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“Tug at any human use of energy and you will find its effects 

cascading throughout society, spilling into the environment and 

coming back to us. As we were building the edifice of the first 

high-energy society many things got unraveled in the process 

but one key reality made the task easier: during the twentieth 

century we were largely on a comfortable, and a fairly 

predictable, energy path of a mature fossil-fuel civilization. 

Things are different now: the world’s energy use is at the 

epochal crossroads. The new century cannot be an energetic 

replica of the old one and reshaping the old practices and 

putting in place new energy foundations is bound to redefine 

our connection to the universe.” 

– Vaclav Smil [1]   
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ABSTRACT 

ENGLISH 

The urgent need to move away from fossil fuels is now unequivocal. Extensive academic and 

popular discourse in recent years has focussed on the prospects for transforming the global 

energy system (GES) from primarily non-renewable energy towards a renewable energy basis. 

However, conventional approaches to GES transformation typically sidestep irreducible 

uncertainties and neglect important physical constraints identified by recognizing the GES as 

a complex adaptive system. As such, they fail to conceptualize GES transformation as a 

complex, physically bounded, path-dependent, socio-metabolic process which will necessarily 

transform the basic configuration of modern, high-energy societies. They also overlook the 

‘net energy trap’ phenomenon associated with the autocatalytic nature of energy production, 

in which net energy supply can become insufficient to provide vital energy services while 

maintaining the GES itself. Achieving a successful transformation of the GES requires 

identifying the ‘solution space’ of physically feasible and viable dynamic pathways, and by 

extension, ruling out those which are unlikely to succeed. New epistemic and methodological 

approaches are needed to navigate complexity, radical uncertainty, and conflicting socio-

technical narratives. 

This research project centres on developing a novel, exploratory approach to 

modelling dynamic GES transformation pathways under uncertainty, starting from a pre-

analytical framework based in Post-Normal Science. The resulting Probabilistic Renewable 

Energy Solution Space (PRESS) model is an attempt to map the GES transformation solution 

space and improve understanding of barriers, opportunities, trade-offs, and achievable 

outcomes. 

Results reveal several unanticipated aspects of GES transformation. It is found that renewable 

energy is incapable of fully replacing non-renewable energy this century, even with drastic 

changes in predominant technologies and consumption patterns. Consequently, GHG 

emission budgets corresponding to 1.5°C and 2°C of warming will likely be exceeded before 

2050 without large-scale deployment of negative emissions technology. The rising metabolic 

costs of GES autocatalysis are also likely to affect the wider human socio-ecological system 

adversely and unpredictably, including constraints on economic growth. Furthermore, the risk 
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of a net energy trap outcome before 2100 is non-trivial and substantially worsened by policy 

interventions involving system ‘forcing’ toward preferred outcomes. While many of the 

factors affecting GES transformation outcomes are not within human control, those that are 

include targeted reductions in energy service demand, shifting to efficient mass transit, 

promoting greater electrification, and focussed technological improvements in process 

efficiency and lifecycle energy costs. Overall, these results portray the solution space for GES 

transformation as significantly more complex and challenging than is currently acknowledged. 

FRANÇAIS 

L'urgence de freiner notre dépendance aux énergies fossiles est désormais sans équivoque. 

Au cours des dernières années, un vaste discours universitaire et populaire s'est concentré 

sur les perspectives de transformation du système énergétique mondial (SEM) d'une énergie 

principalement non renouvelable vers une base d'énergie renouvelable. Cependant, les 

approches conventionnelles de la transformation du SEM contournent généralement les 

incertitudes irréductibles et négligent les contraintes physiques importantes identifiées en 

reconnaissant le SEM comme un système adaptatif complexe. En tant que telles, elles ne 

parviennent pas à conceptualiser la transformation du SEM comme un processus socio-

métabolique complexe, physiquement limité, dépendant de la trajectoire, qui transformera 

nécessairement la configuration de base des sociétés modernes à haute énergie. Elles 

négligent également le phénomène de « piège énergétique net » associé à la nature 

autocatalytique de la production d'énergie, dans lequel l'approvisionnement énergétique net 

peut devenir insuffisant pour fournir des services énergétiques vitaux tout en maintenant le 

SEM lui-même. Réaliser une transformation réussie du SEM nécessite d'identifier « l'espace 

de solution » des voies dynamiques physiquement réalisables et viables, et par extension, 

d'exclure celles qui ont peu de chances de réussir. De nouvelles approches épistémiques et 

méthodologiques sont nécessaires pour naviguer dans la complexité, l'incertitude 

omniprésente, et les scénarios socio-techniques contradictoires. 

Ce projet de recherche se concentre sur le développement d'une nouvelle approche 

exploratoire pour modéliser les voies de transformation dynamiques du SEM sous incertitude, 

à partir d'un cadre pré-analytique basé sur la Science Post-Normale. Le modèle PRESS 

(Probabilistic Renewable Energy Solution Space) qui en résulte est une tentative d'établir 



ix 
 

l'espace de solution de transformation du SEM et d'améliorer la compréhension des 

obstacles, des opportunités, des compromis et des résultats réalisables. 

