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Abstract

This thesis explores a multi-orbital model with a strong spin-orbit coupling where

interactions are tuned via a compressive strain. The platform used to explore this type of

physics is the perovskite iridate Sr2IrO4. Undoped and unstrained, this iridate compound

is a spin-orbit coupled antiferromagnet. Under doping, Sr2IrO4 has been predicted to host

superconductivity. Applying a compressive strain to the compound tunes the dispersion of

electrons in each orbital and consequently the interactions between electrons. In a model

considering strain and doping, iridate physics is shown to encompass the two cases of either

the interacting order being dominated by spin-orbit physics or multi-orbital interactions

and spin-orbit coupling being of comparable size. This thesis focuses on modeling

magnetism and superconductivity. Firstly, the magnetic order parameters are modeled

with a mean field approximation. For undoped Sr2IrO4 under compressive strain the

multi-orbital nature of the order is determined, and a strain-induced phase transition takes

place. An external magnetic field is included to further determine signatures of the order.

Secondly, superconductivity is modeled with an effective interaction calculated via the

random phase approximation (RPA). For realistic parameter values for doped Sr2IrO4 a

strain-induced superconducting order is found to be possible. Considering a wider range of

parameters reveals a theoretical phase diagram rich with magnetic and superconducting

orders. As the compressive strain is increased, several types of magnetic fluctuations

compete. For the found novel superconducting orders a classification of symmetries as well

as determination of topological properties is performed. Strain in the iridates is thus not

only shown to be a useful tool to expand a possible superconducting region at high

spin-orbit coupling. It is also a good tool to explore the complex system of underlying

interactions.
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Résumé

Cette thèse explore un modèle multi-orbital avec un fort couplage spin-orbite où les

interactions sont modifiées par des contraintes de compression. La plateforme utilisée pour

explorer cette physique est la pérovskite iridate Sr2IrO4. Si cet iridate n’est pas dopé ou

compress, c’est un composé antiferromagnétique couplé spin-orbite. Il a été prédit que

Sr2IrO4 pourrait devenir un supraconducteur s’il était dopé. L’application d’une

compression au composé modifie la dispersion des électrons dans chaque orbitale et par

conséquent les interactions entre électrons. Dans un modèle prenant en compte la

compression et le dopage, la physique des iridates englobe les deux cas où soit l’ordre

d’interaction est dominé par la physique spin-orbite, soit les interactions multi-orbitales et

le couplage spin-orbite sont de taille comparable. Cette thèse s’intéresse à la modélisation

du magnétisme et de la supraconductivité. Premièrement, les paramètres d’ordre

magnétique sont modélisés avec une approximation du champ moyen. Pour Sr2IrO4 non

dopé sous compression, la nature multi-orbitale de l’ordre est déterminée et on trouve une

transition de phase induite par la compression. Un champ magnétique externe est inclus

pour déterminer plus en détail les signatures de l’ordre magnétique. Deuxièmement, la

supraconductivité est modélisée avec une interaction effective calculée via le RPA (Random

Phase Approximation). Pour des valeurs de paramètres réalistes pour Sr2IrO4 sous dopage,

un ordre supraconducteur induit par la compression est possible. La prise en compte d’une

plus large gamme de paramètres révèle un diagramme de phase théorique riche en ordres

magnétiques et supraconducteurs. Lorsque la compression augmente, plusieurs types de

fluctuations magnétiques entrent en compétition. Pour les nouveaux ordres

supraconducteurs trouvés, une classification des symétries ainsi qu’une détermination des

propriétés topologiques sont effectuées. La contrainte en compression dans les iridates ne se
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révèle donc pas seulement être un bon outil pour étendre une éventuelle région

supraconductrice à fort couplage spin-orbite. C’est aussi un bon outil pour explorer le

système complexe d’interactions sous-jacentes.
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Chapter 1

Introduction

The collective effort within physics to understand unconventional superconductivity has led

to its observation in multiple families of compounds. The Ruddlesden-Popper perovskite

iridates is one family which has been predicted to host superconductivity. However,

experiments have not been able to confirm that there is a superconducting order in the

predicted regime of the electron doped Sr2IrO4. In this thesis I present theoretical work

modeling magnetic and superconducting orders in Sr2IrO4, with the addition of

compressive strain and an external magnetic field. The multi-orbital interactions combined

with the strong spin-orbit coupling can result in a rich collection of phases. The motivation

for the approach taken by this thesis is the experimental observation that the magnetism is

exceptionally sensitive to compressive epitaxial strain in Sr2IrO4. Consequently, if

superconductivity is mediated by magnetic fluctuations, strain is a powerful tool for tuning

the system, i.e. by suppressing the magnetic order to allow for superconductivity to form.

A compressive strain could be used as a tuning parameter to explore whether the predicted

superconducting regions can be expanded. In several families of multi-orbital

superconductors, in particular the iron pnictides and the ruthenates, there are multiple

types of interactions present as well as a non-negligible spin-orbit coupling. Models of these

compounds often approach the problem from the limit of a small SOC.

The iridates are in a unique position as possible multi-orbital superconductors with a

strong spin-orbit coupling. A model of doped and strained Sr2IrO4 could therefore approach

the problem of multiple competing energy scales, Hubbard interactions, Hund’s coupling,
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and spin-orbit coupling, from a different limit.

1.1 Thesis objective

In the following chapters, this thesis will show how a multi-orbital interacting model, with

large spin-orbit coupling, can be tuned between a rich variety of competing phases by

modifying the hopping amplitudes of each orbital via compressive strain. In particular, the

relevance of this model will be shown for potentially superconducting iridates. This is

particularly important as even with large spin-orbit coupling a simplified model, which

focuses on one total angular momentum sector, is only valid in parts of the phase diagram.

The objective of the thesis is thus to use the iridate Sr2IrO4 to describe the states that

contribute to the magnetic order and to determine if a magnetic insulator/superconductor

transition is possible. To fully capture the breadth of iridate physics the most realistic

parameter values are to be considered as well as an extension to a broader range of values

that could potentially be achieved in the doped compound. The first step is to understand

what degrees of freedom are necessary to describe the bandstructure and interacting order

of Sr2IrO4 under compressive strain, as well as a potential phase transition. The second

step is to expand the study to both doing and compressive epitaxial strain and thus to see

if a stain-induced superconducting order is possible for realistic values. The final step is to

explore a wider region of parameter to determine the symmetry of the order in any possible

superconducting region.

1.2 Thesis organization

This thesis is organized around the two manuscripts in Chapters 5 and 6. The necessary

background is covered in Chapters 2-4, where Chapter 2 is an overview of the iridates as

a family of compounds with a particular focus on the properties of Sr2IrO4. Chapter 3

introduces the multi-orbital model and how compressive strain is taken into account. In

Chapter 4 the Hubbard-Kanamori interactions are introduced and the difference between

the approximations used in this work is outlined. The first manuscript, in Chapter 5, is
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a mean field study of the magnetic orders in a multi-orbital model of undoped Sr2IrO4

under compressive strain and a Zeeman field. The second manuscript, in Chapter 6, is

aimed at modeling superconductivity while considering Sr2IrO4 under compressive strain and

doping. Effective interactions are calculated via the random phase approximation (RPA). A

discussion of the results and the relevance of this thesis is covered in Chapter 7. Limitations

to the study and proposed directions for future studies are covered as well. Chapter 8 is the

conclusion of the thesis.
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Chapter 2

Iridates

To understand the interest in Sr2IrO4 we want to start with the experiments that have

generated it. As a family of compounds, the iridates provide a unique environment of

multiple orbitals, spin-orbit coupling, and moderately strong interactions. They are a group

of iridium-based transition metal oxides. Strontium iridate compounds can form a perovskite

structure, where the single layer configuration Sr2IrO4 has a band structure close to the Fermi

level that can be described by a cuprate-like effective model [1, 2]. Just like the single band

models for cuprates capture a d-wave superconducting order when doped, doping of this

iridate has been predicted to host the same type of superconductivity [1, 3, 4, 5, 6, 7].

What distinguishes the iridates, which have 5d orbitals, from the well-studied

superconducting families of the cuprates and the ruthenate is the strength of the spin-orbit

coupling (SOC). The strength of the spin-orbit coupling λ generally scales with atom

number Z as Z4 [8]. However, for heavy atoms the outer electron, which will be considered

in the models, the effect scales as Z2 [9]. For comparison copper has Z = 29 while iridium

has Z = 77. This ends up placing the iridates in a regime where SOC, crystal field effects

(CF ), and Coulomb interactions (U) are of roughly equal size λ ∼ CF ∼ U .

In the case of the weak interactions, Hubbard U and the Hund’s coupling JH being

small, such that λ � U, JH, we can easily find the ground state of the system. Under some

approximations iridate compounds can be placed in this limit. However, when λ ∼ U, JH

more exotic magnetic ground states are possible, as predicted in other studies on d4 and d5

compounds [10, 11, 12, 13, 14, 15]. For example, small changes to the parameters induce
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magnetic phase transitions between different total angular momentum states [11]. As this

thesis goes on to explore, a comparable scale of all these parameters can also lead to a wide

range of superconducting orders.

2.1 Perovskite structure

The Ruddlesden-Popper series of perovskite iridates, Srn+1IrnO3n+1, are of interest for

studying their magnetic and possibly superconducting orders. A compound’s number n in

the series is determined by how many quasi-2d layers, of iridium atoms surrounded by an

oxygen octahedra at each site, that is required to describe the structure. The compound of

the series described by a single layer is Sr2IrO4, which has a tetragonal structure with

space-group I41/acd (No. 142) with a = b = 5.4846Å and c = 25.804 Å at 13 K [16], as

shown in Fig. 2.1a). Within each layer the iridium sites form a square lattice, as shown in

Fig. 2.1b). At each site the oxygen octahedra are rotated by a staggered rotation angle φ.

A two-Ir-site unit cell within a layer thus describes the lattice geometry. The angle is

measured to φ ≈ ±12◦ [17].

The ground state of Sr2IrO4 is an insulating antiferromagnet, with an energy gap ∆ ≤

0.62eV [18, 19] and a relatively small magnetic coupling energy of 60 − 100meV [18]. A

magnetic order persists until the Néel temperature TN = 240K [20, 16, 21]. However, when

increasing the temperature further the compound was found to be insulating up to at least

600K and no anomaly in the transport is seen at the Néel temperature [21, 22, 23]. This

is the case for both in the in-plane direction ρa and between layers ρc. This is one of the

unexpected behaviors which has raised questions about the exact nature of the insulating

state. Various studies have tried to determine if it is either Mott [24, 25] or Slater [26]

insulator physics. Alternative proposed descriptions are both behaviors coexisting [27, 28,

29, 3, 30] or a correlated band insulator [31].

In the antiferromagnetic (AFM) order the magnetic moment has the nature of a total

angular momentum j = 1/2 state [32, 33, 34]. From x-ray scattering and neutron diffraction

investigations the ordered magnetic moments are found to be 0.202 and 0.049 µB per Ir-

site along the a- and b-axis respectively [35]. This corresponds to a canted AFM (cAFM)
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Figure 2.1: a) Perovskite structure of Sr2IrO4, where sites surrounded by oxygen octahedra
are stacked in quasi-2d layers. Strontium, Sr, atoms are located in between layers. b) Top
view of the IrO-layers where the staggered rotations in-plane of the octahedra are shown. The
magnetic moment forms a canted antiferromagnetic order that follows the staggered rotations
in each plane. c) The net moment from the canting within each layer has a stacking pattern
between 4 layers.
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Figure 2.2: The 6 band bandstructure (blue) is shown for an non-interacting model of
Sr2IrO4, with a strong spin-orbit coupling λ = 0.7eV. Overlain with the bands closest to the
Fermi level is the dispersion for an effective model (gray) for the j = 1/2 states.

order where the magnetic moment follows the staggered rotations of the sites as shown in

Fig. 2.1b). Within each layer the cAFM has a net ferromagnetic (FM) moment along the

b-axis. As shown in Fig. 2.1c) the direction of the net moment is stacked between layers in a

↓↑↑↓ pattern. This 4-layer pattern form a centrosymmetric order, and non-centrosymmetric

stacking patterns can be possible for synthesizing Sr2IrO4 under high pressure [36, 37]. As

the inter-layer coupling between magnetic moments is much smaller than the in-layer, a fair

approximation for the model of this compound is to consider only one layer.

2.2 The prediction of superconductivity in Sr2IrO4

The perovskite structure and antiferromagnetic insulator as a ground state is similar to that

of the superconductor parent compound La2CuO4. An effective cuprate isotropic Hubbard

model is often given the parameters: nearest neighbor t ≈ 0.2eV, next-nearest neighbor

t′ ≈ t/4, 3rd n.n. t′′ ≈ −t/10 , and U ≈ 10t. The iridate is a Sr2IrO4 has multiple orbitals

close to the Fermi level. However, due to the strong SOC each band has the character of

mainly one of the total angular momentum states. In Fig. 2.2 a non-interacting bandstructure
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is shown for the compound, for both a 3 orbital model and a total angular momentum

j = 1/2 effective model. For the effective model, the full multi-orbital hopping parameters

are projected onto the j = 1/2 state. The effective model has roughly the same parameters

as the cuprate Hubbard model, except overall t → t/2, and with the opposite sign of t′/t.

The models would therefore be on the same form if the particle and hole degrees of freedom

were to be switched, as this brings t → t and t′ → −t′. An electron doping of Sr2IrO4 is

thus expected to have a similar superconducting region as hole-doped cuprates. As shown

in Ref. [1] that terms arising in this simplified model from the staggered rotations of the

oxygen octahedra can be gauged out, and are thus not significant to describe the physics

within the band.

Multiple experiments have been carried out on doped Sr2IrO4. As of yet, no study has

been able to fully confirm the existence of a superconducting region. In 2016 the authors

of Ref. [38] were able to observe an order with d-wave symmetry by electron doping via

oxygen deposition. However, the order could not be determined to be superconducting as no

measurement of the Meissner effect or of transport properties was possible. Electron doping

can also be achieved by chemical doping with lanthanum (La) [38, 39, 40, 41]. For La doping

the long-range antiferromagnetic order eventually disappears. However, the same d-wave

order is not observed. Instead a possible incommensurate spin density wave appears with a

pseudogap at higher temperatures [41]. It should also be noted that high quality samples

are difficult to achieve for higher La concentrations [42, 43].

There have been previous attempts to model superconductivity in doped Sr2IrO4 by also

taking the multi-orbital nature into account. These works consider a three orbital model

using variational Monte Carlo [3], functional renormalization group [4], dynamical mean-field

theory [5], and random phase approximation [7]. When considering multiple orbitals a value

for the inter-orbital Hund’s coupling JH must be chosen. A range of possible values can be

approximated from experiments. For Hund’s coupling in the lower end of that range, all

studies find a d-wave order at electron doping. Quasiparticle interference calculations find

that this order has a similar signature to that in cuprates [6]. However, at a sufficient value

of JH the d-wave order is no longer favorable. On the other hand, for a high JH and hole

doping either a multi-band s±-wave [4, 7] or an odd parity p-wave order [5] can be favored.
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Previous multi-orbital studies did not take the staggered lattice rotations into account. The

first study to do so is Chapter 6 of this thesis.

Models that study the j = 1/2 states and take other effects into account, do such with

staggered rotation and the titling of octahedra that can occur in thin films [44], possible

heterostructures with Sr2IrO4 [45, 46, 47, 48] or additional effects like antisymmetric SOC [36]

or inter-pseudospin hopping in j = 1/2 bands [49].

2.3 Epitaxial strain

The staggered rotations of the oxygen octahedra are not expected to change the pairing

symmetry in the predicted j = 1/2 states. However, the in-plane magnetic order has shown

to be sensitive to changes in the rotation angle, as the magnetic moments closely follow

the rotations. When Sr2IrO4 is grown on a substrate with mismatched lattice parameters it

experiences compressive ε < 0 or tensile ε > 0 strain. The strain ε describes the change in

the lattice parameter a between sites in terms of percent change. As the oxygen octahedra

remains largely rigid; they rotate closer or further from each other as a result. In the following

section a multi-orbital model is introduced. It describes how each orbital is affected by the

change in lattice geometry due to the epitaxial strain.
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Chapter 3

A spin-orbit coupled tight-binding

model

3.1 Ir-d orbitals

In Sr2IrO4 the iridium sites are filled by 5d5 electrons. For a free ion the five orbitals, the t2g

and eg orbitals, are degenerate. By placing the Ir-atom in the surrounding oxygen octahedra

introduces a Oh symmetry, which splits the subspace with angular momentum L = 0, 1 to a

lower energy than the L = 2 subspace. In Fig. 3.1 it is shown that only the three orbitals

dyz, dxz, dxy in the t2g subspace are located close to the Fermi level, as they are filled by 5

electrons in 6 bands. If the atomic spin-orbit coupling (SOC) of the iridium is included a

new basis describes the new energy levels. That is the basis of total angular momentum

j = 1
2 ,

3
2 , and the projection along the z-axis jz = ±1

2 ,±
3
2 . The strength of the SOC, λ,

separates the (j, jz) =
(

1
2 ,±

1
2

)
from the other states, as shown in Fig. 3.1.

3.1.1 Tetragonal splitting

An additional symmetry breaking and splitting of energy levels is shown in Fig. 3.1. In

Sr2IrO4, the oxygen octahedra are compressed along the c-axis. To see how this tetragonal

symmetry breaking splits the energy levels one considers the angular momentum of the

orbitals. The d-orbitals can be written with spherical harmonics Ylml
(θ, φ) for l = 2. The
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dyz, dxz

dxy
µxy

3λ
2

eg

t2g

dz2

5d5 (
1
2,±

1
2

)

(
3
2,±

1
2

)
(
3
2,±

3
2

)

dx2−y2

Figure 3.1: The atomic energy levels for the the iridium d5 orbitals, where the levels are
filled by 5 electrons. The 5 d-orbitals are split into two subspaces by the Oh symmetry of
the oxygen octahedron. When tetragonal symmetry is broken dxy is separated from the rest
of the t2g orbitals by µxy. The energy levels are split further by the SOC λ.

tetragonal symmetry breaking shifts the energy levels according to ∝ m2
l . The eg subsector

has a vanishing orbital momentum ml

dz2 = Y2,0, dx2−y2 = 1√
2

(Y2,2 + Y2,−2) (3.1)

while the t2g subsector has a non-zero ml

dyz = 1
i
√

2
(Y2,1 − Y2,−1) , dxz = 1√

2
(Y2,1 + Y2,−1) , dxy = 1

i
√

2
(Y2,2 − Y2,−2) (3.2)

We can observe that if we operate on the orbitals in the t2g subsector with the angular

momentum ladder operators L+
z , L

−
z they effectively form a three level system as

L+
z dxy ∝ Y2,−1, L−

z dxy ∝ Y2,+1,

L+
z Y2,−1 = 0, L−

z Y2,+1 = 0
(3.3)
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ϕ

dXY,A dXZ,A

ϕ

dYZ,A

ϕ

dXZ,BdXY,B dYZ,B

Local basis:

Figure 3.2: In the two-site basis the orbitals are defined in the local staggered basis. The
orbitals in sublattice s = A,B are rotated by φ ≈ 12◦.

So the states Y2,−1, dxy, Y2,+1 forms an effective system with leff = −1 and ml,eff = 1, 0,−1

respectively. In Sr2IrO4 the tetragonal distortion bring the symmetry group at a site from Oh

to D4h. For compression of the octahedra this should place the dxy higher in energy than the

dyz, dxz orbitals. However, the observed spectra of Sr2IrO4, as well as ab initio calculations,

shows dxy as being lower in energy. Additional hybridization of the p-orbitals of the oxygen

atoms with the d-orbitals can explain this discrepancy and results in the energy splitting in

Fig. 3.1.

3.1.2 Local rotated basis

As introduced in Section 2.1 each layer in the perovskite structure has a staggered

rotations of the oxygen octahedra surrounding the iridium sites. To take into account the

staggered rotations we model a two-site basis. A global basis has global axes x, y along the

crystallographic a- and b-axes. With the staggered rotations φ, φA = φ and φB = −φ, the

orbitals on each site are rotated through the coordinate transformation

Xs = x cosφi + y sinφs, Ys = −x sinφs + y cosφi (3.4)

in a local basis Xs, Ys. The orbitals follow the rotations and are defined in the local basis,

as shown in Fig. 3.2. The spins are however defined along the global axes. The quantization

axis is given such that the spin-direction ↑ is given along +z and spin-↓ along −z.
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3.2 Tight binding model

A tight binding model for hopping in the square lattice with three orbitals α = yz, xz, xy,

two spins σ =↑, ↓, and two sublattices s = A,B can be written as

Hkin =
∑

α,β,σ,σ′

∑
s,s′

∑
i,δ

[
tδ(α,s)(β,s′)c

†
i,s,α,σci+δ,s′,β,σ + h.c.

]
(3.5)

Here i are unit cells in the lattice and δ connects nearest neighbor or next nearest neighbor

sites. Without staggered rotations the hopping only occurs within the same orbital and spin.

From the spread of each orbital, the overlap of wavefunction between sites is significantly

larger between orbitals with the same geometry. For the nearest neighbor hopping along

each axis is txab and tyab, with the labels a = (α, s) containing the orbital α and sublattice

s degrees of freedom. The hopping takes place between sublattices and the terms have the

form

Hx
kin,no rot =

∑
α,σ

tx(αA)(αB)c
†
i,A,α,σci+x,B,α,σ + tx(αB)(αA)c

†
i,B,α,σci+x,A,α,σ (3.6)

3.2.1 Slater-Koster approach

The hopping integrals for the d-orbitals under rotation can be calculated with the

Slater-Koster approach [1, 2]. The hopping integrals can be derived from the hopping

(tddσ, tddπ, tddδ). They each represent the hopping along the z-direction between states Y m
l ,

where the labels represent the projection along the z-axis as σ : m = 0, π : m = ±1, and

δ : m = ±2. The usual ratio between the hoppings is given by

tddσ : tddπ : tddδ = 3
2 : −1 : 1

4 [3, 4]. The standard Slater-Koster hopping for the five states of

the d-orbitals are given by the matrix

tSK =



tddδ 0 0 0 0

0 tddπ 0 0 0

0 0 tddσ 0 0

0 0 0 tddπ 0

0 0 0 0 tddδ


(3.7)
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in the basis m = (−2,−1, 0, 1, 2). The hopping along a given direction can be derived by

rotating the z-axis into a given direction. This means that we can write down the general

form for the resulting hopping for an in-plane staggered rotations φ. A general rotation

matrix is given by

R(α, β, γ) = e−iαJze−iβJye−iγJz . (3.8)

α, β, γ are here the Euler angles rotated in the directions z − y − z. If each orbital state

is quantized along the z-axis as |l,m〉. The Wigner D-matrix representation is the overlap

between two states with the general rotation matrix [5]:

Dl
m,m′(α, β, γ) = 〈lm|R(α, β, γ)|lm′〉 = e−iαm′

dj
mm′(β)e−iγm (3.9)

as Jz is diagonal in the basis |lm〉. The rotation β around the y-axis is the overlap between

in the d-orbitals, with the five possible states in l = 2:

dl
mm′(β) = 〈lm|e−iβJy |lm′〉 (3.10)

So to get a rotation into a local basis with a rotation ±φ of each site, a rotation matrix defined

for the angles is given as Rloc(φ) = D(−π/4, 0, π/4 +φ). To calculate the hopping in a given

direction the bonds are rotated as well, for example in the x-direction Rbond = D(0,−π/2, 0).

So for the basis of staggered rotations φ = ±12◦:

t̃xSK = ψ†R†
loc(φ, 0)R†

bondtSKRbondRloc(−φ, 0)ψ (3.11)

where one sublattice is rotated with Rloc(−φ, 0) and the other with Rloc(φ, 0). Here the

matrix ψ transforms the 5 l = 2 into the 3 t2g orbitals as in section 3.1.1 and in this basis
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ϕ

dXY

ϕ

dYZ

ϕ

dXY

dYZ

dYZ
dXZ dXZ

dYZ

t1

t t'

t1d
tntnd

tδ

Figure 3.3: Nearest and next nearest neighbor hopping terms are shown for each orbital
in the lattice with staggered rotations. The hopping t1 � tδ as the orbitals dyz and dxz have
a quasi-1d overlap n-plane with neighboring sites.

the hopping has the form

t̃xSK =
cos2 φtddδ − sin2 φtddπ −1

2 sin 2φ (tddδ + tddπ) 0
1
2 sin 2φ (tddδ + tddπ) cos2 φtddπ − sin2 φtddδ 0

0 0 cos2 2φtddπ − 3
4 sin2 2φtddσ − 1

4 sin2 2φtddδ


(3.12)

in the basis (dyz, dxz, dxy). For the expected value φ = 12◦ and tddσ : tddπ : tddδ = 3
2 : −1 : 1

4

t̃xSK =


0.27 0.15 0

−0.15 −0.94 0

0 0 −1

 tddπ (3.13)

We define the hopping with the parameters

t̃xSK =


tδ t′ 0

−t′ t1 0

0 0 t

 , t̃ySK =


t1 t′ 0

−t′ tδ 0

0 0 t

 (3.14)

where the bond along the y-direction is calculated at Rbond = D(0,−π/2, π/2). In Fig. 3.3

each hopping term is shown in the lattice.
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n.n.n. hopping

The next-nearest neighbor (n.n.n.) hopping is scaled by 0.2 with respect to the corresponding

n.n. hopping as in Ref. [2] and now takes place between sites belonging to the same sublattice.

The rotation terms from the sublattice therefore cancel out and the hopping terms are

calculated as

t̃+x,+y
SK = 0.2ψ†R†

bondtSKRbondψ (3.15)

The bond angle along +x,+y with Rbond = D(0,−π/2, π/4):

t̃+x,+y
SK =


−0.07 0.12 0

0.12 −0.07 0

0 0 0.23

 tddπ (3.16)

The set of n.n.n. terms are defined as

t̃+x,+y
SK =


t1d −tnd 0

−tnd t1d 0

0 0 tn

 , t̃+x,−y
SK =


t1d tnd 0

tnd t1d 0

0 0 tn

 (3.17)

In Eq.s (3.14) & (3.17) only direct hopping between Ir-d orbitals are considered. One

additional type of hopping not considered here is the contributions from oxygen mediated

hopping. The strength of the hybridization between iridium d-orbitals and oxygen

p-orbitals determines the size of this effect.

3.3 Modeling compressive strain

When a layer of Sr2IrO4 is compressed the main effect is the oxygen octahedra rotate closer

to each other by increasing the staggered angle φ. As a first approximation the effect of a

compressive strain could be modeled by increasing the staggered angle in the Slater-Koster

model. However, an additional expected effect is the compression of the axes. To accurately

capture the size of the two effects we must have information about Sr2IrO4. If the hopping

parameters as in Eq.s (3.14) & (3.17) are modeled to change linearly with compressive strain
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ε < 0, that change can follow values fitted for strain up to ε = −1.9% [6]. A significant

difference from the Slater-Koster approach is a larger increase of the nearest neighbor dxy−dxy

and dyz − dxz hopping.

One additional aspect to be noted is that tensile strain ε > 0 could be considered as an

extrapolation of the same linearization. However, that does not agree with the experimental

values for undoped samples of Sr2IrO4 under tensile strain. For example, the effect of a

lowered critical temperature for the magnetic order is seen both for compressive and tensile

strain. For consistency with experiment, the works included in this thesis only consider

compressive strain.

The strain has two types of effects. Firstly, the strain can increase or decrease the overall

bandwidth or the resulting band structure. For compressive strain in Sr2IrO4 the bandwidth

increases. Secondly, the bandwidth for different bands changes in different amounts. As

shown in the next section, the bands will have different orbital contributions for which the

hopping parameters change in different amounts.

3.4 Momentum space

The non-interacting tight binding model is considered in a periodic lattice and can thus be

diagonalized in momentum space. The transformation is defined as

cj,a = 1√
N

∑
k

eik·jcj,a, c†
j,a = 1√

N

∑
k

e−ik·jc†
j,a (3.18)

where N is the number of sites in the lattice and the lattice spacing is set to 1. The model

contains 12 operators: Nσ = 2 (spins σ =↑, ↓), No = 3 (orbitals α = yz, xz, yz), and Ns = 2

(sublattices s = A,B). The 12 eigenvalues of the Hamiltonian thus form 12 bands En,k. As

hopping terms mix sublattice and orbital degrees of freedom and the SOC couples different

spin sectors, we cannot block diagonalize the Hamiltonian in these degrees of freedom. The

non-interacting Hamiltonian in momentum space is divided into two parts:

H = Hkin +HSOC (3.19)
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The kinetic part contains the hopping terms, the Fourier transform of the terms in Eq.s (3.14)

& (3.17). In the basis ck = (ck,A,yz,↑, ck,A,yz,↓, ck,A,xz,↑, ck,A,xz,↓, ck,A,xy,↑, ck,A,xy,↓, ck,B,yz,↑,

ck,B,yz,↓, ck,B,xz,↑, ck,B,xz,↓, ck,B,xy,↑, ck,B,xy,↓) the 12 × 12 Hamiltonian has the form:

Hkin =
∑

k

c†
k

 HAA eikxHAB

e−ikxH†
AB HBB

 ck (3.20)

HAA =


εd ε1d 0

ε1d εd 0

0 0 εxy
d

 , HAB =


εyz −εrot 0

εrot εxz 0

0 0 εxy

 (3.21)

with HBB = HAA. With the Fourier transform each term becomes

εxy = 2t (cos kx + cos ky)

εyz = 2 (tδ cos kx + t1 cos ky)

εxz = 2 (t1 cos kx + tδ cos ky)

εrot = 2t′ (cos kx + cos ky)

εxy
d = 4tn cos kx cos ky + µxy

ε1d = 4t1d sin kx sin ky

εd = 4tnd cos kx cos ky

(3.22)

where the hopping values are specified in Chapters 5 and 6. The atomic spin-orbit coupling

is an on-site coupling L · S:

HSOC = λ

2
∑
j,s

∑
i=x,y,z

∑
αβ,σσ′

Li
αβσ

i
σσ′c

†
jsασcjsβσ′ = λ

2
∑
k,s

∑
i=x,y,z

∑
αβ,σσ′

Li
αβσ

i
σσ′c

†
ksασcksβσ′

(3.23)

where σ = (σx, σy, σz) are the Pauli matrices in the spin basis, and the matrices

L =




0 0 0

0 0 −i

0 i 0

 ,


0 0 i

0 0 0

−i 0 0

 ,

0 −i 0

i 0 0

0 0 0



 (3.24)
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which are the Gell-Mann matrices λ2, λ5.λ7, as defined in Appendix A. In Fig. 3.4 the orbital

contributions of the bands at the Fermi surface are shown. There is a clear orbital texture

of the bands. Due to the geometry of the orbitals, the hopping t1 � tδ and the hopping

of the yz is almost entirely in the y-direction. The same is true for the xz, which has a

dispersion mainly in the x-direction. The hopping within these orbitals is thus quasi-1d

while the xy-orbital has a dispersion which is equal in both directions.

