
I~I Na:ional Llbrary
of Canada

Bibliothèqu~ nationale
du Canada

Acquisitions and Direction des acquisitions et
8ibliographic services Branch des services bibliographiques

395 Wclhnglor StrC'Cl 395. rue Wcnlnglon
Ottawa. Ontano Ottawa (Onlano)
K1A ON4 K1A ON4

NOTICE AVIS

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pagas were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments•.

Canada

La qualité de cette microforme
dépend grandement de la qualité
de la thèse soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines. pages peut laisser à
désirer, surtout si les pages
originales ont été
dactylographiées à l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, même partielle,
de cette microforme est soumise
à la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendemen~subséquents.

•

•

•

ACTION DIAGRAMS: A
METHODOLOGY FOR THE

SPECIFICATION AND VERIFICATION
OF REAL-TIME SYSTEMS

by

Karim Khordoc

Department of Electrical Engineering

McGill University, Montreal

March,1996

A thesis submitted to the Faculty of Graduate Studies and Research in
partial fulfillment of the requirements of the degree of Doctor of

Philosophy

@Karim Khordoc, 1996

1+1 National Library
of Canada

Bibliothèque nationale
duCaNlda

Acquisitions and Direction des acquisitions et
BiiJliographic Services Branch des services bibliographiques

395 Welli!'Qlon Streel
Ottawa. Orilano
K1AON4

395. rue Wellington
Ottawa (Onlano)
K1A or-;4

The author has gr<:lnted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L'auteur a accordé une licence
irrévocable et non exclusive
permettant à la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa thèse
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
personnes intéressées.

L'auteu:- conserve la propriété du
droit d'auteur qui protège sa
thèse. Ni la thèse ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-12400-2

Canada

•

•

•

"

To my wife Marie-Claude

and to my children Patrick, Philip, and Valerie

•

•

•

III

ABSTRACT

In this thesis, we address issues in the specification. simulation. and
formai verification cf systems that are characterized by real-time con­
straints and a mix of protocol and data computation aspects. We propose
a novel specification language and modeling methodology - HAAD (Hier­
archical Annotated Action Diagrams). In HAAD. the interface behavior
of a system is captured as a hierarchy of action diagrams. The internai
behavior is modeled by an Extended Finite State Machine (EFSM). A leaf
action diagram defines a behavior (a ternplate) over a set of ports. Pro­
cedures and predicates are attached to actions in order to describe the
functional aspects of the interface.

We propose algorithms and methods for the automatic generation of
simulation models and response verification scripts from HAAD specifica­
tions. These models perform "on-the-f1y parsing" of actions received at
their 1/0 ports, sequencing through state transitions based on the result
of this parsing, detecting incorrect, or ill-formed interface operations (bus
cycles), verifying that ail timing constraints at the input of the mode! are
met, and driving the mode! outputs with appropriate delays.

We formalize the operational semantics of leaf action diagrams un­
cier linear timing constraints, based on the concepts of a block machine
and causal block machine. We state the realizability of an action diagram
in terms of the existence of a causal block machine derived from the ac­
tion diagram. We examine the problem of the compatibility of concurrent,
communicating leaf action diagrams described by linear timing constraints
and we show the inaccuracies of known methods that address this prob­
lem. We define the action diagram compatibility problern in terms of the
compatibility of ail the possible combinations of causal block machines de­
rived from these action diagrams. We prove that such enumeration is not
needed in answering the compatibility question. This leads to an exact
and efficient compatibility verification procedure.

•

•

•

IV

, ,
RESUME

Dans cette thèse, nous traitons de la problématique de la spécifica­
tion, simulation, et vérification formelle de systèmes caractérisés par des
contraintes en temps réel et par un mélange d'aspects de protocoles et de
traitement de données. Nous proposons un nouveau langage de spécifi­
cation et une méthodologie de modélisation - HAAD (Hierarchical Anno­
tated Action Diagrams - Diagrammes d'Actions Annotés Hiérarchiques).
En HAAD, le comportement à l'interface d'un système est représenté par
une hiérarchie de diagrammes d'actions. Le comportement interne du sys­
tème est représenté par une machine à états finis étendue. Un diagramme
d'actions feuille définit un comportement (un gabarit) sur un ensemble de
ports. Des procédures et des prédicats sont attachés aux actions afin de
décrire l'aspect fonctionnel de l'interface.

Nous proposons des algorithmes et des méthodes pour la génération
automatique, à partir de spécifications HAAD, de modèles de simulation
et de scripts de vérification des réponses du système. Ces modèles traitent
"à la volée" les actions reçues sur leurs ports d'entrées / sorties, accomplis­
sent le séquencement d'états approprié, détectent les opérations d'interface
(cycles de bus) mal formées, vérifient que toutes les contraintes temporelles
aux entrées du modèle sont respectées, et contrôlent les sorties du modèle
moyennant les délais appropriés.

Nous procédons à la formalisation de la sémantiqueopérationnelle des
diagrammes d'actions feuille sous contraintes temporelles linéaires. Cette
formalisation est basée sur les concepts de machine à blocs et machine à
blocs causale. Nous formulons la réalisabilité d'un diagramme d'actions en
terme de l'existence d'une machine à blocs causale dérivée du diagramme
d'actions. Nous examinons le problème de la compatibilité de diagrammes
d'actions communicants décrits par des contraintes temporelles linéaires, et
nous montrons l'inexactitude des méthodes connues traitant ce problème.
Nous définissons le problème de compatibilité de diagrammes d'actions en
terme de la compatibilitéde toutes les combinaisons possibles de machines à
blocs causales dérivées de ces diagrammes d'actions. Nous faisons la preuve
que cette énumération n'est pas nécessaire pour répondre à la question
de compatibilité. Ceci donne lieu à une procédure exacte et efficace de
vérification de la compatibilité.

•

•

•

\'

ACKNOWLEDGMENTS

1 am deeply grateful to my thesis supervisors. Ors Nicholas Rumin
and Eduard Cerny for providing me with the opportunity to go through
the Ph.D. program. Working closely with Dr Eduard Cerny has becn a
fulfilling and rewarding e.xperience. 1 cannot thank Dr C.,rny enough for
his relentless cnergy, motivation and patience in supervising this work.

Grateful acknowledgments are also made to:

Engineering managers at Bell-Northern Research Ltd., Mr Allan Sil­
burt, Mr Robert Hum and Mr Philip Pownall for their helpful discussions.
encouragements, and continuous support of this research.

Former M.Sc. students at the Université de Montréal, Mr Mario
Dufresne, Mr Philippe-André Babkine, Mrs Simona Gandrabur, a!.d Mr
Andrei Tarnauceanu, for their efforts in carrying the detailed design and
software implementation of the HAAD specification and simulation pack­
ages.

Former post-doctoral fellow Dr Tahar AliYahia for his assistance in
the design and software implementation of the formal static timing verifi­
cation package for leaf action diagrams.

The Natural Sciences and Engineering Research Council of Canada
(NSERC) and BelI-Northern Research Ltd. (BNR) for their financial sup­
port of this research.

1wouId also like to thank my wife Marie-Claude for sharing the drearn
and for her moral support and love. Last, but not least, 1 am eternally
gratefuI to my parents who have given me a solid foundation of love, trust
and the desire to pursue success and happiness.

•

•

•

VI

REMARKS CONCERNING THESIS
PREPARATION

In accordance with the GuideIines for Thesis Preparation (September
1994 revision) of the Faculty of Graduate Studies and Research, McGiIl
University, the fol!owing text is cited:

"Candidates have the '::~tion of includiug, as part of the thesis, the
tcxt of a paper(s) submitted or to be submitted for publication, or the
clearly-duplicated text of a published paper(s). These texts must be bound
as an integral part of the thesis.

If this option is chosen, connecting texts that provide logical bridges
between the different papers are mandatory. The thesis must be written in
such a way that it is more than a mere collection of manuscripts; in other
words, results of a series of papers must be integrated.

The thesis must still conforrn to all other requirements of the Guide­
lines for Thesis Prepamtion. The thesi~must include: A Table of Contents,
an abstract in English and French, and introduction which clearly states
the rationale and objectives of the study, a comprehensive review of the
literature, a final conclusion and summary, and a thorough bibliography
or reference list.

Additional material must be provided where appropriate (e.g., in
appendices) and in suflicient detail to allow 'l. clear and precise judgment
to be made of the importance and originality of the research reported in
this thesis.

ln the case of manuscripts co-authored by the candidate and others,
the candidate is required to make an explicit statement in the thesis as
to who contributed to such work and to what extent. Supervisors must
attest to the accuracy of such statements at the doctoral oral defense.
Since the task of the examiners is made more diflicult in these cases, it is
in the candidate's interest to make perfectly clear the responsibilities of
ail the authors of the co-authored papers. Under no circumstances can a
co-author of any component of such a thesis serve as an examiner for that
thesis."

This thesis consists of seven chapters and three appendices. Chap-

•

•

•

\'11

ters 2 to Gare in the forrn of papers. published or submitted for publication.
AppE'ndix III states for each paper. wherE' and whE'n it was publisllt·d or
subr.1itted. and what the co-author contriblltions were. Chapter 1 contains
the connecting texts that provide logical bridges betwccn the diffen'nt pa·
pers.

• VIII

TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION

2.1 Modeling............................ 1-3

2.2 Simulation........................... 1-6

2.3 Formai Verification .. 1-ï

•

1 Problem Description

2 Relevant Work

3 Original Contributions

4 Thesis Organization and Overview

References

1-1

1-3

1-10

1-14

1-17

CHAPTER2

A STIMULUS / RESPONSE SYSTEM BASED
ON HIERARCHICAL TIMING DIAGRAMS

Abstract 2-1

1 Introduction 2-2

2 Related Work 2-3

3 The Model 2-4

• 4 Static Generation of Stimuli 2-6

• IX

5 Dynamic Generation of Stimuli 2-;

5 Improved Dynamic Generation 2-10

" Observation of Responses 2-121

8 Hierarchical Timing Diagrams 2-13

9 Experimental Results 2-16

10 Conclusion 2-19

References 2-19

CHAPTER3

• MODELING AND EXECUTION OF TIMING
DIAGRAMS WITH OPTIONAL AND

MULTI-MATCH EVENTS

Abstract 3-1

1 Introduction 3-2

2 The Model 3-2

3 Validation of Fully Specified Events 3-5

4 Optional Events 3-6

5 Multi-Match Events 3-7

6 Output Event Generation 3-8

• 7 Implementation and Results 3-10

• x

8 Conclusion 3-10

References 3-11

CHAPTER4

INTEGRATING BEHAvIOR AND TIMING IN
EXECUTABLE SPECIFICATIONS

Abstract 4-1

1 Introduction 4-2

2 Interface S~ecifications 4-4

2.1 T" O' 4-4lmlOg lagrams.......................

• 2.2 Composing Timing Diagrams 4-ï

~.3 Examl'l.: . 4-9

3 The Timing Diagram Interpreter 4-11

3.1 Basic Concepts .. 4-11

3.2 Leaf Update . 4-12

3.3 Hierarchical Update. 4-13

3.4 The Top-Level Process .. 4-15

4 Procedural linking 4-16

5 A Complete Approach to Modeling 4-18

6 Discussion 4-22

~ Conclusion 4-23•

•

• References

XI

4-24

•

CHAPTER5

MODELING CELL PROCESSING HARDWARE
WITH ACTION DIAGRAMS

Abstract 5-1

1 Introduction 5-2

2 Action Diagrams 5-4

2.1 Leaf Action Diagrams 5-4

2.2 Annotated Leaf Diagrams 5-8

2.3 Hierarchical Action Diagrams 5-9

2.4 Annotated Hierarchical Diagrams 5-11

3 Example: a Rate Adaptation Queue

4 Example: Auxiliary CeU Insertion

5 Conclusion

References

5-11

5-14

5-18

5-18

CHAPTER6

SEMANTICS AND VERIFICATION OF ACTION
DIAGRAMS WITH LINEAR TIMING

CONSTRAINTS

•
Abstract

1 Introduction

6-1

tr-2

• XII

2 Action Diagrams 6-3

3 Problems 6-9

3.1 Consistcncy 6-9

3.2 Compatibility 6-10

4 Block Machines 6-12

5 From Action Diagrams to Block Machines 6-22

6 Formalizing the Concept of Causality 6-24

7 Time Zones 6-25

8 Liveness of Derived Block Machines 6-28

• 9 Rewriting the past-dominated Condition 6-35

10 Trace Set Conservation 6-40

11 Compatibility of Communicating Action Diagrams 6-45

12 Independence of Input and Output Sub-Partitions 6-53

13 Conclusion 6-55

References 6-56

•
CHAPTER7

GENERAL CONCLUSIONS

1 Summary

2 Benefits of our Work

7-1

7-2

• 3 Original Contributions

4 Recommendations for Further Research

References

);;111

7-3

;-4

7-6

APPENDIX 1

SYNTACTIC WELL-FORMEDNESS RULES FOR
ACTION DIAGRAMS

1 Introduction 1-1

2 Strict Causality in HAAD Simulation 1-1

3 Assume Constraints and Input Don't Care Events 1-2

• APPENDIX II

THE DEFBEHAVIOR LANGUAGE

1 Introduction II-1

2 Keyed List Languages II-1

3 Conventions used in the Definition ofthe Defbehavior Gram-
mar II-2

4 Semantic Notes II-4

4.1 Generics • • • • • • Il-4

4.2 Default Constraint Bounds Il-S

S Grammar Definition II-S

•

•

•

•

XIV

References

APPENDIX III

CO-AUTHORS' STATEMENT

Co-authors' statement

11-9

111-1

•

•

•

CHAPTER 1

INTRODUCTION

1 Problem Description

Due to the increasing complexity of digital systems and to competitive
market pressure>, the digital systems industry has witnessed a marked shift
towards higher abstraction levels in the areas of modeling, verification, and
synthesis. Higher-level modeling allows to remove ambiguity from system
specifications. It also allows the designer to concentrate on the "bigger
picture", rather than getting distracted hy details. Furthermore, it is the
starting point for verification and synthesis from higher levels. Verification
at higher levels allows to find design problems earlier. It also enables the
verification of much more complex systems than would have been possible
otherwise. Synthesis from high levels is the key to increased automation,
and hence to productivity gains in the design process.

In this thesis, we address issues in high-leve! modeling and verifica­
tion. We conœntrate on systems that have real-time requirements and
that present a mix of protocol aspects and data computation aspects. The
problems addressed by the thesis are summarized in the following.

Problem: modeling and analysis of real-time systems

Systems that have real-time requirements and a mix of protocol as­
pects and data processing aspects are difficult to design correctly and ver­
ify. When these aspects are intermixed in a computer mode! of the system,
the mode! typically becomes hard to understand and too complex to an­
alyze by computer-aided design (CAD) tools. A more practical approach
is to use dedicated CAO tools and techniques to separately verify differ­
ent aspects (e.g., data processing functions versus protocol handlers) and

1

• 1-2 CHAPTER 1 - INTRODUCTION

•

•

different leve1s of abstractions of the system behavior. This. nowever. is
possible Oil'Y if the modeling methodology allows such separation. Therc
is currently a need for such methodologies.

Problem: system integration

It has often been reported in industry [1] that a large proportion of
the failures that are found in an ASIC (Application Specifie Integrated
Circuit) after its fabrication are in fact discovered afterthe ASIC has been
integrated in the system that it is intended to work with. In addition, many
of these failures are caused by ambiguous specifications of the interface
protocols that govern the transactions between the ASIC and the rest of
the system. According to professlonals in the EDA (Electronic Design
Automation) industry [2, 3], there currently is a pressing need for tools
and methodologies that could help alleviate these problems.

Problem: test bench development time

In a typica1 state of the art ASIC based system design environment,
designers spend anywhere from 25% [1] to 65% [4] of their time developing
Utest benches". These are software procedures that run concurrently with
the (sub-)system model in a simulation environment. The test bench stim­
ulates the model and verifies its responses against the specifications. Due
to sorne of its aspects that are related to the engineering of co=unica­
tion protocols, test bench development is an error-prone task. The software
code involves process synchronization primitives (e.g., WAIT statements)
and is hard to debug. It is also diflicult to ensure that the test bench
is complete, i.e., whether ail the properties that need to be concurrently
verified in a given execution scenario, are indeed checked for. Due to a
lack of structured approach to test bench development (often <.ompounded
with the inherently ad-hoc nature of the set of properties to he verified),
the resulting software is hard to maintain.

For the above reasons, and due to the fact that test bench software
represents as much as 50% of the total software written for a hardware
development project [1], test bench development in its present form puts
a substantial burden throughout the life cycle of the procluct design data.

Problem: linear timing constroints in interface specifica­
tions

When designing a component that is intended to operate in a dis­
tributed reaI-time system, the designer must make sure that the interact­
ing components of the system have compatible interface protocols, i.e.,

•

•

•

CHAPTER 1 - INTRODUCTION

that each system component satisfies the rules and assumptions that th,'
other components make on their environment. The most commonly ns<'d
compatibility verification techniques are visual inspection and simulation.
However. due to the often high degrec of concurrency in a distribuk'd sys­
tem and due to the min-max intervals that characterize the dclays and
timing assumptions in the specifications. the number of cases that nccds
to be considered can be overwhelming for computer simulation (let alOIl<'
visual inspection). Hence. the interest in potentially more rcliable tech­
niques, i.e., formai verification [5, 6, i, S, 9].

The timing specifications of interface protocols are often dcscribed by
linear constraints. These capture in a declarative and abstract \Vay the set
of allowed behaviors and assumptions of the component. This description
style decouples the specification from the implementation, thus leaving
more flexibility to the interface designer. This decoupling is ais,) dcsir­
able to vendors publishing the interface specifications of their proprletary
products.

The problem is, however, that linear timing constraints can make
an interface specification non-causa~ in the sense that the interface can
be implemented only by a system that "guessesn the future behavior of
other components that interact with it. Non-causality can manifest itse1f
even when the constraint system is consistent (i.e., its solution set is non­
empty). In addition, non-causality cau invalidate the outcomc of known
compatibility verification procedures [6]. 1'0 the bcst of our knowledge,
there does not exist a tool or methodology that correctly answers the
interface compatibility question in the presence of linear timing constraints.

2 Relevant Work

2.1 Modeling

Behavioral modeling approaches, sucb as [10, 11], lack the timing con­
straint constructs and the capability of declaring the assumptions that a
behavior makes on its environment.

Timing diagrams [12] and message seqUeI!ce cbarts [13] are l'vent 1

(action) based notations that are widely used in the hardware design com­
munity, as well as the communication protocols and distributed systems
design communities. These notations are of a declarative nature. They are

1In this thesis, the ternis event and action are Ulled inten:hangeably.

• 1-4 CHAPTER 1 - INTRODUCTlON

•

•

cOllvenient for describing families of execution scenarios in terms of event
sequences over time. The notations emphasize the abstract specifications
view of a system, rather than its implementation details In [14]. the
timing diagram notation is formalized, and its expressive power extended.
Event values and state variables can be expressed using "extended boolean
expressions" on signais; in addition to the standard boolean connectives.
these include Delay and Latch constructs. Looping and conditio:.tal execu­
tions of timing diagrams are supported using extended boolea-:. expressions
to control the execution. Timing diagrams can be combined concurrently
by specifying synchronization constraints between events :n different dia­
grams. The captured specifications are used for the synthesis of interface
circuits.

Interface specifications describe the protocols that govern the inter­
actions between the components of a system. For example, interactions
over a hardware bus consist of operational units called "interface opera­
tions", or "bus cycles", such as FETCH, READ, WRITE cycles, etc. Each
interface operation consists of specifie event sequences related by timing
constraints. At a higher leve1 of abstraction, e.g., in mode1ing a distributed
computer system, the operationaI units are system transactions, e.g., file
transfer opera.tions in which the events mode1 remote procedure caIIs, con­
nection/ disconnection requests and acknowledgments, start/end of data
transfers etc.

In its simplest form, an interface specification is represented by a
timing constmint graph [15]. This is a weighted directed graph in which
vertices represent interface events and a directed edge of weight ilij from a
vertex ai to a vertex aj represents the Iinear timingconstraint t(aj)-t(ai) :5
ilij, where t(ai) and t(aj) are the occurrence times of events ai and aj,
respectively, and ilij is a constant. In [16], the mode1 is extended to latest
and earliest constraints. An event related to its causal predecessors by
latest (earliest) constraints will occur only after (as soon as) the last (first)
of the predecessors have occurred. In [5], the behavior of an interface is
exp~ed as a set of event occurrence rules. Each such rule is described
by a cause-effect re1ationship and a de1ay intervaI between two events.
Optionally, a boolean expression on signaI states specifies the condition
under which a rule applies. Note, however, that the timing re1ationships
that can he e..~pressed in this framework are too simple to exhibit the
causality 2 problem mentioned in the Section 1.

Interface specifications must be re1ated to the internaI aspects of

'Tbe term "causality" in [5] simply indic:ates tbe cause-effect nature of the event
occurrence rules.

•

•

•

CHAPTER I - INTRODUCTiON

behavior and to structure. These relations are traditionally of concern
to behavioral synthesis systems. For el'ample. in [1 il. both the interfacl'
specifications (captured by timing diagrams) and data-f1ow specifications
(captured by a textual HDL description) are described in a unified graph in
which nodes represent data-flow operations and interface events. and arcs
represent data dependencies and timing constraints. Data dependency
arcs between input/output event nodes and operation nodes capture the
interrelation between interface and internai behavior. From a specifica­
tion point of view, the interface and data-flow descriptions are rclated
only through 1/0 signal names and symbolic data names (i.e., common
name space between the two specifications for 1/0 signals and symbolic
values on data busses). As a result, the HDL specification contains control­
flow information which could be redundant with respect to that captured
in the interface specification. [18J e.'(tends the work of [li] by including
structural domain descriptions in the unified graph: event nodes can be
grouped into '"\vires" and operation nodes can have either wires or events
as their input/outputs. AIso, a more powerful description of event depen­
dencies and timing constraints is supported using a subset of first-order
predicate calculus. The Design Data Structure (DDS) representation of
[19] consists of three ~parate graphs: Data-Flow Graph (DFG), Control
and Timing Graph (CTG), and Structure Graph (SG). The graphs are
related by "bindings", e.g., the scheduler of the synthesis system binds an
operation of the DFG to an interva1 arc of the CTG. Causal relations and
timing constraints can be specified between interface events in the CTG.
An interface event can be bound to an interva1 arc and to a destination
node in the CTG; the arc specifies the time interva1 in which the event can
occur and the node indicates the destination control point to which pro­
cessing will branch if the event occurs. In addition, a boolean expression
can be associated with the event to specify the condition under which the
event can occur.

More complex interfaces as well as control-oriented real-time _ys­
tems and protocol handlers can be described as timed, communicating
or concurrent abstract entities, each consisting of timed event sequences,
state-dependent causality relations between events, and assertions on state
changes due to event occurrences, and timing requirements. For example,
in [20], the author argues for a specification methodology in which a high­
level implementation of a system is described as a set of communicating
processes described at the extended state machine level and the properties
(or requirements) that the system must satisfy are described in a declar­
ative style as a set of event upressions in a special-purpose timed logic
designated as CPA (Conditionals, Precedencerelations, Assertions). Bach

• 1-6 CHAPTER 1 - INTRODUCTION

•

•

event expression in CPA consists of a precedence relation defining an order­
ing bctwcen two or more events. a logic condition under which the expres­
sion applies, and a logic assertion specifying constraints on the sequence
numbers, values and times of the events named in the expression. 80th
the condition and assertion arc expressed in first-order predicate calculus
over events, their values and their times. Minimum and maximum timing
constraints can be specified. Events can be identified by indices referring
to particular instances of their occurrence (e.g., in the case of repetitive
events); the indices cao be absolute or relative to a designated reference
event in the event expression. Hierarchy is introduced by specifying super­
events which are sequences of atomic events.

In [21], the properties that a system must satisfy are expressed in a
subset of real-time temporal logic (RTTL) [22] (this subset is limited to
properties describing invariance and/or real-time response). The system
itself is described by a finite-state Timed Transition Model (TTM). A
TTM is characterized by a set of variables and a set of transitions that
modify these variables. Bach transition is characterized by an enabling
pre-condition (i.e., a boolean expression on the TTM variables), lower and
upper time bounds for the delay from the enabling of the transition (when
the pre-condition becomes true) to its actual firing, and a set of post­
actions (modifications of the TTM variables) that take place upon firing
of the transition. The firing semantics are similar to those used in time
Petri nets [23].

2.2 Simulation

Simulation techniques [24, 25, 26] are very useful in exercising the system
specifications. Interface simulation models are behavioral HDL programs
derived from the interface specifications of the components that form the
system's environment. The interÎace simulation mode! of a component
consists in ~on-the-f1y parsing" of events received at the component's 1/0
ports, sequencing the mode! through its state transitions based on the
result of this parsing, detecting incorrect, or iII-formed interface opera­
tions (bus cycles), verifying that ail timing constraints at the input of the
component are met, and driving the component outputs with appropriate
de!ays.

The HIDE system [27] generates VHDL interface models from timing
diagrams and state diagrams. The state diagrams specify the interface
controI-fiow. A VHDL procedure is generated for each interface operation
(such as READ, WRITE etc.). The procedures cao then he caIIed from a

• CHAPTER 1 - INTRODUCTION \-7

•

•

command file to simulate the interface behavior. This approach. hO\\"'Vl'r,
does not seem to be practical for cases such as memory deviC<'s. \\'h"ft'in
the choice of the actual interface operation cannot be decid"d befort~hand

(i.e.. the interface control-flo\\' is governed by the cnvironment, c.g.. the
processorl.

In [28J, a VHDL annotation language, \':4L+. is proposed to d,~

sc;ribe parameterized, hierarchical event patterns. The patterns are ns,'d
for matching simulation traces; the idea is to transform (fiat1simulation
traces into hierarchical ones, by pattern matching, in order to hdp the user
in trace debugging and browsing. However, the matching is donc off-Iine.
after the simulation has completed; this requires the storage of the com­
plete simulation trace. ln addition, the patterns are used only for trace
matching, not for driving the circuit under simulation.

2.3 FormaI Verification

The advantage of the simulation techniques out!ined in the previous para­
graph is that they handle large and complex models. However they only
provide a partial "coverage" with respect to the model being verified. Com­
plementary techniques that are starting to emerge in the digital design
industry are based on formal methods. These techniques can be seen as
"orthogonal" to the techniques of the previous paragraph in that they can
provide complete coverage of a partial mode!. ln this section, wc review
sorne of the formal techniques that are relevant to real-time systems and
interface verification.

One way to decompose the interface verification problem is to exam­
ine "interface scenarios", i.e., finite unrolled behaviors [15, 5, 6, 7, 8, 9J.

A finite interface scenario described by linear timing constraints is
consistent if there are no cycles of negative weight in the corresponding
constraint graph [15, 6J. ln [15], a constraint priority scheme defined by
the user, is used to relax some constraints, thus removing inconsistencies
from the interface specification. ln [5J where Iogic conditions can qualify
constraints, the system checks for the logic consistency of paths. However
concurrent state changes of side path variables (i.e., signals that have no
associated events on the considered causal path) are not taken into account,
thus possibly resuIting in erroneous analysis.

ln [6], the authors propose a method based on the shortest path
algorithm [29] for the verification of the interface compatibility of two
co=unicating system components described by timing diagrams under

• 1-8 CHAPTER 1 - INTRODUCTION

•

•

lincar timing constraints. However. their method is too pessimistic (i.e..
it can yield false negative answers to the compatibility question). unless
the communication between the system components is unidirectional (i.e..
one component has no input events. and the other has no output events).
Other works address the issue of efficient algorithms for computing the
maximal time distances between events for more complex forms of timing
constraints in timing diagrams [7, SJ. For example, efficient methods exist
for computing the shortest distances over linear and max latest constraint
systems [7, 9]. The inclusion of earliest constraints makes the problem
of computing time distances between events NP-complete [7]. In [9], the
authors show how a Constraint Logic Programming (CLP) environment
based on relational intervai arithmetics (RIA) [30] can be used to solve
the maximal time distance problem in the cases of 1- linear constraints
only, 2- max-only or min-only constraints, and 3- linear constraints in­
termixed with either max or min constraints. They show that for these
three cases the general CLP/RIA approach has the same worst case time
complexity as the ad-hoc approach of [7]. An additional advantage of the
CLP/RIA approach is that, due to its general purpose nature, it is a bet­
ter vehicle for extensions to the basic problem, e.g., accounting for delay
correlations, or annotating constraints with logic (boolean) conditions in a
unified computational framework. In [31], the authors solve the ma.'l:imal
time distance computation in cyclic (process like) timing diagrams with
max only constraints (also designated as cC'nstraints of the latest type, i.e.,
an event occurs only after the last of its predecessors has occurred). A
similar problem is solved by Escalente et al. [32] using a combination of
graph-based and \inear programming techniques. The authors state that
their approach can be generalized to the mixed min/max problem, but
they do not sufliciently elaborate on that.

None of the methods mentioned in the previous paragraph address
the issue of rea/i.:abi/ity of timing diagram specifications, Le., can the spec­
ification be simulated by a causal system. Due to their declarative style (as
opposed to e.g., an operational style), \inear constraints make the causality
issue a non-trivial one. In practice, synthesis methods such as [14] that do
not e.'I:arOine the causality issue under \inear constraints, may produce sys­
tems that only satisfy mutually incompatible subspaces of their respective
specifications. The consequence is the risk of incompatibility between inde­
pendently developed implementations of the interacting systems. In [33],
the authors dt".fine a realizability criterion called we\l-posedness. However,
it turns out that this criterion is Dot sufliciently powerful for reasoning on
some of the practical examples that we examined (e.g., interface operations
of a Motorola MC68360 processor). Recently, timed process algebras have

• CHAPTER 1 - L'iTRODUCTIO,\' l-!l

•

•

emerged [34] in which the occurrence times of l'vents can h,' rdat,,,1 by
linear conjunctive constraints. However, the underlying s,'mantic modds
proposed in these works do not address the causality issllt,. H"ne,', sllch
methods do not reveal whether the specified system can h,' built from in­
dependently developed subsystems, each constructt'd ;\ccording 1.0 ils 10\·..1

specification.

In [21J, an automatic procedure is given for verifying wh"thl'r a sys­
tem described as a Timed Transition Model satisfies a formula in a sllbsl'l
of Real-Time Temporal Logic (RTTL). A reachability graph is construct,,,I,
on which the RTTL formula is then checked for validity. In this itppro;\ch,
the number of states in the reachability graph grows very rapidly, du,' to
two factors, First, states arc created in the reachability graph for e,...ry
time point in the analysis (time is considered as a TTM variable which is
incremented by unit ~ticks"), Second, ail real-time realiz.'\ble t)tal ord,'rs
0: transition firings arc enumerated, whether or not they affect the validity
of the formula under verification. Other verification approaches based on
timed e.'I(tensions of process algebras [35, 36] or on time Petri nets [23] art'

characterized by similar complete state enumeration,

In [3i], the system and the properties to verify are described as an
interconnection of units forming a closed system. Each unit is a "Time
Sequential Machine". Similarly to [21], a delay bound is a.ssociated with
each state transition ofa unit. FaiIure to satisfy a property is indicated by a
given ~checking" unit going into an ErTOr state. A partial order approach
is used in the reachability analysis of the closed system, thus avoiding
the enumeration of all the possible interlcavings of the state transitions
in the units. Furthermore, timing relationships between transitions arc
compactly represented by a timing constraint graph, therefore avoiding
the creation in the rea.chability graph of state nodes for cach time "tick".

A timed automaton is, strictly speaking, an infinite state system (due
to the continuous time mode! assumption). In [38], the timed automaton
concept is formalized and the author proves that, l'ven under a continuous
time mode!, there exists a finite representation of the state spa.ce of the
original timed automaton. This representation is ba.sed on a concept known
as region automaton, wherein each "region" is an equivalence class with
respect to the property being verified. Each region is a.ssociated with a
finite constraint graph that implicit1y represents the (genera.lly infinite)
number of states in the given equivalence class. In [39], a branching rea.l­
time temporallogic, TCTL, is defined, and the traditional mode!-checking
procedure [40] is extended to allow checking of the validity of a TCTL
formula on a timed automaton.

• J·10 CHAPTER 1 . INTRODUCTION

•

•

III [4 J], the semantics of a subset of our timing diagram mode) are
defilled in terms of a timed process algebra, l'DA, based on the works of [34]
'llld [42). Theil, a procedure is gi"en for translating a term of the algebra
illto a timed automaton, The timed automata resulting from individual
terms are hierarchically composed to obtain the final timed automaton.

Another technique that efficiently exploits constraint graphs in the
formai analysis of real-time behavior is given in [43]. The system verifies
whethcr a specification satisfies a given safety assertion, where both the
s~'ccification and the safety property are described in a subset of Real
Timc Logic (RTL) [44], However, there is no explicit concept of state
ili~he specification paradigm and therefore the method is inadequate for
describing systems with state dependent behavior,

Simulation and formal verification can be advantageously combined
in a unified environment for the analysis of communication protocols, For
example, in [45] a complete verification with respect to a set of properties
is donc on a simplified mode! of the interacting protocols and simulation
is performed on a detailed mode!. Simulation traces are analyzed on­
the-f1y by an ~observer~ program that is automatically compiled from a
declarative specification of the properties to be verified, given in first-order
predicate logic,

3 Original Contributions

ln this section, we summarize our original contributions towards solving
the problems of Section l, and we put these contributions in the context of
the other works discussed in Section 2. The original contributions of the
thesis fall into three categories: 1- modeling language and methodology for
real-time systems, 2- c.xecutable model generation, and 3- formal timing
verification.

1- ln the area of modeling language and methodology for real-time systems,
the original contributions are:

• Separation of, and links between, interface behavior and
internal behavior:

We propose a nove! interface modeling methodology, HAAD - Hier­
archical Annotated Action Diagrams in which the interface behavior
is captured separate!y !rom the internal behavior while maintaining
the links between the two. The interface behavior is captured as a

• CH.4.PTER 1 - INTRODUCTION 1-11

•

•

hierarchy 3 of action diagrams. We assume that the in~ernal behavior
is modeled by an Ext.ended Finite State Machine (EFSM). Wt' pre­
pose 1.0 link the interface behavior and interna! behavior by shared
variables and synchroni:ation points. This modeling methodology
facilitates the verification of the interface behavior and should also
facilitate that of the interna!· behavior.

• Separation of, and links between, functional aspects and
protocol/ timing aspects in interface specifications:

One of the main novelties of HAAD is that the data manipulation
aspects of an interface specification are ~overlaid~ onto the hierarchy
of action diagrams. This overlay is in the form of HDL procedures,
functions and variables that are attached 1.0 actions (designated as
trigger actions) of the action diagram hierarchy. The procedures and
functions are executed when their trigger actions occur. State v:l.ri­
ables that are attached 1.0 actions provide data-flow links betwccn
the data manipulation procedures and the action diagram protocol
description. This approach facilitates the verification of the system.
In contrast, when modeling interfaces in plain HDL, the timing and
protocol behavior is intermingled with the functional behavior. ln
addition, there is no possibility of expressing protocol rules and tim­
ing constraints, except by writing procedural checkers for them (and
in that case, the "how" of rule checking would be captured instead of
the "\Vhat" of the rules themselves). Compared 1.0 [1il, our approach
is based on directly linking data-flow operations 1.0 interface actions.
This avoids the description redundancies of [li).

• Combination of a true behavioral hierarchy and a rich set of
timing constructs:

HAAD is the first modeling language that combines a true behavioral
hierarchy and a rich set of timing constructs. In this hierarchy, be­
haviors are composed using operators such as Concatenation, Choice,
Concurrency, Loop and Exception-HandIer. Port maps and parame­
ter maps specify how the operators combine the behaviors. Actions
in leaf action diagrams cau be related by weighted (min/max) tim­
ing constraints. The constraints are of assume or commit intent, and

3Here Wé are using the term action diagram to generically indicate any component
(whether lea! or not) in this hierarchy. The leaves of a HAAD hierarchy resemble the
more familiar timing diagrams. For historical reasons, in the body of the thesis, the
terms action diagram and timing diagram are use<! interehangeably.

'Note that internai behavior verification is not explored in this thesis.

• 1-12 CHAPTER 1 - INTRODUCTION

they can be combined to form more complex constraints using the
conjunctivc, carliest and latest composition operators. Other works
that put the emphasis on behavioral hierarchy ignore the timing as­
pects, e.g., [11], or offer only rudimentary timing support, e.g.. [10].
On the other hand, works that concentrate on timing specifications
ignore behavioral composition [14].

•

•

• Delayed choice semantics:

HAAD is the first modeling language that proposes the concept of a
delayed choice, whereby the selection of a behavior (choice branch)
is delayed until sufficient information is gathered. This is useful in
supporting the concept of interface operations in "scenario-based~

modeling.

2- ln the area of executable model generation, the original contributions
are:

• Dynamic stimulus generation and response validation from
timing diagrams:

Our work [46] is the first to report on the automatic generation of
simulation models and response verification script.s from action di­
agrams. The advantage of this capability is to markedly accelerate
the test bench development process. In addition, since the designer
is now relieved from many of the low-level details of test bench de­
velopment, he/she cao concentrate more effectively on what needs to
be verified, rather than how to verify it.

• Unified framework for valid and don't care signal states:

In order to handle valid and don't care signal states in a unified
modeling and execution framework, wc introduce two new action
types: optional and mu/ti-match actions [47]. Simpler alternative
approaches, e.g., "data" stability windows with respect to "clock"
and "control" signals, are not general enough for expressing complex
timing specifications, e.g., asynchronous RAMs [48]. A concept sim­
ilar to a multi-match action was proposed in [49] for the synthesis
of asynchronous circuits from Signal Transition Graphs, however our
work is the first to consider optional and multi-match actions in the
generation of simulation models and response verification scripts•

•

•

•

CHAPTER 1 - INTRODUCTION

• Unified approach to master, slave and mixed behaviors:

Another novel aspect in our test bench and modcl generation ap­
proach is that il. is independent of whether the modcled system is
a master (i.e.. autonomously generates requests). slave (i.e.• ser\'icl's
requests). or mixed (i.e.• exhibits a combination of both master and
slave characteristics). ln other works, e.g.. [2;]. HDL procedures ar,'
generated for each interface operation (such as READ, \VRITE etc.).
The procedures can then be called from a command file 1.0 simula!.e
the interface behavior. This approach, however, is not suited 1.0 bt'­
haviors in which the choice of the actual interface operation cannot
be decided before-hand (e.g.• a slave type of behavior).

3- ln the area of formai timing verification, the original contributions arc:

• Sufficient conditions fo: the well-behavedness of interface
specifications under linear timing constraints:

Our work is the first 1.0 propose technology independent suflicient
conditions for the well-behavedness of interface specifications under
linear timing constraints, such that these conditions: 1- guarantcc
that the specifications cao be simulated by a causal system, and 2­
are general enough 1.0 handle the complex timing of bus interface
specifications. We show that the interface consistency criterion used
in other interface verification works, e.g., [6], or in interface synthesis
e.g., [14], is not a sufficient well-behavedness criterion, while the well­
posedness criterion of [33] is not general enough for sorne commonly
used bus interfaces.

• Operational semantics of interface specifications under Iin­
ear timing constraints:

Our work is the first to clearly define operationa1 semantics of action
diagrams under linear timing constraints.

• Analysis offalse negatives and false positives in known com­
patibility verification methods:

We show that known methods, e.g., [6], for the compatibility verifi­
cation of timing diagrams under linear timing constraints cao yield
false negative answers te the compatibility question in practical situ­
ations. We aIso show that attempts to correct these known methods
without taking the causality criterion into account cao yield false
positive answers to the compatibility question.

• 1-14 CHAPTER 1 - INTRODUCTION

•

•

• An accurate compatibility verification procedure:

Wc dcvelop an accurate compatibility verification procedure for tim­
ing diagrams under line:u- timing constraints.

4 Thesis Organization and Overview

The thesis consists of seven chaptcrs and three appendices. Chapters 2
t.o 6 are in the form of papers; the rest of this section provides logical
bridges between these papers. Chapter Î is the general conclusion of the
thesis. Appendix 1summarizes ruIes that must be followed when modeling
with VaUd and Don't-care valued actions. Appendix II is the grammar,
in cxtended BNF form, of the RAAD language. Appendix III is the co­
author's statements.

Chapter 2: A StimulusjResponse System Based on Hi­
erarchical Timing Diagrams

ln the course of validating system interfaces by simulation, the de­
signer spends relative1y large amounts of time writing "test benches" that
perform stimulus generation and response validation (SGRV). We present
a taol that facilitates this task by capturing the test bench specifications in
the form of hierarchica1 action diagrams and mode1ing them using hiera.r­
chica1 constraint graphs. The specifications are then used to automatica11y
perform SGRV. The main advantages of this approach are that manyof
the ad-hoc aspects of test bench creation are removed, thus contributing
to the repeatability of the design validation process. Furthermore, since
the overa11 control structure of the test bench and the correctness criteria
that it uses to validate system responses, are captured dec1arative1y (as
opposed to detailed procedura1 code that interprets the specification), it
follows that its test bench intent stands out more clearly.

A possible approach to the SGRV problem consists of generating ail
the stimuli before simulation, then performing the entire simulation, col­
lecting traces of user specified signais, and, after simulation, validating
circuit responses by pattern matching against the action diagrams. There
are, however, severa! drawbacks to this "static" approach. First, it is in­
compatible with interactive simulation: for example, it does not support
associating break-points with user specified error conditions. Second, the
amount of data accumu1ated before and during simulation could become
very large. The biggest drawback of such a static approach is, however,
that it restricts the user from specifying stimuli that depend on the re-

• CHAPTER 1 - INTRODUCTION 1-15

•

•

sponse time of circuit outputs; for example, it is impossible to dcscribt'
simple handshake protocols.

The alternative that we propose is dynamic SGRV (DSGRV) - i.e..
an algorithm that traverses the constraint graph hierarchy during simu­
lation to generate stimuli and validate system responses. We discuss a
VHDL-based implementation of the tool and illustrate its usefulncss and
limitations in modeling microprocessor bus operations.

Chapter 3: Modeling and Execution of Timing Diagrams
with Optional and Multi-Match Events

The algorithm of Chapter 2 requires l'very specified action to occur
exactly once in a given execution of the enclosing timing diagram. Ho\\'­
l'ver, the specification of certain types of timing constraints (e.g., set-up
and hold times) in the contC).1; of an action-based mode!, requires actions
(e.g., on a data bus) with symbolic values such as Valid and Don't·rare
that may or may not actually occur. Actions with such values cannol be
handIed by the DSGRV algorithm of Chapter 2. In this chapter, we intro­
duce two new ;l.ction types: optionai actions (actions that do not always
have to match actual action occurrences) and mufti-match actions (actions
that can match multiple actual action occurrences), and we consequently
extend the execution mode! of Chapter 2.

Chapter 4: Integrating Behavior and Timing in Exe­
cutable Specifications

In this chapter, we extend the set of action diagram composition op­
erators of Chapter 2 to include Choice and Loop operators. We describe a
general algorithmic framework in which it is easy to add new composition
operators. In addition, we extend the specification paradigm to encom­
pass the functional view of the specified system. For behaviors that have
a control-flow which is governed primarily by the behavior's interface with
the external world, this extension is done by allowing procedures and func­
tions in the functional view to be "linked" to action triggers in the action
view. For more general behaviors, the functional view is described by an
EFSM (Extended Finite State Machine) which execution is synchronized
to that of the system's action mode!. The synchronization is specified
decla.ra.tively by the user.

We illustrate our approach on practical examples, and we show how
we achieve tangible savings in mode! development time and accuracy.

• 1-16 CHAPTER 1 - INTRODUCTION

•

•

Chapter 5: Modeling Cell Processing Hardware with Ac­
tion Diagrams

ln this chapter, timing constraints are explicitly classified into as­
$umptions (i.e., assumptions on the environment of the described sub­
system) and commitments (i.e., timing relations that the described sub­
system commits to). The timing model is generalized to encompass bath
linear and non-linear timing constraints; this is done by defining three
types of timing constraint composition operators: latest, earliest and con­
junctive.

Furthermore, the action diagrarn composition operators are general­
ized as follows:

• The Choice composition operator is refined to support both deter­
ministic and non-deterministic de!ayed choice semantics.

• A new operator is defined for e.'"ception handling.

• Port mappings, parameters, and local variables are added to action
diagrams. The operator set now aIIows to build a true behavioral
hierarchy.

Finally, features are defined to aIIow mode!ing at higher abstraction
levels. These features include user-defined abstract data types and the
distinction between message-based and value-based ports (in the former,
actions are the results of an action diagram sending a message on the port,
whereas in the latter actions are the result of value changes on the port).
We iIlustrate the concepts on the high-level mode! of a ceI1-based (e.g.,
packet or ATM) Mmmunication sub-system.

Chapter 6: Semantics and Verification of Action Dia­
grams under Linear Timing Constraints

In this chapter, we examine the question of the compatibility of con­
current, communicating leaf action diagrams described by linear timing
constraints. We show that known methods that address this question,
e.g., [6], cao yield false negative answers because they do not compose the
interface behaviors of the communicating systems. We show that such
composition must encompass the concept of realizability, or else the com­
patibility question cao yield false positive answers.

We then fonnali:re the operational semantics of action diagrams un­
d~ linear timing constraints. The semantics are based on the derivation,

• CH.4.PTER 1 - INTRODUCTION 1-17

•

•

from the action diagram. of a block machine which is characterized by a
partition of the action set of the action diagram. We define the concept. of
a causal block machine and we state the realizabilit.y of an action diagram
specification in terms of the existence of a causal block machine deri\'l'd
from the :l.ction diagram. We prove that ail causal block machines derived
from an action diagram have the same (timed) trace set and ~his traCt' Sl't
is equal to thô.t of the action diagram.