Les résultats révèlent plusieurs aspects imprévus de la transformation du SEM. On constate 

qu’il est impossible de complètement remplacer l'énergie non-renouvelable avec l'énergie 

renouvelable ce siècle, même avec des changements radicaux dans les technologies 

prédominantes et les habitudes de consommation. Par conséquent, les quotas d'émission de 

GES correspondant à 1,5°C et 2°C de réchauffement seront probablement dépassés avant 

2050 sans déploiement à grande échelle de technologie à émissions négatives. Les coûts 

métaboliques croissants de l'autocatalyse du SEM sont également susceptibles d'affecter de 

manière négative et imprévisible le système socio-écologique humain au sens large, y compris 

les contraintes sur la croissance économique. En outre, le risque d'un piège énergétique net 

avant 2100 n'est pas négligeable et considérablement aggravé par les interventions politiques 

impliquant le « forçage » du système vers des résultats préférés. Bien que de nombreux 

facteurs affectant les résultats de la transformation du SEM ne soient pas sous le contrôle des 

humains, ceux qui le sont incluent des réductions ciblées de la demande de services 

énergétiques, le passage à des transports en commun efficaces, la promotion d'une plus 

grande électrification et des améliorations technologiques ciblées de l'efficacité des 

processus et des coûts énergétiques du cycle de vie. Dans l'ensemble, ces résultats décrivent 

l'espace de solution pour la transformation du SEM comme beaucoup plus complexe et 

difficile qu'on ne le reconnaît actuellement.  
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CONTRIBUTION TO ORIGINAL KNOWLEDGE 

The research presented here represents a novel synthesis drawing from several distinct areas 

of scholarship, and associated qualitative and quantitative methods, including ecological and 

biophysical economics and ‘thermoeconomics’, complex systems theory, systems ecology, 

dynamic and probabilistic computational modelling, Post-Normal Science, control and 

optimization theory, electric power systems, energy transitions, and technological diffusion. 

The core of this conceptual synthesis is established in the methodological approach presented 

in chapter 4 and the corresponding Probabilistic Renewable Energy Solution Space (PRESS) 

model, detailed in chapter 5. This synthesis features the following original aspects: 

• Dynamic representation of the GES in terms of evolving, non-fungible power capacity 

stocks – i.e., the hypercyclic component of the GES associated with capital turnover 

and autocatalytic energy production. 

• Integration of endogenous and dynamic energy return on investment (EROI), 

efficiency, and capital lifecycle into a dynamic energy cost model. 

• Disaggregated representation of non-equivalent energy flows characterizing the 

dynamic, energetic metabolism of the GES, including the disaggregation of EROI and 

explicit global-scale energy carrier substitution processes. 

• Representation of bounded co-evolution of supply and demand, including the 

identification of net energy trap outcomes, and the use of this information at the 

ensemble level as a metric of energy system stability. 

• Disaggregated modelling of the end-use conversion stage and the dynamic provision 

of final energy services. 

• Endogenous technological change driven by goal seeking energy investment allocation 

and technological learning effects based on cumulative output. 

• Endogenous optimization of mitigation options for rising supply intermittency, based 

on energetic cost logic. 

• Introduction and estimation of an energy cost of capital (ECC) metric. 

• Representation of exogenous model interfaces via stochastically generated logistic 

functions. 

• Model initialization achieved using parsimonious model inputs and initial flow 

reconciliation via a novel, non-linear iterative solver. 
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• Endogenous system control via a stability calibrated, feedback-driven heuristic, 

including treatment of supply and demand energy investment allocation options on 

an equivalent, functional, net energy basis. 

• Comprehensive probabilistic representation of epistemically uncertain model inputs 

for use in Monte Carlo simulation of system behaviour. 

• Implementation of a unique metric for multivariate sensitivity analysis capturing both 

the strength and slope of correlation, suitable for assessing non-linear relationships 

between model input parameters and selected output variables. 

Subsequently, a distinct and substantive contribution to knowledge is achieved via the 

quantitative characterization of the GES transformation solution space found using the PRESS 

model, including: 

1) the identification of system ‘leverage points’ and investigation of the potential use of 

these in forming useful system-cognizant policy recommendations, and 

2) the application of diagnostic analysis for the identification of epistemic risks arising 

from imperfect knowledge associated with uncertain model input parameters. 
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1 INTRODUCTION 

1.1 THE ENERGY SYSTEM AND SOCIETY: PAST AND PRESENT 

“We can think thoughts wildly, but if we do not have the wherewithal to 

convert them into action, they will remain thoughts. […] History acts in 

unpredictable ways. Events in history, however, necessarily take on a structure 

or organization that must accord with their energetic components.” 

– Richard Adams [2] 

Energy is the ability to effect change in the world. It is the motive force by which we create 

valuable goods from raw materials and transmute knowledge into useful services. Human 

societies require continuous supplies of energy for their essential functions, including food 

production, shelter, and transportation, and all other forms of social and economic activity 

[3]. Moreover, energy surpluses are central to the formation and development of societies, 

including their ultimate scale, and levels of technical and cultural complexity [4-12]. The 

energy systems providing these surpluses therefore represent essential interfaces between 

human societies and the natural world. While energy does not offer a complete explanation 

of the evolution of societies, or determine specific cultural or economic forms, energy 

availability imposes a firm limit on the set of physical possibilities [6, 13]. 

