL_IN
]

10,0}

Figure 5: Queue Write action diagram.

cell-out (which is an out parameter of the procedure) to an empty cell.
Otherwise, cell-out is set to the cell currently at the head of the queue,
and the head pointer is updated. Note that cell-out was actually declared
by the label on the out action of Read-port, and its value is thus used to
drive the Read-port.

READ_A_CELL (queue)
f READ{queve, CELL_OUT)
Read_port * CELL_OUT
l
1
[T TR I [0,0]
—n:' i

Figure 6: Queue Read action diagram.

In the following, an action diagram is said to be passive if it has no
ot actions, nor out or inout parameters. The Ezception-handling oper-
ator shown in Fig. 7 implements a sufficiently general-purpose exception
handling mechanism for most applications. The operator is given a normal-
behavior, a pessive exception-condition, and an exception-behavior, with
all three behaviors expressed as (possibly hierarchical) action diagrams.
The resulting behavior, @, is:

e The normal-behavior and exception-condition action diagrams start
when Q starts.

¢ If exception-condition completes before normal-behavior (and while
this latter is still enabled), the execution of normal-behavior is im-

5-14 CHAPTER 5 - MODELING CELL PROCESSING HARDWARE

mediately terminated, and exception-behavior is executed. @ will
then complete when exception-behavior completes.

e In all other cases, the behavior of @ is the same as that of normal-
behavior.

(Exception_handling
exception_condition
normal _behavior
exception_behavior)

Figure 7: The Ezception-hendling operator.

Using the Ezception-handling operator, we can express the complete
behavior of the queue. This is shown in Fig. §. QUEUE-Running was
defined in Fig. 4. QUEUE-RESET-START and QUEUE-RESET-DO-IT
are the exception-condition and the exception-behavior, respectively (see
Fig. 9). In the former, the assume timing constraint of weight [0, oo] ex-
presses that the action diagram waits for a Reset for an unbounded amount
of time. In the latter, the procedure INIT-QUEUE performs the initial-

ization of the queue.

(defBehavior RATE_ADAPTATION_QUEUE (write_port read_poxt
reset_port queue)
(loop
{Exception_handling
(QUEUE_RESET_START Reset_port queue)
(QUEUE_RUNNING Write_port Read_port queue)
(QUEUE_RESET_DO_IT Reset_port queue))))

Figure 8: Rate adaptation queue.

4 Example: Auxiliary Cell Insertion

A Cell Flow Processor (Fig. 10) accepts cells on its In-port, processes
them, and then outputs them on Qut-port. There are empty cells in the
cell traffic carried by In-port. The cell flow processor takes advantage

CHAPTER 5 - MODELING CELL PROCESSING HARDWARE 5-15

QUEUE_RESET_START { queue)

(0o

Reset_port V'
l
|
l [0.0]
hat}

Y

QUEUE_RESET_DO_IT (queue)

INIT-QUEUE(queve,)

{ TRmin TRmax}

f
Reset_port r \;\
oy

[Thomiv Thomid

Figure 9: Exception condition (QUEUE-RESET-START) and exception
behavior (QUEUE-RESET-DO-IT).

of these empty cell opportunities to insert cells from an auxiliary source
(Aux-source in Fig. 10} into the outgoing cell traffic on Qut-port. The
cell flow processor has an internal buffer (w-buff in Fig. 10) to hold one
auxiliary cell while it is waiting to be inserted in the outgoing cell fow.
The Aux-source communicates with the cell flow processor through the
Write-Interface of the cell flow processor. This interface consists of two
ports: Aux-port and w-buff-full. The Aux-source is allowed to submit a
cell to the cell flow processor (on Aux-port) only if w-buff-full is de-asserted
(low). When the Write-interface receives a cell on the Aux-port, it asserts
w-buff-full and stores the cell in w-buff. Eventually, the cell-flow unit of
the cell flow processor will insert the auxiliary cell in the outgoing traffic
on Out-port. It will then de-asserts (low) w-buff-full.

" The action diagram model of the cell flow processor is shown in
Fig. 11. It consists of a local variable w-buff of cell-type and a Concurrency
over a Write-interface action diagram and a Cell-flow action diagram. In-
port and Aux-port are in ports of the cell-flow-processor; w-buff-full and
Out-port are its out ports. w-buff-full is value-based. The other ports are
message-based.

The Write-interface action diagram is shown in Fig. 12. It consists of

516 CHAPTER 5 - MODELING CELL PROCESSING HARDWARE

Aux-source

A
w_buff_full Aux_port

Y
— Write-interfacq

et Out_port
In_port Cell-flow >
.
Cell Flow Processor

Figure 10: Example of auxiliary cell insertion.

a Loop over the leaf action diagram CELL-WRITE. CELL-WRITE has an
out parameter w-buff, an in port Aux-port, and an inout port w-bufl-full.
The action pattern on Aux-port and w-buff-full, and the timing constraint
from the first action on Aux-port to the first action on w-buff-full, specify
that a cell must not be received on Aux-port unless w-buff-full is low.
When a cell is received on Aux-port, the CELL-WRITE action diagram
stores the cell in w-buff after some processing (with the procedure store-in-
w-buff) and asserts w-buff-full (high) after 2 minimum delay of Tocx; and
a maximum delay of T,4s. Note that if no data processing were needed

(defBehavior cell_flow_processor (In_port Out_port
Aux_port w.buff_full)
(var w_buff (type cell_type))
{concurrency
(Write _interface Aux_port w_buff_full w_buff)
(Cell_flow In_port Dut_port w_buff_ full w_buff)))

Figure 11: Action diagram for Cell Flow Processor.

CHAPTER 5 - MODELING CELL PROCESSING HARDWARE 517

on the cell, we could do without the procedure store-in-w-buff, and simply
label the action on Aux-port with w-bufl. The assume timing constraint
of weight [1. Tinymaz] from the assertion of w-buff-full to its subsequent de-
assertion. declares a requirement that the auxiliary cell must be inserted.
and thus w-buff-full de-asserted (by an in action), within a maximum of
Tins.maz time.

CELL_WRITE (w-buill }
store_in_w_bufl{aux_cell, w_bufT)

Aux_port > aux_cell
. LOOP - S
out in
w_buff_full

(2 Tins maxl \
eo—pl

Figure 12: Action diagram for Write Interface of Cell Flow Processor.

The Cell-flow action diagram is shown in Fig. 13. It has an ir param-
eter, w-buff, an in port, In-port, and out port, Out-port, and an tnout port,
w-bufi-full. It consists of a Loop over a deterministic Choice of three leal
action diagrams: NOTHING-TO-INSERT, INSERT-OK and UNABLE-
TO-INSERT, with in parameter w-buff. w-buff-full is an inout port of
the action diagram INSERT-OK and an in port of the action diagrams
NOTHING-T'O-INSERT and UNABLE-TO-INSERT.

NOTHING-TO-INSERT corresponds to the case when w-buff-full is
low when a cell (in-cell) is received on In-port. This cell is processed
(procedure process-cell) and sent on the Out-port after a delay of Tproe.
The assume timing constraint from in-cell to the valid action on w-buff-full

indicates that the latter might possibly be asserted after the reception of
in-cell on In-port.

INSERT-OK corresponds to the case when there is a cell to insert (w-
buff-full is high on reception of in-cell) and there is an insertion opportunity
because in-cell is empty. The INSERT-OK action diagram remains enabled
at the reception of the in-cell action only if the predicate is-empty attached
to this action returns true. If this is the case, the cell in w-buff is processed
(procedure insert-cell), then sent on the Qut-port after a delay of T,,.c, and
w-bufi-full is de-asserted low after a minimum delay T, and 2 maximum

518 CHAPTER 5- MODELING CELL PROCESSING HARDWARE

delay T.a. Subsequently, w-buff-full is allowed to be re-asserted (in action
labeled valid on w-buff-full).

UNABLE-TO-INSERT corresponds to the case when there isa cell to
insert, but there is no insertion opportunity (is-not-empty(in-cell)). In this
case, w-buff-full must remain high (this checks whether, e.g., the Write-
interface erroneously de-asserts w-buff-full). Finally, in-cell is processed
(procedure process-cell) and sent on the Qut-port after a delay of Tprq.

5 Conclusion

We have proposed a behavioral modeling methodology in which the timing
and protocol aspects are specified in a nearly “orthogonal” way to the
data manipulation aspects, while maintaining the links between the two.
We have shown how this methodology can be applied to the behavioral
modeling of cell processing hardware applications. In the future, we plan
to define (for these applications) a classification of behavioral models into
levels of abstraction and a formalization of the refinement steps between
the different levels. We also plan to explore the re-use of high level models
in the validation of lower-level models, e.g., by using action diagrams to
express the relations between the levels.

References

fl] S. Narayan, F. Vahid and D. Gajski, “System Specification and Synthesis with
the SpecCharts Language”, IEEE Proc. ICCAD-91, 1991.

[2] D. Drusinsky and D. Harel, “Using StateCharts for Hardware Description and
Synthesis”, in JEEE Transactions on Computer-Aided Design, 1989.

[3] G. Borriello, A New Interface Specification Methodology and its Application to
Transducer Synthests, PhD thesis, University of California, Berkeley, 1988.

[4] K. Khordoc, M. Dufresne, E. Cerny, P.A. Babkine and A. Silburt, “Integrat-
ing Behavior and Timing in Executable Specifications”, in IFIP Conference on
Hardware Description Languages and their Applications (CHDL), 1993.

5] Y.H. Leong and W.P. Birmingham, “The Automatic Generation of Bus-Interface
(5] ng irmingh.
models”, in ACM/IEEE Proc. 29th DAC, pp. 634-637, 1992,

CHAPTER 5 - MODELING CELL PROCESSING HARDWARE 519

NOTHING_TO_INSERT(w_bufl)

(0.Tyrn) > [Teetr Tarte Teetr Tarnl
In_port

'rpm]
rocei cell(in_cell, oudt_cell)
Out_port
0.
w_bufl_full > 5’ VALID

LOOP L

INSERT_OK(w_bufl')

0Tgen] TearTaem ToarTart)
" predicate bs_cmpty(in_celb)

In_port B> In_cell

{ Tproc Tpeoc!
oe{in_cellw_bufl, ogt_cell)

UNABLE_TO_INSERT
0Taend | (TearTdets Teer Tarht -
._',;(mmu_u_mmm
In_port n_cell
Tproc Tprod)
cellout_ceil)

Out_port R oteel
w_buff, full r

Figure 13: Action diagram for Cell Flow unit.

CHAPTER 6

SEMANTICS AND VERIFICATION OF
ACTION DIAGRAMS WITH LINEAR
TIMING CONSTRAINTS

ABSTRACT

Specifications containing linear timing constraints, such as found in action dia-
grams (timing diagrams) defining interface behaviors, are often used in prac-
tice. Although efficient O(n?) shortest path algorithms exist for computing the
minimum and maximum time distances between actions, subject to the timing
constraints, there is so far no accurate method that can decide a) whether a
specification of this kind is realizable (i.c., can be simulated by a causal sys-
tem), and b) given the action diagrams of the interfaces of two or more commu-
nicating systems, whether the systems implementing such independent
specifications will correctly interoperate (i.e., satisfy the respective protocols
and timing assumptions). First we illustrate the weaknesses of existing action
diagram verification techniques: the causality issue is not addressed, and the
proposed methods to answer the compatibility (interoperability) question yield
false negative answers in many practical situations. We then define the meaning
of causality in an action diagram specification and state a set of sufficient con-
ditions for cansality to hold. This development then leads to an exact procedure
for the verification of the interface compatibility of communicating action dia-
grams. The results are illustrated on a practical example.

6-1

6-2 CHAPTER 6 - SEMANTICS AND VERIFICATION

1 Introduction

Methods have been developed for the synthesis of interface controllers
[Borr88] and for the verification of interface compatibility [Brzo91] of commu-
nicating systems described by action diagram specifications (also called timing
diagrams). Other works address the issue of efficient algorithms for computing,
the maximal time distances between actions for more complex forms of timing
constraints in action diagrams [MacM92, Burk93], or for cyclic (process like)
action diagrams [Amon93] defined using the latest timing constraints only.
However, none of these methods address the issue of realizability of such spec-
ifications in the sense of causality (i.e.. can the specification be simulated by a
causal system), especially in the presence of conjunctive linear constraints.
Due to their declarative style (as opposed to, e.g.. an operational style), these
constraints make the causality issue a non-trivial one. In practice, synthesis
methods such as [Borr88) that do not examine the causality issue under linear
constraints, may produce systems that only satisfy mutually incompatible sub-
spaces of their respective specifications. The consequence is the risk of incom-
patibility betwzen independently developed implementations of the interacting
systems. In [Ku92], the authors define a realizability criterion called well-pos-
edness, which can be seen as a special case of our causality criterion. Well-pos-
edness is not sufficiently powerful for reasoning on some of the practical
examples that we examined (e.g., interface operations of a Motorola MC68360
processor). Recently, timed process algebras have emerged [Klus93] in which
the occurrence times of actions can be related by linear conjunctive constraints.
However, the underlying semantic models proposed in these works do not
address the causality issue. Hence, such methods do not reveal whether the
specified system can be built from independently developed subsystems, each
constructed according to its local specification.

The paper is structured as follows. In Section 2, we introduce some basic
concepts and notation. In Section 3, we show that known compatibility
verificaion methods, e.g., [Brzo91], can yield false negatives in practical
situations. This is because these methods do not compose the interface
behaviors of the communicating systems. We show that such composition must
encompass the concept of realizability, or else the compatibility question can
yield false positives. We then develop, in Sections 4 and 5, formal operational
semantics of action diagrams under linear timing constraints. The semantics are
based on the derivation, from the action diagram, of a block machine. Such a

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-3

machine is characterized by a partition of the action set of the action diagram.
In Section 6, we formally define the concept of a causal block machine, and
then state the realizability of an action diagram specification in terms of the
existence of a causal block machine derived from the action diagram (the
derivation is defined given a partition of the action set of the action diagram,
however the computation of the actual action partition is outside the scope of
this paper). We then propose, in Sections 8 and 9, a set of provably sufficient
(and computable) conditions for a block machine to be causal. This allows us to
write an exact procedure for determining whether a block machine is causal. In
Section 10, we prove that all causal block machines derived from an action
diagram have the same (timed) trace set and this trace set is equal to that of the
action diagram. in Section 11, we define the compatibility of communicating
causal action diagrams in terms of the compatibility of all the combinations of
causal block machines derived from these action diagrams. We prove that we
do not need to enumerate these combinations to answer the action diagram
compatibility question. This leads to an exact and efficient procedure for the
verification of the compatibility of communicating action diagrams. Finally, in
Section 12 we prove that the structure of the partition of the set of input actions
of a causal block machine is independent of that of its output actions. In addi-
tion to being intuitively “reassuring”, this property should be useful in
designing an efficient action partitioning procedure.

2 Action Diagrams

An action diagram (AD) specifies, in a declarative manner, the action based,
transactional aspect of a finite excerpt of the interface behavior of a system.
This specification comprises the actions of the system itse:lf (its “commit-
ments”) , as well as its assumptions on the actions that the exvironment can
produce. Actions occur or “ports”, in a punctual, instantaneous manner. An
action @ has 2 fime stamp variable denoted by #{a). Time stamps take on
finite, possibly unbounded, real values.

Definition 1 [Intervals and Timing Constraints] An interval 7t is a set of real
numbers. The interval is represented by its lower and upper bounds, 7, and
Tonax respectively, where T, . € ZU{—}, T, ,.€ ZU{o}, T)in < T ppors

6-4 CHAPTER 6 - SEMANTICS AND VERIFICATION

and where Z designates the set of rational numbers. Such an interval 7 is the
subset of all real numbers such that, for any rin m, ris finite (but possibly
unbounded), and:

L. T pyin St ST, o if Tonin and T are both finite (10 is denoted by [Tomine Tmax)-
2. T ;(nSt<oo if Ty, is finiteand T, .. = oo(x is denoted by [Tonin. =)).
3.—0<t<T,, if T, = —c and Tpha is finite (1 is denoted by (-eo, T})
4. —o<t<oo ifT, ., =—ccand T, . = oo (Tis denoted by (-0, o)).

The set of intervals, denoted [, is partitioned into the subsets /. of concur-
rency intervals and I, of precedence intervals. The elements of I.,,. are
characterized by T,,;, <0 and T,,,, 2 0, and the elements of /,,.. by Tonin > 0.
A timing constraint is a triplet ¢ = (a;, a;,) where ¢; and g; are actions
such that @;#a;, and T is an interval. The arithmetic semantics of the con-
straint are given by substituting the term #a;) - #(a;) for t in the appropriate
itemin 1 to 4 above. The resulting pair of inequalities is the proposifion associ-
ated with the constraint c. A constraint with a precedence (concurrency) inter-
val is a precedence (concurrency) constraint.
Q

Definition 2 [Action Diagram] An action diagram is the tuple AD = (§, 4. o,
0), where:

» Sis a set of ports. A port has a direction (in or out) and a sequence of
actions. The action sets of any two ports of § are non-intersecting.

o Ais aset of actions such that A= 2 + {0}, where A is the union of the
action sets of 5.

» 0, the origin action, is a special action that marks the time at which the
action diagram starts “executing”. This action does not correspond to any
real action of the modeled system.

* An action has a direction. The direction of ¢ is the null direction. The
direction of an action of A is that of the port to which it belongs.

« Cis aset of timing constraints such that C= C’U (°, where:

e (’isarelation on & x & x I, where I is the set of real intervals given
in Definition 1.

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-5

o CO=((0.a; (e =) 13 5¢€ S, ay;=firsi(s;)} where ¢ is an arbitrarily
small! positive rational, and first(s;) is the first action in the sequence
of actions of a port §;.

* Restriction: any constraint (g; , @; , %), in which g; and a; are of different
directions, must be a precedence constraint, 1.¢., T € Iprec.

« Constraint intent: a constraint (a;, 4; , T) is considered to have an assume
(commit) intent if the direction of action a; is in (out). The semantics of
assume constraints, from a synthesis point of view, are that the designer
of the system can safely assume that these constraints will hold (and he/
she can take advantage of these assumptions in the design of the system).
The semantics of commit constraints are that the designed system must
satisfy them.