3.4.1 J-state basis

When a strong spin-orbit coupling is included the quantum states are better described in

a total angular momentum basis. The total angular momentum is, as usual, the sum of

the orbital and spin momenta Ĵ = L̂ + Ŝ. For the allowed quantum numbers the following

projections along the z-axis are allowed for the states

ms ∈{−s,−s+ 1, . . . , s− 1, s},

ml ∈{−l,−l + 1, . . . , l − 1, l}, l ∈ {0, 1, . . . , n− 1}

jz ∈{−j,−j + 1, . . . , j − 1, j}

(3.25)

as jz = ms + ml and j = l + s The t2g subspace has l = 0, 1. As the spin s = 1/2 the

values j = 1/2 and j = 3/2 are possible. These states are also the eigenstates of the SOC

Hamiltonian Eq. (3.23) and can be written as

|12 ,±
1
2〉 = 1√

3
(|yz, ↓ / ↑〉 ∓ i|xz, ↓ / ↑〉 + |xy, ↑ / ↓〉)

|32 ,±
1
2〉 = 1√

6
(∓|yz, ↓ / ↑〉 − i|xz, ↓ / ↑〉 − 2|xy, ↑ / ↓〉)

|32 ,±
3
2〉 = 1√

2
(±|yz, ↓ / ↑〉 − i|xz, ↓ / ↑〉)

(3.26)

As the full non-interacting Hamiltonian contains additional terms from Hkin the basis of

j-states in Eq. (3.26) are no longer eigenstates. However, for a large SOC parameter, λ,

each band consists mainly of two j-states. This can be observed in Fig. 3.4, where the Fermi

surface is shown with the projection onto each state. As λ is decreased the j-states are more

mixes within each band. However, the shift in energy splitting 3λ/2 between j = 1/2 and
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Figure 3.4: For two values of the spin-orbit coupling the Fermi surface (in the extended
Brillouin zone) and bandstructure is shown for the non-interacting model with electron
filling n = 5. For the Fermi surface the density of the orbital and j-states are shown in two
different plots. The color of a point at the FS represents the contribution from each state to
the eigenvector for that band.

j = 3/2 bands is the larger energy scale that changes with the strength of the SOC. The

mixing of orbital and spin degrees of freedom means that there are bands with sections of

multiple orbital and spin characters at the Fermi surface. The validity of only considering

physics in the j = 1/2 bands is therefore dependent on the interactions in the model. The

interactions are introduced in the next Chapter 4.

3.5 Green’s functions

The single-particle (particle-hole) Green’s function is defined as

Gab(k) = −
∫ β

0
dτeiωnτ 〈Tτcka(τ)c†

kb(0)〉 (3.27)
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for two sublattice (s), orbital (α), and spin (σ), indices a = (s, α, σ). The non-interacting

Green’s function can be calculated for the non-interacting Hamiltonian. The eigenvalues

(ξk,n) and eigenvectors (c̃k,n) of the Hamiltonian are

H0(k) =
∑
k,ab

c†
k,aHk,abck,b =

∑
k,n

c̃†
k,nξk,nc̃k,n =

∑
k,a,b

∑
n

(
c̃†

k,nU
†
na

) (
Ubnξk,nU

†
nb

)
(Ubnc̃k,n) (3.28)

where Uk are unitary matrices such that ck,a = ∑
n Uk,anc̃k,n. Now one element of the Green

function (for a given eigenvalue ξk,n)

G(0)
n (k) = [iωm − ξk,n]−1 (3.29)

We cannot that for the non-interacting Green’s function Ḡ0ab(k) = −G0ba(−k). For a

combination of states a, b:

G
(0)
ab (k) =

∑
n

Uk,anG
(0)
n (k)U †

k,nb (3.30)
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Chapter 4

Multi-orbital interactions

In the non-interacting multi-orbital model, introduced in Chapter 3, there are already

multiple types of terms coupling spin, orbital, and sublattice degrees of freedom. When

considering Coulomb interactions in the system no exact solution can be found and

approximations must be made to treat the interactions. In the manuscripts of Chapters 5

and 6 two approximations are used to study the magnetic and superconducting orders: a

mean field approximation and the random phase approximation (RPA). In the following

sections the derivation for the self-consistency equations used to calculate the order

parameters is outlined and the approximations are compared.

4.1 Hubbard-Kanamori interactions

Any model of interactions between electrons in a solid is an effective description of Coulomb

interactions. In a d-orbital each electron feels the effects from the iridium nuclei and the

electrons filling the other orbitals. In a crystalline solid the tight binding model, with

hopping between discrete sites, is often a sufficient description of the electrostatic potential

landscape created by the full system, as experienced by electrons close to the Fermi level.

For interactions between the electrons, an on-site interaction can be introduced as the bare

interactions in our effective Hubbard model.

In a multi-orbital system several types of interactions are present. Here they are screened

Coulomb interaction from the t2g orbitals. For Coulomb interaction between two electrons
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located at r and r′, Vc(r, r′), the wavefunction will screen the electrons. An electron in

the t2g orbital α ∈ [yz, xz, xy] has the wavefunction φα(r). The three types of screened

interactions: the intra-orbital U , the inter-orbital (α 6= α′) U ′, and the Hund’s coupling JH,

given by
U =

∫
drdr′|φα(r)|2Vc(r, r′)|φα(r′)|2

U ′ =
∫
drdr′|φα(r)|2Vc(r, r′)|φα′(r′)|2

JH =
∫
drdr′φ∗

α(r)φ∗
α′(r)Vc(r, r′)φα(r′)φα′(r′)

(4.1)

The wavefunctions φα(r) van be chosen to be real and thus the last integral is the same

for pair-hopping and spin-exchange terms, both giving the same value of JH. For the tight

binding model introduced in section 3.2 the Hubbard-Kanamori interaction [1] becomes

HI = U
∑
j,α

njα↑njα↓

+
∑

j,α 6=β

JH
[
c†

jα↑c
†
jβ↓cjα↓cjβ↑ + c†

jα↑c
†
jα↓cjβ↓cjβ↑

]
+

∑
j,α<β,σ

[U ′njασnjβσ̄ + (U ′ − JH)njασnjβσ]

(4.2)

The interactions can be set to be rotationally invariant, meaning that they have the full

U(1)c ⊗ SU(2)s ⊗ SO(3)o symmetry [2]. This is achieved by setting U ′ = U − 2JH [1].

4.2 Mean field theory

The interactions can be treated to the lowest order with the mean field approximation. In

Chapter 5 such an approximation is done for the Hubbard-Kanamori interactions in Eq. (4.2),

to consider on-site magnetic order parameters. A mean field decoupling of a Hamiltonian

is done by defining a set of order parameters around which fluctuations are assumed to be

small. We can always write a set of parameters as the mean value and fluctuations around

that mean:

cacb = (cacb − 〈cacb〉) + 〈cacb〉 = δ (cacb) + 〈cacb〉 (4.3)



4. Multi-orbital interactions 28

for any two operators ca, cb. A general term of the interaction can be expressed as

Habcd
V = V abcdc†

acbc
†
ccd (4.4)

If the order parameters oab = 〈c†
acb〉 with fluctuations δoab = c†

acb − 〈c†
acb〉 are inserted into

the Hamiltonian

Habcd
V = V abcd(δoab + oab)(δocd + ocd)

= V abcd(δoabδocd + oabδocd + ocdδoab + oabocd)
(4.5)

If the fluctuations are sufficiently small, we assume O((δo)2) ≈ 0:

Habcd
V ≈ V abcd(oabc

†
ccd + ocdc

†
acb − oabocd) (4.6)

It is however also the case that an equally valid decomposition is

Habcd
V ≈ V abcd(ocbc

†
acd + oadc

†
ccb − ocboad) (4.7)

As an example, let us consider the intra-orbital interaction per orbital α

HU =
∑
j,α

Uc†
j,α,↑cj,α,↑c

†
j,α,↓cj,α,↓ (4.8)

The two possible ways to decompose the Hamiltonian can then be combined as

HU ≈U

2
∑
j,α

(nj,α,↓c
†
j,α,↑cj,α,↑ + nj,α,↑c

†
j,α,↓cj,α,↓ − nj,α,↑nj,α,↓)

+ U

2
∑
j,α

(〈c†
j,α,↑cj,α,↓〉c†

j,α,↓cj,α,↑ + 〈c†
j,α,↓cj,α,↑〉c†

j,α,↑cj,α,↓ − 〈c†
j,α,↓cj,α,↑〉〈c†

j,α,↑cj,α,↓〉)
(4.9)

with spin-diagonal nj,α,σ and spin-off-diagonal 〈c†
j,α,↑cj,α,↓〉 operators. This can be written

using spin and density operators

nj,α,↑ = nj,α + Sz
j,α, nj,α,↓ = nj,α − Sz

j,α, 〈c†
j,α,↑cj,α,↓〉 = Sx

j,α + iSy
j,α. (4.10)
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By Fourier transforming the Hamiltonian the decomposition in momentum space is

HU ≈ U

2N2

∑
k,k′,α

(nk′,s,α,↓c
†
k,s,α,↑ck,s,α,↑ + nk′,sα,↑c

†
k,s,α,↓ck,s,α,↓ − nk′,s,α,↑nk,s,α,↓

+ (Sx
k′,α + iSy

k′,α)c†
k,α,↓ck,α,↑ + (Sx

k′,α − iSy
k′,α)c†

k,α,↑ck,α,↓ − (Sx
k′,α + iSy

k′,α)(Sx
k,α − iSy

k,α))
(4.11)

We will further assume that all on-site order parameters are equal at all sites belonging to

the same sublattice, therefore allowing for a uniform order or an order which is staggered

between sublattices. 〈c†
j,α,↓cj,α,↑〉 = 〈c†

s,α,↓cs,α,↑〉, for s = A,B. This mean value is then

defined as

〈c†
s,α,↓cs,α,↑〉 = 1

N

∑
k′

〈c†
k′,s,α,↓ck′,s,α,↑〉 (4.12)

which is a self-consistency equation for the order parameter and where the mean is taken

with respect to the eigenstates of the mean field decoupled Hamiltonian:

HMF = U

2N
∑
k,α

(ns,α,↓c
†
k,s,α,↑ck,s,α,↑ + nsα,↑c

†
k,s,α,↓ck,s,α,↓ − ns,α,↑ns,α,↓

+ (Sx
α + iSy

α)c†
k,α,↓ck,α,↑ + (Sx

α − iSy
α)c†

k,α,↑ck,α,↓ − (Sx
α + iSy

α)(Sx
α − iSy

α))
(4.13)

We can now solve the quadratic mean field Hamiltonian to get eigenvalues and eigenstates.

The expectation values in the self-consistency equation Eq. (4.12) can be calculated as

〈c†
acb〉 = 1

N

∑
k

∑
n

U †
anUnbf(En(k), T ). (4.14)

where the energy En(k) is the eigenvalue to the mean field Hamiltonian Hkin + HMF. Unb

is the matrix transforming the spin-orbital basis into the eigenstates at a momentum k.

f(En(k), T ) is the Fermi-Dirac distribution at a temperature T :

f(En(k), T ) = 1
eEn(k)/kBT + 1 (4.15)

4.2.1 Self-consistency equations

The Hubbard-Kanamori interactions, Eq. (4.2), can be decomposed into a large set of order

parameters per site. In the spin and orbital basis, there are densities ns,α, spin densities
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Si
s,α, orbital angular momentum Li

s,σ, and operators renormalizing the spin-orbit coupling

Λi
s. The directions are i = x, y, z and the self-consistency equations are

Si
s,α =

∑
σ,σ′

Si
σσ′〈c†

sασcsασ′〉 (4.16)

Li
s,σ =

∑
α,β

Li
αβ〈c†

ασcβσ〉 (4.17)

Λi
s =

∑
α,β

∑
σ,σ′

Li
αβS

i
σσ′〈c†

sασcsβσ′〉 (4.18)

where Si are the Pauli matrices i = x, y, z and Li are three of the Gell-Mann matrices

corresponding to l = 1 orbital angular momentum operators, as defined in Appendix A.

As all on-site parameters are considered for two sublattices, and the Hamiltonian must

remain Hermitian, there are 42 complex order parameters. An alternative definition of order

parameters is to decompose the Hamiltonian in the total angular momentum j-states. This

definition results in the same amount of order parameters, which instead has momentum

contributions from intra- or inter-J operators:

J i
s,m =

∑
τ,τ ′

Si
ττ ′〈c̃†

smτ c̃smτ ′〉 (4.19)

J i
s,mn =

∑
τ,τ ′

Si
ττ ′〈c̃†

smτ c̃snτ ′〉 (4.20)

where m ∈ [(1/2,±1/2), (3/2,±1/2), (3/2,±3/2)] are the j-states and τ = +,− is the

projection along the z-axis. The total magnetic moment per sublattice is

ms = (Ls,↑ + Ls,↓) /2 + gSs = (Ls,↑ + Ls,↓) /2 + g
∑

α

Ss,α (4.21)

and the staggered AFM and net FM moments are respectively

ms,AF M = (mA − mB) /2, ms,F M = (mA + mB) /2 (4.22)

In Fig. 4.1 the magnetic moment of a mean field solution is shown. The solution is the

canted AFM state of Sr2IrO4, along with the different components.



4. Multi-orbital interactions 31

net moment net orbital moment net spin moment

= +

yz
xz
xy

net pseudospin moment

j=1/2

Figure 4.1: The mean field solution for the canted AFM ground state is shown in terms of
total magnetic moment, Eq. (4.21), per sublattice. The components per orbital Eq. (4.16)
and spin Eq. (4.17) magnetic moment are shown as well. On the bottom row the magnetic
moment per site from Eq. (4.19) for the j = 1/2 state is shown.
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Parameters to describe Sr2IrO4

The undoped Sr2IrO4, with 5 d electrons n = 5, has bands of mostly j = 1/2 character at

the Fermi surface and the magnetic moment consists mostly of a j = 1/2 pseudospin. The

question is then: is it sufficient to just include the j = 1/2 moment, Eq. (4.19), as an order

parameter? The answer is in general no. The accuracy of the j = 1/2 approximation depends

on where we are in the phase diagram. What the order parameters solely in the j = 1/2

bands are missing are the effects from the order parameters describing the renormalized SOC

and the density per orbital. These two types of terms will determine the overall placement

of the j = 1/2 bands in the band structure and therefore which states are present at the

Fermi surface.

Depending on the strength of the SOC and the interactions terms U, JH, the multi-orbital

Hamiltonian can form a large number of orders. By including all on-site order parameters

in a two-site basis several types of staggered orders are allowed. A charge density wave

(CDW) is a staggered filling of all orbitals per site ns = ∑
α,σ ns,α,σ. A spin density wave

(SDW) is a staggered spin, either in-plane or out-of-plane, between sites. An orbital density

wave (ODW) has a staggered orbital angular momentum of one or several of the orbitals

per site. Finally, a spin-orbit density wave (SODW) is a staggered order in any of the order

parameters in Eq. (4.18). This order mixes spin and orbital components and thus contains

a type of hidden SDW. For example, terms of the forms

LxSx : 〈c†
sxy↑csxz↓〉 − 〈c†

sxz↑csxy↓〉 + 〈c†
sxy↓csxz↑〉 − 〈c†

sxz↓csxy↑〉 (4.23)

and

LzSz : 〈c†
syz↑csxz↑〉 − 〈c†

sxz↑csyz↑〉 −
(
〈c†

syz↓csxz↓〉 − 〈c†
sxz↓csyz↓〉

)
. (4.24)

In Chapter 5 this full set of parameters are considered for the magnetic order of Sr2IrO4

under compressive strain.
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4.2.2 BCS theory

Superconductivity can similarly be treated on a mean field level. To consider a

superconducting order parameter 〈cacb〉, we can formulate the Nambu basis
(
ck, c

†
−k

)T
.

The full Hamiltonian is then the Bogoliubov-de Gennes (BdG) Hamiltonian

HBdG =
∑

k

(
c†

k, c−k

) Hkin(k) ∆(k)

∆†(k) −HT
kin(−k)


 ck

c†
−k

 (4.25)

where H(k) contains the non-interacting terms in Hkin at a momentum k and ∆(k) is the

superconducting order parameter. In the full multi-orbital model, the basis vectors in Nambu

space are
ck = (ck,A,yz,↑, ck,A,yz,↓, ck,A,xz,↑, ck,A,xz,↓, ck,A,xy,↑, ck,A,xy,↓,

ck,B,yz,↑, ck,B,yz,↓, ck,B,xz,↑, ck,B,xz,↓, ck,B,xy,↑, ck,B,xy,↓,

c†
−k,A,yz,↑, c

†
−k,A,yz,↓, c

†
−k,A,xz,↑, c

†
−k,A,xz,↓, c

†
−k,A,xy,↑, c

†
−k,A,xy,↓,

c†
−k,B,yz,↑, c

†
−k,B,yz,↓, c

†
−k,B,xz,↑, c

†
−k,B,xz,↓, c

†
−k,B,xy,↑, c

†
−k,B,xy,↓)T

(4.26)

If only a single orbital and sublattice is considered the eigenvalues are

E(k) = ±
√
ξ2

k + |∆(k)|2, where ξk are the eigenvalues of Hkin(k). In the single j = 1/2

band approximation, the most probable predicted superconducting order in Sr2IrO4 has

been a dx2−y2-wave order ∆(k) = ∆x2−y2 (cos kx − cos ky). For this order to be favorable it

requires an effective attractive interaction between nearest neighbor sites. Understanding

the processes that cause this effective attraction is one of the important questions in the

study of unconventional superconductivity. What mediates superconductivity will have

consequences for the shape of the effective interaction. In Bardeen-Cooper-Schrieffer theory

the Cooper pairs are mediated by phonons. However, screening effects of the Coulomb

interactions from other electrons can also results in attractive interactions. The

interactions will be discussed further in Chapter 4.

An intra-orbital interaction in momentum space that connects the two sublattices has

the form:

HU = 1
N

∑
k′

∑
k,α

∑
δ=±x̂,±ŷ

V ei(k−k′)·δc†
k′,Aα,↑ck,Aα,↑c

†
−k′,Bα,↓c−k,Bα,↓ (4.27)
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A mean field decomposition gives us

HU ≈
∑
k,α

V
[
∆AB

α,↑↓(k)eikxc†
k,B,α,↓c

†
−k,A,α,↑ + ∆†,BA

α,↓↑ (k)e−ikxck,A,α,↑c−k,B,α,↓
]

−
∑
k,α

V∆AB
α,↑↓(k)〈eikxc†

k,B,α,↓c
†
−k,A,α,↑〉

(4.28)

with the order parameters defined as

∆AB
α,↑↓(k) = 1

N

∑
k′

〈e−ik′
xck′,A,α,↑c−k′,B,α,↓〉 (4.29)

If the expectation value is calculated via the eigenstates as in Eq. (4.14), the values of the

eigenstates of the BdG Hamiltonian gives us:

∆AB
α,↑↓(k) = − 1

N

∑
k′
V∆AB

α,↑↓(k′)f(E(k′), T ) − f(−E(k′), T )
2E(k′)

= − 1
N

∑
k′
V

∆AB
α,↑↓(k′)

2E(k′) tanh
(
E(k′)
2kBT

) (4.30)

This is the BCS equation, which can have a solution ∆AB
α,↑↓(k) 6= 0 when V < 0. Values

for an attractive nearest neighbor V that reproduce the superconducting region in cuprates

have been previously approximated. However, such approximations depend both on the

value of U and the hopping t. As the work in this thesis considers a varying strain, and

therefore hopping parameters, we need to study closer how the effective interaction changes.

In the following sections we will consider how the Coulomb interaction is treated to study

spin-fluctuation mediated superconductivity.

4.3 Interaction vertices

To study our full model we combine the non-interacting Hamiltonian from section 3.2 with

Eq. (4.2). In momentum space the Hamiltonian with the bare interactions is

H = Hkin +
∑

a,b,c,d

∑
k1k2k3k4

V abcd
0,k1k2k3k4c

†
k3cck1ac

†
k4dc

†
k2b (4.31)



4. Multi-orbital interactions 35

where the translational invariance of the interactions requires that k1 + k2 − k3 − k4 is

equal to 0 up to a reciprocal lattice vector K. In the following section I will introduce

how an interacting model is expanded, in perturbation theory, to get the parquet equations

for an effective interaction and how to calculate self-energies. Approximations for solving

the equations will be shown at both at the Hartree-Fock and random phase approximation

(RPA) level. The connection between the order parameters in mean field, as discussed in

the previous section, and self-energies in the Hartree-Fock calculation will be established.

4.3.1 Single-particle propagator

In the interacting system the particle-hole G and hole-particle Ḡ Green’s functions for the

full system are defined as

Gab(k) = −
∫ β

0
dτeiωnτ 〈Tτcka(τ)c†

kb(0)〉 (4.32)

Ḡab(k) = −
∫ β

0
dτeiωnτ 〈Tτc

†
−ka(τ)c−kb(0)〉 (4.33)

where the momentum is k = (k, iωn), with the fermionic Matsubara frequencies ωn = (2n+

1)π/β and the inverse temperature β = ~/(kBT ). The anomalous Green’s function Fab can

similarly be defined as

Fab(k) = −
∫ β

0
dτeiωnτ 〈Tτcka(τ)c−kb(0)〉 (4.34)

F̄ab(k) = −
∫ β

0
dτeiωnτ 〈Tτc

†
−ka(τ)c†

kb(0)〉 (4.35)

The full Green’s function G can be connected to the non-interaction Green’s function G(0),

as introduced in Section 3.5, and the self-energy Σ via the Dyson-Gorkov equations:

G(k, iωn) = G(0)(k, iωn) + G(0)(k, iωn)Σ(k, iωn)G(k, iωn) (4.36)

The above equation can be represented diagrammatically as shown in Fig. 4.2. The particle-

hole Gab̄ and particle-particle F̄āb̄ propagators, are elements in the matrix form of the full
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single-particle propagator:

G =

 Gab̄ Fab

F̄āb̄ Ḡāb

 , G(0) =

 G
(0)
ab̄

0

0 Ḡ
(0)
āb

 , Σ =

 Σab̄ ∆ab

∆̄āb̄ Σ̄āb

 (4.37)

The bar on propagators or indices ā represents that is belongs to a hole rather than a

particle. The particle-hole self-energy is Σab̄ and the particle-particle self-energy is ∆ab.

Writing Eq. (4.36) in terms of the components, the full set of coupled equations are

Gab̄ = G
(0)
ab̄

+G
(0)
ac̄ Σc̄dGdb̄ +G

(0)
ac̄ ∆̄c̄d̄Fd̄b̄ (4.38)

Ḡāb = Ḡ
(0)
āb + Ḡ

(0)
āc Σ̄cd̄Ḡd̄b + Ḡ

(0)
āc ∆cdF̄db (4.39)

Fab = G
(0)
ac̄ Σc̄dFdb +G

(0)
ac̄ ∆̄c̄d̄Ḡd̄b (4.40)

F̄āb̄ = Ḡ
(0)
āc Σ̄cd̄F̄d̄b̄ + Ḡ

(0)
āc ∆cdGdb̄ (4.41)

Since the interacting Green’s function appears on both sides of the equation, Eq. (4.36) can

be expanded as

G = G(0) + G(0)ΣG = G(0) + G(0)ΣG(0) + G(0)ΣG(0)ΣG(0) + G(0)ΣG(0)ΣG(0)ΣG(0) + . . .

(4.42)

so that terms up to a certain order can be calculated. A general labeling of Green’s functions

can be used where G(1, 2) represent the propagation from 1 to 2. Each label represents both

a point in space and time as well as label for the flavor of fermions a = (s, α, σ). The

sublattice is s, orbital α, and spin σ.

4.3.2 Two-particle propagator

The two-particle particle-hole (ph) and particle-particle (pp) propagators can be written

in terms of single particle propagators as Gph(12; 34) = βG(13)G(42) and Gpp(12; 34) =

−1
2βG(13)G(24). In this general notation an index 1, 2, 3, 4 contains both time and space

indices as well as the label for the fermion, in terms of spin, orbital, and sublatttice. The

inverse temperature is β = 1/(kBT ) and the factor 1/2 is included due to indistinguishability.
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The two-particle propagators can be Fourier transformed into momentum space, and are then

the particle-hole and particle-particle susceptibilities:

χph
abcd(q) = β

N

∑
k

Gac(k + q)Ḡbd(−k) = − β

N

∑
k

Gac(k + q)Gdb(k) (4.43)

χpp
abcd(q) = β

N

∑
k

Gac(k + q)Gbd(−k) (4.44)

where N is the number of points in momentum space. Here translational invariance has been

assumed and the Hamiltonian has the property Ḡab(k) = −Gba(k). The susceptibilities are

in general defined for the full system as

χ̂ph
abcd(q) = − 1

N2
k

∫ β

0
dτeiωnτ

∑
k

〈Tτc
†
a,k(τ)cb,k+q(τ)c†

d,−k(0)cc,−k−q(0)〉c (4.45)

χ̂pp
abcd(q) = 1

N2
k

∫ β

0
dτeiωnτ

∑
k

〈Tτc
†
a,k(τ)cd,k+q(τ)c†

b,−k(0)cc,−k−q(0)〉c (4.46)

where k = (k, iωn). The non-interacting susceptibilities are calculated via the

non-interaction Green’s functions:

χph
0,abcd(q) = − β

N

∑
k

G(0)
ac (k + q)G(0)

db (k), χpp
0,abcd(q) = β

N

∑
k

G(0)
ac (k + q)G(0)

bd (−k) (4.47)

Using the Green’s functions in Eq. (4.37) the particle-hole susceptibility becomes the

Lindhard function, by summing over all Matsubara frequencies:

χph
0,abcd(q) = β

N

∑
k,n,n′

[Uk+q]an

[
U †

k+q

]
nc

[Uk]dn′

[
U †

k

]
n′b

∑
ωn

1
iωn + iωm − ξk+q,n

1
−iωn + ξk,n

= 1
N

∑
k,n,n′

[Uk+q]an

[
U †

k+q

]
nc

[Uk]dn′

[
U †

k

]
n′b

f(ξk+q,n, T ) − f(ξk,n′ , T )
iωm − (ξk+q,n − ξk,n′)

(4.48)

This means that for each band n the non-interacting susceptibilities have the form

χph
0,n(q) = − 1

N

∑
k

f(ξn,k) − f(ξn,k+q)
ξn,k − ξn,k+q − iωm

, χpp
0,n(q) = 1

N

∑
k

1 − f(ξn,k) − f(ξn,k+q)
ξn,k + ξn,k+q − iωm

(4.49)
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+
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K ′′ +Q

K ′′

χph χph
0 χph

0 χphΓph

a)

b)

Figure 4.2: The Dyson equation is shown for the one-particle propagator and the Bethe-
Salpeter equation for the susceptibility, the two-particle propagators.

where f(ξn,k) is the Fermi-Dirac function, Eq. (4.15). The Bethe-Salpter equation is a similar

equation to the Dyson equation and here results in the susceptibility being expanded as

χ̂ι(q) = χ̂ι
0(q) + χ̂ι

0(q)Γ̂ιχ̂ι(q) = χ̂ι
0(q) + χ̂ι

0(q)Γ̂ιχ̂ι
0(q) + χ̂ι

0(q)Γ̂ιχ̂ι
0(q)Γ̂ιχ̂ι

0(q) + . . . (4.50)

where ι = ph, pp. Γ̂ι are the interaction vertices and an approximation of their values gives us

the effective interaction we need for our calculations. A diagrammatic version of Eq. (4.50)

is shown in Fig. 4.2.

4.3.3 Parquet equations

It is possible to construct a partition function for the full interacting system by introducing

the so-called Luttinger-Ward functional [3]. Equations for the self-energies can be

constructed by taking functional derivatives of the functional with respect to the

propagators [4, 5]. The irreducible vertex is similarly derived from the functional derivative

Γph
abcd(33′; 44′) = δΣab(3; 3′)

δGcd(4; 4′) (4.51)

The vertex can also be obtained diagrammatically by removing one internal line from the

skeleton self-energy in all possible ways [6]. Using the generalized labels of the propagators
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introduced in section 4.3.1 the complete particle-hole vertex can be written as

Γ = 1
2
∑

i

Γ(12; 34)c̄(1)c(2)c̄(4)c(3) (4.52)

The c, c̄ are Grassmann variables, that ensures the correct commutation relations for the

term. This is equivalent to the interaction term in Eq. (4.31). Just by using commutation

relations a particle-particle vertex can be defined as Γ(12; 34) = −ΓP (14; 32), such that

ΓP = −1
2
∑

i

ΓP (12; 34)c̄(1)c(4)c̄(2)c(3) (4.53)

The complete vertices need to respect crossing symmetry, meaning that an exchange of

labels must correspond to the correct expression when also taking into account fermion

commutation relations in Eq. (4.52). The irreducible vertices then have the properties

Λirr(12; 34) = −Λirr(42; 31) = −Λirr
P (14; 32) (4.54)

These are irreducible in both particle-hole and particle-particle channels. In Chapter 6, the

Hubbard-Kanamori interactions. Eq. (4.2), will be the bare interactions considered as the

irreducible vertices. We can find the parquet equations [7, 8, 6] by rewriting the Bethe-

Salpeter equations for the complete vertex such that the crossing symmetry is preserved to

get equations for the irreducible vertices in each channel

Γph(12; 34) = Λirr(12; 34)−Γ(42; 56)Gph(56; 78)Γph(78; 31)+ΓP (41; 56)Gpp(56; 78)Γpp(78; 32)

(4.55)

Γpp(12; 34) = −Λirr(14; 32)+Γ(24; 56)Gph(56; 78)Γph(78; 31)−Γ(14; 56)Gph(56; 78)Γph(78; 32).