Until relatively recently in human history, accessible flows of exosomatic energy were modest 

and often unreliable. These consisted largely of biomass burned for heating and illumination, 

and used as fodder for draft animals, direct sunlight for heating and drying, and flows of wind 

and water powering transportation and simple mechanical processes, such as the milling of 

lumber and grain. This energetic basis firmly constrained the levels of aggregate economic 

activity and societal complexity that could be achieved and maintained, while subjecting 

humankind to the unpredictable fluctuations of natural energy flows. 

Major transitions in patterns of energy provision and utilization have occurred only twice in 

human history: the shift from hunting and gathering to settled, agricultural societies, and the 

more recent, and still incomplete, shift from agrarian to an industrialized, globally 

interconnected economy [4, 5, 14-18]. Both energy transitions have expanded possibilities for 
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livelihoods, modes of social organization, and socio-technical capacities by increasing the size 

and consistency of energy surpluses [6, 12, 15, 19, 20]. The industrial revolution, beginning 

with the discovery and widespread exploitation of the fossil fuels (first coal, later petroleum 

and natural gas), catalysed the mechanization of agriculture and industry, and the subsequent 

shift from physical labour to specialized, knowledge-based employment for large segments of 

the global population [12, 21]. This shift spurred mass urbanization alongside unprecedented 

increases in the scale and interconnectedness of the global economy, scientific and 

technological advances, and gains in material standards of living culminating in the 

emergence of high-energy modernity. The associated boom in global population and societal 

complexity is a unique and nonreplicable occurrence in human history [4, 22-24]. As noted by 

Tainter et al. [25], “The Industrial Revolution, as we experienced it, cannot be repeated, for 

we have used many of the most accessible, high-quality reserves that made it possible.” 

Stemming from the second energy transition, the pervasive use of technological capital for 

accessing and utilizing increasing flows of exosomatic energy has become a defining feature 

of industrial civilization [26, 27]. Consequently, the global energy system (GES)1 has grown to 

become the largest, most technologically advanced collection of built capital and socio-

technical capacities that has ever existed [26, 28]. The average North American consumer 

now depends on the energetic equivalent of the labour of approximately 90 ‘energy slaves’ 

[29], a prodigious energy subsidy underpinning the modern way of life which is being swiftly 

replicated around the world. This pursuit of ever-greater levels of power has become self-

perpetuating and the global economy now exhibits many of the characteristics of an energy-

hungry superorganism [30-32]. 

Energy flows are derived from both renewable energy (RE) and non-renewable energy (NRE) 

resources. A useful functional definition is offered by Georgescu-Roegen [26]: RE resources 

consist of natural flows which are not permanently depleted by their exploitation, while NRE 

resources consist of depletable terrestrial stocks. In other words, the consumption of RE does 

not permanently change the boundary conditions of society, while the consumption of NRE 

does [21]. RE resources include solar energy reaching the surface of the earth and its 

 
1 Built capital constituting the GES can be described as stocks of ‘power capacity’, organized in sequential stages, 
for the conversion, transportation, and utilization of energy flows for the provision of final energy services, 
including all required supporting infrastructures. 
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derivative forms (including wind, hydropower, and biomass), plus geothermal and tidal 

energy. NRE resources are comprised of the fossil and nuclear fuels. While the totality of the 

primary energy resources available to humankind is colossal, it must be recognized that 

accessible magnitudes are subject to considerable uncertainties. For RE, ‘sustainable’ long-

term potentials are highly contentious, particularly for energy derived from biomass [33-36], 

while for NRE, the proportions of total in situ resources to eventually become practically 

accessible are strongly dependent on geological, technical, and economic factors which 

cannot be predicted with certainty. Furthermore, both represent thermodynamic gradients 

characterized by heterogenous quality distributions2, subject to declining aggregate quality 

under conditions of progressive resource exploitation [8, 37-39]. These thermodynamic 

gradients cannot be produced by humans, only extracted or harvested [21]. 

The extent and rapidity of the growth of the GES over the last several centuries highlights the 

extremely anomalous historical position of high-energy modernity. As shown in Figure 1, 

global total primary energy supply (TPES) was approximately 630 exajoules (EJ), 20 terawatts, 

or 15 billion tonnes of oil equivalent per year, as of 2020 according to BP data3 [40]. This rate 

of energy consumption increased almost 20-fold during the 20th century alone [41], and 

continues to grow at a rate of around 1-3% per year [40]. NRE resources remain economically 

critical. As noted by Day et al. [42], 

“Fossil fuels currently dominate energy use—providing over 80% of global 

primary energy supply and roughly 75% of energy end use—and power many 

critical economic activities related to transportation, chemicals and fertilizers, 

heavy machinery, heavy industry, and considerable domestic use.” 