Q

In the graphical representation of action diagrams, an action is represented by a
short vertical bar (e.g., Figure 1), or by a circle (e.g., Figure 5 on page 58).
Actions on the same port are horizontally aligned. The action sequence of a
port is shown in left-to-right order. A constraint (g;, a; ,) is represented by an
arrow labeled with the interval 7 and pointing from g; 10 a;. The constraint
arrowhead is hollow (filled) for assume (commit) constraints.

Definition 3 [Trace over an action set A] A trace over an action set A is a

sequence Q= [o], i=l...., 6, where, forany i, i =1,..., 8, ®;is a set of j;

pairs such that (where R designates the set of finite real numbers):
&={(2;.7) | j=L..ji.a;€ A .1,€ R}

and such that T; < Ts.p. § = 1,..., 6 = 1. If each action of A appears ar most once

in £, we say that Q is a well-behaved trace. If each action of A appears exactly

once in 2, Q is a complete trace over A A well-behaved trace that is not com-

1. From the point of view of the implementation of CAD software, each interval bound could
be conveniently qualified by a boolean amribute indicating whether the corresponding ine-
quality is strict or non-strict (e.g.. as is done in [Dill89]), and thus an & lower bound would
be actually represented as a strict 0 lower bound. Bound comparisons and shortest paths
algorithms (which we use in the resolution of iming constraint systemns) can then be easily
generalized to deal with strict and non-strict bounds. Such implementation considerations
do not affect the results of this paper, and are thus not discussed any further.

6-6 CHAPTER 6 - SEMANTICS AND VERIFICATION

plete is a partial trace over A
Q

Definition 4 [Trace Satisfying a Constraint Set] Let Q be a well-behaved trace
over an action set A, Cbe a timing constraint set (i.¢.. a constraint relation) over
A and Z be the substitution {#(a;)) =T i=1.....0-1, j= 1.....j;}. Qsaris-
fies Cif:

» In the case where Q is a complete trace: the conjunction of the proposi-
tions associated with the constraints of C (Definition 1) is true under the
substitution .

» Else (Q is an incomplete trace): there exists a substitution T for the time
stamp variables of actions not present in Q such that the conjunction of
the propositions associated with the constraints of Cis true under the sub-
stitution TU X',

Q

Definition 5 [Trace and trace set of an Action Diagram] A trace of an action
diagram AD = (§, 4, o, C) is a complete trace (Definition 3) over the action set
A, such that Q satisfies (Definition 4) C The trace set of AD, denoted
TraceSet(AD), is the set of all traces of AD.

a

Definition 6 [Trace Form) Let A be a vector of n distinct actions, A = (ay,...,
a,) and U be a vector of real numbers, U = (T;...., T,), such that #(a;) =1,
i=1,...,n TraceForm(U) is the well-behaved trace (Definition 3) over the set
of actions {a,,..., a,} obtained by first partitioning the set {(a;, T}} | i = 1...., n}
into sets of (a;, T;) pairs that have the same T; values, and then building a
sequence of these sets in strictly increasing t; values.

Q

Definition 7 {Constraint Graph] Let A be an action set, C a set of constraints
over A and, for any given pair of actions a;, a; of A, let G;= {c;ze C|3 53,3
Ay« Cii= (a3, a;, W) }, where the Jower and upper bounds of 7t are §;; and
Ay, respectively. The constraint graph over A and C, deaoted CG(A, C), or

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-7

stimply CG (when A and Care clear from the context), is the directed weighted
graph defined as follows:

» the vertex set of CGis A

« for cach pair of actions g;, g;, such that a; #4; , define wy; as:

w; = Min (Mm (Auk) s Mm (- SM))
uk i
where the Min operator over an empty set is defined to yield infinity.
« the edge e; = (a;, g;) exists and is of weight w;; , iff w;; is finite.

The set G; v G; is the set of constraints associated with edge e;;. We write
associated-constraints(ey) = Gy U G;;
Q

Note that the same set of constraints G; v C; is associated with both edges,
¢;;and ¢;; . Note also that the above graph representation stems from the repre-
scnt:mon of the pair of inequalities S,Jk <ta;) - Ha;) < A into the normalized
form:
way) —Ha)s Ay
t(a:) Hap) < — Oy

Let CG be 2 constraint graph over an action set A, a; €4, ¢; € A Given an
edge e;; = (a;, a;), source(e;;) and sink(e;) designate a; and a;, rcspecuvely A
path r is a sequence of edges r=ley,..., ,], n 2 1, such that sourcefe;) =
sink(e;_y). for i = 1,..., n. We say that the path is “from source(e;) to sink(e,,)”.
The notations first(r) and last(r) refer to e, and e, , respectively. The weight of
a path r, denoted weight(r) is the sum of the weights of the edges of r. Note that
as a consequence of Definition 7, the weight of any path of CG is finite.

Definition 8 [Weak consistency] Let AD = (5, A4, o, C) be an action diagram.
Then, if there exists a complete trace over A that satisfies C, we say that C,
CG(A, C), and AD are weakly consistent.

Q

Definition 9 [dist(a;, a;)] Let A be an action set, Ca constraint relation over 4,
and a;, a;, 2 pair of actions of A, such that a; # a;. The maximum distance from
a; to a;, denoted dist(a;, a;), is defined as the maximum value of 7(a;) — #a;) for

6-8 CHAPTER 6 - SEMANTICS AND VERIFICATION

which there exists a complete trace over A that satisfies C.
Q

It can be shown [Tarj83] that dist(a;, a;) is equal to the weight of the shortest
(a;. a;) path in the graph CG(A, (). If Cis weakly consistent, then it can be
shown that the interval &t; of lower and upper bounds -dist(a;, a;), and dist(a;,
a;), respectively, is non-empty. Let d;; be a real number such that there exists a
complete trace Q with #(a;) — f(a;) = d;; in £, and such that Q satisfies C. Then,
T; defines the unique largest set of real numbers {dy}. Applying Floyd’s
classical all-pairs shortest path algorithm [Tarj83) to the constraint graph
CG(A, O allows to determine the quantities dist(a;, a;), for all {a;, a;) pairs and
whether C is weakly consistent!. The algorithm is of On®) time complexity
and Q(n?) space complexity.

We will use the following terminology and notation: A path r from g; to a; in
CG(A, C) is atight path if its weight equals dist(a; , ;). Cis a tight constraint
relation if, for all constraints (a;, a;, 7t;;) of C, the lower and upper bounds of 7;;
are equal to —dist(a;, a;) and disi(a;, a;), respectively. Given r,!,- and r,‘;’ two
paths from a; 1o a;, we say that r}; is tighter than r3if: weight(rl)) < weight(r}).
We will use the notation distjcg(a; , g;) to emphasize the constraint graph (or
sub-graph) over which dis«(a; , a;) is computed. Similarly, given an action dia-
gram AD=(§, 4 o, C), dBt[AD](a,-. a;) indicates that dist(a; , ;) is computed
over the constraint graph defined by AD.

Definition 10 [Port Soundness] A weakly consistent action diagram AD = (5,
A, o0, C) is port sound if, for any two consecutive actions a ,J . a ,” “, in the
action sequence of every port p; of AD, the relation dz‘stmn(aiJ + . cz,-J)< 0

holds.

Definition 11 [Consistency] An action diagram AD = (S, 4, o, C) is consistent
if it is weakly consistent and port sound. We say that C, CG(A, C), and AD are
consistent, and we write consistent(C), consistent(CG), and consistent(AD).

Q

1. If the algorithm: finds a negative dist(g; , a;). for some a;, i.c., a cycle of negative weight in
CG, then Cis inconsistent. Otherwise, it is weakly consistent.

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-9

3 Problems

An action diagram specification can be checked alone for consistency, which is
a2 minimal form of realizability. Consistency checking allows to determine
whether an occurrence time can be assigned to every action such that all con-
straints are satisfied and the specified order of occurrence of actions on a port is
preserved. Another problem is the verification of the interface compatibility of
communicating devices. In [Brzo91], this problem is addressed by checking
that for each pair of actions related by an assume constraint cq. the time dis-
tance between the same pair of actions as implied by the commit constraints is
tighter than ¢gz. The notions of consistency and compatibility of action dia-
grams are insufficient for either constructing correct implementations or for
verifying that two or more implementations will interact correctly when built
according to their local specifications. We now illustrate these weaknesses.

L0 .
“ ooastraint
mmtmnsumt
Figure 1:A non-causal specification.

3.1 Consistency

Consider the action diagram shown in Figure 1. C = (il = 12} 1cqume W {i1 =>
0l, 0l => 02, i2 —> 02} ymm;w the constraint system C is consistent and tight.
When implementing a device according to this specification, the delay value for
action o1 after the occurrence of action il has to be chosen from within the
interval [1, 10]. However, this delay value depends on the selected occurrence
time of the in action i2 which may occur after ol. For instance, if we choose t,;
- t;; = 1 in the implementation, then if i2 occurs such that t5 - t;; € (5, 10]
(which is within the specified limits) then there is no feasible occurrence time
for 02. The environment would have to track the occurrence time of ol and pro-

6-10 CHAPTER 6 - SEMANTICS AND VERIFICATION

duce i2 after ol. Symmetrically, the implementation of the device could decide
to do the same, await i2 and then produce ol, leading to a deadlock. Clearly,
such a specification is non-causal as the decisions made by the device imple-
mentation depend on future actions of the environment, and vice versa. A pos-
sible solution is that the designer of the environment and the designer of the
device analyze the action diagram and then agree on a joint strategy. Their deci-
sion is not part of the specification, however, hence it is impossible to imple-
ment each device independently and to verify compatibility of two devices
strictly based on the action diagram specifications. It thus follows that consis-
tency and tightness of C are not sufficient to guarantee a realizable specifica-
tion, we must also consider causality. This situation is similar to the problem of
non-realizability of ideal filters {with square frequency response) where the
output of the filter would have to start changing before the arrival of a change
on its input.

3.2 Compatibility

In [Brzo91], the authors propose verifying that the assume constraint values of
one device are less tight than the time distances of the same actions produced
(committed) by the other device. However, the method is exact only if each
action diagram has ports and actions of only one direction (i.e., one action dia-
gram has in actions, and the other one has out actions only). Otherwise, it can
yield a false negative answer to the compatibility check.

Consider the two action diagrams in Figure 2. AD, indicates a simple delay
from an in action on port p; to an out action on port p;, While AD, drives p;
depending on the in action i3 on port p». Both specifications are realizable and
devices built according to them can interact without violating the assumptions
of their parters. Yet, the procedure of [Brzo91] will declare that the two action
diagrams do not satisfy each other: the time distance between o3 and o, in AD),
as implied by the commit constraints of AD, is potentially e, while AD-
assumes that this distance is in the interval [4, 10]. However, when the devices
are put in communication (by connecting together same numbered ports), the
time distance between i3 and i, will fall within the assumed interval, because
the time distance between actions o, ard o, in AD, is dictated by the behavior
of AD, (i.e., the commit of [3,3] from iy to 0,). This discrepancy arises because

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-11

the compatibility checking procedure of [Brzo91] does not take into account
the composed behavior of the interconnected system.

AD, (0. +m) AD; o o,
pyn i l==l'= py.out EE—
[22) [2.21 3N 13.3) ‘
o o iy iy
Paoul Pain
———
[4,10]

Figure 2: Assumed [4, 10] between i3 and ig in AD» does not cover (0, +o)
between 03 and o4 produced in AD,.

(a) AD, (b) AD>

Figure 3: A simple composition of commit constraints does not work here.

A simple attempt to correct the compatibility checking procedure can yield
false positive answers to the compatibility check. For example, we could com-
pose the commit constraints of the two systems and verify that the resulting
time distances between actions satisfy the assumptions made by each of the
systems. This is illustrated in Figure 3. In AD,, the our actions 2 and 3 can fol-
Iow the in action 1 within [10, 30]. If an implementation is made according to
this specification, it should be able to freely choose output delays in the speci-
fied intervals, for example, t(o5) - t(iy) = 10 and t(o3) - t(3;) = 30. In AD;, the
out action 4 is to be produced within the interval [11, 20] from both of the in
actions 2 and 3, assuming that these actions occur within 10 units of time from
each other. Both constraint systems are consistent and tight. If we now combine

6-12 CHAPTER 6 - SEMANTICS AND VERIFICATION

the commit constraints of AD; and AD, to obtain the total system behavior,
and then compute the distance between actions 2 and 3, we find that the
assumption t(3) - t{2) € [-10, 10] is satisfied. Yet, the implementation of AD,
mentioned above would violate the assumptions made by AD- (and thus its
implementation). This is because the convergent conjunctive commit con-
straints in AD, determine the position of actions 2 and 3 jointly with those of
AD,. That is. the positions of actions 2 and 3 in the implementation of AD;
would have to be determined jointly with the occurmrence time of the future
action o4 produced by a different component of the system, clearly a non-
causal task.

4 Block Machines

As implied by the preceding section, realizability of an action diagram specifi-
cation depends not only on the consistency of the action diagram constraint
system, but also on whether the action diagram describes a causal system. We
propose the following intuitive description of 2 causal action diagram: The
decision that an out (ir) action a; should occur at time f{a;) according to the
action diagram commit (assume) constraints must not depend on the occur-
rence instants of actions that could be performed by the environment (device) at
time t 2 t(a;). We do not elirninate the possibility that the occurrence time of an
out action depends on future out action times (provided that they themselves do
not depend on future in actions) and any past action times. This suggests that,
in a causal action diagram, we shouild be able to partition the set of actions into
blocks such that, within a block, local action time computations are possible
depending only on past actions in preceding blocks. If such a partition exists,
then the action diagram has a causal interpretation in the above sense and is
considered as realizable. An action diagram together with some specified parti-
tion of its action set defines a machine, which we designate as block machine
(BM). In this section, we formalize the structure and operational semantics of
block machines, and we prove some basic properties of these machines that
will be useful in developing the caunsality and compatibility criteria.

Definition 12 [Block Machine] A block machine (BM) is the quadruple (4, o,
B, 1), where:

» Ais aset of actions.

» 0is the “origin™ action, 0€ A Let £=4-{o}.

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-13

= Bis a set of x “blocks™.

« T, the “trigger relation™, is a relation on Ax B When a pair (@, B) isin
we say that “a is a trigger of B”. The set of triggers of a block B is
denoted trigs(B).

« A block B; of Bis a pair (L;, ®;), where :

o L, A L;is designated as the set of “local actions of B;”, or simply
“actions of B;”. We will use the notation actions(B;). Given an action a
of B;, block(a) designates B;.

e @ : R = p(R"). ie., ; is a function from the set of real finite-
valued vectors of dimension m; to the set of sets of real finite-valued
vectors of dimension r;, where m; is the number of triggers of B; and n;
is the number of actions of B;. The set returned by ®;, for any given
input vector U; can be empty, finite, or infinite. ®; is designated as the
“time computation function™ of block B;.

o Theset {L;|i=1,..., x} is a partition over A,

Q

Definition 13 [Prec Relation on B} Given a block machine M = (A4, o, B. 7).
the binary relation Precon Bis: “B; Prec B;" if there is an action ay, of B; such
that a; is a trigger of B;. We say that B; is a predecessor of B;.

Q

Definition 14 [“<* Relation on B] Given a block machine M = (R, 0, B, 7}, the
binary relation “<* on Bis defined as follows. “B; < B,," if there is a sequence!
of blocks [B; i = 1, ..., m] of B, such that foreach i, i = 1,...,m—1, B; Prec
Binr-

Q

Obviously, “<* is a wansitive relation. A trace of a block machine
M=(A o, B 7 is a trace over its action set A (Definition 3). Operationally,
the trace is built by the procedure M, (Definition 16), given an arbitrary
occurrence time £, for the origin action. An execution of this procedure is said
to be an execution of M.

1. Note: In this sequence, it does not matter whether B; # B;,,y or not.

6-14 CHAPTER 6 - SEMANTICS AND VERIFICATION

Definition 15 [Execution Model: Assumptions] The following assumptions
are made in defining the execution of a block machine:

« A time stamp variable 1{a;) € R is associated with each action g;of A imi-
tially, for all q; actions. #(a;} = oo,

« The predicate occurs(q; . T) is true iff #a;) = T. The action g; is said to
occur at ime T.

« There is a global time variable 7 € R that increases monotonically only
when, and always when, the execution is in @ wair state. Initially, the glo-
bal time variable is reset to & with the operator reset().

« The execution enters a wait state when the operator wait() is executed.
This operator, applied to a set of actions, suspends the exccution until the
global time variable T reaches a value T, such that 3j. occurs(a;. 7).
where g; is an action of the specified set. In any execution of the wait()
operator, the global time increases by a non-null quantity.

= A boolean flag, occurred(a,), is associated with each action @; of A ; ini-
tially occurred(a;) is false. The flag is set to true when the action occurs.

+ The predicate enabled(B. T) is true iff:

[V trig; € trigs(B) . occurred(erig; .)] A [3 trig; € trigs(B) , occurs(erig;.
.
Block B is said to be enabled at time T.

s TRIG;. denotes the vector of trigger actions of block B;.

» ACT;. denotes the vector of local actions of block B;.

e #X;). where X, is a vector of actions, denotes the vector of time stamps of
X

« The operator deadlock() suspends the execution forever; if this operator
is executed, the execution is said to enter the deadlock state.

« The function choose, applied to a non-empty set, returns a non-determin-
istically selected element of that set.

» The operator update(Zrace, X,) accepts a trace as its first argument and 2
vector X, of actions as its second argument. The operator sclects those
actions x;; of Xj, that are such that #(x;;) > 7. Each such x;; is inserted in
the appropriate set o; of the trace according to 1{x;;), as per Definition 3.

Q

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-15

Definition 16 [Execution Model] An execution of a block machine M = (A, o,
B. 7} is an execution of the procedure M., defined as follows:
Procedure My,.(Z0)
begin
No):=ty: reset(T 5y); Trace:=[{(0.1x)}]:
while 3 a; € A, not (occurred(a;)) do
wait(A) ;
for all i such that occurs(q; . T) do
occurred(a;) := true;
end for;
for all &, such that enabled(B;., T) do
if OUHATRIG))) =
then deadlock() ;
else
NACT}) := choose(D(((TRIG)))) :
update(Trace, ACT}) ;
end if;
end for;
end while;
SUCCess;
end procedure.