(4.56)

where repeated indices are summed over. The equations can be rewritten to not contain the

full vertices Γ,ΓP

Γph(12; 34) = Λirr(12; 34) − Φ(42; 31) + Ψ(41; 32) (4.57)

Γpp(12; 34) = −Λirr(14; 32) + Φ(24; 31) − Φ(14; 32) (4.58)
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Figure 4.3: The parquet equation for the particle-particle vertex where no momentum is
transferred in the pairing. The equation can be written as Γpp

K12;K′34(0) = Γpp
0,12;34−Φ24;31(K−

K ′) + Φ14;32(K +K ′), as for the pairing.

where we define
Φ(12; 34) = [Γph(1 −GphΓph)−1GphΓph](12; 34)

Ψ(12; 34) = [Γpp(1 −GppΓpp)−1GppΓpp](12; 34)
(4.59)

An approximation of the terms in these equations gives us the effective particle-hole and

particle-particle interactions which preserves the crossing symmetry. In Chapters 5 & 6,

particle-hole and particle-particle interactions are not treated on equal basis. Parquet theory

guarantees self-consistency of both one and two particle propagators. However, they do

not always respect thermodynamic conservation laws. Methods aimed to self-consistently

evaluate all self-energies and to ensure the preservation of the crossing symmetry of the full

vertex, such as FLEX or solving the full parquet equations, are computationally heavy [8].

Therefore, more restricted approximations are used in this thesis to cover a larger parameter

space of the phase diagrams.

4.3.4 Approximations

In the Hartree-Fock approximation the only terms that are kept renders the interaction local

and instantaneous

Γabcd
pp (k − k′) = −Γadcb

0 δ(k − k′) (4.60)
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where again k = (k, ωn). In a one-orbital Hubbard model these are just Γ↑↑↓↓
0 = U . The

random phase approximation (RPA) instead keeps terms which become a geometric sum:

χ̂ι(q) = χ̂ι
0(q)

[
1 − Γ̂ιχ̂ι

0(q)
]−1

(4.61)

for ι = ph, pp and thus the effective pairing interaction, using Eq. (4.58) becomes

Γabcd
pp (k − k′) = −Γadcb

0 δ(k − k′) + [Γ0χ(k + k′)Γ0]bdca − [Γ0χ(k − k′)Γ0]adcb (4.62)

with the χ̂(q) being the RPA susceptibility. A diagrammatic version of the equation for Γpp

is shown in Fig. 4.3, where the transferred momentum is Q = 0. When keeping the labels

a general and with no transferred momentum being considered for the pairing, the equation

simplifies further:

Γabcd
pp (k − k′) = −Γadcb

0 δ(k − k′) − 2 [Γ0χ(k − k′)Γ0]adcb (4.63)

This can be seen in Fig. 4.3 by switching the labels (K, 1) and (−K, 2) in the last diagram.

In the example below, we will see how the RPA can be used to get an effective interaction

that can mediate superconductivity. However, first we can look at what the Hartree-Fock

approximation means for instabilities. In general, an instability in the normal state, i.e. the

formation of a particle-hole or particle-particle order, can be found via the Bethe-Salpeter

equation. Like in the RPA the Bethe-Salpeter equation does in general contain terms that

form a ladder sum such that [7]

[
Γ̂ι + Γ̂ιĜι

0Γ̂ι + . . .
]
Ĝι

0φ =
[
1 − (Γ̂ιĜι

0)
]−1

(Γ̂ιĜι
0)φ (4.64)

for ι = ph, pp and for some wavefunction φ. Ĝι is some two-particle propagator and Γ̂ι is

the effective vertex in the channel considered. If this wavefunction is an eigenstate to the

operator acting on it, one can analyze the properties of the eigenfunction

λφ =
[
1 − (Γ̂ιĜι

0)
]−1

(Γ̂ιĜι
0)φ (4.65)
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for an eigenvalue λ. As the denominator can be expanded, the same problem is solved by

λφ = (Γ̂ιĜι
0)φ. (4.66)

Under the Hartree-Fock approximation, the interaction is instantaneous and local, and a

solution to this equation also solves the scalar eigenvalue equation [7]

λqφq = χ̂ι
0(q)Γ̂ι

0φq (4.67)

with eigenvalue λq and a scalar eigenvector φq which does not depend on any internal

momentum. At λq = 1 the normal state must have an instability as the Eq. (4.65) diverges.

For a given momentum and frequency point Q = (Q, iωn) if

1 = Max
[
eig

[
χ̂ι

0(Q)Γ̂ι
0

]]
(4.68)

there must be an instability of the normal state in the channel ι. This is called the Stoner

criterion. It is often used to determine if Stoner magnetism is present, as a particle-hole

self-energy must be present with a largest value at Q if it is fulfilled. We can also note that

if this occurs at a point Q a consequence is that the RPA susceptibility diverges, as there is

a point where
[
1 − Γ̂ι

0χ̂
ι
0(Q)

]−1
→ 0.

4.3.5 Example: One-orbital RPA

To illustrate how the random phase approximation can be used to get an effective particle-

particle interaction and why an approximation beyond Hartree-Fock is required to get pairing

from that interaction, we look at a one-orbital model. For this model there are two degenerate

bands of σ =↑, ↓:

H0 =
∑
k,σ

(εk − µ)c†
k,σck,σ (4.69)

The dispersion is set to εk = −2t(cos kx + cos ky). The only non-vanishing non-interacting

propagators are thus G(0)
↑↑ (k) = G

(0)
↓↓ (k) = G(0)(k). The only non-vanishing non-interacting

susceptibilities are then χ0(q) = χph
0,σσ′σσ′(q). The interactions are the one-orbital Hubbard
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interaction in Eq. (4.8) that has been Fourier transformed as

Hint = 1
2N

∑
k,σ,σ′

Uc†
k,σc−k,σc

†
−k,σ′ck,σ′ (4.70)

The susceptibility and interactions can be written on matrix form in the basis (↑↑, ↑↓, ↓↑, ↓↓).

χ̂0(q) and the bare interactions Γ̂ph
0 are then the 4 × 4 matrices

χ̂0(q) =



χ0(q) 0 0 0

0 χ0(q) 0 0

0 0 χ0(q) 0

0 0 0 χ0(q)


, Γ̂ph

0 =



0 0 0 U

0 −U 0 0

0 0 −U 0

U 0 0 0


(4.71)

such that Γph
0,↑↓↑↓ = −U and Γph

0,↑↑↓↓ = U . There are only diagonal terms in the susceptibility

matrix as the terms in Eq. (4.69) are diagonal in spin. With RPA this gives us, with spin

components written out for clarity

χ̂(q) =



χ↑↑↑↑
0

1−χ↑↑↑↑
0 χ↓↓↓↓

0 U2 0 0 χ↑↑↑↑
0 χ↓↓↓↓

0 U

χ↑↑↑↑
0 χ↓↓↓↓

0 U2−1

0 χ↑↓↑↓
0

1−χ↑↓↑↓
0 U

0 0

0 0 χ↓↑↓↑
0

1−χ↓↑↓↑
0 U

0
χ↑↑↑↑

0 χ↓↓↓↓
0 U

χ↑↑↑↑
0 χ↓↓↓↓

0 U2−1
0 0 χ↓↓↓↓

0
1−χ↑↑↑↑

0 χ↓↓↓↓
0 U2


(4.72)

The effective pairing interaction is then

Γ̂pp(q) =



χ0U2

1−χ2
0U2 0 0 0

0 U(χ0U+1)
2−2χ0U

−U(χ2
0U2+1)

2−2χ2
0U2 0

0 −U(χ2
0U2+1)

2−2χ2
0U2

U(χ0U+1)
2−2χ0U

0

0 0 0 χ0U2

1−χ2
0U2


(4.73)

The effective pairing interaction can be spin-diagonalized and divided up into terms for

spin-singlet and spin-triplet pairing

Γsz=+1
t = Γsz=−1

t = ΓP,↑↑↑↑ = ΓP,↓↓↓↓ (4.74)
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Γs = Γpp,↑↓↑↓ − Γpp,↑↓↓↑, Γsz=0
t = ΓP,↑↓↑↓ + Γpp,↑↓↓↑ (4.75)

So, for the one band case

Γs(q) = 1
1 − χ0(q)U

(
Uχ0(q)U + U

1 + χ0(q)U

)
, Γt(q) = 1

1 − χ0(q)U

(
U − U

1 + χ0(q)U

)
(4.76)

where in the limit χ0 = 0 we get Γs = U and Γt = 0. This limit is equivalent to the Hartree-

Fock approximation. When χ0 > 0 and U > 1 the intraband singlet term is much larger

than the triplet Γs � Γt. From here we can see that for the Hartree-Fock approximation in

Eq. (4.67):

λq = Γpp(q)χpp
0 (q) = U

N

∑
k

1 − f(ξn,k) − f(ξn,k+q)
ξk + ξk+q − iωm

(4.77)

If we consider a static approximation ωm → 0 and, for example, that q ≈ (π, π) then

it is only possible to have λq < 1. Thus, no particle-particle instability is found under

this approximation. We must therefore use an effective interaction that has a momentum

dependence to be able to get instabilities in the superconducting channels, like the one given

by the RPA. For large peaks in the susceptibility, those spin-fluctuations can modify the

effective interaction so that it also has large peaks at some momenta.

4.4 Eliashberg equation

Eliashberg theory describes superconductivity in a system with electrons and phonons. In a

weak coupling limit where the vertex corrections are assumed to be small, a set of coupled

self-consistency equations can be set up, following the same Green’s function method as in

the previous section. The self-energy can under these conditions be assumed to be on the

matrix form

Σσ(k, iωn) = iωn [1 − Z(k, iωn)] τ̂0 + ξ(k, iωn)τ̂3 + φσ(k, iωn)τ̂1 (4.78)

where τ̂i, i = 0, 1, 2, 3 are Pauli matrices in particle and hole space. The parameters Z and ξ

are formed from the particle-hole self-energy as the odd and even components with frequency:

iωn [1 − Z(k, iωn)] ∝ (Σ(k, iωn) − Σ(k,−iωn)) and ξ(k, iωn) ∝ (Σ(k, iωn) + Σ(k,−iωn)). A
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general solution [9] to the Dyson equation Eq. (4.36) is

Gσ(k, iωn) = iωnZ(k, iωn)τ̂0 + (ε(k) + ξ(k, iωn))τ̂3 + φσ(k, iωn)τ̂1

(iωnZ(k, iωn))2 − (ε(k) + ξ(k, iωn))2 − (φσ(k, iωn))2 (4.79)

where the poles of the Green’s function occur at

Ek = ±

√√√√(ε(k) + ξ(k, iωn))
Z(k, iωn)

)2

+ (φσ(k, iωn))2

(Z(k, iωn))2 (4.80)

In the band basis n, the solution for the self-energies becomes the following set of self-

consistent equations

Zn(k, iωm) = 1 + T

ωm

∑
k′,m′,n′

V
(+)

nn′ (q, iqm−m′)ωm′Zn′(k′, iωm′)
Θn′(k′, iωm′) (4.81)

ξn(k, iωm) = −T
∑

k′,m′,n′

V
(+)

nn′ (q, iqm−m′)εk′n′ + ξn′(k′, iωm′)
Θn′(k′, iωm′) (4.82)

φn(k, iωm) = −T
∑

k′,m′,n′

V
(−)

nn′ (q, iqm−m′) φn′(k′, iωm′)
Θn′(k′, iωm′) (4.83)

Θn(k, iωm) = ω2
mZ

2
n(k, iωm) + [εkn + ξn(k, iωm)]2 + φ2

n(k, iωm) (4.84)

and the gap function is ∆n(k, iωm) = φn(k, iωm)/Zn(k, iωm). Here the effective interactions

are given the different notation V
(±)

nn′ (q, iqm−m′) with + for particle-hole and − for particle-

particle. In Eliashberg theory these are not just electron-electron interactions and depends

on phonon coupling. These equations should also be supplemented by the electron number

equation to determine the chemical potential µ:

ne = 1 − 2
Nβ

∑
k′,m′,n′

εk′n′ + ξn′(k′, iωm′)
Θn′(k′, iωm′) . (4.85)

4.4.1 Connection to BCS

In the BCS limit one sets Z(k, iωn) = 1, so that φn(k, iωm) = ∆n(k, iωm), and ξ(k, iωn) = 0

since we are only considering superconductivity. The poles of the Green’s function then
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occur at

Ek =
√
ε(k)2 + (∆n(k, iωm))2 (4.86)

and the self-consistency equation for the pairing order parameter φn(k, iωm) becomes

∆n(k, iωm) = −T
∑

k′,m′,n′

V
(−)

nn′ (q, iqm−m′) ∆n′(k′, iωm′)
(iωm′) −

√
(ε(k))2 + (∆n−(k, iωm′)))2

× 1
(iωm′) +

√
(ε(k))2 + (∆n′(k, iωm′))2

(4.87)

A static approximation of the pairing and the interactions gets rid of the frequency

dependence as V (−)
nn′ (q, iqm−m′) → V

(−)
nn′ (q) and ∆n(k, iωm) → ∆n(k). For one band the gap

equation becomes

∆(k, iδ → 0) = −T
∑
k′
V (−)(q)

∑
ωm′

∆(k′)
(iωm′ + iδ) −

√
(ε(k))2 + (∆(k)))2

× 1
(iωm′) +

√
(ε(k))2 + (∆(k))2

(4.88)

∆(k, iδ → 0) = −T
∑
k′
V (−)(q)

∑
ωm′

∆(k
′)

(iωm′ + iδ) − E(k)
1

(iωm′) + E(k) (4.89)

∆(k) = −
∑
k′
V (−)(q)∆(k′)f(E(k′)) − f(−E(k′))

iδ − 2E(k′) (4.90)

Using that the Fermi-Dirac function can be written as

f(En′(k′)) − f(−En′(k′)) = tanh
(

En′ (k′)
2T kB

)
:

∆(k) = −
∑
k′
V (−)(k − k′) ∆(k′)

2E(k′) tanh
(
E(k′)
2TkB

)
(4.91)

We can identify this as the BCS equation Eq. (4.30). The connection to the mean field

calculation can also be seen here as with the Hartree-Fock approximation V (+) = U . With

the same other approximations the particle-hole self-energy in Eq. (4.82) becomes a mean

field self-consistency equation.

We can now go back to the one-orbital model in section 4.3.5. From here we can observe

that if the effective interaction is the RPA singlet interaction in Eq. (4.76), where we take
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the static approximation V (−)(k − k′) = Γs(q, ωn → 0)/N with q = k − k′:

∆(k) = − 1
N

∑
k′

1
1 − χ0(q)U

(
Uχ0(q)U + U

1 + χ0(q)U

)
∆(k′)
2E(k′) tanh

(
E(k′)
2TkB

)
. (4.92)

We can see that this equation can allow for some momentum dependent pairings. For

example if the effective interaction peaks around the specific point Γs(q) ∝ δ(q = (π, π))

and the pairing has a d-wave symmetry ∆(k) = ∆(cos kx − cos ky), then Eq. (4.92) becomes:

∆(cos kx − cos ky) ∝ − ∆(cos(kx + π) − cos(ky + π))
2E(k + (π, π)) tanh

(
E(k + (π, π))

2TkB

)

=∆(cos kx − cos ky)
2E(k) tanh

(
E(k)
2TkB

) (4.93)

and since the positive Ek > 0 is included in this calculation, we can fulfill the self-consistency

equation ∆(cos kx − cos ky) ∝ ∆(cos kx − cos ky).

4.4.2 Multi-orbital case

If we only consider superconductivity, without any magnetic order, we can see how we get

the Eliashberg equation as the self-consistency from the Dyson equation. One can linearize

the matrix version of the Dyson-Gorkov equation, Eq. (6.9), by first rewriting the anomalous

Green’s function F by substituting in the expression for Ḡ as follows:

F =
(
G−1

0 − Σ
)−1

∆Ḡ, Ḡ =
(
Ḡ−1

0 − Σ
)−1

+ ∆F̄

F =
(
G−1

0 − Σ
)−1

∆
(
Ḡ−1

0 − Σ̄
)−1

+ O(∆2)
(4.94)

If only the terms linear in ∆ are kept, we can also see that ∆̄F ∝ O(∆2), and we explicitly

write the generalized coordinates Eq. (4.37) becomes

G(k)(12) =
(
G−1

0 − Σ
)−1

(1, 2), F (k)(12) = G(k)(13)∆(k)(34)Ḡ(k)(42) (4.95)
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The solution to the particle-particle self-energy is can, similarly to the definition of the

vertex, be derived for the Luttinger-Ward functional as [4, 5]:

∆(k)(12) =
∑
k′

Γpp(k − k′)(12, 34)F (k′)(34) (4.96)

with the interaction Γabcd
pp (k) as given in Eq. (4.58). If Z(k, iωn) = 1, this is equivalent to a

linearized Eq. (4.83):

∆ab(k, iωm) = 1
βN

∑
k′,ωm′

∑
a′b′,µν

Γpp,aa′b′b(k − k′, iωm′)Ga′µ(k′, iωm′)Ḡνb′(k′, iωm′)∆µν(k′, iωm′)

(4.97)

As the effective interaction is a rank 4 tensor it scales with the number of species of fermions

as ∼ N4
f . It also scales with the total number of lattice points N = N2

k . Any numerical

computation of the self-consistency equations therefore quickly becomes intensive, even for

smaller lattice sizes in multi-orbital systems. One approximation that reduces the complexity

of the computation is to calculate the gap equation in the normal state. This is accomplished

by making the approximation of setting the Green’s function as the non-interacting value

Gab(k) ≈ G
(0)
ab (k).

∆ab(k) = 1
βN

∑
k′,ωm′

∑
a′b′,µν

Γpp,aa′b′b(k − k′)G(0)
a′µ(k′)Ḡ(0)

νb′(k′)∆µν(k′) (4.98)

The equation can be solved as an eigenvalue problem and solved by finding the eigenvalue

λe of the linearized gap equation:

λe∆ab(k) = 1
βN

∑
k′,ωm′

∑
a′b′,µν

Γpp,aa′b′b(k − k′)G(0)
a′µ(k′)Ḡ(0)

νb′(k′)∆µν(k′) (4.99)

At a given temperature T , finding λe ≥ 1, means that ∆ab(k, iωm) 6= 0 and superconductivity

is present. The critical temperature is found as when λe(Tc) = 1 and the size of the eigenvalue

therefor carries information about how far a found eigenstate is from the transition. In

Chapter 6 the linearized gap equation will be considered in both the static limit and in the

normal state. It should be noted that in this limit the lack of frequency dependence or
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phonon contributions means that the equation does not capture Eliashberg physics. Rather

the equation is a multi-band BCS-like equation.

4.4.3 Multigap superconductivity

Generally, there aren’t multiple gaps in conventional superconductors, since the large

coherence length leads to averaging due to the interband scattering [10]. However, if there

are multiple pockets at the Fermi surface in an unconventional superconductor there can be

multiple gaps. The size of the gaps on two FS depends on intraband coupling λ11, λ22 and

interband coupling λ12, λ21 [10, 11]. The two gaps have the same critical temperature Tc

and their coexistence can raise it. In BCS the effective coupling determines the critical

temperature as:

Tc = 1.14Ω̃e−1/λ̃, λ̃ = 1
2

[
λ11 + λ22 +

√
(λ22 − λ11)2 + 4λ12λ21

]
(4.100)

From here it can be shown that one of the gaps always exceeds the BCS value, while the

other is smaller than it. Since the usual BCS relation between Tc and the T = 0 gap is

derived only for a single pairing function, the usual BCS relation for the size of the gap does

not hold. In the special case λ22 = 0 superconductivity is still induced in the second band

from interband transitions [12] since then λ̃ = 1
2 [λ1 + 2λ12]. It is thus expected that in a

superconducting phase all pockets have some superconducting gap function. The interband

coupling is often mediated by phonons [10]. Other studies however show that the induced

gap is inversely proportional to the mass enhancement on a FS [13]. The most direct probe

of a multigap state is local density of states measurements, where it is possible for two gaps

to have different symmetries [14, 15].

4.4.4 Temperature and lattice size

Any numerical solution to the self-consistency equations requires a finite size of the

momentum grid and a finite temperature. The temperature dependence enters in the

regular way via the Green’s functions, as they are given for a specific Matsubara frequency

ωn = (1 + 2n)π/β. The resolution is thus determined by the sampling of frequencies, where
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a lower temperature requires a higher number. Other studies of multi-orbital compounds

study the frequency dependence and are therefore performed at higher

temperatures [16, 17, 18]. In this thesis a static approximation, ωn → 0, is ultimately

considered for the linearized gap equation. We also don’t include phonon mediated

interactions g(ω), only electron-electron interactions. All frequency, and consequently

temperature, dependence is therefore confined to calculations of the two-particle

propagators. As a result, setting the number of Matsubara frequencies to infinity and using

the identity in the Lindhard function, Eq. (4.48), is possible. The limit to temperature and

lattice size considered with these approximations will depend on the features in momentum

space. In a grid of k-points, the distance between points must be smaller than the thermal

broadening of peaks in the susceptibility. In a multi-orbital model the susceptibility is a

large tensor of size N2
s ×N2

o ×N2
σ ×N2

k . The lattice size and temperatures must be chosen

such that they ensure convergence with increasing lattice size of positions and height of

peaks, for all susceptibility channels.

4.4.5 Structure factors

The magnetic susceptibilities, in Eq. 4.45, will depend on the self-energies of the system.

The fluctuation-dissipation theorem [19], relates the scattering intensity to the dynamical

magnetic susceptibility χ̂(q, iωm) as:

Sab(q, ωm) = 2~(1 + fB(ω))Im [χab(q, iωm)] (4.101)

where the factor 1 comes from the quantum part and the thermal part is the Bose-Einstein

distribution fB(ω) [20]. The dynamical structure factor is a useful quantity since it can be

directly compared to neutron scattering data. The static structure factor is in general

Sx(q) =
∫ ∞

−∞
dωSx(q, ω) (4.102)
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where x = z,±, c is the channel. So it can be written as [21]:

Sx(q) =
∫ ∞

−∞

dω

π

Im [χx(q, ω)]
1 − e−ω~β

(4.103)

The static susceptibility can the other way around be given as

∫ ∞

0
dωSx

ab(q, ω) = 3kBTχ
x
ab(q, T ) (4.104)

in the high temperature limit [22]. Then the static structure factor and susceptibility are

proportional Sab(q) ∝ χab(q). If spin-fluctuation mediated superconductivity is possible in

system, there will be large peaks in the dynamical and static susceptibility at given

momenta Q. It is directly the effective pairing interaction which determines in which

channels and at what momenta connection points at the Fermi surface that pairing is

favored. However, as the structure factors can provide direct information about

susceptibility peaks it is useful to connect superconducting orders to which type of

spin-fluctuations that can mediate them. This information can provide experimental

signatures for when a compound in the normal state is close to a superconducting

instability. In Chapter 6 spin-fluctuation mediated superconductivity is studied and the

evolution of peaks in the static spin susceptibility is calculated. There the information

given by the susceptibility calculations is discussed further.
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Preface to Chapter 5

There are two motivations for modeling Sr2IrO4 under epitaxial strain. Firstly, the

experiments introduced in section 2.3 found the compound to have a magnetic order which

is exceptionally sensitive to the strain. Secondly, the multi-orbital model of Sr2IrO4 is

affected by strain in such a way that the properties of the orbitals change in different

amounts, as introduced in section 3.2. Undoped and unstrained Sr2IrO4 is a spin-orbit

coupled antiferromagnetic insulator. To understand a transition out of this order, and

potentially into a superconducting one, changes to the order can be studied for both strain

and doping. In the following publication, chapter 5, undoped Sr2IrO4 is modeled under

compressive epitaxial strain and with an external magnetic field.

To better understand the order in the multiple spin-orbit coupled orbitals and how it

changes, the mean field model introduced in section 4.2 is used to study all on-site order

parameters. In total 42 complex order parameters are considered, which include both

staggered and uniform orders. Of particular interest is how well the j = 1/2 states describe

the magnetic order, if the contributions originating from each of the dyz, dxz, dxy orbitals

changes, and what states are present at the Fermi surface once there is one. An effective

model for the j = 1/2 can capture much of the physics determining the magnetic order for

undoped Sr2IrO4 and such a model predicts superconductivity. Understanding the validity

of that model as strain is increased is thus crucial for determining how the strained

compound should be modeled. Studying the magnetic order of the undoped compound is a

first step towards determining if there is any regime where superconductivity can be

favored. For the overarching goal of modeling superconductivity in the system we need to

determine when the bandstructure can be favorable for superconductivity and when it can

be favorable for a magnetic order. A model with many parameters would be required to
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fully capture the effects of the competition between magnetism and superconductivity. The

approach here is therefore to determine which parameters are needed to describe the

strained system, so that appropriate approximations can be made when calculating a full

phase diagram.

The magnetic field considered in this chapter gives us the opportunity to probe possible

signatures of the multi-orbital physics. As the undoped compound under compressive

epitaxial strain has been studied experimentally, such signatures give us information about

the validity of how the strain is modeled and how the interactions are treated.
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Abstract

We present a comprehensive study of a three-orbital lattice model suitable for the layered

iridate Sr2IrO4. Our analysis includes various on-site interactions (including Hubbard and

Hund’s) as well as compressive strain, and a Zeeman magnetic field. We use a self-consistent

mean field approach with multiple order parameters to characterize the resulting phases.

While in some parameter regimes the compound is well described by an effective J = 1/2

model, in other regimes the full multiorbital description is needed. As a function of the

compressive strain, we uncover two quantum phase transitions: first a continuous metal-

insulator transition, and subsequently a first order magnetic melting of the antiferromagnetic

order. Crucially, bands of both J = 1/2 and J = 3/2 nature play important roles in these

transitions. Our results qualitatively agree with experiments of Sr2IrO4 under strain induced

by a substrate, and motivate the study of higher strains.

5.1 Introduction

The combination of strong correlations, spin-orbit coupling (SOC), and multiple relevant

orbitals has proven to lead to many interesting states including spin- and orbital- orders,

topological states and unconventional superconductivity [1, 2, 3, 4, 5, 6]. The iridate family

of compounds displays a very rich phenomenology due to a combination of all of these

factors [1, 7, 8]. The five d-orbitals are usually split by crystal fields into two groups, eg and

t2g, with two-fold and three-fold degeneracy respectively. On the other hand, strong spin-

orbit coupling may lead to further energy splitting which in turn may reduce the number of

relevant bands. Early works on the iridates noted that the spin-orbit coupling affects the

system to such an extent that the local total angular momentum states, referred to here as

J-eigenstates, do not mix. Moreover, the strong SOC allows one to project onto the J = 1/2

subspace and arrive at a simplified effective one-orbital model. In this work we go beyond

this effective Jeff = 1/2 model and examine regimes where considering a larger subspace,

with multiple orbitals, is deemed necessary.

Sr2IrO4 is the single-layer compound in the Ruddlesden-Popper series of perovskite

iridates and is a spin-orbit coupled Mott insulator with a canted antiferromagnetic order,
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as seen in Fig. 5.1. In each layer the iridium atoms are arranged in a square lattice. Each

iridium site is surrounded by an oxygen octahedron which is rotated with respect to the

crystallographic axes, by a staggered angle φ ≈ ±12◦ [9]. The magnetic moment roughly

follows the rotation of each octahedron, resulting in the canted order. In this state the

system’s properties are dominated by the J = 1/2 bands, which are separated from the

J = 3/2 bands [10, 11, 12]. A projected effective model therefore seems appropriate. This

view is further supported by the x-ray absorption spectra that indicate scattering paths

corresponding to an order formed by J = 1/2 pseudospins [13].

The appropriate effective one-orbital model is surprisingly similar to the one used

successfully to describe many of the features of the cuprate high-Tc superconductors. A

three-orbital model can take into account both the J = 1/2 and J = 3/2 subspaces.

Previous studies of this multiorbital model of Sr2IrO4 predict that superconductivity could

occur in this compound as well. However, d-wave superconductivity seems only possible for

interorbital interaction parameters in the lower end of the predicted range [14, 15, 16].

These predictions indicate that the effective one-orbital model, Jeff = 1/2, might only be

valid in some regimes. The system enters other regimes when effects, such as of doping, are

no longer small compared to the energy scale of the spin-orbit coupling.

In this paper we take the approach that the three-orbital model is necessary. Including

the six bands of the three t2g orbitals, allows us to study several regimes where the effective

one-orbital model may be insufficient. We consider the effects of an epitaxial strain and

an external magnetic field on undoped Sr2IrO4. Strain and a Zeeman field are both orbital

dependent effects: the strain deforms the lattice and changes the inter-orbital overlaps; the

Zeeman field couples to the magnetic moment which depends on the orbital as well as the

spin angular momentum.

When considering strain, we should note that Sr2IrO4 is sensitive to changes in lattice

geometry via a strong Jahn-Teller effect [17]. Epitaxial strain affects the lattice constants

as well as the rotation angle φ. Strain is introduced by growing Sr2IrO4 on a substrate

with a mismatch in lattice parameters [18, 19, 20, 21]. In Sr2IrO4, an epitaxial strain which

changes the lattice parameters by 0.5% is not only easily achievable but also enough to

reduce the Néel temperature by 30K [18, 19]. Epitaxial strain is thus a suitable handle for
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tuning interactions and lattice deformations. Ab initio calculations have previously identified

contributions from different J-states to the experimentally observed magnetic order, as well

as excitations between the states for some strain values [22, 23]. Compressive epitaxial

strain mainly modifies the lattice structure by increasing the rotation angle of the octahedra

surrounding the iridium sites, see Fig. 5.1b.

The same effect can be achieved by other means. Two recent promising methods to

modify the rotation angle, are electrical current [24] and “field altering” via growth in a

magnetic field [25]. In particular, the method of “field altering” in combination with

doping has recently been proposed to provide a more favorable environment for observing

superconductivity in Sr2IrO4 [25]. These experiments motivate us to study trends for a

range of strain values and a range of interaction parameters.

Another regime where it might be important to include all three orbitals is reached

when a Zeeman field is applied. The field couples to the total magnetic moment which is a

combination of the orbital and spin angular momentum, and therefore mixes the local

J-states. This mixing has been largely neglected in previous literature as the Zeeman field

effects were studied in the context of the effective J = 1/2 model [12, 26, 27, 28, 29].

Previously, both experiments and modelling of the Sr2IrO4 compound have observed a

metamagnetic transition at small fields [13, 30, 31, 32, 33]. This transition aligns the

canting of the antiferromagnetic order between layers in the compound, at a field around

0.3T [17, 34]. In this work we consider higher fields as we expect to be able to see effects

originating from in-plane interaction within each layer after the metamagnetic transition

has taken place.

Some recent work with orbital resolved measurements in a magnetic field has, in addition,

shown unequal contributions from each of the t2g orbitals to the magnetic moment [35]. For

the simpler Jeff = 1/2 projected model, contributions from each orbital are assumed to be

equal. This motivates our choice to study the three-orbital model in a Zeeman field.