 
2 Primary energy resource quality can be defined in terms of net energy production, with quality distributions 
describing net energy ratios as functions of either the energy production rate (for RE) or cumulative energy 
productions (for NRE). See section 2.1.1 for details. 
3 Primary energy data presented here follows BP’s primary energy accounting approach, which uses the thermal 
energy equivalence method and excludes traditional biomass. 
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Figure 1: historical primary energy supply by resource, excluding traditional biomass (1900-2020; data from The Shift Project 
[43] and BP [40]) 

It is crucial to note that despite rapid growth in RE supply in recent years – widely reported in 

the popular media and described by Edenhofer et al. [44] and the Frankfurt School-UNEP 

Centre/BNEF [45], among many others – RE sources still account for only around 12% of the 

global TPES, or 5% excluding hydropower (the red segment in Figure 1) as of 2020 [40]. Smil 

[28] notes that RE growth rates are in fact significantly lower than peak rates observed for 

each of the fossil fuels, observing that “Global energy transition has been, so far, 

overwhelmingly a shift in electricity generation that has had only a small effect on the 

decarbonization of the overall primary energy supply.” Projected RE growth rates required to 

meet climate targets far exceed those recently observed [42, 46]. Properly conceived, the 

third energy transition has only just begun; ergo, developments to date cannot be considered 

as indicative of the remaining challenges involved in a comprehensive shift to a RE basis.  

Nevertheless, the global energy system (GES) is necessarily on the cusp of transformative 

change during the 21st century. Aside from the amelioration of significant local social and 

environmental impacts stemming from expansive energy infrastructures and extractive 

activities, the most significant global drivers affecting the evolution of the GES include: 

• Anthropogenic climate change – the widely recognized threat of global climate 

destabilization requiring an urgent shift away from reliance on the fossil fuels 
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representing the largest sources of anthropogenic greenhouse gas (GHG) emissions 

[47-49].  

• Resource depletion – the progressive exploitation of NRE resources, affecting 

resource quality and ultimately primary energy availability, with significant socio-

economic and environmental implications [14, 35, 50-56].  

• Alleviating energy poverty – improving energy access and affordability to address 

crippling energy poverty globally, as 1.3 billion people still lack access to electricity and 

2.7 billion continue to use biomass directly for cooking with significant impacts on 

respiratory health [49, 57, 58]. There remains an unequivocal positive relationship 

between energy access and affordability, and human wellbeing, as measured by the 

United Nations Human Development Index (HDI) [59, 60]. 

1.2 COMPETING FUTURE NARRATIVES 

Planning effectively for the future requires identifying the full set of possibilities, or ‘solution 

space’, for transformation4 of the GES and, by extension, the range of future possibilities for 

society. However, the study of GES transformation has not yet arrived at definitive methods, 

or even consensus on the appropriate socio-technical narratives framing the nature of the 

challenge [21]. Consequently, highly diverse perspectives exist regarding the future of the 

GES, including its ultimate scale and composition, and the achievable pace of transition. 

Considering projections for global TPES alone, expectations vary widely, typically ranging 

between 400 and 850 EJ/year by 2050 [61, 62]. Figure 2 illustrates a representative range of 

projections, from continued increases along linear or logistic trends, to steep declines 

described by annual percentage decreases. While most scenarios seek to restrict cumulative 

GHG emissions, projections tending towards the latter are generally more optimistic 

regarding carbon capture and storage (CCS) and other technological solutions to climate 

change than projections approximating the former, which often assume strong efficiency 

improvements and changes in consumption behaviours leading to decreases in aggregate 

primary energy consumption. 

 
4 The term ‘transformation’ is used to emphasise the aspects of complexity and interdependence involved in a 
fundamental reconstitution and reorganization of the GES, extending well beyond simple substitution processes. 
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Figure 2: historical total primary energy supply (1900-2020) with representative future projections 

The differences in GES transformation narratives are stark, raising questions regarding the 

origin of these discrepancies. While not always immediately apparent, competing narratives 

can stem from mutually incompatible presuppositions rooted in distinct scientific paradigms. 

As described by Thomas Kuhn in The Structure of Scientific Revolutions [63], scientific 

paradigms consisting of established ontological frameworks with associated terminology and 

methodologies periodically give way to new, incommensurate paradigms following the 

accumulation of anomalies which cannot be explained by the prior worldview. Such a 

paradigm shift may now be unfolding, affecting perspectives of GES transformation, among 

many other areas of scientific inquiry. As described by Prigogine and Stengers [3] and Capra 

and Luisi [64], the Cartesian-Newtonian worldview, dominant in Western thought since the 

scientific revolution of the 16th and 17th centuries, is increasingly unable to meaningfully 

address modern problems of energy, environment, and society characterized by complexity 

and interdependence. In its place, the ‘systems’ paradigm, originating in late 19th and early 

20th century advances in mathematics and the life sciences, now offers an alternative 

scientific paradigm centred on an appreciation of the nature of complex systems. Table 1 

compares pertinent aspects broadly aligned with and emphasized by these two scientific 

paradigms across the domains of ontology, terminology, and methodology.  
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Table 1: comparison of selected aspects of the Cartesian-Newtonian and systems scientific paradigms 