We use the following terminology. The execution of a block B; consists of exe-
cuting the iteration k = of the loop “for all &, such that enabled(B;., T) ... end
for”. When this iteration is completed (either by executing the statement dead-
lock(), or the statement update(Zrace, ACT})), we say that block B; has exe-
cuted. The execution of M up to a block B; is the execution of the procedure
M. until and including the execution of block B;.

Q

Note that, by definition, there is a single trace associated with any given execu-
tion. However, due to the parameter ¢y and the choices made by the choose
function in M, there is 2 set of executions, denoted by executions(M), and
hence a ser of traces associated with a block machine. The semantics of 2 block
machine M = (A, o, B,) are given by its trace set.

Definition 17 [Trace set of a block machine] Given a block machine
M= (A o. B, T}, the trace set of M. denoted TraceSer(M), is the st of complete
races (Definition 3) over A that are generated by 2ll possible executions of M,
for all possible values of the parameter z,. Q

6-16 CHAPTER 6 - SEMANTICS AND VERIFICATION

Lemma 1 [Non-Zeno Time] Let B be an arbitrary block of B in a block
machine M = (A, o, B. 7). For B to become enabled at some time ¢, it must be
that for all i, such that B;'< B, B, was cnabled at some time 7, <t.

Proof. From Definition 16, the definition of the enabled predicate, and the
assumption of monotonically increasing time (in Definition 15), it follows that
for B to become enabled at some time ¢, all the triggers of B must have occurred
at times smaller than, or equal to & From Definition 16, there is at least one
execution of the wait() operator between the setting of the time stamp of an
action, and the occurrence of that action. From the assumptions in Definition
15, there is a non-null amount of time that passes in any execution of the wait()
operator. Hence, the blocks containing the triggers of B, i.c., all B, blocks such
that B Prec B, must have been cnabled at times strictly smaller than r.
Carrying this argument inductively over “chains™ of consecutive pairs of blocks
related by the Prec relation, we obtain that all blocks B; . such that B; < B,
must have been enabled at times strictly smaller than t.
Q

Lemma 2 [“At Most Once” Action Qccurrence] In any execution of a block
machine M, where M= (A, o, B, 9, all actions of A occur at most once.

Proof. Define the sets B., B;, and B, as follows:
ﬁ:={B;E Bl B,-(B,'}
31 ={ B,'E Bl —:(B,-(B,-) A—aBjE ﬁc,BJ-(B;}
3_1= [BEE B |—|(B‘-<B,-) A 38',‘6 %.Bj(Bﬁ}

Consider a block B, € B.. From Lemma 1, and due the fact that B, < B (which
stems from B, € &), it follows that in order for B, to become enabled at some
time ¢ it must be that B, was enabled at some time " < &. Carrying this argu-
ment recursively, we obtain that this is only possible if B, was enabled at T=1,.
From Definition 16, the only blocks that can be enabled at T'= £ are those that
have the origin action ¢ as their only trigger. However, a block B that has o as
its only trigger, has no predecessor blocks, ie., there is no B; such that B/
Prec B, and hence no B; block such that B;' < B. This contradicts the assump-
ton that B. < B, . Therefore, B, is never enabled, its actions never occur, and
bence the lemma holds for all actions of any B, € B..

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-17

Consider an arbitrary block B of 5. From Lemma 1, and from the definition
of B,, it follows that there exists at least one block B;, B; € B, . such that the
cnabling of B; is a prerequisite for the enabling of B,. Since the blocks of B.are
never enabled, it follows that B is never enabled. Thus its actions never occur
and the lemma holds for all actions of any B, € B,.

The only blocks that can become enabled during an execution, are the blocks of
B,. In the WHILE loop of Definition 16, consider those iterations in which
there is at least one enabled block; designate these iterations as “enabling itera-
tions™. If there are no enabling iterations, then no block of B is ever enabled,
and hence the lemma is true for all actions of all blocks of M. If, on the other
hand, there are enabling iterations, then assign consecutive integers i, i 2 1,10
consecutive cnabling iterations. Let E(i) be the set of blocks enabled at
enabling iteration i, { 2 1 PE(i) be the set of blocks enabled at some enabling
iteration j, where 1 £ < i, with PE(1) = &, and (i) designate the value of the
global time variable, 7, at iteration i. Define the property S(i) as S(i) = [E(i) N
PE(i) = @], i.e., S(i) = True m=ans that the blocks enabled at enabling iteration
i have never been enabled before. In the following, we prove by induction over
enabling iterations i, that S(i) holds for all i, and thus that all blocks of B are
enabled at most once.

» Induction base (i=1): PE(1)=, hence E(1) n PE(1) =@, and thus S(1) =
true.

Before going to the induction step, we note that, from Definition 16, the first
iteration of the WHILE loop is at T = ;. If there are blocks enabled at this itera-
tion, then this iteration is also the first enabling iteration, and hence #(1) = #;.
On the other hand, if there are no blocks enabled at the first iteration (i.e., at T=
Io), then, in the course of this iteration, no action of A will have its time stamp
set, and hence the exccution will be suspended forever when the wait() operator
is executed at the second iteration. As a result, no action of L = A— {0} ever
occurs in this execution. The only action to occur is the origin action ¢ which
occurs only once at T = #;. Hence the lemma is true for all actions of B. The fol-
lowing induction step is thus relevant only in the case where the first enabling
iteration (¢ = 1) is such that #{1) = 2.

6-18 CHAPTER 6 - SEMANTICS AND VERIFICATION

» Induction step: The induction hypothes.. is [S(1) A ... A S5(i)]. We want to
prove S(i+1). Consider a block B, enabled at enabling iteration i+1, i.c.. B;
€ E(i+1). From the definition of the enabled predicate (see Definition 15). it
follows that all actions of TRIG;. (the vector of triggers of B;) have occurred
in the time interval [z(1). #(i+1)]. Consider a given trigger, trig;,,. of TRIG,.
If trigy,, € A, then from Definition 16, the occurrence of trig,,, in the time
interval [#(1), t(i+1)] imglics that block(trig;,,) was enabled at some enabling
iteration j, i.e., block{irig;,) € E(j). for some j, where 1 £ < i, From the
induction hypothesis, we have [S(1) A ... A S(i}]. i.e., any block enabled
anywhere in the enabling iteration interval [1, {] is enabled once in that inter-
val. This in turn implies that trig;.,, has occurred only once in the time inter-
val [#(1), f(i+1)). If trig,,, € A (i.e.. trig, = 0). then from Definition 16,
trig;,, has occurred only once at #(1). Thus all triggers of B have occurred
only once in the time interval [#(1), t(i+1)].

In addition, from the definition of the enabled predicate (Definition 15), the
fact that By is enabled at the enabling iteration i+1 implies that there is at
least one trigger of B, that occurs exactly at time #(i+1). Let trig,,, be such a
trigger. Since in the previous paragraph we have shown that all actions of
TRIG;, occur once in the interval [#(1), 7(i+1)], it follows that trig,, does nor
occur anywhere in [i(1), #(i)). Hence B;. is not enabled anywhere in the
cnabling iteration interval [1, i), i.c., B, & PE(i+1). Since, by assumption, B;,
is an arbitrary block such that B, € E(i+1), and since we have just proven
that B € PE(i+1), it foilows that E(i+1) » PE(i+1) = @. Hence, S(i+1) =
true.

It follows that all blocks of B are enabled at most once in an execution. From
Definition 16, this implies that the time stamp of each action is set at most once
in the execution. Due to the assumption of monotonically increasing global
time and the definition of the occurs predicate (both in Definition 15), it fol-
lows that each action occurs at most once in an execution.

Q

Lemma 3 [Trace Well-Behavedness) The trace associated with an execution of
a block machine M = (4, o, B, 7) is well-behaved.

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-19

Proof. In the course of the proof of Lernma 2, we have shown that all blocks of
‘B are enabled at most once in an execution. From Definition 16, the only time
that the trace is possibly updated with the actions of a block, is when this block
is enabled. Hence, each action of A can be present at most once in the execu-
tion trace, and thus the trace is well-behaved.

Q

Definition 18 [Execution Termination] An execution E of a block machine is

said to terminate if the “success” statement of Definition 16 executes int E.
Q

Lemma 4 [Trace Completion and Execution Termination) Let M= (4, 0, B,
7} be a block machine, E an execution of M, and Q the trace produced by E.
Then, Q is complete iff £ terminates.

Proof (if). Assume that an execution terminates. Due to the WHILE loop con-
dition of Definition 16, this implies that, for each a; € A, occurred(a;) was set
to true at T'=11;, for some finite T;, which implies that occurs(a;, ;) was true at T
= 1;. From the definition of the occurs() predicate, this implies that the time
stamp, #a;), of a; was set. This in turn implies that the trace update() operator
(Definition 15) was applied to a; , since from Definition 16 this operator is
applied only when action time stamps are set. In addition, since T is monotoni-
cally increasing, the only way that occurs(e;, T;) could have been true at T'=1;is
that #{a;) was st to T; when T was equal to some T; < T;. This is exactly the con-
dition under which the trace updare() operator inserts g; in the trace. It follows
that q; , and hence each action of 4, is inserted in the trace at least once. Since,
from Lemma 3, each action is present at most once in the trace, it follows that
cach action of 4 appears exactly once in the trace, and hence the trace is com-
plete.

Proof (only if). Consider an arbitrary execution that yields 2 complete trace.
Since the trace is complete, it must be that the update() operator has updated
the trace with all actions. Hence, it must be that the execution has invoked the
update() operator on all actions. Since, from Definition 16, the updare()
operator is invoked on the actions of a block B, only when the following two
conditions are met: 1- By is enabled and 2- @ ((TRIG))) @, it follows that a
complete trace necessarily implies that in the time interval starting at T =z to
the ume at which the trace becomes complete, all blocks are enabled, and the

6-20 CHAPTER 6 - SEMANTICS AND VERIFICATION

first time that any given block B), becomes enabled. the set @ {t(TRIG,)) is not
empty. Now, since from Lemma 2, each block is enabled at most once in any
execution, it follows that all blocks are enabled exactly once, and hence at no
enabling of any block B;, does the corresponding ®(1(TRIG,)) yield the empty
set. Hence the deadlock state is never entered.

In addition, since: I- T (the global time) is monotonically strictly increasing, 2-
(from Definition 15) the updare() operator updates the trace with an action a; at
time 7= T;, only if #(a;) was set to a value such that 1(a;) > T; and 3- #(a;) is
finite (due to the assumption on the @'s in Definition 12), it follows that the
execution cannot get suspended forever in 2 WAIT state. Since the execution
never enters the deadlock state, nor suspends forever in a WAIT state, it follows
that any action that has had its time stamp set, will occur. Since all blocks are
enabled exactly once (as we have shown above), and since upon a block
enabling, the time stamp of all actions of the block are set, it follows that all
actions have their time stamp set, and hence all actions occur.

Consider the last WHILE loop iteration at which there is an action that occurs,
and designate this iteration as Ir . After the occurred flags of actions are
updated in this iteration, the proposition [Ve; € A, occurred(a;)] becomes true.
In addition, it must be that all blocks have already been enabled before the /g
iteration is entered (or else, not all actions could have occurred). Since, from
Lemma 2, we know that all blocks are enabled at most once in any execution, it
follows that in the I iteration there will be no enabled blocks. Hence, the loop
“for all £, such that enabled(B;,T) do ... end for™ in Definition 16, will not be
entered, and thus the Iriteration will immediately terminate. There will notbe a
subsequent iteration of the WHILE loop, as the loop predicate “Sq;€ A,
not(occurred(a;))” will yield false. Hence, the next statement to execute is
“success”.
Q

Definition 19 [Live Block Machine] A block machine M is live if, for every
execution E; of M, there exists a finite value ;, such that the trace associated
with E; is complete (Definition 3) , at T= 1; (where T is the global time
variable).

Q

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-21

Definition 20 [Forward Time Property] Consider a block machine M = (4, o,
‘B. 7). Let E; be an execution of M. Let Uf denote ((TRIG)) in E;, where TRIG;
is the vector of trigger actions of block B;. Let <, be the time computation func-
tion of B; and V; the time vector chosen by the execution £; from the set
QJj(U}). Let m; and njpc the pumbcr of triggers and actions, respectively, of
block B;. We write U} and V; in the form (i}, ...,uj-m)) and (v, ..., "j‘n,)X
respectively. Then, we say that:

* A block B; satisfies the forward time property in execution E; if B; is
enabled in E; at some finite T and the property vi; > ufy, h=1,...,m; I=
l. ey nj. holds.

* The execution E; up to a block B; satisfies the forward time property if all
blocks executed up to B; in E; satisfy the forward time property in E;. The
execution E;satisfies the forward time property if 2ll the blocks of M satisfy
the forward time property in E;.

« The block machine M satisfies the forward time property if all its execu-
tions satisfy the forward time property.
Q

Lemma 5 [Equivalent Liveness] Given a block machine M = (4, g, B, 7},
[Mislive] & [
M satisfies the forward time property (P1)
A each block of Bhas at least one trigger (P2)
A the “<“ relation on Bis a partial order' (P3)
A 0o execution of M enters the deadlock state (P4)
]

Proof (<=). The proof is by contradiction. Assume that statements P1 to P4
hold and that M is not live. By Definition 19, this implies that there exists a
trace of M that does not reach completion, and hence, by Lemma 4, an
execution which never terminates. From Definition 16, it is clear that an
execution that does not terminate must be forever suspended either in the
deadlock state, or in a wait state. The former situation contradicts P4. The latter

1. A partial order is a binary relation R such that R is transitive and, for every x in the field of R,
x R xis false.

6-22 CHAPTER 6 - SEMANTICS AND VERIFICATION

case implies that the ' is at least one action that has not occurred and which
never occurs. This in turn implies that:

1. Either there is an action for which the time stamp has been set to a time

value that is not strictly greater than the current value of 7. This contradicts
Pl.

2. Or the block in which this action is, is never enabled. However, for this to
happen without the execution having already entered the deadlock state (the
assumption is that the suspension is in a wait state), it must be that:

2.1. Either there exists a block with no triggers. This contradicts P2.

2.2. Or there is a cyclic dependency in the trigger relation, i.e., the “<" rela-
don on B is not a partial order. This contradicts P3.

Hence in all siteations, a contradiction is obtained.

Proof (=). The proof is again by contradiction. Assume that M is live and at
least one of the statements P1 to P4 does not hold. This, however, trivially
implies that there is at least one execution that does not terminate, which by
Lemma 4 implies that there is a trace that does not reach completion, thus
implying that M is not live - contradiction.

Q

5 From Action Diagrams to Block Machines

To reason about the causality and compatibility of consistent action diagrams,

we will map these onto block machines, designated as derived block machines.

The aim is to obtain a live block machine with the same trace set as that of the

original action diagram. The mapping is uniquely defined, given a consistent-
action diagram and a partition over its action set.

The time computation functions of a derived block machine are described by
the “local constraint” sets { ;| i = 1,..., x}. Such a machine can be seen as a
definitional refinement (or special case) of the block machine in Definition 12.
To emphasize this refinement, we extend the structural definition of a block
machine to M = (4, 0, B, Z (), where Cis the constraint set of the action dia-

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-23

gram. We also extend the structural definition of a block B; 1o be the triplet (L;,
C. o).

Definition 21 [Derived Block Machine] Consider a consistent action diagram
AD = (5. 4, o0, C), where C= C’v €, and let Pbe a partition over L' = 4 -
{0}, such that P= {L;| i = 1...., }. The block machine M = (A, 0. B T 0
derived from the pair (AD, P), denoted dBMs(AD, D), is such that:

e Bisasetof blocks {B;| B;=(L;, C;), i = 1,..., x}.

» T={(a;, By | a;€A A B.e B A (a;=0 v block(a;) + B)
A3 aj € actions(By) ,dnel,
[a; aim)e C v(gpa,m)e d
A [distapy(a;, a;) <O v (distiapy(@;. ;) 20 A distiap)(a;, a)20)]}.

» C; the local constraint relation of block B;, i = 1,..., K, is:
Ci= {ceC|3geL; .3, 3nel

. [c=(g.apT) v c=(g,a,7)]
A{ake L" v (ak.B,-)e T]j.

e @, the rime computation function of block B;, is defined as:

DX} ={ V; | TraceForm{(concat(X;, V;)) satisfies C;}
where TraceForm() is the operator defined in Definition 6, the “satisfies”™
predicate is as per Definition 4, X; is the vector of time stamp variabies of the
riggers of block B;, V; is some value of the vector of time stamp variables of
the local actions of B;, and concan(X;, V) indicates the vector which compo-
nents are the concatenation of the components of the vectors X; and V;. Note
that, due to the linear form of the constraints in C; (X)), for a given value
of X;, describes a polyhedron in the space of dimension n;, where n; is the
number of actions of block B;.
Q

Notation : dBMs(AD) denotes the set of block machines derived from AD, i.e.,
M € dBMs(AD) if and only if there exists a partition P of the action sct of AD
. such that M = dBM(AD, D).

6-24 CHAPTER 6 - SEMANTICS AND VERIFICATION

6 Formalizing the Concept of Causality

Definition 22 [WDT(M)] Let M be a block machine derived from a consistent
action diagram, where M = (A, 0. B, Z 0). and let CG = CG(A. O. M is said to
satisfy the well-defined triggers property, denoted WDT(M), if:
V Bie B, Virig;e trigs(B}). VYay € actions(B;) . distjcg) (ajy, . trig;;) < 0.
a

. Definition 23 [Local Path) Let M = (4, o, B, L) be a derived block machine
(Definition 21) and consider a set Q of blocks, Q< B Anedge ¢ of CG(A. Q) is
local 1o Q if there exists a block B; = (L;, G, @) of Q such that associated-
constraints(e) C C. An edge e is local to a block B; if e is local to {B;}. A path
rof CG(A,) is local to Q (B;) if all the edges of r are local to Q(B;).

Q

Definition 24 [Past(a;), Fast(a; ay)) Let M = (A, 0, B, T) be a block machine
such that “<* is a partial order on B, and letg; € A— {0}, a;€ A and gy € A
We define past(a;) and pasi(a;, a) as follows:
» pasi(0)= @D
o past(a)= {B; € B|B;<block(a;) v B; = block({a;)}
*» pasia; a;) = past(aj) U pasK(ay).
Q

Definition 25 [Past-dominated(M)} Let M = (4, o, B, Z, C) be a block machine
derived from a consistent action diagram AD, such that M satisfies the well-
defined triggers property (Definition 22). M is said to satisfy the past-
dominated property, denoted past-dominated(M), if:
Va;e A, V a;e actions(D - {a;},
Vg;; tight path from a; to a;in CG(A, O, gy is local to Past(a;, a;) .
Q

We propose the following formalization of causality (Definition 26 and
Definition 27).