In this work we aim to give further insight into how quantum phase transitions can

arise in Sr2IrO4 under a compressive epitaxial strain, with the addition of a Zeeman field.

In section II we introduce a three-orbital Hubbard-Kanamori model with on-site

interactions. The interactions are treated with a self-consistent mean field approximation.
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The mean field decoupling includes all possible uniform and staggered order parameters,

except superconductivity. We include a Zeeman field which is applied in different directions

and couples to the full magnetic moment µ = −µB (L + gS), where µB is the Bohr

magneton. The compressive epitaxial strain is modelled as a linear change in hopping

parameters. This allows us to reach higher compressive epitaxial strain than previously

modeled. We are considering a 2-atom unit cell in the canted lattice, as in Fig. 5.1, where

the mean field order parameters are calculated without assuming any relation between the

two sublattices. A set of 42 independent order parameters is therefore used. These

parameters describe order in the orbital and spin angular momentum and can be expressed

in the J-state basis or the orbital basis. By considering the full set of order parameters the

contributions to the order from each J-state as well as contributions from order parameters

mixing J-states, are considered. Section III presents the results where our model predicts

phase transitions from an insulating antiferromagnet into metallic states at high strains. In

section III.A details are given for the transitions which are induced by a compressive

strain. The Fermi surfaces for the metallic orders are predicted to include several J-states,

highlighting the necessity of the multiorbital model. In section III.B the contributions to

the magnetic moment from our set of order parameters are considered when a field is

applied. Changes to the contributions of order parameters from different J-states are

predicted as a function of strain and field. Finally, in section IV we relate our results to

experimental findings and discuss implications of entering regimes where the Jeff = 1/2

model is insufficient.

5.2 Model

In Sr2IrO4, the octahedral crystal fields around the iridium splits its d-levels into t2g and

eg orbitals. Without doping, the three t2g orbitals, dyz, dxz, and dxy, are filled with five

electrons while the eg orbitals are unoccupied at higher energy. Besides the intra- and inter-

orbital hopping, these atomic states are also subject to a large on-site spin-orbit coupling and

interactions. While the Hubbard interaction strength U is rather moderate, around 1 − 2eV,

the spin-orbit coupling (SOC) is strong, λ ≈ 0.4eV. The strong SOC splits the six t2g bands
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Figure 5.1: a) The structure of a single layer of Sr2IrO4 without strain, ε = 0. The IrO6

octahedra are rotated in-plane by an angle of φ ≈ ±12◦ with the sign opposite on neighboring
octahedra. This yields an angle θ0 ≈ 156◦. The arrows represent the total magnetic moments
in the ground state, µ = −µB (L + gS), which are arranged in a canted antiferromagnetic
fashion with a small net moment along the a-axis. b) When compressive strain, ε, is applied
to the layer, the angle θε decreases as the rigid octahedra are rotated closer together. A
tensile strain has the opposite effect, resulting in a larger angle θε.
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roughly in two groups: four bands of mainly J = 3/2 character and two bands of mainly

J = 1/2 character. In the undoped compound the Fermi level is placed in such a way that

the J = 3/2 bands are filled and J = 1/2 bands are half-filled. The interaction strength is

therefore enough to form an AFM state dominated by the J = 1/2 pseudospins [13]. This

state is depicted in Fig. 5.1. The anisotropy of the system causes the interactions to be

significantly stronger in the plane than out-of-plane. A combination of the anisotropy and

the in-plane staggered rotations of the iridium sites causes the magnetic order to form in the

plane along the crystallographic b-axis with a canting angle of the magnetic moment along

the a-axis in each plane. In this work, given the large anisotropy, we model the system as a

single layer.

5.2.1 Hubbard-Kanamori Model

Before we introduce the strain and Zeeman field, we recall the Hamiltonian of the system:

H = Hkin +HSOC +HI (5.1)

where Hkin is the kinetic part, HSOC is the spin-orbit coupling, and HI contains the on-site

interactions, as defined below. The kinetic part includes hopping between nearest and next

nearest neighbouring sites for each of the d-orbitals α = yz, xz, xy, with inter- and intra-

orbital hopping. In order to study uniform and staggered orders we consider a unit cell with

two sites, with sublattices s = A,B. The sublattices include the staggered rotation φs = ±φ,

with opposite signs for sublattice A and B. For both sublattices defined in the same global

basis c = (cA,yz,↑, cA,yz,↓, cA,xz,↑, cA,xz,↓, cA,xy,↑, cA,xy,↓, cB,yz,↑, cB,yz,↓, cB,xz,↑, cB,xz,↓, cB,xy,↑,

cB,xy,↓), the labelling of orbital and spin directions are along the crystallographic a- and

b-axes. The rotation of each site can be taken into account in the kinetic Hamiltonian which

therefore includes non-zero hoppings between the dyz and dxz orbitals. Our Hamiltonian

follows the form of Ref. [ [36]], which uses a Slater-Koster approach [37]. For each spin
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σ =↑, ↓ the kinetic terms take the form (in momentum space):

Hkin =

 HAA HAB

H†
AB HBB

 (5.2)

HAA =


εd ε1d 0

ε1d εd 0

0 0 εxy
d

 , HAB =


εyz −εrot 0

εrot εxz 0

0 0 εxy

 (5.3)

where
εxy = 2t (cos kx + cos ky)

εyz = 2 (tδ cos kx + t1 cos ky)

εxz = 2 (t1 cos kx + tδ cos ky)

εrot = 2t′ (cos kx + cos ky)

εxy
d = 4tn cos kx cos ky + µxy

ε1d = 4t1d sin kx sin ky

εd = 4tnd cos kx cos ky.

(5.4)

The nearest-neighbor hopping for dyz- and dxz-orbitals is nearly one dimensional in-plane,

with t1 along the direction in which they are orientated and a smaller tδ along the other

direction. The dyz-dxz inter-orbital hopping, t′, and the nearest-neighbor hopping between

dxy-orbitals, t, are equal in both directions. For the next-nearest-neighbors, along the

diagonal of the square lattice, the hopping is tn for dxy and tnd for the dyz- and dxz-orbitals.

The dyz-dxz inter-orbital hopping is t1d along the diagonal. In the absence of strain we use

the following values: (t, t1, tδ, t′, tn, t1d, tnd) =

(-0.211, -0.186, -0.055, -0.042, -0.118, -0.004, 0.021)eV. These values are extrapolated from

those calculated for compressive epitaxial strain by the lineraziation given in detail below

in section 5.2.3. The hopping amplitudes have been calculated by Seo et al. [23] through ab

initio for varying strain. The corresponding rotation angle of the sites is φs = ±12.3◦ and

µxy = 0.7t [38, 8] takes the tetragonal splitting into account, with the value of t being fixed

to that of ε = 0. In general, the tetragonal splitting is expected to change under
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compression as the tetragonal elongation of the oxygen octahedra increases [34]. Works

considering a superexchange Hamiltonian predict that for an increased elongation, either

an order along the c-axis can be favoured or the canting moment can be

suppressed [39, 40]. An additional small staggering of the distortion has been observed to

stabilize the canted magnetic moment [41]. However, we chose to study the strain-induced

hopping modifications separately as there are conflicting predictions on how the energy

splitting depends on strain. Ab initio calculations predicted a µxy where the absolute value

decreases until µxy changes sign [42, 22], while recent RIXS data observed a linearly

increasing absolute value of µxy [43]. Section 5.4 expands on how strain-dependent

distortions could affect our results.

The atomic spin-orbit interaction, with the coupling λ, is defined at each site from spin

and orbital angular momentum along the same axes as:

HSOC = λ

2
∑
j,i

∑
αβ,σσ′

Li
αβσ

i
σσ′c

†
jασcjβσ′ (5.5)

where i = x, y, z, σ = (σx, σy, σz) are the Pauli matrices in the spin basis σ =↑, ↓, and the

matrices

L =




0 0 0

0 0 −i

0 i 0

 ,


0 0 i

0 0 0

−i 0 0

 ,

0 −i 0

i 0 0

0 0 0



 (5.6)

are the orbital angular momentum operators, projected onto the t2g subspace and written in

the orbital basis α = yz, xz, xy. The interactions in the multiband model on each site take

the form of the Kanamori-Hubbard interactions [44]

HI = U
∑

j,α njα↑njα↓

+∑
j,α 6=β JH

[
c†

jα↑c
†
jβ↓cjα↓cjβ↑ + c†

jα↑c
†
jα↓cjβ↓cjβ↑

]
+∑

j,α<β,σ [U ′njασnjβσ̄ + (U ′ − JH)njασnjβσ]

(5.7)

with the intraorbital interactions U , the Hund’s coupling JH, and the interorbital repulsion

U ′. For simplicity the spherically symmetric value U ′ = U − 2JH is taken. For Sr2IrO4 the

Hund’s coupling is approximated to be in the range 0.05U − 0.2U [14, 15, 16, 45].
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Figure 5.2: The band structure is shown for the antiferromagnetic insulating state in
Sr2IrO4, calculated for λ = 0.38eV, U = 0.9eV, and JH/U = 0.1, with no applied strain
or field. As there are 6 states per site, the band structure consists of 12 bands forming a
staggered order. In the top row, the weight from each orbital dyz, dxz, and dxy is projected
onto the eigenstates at each k-point in the Brillouin zone as in Eq. (5.17). The large spin-
orbit coupling mixes the orbitals, so the bands closest to the Fermi level have contributions
from all three orbitals. The second row shows the eigenstates projected onto the J = 1/2
and J = 3/2 states as in Eq. (5.18). The J = 1/2 bands dominate near the Fermi level
except near Γ, where J = 3/2 takes over.

5.2.2 Zeeman Coupling

We consider the effect of an external magnetic field H through the Zeeman field. The field

couples to the full magnetic moment µ = µB (L + gS), with g ≈ 2 being the gyromagnetic

ratio. The additional term in the Hamiltonian is

HZ = µB
∑

j,s

∑
α,σ

[∑
β H · Lαβc

†
s,jασcs,jβσ

+1
2
∑
σ′
gH · σσσ′c†

s,jασcs,jασ′

]
.

(5.8)

For realistic magnetic fields, the Zeeman energy is significantly smaller than the spin-orbit

coupling λ ≈ 0.4eV, and the gap ≈ 0.5eV. For example, a field of H ≈ 10T corresponds to

an energy of the order of gµBH = 1.2meV.
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5.2.3 Epitaxial Strain

We model the effect of a compressive strain on the system by modifying the hopping

parameters linearly with the strain. We use a linearization of the set of values for the

hopping parameters calculated by Seo et al. [23]. In Ref. [ [23]], the compound is grown on

three different substrates which have lattice constants that are smaller than that of

Sr2IrO4: (LaAlO3)0.3(Sr2TaAlO6)0.7, NdGaO3, and LaAlO3. The resulting misfit strain

modifies the lattice constants in the Sr2IrO4 thin film. X-ray diffraction measurements find

these modified lengths and ab initio calculations are performed for those structures. The

calculations therefore provide three data points for the hopping parameters at given values

of the compressive strain. In this work we use those three data points to fit a linear

dependence of the hopping with the strain. Our linearization results in the proportional

changes, ρ, which modify our hopping amplitudes as

t(ε) = t (1 + ρε)

t1(ε) = t1 (1 + ρ1ε)

t′(ε) = t′ (1 + ρ′ε)

tn(ε) = tn (1 + ρnε)

tδ(ε) = tδ (1 + ρδε)

t1d(ε) = t1d (1 + ρ1dε)

tnd(ε) = tnd (1 + ρndε)

φ(ε) = φ (1 + ρφε) .

(5.9)

For a compressive strain (ε < 0) the resulting values are (ρ, ρ1, ρ
′, ρn, ρδ, ρ1d, ρnd, ρφ) =

(0.014,-0.251, -0.309, -0.048, 0, 0,-0.02,-0.085). The values used for ε = 0 are those given by

this linearisation. As illustrated in Fig. 5.1, the effect of compressive strain is mainly to

increase the relative rotation angle between adjacent octahedra. However, by using these

values we are not restricted to consider only rotation effects. The rotations change the

overlap integrals between orbitals on different sites. The nearest neighbor inter-orbital

dyz-dxz hopping, as well as the next nearest neighbor intra-orbital dxy hopping are

increased under strain. On the other hand, the nearest neighbor dxy hopping is decreased.
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Our linearized strain model allows us to predict what orders can arise when we reach strain

values beyond the experimentally achieved ε = −1.9% [23].

5.2.4 Mean Field Approximation

In mean field theory one approximates the Hamiltonian by a quadratic one, so that the

quartic interaction terms are decomposed by introducing a variety of order parameters. This

yields an auxiliary Hamiltonian for which the spectrum can be found by diagonalizing a

single-particle Hamiltonian. The resulting eigenstates are then used as variational states to

calculate the expectation value of the original interacting Hamiltonian for a given electron

density. The energy is minimized with respect to the order parameters, thus determining

their values. With two atoms per unit cell, three orbitals and two spin states, each unit cell

has 12 creation/annihilation operators. A mean field order parameter is the expectation value

of a bilinear operator 〈c†
αcβ〉. Our mean field decomposition is done by choosing to include

the full set of on-site order parameters under the condition of a hermitian auxiliary/mean-

field Hamiltonian. For each of the sites in the unit cell we form a 6 × 6 hermitian matrix

of order parameters, meaning that we calculate a total of 2 · 21 = 42 independent complex-

valued order parameters. The set of order parameters is therefore 〈c†
γ1cγ2〉s, where γi is a

label combining the spin label σ and the orbital label α in each sublattice s = A,B. The

order parameters are calculated in iterative steps through the coupled set of self-consistency

equations, as given in Appendix A. The calculated order parameters are used as input into

the Hamiltonian in order to repeat the process in iterative steps until the input and output,

of the form presented in table 5.1, differ by less than the total tolerance of 10−5. The

calculations were performed on a 200 × 200 grid of momentum k-points. A range of initial

conditions are considered to ensure that the global minimum of the energy functional is

found.

Our analysis assumes no relations between the order parameters on the different sites.

Uniform orders are considered by calculating the net value of the order parameters from both

sites, (A+ B)/2, and staggered orders are the difference in order parameters between sites,

(A−B)/2. Such staggered orders include commensurate charge density waves (CDW), spin

density waves (SDW), orbital density waves (ODW), and spin-orbit density waves (SODW).
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It is convenient to rewrite the order parameters in order to directly describe the spin and

orbital angular momentum. The order parameters nyz, nxz, and nxy are the filling of each

orbital. The spin Si and the orbital angular momentum Li are calculated in each direction

i = x, y, z. Order parameters that couple spin and orbital degrees of freedoms, like the bare

SOC, Λi are included as well. Suppressing the sublattice label, these order parameters are

given by:

Si
α = 1

2
∑
σ,σ′

σi
σσ′〈c†

ασcασ′〉 (5.10)

Li
σ =

∑
α,β

Li
αβ〈c†

ασcβσ〉 (5.11)

Λi = 1
2
∑
α,β

∑
σ,σ′

Li
αβσ

i
σσ′〈c†

ασcβσ′〉. (5.12)

Once a set of self-consistent order parameters has been found in the orbital and spin

basis, they can also be expressed in the J-basis. This basis represents the eigenstates of the

non-interacting model in the λ → ∞ limit, in which the hopping can be neglected. Order

parameters expressed in this basis represent contributions of each J-state as well as a measure

of the mixing between states. The transformation c̃m,τ = ∑
α,σ U

α,σ
m,τcα,σ, generates the basis

c̃m,τ at each site where m = |j, jz〉 : 1 = |1/2,±1/2〉, 2 = |3/2,±1/2〉, 3 = |3/2,±3/2〉 are

the pseudospins and τ = +,−. The same transformation is applied for both sublattices,

which defines the J-states in the global basis. It is important to note that J-states that are

defined for local rotated orbitals are different states and such a definition may slightly shift

the resulting contributions of each state. In the J-basis, order parameters are constructed

as a linear combination of the ones discussed above in Eqs. (5.10),(5.11),(5.12). These order

parameters are given by 〈c̃†
m,τ c̃n,τ ′〉 and are transformed from the orbital basis as:

〈c̃†
mτ c̃nτ ′〉 =

∑
α,β,σ,σ′

(Uασ
mτ )∗ Uβσ′

nτ ′ 〈c†
ασcβσ′〉 (5.13)

with the matrix U given in Appendix B. In this basis we consider the order parameters:

J i
m = 1

2
∑
τ,τ ′

σi
ττ ′〈c̃†

mτ c̃mτ ′〉 (5.14)
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nyz nxz nxy L Syz Sxz Sxy Λx Λy Λz

staggered 0 0 0 -0.47 0.13 -0.15 0.11 0 0 0
net 1.66 1.63 1.71 0.15 0.040 -0.042 -0.037 0.32 0.30 0.35

n1 n2 n3 J1 J2 J3 J12 J13 J23
staggered 0 0 0 -0.29 -0.0047 0.0040 -0.023 0.011 0.0005
net 1.02 1.99 1.99 0.12 0.0018 0.0012 0.0035 -0.0010 -0.0002

Table 5.1: The order parameters are given in the three-orbital basis, as in Eqs. (5.10),
(5.11), (5.12), as well as in the basis of J-states, as in Eqs. (5.14), (5.15). The calculation
is performed at λ = 0.38eV, U = 0.9eV, and JH/U = 0.1, with no strain or field, meaning
that the state is the canted antiferromagnet in Fig. 5.1a. The differences between order
parameters in the two sublattices are given as the staggered value. The net values of the
order parameters are defined as the average for the two-site unit cell. For the L and Syz,xz,xy

order parameters, the staggered values are along the b-axis, while the net values are along
the a-axis. The order parameters Λ renormalize the spin-orbit coupling strength.

J i
mn = 1

2
∑
τ,τ ′

σi
ττ ′〈c̃†

mτ c̃nτ ′〉 (5.15)

for the J-states m,n = 1, 2, 3, and the pseudospins τ, τ ′ = +,−. In addition, the filing of

each J-state is given by

nm =
∑

τ

〈c̃†
mτ c̃mτ 〉. (5.16)

This transformation extends the analysis of Mohapatra and Singh in Ref. [ [38]], who

studied the contributions Jm, without strain and a Zeeman field. In this work we include

the additional mixing Jmn, which includes effects beyond those that can be projected onto

the individual subspaces of the J-states. The amount of mixing Jmn allows us to see

whether strain and Zeeman fields require us to go beyond the effective Jeff = 1/2 model.

5.3 Results

First, our mean field solution in the absence of Zeeman field and strain is in agreement with

previous studies [38, 14, 15, 16, 45, 10, 46, 12]. In Fig. 5.2 we present the band structure for

λ = 0.38eV, U = 0.9eV, and JH/U = 0.1. Under these conditions, both this work and other

studies, find a band gap close to the experimentally observed value [1]. The resulting state
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is an antiferromagnet along the b-axis with a small staggered canting angle of φµ ≈ ±14◦

along the a-axis. This angle is larger than the rotation of the underlying lattice and slightly

larger than what is observed in experiments [9]. The magnetic order canting angle does not

precisely match the lattice rotation angle due to the tetragonal distortion and a non-zero

Hund’s coupling. An angle difference is captured by our model and even by the projected

J = 1/2 model [11]. The resulting eigenstates are expressed in the two bases, the orbital

and the J-basis, and the contributions of each state can be calculated at all k-points for each

band. For orbitals defined in the global basis the eigenstates |n(k)〉 can be expressed in the

components |n(k)〉 = ∑
α,σ,s ηα,σ,s,n(k)|α, σ, s〉. The transformation onto the J-basis is done

for each site individually in the global basis with the matrix U given in (5.20) in Appendix

B, |n(k)〉 = ∑
m,τ,s η

′
m,τ,s,n(k)|m, τ, s〉 = ∑

m,τ,s

∑
α,σ η

′
m,τ,s,n(k) (Uασ

mτ )∗ |α, σ, s〉. The weight of

an orbital in an eigenstate at a given k-point is calculated as

Pn,α(k) =
∑

s=A,B

∑
σ=↑,↓

|ηα,σ,s,n(k)|2, (5.17)

in the original three-orbital basis and:

Pn,m(k) =
∑

s=A,B

∑
τ=+,−

|η′
m,τ,s,n(k)|2, (5.18)

in the J-state basis. The values are displayed for the full bandstructure in Fig. 5.2 and the

figure is complemented by the values of the order parameters in Table 5.1. The magnetic

order receives the largest contribution from the J = 1/2 states, as given by Eq. (5.14).

Similarly, as can be seen in the lower panels of Fig. 5.2, the J = 1/2 states are dominant

in the two bands closest to the Fermi level, except near the Γ-point. Expressed in the

orbital basis, the same bands are a mixture of all three orbitals, with the contribution of

dxy being slightly smaller. Additional bands that appear close to the Fermi level, at the

Γ-point, are bands of |3/2,±3/2〉 character. However, Table 5.1 shows that these states offer

only a small contribution to the AFM order. Similarly, the order parameters which mix

the |1/2,±1/2〉 and the |3/2,±1/2〉 states have a contribution of about 5-10% of the one

of J = 1/2, which is not negligible. A similar discrepancy in the magnetic order has been
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identified previously [10] by observing a larger ratio of orbital angular momentum, compared

to spin angular momentum, than expected from a pure J = 1/2 order.

5.3.1 Strain-Driven Phase Transitions

In this subsection we discuss the effects of strain. The magnetic moment for both the

staggered AFM order and the net moment is shown in Fig. 5.3. As the compressive strain is

increased the antiferromagnetic order decreases and two phase transitions occur. At lower

strain values the staggered magnetic moment in the insulating (AFM-I) order continuously

decreases until the gap closes, in a continuous Lifshitz transition into an antiferromagnetic

metal (AFM-M). The strain dependence of the band gap is plotted in Fig. 5.7 in Appendix

C. As the strain increases further, the antiferromagnetic order continues to decrease until a

strain value where a first order transition into a paramagnetic metal (PM-M) occurs. The

transitions are driven by the increasing bandwidth of the J = 1/2 bands and an increase

in the energy of the J = 3/2 bands. We will describe several multiorbital aspects of the

strain-driven phase transitions: (i) the changes in multiorbital contributions close to critical

strain, (ii) the additional bands contributing to the Fermi surface in the metallic state, and

(iii) the dependence of the critical strain on model parameters.

Approaching the first transition by increasing the strain, we see a decrease in the

staggered magnetic moment. The decrease is mostly felt in the J = 1/2 subspace, and

therefore the relative contribution of the J = 3/2 states to the magnetic order is increased.

As the underlying rotations of the lattice increase, so does the canting angle of the

antiferromagnetic state. The changes in orbital contributions are discussed further in III.B.

At higher strains in the metallic state, several bands cross the Fermi level. The resulting

Fermi surfaces are shown in Fig. 5.4 for several strain values. Different parts of the Fermi

surface have a different character, as shown in Fig. 5.5. In this figure both possible bases

are projected onto the Brillouin zone. Pockets around the M - and X-points are clearly

dominated by the J = 1/2 states. However, another pocket near the Γ-point originates

from a band with a high |3/2,±3/2〉 contribution. In the orbital basis, the pockets can be

described as alternating sections of dyz and dxz orbitals, where the sections dominated by

each orbital are related by a rotation of π/2, see Fig. 5.5.
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The two phase transitions, as indicated in Fig. 5.3, are determined to occur at ε =

−3.47%, the point at which the indirect gap closes, and at ε = −4.9%, where the order

parameters for the staggered magnetic moment become lower than 2 · 10−2. The Fermi

surfaces appearing at lower strain values have small pockets of J = 1/2 and J = 3/2

character which gradually increase in size as the strain increases. In the AFM phase, the

canting angle of the AFM order is larger than the rotation angle of the underlying lattice.

As a result, a small band splitting can be observed close to the Γ-point for the pockets of

J = 3/2 character. As the size of the pocket increases at higher strain values and the AFM

order decreases, this splitting is decreased. In the paramagnetic phase an additional pocket

of J = 1/2 character appears at the M -point.

The value of the critical compressive strain that we obtain as the transition point

between metallic and insulating magnetically ordered states depends on our model

parameters. Fig. 5.7 in Appendix C shows a range of critical compressive strains for other

possible values of the interaction U . In our model, the critical strain value mainly depends

on the size of the initial gap. Therefore, the critical strain increases with spin-orbit

coupling and with the interaction U , and decreases with the Hund’s coupling JH. The

agreement between experimental work and our predictions for the decreasing AFM order as

a function of strain, as well as possible values for a realistic critical strain are discussed

below.

When a Zeeman field is applied only minimal changes to the critical strain are observed.

This is shown in the phase diagrams in Fig. 5.9 in Appendix D. Additional effects to orbital

contribution from a magnetic field are discussed in the following section.

5.3.2 Orbital contributions

At the strain-driven phase transitions depicted in Fig. 5.3, contributions from the J-states,

Jm, and the mixing between those states, Jmn, change by different amounts. The

contributions from the spin angular momentum and the J-states to the net moment are

shown in Fig. 5.6, both without an applied field and for a Zeeman field in-plane along the

a-axis (Hx). The figure shows how the strain and the Zeeman field affect the magnetic

order. As the insulating AFM order decreases under strain, the order in J = 1/2 decreases
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Figure 5.3: The total magnetic moment is plotted for increasing compressive strain. The
staggered moment is the difference between the two sublattices and the net moment results
from the canting of the moments at both sites. The strain-driven transitions take place both
under zero field as well as under a large Zeeman field Hx = 0.02t, along the a-direction. The
critical strain values, at which the gap closes and the system first goes into a metallic AFM
(AFM-M) and subsequently into a paramagnetic (PM-M) state, are marked for zero field by
vertical dashed lines. As shown in Fig. 5.9, these transitions are only slightly shifted by the
field. When a field is applied there is a small remaining AFM moment, below 2 · 10−2, that
appears right after the transition into the PM-M state. The evolution of the bandgap with
strain is shown in Fig. 5.7.
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Figure 5.4: Fermi surfaces (E = 0) for the strain-driven transitions at zero field. The
dominant bands are identified as being of mainly |j, jz〉 = |1/2,±1/2〉 and of |j, jz〉 =
|3/2,±3/2〉 character, by the same method as in Fig 5.5. As the strain is increased the
indirect gap in the AFM order decreases and eventually closes at ε = −3.47%. For Fermi
surfaces in the metallic AFM (AFM-M) phase, such as at ε = −4%, some band splitting can
be observed. The splitting occurs at these points as the resulting FM component corresponds
to a larger canting angle than the underlying rotation of the lattice. At ε = −5%, the system
becomes a paramagnetic metal and an additional J = 1/2 surface appears around the M -
point.
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Figure 5.5: The Fermi surface at zero field and a compressive strain ε = −5% is shown
with the calculated contributions from each orbital, in the upper row, and from each J-state,
in the lower row. As in Fig. 5.2, orbital weights for each state are calculated for eigenstates
at each k-point in the Brillouin zone, according to Eqs. (5.17), (5.18). As shown in Fig. 5.4
the bands can be described mainly by the |j, jz〉 = |1/2,±1/2〉 states around the M - and
X-points, and by the |j, jz〉 = |3/2,±3/2〉 states around the Γ-point.
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while the order in other states remain roughly constant. While strain increases the

staggered rotation angle of the AFM state and therefore all J-states, the Zeeman field

tends to affect orbitals depending on their relative orientation to the field.

The changes in contributions to the net moment under strain are minor. The net moment

increases as the staggered AFM order follows the increased underlying staggered rotation of

the octahedra surrounding the Ir sites. In the metallic AFM order the contribution from the

J = 1/2 states to the net moment mainly decreases while the others remain constant. When

a high in-plane field is applied there are additional distinguishing effects between the AFM

and the PM. In the insulating AFM state there is some increased mixing contributions to

the net moment, as the field does not couple purely to the J-states. The J = 1/2 states

however still clearly dominate in the antiferromagnetic phase.

For the orbital angular momentum basis, the spin order Sα, in each orbital, α, is also

plotted in Fig. 5.6. For zero field the orbitals start out with close to equal spin order and as

the strain is increased the Sxy order decreases. When the in-plane field is applied, the AFM-I

state has a larger contribution from the Syz order while this dominance does not remain in

the paramagnetic state. For an out-of-plane field (Hz) this results in a larger contribution

from the dxy-orbital, which corresponds to an increased mixing between |1/2,±1/2〉 and

|3/2,±1/2〉 in the J-state basis. An in-plane field (Hx) increases contributions from the

dyz-orbital, or a mixing between the states |1/2,±1/2〉 and |3/2,±3/2〉.

In addition, in Fig. 5.8 in Appendix C the parameters λ and JH take on a range of possible

values. At different values the amount of mixing between J-states (at zero strain) changes.

The mixed J order parameters, Jmn, in Eq. (5.15) are useful as they indicate whether a

projected J = 1/2 model is appropriate. Regimes with larger Jmn values can therefore be

identified as promising starting points for future studies of possible interband fluctuations

and orders.

5.4 Discussion

In this work, we have presented a mean field, zero temperature, analysis of the six-band

Hubbard-Kanamori model for undoped Sr2IrO4. A self-consistent mean field treatment
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Figure 5.6: Order parameters for the net magnetization are plotted for an increasing
compressive strain, both in the J-basis and as spin contributions from each orbital. These
plots display the strain-driven transitions into metallic states shown in Fig. 5.3. In the J-
basis, order parameters Jm for each state and order parameters Jmn mixing J-states, as in
Eqs. (5.14) and (5.15), are shown. There are minor changes in the contributions from each
order parameter with strain, before the transition out of the insulating antiferromagnetic
(AFM-I) state. However, once a field is applied there is a clear difference in contributions
to the net moment between AFM and PM orders.



5. Modeling multiorbital effects in Sr2IrO4 under strain and a Zeeman field 78

considers a 2-atom unit cell and all 42 possible local order parameters. We study the

undoped compound in the presence of both strain and a Zeeman field. In the absence of

strain and field our model predicts an insulating canted antiferromagnetic state, in

agreement with previous studies [38, 14, 15, 16, 45, 10, 46, 12] and experimental

evidence [47, 48, 49, 50]. Upon applying a compressive strain our model predicts two

transitions: a Lifshitz transition into an antiferromagnetic metallic state and, at higher

strain, a first order transition into a metallic paramagnet. These transitions exist for a

range of plausible interaction strengths. The inclusion of multiple bands is crucial to model

these transitions. A decreased J = 1/2 AFM order can in principle be described by

projecting the effects of the strain onto the effective one-orbital Jeff = 1/2 model. However,

the strain causes the appearance of additional bands at the Fermi level that are missed by

a Jeff = 1/2 model.