We define the compatibility of communicating causal action diagrams
in terms of the compatibility of ail the possible combinations of causal
block machines derived from these action diagrams. We prove that we do
not need to enumerate these combinations to answer the action diagram
compatibility question. This leads to an exact and efficient procedure for
the verification of the compatibility of communicating action diagrams.

Finally, we prove that the structure of the partition of the set of
input actions of a causal block machine is independent of that of its output
actions. ln addition to being intuitively "reassuring", this property should
be useful in designing an efficient action partitioning procedure.

References

[1] A. Silburt, Manager, Hardware Systems Modeling Group, Bell­
Northern Research Ltd., Ontario, private communication, Deœmber
95.

[2] M. Meredith, Viee-President of Engineering, Chronology Corp.,
Washington, private co=unication, December 95.

[3] S. Curry, Cadence Design Systems Ine., private co=unication, De­
cember95.

[4] 1. Dobson, Director of Research & Development, Tundra Semiconduc­
tor Corporation, presentation at the Université de Montréal, February
96.

[5] A.R. Martello and S.P. Levitan "Causal timing verification", Ist
ACM Workshop on Timing Issues in the Specification and Synthesis
of Digitq.l Systems, 1990.

[6] J.A. Brzozowski, T. Gahlinger and F. Mavaddat, "Consistency and
Satisfiability of Waveform Timing Specifications", Networks, VoL 21,
1991, pp91-10i•

[il K. McMillan and D. Dili, "Algorithms for Interface Timing Verifica­
tion, Proc. ICCD-92, October 1992.

• 1-18 CHAPTER 1 - INTRODUCTION

•

•

[8] T.M. Burks and K.A. SakaBah, "Min-Ma.... Linear Programming and
the Timing Analysis of Digital Circuits", Proc. ICCD-93. October
1993, ppI52-155.

[9J P. Girodias, E. Cerny, W.J. Older, "Solving Linear, Min and Ma....
Constraint Systems Using CLP Based on Relational Arithmetic," sub­
mitted to InCl Conf. on Principles and Practice of Constraint Pro­
gramming (CP95), Marseille, September 1995.

[IO] S. Narayan, F. Vahid and D. Gajski, "System Specification and Syn­
thesis with the SpecCharts Language", IEEE Proc. ICCAD-91, 1991.

[11) D. Drusinsky and D. IIarel, "Using StateCharts for Hardware De­
scription and Synthesis", in IEEE Transactions on Computer-Aided
Design, 1989.

[12) P. Rony "Interfacing fundamentals: Timing diagram conventions".
Computer Design, pp. 152-153, 1980.

[13) "Message Sequence Charts (MSC)", Recommendation Z.120, CCITT.

[14) G. Bomello, A New Interface Specification Methodology and its Appli­
cation to Transducer Synthesis, PhD thesis, University of Califomia,
Berkeley, 1988.

[15) S.K. Sherman, "Algorithms for timing requirement analysis and gen­
eration", ACM/IEEE Proc. !!5th DAC, pp. 724-727, 1988.

[16) F. Mavaddat and T. Gahlinger, "On deducing tight bounds from
partial timing specifications", lst ACM Workshop on Timing Issues
in the Specification and Synthesis of Digital Systems, 1990.

[17) G. Bomello, "Combining event and data-f1ow graphs in behavioral
synthesis", IEEE Proc. ICCAD-88, pp. 56-59, 1988.

[18) T. Amon, G. Bomello and C. Séquin, "Operation/event graphs:
A design representation for timing behavior", Computer Hardware
Description Languages and their Applications, !FIP, North-Holland,
1991.

[19] S.A. Hayati, A.C. Parker and J.J. Granacki, "Representation of con­
trol and timing behavior with applications to interface synthesis",
IEEE Froc. ICCD-88, pp.3S2-387, 1988.

[20] M.C. McFarland, "CPA: Giving an account of timed system behav­
ior", Ist ACM Workshop on Timing Issues in the Specification and
Synthesis of Digital Systems, 1990.

[21] J.S. OstrofF, "Automatic verification of timed transition models",
Int'l Workshop on Automatic Verification MetAods for Finite State
Systems, LNCS 407, Springer-Verlag 1989.

• CHA.PTER 1 - INTRODUCTION Jo!!)

•

•

[22] J.S. Ostroff. "Real-time computer control of discrete event systems
modeled by extended state machines: a temporal logic approach·.
Technical Report EE-86-18. University of Toronto. 1986.

[23] B. Berthomieu and M. Menasche. "An enumerative approach for
analyzing Petri nets", Information Proccssing 83. Elsevier Science.
North-Holland, 1983.

[24] R.H. Lathrop and R.S. Kirk, "An extensible object-oriented mixed­
mode functional simulation system", ACM/IEEE Proc. !!!!nd D.4C.
pp. 630-636, 1985.

[25] M. Abramovici, D.T. Miller, J.J. Kulikowski, and P.R. Menon.
"System-Ievel design verification at the AT&T computer division:
Tools", IEEE Proc. ICCD-89, pp. 548-554, 19119.

[26] A. Silburt, 1. Perryman, J. Bergeron, S. Nichols, M. Dufresne and
G. Ward, "Accelerating Concurrent Hardware Design with Behav­
ioral Modeling and System Simulation" ACM/IEEE Proc. 3!!nd DAC.
1995.

[2ï] Y.H. Leang and W.P. Birmingham, "The Automatic Generation of
Bus-Interface models", in ACM/IEEE Proc. !!9th DAC, pp. 634-63;,
1992.

[28] B.A. Gennart and D.C. Luckham, "Validating discrete event simula·
tions using event pattern mappings", ACM/IEEE Proc. !!9th DAC,
pp. 414-419, 1992.

[29] R. E. Tarjan, Data Structures and Network Algorithms, SIAM, 1983.

[30] W. Older and A. Vellino, "Constraint Arithmetic on Real Intervals",
Constraints Logic Programming: Selected Researeh, 1993.

[31] T. Amon, H. Hulgaard, G. Borriello, S. Burns, "Timing Analysis of
Concurrent Systems: An Algorithm for Determining Time Separation
of Events", Proc. ICCD-93, October 1993.

[32] M. A. Escalente and N. J. Dimopoulos, "Assessing the Feasibility of
Hardware Interface Designs in Microprocessor·based Systems", Tech·
nical Report ECE-95-1, EE Dept., University of Victoria, 1995.

[33] D. C. Ku and G. De Micheli, High Level Synthesis of ASICs Under
Timin9 and Synchroniz4tion Constraints, Kluwer Academic Publish­
ers, 1992.

[34] A. S. Klusener, Models and A:l:Ïoms for a Fragment ofReal-Time Pro­
cess Algebra, Ph.D. Thesis, Centrum voor Wiskunde en Informatica,
Amsterdam, 1993.

[35] GJ. Milne, "The formai description and verification of hardware tim­
ing", IEEE Trans. Computers, voL ,/0, no. 7, pp. 811-826,1991.

• I-:W CHAPTER 1 - INTRODUCTJO,\'

•

•

[:l6] R. Cleaveland, J. ?arrow, and B. Steffen, "The concurrency work­
bench: A semantics-based verification taol for finite-state systems·.
Proc. Workshop on Automated Verification Meihods for Finite-Stale
Systems, LNCS 407, Springer- Verlag, 1989.

[37] T. Yoneda, K. Nakade. and Y. Tohma. "A fast timing verification
method based on the independence of units". IEEE Proc. 19th FTCS.
pp. 134-141. 1989.

[38] D. Dili, "Timing assumptions and verification of finite-state concur­
rent systems". Workshop on Automatic Verification Methods for Fi­
nite State Systems, Lecture Notes in Computer Science 407, Springer­
Verlag, 1989.

[39] R. Alur, C. Courcoubetis, D. Dili, "Model checking for real-time sys­
tems", Proceedings of the fifth IEEE Symposium on Logic in Computer
Science, pp. 414-425, 1990.

[40] E. M. Clarke and E. A. Emerson, "Characterizing properties of par­
allel prograrns as fixpoints" Seventh International Colloquium on Au­
tomata, Languages, and Programming, Lecture Notes in Computer
Science 85, 1981.

[41] B. Berkane, S. Gandrabur, and E. Cerny, "Timing diagrarns: seman­
tics and timing analysis", Proceedings of the Asian Pacifie Conference
on Computer Hardware Description Languages, 1996.

[42] X. Nicolin et al., "From AT? to timed graphs and hybrid systems",
Acta Informatica, V30, 1993.

[43] F. Jahanian and A.K.L. Mok, "A graph-theoretic approach for timing
analysis and its implementation", IEEE Trans. Computers, C-36(8),
pp. 961-975, 1987.

[44] F. Jahanian and A.K.L. Mok, "Safety analysis of timing properties
in real-time systems", IEEE Trans. Software Eng., vol. SE-12, no. 9,
pp. 890-904, 1986.

[45) R. Graz, Vérification de propriétés logiques des protocoles et systèmes
répartis par observation de simulation, Ph.D. thesis, Université de
Rennes J, France, 1989.

[46] K. Khordoc, M. Dufresne, and E. Cerny, "A stimulusfresponse system
based on hierarchical timing diagrams", IEEE Proc. ICCAD-91, pages
358-361, 1991.

[47] K. Khordoc, E. Cerny, and M. Dufresne, "Modeling and execution of
timing diagrams with optional and multi-match events" , Proc.!md
ACM Workshop on Timing Issues in the Specification and Synthesis
of Digital Systems, 1992.

• CH.4.PTER 1 - INTRODUCTION 1·'21

•

•

[48] Texas Instruments Incorporated. Supplement to MOS Me7llory Data
Book. Texas Instruments. Houston. Texas. 1984.

[49] C.\V. Moon. P.R. Stephan. and R.K. Brayton. "Synthcsis of hazard­
free asynchronous circuits from graphical specifications". IEEE Proe.
ICCAD-91. pages 322-325. 1991.

[50] IEEE Standard 1076-1987. VHDL Language Refermee Manual.
IEEE. 198ï.

[51] K. Khordoc. M. Dufresne. E. Cerny. P.A. Babkine and A. Silburt.
"Integrating Behavior and Timing in Executable Specifications". in
IFI? Conference on Hardware Description Languages and their Ap­
plications (CHDL). 1993.

[52] K. Khordoc and E. Cerny, "Modeling Ccli Processing Hardware with
Action Diagrams", in IEEE International Symposium on Circuits and
Systems (ISCAS), 1994.

[53] K. Khordoc and E. Cerny, "Semantics and verification of action di­
agrams with linear timing constraints", submitted to ACM Transac­
tions on Design Automation of Electronic Systems, 1995.

•

•

•

CHAPTER 2

A STIMULUS / RESPONSE
SYSTEM BASED ON

HIERARCHICAL TIMING
DIAGRAMS

ABSTRACT

We present a taol that facilitates timing verification in the conte.'"t
of behavioral simulation. The taol captures timing specifications from hi­
erarchical timing diagrams and models them using hierarchical constraint
graphs. Our main contribution is a new algorithm that dynarnically tra­
verses the constraint graph hierarchy during simulation to generate stimuli
and validate system responses. We discuss a VHDL-based implementation
of the taol and illustrate its usefulness and limitations in modeling micro­
processor bus operations•

2-1

• 2-2 CHAPTER 2 - A 5T/.\1 FLt '5 / HESPOSSE SYSTE.\/

•

•

1 Introduction

A number of static timing analysis tools [1.2.3] ha\"<' b,'t'n propos,'d for t II<'
verification of digital designs. Thes" tools adequatdy addr,'Ss tl\l' r,'alm
of gate-level synchronous circuits. However. they arl' inad,'quatl' for lar~e

scale designs, where higher-level abstractions of timing properti,'S must
be used. in order to reduce the large amounts of data to Ill' d,'alt with,
or simply because such low-Ievel data is not available (l'.g.• in th" ca",'
of off-the-shelf VLSI components). Furthermore, with th,' increa.<ing u,,'..
of synthesis tools, the designer has less control over the gatl~l"\'el impl,~

mentation; therefore. any useful analysis tool must provide higl:-~,~ll'\'d

diagnostics which the designer can relate to. Finally. the d,'Sign might 1",
asynchronous at the system level (e.g" asynchronous bus interfaCt.'S), thus
rcquiring other timing verifl::ation techniques,

As a consequence. there is prcscntly a need for timing verification
tools that addrcss system level design. Although formai methods are b''gin­
ning to emerge, e.g., e.'(tensions of predicate logic [4], graph bascd methods
[5], timcd automata [6] and concurrent process calculus [il. system le\'C1
timing verification still relies on dynamic checking using behavioral simu­
lation [8, 9, 10]. The problem with this approach is that designers spend a
relatively large amount of time writing both the stimuli to drive the system
inputs and the validation procedures to check whether the system verifies
its timing and functional specifications.

In this paper, wc propose a new taol that facilitates the timing ver­
ification of complex systems in the context of behavioral simulation. The
taol captures timing specifications in the form of a hierarchy of formalized
timing diagrams [11], These diagrams arc based on the concept of tim­
ing constraints, and thus they represent a set of allowable behaviors - the
specifications - rather than one particular instance of hehavior. Moreover,
the diagrams resemble those supplied by component manufacturers and
arc well-'.1Ilderstood by hardware designers. The proposed taol uses the
timing specifications extracted from these diagrams to automatically per­
forro Stimulus Generation and Response Validation (SGRV), relieving the
designer from this tedious task.

A possible approach to the SGRV problem consists of generating all
the stimuli hefore simulation, then performing the entire simulation, col­
lecting traces of user specified signals, and, after simulation, validating
circuit responses by pattern matching a.ga.inst the timing diagrams (TDs).
There arc, however, severa.! drawbacks to this "static" approach. First, it is
incompatible with interactive simulation: for exa.mple, it does not support

• CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM 2-3

•

•

associating break-points with user specified error conditions. Second. the
amount of data accumulated before and during simulation could become
very large. The biggest drawback of such a static approach is. however.
that it restricts the user from specifying stimuli that depend on the re­
sponse time of circuit outputs; for example, it is impossible to describe
simple handshake protocols.

In this paper, we consider the dynamic SGRV (DSGRV) problem,
i.e., the problem of generating stimuli and verifying circuit responses dur­
ing the simulation run-time. We propose a solution based on:
- capturing timing specifications using hierarchical timing diagrams,
- modeling timing specifications using a hierarchical extension to the con-
straint graph model [5, 12], and
- using the constraint graph hierarchy to stimulate the circuit and validate
its responses dynamically.

Our main contribution is a new algorithnn that dynamicalIy tra­
verses the constraint graph hierarchy during simulation to generate stim­
ulus events and validate circuit responses. Although there are tools that
perforrn static stimulus generation from a set of timing constraints [13], this
is. to the best of our knowledge, the first published work that addresses
the DSGRV problem. To demonstrate our ideas, we have implemented the
DSGRV system as a VHDL [14] process that dynamically interncts with
the simulated circuit.

The paper is structured as follows: Section 2 reviews related work.
Section 3 presents our mode! and terminology. Sections 4 to i introduce
the DSGRV algorithnn in a graduai manner: static (Section 4) and dy­
namic (Sections 5 and 6) event generation, followed by response validation
(Section i) and hierarchical DSGRV (Section 8). Section 9 contains exper­
imental results and discussions of the limitations ofthe system. Section 10
concludes the presentation.

2 Related Work

Timing constraints a.retypicalIy supported by languages oriented towards
the synthesis of interface circuits [11], however they are absent from stimu­
lus/response description languages [15, 16, li] which <:.re oriented towards
simulation and test.

Recently, a number of timing analysis systems [5, 12, 18, 19] have
used a mode! in which hardware modules are represented by interface op-

• 2-4 CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM

•

•

erations consisting of a set of events interelat"d by timing constraints.
These constraints arc represented by a directed constraint graph. when'
nodes represent events. and a directed edge of weight a from node .\ (,0

node Y represents the timing constraint: Il' - lx ~ a. with lx and /1'

representing the occurrence times of events X and y, rcspectively.

A problem of interest is the consistency of an interface operation,
i.e., whether there exists an assignment of event times such that ail con­
straints are satisfied. This problem can be solved [12. 18] by dctecting
cycles of positive weight in the graph, In [18]. a constraint priority scheme
defined by the user, is used to rela-"\: sorne constraints, thus rcmoving the
inconsistencies from the interface operation,

Another problem is the satisfiability of safety constraints by causal­
ity constraints, i.e., whether all possible time assignmcnts that satisfy the
causality constraints also satisfy the safety constraints. This problem is
solved [12, 19] by comparing longest paths between pairs of l'vents in the
constraint graph. In [5] and [6], the satisfiability problem is solvcd un­
der more expressive specification paradigms: first order logic and timcd
automata, respectively.

Finally, the problem considercd in [13] is the generation of l'vent times
frem a set of timing constraints specificd as Prelog rules. The method
uses the built-in backtracking mechanism of Prelog, however there is no
provision for generating stimulus l'vents in increasing time order, or in
reaction to circuit responses.

In the next section, we intreduce Ollr model and the terminology uscd
in the rest of the paper.

3 The Model

The timing specification of an interface operation consists of a set of signals
and a set of timing constraints. Each signal is characterized by a name
and a direction (input or output), and is composcd of a totalIy ordercd
sequence of l'vents. Bidirectional signais are modeled by separating their
input and output components. An l'vent value indicates the value of the
corresponding signal after the occurrence of the l'vent. Event values are
in the set V = B u {s, u, z}, where B is the domain of the given signal
subtype, e.g., B = {D, 1} for a bit signal and B = {D, ... , 255} for an 8-bit
bus signal; s (Stable) represents any arbitrary value from B that does not
change for a specified period of time, its actual value being irrelevant te the

• GHAPTER 2 - A STIMULUS / RESPONSE SYSTEM 2-5

timing specification; =stands for high-impedance, and u means Don't-carc
or UnJ.:'TIown. A timing constraint (or constraint for short) relates a pair
of events. There are two types of constraints: PREG (precedence) and
GONG (concurrency).

PRECrepresents event causality or event occurrence order in general,
and is characterized by a minimum and a maximum time: X PREC(min,
max) y means that event Y must occur after event X by at least min
units of time and at most max units of time. The PREC constraint can be
cxpressed as:

and
ty - tx ~ min

(1)

•

tx -ty ~ -max

where tx and ty are variables that represent the occurrence times of
events X and Y, respectively, and min and max are integers satisfying 0 :5
min :5 max. The graph representation of (1) is in Fig. l(a). The notation
X PREC(min) y is used when max is not specified (i.e., max =00); when
min is not specified, the relation represents X PREC(O, max) Y.

CONC stands for concurrency: X CONC(max) y means that the
occurrence times of X and Y must be separated by at most max units of
time. This is e.'\-pressed as:

ty -tx ~ -max
and (2)

tx -ty ~ -max

where max is an integer such that max ~ O. The graph representation
of (2) is in Fig. l(b).

(a) (b)

•

Figure 1: Graph representation of constraints. (a) PREC constraint. (b)
CONC constraint.

In the rest of this paper, an event and the graph ncde representing
it are used interchangeably. A "path" from event X to event Y means a
directed path from X to Y in the constraint graph. Similarly a "cycle" in
the graph stands for a directed cycle. The "weight" of a path (cycle) is
the SUIn of the weights of the edges forming the path (cycle). The term

"positive path~ (-negative path~) stands for a path with wt'ight strictly
greater than zero (smaller or equal to zero). The notation LP(X}') in­
dicates the weight of the longest path. i.e.. the path of maxilllulll wl·ight.
from l'vent X to l'vent }'. The term "stimulus evenC (-response en'nt")
indicates an l'vent that the DSGRV system must generate (obserw). i.l·..
an input (output) of the system being verified. The set of constraîllts is
saîd to be consistent if there exists a time assignment to the events of thl'
graphs such that ail constraînts are satisfied. It is well-known [5, 20J that
this consistency property holds if and only if there arc no positive cyck'S
in the constraint graph (CG). A positive cycle can be detected as a sidl'
effect of the longest paths computation [21].

When the ~onstraint graph is constructcd, an -Origin- l'vent 0 is
created to represent time 0, and a PREC(O) relation is addcd from 0 to
the first l'vent of l'very signal, and between any two successive l'vents of
the same signal if no other PREC relation \Vas specifie<! bet\Vccn them.
Furthermore, an End event is added \Vith a PREC(O) relation from the
last event of every signai to the End event,

•

•

2-6

4

CHAPTER 2 - A STH/[:LUS / RESPONSE SYSTE.\l

Static Generation of Stimuli

•

In this section, \Ve consider the problem of fixing even. times in a static
fashion, i.e., outside the simulation context, such that ail timing constraints
are satisfied. Only stimulus events are considered in this static context.
As events are assigned occurrence times, the constraint system is modified;
indeed, fixing the occurrence time of an event X to a time tx is equivalent
to adding edges of weight tx and -tx from events 0 to X and X to ù,
respectiveiy. In the following, a "free event" designates an event which
has not yet been assigned an occurrence time. The event becomes a "fixed
event" once it is assigned an occurrence time.

Lemma 1: Given a consistent constraint system and a free event
X picked arbitrarily from the set of free events, the constraint system
remains consistent when fixing X iff tx is chosen such that: LP(OX) ~
tx ~ -LP(XO).

Proof: Let LP(OX) and LP(XO) he the weights of the longest
paths from event 0 to event X and from event X to event 0, respectively
(Fig. 2). Note that the two paths forro a cycle of negative weight due ta
the consistency of the system prior to fixing X. Therefore, the fol1owing
LoIds:

• CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM

LP(OX) :::; -LP(XO)

2-ï

(3)

If we now fix X al sorne lime tx, we add the two edges of weighl tx and
-tx (Fig. 2). The maximum weight cycle involving the -tx edge is of
weighl: LP(OX) - tx; it is of maximum weight because it involves the
longest path from 0 to X. To maintain consistency of the system, the
weight of this cycle must be negative; therefore:

tx ~ LP(OX) (4)

•

•

Similarly, the maximum weight cycle involving the •.,; edge is of weight
tx + LP(XO). To maintain consistency of the system, this weight must
be smaller or equal to 0; therefore:

tx :::; -LP(XO) (5)

It follows from (4) and (5) that LP(OX) :S tx :::; -LP(XO). Note that
this intervai is non-empty due to (3). Similarly, it can he easily shown that
any value of tx outside this intervai creates a positive cycle and thus an
inconsistent system.

Q.E.D.

LP(XO)

LP(OX)

Figure 2: Occurrence intervai of event X.

In the following, the time intervai of Lemma 1 is designated as the
"occurrence interval" of the event.

5 Dynamic Generation of Stimuli

In this section, we consider the problem of dynamically fixing ev>:nt oc­
currence times during simulation. We assume an HDL based behavioral
simulation environment with support for concurrent processes, such as
found in VHDL [14]. Pxocesses have their own internai variables and

• 2-8 CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM

•

•

data-structures. lnter-process communication is performed using signais:
a process reads the values of its input signais and drives valUt'S on its out­
put signais with a delay greater or equal to zero which may result in tilt'
scheduling of l'vents. There is one global simulation time dock in the sys­
tem: processes execute with simulation time frozen and return control to
a global scheduler using the ~WAIT~ synchronization primitive. '.'t'AITs
have resume conditions associated to them such as timeouts. specifie l'vent
occurrences on signais, or combinations of these. The scheduler advanct'S
simulation time depending on the temporallatency of the system and givt'S
control back to the processes for which the WAIT conditions have become
true.

In this model, we view the DSGRV as a process which communicates
with the circuit being simulated via a set of 1/0 signais. A question then
arises as to the synchronization of the DSGRV process with the system
under verification. There are three basic options: 1- one e:'(trcme is to
schedule a1I events in the future when the DSGRV process takes control: 2­
the other extreme is to ft'\(the occurrence instant of at most one l'vent every
time the DSGRV process resumes its execution; then, when the current
time reaches that occurrence instant, drive the corresponding signal with
zero delay; finaily 3- is some intermediate solution whereby each time the
DSGRV process takes control, it schedules groups of events in the future.
Obviously, option 1 does not meet the requirements for DSGRV as outlined
in Section 1. Furthermore, in order to simplify the DSGRV aigorithm, we
choose option 2 over option 3.

In order to generate events dynamica1ly, requirements additional to
those presented in Section 4 must he placed on the generation process
(Rules 1 to 3 below). We use the term "past event" instead of "fixed
event" and "future event" instead of "free event", to indicate the existence
of a forward running time clock.

Rule 1: Iftwo future events X and Y are such that LP(XY) > 0,
then X must he generated before Y.

In the fol1owing, a future event X is "feasible" iffor a1I future events
y =f: X : LP(YX) :5 O. Note that given a non-empty set 5 of future
events, it is aiwa.ys possible to find a feasible event in 5, otherwise there
would he a positive cycle in the constraint graph.

Rule 2: Given two future events X and Y, where X is a feasi-
ble event (i.e., LP(YX) :5 0), the occurrence time of X must he chosen
such that no positive path is crea.ted from Y to X, i.e., the inequality
LP(YX) :5 0 must he preserved.

• CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM 2-9

•

•

Informally. Rule 2 means that the occurrence time of X must not be
chosen in the future of Y. This rule can be applie<! using the following
lemma.

Lemma 2: For two future events X and Y. such that LP(YX) :S
O. the relation LP(}'X) ::; 0 is preserve<! upon the occurrence of X iff the
occurrence time tx of X satisfies: tx ::; -LP(YO).

Prao/: The occurrence of X at tx creates a new Y to X path
of wcight LP(YO) + tx (Fig. 3). ln order to prevent this path from
being positive. we must have: LP(YO) + tx :S 0, i.e.. tx :S -LP(YO).
Note that it is always possible to satisfy Lemma 1 and the bound tx ::;
-LP(YO). This is because these two bounds are conflicting onl~' when
-LP(YO) < LP(OX), i.e., LP(YO) + LP(OX) > O. Since LP(YX) ~
LP(YO)+LP(OX), it follows that LP(YX) > 0, which is in contradiction
with the assumption LP(YX) :S O.

Q.E.D.

LPlYO)

Figure 3: Occurrence of X creates new Y to X path.

Rule 3: The occurrence time ty of a future event Y must l>e such
that: ty ~ tx, where tx is the occurrence time of a past event.

In the following lernma wc show that it is always possible to find a
time ty in the occurrence interval of Y, such that Rule 3 is respected.

Lemma3: Given a future event Y and a past event X, it is always
possible to make Y occur at some time ty that satisfies the bounds of both
Rule 3 (ty ~ tx) and Lemma 1 (LP(OY) < ty:S -LP(YO)).

?roof: Rule 3 contradicts Lemma 1 only when -LP(YO) < tx,
i.e., -LP(YO) < LP(OX) (beca.use LP(OX) =tx after the occurrence
of X). Thisyields LP(YO)+LP(OX) > O. S'mceLP(YX) > LP(YO)+
LP(OX), it follows that LP(YX) > O. This is a contradiction beca.use:
1- LP(YX) \VaS :S 0 before the occurrence of X (otherwise X would not
have been chosen to occur before Y), and,

• 2-10 CH.·\PTER :2 - .-\ STIMrLl'S / RESPOSSE SYSTE.\1

•

2- LP(YX) is guaranteed to stay ::; 0 after tht' occurrt'nCt' of X. dUt' to
Rule 2 and Lemma 2.

Q.E.D.

The following theorem specifies the allowt-d timt' intt·n.ù for tht' dy­
namic generation of an event. This inter\<ù is designak-d as tht' ~ft';\.~ibility

inter\<ù~ of the l'vent.

Theorem 1: Let {Pj} and {Fi} be the set of past and futuf<'
l'vents, respectively. An l'vent X E {Fi} may be dynamically generatt-d
with the constraint system remaining consistent. iff X is chosen such that
"IFi E {Fi}. LP(FiX) ::; 0 and the occurrence time tx of X is chosen such
that: ma..,,(LP(OX).ma.'i:j(tp,))::; tx::; min(-LP(XO),miui(-LP(FiO)))

Prao/: lt follo\\"S directly from Rule 1. Lemmas 1 to 3, and th.. fact
that it is impossible that a future l'Vent Fi is such that: -LP(FiO) < tf~'

where Pj is a past event (the proof is e.'i:actly the sarne as in Lemma :1.
with Pj and Fi being respectively the X and Y l'vents of Lemma 3).

Q.E.D.

6 Improved Dynamic Generation

•

The approach suggested in the previous section for the solution of the
dynamic generation problem is relatively inefficient due to the computation
of longest paths between all pairs of future l'vents, required by Rule 1. In
this section we propose two improvements tbat aIlow the reduction of the
number of future l'vents to be considered in the application of this roll'.

Consider the graph CG" obtained by ignoring the CONC constraints
and by representing each PRECconstraint of the form X PREC(min, max)
Yas an (unweighted) directed edge from X to Y. The resulting grapb is
acyclic (otherwise the original graph CG would contain a positive cycle).
Furthermore, CG" connects ail events of CG and there is a directed patb in
CG" from the Origin 10 every event of CG, because by construction there is
a PREC relation between the Origin and the first l'vent of each signal, and
between any two consecutive events of the same signal. The PRECreiation
thus defines a 1opological sort on the event set. ln the following, we say that
X is a "predecessor" of Y (or Y is a "successor" of X), if X PREC Y;
similarly, we say tha.t X is an "a.ncestor" of Y if there exists Zl'" z"
such that X PREC ZhZ; PREC Z;+lfori = l. ..n,andz" PREC Y.
Furthermore, the term "fronti~" designates the subset of future events for

• CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM 2-11

•

which ail prcdecessors have occurred.

The first improvement limits the computation of longest paths to
the pairs of elements of the frontier. Initially. the frontier contains the
Origin event only; it is then updated incrementally by traversing CG" in
iL PERT fashion [22]. i.e., by inserting an event X in the frontier when
ail its predecessors have occurred and removing X when it occurs. Using
Rule 1 of Section 5 and the fact that X PREC Yimplies LP(XY) ~ O. we
deduce that a necessary condition for an event to be feasible is that ail its
predecessors have occurred; thus the set of feasible events, designated as
the "feasible set". is a subset of the frontier. However, membership in the
frontier is not a sufficient condition for an event to be feasible. For e.'l:ample.
in Fig. 4, assume event V has just occurred, and all other events in the
figure are future events. Event X is in the frontier, since all its predecessors
have occurred. However, X is not feasible, because there e.~sts a positive
path (of weight 10) from future event Y to X (note that Y is not even in
the frontier). In the previous section, the order of occurrence "Y before
X" \Vas established by e.'l:amining the longest paths between all pairs of
future events. Lemma 4 bclow assures that, even \Vhen wc restrict the LP
computations to pairs of clements of the frontier, wc cannot inadvertently
"forget" sueb Y events, and thus the correct order of event occurrences is
preserved.

Frontier

-10

5

-10

•

Figure 4: Frontier event X is not feasible.

Lemma 4: Iffor some event X in the frontier there exists a. future
event Y, sueb tha.t LP(YX) > 0, then either Y is in the frontier, or some
ancestor Z of Y is in the frontier sueb tha.t LP(ZX) > O.

Proof: It stems from the conjunction of the foUowing two fa.cts:
1- The PRECrela.tion defines a. partial order on the events. Furthermore,
due ta the connectivity property of CG" and the ma.nner in whieb the
frontier is built., the frontier is a. maximal unordered set (by the PREC

• 2-12 CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM

•

•

relation). Therefore any future event Y which is not in the frontier must
be ordered by the PREC relation with respect to some clement Z in tll<'
frontier. Since y has not occurred yet. it cannot precede Z. hence it must
follow Z. As a result. any future event Y which is not in the frontier must
have an ancestor Z in the frontier.
2- Since LP(ZY) > 0 (because Z is an ancestor of Y) and LP(YX) > 0
(by assumption). then LP(ZX) > 0 (because LP(ZX) ~ LP(Z}") +
LP(YX)).

Q.E.D.

Note that the size of the frontier is bounded above by the number of
signals in the timing specification. Since this number is in general much
smaller than the number of future events, the pairs longest paths compu­
tation on the frontier proceeds substantially faster than on the complete
set of future events.

Let {Gk } designate the frontier. The second improvement to the dy­
namic generation method consists of eliminating from the feasible set any
frontier event Gl such that LP(OGI) > mink(-LP(GkO)). This is because
iftheree.''Cists an event Gk e {Gk} such that LP(OGIl > -LP(GkO), then
LP(GkGl) > 0 (the proof is trivial). For an event Gl so eliminated, we do
not need to compute LP(GkGI), 'r/Gk e {Gk}.

7 Observation Clf Responses

In this section, wc add the validation of system responses to the dynamic
generation process and present the complete DSGRV algorithm (Fig. 5). ln
addition to timeouts for generating stimulus events, the WAIT condition
in this algorithm considers response event activity and timeouts for the
absence of expected response events. There are two types of response
errors. The first type is signaled by the procedure match-events and is due
to the occurrence of a response event that does not match any event in
the list upected-R-events (this list is the expected response events subset
of the feasible set). Matching is based on signal name, event value and
occurrence time, i.e., the occurrence time of a response event must he in
the occurrence interval (Lemma 1) of the corresponding expected event.
The second type of response error is signaled by the procedure response­
time-out-error when the DSGRV process is woken up due to a response
timeout (i.e., T = maz-R-time) and no response event has occurred; a
response timeout error is then indicated for aU events with expired time
intervals. Note that maz-R-time is the smaUest of the upper bounds of the

• CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM 2-13

•

•

occurrence time intervals in expecled-R-events.

The procedure update updates the frontier and the longest paths.
and it computes the feasible set and maxtime. where maxtime is used in
the computation of feasibility intervals and is equal to mink(-LP(GkO)).
Gk E Frontier. The notation inf(X) and sup(X) indicates the quantities
LP(OX) and -LP(XO), respectively. The Origin and End nodes are
treated as pseudo stimulus events (in the sense that they are assigned oc­
currence times); however their generation does not produce any simulator
event activity.

At this point, it is useful to note that DSGRV is intended to be
a relatively low-level utility on which "intelligent" simulation-based ser­
vices cao be built. For e.'l:ample, choosing event occurrence times to test
"marginal" or "average~ conditions is an interesting problem. The interface
of the DSGRV with the analysis tool that addresses this problern can be
done through the function choose-from-intervaL In our CUITent prototype
implementation of DSGRV, we simply choose the mid-point of (closed) in­
tervals. ln case of serni-infinite intervals (i.e. when LP(XO) = -00), we
choose a constant of!;,et from the interval's lower bound. Random choice
is another possibility.

8 Hierarchical Timing Diagrams

The objectivesofa hierarchical specification of timing diagrams are twofold:
1- facilitate the re-use of previously defined TDs when defining more com­
ple.'I: specifications, and 2- minimize the computation time needed for
longest paths updates in complex timing diagrams.

We have defined two basic TD composition operations: horizon­
tal, i.e. concatenation along the time axis (TDConcat) and vertical, i.e.
putting TDs in concurrency (TDConcur). These composition operations
are expressed in terms ofhierarchical graphs (hgraphs) , as shown in Fig. 6.
In this model, the direct subgraphs (e.g. the Q;'s in Fig. 6) of a given
graph (e.g. P in Fig. 6) are represented by their Origin and End event
nodes. Constraints cao he placed hetween Origin/End nodes of Qi'S and
P; constraint edges are allowed to "traverse" a TD "boundary" only at its
Origin and End nodes. The value of a signal before its first event in a TD
is taken to he equal to the signal value after its Iast event in a previous
TD, or unknown if such a previous event does not exist.

In TDConcat (Fig. 6(30)), any event in Qi occurs after all events in

• 2-14 CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM

•

•

Qi-t have occurred: more specifica.:y. Oi' thc Origin t'vcnt of a givcn Q.
is generated with a delay bctween G; and b; whcn Ei- t • thl' End l'\'l'nt of
Q;-t occurs (or, in thc case of i = 1. after O. the Origin of P. occurs),

In TDConcur (Fig. 6(b)), we note that:

where c is tI,e concurrency time of TDConcur; this imp!ies that: Oi
CONC(c) Oj. Furtl,~rmore,Oi' the Origin event of a given Qi is gencratt'd
with a delay between !l and c when 0, the Origin event of P. occurs. Nott,
that, for a TDConcur composition to be meaningful, the Qi'S must bc
defined over disjoint sets of signals.

The advantage of the hgraph model is that it offers unified represen­
tation and processing of leaf and composite TOs. However, such a model
taken in its full generality, would be unable to limit the ripple effects of
longest paths updates to within the graph where a given event occurs and
thus, would not achieve the efficiency objective stated at the beginning
of this section. Instead, we take advantage of the special characteristics
of TDconcat and TDConcur to dcfine hgraph ", a restricted hgraph model
for which an efficient LP update algorithm can be defined. This is donc
while at the same time, conserving the advantage of a unified r 'presenta­
tion and processing of leaf and composite TOs. Furthermore, the hgraph"
mode! is general enough to support the definition of new TO composition
operations.

In the following, Q; is a direct subgraph of a graph P, 0 and E
designate the Origîn and End events of P, and 0; and E; designate the
Origîn and End node of Q;. Furtherrnore the notation 00; designates a
path from 0 to Oi and W(OOi) designates the weight of this path. For
the purpose of characterizing the hgraph" mode!, we consider a reduced
hierarchica1 graph in which each Iea!graph Qj is represented by its Oj and
Ej nodes and by the two arcs OjEj and EjOj of weight LP(OjEj) and
LP(EjOj) respective!y, where these longest paths are computed strictly
inside Qj. The characteristics of a graph Qi in the hgraph" mode! are as
follows:

1. Only PREC relations are used ifQi is a non-Ieafgraph (i.e. no CONC
relations are alIowed; note however that TDConcur is alIowed at any
leve! of the hierarchy).

2. 300.. "IOOi, W(OOi) ~ 0 and OOi is strictly outside Qi.

• CllAPTER 2 - A STIMULUS / RESPONSE SYSTEM 2-15

•

•

3. 30};;. '10};;, w(O;Ë;) ~ 0 and O};; is strictly inside Q;.

4. '10Ë;, OË; is a concatenation of a OÔ; and a a};;, where these
two paths are according to the above two characteristics.

5. '1E'(o;, if such (a) path(s) exist(s), EiOi is "rictly inside Q;.

6. 3E"(E. '1E~E, w(E"(E) ~ o.

The above characteristics imply that for any event X in a non-leaf
Qi, LP(OX) and LP(XO) depend strictly on events of P which are in the
past of Oi, and on events of Qi which are in the past of X (in the case of a
leaf-level Qi, these longest paths can also depend on events of Qi which are
in the future of X, however they do not depend on future events outside
Qi).

Another consequence of the above characteristics is that, for any
pair of frontierevents XI in QI and X2 in Q2, LP(XIX2) = LP(XIO) +
LP(OX2). This is because there are no X;>:2 paths that pass through the
future of Xl or X2 and because all predecessors of XI and X2 have occurred
(since Xl and ."<2 are frontier events). As a result, longest paths between
pairs of frontier events of different subgraphs need not be computed in
determining feasible sets. Instead, to determine if there is a positive path
between Xl and X2, it is sufficient to compare LP(XIO) to LP(OX2).

Using bottom-up recurrence across the hierarchy, it can be easily
proved that the longest paths properties of the non-leaf graph Qi can be
extended to LP(O'X) and LP(XO') where 0' is the Origin of any graph
which recursively contains Qi. The consequence of this is that when event
X occurs, longest paths update operations need he performed only in Qi.
Actually, the update operation can he limited to the events in the (up­
dated) frontier ofthis graph and can he performed in 0(1) time (assuming
a Uconstant" fan-out degree of event nodes).

The hierarchical DSGRV process starts at the root TD and pro­
gressively advances its frontier, recursively opening lower level TDs in a
top-down fashion, as the Origin events of these TDs occur, then closing
the TDs in a bottom-up fashion, as their E.o.d events occur. Each TD in
the hierarchy stores its frontier, feasible set, maxtime, and list of active
children. A child of a TD is said to he active if its Origin event has already
occurred, and its End event has not occurred yet. The frontier of a TD
contains events that are strictIy local to the TD, while the feasible set and
maxtime of the TD are cumulative for the whole subtree headed by the
TD.

• 2-16 CHAPTER 2 - A STIMULUS / RESPOSSE S) ·STE.\!

•

•

When an l'vent occurs. update operations are performed by tilt' pr<>­
cedure h-updatc (Fig. il. i.e. the cali to updatc(cvcnt. TD) in Fig;. ;; is
replaced by the cali to h-update(cvcnt. TDPath(cvcnt)). TDPAth is an
ordered list of TDs. from the root to the ~owner~ TD of tht' e,','nt. wher<'
the owner is the TD that had requested execution of the l'vent, TIll' up­
date operation consists first of locally updating the LPs and the fronti"r
in the owner TD. Note that the procedure updatc-fronticr-alld-LPs has
different metbods of longest patb computation in leaf TDs and composit"
TDs (since in Ieaf TDs tbe longest patbs can depend on l'vents of th,' TD
which are in the future of the TD's frontier).

Then. if the l'vent is the Origin of a child TD, the parent TD rt"

moves the l'vent from its frontier. puts the corresponding child TD (trig­
geredTD(event)) on its active list of children and initiates the child TD
for c-xecution. If on the other hand, the l'vent that occurred is the End
l'vent of a TD. the TD removes its End node from its local frontier. Th,'
parent TD recognizes that one of its children has terminated execution
when it receives an empty feasible set from that child TD; the parent TD
then removes the terminated child TD from its active list of children and
puts the successor(s) of the occurred End l'vent in its frontier. For conve­
nience, an Origin (resp. End) l'vent is represented by two distinct objects
in both the TD it starts (resp. ends) and in the parent TD; the accessor
assocïated-event(event) allows to pass from one representation to the other.

Next, feasible set update operations (implemented by h-compute­
feasibIe-set, Fig. 8) are performed bottom-up from the owner TD; at each
ancestor of that TD, the feasible set is combined with the feasible set of
other branches of that ancestor, and with the local frontier of the ances­
tor. Note that pairs longest paths are computed only in the case of leaf
TDs. The feasible set that results at the root TD is then used for stimulus
generation and response validation, as in the "fiat" algorithm.

Finally, note that ail l'vent times and longest paths are with respect
to the Origin of the root TD; this is done by initializing inf(Origin) and
sup(Origin) of a given TD to the actua1 occurrence time of the Origin,
instead of zero as was done in the "fiat" case.

9 Experimental Results

We have implemented the DSGRV algorithm in VHDL and run experi­
ments using different microprocessor bus operations. One series of exam­
pies we present here is the simulation of READ transactions between an

• CHAPTER 2 - .4. STIMULUS / RESPONSE SYSTEM 2-17

•

•

Intcl8085 CPU [23] (Fig. 9 and Table 1) and an 8355 ROM \VITH 1/0 [23]
(Fig. JO and Table 2). The experiments are performed on a SUN 3/260
running Intermetrics VHDL.

Each chip is modcled as a separate DSGRV process using the speci­
fications of Figures 9 and JO and Tables 1 and 2. The READ operation is
performed without wait states (i.e. the READY signal is not used). The
IOW input line of the 8355 is not modeled, since it is used only for the 1/0
section of the chip. The CE (chip enable) bit of the ROM is driven by bit
.4. 11 of the CPU Address bus. Bits A12 to AIS of the CPU Address bus are
left unconnected (they are outside the address range of the ROM). The
rest of the Address bus and the AD (multiplexed Address/Data bus) are
modcled as integer types (i.e. one "linen carrying an integer value for each
bus). The other connections between the CPU and the ROM are evident
from the corresponding port names. The input events that correspond to
the beginning of expected valid Address/Data windows (windows labeled
ADDRESS, DATA and DATA IN in Figures 9 and 10) are assigned the
symbolic value Stable. The corresponding output Data or Address transi­
tions generated by the DSGRV process on the driving side, are replaced
by constants (address to be read and data content at tl:is address)j these
constants are passed as arguments to the TDs at instantiation time of the
TD hierarchy.

In the first e.'qleriment, a single READ operation is performed. Each
DSGRV process contains a single "flatn graph describing the corresponding
READ operation (Figures 9 and 10). The event activity resulting from the
simulation is given in Table 3.

In the second experiment, two consecutive READ operations are per­
formed. Bach DSGRV contains a "flatn graph consisting of a "flatn con­
catenation of two READ operations.

In the third e.'qleriment, the same two consecutive READ opera­
tions are performed. However this time, each DSGRV contains an hgraph
consisting of a TDConcat composition of two READ operations. It is in­
teresting to note that the CPU specification is sucb that there are events
near the end of the READ operation that impose constraints on events
at the beginning of the next READ. For example, the rising edge of ALE
(Address Latcb Enable) at the beginning of a READ operation must be
after the rising edge of the RD signal in the previous READ operation
by a minimum of tCL (50 ns). Similarly, the stable Address transition at
the beginning of a READ must he after the rising edge of the RD signal
in the previous READ operation by a minimum of tCA (120 ns). Sucb
constraints cannot he represented sinee, in the hierarchical graph mode!,

• 2-18 CHAPTER 2 - .4. ST/;\WLt'S / lŒSPONSE SYSTE.\I

•

•

ail inter-l'D, .nstraints must pass through Origin or End nodes of 1'Ds.
The specification of the CPU was thercfore slightly modified as follows:
A separation of a minimum of teL (50 ns) was specified between the Iwo
concatenated READ operations and an edge of weight tc..! - tCL (iD ns)
was added from the Origin e"ent of the READ TD to the Address Sta­
ble transition. Further investigation is necded to determine how to handlt'
such cases without modifying the specifi.cations nor flattening the hierarchy
(which would yield slower DSGRV run-times).

The number of nodes and edges used in each DSGRV process and the
run-time of the experiments are shown in Table 4. The columns labeled
Nodes and Edges in this table account for ail graph nodes and edges. respec­
tively, III the corresponding DSGRV process, including those attributed to
the different Origin/End nodes. The column labeled evcnt.:/scc shows the
"true" performance of the simulation, i.e. it accounts only for the events
which generate simulation activity (this thcrefore excludes Origin/End
"l'vents"). We cau sec from Table 4 that in the case of "fiat" specifi­
cations, the number of l'vents processed per second decreases by the same
factor as that of the increase in the size of the TD. This is of course due
to the longest path algorithm in leaf TDs. However, in the ca.se of hierar­
chical specifications, the performance of the DSGRV process in numbcr of
processed l'vents per second, is practically independent of the sizc of the
data sd.