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-25

Definition 26 [Causal Derived Block Machine) A derived block machine M =
(A o0, B L O with B={(L;, C; ®) | i = 1...., K} is causal if the following
three conditions hold:

1. Vii=1l..,n:
« all actions in L; have the same direction (designated as the block direc-
tion), and
+ all constraints in C; have an intent which is “compatible™ with the
block direction (i.e., commit intent for our blocks and assume intent for
in blocks).

2. WDT(M).
3. past-dominated(M). Q

Notation : CdBMs(AD) denotes the set of causal block machines derived from
AD.

Definition 27 [Causal Action Diagram] An action diagram AD = (5, 4, 0, C)
is causal if there exists a partition P of its action set A such that the derived
block machine (Definition 21), dBM(AD, P), exists and is causal (Definition
26). Q

In the next section, we give some basic results regarding the solution space of
linear constraint systems of action diagrams (Definition 2). These results will
be useful in proving sufficient conditions for the liveness of a block machine
(Section 8).

7 Time Zones

Definition 28 [Time Zone] Consider A= {a,,..., a,} a set of n actions, n2 1,
and Ca set of timing constraints over A (Definition 2). The rime zone (or sim-
ply zone), Zone(A, C), is the set of n-dimensional vectors {V;=(t(ay) ,-..,
wa,)) | a; € AA V; satisfies C). Due to the form of the constraints in C, Zis a
polyhedron. Q

6-26 CHAPTER 6 - SEMANTICS AND VERIFICATION

Definition 29 [Zone and Vector Projection] Given a zone Z = Zone(A C). a
vector V € Z, and A, C A the zone Z,= Zyq (the vector Vo= Vg) is the
projection of Z (of V) onto the space of time vectors of A,

Q

Definition 30 [Product of Zones] Given two zones Z, = Zone(A;, G} and Z, =
Zone(A,,), the product zone Z,® Z, is Zone(A WA, CUG).
Q

The following lemma holds due to the relative nature of the timing constraints
of Definition 2 (i.e., bounds on time differences between action pairs). This
lemma, as well as the two lemmas that immediately follow it, are well-known
resuits [Dill89] and are given here without proof.

Lemma 6 [Zone Relativity] Consider a non-empty zone Z = Zone(A, C) with
A={ay.....ap}. Then, Zy 3 = R, 1<iSn, ie, the projection of Z onto any
ubspace of dimension 1 yields the complete real axis.

Qa

Lemma 6 implies that if the occurrence time of any single action a;, 1 Si<n,
is arbitrarily fixed to a real value ¢, then there exists a vector V of Z, such that
the ith component of V is 7. The next lemma addresses the canonical representa-
tion of time zones of dimension strictly greater than 1.

Lemma 7 [Canonical Time Zone Representation] A non-empty zone Z
=Zone(A, C) of dimension n 2 2, can be represented in a finite and canonical
manner by ar n x n matmix M, M=[m], i=1.....n, j = L,..., n, with m;; =
distz; (a; a;). In addition, referring to Definition 29, the canonical form of
Zyg . when |A4] 22, is obtained from the canonical form of Z, by deleting
from the latter the rows and columns corresponding to actions in A—- A4,.

Q

Notation: Given a constraint graph G = CG(A, C) and the corresponding zone
Z= Zane(ﬂ. C), the notations diSI[G] (a,-. aJ) and di‘“[Zl (a; aj) are used inter-
changeably.

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-27

Lemma 8 [Zone Comparisons] Given two zones Z, = Zone(A, () and
Z, = Zone(A, G,), where Z, is non-empty:
ZyCZ, & [Vaje AVaje A, dist)5,(a;.a) S distiz (a;.a)].
Z)=2Z, & [Va,e AVae A.distiz) ;. a) = distiz (a;. a)) 1.
Q

Terminology: When Z, is non-empty and Z; ¢ Z,. we say that Z; and C; satisfy
G.

4

Lemma 9 [Zone Coverage] Consider G; = CG(A, . () and G, = CG(A . ().
two constraint graphs such that G, = CG(A; WA, . C; U () is consistent. Let
Z) and Z, designate the zones associated with G} and Gy, respecuvely, and let
Ap=A1 N A . Then, if A S Lorif Zyyq, S Zoyq,, . then Z,=Z; @ 25 is
such that Zyyq,= Z;, i.e., Z, “covers™ Z,.

Proof. If A contains 2 single action a, thea distq (@ a) trivially equals
distig | (a, a) - they are both equal to 0 - and hence Z,3 q = Z;. In the follow-
ing, we assume that || > 1. Let a; and g; be two actions of Ay, such that a; #
a;. Consider an acyclic path g from @; to @; in G, If | 45| < 1, then cleatly ¢
cannot contain edges of G». Hence, for any pair (a; , a;), the shortest path from
a; to a; in Gp isa path in G[, and thus ZPM|= ZI' Otherwise ([ﬂl.".l > 1), since
¢ starts and ends on vertices of G, the only way that g can contain edges of G»
is that, for each edge e of G; in ¢ , there exist a;, and q; actions of A5, g = ay,
and a subpath r of g, such that r is from a;. to g}, r is made up of edges of G
only ax_l,d e is an edge of r. More precisely, if P [dcsignam the set of paths of G,
and P, designates the subset of paths of G that start and end on actions of A;»
, then ¢ can be written as the following regular path expression, wherein a set
represents 2 choice over its elements, and “+”, “, and “*” indicate choice, con-
catenation, and Kleene closure, respectively:

g=P .(P'+P5)y . P!

From the lemma premise, we have Zj3q,. € Z5)4,., bence it follows that for
any a;. a; pair of actions of Ay, suchzthat ap # ar, diste (e, a) S
di“lczl (ay . ap. Thus, for any subpath P, of g between a pair of actions of
A;a, there is a path in Gy of smaller or equal weight between the same pair of
actions. Heace, the shortest distance from ¢; 10 g; in G, is determined by 2 path
in Gl' and therefore diﬂ[c'] (di . a_,) = distlall (d,' . dj). Since this is tree for

6-28 CHAPTER 6 - SEMANTICS AND VERIFICATION

any (a; . a;) pair of actions of A). a; # a;. it follows that Z,yq = Z,.
Q

We will use the following terminology. Given an action diagram AD = (5. A o.
0). and a derived block machine M = (A 0. B. L O). we will refer to Zone(SL
O) as the global zone of AD and/or the global zone of M.

8 Liveness of Derived Block Machines

Lemma 10 [WDT(M) = “<“isa partial order] LetM= (A 0. B. T O ben
block machine derived from a consistent action diagram. Then, WDT{M)
implies that the “<* relation on Bis a partial order.

Proof. The proof is by contradiction. Assume CG(A, C) is consistent. WDT(M)
holds, and “<* on Bis not a partial order. The latter implies that there exists a
block B: such that B; < B; , which in turn implies that there exists a sequence of
blacks [B,‘ » Bi-H yeany Bu,m » B"], with m 2 0. such that Bi Prec Bi-bl .
BH-I MBHQ ey Bi+m-l MBM , and Bi...m MB, . From the WDT(M)
property, this implies (Where L; is the set of actions of block B;) that :

da;el; Va, €Ly, disr(a}.“‘.ajl_)<0
3 % €Ly, ¥ @ o € Lya . d'sr(aku:‘aji.l) <0
3a; €Llym-1.Va €Ly, disi(a, .a

jl¢u-l)<0
aaj“. € L,-,,_M,Vak‘ € Li N dist(ak‘. aj“-)<0.

By simple transitivity of the arithmetic “<*, this implies that Vg, € L; ,
dist(ak‘,aj‘)<0and.sinceaﬁe L,-,wegctinparticular,thatdist(aj‘.aj‘)<0.
However, this means that CG(A, () is inconsistent — contradiction.

Q

For the rest of this paper, we extend the dist notation (Definition 9) as follows:
given a set @ of blocks, the notation distyy) (a;, @;) indicates the leagth of the
shortest path from g; to a; in the graph in which the vertex set is composed of
the vnion of the local action sets and trigger sets of the blocks of Q, and the
edge set corresponds to the union of the local constraints of the blocks of @. In
addition, if B is a block, the notation di.ﬂ'[B] (a; GJ) is equivalcnt to di.ﬁ[{Bn (a;
a

).

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-29

Lemma 11 [WDT(M) A past-dominated(M) =>live(M)] LetM=(A. 0. B. T
O) be a block machine derived from a consistent action diagram AD. such that
the properties WDT(M) and past-dominated(M) are true. It follows that M is

live.

Proof. To prove that M is live, we will show that it satisfies clauses P1 to P4 of
Lemma 5. Clause P2 (i.e., cach block of B has at least one trigger) is satisfied
by definition of the trigger relation in a derived block machine (Definition 21).
From the consistent{AD) and WDT{M) assumptions, and using the result of
Lemma 10, it follows that clause P3 (i.c.. the “<" relation on B is a partial
order) is satisfied.

Consider an arbitrary (and possibly partial) execution of M, and let S be the
sequence of blocks [B;], i 2 1 , enabled during that execution, where the blocks
of § are in the order in which they were executed. Hence, this order implies an
order in increasing block enabling time. Let A; designate the set trigs(B;) v L;,
where L; is the sct of local actions of block B;. Let & be defined as:

Al=4

A=gloL, fori>l
Let Z; designate Zone(A; . C), i.c., the zone in which the actions are the local
actions and triggers of block B;, and the constraints are the local constraints of
B;. Let Z' be defined as:

zZ'=z

Z=2"lez, fori>l.
Let §° designate the set {B, , B;} and V the vector of time assignments of
actions of &, as computed in the execution under consideration. In the follow-
ing, we prove by induction on S, the three properties InZone(i), NoDeadlock(),
and FTP(i), defined as follows:

« InZone(i): Ve Z

* NoDeadlock{i) : the execution up to B; has not entered the deadlock state

= FTP(i) : the execution up to B; satisfies the forward time property
Induction base : Block B, (the first block of S) necessarily has the origin action
as its only trigger, or else it could not be the first block to be enabled. Hence,

P, the time computation function of B), chooses a vector of Z;, such that the
component of that vector corresponding to the origin takes on the value z,.

6-30 CHAPTER 6 - SEMANTICS AND VERIFICATION

From the zone relativity property {(Lemma 6), such a vector exists, as long as Z;
is not empty. It is indeed the case that Z; is not empty, since CG(A, O is consis-
tent. The existence of that vector implies NoDeadlock(1), and the fact that the
vector is in Z; means inZone(1).

From past-dominated(M), all tight paths between a pair of actions a; a; are
local to P; ik (where P it denotes pasr(aj . a;)). Hence, dz‘sr(aj . a;) can be com-
puted over Py, ie..:

dis(ar a,) = disru, fapa) (H

Let a} 1 . be an action of block By. From the WDT(M) assumption, we have
dist (a 1+ 0) <0 (see Definition 22). Using equation (1), and the fact that P
S1 we can rewrite the WDT(M) property on a‘f. cas:

disr[s.] (a 120 <0 (2)
From InZone(1), we know that the relationship between #fa’) and #(0) (which
are the occurrence times of a'f and o, respectively) is givcn by Z,, which is the
time zone defined by the actions and local constrmnts of §1. As a result, relation

(2) implies that the occurrence times of atI and 0 in the execution are such
that:

f0)—1(a}) <0

Hence of a'f) > i(0). Since this is true for any action of By, it follows that By sat-
isfies the forward time property for the current execution, i.e., the property
FTP(1) is true.

Induction step : Assume blocks By to B; have executed and B;,; is the enabled
block that is about to execute. Using Lemma 9, where Z), Z; A, and A;; of
Lemma 9 are Z, Z;,,, A and trigs(B;,), respectively, we first show that:

zl'-l-l I = Zl' 3)

Indeed, If B;, has a single trigger (i.e., |4;5| of Lernma 9 is 1), then (3) follows
directly from Lemma 9. Otherwise (i.e., B;,) has more than one trigger), let g;
and a; be a pair of triggers of By, @; # a;. Let Py denote past(a;, ap) and O
denote B— P, . From past-dominated(M), we have:

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-31

distlpnfaj,ak) < disr[Q“;aj, a;) 4

Since B;, is enabled and 4;, a; are tnggers of B,,, it must be that all blocks in
P;; have been enabled, and hence Pj; §°. Thus, S’ comprises at least all of the
constraints of P;. As a result:

disrls,](aj, a;) S dist”,ﬂﬁaj, a;) (5)

Now, since the “<" relation on Bis a partial order and since a; and a; are trig-
gers of By,y. it follows that B;,,| cannot be in P, and hence it is in Qj;. Thus, Qy
comprises at least all of the constraints of B,,,. As a result:

dis“IQ,.faj' a;) <distp {a;a;) (6)

Combining (4) to (6), we get:
dist[s,](a - a;) < disrw‘_lfa » a;) @

Since inequality (7) is true for an arbitrary pair a;, @, of trigs(By,), it follows
that it is true for all such pairs. Consequenty, Z'y,,;, o 8, = Zi+1lirigs(s,.)
i.e., the premise of Lemma 9 holds, and hence equation (3) is true, indicating
that all vectors of Z* can be extended to B;,;. Hence, from equation (3), and
from the assumption that V¥ is in Z' (i.e., inZone(i)), it follows that V can be

extended to B;, ,, and thus NoDeadlock(i+1) = true.

Designate by V**! the extension of V 1o B;,,;. Since V¥ can be extended 10 B;,.1,
and since V is in Z, it follows V*! is in 2} ® Z;,, e, V*!is in Z™), and
hence inZone(i+1) is true.

Next, we show FTP(i+1). From past-dominated(M), all tight paths between a
pair of actions a;, a;. arc local to Py, (where Py denotes past(a; , a;)). Heace,
dist(a; , a;) can be computed over Py , L.e.;:

d‘S(‘, ak) dis‘lpﬁfaj, ak) (8)

Let af,, and trig},, be an action and a wigger, respectively, of block B;,.
(where B,.,_l is the block about to execute). From the WDI{M) assumption, we
have dist (a‘ e mg, +1) <0 (see Definition 22). Using equation (8), and the
fact that P < S ™1, we can rewrite the WDT{M) property on al,, . trigl | as:

6-32 CHAPTER 6 - SEMANTICS AND VERIFICATION

dist .. (ak,, . trigl) <0)

From InZone(i+1). we know that thc relation between aH_,) and ¥ mgm)
(which are the occurrence times of “m and rrig;, . respectively) is given by
Z™*!_ which is the time zone defined by the actions and local constraints of S"'”‘1
As a result, inequality (9) implies that the occurrence times of af s and rrig ,-‘L,
in the execution are such that:

dtrigl.) —tlaf,) <0 (10)

Hence o af) > Htrig ;';,). Since this is true for any action / trigger pair of B,
it follows that B, satisfies the forward time property in the execution. Tins
and the inductive assumption FTP(i) implies FTP(i+1}.

Since NoDeadlock(i) and FTP(i} hold for every i, it follows that clauses P1 (M
satisfies the forward time property) and P4 (no execution of M enters the dead-
lock state) of Lemma 5 hold. Hence, live(M) is true.

Q

Consider, for example, the consistent action diagram of Figure 4. To satisfy
Condition 1 of Definition 26, action 04 must be in a block all by itself. As for
actions i2 and i3, they must be together in one block, or else the WDT condition
would be violated (since i2 and 13 are concurrent to each other). Hence, the
only block machine of interest that can be derived from AD, contains two
action blocks, B;, and B, having the local action sets {i2,i3} and {04},
respectively. Block B, has two triggers, i2 and i3, which satisfy the WDT con-
dition, since dist(04, i2) < 0 and dist(o4, i2) < 0 (they are both equal to -11). B;,
is triggered by the (implicit) origin action, and hence the WDT condition for B;,
is satisfied by construction of the derived block machine (Definition 21). The
machine satisfies the past-dominated property. Indeed, the shortest path from i2
to i3 is the edge (i2, i3) of weight 8 (associated with the constraint al), and this
path is local to pas#(i2, i3), since it is local to block B;,. The only other (i2, i3)
path is of weight 9 and it consists of the edge (i2, 04) of weight 20, followed by
the edge (04, i3) of weight —11. The situation is symmetrical for (i3, i2) paths.
As for the (12, o4) and (04, i2) paths, since past{o4) is the complete set of
blocks, Le., pest(od) = {B;,, B,,}. it follows that all paths, and in particular the
(i2, 04) and (04, i2) paths, are local to pas#(i2, o4). Similarly for the (i3, 04) and
(o4, 13) paths, which are local to pas#(i3, 04). By Lemma 11, it follows that the
machine is live.

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-33

cl =[11, 20]

c2=[l1,20) P

Figure 4: A causal action diagram.

Note that the past-dominated(M) condition is not, strictly speaking, a necessary
condition for the liveness of M. The next lemma (Lemma 12) states that the
conjunction of WDT(M) with a stightly weaker form of past-dominated(M),
designated as weak-past-dominated(M} (Definition 31), forms a necessary con-
dition for the liveness of a block machine M derived from a consistent action
diagram. We omit the proof of Lemma 12, because the weak-past-dominated
criterion turns out to be of littde practical interest (this is further discussed later
in this section), and because in this paper we are morc interested in the safety of
our conditions than in their absolute minimality.

Definition 31 [Weak-past-dominated(M)] Let M = (4, 0, B, T O) be a block
machine derived from a consistent action diagram AD and satisfying the well-
defined triggers property. M is said to satisfy the weak past-dominated prop-
erty, denoted weak-past-dominated(M), if:

V a; € actions(A), V a;€ actions(A) - {a;}, V gy tight path from g; to g;
in CG(A O).

qijx not local to Past(a;, @) =
3 g;; tight path from g; 10 g; in CG(A, O), ;i local 1o Past(a;, a;).
Q

6-34 CHAPTER 6 - SEMANTICS AND VERIFICATION

The weak-past-dominated condition requires that the tight paths that are not
local to the past of an action pair be “backed up™ by at least one tight path that
is local to the past of the action pair. In other words, the tightest path local to
the past must be tighter or, as tight as (<) the tightest path that is not local to the
past. In contrast, the past-dominated condition (Definition 25} requires all tight
paths between an action pair to be local to the past of this pair.