Our predictions for the strain effects agree with trends from previous theoretical and

experimental studies. For example, in Ref. [ [19]] the strain is shown to cause a decrease in the

AFM order manifested in a lowered Néel temperature. As found in our model, the increased

importance, due to strain, of the J = 3/2 states also agrees with the observed intensity

increase in optical transitions between J = 3/2 and 1/2 states found in other studies [42,

51, 43]. In addition, transport measurements observe a steady decrease in resistivity as

the compressive epitaxial strain is increased [52]. Such a trend can be expected from our

calculations, as they predict a decreasing gap. At the highest measured strain value for

epitaxial strain, ε = −1.9%, the behavior is determined to still be insulating [52]. Therefore,

a transition has not been reached at that point. Our model predicts the same behavior.

It is however important to note that generally mean field theory overestimates ordering.

Fluctuations not taken into account here may shift the phase boundaries. Moreover, the

interaction and spin-orbit coupling strength aren’t directly measurable and we therefore

choose parameters that match the previously found band structure [38, 45, 10, 46, 12]. To

get a range of possible strain values which will be relevant for future studies, a relation

between possible initial gaps and the critical strain is given in Appendix C.

Our results also include effects of various parameters on the mixing between different

total angular momentum sectors. When the mixing between J-states is small, the Jeff = 1/2



5. Modeling multiorbital effects in Sr2IrO4 under strain and a Zeeman field 79

model can describe the ordered state well. However, for a larger mixing the full six-band

model is necessary. We find that a larger strain, larger Hund’s coupling, and lower spin-orbit

coupling all increase the mixing. The Zeeman field also results in increased mixing, which

depends on the direction of the field. It is worth noting that the mixing can be traced by

studying the orbital content of each band. The orbital dependence of the magnetic state

was recently determined, by Jeong et al. in Ref. [ [35]], from the symmetry of occupied

orbitals as measured by polarized neutron diffraction experiments. A similar experiment

could potentially observe the strain-induced changes in orbital contributions found here.

The comparisons of our results to experiments with pressure are limited due to our

one-layer model. For epitaxial strain/hydrostatic pressure, the distance between layers in

the perovskite structure increases/decreases. Under pressure, the resulting increased

interlayer interactions affect the magnetic order [53]. Additionally, our model may not be

capturing all aspects of the strain-driven phase transitions. At high hydrostatic pressures,

experiments are possibly pointing towards frustration from enhanced nearest- and

next-nearest-neighbor interactions in an insulating quantum paramagnet [53]. Similarly as

transport measurements not displaying any anomaly at the Néel temperature [7], studies

considering hydrostatic pressure found a separation in the behaviour between magnetic

order and insulating properties [34], which is beyond the scope of our mean field theory. As

can be seen in Fig. 5.4, we predict that several of the bands are located close to the Fermi

surface during the strain-driven transitions. This regime could therefore potentially host

strongly correlated interband effects.

The model considered in our work only describes compressive strain. There have

however been several studies showing interesting effects at tensile strain or for other

methods decreasing the rotation angle of the octahedra in Sr2IrO4, such as “field altering”

or applying an electrical current [24, 25]. Experiments have shown both decreasing

resistivity for tensile strain values [52] and a lower Néel temperature for samples with a

tensile strain of ε = 0.4% than for those with a compressive strain of ε = −0.7% [23].

However, ab initio calculations at tensile strain [51] pointed towards an increased charge

gap which agrees with that observed in RIXS spectra [43]. Accurately modelling the tensile

regime might require the inclusion of additional effects. In future work, the strain value for
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which the pocket at the Γ-point appears in the Fermi surface could be adjusted by

studying how the tetragonal splitting evolves with strain. Currently, calculations in

Ref. [ [22]] suggest a lowering of the J = 3/2-band at this point, while the measurements in

Ref. [ [43]] indicate the opposite.

Works modelling greater tetragonal elongation in a superexchange model, such as

Ref. [ [39]], have explored regimes our work did not. In those regimes the canting angle is

supressed by the distortions. Ref. [ [41]] found that the angles of the octahedral rotation

and of the canting moment followed each other more closely with an additional staggered

splitting between sublattices. Since we did not consider tetragonal splitting as a function of

strain, the effects of an increased or staggered splitting is beyond the scope of this work.

Another interesting aspect expected to be affected by strain and an external field is

the tendency to develop superconductivity. The mixing of J-states and the appearance of

additional bands at the Fermim level might indicate that a J = 1/2 d-wave superconducting

state is less likely to develop. It is possible, however, that while the d-wave order parameter

is less likely, another pairing function which involves multiple bands will become favorable.

This is beyond the scope of the current manuscript and will be studied elsewhere.
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5.A Self-Consistency Equations

In the mean field analysis, the order parameters are defined as the expectation values of

bilinear operators calculated for the mean field eigenstates |n(k)〉. Each order parameter is

given by 〈c†
γ1cγ2〉s, where γi is the label of one of the 6 local creation/annihilation operators

given by α = yz, xz, xy, and σ =↑, ↓, for each of the sublattices s = A,B. The self-consistent

solution for all possible order parameters is found iteratively and simultaneously by solving

the set of coupled self-consistency equations:

〈c†
γ1cγ2〉s = 1

N

N∑
k

12∑
n

〈n(k)|γ1, s〉〈γ2, s|n(k)〉nF [En(k)]

= 1
N

N∑
k

12∑
n

η∗
γ1,s,n(k)ηγ2,s,n(k)nF [En(k)]

(5.19)

where nF is the Fermi-Dirac distribution and the eigenvalues are given, for each k value, in

the three-orbital basis, |γ, s〉, as |n(k)〉 = ∑
γ,s ηγ,s,n(k)|γ, s〉.

5.B Transformation into the J-basis

The order parameters are expressed in two alternative bases. The spin and orbital angular

momenta are expressed in the basis of the three t2g orbitals. The other basis considered

is the total angular momentum J-basis, which is the eigenstates in the large λ limit. The

transformation from the orbital and spin basis to the total angular momentum basis which

is used in Eq. (5.13), i.e., c̃m,τ = ∑
α,σ U

α,σ
m,τcα,σ, is given by

U =



0 1√
3 0 − i√

3
1√
3 0

1√
3 0 i√

3 0 0 − 1√
3

0 1√
6 0 − i√

6 −
√

2
3 0

1√
6 0 i√

6 0 0
√

2
3

0 1√
2 0 i√

2 0 0
1√
2 0 − i√

2 0 0 0


(5.20)
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Figure 5.7: An increasing compressive strain, ε < 0, decreases the initial insulating
antiferromagnetic order. The critical strain, the value at which the gap closes, will be
determined by the value of the gap at zero strain. The gap is plotted for different values of
the interaction parameter U , with a Hund’s coupling set to JH/U = 0.1. As the mean field
approximation overestimates the order at zero strain, several vales of U within the expected
range are considered to get a possible range of values for the critical strain. Similarly as for
the gap, the AFM order remains present at higher strains as U is increased.

where c = (cyz,↑, cyz,↓, cxz,↑, cxz,↓, cxy,↑, cxy,↓) and c̃ = (c̃1,+, c̃1,−, c̃2,+, c̃2,−, c̃3,+, c̃3,−). The new

basis is c̃m,τ where m : 1 = |1/2,±1/2〉, 2 = |3/2,±1/2〉, 3 = |3/2,±3/2〉 and the pseudospin

projections are labelled by τ = ±.

5.C Critical strain values

The parameter choice of U = 0.9eV, JH/U = 0.1, and λ = 0.38eV, is used for the calculation

in Fig. 5.3. The values are close to the middle of the possible range for the Hund’s coupling,

JH/U = 0.05 − 0.2, and the spin-orbit coupling, λ = 0.3 − 0.7eV, and has a value U ,

as well as chosen to have a gap at zero strain close to that found in experiments ∆c =

0.350.65eV [45, 46, 54, 10, 13, 55]. The critical strains, the values at which the strain-driven

phase transitions occur for compressive strain, are directly dependent on the size of the initial

gap. The initial gap depends on the strength of the various interaction terms, the SOC λ,
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the Hund’s coupling JH, and the Zeeman field. Therefore the critical strain values increase

with λ and U , and decrease with JH.

In Fig. 5.7 we present results for calculations of the gap when the compressive strain is

increased, for a range of possible values of the interaction U . The values for U are those

which have replicated the zero strain band structure using other methods. As a mean

field analysis tends to overestimate the antiferromagnetic order we find a gap corresponding

to experimental values at zero strain for a smaller U than other methods do [15, 14, 56].

The experimental compressive strain values [23] reach up to ε = −1.9%, so a quantitative

prediction of the transition into a metallic state should be found at higher compressive strain

values. Stronger interactions U predict higher critical strain values while going through the

same phase transitions. Within the limits of the mean field approximation, a prediction of

a realistic band structure at zero strain and the value for critical strain will be a trade-off,

and therefore a range of possible values are given here.

In Fig. 5.8 the contributions to the staggered moment are considered, with no strain,

for some additional values of the spin-orbit coupling λ and the Hund’s coupling JH. For a

higher SOC the J = 1/2 states, J1 as defined in Eq. (5.14), become clearly more dominant

as the J1 net moment increases in magnitude while the other contributions decrease. This

is to be expected as the SOC separates the remaining bands from those of mainly J = 1/2

character. A higher Hund’s coupling the J = 1/2 states instead become less dominant as

the contribution remains constant while the mixing between J-states increases.

5.D Phase diagrams with Zeeman field

A Zeeman field only has minor effects on the gap closing and the transition from the metallic

AFM order to the paramagnetic state. The main effect of a Zeeman field on the strain-

induced transitions is to lower the critical strain value, by reducing the indirect gap. The

orbital and spin content of each band vary around some points of the Brillouin zone, which

is shown in Fig. 5.2. Therefore, a Zeeman field allows for the manipulation of the band

structure with possible gap closures at various points in momentum space. An in-plane field

(Hx) increases the band splitting around the M -point of the Brillouin zone and an out-
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Figure 5.8: The three-orbital model used in this work allows us to consider how the
contributions from each orbital changes for different sets of interaction strengths. The
contributions to the staggered AFM order are shown at varying spin-orbit coupling λ at
U = 0.9eV and JH/U = 0.1 as well as for varying Hund’s coupling JH at U = 0.9eV
and λ = 0.38. A higher λ separates out the J = 1/2 bands from the rest, resulting in a
larger dominance of the J1 contribution, as defined in Eq. (5.14). A larger Hund’s coupling
JH increases interorbital contributions and results in a larger mixing between J-sectors, as
given in Eq. (5.15).
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Figure 5.9: Phase transitions from the insulating AFM (AFM-I) state into metallic states
occurs under compressive epitaxial strain ε < 0. Phase diagrams are presented for a) an
in-plane field along the a-direction (Hx), and b) the field is in the out-of-plane z-direction.
As in Fig. 5.3 the AFM order decreases under an increasing strain until the indirect gap
closes into a metallic order (AFM-M) and eventually goes through a first-order transition
into a paramagnetic state (PM-M). The Zeeman field offers a minimal shift of the phase
boundaries.
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of-plane field (Hz) results in an increased splitting at the Γ-point. In the phase diagrams

in Fig. 5.9, where compressive strain and a Zeeman field has been applied, it is however

apparent that even a large field can only modify the critical strain by an amount around

0.01%. The second transition, from the antiferromagnetic metallic (AFM-M) order into

the paramagnetic metal (PM-M), occurs when the antiferromagnetic order parameters have

reached a low enough value. An out-of-plane field results only in a small modification of

the antiferromagnetic order and the second transition remains largely unchanged. An in-

plane field has a slightly larger effect due to its effect on the canting angle and can shift the

transition point further, yet still to a minimal amount. Although any shifts of transition

points are difficult to achieve in Sr2IrO4, due to the large fields required, their effects might

be of interest in other systems with similar characteristics.
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Preface to Chapter 6

The goal of this chapter is to model superconductivity in Sr2IrO4 under a combination of

doping and compressive strain. Strain-enhanced or strain-induced superconductivity is a

phenomenon observed in several known superconductors. In the cuprates YBCO and

LSCO compressive strain leads to an increased Tc [1]. In organic superconductors

compressive strain can instead induce a superconductivity/insulator phase transition [2]. A

similar result has been predicted theoretically in Sr2RuO4 [3]. Depending on the active

orbitals in the compound a compressive strain can either increase or decrease the overall

bandwidth. As a rough estimate the change to hopping parameters is linear with strain.

On-site interactions remain largely unaffected while longer range interactions can

increase/decrease roughly proportional to the strain [4]. As such, compressive strain

decreases the hopping in cuprates [1]. On the other hand, the strain increases the hopping

in some organic superconductors [2]. The study of magnetism in undoped Sr2IrO4 under

compressive strain, in the previous chapter, concludes that the increased bandwidth is

sufficient to induce a phase transition. As superconductivity has previously been predicted

under doping, the next step is to consider the combination of strain and doping to see if a

strain-induced superconducting region is possible.

In Chapter 5 only one set of values were considered for the interaction parameters U, JH

and for the spin-orbit coupling. They were chosen to be realistic for undoped Sr2IrO4. The

previously predicted j = 1/2 d-wave is expected to be possible for those values and electron

doping, just by considering an effective one-orbital model. In the second publication of this

thesis, Chapter 6, superconductivity is modeled in Sr2IrO4 under doping and compressive

strain with an effective pairing interaction calculated via the random phase approximation,

as in section 4.3. In this Chapter we aim to answer the questions: Can superconductivity
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be induced by compressive strain? Are the j = 1/2 bands sufficient to model such a

superconductivity?

The reason for this approach is two-fold. Firstly, the Fermi surfaces found in Chapter

5 at compressive strain have bands of j = 1/2 character and j = 3/2 character, and not

just j = 1/2 as for the unstrained case. The effective interaction is highly dependent on

screening from states close to the Fermi surface. A significant change to the interaction

is therefore expected as the compressive strain increases. Secondly, there are additional

effects to chemical doping that can result in changes to the values of the spin-orbit and

Hund’s coupling. As previous studies have found, see section 2.2, multiple superconducting

symmetries can be possible when changing the interaction parameters in doped Sr2IrO4.

Strain allows us additional manipulation of which orbitals are close to the Fermi surface, as

well as manipulation of the Fermi surface topology. The possibility for superconductivity

should therefore be modeled for an effective interaction that depends on the multi-orbital

interaction and hopping parameters.

The manuscript in Chapter 6 is the first work to study both a multi-orbital model and

the staggered rotations in the structure of Sr2IrO4. As it expands upon the model used

in [5] the hopping parameters in the non-interacting model are given an overall scaling

t = 0.211eV→ t = 0.36eV, to be comparable. The calculations are performed at a finite

temperature, T ≈ 11K, compared to the previous chapter where T = 0K. A phase diagram

for both electron and hole doping with compressive strain is considered for the most realistic

parameters to get results that can be of interest to future experiments. These parameters

are informed by the calculations in Chapter 5, as the renormalization of the SOC in the

interacting system has been accounted for. Further comparison of the inclusion of this effect

is included in Appendix B. Chapter 6 also includes a wider phase diagram showing how the

combination of SOC, Hund’s coupling, and Hubbard interactions of comparable size results

in several new magnetic and superconducting orders. Even though the phase diagrams

are less realistic for Sr2IrO4, they are of wider theoretical interest, as other multi-orbital

superconductors have a non-negligible spin-orbit coupling.
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Abstract

Multi-orbital quantum materials with strong interactions can host a variety of novel

phases. In this work we study the possibility of interaction-driven superconductivity in the

iridate compound Sr2IrO4 under strain and doping. We find numerous regimes of

strain-induced superconductivity in which the pairing structure depends on model

parameters. Spin-fluctuation mediated superconductivity is modeled by a

Hubbard-Kanamori model with an effective particle-particle interaction, calculated via the

random phase approximation. Magnetic orders are found using the Stoner criterion. The

most likely superconducting order we find has d-wave pairing, predominantly in the total

angular momentum, J = 1/2 states. Moreover, an s±-order which mixes different bands is

found at high Hund’s coupling, and at high strain anisotropic s- and d-wave orders emerge.

Finally, we show that in a fine-tuned region of parameters a spin-triplet p-wave order

exists. The combination of strong spin-orbit coupling, interactions, and a sensitivity of the

band structure to strain proves a fruitful avenue for engineering new quantum phases.

6.1 Introduction

The iridates display a rich phase diagram due to an interplay between strong correlations,

spin-orbit coupling, and crystal field effects, all acting on multiple d-orbitals which in some

cases lead to multiple Fermi surfaces. Various iridates show novel phenomena such as Kitaev

and Weyl physics [1, 2, 3]. The first compound in the family of Ruddlesden-Popper perovskite

strontium iridates, Sr2IrO4, consists of stacked quasi-2d layers. In each layer, the iridium

atoms form a square lattice, and are surrounded by octahedra of oxygen atoms. As shown in

Fig. 6.1, every other IrO6 octahedron is rotated by an angle of φ = ±φε=0 ≈ ±12◦ relative to

the iridate lattice and we therefore use a two-site basis [4]. In Sr2IrO4 the three t2g orbitals are

located close to the Fermi surface. However, due to a strong spin-orbit coupling the resulting

band structure is better characterized by the on-site total angular momentum J eigenstates,

with J = 1/2 states having Jz = ±1/2 and J = 3/2 having the projections along the z-axis

Jz = ±1/2,±3/2. We refer to this basis as the j-states. For the undoped compound the

electron filling is n = 5, out of the 6 t2g bands per site, and an antiferromagnetic insulator
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Figure 6.1: Single plane of Sr2IrO4 where the iridium atoms (gray) form a square lattice,
and are surrounded by oxygen octahedra. There are two sites in the unit cell s = A,B with
staggered rotations φε of the octahedra, resulting in a bond angle θε = 180◦ − 2φε. The
staggered rotation angle increases with compressive strain φε > φε=0, with φε=0 ≈ 12◦.

is found up to TN = 240 K [5]. For this state, the two bands of mainly j = 1/2 character are

half-filled and located close to the Fermi surface while additional bands of j = 3/2 character

are further from the Fermi level [6].

Experimentally, Sr2IrO4 shows Fermi arcs and a pseudogap under electron doping [7, 8]

as well as non-Fermi liquid behavior under hole doping [8]. Superconductivity has been

predicted for both types of charge doping of Sr2IrO4 in multiple theoretical works [9, 10,

11, 12, 13, 14]. At a first approximation the band structure and the interactions suggest

a direct parallel to known high Tc superconductors, the cuprates. Indeed, projecting the

Hamiltonian on the j = 1/2 states results in a model similar to those used to describe the

cuprates [15] and a simplified one-band model therefore predicts d-wave superconductivity

for electron doped Sr2IrO4 [9]. However, theoretical studies of Sr2IrO4 found that d-wave

superconductivity is likely to arise only in a limited range of interaction parameters. At hole

doping, additional pockets of j = 3/2 character appear at the Fermi level. In this region of the

phase diagram, previous studies have predicted Sr2IrO4 to have either multi-band s±-wave

or a p-wave pairing. However, as of yet no superconducting order has been experimentally
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confirmed for Sr2IrO4 when chemical doping is the only tuneable parameter [16, 17, 18, 19].

The question then remains whether there could be a tuning parameter that would make

superconductivity more favorable.

The local staggered rotations of iridium sites introduce an in-plane translation

symmetry breaking accompanied by additional hybridization of orbitals. These effects have

been previously ignored in multi-orbital models of iridate superconductivity [20]. The

rotations increase under compression and as a result the hopping between orbitals at

neighboring sites is modified to reflect the new geometry [21, 4, 22, 23, 24]. Moreover, the

orbitals are modified by different amounts such that the bands belonging to the j = 3/2

subspace move closer to the Fermi surface [25]. Naturally, the number of Fermi pockets and

their orbital composition are important factors for superconductivity. As the undoped

Sr2IrO4 is an antiferromagnetic insulator, a prerequisite for any superconducting order is

that it must exist in a regime where the system is no longer magnetic. Several

experimental studies have shown that by growing Sr2IrO4 on a substrate with mismatched

lattice parameters, the induced compressive epitaxial strain significantly suppresses the

magnetic order [26, 27, 28, 29, 30, 31]. In a variety of known superconductors biaxial,

either compressive or tensile, strain has proven to increase the critical

temperature [32, 33, 34, 35, 36] or to induce a superconductivity/insulator phase

transition [37, 38]. In the current work compressive strain is suggested to induce the same

type of phase transition and could thus expand the region of doping where

superconductivity can be observed. The purpose of our study is therefore to determine if

superconductivity is more likely when strain is applied. More precisely, we aim to answer

the following two questions. First, are there regimes of applied strain where a

superconducting order is possible? Second, does the in-plane symmetry breaking due to the

rotations result in different superconducting orders?

Experiments in undoped Sr2IrO4 under high hydrostatic pressure have been performed

in recent years [39, 40, 41]. While both hydrostatic pressure and epitaxial strain change the

interatomic distances, they do so in different ways. The experiments approximate the

pressure to strain conversion to be (∆a/a)/∆P = −0.146%/GPa [39]. A transition into a

non-magnetic insulating state occurs under a compression of 17GPa. At sufficient pressure
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beyond that the resistivity shows a rapid increase accompanied by a pressure-induced

structural phase transition [39, 40]. However, it is important to remember that while the

effect on in-plane distances is similar, hydrostatic pressure decreases the inter-layer

distance while epitaxial strain increases it [31]. In the hydrostatic pressure, the c-axis

compression increases interactions between perovskite layers while the epitaxial strain does

not. A persistent insulating state is thus not expected in the realistic regimes of our phase

diagrams. In addition, our region of interest is for charge doping, where the insulating

nature of the compound is weaker.

Spin-fluctuations are believed to be able to mediate superconductivity in the

iridates [12, 14]. Multi-orbital superconductivity has successfully been modeled with

spin-fluctuations in other families of materials such as ruthenates [42, 43, 44] and

iron-based superconductors [45, 46]. In this work, a linearized superconducting gap

equation (in the static limit) is solved to find regimes where superconductivity is possible.

We consider a multi-orbital Hubbard-Kanamori model of Sr2IrO4 in a rotated two-site

basis. The spin susceptibility is calculated via the random phase approximation (RPA).

The spin fluctuations are thus dependent on the staggered sublattice rotations. As the

rotations increase with an increasing strain and the RPA susceptibility is used to derive the

effective particle-particle interaction, the interaction is dependent on the strain. This in

turn results in a strain-dependent linearized gap equation for the superconducting order.

Magnetic orders can be identified via the RPA susceptibility. We find a large region of

strain-induced superconductivity, as well as several possible magnetic orders. The different

types of superconducting order are either mediated by spin or pseudospin fluctuations. We

find that as the compressive strain is increased the fluctuations become more spin-like in

character. Although several types of fluctuations compete in parts of the calculated phase

diagrams, the most prevalent type is antiferromagnetic fluctuations in the j = 1/2 state.

These pseudospin fluctuations can mediate a d-wave order. Longer range fluctuations in

the spin basis instead mediate the s±-wave superconductivity. For high compressive strain,

intraorbital spin fluctuations can become large enough to mediate anisotropic

superconducting orders. All superconductivity in the calculated phase diagrams are

mediated by fluctuations of spins oriented in-plane. However, there exists regions where
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ferromagnetic out-of-plane fluctuations are of equal size. The ferromagnetic fluctuations

are found to mediate an odd parity p-wave order.

The paper is structured as follows. In section 6.2, we introduce the underlying

tight-binding Hamiltonian of Sr2IrO4 and how the compressive strain is modeled. In

subsection 6.2.2, the model for superconductivity mediated by spin-fluctuations is

introduced. The resulting phase diagram is presented in section 6.3, for realistic values of

model parameters. Additional phase diagrams are shown for a wider variety of possible

values for the Hund’s and spin-orbit coupling. We then analyze the nature of the magnetic

fluctuations in section 6.4. The types of superconducting orders, and the fluctuations

believed to mediate them, are detailed in section 6.5. Finally, in section 5.4 we discuss the

experimental possibilities of strain-induced superconductivity, and signatures of the found

orders.

6.2 Model and methods

6.2.1 Kinetic Hamiltonian with rotations

The band structure of Sr2IrO4 can be modeled by a spin-orbit coupled tight-binding

Hamiltonian:

H = Hkin +HSOC (6.1)

We consider a 2-site orbital-spin basis: c = (ck,A,yz,↑, ck,A,yz,↓, ck,A,xz,↑, ck,A,xz,↓, ck,A,xy,↑,

ck,A,xy,↓, ck,B,yz,↑, ck,B,yz,↓, ck,B,xz,↑, ck,B,xz,↓, ck,B,xy,↑, ck,B,xy,↓). For each spin σ =↑, ↓ the

kinetic terms have intra- and inter-sublattice hopping:

Hkin =

 HAA eikxHAB

e−ikxH†
AB HBB

 (6.2)

HAA =


εd ε1d 0

ε1d εd 0

0 0 εxy
d

 , HAB =


εyz −εrot 0

εrot εxz 0

0 0 εxy

 (6.3)
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and HBB = HAA. The factor eikx arises from the choice of unit cell, where the two sublattice

sites are chosen as in Fig. 6.1 and the lattice spacing, a, is set to 1. The hopping terms are

εxy = 2t (cos kx + cos ky)

εyz = 2 (tδ cos kx + t1 cos ky)

εxz = 2 (t1 cos kx + tδ cos ky)

εrot = 2t′ (cos kx + cos ky)

εxy
d = 4tn cos kx cos ky + µxy

ε1d = 4t1d sin kx sin ky

εd = 4tnd cos kx cos ky.

(6.4)

The hopping values are (t, t1, tδ, t′, tn, t1d, tnd, µxy) = −0.36(1, 0.882, 0.260, 0.199, 0.559,

0.019,−0.010, 0.7)eV, when no strain is applied. The staggered rotations result in the

non-zero inter-orbital hopping, εrot and ε1d, between the yz- and xz-orbitals. When the

compressive strain, ε < 0, is increased the hopping parameters change. We use a linear

strain dependence as in Ref. [25], following data by Ref. [31]:

t(ε) = t (1 + ρε)

t1(ε) = t1 (1 + ρ1ε)

t′(ε) = t′ (1 + ρ′ε)

tn(ε) = tn (1 + ρnε)

tδ(ε) = tδ (1 + ρδε)

t1d(ε) = t1d (1 + ρ1dε)

tnd(ε) = tnd (1 + ρndε)

φε = φε=0 (1 + ρφε)

(6.5)

with (ρ, ρ1, ρ
′, ρn, ρδ, ρ1d, ρnd, ρφ) = (0.014,-0.251, -0.309, -0.048, 0, 0,-0.02,-0.085). φε is

angle of the staggered rotations. The approximation considers not only rigid rotations of

the oxygen octahedra but also changes in bond lengths, as was recently proposed to be a

more accurate description of the strain effect in Ref. [47]. The strain, and the associated
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Figure 6.2: The Fermi surface (FS) or surfaces are shown as a function of strain and doping.
There are one or two types of pockets whose spin and orbital character is indicated by color.
These are found by diagonalizing the non-interacting model in Eq. (6.1). The number of
pockets and a few examples of the Fermi surface are shown for λ = 0.6eV. The pocket of
j = 3/2 character is only present at hole doping n ≤ 4.9 at ε = 0. For increasing compressive
strain two types of pockets are present for all doping.

rotations of the octahedra, increase the inter-orbital t′ and intra-orbital t1. On the other

hand hopping within the xy-orbital decreases. The effect of strain on the tetragonal splitting

µxy is not discussed here and is deferred to Appendix 6.C. It has been well-established that

the spin-orbit coupling in Sr2IrO4 is large enough for each band to have a clear character of

either total angular momenta j = 1/2 or j = 3/2. The atomic SOC is

HSOC = λ

2
∑

αβ,σσ′

∑
s=A,B

Lαβ · σσσ′c†
ksασcksβσ′ (6.6)
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where σ = (σx, σy, σz) are the Pauli matrices in the spin basis σ =↑, ↓ with respect to the

z-direction, and

L =




0 0 0

0 0 −i

0 i 0

 ,


0 0 i

0 0 0

−i 0 0

 ,

0 −i 0

i 0 0

0 0 0



 . (6.7)

The eigenstates of HSOC are the j-states, with associated annihilation operators: am,τ =∑
α,σ M(m,τ),(α,σ)cα,σ. Where

M =



0 1√
3 0 − i√

3
1√
3 0

1√
3 0 i√

3 0 0 − 1√
3

0 1√
6 0 − i√

6 −
√

2
3 0

− 1√
6 0 − i√

6 0 0 −
√

2
3

0 − 1√
2 0 − i√

2 0 0
1√
2 0 − i√

2 0 0 0


(6.8)

with cα,σ = (cyz,↑, cyz,↓, cxz,↑, cxz,↓, cxy,↑, cxy,↓) and am,τ = (a1,+, a1,−, a2,+, a2,−, a3,+, a3,−). In

this basis each site has the states am,τ , where m denotes the total angular momentum and its

z-axis projection (j, jz) such that 1 =
(

1
2 ,±

1
2

)
, 2 =

(
3
2 ,±

1
2

)
, 3 =

(
3
2 ,±

3
2

)
and the projections

along the z-axis are labeled by τ = ±. The projections τ can be treated as pseudospins, here

not mixing sublattice and spin degrees of freedom but orbital and spin [48]. The total of 12

bands bk,n have eigenvalues ξk,n and are connected to the orbital basis via ck,j = ∑
n Uk,jnbk,n.

The only spin-mixing in the Hamiltonian comes from the atomic spin-orbit coupling and all

hopping terms are pseudospin-conserving. The non-interacting Hamiltonian is therefore

separable into pseudospin τ = +,− sectors, containing the states {(yz, ↓), (xz, ↓), (xy, ↑)}

and {(yz, ↑), (xz, ↑), (xy, ↓)} respectively. Therefore the 12 bands can be described by 6

bands in each pseudospin-sector nτ .

As the strain modifies the hopping parameters, both the shape and the number of pockets

at the Fermi surface changes. Therefore the Fermi surface is different at every point in the

phase diagrams. As can be seen in Figs. 6.2, there are pockets belonging to the bands of

(j, jz) =
(

1
2 ,±

1
2

)
present at every point in the phase diagram. For fillings corresponding to

hole doping, n < 5, another pocket with (j, jz) =
(

3
2 ,±

3
2

)
appears around (k1, k2) = (0, 0).
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The strain increases the bandwidth and cause the (3
2 ,±

3
2) pocket to appear for all doping

values. As shown further in Appendix 6.B the size of the j = 1/2 electron pocket increases

with strain.