We conclude this section by outlining other limitations that we have
encountered while using the DSGRV system.

• The DSGRV system is presently unable to model OR-type con·
straints (Le. carliest firing l'vents). For example, it is not uncommon
to sec the output bus drivers of DRAM chips be controlled by two
signais such that, as soon as one of the two control signais is disabled,
it tums tàe drivers off. Handling such cases requires a generalization
of the longest paths algorithm. As for frontier updates, the rule for
carly firing l'vents would be to put the l'vent ie the frontier as soon
as one of its predecessors occurs.

• Another limitation of the DSGRV system is the absence of condition­
ais and states in the semantics of the mode!. Although we have im­
plemented a TDChoice compositioll operation, the branching mecha­
nism is under sole control of the user (through a user-written VHDL
procedure whichdoes the actual choice during the simulation run­
time, with the he!p of the standard VHDL signal predicates). In
order to improve the functionality of TDChoice, the system must

• CJIAPTER 2· A STIMULUS / RESPONSE SYSTEM 2·19

•

•

be able to automatically ~match" multiple TDs in parallel, against
observed events, and progressively eliminate those TDs which do not
match the observed activity (such functionality is needed for exam·
pie in the case of a memory component which must ~decide" which
operation the CPU is requesting). This functionality is, however.
'luite simple to integrate with the DSGRV algorithm presented here.

10 Conclusion

We have presented a novel approach to stimulus generation and response
validation, based on timing constraint graphs. The merit of our approach
is that it allows the stimulusfresponse system to dynamica1ly interact with
the circuit during the simulation run-time, thus allowing the generation of
stimuli that depend on the response time of circuit outputs. We have ex­
tended the stimulusfresponse system to hierarchica1 constraint graphs and
shown that this e.'l:tension improves the simulation run-time at the expense
of sorne loss in power of e.',pression, namely that constraints that cross hier­
archical boundaries cannot be elI.-pressed without sorne modifications to the
original specifications. Finally, we have identified areas of future work such
as the e.'l:tension of the model to include conditional execution semantics
and early firing events.

References

[1] R.B Hitchcock. Timing verification and the timing analysis problem.
In ACM/IEEE Froc. 19th DAC, pages 594-604, 1982.

[2] T.G Szymanski. LEADOUT: A static timing analyzer for MOS cir­
cuits. In IEEE Froc. ICCAD-86, pages 130-133, 1986.

[3] M.R Dagenais and N.C Rumin. On the calculation of optimal clocking
parameters in synchronous circuits with level-sensitive latches. IEEE
Transactions on CAD, 8(3):268-2i8, March 1989.

[4] G.V Bochman. Hardware verification with temporal logic: An ex­
ample. IEEE Transactions on Computers, C-31(3):223 231, March
1982.

[5] F. Jahanian and A.K.L Mok. A graph-theoretic approach for timing
analysis and its implementation. IEEE Transactions on Computers,
C-36(S), August 198i.

• 2-20 CHAPTER 2 - A STIMl'Ll'S / RESPOS5E S)"51'E,\1

•

•

[6] K. Nakade. T. Yoneda. and Y. Tohma. :\ fast timing wrilkatilln
method based on the ind..pendencc of units. ln IEEE l'roc. l!llh
FTCS. pages 134-141. 1989.

[il G.J Milne. Timing constraints: Formalizing thcir description and
verification. In Proc. 9th IFIP Symposium on CHDLs. pagl'S 1O:l·
116. 1989.

[8] R.H Lathrop and R.S. Kirk. An extensible object-oriented mixed­
mode functional simulation system. In ACM/IEEE Proc. :!:!Ild DAC.
pages 630-636. 1985.

[9] Y. Huh, D.C Luckham, L.M Augustin, B.A Gennart. and A.C Stan­
culescu. Verification of VHDL designs using VAL. ln ACM/IEEE
Proc. !!5th D.4C, pages 48-53, 1988.

[10] D.T ~nlIer, M. Abramovici, J.J Kulikowski, and P.R Menon. System­
level design verification at the AT&T computer division: Tools. In
IEEE Proc. ICCD-89, pages 548-554, 1989.

[11] G. Borriello. A New Interface Specification MethodolO9!f and il... ,\ppli•
cation to Transducer Synthesis. PhD thesis, University of Califomia,
Berkeley, 1988.

[12] T. Gahlinger, J.A Brzozowski, and F. Mavaddat. Consistency and
satisfiability of waveform timing specifications. Research Report CS­
88-24, University of Waterloo, 1988.

[13] R. Rastogi, A. Kara, and K. Kawamura. TDS: An e."<pert system to
automate timing design for interfacing VLSl chips in microcomputer
systems. In IEEE Proc. ICCAD-86, pages 362-36(;, 1986.

[14] IEEE. IEEE Standard 1076-1987, VHDL Language Reference Man·
uaL IEEE, 1987.

[15] R. Mathews I.M Watson, J.A Newkirk and D.a Boyle. ICTEST: A
unified system for functional testing and simulation of digital IC's. In
IEEE Proc. ITC-82, pages 499-502, 1982.

[16] J. Ivie and K. Lai. STL: A high-level language for simulation and test.
In Proc. !!3rd DAC, pages 517-523, 1986.

[17] A. Gilman. Logic modeIing in WAVES. IEEE Design and Test of
Computers, pages 49-55, June 1990.

• CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM 2-21

•

•

[18] S.K Sherman. Algorithms for timing requirement analysis and gener­
ation. In ACM/IEEE Prac. 25th DAC, pages i24-i2i. 1988.

[19] S.? Levitan, A.R Martello, and D.M Chiarulli. Timing verification
using HDTV. In ACM/IEEE Proc. 27th DAC, pages 118-123, 1990.

[20] E.L Lawler. Combinatorial Optimi:ation: Networks and Matraids.
Holt, Rinehart, and Winston, New York, 19i6.

[21] R.E Tarjan. Data Structures and Network Algorithms. SIAM,
Philadelphia, 1983.

[22] J.J Moder and C.R Phillips. Praject Management with CPM and
PERT. Van Nostrand, New York, 19iO.

[23] Intel Corporation. MCS-85 User's ManuaL Intel, Santa Clara, CA,
19i5.

• 2-22 CHAPTER 2 - A STIMULUS / RESPONSE SYSTD/

•

•

PROCESS DSGRV(TC. stimulus_signals. response_signals)
S_cvent := origin(TD); S_time := 0; feasible_set := {S_event};
expected-R_events := NULL; max_R_time := +infinity;

while feasible_set not empty do
T := get_current_simulation..timeO;

,* GENERATE *,
if «T =S_time) and (S_event =, NULL»

then occur_now(S_event); ,* make X occur with 0 delay *,
end if;

,* OBSERVE t VALIDATE *,
actual_R..events := get_aetual_R..eventsO; ,* query sim. *,
if actual_R..events

then
occurred-R..events :=

match..events(actual_R..events. expected-R..events);
elseif (T = max-R..time)

then
response_time_out_error(expected-R..events);

end if;

,* UPDATE *,
loop for event in {S_event} U occurred-R..events

do
(feasible_set. maxtime) := update(event. TC);

end loop;
expeeted-R..events := get_response_events(feasible_set);
max..R..time :" min..over_[X in expeeted-R..events] (sup(X»;

,* CBOOSE *,
S_event := choose_stimulus_event(feasible_set);
S_time :" choose_from..interval[max(int(S_event). T).

min(sup(S_event). maxtime)J;

,* liAIT *,
timeout :" (min (max..R..time. S_time» - T;
"ait on response_sigDals for timeout;

end "hile;
end DSGRV•

Figure 5: DSGRV Algorithm.

• CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM 2-23

o

p

a1 01 E1 a2 02 E2401 02_................•
·b1 -b2

E

•
o

(a)

01

Q2

..

(b)

E1
p

E

•

Figure 6: TD composition. (a) TDConcat composition. (b) TDConcur
composition

• 2-2-1 CHAPTER :2 - A STBH'Ll'S / IŒSPONSE SYSTEM

•

•

PROCEDURE b..upciate(event. TDPath)
TD := first(TDPath);
if (rest(TDPath)) /- event belongs to a lover level TD -/

then /- recursive caU on chilci TD -/
(chilciFeasible_set. Chilclllaxtime) :'"

h..upciate(event. rest(TDPath));
if (empty(chilciFeasible_set))

,- event vas the Enci event of the chilci TD -/
then

/- remove the chilci TD from
the active chilciren list of this TD -/

activeChilciren(TD) :=
activeChilciren(TD) - first(res. (TDPath));

/- get successors. in this TD.
of the terminateci chilci TD -/

upciate_frontier_ancl.-LPs(.usociatecl.-event(event). TD):
enciif;

else ,- event belongs to this TD -/
,- get successors of event in this TD -/
upciate_frontier_ancl.-LPs(event. TD);
triggeredTD := triggeredTD(event);
if triggeredTD /= HULL

,. i.e •• event is also Origin event of a child TD .,
then
/. add child to active chilciren list of this TD ./
aetiveChilciren(TD) :=

activeChilciren(TD) U {triggeredTD}:
/. update the child TD .,
h..update(associatecl.-event(event). list(triggeredTD»;

endit;
endit;
(feasible_set. maxtime) :'" h..compute_feasible_set(TD);
return(feasible_set. maxtime);

end h..update.

Figure 7: Hierarchical graph update algorithm•

• CHAPTER 2 - A STIMULUS / RESPONSE SYSTEM .) ?~
_"-V

•

PROCEDURE b-compute_feasible_set(TO)
maxtime(TO) :"

min(min_over_CX in frontier(TO») (sup(X».
min-over_[Child in activeChildren(TO») (maxtime(Child»);

feasible_set :. union(frontier(TO).
union-over_[Child in activeChildren(TO»)

(feasible_set(Child»);
feasible_set :=

remove_from(feasible_set. (X 1 int(X) > maxtime»;
if (leafTD(TD»

then
compute-pairs_longest-paths(feasible_set);
feasible_set :.
remove_from(feasible_set.

(X 1 thereExists(X') and LP(X'X) > 0»;
endif;
feasible_set(TD) :a feasible_set;
return(feasible_set(TD). maxtime(TD»;

end b-compute_feasible_set.

Figure S: Hierarchical feasible set computation algorithm.

Figure 9: CPU READ - Tuning Diagram.•

.......5

• LlCK r r;;l~~~Tl

l.-. OL=':' -1 '-- C...-./

"-' _.- CI
~. Ir-u !FR _ ft'~-'-OL- 1...l1.._ L

...... LL-~.--- -La.--l
J

~.

\ 1

• 2-26 CHAPTER 2 - A STBWLl'S / RESPOSSE SYSTEM

Table 1: CPU READ - Timing Con~traillt~_

•

•

Symbol Parameter Mi:,_ Ma.,,_ Units
TCI'C CLK Cycle Period 320 2000 os
t1 CLK Low Time SO n$

t~ CLK High Time 120 hS

tAL Address Valid before
Trailing Edge of ALE 110 us

tLA Address Hold Time After ALE 100 ns

tLL ALE Width 140 ns

tLcK ALE Low During CLK High 100 os
tLc Trailing Edge of ALE to

Leading Edge of Control 130 os
tAFR Address Float After

Leading Edge of READ(INTA) 0 ns
tAD Valid Address to Valid Data ln 5i5 ns
tRD Read (or lNTA) to Valid Data 300 ns
tRDH Data Hold Time After READ (lNTA) 0 ns
tRAE Trailing Edge of READ

to Re-Enabling of Address 150 ns
tCA Address (AS-A15) Valid After Control 120 ns.
tDw Data Valid to Trailing Edge of WRiTE 420 ns
tWD Data Valid After Trailing Edge of WRiTE 100 ns

tcc Width of Control Law (RD, WR, lNTA) 400 ns
tCL Trailing Edge of Control

ta Leading Edge of ALE 50 ns
tARI' READY Valid From Address Valid 220 ns
tRYS READY Setup Time

to Leading Edge of CLK 110 ns
tRYH READY Hold Time 0 ns
tLDR ALE ta Valid Data ln 460 ns
tRV Control Trailin~ Edge ta Leading

of Next Control 400 Ils

tAC Address Valid ta Leading Edge of Control 270 ns

• CHAPTER 2 - A STIMULUS / RESPONSE S)'STEM 2-27

A8-A10

PDO-A07

ce

ALE

RD

IDW

1=; AL- L

i-l-RD-

--. AL-
..::t.ù><.~ RDeJ. li:::I:-woD LRDF

1-1 LL-!ot.L~ """LCL--l
J

:---. Rv-!

...-\ 1

•

•

Figure 10: ROM READ - Timing Diagram.

Table 2: ROM READ - Timing Constraints.

Symbol Parameter Min. Max. Units
Tcyc CLK Cycle Period 320 ns
n CLK LowTime 80 ns
T2 CLK High Time 120 ns
tAL Address to Latch Set Up Time 50 ns
tLA Address H"ld Time After Latch 80 ns
tLC Latch to READ/WR1TE Control 100 ns
tRD Valid Data Out Delay from Rea.d Control 1iO ns
tAD Address Stable to Data Out Valid 400 ns
tu Latch Enable Widi.!1 100 ns
tRDF Data Bus Float After Rea.d 0 100 ns
tCL READ/WR1TE Control to Latch Enable 20 ns
tcc READ/WR1TE Control Width 250 ns
tDw Data ln to WR1TE Set Up Time 150 ns
tWD Data ln Hold Time After WR1TE 10 ns
tRv Recovery Time between Controls 300 ns
tRDE Data Out Delay from READ Control 10 ns

• 2-28 CHAPTER :! - A STIMULUS / RESPOSSE SYSTE.\/

Tablc 3: E\'cnt acti\'ity for onc READ transaction.

Gencratcd by CPU: CLK = lo\\' at a us
Generate<! by CPU: ALE = high at 30 ns
Generate<! by CPU: A[8-10] =5 at 60 ilS

Generate<! by CPU: AO[0-7] = 230 at 60 ns
Generate<! by CPU: CE = low at 60 ns
Generate<! by CPU: CLK = high at 140 ilS

Generate<! by CPU: ALE = lo\\' at 185 ns
Generate<! by CPU: CLK = low at 320 ilS

Generate<! by CPU: CE = high at 332 ns

Generate<! by CPU: RD = low at 332 ns
Generate<! by CPU: AO[0-7] =z at 332 ns

Generate<! by ROM: AO[0-7] =U at 337 ns
Generate<! by ROM: AO[0-7] = 123 at 398 ns
Generate<! by CPU: CLK = high al 460 ns

• Generate<! by CPU: CLK = law at 640 ns
Generate<! by CPU: CLK = high at 780 ns
Generate<! by CPU: RD = high at 845 ns
Generate<! by ROM: AO[0-7] =z at 895 ns

Table 4: Run-time performance of DSGRV.

•

Experi- Nodes Edges time eventf
ment CPU ROM CPU ROM (sec.) sec.

1READ 20 20 66 68 5.0 7.2

2READ 38 38 140 142 19.9 3.6
ilat

2READ 42 42 138 142 10.4 7.0
hgraph

•

•

•

CHAPTER 3

MODELING AND EXECUTION
OF TIMING DIAGRAMS WITH

OPTIONAL AND MULTI-MATCH
EVENTS

ABSTRACT

We present a taol that captures the interface specification of a hard­
ware module from a set of timing diagrams. The specification is interpreted
as an operational mode!. Upon execution, the mode! validates the module
input events and produces its output events. Our main contribution is the
extension of an existing event-based specification method to support the
concepts of optional events (events that do not always have to match actual
event occurrences) and multi-match events (events that cao match multi­
ple actual event occurrences). These concepts are necessary in specifying
the interface behavior of most digital systems.

3-1

• 3·2 CH.·\PTER :i - OPTIOSAL & .\lrLTI-.\IATCH E\'EST~

•

•

1 Introduction

An abstraction paradigm that is gaining acceptanc<' in the timing anal­
ysis of large systems. is that of an interfacl' specification [1. 2. 3..1. ;.].
This is an event-based description that captures the causality :uld timing
relations between l'vents at the 1/0 ports of (usually high-level) modult-s
of the system undcr verification. ln [6]. the interface spl'Cification of a
module is captured in the form of a hicrarchy of timing diagrams (l'Os)
[il and is internally represented by a hierarchical constraint graph. l'hl'
specification is then interpreted as an executable (simulation) mode!. Dur­
ing the execution. the constraint graph hierarchy is traVCI'Sl-d in order to
validate the module input l'vents and produce its output l'vents according
to the specifications. The algorithm of [6] is adequate for fully sp<'Cilil'Ci
values. e.g.. O. 1, or z bit values. ln sucb a mode\. l'very specifi..-d l'vent
must be matcbed once. and only once in a given execution of the 1'0.
However. the specification of certain types of timing constraints (e.g.. set­
up and hold times) in the conte:'l:t of an event-based model, rcquires the
use of symbolic l'vent values sucb as "'àlid and Don't-care. Events with
sucb values cannot be handled by the approach of [6]. ln this paper, wc
introduce two new l'vent types: optiona1 events (l'vents that do not always
have to match actual l'vent occurrences) and mufti-match cvenL< (l'vents
that can match multiple actual l'vent occurrences), and we consequently
e."I:tend the execution model of [6]. A concept similar to a multi-match
l'vent was proposed in [8] for the synthesis of asynchronous circuits from
Signal Transition Graphs.

The rest of the paper is structured as follows: Section 2 presents our
mode! and terminology. Section 3 presents the input validation algorithm
for the restricted case of fully specified logic patterns. Sections 4 and 5
address the problerns related to optional and multi-match l'vents, respec­
tively. Section 6 extends the system to output l'vents. Section 7 discusses
limitations of the system, and Section 8 concludes the presentation.

2 The Model

An interface specification consists of a set of signais and a set of timing
constraints. Ea.ch signal is composed of an ordered sequence of events,
designated as spec events. Given a spec event E on a signal 5, the notation
nert(E) designates the spec l'vent which is next to E in the sequence of
spee events of 5.

• CHAPTER:J - OPTIONAL & lHULTI-MATCH EVENTS 3-3

•

An event value indicates the value of the corresponding signal after
the occurrence of the event. Event values are in the set V = Bu {=, v, u}.
where B is the domain of the given signal subtype, e.g., B = {0,1} for a
bit signal or B = {O, 255} for an S-bit bus signal; =stands for high­
impedance; v (Valid) represents any arbitrary value from B that does not
change for a specified period of time, its actual value being irrelevant to the
interface specification; and u means Unspecified, Un/,:'Tlown, or Don't-care.
It is assumed that for any spec event E, E and next(E) have distinct values.
Event values other than u and v are said to be Jully specified values. A spec
event whose value is fully specified is a Jully specified event. The direction
mode of a spec event is Uinput" or Uoutput". Unidirectional signals have
a single mode of spec events (input only or output only). Bidirectional
signals can have both modes.

Timing constraints are represented by a direeted constraint graph,
where nodes represent events, and a directed edge of weight a from node
X to node Y represents the timing constraint: ty - tx ~ a, with tx
and ty representing the occurrence times of events X and Y, respeetive1y.
There are two primitives for speeifying timing constraints (Fig. 1): PREC
(precedence) and CONG (concurrency). X PREC(min, maz) Y means
that event Y must occur after event X by at !east min units of time and
at most maz units of time. The PREG constraint can be expressed by the
two inequalities: ty - tx ~ min and tx - ty ~ -maz, where min and
maz satisfy 0 $ min $ maz. The notation X PREC(min) Yis used when
maz is not specified (Le., maz = 00). X CONC(ma;,;) y means that the
occurrence times of X and Y must be separated by at most maz units
of time. This is expressed by the two inequalities: ty - tx ~ -maz and
tx - ty ~ -maz, where maz ~ O.

min

ŒIl ~
-max

(a)

·max

®I ~
-max

(b)

•

Figure 1: Graph representation. (a) PREC. (b) CONC.

An "Origin" pseudo-event 0 is created to represent time 0, and a
PREG(O) relation is added from 0 to the first spee event of every signal,
and between any 3pee event E and next(E) (if there is a next(E)). Fur­
thermore, an End pseudo-event is added with a PREC(O) relation from
the last event of every signal to the End event. The notation LP(XY) in­
dicates the weight of the longes! (i.e., of maximum weight) directed path,
from event X to event Y. An event X is said to he a predecessor of an

• 3-4 CHAPTER 3 - OPTIONAL & MULTI-MATC/i E\'ENTS

event y, if X PREC Y, or if there exi~ts ZI ... Z" such that X PREe ZI.
Zi PREe Zi+lo for i = l ... n. and Zn PREC L Furthermorc, l'\'l'nt .\
is a generali=ed predecessor of Y. if LP(XY) > O. Note that this docs 1101

imr1y that.'li: is a predecessor of Y. e.g.. in Fig. 2(a), LP(.XT) = 20 and .\
is not a predecessor of Y. The consistency of an interface specification. i.l'..
whether Lhere exists an assignment of event times such that ail constraints
are satisfied, is solved [2, 3] by detecting cycles of positive weight in the
graph. The satisfiability of safety constraints by causality constraints, i.e.,
whether ail possible time assignments that satisfy the causality constraints
also satisfy the safety constraints, can be solved [1,2] by comparing longest
paths between pairs of events in the constraint graph.

Figure 2: Event X is a generalized predecessor of Event Y. (a) Specifica­
tion. (b) Y occurs at t =100.•

3

(a)

3

(b)

•

We assume an HDL based behavioral simulation environment with
concurrent processes, such as in VHDL [9]. Processes relinquish control to
a scheduler using "WAIT" instructions that have resume conditions such
as timeouts and/or specific event occurrences on signais. The scheduler
advances time depending on the temporallatency of the system and gives
control back to the processes for which the WAIT conditions have bec:ome
true. In tbis context, the executable model of an interface specification is a
process wbich communicates with other processes via its set of1/0 signais.
Events wbich occur during the simulation are designated as actual events;
they must be matched against spec events. The rules for value matching
are given in Table 1 for the case of bit values. These rules cao be easily
generalized to bus signais by substituting 0 •.. 2" - l, where n is the bus
size, for {D, 1} in Table 1. When the intent is clear, we will simply use the
terrn event to designate a spec or an acttl.ai event.

When an actual event is matched against a spec event X at time
tx, two edges of weight tx and -tx from events °to X and X ta 0,
respectivelyare inserted in the CG. From tbis, the following result cao be
easily proven [10].

Lemma 1: The constraint system remains consistent when X is

• CHAPTER 3 - OPTlONAL & MULTI-MATCH EVENTS

Table 1: Event value matching.

3-5

spec values
o
1
z

u

mi\tching actual values
o
1
z

0, l, V

0, 1, z, v, u

•

•

matched at tx iff tx is such that: LP(OX) :s tx :s -LP(XO).

ln the following, the time interval of Lemma 1 is designated as the
occurrence internal of event X and is denoted by [X]. The notation inf(X)
(resp. sup(X)) stands for LP(OX) (resp. -LP(XO)) The current event
(CE) of a given signal is the spec event following the last occurred spec
event on the signal. The CE is nil if all spec events for that signal have
occurred. The CUITent event set (CES) is the set of current events over the
signal set•

3 Validation of Fully Specified Events

ln this section, we consider the problem of input validation restricted to
Jully specified events. The validation algorithm is shown in Fig. 3. The
process iterates until the current event set is empty. At each iteration,
the process WAITs for actual input event activity, and if no sucb activity
occurs before the time T = max-time, a timeout occurs. Max-time is the
smallest SUp(Xi), where Xi spans the set of current events. The procedure
update in Fig. 3 updates the longest paths and the current event set (i.e.,
if a spec event E of a signal S is matched, CE(S) is assigned the value
next(E)).

There are t.hree type> of invalid situations. The first type, signaled
by the procedure match-or-error, is due to the occurrence of an input
event that does not match the current spec event of the corresponding
signal. Matching is based on signal name, event value and occurrence
time, as given by Lemma 1. The second type (time-out-error) occurs
when the process is woken up due to a timeout (i.e., T = max-time) and
no input event has occurred. The third type (precedence-error) is due to
the occurrence ofan event Y that violates a generalized precedence relation
with respect to some yet unoccurred event X (i.e., X should have occurred

• 3-6 CHAPTER 3 - OPTIONAL & MULT!-MATCH E\'ESTS

•

•

before V). The effect of V's occurrence is that sup(X) bt'COlllt'S smaller
than the current simulation time, For example. in Fig. 2(b). e\'t'nt Y
occurs at t = 100. making the sup of the yet unoccurrl'd l'vent X tak,'
on the value sup(X) = sa (i.e.. smaller than the current time 1 = 100).
We say that X is "projected into the past". ln order to detect precedenc,·
errors, it is sufficicnt to check whether there exists a current l'vent that has
a sup value smaller than the current simulation time. 1ndœd. since thert'
is a PREC(O) relation between any l'vent E and next(E). the sur of tht'
signal's current l'vent is the smallest of the sup of all unoccurred l'vents of
the signal.

4 Optional Events

ln general, not all spec l'vents have to match an actual l'vent occurrence
during execution. An e."<ample of this is a data change l'vent El that pre­
cedes a dock l'vent E,. by a required minim:Jm set-up time t.u (Fig. 4(a)).
However the data change does not need to occur. Such spec l'vents arc
designated as optionaI events. An l'vent which is not optional is said to
be necessary. Note that whether a spec l'vent is optional or necessary,
cannot always be determined statically. For example if two spec l'vents E
and F have values v and l, respectively, and F is next(E), then F could
be optional or necessary, depending on the value of the actuaI l'vent that
matches E.

In order to hd.lldIe optional l'vents, we relax the "timeout error" rule.
The new rule states that it is legal to reach a timeout for a spec l'vent
E (Le., to have the current simulation time advanœ to sup(E) with no
actual l'vent activity on the corresponding signal) if the current value of
the signal matches the spec l'vent value. It is an error if the values Jo not
match. For example, iI1 Fig. 4(b) assume that El and E,. are the CE's of
the data and dock signaIs, respectively. Assume further that the ::ontext
of execution is such that [El] = [10,90] and [E,.] = [50,100]. At time
t =90, a timeout occurs for l'vent El, The actual signal value of the data
must he tentatively matched against the spec value, v, of spec l'vent El'
If the match is successful (this is the case if the data is one of {a, l, v}),
the tirneout is <teœpted and the CE for the data signal becomes s.s, else
an error is flagged.

The "precedenœ error" rule needs to he relaxed in a similar manner.
The new rule states that it is acceptable for a spec l'vent E to he "projected
into the past" (i.e., ta have sup(E) smaller than the current simulation

• CHAPTER 3 - OPTIONAL & MULTI-MATCH EVENTS 3 --,

•

•

timc) if the current value of the signal matches the spec event value. 1t is
an error if the values do not match. Consider again the example of Fig. 4(b)
(E, and Ez arc thc CE's of the data and dock signals, respectivcly. with
[E.] = [10,90] and [Ez] = [50,100]). However, assume now that a rising
dock event occurs at t = iD (sec Fig. 4(c)); this event matches Ez value­
wise and time-wise. After the graph update, [E.] is equal to [10,60]; El
is therefore projected into the pasto This is correct as long as the actual
signal v-.Jue of the data matches the value of El (i.e., is one of {D,l, l'}).
Assuming this is the case, the current events of the dock and data signals
become E4 and E3 • respectively. Note that in general, a sequence of events
on a given signal can be projected into the past (the sequence starts at the
.;ignal's CE).

5 Multi-Match Events

A given spec event can match multiple actual events. This is a character­
istic of don't care (u) value spec events. For example, in Fig. 4(a), event
E:J expresses the fact that the data signal cao undergo a sequence of tran­
sitions of arbitrary length (including zero). Spec events such as E3 are
designated as multi-match events (note that, by definition, a ::lulti-match
event is also an optional event). We interpret constraint edges incident on
a multi-match event as being with respect to the lirst transition (if any)
of the matching sequence. Note that by transitivity, the constraint edg"
of weight th in Fig. 4(a) applies to tl;~ whole event sequence that eventu­
ally matches Ea. Howcvcr, this would Dot be the case for constraint edges
outgoing from a multi-match event.

Assume that E is a multi-match event (Fig. 5(a)), F is ne~..t(E), and
the constrair;ts on E (resp. F) are reprcsented, without loss of generality,
by two edges of weight a and b (resp. c and dl. G represents the rest of
the constraint graph. Assume, that E matches a sequenc~ of actual events
El ... E,.. If we knew beforehand the length of this sequence, we could
represent the ~pecification as in Fig. 5(b) (note that in order to simplify
the notation, we are using the same symbol Ei , i = 1 •.. n to stand for
both the actual event and its associated spec event). Upon matching of
events El, ,. E.. at times t1 ••• t" during simulation, the graph of Fig. 5(c)
would he obtained. It cao he easily shown that, by transitive closure, this
graph is equivalent to the one in Fig. 5(dl. By "equivalent", we mean
that this transformation preserves, at all times, LP(XY), for all X,Y other
than the "internal" events E" ... E..-I' Note that the edge of weight -t"
cao he dropped because it only affects paths which have the sequence

• 3-8 CHAPTER 3 - OPTIOSAL & AI ('LT/-MA'l'CIl E\ 'EST."

•

•

E, -. En -. 0 at their tai! cnd: Îlowc""r. this sequenCt' is dominall'd. in
terms of longest paths. by the t'dge E~O, of wcight -l, (sinet' - t, > -/,,).
The motivation for dropping thc l'dgl' of weight -/'0 will bl'comt' c\t'ar in
the following.

The genera!ized validation algorithm handlt's tilt' modd in Fig. 5(a)
as follows: During thc graph initialization that precedes the actua! simula­
tion, event E is ~split" into El and En. In fact E itsclf stands for E" .md
a new spec event is inserted betwccn El and F to represent En. During
simulation, when E, is the CE. and an actual matching event occurs at
time lion the corresponding signal. edges of weight Il and -II arc inst'rtt-d
in the graph, El is considered as occurred, and the CE of the signal is set
to En. Then, when an actual event matches En at time li , li > I" a sin­
gle edge of weight li is inserted from 0 to En. and the CE remains equal
to En. Subsequently, at every successive match of En. the weight of this
edge is simply increased to the new occurrence time of the matching aetual
event (and the CE remains equal to En)' No edge ofweight -Ii is inserted
because such an edge would reduce sup(En) to ti, therefore prohibiting
any further matches of subsequent actual events against En. Finally, En
is considered as occurred and the CE is updated to ne.xt(En), when one of
the following occurs: 1) En times out, 2) En is ~projected into the past".
These two situations are handled e.xact!y as seen in Section 4.

Note that when El is the CE it can also time out or be projected into
the pasto The same thing then happens to En, if the path which starts at
El and wh:ch caused the timeout or projection of El into the past passes
through the d edge (Fig. 5(d)); if, however, the path goes through the b
edge, En becomes the CE.

6 Output Event Generation

In this section we extend the system to specifications that contain both
input and output events. We need to address two issues: 1) how to choose
an output event to be generated at a given point in the simulation, and 2)
how to fix the occurrence time of the chosen event. Note that the tool we
are presenting in this paper is a utility on which simulation-based timing
analysis services cao be built. For example, choosing event occurrence
times to test "marginal" or "average" conditions could he implemented
on top of the system, but its deve\opment is outside the scope of this
presentation. Therefore, in cases where there are choices to he made, they
are made arbitrariIy within the timing intervals that maintain consil.-tency

• CHAPTER 3 - OPTIOfI,',\L & AWLTI-MATCH EVENTS

of the constraint system.

3-9

•

•

Let us first address the problem of choosing an output event: At any
point in the simulation, an output event S to be generated must be cho­
sen from the output subset of the current event set. However additional
restrictions must be placecl on the choice of S: In the simple case of fully
specified events, ail generalized predecessors of S must have already oc­
curred. If this condition is met, S is said to he a feasible output event.
However, in the general case, this "feasibility condition~ is tao strong; for
example, in Fig. 4(a), if El were an input event and ~ an output event.
then this condition could possibly preve!lt the correct generation of E2 , or
at best in the case where El or ~ have a ~natural timeout~ (such as in
Fig. 4(b)), it would result in the generation of ~ at the latest possible
lime, which is tao restrictive.

The solution to this problem is to define an output event to be feasible
if, and only if, ail its necessary generalized predecessors have occurred. The
predicate feasible-p() (Fig. 6) precise1y formulates the feasibility condition.

Let us now turn to the problem of fixing the occurrence time of a
feasible output event E. The occurrence time tE of E must be chosen
from a sub-intervai of [E], as given in the following lemma, in which te
indicates the current simulation time and smallestSup is defined as the
smallest sup(Fi), where Fi spans the set offuture (unoccurred) necessary
events;

Lemma 2: max(inf(E).te) $ tE $ min(sup(E),smallestSup).

The proof of Lemma 2 stems from the following two facts. 1) Events
must occur in forward running time, thus the need for tightening the
lower bound of [E] by te. 2) tE must not exceed smallestSup, otherwise it
would project a necessaryevent into the pasto smallestSup is computed by
feasible-p() (Fig. 6).

Note that ail the timeout and ~rojection into the past" rules apply
equally well to output events, i.e., it is acceptable for an output event to
time out or to be projected into the past, as long as the event's value
matches the current value of the signal.

The generalized specification interpreter is given in Fig. 7. The ter­
mination criterion of the main loap of the process is the occurrence of the
End event (which is treated as a pseudo output event and occurs as saon as
it is feasible-p; in the case of hierarchical TDs [6], the End event cau also be
projected into the past due to the occurrence of an event in the following
TD). Out-event and ouf-tïme form the output event to he generated in a

• 3-10 CHAPTER 3 - OPTIOt\AL .(: .\tULTI-MATCH E\'ENTS

•

•

given iteration of the process. ln the first such iteration. tilt' Origin l'\"l'nt
(treated a.~ a pseudo output l'vent) is -generatl'd- al time O. TIll'n. in sub­
sequent iterations. the function dclenninc-output-rt.cnt arbitrarily sdl'cts
a feasible out-l'vent (if any) using the feasibIe-p criterion.•uld r.uldomly
chooses an oul·lime in thl' interval given by Lemma 2. Then. ",hen the
process times out at time oui-lime. the procedure oecur-now-and.updatf
generates the l'vent ",ith zero delay and updates the graph consequently.

7 Implementation and Results

..,Ve interfaced our system [11] to the SHADOW graphie wavcform editor
developed at Bell·Northern Research Ltd. The editor has a buHt·in LISP
interpreter that allows easy access and modification to the wavcforms data·
base. Hierarchical compositions [6] of timing diagrams arc specified in a
LISP syntax, using two basic primitives: TDConca/ and TDConcur, for
sequential and concurrent execution of timing diagrams, respectivcly.

We have ron a number of e.xperiments in which our sy~tem sim­
ulated VHDL interface models of entities from their hierarchical timing
diagram descriptions. The simulation ron-time performance of the system
averaged i processed l'vents per second of CPU time on a SUN 3/260 run·
ning Intermetrics VHDL. We have identified timing behaviors that cannot
be e.'Cpressed in the CUITent framework. Consider for example modules
which perform a combinational mapping from their level-sensitive latched
inputs to their (unlatched) outputs. Then, l'very time a latched data in­
put changes (i.e., the input multi-match l'vent is matched) during the ac­
tive clock phase, the corresponding output must change accordingly (this
change matches the output multi-match l'vent). In order to express this
type of behavior, we could define a new type of timing constraint, called
a mufti-match follower (MMF) constraint. We are also in the process of
implementing a TDChoice composition primitive, which allows the speci­
fication of branching behavior. In order to support this operation, we are
e~..tending our algorithm to match multiple TDs in parallel.

8 Conclusion

We have extended the system presented in [6] to specifications containing
optionai and mufti-match l'vents, i.e., specified l'vents that match at most
one, or any number of actual l'vent occurrences, respectively. Our system

• CHAPTER 3 - OPTIONAL &: l'vtULTI-MATCH EVENTS 3-11

•

•

captures the interface specification of a hardware module from a set of tim­
ing diagrams. The specification is then interpreted as an executable mode!.
We have identified the limitations of the multi-match event mode! and wc
are presently working on further generalizations of the type of timing re­
lations that can be expressed. The direct application of our system is in
the simulation of specifications. Other applications are in the verification
of interfaces using operational models (e.g., [12]).

References

[1] A.R. Martcllo and S.P. Levitan "Causal timing verification". First International
Workshop on Timing Issaes in the Specification and Synthesis of Digital Systems.
(TAU 90). Vancouver. Canada, 1990.

[:!] J.A. Brzozowski, T. Gahlinger, and F. Mavaddat, Consisteney and satisfiabil.
àty of wavcform timing specifications, Research Report CS-88-:!4, University of
Waterloo, 1988.

[3] S.K. Sherman, "Algorithms for timing requirement analysis and generation",
ACM/IEEE Proc. 25th DAC, pages nol-ni, 1988.

[4] A. Kara, R. Rastogi. and K. Kawamura, "TDS: An expert system to automate
timing design for interfacing VLSI chips in microeomputer systems", IEEE Proc.
ICCAD-86, pages 362-365, 1986.

[5] F. Jahanian and A.K.L. Mok, "A graph.theoretic approach for timing analysis and
its implementation", IEEE Transactions on Compaters, C-36(8I, August 198i.

[6] K. Khordoc, M. Dufresne, and E. Cerny, "A stimulus/response system based on
hierarchical timing diagrams", IEEE Proc. ICCAD-91, pages 358-361, 1991.

[il G. BorieUo, .4 New Interface Specificatian Methodology and ils Application ta
Transdacer Synthesis, PhD thesis, University of California, Berlœley, 1988.

[8] C.W. Moon, PA Stephan, and R.K. Brayton, "$ynthesis of hazard·free asyn.
chronous circuits from graphical specifications", IEEE Proc. ICCAD-9i, pages
322-325, 1991.

[9] IEEE, IEEE Standard 1076-1!-87. VHDL Language &ference ManaaI, IEEE,
198i.

[10] K. Khordoc, M. Dufresne, and E. Cerny, "A stimulus/response system based
on hierarchical timing diagrams" PublicatiOD no, Dept. I.R.O., Université de
Montrêal, 1991.

[11] M. Dufresne, K. Khordoc, and E. Cerny, "Using formalized timing diagrams in
VHDL simulation" , Froc. Second EIlTOpCOfl Conference on 1'lIDL Methads, pages
el-31, 1991.

• 3-12 CH.4.PTER 3 - OPTIOSAL.(; MULTI-MATCH EFESTS

•

•

[12] T. Yoneda. K. l"akade, and Y. Tohma, "A fa.,t timing \"'rifieation 11l"thod b,.'loci
on the independencc of uni!.'-, IEEE Proc. 191h F7'CS. page:; 134- J.t 1. l\l~\l .

• ClIAPTER 3 - OPTIONAL &: MULTI-M.4.TCH EVENTS 3-13

•

•

PROCESS VALIDATE_INPUTS(TD. signals)
TD_ini1:(TD); /* compu1:e LPs and i:li1:ialize curren1: even1:s */
max_1:ime := min_over_[sig in signals]

(sup(curren1:_even1:(sig»)
"hile (curren1:_even1:_se1: no1: emp1:y) do

curren1:_1:ime := ge1:_curren1:_simula1:ion-1:ime();
ac1:ivi1:y? := valida1:e_inpu1:_even1:s_and-upda1:e(signals);
it «no1: aC1:ivi1:y?) and (T =max_1:ime»

1:hen 1:ime_ou1:_error(signals);
end it;
max-1:ime := min-over_[sig in signala]

(sup(curren1:_even1:(sig»)
loop tor sig in signals do

it (sup(curren1:_even1:(sig» < curren1:_1:ime)
1:hen precedence_error(sig);

endit;
end loop;
1:imeou1: := max-1:ime - curren1:_1:ime;
"ai1: on signals tor 1:imeou1:;

end "hile;
end VALIDATE.,.INPUTS.

PROCEDURE valida1:e_inpu1:_eVen1:8.and..upda1:e(signals)
ac1:ual_inpu1:_even1:s :=

query_simula1:or_tor_inpu1:_even1:s(signals);
loop tor ac1:ual_even1: in aC1:Ual_inpu1:_even1:s do

spec_even1: := curren1:_even1:(even1:_signal(ac1:Ual_even1:»;
ma1:c:h..or_error(spec_even1:. ac1:Ual_even1:. curren1:_1:ime);
update(spec_even1:. current_time);

end loop;
re1:Urn(aC1:Ual_input_events);

end validate_input_events_and..update.

Figure 3: Restricted input validation algorithm•

• 3-14 CH.-\PTER 3 - OPTIOS.-\/, Ac .\InTI-.\I.·rTeIl ETESTS

(a)

li

E.

(b)

E. E.

~'.IO
li

E.

(c)

E,

~..}l~----\··

•
Figure 4: A timing diagram with u and v valued events. (al Specification.
(b) Timeout for El at t =90. (cl Rising dock at t =iD.

.g o •

(a) (h)

Figure 5: The multi-match event mode!. (a) Specification. (b) Equivalent
representation. (c) Actual events occurrences. (d) Transitive dosure.

•o

(01)

•o

(0)

••

•

• CHAPTEU 3 - OPTIONAL J.: AWLTI-!v1.-\TCH E\:ENTS 3-15

•

•

tunction teasible_p(E)
feasible := true;
smalleBtSup := +intinity;
loop tor sig in (signals - {sig(E)}) do

loop tor F trom CE(sig) then uext(F)
and vhile (int(F) <= sup(E» ,* efficient exit test*'

do
if (not(match(F. signal_value(sig»» ,* F necessary*'

then LP(FE) := compute_LP(F.E)
if (LP(FE) > 0)

then feasible := talse; '*do not generate E *,
else smalleBtSUp:'" !'Iin(s'.p(F). smallestSup);

end if;
exit; ,* exit inner loop *,

end if;
end loop;
if (feasible = talse) then exit; ,* exit outer loop *,

end loop;
retum(feasible. smallestSup);

end feasible_p.

Figure 6: Feasible output event predicate.

• 3-16 Cl/APTER 3 - OPTIO,YAL .1: .\!l'LT/-MATCH E\TSTS

•

•

PROCESS EXECUTE_SPECIFICATION(TD. signals)
TD_ini~(TD); ou~_even~ := origin(TD);
ou~_~ime := 0; max_~ime := +infini~y;

vhile (End-even~(TD) no~ occurred) do
curren~_~ime := ge~_curren~_simula~ion-~ime();

if «(T =ou~_~ime) and (ou~_even~ 1= NIL)))
1* make X occur vi~ zero delay *1

~hen occur_nov_and-upda~e(ou~_even~);

end if;
valida~e_inpu~_even~s_and-upda~e(signals);

max_~ime := min-over_Csig in signalsJ
(sup(curren~_even~(sig)))

valida~e_~imed-ou~_and-projec~ed-even~s(signals);

(ou~_even~. ou~_~ime) := de~ermine_ou~pu~_even~(signals)

~imeou~ := max..~ime - curren~_~ime;

vai~ on signals for ~imeou~;

end vhile;
end EXECUTE..SPECIFICATION.

PROCEDURE valida~e_~imed-ou~_and-proje~ed-even~s(signals)

loop for sig in signals do
loop for even~ from curren~_even~(sig) ~en next(eV41n~) do

if (sup(even~) <= curren~_~ime)

~en ma~ch..values_or_error(even~. sig);
else se~_curren~_even~(sig.even~);

exi~; 1* exi~ from inner loop *1
end if;

end loop;
end loop;

end valida~e_~imed-ou~_and-proje~ed-even~s.

Figure ï: The Generalized Specification Interpreter.

•

•

•

CHAPTER 4

INTEGRATING BEHAVIOR AND
TIMING IN EXECUTABLE

SPECIFICATIONS

ABSTRACT

We present a modeling methodology and tool set for the rapid devel­
opment of executabl.. HDL models. The method is based on the separate
capture of interface specifications, functional specifications and the rela­
tion betwee:l them. HDL models are generated in a layered I"ashion, at
different levels of abstraction, in which layers cao be easily inserted and
removed, thus facilitating the validation of different aspects of the design.
HDL interface models are automatically generated from the specificatIOns.

4-1

• 4-2 CH.4.PTER·1 - /;\TEGRATlSG BEHA\'IOR AS/) "J'L'Il;\"(;

•

•

1 Introduction

lnformal specifications are often unclear. ambiguous and incomp!"te. Ex­
ecutable HDL models are useful in formalizing. experimenting with. and
~animating~ specifications; such models can become an integral part of
the documentation generated at product inception and act as a golden
reference for understanding the specifications. Then. as the system is d,~

signed. it must he validated against the specifications. The executabl,'
HDL model thus coptinues to act as a golden reference throughout the
design cycle. Formal verification methods, are useful in that they provide
a complete "coverage~ \Vith respect to the m"del heing verified. How­
ever, these techniques are limited 1.0 partial models of small size relati"e
to the total state space of the design. They are usually complemented by
simulation techniques, e.g., the implementation is simulated against the
specification and the results are compared. Furthermore, the designed sys­
tem must he simulated in its environment in order to verify whether the
hehavior is <.s e>.:pected (Le., integration testing). In order 1.0 achieve this.
executahle models of standard, huI. often quite complex, off-the-shelf VLSI
components must he developed easily and rapidly.

Integration testing does not proceed in a monolithic fashicn (simu­
lation \Vould \le 1.00 time consuming, huge amounts of useless information
would have 1.0 he hrowsed through, etc.). In practice, different aspects of
the system need 1.0 he verified, e.g., the funetional hehavior, the interface
and timing beh...'/ior, leading 1.0 the need for different models. This often
results in the ad-hoc development of a multitude of models, unrelated to
each other, implying inconsistencies between the different views of the sys­
tem, and making the final phases of integration testing impossible (since
these different models cannot be "glued" together).