Lemma 12 [live(M) =WDT(M) A weak-past-dominated(M)] Let M = (A, o.

B, 2. C) be a live block machine derived from a consistent action diagram AD.

It follows that the properties WDT{M) and weak-past-dominated(M) are true.
Q

Consider, for example, the action diagram AD, in Figure 3(b), which is the
same as Figure 4 except that the assume constraint is of weight [-10, 10] (rather
than [-8, 8] in Figure 4). For the same reasons as in the example of Figure 4, the
only block machine derived from AD- that could be causal is the machine M
with two action blocks, B, and B, of local action sets {i2,i3} and {04},
respectively. This machine, however, violates the weak-past-dominated prop-
erty. Indeed, consider for example the tight (i2, i3) path p3 that consists of the
edge el = (i2, o4) of weight 20, followed by the edge e2 = (04, i3) of weight —
11. The weight of p»3 is 9 (= 20 — 11) and the constraints associated with the
edges ¢l and e2 are cl and ¢2, respectively. These constraints are not local to
past(i2, i3), and hence neither is p,3. Since there is no other (i2, i3) path that is
as short as (or shorter than) pas, it follows that the weak-past-dominated prop-
erty is violated. To see that M is not live, consider for example the execution
where #(i2) = 5 and «(i3) = 15 (which is allowed by the local constraints of Bj,).
Then, when B,,,, becomes enabled at T = 15, it will nor be able to find a solu-
tion for 1(04) since that would require 1{04) to be greater than 26 (i.e., #(i3) +
11) and less than 25 (#(i2) + 20). Hence M enters the deadlock state, and thus it
is non-live.

If we change the [-10, 10] assume constraint of Figure 3(b) to {-9, 9], the
derived block machine described in the previous paragraph would satisfy the
weak-past-dominated condition, but not the (stronger) past-dominated condi-
tion. In addition, the machine is now live: for any occurrence times of the
actions i2 and i3 within the [~9, 9] assume constraint, block B, is able to
determine an occurrence time for o4 so as to satisfy all its local constraints
(which are the two commit constraints of weight [11, 20]). Note, however, that

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-35

the (i2, i3) path that is local to past(i2, i3) has a weight equal to that of the
{i2. 13) path that is not local to pasr(i2, 13). This has the effect that, in some exe-
cutions of the machine, the function @ of block B,,,, will return a single vector.
Consider, for example, the execution where 1(i2) = 5 and 1(i3) = 14 (which is
allowed by the local constraints of 8;,). Then, when B,,,, becomes enabled at T
= 15, it will find that there is only one solution for 7(o4) that satisfies the local

constraints of B,,,,;; that solution is #(04) = 25.

In terms of the practical framework of our appiication demain (specifications of
asynchronous systems in a continuous time imodel), the kind of marginal situa-
tion outlined in the previous paragraph is of little practical interest, as it implies
absolutely null design margins, thus making the specified system physically
non-realizable, in practice. In view of these observations, we informally state
that past-dominated(M) is an “almost necessary™ condition for the liveness of a
derived block machine M.

In terms of the theoretical framework, we have chosen the stronger past-domi-
nated condition over its weaker counterpart as a liveness (and thus causality)
criterion, because the stronger form has desirable compositional properties that
allow us to express the compatibility of communicating action diagrams inde-
pendently of the particular causal block machines that implement them. These
compositional properties are put to advantage in the proof of Theorem 1 (the
Compatibility Theorem). However, in order to do that, we will first need to
rewrite the past-dominated condition into a provably equivalent form. This is
the subject of the next section (Section 9).

9 Rewriting the past-dominated Condition

In this section, we show that the past-dominated(M) condition can be rewritten
into a provably equivalent form, loose-blocks(M), given in Definition 32. This
rewriting enables us to prove the Compatibility Theorem (Theorem 1). An
additional benefit of the loose-blocks(M) condition is that its computation is of
time complexity O(r), where n is the number of actions of M, whereas the
worst case time compiexity of past-dominated(M) could be exponential with »
(it is based on path enumeration).

Definition 32 [Loose-blocks(M)] Let M =(4, 0, B, T C) be a block machine
derived from a consistent action diagram. M is said to satisfy the loose blocks

6-36 CHAPTER 6 - SEMANTICS AND VERIFICATION

property. if:
V B.e B, Va;e trigs(B)). V aje trigs(B) — {a;} .
diSl[CG(ﬂ. ol (0,-. GJ) Foo = disr[CG(ﬂ. 0] (tl,-. aj) < di‘”[Bﬂ (a,-. aj)
Q

In Lemma 13 we shall establish the equivalence between the loose-blocks and

the past-dominated properties of derived block machines. But first, a few defi-
nitions are in order.

Definition 33 {Edge or path contained in a (set of) block(s)] Let M= (A4, 0. B.
T, C) be a derived block machine and Q< B. An edge e of CG(A €) is said to
be contained in Q. if there exists a block B; in Q such that source(e) is local to
B; and there exists a block B; in Q such that sink(e) is local to B; (it does not
matter whether B; # B; or not). Furthermore, the edge e is said to be contained
in B;, if e is contained in {B;}. A path r of CG(A, C) is said to be contained in
Q (respectively B)), if all the edges of r are contained in Q (respectively B)).

Q

Definition 34 [Cross edge] Let M = (A, 0, B, Z, C) be a derived block machine.
An edge e;; = (a;, ;) of CG(A, () is a cross edge if ; and g; are not local to the
same block, i.e.,: =3 By € B q; € actions(B;) A ¢;€ actions(By).

m

Definition 35 [Direction of a cross edge] Let M = (4, 0, B, T () be a derived
block machine such that “<* on B (Definition 14) is a partial order. The direc-
tion of a cross edge e;; = (a;, a;) of CG(A, C) is one of right or left, and is deter-
mined as follows, where X = 4- { 0}.

1. Ifa;€ A and g; € trigs(block(a;)), then e is a left edge.

2. Ifa;je A and g; € trigs(block(ay)), then e;; is a right edge.
Q

In the above definition, the direction of each and every cross edge of the con-
straint graph of M is uniquely defined. Indeed, if both a; and g; are actions of &'
, then from the definition of the trigger relation of a derived block machine
(Definition 21) and the assumption that “<* on B is a partial order, it follows

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-37

that the pre-condition of one and only one of Statements 1 and 2 of Definition
35 is true. Otherwise, one of a; and a; must be identical to the origin action 0
(they cannot both be identical to o becauce a;# ;). Since in a derived block
machine there is no edge with 0 as its source, it follows that @; cannot be equal
to 0. Hence, the only remaining possibility is a; 0 and a; = 0, and therefore the
pre-condition of Statement 2 of Definition 35 is false. From Definition 21, (g;,
0) is an edge of the constraint set of a derived block machine if, and only if 0is
a trigger of block(a;). Hence, the pre-condition of Statement 1 of Definition 35
is true. Therefore, in all cascs, the direction of a cross edge is uniquely defined.

Definition 36 [Transit] Let M = (A, o, B, Z’ C) be a derived block machine, B;
€ B, and L; the set of local actions of B;. A transit through B;, or transir for
short, is a pair t = (enter, exir), where enter and exit are cross edges of
CG(A, (), and:
» enter is such that: source(enter) ¢ L; and sink{enter} <L,
e exit is such that: source(exit) €L; and sink{exit) € L; and,
o there exists a path r of CG(A, (), such that first(r) = enter, last(r) = exit,
and all other edges of r (if any) are contained in B;. Any such path r is
said to be a path associated with the transit t.
Q

Definition 37 [Transit direction] The dirsction of a wansit t = (enter, exit) is a
pair (enterdir, exitdir) where enterdir is the direction of the enter cross edge,
and exitdir is the direction of the exit cross edge.

Q

Definition 38 [Transit sequence] Let M = (4, o0, B, T C) be a derived block
machine, Q< ‘B, and r a path of lergth 2 2, such that all edges of r, except the
first and the last, are contained in Q. Then, the transit sequence of r through Q
. is 2 uniquely defined sequence of transits 75 =[¢;, i=1,..., n], where t;=
(enter; , exit;), 1 £7<n, and such that:

* entery = first(r)

e enter; =exit;, fori=1,...,n-1

s exit{n) = lasi(r).

6-38 CHAPTER 6 - SEMANTICS AND VERIFICATION

Definition 39 [Direction sequence) Let TS = [t;, i=1...., n] be the transit
sequence of a path r through a set of blocks Q. The corresponding direction
sequence of r through Q is the sequence of transit directions DS = [dir;,
i=1,..., n]. where dir; = (enterdir; , exitdir;) is the transit direction of t,
i= l...., n. Obviously, enterdir;, = exitdir;, i=l.....n-1.

Q

Lemma 13 [loose-blocks(M) <> past-dominated(M)] LetM = (A, 0. B. T O
be a block machine derived from a consistent action diagram AD, such that “<*
on ‘Bis a partial order. Then, loose-blocks(M} < past-dominated(M).

Proof (=).Let CG = CG(A, (). Assume that loose-blocks{M) is true and that
past-dominated(M) is false, i.e., there exists a pair of actions a; and a; of A and
a tight path s in CG, such that s is from g; 10 g;, an s is not local to past(a; . a;).
In the following, we show that this leads to a contradiction.

Let P and Q designate pasi(a; , a;) and B- past(a; . a;), respectively. Due to the
assumption that s is not local to P, there must exist at least one edge in s that is
not local to P. Such an edge must be local to Q. Coasider the first such edge, €.
Its source action a;, = source(e;) is in P or else ; would not be the first edge of
5 to be local to Q. The action a;. = sink(e,) cannot be in P or else ¢; would be
local to P. It follows that g, is in Q. In addition, a;. cannot terminate the path s,
because s ends at aj, with a; in P, whereas a;. is in Q. Consequently, there must
be at Jeast one more edge in s following €. Since a; is in Q and the termination
of s is in P, there must exist at least one edge of s, after e, with its source in @
and its sink in P. Consider the first such edge, say e, , and designate by r the
subpath of s such that r = e,..., €5, p 2 2. r is such that all its edges, except its
first (i.e., e;) and last (i.e., ep) are contained in Q (or else ¢, would not be the
first edge of s with its source in (2 and its sink in P). Thus, we can associate r
with a transit sequence TS through Q, ITS=[t; i=1...,n],n2l,and t; =
(enter;, exity), i = 1,...,n, such that enter| = ¢; and exit, = ¢,. Let DS = [dir;,
i = 1,..., n] be the direction sequence of 7, where dir; = (enterdir; , exitdir;) for

i=1,...,n

In the following, we show that e, is a right edge. Let B, = block(a,), and B, =
block(ay). Since ay, is in P, a; is in O, and P N Q = @, it follows that a;, and a;,
are necessarily in different action blocks, i.e., By # B;,. In addition, since e, is
an edge from gy, to gy, it follows that either a, is a trigger of B, or a; is a trigger

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-39

of B,. However, the later possibility. i.e., a, trigger of B, would imply B, < B,
and consequently B, would be in P (since By is in P, and P contains all blocks
that are before B, by the “<" relation on B). This contradicts the assumption
that By is in Q. Thus, the only possibility is that @, is a trigger of By. This
implies that B, < B, and hence, e, = (a, . a;) is a right edge. Since e, is the
enter edge of the first transit in the TS transit sequence, it follows that, in TS,
enterdir| = right.

Next we show that e, is a left edge. Let a,, = sink(e,), a; = source(ep), By, =
block(a,,). and B, = block(a;). Since a,, is in P and q; is in @, it follows that a,
and a; are necessarily in different action blocks. In addition, since e, is an edge
from g, to a,,, it follows that either a,, is a trigger of By, or a; is a trigger of B,,,.
However, the latter possibility, i.e., g trigger of B,,,, would imply B; < B,,,, and
conseguently B; would be in P (since B,, is in P, and P contains all blocks that
are before B}, by the “<* relation on ‘B). This contradicts the assumption that 5B;
is in Q. Thus, the only possibility is thus that a,, is a trigger of B,. This implies
that B,,, < B) and hence, e, = (a, ay,) is 2 left edge. Since e, is the exir edge of
the nrh (and last) transit in the TS transit sequence, it follows that, in TS, exir-
dir, = left.

So, we have: enterdir, = right, enterdir;,; = exitdir; , fori=1,...,n—1, and
exitdir, = left. In the following, we show that there must exist &, 1 £k < n, such
that diry, = (right , left), i.c., enterdir;. = right and exitdir;. = left. We first show
by induction on i that prop; is true forall i, i = 1, ... n, where prop; = [3k<i,
dir.= (right leff)] v [V k<i, dir, = (right , right)] .

Induction base: Since enterdir, = right, it follows that sither diry = (right, left),
or diry = (right, rignt). Thus prop; is true.

Induction step: If the first clause of the disjunction in prop; is true, it trivially
follows that the first clause of the disjunction of prop;, is also true, and thus
Prop;,. is true, If the second clause of the disjunction of prop; is true, it follows
that enterdir;, = right, because enterdir;,| = exitdir;, fori = 1,..., n — 1. In that
case, there are two possibilities for diry,): either it is (right, left), or it is
(right , right). The first possibility makes the first clause of prop;,; true, and
the second possibility makes the second clause of prop;,; true. Thus, in all
cases, prop; = prop;,1. and hence, by th: induction principle, prop; is true for
alil1<i<n.

6-40 CHAPTER 6 - SEMANTICS AND VERIFICATION

Therefore, fori=n. prop,= [3k<n . dir,=(right . left)y] v [VkSn.dirn=
(right , right)] is true. Since exitdir, = left, the second clause of the disjunction
of prop,, is false, and thus the only possibility is the first clause, i.e.. there exits
k< n.dir, = (right , left). Consider one such £, and let t; be the) transit in T,
i.e., corresponding to dir;. Let Bbe the block through which t; transits, a, and
a, be the source of the enter; edge and the sink of the exif; edge, respectively.
Since enter;. is a right edge, it follows that a, is a trigger of B. Since exif is a
ieft edge, it follows that a. is a trigger of B. In addition, since (1) by assump-
ton, r is a tight path, (2) all subpaths of a tight path are tight paths, and (3) t;. is
a transit in the transit sequence associated with 7 it follows that there must be at
least on tight path associated with the transit t; through block B. Hence,
disticgy (ay. a;) = disgp(a,.a.). This implies that B violates the loose-block
property, which contradicts the initial assumption.

Proof (<=). Assume that past-dominated(M) is true and that loose-blocks(M) is
false, i.e., there exists a block B and a pair of triggers a,, a. of B, such that

distz\(ay.a;) is finite and disticy (ay.» a) = dist3(a,.a.) . This means that
there is a tight pathg from ay to a,, and g is local to B. In addition, since a, and
a. are triggers of B, and since the “<" relation on Bis a partial order, it follows
that Be past(a‘) and Be past(a.). As a result, Be past(ay, a.). Now, since ¢
is local to B, and since Be past(a, , a;), it follows that thc tight path ¢ is not
local to past(ay, a). This contradicts the past-dominated(M) assumption.

Q

For example, Figure 5 shows the action diagram and an action partition of the
READ cycle of the Motorola MC68360 processor. Blocks are delimited using
dashed lines; e.g., the trigger of block EB,, is the (implicit) origin action. AS
is the only trigger of block EB5, actions CKT2 in EB, and ACKJ are triggers
of EB s, etc. All the conditions of Definition 26, wherein loose-blocks(M) is
substituted for the past-dominared(M) condition, are satisfied. Hence, by
Defirition 27, the action diagram is causal. Similarly, Figure 6 depicts a read
cycle with a causal action partition of a slave device that could be connected to
the processor of Figure 5.

10 Trace Set Conservation

In this section, we prove that the trace set of 2 causal derived block machine is
equal to the trace set of the action diagram from which it was derived.

CHAPTER 6 - SEMANTICS AND VERIFICATION 641

Lemma 14 (M <cdBMs(AD) A WDT(M) =>TraceSet(AD) < TraceSet(M)]
Let M = (4, o, B, T O) be a block machine derived from a consistent action
diagram AD. Then, if M satisfies the well-defined trigger property (Definition
22), it follows that TraceSel(AD) g TraceSet(M).

Proof. Consider Q a trace of AD, and let V be the vector of action occurrence
times corresponding to L Let Z, = Zone(A. C) be the global zone of AD.
The fact that Q is a trace of AD is equivalent to saying that V € Z,p. Let
A={ay, ..., a,}, such that ag = 0, and let 7; designate the occurrence time in
Vof an action a; of A, 0< j<n. Let S=[B], i = L...., n, be a sequence of
blocks sorted in increasing €; (with arbitrary order amongst blocks that have
the same ©;), where €; is defined in the following (with trigs(B;) being the set
of triggers of a block B;):

;= Max(ty) (an
a,€ mgs(B‘-)

In order to prove that Q is a trace of M. it suffices to “construct™ an execution £

of M, such that E satisfies the property Vi Prop;, where:

* Prop;: AgendaSimulate(S) A enabled; A NoDeadlock; A BlockSimulate{V)
A nolndefiniteWait;

* AgendaSimulate{S} : when all blocks preceding B; in the sequence S have
executed in E, the following block to execute in E is B;.

* enabled; : block B; is enabled in the execution E at time €;.

e NoDeadlock; : when block B; has executed in E, &; (the time computation
function of B;) returns a non-empty set.

» BlockSimulate{V) : when block B; has executed in E, the choose function
invoked by the execution (Definition 16) returns V| L+

 nolndefiniteWait; : once block B; has executed in E, the local actions of B;
cannot cause the WAIT operator in the execution E to remain in a wair state
for an infinite amount of time.

In the rest of the proof of this lemma, we use the notation L;, Z;, Z;, &', and §*
that was defined in the proof of Lemma 11. Let ftrigs(B;)) designate the

6-42 CHAPTER 6 - SEMANTICS AND VERIFICATION

occurrence time vector, in the execution £, of the triggers of block B,. In the
following, we show that, for an arbitrary block B, :

[enabled; A t(1rigs(B;))=Vy trigst R.)]
=
NoDeadlock; A BlockSimulate{V} A nolndefiniteWait; (12

Since A; ¢ Aand G = C it follows that Z,py q S Z;. This, together with the
fact that V € Z,p. implies that Vuﬂ € Z. The latter statement is itself equiva-
lentto VY, € Qi(Vipi058,)) where ®; is the time computation function of B;.