6.2.2 Spin-fluctuation mediated superconductivity

To analyze the possibility of spin fluctuation mediated superconductivity, we solve a

linearized gap equation in the static limit and normal state. A similar calculation has been

performed previously for Sr2IrO4 in Ref. [14], for a model without staggered rotations or

strain. In general, the particle-hole and particle-particle self-energies are defined by the

Dyson-Gorkov equation:

G(k) = G(0)(k) + G(0)(k)Σ(k)G(k) (6.9)

with

G(k) =

 G(k) F (k)

F̄ (k) Ḡ(k)

 , Σ(k) =

 Σ(k) ∆(k)

∆̄(k) Σ̄(k)

 (6.10)

G(0)(k) =

 G(0)(k) 0

0 Ḡ(0)(k)

 (6.11)

where G(k) is the particle-hole and Ḡ(k) the hole-particle Green’s functions

Gab(k) = −
∫ β

0
dτeiωnτ 〈Tτcka(τ)c†

kb(0)〉 (6.12)

Ḡab(k) = −
∫ β

0
dτeiωnτ 〈Tτc

†
−ka(τ)c−kb(0)〉 (6.13)

for crystal momentum k and fermionic Matsubara frequencies ωn = (2n + 1)π/β, with

β = ~/(kBT ). In the orbital-spin-sublattice basis a = (α, σ, s) with orbital α, spin σ, and

sublattice s. The non-interacting Green’s functions are calculated with the operators cka for

the Hamiltonian in Eq. (6.1). In the band (n) and orbital-spin-sublattice basis respectively:

G(0)
n (k, iωn) = [iωn − ξk,n]−1 (6.14)
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G
(0)
ab (k) =

∑
n

Uk,anG
(0)
n (k)U †

k,nb. (6.15)

For the non-interacting model G(0)
ab (k) = −Ḡ(0)

ba (−k). Under the approximations of this

work, only the particle-particle self-energy is calculated. In a multi-orbital system, the

non-interacting particle-hole susceptibility χ̂0(k) = χ̂ph
0 (k) is a tensor calculated from the

non-interacting Green’s functions in the Nk ×Nk-lattice we are considering:

χph
0,abcd(q) = 1

N2
kβ

∑
k

G(0)
ac (q + k)Ḡ(0)

bd (−k) (6.16)

Using the well-known summation for the Lindhard function over all fermionic Matsubara

frequencies ωn and the analytic continuation:

χ0,abcd(q, iωn → iδ) =
1
N2

k

∑
k,n,n′

[Uk+q]an

[
U †

k+q

]
nc

[Uk]dn′

[
U †

k

]
n′b

× f(ξk+q,n, T ) − f(ξk,n′ , T )
iδ − (ξk+q,n − ξk,n′)

(6.17)

where δ is a small number, here set to 10−4eV. f(ξk,n, T ) is the Fermi-Dirac distribution

at temperature T . The tensor χ̂0(q) can be written as a rank 4 tensor. The number of

spins Nσ = 2, orbitals No = 3, and sublattices Ns = 2, results in a tensor of dimension

12 × 12 × 12 × 12. However, to separate the spin degrees of freedom we can reshape the

tensor to have the dimension N2
σ × N2

σ × (NoNs)2 × (NoNs)2. In terms of spin and orbital

indices, the basis for the tensor on this form is given as all combinations of two indices

(σσ′) × (αsβs′). The spin combinations are (σσ′) = {(↑↑), (↑↓), (↓↑), (↓↓)}, and (αsβs′) are

the 36 combinations of orbitals α = yz, xz, xy and sublattices s = A,B.

Interactions are treated by calculating the irreducible particle-particle vertex, which is

modified by spin-fluctuations from the random phase approximation (RPA). The irreducible

vertex is given by the parquet equations [49], where here the bare vertex is Γ̂0 = V̂ . The
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bare vertex is the Hubbard-Kanamori interaction [50], which is defined in real space as

HI =U
∑
j,α

njα↑njα↓

+
∑

j,α 6=β

JH
[
c†

jα↑c
†
jβ↓cjα↓cjβ↑ + c†

jα↑c
†
jα↓cjβ↓cjβ↑

]
+

∑
j,α<β,σ

[U ′njασnjβσ̄ + (U ′ − JH)njασnjβσ]

(6.18)

with the intraorbital Hubbard interaction U , the Hund’s coupling JH, and the interorbital

repulsion U ′ = U − 2JH. Following the notation of Ref. [14], we define the bare vertex V̂ as:

HI = 1
N2

k

∑
k,q

∑
a,b,c,d

Vabcd(q)c†
k,ac

†
−k,cc−(k−q),bck−q,d (6.19)

for all orbit-spin-sublattice indices a = (α, σ, s). On the same rank 4 tensor structure form

as the susceptibility, the tensor V̂ can be divided into spin sectors

V̂ =



V̂ ↑↑↑↑ 0 0 V̂ ↑↑↓↓

0 V̂ ↑↓↑↓ 0 0

0 0 V̂ ↓↑↓↑ 0

V̂ ↓↓↑↑ 0 0 V̂ ↓↓↓↓


(6.20)

with only on-site terms s = s′. Each matrix V̂ σ1σ2σ3σ4 in the orbit-sublattice basis is defined

as

V ↑↑↑↑
αsβsγsδs

= V ↓↓↓↓
αsβsγsδs

=



U ′ − JH (α = γ 6= β = δ)

−U ′ + JH (α = β 6= γ = δ)

0 (otherwise)

(6.21)
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V ↑↑↓↓
αsβsγsδs

= V ↓↓↑↑
αsβsγsδs

=



−U (α = β = γ = δ)

−JH (α = γ 6= β = δ)

−U ′ (α = β 6= γ = δ)

−JH (α = δ 6= β = γ)

0 (otherwise)

(6.22)

V ↑↓↑↓
αsβsγsδs

= V ↓↑↓↑
αsβsγsδs

=



U (α = β = γ = δ)

U ′ (α = γ 6= β = δ)

JH (α = β 6= γ = δ)

JH (α = δ 6= β = γ)

0 (otherwise)

(6.23)

for each sublattice s = A,B and for orbital indices α, β, γ, δ. The effective particle-particle

vertex [49] is:

Γ̂pp(q = K −K ′) = −1
2 V̂ − V̂ χ̂(K −K ′)V̂ (6.24)

The susceptibility χ̂(q) is approximated as the RPA susceptibility:

χ̂(q) =
(
1 − χ̂0(q)V̂

)−1
χ̂0(q) (6.25)

which uses the same bare vertex V̂ and has the same tensor structure as χ̂0(q). The tensor

multiplication is defined as a matrix multiplication in the spin and orbital-sublattice

combinations [
ÂB̂

](σσ′)1(σσ′)2

(αsβs′ )1(αsβs′ )2
=

∑
α̃,β̃,σ̃,σ̃′

A
(σσ′)1(σ̃σ̃′)
(αsβs′ )1(α̃β̃)B

(σ̃σ̃′)(σσ′)2
(α̃β̃)(αsβs′ )2

(6.26)

The effective vertex is not further spin-diagonalized into spin-singlet and spin-triplet vertices

as our regime of intermediate to strong spin-orbit coupling inherently mixes the two sectors.

The linearized gap equation can be obtained from the Luttinger-Ward functional [51, 52],

where the linearization of the anomalous Green’s function is given by the Dyson-Gorkov
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equations Eq. (6.9).

∆ab(k) = 1
Nβ

∑
k′

∑
a′b′

Γpp
aa′b′b(k − k′)Fa′b′(k′) (6.27)

Fa′b′(k′) =
∑
µν

Ga′µ(k′)Ḡνb′(k′)∆µν(k′) (6.28)

where β is the inverse temperature and N = N2
k . Each index here runs over all orbit-spin-

sublattice combinations a = (α, σ, s). Further, we apply both the static (ωn → δ = 10−4eV,

∆̂(k) → ∆̂(k), Γpp(q) → Γpp(q)) and normal state (Ĝ(k′) → Ĝ(0)(k′)) approximations. The

linearized gap equation can be solved as an eigenvalue problem, as a version of the Eliashberg

equation:

λe∆ab(k) = 1
N

∑
k′,a′b′,µν

Γpp
aa′b′b(k − k′)φk′

a′b′µν∆µν(k′) (6.29)

with

φk′

a′b′µν = − 1
β

∑
ωn

G
(0)
a′µ(k′)Ḡ(0)

νb′(k′) (6.30)

A largest eigenvalue of unity or higher λe ≥ 1 indicates a possible superconducting order. A

non-explicit summation over Matsubara frequencies is performed, like in Eq. (6.17), and the

equation depends only on momentum k.

While this system is strongly interacting one might expect a multitude of order

parameters including magnetic orders. We use the Stoner criterion to identify phases in the

particle-hole channel. Methods attempting to treat particle-hole and particle-particle

self-energies on equal footing are beyond the scope of this work [53, 54]. The RPA

susceptibility, Eq. (6.25), will pass a critical point and diverge, when the Hartree-Fock term

in the particle-hole channel has an eigenvalue above unity at any k-point which we name

Q [53, 54]:

max eig
[
χ̂0(Q)V̂

]
= 1 (6.31)

The particle-hole instability is given by the eigenvector to the tensor χ̂0(Q)V̂ , which can be

unfolded into a matrix. A rank 4 tensor Cijkl of dimension N1 ×N2 ×N1 ×N2 can be mapped
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onto a matrix Cµν of dimension N1N2 ×N1N2 via

µ = i+N1(j − 1), µ ∈ [1, . . . , N1N2]

i = 1 + mod(µ− 1, N1), i ∈ [1, . . . , N1]

j = 1 + div(µ− 1, N1), j ∈ [1, . . . , N2]

(6.32)

where ”mod” is the modulus operation and ”div” is integer division. The given mapping

preserves the defined tensor multiplication, in Eq. (6.26), as matrix multiplication in the

unfolded matrix. The type of instability can also be classified by the magnetic channel it

occurs in. The susceptibility can be spin block-diagonalized by rewriting it in the basis of

magnetic operators mz
α̃β̃

= 1√
2(c†

α̃↑cβ̃↑ − c†
α̃↓cβ̃↓):

χ̂z
α̃β̃γ̃δ̃(q) = 1

N2
k

∫ β

0
dτeiωnτ 〈Tτm

z
α̃β̃,q(τ)mz

γ̃δ̃,−q(0)〉c (6.33)

with the indices α̃ = αs running over all orbital α = yz, xz, xy and sublattice s = A,B

combinations. The magnetic channels are

χ̂z(q) = 1
2
(
χ̂↑↑↑↑(q) − χ̂↑↑↓↓(q)

)
(6.34)

χ̂+(q) = χ̂↑↓↑↓(q), χ̂−(q) = χ̂↓↑↓↑(q) (6.35)

with the out-of-plane spin χ̂z(q) and in-plane spin χ̂±(q) channels 1. As the j-state basis

describes the bands better than the orbital-spin basis, the χ(q)-terms can be transformed,

via Eq. (6.8), as

χJ,ijkl(q) =
∑

αβγδ

MiαM
†
γkMlδM

†
βjχαβγδ(q) (6.36)

where M is the transformation from spin and orbit to the total angular momentum basis.

In this basis, the susceptibility is similarly divided into different pseudospin channels χ̂z
J(q)

and χ̂±
J (q).

1The spin block-diagonalization introduces an additional density channel χ̂d(q). No density-channel
instability is found in this work and the peaks are significantly smaller than in the magnetic channels. This
remains true for χ̂d

J(q) in the j-state basis.
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6.2.3 Computational details

All RPA calculations, for the susceptibility Eq. (6.25) and superconductivity Eq. (6.29) were

performed on a Nk ×Nk = 46×46 momentum lattice. The finite momentum resolution limits

the lowest accessible temperature. Peaks in the susceptibility cannot be narrower than the

lattice spacing and we thus require some thermal broadening to get reliable results. In this

work we use kBT = 0.001eV (T ≈ 11K). The temperature was chosen such that less than

a 10% change in largest eigenvalue was found when going from a lattice of size Nk = 32

to Nk = 46, at most points. In the data of Figs. 6.7b & 6.11 a larger change is observed,

therefore calculations for these figures where done at Nk = 64. The specific temperature is

of interest for a potential d-wave superconducting order in the electron doped compound.

The 2016 experiment in Ref. [16] observed an order with this symmetry below T ≈ 30K,

with a maximum at T ≈ 10K. The largest value of the linearized gap equation is found via

the Arnoldi method, with a convergence criterion of 10−7.

6.3 Phase diagram: strain and doping

In the following sections we discuss the phase diagrams obtained by varying the charge

doping and applying an increasing compressive strain. For the most realistic parameter range

one obtains Fig. 6.3. To explore additional effects from chemical doping and to illustrate

the richness of similar compounds, additional phase diagrams are shown in Fig. 6.4. All

phase diagrams show strain-induced superconductivity for a broad range of parameters. In

addition, three main features can be observed. First, the two types of superconductivity

found in earlier works [11, 14], a pseudospin j = 1/2 d-wave and an orbital s±-wave, are

found. In addition, both types can be found when varying only the doping, for a select set

of parameters. Second, at high enough strain an orbital selective pairing which favors one of

the in-plane directions can be found. This type of order has a larger component originating

from the xz orbital than from yz, spontaneously breaking the in-plane symmetry. And

third, under compressive strain the susceptibility goes from having the largest peaks in the

pseudospin states to peaks instead originating from the spin states. This shift affects both

the magnetic order and the possible pairing symmetries.
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U = 1.1eV, JH/U = 0.1, λ = 0.6eV
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0.9λe =0.3

Figure 6.3: The phase diagram for charge doping and compressive strain are shown at
U = 1.1eV≈ 3|t| for realistic values of the spin orbit λ and Hund’s couplings JH. Two
types of regions are found in the RPA calculations: the magnetic region where the Stoner
criterion has been met and a superconducting order with d-wave symmetry. The nature
of the magnetic transition is characterized in Fig. 6.6. In the normal state the largest
eigenvalue λe < 1, and the contours of the values are shown up to ε = −3.5%. The phase
diagram extends to the higher strain values as to be comparable to Fig. 6.4, in this regime
no superconducting order is possible.
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Figure 6.4: The phase diagrams for for a lower SOC and a higher Hund’s, at a) U =
1.1eV≈ 3|t| and b) U = 1.4eV≈ 4|t|. In a) there are two types of superconducting orders:
the d-wave and another with s±-wave symmetry. In b) there are two additional anisotropic
types of superconducting orders, an s-wave and a d-wave. The magnetic phase transitions
are here of multiple types and are characterized in Figs. 6.6 & 6.7. The eigenvalues are only
calculated up until to a strain value where superconductivity is no longer possible.

Choosing a realistic regime for the phase diagram, there are two criteria for the chosen

interaction parameters. The first criterion is that sufficient doping, either hole or electron,

should in accordance to experiment, result in a transition out of the magnetic order. The

second criterion is that in undoped Sr2IrO4 the magnetic order persists up to a strain value

of ε ≈ −2% [31, 39]. For the most realistic values of the Hund’s and spin-orbit coupling,

JH = 0.1U and λ = 0.6eV, the first criterion is satisfied for U ≈ 2|t|, shown in

Appendix 6.A. The realistic phase diagram is presented for U = 1.1eV≈ 3|t|. Since the

model overestimates the orders this choice only satisfies the second criterion. In

Appendix 6.A the phase diagram for U = 1.4eV≈ 4|t| results in the same phase transitions

at higher strain values. Complementary mean field calculations, containing magnetic,

superconducting as well as other order parameters, yields a qualitatively similar phase

diagram, with differences explained in Appendix 6.B.

In Fig. 6.4, we also consider a higher Hund’s coupling of JH = 0.25U , with a lower

spin orbit coupling of λ = 0.5eV for the following reason. Hole doping via the substitution

of iridium atoms for rhodium or ruthenium atoms could modify the effective interaction
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Figure 6.5: The in-plane a) pseudospin χ↑↓↑↓
J (q) and b) spin susceptibility χ↑↓↑↓(q),

Eqs. (6.37), (6.38), for U = 1.1eV, JH = 0.25U , λ = 0.5eV, n = 4.8, ε = −1%. The
largest peaks are around Q1 ≈ (π, π) and Q2 ≈ (π

2 ,
π
2 ), respectively. c) Shown for the FS

in the extended BZ, Q1 connects FS1 to itself while Q2 connects FS1 and FS2. On the
FS the orbital contributions are given as |〈α|FSn|α〉|, for α = yz, xz, xy. In d) & e), the
pseudospin susceptibility is split into each j-state contribution and the spin susceptibility
into that of each orbital. Even though the j = 1/2 states have the individually largest peaks,
the total susceptibility originating from the yz- and xz-orbitals is larger. Peaks of the type
Q1d ≈ (π

2 , π) are present in the spin susceptibility as peaks belonging entirely to one of the
orbitals yz or xz.
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Figure 6.6: Two out of the five types of magnetic instabilities found at the Stoner criterion
and the components for the largest susceptibility peaks Re[χ (Q)] × |t|, are shown along
constant doping lines in a) Fig. 6.3 & b) Fig. 6.4a. The most prevalent instability occurs
in the j = 1/2 state, in-plane, and with the nesting vector Q1 ≈ (π, π): χ↑↓↑↓

J,
(

1
2 ,± 1

2

)(Q1).
b) At JH = 0.25U and hole doping, the j = 1/2 Q1-nesting instability has both in- and
out-of-plane components. Close to these instabilities the Q1-peaks are the largest. As the
strain increases the total in-plane spin susceptibility, Eq. (6.37), decreases at a slower rate
and eventually dominates instead

parameters and spin-orbit coupling. Some works estimate the spin orbit coupling of iridium,

rhodium and ruthenium as λIr ≈ 0.45eV, λRh = λRu ≈ 0.19eV respectively [55, 56, 57].

Moreover, ruthenium atoms have a higher Hund’s coupling of JH ≈ 0.15U − 0.2U [58]. The

full set of phase diagrams are presented in Figs. 6.3 & 6.4, with identified superconducting

and magnetic phases.

6.4 Magnetic order

In the RPA calculation, the particle-hole order is found using the Stoner criterion, Eq. (6.31).

An order can be characterized by two features of χ̂(q). First is the nesting vector Q = (qx, qy),

given in the extended BZ, at which the Stoner criterion is met. The instabilities in the

phase diagrams all appear at the four points, Q1 ≈ (π, π), Q2 ≈ (π
2 ,

π
2 ), Q0 ≈ (0, 0), and

Q1d ≈ (π
2 , π). The exact location of the instabilities is shifted a small distance from the

ideal values, which depends on doping as well as strain. Examples of the dominant peaks

are shown in Fig. 6.5. The most relevant components of the susceptibility are shown in

Figs. 6.6 & 6.7, along a few cuts in the phase diagrams. For the lower Hund’s coupling in
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Figure 6.7: Additional magnetic instabilities are found for JH = 0.25U . In a small region
around n = 4.7, in Fig. 6.4a, an out-of-plane ferromagnetic instability χz(Q0) accompanies
the in-plane order. Note that the competing sizes of different channels here could be an effect
of the momentum resolution. In Fig. 6.4b, a spin instability with Q2 ≈ (π

2 ,
π
2 ), is present

for all hole doping. The superconducting s±-wave is found close to the instability, while the
anisotropic s-wave appears when the Q1d-peak, in the xz-orbital, becomes equal in size.

Fig. 6.3 the only instability is at Q1. An order described in real space by a two site unit

cell in a square lattice will have a reduced Brillouin zone with a unit vector Q = (π, π). As

antiferromagnetism is a two site order expected in this compound, the Q1 susceptibility peaks

are expected to be antiferromagnetic. In Fig. 6.4 the Q2-instability occurs at most doping

values. A real space order corresponding to Q = (π
2 ,

π
2 ), will have a unit cell containing 4

sites. However, it should be noted that the peak Q2 ≈ (π
2 ,

π
2 ) is doping dependent and never

occurs exactly at this value. It is an incommensurate order closer to (0.6π, 0.6π) for hole

doping and (0.4π, 0.4π) for electron doping. In Fig. 6.5 there is an additional copy of these

peaks that connects different copies of pockets in the extended BZ. Another instability, at

Q1d, only occurs at the highest strains and electron dopings considered. This nesting vector

connects segments on the FS with either a clear xz-character to other segments belonging to

the same orbital. The quasi-1d dispersion of the xz orbital, with t1 � tδ in Eq. (6.4), leads

to the susceptibility in the intra-xz channel having peaks connecting point in momentum

space mainly along the x-direction. Finally, a ferromagnetic instability at Q0 is possible in

Fig. 6.4a at n = 4.7.

The second feature that characterizes a magnetic instability is the channel in which the

instability occurs. In Eqs. 6.34 & 6.35, the spin susceptibility χ̂(q), as well as the pseudospin

susceptibility χ̂J(q), are divided into magnetic channels. Most instabilities found in Figs. 6.3
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& 6.4 are of the type χ↑↓↑↓
J,
(

1
2 ,± 1

2

)(Q1), an in-plane magnetic instability with mainly j = 1/2

contributions. This can be interpreted as the canted in-plane antiferromagnetic order (x-

cAFM) observed in each layer experimentally. As denoted in Fig. 6.6b, the higher Hund’s

coupling, JH = 0.25U and U = 1.1eV, results in an additional out-of-plane component

accompanying the in-plane order, with χz
J,
(

1
2 ,± 1

2

)(Q1).

At any point where the Q2 instability is present, it occurs in channels of the spin

susceptibility, rather than pseudospin. The instability is in-plane and has contributions

mainly from the yz and xz orbitals: χ↑↓↑↓
yz (Q2) & χ↑↓↑↓

xz (Q2). Even though this instability is

only present at U = 1.4eV and JH = 0.25U , these susceptibility peaks remain large in the

entire Fig. 6.4a phase diagram. At high hole doping in Fig. 6.4a a purely out-of-plane

ferromagnetic instability χz(Q0) occurs for spins in each of the orbitals yz, xz, and xy.

As the strain increases the peaks in the susceptibility at different channels decrease at

different rates. Moreover, we will see below that superconductivity found directly adjacent

to a magnetic order is mediated by those magnetic fluctuations while superconducting orders

which are mediated by other fluctuations can become more favorable as strain is increased

further. In Fig. 6.6b, at JH = 0.25U , the spin susceptibility peaks decrease significantly

slower than those of the antiferromagnetic pseudospin order. At strain ε = −0.5%, and

beyond, the peaks in spin susceptibility become dominant. The effective particle-particle

vertex, Eq. (6.24), develops peaks at the same Q-points as for the spin (or pseudospin)

susceptibility. To track which magnetic fluctuation mediates the superconducting orders,

the strengths of spin and pseudospin fluctuations are compared. The total susceptibilities in

the two bases are

χσσ′σσ′(q) = 1
2
∑
s,s′

∑
α,β

eiqx(Θs−Θs′ )χ
(ασ)(ασ′)(βσ)(βσ′)
sss′s′ (q) (6.37)

χττ ′ττ ′

J (q) = 1
2
∑
s,s′

∑
m,n

eiqx(Θs−Θs′ )χ
(mτ)(mτ ′)(nτ)(nτ ′)
J,sss′s′ (q) (6.38)

where Θs, with s = A,B, chooses the sublattice such that ΘA = 0 and ΘB = 1.

It should be noted, that the pseudospin susceptibility nesting vector Q1 can be related

to the hidden spin density wave (hSDW) orders found in other models for multi-band
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Symmetry ηµ
R(k) R = 0 R = 1 R = 2 R = 3

A1g, s 1 cos kx + cos ky 2 cos kx cos ky cos 2kx + cos 2ky

B1g, dx2−y2 - cos kx − cos ky - cos 2kx − cos 2ky

B2g, dxy - - 2 sin kx sin ky -
Eu, p - sin kx, sin ky sin(kx + ky), sin 2kx, sin 2ky

sin(kx − ky)

Table 6.1: The lattice harmonics for each relevant symmetry on the square lattice is given
for different radii R, describing what distance neighbors the symmetry is found on. R = 0
is on-site, R = 1 is nearest neighbors, and so on.

superconductors [59, 60]. The j-state basis mixes spin and orbital degrees of freedom and

therefore the peaks found correspond to a linear combination of channels that favors both

SDW and hSDW orders.

6.5 Superconductivity

6.5.1 Symmetries

In single-orbital models, it is of highest importance to determine whether the

superconductivity is a spin-singlet or a spin-triplet order. Topological superconductivity

and Majorana modes arise from superconductivity with p-wave pairing, which requires

spin-triplet pairing in those systems. Efforts to induce superconductivity through the

proximity effect are thus often focused on finding spin-triplet orders. However, once

multiple orbitals and spin-orbit coupling are considered the connection between

spin-triplets and p-wave symmetry is no longer a strict requirement. Multi-orbital models

allow for a large set of possible pairing symmetries. The pairing matrix ∆̂(k) must be

antisymmetric under the full SPOT -exchange [48, 61]. Therefore, any pairing can be

classified as being either even or odd under spin exchange (S), relative coordinate reflection

(P), orbital exchange (O), and relative time exchange (T ) as defined in Appendix 6.D. As

only the static case is considered in this work the order parameter is constant, and

therefore even, under T . Note that the operators P and T only exchange relative

parameters, and are thus different from the reflection and time reversal operators.
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For example, classifying symmetries for strong spin-orbit coupling in the predicted j =

1/2 d-wave, will inherently result in both spin-singlet and spin-triplet contributions. The

pairing is more accurately described by the total angular momentum of the pair, which can

take the values J = 0, 1, 2, 3 [62, 63]. Only within the j1 ⊗ j2 = 1
2 ⊗ 1

2 sector do we still

only get pairs that are either a J = 0 singlet or triplets J = 1 with M = −1, 0,+1. In

Appendix 6.D the symmetry operations in the orbital basis are shown for the two types of

pairing found in Fig. 6.3.

The spatial symmetry can be considered for the non-interacting bands nτ by projecting

the intraband pairing onto the Fermi surface (FS). The FS may contain three types of pockets

belonging to two types of bands. The larger pockets, consisting mainly of (j, jz) = (1
2 ,±

1
2)

states, are located around the points (k1, k2) = (π, π), (π, 0) and have superconducting gaps

that can be described by the same spatial symmetry. We therefore only look at one of

these pockets, denoted FS1. The smaller FS2, with mainly (j, jz) = (3
2 ,±

3
2) is centered

around (k1, k2) = (0, 0). The spatial symmetry is thus studied for four intraband parameters:

pseudospin-singlets ∆s
FS1(k), ∆s

FS2(k) and pseudospin-triplets ∆t
FS1(k), ∆t

FS2(k). ∆s/t
FSn

(k) is

the order parameter Eq. (6.29) projected onto the band at the Fermi surface FSn. The

number of points belonging to a pocket is NFSn . For example the pseudospin-singlet is

∆s
FSn

(k) =
∑

k∈FSn

∑
αβ

∑
mm′

[
U †

k

]
nα

[
U †

−k

]
nβ

× 1√
2
(
M †

α(m+)M
†
β(m′−)∆(m+)(m′−)(k)

−M †
α(m−)M

†
β(m′+)∆(m−)(m′+)(k)

)
(6.39)

where M is the matrix in Eq. (6.8) and the matrix Uk,αn transforms the band basis into

the orbital basis. In the numerical calculations, there are small but non-zero interband

contributions that will not be considered further. The spatial symmetries can be quantified

via the projection coefficients P µ,R
s/t,FSn

onto the basis functions for each parity irreducible

representation, ηµ
R(k), as given in Table 6.1

∆s/t
FSn

(k) =
∑
µ,R

P µ,R
s/t,FSn

ηµ
R(k). (6.40)
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The projection coefficient for each irreducible representation is thus found via

P µ,R
s/t,FSn

= 1
NFSn

∑
k∈FSn

ηµ
R(k)∆s/t

FSn
(k). (6.41)

Examples of the two leading types of pairings are shown in Fig. 6.8. The most prominent

d-wave is a j = 1/2 pseudospin singlet with a ηB1g

R=1 pairing. The found s±-wave order has

contributions from both η
A1g

R=0(k) and η
A1g

R=2(k), with opposite sign for the two pockets. The

main j-states components are from (1
2 ,±

1
2) and (3

2 ,±
3
2). However, components mixing j-

states is stronger than for the d-wave. The symmetry in terms of orbital origin is specified

further in Appendix 6.D.

6.5.2 Realistic strain-induced order

At low Hund’s coupling and high SOC, a d-wave is found for a wide range of doping values

once there is no longer a magnetic order present. The mean field calculations in Appendix 6.B

corroborate the prediction of this order. The magnetic region extends up to ε = −1.5% at

the undoped n = 5, while it persists at higher strains on the electron doped side. Because

of the required compressive strain, two bands are present at the FS at all points where

superconductivity is found. As seen in Fig. 6.8, the gap on FS1 is significantly larger than

on FS2. The d-wave originates from the j = 1/2 states, which are the states the band at

FS1 also belongs to. Strain has increased the size of the j = 1/2 electron pocket, FS1, in

the entire region where superconductivity is found. Even for hole doping at ε = −2% the

pocket FS1 is comparable in size to FS1 at ε = 0 and electron doping, as further explained

in Appendix 6.B.

6.5.3 Varying Hund’s coupling

There are several important factors that determine which pairing symmetry is favored.

Doping and strain change the shape of the Fermi surface, and thus the nesting vectors Q,

as well as the orbital contributions in each pocket. Both compressive strain and hole

doping increase the presence of yz and xz orbitals. However, the type of fluctuations which

dominate the RPA interaction vertex depends on the interaction parameters. In Fig. 6.8
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Figure 6.8: Both the dominant symmetry and the relative weight on the pockets change as
the Hund’s coupling is varied. In a) and b) the spin-orbit coupling λ is fixed and the spin-
singlet order for each pocket at the Fermi surface is projected onto each spatial symmetry,
as in Eq. (6.41). The inserts show the largest eigenvalue λe of the linearized gap equation
Eq. (6.29). c) and d) show ∆s/t

FSn
(k) for two values of JH for the FS belonging to a). In the

d-wave state, the weight on the FS1 is largest. For the s-wave state, the opposite is true and
pockets have opposite signs, identifying it as an s±-wave.
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Figure 6.9: Maximum peaks in the spin and pseudospin susceptibility, Eqs. (6.37) &
(6.38), for the same calculation as in Fig. 6.8 and for U = 1.4eV. Each value is the in-
plane Re

[
χ↑↓↑↓ (Q)

]
× |t|. For a Hund’s coupling where a pseudospin d-wave is favored

χJ(Q1) > χ(Q2). The location in the phase diagrams for the points chosen in each plot is
shown in the lower row.
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the largest eigenvalue of Eq. (6.29), and the symmetry of the pairing, are shown as the

Hund’s coupling varies. We observe a general trend in which the s±-order becomes more

favorable than d-wave superconductivity at JH ≥ 0.25U . For the lower SOC, λ = 0.5eV, the

largest eigenvalue is above unity for all values of Hund’s coupling considered. The s±-wave

is only possible for low SOC and hole doping, since that places the Fermi level deeper in

the band of (j, jz) = (3
2 ,±

3
2) character. By contrast, the d-wave order is present for a wider

range of parameters.