Domain Cartesian-Newtonian paradigm Systems paradigm 

Ontology 

Ahistoricism Historical path-dependence 

The whole as the sum of its parts Emergent phenomena, synergy 

Linearity Non-linearity, chaos, self-organization 

Technological fundamentalism Biophysical limits 

Inexorable progress Cyclical progress & regression 

Culture as intangible Culture as embodied 

Logical positivism Pragmatism, falsificationism 

Terminology 

Elements Elements & relations 

Mechanistic causation  Feedback loops 

Static equilibria Dynamic stability domains 

Costs & benefits Socio-metabolic patterns 

Economistic language Ecological & thermodynamic language 

Methodology 

Analytical reductionism Synthetic holism 

Marginal analysis Multi-scale, integrated analysis 

Design, prediction, & control Exploration & leverage points 

Scientific consensus Epistemic humility & pluralism 

Specialization of knowledge Radical transdisciplinarity 

Optimization Multi-criteria analysis & heuristic techniques 

 

Paradigms are powerful – facilitating but also constraining thought. As noted by Cleveland 

and Ruth [65], “By definition, adherents to a paradigm believe that all relevant phenomena 

are best understood through the conceptual lens of that paradigm, and that all problems can 

be solved with the analytical tools used in that paradigm.” Such perspective-dependent 

framing applies to contemporary narratives regarding relationships between energy and 

society, which can be separated into two broad categories as described by King [31]: 

• Technological optimism, which focusses on human adaptability and problem-solving 

prowess via technological innovation, assuming a practically unlimited capacity for 

substitution. 

• Technological realism, which emphasizes the evolving limits imposed on human 

societies by the laws of physics and fundamental dependencies on a finite biosphere. 

Broadly speaking, technological optimism emerges from the Cartesian-Newtonian paradigm 

and tends to employ mechanistic conceptions of society within a linear, progress-centric view 

of history. In contrast, technological realism, aligned with the systems paradigm, seeks to 

uncover relationships and dependencies affecting complex societal problems, including 

understanding the biophysical foundations of the economic process. The former remains 

almost ubiquitous in perspectives of GES transformation, informing the majority of popular, 

institutional, and policy problem framings. Its psychological pull is self-evident; as observed 
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by Georgescu-Roegen [26], “Naturally, the innovations in artefacts, being more impressive, 

have enslaved our imagination and, ipso facto, our thoughts of what we can achieve.” 

Unfortunately, reductionist approaches to complex problems spanning multiple 

interconnected systems will often produce confused and counterproductive solutions [21, 

66]. Smil [14] concurs, “Unfortunately, common expectations of energy futures – shared not 

only by poorly informed enthusiasts and careless politicians but, inexplicably, by too many 

uncritical professionals – have been, for decades, resembling more science fiction than 

unbiased engineering, economic and environmental appraisals.” Consequently, a revolution 

in the understanding of what energy transition fundamentally is and what can be expected 

for the future, followed by the popularization of this knowledge, is increasingly instrumental. 

Meanwhile, the need to implement appropriate policies to expedite the third energy 

transition is now unambiguous. The two narrative types described above typically arrive at 

highly disparate problem framings and associated policy positions, particularly regarding: 

• the relative importance of technical innovation, 

• the appropriate balance of individual, market, and state responses, and 

• ultimately sustainable scales of the GES and the economic activity it can support. 

It is true that remarkable technological progress has been achieved in recent years as the 

world has gained a greater awareness of emerging threats, particularly climate change, 

bolstering the optimistic case. However, as noted by Giampietro et al. [21] many remain 

unaware that the discontinuity in human development following the industrial revolution is a 

function of not only new energy converting technologies and social institutions, but also of 

cheap and abundant fossil fuels. Expectations of an imminent technological resolution to the 

major crises of the 21st century frequently suffer from ‘Moore’s curse’: a categorical error 

mistaking rapid progress in some fields, such as computing and information technology, for a 

general exponential trend in technological innovation [28, 67]. Furthermore, it must be 

remarked that observations at one scale of analysis, often made at the technology or process 

level, cannot be applied to the behaviour of the system as a whole [68]. The systems 

perspective underscores the impossibility of identifying a priori the precise pathway GES 

transformation will ultimately take and its broader socio-economic implications. As explained 

in the following sections, properly contextualizing the challenge from a systems perspective 

is therefore crucial for improving the state of knowledge. 
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1.2.1 Returning to a solar civilization 

“But there is always the sun, from which man has derived all of his energy, 

directly or indirectly, in the past. And it may well be that it will become, directly, 

our chief source of power in the future.” 