Of particular importance 1.0 integration testing is interface verifica­
tion. Interface specifications capture the fact that components are accessed
in specifc ways, e.g., in operational l:nitS called "interface operations", or
"bus cy<:\es", such ;os FETCH, READ, WRITE cycles etc. Bach interface
operation consists of specifie l'vent sequences related b:; timing constraints.
Interface analysis methods [1, 2, 3, 4, 5] address the problem of verifying
that two interface specifications are compatible with each other. However,
in order 1.0 use these techniques, the interface specification of the designed
system must be extracted from the implementation. This is a non-trivial
problem for which no standard automatic procedure is known (except for
the special case of strictly synchronous interfaces), and il. is usually solved
by manual techniques that introduce unverified assumption5; this in turn

• CHAPTER 4 - INTEGRATING BEHAVIOR AND TUHING 4-3

•

•

affects the degree of confidence in the result.

Although the above type of interface analysis is valuable, it must
be complemented by other techniques, e.g., runnin~ simulations of the
system's implementation against HDL interface models of the system's
environment. These interface modcls are behavioral HDL programs derived
from the interface specifications of the components that farm the system's
environment. The interface model of a component consists in "on-the­
fly parsingr. of even1L' received at the component's 1/0 ports, sequencing
the mode! through its state transitions based on the result of this parsing,
detecting incorrect, or ill-formed interface operations (bus cycles), verifying
that ail timing constraints at the input of the component are met, and
driving the component outputs with appropriate delays. In the rest of
this paper, the term interface model will englobe both of the checking
and driving aspects. Unfortunately, developing HDL interface models is a
tedious, time-consuming and error-prone tasks. The developed code must
usually make heavy use of process synchronization primitives (e.g. WAIT
statements) and is hard to debug. It is also very difficult to ensure that
the model is com,>lete, e.g., whether ail constraints are checked under ail
rele .mt event sequences.

In this paper we present the modeling methodology and tool set that
wc have developed in response to the above problems:

• Our approach allows the rapid development of executable HDL mod­
els.

• The method is based on the separate capture of interface specifica­
tions, functional specifications and the relations between these two
forms.

• The methodology and tool set allow the generation of HDL models
in a layered fashion, at different levels of abstraction, in which layers
cao be easily "plugged in" or removed, thus facilitating the validation
of different aspects of the design.

• HDL interface models are automatically generated from the ahove
specifications.

There are three major components in the tool set.

1. The specification capture tools: the hierarchical timing diagrnm ed­
itor graphically captures interface specifications. The hierarchical

• 4-4 CHAPTER 4 - INTEGR.·\T1;\'G BEHA\"IOR AND TB/L\"C;

EFSM edilorl (Extended Finite State ~lachine) captures functional
specifications. The Junctionallink rditorcaptures (in a mil' of graph­
ies and text) the relationships between the functional and int.,'rfac,'
aspects of the specifications.

•

•

2. The model generator produces executable HDL models (more specif­
ically VHDL [il models), at the desired level of abstraction, from tilt'
captured specifications.

3. The run-time tools: the timing diagram interpreter ('l'DI) and EFSM
interpreter implement, during the simulation run-time, the executabl.'
semantics of the captured specifications.

The rest of this paper is structured as follows: Section 2 presents
the interface specification method and illustrates it on an l'l'ample. Sec­
tion ~ e.'(plains the algorithm that controls the execution of the timing
diagram hierarchy. Section 4 presents a functional specification method
for entities with simple internal controi-f1ow; the method is illustrated on
an example. Section 5 extends the modeling approach to arbitrary beha\"­
iors and illustrates it on an example. Section 6 reviews related work and
puts our contribution in that perspective. Finally, Section i concludes the
presentation by discussing sorne future orientations of our work.

2 Interface Specifications

2.1 Timing Diagrams

A timing diagram (TD) specification consists of a set of signals and a set
of timing constraints between signal transitions. Each signal consists of an
ordered sequence of events, designated as spec l'vents. The direction mode
of a spec l'vent is "input" or "output". Unidirectional signals have a single
mode of spec l'vents (input only or output only). Bidirectional signals can
have events of both modes. Event values are in the set V =Bu {=, v, u},
where B is the domain of the given signal subtype, e.g., B = {D,l} for a
hit signal or B = {D, •.• ,255} for an 8-bit bus signal; z stands for high­
impedance; v (Va/id) represents any arbitrary value from B that does not
change for a specified period of time, its actual value being irrelevant to the
interface specification; and u means Unspecified, Unknoum, or Don't-care.

1A graphie interface is planned. At the p.-nt time, the fUllctiona! specifications
are captured in telCtua! format only.

• CHAPTER 4 - INTEGR..4TING BEHAVIOR AND TIMING 4-5

Timing constraints capture min/max time relationships between events.
and are represented by a directed constraint graph in which nodes represent
events, and a directed edge of weight a from node X to node Y represents
the timing constraint: tl' - tx ~ a, where tx and tl' are the occurrence
times of events X and Y, respectivcly.

Il

~
1Q.A

HUI
••tCU

1..(\00
1..[\AoC)

, .. :

•

: . 1·uu:A)
-:I.UW .
: :':I..C/).):"

:-~ ..(:m> i-t~CJ:A)-:

:-:': ••(00 .
: :---uc~:

~Œ.1
,.(ll.'0

hCW)

,---:
, "

h(UJ

: :
: :

-

•

Figure 1: VRAM Write cycle.

The Timing diagram specification is captured graphically using the
SHADOW waveform editor (e.g., Fig. 1, Write cycle of a dynamic memory
[11]) developed at Bell-Northem Research Ltd. The specification is com­
piled into an executable mode!. During execution (i.e., simulation), the
model validates its input events and produces its output events according
to the logic and timing specifications of the timing diagram. Events which
occur during the simulation are designated as actual events. An actual
event is a triplet (signal, value, time), i.e., the signal on which the event
occurred, the ncw "aIue of the signal, and the time of occurrence of the
event, respectively.. Match e1Tllrs are f1agged when actual events cannot
be matched (in tenus of timing, or logic value) to the specifications; this
is the "checker" aspect of the executable model.

A spec event of value v is said ta be an optional event [9]; such an
event does not necessarily have to match an actual event occurrence. A

• 4-6 CHAPTER 4 - INTEGRATING DEHAVIOR AND TIMING

spec l'vent of value u is said to be a multi-match cl'cnl [9]: such an l'vent
can match a sequence of actua! transitions of arbitrary length (including
zero). For l'l'ample. in Fig. 2(a). El is an optional l'vent. and E" is a
multi-match l'vent.

CLOC"......_+?;-,rr\---...;;~,- _
(.= 10 'b= 10

D~:=X v X,..--u----

(a)

U

E,

(b)

E., E.

~b.1O
J\ U

E,

(c)

•

Figure 2: A timing diagram with u and u valued l'vents. (a) Specification.
(b) Execution context before dock event. (c) Rising c10ck at t =70.

•
Simpler alternatives to optional and multi-match events were con­

sidered, such as, for example, defining stabüity windows for "data" signals
and restricting the spcc cucnt concept ta "dock" and "control" signals.
However, the present mode! was chosen for the following reasons:

• It is not always possible ta easily malte the difl'erence between c1ock,

• CHAPTER ·1 - INTEGRATING BEIIAVIOR AND TII'vflNG

CAS tlsJWCLl=o{'---------
W/////4._

" • 1h(WLO) L
OW/?/&/////ZXr-....V7::A"U;;:;O---,pm;

Figure 3: Excerpt from VRAM Write cycle.

control and data.

4-ï

•

•

• The model with optional and multi-match events expresses more gen­
eral constraints.

The two above points are illustrated in Fig. 3 (extracted from the
Write cycle of Fig. 1). At the start of the cycle, the W signal has a
"don't caren value and it has a setup time t.u (WCL) with respect to
the falling edge of CAS (i.e. , W acts as a "datan signal). However
the D line (input data to the memory) has a hold time th(WLD) with
respect to the falling edge of W (i.e., W acts as a "clockn signal)

• Due to the consistent event bas-:l semantics, our model offers a uni­
fied frame'vork for linking procedures to both "clockn and "datan

events (this will be explainel in Section 4).

The main data structure supporting the execution is a timing con­
straint graph (also called event graph) [6, SI, extended as in [9], for the
processing of optional and multi-match events. Details relative to the
propagation of timing constraints in the event graph, using longest path
computations, cao be found in [10]. Th,. rules for matching the value of an
actual event to that of a spec event, are given in Table 1 for the case of bit
values. These rules cao be easily generalized to bus signais by substituting
0 ... 2" - 1, where n is the bus size, for {0,1} in Table 1. When the intent
is clear, we will simply use the term event to designate a spec or an actual
event.

2.2 Composing Timing Diagrams

Timing diagrarDs cao be composed recursively to describe interface spec­
ifications. The composition operators are: Concatenation, Loop, Concur­
rency, and Choice. In Fig. 4, symbols Al> ... ,A" refer to timing diagrarDs

• 4-8 CH.-\PTER 4 - INTEGR.·\TING BEH..\\10R .-\,\·D Tl.H/;'i(;

Table 1: Event value matching.

•

spcc values
o
1
z
v

u

CONCATENATION

IQ~'''~I
(a)

CHOICE

matching actual values
o
1
z

0, 1, v

O,l,z.v,u

LOOP

IQ01-IQ0~l"01
(b)

CONCURRENCY

Q~

~

~
(d)

•

Figure 4: Timing diagram composition operations.

that are composed to forro a mure complex timing diagram, Q; naturally,
Ah,,' , A" cao themselves be the r'1Sult of othe!" compositions, etc.

For ail operators, except Cho';ce, a match e!TOr in one of Ah' .. ,An,
unconditionally translates into an error in Q. In the case of Choice, the
semantics is slightly more complex (explained below). The interpretative
semantics of each composition operation is described in the following.

Concatenation: Ah"" À" are defined on the same set of signais. Al
starts when Q starts. Ai+! starts when Ai terminates. Q terminates when
An terminates.

Loop: The semantics are similar to Concatenation with Al"",An
being identical copies. Two modes are supported: Loop with a fixed num­
ber of iterations, and infinite Loop.

Choice: Ah"" A,. are defined on the same set of signais; they rep­
resent alternative (branching) behaviors. Ah"', A,. start when Q starts.

• CHAPTER -1- INTEGRATING BEHAVIOR A.ND TIMI1VG 4-9

Whenever a match error is found in an A.i , Ai is terminated. If one of
A" ... , An terminatesfrec of match errors, then Q immediately terminates
frec of match errors, cise Q terminates with a match error.

Concurrcncy: Al,"" An are defined on mutually disjoint subsets of
signais; they represent concurrent activity taking place on these subsets.
A" ... , An start when Q starts. Q terminates when all of Al•... , An ter­
minate.

2.3 Example

Q

RANDOM
MEMORY

The control·fiow of an interface specification describes what timing dia·
gram is to be "e.xecuted" ne.xt, what events can be generatedfreceived and
at what time. The composition operators presented above allow the de­
scription of a subclass of interface behaviors for whicb the outcomes of the
high·level control·f1ow branches (namely what TD to execute in a Choice
operation) are determined by the environment of the entity. Dynamic
RAMs are good candidates for modeling with this approacb because, in
addition to meeting this interface control-f1ow criterion, these devices have
a quite complex interface behavior, whicb however, can be easily ell:pressed
using hierarcbical timing diagrams.

CAS;-.,--------,
RAS

Poo- A7
TRIOe

Vi
0'-....__-==:-__--1

•

s~~=:_rFT REGISTER!--SOUT

soe

Figure 5: VRAM block diagram.

•

As an example, we show the modeling of the interface behavior of
the TMS4161 [11] dual·port Video RAM (VRAM). A block diagram of
the device is given in Fig. 5. The random access port behaves as in a
normal dynamic random access memory (it supports access cycles sucb as
READ, WRITE, READ-MODIFY-WRITE etc.). It is controlled by RAS
(Row Address Strobe), ëAS (Column Address Strobe) and W (Write).
D, Ao - A7 and Q are the input Data, Address and output data buses,
respectively; Q cao be tri·stated under the control ofQE (Q Enable). The

• 4-10 CHAPTER 4 - INTEGRATING BEH.·\\'IOR .·\;\·D TIMI.VC;

•

•

sequcntial access port bchaves as a shift register controlled by SCL/\' (Shift
Clock). SIN and SOUT are the register Shift ln and Shift Out data lint·s.
respectively. SOUT can be tri-stated under the control of SO/::, :\ tmn:;fn'
cycle allows to internally "parailclload" the shift register of the sequt'ntial
access port with a given row of the random access memory. :\ transft'r
cycle is determined by a low TR (i.e., a low T R/Q E during the R,lS falling
edge; TR and (jE are multiplexed into a single line that is interprcted as
TR at the faliing edge of RAS. and as QE the rest of the time). Tht'
two ports operate concurrently and asynchronously to cach other, except
during transfer cycles. Ouring such a cycle, there are timing constraints
between control signals of the two ports (more specificaliy betwœll RAS
and SCLK) and the behavior ofSOUT is different from the case without
transfer (as a new row of data is loaded into the shift register).

CONCURRENCY
LOOP

r::C::-:H:::::o:::lc::::e---------------,l1

LOOPr==",,--- -l1
CHOlce

Figure 6: VRAM interface specification.

A high-level view of the VRAM interface, modeled using the 1'0
composition operators, is shown in Fig. 6. The mode! top-level puts the
random port in Concurrency with the sequential port. The raudom port
is modeled as an inlinite Loop of a Choice of random access cycles (each of
these cycles is described in [11] by a timingdiagram). The READ, WRITE
and TRANSFER cycles are I:lodeled as leaf-level timing diagrams (e.g.,
WRITE is shown in Fig. 1). Bach "page mode" cycle shown in Fig. 6 (i.e.,
PAGE-MODE-READ and PAGE-MûDE-READ-MODIFY-WRlTE) is in
fact broken down into three subcycles (beginning, middle, and end of the
given page mode cycle). Bach nf these subcycles is put in as a direct child
of the random access Choice TD,in place of the OrigiIoal page mode cycle.

The sequential port is implemented as a Choice between a "nonnal
shift" cycle (PLAIN-SHIFT) and a "shift cycle during transfer" (SHIFT­
AND-TRANSFER). These two cycles discriminateon the value of T R/QE
on the falling edge of RAS ta determine whether there is a transfer. (1'0

• CIIAPTER 4 - INTEGRA.TING BEHAVIOR AND TIMING 4-11

•

•

work around the rule of disjoint signal subsets in the Concurrencyoperator.
wc created a wrapper around the VRAM entity which forked an extra copy
of cach of the RAS and TR/QE signals.)

In the next section, wc present the algorithm that controls the eXe­
cution of the timing diagram hierarchy. Then, in Section 4 and Section 5
wc extend the modeling approach to indude the functional behavior of the
modeled entity.

3 The Timing Diagram Interpreter

3.1 Basic Concepts

During simulation, the Timing Diagram Interpreter (TOI) validates the
input events of the modeied entity, and generates its output events. ac­
cording to the (hierarchical) timing diagrd.m specifications. In order to
explain the TDI algorithm, a few definitions are useful.

Th" "Urrent event of a signal is the spee event fol1owing the Iast
occurred spee event on the signal. The CUITent event set is the set of
current events over the signal set.

The notation LP(XY) denotes the weight of the longest (i.e., ma.xi­
mum weight) directed path in the timing constraint graph (associated with
sorne Ieaf TD) from event node X to event node Y. A valid tim~ interval
of occurrence, denoted [E], is associated with each spee event E . The
lower and upper bounds of this int..rva1 are denoted inf(E) and su;(E),
respeetiveIy; they are computed as LP(OE) and -LP(EO), respeetively,
where 0 is an ~Origin" pseudo-event representing the start time of the TD
[10].

When an event E occurs on a signal S at the current simulation, it
cao make the sup time of the yet unoccurred spee event sequence Pl .,. Pn ,

on a signal S' other than S, become smaller than the current time, Le.,
$Up(Pi) < current time, for i = 1•.• n. We say that Pl'" P.,re "pro­
jected into the past". Bach such spec event P" i = 1... n is said to
he legaI!y projectable (or simply "projectable"), if, and only if, its value
matches the current actual value of S', and P(i-ll' i > 1 is projeetabie.
Consider, for exampIe, Fig. 2(b) in which El and ~ are the current
events of the data and dock signals, respectively, with [EIl = [10,90]
and [~] = [50,100]. Assume that a rising elocl-. event occurs ~t t = iD
(Fig. 2(c)); this event matches ~ value-wise and time-wise. After the

• 4-12 CHAPTER ·1 - !NTEGRAT!NG BEHA\10R .·\N[) n\I/.\"(~

•

•

graph update. [Ed is equal to [10.60]: El is therefore project,·d into the
pasto This is correct as long as the actual signal valu,· of the data matdl<'~

the value of El (i.e.. is one of {O.l. t'}). Assuming this is th,' case, lh,'
current events of the dock and data sip;nals beconw E. and E:.. r,'sp"('­
tively. Note that in general. a sequence of <,vents on a given signal can
be projected into the past (the sequence starts at th,' eurrent event of the
signal).

The definition of a projectable event is el'tended to a timing diagram:
a TD is projectable if all its unoccurred spec events are projectable.

A eurrent event set, match error and prajeetable attribute are ...,.
sociated with each TD in the hierarchy. The task of the TDI consists
essentially in updating these attributes when eveuts occur. This update is
done in a single (post-order) traversal of the TD hierarchy for each actual
event occurrence. An update method is associated with each TD class: the
classes are: Leaf, Choice, Concurrency. Concatenation, and Loop. The in­
put parameters ofthe update methods are: self (the TD object to update)
and event (the actual event being validated). In the following, wc cl'plain
the update method of each TD class.

3.2 Leaf Update

The leaf update method is shown in Fig. Î. The match error f1ag is
true in any one of the following cases:

1. The actual event does not match the spec event (I.e., either their
values do not match, or the occurrence time of the actual event is
not within the intervai ofoccurrence of the corresponding spec event).

2. The actual event projects into the past a non-projectable spec event.

The ruIes for current events are as fo11ows:

1. The current event of each signal is initiaIly set to the first spee event
in the spec event sequence of that signal in the leaf.

2. When an input muIti-match event is current, it remains 50 until it is
projected into the pasto

3. When a eurrent event (other than an input multi-match event) matches
an actual event during the execution, the next spec event in the spec

• CIJAPTER 4 - II'TEGRATlNG BEH:WJOR :\ND n"lING 4-13

•

•

event sequence of the signal (or NIL if there is no next event) becomes
the current event.

4. For all signals which have events that are projected into the past (àue
to the occurrence of an event on another signal). their spec event is
advanccd to the first event of the signal that has a sup time bound
greater than, or equal to, the current time.

The procedure updates the longest paths in the leaf event graph. as ex­
plained in [10].

3.3 Hierarchical Update

In this section, we c.xplain the update methods for each non-leaf TD c1ass.
In the following, the predicate empty(TD) returns True for a TD that has
an empty current event set.

The update method for a Choice TD is given in Fig. S. The TD
maintains a list of active r.hildren. A child is active if it has no match
errors and is not empty. The Choice TD performs a recursive update on
all its active children (i.e., all still matching branches must be vaIidated).
A child is de-activated (i.e., removed from the active children list) when
its match error attribute becomes true (as a result of the child update).
The Choiœ TD is projectable if one of its active children is projectable.
The TD sets its match elTOrattribute to True if ail its active children have
match errors. The current event set of the TD is obtained by appending
together the current event sets of its active children. The current event set
is emptied (set to NIL), signifying successful termination, when a child of
the Choice TD becomes empty and has no match errors.

The updatp. method f"r a ConcurrencyTD is ~ven in Fig. 9. The chil­
dren of a Concurrency TD are defined over disjoint signal subsets. There­
fore, the recursive update is performed for the only chiId defined over the
concemed signal. The match elTOr attribute of the C-oncurrency TD is set
to True if the child is empty before the update, or if the child declares a
match error as a result of the update. The Concurrency TD is projectable if
ail its children are projectable. The current event set of the TD is ob1.a.ined
by appending together the current event sets of its children.

The update method for a Concatenation TD is given in Fig. 10.
The TD maintains a pointer !.Cl its current child (i.e., the child which is
presently executing). The current event set of the Concatenation TD is
nominally equal to that of its current child. In addition, if the current child

• 4-J·1 CHAPTER -1 - lSTEGRAT1SG BEH..\\ïOR ASD 1'L\ll.'(;

•

•

is projectablr. the eurrent event set of tIlt' Conealwulion TD is t'XlelHlt-d
(cxlcnd-eur-ft'wls in Fig, JO) 10 tht' nexl child of tht' ConcalnlCllion TD.
This extension' is donc only for signaIs whieh ha\'<' exhaustt'd lhdr SI"'"
l'vents in the eurrent ehild.

Actual l'vents are matchcd in the current child until it beeonws fml,ly,
or in the case of a prcjectable current child. until an aetual l'vent oceurs on
a signal which has a spec event in the next child extension of the current
l'vent set (in this latter case, the CUITent child is projected into the past).
The current child pointer is thell updated to the next child. The maleh
error attribute of the Concatenation 1'0 is set to that of the child in which
the l'vent was matched. The Concatenation 1'0 is projectablc if its currcnl
chiId is its last child and is projectable. Finally, note that by enforcing
the reasonable assumption that each leaf timing diagram contains at !"...~l
one ~necessary~ (i.e., neither optional nor multi-match) l'vent, the cur:clll
l'vent set extension discussed above need not go beyond the nezl child 01
the Concatenation 1'0.

The Loop class is a subclass of Concatenation. The Loop update
method is exactly the same as that in Fig. la. The differences in the
processing of a Loop 1'0 with respect to a Concatenation are as follows:

1. The children list is implemented as a circular list of two identical
child subtrees3•

2. The SET method for advancing the current child (Fig. la) swars the
current and ne.'Ct pointers and performs an appropriate re-initializat,ion
of the former current sub-tree, so that it cau be re-used. In the case
?f the fixed number of iterations subclass of Loop, the SET method
also increments an iteration counter.

3. The nezt-child accessor and the is-last-child predicate (Fig. la) are
specialized methods for the Loop class. In the case of the fixed num­
ber of iterations subclass of I.oop, they test the iteration count. In
the case of the infinite Loop subclass, they retum the successor child
in the circular list and False, respectively.

2To be precise, the extension is aetually done for signais whicb have exhausted their
spec events in at least one Choit:e brancb in the subtree rooted at the current cbild of
the Concatenation TD. In the aetual implementation, the TDs propagate during the
update traversai, signal attributes whicb indieate this information; these details are
omitted from the update methods of Figs j to 10.

3Two instances, one for the eun-ent cbild, and one for the ne%t child, are sufficient ""
a result of the assumption made abuve, ofOne necessary event per leaf tin3ing diagram.

• CH.4.PTER 4 - INTEGRATING BEHA\10R AND TIMING ·t-l ~l

•

•

Finally. note that a hierarchical l'vent trace is optional:y maintailll'd
by the TDI. These details are omitted from the pseudo-code of Figs ï to ID.
To maintain this trace. a his/ory instance of the hierarchy is progressiwly
built as TDs (at any leveJ of the hierarchy) are matched. This hierarchi­
cal history instance differs from the original hierarchical specification in
that l'vents have fixed time-value pairs (multi-m"tch events have a list of
time-value pairs in general). loops ~.re "unfolded" (i.e.. their subtrees are
instantiated as many times as necessary). and choices are "linearizcd" (only
the matching branch is kept). The user has control over the "trace period"
by specifying, for each Loop TD, the number of iterations for which the
trace is to be kept before it is overwritten by subsequent itcrations. The
user also has control over the "trace density" by specifying which TDs in
the hierarchy ought to be considered leafs from a trace history point of
view.

3.4 The Top-Level Process

The top-level control loop of the TOI algorithm is shown in Fig. 1L The
TD parameter is the root of the timing diagram hierarchy. The process
iterates until the current l'vent set is empty, or there is a match error. At
each iteration, the following is performed:

L The process queries the simulator for actual input l'vents and conects
the result in the list actual-events.

2. If an output l'vent must be generated at the current time (this was
determined in sorne previous iteration of the process), the l'vent is
made to occur with zero delay (occur-now). The l'vent is also ap­
pended to the actual-events list.

3. For each signal tha.t has an input spec l'vent E in cur-events(TD)
(Le., the current l'vent set) with sup(E) equal to the current time,
and that has no l'vent in the actual-events list, the procedure append­
time-out-events appends a "fake" actual l'vent (with value equal to
the current value of the signal and time equal to the current time) to
the aetual-events list. This is done to force an update for this signal
(and as a possible result fiag errors, e.g., for l'vents that should have,
but ha.ve not actually occurred).

4. A recursive update (i.e., Figs 7 to 10) is performed for each l'vent in
actual-events.

• ·1-16 CHAPTER ·1 - INTEGRATING BEHAVIOR MW TIAHNG

•

•

5. The procedure compu/e-ou/pu/-even/ chooses an output event for gen­
eration. This is done by randomly assigning an occurrence time
(time(E)) in the time interval [E), for each output event E in cur­
even/s. and then selecting the output event \Vith the smallest assigned
occurrence time.

6. The proccss WAITs for actual input event activity, or for a time-out
to occur, where the time-out is computed as the minimum of the
output event time and the smaIl~st sup in the current event set.

4 Procedurallinking

In this section, we extend the modeling approach to include the internaI
(i.e., functionaI) behavior of the modeled entity. We concentrate on the
class of entities which are characterized by the following two properties:
1- the interface control-flow is dominated by the environment, and 2- the
internai control-flow follows quite closely the interface control-flow. For
these entities, what remains to be described in order to obtain a complete
model, Can be achieved \Vith the help of the simple, yet powerful paradigm
of linking procedures and functions to event~ (this will be genericaIly re­
ferred to as "procedurallinking" in the rest of this document). Thi~ linking
is specified by pointing to the desired "trigger event" in the timing dia­
gram editor, and by specifying the name and interface of the procedure or
function to be linked (the body is edited separately using a text editor).

We distinguish two classes of proceduraI linking, defined in the fol­
lowing.

1. Procedures (Iinked to input or output events): A procedure linked
to an input (resp. output) event (referred to as the "trigger event")
is ca11ed by the Timing Diagram Interpreter when it matches (resp.
generates) the event during the simulation. The procedure is caIled
for its side effects. The parameters of the procedure can be signai
names (they stand for the signai vaIues at the time the procedure
is caIled) and/or variables of the internai mode!. The procedure is
aIlowed to modify only these variables. Such procedures are often
used to provide operands to the data-:lI.ow operations of the internai
behavior.

For example, in Fig. 12, the read..column procedure, which is linked
to the CAS falling edge event, stores the vaIue of the column ad­
dress into the column variable. This variable will then be used as

• CHAPTER 4 - INTEGRATING BEHA.\"IOR AND THIING ·1-17

•

•

an operand to the memory acccss operation (which is essen! ially a
data-f1ow operation). More generally. linked procedurl's cali tllo,:ify
variables that determine the control-f1ow of the internallllodel. Note.
however. that this allows only simple internaI control-flow (i.e.. tint
differs only slightly from the interface c:>ntrol-flow).

2. Output computation functions (Iinked to output events only): :\
funetion linked to an output trigger event. is called by the Timing
Diagram Interpreter when this latter generates the event during sim­
ulation. The function returns a signal value to the TOI; the TDI uses
this value to generate the event. Such functions essentially mode! the
data-f1ow operations of the internai behavior (e.g.. sorne arithmetic
computation, or memory/register access).

For example, in Fig. 12, the function computc_da~a, which is linked
to the Q VaIid event, is called by the TDI when the Qdata must be
put on the bus. The function performs the memory access operation
and returns the value to the TDI.

More generally, there can be sorne control-fiow in the function, e.g.,
branching to different computations depending on the value of sorne
state variable (again, this is typically suitable for entities with an
internai control-fiow that diverges only slightly from the interface
control-fiow).

In the case of a trigger l'vent that is matched by the TOI in multiple
branches of a Choice operation, the attached procedure or function is l'xe­
cuted only once. When l'vents are projected into the past, the procedures
or functions attached to them are not executed. The linked procedures
and functions do not manage time, nor process synchronization, time outs
etc. (e.g., they do not use WAIT statements). These aspects are handled
by the TOI; this facilitates the quick deve!opment of executable models.

Memor:r devices are typical examples of entities with an Illternal
control-f1ow that follows closely the interface control-f1ow. As a result,
it is quite simple to obtain a complete behavioral mode! of the VRAM
by augmenting its interface mode! (given in Section 2.3) with appropriate
procedural Iinking. For example, we conducted a case study wherein we
assigned two students the task of deve!oping a complete VHDL behavioral
mode! for the VRAM, including timing checks, using the technical specifi­
cations of [11]. The first student, who had more than a year of experience
in VHDL behavioral mode! deve!opment was asked to deve!op the VRAM
mode! using the VHDL language only. The second student, who had no
prior knowledge of VHDL, nor of the timing diagram tools, was asked to

• ~·18 CHAPTER ·1- INTEGRA.TING BElIAVIOR ..\ND TIMING

•

•

use the hierarchical timing diagram editor. procedural linker and modcl
generator to devclop the behavioral mode!. Apart from the differencc in
VHDL experiencc, the two students had similar backgrounds. At the end
of the semester. the first student had written about 1,000 lines of VHDL
code; this code modeled only the "simple" cycles (i.e., it excluded the page
mode cycles.) The second student had specified the VRAM interface. in­
cluding the page mode cycles, as described in Section 2.3, and had written
less than 35lines of VHDL code in order to complete the behavioral mode!.
This code was essentially made up of small, easy to debug procedures and
functions (e.g., Fig. 12).

5 A Complete Approach to Modeling

The requirements for e.'(tending the modeling paradigrn to arbitrary be­
haviors, are as follows:

(RI) Allow the control-f1ow of the interface behavior to be governed by the
internai behavior (without, on the other hand, losing the capability
of letting the environment govern the control-f1ow, if desired, as was
d . S . ? ?)one ID ectlon _._ .

(R2) Offer full-f1edged modeling capabilities for the internai behavior (both
control-f1ow and data-f1ow) using an easy and intuitive paradigrn for
the capture of specifications.

(R3) Define a .:Iear and simple model for the interelation and synchroniza­
tion between the internai behavior and the interface behavior.

We are presently conducting a modeling case study on the 8085 pro­
cessor [13), using the following solutions to the above requirements.

(SI) To achieve Requirement RI, a choose function and a loop predicate
are linked to the CHOICE and LOOP timing diagram composition
operators, respective!y. The input parameters of these functions and
predicates cau be any subset of the state variables of the internai
mode!. The choose function returns the instance name of the child
of the Choiœ TD to be executed by the TDI. The boolean value
returned by the loop predicate indicates whether a new iteration is
to he executed by the TOI. In the case of a Choice TD with no
choose function, the semantics are as in Sections 2 to 4, i.e., paralle!
matching of the child TDs.

• CHAPTER 4 - I!\'TEGRATING BEH.-\\·IOR A!\D TIMING ·I-I!)

•

•

(52) The modcling of the internai behavior (Requirement R2) is dont'
using an Extended Finite State Machine (EFS!\!) mode!. StaIl' tran­
sitions arc labeled with conditions on EFSl\! variables. Each statl'
of the EFSM contains a list of actions to be performed "in paralld··.
These actions consist of variable (register) assignments and simple
built-in operations (such as Add, Shift, etc.). Note that this lev<'1
of abstraction is higher than RTL (Register Transfer Level), in that
the states of the EFSM can have variable time durations. For exal11­
pie, in the case of a synchronous entity, different states can require
different numbers of clock cycles to execute.

(S3) An EFSM state can be labeled with a synchroni::ation point; this
indicates that the TOI must take control of the model execution
once the EFSM actions in this state are performed. Synchronization
points can also label TOs of the timing diagram hierarchy. When a
timing diagram labeled with a synchronization point terminates its
execution, it must return control to the EFSM.

Operationally, the cooperative execution of the EFSM (which models
the internai behavior) and the TOI (which models the interface behavior)
proceeds as follows.

• The actions in the present state of the EFSM are executed "instan­
taneously" (i.e., zero e!apsed time).

• Then, if this state is labeled with a synchronization point, control
is passed to the TOI. Execution under the TOI then proceeds as
explained in Section 3, with the addition of linked procedures and
functions (Section 4), as weil choose functions and loop predicates.
The TOI execution will, in general, affect state variables of the EFSM
(through calls to procedures linked to events) and allow time to ad­
vance.

• The TOI executes until a timing diagrarn labe!ed with a synchroniza­
tion point has terminated its execution. Note that the TOI "remem­
bers" ail its state attributes defined in Section 3, so that the next
time it regains control, it will proceed from where it left off.

o Control is then returned to the EF5M. The EF5M evaluates its state
transition conditions and proceeds to the next state.

Fig. 13 shows the EF5M mode! for the internai behavior of the
8085 processor [13] for a small subset of four instructions: MOVM (Move

• 4-:W CHAPTER 4 - INTEGRATING BEHAVIOR .-1ND TIMING

•

•

fram memory), AD! (Add immediate), OCRM (Decrement memory). and
CALL. Plain state transition arrows in the figure indicate that their source
state is labeled with a synchronization point. Dashed arrows indicate in­
stantancous transitions (control is not given to the TOI). Fig. 14 shows
the interface specification of the processor. In the fol1owing we illustrate
the cooperative execution of the EFSM and the TOI for the OCRM in­
struction.

1. Initially the EFSM is in the leftmost state of Fig. 13. In this state,
thcre is only one action: the content of the PC is loaded into the
Address variable.

2. Control is then passed to the TOI. The "choose function~ CH(IFlag)
which labels the Choice 1'0 in Fig. 14, chooses betwee~ a Fetch or an
Interrupt machine cycle. Assuming the~ were no interrupt requests
IFlag = False), the TOI executes a Fetch cycle, using the Address
value that was set by the EFSM. Ouring the execution of this cycle,
the TOI latches the data bus at the proper time and writes the data
value into the Data variable of the EFSM (through procedurallinking
in the Fetch timing diagram). The Fetch timing diagram (Iower left
corner of Fig. 14) is labeled with a synchronization point (pictorially
represented by a small dark box in the lower right corner of the Fetch
1'0). The TOI thus retums control to the EFSM.

3. The EFSM (Fig. 13) then evaluates the state transition conditions;
these test the Data variable for the valid instruction opcodes; (the
conditions are denoted A, B, C and D in Fig. 13; see bottom offigure
for their precise meaning). Assume Ïor illustration purposes, that the
C condition evaluates to True (OCRM instruction). The EFSM thus
moves to the next state which is enabled by the C condition. In
this state, the EFSM sets the Address variable to the content of the
H & L register pair (this is the address fromito which the data must
he read then written back). The EFSM also sets the variables NRead,
NWrite, and NEmpty. These indicate the numher of Read machine
cycles, Write machine cycles, and id1e clock cycles, respectively, to
be performed in the execution of the instruction. In the case of
the OCRM instruction, the data must he read (NRead set to 1),
decremented, then written back (NWrite set to 1); no id1e cycles are
needed (NEmpty set to 0).

4. Control is then passed to the TOI. The TOI resumes where it left off
previously, i.e., at the second chiId of the Concatenation operation

• CHAPTER.j - UIiTEGRATING BEH.-\VIOR ASD TIMING ·1-~1

•

•

labeled Instruction Cycle (Fig. 14). This child is a Loop of NRead it­
erations. The first Read (i.e.• child of the LC'op TD) is thus perforn\<'d
by the TOI, using the Addrcss value that \Vas set by the EFSM. Dur­
ing the execution of this cycle. the TOI latches the data bus al. tl\<'
proper time and writes that value into the Data variable of the EFSM
(through procedurallinking in the Read timing diagram). Since th,·
Read timing diagram is labeled with a synchronization point. the
TOI returns control to the EFSM.

5. The EFSM advances to the next state (the absence of state transi­
tion condition signifies a universally True condition). The actions in
this state consist of decrementing the Data variable and accordingiy
setting the Z (zero), S (sign), P (parity) and AC (auxiliary carry)
condition flags.

6. Control is then passed to the TOI. Since NReadwas 1, Loop(NRead)
is now over. The TOI thus resumes at the third child of the Con­
catenation operation labeled Instruction Cycle (Fig. 14). This child
is a Loop of NWrite iterations. The first Write (i.e., child of the Loop
TO) is thus performed by the TOI, using the Address value that was
set by the EFSM. Since the Write timing diagram is labeled with a
synchronization point, the TOI returns control to the EFSM.

ï. The EFSM advances to ..Lext state. The action in this state consists of
incrernenting the PC by 8. Then, since this state is not labeled with
a synchronization point (the outgoing is a dashed line), the EFSM
performs the state transition to the next state which in this case is
the initial state. The EFSM is thus ready for the next instruction.

Since NWrite was 1 and NEmpty was 0, the next time the TOI re­
gains control (i.e., on the next instruction), it will perform no Empty
cycles, therefore the Concatenation TO labeled Instruction Cycle will
be determined to be empty, and the TOI will resume execution at
the next Iteration of the top-Ievel TO (i.e., the Loop labeled "8085".

The advantage of the modeling methodology illustrated above is that
the interface behavior is clearly separated from the functional (internai)
behavior. This aIlows different possibilities for the generated mode!. For
example, to perform a high-level simulation ofthe 8085, the interface speci­
fication (Fig. 14) cao he simply removed and replaced by atomic procedure
calls ("Fetch", "Read", or "Write") which access an array data structure
representing the main memory of the processor.

• ·1-22 CHAPTER ·1 - INTEGRAT1NG BEHA.VIOR A.ND TlA-1lNG

•

•

6 Discussion

Scmlconductor and subsystem manufacturers often supply timing diagrams
to describe the interface specifications of their products. This notation is
convenient for describing signal behavior over time, and hardware design­
ers are familiar with it. In [6], the timing diagrarn notation is formalized,
and its expressive power extended. Looping and conditional executions
of timing diagrams are supported; the control-flow of these executions is
captured with "extended boolean expressions" on signals; in addition to
the standard boolean connectives, these expressions include signal Delay
and Latch constructs to capture st<'.te infe-rmation across timing diagrams.
Timing diagrams can also be put in concurrency; synchronization and tim­
ing constraints cao be expressed between concurrent timing diagrams. In
comparison, our approach to capturing interface specifications is quite sim­
ilar. In [6], the specifications are used for the synthesis of interface circuits,
whereas we use the specifications to generate executable (simulation) mod­
els.

In [12], the specification methodology is based on the separation of
interface specifications (which are captured as in [6]) from internal data­
flow specifications (captured with a textual HDL program). The approach
is suitable for entities for which the overall control-flow follows closely the
interface control-flow. From a specification point of view, the two descrip­
tions are related only through 1/0 signal names and symbolic data names
(i.e., common name space between the two specifications for 1/0 signals
and symbolic values on data busses). As a result, the HDL specification
contains control-flow information which could be redundant (e.g., Fig. 1
in [12]) with respect to that captured in the interface specification. In
comparison, our approach which is based on directly linking data-flow op­
erations to interfaceevents ("procedurallinking"), avoids this redundancy.

In [14], a VHDL annotation language, VAL+, is proposed to de­
scribe parametrized, hierarchical event patterns. The patterns are used
for matching simulation traces; the idea is to transform (:lIat) simulation
traces into hierarchical ones, by pattern matching, in order to help the
user in trace debugging and browsing. However, the matching is done
off-line, after the simulation has completed; this requires the storage of
the complete simulation trace. This also implies that the approach of [14]
cannot be used for checking state assertions of the modeled entity (sinee
such checks require knowledge of the execution context). Furthermore, the
VAL+ patterns are used only for trace matching, not for driving the circuit
under simulation. In comparison, our TDI approach consists of on-the-:lIy

•

•

•

CHAPTER 4 - Il\"TEGRATli\'G BEHA\'IOR AND TIMING

hierarchical matching; the complete simulation trace is not storl'd. instt'ad
only the most recent trace history is Kept (under user control). Our hierar­
c"ical patterns are used for both driving simulated entities and matching
their responses. Our on-the-f1y matching technique. coupied with proCt~

dural linking. forms the basis for specifying state assertions to be checked
during simulation. Finally. by acting on the simulated model itsclf (ratiter
than just on its stimulus/response specifications). our approach also allows
to conveniently carry simulations at different levels of abstraction. e.g.. tilt'
generated models can perform atomic operations that stand for complete
patterns of lower level events.

The HIDEsystem [15] genera.tes VHDL interface models from timing
diagrams and state diagrams. The state diagrams specify interface control­
flow, similarly to our choose functions and a loop predicates in CH0 1CE
and LOOP, respectively. A VHDL procedure is generated for each inter­
face operation (such as READ, WRITE etc.). The procedures can then
be called from a command file to simulate the interface behavior. This
approach, however, does not seem to be practical for cases such as mem­
ory devices, wherein the choice of the actual interface operation cannot
be decided before-hand (i.e., the interface control-flow is governed by the
environment, e.g., the processor). Moreover, HIDE does not support hi­
erarchical TD compositions, and its timing specification method does not
support cases such as that illustrated in Fig. 3.

7 Conclusion

We have presented a modeling methodology and tool set for the rapid
development of executable HDL models. The method is based on the
separate capture of interface specifications, functional specifications and
the relation between them. HDL models are generated in a layered fashion,
at different levels of abstraction, in which layers can be easily inserted and
removed, thus facilitating the validation of different aspects of the design.
HDL interface models are automatically generated from the specifications.

In the future, we intend to perform additional case studies and ex­
tend the modeling methodology, e.g., to pipelined architectures. We also
intend to improve the usefulness of the timing diagram interpreter, e.g.,
by experimenting with error recovery schemes (presently, the TOI halts its
execution when an error is propagated up to the top-Ievel). Furthermore,
we intend to implement conditional trace matching in the TOI, i.e., repeat­
edly "hunting" for a specific pattern p~ndition (no errors are f1agged

• 4-24 CHAPTER -1 - INTEGRATlt1iG BEHAVIOR AND TU..flNG

•

•

when this pattern is not matched) and starting matching only ",hen the
pre-condition is fulfilled. This is useful in checking state assertions in the
modeled entity.

References

[Il A.R. M:u-tello and S.P. Levitan. "Temporal specification verification via causal
rcasoning", Pme. 2nd ACM Workshop on Timing lssucs in the Specification and
Synthesis of Digital Systems, 1992.

[2J K. McMilIah and D.L. Dili, "Algorithms for interface timing verification", Pme.
2nd ACM Workshop on Timing lssucs in the Specification and Synthesis of Digital
Systems, 1992.

[3] F. Mavaddat and T. Gahlinger, "On deducing tight bounds from partial timing
specifications", Pme. Ist ACM Workshop on Timing Issues in the Specification
and.Synthesis of Digital Systems, 1990.

[4] J.A. Brzozowski, T. Gahlinger, and F. Mavaddat, Consistency and satisfiabil.
ity of waveform timing speci5cations, Research Report CS-88-24, University of
Waterloo, 1988.

[5] S.K. Sl.erman, "Algorithms for timing requirement analysis and generation",
ACMjIEEE Pme. 25th DAC, pp. ;24-;2;, 1988.

[6] G. Borriello, A New Interface Specification Methodology and its Application to
Transducer Synthesis, PhD thesis, University of California, Berkeley, 1988.

[il IEEE, IEEE Standard 1076-1987, VHDL Language Reference Manual, IEEE,
198;.

[8] K. Khordoc, M. Dufresne, and E. Cerny, UA stimulus/response system based on
hierarchical timing diagrarns", IEEE Pme. ICCAD·91, pages 358-361, 1991.

[9] K. Khordoc, E. Cerny, and M. Dufresne, uModeling and execution of timing
diagrarns witb optional and multi-matcb events", Pme. 2nd ACM Workshop on
Timing Issues in the Specification and Synthesis of Digital Systems, 1992.

[10] K. Kbordoc, M. Dufresne, and E. Cerny, UA stimulus/response system based
on bierarcbical timing diagrarns" Publication ï70, Dept. I.a.O., Université de
Montréal, 1991.

[11] Texas Instruments Incorporated, Supplement to MOS Memory Data Book, Texas
Instruments, Houston, Texas, 1984.

[12] G. Borriello, "Combining event and data-f1ow grapbs in bebavioral gyntbesis" ,
IEEE Proc. ICCAD-BB, pp. 56-59, 1988.

[13] Intel Corporation, MCS-BS User's Manuai, Intel, Santa Clara, CA, 19;8.

[14] B.A. Gennart and D.C. Luckham, "Validating discrete event simulations using
event pattern mappings", ACMjIEEE Proe. 29th DAC, pp. 414-419, 1992.

[15] Y.H. Leong and W.P. Birmingham, "The automatic generation of bus-interface
models", ACMjIEEE Proc. 29th DAC, pp. 634-637, 1992.

•

•

•

CH.4.PTER 4 - INTEGR.4.l'ING BEHAnOR AND TL\IlNG

mathod upjata(class: laaf) (salf. avant)
spec_evant := currant_evant(signal(avent»)
match_error(salf) := valua_mismatch(spac_avant. evant)

OR tima_mismatch(spac_event. event);
updata_longast_paths(spac_avant. tima(avant»;
if (not (is_multi_match(spec_avent) and is_input(spec_pvent»))

than sat currant_avent(sig) to naxt(spac_evant);
and if;

1* validate projectad evants in salf: *1
loop for sig in (signals(salf) - signal(evant» do

loop for spec_avent from current_event_of_signal(sig)
then naxt(spac_avent) do

if (sup(spac_avent) < time(event»
then match-error(salf) :=

match-error(self) or valua_mismatch(spac_event. sig);
else 1* advance current_even.: beyond projected avants *1

set current_event(sig) to spac_avent;
exit; 1* projaction completed for sig *1

end if;
end loop;

end loop;

1* salf is projeetable if all its unoccurrad events
ara projectable *1

projectable(self) := nua; 1* until proven false *1
loop for sig in signals(self) do

loop for spec_event from current_event_of_signal(sig)
then next(spec_event) do

if value_mismatch(spec_event. sig»
then projeetable(self):= false;

exi't;
end if;

end loop;
if projeetable(self) := falsa then exit; end if;

end loop;
end update(class: leaf).