At all points there are two main types of competing fluctuations; pseudospin fluctuations

around Q1 ≈ (π, π) and spin fluctuations around Q2 ≈ (π
2 ,

π
2 ). By studying the maximum

peak values in Fig. 6.9 one can determine which one of these fluctuations best describes the

system. As can be seen in Figs. 6.6 & 6.7, dominating spin fluctuations promote an s±-wave

order. However, if both types of fluctuations are of roughly equal size the j = 1/2 d-wave is

favored.

6.5.4 Multi-band orders

For a higher Hund’s coupling superconducting orders are favored which open large gaps on

multiple pockets at the Fermi surface. In Fig. 6.4a, there are two distinct superconducting

orders at U = 1.1eV. The magnetic order disappears for small strains and superconductivity

is only possible up to ε = −2%. Moreover, the symmetry of the superconducting order

is dependent on doping. At high hole doping and some strain the pairing is an s±-wave,

while remaining a d-wave for all other doping values. When we set the Hubbard U to a

higher value of U ≈ 4|t|, as seen in Fig. 6.4, and turn on a high compressive strain the

band structure changes. This can lead to new pairing functions which were not seen earlier.

A drastic change occurs in Fig. 6.4b where some regions have an anisotropic s- or d-wave

pairing. For all values of JH considered in Fig. 6.10, the anisotropic order, which is a mix

of s- and d- wave pairing, is found. The s-wave contribution increases with Hund’s. The

orbital components, as well as a simple model for this state, are described in Appendix 6.E.

This superconducting order is an orbital-selective state with a stronger spin-singlet in the

xz-orbital. One notable reason for this new type of pairing is the increased spin nature of

the fluctuations as compressive strain is increased. As already discussed, all regions with
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Figure 6.10: For a higher U = 1.4eV and high compressive strain ε = −3% two new
anisotropic orders are found. In Appendix 6.E the origin is identified as a higher contribution
to the pairing from one of the orbitals (xz). For the pairing at the Fermi surface this manifests
as both orders being a mix of s- and d-wave symmetries. As the Hund’s coupling is increased
the order goes from being predominantly a d-wave order, with nodes, to a node-less order
with stronger s-wave components. The insert shows the largest eigenvalue λe.
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Figure 6.11: a) The total in- and out-of-plane susceptibility, Eqs. (6.37) & (6.38), are shown
for a higher JH = 0.3U , where χz(Q0) is the largest component. Only for a small region
close to the magnetic instability is an odd parity p-wave pairing favored. b) & c) ∆↑↑

xz,xz(k)
of the p-wave pairing is shown, revealing a dominating p + ip structure. The equally large
orbital component is ∆↑↑

yz,yz(k) = −∆↑↑
xz,xz(k).

anisotropic pairing are mediated by a large spin susceptibility peak in χ↑↓↑↓
xz (Q1d). In Fig. 6.9,

the larger spin to pseudospin susceptibility ratio can be compared for the increased strain,

at all JH values.

6.5.5 Odd parity

In general, the out-of-plane χz(Q0) susceptibility peaks remain smaller than either the in-

plane spin χ↑↓↑↓ (Q) or pseudospin χ↑↓↑↓
J (Q) peaks. This is the case for all values calculated

so far, except for the one small region in Fig. 6.7 with large hole doping, high Hund’s

coupling, and low compressive strain. A high enough Hubbard interaction U ≥ 1.1eV is also

required. As several of these factors also increase the in-plane spin susceptibility, the out-of-
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plane susceptibility only dominates in a very small parameter range. In Fig. 6.11 one such

small patch can be found for a very high Hund’s coupling, JH = 0.3U . Accompanying these

fluctuations is an odd parity p-wave superconductivity. The main contribution, described by

the symmetry representation detailed in Appendix 6.D, is

∆p(k) ≈ (hx ⊗ σz + ihy ⊗ I) ⊗ λ3. (6.42)

where λj is the jth Gell-Mann matrix [64] acting in the three-orbitals space. The p-wave

pairing has several leading terms, which are hx = − sin kx + sin kx cos ky + sin(2kx) and hy =

− sin ky+sin ky cos kx+sin(2ky). Some smaller terms are proportional to (hx ⊗ σz + ihy ⊗ I)⊗

λ1 and ∆↓↓
xy,xy(k) ∝ ∆↑↑

yz,yz(k). Up- and down-spin pairing have the opposite chirality. This

helical p-wave thus preserves time-reversal symmetry (TRS), since ∆↓↓
αβ(k) =

(
∆↑↑

αβ

)∗
(−k).

The helical nature is preserved for both Fermi surfaces, FS1 and FS2, with a larger gap on

FS2. A Z2 topological invariant can therefore be determined. We can consider a Chern

number for each pseudospin sector, as outlined in Appendix 6.F. The defining features of

the pairing are

• The helical p-wave preserves time reversal symmetry, such that the total Chern number

vanishes, Ctot = 0.

• The pseudospin Chern number, ν = (C+ − C−)/2, also vanishes such that in each

pseudospin sector Cτ = 0.

• In each pseudospin sector we define the pocket Chern number Cn,τ for the band n. We

find Cn,τ = ±1 such that for each band the pseudospin Chern number is νn = ±1.

The pocket contributions cancel such that ν = ∑
n νn = 0, as the pocket of j = 3/2-

character has the opposite chirality to the j = 1/2 pocket.

• Therefore no topologically protected edge/vortex modes are expected.

Even for chiral TRS-breaking superconductors the Fermi surface topology can result in a

topologically trivial state, when multiple pockets are present [65, 66]. The possible Chern

numbers in multiband superconductors depend on the pairing function, and the location in

the Brillouin zone of the resulting topological charges [67, 68, 69].
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It might be possible to expand the p-wave regime by tuning parameters such that

ferromagnetism is favored. In our model, increasing the Hubbard coupling, U , accomplishes

this. However, with a higher U , a higher strain required to reach the superconducting

regime but a higher U also increases the in-plane fluctuations, as in Fig. 6.7. This is caused

by the other fluctuations being favored when the pocket with j = 3/2 states becomes large.

Only for a smaller pocket and a large U would the p-wave be favored. The odd parity order

is thus a fine-tuned case which is found beyond realistic parameters.

6.6 Discussion

While strong interactions, spin-orbit coupling, and the proximity of multiple d-bands to the

Fermi level all point to the possibility of unconventional superconductivity, experimental

observation of superconductivity is still missing. In this work we suggest that compressive

strain may be a possible knob that, together with doping, can turn the system from

magnetic to superconducting. We model the system using the extended Hubbard-Kanamori

Hamiltonian and map out its phase diagram. Magnetic orders are found using the Stoner

criterion while superconductivity is studied using the RPA linearized Eliashberg equation.

For the range of parameters considered in this work, we find prominent regions of

strain-induced superconductivity, among them a large fraction exhibits d-wave pairing.

The d- and s±-wave orders found are the same as in previous studies of the unstrained

compound. For the values considered here the s±-wave can arise adjacent to the AFM order,

for a high enough Hund’s coupling. For high strains and Hund’s coupling, new orbital-

selective, anisotropic s- or d-wave orders are found. In addition, we find an out-of-plane

ferromagnetic order. In a very fine-tuned region, the out-of-plane susceptibility mediates

an odd parity p-wave order. We note that the work of Ref. [12] finds a p-wave order in

hole doped Sr2IrO4, albeit at an extremely large Hubbard coupling, U = 12t, and a lower

Hund’s coupling of JH = 0.15U . The odd parity order we find is favored by a high Hubbard

coupling, U , in the unstrained compound and could be the dominant order at those values. At

higher strains the ferromagnetic fluctuations vanish. The p-wave order is found to be helical

and topologically trivial, as determined via the Z2 invariant. However, other values of the
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Hund’s coupling and different Fermi surface geometry could potentially break time reversal

symmetry and result in a chiral p-wave [70]. As in the case of Sr2RuO4, the topological

nature of such a state in the iridates is highly dependent on the Fermi surface geometry and

orbital composition.

It should be mentioned that the type of possible magnetic instabilities is not altered by

the compressive strain for the realistic value of the Hund’s coupling, JH = 0.1U . However,

with increasing compression the pseudospin j = 1/2 susceptibility decreases faster than

the spin susceptibility, bringing the two leading fluctuation peaks to comparable sizes. At

high Hund’s coupling and lower SOC we find an antiferromagnetic order that can have a

mixed in- and out-of-plane structure. Moreover, at higher strains a spin-like incommensurate

magnetic order is possible. Further calculations of the particle-hole self-energy are required

to characterize this magnetic order. The competition between two types of susceptibility

peaks mediating the d- and s-wave orders, shares many similarities with work done on iron-

pnictide superconductors [71, 72]. In iron pnictides a different nesting vector Q = (π, 0)

connects pockets and mediates the s±-wave. Ref. [71] predicts nearly degenerate multi-band

s- and d-wave orders where a small change in the interaction parameters determines the

favorable order. However, in contrast to our work their model does not contain spin-orbit

coupling. In our work, the strong SOC and the consequent pseudospin degrees of freedom

are partially responsible for the dominance of the d-wave order in the realistic regime phase

diagram.

The strain-induced superconducting regimes we find all occur when the Fermi surface has

multiple pockets. All superconducting orders are thus multigap orders [73, 74]. However,

for a higher SOC or lower U that would not necessarily be the case. The size of the second

pocket FS2 and the value of the Hund’s coupling determine the relative sizes of the gap for

the two pockets. In Fig. 6.8, the relative gaps are shown projected onto the FS at low Hund’s

coupling, and we find that pocket 1 dominates: Max[∆FS1(k)] � Max[∆FS2(k)]. The smaller

gap is expected to have a smaller effect on the (shared) critical temperature. Methods to

determine the relative size and pairing structures of two gap superconductors have been

explored in multiple compounds such as MgB2 [75] and SrTiO3 [76]. Further proposals have

been made to detect any offset phases between pairing functions. Especially for the s±-wave
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order where signatures of the phase difference between the two pockets could be detected

via Josephson tunneling [77, 78, 79].

Our results indicate that the doped and strained regime is of interest for potential

iridate superconductivity. Understanding changes to magnetic fluctuations for any

experiment combining strain and doping would provide great insight to the interplay of

interactions and spin-orbit coupling in transition metal oxides. An observation of the

susceptibility peaks that we identify as mediating superconductivity could hint at a

possible superconducting phase nearby. Further understanding the signatures of the

possible superconductivity, such as the Knight shift in the magnetic susceptibility [42]

could be a direction for future work.
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6.A Phase diagrams at other U

In the model used in this paper there is a trade-off between doping- and strain- dependent

behavior for a given strength of the Hubbard interaction U , as motivated in section 6.3. The

value for the calculated the phase diagram, U ≈ 3|t|, finds a magnetic phase transition for

an expected range of strain values. In Fig. 6.12 phase diagrams are calculated at a lower

U = 0.78eV≈ 2.2|t|. For the most realistic choice of Hund’s (JH = 0.1U) and spin-orbit

(λ = 0.6eV), the magnetic region at ε = 0 only extends up to n = 4.85 on the hole doped

side. We note that for the chosen temperature and interaction parameters, a magnetic region
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Figure 6.12: For a choice of U = 0.78ev≈ 2.2|t| the Stoner criterion is met only for some
doping values, for the realistic interaction parameters in a). The superconducting region has
a stronger doping-dependence than in Figs. 6.3 & 6.4. However, the strain values here are
lower. In b), the largest eigenvalue is λe < 1 for the higher Hund’s coupling JH = 0.25U and
lower SOC λ = 0.5eV. The pairing associated with the highest eigenvalue is an s±-wave for
n < 4.8 and a d-wave for all higher doping values.

extends beyond n = 5.3. Mean field studies for the lattice with staggered rotations, such

as in Appendix 6.B, reveal a possible canted ferromagnetic order for this doping. The high

electron doping region is therefore likely to be a canted ferromagnet, as it has nesting vector

Q = (π, π). The phase diagram has a clear doping-dependence of the superconducting

region, with a dome centered at the electron doped regime. However, the considered strain

values only extend up to ε = −1.5%.

For the choice JH = 0.25U and λ = 0.5eV, neither a magnetic nor superconducting

region is found for the temperature T ≈ 11K. Similarly to the result at U ≈ 3|t|, the leading

eigenvector corresponds to two different types of pairing, depending on the considered doping

regime. To explore the robustness of the strain-induces d-wave superconductivity, an

additional phase diagram at U ≈ 4|t| is shown in Fig. 6.13. Even though the magnetic order

persists up to higher values of the strain, the order is still a d-wave with mainly j = 1/2

contributions. At higher strains, the pocket FS2 is larger than in Fig. 6.8 and the ratio

Max[∆FS2(k)] /Max[∆FS1(k)] is increased.
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Figure 6.13: a) Phase diagram at U = 1.4eV and additional parameters the same as in
Fig. 6.3. The mainly j = 1/2 d-wave order is present for a significant region in the higher
strain regime. b) As in Fig. 6.9 the maximum values of pseudospin χ↑↓↑↓

J (Q) and spin χ↑↓↑↓(Q)
susceptibility peaks are compared as the Hund’s coupling is increased for one point in the
phase diagram in a).

6.B Mean field calculation

The phase diagrams presented in this work are limited in the determination of competition

between orders. Even though all superconducting orders are treated equally, they are

calculated in the normal state. Therefore any influence of particle-hole self-energies are

ignored. To compare phase boundaries for the regions of interest a self-consistent

mean-field calculation was performed. We have chosen to only compare the RPA

calculation for the most realistic phase diagram in Fig. 3. For the j = 1/2 superconducting

order we can make an approximation of the effectively attractive interaction between sites.

However, the anisotropic s- and d-wave orders, as well as for the p-wave, require

approximations of the effective attractive interactions between both nearest and

next-nearest neighbor sites. As these multi-orbital pairing functions affect more than one

j-state, one must also approximate the strength of the interaction in each of these

channels. The mean field calculation was chosen to include all possible on-site magnetic

order parameters, in a two-site unit cell, as well as for a d-wave superconducting order
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parameter in the j = 1/2 state. The on-site order parameters, at sublattice s = A,B, are

〈c†
s,acs,b〉MF,T =

1
N2

k

∑
n,k

f(ξk,n, T ) [UMF,k](s,a)n

[
U †

MF,k

]
n(s,b)

(6.43)

with the orbit-spin label a = (α, σ), were calculated from a mean-field decoupling of the bare

interactions in Eq. (6.20), as described in Ref. [25].

The superconducting order parameter is introduced by mean field decoupling of the

Bogoliubov-de Genne (BdG) Hamiltonian. ∆j=1/2 is set to be a j = 1/2 d-wave singlet

between the sublattices as

HMF,SC =
∑

k

V (ε)∆j=1/2e
ikx (cos kx − cos ky)

×
[
ak,A,( 1

2 ,+ 1
2 )a−k,B,( 1

2 ,− 1
2 )

−ak,A,( 1
2 ,− 1

2 )a−k,B,( 1
2 ,+ 1

2 ) + h.c.
] (6.44)

where the operators a are in the j-state basis, as in section 6.2, and V (ε) = −3
4Jeff(ε) is

the effective interaction [80, 81]. Due to the structure of the hopping terms we approximate

Jeff(ε) in the j = 1/2 subspace as Jeff(ε) =
√
J2

1 +D2 [31], where

J1 = 4 (teff(ε) − teff,z(ε))2

Ueff
, D = 8teff(ε)teff,z(ε)

Ueff
(6.45)

Here the effective hopping parameters are teff(ε) = 1
3 (t1 + t4 + t5) and teff,z(ε) = trot. The

order parameter is calculated via the self-consistency equation

∆j=1/2 = 1
N2

k

∑
n,k

∑
α,β

e−ikxM(A,( 1
2 ,+ 1

2 )
)

,αM
(

B,( 1
2 ,− 1

2 )
)

,β

× [UMF,k]αn [UMF,k]βn f(ξk,n, T )
(6.46)

where the matrix M is Eq. (6.8). This and Eq. (6.43) are solved simultaneously via iterations

as a set of coupled equations. Here we are treating only the interaction within the j = 1/2

as if it was a one-band model, where the interaction projected onto that subspace is Heff =(
U − 4

3JH
)
ni,( 1

2 ,+ 1
2 )ni,( 1

2 ,− 1
2 ) = Ueffni,( 1

2 ,+ 1
2 )ni,( 1

2 ,− 1
2 ), so for the calculations Ueff = 13

15U . An
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Figure 6.14: The mean field calculation for magnetic and superconducting order
parameters, for the same model parameters as in Fig. 6.3 except λ = 0.45eV. Here
V = −0.25U ≈ −3

4Jeff(−2.5%). As the SOC is renormalized the resulting bandstructure
is the same as for the phase diagram in the main text.

inclusion of d-wave pairing within the (j, jz) = (3
2 ,±

3
2) sate or between the j = 3/2 and

j = 1/2 does not extend the superconducting phase in the calculation. The interaction

used here is U ≈ teff, and not close to the strong coupling limit. However, to compare the

competition between the d-wave and magnetic orders for for the RPA calculations results in

an order of roughly equal size.

Calculations were performed on a Nk × Nk lattice in momentum space, with Nk = 100,

and self-consistent solutions were found iteratively with a convergence criterion of 10−7.

Due to the full set of order parameters containing terms that renormalize the spin-orbit

coupling, the self-consistent mean field calculation predicts effects not included in the RPA

calculation. However, the included mean field orders can only have nesting vectors Q = (0, 0)

or Q = (π, π) as the two sites allow us to study either net (〈c†
A,acA,b〉MF,T + 〈c†

B,acB,b〉MF,T )/2

or staggered (〈c†
A,acA,b〉MF,T − 〈c†

B,acB,b〉MF,T )/2 values of the order parameters.
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In Fig. 6.14 there are two magnetic mean field orders. The most common order is the

canted in-plane antiferromagnet (x-cAFM), with a staggered magnetic moment along the

x-direction and a net magnetic moment along the y-direction. Similarly to previous works,

the canting angle follows the rotations of the octahedra in the lattice. When a compressive

strain increases the rotations, the magnetic canting angle thus increases as well. For a high

enough U the magnetic order remains up to high electron number (n > 5.2) the in-plane

ferromagnetic component becomes dominant. A small AFM component remains, identifying

this order as y-cFM. The canted orders consist mainly of j = 1/2 pseudospins. However,

as the SOC is lowered the AFM order in the hole doped region has small (j, jz) = (3
2 ,±

3
2)

contributions. The order parameters which renormalize the SOC depend on strain and

doping. However, if λ = 0.45eV is chosen the effective spin orbit coupling λeff ≈ 0.6eV.

A superconducting region is present in Fig. 6.14 and the competition between

superconductivity and magnetism therefore does not affect its existence. However, in

contrast to Fig. 6.3 superconductivity is only present for electron doping n > 5.05. For the

non-interacting band structure, used for the RPA calculations in this paper, the j = 3/2

pocket is present in the full charge doping region around ε = −2.2%. As the j = 3/2 hole

pocket increases in size for a given charge doping, the j = 1/2 electron pocket grows as

well. The superconductivity in Fig. 6.3 is therefore present for a region where the j = 1/2

electron pocket is significantly larger than for ε = 0. There the d-wave is present for all

considered n.

The discrepancy between the RPA and the mean field result is due to several factors.

Since these two approaches make different approximations it is not possible to determine

which phase diagram is more realistic. Instead, we can gain confidence in our results in parts

of the phase diagram where the two approaches agree. Each approach has its strength and

weaknesses. In mean field we must pre-determine the possible channels of superconductivity

and the effective attractive interaction which does not change with strain and doping. On

the other hand, the self-consistency equation Eq. (6.46) is not linearized like the RPA gap

equation in Eq. (6.27) and therefore the mean field is better suited for determining the

relative strength of the order parameters considered. The comparison between RPA and

mean field theory therefore suggest that the electron doped region is more likely to host a
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Figure 6.15: The largest eigenvalue λe is compared for the three options for the strain-
dependence of µxy(ε), as given by Eqs. (6.47) & (6.48). For JH = 0.1U and SOC λ = 0.6eV
we note the increasing eigenvalue, for a d-wave order, as the absolute value of µxy decreases.
For a lower |µxy|, the bands of (3/2,±3/2)-character are pushed further down and a larger
fraction of bands at the Fermi surface has j = 1/2 character. For JH = 0.25U and lower
SOC, the opposite trend is observed and the order is the s±-wave.

d-wave superconducting order.

6.C Tetragonal splitting

Compression has an additional effect relevant to the iridates: an increased tetragonal

distortion. The tetragonal distortion of the oxygen octahedra encompassing the iridium

atoms has been measured to increase with compression - becoming more elongated when

the in-plane compression increases. For unstrained Sr2IrO4 a small elongation is observed,

which theoretically should result in a tetragonal splitting µxy > 0. However, early ab initio



6. Strain-induced superconductivity in Sr2IrO4 134
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Figure 6.16: The magnetic mean field phase diagrams, Eq. (6.43), for three different
options for µxy(ε): µI

xy (absolute value increasing, Eq. (6.47)), µ0
xy (constant), µD

xy (absolute
value decreasing, Eq. (6.48)). No significant shift of the amount of strain required for a
phase transition is observed. A larger absolute value of the splitting favors a magnetic order
for electron doping. At the strain values required for the transition, µD

xy has changed sign,
µD

xy > 0, and the order instead favors hole doping. For JH = 0.25U a lower splitting favors
the z-FM order while it suppresses the y-cFM order.
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Figure 6.17: The magnetic mean field phase diagrams at a lower U = 1.1eV. Since the
magnetic order does not remain up to as high strains, the tetragonal splitting effects are less
prominent. Only JH = 0.1U is shown here as the magnetic regions for JH = 0.25U are too
small to see any difference between the three models.
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calculations found that the band structure is best described by a shift µxy < 0 [6, 82].

Later works have proposed that the sign could arise from hybridization with ligand oxygen

orbitals [83, 84]. Due to this sign difference, previous works modeling the tetragonal

splitting’s dependence on strain come to contradictory results, where |µxy| either increases

or decreases [21, 82, 30]. A fitting of the change in energy splitting to RIXS measurements,

in Ref. [28], found an increasing |µxy| for low compressive strain. A linearization of these

results gives:

µI
xy(ε) = −|µxy(0)|(1 − 0.2041ε). (6.47)

where ε is given in units of %. In Fig. 6.15 the largest eigenvalue for the linearized gap

equation is compared for an approximation of µxy(ε) as given by either Ref. [28] or Ref. [30].

The second approximation is based on theoretical calculations and the linearization is instead

µD
xy(ε) = −|µxy(0)|(1 + 0.357ε) (6.48)

which results in a decreasing |µxy| under strain. We can note that even though the

experimentally approximated values are only based on data points up to ε = −0.7%, the

theoretical approximation µD
xy(ε) is not compatible with the found trend. The

experimentally motivated µI
xy(ε) results in a slightly lower eigenvalue than the constant µxy

for the d-wave order, at λ = 0.6eV and JH = 0.1U . Any change to the tetragonal splitting

is thus expected to have a small impact on the strain-induced superconducting regions with

d-wave symmetry.

As a check of the magnetic phase boundaries, for different values of the tetragonal

splitting, the mean field calculation in Appendix 6.A was performed, for only the magnetic

order parameters, at Nk = 200. In Fig. 6.16, an additional out-of-plane ferromagnetic order

(z-FM) appears at the lower SOC and higher Hund’s coupling. This order is only favored

at high enough U and has a clear spin character, 〈Lz〉/〈Sz〉 ≈ 0.16. Contributions from

each orbital are of approximately equal strength. In terms of j-states the contributions are

thus mainly from the (j, jz) = (1
2 ,±

1
2) and (j, jz) = (3

2 ,±
3
2) states.

As seen in Figs. 6.16 & 6.17, a larger absolute value of the splitting, µI
xy(ε), does not

result in major changes to the magnetic phase boundaries. For the other option, µD
xy(ε), the
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behavior with doping changes as µD
xy(ε ≈ −2.8%) = 0. The x-cAFM order remains up to

higher strains for hole instead of electron doping once the sign of µxy changes.

6.D Symmetry classification

In section 6.5.1 the SPOT -formalism [48, 61] of classifying the symmetry of the

superconducting pairing is introduced. The pairing must be antisymmetric under the

product of operators

SPOT ∆ab(k) = ∆ba(−k) (6.49)

where each exchange operator is defined as

S∆(s,α,σ)(s′,α′,σ′)(k, ω) =∆(s,α,σ′)(s′,α′,σ)(k, ω)

P∆(s,α,σ)(s′,α′,σ′)(k, ω) =∆(s,α,σ)(s′,α′,σ′)(−k, ω)

O∆(s,α,σ)(s′,α′,σ′)(k, ω) =∆(s,α′,σ)(s′,α,σ′)(k, ω)

T ∆(s,α,σ)(s′,α′,σ′)(k, ω) =∆(s,α,σ)(s′,α′,σ′)(k,−ω)

(6.50)

In Fig. 6.18 the symmetries of a found j = 1/2 d-wave pairing is shown. The maxima of

each component of ∆ are separated under the present spin-singlet and spin-triplet

operations. An ideal pseudospin singlet will have both spin-singlet and spin-triplet

components of comparable size, in the orbital-spin basis. As the transformation between

bases is independent of momentum, the spatial parity of the state is unchanged. The

spin-triplet components are therefore orbital-singlets S+P+O−T +. The found d-wave in

Fig. 6.18 has additional small components from other j-states. The compressive strain

decreases the contributions from the xy-orbital at the Fermi surface as well as increases the

interorbital xz-yz hopping. There are therefore more contributions from spin-singlet and

mz = 0 spin-triplet components, than from mz = 1 triplets. In Fig. 6.19 the symmetries of

an s±-wave is shown. The s±-wave has strong components from several j-states. As this

order is found to be mediated by spin-like fluctuations mainly in the yz- and xz-orbitals,

between bands of j = 1/2 and j = 3/2 character, we can consider the main components of

the pairing to come from pairing within and between those orbitals.
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Figure 6.18: The calculated even parity d-wave pairing (found eigenstate to the largest
eigenvalue at the point U = 1.1eV, JH = 0.1U , λ = 0.6eV, n = 5.1, ε = −2%), where the
maximum value of each component is shown both in a) the orbital ∆σ1σ2

αβ and in the b) j-
state bases ∆τ1τ2

mn . The largest value of the order parameter is normalized to Max|∆̂(k)| = 1.
In the orbital basis, the pairing has many inter-sublattice components of equal size. As
shown in c),d),e), considering the pairing with even or odd spin symmetries results in both
large spin-singlet and spin-triplet components. In j-state components the pairing is clearly
dominated by a j = 1/2 pseudospin singlet.
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Figure 6.19: The calculated even parity s±-wave pairing (at U = 1.1eV, JH = 0.3U ,
λ = 0.5eV, n = 4.8, ε = −1%). This order is a combination of several components both in
a) the orbital and b) j-state bases, which are normalized by the largest value of the order
parameter Max|∆̂(k)|. The pairing consists mainly of intra-sublattice pseudospin-singlets.
The strongest components at this point in the phase diagram in the (j, jz) = (3

2 ,±
3
2)-state,

with a (j, jz) = (1
2 ,±

1
2) pseudospin singlet following in size.



6. Strain-induced superconductivity in Sr2IrO4 139

The superconducting order can be expressed exactly via its full symmetry representation.

We consider the pairing for a spin and orbital combination:

∆αβ
σσ′(k) = 1

2
∑
s,s′

eikx(Θs−Θs′ )∆(α,s)(β,s′)
σσ′ (k) (6.51)

where Θs is the same function as in Eq. (6.38) and gives us the combined contribution

from both sublattice sites. The symmetry representation for the spatial symmetry ηµ(k) is

specified in Table 6.1. The pairing can be decomposed into symmetry representations for

the spin and orbital structure. If Cµνρ is the projection constant for a chosen representation,

then any superconducting order can be written as:

∆αβ
σσ′(k) =

∑
µ,ν,ρ

Cµνρη
µ(k)Sν

σσ′O
ρ
αβ (6.52)

For the spin degree of freedom, Sν
σσ′ are the generators for the SU(2) algebra, the Pauli

matrices σi with i = 0, x, y, z. For the orbital degree of freedom, Oρ
αβ are the generators for

the SU(3) algebra, the Gell-Mann matrices [64] λi with i = 0, 1, . . . , 8. The Pauli matrices

act in spin (↑, ↓) space and can form spin-triplets (σ0, σx, σz) and spin-singlets (σy). The

Gell-Mann matrices act in orbital (dyz, dxz, dxy) space and can form intraorbital pairings

(λ0, λ3, λ8), and interorbital pairings that can be either even (λ1, λ4, λ6) or odd (λ2, λ5, λ7)

under orbital exchange.

The found d-wave is a pseudospin singlet, which within the j = 1/2 subspace is

∆d(k) ≈ η
B1g

R=1(k) ⊗ (iσ̃y) (6.53)

where σ̃y acts on the pseudospins τ = +,−. The s±-wave can be expressed approximately

as intraorbital spin-singlets and interorbital spin-triplets in the yz- and xz-orbitals:

∆s±(k) ≈
(
CA1g

R=0η
A1g

R=0(k) + η
A1g

R=2(k)
)

⊗

[(iσy) ⊗ (λ11 + λ22) − iσx ⊗ (iλ2)]
(6.54)

with λ11 =
(

1
3λ0 + 1

2λ3 + 1
2
√

3λ8
)

and λ22 =
(

1
3λ0 − 1

2λ3 + 1
2
√

3λ8
)

representing intraorbital
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Figure 6.20: a),b),c): The intraband pairing for the anisotropic superconducting orders is
shown on the FS as the Hund’s coupling JH is increased, for the same values as in Fig. 6.10.
All orders are a mix of s- and d-wave symmetries, with only the one at JH = 0.3U being
node-less. d), e),f): The maximum of pairing components in the orbital basis for the same
Hund’s coupling as the plot above, shown as Max

[
|∆σσ′

αβ (k)|
]
/Max

[
|∆̂(k)|

]
. For all values

the order exists mainly in the yz- and xz-orbitals, with barely any contributions from xy.
However, the order is stronger in xz. At JH = 0.2U the pairing originates almost entirely
from the xz-orbital.

pairing. The A1g spatial symmetry has two contributions with a relative weight specified

by CA1g

R=0 ≈ 0.7. This pairing has additional smaller contributions involving the xy-orbital:

∝ (iσy) ⊗ λ33 = (iσy) ⊗
(
λ0 −

√
3λ8

)
, ∝ (−i)σ0 ⊗ (iλ5), and ∝ (−i)σz ⊗ (iλ7).