– Leslie White [5] 

Energy flows in natural ecosystems are derived from and constrained by solar flux. Humans 

alone have devised the means to break free of this constraint by creating technological 

systems for provisioning vastly greater power from the fossil and nuclear fuels [13]. This 

technological capability underlies the progressive substitution of abundant but diffuse, rate-

limited solar energy and its derivative forms by the energy-dense fossil fuels which can be 

used at desired rates [22, 26]. Consequently, modern, industrialized societies now rely 

overwhelmingly on depletable energy stocks, while inexhaustible energy flows have assumed 

a lesser importance. Smil [69] aptly describes the stark implications of this situation: 

“Our current energy system is self-limiting: even on a historical time scale our 

high-energy civilization, exploiting the accumulated store of ancient radiation 

transformed into fuels, is just an interlude because even if the combustion of 

those fuels had no environmental impacts it could not, unlike its predecessors, 

based on harvesting near-instant solar energy flows, last for millennia.” 

White [5], Georgescu-Roegen [26], Winter [70], and Odum and Odum [71] have also remarked 

on the likelihood of eventually returning to a flow-based, solar civilization, barring the 

discovery of new energy technologies of unparalleled potential. While direct solar irradiance 

reaching the surface of the Earth far surpasses current global primary energy consumption 

[14, 34, 72-74], the relevant bottleneck is not the total availability of primary energy but the 

dynamically evolving capacities of industrial societies to build the requisite capital to harvest 

and process this energy while subsisting on the energy flows produced [16, 54, 75]. As noted 

by Cottrell [12], 

“[T]he amount of radiant energy is so far in excess of man’s present ability to 

convert it that it cannot be considered to limit human behaviour. Energy-

imposed limits stem from the particular means by which energy is converted 

into the particular forms desired by man at a particular time and place.” 
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The required reconstitution of the GES will not be a simple substitution and instead likely to 

be a protracted process, taking multiple decades to centuries to complete [14, 54]. This 

process is energetically disadvantageous, complicated by multiple factors, including: 

• the low power density and uneven geographical distribution of solar and other RE 

primary energy gradients [4, 8, 53, 76-78] with implications for land utilization [14, 54, 

79-81] and the spatial distribution of industrial capital [12], 

• larger upfront energy investments required for RE capital compared to NRE [9, 75, 82], 

• the reliance of RE production on limited and depletable mineral resources without the 

possibility of perfect recycling [39, 72, 83], and 

• the need for many RE technologies to be paired with energy storage and supporting 

infrastructures, or backup generation capacity, in order to meet demand reliably given 

their variable and unpredictable power output [35, 84-86]. 

The ability of RE energy sources to sustain high-energy industrial societies remains unproven 

and can be called into question [4, 9, 14, 20, 27, 35, 42, 54, 55, 87, 88]. As noted by Odum 

[66], low-quality RE energy sources may cease to be viable at all without the high-quality 

energy subsidies provided by the fossil fuel economy. To date, RE sources have not 

meaningfully displaced fossil fuels [23, 89] and do not provide energy flows of similar 

versatility, energy density, transportability, or storage potential [15, 35, 42, 53, 82]. 

Additionally, this transition must unfold in the context of critical fuels being sourced from 

increasingly expensive and lower-quality NRE resources, a dynamic which tends to undermine 

economic growth [50, 52, 90, 91]. This runs counter to widespread but potentially implausible 

assumptions for deep decarbonization of the GES under conditions of continued economic 

growth and stability [92-94]. The long-term implications of this situation are difficult to 

anticipate but may impinge upon the current scale and dominant modes of energy 

consumption [25, 27, 54, 82] and will entail a profound restructuring of modern economies. 

Assumptions for the continuation of high-energy modernity made possible by the currently 

unsustainable configuration of the GES are commonplace, as noted by Floyd et al. [54]. 

However, maintaining desirable aspects of societal complexity while shifting to a 

fundamentally different energy basis is an energetic experiment without historical precedent 

and cannot be presumed. Returning to a solar civilization represents the reverse direction of 

the historical process by which high-energy modernity came into existence, and as such will 
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necessarily bring changes to the social and economic structures underpinning human 

societies [14, 25]. Institutions and forms of social organization predominant in high-energy 

societies today are, in part, products of their current energetic foundation and may be 

inseparable from it [12, 95, 96]. As such, the third energy transition will likely bring with it 

novel and unanticipated socio-political challenges [9, 21, 97, 98], the implications of which 

extend beyond the present discussion. 

The scale and complexity of a comprehensive transformation of the GES are frequently 

underestimated, often overshadowed by narratives rooted in technological optimism lacking 

recognition of the novel challenges and irreducible uncertainties involved [54, 59, 69, 99-101]. 

Furthermore, it must be remembered that GES transformation alone is not a sufficient 

condition for ecological sustainability, as the return to a RE basis is just one facet of the retreat 

from the advanced stage of ecological overshoot and resource drawdown presently faced by 

industrial civilization described by Catton [102], Wackernagel et al. [103], and Meadows et al. 

[104]. The broader context described above will inevitably constrain pathways for GES 

transformation. Such constraints may manifest as failures to achieve prevailing expectations 

for future social, economic, and technological development, with unpredictable and far-

reaching impacts in modern, high-energy societies [105]. 