Figure 7: Leaf update method.

• 4-26 CHAPTER ·1- INTEGRATING BEHA.VIOR AND TIMING

•

•

me~hod upda~e(class: choice) (self, even~)

ma~ch_error(self) := ~rue; projec~able(self) := false;
cur_even~s(self) := nil;
loop for each child ln ac~ive_children(self)do
upda~e(child. even~);

ma~ch_error(self) :=
ma~ch-error(~elf) ~d ma~ch_error(child);

projec~able(self) :=
projec~able(self) OR projec~able(child);

cur_even~s(self) := APPEND cur_even~s(child)

TD cur_even~s(self);

if ma~ch-error(child)

~hen REMDVE child FROM ac~ive_children(self);

elseif emp~y(child)

~en se~ cur_even~s(self) ~o NIL;
,. Choice has successfully ~ermina~ed .,

exi~; ,. no need ~o con~inue loop .,
end if;

end loop;
end upda~e(class: choice).

Figure S: Choice update method.

me~od upda~e(class: concurrency) (self. even~)

child := 'the child in children(self) vhich is
defined over signal(even't)

if emp'ty(child) ,. i.e •• ~e child defined over ~e signal
had already 'termina'ted *,

~hen ma'tch-error(self) := 'true
else

upda'te(child. even't);
ma'tch-error(self) := ma'tch-error(child);
projeC'table(self) :=

(all child in children(self) are projeC'table(child));
cur_even'ts(self) :"' APPEND 'toge~er ~e cur_even'ts

of all children(self);
end if;

end if;
end upda'te (class: concurrency) •

Figure 9: Concurrency update method.

• CHAPTER 4 - ISTEGRATlSC BEHA\"lOR .·\XV n\fISC 1.,-
• -- j

•

•

me.hod upda.e(class: conca.ena.ion) (self. even.)
if (projec.able(curren._child(self))

and nex._child(curren~_child(self)) /= nil
and signal(even.) has a spec even. in

cur_even.s(nex._child(curren._child(self))))
.hen /* projec. curren._child(self) in.o .he pas.: */
SET curren._child(self) TC ne~_child(curren._child(self));

upda.e(curren._child(self). even.);
ma.Ch-error(self) := ma.Ch-error(curren._child(self));

elseif signal(even.) has a spec even. in
cur_even.s(curren._child(self))

.hen
upda.e(curren._child(self). even.);
ma.Ch-error(self) := ma.Ch-error(curren._child(self));

else /* illegal a••emp••0 projec. */
ma.Ch-error(self) := true;

end if;

if empty(curren._child(self))
then SET current_child(self)

TC n~_child(curren._child(self));

end if;

projectable(self):= (is_last_child(current_child(self))
AND projeetable(current_child(self)));

if (projeetable(current_child(self))
and next_child(current_child(self)) /= nil)

then
=_events(self) := ~encL=_even.s(current_child(self).

next_child(current_child(self)));
else

=_even.s(self) := =_even.s(current_child(self));
end if;

end update(class: conca.enation).

Fi~lre 10: Concatenation update method.

•

•

•

Cl/:\I'TER·l - INTEGRA'l'LVG BEHA\-'IOR ASD 'l'L\IISG

process hierarchical_.iming_diagram-in.erpre.er(TD)
ini.ialize(TD); ou.pu._even. =nil;
repea.

curren._.ime := ge._curren._simula.ioD-.ime();
ac.ual_even.s := ge._inpu._even.s_from-simula.or();
if (ou.pu._even. 1= NIL)

and (curren._.ime =.ime(ou.pu._even.»
.nen
occur_novCou.pu._even.);
append ou.pu._even••0 ac.ual_even.s;

end if;
append-.ime_ou._even.sCac.ual_even.s);
loop for each even. in ac.ual_even.s do

updau(TD. even.);
if ma.ch-error(TD)

.nen
error_message(even.);
exit;

end if;
end loop;
ou.pu._even. := compu.e_ou.pu._eventCcur_evenuCTD»;
timeou. := minC.ime(ou.put_event).

smallest_sup(cur_even.s(TD»)
- c:urrent_.ime;

vai. on signals(input_event_subse.(cur_eventsCTD»}
for .imeout;

until emp.yCTD) or ma.ch-error(TD);
end hierarchic:al_timing diagram-inurpreter.

Figure 11: The TOI proc:ess.

•

•

CH:\PTER 4 - Ii\"TEGR.4.TING BEHAVIOR M';D TI.\IISG

CAS .l- I

(
AQ-A7'd/h '/////////////h

VALIU

/
"

lunction compute_data (memory. column, row);
retum memory(column,row);

end compute_OBta;

procedure read_column (AO_A7,column);
column := AO_A7;

end read_column:

Figure 12: Example of procedure binding in VRAM.

·1·29

NbId<ol ;NWriIIr<-O:~<-O :AlIdt.-<- etH)lUI: Relilla'c. DOD 1.....)<· o.ca ;(l'C)c. (po.'

•
A..:woDlla_NOYN_DIDo.OllDODIIO c_o.u._DcrM _DD_OOIIOIOI
a _ DIIa _ADl...ea-_ 011II_ 11000110 0 <-> DIo·ODAddr_ DIIa- 11001101

Figure 13: Excerpt from the 8085 internal behavior specification.

•

•

•

·1-:lO CHAPTER 4 - INTEGRATING BEHAVIOR AND TIMISG

Figure 14: Interface specification of the 8085.

•

•

•

CHAPTER 5

MODELING CELL PROCESSING
HARDWARE WITH ACTION

DIAGRAMS

ABSTRACT

ln this paper we address the behavioral modeling of ccli processing
hardware (e.g., packet / ATM switcbing systems). We propose a mod­
eling methodology, Action Diagrams, in which the timing and protocol
aspects are specified in a nearly "orthogonal~ way to the data manipula­
tion aspects, while maintaining the links between the two. We show the
novel aspects of this specification paradigm and we illustrate its use on ccli
processing applications.

5-1

• 5-2 CHAPTER 5 - MODEL/NG CELL PROCESSING HARDW.4.RE

•

•

1 Introduction

When d<.'Signing complex hardware systems consisting of multiple ASrCs.
the high level design must be verified before it is refined into an RTL design.
Thercfore behavioral models of the system must be developed. Although
it is generally accepted that the next step in raising design productivity
and reducing time to market of large systems resides in behavioral mode!­
ing, there is strong reluctance in the industrial design community to adopt
behavioral modeling. This is due to the lack of established behavioral
modcling methodologies. Such methodologies are bound to be applica­
tion dependent (as opposed to, for example, RTL modeling methodologies
which, to a great extent, are application independent).

In this paper we address behavioral modeling issues for hardware
systems in packet or ATM (Asynchronous Transfer Mode) switching ap­
plications. We designate this class of systems generically as "cell processing
hardware" (wherein a ecU is a packet or an ATM cell). These applications
are characterized by:

• A balanced rnix of protocol aspects and data computation aspects.
The protocol aspects consist, for example, of f10w control mecha­
nisms, merging and synchronization of different cell streams, pro­
cessing of the handshake information embedded in the ceUs and the
effects of this processing on the ceU f10w through the system. These
aspects have the advantage that they can be validated independently
of the payload (data) carried by the cells (which therefore facilitates
the validation). A major difficulty, however, is that these protocol as­
pects span the system as a whole, and therefore cannot be validated
locally. The data computation aspects, on the other hand, consist,
for example, of algorithmic descriptions of CRC (Cyclic Redundancy
Checks) and other error checking codes, etc. These data computa­
tion aspects can be typically validated locally and independently of
the overall cell f10w in the system.

• Real-time requirements. For example, when explorîng different ATM
switch architectures, latencies in the system are a conœrn for CBR
(Constant Bit Rate) traflic, e.g., voice traffie. It is therefore im­
portant to capture timing information and timing constraints at the
behavioralleve1.

Behavioral modeling approaches, such as [1, 2], lack the timing con­
straint constructs and tde capability of declaring the assumptions that a

• CHAPTER 5 - MODELING CELL PROCESSING HARD\'v:4.RE 5·3

•

•

behavior makes on its environment. We found that such constructs and ca­
pabilities are important in validating the protocol aspects of cell processing
applications.

Interface modeling approaches such as [3, 4, 5J, arc adequatc when
interfaces are completely defined down to physical ports and true timing.
However, in the design methodology that we are considering, behavioral
models must be developed weIl before the interfaces between ASICs are
specified in detail. Furthermore, the detailed interfaces, when they arc
specified, are too low-level to reveal the important characteristics of sys·
tem interactions in a manner that would be amenable to validation of the
protocol aspects of the system.

In this paper, we propose a behavioral modeling methodology in
which the timing and protocol aspects are specified in a nearly ~orthog­

onal" way to the data manipulation aspects, while maintaining the links
between the two. We show the novel aspects of the specification paradigm
and we illustrate its use on cell processing applications. The methodol­
ogy is based on Action Diagrams, which is an extension of the Timing
Diagrams of [3] and [4]. In comparison to [3, 4], we have introduced im­
portant modeling concepts suitable for behavioral level modeling:

• A true behavioral hierarchy with port mappings, parameters and
local variables in Action Diagrams.

• Message-based and value-based ports.

• Choice semantics supporting both deterministic and non-deterministic
choice.

• An exception handling mechanism.

• A powerful functional annotation mechanism for data computation
aspects.

• User-defined data types for ports and actions.

• Separation of timing constraints into assume and commit constraints.

• Timing constraint composition operations for multiple causal prede­
cessors of an action: latest, earliest and conjunctive composition.

We have impIemented a specification capture system based on Action
Diagrams, and we al. .~ now implementinga model gen~tor which produces

• .')·4 CHAPTER 5 - MODELING CELL PROCESSING HARDW:4.RE

•

•

a behavioral VHDL model from Action Diagram specifications. We are also
performing moâ.::!ing experiments on industrial applications.

The rcst of this paper is structurcd as follows: In Section 2 wc
ovcrview the Action Diagrams specification method. In Sections 3 and 4
we illustrate the mcthod on cell processing applications. Finally, Section 5
concludes the paper by discussing sorne futurp. orientations of our work.

2 Action Diagrams

An Action Diagram specification represents the behavior of a system as a
behavioral hierarchy. Leaf Action Diagrams and their annotated extension
(for functio!lal specifications) are presented in Section 2.1 and Section 2.2,
respectively. Hierarchical Action Diagrams and their annotated extension
are presented in Section 2.3 and Section 2.4, respectively.

2.1 Leaf Action Diagrams

We informally introduce the essential features of Leaf Action Diagrams by
way of an example shown in Fig.!. A Leaf Action Diagram is defined over
a set of ports, e.g., In-port, Out-port and w-buff-full. The type of a port can
be any VHDL compatible type. For example, In-port and Out-port are of
type cell-type (a user-defined type) and w-buff-full is of type binary. Ports
have a direction, e.g., in, out, and inout, for In-port, Out-port and w-buff­
full, respectively. Internai ports cao also be specified; their semantics are
similar to out ports, except that their behavior is not visible from outside
the action diagram.

The behavior of a port is captured as a sequence of actions. An action
has a direction; in the case of in, out and internal ports, the direction is
inherited from the port; in the case of inout ports, the direction of the
action must he specified, e.g., that of the first action on w-buff-full is out,
and the second one is in.

Actions are labeled. The label cao he:

• A constant, or a symbol denoting a constant of the corresponding
data type indicating that the port will take on that value and then
remain stable. For example, the first action on w-buff-full is labeled
lofD.

• CHAPTER 5 - MODELING CELL PROCESSING HARD\\:·\RE 5-5

CœlI)

INSERT_OK(w_bufT)

(O.Tdrnl - lTceltTdtil' TceltTdrnl
...

predicate is empty(in cell)

~
,

in_œil

N.Tpl'OC' Tprocl
~_ëq Cm...œII,w_bulf,o

.... \
i\. out œil

(TaI' Ta2l\out [O~ in

~f ~ "1 VAUD

In-port

Figure 1: Example action diagram.

•
• The special symbol valid, indicating that the port will take on any

value of the data type, and then remain stable. For example, the
action labeled valid on w-buff-full indicates that the port cau remain
low, or become high (driven by the environment, as indicated by
the in direction of the action) and then remain high. In the case
of an output, the value valid-val(port) is used (the function valid-val
must be defined for each port data type carrying va/id labeled output
actions).

• The special symbol dont-care, indicating arbitrary or unspecified he­
havior of the port. In the case of an input action, the action cau
match an arbitrary number (including zero) of actual action occur­
rences on the port. In the case of an output action, and for modeling
purposes, the port is driven to the value dont-care-va/(port). The
function dont-care-va/ must be defined for each port data type car­
rying dont-care-va/labeled output actions.

•

Initial value labels cau be specified for in and inout ports. These
labels are the same as action labels. When specified, they indicate what
the value of the port must he when the action diagram starts. For example,
w-buff-full specifies a loUl initial value, while In-port does not specify an
initial value.

A port cau he va/ue-based or message-based (this is designated as
the interpretation of the port). In the former case, the action diagram
in effect declares that it expects ta he notified of the occurrence of an

• 5-6 CHAPTER 5 - MODELlNG CELL PROCESSING HARDV,,:4.RE

input action on the given port, only if that action modifies the value of
the port. For example, w-buff-full is value-based. If it remains Low after
out-cell occurs (which is allowed by the valid action on w-buff-full). no
actual input action need be received (and actually none will) in order to
match the action labeled valid. In the latter case (message-based). action
signaling is independent of action values. For example, In-port and Out­
port are message-based. An action must be actually received on In-port in
order to match the specified in-cell action, independently of the value of
the previous cell received on the port. Similarly, out-port must be updated
at each out-celL

Virtual Start and End actions (represf'...ted by the left and right ver­
tical boundaries of the action diagram) delimit the scope of the action
diagram. The Start action precedes ail actions and the End action suc­
ceeds ail actions of the action diagram.

Actions can be related by weighted (min/max) timing constrainis.
Timing constraints can be of assume or commit intent, indicated by empty­
headed and black-headed arrows, respectively. Commit timing constraints
specify the order and/or timing in which output actions are generated by
the action diagram. Assume timing constraints specify assumptions that
the action diagram makes on the order and/or timing of actions. For
example, there is an assume timing constraint of weight [0, TclrJt) from the
Start action to the in-cell action on In-po.·t. This indicates that a cell
must be received on In-port within a delay TclrJt from the beginning (Start
action) of the action diagram. There is a commit timing constraint of
weight [TAh TA2) from the action on In-port to the action on w-buff-full,
indicating that, when a cell is received on In-port, the w-buff-full signal
will he driven 1010 after a minimum delay Td , and a maximum delay TA2•

Consider a set S = {Ch ... ,Cn } of timing constraints, such that the
elements of S are aU of the same intent (commit or assume) and are aU
incident on the same action E (Fig. 2). The interpretation of the timing
constraints can be one of three kinds (specified by the user): conjunctive
(aU predecessors determine the occurrence of the action), earliest or latest
(only the earliest or the latest arriving predecessor determines the occur­
rence of the action). More precise1y, let Ei (resp. [4, Ui]) he the source
action (resp. weight) of constraint Ci, and let ft be the occurrence time of
Ei , i = 1... n. Then t, the occurrence time of E, is as fo11ows:

•

•
(a) Conjunctive(Ch ••• ,C,,):
(h) Latest(Ch' .• , Cft):
(c) Earliest(Ch . ",C,,):

Vi t·+l·<t«·+,··, t , __ "l -1

m=i(t. +4) :S t :S ml1%i(t. +Ui)
min;(t. + li) < t < min;(t. +Ui)

• CH.4.PTER 5 - MODELING CELL PROCESSING HARD\\:4.RE

Figure 2: Multiple constraints with the same action sink.

5-7

•

•

The operational semantics of an action diagram are defined in terms
of its execution in an environment which drives the diagram's in and inoul
ports and observes its out and inout ports. During such an execution, the
action diagram is said to be in a satisJying status when:

• its initial value specifications are satisfied

• its specified input actions are matched, i.e.,

- they satisfy the specified action sequences on ports,

- they satisfy the assume timing constraints, and

- they satisfy the value specifications given by the action labels.

When an action diagram takes on a non-satisfying status, it is dis­
abled, i.e., its execution is terminated. The implications of this depend on
the instantiation context of the action diagram; this is further elaborated
in Section 2.3. If, however, the action diagram maintains a satisfying sta­
tus until it fires its End action, we say that the action diagram completes
(its execution).

The simple concepts explained above, such as action sequences, as­
sume timing constraints, and action labels, lead to a natura! and easy way
of specifying more complex and useful properties. For example, the 10tD

to valid pattern on w-buff-full combined with the [O,ooJ assume timing
constraint from out-cell to valid w-buff-full states that if w-buff-full is Te­

asserted (driven High), then it can happen ooly after out-cell has been sent
out.

• 5-8 CHAPTER 5 - MODELING CELL PROCESSING HARDW.4.RE

•

•

2.2 Annotated Leaf Diagrams

Action diagrams can have parameters. In Fig. 1, w-buff is an in parameter
(of type cell-type). More generally, out and inout parameters can a1so be
defined.

The action and initial value label set is extended to arbitrary symbols,
in addition to those denoting constants introduced in Section 2.1, The
semantics are the same as in the case of the valid label, and in addition, the
symbolic label has the effect of declaring a variable of the corresponding
data type and of local scope to the action diagram. In the case of an
input action, the actual value of the port is latched into that variable. For
example, the label in-cell on the action of In-port declares a variable of
cell-type that will, at the occurrence of the action, be assigned the value
of the cell received on the In-port. For an output action, the value of
the variable is used to drive the port. For example, the label out-cell on
the action of Out-port declares a variable of cell-type, whose value will be
assigned to Out-port at the time of the occurrence of the action.

Additional variables, not directly related to port actions cao be spec­
ified. They typically serve as place holders for the results of intermediate
computation in the action diagram.

Predicates and procedures (written in VHDL), having as input pa­
rameters variables (which indudethose declared by action symbols) and/or
parameters of the action diagram, cao be attached to an action (in, out,
interna! and Start/End actions). These predicates and procedures are corn­
puted in "zero time" at the time instant at which the corresponding action
occurs, and they must contain no reference to time, delays, nor synchro­
nization (e.g., WAIT statements). Predicates extend in a natura! way the
satisfaction semantics of action diagrams. For example, the predicate is­
empty attached to the action labeled in-eell on In-port in Fig. 1, has as
input parameter the variable in-ceIl, and tests whether the ceIl is "empty";
if this is not the case (i.e., the cell is not empty), the action diagram is
disabled. Procedures cao have output and inout parameters (in addition
to input parameters), and cao modify the variables and parameters (out
and inout) of the action diagram. For example, the procedure insert-cell
attached 10 the action labeled out-eell in Fig. 1, takes as in parameters
the variable in-cell and the parameter w-bd (ofthe action diagram). The
procedure then computes a new ceIl, and puts the resuit in the variable
out-eell. There cao he at most one procedure attached 10 any given action
(for more than one procedure, an additiona! level of procedura! nesting
must he used, which will then determine the correct order of execution).

• CHAPTER 5 - MODELING CELL PROCESSING IHRD\\:4.RE 5-9

The execution semantics at the time of occurrence of an action (or
of multiple actions occurring at the same time) are:

1. Update all variables associated with input actions that han' occurrcd
at the current time instant.

2. Evaluate all predicates attached to actions in l, and to out and ill­
ternaI actions chosen to occur at the current time instant.

3. Execute (in arbitrary order) all procedures attached to actions in 2
(in, oui, and interna!).

4. Update all ports corresponding to out and internaI actions occurring
at the current time instant.

2.3 Hierarchical Action Diagrams

•
CONCATENATION

IQ~"'~I
(a)

CHOICE

LOOP

IQ 01-IQ 0~}"01
(b)

CONCURRENCY

Q~

~

(d)

•

Figure 3: Action diagram composition operations.

Action diagrams can be hiera.rchically composed. A hierarchical action
diagram Q is defined by a set of e:tiernaI ports (i.e., in, out, inout ports), a
set of internaI ports, an ordered list of child action diagrams (Ah"" An),
a hierarchical composition operation, and a port map for each Ai, i =
1, ... , n. The composition operations (Fig. 3) are: Concatenation, Loop,
Concurrency and Choice. The port map establishes the correspondence
between the external ports of Ai and the ports of Q (both external and
internal).

• .')-10 CHAPTER 5 - MODELING CELL PROCESSING HARDW:-\RE

•

•

For ail operators, except Choice, a status of non-satisfaction in one of
A" ... , An, unconditionally translates to a status of non-satisfaction for Q.
In the case of Choice, the semantics are slightly more complex (explained
below).

Concatenation: Al starts when Q starts. Ai+1 starts when Ai com­
pletes. Q completes when An completes.

Loop: The semantics are similar to Concatenation with an infinite
number of identical Ai 's.

Concurrency: At, ... , An start when Q starts. Q completes when all
of At, ... , An complete. When multiple Ai'S write to the same port, the
resulting behavior is similar to that of a multiple-writer shared variable,
i.e., at all times, the value of the shared port is that of the last value
written. If multiple writes occur at the sarne time instant, the result is
unpredictable (the write actions are serialized, and the last one "winsn

).

Choice: Al"", An represent alternative (branching) behaviors. The
behavior of Q is governed by concurrent choice semantics in which all
of the Ah"" An execute concurrently. At, ..• , An start when Q starts.
When an Ai takes on a non-satisfying status, it is disabled (its execution
is terminated). If all the A,'s take on a non-satisfying status, Q takes on
a non-satisfying status as a result. Two kinds of choice are supported:
deterministic and non-deterministic. The user specifies the desired kind
for each usage of the Choice construct.

In the foIIowing, an action diagrarn is said to produce a side effect at a
given time instant, if it produces an output action or executes a procedure
that couid modify an out or inout pararneter of the action diagrarn at that
time instant.

• Deterministic Choice: When a choice branch Aj produces a side
efFect or completes (whichever comes first), Aj must be the only still
enabled branch in that Choice (i.e., aIl other branches must have had
already been disabled). Otherwise, it is an errer.

• Non-Deterministic Choice: When a choice branch Aj is about to
complete or produce a side efFect at the current time instant, if Aj is
not the only still enabled branch in that Choice, a non-deterministic
selection of one of the still enabled choice branches is made, and aIl
other branches are disabled. The execution of the selected choice
branch then proœeds normaIly.

The two Choice constructs thus aIlow a deIayed choice, whereby the

•

•

•

CHAPTER 5 - l'vlODELING CELL PROCESSI"G HARD\rARE ;... 11

selection of a choice branch is dclayed until sufficil'nt information is gath­
ered. This is useful in supporting -scenarie>-based- modt'ling. Furth"r­
more. a simple modification to the deterministic dclayt'd choice s"lllant i<'s
leads to the definition of an exception handling ml'chanism. This is fnrther
explained in Section 3.

2.4 Annotated Hierarchical Diagrams

A selection function can be optionally associated with a Choiec action dia­
gram Q. The in parameters of the function can be any subsct of the input
parameters of Q. The function is evaluated when the Choiee is entered
and returns a subset of m choice branches (designated as the ·selectt.-d·
branches) out of the n possible branches (1 $ m $ n). After thi, initial
selet.tion, the semantics of the Choiee are the sarne as in Section 2.3.

Similarly, a loop predicate P can be associated with a Loop action
diagram Q. The in parameters of the predicate can be any subset of
the variables of the action diagram that contains Q. The semantics arc:
(WHILE P (LOOP Q)), i.e., the predicate P is evaluated before l'very
iteration.

3 Example: a Rate Adaptation Queue

This class of queue is typical of cell processing applications. Its behavior
is as f01l0ws:

• Ce1ls arrive on a write-port (input of type cell), and are queued.

• Cel\s depart on a reacl-port at a constant rate.

• When the queue is empty, "empty" celis (ce1ls with no real payload,
and with a special identifier in the header) are output. Note that in
this application, it is known that, on average. the queue input rate
is slower than the output rate.

• A reset can occur at any time during system operation.

The architecture of the mode! is:

• Concurrent ReadfWrite accessors.

•

•

•

:>-12 CHAPTER ;:; - MODEL/NG CELL PROCESSING HARD\'Y:'\RE

• A central storage shared by the accessors.

• Read & Write procedures.

• An exception handler for system Reset.

The behavior of the queue in the absence of exception conditions
is given by the hierarchical action diagram QUEUE-Running (Fig. 4).
Read-port and Write-port are out and in ports, respective:y, both being
message-based. Queue is an inout parameter of type queue-type (a data
structure containing the actual queue object and its head and tail point­
ers). QUEUE-Running is composed of two concurrent infinite loops over
the leaf action diagrams WRITE-A-CELL (Fig. 5) and READ-A-CELL
(Fig. 6).

QUEUE_Running (Read..,port, Write..,port, queue)

CONCURRENCY

Figure 4: Action cliagram for "normal" behavior of queue.

In Fig. 5, the assume timing constraint of weight [Tw",•• , 00] declares
the maximum rate at which the queue cari he written into. The WRITE
procedure saves œil-in (in parameter of WRITE) in the queue (inout pa­
rameter of WRITE) and updates its taïl pointer. The commit timing
constraint of weight [0,0] has the efFect of encling the WRITE-A-CELL ac­
tion cliagram (therefore enabling the next iteration of WRITE-A-CELL),
as saon as œil-in is received on the Write-port.

Cells are output from the queue at a constant rate given by the
commit timing constraints of weight [TR, TR] and [0,0] in Fig. 6. When the
head and tail pointers of the queue coincide, The READ procedure sets

• CHAPTER 5 - lv!ODELING CELL PROCESSING HARD\\:'\RE 5-13

Writr-port

WRITE_A-CELL (quasI!)

~WRIŒl.qUC'IJ"CELL_IN)

~ Y CELL_IN

1
1

(TwmlJ> CC{ 1 (0.0)

1

Figure 5: Queue Write action diagram.

cell-out (which is an out parameter of the procedure) to an empty cell.
Otherwise, cell-out is set to the cell currently at the head of the queue,
and the head pointer is updated. Note that cell-out was actually declared
by the label on the out action of Read-port, and its value is thus used to
drive the Read-port.

•
Rad..Port

1lEAD_"-CELL (queue)

~ READ(queae, CELL..O\lT)

... ':Il CELL..OUT

1
1

l '\R. TRI 1 (0,0)

1

•

Figure 6: Queue Read action diagram.

In the following, an action diagram is said to be passive if it has no
oct actions, nor out or inout parameters. The &ception-handling oper­
ator shown in Fig. 7 implements a sufficiently general-purpose exception
handling mechanism for most applications. The operator is given a normal­
behavior, a passive exception-eondition, and an exception-behavior, with
all three behaviors expressed as (possibly hierarchical) action diagrams.
The resulting behavior, Q, is:

• The normal-behavior and exception-eondition action diagrams start
when Q stans.

• If exception-eondition completes before normal-behavior (and while
this latter is still enabled), the execution of normal-behavior is im-

• 5-14 CHAPTER 5 - MODELING CELL PROCESSING H:1RDWARE

mediately terminated, and exception-behavior is executed. Q will
then complete when exception-behavior completes.

•

•

• In ail other cases, the behavior of Q is the same as that of normal­
behavior.

(Exception_handling
exception-condition
normal_behavior
exception-behavior)

Figure ï: The E:cception-handling operator.

Using the E:cception-handling operator, we can express the complete
behavior of the queue. This is shown in Fig. 8. QUEUE-Running was
defined in Fig. 4. QUEUE-RESET-START and QUEUE-RESET-DO-IT
are the exception-condition and the exception-behavior, respectively (sec
Fig. 9). In the former, the assume timing constraint of weight [0,00] e."{­
presses that the action diagram waits for a Reset for an unbounded amount
of time. In the latter, the procedure INIT-QUEUE performs the initiaI­
ization of the queue.

(detBehavior RATE_ADAPTATION_QUEUE (vri'te_port read..port
rese't_port queue)

(loop
(Excep'tion-handling

(QUEUE..RESET_START Rese't_port queue)
(QUEUE_RU!lNING l/ri'te_port Read..port queue)
(QUEOE-RESET_DO_IT Reset_port queue))))

Figure 8: Rate adaptation queue.

•

4 Example: Auxiliary Cell Insertion

A Cell Flow Processor (Fig. 10) acoepts ceIls on its In-port, prooesses
them, and then outputs them on Out-port. There are empty ceIls in the
cell trafiic carried by In-port. The cell fiow processor takes advantage

• CHAPTER 5· MODELlNG CELL PROCESSI!'iG H:\RD\\:-\.RE 5·15

QVEVE..RESF:r.srART (q....)

~ 1
1
1

[0. OC{
1 10.0)

1

•

•

QUEVE..RESET_DO_IT (q.... l

t lNIToQUElJE(q....J

~ \.
l 'fRm1aoTRmuI 1

- 1

l 'fDo.l.To.Htl

Figure 9: Exception condition (QUEUE-RESET-START) and exception
behavior (QUEUE-RESET-DO-IT).

of these empty cell opportunities to insert cells from an auxiliary source
(Aux-source in Fig. 10) into the outgoing cell traflic on Out-port. The
cell fiow processor has an internai buffer (w-buff in Fig. 10) to hold one
auxiliary cell while it is waiting to be inserted in the outgoing cell fiow.
The Aux-source co=unicates with the cell fiow processor through the
Write-Interface of the cell fiow processor. This interface consists of two
ports: Aux-port and w-buff-full. The Aux-source is allowed to submit a
cell to the cell fiow processor (on Aux-port) only if w-buff-full is de-asserted
(low). When the Write-interface receives a cell on the Aux-port, it asserts
w-buff-full and stores the cell in w-buff. Eventually, the cell-fiow unit of
the cell fiow processor will insert the awciliary cell in the outgoill& traflic
on Out-port. It will then de-asserts (low) w-buff-full.

The action diagram model of the cell fiow processor is shown in
Fig. 11. It consists of a local variable w-buff of cell-type and a Concurrency
over a Write-interfa.ce action diagram and a Cell-fiow action diagram. In­
port and Aux-port are in ports of the cell-fiow-processor; w-buff-full and
Out-port are its out ports. w-buff-full is value-based. The other ports are
messa.ge-based.

The Write-interfa.ce action diagram is shown in Fig. 12. It consists of

• 5-1G CHAPTER 5 - MODELING CELL PROCESSING H.4.Rm'v:4.RE

Aux-source

~
w_bufCfull A~rt

~ Write-interfacE

~
C w_butT)

".ll.
Ou

rt ceO-Oow

ceO Flow Processor

IJUIO

Figure 10: Example of auxiliary cell insertion.•
a Loop over the leaf action diagram CELL-WRITE. CELL-WRITE has an
out parameter w-buff, an in port Au.'C-port, and an inout port w-buff-full.
The action F~ttern on Aux-port and w-buff-full, and the timing constraint
from the first action on Aux-port to the first action on w-buff-full, specify
that a cell mu~t. not be received on Aux-port unIess w-buff-full is Iow.
When a cell is received on Aux-port, the CELL-WRITE action diagram
stores the cell in w-buff after some processing (with the procedure store-in­
w-buff) and asserts w-buff-full (high) after a minimum delay of Tcekl and
a maximum delay of Tcc:k2' Note that if no data processing were needed

(defBehavior cell_floll_processor (In....port: Out_port:
Aux..port: "_buff..full)

•

(var "_buff (type cell...type))
(concurr811CY

(Write_ÏDterface Aux..port: "_buff..full "_buff)
(Cell..floll In....port: Out_port: "_buff..full "_buff»)

Figure 11: Action diagram for Ce11 Flow Proœssor.

• CH.4.PTER 5 - MODELING CELL PROCESSING H.4.RD\URE 5-1;

on the cell. we could do without the procedure stort'-in-w-buff. and simply
label the action on Aux-port with w-buff. The a..<sume timing constraint
of weight [1. T.n,.mor] from the assertion of w-buff-full to its subsequent d,~

assertion. declares a requirement that the auxiliary cell must be inserted.
and thus w-bufl'-full dt'-asserted (by an in action). within a ma..'(imum of
Tin3 .m a..%' time.

Figure 12: Action diagram for Write Interface of Cell Flow Processor.•
LOOP

CELL_WRITE (w·buff)

sto",-zw_bumaux..cdl. w_bufl

~ ' aux..cdl
[0.-1

rr.ckl. TacJal\..r in

....~ Il.T_1
1

•

The Cell-fiow action diagram is shown in Fig. 13. It has an in param­
eter, w-buff, an in port, In-port, and out port, Out-port, and an inout port,
w-buft~full. It consists of a Loop over a deterministic Choice of three leaf
action diagrams: NOTHING-TO-INSERT, INSERT-OK and UNABLE­
TO-INSERT, with in parameter w-bufl'. w-bufl'-full is an inout port of
the action diagram INSERT-OK and an in port of the action diagrams
NOTHING-TO-INSERT and UNABLE-TO-INSERT.

NOTHING-TO-INSERT corresponds to the case when w-bufl'-full is
lolO when a cell (in-cell) is received on In-port. This cell is processed
(procedure process-cell) and sent on the Out-port after a delay of TJ"'OC'
The assume timing constraint from in-cell to the va/id action on w-buff-full
indicates that the latter might possibly he asserted after the reception of
in-cell on In-port.

INSERT-OK corresponds to the case when there is a cell to insert (w­
buff-full is high on reception of in-cell) and there is an insertion opportunity
because in-cell is empty. The INSERT-OK action diagram remains enabled
at the reception of the in-cell action only if the predicate is-empty attached
to this action returns true. If this is the case, the cell in w-buff is processed
(procedure insert-cell), then sent on the Out-port after a delay of TJ"'OC' and
w-buff-full is de-asserted lolO after a minimum delay Toh and a maximum

•

•

•

5-18 CHAPTER 5 - MODEL/NG CELL PROCESSING HARD~":4RE

dclay T.2 • 5ubsequently, w-buff-ful! is allowed to be re-asserted (in action
labeled va/id on w-buff-ful!).

UNABLE-TO-IN5ERT corresponds to the case when there is a cel! to
insert, but there is no insertion opportunity (is-not-empty(in-cel!)). In this
case, w-buff-full must remain high (this checks whether, e.g., the Write­
interface erroneously de-asserts w-buff-full). Finally, in-cell is processed
(procedure process-cell) and sent on the Out-port after a delay of Tproc'

5 Conclusion

We have proposed a behavioral modeIing methodology in which the timing
and protocol aspects are specified in a ncarly ~orthogonal" way to the
data manipulation aspects, while maintaining the links between the two.
We have shown how this methodology can he applied to the hehavioral
modeling of cell processing hardware applications. In the future, we plan
ta define (for these applications) a classification of behavioral modeIs into
levels of abstraction and a formalization of the refinement steps between
the different leveIs. We also plan to explore the re-use of high leveI modeIs
in the validation of lower-leveI models, e.g., by using action diagrams to
e.'Cpress the relations hetween the leveIs.

References

[1) S. Narayan, F. Vahid and D. Gajski, "System Specification and Synthesis with
the SpecCharts Language", IEEE Proc. ICCAD-91, 1991.

[2] D. DrusiDsky and D. Hare!, ·Using StateCharts for Hardware Description and
Synthesis", in IEEE Transccnons on Comput"",Aided De&ign, 1989.

[3) G. Borriello, A Ne1D Interface Specification Methodolow and iLs Application to
7hm&ducer Synthesù, PhD thesis, University of California, Berkeley, 1988.

[4) K. Khomac, M. Dufresne, E. Cerny, P.A. Babkine and A. Silburt, "Integrat­
ing Behavior and Timing in Executable Specifications", in IFIP Conference on
HardtlJGf'e Description Languoges and their Application.! (CHDL), 1993.

[5] Y.H. Leang and W.P. Birmingham, "The Automatic Generation of B.....Interface
models", in ACM/lEEE Proc. !9th DAC, pp. 634-637, 1992.

•

•

•

CHAPTER 5 - MODELINC CELL PROCESSU,,'C HARD\\:·\RE [,..!!)

NOTHING_TO_INSERT(w_bulrl

lo.TdrlÙ lTcdtTdrfto T..ltTdrftl

IJu>ort
l'\:'"T_l-::X::''"''l1

ouU>Ort

Io.-l~ VAUDw_bul't.1WJ ~

LOOP b-+
INSERT_OKI w_bulf)

lo.TdrlÙ lTcdt'GIrftoT..a-T,srnI

1"-"",~œI1)

lJu>ort ~
(T......Tpncl
,~ .:.m.. ~w_buII',.

~
ouU>Ort ~ out..'"

1T.,_Ta:I \ out l~ la

w_buI't. ~ l VAUD

UNABu:...TO_1NSERT

lG.T,srnI lTar'GlrftoT..a-T,srnI

....... ~

lJu>ort ~ 'j(.........
~pncl ~."""""~c

Out..port ~out..'"

w_baII:,JldI ~

Figure 13: Action diagram for Cell Flow unit•

•

•

•

CHAPTER6

SEMANTICS AND VERIFICATION OF
ACTION DIAGRAMS WITH LINEAR

TIMING CONSTRAINTS

ABSTRACT

Specifications containing linear timing constraints, such as found in action dia­

grams (timing diagrams) defining interface behaviors. arc often used in prac­

tice. Although efficient Q:n3) shortest path algorithms exist for computing the
minimum and maximum time distances between actions, subject to the timing

constraints, there is so far no accurate method that cao decide a) whether a

specification of this kind is realizable (i.e.. cao be simulated by a causal sys­
tem). and b) given the action diagrams of the intetfaces oftwo or more commu­

nicating systems. whether the systems implementing such independent

specifications will correctly interoperate (i.e.. satisfy the respective protocols

and timing assumptions). Fust wc illustrate the weaknesses of existing action

diagram verification techniques: the causality issue is not addressed. and the
proposed methods to answer the companbility (interoperability) question yield

fa1se negative answers in many practical situations. We then define the meaning
of cansalil:y in an action diagram specification and state a set of sufficient con­
ditions for cansality to hold. This development then leads to an exact procedure

for the verification of the intetface companbility of commllnieating action dia­

graIns. The results arc illusttated on a practical example.

6-1

•
6-2

1 Introduction

CHAPTER 6 - SEMANTICS AND VERIFICATION

•

•

Methods have been developed for the synthesis of interface controllers
[Borr88] and for the verification of interface compatibility [Brzo91] of commu­
nicating systems described by action diagrarn specifications (also called timing
diagrams). Other works address the issue of efficient algorithms for computinr.
the maximal time distances between actions for more complex forms of timing
constraints in action diagrams [MacM92. Burk93]. or for cyclic (process Iike)
action diagrams [Amon93] defined using the latest timing constrainl~ only.
However. none of these methods address the issue of realizability of such spec­
ifications in the sense of causality (i.e.• can the specification be simulated by a
causal system). especially in the presence of conjunctive linear constrain:s.
Due to their declarative style (as opposed to. e.g.• an operational style). these
constraints make the causality issue a non-trivial one. ln practice. synthesis
methods such as [Borr88) that do not examine the causality issue under linear
constraints. may produce systems that only satisfy mutually incompatible sub­
spaces of their respective specifications. The consequence is the risk of incom­
patibility hetween independently developed implementations of the interacting
systems. ln [Ku92]. the authors define a realizability criterion called weil-pas­
edness. which can he seen as a special case ofour causality criterion. WeU-pos­
edness is not sufficiently powerful for reasoning on some of the practical
examples that we examined (e.g.• interface operations of a Motorola MC68360
processor). Recently. timed process algebras bave emerged [Klus93] in which
the occurrence times ofactions can he related by linear conjunctive constraints.
However. the underlying semantic models proposed in these works do not
address the cansality issue. Henee.. such methods do not reveal whether the
specified system can he built from independently developed subsystems. each
consttueted according to its local specification.

The paper is struetured as follows. In Section 2. we introduce some basic
concepts and notation. In Section 3. we show that known compab'bility
verification methods. e.g~ [Brzo91). can yield faIse tzegatives in practical
situations. This is becanse these methods do not compose the interface
bebaviors of the commllnieating systems. We show that such composition must

encompass the concept of rmljzability. or else the compatl'bîlity question can
yieldfaIse positives. We then develop. in Sections 4 and 5, formai operational
semantics ofaction diagrams under linear timing constraints. The semantics are
based on the derivation, from the action diagram, of a block machine. Such a

•
CHAPTER 6 - SEMANïJCS AND VERIFICATION 6-3

•

•

machine is characterized by a parution of the action set of the action diagram.
ln Section 6. we formally define the concept of a causal black machine. and
then state the realizability of an action diagram specification in terms of the
existence of a causal black machine derived from the action diagram (the
derivation is defined given a parution of the action set of the action diagram.
however the computation of the actual action parution is outside the scope of
this paper). We then propose. in Sections 8 and 9. a set of provably sufficient
(and computable) conditions for a black machine to be causal. This allows us to
write an exact procedure for detennining whether a black machine is causal. In
Section 10. we prove that all causal black machines derived from an action
diagram have the same (timed) trace set and this trace set is equal to that of the
action diagram. in Section Il, we define the compatibility of communicating
causal action diagrams in terms of the compatibility of ail the combinations of
causal black machines derived from these action diagrams. We prove that we
do not need to enumerate these combinations to answer the action diagram
compatibility question. This leads to an exact and efficient procedure for the
verification of the compatibility ofcommunicating action diagrams. Finally, in
Section 12 we prove that the structure of the parution of the set of input actions
of a causal black machine is independent of that of its output actions. In addi­
tion to being intuitiveiy "reassurlng", this propetty should be useful in
designing an efficient action partitioning procedure.

2 Action Diagrams

An action diagram (AD) specifies, in a declarative manner, the action based.
transactional aspect of a finite excerpt of the interface behavior of a system.
This specification comprises the actions of the system itsdf (its "commit­
ments") , as well as its assumptions on the actions that the eh"VÙ'Onment can
produce. Actions occur on "ports", in a punetuaI. instantaneous manner. An
action ak bas a lime stlZlnp variable denoted by t(a,J. Tune stamps take on
finite. possibly unbounded, real values.

DefiDition 1 [IntuPaLs and Timing Constnzi'nts] An intervai 2t is a set of real

numbers. The interval is represented by its lower and upper bounds, Tmin and

TIIIlZr Iespectively, where T lIÙIl e Z u {-oo}, Tmtl% e Z u {oo}, Tmin S Tmtl%'

•
6-4 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

•

and where Z designates the set of rational nurnbers. Such an interval lt is the

subset of all real nurnbers such that. for any r in lt. r is finite (but possibly

unbounded). and:

1. Tmin $: r$: Tmax if Tmin and Tmax are both finite (lt is denoted by [Tmin. Tma.,])'

2. Tmin $: r< 00 if Tmin is finite and Tmax = oo(lt is denoted by [Tmin• 00)).

3. -00 < r$: Tmax if Tmin = -00 and Tmax is finite (lt is denoted by (_00. Tmax]).

4. -00 < r< 00 if Tmin =-00 and Tmax = 00 (lt is denoted by (-. 00)).

The set of intervals, denoted 1, is partitioned into the subsets Icone of concur­
rency interva1s and Jpree of precedence interva1s. The elernenL~ of Icone are
characterized by Tmin $: 0 and Tmax ~ 0, and the elements of Jp",e by Tmin > O.
A timing constraint is a ttiplet c = (ai' aj' lt) where ai and aj are actions
such that ai *aj' and lt is an interva1. The arithmetic sernantics of the con­
straint are given by substituting the terrn t(aj) - t(ai) for r in the appropriate
item in 1 to 4 above. The resulting pair of inequalities is theproposition associ­
ated willz the constraint c. A constraint with a precedence (concurrency) inter­
val is a precedence (concurrency) constraint.

o

Definition 2 [Action Diagram] An action diagram is the tuple AD = (oS: JI, 0,

C), where:

• Sis a set ofports. A port bas a direction (in or out) and a sequence of

actions. The action sets of any !Wo ports of Sare non-intersecting.

• j'lis a set ofactions such that Jl.=.Jir + {o}, where Ji[is the union of the

action sets of S.
• o. the origin action, is a special action that marks the lime al which the

action diagram starts "executing". This action does not correspond to any

real action of the modeled system.

• An action bas a direction. The direction of 0 is the null direction. The

direction of an action ofJi[is that of the port to which it belongs.

• Cis a set oftimingconstraints such that C= C'u él. where:

• C' is a relation on .Jir x .Jir x J. where J is the set of real intervals given

in Definition 1.

•
CHAPTER 6 . SEMANTICS AND VERIFICATION 6-5

•

•

• éJ =1(o. a1i, [e, 00)) 13 si ES. ali =first(Si)} where e is an arbitrarily

small l positive rational, and first(s) is the tirst action in the sequence

of actions of a port Si'

• Restriction: any constraint (ai' ai ' lt), in which ai and ai are of different

directions, must be a precedence constraint, i.e., 1t E Iprec'

• Constraint intent: a constraint (ai' ai' 1t) is considered to have an assume
(commit) inrenr if the direction of action ai is in (our). The semantics of

assume constraints. from a synthesis point of view. are that the designer

of the system can safely assume that these constraints will hold (and hel

she can take advantage of these assumptions in the design of the system).

The semantics of commit constraints are that the designed system must

satisfy !hem.

o

In the graphical representation of action diagrams, an action is represented by a

short vertical bar (e.g.• Figure 1). or by a circle (e.g.• Figure 5 on page 58).

Actions on the same port are horizontally aligned. The action sequence of a

port is shown in left-to-right ortler. A constraint (ai. aj • 1t) is represented by an

arrow labeled with the interval 1t and pointing from ai to ai' The constraint

arrowhead is hoUow (filled) for assume (commit) constraints.