The factthat VY, € OV pips(p,) implies that if B; is enabled and if its rigger
ume vector, Hrigs(By)). is V|j,rigs(s,). then the first consequence is that
DLV 1rigs(a,) is not empty, and hence NoDeadlock;, and the second conse-
quence is that Vy, is part of the choices that the block machine can make for
the local action times of B;. Thus, we can make V|, be the chosen occurrence
time vector for the actions of B; in E, and hence we have BlockSimulate (V). In
addition, from WDT(M), we have: V a; € trigs(By) , Y a;.€ actions(B;) . 1. > T
Hence, 1. > €;. Since M satisfies the WDT property, it follows that: ¥ q; €
actions(B;) , ;. > €;. Combining this with the fact that block B; is enabled at T =
€; (consequence of the enabled; assumption) and with the fact that a block exe-
cutes at the time when it is enabled {see Definition 16), it follows that, when ®;
is evaluated, all components of all vectors computed by P; are strictly greater
than the current value of T (the current time). Hence, ro local action of B; can
be the cause of an indefinite suspension of the WAIT operator in the execution
of the block machine, i.e., NolndefiniteWait;. Thus, (12) holds.

In the following, we show by induction on i that Vi , Prop;.

Induction base : From the definition of Z,, = Zone(A, C), there is a unique
action a; € A, such that for each and every action g; € A a; # a;, the property
dist(a; , a;) < 0 holds. In addition, this unique action a; is the origin action o.
Heance, if 7 is the time in V of the origin o, it follows that:

A4 ajeﬂ' = <Y (13)

Let 7" be the restriction of 7 to Zx B (recall: T is defined on Ax B). If all
blocks of Bwere covered by T (i.e., if all blocks of Bhad at least one trigger
in AT), then the “<" relation on B would not be a partial order, thus contradict-

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-43

ing Lemma 10. Hence, the set By, defined as the set of blocks that have no
triggers in A&, is not empty. From Definition 21, all blocks of B are assigned
the origin ¢ as their only trigger. Hence, for any block By of &y, we have €, =
Vij{ 0} = To. and the blocks of B, arc the only ones that have an € value equal to
1. Hence, using (13), it follows that the blocks of &, share a single unique
minirnum €. Since B, (the first block in §) is a block with minimum &, and
since R, is not empty, it follows that B, is a member of &, and hence B, has the
origin as only trigger.

From the execution model (Definition 16), blocks which have the origin as the
only trigger are enabled at time #;, where 7 is the parameter of the procedure
M, e Hence, if we choose Tg for the parameter £, we get that B is enabled at
7. and thus enabled; is true. Since, in addition to enabled;, we have
Hirigs(B1)) = Viiigsesy = To» Using (12) we conclude that NoDeadlock; A
BlockSimulate,(V) A nolndefiniteWait.

Since B, is erabled at Ty, there is certainly an execution in which B, executes
before other blocks. Let £ be that execution. (Note: in the case where there are
other blocks that are also enabled at T, then other executions might choose
some of these other blocks to execute first). Since there are no blocks preceding
B, in the sequence S, it follows that the property AgendaSimulate, holds. As a
result, Prop, is true.

Induction step : The induction hypothesis is that, for some i such that i < n
(where n is the length of S), Prop; holds, for all j such that j < i. We need to
show that this implies that Prop;,; bolds too.

In the following, we first show that B;,, is triggered only by actions of &'. Con-
sider a block B,,, where m 2 1. From the WDT(M) property, we have (where
L,, is the set of local actions of B,,, and T, is the component of V corresponding
to action ;) : ¥ g € L, . T; > €,,. In addition, since the block sequence S is
sorted in increasing €, it follows that: €, 2 €;,,. Hence:

Vae L,,4>€y4
From the expression (11) of €;,;, this iplies that:

Va;e trigs(B,-*l), Vake Lm »y > T

6-44 CHAPTER 6 - SEMANTICS AND VERIFICATION

Thus, the two sets {a; | {(@;. B;,;) € T} and L, arc disjoint, and hence, no
action of block B,,. for any m, m 2 i+1, can be a trigger of block B, . As a
result, By, is triggered only by actions of A'.

The execution context for the induction step is that blocks B to B; have been
evaluated. The execution has just finished evaluating block B;. Let #; be the set
of blocks that have not executed yet, i.e.. H; = § — §'. Let %&; be the subset of
blocks of % that have all their triggers in A and let £; be the set K, — XK. From
the inductive assumptions enabled; and NoDeadlock;, we know that all blocks
B; such that j S i, have executed and have a non-empty ©; solution. Thus, at this
point of the execution, the enabling times of all blocks of X are known. Due to
the inductive assumption BlockSimulate V), for all j such that j < i, we also
know that if a block of X is actually enabled, then its enabling time is equal to
its € value. From the inductive assumptipn noindefiniteWait;, for all j such that
J S i, we know that no action of & can cause the execution algorithm
(Definition 16) to remain forever in a WAIT state. Thus, up and until a
subsequent block is enabled, nothing can prevent A actions to occur at their
respective computed occurrence times,

Consider a block B’ of L;. By definition of being in £L;, B' has at least one trig-
ger which is in %, i.e., this trigger is local to a block that has not been evalu-
ated yet. Hence, in order for B’ to be evaluated, at least one other block has to
be evaluated first. As for blocks in %G, since all their triggers ar: in &, they
require no blocks to be evaluated as a pre-condition for their own evaluation. In
addition, X; is not empty, since it contains at least B;,; (which was shown
above to be triggered only by actions of). Hence, there exists at least one
block in X; that will be evaluated before all blocks of L. In addition, the first
such X; block to be evaluated is necessarily a block with smallest enabling time
amongst the X; blocks. B;,; is such a block, since the enabling times of X;
blocks are equal to their € value, and the block sequence S is sorted in increas-
ing © values. Thus, up and until B, is enabled, & actions occur at their com-
puted occurrence time. Hence, B, is indeed enabled, i.e., enabled;,;. And
since B;,; is the next enabled block (or among a set of blocks to be next
enabled simultaneously), there exists an extension of the execution E in which
the next block to be evaluated is B;, ;. Thus, AgendaSimulate;,(S).

Finally, from the inductive assumption BlockSimulate{V), for all j such that j S
i, we know that the computed occurrence time vector of the actions of each

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-45

such block B; is V| L, In addition, since every trigger of B, is local to some B,
with j < 4, it follows that #(rigs(Bi.1)) = VY058)+ Using (12), this implies
that NeDeadlock,,) ~ BlockSimulate, (V) ~ nolndefiniteWait, ;. Hence,
Prop;,| holds.

Q

Lemma 15 { M € dBMs(AD) A WDI(M) A past-dominated(M)

= TraceSet(M) = TraceSet(AD)]
Let AD = (8. A, o, C) be a consistent action diagram and M =(A, 0, B Z O a
block machine derived from AD, such that M satisfies the well-defined triggers
(Definition 22) and past dominated (Definition 25) properties. Then,
TraceSei(AD) = TraceSei(M).

Proof. From Lemma 11, we know that M is live and that, for an arbitrary
execution E with execution vector V°, the property V* € Z" holds (using the
terminology of Lemma 11). Since 2" = Z,, (where Z,p is the global zone of
AD, ie., Z,p, = Zone(A4, C)), it follows that V* € Z,p., and hence V" is a trace
of AD. Thus, TraceSet(M) ¢ TraceSet(AD). In addition, from Lemma 14, we
have TraceSet(AD) C TraceSet(M). Hence, TraceSct(AD) = TraceSer(M).

Qa

The implication of Lemma 15 is that an action diagram is either non-causal in
our sense of the word (when no causal block machine can be derived from it),
or else all its possible interpretations “that make sense™, i.e., all causal block
machines derived from it, are trace equivaleat. The existence of multiple equiv-
alent block machines can be important in the synthesis of interface controllers,
for example when exploring implementation alternatives with different block
granularity and degrees of control distribution, and when selecting solutions
that satisfy various design requircments. Such considerations are, however,
beyond the scope of this paper.

11 Compatibility of Communicating Action Diagrams

In this section, we develop a procedure for verifying whether a set of communi-
cating causal action diagrams are compatible, i.e., whether any combination of
their derived causal block machines are compatible. First, we formalize the
concepts of connection (Definition 40 and Definition 41), composition

6-16 CHAPTER 6 - SEMANTICS AND VERIFICATION

(Definition 43 and Definition 44) and compatibilirv (Definition 45 and
Definition 46). Then, in Theorem 1, we prove that we do not need to cnumerate
the combinations of derived block machines in order to answer the action
diagram compatibility question. The theorem provides an exact and efficient
procedure for the verification of the compatibility of communicating action
diagrams.

The block machires M,,..., M, and action diagrams AD,..... AD, under con-
sideration are defined on distinct action sets, A;, A, 1.c..i# j implies that
A;nNA; =0, fori=1,..,n, j= 1 ..,n We also assume that the por
sets S),.... 5, of the action diagrams are distinct, i.e., {#j implies that
SinS;=@fori=1,..,n.j=1..,n.

Definition 40 [Port connection group] Let @ = {AD,. AD,j be a set of
action diagrams with AD; = (5, A;, 0;, G) and let T 4= ; S;. Then:
i=1

e A porr connection over Q is a pair PCon = (P, PortSet), where P is a port
such that P & Z cand Portser © . ¢. P is said to be the communication port of
PCon, and PortSet is said to be the port set of PCon. In addition, for any port
P’ of PortSet, P is said to be the communication port corresponding to P

= A port connection group over) is a pair PConG = (GPortSet, PConSet),
where PConSet is a set of port connections over Q, PConSet = [PCon; |
PCon;= (P}, PoriSet;), j = 1,..., m} and GPortSet = {P;|j= l,...,m}.

= A port connection group PConG over Q is sound if:
« Each port of each AD; of Q is an element of the PortSer of one and
only one port connection PCon; of PConG.
« The number of output ports in the PortSer of each port connection of
PConG is exactly one.

» All ports of a PortSer of any given port connection must have the same
number of actions.

+ Given a sound port connection group PConG = (GPortSet, PConSet), let
PCon; be a port connection of PConSer, with PCon; = (P; , PoriSet;), and let
Pj' be thf.': unique output port of Po.rtSerj, and AD;, be the action diagram for
which P; is an output port, i.e., P; € §. Then, the direction of P; is k.

Q

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-47

Note that in the above definition, the “direction™ of a (communication) port is
an integer from 1 to n that identifies the action diagram that controls the port.
This is a slight generalization of Definition 2 in which the direction identified
which of the environment (in) or device (our) controls a port. In the next defini-
tion, we carry on this generalization to the direction of communication actions.

Definition 41 [Action connection group) Consider a set Q = {X|, ..., X,;} of

cither n action diagrams, or n block machines. Let ; and o; be the action set
n

and the origin action, respectively, of X;and let Z4= l_k_,)l A;. Then:

« An action connection over Q is a pair ActCon = (a, ActSet), where a is an
action such that a ¢ 4 and ActSer C X 4. a is said to be the communication
action of ActCon, and ActSer is said to be the action set of ActCon. In addi-
tion, for any action a’ of AczSez, a is said to be the communication action
corresponding to a’.

« An action connection group over Q is a pair ActConG = (GActSet, ActCon-
Ser), where ActConSert is a set of action connections over Q, ActConSer =
{ActConj | ActCon; = (a;, ActSet;), j=1....,m} and GActSer={a;|j=l....,
m}.

« An action connection group ActConG over O, ActConG = (GAciSet, Act-
ConSet). is sound if:

» Each action of each 4;, i = 1,..., n, is an element of the AczSet of one
and only one action connection ActCon; of ConG.

» There exists an action 0 of GActSez, such that ois of null direction and
the connection {0, {0y, ..., 0,}) is 2 member of ActConSet. This con-
nection is designated as the origin connection.

* For any action connection ActCon;, other than the origin connection,
the number of output actions in ActSet; is one.

« Given a sound action connection group AcrCon = (GActSet, ActConSei), let
ActCon; be an action connection of ActConSet, other than the origin connec-
tion, with ActCon; = (g; , ActSet;), and let @; be the unique output action of
Acheg-. and X be the element of Q for which a; is an output action, i.c., a;
€ A Then, the direction of g; is k-

Q

6-48 CHAPTER 6 - SEMANTICS AND VERIFICATION

Definition 42 [Derived action connection group] Consider @ = {AD,.....
AD,} a set of action diagrams. where AD; = (5. A, 0. C). Let PConG be a
sound port connection group over Q, with PConG = (GPortSet, PConSer} und
thh PConSer = { PCon; | PCon; =(P;. PortSet)). j = 1..... m}. Let Ty designate
U A;. Then, the derived action connection group. ActConG = derived-
Con(PConG {0y, 0,}) is such that ActConG = (GActSet. ActConSer), and:

e AcrConSet is composed of the following action connections:

» (0.{0}..... 0,}). where o0& Z 4, and ¢is of the null direction.

= each port connection PCon; of PConG, where PCon; = (P; , PortSet)),
“derives” m; action connections, where m; is the number of actions of a
port of PoriSet;. The k™ of these m; action connections, for any k. 1 < k
<my is ActCon i = (@i ActSet;), where ;. € Zg. and ActSet;; is the
set of K" actions of the ports of PorsSet;. The sequence [ag], k= 1,

m;, is said to be the communication action sequence of P;. The dxrcc-

tion of each action of the sequence [ay;] is that of P;.

* GActSer= {0} (U Uajk).
j= 1 k= Q

Referring to Definition 42, clearly, if PConG is sound, then so is ActConG. In
the following, we generalize the notion of constraint intent to integers in a sim-
ilar way to the generalization of port and action directions. These generaliza-
tions allow us to define the composition of action diagrams as yielding a
structure which itself is an action diagram, thus allowing the re-use of previ-
ously proven results.

Definition 43 [Action Diagram Composition] Consider Q = {ADj...., AD,} a
set of action diagrams, where AD; = (5, 4;, 0;,). Let PConG be a sound port
connection group over @, with PConG = (5, PConSet), and ActConG = (A, Act-
ConSer) = derivedCon(PConG, {0...., 0,}). Then, the composed action dia-
gram AD = composed-AD(PConG, Q) is AD = (S, 4, o, 0), where:

* ois the communication action of the action connection {0, {0.-.., 0,}).

= The action sequence of any port of § is its communication action sequence

(Definition 42).

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-49

« (Cis obtained by first taking the union of the set of commir constraints of
AD,...., AD,, and then substituting a constraint ¢’ = (g;", a;’, 1) for each
constraint ¢= (a;, a;,) of the resulting set, where ;" (respectively a;°) is the
communication action corresponding to a; (respectively a;) in ActConG. If
AD; is the action diagram for which ¢ is 2 commit constraint, then the intent
of ¢’is k. In substituting ¢’ for ¢, we say that constraint ¢ is transposed to

ActSet.

Qa

Lemma 16 [Inclusion of composition zone] Consider a set (of consistent
action diagrams, Q = {AD,...., AD,}, where AD; = (5, 2. 0,), i=1, ... n.
Let PCon be 2 sound port connection group over @, and let A be the set of com-
munication actions of the action connection group derived from PCon. Let G
(respectively C;4) be the set of commit constraints (respectively assume con-
straints) of AD; transposed t0 A Let Co=CieV ... VW Geand Ci= G v ...
o Ga. Then, if Zone(A G is non-empty and
Zone(A, Co) < Zone(A, C), it follows that Zone(A, Cc) @ Zone(A, G v
Gyl fori=1, .., n

Proof. Since G is a subset of Cy, it follows that Zone(A4, Cy) < Zone(A, Cyy).
In addition, by the lemma assumption, Zone(A, C) < Zone(A, C,). Hence:

Zone(A, Cc) C Zone(A, Gy) (14)
(14) implies that:
Zone(A, Cp) = Zone(A, Cov Cy) (15)

Since Zone(A, Co\v G4) contains all of the coustraints of Zorne(A, Ge v Cy),
it follows that:

Zone(A, Cov Cyp) < Zone(A, G L Gy) (16)

From {15) and (16), we obtain that Zone(Z, Co) © Zone(A, C;cL Ciy).
Q

6-50 CHAPTER 6 - SEMANTICS AND VERIFICATION

Definition 44 [Block Machine Composition] Let Q be a set of block machines,
Q= {M,.....M,}, where M; = (A 0, B, T. C) is derived from a consistent
actio= diagram AD;, i = 1, ..., n, and let ActConG = (A, AcrConSet) be a sound
action connection group over Q. We define the composed block machine M =
composed-BM(ActConG, Q), as follows. M = (4. 0. B. T)., where:

« 0is the unique action of null direction in ActSer.

» ‘Bis obtained by first taking the union of the output blocks of M;, ferall i, i =
I..... n, and then replacing each block By in the resulting set by a block B
such that the set of local actions of By, is the set of communication actions
corresponding to the local actions of By

» Tis obtained by first taking the union of the trigger relaticns 7 restricted to
the output blocks of M;, forall {, i = 1...., n, and then replacing, i:: the result-
ing set, each pait (ay;, By,) that originates from some 7, by (@’ B"x). where
a’;;is the communication action corresponding to a;;, and B’y is the tlock of
B that was substituted for Bj;.

e (Cis the union of the commit constraints of M,,..., M,,, transposed (o ActSer.
Q

Definition 45 {Compatible block machines) Consider Q = {M,,..., M,;} a set
of causal action diagrams anc ActConG = (ActSet, ActConSet) a sound action
connection group over Q. Let G4 be the set of assume constraints of M; trans-
posed to ActSet, and let Cy = Ci4 U ... U G4 Then, the action diagrams
M;...., M,, are said to be compatitle with respect to ActConG, written
compatible(ActConG, {Mji,..., M]), ift

composed-BM(ActConG, {M,,..., M, }) is causal

A TraceSet(composed-BM(ActConG, {M,,..., M,])) satisfies C,.