1.2.2 The GES as a complex adaptive system 

The biophysical perspective emerging from the systems paradigm reveals the GES as a nested 

sub-system of the wider human socio-ecological system (HSES), which is itself a sub-system 

of the Earth’s biosphere, as depicted in Figure 3. All have been recognized as examples of 

complex adaptive systems (CAS): thermodynamically open, far-from-equilibrium, dissipative 

systems consisting of co-evolving networks of interactions between elements, exhibiting 

properties of non-linearity, self-organization across multiple scales, path-dependence and 

irreversibility, emergent and adaptive behaviours, and autopoiesis5 [10, 16, 21, 64, 106-110]. 

As described by Court [16], 

“[S]elf-organization driven by thermodynamic laws works in combination with 

the general algorithm of evolution (variation, selection, and replication) to 

 
5 Autopoiesis is the capacity for system ‘self-creation’ through endogenous metabolic processes allowing the 
maintenance and regeneration of the system’s constituent elements. 
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explain the emergent dynamics of complex adaptive systems such as living 

organisms, ecosystems, and even economic systems.” 

 
Figure 3: biophysical view of the GES as a sub-system of the HSES and biosphere 

Consequently, Giampietro et al. [21] explain that energy systems analysis should properly be 

defined as “the systematic study of integrated sets of energy transformations that can be 

associated with the stability of self-organizing dissipative systems (metabolic systems).” As a 

CAS, mechanistic, linear descriptions cannot meaningfully describe or predict the behaviour 

or evolution of the GES [26, 110]. Instead, the interdisciplinary field of systems theory and 

associated modelling techniques are foundational to the exploration of interdependent GES 

and HSES futures [64, 68, 104, 110-113]. As noted by Levin et al. [110], ignoring the 

characteristics of CAS “can distort our picture of how these systems work, causing policies to 

be less effective or even counterproductive.” 

At the simplest level, CAS can be characterized by identifying ‘leverage points’, or system 

parameters amenable to human control which can produce significant effects on system 

behaviour, as described by Meadows [114]. Leverage points can facilitate the specification of 

effective interventions and policies for GES transformation. For example, leverage points can 

highlight relative system responsiveness to various intervention types, such as technological 

versus behavioural adaptation, or the likely future importance of specific technologies or 

primary energy resources. 
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Due to the CAS property of path-dependence, the study of GES transformations cannot 

reference the initial or final states alone, but instead must identify dynamic pathways 6 

between these states. As outlined by Giampietro et al. [21], the exploration of such pathways 

in complex, autopoietic systems requires an irreducible dual analysis: the external perspective 

describing energy exchanges between the system and its environment for the maintenance 

of boundary conditions, and the internal perspective describing energetic processes between 

elements of the system for the production of useful power. These perspectives allow the 

specification of exogenous and endogenous system constraints, respectively, originating in 

intrinsic co-evolutionary processes occurring at multiple scales: 

• Exogenous constraints are imposed by the availability of primary energy gradients, 

described in section 1.1, and co-evolution between the GES and the HSES, outlined by 

Sorman and Giampietro [27]. As shown in Figure 3, the latter directs resources 

towards the operation and renewal of the former, while the former provides final 

energy services7  required for the expression of necessary societal functions. This 

continuous exchange prevents the transformation of either of system independently 

of the other. 

• Endogenous constraints arise from the internal metabolic structure of the GES, the 

energetic aspect of which is outlined in Figure 4 using Odum’s ‘energy systems 

language’8 [71, 115]. This diagram identifies RE and NRE resources as the ultimate 

sources of exosomatic energy flows with sequential primary, secondary, and end-use 

conversion stages required for the provision of final energy services. Structural change 

within the GES requires the co-evolution of its constituent elements, in terms of the 

magnitudes and composition of its capital stocks across all stages. The GES cannot be 

modified arbitrarily due to the requirement to maintain approximate internal 

coherence both between and within the stages [21]. 

 
6 Each dynamic GES transformation pathway represents a unique trajectory corresponding to physical and 
organizational changes within the GES over the relevant time interval. 
7 See section 2.2.3 for the definition and enumeration of final energy services. 
8 Energy systems language (or ‘Energese’), developed by systems ecologist H. T. Odum, uses symbols and circuit 
diagrams to describe energetic flows, transformations, and interactions within complex systems. 
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Figure 4: energy systems language flow diagram for the GES 

GES transformation pathways can be characterized by reference to the above system 

constraints in terms of three descriptors, which can be assigned useful semantic definitions 

[116]: 

• Feasibility relates to compatibility with exogenous constraints. 

• Viability relates to compatibility with endogenous constraints. 

• Desirability relates to compatibility with societal preferences and expectations. 

The desirability descriptor, in the context of the present study, includes addressing climate 

change via decarbonization and the avoidance of conditions of energy poverty or scarcity (i.e., 

responding to the global drivers of GES evolution discussed in section 1.1). The GES 

transformation solution space is then defined by the full set of physically feasible and viable 

transformation pathways, with associated transformation outcomes described in terms of 

desirability. 
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The production of exosomatic energy is strongly autocatalytic, unlike the production of most 

other economic commodities [9, 12, 14, 21, 115]. Energetic autocatalysis, for the production 

of necessary system structures and energy reserves, is a basic property of CAS as noted by 

Odum [115]. Part of the output of secondary conversion (i.e., energy carriers, such as 

electricity, liquid transportation fuels, and heat fuels) is diverted for the creation and 

maintenance of capital stocks constituting the GES, as depicted in Figure 4. That is, a 

significant component of the output of the GES must be directed back into its own autopoietic 

processes. This conceptualization, while largely ignored within mainstream narratives and 

analyses, is becoming increasingly pertinent as the ongoing depletion of fossil fuels and 

associated declines in resource quality effectively reduce the efficacy of this autocatalytic 

process in a positive feedback loop [21].  