Definition 3 [7hzce over an action set ..liI] A trace over an action set JI. is a

sequence fi= [0>;1. i =1..... e. where, for any i. i =1..... e. O>i is a set ofj;

pairs such that (where 9\ designates the set of finite real numbers):

O>i = { (aij. 'ti) 1i = 1.....i i • aij E J'I,. 'ti E 9\ }
and such that 'ti < 'ti+1. i =1..... e- 1. Ifeach action of JI.appears al mosr once

in n, we say that fi is a weU-belulved trtlI;e. Ifeach action ofJl.appears exacrly

once in fi •fi is a complete trtlI;e over JI. A weU-behaved trace that is not com-

1. From the point of vicw of the implementalion of CAO software, cach interval boune! could
bc conveniently qualified by a boolean amibule indicaling wbetbcr the conesponding ine­
quality is SU'Ïet or non-SU'Ïet (c.g., as is donc in (Di1189J), and lhus an Elowcr bound would
bc aetually reprcscilted as a SU'Ïet 0 lowcr boune!. Boune! comparisons and shoncst palhs
algorilhms (whicb wc use in the resolulion ofliming constraint sysœms) can lhen bc casily
gencralizcd 10 dcal wilh SU'Ïet and non-striet bounds. Such implementalion considcmions
do not affect the rcsults of lhis papcr. and are lhus nOl discussed any funbcr.

•
6-6 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

•

piete is a partial trace over 51

o

Definition 4 [T1'llce Satisfying a Constraint Set] Let n he a well-hehaved tmec:

over an aetion set 51 Che a timing constraint set (i.e.. a constraint relation) over

JI. and:E he the substitution {t(ajj) := 'ti' i = 1•...• a- 1, j = l.. ... jj}. n satis­

fies Cif:

• In the case where n is a complete trace: the conjunction of the proposi­

tions associated with the constraints of C (Definition 1) is true undcr the

substitution :E.

• Else (n is an incomplete trace): thcre cxists a substitution :E' for the time

stamp variables of actions not present in n such that the conjunction of

the propositions associated with the constraints of Cis true under the sub­

stitution :E u :E'.

o

Definition 5 [7htce and trace set of an Action Diagram] A trace n of an action

diagram AD = (~ JI. o. C) is a complete trace (Definition 3) over the action set

JI. such that n satisfies (Definition 4) C The trace set of AD. denoted

TraceSet(AD). is the set ofall traces of AD.

o

Definition 6 [7i'ace Form] Let A he a vcctor of n distinct actions, A = (at

a,.) and U he a vcctor of rcal numhers. U = ('tl 'tn). such that t(ai) = 'ti.

i = 1..... n. TraceFonn(U) is the wel1-hehavcd trace (Definition 3) ovec the set

ofactions {al an} obtaincd by first partitioning the set {(ai' 'ti) 1i =1..... n}

into sets of (ai. 'ti) pairs that have the same 'ti values. and then building a

sequence of thcse sets in strictly incrcasing 'ti values.

o

Definition 7 [Constnzint Graph] Let Jil he an action set, C a set of constraints

ovec Jiland, for any givcn pair ofactions ai. al' ofJI. let ~= {CijteE CI3 Ôijte.3

!>;jte. CÎJ'/c= (ai. al' .1t;jV}. whcre the lower and uppcrbounds of1C;jte arc ôijte and

!>;jko rcspcctivcly. The constraint graph ovec Jil and C. dcnotcd CG(Jil, C). or

•
CHAPTER 6 - SEMANTICS AND VERIFICATION 6-7

•

•

simply CG (when JI and Care clear from the context). is the directed weighted

gmph defined as follows:

• the vertex set of CG is JI

• for each pair of acùons ai. aj' such that ai ~aj' define Wij as:

Wij =Min (Min (t:.. ijk), Min (-Ojik»)
cijkE C;j cjikE cj ;

where the Min opcrator over an empty set is defined to yield infinity.

• the edge eij =(ai. aj) exists and is of weight wij • iff wij is finite.

The set Yj U 0i is the set cf constraints assocÙlted wiJh edge eij' We write

associared-consrrainrs(eij) =Yj U 0i'
Q

Note that the sarne set of constraints Yj U 0i is associated with both edges.
eij and eji • Note also that the abovc graph representaùon stems from the repre­
sentaùon of the pair of inequaliùes 0ijk:S; l(aj) -l(ai) :s; Ôijk into the nonnalized
fonn:

l(aj) -l(aj) :s; Ôijk

l(aj) -l(aj) :s; - Oijk

Let CG be a constraint graph over an acùon set JI, aj E Jl • aj E JI. Given an

edge eij =(aj. aj)' source(eij) and sin/c(eij) designate aj and aj' respectivcly. A
path ris a sequence of edges r= [et•...• en]' n ;:: 1. such that source(ej) =

sinJ..-(ej-J). for i =1•...• n. We say that the path is "from source(et) to sïnk(enY·.

The notationsfirst(r) and lIlst(r) refer to et and en' respectivcly. The weight of
a path r. denoted weight(r) is the sum of the weights of the edges of r. Note that
as a consequence of Definition 7. the weight of any path of CG is finite.

Definition 8 [Weak consistency] Let AD = (5: JI, o. C) be an action diagram.
Then. if there exists a complete trace ovcr Jl that satisfies C. we say that C.
CG(JI, Cl. and AD are weakly consistent.

Q

Definition 9 [ditt(a;, a,;J] Let Jlbe an action set, Ca constraint relation over JI,

and aj. aj- a pair of actions ofJI, such that a j ;!: aj' The maximum distance from

aj to aj- dcnoted disl(aj. aj)' is defined as the maximum value of l(aj) - z(aj) for

•
6-8 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

•

which there exists a complete trace over 5l. that satisfies C

o

It can he shown [Tarj83] that dist(ai' a) is equal to the weight of the shortest
(ai. a) path in the graph CG(JI. Cl, If C is weakly consistent. then it can he

shown that the interval1tij of lower and upper bounds -dist(aj' ai). and dist(ai.

a). respectively. is non-empty. Let dij he a real numher such that there exists a

complete trace n with t(a) - t(ai) =dij in n and such that n satisfies C Then.
1tij defines the unique largest set of real numhers {dij}' Applying Floyd's
classical ail-pairs shortest path algorithm [Tarj83] to the constraint graph

CG(JI. Cl allows to determine the quantities dist{ai. a). for all (ai. aj) pairs and
whether C is weakly consistentl . The algorithm is of ~n3) time complexity
and ~n2) space complexity.

We will use the following lerminology and notation: A path r from ai to aj in

CG(J!. C) is atight path if ils weight equals dist(ai' aj)' Cis atight constraint

relation if. for ail constraints (ai. aj.1tij) of C. the lower and upper bounds of1tij

are equal to -dist(aj' ai) and dist(ai. aj)' respectively. Given r)j and r:]. two

paths from ai to aj' we say that r]j is tighter than ri] if: weight(r]j) < weight(r:]).

We will use the notation dist[CGl(ai • aj) to emphasize the constraint graph (or
sub-graph) over which dist(ai • aj) is computed. Similarly. given an action dia­

gram AD =(-S: JI. o. C). dist[ADl(ai' aj) indicates that dist(ai' aj) is computed
over the ccnstraint graph defined by AD.

Definition 10 [Port Soundness] A weakly consistent action diagram AD =(-S:
JI. o. C) is port sound if. for any IWO consecutive actions a/' at 1

• in the

action sequence of every port Pi of AD. the relation dist[ADl(at 1
• ah < 0

holds.

Definition 11 [Consistency] An action diagram AD =(-S: JI. o. C) is consistent

if it is weakly consistent and port sound. We say that C. CG(JI. C). and AD are

consistent, and we wrlte consistent(Cl. consistent(CG). and consistent(AD).

o

1. If the a1gorithn: tinds a ncgative dist(aj • ai). for sorne ar i.e., a cycle of ncgative weighl in
CG. !ben Cis inconsistenL Otherwise. il is weakly consistenL

•
CHAPTER 6 - SEMANTICS AND VERIFICATION

3 Problems

6-9

An action diagram specification can be checked alone for consistency. which is
a minimal form of realizability. Consistcncy checking allows to determine
whether an occurrence time can be assigned to every action such that ail con­
straints are satisfied and the specified order of occurrence of actions on a port is
preserved. Another problem is the verification of the interface compatibility of
communicating devices. In [Brz091]. this problem is addressed by checking
that for each pair of actions related by an assume constraint Ca. the time dis­
tance between the same pair of actions as implied by the commit constraints is
tighter than Ca. The notions of consistency and compatibility of action dia­
grams are insufficient for either constructing correct implementations or for
verifying that two or more implementations will interact correctly when built
according to their local specifications. We now illustrate these weaknesses.

• il

partOUT [1,51

i2

CIllIIIIIIitClllIStUÙllt

•

3.1 Consistency

Figure l:A non-causal specification.

•

Consider the action diagram shown in Figure 1. C ={i1 -> i2}assume U {i1 ->
01, 01 -> 02, i2 -> 02}commi~ the constraint system C is consistent and tight.
When imp1ementing a device according to this specification. the delay value for

action 01 after the occurrence of action il bas to be chosen from within the
interval [l, 10]. However, this delay value depends on the selected occurrence
lime of the in action i2 which may occur after 01. For instance, ifwe choose loI
- \;1 =1 in the imp1ementation. then if i2 occurs such that lj2 - \;1 e (S, 10]
(which is within the specified limits) then there is no feasib1e occurrence lime
for 02. The environment would have to traek the occurrence lime of01 and pro-

•
6-10 CHAPTER 6 - SEMANT/CS AND VERIFICATION

•

•

duce i2 after 0 I. Symmetrically. the implementation of the device could decide
to do the same. await i2 and then produce 01. leading to a deadlock. Clearly.
such a specification is non-causal as the decisions made by the device imple­
mentation depend on future actions of the environment. and vice versa. A pos­
sible solution is that the designer of the environment and the designer of the
device analyze the action diagram and then agree on ajoint strategy. Their deci­
sion is not part of the specification. however. hence it is impossible to imple­
ment each device independently and to verify compatibility of IWO devices
strictly based on the action diagram specifications. It thus follows that consis­
tency and tightness of C are not sufficient to guarantee a realizable specifica­
tion. we must also consider causality. This situation is similar to the problem of
non-realizability of ideal filters (with square frequency response) where the
output of the tilter would have to star! changing before the arrivai of a change
on its input.

3.2 Compatibility

In [Brz091], the authors propose verifying that the assume constraint values of
one device are less tight !han the time distances of the same actions produced
(committed) by the other device. However, the method is exact only if each

action diagram has ports and actions of only one direction (i.e.• one action dia­
gram has in actions, and the other one has out actions only). Otherwise. it can
yield a false negative answer to the compatibility check.

Consider the IWo action diagrams in Figure 2. ADI indicates a simple delay

from an in action on port PI to an out action on port P2, while~ drives PI
depending on the in action i3 on port P2. Both specifications are realizable and
devices built according to them can interact without violating the assumptions
of their partners. Yet, the procedure of [Brz091] will declare that the two action
diagrams do not satisfy each other: the time distance between 0) and 04 in ADI,

as implied by the commit constraints of ADI is potentially 00, while AD2
assumes that this distance is in the interval [4. 10]. However, when the devices
are put in communication (by connecting together same numbered ports). the

time distance between i3 and i4 will fall within the assumed interval, becanse
the time distance between actions 0 1and O2 in ADI is dietated by the behavior
of~ (i.e., the commit of [3,3] from ~ to O2), This discrepancy arises becanse

•
CHAPTER 6 - SEMANTICS AND VERIFICATION 6-11

•

the compatibi1ity checking procedure of [Brz091] does not take into account
the composed behavior of the Înterconnected system.

AD, (0._) AD,

'" 0,
Pl·in " i;:

PI·out

ru] (202) (1.3~i,?10, .. '.~.oul ~.tn

• '0 ..

Figure 2: Assumed [4. 10] between i3 and Ï4 in AD2 does not cover (O. +00)

between 03 and 04 produced in AD I .

".-
[-la. la)

i3

02-= [II. 20J

(a) AD. (h) AD:!

•

Figure 3: A simple composition of commit constraints does not work here.

A simple anempt to correct the compatibility checking procedure can yie1d
false positive answers tO the compatibility check. For example. we could com­
pose the commit constraints of the IWO systems and verify that the resulting
time distances between actions satisfy the assumptions made by each of the
systems. This is illustrated in Figure 3. In AD I • the out actions 2 and 3 can fol­
low the in action 1 within [l0. 30]. If an implementation is made according to
this specification, it should be able to freely choose output de1ays in the speci­

fied intervaIs. for example. t{OÙ - t{il) =10 and t{O» - t(il) =30. In~. the
out action 4 is to be produced within the interval [11. 20] from both of the in
actions 2 and 3. &«uming that these actions occur within 10 units of time from
each other. Both constraint systems are consistent and tighL Ifwe now combine

•
6-12 CHAPTER 6 • SEMANTICS AND VERIFICATION

•

•

the commit constraints of AD1 and AD" to obtain the total system behavior.

and then compute the distance between acùons 2 and 3. we find that the

assumption t(3) - t(2) E [-10. 10] is satisfied. Yet. the implementation of AD 1
menùoned above would violate the assumptions made bv AD, (and thus its. -
implementaùon). This is because the convergent conjunctive commit con·

straints in AD" determine the posiùon of acùons 2 and 3 jointly with those of

AD1_That is. the posiùons of acùons 2 and 3 in the implementaùon of AD 1
would have to be determined jointly with the occurrence ùme of the future

acùon 04 produced by a different component of the system. clearly a non­

causal task.

4 Block Machines

As implied by the preceding secùon. realizability of an acùon diagnun specifi­

caùon depends not only on the consistency of the acùon diagnun eonstraint

system. but also on whether the action diagnun describes a causal ~1'stem_ We

propose the following intuitive description of a causal action diagnun: The

decision tbat an out (in) action ai should occur al lime l(ai) according to tbe

action diagram commit (assume) constraints must not depend on tbe occur­

rence instants ofactions tbat could be performed by tbe environment (device) at

lime t ~ t(ai)' We do not eliminale tbe possibility !bat the occurrence lime of an

out action depends on future out action limes (provided !bat tbey tbemselves do

not depend on future in actions) and any past action limes. This suggests tbat,

in a causal action diagram. we should he able to partition the set of actions into

b10cks such tbat, within a block, local action lime computations are possible

depending only on past actions in preceding blocks. If such a partition exists,

then tbe action diagram bas a causal interpretation in the above sense and is
considered as realizable. An action diagram togetber witb sorne speeified parti­

tion of its action set delines a machine. which we designate as bloclc nurchine
(BM). In this seetiOlL, we fonnalize the structure and operational semantics of

block machin'=S, and we prove some basic properties of tbese machines tbat

will he useful in developing tbe cansality and companbility criteria.

Definition 12 (BlocIc Maclzine] A block machine (BM) is the quadruple (>1. a.
!B, 'll. where:

• J't is a set ofactions.

• ais tbe Morigin" actiOlL, ae Ji Let j[""= J't- {a}.

•
CHAPTER 6 - SEMANTICS AND VERIFICATION 6-13

•

•

o $ is a set of IC "blocks",

o 'T. the "trigger relation". is a relation on 5lx $, When a pair (a. B) is in 'I
we say that "a is a trigger of B ". The set of triggers of a block B is

denoted trigs(BJ,
o A block Bi of $ is a pair (Li' C!>i). where :

o Li ç; 5l-. Li is designated as the set of "local actions of Bt. or simply

"actions of Bt. We will use the notation actions(BiJ. Given an action a

of Bi' block(a) designates Bi'

o C!>i: 9\m. -+ â:l(9\"·). i.e.• C!>i is a function from the set of real finite­

valued vectors of dimension mi to the set of sets of real finite-valued

vectors of dimension ni. where mi is the numberoftriggers ofBi and ni

is the numher of actions of Bi' The set retumed by C!>i. for any given

input vector c.'i can he empty. finite. or infinite. C!>i is designated as the

''lime computation function" of block Bi'

• The set {Ld i =1..... K} is a partition over 5t'.

o

Definition 13 [Pree Relation on $] Given a black machine M =(5l. o. $, '1i.
the binary relation Pree on $ is: "Bi PreeBt if there is an action ail< of Bi such

that ail< is a trigger of Bj • We say that Bi is apredecessor of Br

o

Definition 14 ["<" Relation on $] Given a black machine M =(5l. o. $, '1i. the

binary relation ..< on $is defined as foUows. "BI < Bm" if there is a sequence l

ofblocks [B... i = 1..... ml of $, such that foreach i. i = 1..... m-l. Bi Pree

Bi+l •

o

Obviously. "< is a tranSltlve relation. A trace of a black machin~

M = (5l. o. $, '1i is a trace over its action set 5l (Definition 3). Operationally.

the trace is bullt by the procedure Mez« (Definition 16). given an arbitraIy
occurrence lime 10 for the origin action. An execution of this procedure is said
to he an e:uartion ofM .

1. Noce: IIllbis scquc:acc. il cIocs _ matœrwbetbc:rBi" Bi+. or IlOt.

•
6-14 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

•

Definition 15 [Execution ModeI: Assumptions] The following assumptions

are made in defining the execution of a block machine:

• A ùme stamp variable t(ai) E 9\ is associated with each action Cli of ::1: ini­

ùally. for ail ai actions. t(ai) = 00.

• The predicate occurs(aj' tl is true iff t(aj) = t. The action aj is said to

occur at ùme t-

• There is a global ùme variable T E 9\ that increase..~ monotonically only

when. and always when. the execuùon is in a wait state. lnitially. the glo­

bal ùme variable is reset to 1<J- with the operator resetO.

• The execuùon enters a wait state when the operator waitO is executed.

This operator. applied to a set of acùons. suspends the execuùon until the

global ùme variable T reaches a value t.. such that 3j. occurs(Uj' tl,

where aj is an acùon of the specified set. ln any execuùon of the waitO

operator. the global ùme increases by a non-nu/I quanùty.

• A boolean lIag. oceurred(ai). is associated with cach acùon ai of ;:I.: ini­

ùally occurred(ai) is false.. The lIag is set to true when the acùon occurs.

• The predicate enabled(B. t) is true iff:

[V' trigj e rrigs(B). occurred(rrigj • t») 1\ [3 trigj e lrigs(B). occurs(lrigj •

Tl).

Block B is said to he enabled at ùme 't.

• TRIG" denotes the vettor of trigger actions of black Bk-

• ACT" denotes the vettor of local actions of black BI..~

• l(X,,). where X" is a vettor of actions, denotes the vettor of ÙIDe stamps of

Xk-
• The operator deadlockO suspends the execuùon forever, if this oper:llor

is executed., the execution is said to enter the dead10ck stale.

• The function choose. applied to a non-empty set, returns a non-determin­

istically selected element of that sel,

• The operalor update{Tnzce. Xv accepts a trace as its fust argument and a

veclor XIe of actions as its second argumenL The operalor selects those

actions x/à ofXIe that are such that l(x/à) > T. Each such X/à is iDserted in

the appropriate set Q)i of the trace according to l(xaJ. as pet Definition 3.

o

•
CHAPTER 6 - SEMANTICS AND VERIFICATION 6-15

•

•

Definition 16 [Execution Model] An execuùon of a block machine M = (>1. 0,

$, '1l is an execution of the procedure Mexec defined as follows:

Procedure Mexec(lo)

begin
1(0) := ro; reset(T. ra-); Trace:= [{ (o. roll1;
while 3 ai e J'l. not (oc:curred(ai)) do

wait(J1) ;
for al! i such that oc:curs(ai • 1) do

oc:curred(ai) := true;
end for;
for al! k., such that enabled(Bk • 1) do

if <Pk(t(TRlGk)) =0
then deadlocltO ;
else

t(ACTkJ := choose(<Pk(t(TRlGk») ;
update(Trace. ACTk) ;

end if;
end for;

end while;
success;

end procedure.

We use the following terminology. The aecution of a block Bi consists ofexe-­

cuting the iteration k =j of the loop "for al! k., such that enabled(Bk .1) ... end

for". Wben this iteration is completed (either by executing the statement dead­

lockO. or the statement upclate(Trace. AC7j». we say !hat block Bi bas ae­
cuzed. The aecution ofM up ID a block Bi is the execution of the procedure

Mex..: until and including the execution ofblock Bi'
Cl

Note that, by definition.. there is a single trace associated with any given execu­

tion. How=. due to the parameter ra and the cboices made by the choose
fonction in Mex..,. there is a set of executions, denoted by execurions(M). and

bence a ~tof traces associated with a black machine. The semantics ofa black

machine M = (>1. 0. !B, '1j are given by its trace set.

DefiDitioD 17 [7iuœ ut of a block machirIe) Given a block machine

M = (>1. 0. !B, '1j. the trace set ofM. denoted TnzœSet(M). is the set ofcomplne

traces (DefiDition 3) over JI!bat are generated by an possible executions ofM.
for an possible values of the parameter ra- Cl

•
6-16 CRAPTER 6 - SEMANTICS AND VERIFICATION

•

•

Lemma 1 [Non-Zeno Tune) Let B be an arbiuary block of $ in a block

machine M = (>1. o. $. ']l. For B to become enabled at sorne time t. it must be

that for ail i. such that Bi < B. Bi was enabled at sorne lime t'i < t.

Proof. From Definition 16. the definition of the enabled predicate. and thc
assumplion of monotonically increasing lime (in Definition 15). it follows that
for B to become enabled at sorne lime t. ail the triggers of B must have occurred
at times smaller than. or equal to t. From Definition 16. there is at least onc
execution of the waitO operator between the setting of the time starnp of an
action. and the occurrence of that action. From the assumptions in Definition
15. there is a non-null amount oftime that passes in any execution of the waitO
operator. Hence. the blacks containing the triggers ofB. i.e.• all Bj' blocks such
that Bj' ~ B. must have been enabled at times stricr/y smaller than t.
Carrying this argument inductively over "chains" of consecutive pairs of blocks
related by the~ relation. we obtain that ail blocks B;'. such that B;' < B.
must have been enabled at times srricr/y smaller than r.

o

Lemma 2 LAt Most Once" Action Occurnnce) ln any execution of a block

machine M. where M = (>1. o. $, 'll. all actions ofJioccur at most once.

Proof. Define the sets !Be. !Bt. and~ as follows:

!Be = {BiE !B 1Bi<Bi 1
!Bt =[BiE !B 1 (Bi<Bi>1\-.3 BjE !Be. Bj<Bi 1
~= {BiE!B 1 (Bi<Bi>1\ 3Bj E !Be. Bj<Bil

Consider a block Be E !Be- From vmma 1. and due the fact that Be< Be (which
stems from Be E 2t>. it follows that in order for Be to become enabled at sorne
rime t, it must he that Be was enabled at some time r' < r. Canying this argu­

ment recursively. we obtain that this is only possible ifBe was enabled at T =ro­
From Definition 16. the only blocks that cao he enabled at T= ro are thase !hat
have the origin action 0 as their only trigger. However. a block B that bas 0 as
its only trigger. bas no predecessor blocks, i.e., there is no B;' such that B;'
PœcB. and hence no B;' block such that B;' < B. This contradiets the assump­
tion that Be< Be • Therefore, Be is never enabled., its actions never occur. and
hence the lemma holds for ail actions ofany Be E !Be-

•
CHAPTER 6 - SEMANTICS AND VERIFICATION 6-17

•

•

Consider an arbitrary block B2 of 1l.z. From Lemma 1. and from the definiùon
of 1l.z. it follows that there exists at least one block Bj • Bj E $c' such that the

enabling of Bj is a prerequisite for the enabling of B2• Since the blocks of $c are
never enabled. it follows that B2 is never enabled. Thus its acùons never occur
and the lemma holds for ail acùons of any B2 E 1l.z.

The only blocks that can become enabled during an execuùon. are the blocks of

~. In the WHILE loop of Definiùon 16. consider those iteraùons in which

there is at least one enabled block; designate these iteraùons as "enabling ilera­

lions". If there are no enabling iteraùons. then no block of~ is ever enabled.
and hence the lemma is true for ail aetions of ail blocks of M. If. on the other

hand. there are enabling iterations, then assign consecutive integers i. i ;;?; l.to
consecutive enabling iterations. Let E(i) be the set of blocks enabled at

enabling iteration i. i ;;?; l PE(i) be the set of blocks enabled at some enabling

iterationj. where 1 Sj < i, with PEel) = 0. and t(i) designate the value of the
global time variable. T, at iteration i. Define the property S(i) as S(i) = [E(i) n
PE(i) = 0), i.e•• Sm = True 1Il~ that the blocks enabled at enabling iteration

i have never been enabled before. In the following. wc prove by induction over

enabling iterations i. that Sm holds for ail i, and thus that ail blocks of $ are

enabled at most once.

• Induction base (i= 1): PE(l) =0, henceE(l) n PE(l) =0. and thusS(l) =

true.

Before going to the induction step, wc note that, from Definition 16, the tirst

iteration of the WHILE loop is at T = 10- If there are blocks enabled at this itera­

tion, then this iteration is also the first enabling iteration, and hence t(1) = 10­

On the other band, if there are no blocks enabled al the tirst iteration (i.e., al T=
10). then, in the course of this iteration, no action of.$t will have its lime stamp
set, and hence the execution will he suspended forever when the wait() operator
is executed al the second iteration. As a result, no action of j[= Ji[- {o} ever

occurs in this execution. The only action to occur is the origin action 0 whicb

occurs only once at T= 10- Hence the lemma is true for ail actions of!R The fol­
lowing induction step is thus relevant only in the case where the first enabling

iteration (i = 1) is sucb that t(l) = 10-

•
6-18 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

.,

• Induction step: The induction hypothes.~ is [5(1) A ••• A Sri)). Wc wanllO

ptove S(i+ 1). Consider a block Bk enab1ed at enabling iteration i+ 1. i.e.. Bk

E E(i+I). From the definition of the enabledpredicale (sec Definition 15). il

follows that all actions of TRIGk (the veClor of triggers of Bk) have occurrcd

in the time inlerval [t(I). t(i+I)]. Consider a given trigger. trigl;n. of TRIGk·

If trigl;n E .9t, then from Definition 16. the occurrence of trigl;n in the time

interval [t(I), t(i+I)] i..;;;lic:s that block(trigl;n) was enabled al sorne enabling

iteration j. i.e.• block(.'rigl;n) E EU), for sorne j, where 1 ~ j ~ i. From the

induction hypothesis, w,' have [5(1) A ... A Sri)]. Le., any block enabled

anywhere in the enabling ileration inlerval [1. il is enabled once in that inler­

val. This in tum implies that trigl;n has occurred only once in the time inter­

val [t(I). t(i+I)]. If rrigkn E .9t (i.e.. trigl;n =0). then from Definition 16,

trigl;n has occurred only once at t(1). Thus all triggers of Bk have occurred

only once in the time interval [t(I). t(i+I)].

ln addition, from the definition of the enabled predicate (Definition 15). the

fuct thai Bk is enabled at the enabling iteration i+1 implies that there is at

least one trigger of Bk that occurs exactly at time t(i+I). Let trigl;n he such a

trigger. Since in the previous paragraph we have shown that all actions of

TRlGk accur once in the interval [t(I), t(i+I)], it follows that trigl;n does not

accur anywhere in [t(I). t(i)]. Hence Bk is not enabled anywhere in the

enabling iteration interval [1. il. Le.. BkE PE(i+I). Since, by assumption. Bk

is an arbitrary black such that Bk E E(i+I), and since wc have just proven

that Bk E PE(i+I), it follows that E(i+l) f"'l PE(i+I) = 0. Hence, S(i+I) =
true.

It follows that all blocks of !B are enabled at most once in an execution. From

Definition 16, this implies that the lime stamp of each action is set at most once

in the execution. Due to the assumption of monotonically increasing global

lime and the definition of the OCCUTS predieate (bath in Definition 15), it fol­

lows that each action occurs at most once in an execution.

o

lffnma 3 [1hzce Well-Behavedness] The trace associated with an execution of

a black machine M = (~ 0, !B, 'l) is well-behaved.

•
CHAPTER 6 . SEMANTICS AND VERIFICATION 6-19

•

•

Proof. In the course of the proof of Lemma 2, we have shown that ail blocks of
'13 are enabled Olt most once in an execution. From Definition 16, the only time

that the trace is possibly updated with the actions of a block, is when this block
is enabled. Hence. each action of Jt can he present Olt most once in the execu­

tion trace, and thus the trace is well-hehaved.

o

Definition 18 [Execution Termination] An execution E of a block machine is

said to terminate if the "success" statement of Definition 16 executes in E.

o

Lemma 4 [Trace Completion and Execution Termination] Let M =(JI, 0, '13.
'1'j he a block machine, E an execution of M, and n the trace produced by E.

Then. n is complete iff E terminates.

Proof (if). Assume that an execution terminates. Due to the WHlLE loop con­

dition of Definition 16. this implies that, for each ai E JI, occurred(ai) was set

to true at T ='ri. for some finite 'ri. which implies that occurs(a;. 'ri) was true at T
= 'ri' From the definition of the occurs() predicate, this implies that the time
stamp, t(ai). of ai was seL This in tum implies that the ttaee uptÙlte() operator

(Definition 15) was applied to ai • since from Definition 16 this operator is
applied ooly when action time StampS are seL In addition. since T is monotoni­

ca11y increasing. the ooly way!hat occurs(a;. 'ri) could have been true at T= 'ri is

that t(ai) was set to 'riwhen Twas equal to sorne 'r; < 'ri' This is exactly the con­
dition under which the trace uptÙl1e() operator inserts ai in the trace. It follows

that ai • and hence each action ofJI, is inserted in the ttaee at least once. Since.

from Lernma 3. each action is present at most once in the trace. it follows that
each action of .J'l appears exactly once in the trace. and hence the trace is com­
plete.

Proof (ooly if). Consider an arbittary execution !hat yie1ds a complete trace.

Since the trace is complete. it must be !hat the updateQ operator bas updated

the trace with ail actions. Henee. it must be that the exccution bas invoked the

updateQ operator on ail actions. Sinee. from Definition 16. the updateQ

operator is invoked on the actions of a black Bk ooly when the following two

conditions are met: 1- Bk is enabled and 2- c'bk(r(TRlGrJ) *0. it foUows that a
complete trace necessarily implies that in the time interVa1 starting at T = ta to

the time at which the trace becomes complete, ail blacks are enabled. and the

first time that any given block Bk becomes enabled. the set 4>k(t(TRIGk»is not
empty. Now. since from Lemma 2. each block is enabled at most oncc in ~my

execution. it follows that ail blocks are enabled exactly once. and hence at no
enabling of any block Bk does the corresponding 4>k(t(TRIGk)) yield the empty
set. Hence the deadlock state is never entered.

•
6-20 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

•

In addition. since: 1- T (the global time) is monotonically strictly increasing. 2­
(from Definition 15) the updateO operator updates the trace with an action aj at
time T = Ti •only if t(aj) was set to a value such that t(aj) > Ti and 3- t(aj) is
finite (due to the assumption on the c!>'s in Definition 12). it follows that the
execution cannot get suspended forever in a WAIT state. Since the execution
never enters the deadlock state. nor suspends forever in a WAIT state. it follows
that any action that has had its lime stamp set, will occur. Since ail blocks are
enabled exactly once (as we have shown above). and since upon a block
enabling. the time stamp of ail actions of the block are set. it follows that ail
actions have their time stamp set, and hence ail actions occur.

Consider the last WHILE loop iteration at which there is an action that occurs•
and designate this iteration as If' After the occurred ftags of actions are
updated in this iteration, the proposition f'tai E .l'l, occurred(ai)] becomes true.
In addition, it must be that ail blocks have already been enabled before the If
iteration is entered (or else, not ail actions could have occurred). Since, from
Lemma 2, we know that ail blocks are enabled at most once in any execution. it
foUows that in the If iteration there will he no enabled blocks. Hence, the loop
"for ail le, such that enabled(Bk ' T) do ... end for" in Definition 16, will not be
entered, and thus the Ifiteration will immediately terminate. There will not be a
subsequent iteration of the WHILE loop, as the loop predicate "3 ai E .l'l ,
not(occurred(ai»" will yield false. Hence, the next statement to execute is
"success".

o

Definition 19 [Live Block Machine] A block machine M is live if, for every

execution Ei of M, there exists a finite value 'ti' such that the trace associated

with Ei is complete (Definition 3) , at T ='ti (where T is the global lime

variable).

o

•
CHAPTER 6 . SEMANTICS AND VERIFICATION 6-21

•

•

Definition 20 [Forward Tune Property] Consider a block machine M =(5t o.

'13. ']j. Let Ej he an execution of M. Let vj denote t(TRlGj) in Ej • where TRIGj

is the vector of trigger actions of block Bj • Let <%>j he the time computaùon func­

ùon of Bj and vj the ùme vector chosen by the execuùon Ej from the set

<%>}Vi). Let mj and nj he the number of triggers and acùons, respecùvely, of

block Bj- We write vj and Vi in the form (ujl • ...,u~m) and (vjl, vjn,l­
respecùvely. Then, we say that:

• A block Bj salisfies the forward time property in execution Ej if Bj is

enabled in E j at sorne finite 't and the property vj/ > ujh' h = l, ...• mj' 1=
1..... nj' holds.

• The execution E j up to a block Bj satis.fies the forward time property if all

blocks executed up to Bj in E j saùsfy the forw.u-d Ùnle property in E j • The

execution Ejsalisjies theforward time property ifail the blocks of M satisfy

the forward Ùnle propeny in E j •

• The block machine M satisfies the forward time property if ail its execu­

ùons saùsfy the forward time property.

o

Lemma 5 [Equivalent Iiveness] Given a block machine M =()il, 0, '13, '1j,

[Mislive] <=> [
M satisfies theforward time property (Pl)

A each block of '13 has al leost one trigger (P2)
1\ the "<!" relation on '13is apartùz1 orderl (P3)
A no execution of M enters the deadlock stllte (P4)

]

Proof (<=). The praof is by contradiction. Assume that statements Pl to P4

hold and that M is not live. By Definition 19, this implies that there exists a

trace of M that does not reach completion, and hence, by Lemma 4, an

execution which never terminales. From Definition 16. it is clear that an

execution that does not terminate must be forever suspended either in the

deadlock state, or in a wait state. The former situation contradiCt5 P4. The latter

1. A partia1 order is a binary rcIaliOD R such that R is transitive and, for every Je in :he field ofR,
Je R Je is faIsc.

•
6-22 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

•

case implies that thr ": is at least one action that has not occurred and which
never occurs. This in turn implies that:

1. Either there is an action for which the time stamp has been set to a lime

value that is not stnctly greater than the current value of T. This contradicts

Pl.

2. Or the block in which this action is. is never enabled. However. for this to

happen without the execution having already entered the deadlock state (the

assumption is that the suspension is in a wait slate). it must be that:

2.1. Either there exists a block with no triggers. This contradicts P2.

2.2. Or there is a cyclic dependency in the trigger relation. i.e.• the "<" rela­
tion on '.3 is not a partial order. This contradicts P3.

Hence in ail situations. a contradiction is obtained.

Proof (=». The praof is again by contradiction. Assume that M is live and at
least one of the Slatements Pl to P4 does not hold. This. however. trivially
impliC".s that there is at least one execution that does not terminale. which by
Lemma 4 implies thl\t there is a trace that does not reach completion. thus
implying !hat M is not live - contradiction.

l:l

5 From Action Diagrams to Block Machines

To reason about the causality and compatibility of consistent action diagrams.

we will map these onto black machines. designated as derived block nuzdùnes.
The aim is to obtain a live black machine with the same trace sel as !hat of the
original action diagram. The mapping is uniquely defineci. given a consistent

action diagram and a partition over its action set.

The lime computation functions of a derived black machine are described by

the "local constraint" sets {~I i =1..... K}. Such a =hine cau be seen as a
definitionai refinement (or special case) of the black machine in Definition 12.
To emphasize this refinernent, we extend the struetural definition of a black
machine to M =(.!t o. $. 'J; C). where C is the constraint set <.'! the action dia-

•
CHAPTER 6 - SEMANTICS AND VERIFICATION 6-23

•

•

gram. We also extend the structural definition of a block Bi to be the triplet (Li'

Cr <1>i)'

Definition 21 [Derived Block Machine1Consider a consistent action diagram

AD = (S. Ji, a. Cl. where C= C'u CJ. and let Pbe a partition over;r =.!'l.

1al. such that P= {Li 1i = 1•...• lC}. The block machine M = (Ji!. a. $. 'I C)

derived from the pair (AD. PJ. denoted dBMs(AD, PJ. is such that:

• $is a set ofblocks {Bi 1Bi =(Li. Cr <1>i). i =1•.••• lC}.

• T= {(ai. Bkll aiE.!'l A Bk E $ A (ai = a v block(a;) :;!:Bk)

A 3 aj E acrions(Bk) .3 lt El.

[(ai. aj' lt) E C v (aj' ai. lt) E CJ
A [dist[AD](aj' ai) < 0 v (dist[AD](aj. ai) <: 0 A dist[AD](ai' aj) <: 0)]}.

• Cr the local constrainr relation ofblock Bi. i =1•... , 1(, is:

y= {CEC 1 30j E Li. 3akE.!'l. 3ltE 1.
[c =(aj' ak> lt) v C=(ak~ a~. lt)]

A [ak E Li v (ak~ Bi) ET] J.

• <1>i. the rime computationfunction ofblock Bi. is defined as:

et>,{Xi) =["i 1 TraceFonn(concat(Xi> "i» satisfies y }
where TroceFonnO is the operator defined in Definition 6. the "satisfies"

predicate is as pet Definition 4. Xi is the vector oflime stamp variables of the

triggers of block Bi. "i is sorne value of the vector of lime stamp variables of

the local actions ofBi. and concat(Xi• Vi) indicates the vector which compo­

nents are the concatenation of the components of the veclOrs Xi and Vi' Note

that, due to the linear form of the constraints in Cr et>.{Xi). for a given value

of Xi. describes a polyhedron in the space of dimension ni> where ni is the

number of actions ofblock Bi'

Q

Notation: dBMs(AD) denotes the set ofblock machines derived from AD. ie.•
M e dBMs(AD) ifand only if there exists a partition Pof the action set of AD
such that M =dBM(AD, ~.

•
6-24 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

•

6 Formalizing the Concept of Causality

Definition 22 [WDT(M)] Let M be a block machine derived from a consistent

action diagram. where M =(51. o. $. 'I O. and let CG =CG(51. O. M is said to

satisfy the well-defined rriggers property. denoted WDT(M J. if:

"t Bj e $. "t rrigij e rrigs(Bj). "tajk e acrions(Bj) •disr[CGl (ajk • rrigij) < O.

o

. Definition 23 [Local Path] Let M = (51. o. $. 'IO be a derived block machine

(Definition 21) and consider a set Qof blocks. Q>; '1J. An edge e of CG(51. 0 is

local to Q if there exiSIS a block Bj =(Lj • Cj. (Pj) of Q such that associared­

constrainrs(e)!;;; Cf An edge e is local to a block Bj if e is local to {Bj}. A path

r of CG(51. 0 is local to Q (Bj) if all the edges of r are local to Q(Bj).

o

Definition 24 [Past(a;), Past(a;, a)] Let M = (51. 0, '1J. '1:l be a block machine

such that "<" is a partial order on $, and let aj e j{- {o}, aj e51. and ak e51.

We define pasr(aj) and pasr(aj' ak) as follows:

• pasr(o) = 0
• pasr(aj) = {BI e $1 BI < block(aj) v BI = blocJ.:(aj)}

• pasr(ar ak) =pasr(aj) u Pasr(ak)'

o

Definition 25 [Past-dominated(M)] Let M = (Ji!, 0, '1J. 'IO be a block machine

derived from a consistent action diagram AD, such that M satisfies the well­

defined triggers property (Definition 22). M is said to satisfy the pasr­

dominatedproperty, denotedpasr-dominated(M), if:

"t aj e Ji!, "t aj e actions(J't) - {aj},

"tqijk tight path from aj to aj in CG(Ji!, C) , qijk is local to Pasr(aj, aj) •

o

We propose the following formalization of cansality (Definition 26 and

Definition 27).

•
CHAPTER 6 - SEMANTICS AND VERIFICATION 6-25

Definition 26 [Causal Derived Block Machine] A derived block machine M =

(JI. o. $. 'l; C) with $ = {(Li. Cr l1>i) 1i = 1•...• !c} is causal if the following

three conditions hold:

1. ":/i. i = 1..... n :

• all actions in Li have the same direction (designated as the block direc­

tion). and

• all constraints in Ci have an intent which is "compatible" with the

block direction (i.e.• commit intent for out blocks and assume intent for

in blocks).

2. WDT(M).

3. past-dominated(M). o

•

•

Notation: CdBMs(AD) denotes the set of causal black machines derived from

AD.

Definition 27 [Causal.4.ctüm Diagnun] An action diagram AD = (oS: JI. o. C)

is causal if there exists a partition P of its action set Ji!. sucb that the derived

black machine (Definition 21). dBM(AD, ~, exists and is causal (Definition

2~. 0

In the next section. we give sorne basic results regarding the solution space of
linear constraint systems of action diagrams (Definition 2). These results will
he useful in proving sufficient conditions for the liveness of a black machine
(Section 8).

7 TImeZones

Definition 28 [7ïme Zone] Consider Ji!.={al ••••• an} a set ofn actions, n ~ 1.
and Ca set of timing constraÎnts over Ji!. (Definition 2). The lime zone (or sim­

ply zone). Zone{JI. C). is the set of n-dimensional vectors (V; = (t(al)

t(a,.» 1ai E Ji!.1\ V; satisfies Cl. Due to the form of the constraÎnts in C Zis a

polyhedron. 0

•
6-26 CHAPTER 6 - SEMANJICS AND VERIFICATION

•

•

Definition 29 [Zone and Veetor Projection] Given a zone 2 = Zone(5l. C). a

veetor VeZ. and 5ls 1: 5l. the zone 2s = 21151. (the vcetor Vs = VIl51.) is the

projecrlon of 2 (of V) onto the spaee of ùme veetors of 5l.~

o

Definition 30 [ProductofZones] Given!Wo zones 2\ =Zone(511• CI) and Z:! =
Zone(512• C:!). the produet zone 2\18> Z:! is Zone(511v512• C\vC:!).

o

The following lemma holds due to the relaùve nature of the ùming eonstr:ùnl~

of Definition 2 (Le.• bounds on lime differenees hetwccn aeùon pairs). This
lemma, as well as the two lemmas that immediately follow il are well-known
results [Dill89] and are given bere without proof.

Lemma 6 [Zone Relativity] Consider a non-empty zone 2 = Zone(5l.. C) with

J! ={al an}' Then. 2l1{",} =9\. 1SiS n. Le.. the projection of2 onto any

:ubspaee of :fimension 1 yields the complete real axis.

o

Lemma 6 implies that if the occurrence lime of any single action ai. 1SiS n.
is arbitrarily fixed to a real value f, then there exists a vector V of Z. sucb that
the ith component of Vis r. The next lemma addresses the canonical representa­
tion oflime zones ofdimension strierly greater than 1.

Lemma 7 [Canonical 7ime Zone Representation] A non-empty zone 2

= Zone(5l.. C) of dimension n ~ 2. can he represented in a finite and canonical

manner by an n x n matrix M. M = [mijl. i = 1..... II. j = 1..... n. with mij =
dist[Zl (ar ai)' In addition, referring to Definition 29. the canonical form of

211.!'t, • wben 1.Jil.J ~ 2. is obtained from the canonical form of Z. by deleting

from the latter the IOWS and columns corresponding to actions in Jl- Jils.
o

Notation: Given a constraint graph G= CG(JiI. C) and the corresponding zone
Z = Zone(JiI. C). the notations dist[Gl (ar ai) and dist[ZJ (ar ai) are used inter­
cbangeably.

•
CHAPTER 6 - SEMANTICS AND VERIFICATION 6-27

•

•

Lemma 8 [Zone Comparisons] Given two zones ZI = Zone(JI.. CI) and

Zz =Zone(JI.. ~). where ZI is non-empty:

ZI!::Zz <=> ["taiE JI.. "tajE 5'l.dist IZ,] (ai.aj) S dist[Z,] (ai.aj) J.
ZI = Zz <=> ["ta, E JI.. "taj E 5'l. dist [Z,] (ai. aj) = dist [Z,] (ai' aj) J.

o

Tenninology: When ZI is non-empty and ZI !:: Zz. wc say that ZI and CI saùsfy
~.

Lemma 9 [Zone Coverage] Consider Gt = CG(5'lt • CI) and~ = CG(5'l2' ~).

IWO constraint graphs such that Gp =CG(J'lt uJ'l2 • Ct u ~) is consistent. Let
Z, and Zz designate the zones associated with GI and ~. respecùvely. and let

5'l12 =J'lI 1"'1 J'l2' Then. if 15'l12l S 1 or if ZIll.!-l" ~ Zzll.!-l". then Zp =Zt ~ Zz is
such that ZpM,= Zt. i.e.. Zp "covccs" Zt.