Q

In other words, the first condition for block machine compatibility is that the
composed machine be causal. This essentially means (from Definition 26 and
Lemraa 11) that the collective behavior of the interconnected machines must be
live. The second condition is that all the executions of the composed machine
must satisfy all the assume constraints of all the interconnected machines. In
the next definition, we state the criterion for action diagram compatibility in

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-51

such a way that its satisfaction guarantees block machine compatibility, irrele-
vant of which causal machine combination is chosen.

Definition 46 [Compatible action diagrams] Consider Q = {AD,....., AD,} a
set of causal action diagrams, PConG a sound port connection group over Q,
and ActConG = (ActSet, ActConSet) the sound action coanection group derived
from (PConG, {0;...., 0.}). Let G, be the set of assume constraints of AD;
transposed to ActSet, and Cy = (4 v ... W G 4. Then, ADy,..., AD,, are said to
be compatible with respect to PConG, written compatible(PConG, {AD,,...,
AD,1).if: VAD;e Q,VM,;, € CdBMs(AD)),
compatible(ActConG, {M, PR M, i . Q

The following theorem states that a sufficient condition for the compatibility of
a set of actions diagrams is that the conjunction of their commit constraints be
consistent and satisfies the assume constraints.

Theorem 1 [Compatibility theorem] Consider a set @ = {AD;,..., AD,} of
causal action diagrams where AD; = (5, A;, 6, G), i=1,...,n. Let PConG? > a
sound port connection group over @, ActConG be the action connection group
derived from (PConG, {0;,..., 6,}) and A the set of communication actions of
ActConG. Let C;- (respectively C;4) be the set of commit constraints (respec-
tively assume constraints) of AD; transposed tv A Let Co= GieV ... U Gy
and Gy = G4V ... U Gy Then, if Zone(A, Cc) is non-empty and Zone(A, Cp)
< Zone!A, Cy), it follows that AD,,..., AD, are compatible with respect to
PConG.

Proof. Since AD,,..., AD,, are causal action diagrams, they each have at least
one causal derived block machine. Let M; be an arbitrary causal block machine
ol AD;, i = l...., n, and let M be the composed block machine Composed-
BM(Cong, {M\..... M,,}). Since, by assumption, Zone(A, C) is non-empty, it
follows that M is defined. Using Definition 46 and Definition 45, we must
prove that M is causal and that all its traces are in Zone(4, C,), i.e., satisfy the
assume constraints.

Referring in sequential order to the three causality conditions of Definition 26,
we prove in the following that M is causal:

6-52 CHAPTER 6 - SEMANTICS AND VERIFICATION

1.

[

By construction of the composed block machine (Definition 44), both the
action direction condition (i.e., all actions local to a block have the same
direction) and the constraint intent condition (i.e., all constraints local to a
block have the same intent) are true,

. Proof of WDT(M): Let B be a block of M, a, a trigger of B, and a; a local

actica of B. By construction, B is the transposition in M of an output block
of M;, fcr some i. Let o/ and g be the actions of M; corresponding to a, and
a,, respectively. Since M; is causal, it satisfies the well-defined triggers con-
dition, and thus disz, M,](a, a,) < 0. In addition, from Lemma 16, we have
dtszlm(a, a) < dzsr[M. I(a[. a,) As a result, dzsr[m(a, a,) < 0. It follows
that M satisfies the well-defined triggers condition.

. Proof of past-dominated(M): Let B be a block of M. If B has a single trig-

ger, then loose-blocks(M) is trivially true, and hence, from Lemma 13, past-
dominated(M) is also true. Otherwise, B has more than one trigger. Let (a;,
a;) be a trigger pair of B, a; a;. By construction, B is the transposition in M
of an output block, say B;, of M;, for some i. Le: a; and g be the actions of
M; corresponding to a; and g, respectively. From Lemma 16, we have:

Since M; is causal, past-dominated(M;) is true. From Lemma 13, it follows
that loose-blocks(M;) is true, and thus:

disty, \(af, &) < distig(af’, af) (18)

Since B is the transposition of B; in M, we obviously have:

dist (8] (a;i, a,i) = di.ﬂ[B](al' a,) (19)
From (17), (18), and (19), we get:

dist[m(al, a,) < diSf[Bl(al, a,) (20)

(20) implies that loose-blocks(M) is true, and hence, from Lemma 13, past-
domir.ated(M) is true.

From items 1 to 3 above, it follows that M is causal. In the following, we prove
that all the traces of M are in Zone(A, C,), i.c., satisfy the assume constrairts of

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-53

AD,...., AD,. Let AD be the composed action diagram Cemposed-AD(PCon,
{AD;, ..., AD,}). By assumption, AD is consistent (since Zone(A4, C¢) is non-
empty). Furthermore, the composed block machine M defined above satisfies
the properties WDT(M) and past-dominated(M), as proven above. Finally,
M e dBMs(AD) is true, i.e., M is a block machine derived from AD; indeed, this
property trivially follows from the construction, as given in Definition 44, of
the composed block machine M and from the property WDT(M). Hence, using
Lemma 15, it follows that TraceSet(M) = TraceSet(AD). Since TraceSet(AD) is
given by Zone(A, () and, by assumption, Zone(2, C) © Zone(A, C,), it fol-
lows that TraceSet(M) < Zorne(A, C,), and hence TraceSet(M) satisfies the set
C, of assume constraints of ADj,..., AD,. a

Theorem 1 provides operational means for verifying the compatibility of causal
interface specifications and thus the compatibility of any of their block machine
based implementations. It suffices to verify that the maximum time distances
between actions as determined by the composed system of commit constraints
Ce. are contained in the time distances required by the assume constraints. In
other words, the simple composition that was discussed in the example related
to Figure 3 (in Section 3) is correct provided that the participating action
diagrams are causal. This is clearly not the case for AD, of Figure 3, since the
output block containing (necessarily) the only output action 04 does not satisfy
the loose-blocks criterion (Definition 32) - the time distance between actions i2
and i3 using the local commit constraints is [-9, 9], while the time distance of
its triggers as determined by all the constraints is also [-9, 9]. This interval is
not strictly included in the former interval, hence the block machine is not
causal. Since there is no other possible partition that satisfies the loose-blocks
condition, the action diagram itself is not causal. Consequently, the
compatibility check done by composing the commit constraints of the two
action diagrams produced a false positive answer.

The composition of Figure 5 and Figure 6, as shown in Figure 7, satisfies all
assume constraints, and since both action diagrams are causal, the compatibil-
ity decision is definitive.

12 Independence of Input and Qutput Sub-Partitions

In this section, we prove that the structure of the partition of the set of input
actions of a causal block machine is independent of that of its output actions. In

6-54 CHAPTER 6 - SEMANTICS AND VERIFICATION

other words, given two causal block machines derived from the same action
diagram, then the block machine derived by “cross-breeding™ the input action
sub-partition of one of the machines with the output action sub-partition of the
other machine, is also a causal block machine. This property, which comes
about as a corollary of Theorem 1. is intuitively “reassuring™ and is one more
indication of the “soundness™ of the work presented in this paper. The property
should also be useful in designing an efficient partitioning procedure.

Definition 47 [In/out spec of a block machine] Let M =(A, 0. B, 7. () be a
derived block machine such that the local actions of any block of M are of the
same direction, The input spec, IS, (respectively output spec, OS) of M is the
wple (2, 0, B, T, C), where A’ is the subset of input (respectively output)
actions of A, B’ is the subset of input (respectively output) blocks of B, T is
the restriction of Tto B, and C is the subset of assume (respectively commir)
constraints of C. Clearly, M is uniquely defined by the pair IS, OS. We write:
M= (IS, 05). Q

Definition 48 [Mirror of a block machine] Let M = (IS, OS) be a derived
block machine, such that the local actions of any block of M are of the same
direction. The mirror of IS (respectively OS) is the output spec Is (respectively
input specO-—S) obtained from IS (respectively OS) by changing the direction
associated with every in (respectively out) action of IS (respectively OS) to out
(respectively in) and changing the intent associated with e.2ry constraint of IS
(respectively OS) to commit (respectively assume). The mirror of M is the
block machine M, where M = (0S, IS). Q

Obviously, mirroring a block machine M does not change its global zone, since
M and M have the same structure and weights of constraints. Hence, if Z
(respectively Z) is the global zone of block machine M (respectively M), then

Corollary 1 [Independence of inpwi and output specs] Let AD be a causal

action diagram and M; and M, twc. causal block machines derived from AD,

such that M, = (IS, 0S,) and M, =(IS,, OS,) . Then, the block machines
M, =(IS,, 08,) and M,, = (I35, OS,) are also causal.

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-55

Proof. Let M, be the mirrorof My, 1.e., M| =~ (0§ ,15)),Q = {M |, M,} aset
of block machines, Con a sound action connection group over @ such that the
action set of each action connection of Q is of the form {a,, a;}. Consider the
composed machine M, = Composed-BM(Con, {M |, Ma}). By construction,
M_=(1S,, 0S,) . Furthermore, M, satisfies the well-defined triggers condi-
tions, i.e., WDT(M,) is true (the proof is the same as that for the statement
WDT(M) in the proof of Theorem 1). Hence, using the fact that the constraint
sct of 1§, is the set of assume constraints of AD, and the constraint set of 0S-
is the set of commit constraints of AD, it follows that Z_, the global zone of M,
is the same as Z, p,, the global zone of AD, i.e., Z. = Z, p,. This implies that Z_. is
nor-empty (since AD is consistent) and that Z,. satisfies the commit and assume
constraints of AD, respectively. Hence Z, satisfies the assume constraints of
M and the assume constraints of M, respectively. From Theorem 1, it follows
that M, and M, are compatible for the action connection set Con, and hence,
from Definition 46, it follows that M, is causal. Now since M_= (IS, 0S,) ,
and IS, is identical to ISy, it follows that My, = (IS}, OS>) is causal too. The
proof is symmetrical for M»,. Q

13 Conclusion

We have defined sufficient conditions for a specification based on action dia-
grams with linear timing constraints to be causal and thus realizable, and we
have developed a method for determining the causality of an action diagram.
This has lead to a procedure for verifying the interface compatibility of com-
municating action diagrams. The results are useful for writing action diagram
specifications, verifying interoperability of systems composed of communicat-
ing components, and for implementing interface controllers. Our causality cri-
terion is considerably more general than the well-posedness criterion of
[Ku92]. The latter is in effect equivalent to requiring that all actions of the same
direction (ir or out) be in the same block. In addition, well-posedness does not
take into account timing assumptions on the environment; instead, it requires
that the device responds to arbitrary timing behaviors of the environment.

- We are currently researching algorithms for the efficient determination of
action partitions that yield causal block machines. We are also working on
extending our approach to cyclic behaviors. A natural extension of the
approach is to include the larest constraints [Amon93] in addition to the linear

6-56 CHAPTER 6 - SEMANTICS AND VERIFICATION

constraints. They are by their nature causal. and efficient methods exist for
computing the shortest distances over linear and latest constraint systems
[MacM$92, Giro95]. The inclusion of earliest constraint makes the problem of
computing time distances between actions NP-complete [MacM92), however,
as shown in [Giro95], we can usc CLP (BNR) Prolog and its power of rela-
tional interval arithmetic to solve tie constraint satisfaction problem and to per-
form the necessary exploration and backtracking.

References

[Amon93) T. Amon, H. Hulgaard, G. Borriello, S. Burns, “Timing Analysis of
Concurrent Systems: An Algorithm for Determining Time Separation of
Events”, Proc. ICCD-92, October 1993.

[Borr88] G. Borriello, “A New Interface Specification Methodology and its
Application to Transducer Synthesis”, Ph.D. Thesis, EECS, University of Cali-
fornia, Berkeley, 1988.

[Brzo91] J.A. Brzozowski, T. Gahlinger and F. Mavaddat, “Consistency and
Satisfiability of Waveform Timircg Specifications™, Networks, Vol. 21, 1991,
pp91-107.

[Burk93] T.M. Burks and K.A. Sakallah, “Min-Max Linear Programming and
the Timing Analysis of Digital Circuits”, Proc. ICCD-93, October 1993,
ppl152-155.

[CCITT] Recommendation Z.120, CCITT. “Message Sequence Charts
{(MSC)".

[Dill89] D. Dill, “Timing Assumptions and Verification of Fiuite State Concur-
rent Systems”, International Workshop on the Verification of Finite State Sys-
tems, Grenoble France, 1989. Also in Lecture Notes in Computer Science
(LNCS) 407, Springer Verlag, 1989.

[Giro95] P. Girodias, E. Cerny, W.J. Older, “Solving Linear, Min and Max
Constraint Systems Using CLP Based on Relational Arithmetic,” submitted to
Int'l Conf. on Principles and Practice of Constraint Programming (CP95),
Marseille, September 1995.

[Hulg93) H. Hulgaard, S.M. Burns, T. Amon and G. Rorriello, “Practical appli-
cations of an efficient time separation of events algorithm™, Proc. ICCAD-93,
Santa Clara, CA, November 1993.

CHAPTER 6 - SEMANTICS AND VERIFICATION 6-57

[Khor93] K. Khordoc, M. Dufresne, E. Cerny, P.-A. Babkine and Allan Silburt,
“Integrating Behavior and Timing in Executable Specifications”, Proc.
CHDL'93, April 1993.

[Khor94] K. Khordoc and E. Cerny, “Modeling Cell-Processing Hardware with
Action Diagrams™, Proc. ISCAS-94, June 1994,

[Klus93] A.S. Klusner, “Models and axioms for a fragment of real time pro-
cess algebra”, Ph.D thesis, CWI, Amsterdam, 1993.

[Ku92] D.C. Ku and G. De Micheli, High Level Synthesis of ASICs Under
Timing and Synchronization Constraints, Kluwer Academic Publishers, 1992.

[MacM92] K. McMillan and D. Dill, “Algorithms for Interface Timing Verifi-
cation, Proc, ICCD-92, October 1992.

[Rony80] P. Rony, “Interfacing Fundamentals: Timing Diagram Conventions™,
Computer Design, January 1980, pp152-153.

{Tarj83] R.E. Tarjan, Data Structures and Network Algorithms, SIAM 1983.

[Wiat80] C. Wiatrowski and C. House, Logic Circuits and Microcomputer Sys-
tems, McGraw-Hill, New York, 1980.

6-58 CHAPTER 6 - SEMANTICS AND VERIFICATION

®.

- B

Figure 5: Action Diagram for the READ cycle of the MC68360 processor
(wait states are modeled by delay interval between CK2 and CK3).

6-59

CHAPTER 6 - SEMANTICS AND VERIFICATION

Figure 6: Action Diagram for the READ cycle of the slave device.

6-60 CHAPTER 6 - SEMANTICS AND VERIFICATION

Figure 7: Composition P12 resuiting from Figure 5 and Figure 6.

CHAPTER 7

GENERAL CONCLUSIONS

1 Summary

In this thesis, we addressed issues in the specification, simulation, and for-
mal verification of systems that are characterized by real-time requirements
and a mix of protocol and data computation aspects.

We proposed the HAAD (Hierarchical Annotated Action Diagrams)
specification language and modeling methodology. In HAAD, the interface
behavior is captured separately from the internal behavior while maintain-
ing the links between the two. The interface behavior is captured as a
hierarchy of action diagrams. The internal behavior is modeled by an Ex-
tended Finite State Machine (EFSM). We proposed to link the interface
behavior and internal behavior by shared variables and synchronization
points. A leaf action diagram defines a bebavior (a template) over a set of
ports. The behavior of a port is captured as a sequence of actions (events).
Actions can be related by min./ max. weighted timing constraints which
capture precedence, concurrency and causality relatiou: between the ac-
tions. The constraints describe the assumptions that the behavior makes
on its environment as well as the way in which the behavior reacts to
its environment. The functional description of the system interface is in-
cluded in a HAAD specification by defining state variables, input/output
parameters, and by attaching procedures and predicates to actions. Hier-
archical action diagrams are constructed by composing other action dia-
grams (leaf or composed) using the composition operators: Goncatenation,
Loop, Concurrency, Choice, and Ezception Handling. The Choice seman-
tics support three specification styies that we found to be useful at the
system level. The Choice can be deterministic, delayed-deterministie, or
non-deterministic. The delayed-deterministic semantics allow system spec-

7-1

-2 CHAPTER 7 - GENERAL CONCLUSIONS

ifications to be given in a scenario-based style. The non-deterministic style
supports design abstractions.

We proposed algorithms and methods for the automatic generation
of simulation models and response verification scripts from HAAD speci-
fications. These models perform “on-the-fly parsing™ of events received at
their 1/O ports, sequencing through state transitions based on the result
of this parsing. detecting incorrect, or ill-formed interface operations (bus
cycles). verifving that all timing constraints at the input of the model are
met, and driving the model outputs with appropriate delays.

We formalized the operational semantics of leaf action diagrams un-
der linear timing constraints, based on the concepts of a block machine and
causal block machine. We stated the realizability of an action diagram iu
terms of the existence of a causal block machine derived from the action
diagram. We examined the problem of the compatibility of concurrent,
communicating leaf action diagrams described by linear timing constraints
and we showed the inaccuracies of known methods that address this prob-
lem. We defined the action diagram compatibility problem in terms of
the compatibility of all the possible combinations of causal block machines
derived from these action diagrams. We proved that such enumeration is
not needed in answering the compatibility question. This lead to an exact
and efficient compatibility verification procedure.

2 Benefits of our Work

The benefits of our work are summarized in the following:

e Our proposed modeling methodology, HAAD - Hierarchical Anno-
tated Actior Diagrams - facilitates the modeling of real-time sys-
tems.

e The structure of HAAD models is more amenable to automated anal-
ysis.

e The HAAD focus on high-level formal specifications of sub-system
interfaces early in the design cycle, coupled with the natural declar-
ative style of action diagrams decreases the chances of interface mis-
matches at system integration time.

e Our capability in automatic executable model generation markedly
reduces the time that designers spend writing test benches.

CHAPTER 7 - GENERAL CONCLUSIONS -3

3

Our well-behavedness criteria and compatibility analysis of timing
diagrams help improve the quality of interface designs and minimize
the time spent in costly design reworks.

Original Contributions

1- The original contributions of the HAAD modeling language and method-
ology are:

the separation of, and links between. interface behavior and internal
behavior,

the separation of., and links between, functional aspects and protocol/
timing aspects in interface specifications,

the combination of a true behavioral hierarchy and a rich set of timing
constructs, and

the delayed choice semantics.

the area of executable model generation, our original contributions

a novel algorithm for dynamic stimulus generation and response val-
idation from timing diagrams,

a unified framework for valid and don’t care signal states, and

a unified approach to model generation for master, slave and mixed
behaviors.