6.E Anisotropic pairing

The anisotropic orders found at high compressive strain, in section 6.5.3, appear when

fluctuations with Q-vectors which connect states of the same orbitals become large enough.

In Fig. 6.20 the found anisotropic orders, for three values of the Hund’s coupling, are

characterized by projecting the pairing on the Fermi surface as well as the maximal value
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of each orbital-spin component of the pairing. At the Fermi surface the weight is stronger

along the x-direction, on all pockets. The xz orbital has the largest contribution. The

other notable difference, from the d- and s±-wave orders, is that the anisotropic orders

have equal size intra- and inter-sublattice components of the xz-orbital.

The anisotropic orders and s±-order are mediated mainly by spin fluctuations. However,

the pockets at the Fermi surface have a strong character of the (j, jz) = (1
2 ,±

1
2) or (j, jz) =

(3
2 ,±

3
2) state. The orders originate mostly from the yz- and xz-orbitals, and the pairing can

be transformed into the j-states, via Eq. (6.8), as

∆ττ ′

mn(k) =
∑

αβσσ′
c

(ττ ′)(σσ′)
(mn)(αβ) ∆σσ′

αβ (k)

=
∑

αβσσ′
M(m,τ),(α,σ)M(n,τ ′),(β,σ′)∆σσ′

αβ (k)
(6.55)

where m =
(

1
2 ,±

1
2

)
,
(

3
2 ,±

1
2

)
,
(

3
2 ,±

3
2

)
, τ = +,−, α = yz, xz, xy, and σ =↑, ↓. We can

identify c
(+−)(↑↓)
( 3

2 ,± 3
2 )(yz,yz) = c

(+−)(↑↓)
( 3

2 ,± 3
2 )(xz,xz) = −1

2 and c
(+−)(↑↓)
( 1

2 ,± 1
2 )(yz,yz) = c

(+−)(↑↓)
( 1

2 ,± 1
2 )(xz,xz) = 1

3 . As can be

seen in Fig. 6.5, sections of the hole doped Fermi surface are mainly of either yz- or xz-

character. This is a result of the quasi-1d dispersion in each of these orbitals in Eq. (6.4). A

simplified model for the two Fermi surfaces is to introduce orbitals with a spatial dependence

along the parameter θ around a circular FS:

|yz〉θ =| cos θ||yz〉

|xz〉θ =| sin θ||xz〉

|xy〉θ = (| cos θ| + | sin θ|) |xy〉

(6.56)

Here only one site and the full Brillouin zone (BZ) are considered for simplicity. So in a BZ

where FS1 is purely (1
2 ,±

1
2) and FS2 is (3

2 ,±
3
2) (with an energy shift ξ of the xy-orbital):

|FS1, ↑〉θ = |12 ,+
1
2〉θ − ξ|xy, ↑〉θ

= 1
N1

(
|yz, ↓〉θ − i|xz, ↓〉θ + (1 −

√
3ξ)|xy, ↑〉θ

) (6.57)
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and

|FS2, ↑〉θ = |32 ,+
3
2〉θ = 1

N2
(−|yz, ↓〉θ − i|xz, ↓〉θ) (6.58)

where N1,N2 are normalization factors. For a simplified constant order only within each

orbital, ∆↑↓
yz,yz(k) = ∆ the pairing on each FS becomes

∆↓↑
FS1

= cos2 θ

N 2
1

∆, ∆↓↑
FS2

= −cos2 θ

N 2
2

∆ (6.59)

If instead ∆↑↓
xz,xz = ∆

∆↓↑
FS1

= sin2 θ

N 2
1

∆, ∆↓↑
FS2

= −sin2 θ

N 2
2

∆ (6.60)

Each orbital thus results in a quasi-1d pairing on both Fermi surfaces. If one of the orbitals

dominate ∆↑↓
xz,xz > ∆↑↓

yz,yz the order is an anisotropic s-wave, with some d-wave components.

To study the full s±-wave, it can be modeled as equal parts from both orbitals, ∆↑↓
yz,yz =

∆↑↓
xz,xz = ∆:

∆↓↑
FS1

=cos2 θ + sin2 θ

N 2
1

∆ = 1
N 2

1
∆

∆↓↑
FS2

= − cos2 θ + sin2 θ

N 2
2

∆ = − 1
N 2

2
∆

(6.61)

where in the ideal j-state case N 2
1 = 3 and N 2

2 = 2. This is one of the primary reasons for the

s-wave symmetry resulting in an s±-wave with a larger weight on FS2. However, the found

s±-wave does not have purely S−P+O+T + intraorbital components but also interorbital

S+P+O−T +-terms, see Fig. 6.19. As these terms all have the same magnitude ∆↑↓
yz,xz =

−∆↑↓
xz,yz = i∆. Projected onto the Fermi surface

∆↓↑
FS1

= 2| cos θ|| sin θ|
N 2

1
∆, ∆↓↑

FS2
= 2| cos θ|| sin θ|

N 2
2

∆. (6.62)

They contribute to both bands with the same sign and to the same sections. The pairing

used for these examples so far has been a uniform s-wave, ∆(k) = ∆. In Eq. (6.54) we can

note that the found s±-wave has a dependence on momentum, with a large contribution from

the ηA1g

R=2(k) = 2 cos kx cos ky symmetry. The placement of FS1 and FS2 in the BZ therefore

affects the sign of the gaps. As a result, both intra- and inter-orbital terms play a role in

the origin of the s±-wave pairing.
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Figure 6.21: The a) Berry curvature and b) intraband phase winding are calculated for
bands in the pseudospin down sector, for the pairing in Fig. 6.11. For the folded BZ we can
consider 4 pockets, centered around (k1, k2) = (0, 0), (0, π), (π, 0), (π, π). Each pocket has
Cn,− = ±1, such that the total Chern number cancels out to C− = 0. For each pocket the
phase φk can be seen to wind in opposite directions for the different pockets.
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6.F Topological invariant

To determine the topological properties of the found odd parity order we consider the pairing

in the Bogoliubov-de Gennes (BdG) Hamiltonian

HBdG =
∑

k

(
c†

k, c−k

) H(k) ∆(k)

∆†(k) −HT(−k)


 ck

c†
−k

 (6.63)

with the non-interacting Hamiltonian H(k) from Eq. (6.1). ∆(k) is the eigenstate of the

largest eigenvalue for Eq. (6.29), scaled to set the minimal gap at the Fermi surface to 0.02eV.

As the specific odd parity pairing found in section 6.5.5 is block diagonal in pseudospin up

and down, the full Hamiltonian can be rearranged into a block-diagonal form

HBdG =
∑

k

Ψ†
k

 H+
BdG(k) 0

0 H−
BdG(k)

Ψk (6.64)

where Ψk = (Ψ+,k,Ψ−,k)T is divided into the pseudospin sectors {(yz, ↓), (xz, ↓), (xy, ↑)}

and {(yz, ↑), (xz, ↑), (xy, ↓)}. The eigenstates and eigenvalues are given as HBdG|n〉 = En|n〉

and for each pseudospin sector Hτ
BdG|n〉 = En,τ |n, τ〉. We calculate the Berry curvature for

all filled bands via [85]

Ω(n)
z (k) = − Im

∑
n′ 6=n

f(En)f(1 − En′)

× 〈n|∂xHBdG|n′〉〈n′|∂yHBdG|n〉 − 〈n|∂yHBdG|n′〉〈n′|∂xHBdG|n〉
(En − En′)2

(6.65)

Ω(n)
z (k) = − Im

∑
n′ 6=n

∑
a,b,c,d

∑
i,j∈{x,y}

f(En)f(1 − En′)
[
U †

k

]
na

[Uk]bn′

[
U †

k

]
n′c

[Uk]dn

× εij
〈a|∂iHBdG|b〉〈c|∂jHBdG|d〉

(En − En′)2

(6.66)

where εxy = −εyx = 1 and εii = 0. |a〉 is the spin-orbital basis a = (α, σ, s) with orbital α,

spin σ, and sublattice s. However, since all 〈a,+|∂iHBdG|b,−〉 = 0 the Berry curvature can
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be calculated separately for each pseudospin sector

Ω(n)
z (k) = Ω(n,+)

z (k) + Ω(n,−)
z (k) (6.67)

and the Chern number per pseudospin is

Cτ = 1
2π

∫
BZ

∑
n

Ω(n,τ)(k)dkxdky (6.68)

In Fig. 6.21 the Berry curvature for all filled bands is shown for the pseudospin down sector.

In addition, the phase φk of the intraband pairing, where ∆↓↓
FSn

(k) = |∆↓↓
FSn

(k)|eiφk , is plotted

along the Fermi surface. The winding of the phase can be seen to be opposite for the bands.

If the pockets are fully separated the Chern number for each pocket can also be given by the

winding of the phase [86]

Cn = 1
2π

∮
FSn

∇φk · dk. (6.69)
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Chapter 7

Discussion

The studies, in Chapters 5 and 6, of interacting Sr2IrO4 under doping and compressive

strain have presented several ideas concerning spin-orbit coupled magnetism and

superconductivity. The methods for tuning the multi-orbital bandstructure and for

calculating effective interactions, as outlined in the introductory chapters, have been used

to treat magnetic and superconducting orders. The orders have been considered separately

as well as in competition with one another. The key ideas that can be taken away from the

two manuscripts, about the iridate system in particular, are:

• Compressive epitaxial strain can suppress the insulating magnetic order and induce an

insulator/superconductivity phase transition.

• Strain changes the topology of the Fermi surface, even when interactions are present.

• A lower SOC and a higher Hund’s coupling result in a competition between a rich

variety of magnetic and superconducting orders. In this regime neither solely spin nor

pseudospin degrees of freedom describe the system well.

• The shift between spin-orbit dominated physics or not, is mainly determined by the

interactions rather than the strength of the spin-orbit coupling in the non-interacting

bands.

The arguments in support of the thesis statement that can be distilled from these

conclusions are made as the following:
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Both manuscripts start from a high spin-orbit coupling and observe that the bands

from which the magnetic order parameters originate remain robust under strain and

doping. In terms of total angular momentum states, the description of the two possible

bands at the Fermi surface remains largely unchanged compared to the undoped and

unstrained bandstructure. However, in a multi-orbital model with a unique dispersion for

each orbital there are effectively no longer just two types of interactions U, JH. Instead,

each of the SOC, Hund’s, and hopping terms couples different spin and orbital degrees of

freedom, and the number of interaction terms becomes large. From the RPA treatment we

can directly identify the importance of each orbital’s contribution to the correlated state,

from which channel the susceptibility peaks occur in. We observe that by modifying the

hopping parameters differently in each orbital their susceptibility peaks also change. The

SOC couples orbitals in a number of susceptibility channels. The Hund’s coupling

introduces interaction terms that couple the same orbitals in different channels. When

Hund’s coupling becomes large, susceptibility peaks in new dominating channels therefore

become important. Thus, a multi-orbital interacting model, from the direction of high

SOC, can be tuned between a rich variety of competing phases by modifying the

non-interacting model for each orbital via strain. This is of particular relevance in

potentially superconducting iridates, as even with their large spin-orbit coupling a

simplified model is possible only in parts of the phase diagram.

The wider significance of these results can be separated into two aspects. Let us first

discuss these results in relation to unconventional superconductivity in similar compounds.

Then we will move on to consider future prospects for the iridates. Included there are

identified open questions for which further research can benefit from the conclusion of this

thesis.

7.1 Connection to similar materials

Based on the orders found in this thesis, perovskite iridates could be considered as a family

of compounds in-between cuprates and iron pnictides. In some regimes they even display
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ruthenate-like orders. This unique behavior originates from the fact that the iridate physics

close to the Fermi surface is both multi-orbital and that bands well-described by states in a

different basis.

The similarities and relevance of the results to cuprate physics, is based on the effective

j = 1/2 model. As noted both in Chapters 5 and 6 the bands at the Fermi surface and the

largest pseudospin susceptibility peaks are well-described in the j-state basis, even at large

compressive strain for both hole and electron doping. The d-wave superconductivity found

in Chapter 6 originates mainly from the j = 1/2 states if the Hund’s coupling is low, even

at high compressive strain. Seemingly, as cuprate-like physics is dominating the system it

would be sufficient to use a one-orbital model. However, for a compressive strain the filling

of states in the j = 1/2 band must match that found in the full bandstructure, as detailed

in Appendix B. To further understand the most likely region of superconductivity in the

iridates one could study in detail an effective j = 1/2 model with compression, taking into

account the additional effects identified in this thesis.

One additional aspect of hole doped cuprates, not considered in this work, is the role of

hybridization with the oxygen p-orbitals. In cuprates, hole doping leads to Zhang-Rice

singlets which are states with a large oxygen contribution. Electrons introduced into

Sr2IrO4 via doped have a much smaller hybridization with the adjacent oxygen orbitals.

The consequences of this to potential superconductivity is yet to be included in any iridate

model.

The regimes with multi-pocket Fermi surfaces and potential multi-band superconducting

orders places the iridates closer to iron pnictide-physics. In FeSe the iron orbitals have a 3d

character and the SOC is significantly lower than for Ir with λFeSe ≈ 0.2eV [1]. In Chapter

6 we find an iron pnictide-like s±-wave, even close to a Q = (π, π) AFM instability. As

mentioned in the manuscript this is similar to the SDW fluctuations close to the same type

of superconductivity in iron based superconductors [2]. However, in the iridates the SOC

plays the additional role of favoring the AFM, even though there is a clear orbital texture

of the Fermi surface that determines which superconducting order is favored. Similar effects

could be present in systems with a lower SOC and it would be of interest to understand the

role that it plays for the pairing mechanism in these known superconducting systems.
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Similar studies of superconductivity with competing Hubbard, Hund’s, and SOC, have

previously been approached from the limit of a small SOC. For works in ruthenates this small

modification to the Hamiltonian, has the effect of favoring some additional components with

pairing symmetries previously not favored [3]. The ruthenates are commonly modeled with

a three-orbital t2g model in a square lattice. However, compared to the model used in this

thesis, the ruthenates have a lower filling of 4 electrons/site in Ru, a lower SOC, and the

opposite sign of tetragonal splitting. In Chapter 6 we find that the found pseudospin pairing,

when decomposed into spin components, has contributions to the order parameters with the

same symmetry as the additional components found in ruthenates with SOC. For example,

these components can be additional sz = 0 spin-triplet components.

Some studies propose Sr2RuO4 to have a topologically non-trivial chiral p-wave order.

The helical time-reversal preserving p-wave order found in Chapter 6 is similar to those

found in some calculations for Sr2RuO4. There, an underlying pairing in the yz- and xz-

orbitals also cancels out the Berry curvature contributions from different bands at the Fermi

surface [4, 5]. However, like in ruthenates, higher Chern numbers could be possible for

odd pairing functions with poles placed at different positions in the Brillouin zone [6]. The

similarities of the ruthenates and iridates in the regime where the p-wave is found, in Chapter

6, indicate that there is an increased sensitivity to the approximations and self-energies

included when calculating a potential odd parity order. Just like some calculations first

found the proposed ruthenate p-wave to be topologically trivial while later calculations have

found it to be non-trivial, a different calculation of superconductivity in the iridates could

potentially find a non-trivial order. Even though the odd parity order in Chapter 6 is found

for such a high Hund’s coupling that it is non-realistic for the iridates, a deeper understanding

of why and when it is favored could bring insight into the potential role of spin-orbit coupling

in both the iridates and the ruthenates.

7.2 General prospects for iridates

The results from considering magnetism and superconductivity under doping and

compressive strain show these parameters to be promising for inducing new orders. As
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magnetism in iridates is so sensitive to lattice configuration, the strain is an effective and

experimentally available knob for tuning the system. As the coupling of magnetic order to

the lattice is dependent on the SOC strength, the spin-orbit coupling becomes another

effective tuning parameter for the system. Ru or Rh doping could achieve this [7, 8], even

though additional effects are also expected for such chemical substitution.

There are additional ways that the iridates could be used to engineer novel physics, based

on the interacting regimes found in this thesis. The j-states in the three orbital models have

both spin 1/2 and 3/2 states. When it comes to interacting states, the pairing found in

Chapter 6 can mix the two subsectors. The pairing in the orbital basis has only spin-1/2

states and can thus be described in spin-singlet (s1 + s2 = 0) and spin-triplet components

(s1+s2 = 1). For the total angular momentum there are pairing states of higher total angular

momentum J = 0, 1, 2, 3, as ji = 1/2, 3/2 for the two particles i = 1, 2. For example, the

found s±-wave can be described with a large spin-quintet component, as shown in Appendix

C. As noted in Ref. [9] the SPOT -analysis of the symmetry can no longer be used and

higher angular momentum pairing can have unexpected properties [10, 11]. Sr2IrO4 has the

potential to form novel pairing symmetries due to the large region of both j = 1/2 and

j = 3/2 bands at the Fermi surface. However, the properties of such states have not been

explored.

In general, our understanding of the many parameters that determine the order in Sr2IrO4

remains limited. Having for example a superconducting pairing in a system which couples

so many degrees of freedom: SOC, Hund’s, between sites or additional inter-orbital coupling

from the hopping, is expected to have consequences both to the likelihood of experimentally

achieving the state as well as to the experimental signatures. In this thesis the robustness

of the states or how they couple to other systems has not been treated. Those aspects of

iridate physics are largely unexplored. Specifically for doped and strained Sr2IrO4 there are

several open questions in which future theoretical research could give new insight into the

underlying physics. Related to this thesis are the following:

• To expand the analysis of the possible strain-induced superconductivity a calculation

including the frequency dependence could be a first step in determining the robustness

of the region. The static approximation used in Chapter 6 does in general overestimate
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the orders. An inclusion of sufficient number of frequencies is however a significantly

heavier computational problem and could potentially have to be performed at higher

temperatures.

• To better understand the competition between magnetism and the d-wave order close

to where the one-orbital model is valid, methods such as renormalization group

calculations or Eliashberg theory, to include phonon effects, could be utilized. As

many parameters are included in the model it is crucial that the interplay between

orders are taken into account properly. We also expect that the effect from phonons

is affected by the change in lattice geometry.

• Expected effects that are present with doping, and that could increase with compressive

strain, are impurities and lattice distortions. As the magnetism is sensitive to the

lattice geometry it is important to understand how each degree of freedom couples

to impurities. Differences between how a spin- or pseudospin-singlet order couples to

different types of impurities could offer great insight into why the existence of predicted

superconducting order has eluded confirmation.

• Only compressive strain is considered in this thesis. However, tensile strain has been

shown to decrease the amount of lattice distortions, by decreasing the staggered

rotations of the oxygen octahedra [12]. Tensile strain also decreases the Néel

temperature even further than the equivalent amount of compressive strain does [13].

A model for tensile strain and doping could therefore be another promising direction

for favoring superconductivity. If tensile strain decreases the bandwidth of the

system the critical temperature of a potential superconducting order could increase.

• Interlayer effects and additional effects from tetragonal distortion under compression

play a role for the magnetic order. Even though the interlayer coupling is much

smaller than the intralayer effects, they may play an increased role for undoped

Sr2IrO4 under hydrostatic pressure. A better understanding of the contributing

factors to the insulating order found under high pressure would help identify other

regions where such an order could compete with superconductivity.
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As for insight that can be gained from future experimental studies, any study combining

epitaxial strain and charge doping is crucial for the understanding of how these knobs tune

the system in practice. Of further interest to the theoretical studies of multi-orbital physics

are attempts to determine the contributions from each orbital to the correlated states and

the correlation between them [35].
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Chapter 8

Conclusion

This thesis has treated the subject of possible magnetic and superconducting orders in

doped and strained Sr2IrO4 as an example of a multi-orbital system with strong spin-orbit

coupling and interactions. The objective has been to describe the states that contribute to

the magnetic order and to determine if a magnetic insulator/superconductor transition is

possible. To fully capture the breadth of iridate physics the most realistic parameter ranges

were considered as well as an extension to a broader range of values that could potentially

be achieved.

The motivation for this approach is the observation that the magnetism is exceptionally

sensitive to compressive strain in Sr2IrO4. Consequently, if superconductivity is mediated by

magnetic fluctuations strain is a powerful tool for tuning the system. As superconductivity

has been predicted in doped Sr2IrO4 and has not been confirmed in experiment, a compressive

strain could be used as a tuning parameter to explore if the superconducting regions can be

realized. If a model with multiple orbitals is used the multiple types of interaction can be

taken into account and underlying fluctuations mediating the superconducting order can be

explored. The objectives of this thesis were met by considering them in steps in Chapters 5

and 6:

The first step was to understand which degrees of freedom that are necessary to describe

the bandstructure and possible orders of Sr2IrO4 under compressive strain, as well as a

potential phase transition. In Chapter 5 magnetic orders were modeled via the mean field

approximation for undoped Sr2IrO4 as a compressive strain was increased. Realistic values
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for the interaction parameters and initial gap were chosen. A stain-induced transition is

found for values beyond the epitaxial strain that has been achieved experimentally. This

mean field model displays the same sensitivity of the canted antiferromagnet to compression

as has been observed in experiment. The order remains of mainly j = 1/2 nature. By

modeling an external magnetic field as a Zeeman coupling term the effect on the order in

each orbital could be distinguished on both sides of the phase transition.

The second step was to expand the study to both doping and compressive epitaxial

strain. The objective was to see if a stain-induced superconducting order is possible for

realistic values, such that experiments can be more likely to observe the predicted j = 1/2

d-wave order under a combination of doping and compressive strain. In Chapter 6

superconductivity was modeled with an effective pairing interaction calculated via the

random phase approximation, the effects of the magnetic order taken into account from

Chapter 5. Strain-induced superconducting regions with a d-wave symmetry were found at

a sufficiently low temperature and for a broad range of doping values. In the calculated

phase diagram, the magnetic order was found via the Stoner criterion.

The final step was to explore a wider region of parameters to determine the symmetry

of the order in any possible superconducting region. In Chapter 6 this objective was met by

considering a range of higher Hund’s coupling and lower SOC in additional phase diagrams.

Orders that had previously been found for higher JH were also found in this work. These

are the multi-band s±-wave, found in a large regime of doing and strain, and an odd parity

p-wave, that here was found to be topologically trivial. Two anisotropic superconducting

orders were for the first time predicted at high compressive strain and doping. To determine

which fluctuations can mediate the orders the susceptibility peaks were tracked for changing

doping and strain. For a Hund’s coupling and SOC of comparable size several of the numerous

susceptibility channels have large peaks. These peaks can be located at different momentum

transfer Q.

The findings of the thesis can be summarized as follows: a multi-orbital interacting model,

with large SOC, can be tuned between a rich variety of competing phases by modifying the

hopping amplitudes of each orbital via compressive strain. This is of particular relevance

in potentially superconducting iridates, as their large spin-orbit coupling makes a simplified
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model possible only in some parts of the phase diagram.

Many unanswered questions remain about the iridates and about the possibility of

superconductivity in doped Sr2IrO4. As the result in this thesis predict that

superconductivity can be present after a strain-induced transition, it seems to be a

promising direction to combine compressive epitaxial strain with charge doping. Some

potential research questions for future studies have been outlined in Chapter 7. There are

also many unanswered questions about multi-orbital interactions and spin-orbit coupling.

Many of the orders found in this iridate model appear in several other families of

unconventional superconductors. The exact interplay between the different parameters and

their contribution to a pairing mechanism is a complex problem. As this thesis has shown,

the combination of multi-orbital interactions and spin-orbit coupling is a recipe for novel

magnetic and superconducting orders.



163

Appendix A

The Gell-Mann Matrices

The Gell-Mann matrices [1] are given as 3 × 3 matrices in orbital space (dyz, dxz, dxy) as

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 (A.1)

λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i

0 0 0

i 0 0

 , λ0 =


1 0 0

0 1 0

0 0 1

 (A.2)

λ6 =


0 0 0

0 0 1

0 1 0

 , λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 = 1√
3


1 0 0

0 1 0

0 0 −2

 (A.3)

There are intraorbital matrices symmetric under exchange of orbitals (λ0, λ3, λ8) and

interorbital both symmetric (λ1, λ4, λ6) and anti-symmetric (λ2, λ5, λ7) matrices.
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Appendix B

Renormalized spin-orbit coupling

In the mean field calculations in Chapter 5 and 6, there are order parameters that

renormalize the spin-orbit coupling. The resulting shift of the spin-orbit coupling is ∆λ

and the effective λ̃ = λ + ∆λ. The value depends directly on the order parameters

∆λ = 2Im
[
(JH − U ′)m(xz,↑),(yz,↑)+ JH

(
m(yz,↓),(xz,↓) +m(xz,↓),(yz,↓)

)]
. If the symmetry is not

spontaneously broken between orbitals: ∆λ = Im [(U − 3JH)Λz
A]. The definition of Λz

A is

given in Eq. (4.18). In Fig. B.1 the shift of the spin-orbit coupling is shown for U = 1.4eV,

for a varying doping and compressive strain. Worth noting here is that m(yz,↑),(xz,↑) remains

fairly constant with interaction strength U , meaning that ∆λ is directly proportional to the

interactions as ∆λ ∝ U(1 − 3JH/U). So, at the U = 1.1eV, n = 5, and JH/U = 0.1 the

largest shift is expected to be ∆λ ≈ 0.27eV. An general trend is that ∆λ is increases close

to a magnetic order, see the corresponding phase diagrams in section 6.A, and is larger for

hole doping than for electron doping.

At an electron filling n, the states present at the Fermi surface is highly dependent on

the strength of the spin-orbit coupling. As the (3/2,±1/2) states are located lower in energy

than the others, they are always completely filled. For the other two states (1/2,±1/2)

and (3/2,±3/2), the relative filling of each state depends on the positions and bandwidths

of the bands. For example, when the size of a (3/2,±3/2) hole pocket increases the size

of the (3/2,±3/2) electron pocket must increase. In therms of filling of each state, the

filling n3/2,3/2 decreases while the filling n1/2 for this example. The filling of each state

is defined with the order parameters in Eq. (5.16). At a fixed total electron filling n the
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Figure B.1: The shift in spin-orbit coupling ∆λ, as given by the mean field calculations in
Chapters 5 and 6. The size of the shift is ∆λ ∝ U(1 − 3JH/U) and the difference between
the values at JH = 0.1U and JH = 0.25U is significant.
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Figure B.2: The filling of the j = 1/2 states are shown at ε = −2.2% for the two
calculations in Fig.s 6.3 and 6.14. One calculation is for a non-interacting bandstructure
while the other is a mean field calculation where the SOC has been renormalized. The
effective doping is compared to a limit of a large SOC, where effectively only a j = 1/2 band
is doped when the total filling n changes.
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relative size of the hole pockets can increase by increasing the compressive strain. A general

trend throughout the phase diagram is thus that for a fixed n the filling of the j = 1/2

states, n1/2, increases with compressive strain. At a large SOC λ → ∞ a change in the

total filling n only changes the filling n1/2, where the band is half-filled, n1/2 = 1, in the

undoped compound n = 5. In Fig. B.2 the filling of the j = 1/2 states are shown for the

compressing strain ε = −2.2%, a point where both the RPA and mean field calculation find

a superconducting order, in Fig. 6.3. At this strain the j = 1/2 bands are effectively electron

doped for all n considered. In addition to changing the shape of the pockets at the Fermi

surface, compressive strain proves itself to be a tool for changing the relative filling of the

different total angular momentum states.
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Appendix C

J-state pairing symmetries

Two electrons, each with total angular momentum ji and the projection jz
i , can be paired

together in a Cooper pair with a combined J,M . The possible values are |j1 − j2| ≤ J ≤

(j1 − j2) and M = jz
1 + jz

2 . From standard angular momentum addition we have

1
2 ⊗ 1

2 →0 ⊕ 1
1
2 ⊗ 3

2 →1 ⊕ 2
3
2 ⊗ 3

2 →0 ⊕ 1 ⊕2 ⊕ 3

(C.1)

The new total angular momentum state for the pair can be written in the old ones in terms

of Clebsch-Gordon coefficients CJ,M
j1j2,jz

1 jz
2
:

|J,M〉 =
j1∑

jz
1 =−j1

j2∑
jz

2 =−j2

〈j1j2, j
z
1j

z
2 |J,M〉|j1j2, j

z
1j

z
2〉 =

∑
jz

1 ,jz
2

CJ,M
j1j2,jz

1 jz
2
|j1j2, j

z
1j

z
2〉 (C.2)

In Fig.s C.1 and C.2 the found d- and s±-wave parings analyzed in Chapter 6 is decomposed

into total angular momentum J,M and the comparable size of the largest components are

shown. The basis that the states are shown in are the representations of the Oh-group, as

in [1].

J = 0 → A1, J = 1 → T1, J = 2 → E ⊕ T2, J = 3 → A2 ⊕ T1 ⊕ T2 (C.3)
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Figure C.1: The top panel shows the size of the components of the d±-wave pairing in
terms of the the total angular momentum of each electron, as in Fig. 6.18. In the lower
panel the relative size of the pairing components are shown for the largest total angular
momentum of the pair J,M in the basis given in Eq. (C.3).

where for example the J = 2 cases are the same as the eg and t2g orbital in Chapter 3:

|E(1)〉 = 1√
2

(|2, 2〉 + |2,−2〉)

|E(2)〉 =|2, 0〉

|T2(1)〉 = i√
2

(|2, 1〉 + |2,−1〉)

|T2(2)〉 = 1√
2

(|2, 1〉 − |2,−1〉)

|T2(3)〉 = i√
2

(|2, 2〉 − |2,−2〉)

(C.4)

This is just another basis for the spin-quintet states J = 2,M = −2,−1, 0, 1, 2 [2].
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Figure C.2: The top panel shows the size of the components of the s±-wave pairing in
terms of the the total angular momentum of each electron, as in Fig. 6.19. Here the largest
total angular momentum of the pair J,M , as in Eq. (C.3), has a largest component from
the EJ

(2)-state originating from the 3
2 ⊗ 3

2 -states. However, as we see from the top panel this
state can be though of as a ”singlet” within the (3/2,±3/2)-states.
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