Proof. If >'1.1 contains a single action a, then disf[G,.l (a. a) trivially equals
dist[G,1 (a. a) - th.:y are both equal to 0 - and hence Zpl!.<t,=ZI- In the follow­
ing. wc assume that (J'lll > 1. Let ai and ai he IWO actions of >'1.1, such that ai:;l:

ai' Consider an acyclic path q from ai to ai in Gp• If (>'I.t2(S 1. then clearly q
cannot contain edges of~. Hence, for any pair (ai. ai)' the shottest path from
ai to ai in Gp is a path in GI• and thus ZpM,= ZI_ Otherwise ([jI.12I > 1). since
q starts and ends on vertices ofGI•the oo1y way that q cao contain edges of~
is that, for each edge e ofG:! in q • there exist ak and al actions ofJ'l12' ak :;1: al'
and a subpath r of q, such that r is from ak to al' r is made up of edges of~
oo1y and e is an edge of r. More precisely. ifP tdesignates the set ofpaths ofGt

~

and P Î2designates the subset ofpaths of~ that start and end on actions of >'1.12
, then q cao he written as the following regular path expression, wherein a set
represents a choice over its elements, and "+", ":', and "." indicaIe choice, con­
catenation, and Klecne closure, respectively:

1 1 2. 1
q=P .(P +P12) .P

From the lemma premise, wc have Zlll.!-l" ~ Zzu..<t,.. hence it follows that for
any ak' al pair of actions of >'1.12' such that ak :;1: al' dist[G,1 (a", ai) S
dist(G:l (ak' ai). Thus. for any subpath P~ of q between a pair of actions of
J'l12. there is a path in Gl ofsmaller or equal weight between the same pair of
actions. Hence, the shortest distance from Cl; to Oj in Gp is detennined by a path

in Gl• and therefore dist(G,J (ai' ai) = dist(G,1 (ai. Oj). Since this is truc for

•
6-28 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

•

any (a; • ajl pair of actions of 511, a;:o: aj' it follows that Zpu..q, = ZI'
o

We will use the following terminology. Given an action diagram AD =(5. ,'!. o.
O. and a derived block machine M = (5l.. o. $. 'I O. we will refer to Zont(,'!.
o as the global :one ofAD and/or the global :one ofM.

8 Liveness of Derived Block Machines

Lemma 10 [WDT(M) => "<" is apartial omerJ Let M =(5l.. o. $. 'IO be a
block machine derived from a consistent action diagram. Then. WDT(M)

implies that the ..<" relation on '1J is a partial order.

Proof. The proof is by contradiction. Assume CG(5l.. 0 is consistent. WDT(M)
holds. and "<:' on '1J is not a partial order. The latter implies that there exiSl~ a

black B,' such that Bi < Bi. which in tum implies that there exists a sequence of

blocks [Bi • Bi+l ••••, Bi+m • Bi J. with m ~ O. such that Bi Pree Bi+l •
Bi+l PreeBi+2 ••••• Bi+m-l Pree Bi+m' and Bi+m Pree Bi • From the WDT(M)
property. this implies (where~ is the set of actions ofblack Bi) !bat :

3aJ. e4.'Va.. e4.1. disl(ak .aJ.)<O
l ""j _1 ._, 1

3 aJ. e L i• 1 • 'Va.. e 4 disl(a.. • aJ.) < 0;., ft,_:::: - "", ... : ,.,

3aJ. e4.m_l.'Vak e4.m' disl(ak .aJ.)<0
, ••-1 ,... ••• ; ...-1

3 aJ. e 4.m' 'Va. e Li • disl(a,.• aJ.) <O.
,... "1 j ••

By simple transitivity of the arithmctic "<:'. this implies !bat 'Vak, e Li •
disl(ak,' ai,) <0 and, since ai, e 4. we get in particular. that disl(ai ,. ai,) < O.
However. this means that CG(.9l. C) is inconsistent - contradiction.

o

For the l'eSt of this paper. we extend the dist notation (Definition 9) as follows:

given a set Q of blocks. the notation dist[Q) (ar ai) indieates the length of the
shortest path from ai to ai in the graph in which the vertelt set is composed of
the union of the local action sets and trigger sets of the blocks of Q. and the
edge set corresponds to the union of the local constraints of the blocks ofQ. In
addition, ifBisa block. the notation dist[B] (ar ai) is equivalent to dist[(BIJ (ar
ai)'

•
CHAPTER 6 . SEMANTICS AND VERIFICATION 6-29

•

•

Lemma 11 [WDT(M) I\past-dominated(M) ~live(M)l Let M = (5l. o. '1>. 'l
Cl he a black machine derived from a consistent action diagram AD. such that

the properties WDT(M) and past-dominated(M) are true. lt follows that M is

live.

Proof. To prove that M is live. we will show that it satisfies clauses Pl to P4 of
Lemma 5. Oause P2 (i.e.• each black of '1> has at lenst one trigger) is satisfied
by definition of the trigger relation in a derivei block machine (Definition 21).
From the consistent(AD) and WDTrM) assumptions. and using the result of
Lemma 10. it follows that clause P3 (i.e.. the ..< relation on '1> is a partial

order) is satisfied.

Consider an arbitrllry (and possibly partial) execution of M. and let S he the
sequence ofblocks [B;l. i ~ 1 •enabled during that execution. where the blocks
ofS are in the order in which they wcn:: executed. Hence, this order implies an
order in incn::asing block enabling time. Let J'!; designate the set rrigs(B;) u I.;.
when:: L; is the set of local actions ofblock B;. Let Ji be defined as:

Jtl =Jt.
Ji=.srl uI.; fori> l.

Let Z; designate ZoIle(J'!;. Ci>. i.e.. the zone in which the actions are the local
actions and triggers ofblock Br and the constraints are the local constraints of
B;. Let Z be defined as:

ZI=ZI
Z=z}-I@Z; fori> 1.

Let 1- designate the set {BI' ...• B;} and V the vector of tinte assignments of
actions ofsi. as computed in the execution under consideration. In the follow­
ing. wc prove by induction on S. the three properties IrzZorze(i). NoDeadIock(i).
and FTP(i).definedas follows:

• IrzZorze(i): VeZ

• NoDeadlock(i): the execution up to B; bas not entered the deadlack state

• FTP(i): the execution up 10 B; satisfies the fOIW3Id tinte property

InductiOll base : Block BI (the fiIst black ofS> necessanly bas the origin action
as its only trigger. or cise it couId not be the fiIst black to be enabled. Henee.
cIll • the tinte computation function ofBI' chooses a vector ofZI' such that the
component of that vector corresponding 10 the origin takes on the value Co-

•
6-30 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

From the ;:one relariviry property (Lemma 6). such a vector exists. as long a.~ 2 1
is not empty. It is indccd the case that 2 1 is not empt)'. since CG(5t Cl is consis­

tent. The existence of that vector implies NoDeadlock(1J. and the fact that the

vector is in 2 1 means inZone(IJ.

From pasr-dominated(M). ail tight paths hetwccn a pair of actions ai' ak are

local to Pjk (where Pjk denotes past(aj • ak)' Hence. dist(aj • ak) can he com­

puted ovec Pjk • i.e..:

dis(aJ,ak) = dist1P,.f.aJ,ak) (1)

Let a~ he an action of block BI' From the WDT(M) assumption. we have
dist (a ~. 0) <: 0 (sec Definition 22). Using cquation (1). and the fact that Pjk =

• k5 • wc can rewrite the WDT(M) property on al' 0 as:

disr1S'i (a~. 0) <: 0 (2)

From InZone(I). wc know that the rclationship hetwccn r(a ~) and r(0) (which

arc the occurrence times of a~ and o. rcspectively) is given by 21• which is the
time zone defined by the actions and local constraints of51, As a result. relation

(2) implies that the occurrence times of a ~ and 0 in the execution arc such

that:

k
r(o)-r(al)<:O

Hence r(a~)> r(o). Since this is true forany action ofBI' it follows that B. sat­

isfies the forward time property for the current execution. i.e.. the property
FTP(l) is true.

Induction srep : Assume blocks BI to Bi have executed and Bi+t is the enabled

black that is about to execute. Using Lemma 9. wherc ZI'~ .1'1.1 and .1'1.12 of

Temma 9 arc Zi. ~I' Jot andtrigs(Bi+I). respectively, wc first show that:

Zi+1aR' =Zi (3)

•
Indeed, IfBi+1 bas a single lIigger(Le., 1.1'1.121 ofIemma 9 is 1), then (3) follows

directly from Lernma 9. Otherwise (Le., Bi+1 bas more !han one lIigger). let aj

and al: be a pairoftriggers ofBi+I, CZj*ak- Let Pjl: denote past(aj. av and Qj!:

denote $-Pjl:' Frompasr-dominoted(M), wc have:

•
CHAPTER 6 • SEMANTICS AND VERIFICATION 6-31

(4)

Since B;+1 is enabled and aj. ak are triggers of B;+I' it must be that ail blocks in
Pjk have becn enabled. and hence Pjk <;;; si. Thus. si comprises at least ail of the
constraints of Pjk• As a result:

(5)

Now. since the ..<' relation on 'B is a partial order and since aj and ak are trig­
gers of Bi+1• it follows that Bi+1 cannot be in p. and hence it is in Qjk- Thus. Qjk

comprises at lcast ail of the constraints of Bi+1• As a result:

(6)

•
Combining (4) to (6). wc gel:

(7)

Since inequality (7) is true for an arbitrary pair aj • ak of trigs(Bi+tl. it follows

that it is true for ail such pairs. Consequently. Zi~rrigS(BI") <;;; Z;+I~rr;gs(B",),
Le.• the premise of Lemma 9 holds, and hence equation (3) is true. indicating

that ail vectors of Z; cao be extended to B;+1' Hence. from equation (3). and
from the assumption !hat V is in Zi (Le.. inZone(i». it follows that V cao be
extended to Bi+1. and thus NoDeadlock(i+ 1) =rrue.

Designate by V+1 the extension of V to B;+I' Since V cao be extended to B;+I'
and since V is in Zi. it follows V+1 is in Zi @ Zi+l. i.e.. V+1 is in Zi+l. and
hence inZone(i+1) is true.

Next. wc show FTP(i+1). From past-dominated(M). ail tight paths between a

pair of actions ai' ak are local to Pjk (where Pjk denotes past(aj , akl). Hence,

dist(aj' aV cao be computed ovec Pjk ' Le~:

(8)

•
Let a:+1 and rrig/+1 be an action and a trigger, respective1y, of block B;+1
(where B;+t is the block about to execute). From the WD7TM) assumption, wc

have disr (a:+1 ' rrig/+1) < 0 (sec Definition 22). Using equation (8), and the

facttbatPjk <;;; Si+l, wc cao rewrite the WD7TM) propecty on a:+1 ' rrig/+1 as:

•
6-32 CHAPTER 6 - SEMANTICS AND VERIFICATION

d " (k "j) 0
ISI[S"'1 a i +! .lrlgi +1 < (9)

From InZone(i+I). we know that the relaùon between I(a;+v and 1(lrig/+ I)

(which are the occurrence ùmes of a;+l and rrig/+1• respecùvely) is given by
Zi"'l. which is the Ùme zone defined by the acÙons and local constraints of Si+ l,

As a result. inequality (9) implies that the occurrence ùmes of a;+1 and Irig/+ I

in the execuùon are such that:

(10)

•

•

Hence t(a;+I) > t(trigi....). Since this is true for any acùon 1triggerpair of Bi... l'
it follows that Bi ...1 saùsfies the forward ùme property in the execuùon. ":",us
and the inducùve assumption FTP(i)impliesFTP(i+I).

Since NoDeadIock(i) and FTP(i) hold for every i. it follows that clauses PI (M
satisfies the forward time property) and P4 (no execution of M enters the dead­
lock state) ofLemma 5 hold. Hence. Iive(M) is true.

o

Consider. for example, the consistent action diagram of Figure 4. To satisfy
Condition 1 of Definition 26. action 04 must be in a block all by itself. As for
actions i2 and i3, they must be together in one block, or else the WDTcondition
would be violated (since i2 and i3 are concurrent to each other). Hence. the
only block machine of interest that can be derived from~ contains two
action blacks, Bin and Bout' having the local acùon sets {i2, i3} and {04},
respectively. Block Bout bas IWO triggers, i2 and i3, which satisfy the WDT con­
dition, since dist(04, i2) < 0 and dist(04, i2) <0 (they are both equal to -11). Bin
is tliggered by the (implicit) origin action, and hence the WDT condition for Bin

is satisfied by construction of the derived block machine (Definition 21). The
machine satisfies the past-dominated property. Indeed, the shortest path from i2
to i3 is the edge (i2, i3) ofweight 8 (associated with the constraint al), and this
path is local to past(i2, i3), since it is local to block Bin• The only other (i2, i3)
path is ofweight 9 and it consists of the edge (i2, 04) of weight 20, followed by
the edge (04, i3) ofweight -Il. The situati('ln is symmetrieal for (i3, i2) paths.
As for the (i2, 04) and (04, i2) paths, since past(04) is the complete set of
blocks. ie..pcst(04) = {Bin,Bout}, it fol1ows that ail paths. and in particularthe
(J2, 04) and (04, i2) paths. are local to past(J2, 04). Similarly for the (13, 04) and
(04, i3) paths, whieh are local to past(i3, 04). By Lemma Il, it fol1ows that the
machine is live.

•
CHAPTER 6 - SEMANTICS AND VERIFICATION

al =[-8, 8]

_____104

Figure 4: A causal action diagram.

6-33

•

•

Note that the past-dominated(M) condition is not, strictly speaking, a necessary
condition for the liveness of M. The next lemma (Lemma 12) states that the
conjunction of WDT(M) with a slightly weaker fonn of past-dominared(M),

designated as weak-past-dominated(M) (Definition 31), foImS a necessary con­
dition for the liveness of a black machine M derived from a consistent action
diagram. We omit the proof of Lemma 12. because the weak-past-dominated

criterion tums out to he of little practical interest (this is further discussed later
in this section). and hecause in this paper we are more interested in the safety of
our conditions than in their absolute minimality.

Definition 31 [Weak-past-dominated(M)] Let M = (JI!, o. !B, <J; q he a black

machine derived from a consistent action diagram AD and satisfying the weIl­

defined triggers property. M is said to satisfy the weak past-dominated prop­

erty. denoted weak-past-dominated(M), if:

'<t ai E actions(.9l). '<t aj E aetions(.9l) - {ai}. '<t qijk tight path from ai to aj

in CG(JI!, q.
qijk not local to Past(ai. aj) =>

3 qijl tight path from ai to aj in CG(JI!, q, qijl local to Past(a;. ajl.

o

•
6-34 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

•

The weak-pasr-dominared condiùon requires that the tight paths that are not
local to the past of an acÙon pair he "backed up" by at least one ùght path that
is local to the past of the acÙon pair. ln other words. the tightest path local 10

the past must he ùghter or. as tight as (:>;) the tightest path that is not local to the
pasto ln contrast. the pasr-dominared condition (Definition 25) requires all tight
paths hetween an acùon pair to he localto the past of this pair.

Lemma 12 [live(M) =>WDT(M) /\ weak-past-dominated(M)] Let M =(>1. o.

$. 'I: C) he a live block machine derived from a consistent acùon diagram AD.

lt follows that the properùes WDT(M) and weak.pasr-dominated(M) are true.

o

Consider. for example. the action diagram A02 in Figure 3(b). which is the
same as Figure 4 except that the assume constraint is ofweight [-10. 10] (rather
than [-8. 8] in Figure 4). For the same reasons as in the example of Figure 4. the
ooly block machine derived from A02 that could he causal is the machine M

with IWO action blacks. Bin and Bour- of local acÙon sets {i2. i3} and [04} •
respectively. This machine. however. violates the weak-past-dominated prop­
erty. lndeed, consider for example the ùght (i2. i3) path P'>..3 that consists of the
edge el = (i2, 04) ofweight 20. followed by the edge e2 = (04. i3) ofweight­
11. The weight of P'>..3 is 9 (= 20 - Il) and the constraints associated with the
edges el and e2 are cl and e2. respectively. These constraints are not local to
past{i2, i3}. and hence neither is P'>..3' Since there is no other (i2. i3) path that is
as short as (or shorter than) P'>..3' it follows that the weak-past-dominated prop­
erty is violated. To sec that M is not live. consider for example the execution
where t{i2} = 5 and t{i3} = 15 (which is aIlowed by the local constraints of Bïn).

Then. when BOU! becomes enab1ed at T =15. it will not he able to find a solu­
tion for t{04} since that would require t{04} to he greater than 26 (i.e.• t{i3) +
Il} and 1ess than 25 (t{i2) + 20}. Hence M enters the deadlock state. and thus it
is non-live.

If we change the [-10. 10] assume constraint of Figure 3(b} to [-9. 9]. the
derived b10ck machine descn1led in the previous paragraph would satisfy the
weak-past-dominated condition, but not the (stronger) past-dominated condi­
tion. ln addition, the machine is now live: for any occurrence times of the
actions i2 and i3 within the [-9. 9] assume constraint, b10ck Bout is able to
determine an occurrence time for 04 sa as to satisfy aIl its local constraints
(which are the IWO commit constraints ofweight [Il. 20]). Note, however. that

•
CHAPTER 6 . SEMANTICS AND VERIFICATION 6-35

•

•

the (i2. i3) path that is local to past(i2. i3) has a weight equal to LIJat of the

(i2. i3) path that is not local to past(i2. i3). This has the effectthat. in sorne exe­
cutions of the machine. the function <1> of block Bollt will retum a single vector.

Consider. for exarnple. the execution where t(i2) = 5 and t(i3) = 14 (which is
allowed by the local constrainlS of Bin). Then. when Bollt becomes enabled at T
=15. it will find that there is only one solution for t(04) that satisfies the local

constrainlS of Bout: that solution is t(04) =25.

ln terms of the practicaJ framework of our appiication domain (specifications of
asynchronous systems in a continuous time model). the kind of marginal situa­

tion outlined in the previous paragraph is of little practicai interest. as it implies
absolutely null design margins. thus making the specified system physically

non-realizable. in practice. In view of these observations. we informally state
that past-dominated(M) is an "almost necessary" condition for the liveness of a

derived block machine M.

ln terms of the theoretical framework. we have chosen the stronger pasr-domi­
nared condition over ilS weaker counterpart as a liveness (and thus causality)

criterion. because the stronger form has desirable compositional properties that
allow us to express the compatibility of communicating action diagrams inde­

pendently of the particular causal block machines that implement them. These
compositional properties are put to advantage in the proof of Theorem 1 (the
Compatibility Theorem). However, in order to do that, we will tirst need to

rewrite the pasr-dominared condition into a provably equivalent forro. This is
the subject of the next section (Section 9).

9 Rewriting the past-dominated Condition

In this section, we show!hat the pasr-domïnated(M) condition can be rewrinen

into a provably equivalent fonn, loose-blocks(M), given .in Definition 32. This

rewriting enables us to prove the Compatibility Theorem (Theorem 1). An
additional benefit of the loose-blocks(M) condition is !hat ilS computation is of

time complexity O(n3), where n is the number of actions of M. whereas the
worst case lime compiClcity ofpasr-domïnated(M) could be exponential with n
(it is based on path enumeration).

Definition 32 [Loose-blocks(M)] Let M = (.91, 0, $, 'I: C) be a block machine

derived from a consistent action diagram. M is said to satisfy the loose blacks

•
6-36 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

•

property. if:

'V Bk E '!J. 'V ai E trigs(Bk). 'V aj E trigs(Bk) - (aj} .

dist[CG(5l. cn (ai' aj);<: 00 ~ dist[CG(5l. Cll (ai' a) < dist[Bd (ai' ajl.

o

In Lemma 13 we shaH establish the equivalence hetween the loose-blocks and
the past-dominated properties of derivcd block machines. But tirst. a fcw deti­
nitions are in order.

Definition 33 [Edge orpath contained in a (set of) block(s)] Let M =(JI. o. '!J.
Z C) he a derived block machine and Q!:: '!J. An edge e of CG(JI. C) is said 10

he contained in Q. if there exists a block Bi in Qsuch that source(e) is local to

Bi and there exists a block Bj in Q such that sink(e) is local to Bj (it does not

maner whether Bi ;<: Bj or not). Furthermore. the edge e is said to he contained

in Bi' if e is contained in {B;}. A path r uf CG(JI. C) is said to he conrained in

Q(respectively Bi). if all the edges of r are contained in Q (respectively Bi)'

o

Definition 34 [Cross edge] Let M = (JI. o. '!J. Z C) he a derived block machine.

An edge eij = (ai. aj) of CG(JI. C) is a cross edge ifai and aj are not local to the

same block. i.e.•: ..., 3 Bk E '1J, ai e actions(Bk) A aj e actions(Bk).

o

Definition 35 [Direction ofa cross edge] Let M = (JI. o. '!J. Z C) he a derived

block machine such that "<' on '!J (Definition 14) is a partial order. The direc­

tion of a cross edge eij = (ai' aj) of CG(.!iI. C) is one ofrighl or le/t. and is deter­

mined as follows. where .9r = Jl- [o}.

1. Ifai e .9r and aj e trigs(block(a;J). then eij is a left edge.

2. Ifaj e .9r and ai e trigs(block(aj))' then eij is a righl edge.

o

In the above definition, the direction of each and every cross edge of the con­
straint graph ofM is uniquely defined. Indeed, ifboth ai and aj are actions of.9r
• then from the definition of the trigger relation of a derived block machine
(Definition 21) and the assumption that "<;' on '1J is a partial order. it follows

•
CHAPTER 6 - SEMANTICS AND VERIFICATION 6-37

•

•

mat the pre-condition of one and only one of Statements 1 and 2 of Definition

35 is true. Otherwise. one of ai and aj must he identicalto the origin action 0

(they cannot both he identical to 0 hecau~e ai '" aj)' Since in a derived block

machine there is no edge with 0 as its source. it follows that ai cannot he equal

to O. Hence. the only remaining possibility is aj '" 0 and aj =o. and therefore the

pre-condition of Statement 2 of Definition 35 is false. From Definition 21. (aj.

0) is an edge of the constraint set of a derived block machine if. and only if 0 is

a trigger of block(a;J. Hence. the pre-conèition of Statement 1of Definition 35

is true. Therefore. in ail cases. the direction of a cross edge is uniquely defined.

Definition 36 [Transit] Let M =(JI. o. $. 'I C) he a derived block machine. Bj

E $. and L j the set of local actions of Bi' A transit through Bi. or transit for

short. is a pair t = (enter. exit). where enter (!I\d exit are cross edges of

CG(JI. C), and:

• enter is such that: sour.:e(enter) li! Li and sink(enter) eLi•

• exit is such that: source(exit) eLj and sink(exit) li! Li and.

• there exists a path r of CG(JI. C). such thatfirsr(r) = enter. last(r) = exit.

and ail other edges of r (if any) are contained in Bi' Any such path r is

said to be a path associated with the transit t.
Q

Definition 37 [Transit direction] The direction of a transit t = (enter. exit) is a

pair (enteniir. exitdir) where enteniir is the direction of the enter cross edge.

and exitdir is the direction of the exit cross edge.

Q

Definition 38 [Transit sequence] Let M = (J'I, o. ~ 'I C) be a derived block

machine. Q!:: $ • and r a path of length ~ 2. such that ail edges of r. except the

tirst and the las!, are contained in Q. Then. the transit sequence ofr through Q
• is a uniquely defined sequence of transits TS =[t;. i =1•...• n). where t; =
(enter;. exit;). 1 Si:S; n, and such that:

• enter] =firsr(r)

• enter;+1 =exit;. for i =1•.•.• n-l

• exit(n) = last(r).

Q

•
6-38 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

•

Defir.ition 39 [Direction sequence] Let TS =[tj. i =1.. ..• n] he the tr.lIlsit

sequence of a path r through a set of blocks Q. The corresponding direcrion

sequence of r r.irough Q is the sequence of transit directions DS = [dirj.

i =1•... , n]. where dirj = (enterdirj • exirdirj) is the transit direction of tj.

i = 1... :. n. Obviously. enrerdirj+l = exirdirj. i =1,... , n-\.

a

Lemma 13 [loose-blocks(M)~ past-dominated(M)] Let M =(51, o. $. 7: C)

he a block machine derived from a consistent action diagram AD. such that ..<.
on $is a partial order. Then, loose·blocb(M)~ pasr-dominared(M).

Proof (~). Let CG =CG(51, C). Assume that loose·blocks(M) is true and that

pasr·dominared(M) is false, i.e., there exis15 a pair of actions aj and ai of Jland

a tight path s in CG, such that s is from a; to ai' an s is not local to past(aj, aj)'
In the following, we show that this leads to a contradiction.

Let P and Q designate past(a;, ai) and $-past(a;, ai)' respectively. Due to the
assumption that s is not local to P, there must exist at least one edge in s that is

not local to P. Such an edge must he local to Q. Consider the fust such edge, el'

115 source action ah =source(el) is in P or cise el would not he the tirst edge of

s to he local to Q. The action ak = sink(el) cannot he in P or cise el would he

local to P. It follows that ak is in Q. In addition, ak cannot terminate the path s,

because s ends at ai' with aj in P, whereas ak is in Q. Consequenùy, there must

he at least one more edge in s following el' Since ak is in Q and the termination

of s is in P, there must exist at least one edge of s, after et, with i15 source in Q
and i15 sink in P. Consider the fust such edge, say ep , and designate by r the

subpath of s such that r= el"'" ep' P~ 2. ris such that ail i15 edges, except i15
fust (Le., el) and last (i.e., ep) are contained in Q (or else ep would not he the

fust edge of s with i15 source in Q and i15 sink in P). Thus, wc can associate r
with a transit sequence TS through Q, TS =[t;, i =1,..., n], n ~ 1, and t; =
(enterp exit;), i = I,...,n, such that enterl = el and exitn = ep- Let DS = [dir;,

i =1, , n] Oc the direction sequence of r, where dir; =(enrerdir;, e:JCildir;) for
i= l, .,n..

In the following, we show that el is a right edge. Let Bh =bloclc(ah)' and Bk =

block(ak>. Since ah is in P, ak is in Q, and P 1"\ Q = l2l, it follows that ah and ak

are necessarily in different action blocks, i.e., Bk*Bir In addition, since el is
an edge from ah to aJco it follows that either ah is a trigger ofBJco or ak is a trigger

•
CHAPTER 6 - SEMANTICS AND VERIFICATION 6-39

•

•

of Bh. However. the latter possibility. Le.• ak trigger of Bh•would imply Bk < Bh•
and consequently Bk wouId bc in P (since Bh is in P. and P contains all blocks
that are before Bh by the "<. relation on 21). This contradiclS the assumption

that Bk is in Q. Thus. the only possibility is that ah is a trigger of Bk' This

implies that Bh < Bk and hence. el =(ah' ak) is a right edge. Since el is the
enter edge of the tirst transit in the TS transit sequence. it follows that. in TS.
enterdirl = right.

Next we show that ep is a left edge. Let am = sink(ep). al = source(ep). Bm=
black(am). and BI =black(atl. Since am is in P and al is in Q. it follows that am
and al are necessariJy in different action blacks. In addition. since ep is an edge

from alto am' it follows that either am is a trigger of BI' or al is a trigger of Bm.
However. the laner possibility. Le.• al trigger of Bm• would imply BI < Bm• and
consequently BI would be in P (since Bm is in P. and P contains all blacks that
are before Bhby the "<. relation on 21). This contradiclS the assumption that BI
is in Q. Thus. the ooly possibility is thus that am is a trigger of BI' This implies

that Bm< BI and hence. ep =(al' am) is a left edge. Since ep is the exit edge of
the nth (and last) transit in the TS transit sequence, it follows that, in TS. exit­
dirn= left.

So. we hav~: enrerdir\ = right. enrerdirj+t = exitdiri • for i = 1...., n -1. and
exitdirn=left. In the following, we show that there must exist k, 1 S k S n. such

that dirk =(right , left), i.e., enterdirk =right and exitdirk =left. We tirst show

by induction on i that proPi is true for ail i. i = 1, ... n, where ProPi = [3 kSi.
dirk = (right • left)] v [v' kSi. dirk = (righi , right)] .

Induction base: Since enrerdir! =right. it follows that either dir! =(right, left).
or dir! = (right, rigilt). Thus proP! is truc.

Induction step: If the tirst clause of the disjunction in ProPi is truc:, it trivially

follows tbat the tirst clause of the disjunction ofProPi+! is also true, and thus

ProPi+! is true. If the second clause of the disjunction ofProPi is truc, it follows

that ente:Wri+! = right, because enterdiri+\ =exirdiri, for i =1,..., n - 1. In !hat
case, there are IWO possibilities for diri+!: either it is (right .lejr), or it is
(right. right). The first possibility makes the first clause of ProPi+! true, and

the second possibility makes the second clause of ProPi+1 truc. Thus. in ail

cases,ProPi ~ ProPi+!' and hence, by th-, induction principlc, ProPi is true for
aIli, 1 SiSn.

•
6-40 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

•

Therefore. for i =n. proPn = [3 k:;; n • dirk =(riglzt .left) l v [V' k:;; n . dirk =
(riglzt • riglzt)] is true. Since exitdir., =left. the second clause of the disjunction

of proPn is false. and thus the only possibility is the tirst clause. Le.. then: exits

k:;; n. dirk = (riglzt • left). Consi~er one such k. and let t k he the /th transit in TS.

Le.. corresponding to dirk' Let B he the block through which t k transits. a.,. and

G: he the source of the enrerk edge and the sink of the exitk e_dge. respectively.

Since enrerk is a riglzt edge. it follows that a,. is a trigger of B. Since exitk is a

left edge. it follows that a: is a trigger of B" ln addition. since (1) by assump­

tion. ris a tight path. (2) ail subpaths of a tight path are tight paths. and (3) t k is

a transit in the transit sequence associated with r. it follows that there :nust he at

least on tight path associated with the transit tk ~ugh block B. Hence.

dist[CGl (ay • a:) = dis;Bl(G)"a:). This implies that B violates the loose·block
property. which cO:ltradicts the initial assumption.

Proof (~). Assume thatpast·dominated(M) is true and that loose·blocks(M) is

false. i.e.. there exists a black B and a pair of triggers a,. a. of B. such that. ,
dis;B)(G).•G:) is finite and dist[CGl (ay. a:) = dis;U)(ay.a:). This means that

there is a tight path q from a,. to a., and q is local to B . ln addition. since av and

G: are triggers of B. and sin~e the'"<" relation on 'B is a partial order. it foÎlows

that Be Pa:t(~.) and B~ past(a:). As a result, Be past(ay • G:). Now. since q
is local to B. and since Be past(ay • G:). it follows that the tight path q is not

local to past(ay. G:). This contradicts the past-dominated(M) assumption.

o

For example. Figure 5 shows the action diagram and an action partition of the

READ cycle of the Motorola MC68360 processor. Blacks are delimited using

dashed lines; e.g•• the trigger of black EBu is the (implicit) origin action. AS!

is the only triggerofblack EB12• actions CKÎ2 in EBu and ACK! are triggers

of EBts• ete. All the conditions of Definition 26. wherein loose-blocks(M) is

substituted for the past-dominated(M) condition, are satisfied. Hence. by

Definition 27. the action diagram is causal. Similarly. Figure 6 depicts a relsd
cycle with a causal action partition of a slave device that could he cocnected to

the processor of Figure 5.

10 Trace Set Conservation

In this section, we prove that the trace set of a causal derived black machine is
equal to the trace set of the action diagr.;.m from which it was derived.

•
CHAPTER 6 - SEMANTICS AND VERIFICATION 6-41

•

•

Lemma 14 [M edBMs(AD) 1\ WDT(M) ~TraceSet(AD)!:1i"tlceSet(M)]

Let M = (JI. o. '13. 'I: C) he a block machine derived from a consistent action

diagram AD. Then. if M saùsfies the wel1-defined trigger property (Definition

22). it fol1ows that TraceSel(AD) !: TraceSel(M).

Proof. Consider n a tr.lce of AD. and let V he the vector of action occurrence
times corresponding to n LeI ZAD =Zone(JI. C) he the global zone of AD.
The fact that n is a trace of AD is equivalent to saying that V e ZAD' Let
Ji = {ao' an}' such that aO = 0, and let 'tj designate the occurrence ùme in
V of an acùon aj ~f JI. 0 S j Sn. Let S = [Bil, i = 1.... , n, he a sequence of
blocks sorted in increasing ei (with arbitrary order amongst blocks that have
the same ei). where ei is defined in the following (with trigs(Bi) being the set
of triggers of a block Bi):

e· = Max ('tk) (11)
1 Qk E rrigs(Bj)

ln order to prove that n is a trace of M. il suflices to "construct" an execution E
of M. such that E satisties the property '\;fi ProPi. where:

• ProPi: AgendaSimulatelS) 1\ enabledi A NoDeadlocki A BlockSimulalelV)

A noIndefinileWaili

• AgendaSimularelS): when all blocks preceding Bi in the sequence S have

executed in E. the following block to execute in E is Bi'

• enabledi : block Bi is enabled in the execution E al lime e;-

• NoDeadlocki : when block Bi bas executed in E. $i (the lime computation

function of Bi) retums a non-empty seL

• BlockSimularelV): when block Bi bas executed in E. the choose function

invoked by the execution (Definition 16) returns VllL,'

• nolndejiniteWaiti : once block Bi bas executed in E. the local actions of Bi

cannot cause the WAlT operalor in the execution E to remain in a wail state

for an infinite amount oflime.

In the rest of the proof of this lemma, we use the notation 1.;. J'fr 2;. Ji. and si
that was defined in the proof of Lemma Il. Let r(rrïgs(Bù) designate the

•
6-42 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

•

occurrence ùme vector. in the execuÙon E. of the triggcl'$ of block Bi- ln the
following. we show lhat. for an arbitrary block Bi :

[enabledj 1\ t(trigs(Bj) = V~rri.~.,(R.) 1
=>

NoDeadlocki 1\ BlockSimularelV) 1\ noIndefiniteWairj (12)

Since JI; ~ 51 and Ci ç C. it follows that ZAD~>1. !;::; Zi- This. together with the
fact that V E ZAD- implies that V~>1. E Zi' The laner statemcnt is iL.;elf equiva­

lent to V~L. E <1>i(V~lrigs(8,». where <1>i is the ùme computaùon funcùon of Bi-

The fact that V~L. E <1>,{V~rrjgs(8.») implies that ifBi is enabled and ifiL~ triggcr
time vector. r(rrigs(Bi»). is V~rrigs(s.). then the first consequence is that
<1>1{V~lrigs(8,» is not empty. and hence NoDeadlocki• and the second conse·
quence is that V~L is part of the choices that the block machine can make for

•
the local action times of Bi' Thus. we can make V~L he the chosen occurrence
time vector for the actions of Bi in E. and hence we have BlockSimularelV). ln
addition. from WDT(M). we have: ';f ajE trigs(Bi). ';f akE actions(Bi). 'tk > 'tj.
Hence. 'tk > ei' Since M satisfies the WDT property. it follows that: ';f ak E

actions(Bi) • 'tk > ei' Combining this with the fuet that block Bi is enab!ed at T =
ei (consequence of the enabledi assumption) and with the fuet that a block exe­
cutes at the time when it is enablerl (see Definition 16). it follows that, when <1>i
is evaluated. ail components of ail vectors computed by <1>i are strictly greater

than the current value of T (the current time). Hence. no local action of Bi can
he the cause of an indefinite suspension of the WAIT operalor in the execution
of the black machine, i.e.• NolndejiniteWaiti• Thus, (12) holds.

In the following. we show by induction on i !hat ';fi. ProPi'

Induction base: From the definition of ZAD = Zone(.9I, C). there is a unique
action ai E .91, such !bat for each and every action aj E .91, aj* ai. the property
dist(aj • av < 0 holds. In addition. this unique action ai is the origin action o.
Bence. if'to is the time in V ofthe origin 0, it follows !bat:

(13)

Let 'Î he the restriction of T to Jtx '.B (recall: T is defined on j'lx '.B). If ail
blocks of '.B were covered by 'Î (i.e.. ifail blocks of '.B had at least one trigger
in m. then the ~<' relation on '.Bwould not he a partial order. thus contradiet-

•
CHAPTER 6 - SEMANTICS AND VERIFICATION 6-43

•

•

ing Lcmma 10. Hencc. thc set ~, defined as the set of blocks mat have no
triggers in Je, is not empty. From Definiùon 2 l, ail blocks of~ are assigned
the origin 0 as meir only trigger. Hence. for any block Bk of~, we have ek =
Vll{ Dl = "to. and the blocks of~ are me only ones mat have an e value equaI to
"ta. Hence. using (13), it foUows mat me blocks of ~ share a single unique
minimum e. Since BI (me first block in S) is a block wim minimum e, and

since~ is not empty. it foUows mat Blis a member of~ and hence BI has me
origin as only trigger.

From me execuùon model (Definiùon 16). blocks which have me origin as me
only trigger are enabled at time to. where to is me parameter of the procedure
M.:xCC:' Hence. if we choose "ta for the parameter to. we get that Blis enabled at
"ta. and mus enabled1 is true. Since, in addition to enabledt. we have

t(trigs(BI)) = V~rrigs(S.) = "ta. using (12) we conclude that NoDeadJock l A

BlockSimuIatel(V) A nolndefiniteWaitl'

Since BI is ecabled at"ta. there is certainly an execution in which BI executes
before other blacks. Let E be that execution. (Note: in the case where there are
other blacks that are aIso enabled at "ta. then other executions migbt choose
sorne of these other blacks to execute tirst). Since there are no blacks preceding
BI in the sequence S. it follows that the property AgendaSimuIatel bolds. As a

resull, ProPI is true.

Induction step : The induction bypothesis is that, for sorne i sucb that i < n

(where n is the lengtb of S). ProPj bolds, for all j sucb that j S i. We need to
show tbat tbis implies that ProP<+1 bolds too.

In the following. we tirst show tbat B<+. is triggered only by actions ofYl. Con­
sider a block B".. w!lere m ~ i+l. From the WDT(M) property. we have (wbere
4n is the set of local actions ofB".. and "tk is the component of V corresponding
to action a~ : 'V ak E 4n •"tk > e"... In addition, since the block sequence S is
soned in inereasing e. it follows tbat: em~ e<+l' Hence:

From the exptession (11) ofei+l' tbis implies tbat:

•
6-44 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

•

Thus. the IWO sets {ail (al, B/+1) E 'T} and Lm are disjoint. and hence. no
action of block Bm• for any m. m ~ i+1. can he a trigger of block B/+ \. As a

result. B/+1 is triggered only by actions of 5I!.

The execution context for the induction step is that blocks B \ to Bi have bcen
evaluated. The execution has just finished evaluating block Bi' Let Ji; he the set

of blocks that have not executed yet. i.e.• Ji; =S - Si. Let 1<; he the subset of

blocks of Ji; that have all their triggers in 51! and let 4 he the set Ji; - 1<;. From
the inductive assumptions enabledj and NoDeadlockj• we know that ail blocks

Bj such thatj Si. have executed and have a non-empty c1>j solution. Thus. atthis

point of the execution. the enabling times of all blocks of 1<; are known. Due ta

the inductive assumption BlockSimulate/V). for all j such that j S i. we also

know that if a block of 1<; is actually enabled. then its enabling time is equalto
its e value. From the inductive assumption noIndefiniteWaitj. for allj such that
j S i. we know that no action of .91./ can cause the execution algorithm

(Definition 16) ta remain forever in a WAlT st:lte. Thus. up and until a

subsequent black is enabled. nothing can prevent 51! actions ta occur at their
respective computed occurrence times.

Consider a black B' of 4. By definition ofbeing in 4. B' has at least one trig­

ger which is in Ji;. i.e.. this trigger is local ta a block that has not been evalu­
ated yet. Henee. in arder for B' ta he evaluated. at least one other block has ta

he evaluated fus!. As for blocks in 1<;. since all their triggers ar~ in Jf. they
require no blocks ta he evaluated as a pre-condition for their own evaluation. ln

addition. 1<; is not empty. since it cont:lins at least Bi+! (which was shawn

above to he triggered only by actions of Jf). Hence. there exists al least one

black in 1<; that will he evaluated hefore all blocks of 4. ln addition. the first

such 1<; black ta he evaluated is necessarily a block with smallest enabling time

atnongst the 1<; blocks. Bi+1 is such a block, since the enabling limes of 1<;
blocks are equal to their e value, and the block sequence S is sorted in increas­

ing e values. l'hus. up and until Bi+1 is enabled, Jf actions occur at their com­

puted occurrence lime. Henee. Bi+1 is indeed enabled, i.e.. enab1edi+l' And
since Bi+l is the next enabled black (or atnong a set of blocks to he next
enabled simultaneously). there exists an extension of the cxccution E in which

the next black to he evaluated is Bi+1' l'hus. AgendaSimulatei+1(S),

Fmally. from the inductive assumption BlockSimu1ate/V), for aIl j such thatj S
i, wc know that the computed occurrence lime veetor of the actions of each

•
CHAPTER 6 - SEMANTICS AND VERIFICATION 6-45

•

•

such block Bj is VJlL . In addition, since every trigger of Bi+1 is local to sorne Bj,
withj Si, it follows that 1(lrigs(Bi+1») = VJllrigs(B•• ,J" Using (12), mis implies
that NoDeadlocki+1 1\ BlockSimulalei+IfV) 1\ nolndejinileWaili+l' Hence,
PraPi+1 holds.

o

Lemma 15 [M E dBMs(AD) 1\ WDT(M) 1\ past-domùuzJed(M)

=> TrtUeSet(M) =TraceSet(AD) 1
Let AD =(5. 5t 0, C) he a consistent action diagram and M =(5t 0, $, 'I C) a

block machine derived from AD. such tbat M satisfies the well-defined triggers

(Definition 22) and past dominated (Definition 25) properties. Then.

TraceSel(AD) =TraceSel(M).

Praof. From Lemma 11. we know that M is live and that. for an arbitrary
execution E with execution vector V', the property V' E Z' holds (using the
terminology of Lemma Il). Since Z' =ZAD (where ZAD is the global zone of
AD. i.e.• ZAD = Zone(5t C». it follows that V' E ZAD- and hence V' is a trace
of AD. Thus. TraceSet(M) ~ TraceSel(AD). ln addition, from Lcmma 14. we
have TraceSel(AD) ~ TraceSel(M). Hence. TraceScl(AD) =TraceSel(M).

o

The implication of Lemma 15 is that an action diagram is either non-causal in
our sense of the ward (when no causal block machine cao be derived from it),
or eIse ail its possible interpretations "that make sense". i.e.. ail causal block
machines derived from il, are trace equivalent. The existence of multiple equiv­
alent black machines cao he important in the synthesis of interface controllers,
for example when exploring implementation alternatives with different black
granularity and degrees of control distribution. and when seIecting solutions
that satisfy various design requirements. Such considerations are. however.
beyond the scope of this paper.

11 Compatibility of Communicating Action Diagrams

ln this section. we deveIop a procedure for verifying whether a set ofcommun!­
cating causaI action diagrams are companDle., i.e., whether any combination of
their derived causaI black machjnes are companDle. Fust. wc fonnalize the
concepts of connection (Definition 40 and Definition 41). composition

•
6-46 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

•

(Definition 43 and Definition 44) and comparibiliry (Definition 45 and

Definition 46). Then. in Theorem 1. we prove that we do not need to enumer.ltc

the combinations of derived block machines in order to answer the action

diagram compatibility question. The theorem provides an exact and efficient

procedure for the verification of the compatibility of communicating action

diagrarns.

The block machines Mt•...• Mn and action diagr:uns AD, •...• ADn under con­

sideration are defined on distinct action sets. 511, •••• .!'l". i.e.. i :t:. j implies that

51 i f"'I 51j =0. for i = 1•...• n. j = 1•...• n. We also assume that the port

sets 51 •...• Sn' of the action diagrarns are distinct, i.e.. i:t:. j implies that

Sif"'lSj =0fori = l •...• n.j = l n.

Definition 40 [Pan connection group] Let Q = {AD I ADnl be a set of

action diagrarns with AD; = (Si. 51;. 0i' ci) and let:E5= Ü Si' Then:
i = 1

• A parr connecrion over Q is a pair PCon =(P. PanSer). where P is a port

such that P e :ESand Ponset !:: :ES' P is said to be the communication porr of

PCon. and PorrSet is said to be the porr set of PCon. In addition. for any port

p' of PorrSet. P is said to he the communication port corresponding to P'.

• A porr connection group over Q is a pair PConG =(GPorrSet. PConSet).

where PConSet is a set of port connections over Q. PConSet = (PConj 1

PConj= (Pj• PonSelj),j= 1..... ml and GPorrSet= {Pj Ii= l,.... ml.

• A port connection group PConG over Q is sound if:

• Each port of each ADi of Q is an element of the PonSet of one and

only one port connection PConj of PConG.

• The number of output ports in the PonSer of each port connection of

PConG is exactly one.

• AIl ports of a PonSet of any given port connection must have the same

number of actions.

• Given a sound port connection group PConG =(GPonSet. PConSet). let

PConj be a port connection ofPConSet. with PConj =(Pj , PorrSelj), and let

p/ be the unique output port of PonSerr and ADk be the action diagram for

which p/ is an output port,i.e.. p/ E Ste- Then. the direction ofPj is le.

Cl

•
CHAPTER 6 - SEMANTICS AND VERIFICATION 6-47

•

•

Note that in the above definition. the "direction" of a (communication) port is

an integer from 1 to n that identifies the action diagrarn that controls the port.

This is a slight generalization of Definition 2 in which the direction identified

which of the environment (in) or device (out) controls a port. In the next defini­

tion. we carry on this generalization to the direction of communication actions.

Definition 41 [Action connection group] Consider a set Q = (XI' ...• Xnl of

either n action diagrarns. or n black machines. Let .91; and 0; he the action set
n

.md the origin action. respectively. of Xi and let:En = .U ..9!;. Then:
...... 1 = 1

• An action connection over Q is a pair ActCon = (a. ActSet). where a is an

action such that a të :E,;:t and ActSet!:;:E,;:t. a is said to he the communication

action ofActCon. anc\ ActSet is said to he the action set of ActCon. In addi­

tion. for any action a' of ActSet. a is said to he the communication action

corresponding to a '.

• An action connp.ction group over Q is a pair ActConG = (GActSet. ActCon­

Set). where ActConSet is a set of action connections over Q. ActConSet =

{ActConj 1ActConj= (aj' ActSe~). j= 1•...• ml and GActSet ={aj li=1•...•

ml·

• An action connection group ActConG over Q. ActConG = (GActSet. Act­

ConSet). is sound if:

• Each action of each .91;. i =1•...• n. is an element of the ActSet of one

and only one action cOMecti('ln ActConj of ConG.

• There exiSlS an action 0 of GActSet. sucb that 0 is of null direction and

the connection (o. {o\ • ...• on}) is a member of ActConSet. This con­

nection is designated as the origin connection.