3~ Our original contributions in formal timing verification are:

sufficient conditions for the well-behavedness of interface specifica-
tions under linear timing constraints,

operational semantics of interface specifications under linear timing
constraints,

analysis of false negatives and false positives in known compatibility

“verification methods, and

an accurate compatibility verification procedure for timing diagrams.

74 CHAPTER 7 - GENERAL CONCLUSIONS
4 Recommendations for Further Research

Relazing the strict encapsulation of action diagrams

The strict encapsulation of behaviors into action diagrams using
Start/End pscudo-actions (Chapters 4 and 5) is elegant and facilitates
both the simulation and forinal analysis of the specifications. However, it
is sometimes intuitively sound from a modeling point of view to express
partially overlapping interface operations, i.e., that an interface operation
be activated while there are still some (“tail-end”) actions that have not
yet occurred in the previously executing interface operation. In the present
HAAD framework, such a situation cannot be directly modeled. Instead,
the specification may need to be partitioned into individual action dia-
grams along non-intuitive boundaries (rather than the natural boundaries
between interface operations). This requires some modeling effort and the
resulting model is generally more difficult to understand. Hence, additional
work is needed to explore the relaxation of action diagram encapsulation
and allow partially overlapping interface operations.

Ezpressing pipelined behaviors

Perhaps a more general problem than that of overlapping interface
operations is that of pipelined behaviors. From a modeling point of view, it
often is desirable to carture in one leaf action diagram the cause-to-effect
relationship and delay (i.e., pipeline latency) from an input action of the
pipeline to its logically related output action. This cannot be done in the
present HAAD framework. Instead, in the case of a constant rate pipeline,
i.e., with inputs (outputs) arriving {departing) at 2 constant rate, the main
behavior loop of the model would be around a leaf action diagram contain-
ing unrelated (function wise) input and output actions. As for variable rate
pipelines, they cannot be modeled in the present HAAD framework. Thus,
additional work is needed in the area of pipeline modeling. One possibility
is to define a pipelining operator.

Inter-diagram timing constraints

In many bus interface specifications, there are timing constraints be-
tween actions of an interface operation and the next. Such constraints
cannot be expressed in the present HAAD framework. Instead, the user
resorts to either a less accurate timing model based on timing constraints
relative to the Start/End actions of the action diagrams, or redefines the
inter-diagram boundaries so that no timing constraint crosses them (which

CHAPTER 7 - GENERAL CONCLUSIONS 75

often results in unnatural models). More work is needed to explore the
repercussions of inter-diagram timing constraints on the semantics and
analysis algorithms associated with HAAD.

Unifying the timing constraint model

In the present version of HAAD simulation tools, commit constraints
are restricted to non-linear and assume constraints can be linear or non-
linear. As for the formal compatibility verification tool, both commit and
assume constraints are restricted to be linear. More work is needed in
generalizing the block machine model to include the non-linear constraints
in a unified semantic framework. This framework must then be the basis
of both simulation and formal verification.

Relazing the causality criterion

In the definition of block machines (Chapter 6), the selection of trig-
ger actions is syntactic, i.e., it is affected by, amongst other things, the
structure of the constraint system. Furthermore, the block machine se-
mantics require a strict trigger concept, i.e., all the triggers of a block
must occur before the block is enabled. These two restrictions could rule
out valid implementations of a specification. Consider, for example, the
non-causal specification of Figure 1, Chapter 6. As proposed by [1], a
valid implementation does exist for this specification. By examining this
implementation as well as a family of similar implementalions, we realized
that these could be arrived at by generalizing the trigger concept to be
non-syntactic (i.e., not apparent from the structure of the constraint sys-
tem) and non-strict (i.e., using the earliest operator). Hence, more work is
needed in exploring the generalization of block machines and the possible
relaxation of the causality criterion.

Causal machine derivation

Chapter 6 dealt with the derivation of a block machine, given a par-
tition of the action set of the timing diagram. More work needs to be done
to develop algorithms and heuristics for the derivation of the actual action
partition that defines a causal block machire.

Formal verification of HAAD specifications
In Chapter 6 we developed an efficient static’ compatibility verifi-

!The verification procedure is static in the sease that it does not perform any state
space exploration.

7-6 CHAPTER 7 - GENERAL CONCLUSIONS

cation procedure for lcaf action diagrams. It is interesting to note that
two related projects undertaken by our colleagues at LASSO ? are rel-
evant to the continuation of our work. The first project [2] reports on
the formal verification of general (non-annotated) HAAD specifications.
The approach is general, however it is limited in efficiency due to its re-
liance on full interleaving. The second project [3] uses CLP-BNR 4], a
general-purpose computational environment based on constraint logtc pro-
gramming (CLP) and relational interval arithmetics (RIA), to solve the
maximal time distance problem for mixed linear and non-linear constraints,
while taking into account the effects of delay correlation. It appears possi-
ble to combine the sirengths of the three approaches, i.e., analyze general
(non-annotated) HAAD specifications using an overall state-space explo-
ration approach combined with a static analysis at the leaf level. The
static analysis would be based on the approach described in Chapter 6
and implemented in a CLP/IRA environment. Evidently, there is more
work that needs to be done to make this possible.

References

[1] M. Aboulhamid, Professor, département d’informatique, Université
de Montréal, private communication.

[2] B. Berkane, S. Gandrabur, and E. Cerny, “Timing diagrams: seman-
tics and timing analysis”, Proceedings of the Asian Pacific Conference
on Computer Hardware Description Languages, 1996.

[3] P. Girodias, E. Cerny, W.J. Older, "Solving Linear, Min and Max
Constraint Systems Using CLP Based on Relational Arithmetic,” sub-
mitted to Int’l Conf. on Principles and Practice of Constraint Pro-
gramming (CP95), Marseille, September 1995.

[4] W. Older and A. Vellino, “Constraint Arithmetic on Real Intervals”,
Constraints Logic Programming: Selected Research, 1993.

?Laboratoire d’Analyse et de Synthese des Systemes Ordinés, département
d’informatique, Université de Montréal.

APPENDIX 1

SYNTACTIC
WELL-FORMEDNESS RULES
FOR ACTION DIAGRAMS

1 Introduction

This appendix lists syntactic well-formedness rules for action diagrams.
The rules of Section 2 reflect the simplifying design decisions that were
made in the the present version of the HAAD simulation tools. These
rules can be relaxed by integrating the causality framework of Chapter 6
into the HAAD simulation engine. The rules of Section 3 establish the
restrictions under which the algorithms of Chapter 3 behave meaningfully.

2 Strict Causality in HAAD Simulation

o Every output and internal action must be the sink of at least one
commit constraint.

e All commits constraints must be:
- of type precedence
— bounded (i.e., finite u in [I, u])

— composed only with the Earliest or Latest operators (no con-
junctive composition).

The advantages of this “strict causal style” zre twofold: 1- the causal-
ity information (i.e., what actions cause what other output or internal

I-1

I-2 APPENDIX I - SYNTACTIC WELL-FORMEDNESS RULES

actions) is explicit, and 2- model interpretation (simulation) is efficient.
using a relatively simple algorithm. Note however that in general, writing
specifications in this causal style requires meore information oi.. the modeled
system.

3 Assume Constraints and Input Don’t Care
Events -

e An input Don’t Care event cannot be the source of 2 timing constraint
(whether assume, or commit).

¢ The event following an input Don’t Care event on the same port,
cannot be the source of a commit constraint.

e Assume constraints that have an input action sink of spec value Don’t
Care are half-bounded min only (i.e.. u = 400 in [I, u]) precedence
constraints from actions of constant spec value (e.g., £, in Fig. 1) to
the input Don’t Care action.

e Constraints related to the input action (say Nezt) that follows an
input Don’t Care action on the same port can be:

— Half-bounded max only precedence assume constraints from ac-
tions of constant spec value (e.g., E» in Fig. 1) to Nezt.

~ Half-bounded min precedence assume constraints from Nezt to
actions of constant spec value (e.g., E3 in Fig. 1).

— At least one of the two above situations must be true of Nezi.

Z miny t, maxp

;5 ‘ { VALID / CONSTANT
(tmme Vmm) Vinal |\ ming

Figure 1: Allowed constraints on input don’t care and valid actions.

APPENDIX II

THE DEFBEHAVIOR
LANGUAGE

1 Introduction

A HAAD specification is captured with the defbehavior language. This
appendix is the definition of the grammar of that language, i.e., it is an
implicit definition of the set of sentences that form the language (from a
syntactic point of view, a language is simply a set of sentences). This does
not mean that all sentences of the language have associated semantics.
The appendix contains “semantic notes” (Section 4), that are helpful in
bridging the gap form the “set of sentences” view to the real semantics.
More work is needed to complete this documentation.

The defoehavior language syntax follows a style that we designate as
“Keyed List Language” (KLL). The KLL concept {Section 2) is inspired
by the EDIF [1] language.

2 Keyed List Languages

Consider first a syntactic class of languages designated as “List Languages”
(LL’s):

e A sentencein 2 LL is a st
o A list is syntactically delimited by a pair of parentheses.

e Each element of a list is an atom or a list.

1I-1

' 11-2

APPENDIX Il - THE DEFBEHAVIOR LANGUAGE

For our purposes, it suffices to define 3 types of atoms: symbol.
number, and string.

For the lexical rules (i.e.. what ASCII character sequences make up
symbols, numbers and strings, comment syntax, delimiters etc). we
adopted the lexical rules of [2].

Then, consider a subclass of list languages, denoted “Keyed List Lan-

guages” (KLL's):

A KLL is characterized by a set of keys, i.e., pre-determined symbols.

In a KLL, all lists are “keyed”, i.e., the first element of each non-
empty list is a key.

A keyed list is said to be 2 “form”.

The defbehavior language defined in this document is a KLL.

In the following, and in order not to confuse the concept of a “gram-
mar symbol” (i.e., terminal and non-terminal symbols used in the
grammar that defines a language) with that of a “Lisp symbol”, we
use the terminology “item” for the former and “symbol” for the lat-
ter.

Conventions used in the Definition of the
Defbehavior Grammar

Note: The defbehavior language is case insensitive

The grammar of the defbehavior lunguage is specified in EBNF (Ex-
tended Backus-Naur form).

In this EBNF, an upper case item indicates a terminal constant.

Each lower case item is one of the following:

— A non-terminal: these are those items that appear at the left
hand side of EBNF productions.

~ a general lisp expression: the only such item is “lisp-expression”

>~ (Seethe last production in the grammar definition of Section 5).

This is for future extensions of the language.

. APPENDIX II - THE DEFBEHAVIOR LANGUAGE 11-3

A general terminal: except for the item “lisp-cxpression™. these
are all lower case items that do not appear in any left hand side
of EBNF productions. In terms of the EBNF, There are 3 types
of general terminals (i.e.. automatically recognized as “typed
tokens” by lexical analysis): number, symbol. and string.

e A choice is indicated with a vertical bar. Only one of the options

may

be chosen.

e A list of 1 or more items enclosed within curly braces and separated
by vertical bars (in the case of a list of length greater than onc)
indicates that any number of each item may be present and that
the items may occur in any order. Inside such a list, if an item is
permitted to occur at most once, it is enclosed within chevrons.

e In the grammar specification, we use convenient mnemonic names
for these general terminals depending on their role in a construct.

¢ The general terminals of type "number” are:

number

e The general terminals of type "symbol” are:

had-type-nameDef
had-instance-nameDef
port-nameDef
signal-nameDef
param-nameDef
var-nameDef
generic-nameDef
action-nameDef
tc-nameDef
had-type-nameRef
var-nameRef
var-or-param-nareRef
signal-or-port-nameRef
var-or-param-or-signal-or-port-nameRef
source-action-nameRef

11-4

APPENDIX II - THE DEFBEHAVIOR LANGUAGE

— sink-action-namecRel

e General terminals of the symbol type can be quoted (i.e.. preceded

by the single quote character) or not. The language supports both.
However, for backward compatibility with previous implementations
of the defbehavior parser, the following symbols must be quoted):

— action-nameDefl

- source-action-nameRef
- sink-action-nameRef
- te-nameDef

had-instance-nameDef

- had-type-nameRef

o The general terminals of type “string” are:

4

4.1

— v-prog-nai.xeRef
— v-type-nameRef

— v-value

Semantic Notes

Generics

e The only lower case item of the grammar that does not appear in any

left hand side of 2 EBNF production is the item “lisp-expression”.

The item “lisp-expression” (which appears only in the right-hand
side of the EBNF production for the “generic-map” item), stands for
a general lisp expression. This Lisp expression is evaluated at design
instantiation time in the lexical scope of the current defbehavior
(i.e., the one containing the generic-map form). In the instentiated
defbehavior (i.e., the one that is instantiated as a sub-behavior of
the current defbehavior), all occurrences of the generic to which this
lisp-expression was mapped to, are replaced by the value of this lisp-
expression.

APPENDIX Il - THE DEFBEHAVIOR LANGUAGE 11-5

4.2 Default Constraint Bounds

The semantic interpretation of constraint bounds, in the absence of min-
spec and/or max-spec sub-forms in the PRECEDENCE and/or CONCUR-
RENCY forms is:

o if no min-spec is specified in a PRECEDENCE form. it is semanti-
cally equivalent to a strict lower bound of 0.

e if no min-spec is specified in a CONCURRENCY form. it is semanti-
cally equivalent to no lower bound specification (i.e., a minus infinity
lower bound).

¢ if no max-spec is specified in a PRECEDENCE or CONCURRENCY
form, it is semantically equivalent to no upper bound specification
(i.e., 2 plus infinity upper bound),

5 Grammar Definition

defbehavior ::= (DEFBEHAVIOR had-type-nameDef
{ <ports> | <parameters> |
<generics> |
signal | var |
<had-body> })

ports ::= (PORTS { port })

port ::= (PORT port-nameDef direction v-type-nameRef
interpretation)

direction ::= INOUT | IN | OUT

interpretation ::= EVENT | MESSAGE
parameters ::= (PARAMS { parameter })

parameter ::= (PARAM param-nameDef direction v-type-nameRef)

I1-6 APPENDIX I - THE DEFBEHAVIOR LANGUAGE

generics ::= (GENERICS { generic-nameDef })

signal ::= (SIGNAL signal-nameDef v-type-nameRef
interpretation)

var ::= (VAR var-nameDef v-type-nameRef { <v-value> })

had-body ::= leaf |
had-loop |
concatenation |
parallel |
d-choice |
nd-choice |
exception

leaf ::= (LEAF { carrier-spec | constraint |
<start-action> | <end-action> })

carrier-spec ::= (CARRIER-SPEC signal-or-port-nameRef

{ <initial-spec> |
action-spec })

initial-spec ::= (INITIAL-SPEC state {<action-direction>})

action-direction ::= IN | OUT

action-spec ::= (ACTION-SPEC action-nameDef state {
<action-direction-spec> |
<predicate-call> I

<procedure-call> })

action-direction-spec :: (DIRECTION action-direction)

state ::= dont-care | constant | valid

APPENDIX Il - THE DEFBEHAVIOR LANGUAGE I-7

dont-care ::= (DONT-CARE)

constant ::= {CONSTANT v-value)

valid ::= (VALID { <var-nameRef> })
procedure-call ::= (PROCEDURE-CALL v-prog-nameRef

{var-or-param-or-signal-or-port-nameRef})

predicate=-call ::= (PREDICATE-CALL v-prog-nameRef
{ var-or-param-or-signal-or-port-nameRef})

constraint :

conjunctive | earliest | latest |
precedence | concurrency

conjunctive::= (CONJUNCTIVE { <tc-name-spec> | comstraint })
earliest ::= (EARLIEST { <tc-name-spec> | comnstraint })

latest ::= (LATEST { <tc-name-spec> | constraint })

H

precedence ::= (PRECEDENCE source-action-nameRef
sink-action-nameRef
{ <tc-name-spec> | <intent-spec> |
<min-spec> | <max-spec> })

(CONCURRENCY source-action-nameRef
sink-action-nameRef
{ <tc-name-spec> | <intent-spec> |
<min-spec> | <max—-spec> })

concurrency ::

tc-name-spec ::= (CNAME tc-nameDef)

intent-spec ::= (INTENT intent)
intent ::= ASSUME | COMMIT | REQUIREMENT

min-spec ::= (CMIN min)

F-% APPENDIX It - THE DEFBEHAVIOR LANGUAGE

max-spec ::= (CMAX max)

min ::= number
max ::= number
had-loop ::= (HAD-LOOP had

{ <start-action> | <predicate-call> |
<end-action> })

concatenation -:= (CONCATENATIQN
{ <start-actiou> | had | <end-action> })

parallel ::= (PARALLEL
{ <start-action> | had | <end-action> })

d-choice ::= (D-CHOICE
{ <start-action> | choice-branch |
<end-action> })

nd-choice ::= (ND-CHOICE
- { <start-action> | choice-branch |
<end-action> })

choice-branch ::= (BRANCH had { <predicate-call> })

start-action ::= (START-ACTION
{ <predicate-call> | <procedure-call> })

end-action ::= (END-ACTION
{ <predicate-call> | <procedure-call> })

exception ::= (EXCEPTION {<condition> | <normal> | <handler>
| <start-action> | <end-action>})

condition ::= (CONDITION had)

APPENDIX Il - THE DEFBEHAVIOR LANGUAGE

rnormal ::= (NORMAL had)

handler ::= {HANDLER had)

had ::= had-instance-spec | had-body
had-instance-spec ::= (BEHAVIOR had-instance-nameDef

had-type-nameRef
{ <port-map> | <param-map> |
<generic-map> })

port-map ::= (PORT-MAP { signal-or-port-nameRef })

param-map ::= (PARAM-MAP { var-or-param-nameRef })

generic-map ::= (GENERIC-MAP { lisp-expression })

References

11-9

[1] “EDIF - Electronic Design Interchange Format, Version 2.0.0", Elec-

tronics Industries Assoctation, 1987.

[2] “The Common Lisp Language”, X3J13, ANSI X3.226:1994, American

National Standard for Programming Lenguege, 1994.