• For any action cOMection AetConj' other !han the origin coMection.

the numher of output actions in AetSe~ is one.

• Given a sound action connection group ActCon =(GAetSet. ActConSet), let

ActConj he an action connection ofActConSer. other than the origin connec­

tion. with AetConj = (aj •AetSe~). and let a/ he the wùque output action of

ActSe~.and Xk he the element of Q for which a/ is an output action, i.e.• a/
e J\. Theo. the direction of aj is k.

Q

•
6-48 CHAPTER 6 - SEMANTICS AND VERIFICATION

Q•

•

Definition 42 [Derived action connection group1 Consider Q = {AD\

ADn J a set of action diagrams. whcre ADj = {Sj. ~, Oj' Cil, Let PConG be ;1

sOlmd port connection group over Q. with PConG = (GPorrSer, PConSt'r) and

with PConSer ={PConj IPConj = (Pj. PorrSer),j = 1.. ... 111 J. Let ~;~ design;ltc
n.u 51i . Then, the derived action connection group, AcrConG = derh't'd­

1 = 1
Con{PConG. {oJ On}) is such that AcrConG = (GAcrSer. AcrConSer), and:

• AcrConSer is composed of the following action connections:

• {o. {al on})' where oe :E~. and ois of the n!lIl direction.

• each port connection PConj of PConG. where PConj = {Pj • PorrSerjl,

"derives" 11Ij action connections. where mj is the number of actions of a

port of PortSe~.The l!h of thesc mj action connections. for any k. 1 $ k

$ mj' is ActCOnjk = (aj/,,, ."'ctSe~k)' where ajk e k~. and AcrSetjk is the

set of l!h actions of the ports of PortSe~.The sequence [ajkl. k = 1.....

mj' is said to be the communication action sequence of Pj' The direc­

tion of each action of the sequence [ajk] is that of Pj'

(lm m,)
• GActSet= {O}U~~lk~lajk'

Referring to Definition 42. clearly. if PConG is sound. then so is ActConG. ln

the following. we generalize the notion of consttaint intent to integers in a sim­

ilar way to the generalization of port and action directions. These generaliza­

tions allow us to define the composition of action diagrams as yielàing a

structure which itself is an action diagram. thus allowing the re-use of previ­

ously proven results.

Definition 43 [Action Dù:lgram Composition] Consider Q ={ADJ..... ADn 1a

set of action diagrams. where ADi =(Si. 51;. ai' Ci). Let PConG be a sound port

connection group over Q. with PCanG =(5. PConSet). and ActConG=(JI, Act­

ConSer) = derivedCon(PConG. {Ol on})' Theo, the composed action dia­

gram AD = composed-AD(PConG. Q) is AD = (5. JI, o. Q. where:

• ois the communication action of the action connection (o. {Dt..... on})'

• The action sequence of any port of 5 is its communication action sequence

(Definition 42).

•
C.'iAPTER 6 . SEMANTICS AND VERIFICATION 6-49

•

• C is obtained by tirst taking the union of the set of commit constraims of

AD) ADn. and then substituting a constraint c' = (a;'. a/. x) fcr each

constraint c= (ai. aj' x) of the resulting set. where ai' (respectively aj ') is the

communication action corresponding to ai (respectively aj) in ActConG. If

ADk is the action diagram for which c is a commit constraim. then the iment

of c'is k. In substituting c' for Co we say that constraint c is transposed to

ActSet.

Q

Lemma 16 [Inclusion of composition zone] Consider a set Q of consistent

action diagrams, Q= {ADI ,...• ADn}. where ADi = (S;• ..:'!;. 0i. Cil. i = 1..... n.

Let PCon be a sound pon connection group over Q. and let Jibe the set of com­

munication actions of the action connection group derived from PCon. Let Cic
(respectively CfA) be the set of commit constraints (respectively assUIile con­

straints) of ADi transposed to 5'1. Let Cc= CIC U ... U c;,c and CA = CIA U .. ,

U ~. Then. if Zone(JI. Cc) IS non-empty and

Zone(JI. Cc) !:: Zone(JI. CA), it fo11ows that Zone(JI. Cc) !:: Zor.e(JI. Cic U

CfA), for i = 1..... n.

Praof. Since CfA is a subset of CA' it fo11ows that Zone(JI. CA)!:: Zone(JI. CiA)·

In addition. by the lemma assumption, Zone(Jl. Cc)!:: Zone(JI. CA)' Hence:

(14) implies that:

Zone(JI. Cc) !:: Zone(JI. CfA)

Zone(JI. Cc) = Zone(JI. Cc U CfA)

(14)

(15)

Since Zone(.:a~ Cc U CfA)contains ail of the CGrlStr.iliics ofZone(JI. Cic U CfA).
it fo11ows that:

•
Zone(JI. Cc U CfA) !:: Zone(JI. Cic U CfA)

From (15) and (16), we obtain thatZone(JI. Cc) !::Zone(JI. Cic u CfA).

(16)

Q

•
6-50 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

•

Definition 44 [Block Machine Composition] Let Qbe:l set of block machines,

Q= {Ml •... ' Mn}. wherc Mi = (51;. 0i' ':Bi' '1[, Ci) is derived from a consistent

actio<o: diagram ADi • i = 1. n. and let ActConG = (51. ActConSet) he a sound

action connection group over Q. We define the composed block machine M =

composed-BM(ActConG. Q). as follows. M = (51. 0, ':B. 'I O. wherc:

• 0 is the unique action of null direcùon in ActSet.

• ':B is obtained by first taking the uttion of the output blocks of Mi. r"r ail i. i =

1..... n. and then replacing each block Bik in the result;ng set by a block B'ik

such that the set of local actions of B'ik is the set of communication actions

corresponding to the local acùons of Bik-

• 'IlS obtained by first taking the uttion of the trigger relations '1[restrictcJ to

the output blocks of Mi' for all i, i = 1•...• n. and then replacing, ia the rcsult­

ing set. each paix (aij. Bik) that originates from sorne '1[, by (a' ij' B'ik)' wherc

a'ijis the commutticaùon acùon corresponding to aij. and B'ik is the block of

':Bthat was substituted for BiJ.-

• Cis the uttion of the commit constraints of MI"'" Mn' transposed (0 ActSet.

o

Definition 4S [Compatible block machines] Consider Q= {MI"'" Mnl a set

of causal action diagrams ami ActConG = (ActSet, ActConSet) a sound action

connection group over Q. Let CfA be the set of assume constraints of Mi trans­

posed to ActSet. and let CA =CIA U ... U ~. Then. the actiO!l diagrams

MI..... Mn are said to be compati/;!e with respect to ActConG. writlen

compatible(ActConG. {MI..... Mn})' if:

composed-BM(ActConG. {MI..... Mn}) is causal

A TrLICeSet(composed-BM(ActConG. {MI..... Mn})) satisfies CA­
O

In other words. the first condition for block machine compatibility is that the
composed machine be causal. This essentially means (from Definition 26 and
Lemma Il) that the collective behavior of the interconnected machines must be

live. The second condition is that all the executions of the composed machine
must satisfy all the assume constrainto of all the interconnected machines. In
the next definition, we state the criterion for action diagram compatibility in

•
CHAPTER 6 - SEMANTICS AND VERIFICATION 6-51

•

•

such a way that its saùsfaction guarantees block machine compatibi1ity. irrele­
vanl of which causal machine combination is chosen.

Definition 46 [Compatible action diagrams) Consider Q = {AD I •...• ADn) a

set of causal acùon diagrams. PConG a sound port connecùon group over Q.

and ActConG = (ActSet. ActConSet) the sound action co.mecùon group derived

from (PConG. {Ol ~.}). Let C;A he the set of assume constraints of ADj

transposed to ActSet. and CA = CIA U ... U ~. Then. ADI..... ADn are said to

be compatible with respect to PConG. written compatible(PConG. {ADI ,

ADn D. if: 'v'ADj E Q. 'v'M ij, E CdBMs(AD j).

compatible(ActConG. {Mtj,'"'' Mnj)' 0

The following theorem states that a sufficient condition for the compatibility of
a set of actions diagrams is that the conjunction of their commit constraints he
consistent and saùsfies the assume constraints.

Theorem 1 [Compatibility theorem) Consider a set Q = {ADI,.... ADn} of

causal action diagrams where ADj = (Si, 51;, 0i> Ci). i = 1,.... n. Let PConG ~ ~ a

sound port connection group over Q. ActConG he the action connection group

derived from (PConG. {Ol On}) and J'tthe set of communication actions of

ActConG. Let Cic (respectively CfA) he the set of commit constraints (respec­

tively assume constraints) of ADi transposed tû JI. Let Cc= CIC U ... U c;.c.
and CA =CIA ',..J ••• U ~. Then. ifZone(.9I, Cc) is non-empty and Zone(.9I, Cc)
s:: Zone{.9I, CA)' it follows that ADI•••.• ADn are compatible with respect to

PConG.

Proof. Since ADI•...• ADn. are causal action diagrams. they each have at least
one causal derived block machine. Let Mi he an arbitrary causal block machine
oi ADi• i = 1 , n. and let M he the composed block machine Composed-

BM(Cona, {Mt Mn})' Since, by assumption. Zone(.9I, Cc) is non-empty. it
follows that M is defined. Using Definition 46 and Definition 45. we must
prove that M is causal and that a11 its traces are in Zone(.9I, CA). i.e., satisfy the
assume constraints.

Referring in sequential order to the three causality conditions of Defuùtion 26.
we prove in the following !batM is causal:

•
6-52 CHAPTER 6 - SEMANT/CS AND VER/FIC.4.TION

•

1. By <.onstruction of the composed block machine (Definition 44). both the

action direction condition (i.e.• all actions local to a block have the same

direction) and the constraint intent condition (i.e.. all constraints local to a

block have the SaIne intent) are true.

2. Proof of WDT(M): Let B be a block of M. ar a trigger of B. and al a local

action nf B. By construction. B is the transposition in M of an output block

of Mi. fer some i. Let a/ and a/ be the actions ofMi corresponding to a r and

al. respectively. Since Mi is causal. it satisfies the wel!-defined triggers con­

dition. and thus dist[Mil(a/. a/) < O. In addition. from Lemma 16. we have

dist[Ml(al' al) ~ disr[Mil(a/. a/Jo As a result. disr[Ml(al' a r) < O. It follows

that M satisfies the well-defined triggers condition.

3. Proof of pasr-dominated(M): Let B be a block of M. If B has a single trig­

ger, then loose-blocks(M) is trivial!y true. anJ hence, from Lemma 13. pasr­

dominared(M) is also true. Otherwise. B has more than one trigger. Let (aj.

ak) be a trigger pair of B, aj:;/: ak- By construction, B is the transposition in M

of an output block, say Bi' ofMi' for some i. Le: aj and aki be the actions of

Mi corresponding to aj and al;> respectively. From Lemma 16. we have:

(17)

Since Mi is causal, pasr-dominated(Mi) is true. From Lemma 13. it follows
that loose-blocks(Mi) is true. and thus:

(18)

(19)

•

Since B is the transposition ofBi in M, we obviously have:

dist[B,1 (a/, a,i) =disr[BI(a/o al)

From (17). (18), and (19), we get:

distIMl(a/. al) < distIBI(a/, al) (20)

(20) implies that wose-bwcks(M) is true, and hence, from Lemma 13, past­
domir.ated(M) is true.

From items 1 to 3 above, it follows that M is causal. In the following, we prove

that ail the traces ofM are in Zone(.9I, CA)' i.e., satisfy the assume COllStI'aÛ!ts of

•
CHAPTER 6 - SEMANTICS AND VERIFICATION 6-53

•

•

AD1 ADn' Let AD be the composed acùon diagram Ccmposed-AD(PCon.
{AD) ADn})' By assumpùon. AD is consistent (since Zone(Ji!., Cc) is non-
empty). Furthermore. the composed block machine M defined above satisfies
the properties WDT(M} and past-dominated(M}. as proven above. Finally.

ME dBMs(AD} is true. Le.• M is a block Ir.achine derived from AD; indeed. this
property trivially follows from the construcùon. as given in Definiùon 44. of
the composed block machine M and from the property WDT(M}. Hence. using
Lemma 15. it follows that TraceSet(M} =TraceSet(AD}. Since TraceSet(AD} is

given by Zone(Ji!., Cc) and. by assumpùon. Zone(Ji!., Cc) i:: Zone(Ji!., CA)' it fol­
lows that TraceSet(M} i:: Zone(Ji!., CA). and hence TraceSet(M} saùsfies the set

CA of assume constraints of AD) ADn' 0

Theorem 1 provides operaùonal means for verifying the compaùbility of causal
interface specificaùons and thus the compaùbility of any of their block machine

based implementaùons. It suffices to verify that the maximum Ùffie distances

between acùons as determined by the composed system of commit constraints

Cc. are contained in the Ùffie distances required by the assume constraÏnts. In
other words. the simple composiùon that was discussed in the example rclated

to Figure 3 (in Secùon 3) is correct provided that the participating acùon

diagrams are causal. This is clearly not the case for ADz of Figure 3. since the
output block containing (necessarily) the ooly output action 04 does not satisfy

the loose-blocks criterion (Definition 32) - the Ùffie distance between actions i2
and i3 using the local commit constraints is [-9. 9]. while the Ùffie distance of

its triggers as determined by al! the constraints is also [-9. 9]. This intervai is

not strictly included in the former intervai. hence the block machine is not
causal. Since there is no other possible partition that satisfies the loose-blocks
condition. the action diagram itself is not causal. Consequently. the

compatibility check done by composing the commit constraints of the two

action diagrams produced a false positive answer.

The composition of Figure 5 and Figure 6. as shown in Figure 7. satisfies al!
assume constraints. and since both action diagrams are causal. the compatibil­
ity decision is definitive.

12 Independence ofInput and Output 8ub-Partitions

ln this section, we prove that the structure of the partition of the set of input

actions of a causal block machine is independent of that of its output actions. In

•
6-54 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

•

other words. given {wo causal block machines derived from the same action
diagram. then the block machine derived by "cross-breeding" thl" input action
sub-partiùon of one of the machines with the output acùon sub-partiùon of the
other machine, is also a causal block machine. This property, which cornes
about as a corollary of Theorem 1. is intuiùvely "reassuring" and is one more
indicaùon of the "soundness" of the work presented in this paper. The property
should also be useful in designing an efficient partiùoning procedure.

Definition 47 [In/out sper. ofa block machüze] Let M = (51, 0, !b: '! C) be a

derived block machine such that the local acùons of any block of M are of the

same direcùon. The input spec, IS, (respecùvely output spec, OS) of M is the

tuple (.lit', 0, ':8', T, Cl, where .lit' is the subset of input (respecùvely output)

acùons of 51, ':8' is the subset of input (respecùvely output) blocks of ':8, T is

the restricùon of 'Tto ':8', and C is the subset of assume (respecùvely commit)

constraints of C Oearly, M is uniquely defined by the pair IS, OS. We write:

M=(lS,OS). 0

Definition 48 [Mirror ofa black machine) Let M = (lS, OS) be a derived

block machine, such that the local acùons of any block of M are of the same

direction. The mirror of IS (respectively OS) is the output spec IS (respecùvcly

input specOS) obtained from IS (respectivcly OS) by changing the direcùon

associated with every in (respectively out) action of IS (respectively OS) to out

(respectively in) and changing the intent associated with e'~ constraint of IS

(respectively OS) to commit (respectively assume). The mirror of M is the

block machine M, where M = (OS, IS). 0

Obviously, mirroring a block machine M does not change its global zone, since
M and M have the same structure and weights of constraints. Hence, if Z
(respectively Z) is the global zone ofblock machineM (respectively M), then
Z=Z.

Corol1ary 1 [Independence of inpUl and output specs] Let AD be a causal

action diagram and Ml and.\l2 {Wc· causal block machines derived from AD,

such mat MI = (ISI' OSI) and 1Jf2 = (lS2' OS2)' Then, the block machines

M I2 =(ISI,OS2) and M21 =(132'0SI) area!socalJsal

•
CHAPTER 6 - SEMANTICS AND VERIFICATION 6-55

•

•

Praof Let Ml be the mirrorof MI' i.e.• M 1~ (OSI' ISI)' Q = 1MI' M2 } a set
of black machines. Con a sound action connection group over Q such that the
action set of each action connection of Q is of the form {a " a.}. Consider the

- 1 1

composed machine Mc =Composed-BM(Con, {M l' MÛ)' By construction,
Mc=(ISI' OS2) . Furthermore. Mc satisfies the well-defined triggers condi­

tions, i.e., WDT(Mc) is true (the proof is the same as that for the statement
WDT(M) in the proof of Theorem 1). Hence, using the fact that the constraint
set of 1SI is the sel of assume constraints ofAD, and the constraint set of OS2
is the set of commit constraints ofAD, it follows that Zc' the global zone ofMc'
is the same as ZAD' the global zone ofAD, Le., Zc = ZAD' This implies that Zc is
nor.-empty (since AD is consistent) and that Zc satisfies the commit and assume
~straints of AD, respectively. Hence Zc satisfies the assume constraints of
MI and the assume constraints ofM2, respectively. From Theorem 1, it follows
that MI and M2 are compatible for the action connection set Con, and hence,
from Definition 46. it follows that Mc is causal. Now since Mc =(1S I • OS2) ,
and ISI is identical to IS1• it follows that MI2 = (lSI' OS2) is causal too. The
proofis symmetrical for M 21 • 0

13 Conclusion

We have defined sufficient conditions for a specification based on action dia­
grams with !inear timing constraints to be causal and thus realizable, and we
have developed a method for determining the causality of an action diagram.
This has lead to a procedure for verifying the interface compatibility of com­
municating action diagrams. The results are useful for writing action diagram
specifications, verifying interoperability of systems composed of communicat­
ing components, and for implementing interface controllers. Our causality cri­
terion is considerably more general than the weU-posedness criterion of
[Ku92]. The latter is in effect equivalent to requiring that ail actions of the same
direction (in or out) be in the same black. In addition, well-posedness does not
take into account timing assumptions on the environment; instead, it requires
that the device responds to arbittary timing behaviors of the environment.

We are cur.enùy researching algorithms for the efficient determination of
action partitions that yield causal block machines. We are also working on

extending our approach to cyclic behaviors. A nat:lra1 extension of the
approach is to inciude the latesr constraints [Amon93] in addition to the linear

•
6-56 CHAPTER 6 - SEMANTICS AND VERIFICATION

•

•

constraints. They are by their nature causal. and efficient methods exis! for
computing the shortest distances over linear and latest constr.lÎnt systems
[MacM92. Giro95]. The inclusion of earliesr constraint makes the problem of
computing time distances between actions NP-complete [MacM921. however.
as shown in [Gir095]. we can use CL? (BNR) Prolog and its power of rela­

tional interval arithmetic to solve t:le constraint satisfaction problem and to per­
fonn the necessary exploration and backtracking.

References

[Amon93] T. Amon. H. Hulgaard, G. Borriello, S. Burns, "TIming Analysis of
Concurrent Systems: An Algorithm for Detennining Time Separation of
Events". Proc. ICCD-93, October 1993.

[Borr88] G. Borriello, "A New Interface Specification Methodology and its
Application to Transducer Synthesis". Ph.D. Thesis, EECS. University of Cali­
fornia, Berkeley, 1988.

[Brz091] J.A. Brzozowski, T. Gahlinger and F. Mavaddal, "Consistency and
Satisfiability of Wavefonn Timing Specifications", Networks. Vol. 21. 1991.
pp91-107.

[Burk93] T.M. Burks and KA Sakallah, "Min-Max Linear Programming and
the Timing Analysis of Digital Circuits", Proc. ICCD-93. October 1993,
ppI52-155.

[CClTT] Recommendation Z.120. CCITT. "Message Sequence Charts
(MSC)".

[Dill89] D. Dill. "TIming Assumptions and Verification ofFiuite State Concur­
rent Systems", International Workshop on the Verification ofFinite State Sys­
tems, Grenoble France, 1989. Also in Lecture Notes in Computer Science
(LNCS) 407, Springer Verlag, 1989.

[Giro95] P. Girodias, E. Cerny, WJ. Older, "Solving Linear. Min and Max
Constraint Systems Using CLP Based on Relational Arithmetic," submitted to
Int'l Conf. on Principles and Practice of Constraint Programming (CP95),
Marseille, September 1995.

[Hulg93] H. Hulgaard, SM. Burns. T. Amon andG. Borriello. "Practical appli­
cations of an efficient time separation of events algorithm". Proc. ICCAD-93,
Santa Oara, CA. November 1993.

•
CHAPTER 6 - SEMANTICS AND VERIFICATION 6-57

•

•

[Khor93) K. Khordoc, M. Dufresne, E. Cerny, P.-A. Babkine and Allan Silbun,
"lntegraùng Behavior and Timing in Executab!e Specifications", Proe.
CHDL'93, April 1993.
[Khor94) K. Khordoc and E. Cerny, "Modeling Cell-Processing Hardware with
Acùon Diagrarns", Proe. ISCAS-94, June 1994.

[K1us93) A.S. K1usner, "Models and axioms for a fragment of real lime pro­
cess algebra", Ph.D zhesis, CWI, Amsterdam, 1993.

[Ku92] D. C. Ku and G. De Micheli, High Levei Synzhesis of ASICs Under
Tuning and Synehronizazion Conszrainzs, K1uwer Academie Publishers, 1992.

[MacM92] K. McMillan and D. DilI, "Algorithms for Interface Timing Verifi­
caùon, Proe, ICCD-92, October 1992.

(Rony80] P. Rony, "Interfacing Fundamentals: Timing Diagram Convenùons",
Compuzer Design. January 1980. ppI52-153.

[Tarj83] R.E. TaIjan. Daza SZructures and Nerwork Aigorizhms. SIM11983.

[Wiat801 C. Wiatrowski and C. House. Logic Circuits and Microcomputer Sys­
tems. M'cGraw-HiU. New York. 1980,

•
6-58 CHAPTER 6 - SEMANTICS AND VERIFICATION

" ",
no.-) "

no.-)

IS.-)

IIDO.-)
:tr+-+---\---'o;~~I------'--'-"----+-\--'M~;:'':.:H-:'':';'{_ÙI

1

1

1

1

1
1

1

" 1,,--

1

\\~;oJ 1
1 \ Il -)
1 \
1 \
1 •

1

1,,
~~sJ l',. 110.-). 1i ,

" J!
\~/

•
Figure 5: Action Diagram for the READ cycle of the MC68360 processor

(wait states are modeled by delay interval between CK2 and CK3).

•

•
CHAPTER 6 . SEMANT/CS AND VERIFICATION 6-59

•

------,

(1).-)

_.......--

1
1
1

l--i.~..ù 1
1
1
1
1
1
1
1

1 1!Il=,"", 1
1 ...

-------.,

•

Figure 6: Action Diagram for the READ cycle of the slave device.

•

•

6-60

--... ---'Ill,
--.... commltfram 'ID1

CH.4.PTER 6 - SEMANTICS AND VERIFICATION

I.>CII:"':=-:-'kC!Ct \
1
1

1 \
1

1
1 1

Il ~I
ED" \1 m,. \51 iL ~I ~

•

Figure 7: Composition P12 resulting from Figure 5 and Figure 6.

•

•

•

•

CHAPTER 7

GENERAL CONCLUSIONS

1 Summary

In this thesis, we addressed issues in the specification, simulation, and for­
mai verification of systems that are characterized by real-time requirements
and a mix of protocol and data computation aspects.

We proposed the HAAD (Hierarchical Annotated Action Diagrams)
specification language and modeling mcthodology. In HAAD, the interface
behavior is captu1".!d separately from the internai behavior while maintain­
ing the links between the two. The interface behavior is capture<! as a
hierarchy of action diagrams. The internai behavior is modeled by an Ex­
tended Finite State Machine (EFSM). We proposed to link the interface
behavior and internai behavior by shared variables and synchroni:ation
points. A leaf action diagram defines a behavior (a template) over a set of
ports. The behavior of a port is captured as a sequence of actions (events).
Actions can be related by min.' max. weighted timing constraints which
capture preœdence, concurrency and causality relatio~ between the ac­
tions. The constraints descrihe the assumptions that the beha\'ior makes
on its environment as weIl as the way in which the behavior reacts to
its environment. The functional description of the system interface is in­
cluded in a HAAD specification by defining State variables, input/output
parameters, and by attaching procedures and predicates to actions. Hier­
archical action diagrams are constructed by composing other action dia­
grams (lcafor composed) using the composition operators: Concatenation,
Loop, Concun-ency, Choice, and Exception Handling. The Choice seman­
tics support three specification sty~ that we foundto be useful at the
system level. The Choice can he deterministic, delayed-deterministic, or
non-deterministic. The delayed-deterministic semantics allow system spec-

Î-l

• 7-2 CHAPTER ï - GENERAL CO,\'CLl'SIOSS

•

•

ifications ta be given in a scenario-based style. Thc non-dctt'rmini,tic style
supports design abstractions.

Wc proposed algorithms and methods for the automatic gt'lll'ration
of simulation models and response verification scripts from H:\AD spt·ci­
fications. These models perform "on-the-fly parsing" of l'vents receivcd at
their 1/0 ports, sequencing through state transitions based on the rcsult
of this parsing. detecting incorrect, or ill-formed interface operations (bus
cycles), verifying that ail timing constraints at the input of the mode! arc
met, and driving the model outputs with appropriate delays.

We formalized the operational semantics of leaf action diagrams un­
der !inear timing constraints, based on the concepts of a block machine and
causal block machine. We stated the realizability of an action diagram in
terms of the existence of a causal block machine derived from the action
diagram, We examined the problem of the compatibility of concurrent,
communicating leaf action diagrams described by linear timing constraints
and we showed the inaccuracies of known methods that address this prob­
lem. We defined the action diagram compatibility problem in terms of
the compatibilityof aIl the possible combinations of causal block machines
derived from these action diagrams. We proved that such enumeration is
not needed in answering the compatibility question. This lead to an exact
and efficient compatibility verification procedure.

2 Benefits of our Work

The benefit~ of our work are summarized in the following:

• Our proposed modeIing methodology, HAAD - Hierarchica1 Anno­
tated Actior- Diagrams - facilitates the modeling of reaI-timé sys­
tems.

• The structure of HAAD modeIs is more amenable to automated anal­
ysis.

• The HAAD focus on high-Ievel formai specifications of sub-system
interfaces carly in the design cycle, coupled with the natura! declar­
ative style of action diagrams decreases the chances of interface mis­
matches at system integration time.

• Our capability in automatic executable model generation markedly
reduces the time that designers spend writing test benches.

•

•

•

CHAPTER i - GENERAL CONCLFSIONS

• Our well-bchavedness criteria and compatibility analysis of timing
diagrams help improve the quality of interfac(' designs and minimiz('
the time spcnt in costly design reworks.

3 Original Contributions

1- The original contributions of the HAAD modeling language and mcthod­
ology are:

• the separation of, and links between, interface behavior and internai
behavior,

• the separation of. and links between, functional aspects and protocol/
timing aspects in interface specifications,

• the combination of a true behavioral hierarchy and a rich set of timing
constructs, and

• the delayed choice semantics.

2- In the area of executable model generation, our original contribution.
are:

• a novel algorithm for dynamic stimulus generation and response val­
idation from timing diagrams,

• a unified framework for valid and don't care signal states, and

• a unified approach to model generation for master, slave and mixed
behaviors.

3- Our original contributions in formai timing verification are:

• suflicient conditions for the well-behavedness of interface specifica­
tions under linear timing constraints,

• operational- semantics of interface specifications under linear timing
constraints,

• ana'!ysis of false negatives and false positives in known compatibility
'verification methods, and

• <.n accurate compatibility verification procedure for timing diagrams.

• ;--1 CIHPTER ï - GENERAL CONCLUSIONS

•

•

4 Recommendations for Further Research

RciaxiTlg the strict encapsulation of action diagrams

The strict encapsulation of behaviors into action diagrams using
Start/End pseudo-actions (Chapters 4 and 5) is elegant and facilitates
both the simulation and formai analysis of the specifications. However. it
is sometimes intuitively sound from a modeling point of view to express
partially overlapping interface operations, i.e., that an interface operation
be activated while there are still sorne (~tail-end") actions that have not
yet occurred in the previously executing interface operation. In the present
HAAD framework, such a situation cannot be directly modeled. Instead,
the specification may need to be partitioned into individual action dia­
grams a10ng non-intuitive boundaries (rather than the natura! boundaries
between interface operations). This requires sorne modeling effort and the
resulting model is generally more difficult to understand. Hence, additional
work is needed to explore the rela.xation of action diagrarn encapsulation
and a1low partially overlapping interface operations.

E3:pressing pipelined behaviors

Perhaps a more general problem than that of overlapping interface
operations is that of pipelined behaviors. From a modeling point of view, it
often is desirable to ca!'ture in one leaf action diagrarn the cause-to-effect
relationship and delay (i.e., pipeline latency) from an input action of the
pipeline to its logically related output action. This cannot be done in the
present HAAD frarnework. Instead, in the case of a constant rate pipeline,
i.e., with inputs (outputs) arriving (departing) at a constant rate, the main
behavior loop of the model would be around a leaf action diagrarn contain­
ing unrelated (function wise) input and output actions. As for variable rate
pipelines, they cannot be modeled in the present HAAD frarnework. Thus,
additiona1 work is needed in the area of pipeline modeling. One possibility
is to define a pipelining operator.

lnter-diagram timing constmints

In many bus interface specifications, there are timing constraints be­
tween actions of an interface operation and the next. Such constraints
cannot be e.'CJlressed in the present HAAD framework. Instead, the user
resorts to either a less accurate timing model based on timing constraints
relative to the Start/End actions of the action diagrams, or redefines the
inter-diagram boundaries 50 that no timing constraint crosses them (which

•

•

•

CHAPTER ï - GENERAL CONCLUSIONS

often results in unnatural models). nlore work is nl'Cded t.o explore 1.11<'

repercussions of inter-diagram timing constraints on the semantics and
analysis algorithms associated with HA:\D.

Unzfying the timing con..<traint model

In the present version of HAAD simulation tools. commit constraints
are restricted 1.0 non-linear and assume constraints can be linear or non­
linear. As for the formai compatibility verification 1.001. both commit and
assume constraints are restricted 1.0 be linear. More work is needed in
generalizing the block machine model to include the non-linear constraints
in a unified semantic framework. This frameworK must then be the basis
of both simulation and formai verification.

ReIazing the causality criterion

In the definition of block machines (Chapter 6), the selection of trig­
ger actions is syntactic, i.e., it is affccted by, amongst other things. the
structure of the constraint system. Furthermore, the block machine se­
mantics require a strict trigger concept, i.e., all the triggers of a block
must occur before the block is enabled. These two restrictions could rule
out valid implementations of a specification. Consider, for example, the
non-causal specification of Figure 1, Chapter 6. As proposed by [IJ, a
valid implementation does exist for this specification. By examining this
implementation as weil as a family of similar implementations, we realized
that these could be arrived at by generalizing the trigger concept 1.0 be
non-syntactic (i.e., not apparent from the structure of the constraint sys­
tem) and non-strict (Le., using the earliest operator). Hence, more work is
needed in exploring the g-meralization of block machines and the possible
relaxation of the causaIity criterion.

Causal machine derivation

Chapter 6 dealt with the derivation of a block machine, given a par­
tition of the action set of the timing diagram. More work needs to be done
to develop algorithms and heuristics for the derivation of the actual action
partition that defines a causal block machine.

Formai verification of HAAD specifications

In Chapter 6 we developed an efficient static1 compatibility verifi­

IThe verification procedure is statie in the _ that it does not perform any 8tate
space exploration.

• ;-G CHAPTER ï - GENERAL CONCLUSIONS

•

•

cation procedure for leaf action diagrams. It is interesting to note that
two related projects undertaken by our colleagues at LASSO 2 are rel­
evant to the continuation of our work. The first project [2] reports on
the formaI verification of general (non-annotated) HAAD specifications.
The approach is general, however it is limited in efficiency due to its re­
liance on full interleaving. The second project [3] uses CLP-BNR [4J, a
general-purposc computational environment based on constraint IOglC pro­
gramming (CLP) and relational interval arithmetics (RIA), to solve the
maximal time distance problem for mixed linear and non-linear constraints,
while taking into account the effects of delay correlation. It appears possi­
ble to combine the sLrengths of the three approaches, i.e., analyze general
(non-annotated) HAAD specifications using an overall state-space explo­
ration approach combined with a static analysis at the leaf level. The
static analysis would be based on the approach described in Chapter 6
and implemented in a CLPlIRA environment. Evidently, there is more
work that needs to be done to make this possible.

References

[1] M. Aboulhamid, Professor, département d'informatique, Université
de Montréal, private communication.

[2) B. Berkane, S. Gandrabur, and E. Cerny, "Timing diagrams: seman­
tics and timing analysis", Proœedings of the Asian Pacific Conference
on r.omputer Hardware Description Languages, 1996.

[3) P. Girodias, E. Cerny, W.J. aider, "S01ving Linear, Min and Max
Constraint Systems Using CLP Based on Relational Arithmetic," sub­
mitted to lot'1 Conf. on Princip1es and Practice of Constraint Pro­
gramming (CP95), Marseille, September 1995.

[4] W. aider and A. VeIlino, "Constraint Arithmetic on Real Intervals" ,
Constraints Logic Programming: Selected Research, 1993•

'Laboratoire d'Analyse et de Synthèse des Systèmes Ordinés, département
d'informatique, Uni~rsité de Montreal.

•

•

•

APPENDIX 1

SYNTACTIC
WELL-FORMEDNESS RULES

FOR ACTION DIAGRAMS

1 Introduction

This appendix lists syntactic weU-formedness rules for action diagrams.
The rules of Section 2 refiect the simplifying design decisions that were
made in the the present version of the HAAD simulation tools. These
rules cau be relaxed by integrating the causality framework of Chapter 6
into the HAAD simulation engine. The rules of Section 3 establish the
restrictions under which the algorithms of Chapter 3 behave meaningfully.

2 Strict Causality in HAAD Simulation

• Every output and internal action must be the sink of at least one
commit constraint.

• AU commits constraints must be:

- of type precedence

- bounded (i.e., finite uin [l, un
- composed only with the Earliest or Latest operators (no con-

junctive composition).

The advantages of this "strict causal style" ue twofold: 1- the causal­
ity information (i.e., what actions cause what other output or internal

1-1

• 1-2 APPENDIX 1- SYNTACTIC WELL-FORMEDNESS RnES

•

•

actions) is explicit, and 2- mode! interpretation (simu!ation) is efficient.
using a relatively simple algorithm. Note however that in general. writing
specifications in this causal style requires more information 01. ~he modeled
system.

3 Assume Constraints and Input Don't Care
Events

• An input Don't Care event cannot be the source of a timing constraint
(whether assume, or commit).

• The event following an input Don't Care evp.ot on the same port.
cannot be the source of a commit constraint.

• Assume constraints that have an input action sink of spec value Don't
Care are half-bounded min only (i.e.. u= +00 in [i, un precedence
constraints from actions of constant spec value (e.g., El in Fig. 1) to
the input Don't Care action.

• Constraints related to the input act.ion (say Nezt) that follows an
input Don't Care action on the same port can be:

- Half-bounded max ooly precedence assume constraints from ac­
tions of constant spec value (e.g., ~ in Fig. 1) to Next.

- Half-bounded min precedence assume constraints from Next to
actions of constant spec value (e.g., ~ in Fig. 1).

- At least one of the two above situations must be true of Nezt.

-m1"31.-1 -

-~~

Figure 1: Allowed constraints on input don't care and valid actions.

•

•

•

APPENDIX II

THE DEFBEHAVIOR
LANGUAGE

1 Introduction

A HAAD specification is capture<! with the defbehavior language. This
appendix is the definition of the grammar of that language, i.e., it is an
j;nplicit definition of the set of sentences that form the language (from a
syntactic point of view, a language is simply a set of sentences). This does
not mean that all sentences of the language have associated semantics.
The appendix contains "semantic notes" (Section 4), that are helpful in
bridging the gap form the "set of sentences" view to the real semantics.
More work is needed to complete this documentation.

The defbehavior language syntax follows a style that we designate as
"Keyed List Language" (KLL). The KLL concept (Section 2) is inspired
by the EDIF [1] language.

2 Keyed List Languages

Consider first a syntactic elass of languages designated as "List Languages"
(LL's):

• A sentence in a LL is a list.

• A 1ist is syntactically delimited by a. pair of parentheses.

• Each element of a list is an atom or a. list.

1I-1

• 11-2 APPENDIX II - THE DEFBEHAVIOR LANGUAGE

•

• For our purposes, it suffices to define 3 types of atoms: symbol.
number, and string.

• For the lexical rules (i.e.. what ASCII character sequences make up
symbols, numbers and strings, comment syntax, delimiters etc J. we
adopted the lexical rules of [2J.

Then, consider a subclass of list languages, denoted "Keyed List Lan­
guagesn (KLL'sJ:

• A KLL is characterized by a set of keys, i.e., pre-determined symbols.

• In a KLL, all lists are "keyed", i.e., the first element of each non­
empty list is a key.

• A keyed list is said to be a "form".

• The defbehavior language defined in this document is a KLL.

In the fol1owing, and in order not to confuse the concept of a "gram­
mar syrnbol" (i.e., terminal and non-terminal syrnbols used in the
grammar that defines a language) with that of a "Lisp syrnbol", we
use the ter.ninology "itemn for the former and "syrnboln for the lat­
ter.

•

3 Conventions used in the Definition of the
Detbehavior Grammar

• Note: The defbehavior language is case insensitive

• The grammar of the defbehavior language is specified in EBNF (Ex­
tended Bad.-us-Naur form).

• In this EBNF, an upper case item indicates a terminal constant.

• Each Iower case item is one of the fol1owing:

- A non-terminal: these are those items that appear at the Ieft
hand side of EBNF productions.

- a general Iisp expression: the only sucb item is "Iisp-expressionn

(See the Iast production in the grammar definition of Section 5).
This is for future extensions of the language. .

• A.PPENDIX II - THE DEFBEHA.VIOR L.-\NGr.-\GE Il·a

•

•

- A general terminal: except fo~ the item "lisp-expression". these
are a1l lower case items that do not appear in any lcft hand side
of EBNF productions. In terms of the EBNF. Therc arc a t.ypes
of general terminaIs (i.e.• automatica1ly recognizcd as -typcd
tokens" by lexical analysis): number. symbol. and string.

• A choice is indicated with a vertical bar. Only one of the options
may be chosen.

• A list of 1 or more items enclosed within curly braces and separated
by vertical bars (in the case of a list of length greater than one)
indicates that any number of each item may be present and that
the items may occur in any order. Inside such a list. if an item is
permitted to occur at most once, it is enclosed within chevrons.

• In the grammar specification, we use convenient mnemonic narnes
for these generaI terminals depending on their roll' in a construct.

• The generaI terminais of type "number" are:

- number

• The generaI terminals of type"symbol" are:

- had-type-nameDef

- had-instance-nameDef

- port-nameDef

- signaI-nameDef

- param-nameDef

- var-nameDef

- generic-nameDef

- action-nameDef

- tc-nameDef

- had-type-nameRef

- var-nameRef

- var-or-param-nameRef

- signaI-or-port-nameRef

- var-or-param-or-signaI-or-port-nameRef

- source-action-nameRef

•

•

II-~

4

APPENDIX II - THE DEFBEHAVIOR LANGUAGE

- sink-action-nameRcf

• General terminais of the symbol type can be qunted (i.e.. preceded
by the single quote character) or not. Tht language supports both.
However, for backward compatibility with previous implementations
of the defbehavior parser, the fol1owing symbols must be quoted):

- action-nameDef

- source-action-nameRef

- sink-action-nameRef

- tc-nameDef

- had-instance-nameDef

- had-type-nameRef

• The general terminais of type "stringn are:

- v-prog-na...leRef

- v-type-nameRef

- v-value

Semantic Notes

4.1 Generics

•

• The only lower case item of the grammar that does not appear in any
left hand side of a EBNF production is the item "lisp-expressionn.

• The item "lisp-expressionn (whieb appears only in the right-hand
side of the EBNF production for the "generic-mapn item), stands for
a generallisp expression. This Lisp expression is evaluated at design
instantiation time in the lexical scope of the current defbehavior
(i.e., the one containing the generic-map form). In the instantiated
defbehavior (i.e., the one that is instantiated as a. sub-behavior of
the current defbehavior), ail occurrences of the generic to whieb this
lisp-expression was n::.apped to, are replaced by the value of this lisp­
e.-q>ression.

•

•

•

.-\PPENDIX Il - T!:2 DEFBEH.·\VlOR L.-\NG[:AGE

4.2 Default Constraint Bounds

The semantic interpretation of constraint bounds. in the absence of min­
spec and/or ma.x-spec sub-forms in the PRECEDENCE ,md/or CONCliH­
RENCY forms is:

• if no min-spec is specified in a PRECEDENCE form. il. is semanti­
cally equivalent 1.0 a strict lower bound of O.

• if no min-spec is specified in a CONCURRENCY form. il. is semanti­
cally equivalent 1.0 no lower bound specification (i.e.. a minus infinity
lower bound).

• ifno ma.x-spec is specified in a PRECEDENCE or CONCURRENCY
form, il. is semantically equivalent 1.0 no upper bound specification
(i.e., a plus infinity upper bound).

5 Grammar Definition

defbehavior .. = (DEFBEHAVIOR had-type-nameDef
{ <ports> 1 <parameters>

<generies> 1
signal 1 var 1
<had-body> })

ports::= (PORTS { port })

port ::= (PORT port-nameDef direction v-type-nameRef
interpretation)

direction ::= INOUT 1 IN 1 OUT

interpretation ::= EVENT 1 MESSAGE

parameters ::= (PARAMS { parameter })

parameter ::= (PARA!! param-nameDef direction v-type-nameRef)

• I1-G APPENDIX II - THE DEFBEHAVIOR LANGt"AGE

•

•

generics ::= (GENERICS { generic-nameDef })

signal ::= (SIGNAL signal-nameDef v-type-nameRef
interpretation)

var ::= (VAR var-nameDef v-type-nameRef { <v-value>})

had-body ::= leaf 1
had-loop 1
concatenation
parallel 1
d-choice 1
nd-choice 1
exception

leaf ::= (LEAF { carrier-spec 1 constraint 1
<start-action> 1 <end-action> })

carrier-spec ::= (CARRIER-SPEC signal-or-port-nameRef
{ <initial-spec> 1

action-spec })

initial-spec ::= (INITIAL-SPEC state {<action-direction>})

action-direction::= IN 1 OUT

action-spec ::= (ACTION-SPEC action-nameDef state {
<action-direction-spec>
<predicate-call> 1
<procedure-call> })

action-direction-spec .. (DIRECTION action-direction)

state ::- dont-eue 1 constant 1 valid

• APPESDIX II - THE DEFBEHA\-IOR USGCAGE

dont-care ::= (DONT-CARE)

constant ::= (CONSTANT v-value)

valid ::= (VALID {<var-nameRer> })

II·7

procedure-call ::= (PROCEDURE-CALL v-prog-nameRer
{var-or-param-or-signal-or-port-nameRer})

predicate-call ::= (PREDICATE-CALL v-prog-nameRer
{ var-or-param-or-signal-or-port-nameRer})

constraint --= conjunctive
precedence

earliest 1 latest
concurrency

conjunctive::= (CONJUNCTIVE {<tc-name-spec> constraint})

• earliest

latest

::= (EARLIEST

::= (LATEST

{<tc-name-spec> constraint})

{<tc-name-spec> constraint})

•

precedence ::= (PRECEDENCE source-action-nameRef
sink-action-nameRef

{ <tc-name-spec> 1 <intent-spec>
<min-spec> 1 <max-spec> })

concurrency ::= (CONCURRENCY source-action-nameRer
sink-action-nameRef

{ <tc-name-spec> 1 <intent-spec>
<min-spec> 1 <max-spec> })

tc-name-spec ::= (CNAME tc-nameDef)

intent-spec ::= (INTENT intent)

intent ::= ASSUME 1 COMMIT 1 REQUIREMENT

min-spec ::= (CHIN min)

• 1l-,~

-
APPENDIX Il - THE DEFBEHAVIOR LtScr:AGF:

max-spec ::= (CMAX max)

m~n :: = number

max :: = number

had-loop ""= (HAD-LOOP had
{ <start-action> 1 <predicate-call> 1

<end-action> })

~oncatenation ,:= (CONCATENATION
{ <start-actioa> 1 had 1 <end-action> })

parallel ::= (PARALLEL
{ <start-action> 1 had 1 <end-action>})

• d-choice ::=(D-CHOICE
{ <start-action>

nd-choice ::= (ND-CHOICE
{ <start-action>

choice-branch 1
<end-action> })

choice-branch 1
<end-action> })

•

choice-branch ::= (BRANCH had { <predicate-call> })

start-action ::= (START-ACTION
{ <predicate-call> 1 <procedure-call> })

end-action::= (END-ACTION
{<predicate-call> <procedure-call>})

exception::= (EXCEPTION {<condition> 1 <normal> 1 <handler>
1 <start-action> 1 <end-action>})

condition ::= (CONDITION hacl)

•

•

APppmr:\ ll- THE DEFBEH.·\\"lOR LANGU:\GE

normal ::= (NORMAL had)

handler :: = CHANDLER had)

had ::= had-instance-spec 1 had-body

had-instance-spec ::= (BEHAVIOR had-instance-nameDef
had-type-nameRef

{ <port-map> 1 <param-map>
<generic-map> })

port-map ::= (PORT-MAP { signal-or-port-nameRef })

param-map ::= (PARAM-MAP { var-or-param-nameRef })

generic-map ..= (GENERIC-MAP { lisp-expression})

References

lkl

•

[1] "EDIF - Electronic Design Interchange Format, Version 2.0.0", Elee­
tronics Industries Association, 198ï.

[2] "The Common Lisp Language", X3J13, ANSI X3.226:1994, American
National Standard for Programming Language, 1994.