Critically, this autocatalytic nature creates the potential for the ‘net energy trap’ 

phenomenon, in which a subset of GES transformation pathways can encounter insufficient 

net energy available to meet demand for final energy services required by the HSES while 

simultaneously maintaining the autopoietic processes of the GES itself [9, 39, 117, 118]. In a 

net energy trap, chronic energy scarcity can become inexorable, undermining the energetic 

foundation of the HSES. As such, energetic autocatalysis imparts a prominent bifurcation 

potential9 for GES transformation pathways, with the net energy trap representing a highly 

undesirable transformation outcome. 

The persistent misunderstandings present in common narratives and problem framings of 

energy transition have been described by Giampietro et al. [21] as a “clash of reductionism 

against the complexity of energy transformations”. The systems perspective portrays GES 

transformation not simply as a complicated technical, political, or economic challenge, but as 

a complex, physically bounded, path-dependent, socio-metabolic process, which will 

necessarily transform the basic configuration of modern, high-energy societies. Furthermore, 

it is important to acknowledge that, due to path-dependence, uncertainty, and the presence 

of complex feedback loops, the future configuration of the GES cannot be designed in the 

ordinary sense. Ultimately, a post-transformation GES must provide sufficient energy surplus 

to support the societal complexity and economic activity necessary for its own autopoietic 

 
9 This bifurcation potential relates to a system phase change to a new basin of attraction associated with a 
different stable state, in this case metabolic collapse and a return towards thermodynamic equilibrium. 
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functions [84, 119], while remaining within long-term ecological limits locally, regionally, and 

globally [42]. This perspective informs the choice of appropriate theoretic and methodological 

approaches for the study of GES transformations. 

Several relevant research questions can be formulated: 

• What is the set of physically feasible and viable pathways for GES transformation? 

• To what degree are desirable transformation outcomes physically achievable, and how 

quickly can they occur? 

• What are the factors which most strongly influence desirable GES transformation 

outcomes? 

• What interventions and policies are best able to improve these outcomes (i.e., leverage 

points)? 

• Conversely, what interventions and policies entail undesirable or unintended 

outcomes? 

• What possible implications for broader changes within the HSES stem from the 

identified set of GES transformation pathways? 

1.3 THE PATH FORWARD 

“Yet we cannot turn back; neither can we consolidate our gains and remain 

where we are. In fact, we have no choice but to proceed into a future which we 

may be assured will differ markedly from anything we have experienced thus 

far.” 

– M. King Hubbert [24] 

If the GES remains on its current trajectory, it threatens the integrity and habitability of the 

biosphere itself [120]. Given the current ‘full-world’ global context characterized by manifold 

environmental and social crises, continuing a decentralized, market-based, profit-driven, and 

value-free approach to development of the GES is no longer defensible or pragmatic. 

Furthermore, conventional societal problem-solving frameworks lacking comprehensive 

treatment of uncertainty are increasingly inadequate in the face of catastrophic or even 

existential risks such as runaway climate change and the net energy trap. This underscores 

the need for an overarching epistemic and moral reorientation as a precondition for 

meaningfully evaluating pathways for GES transformation. 
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1.3.1 The need for a moral foundation 

The nature of energy demand is an expression of societal values and goals, with changes in 

energy supply reshaping of those values over time, as described by Cottrell [12]. No widely-

recognized normative principles underlying the satisfaction of these demands currently exist, 

and no ultimate purpose is defined for the GES other than to make available as much low-

cost energy as possible in the service of aggregate consumptive and economic growth [121]. 

However, as argued by Healy et al. [122], efforts to undertake the third energy transition 

without an explicit, democratically produced axiological foundation amount to a continuation 

of the predominant patterns of extractive industrialism, neo-colonialism, social inequality, 

and profound environmental harms that have been the hallmarks of the fossil fuel age. 

As an essential human-nature interface responsible for approximately three quarters of total 

anthropogenic GHG emissions [123], the GES cannot be properly contextualized without a 

moral dimension. The historical development, present utilization, and future evolution of the 

GES all have profound ethical implications, with distributional, intertemporal, and ecological 

aspects, briefly outlined below. 

Energy transitions have strong repercussions for social equity [124, 125]. Access to energy 

services remains highly unequal globally [120, 126] and addressing energy poverty presents a 

key driver of GES evolution (as described in section 1.1), imposing clear upward pressure on 

energy demand. Given profligate energy consumption among some segments of the global 

population, it is appropriate to question the baseline energy needs of society. It is clearly 

possible to significantly reduce conspicuous consumption and energy waste with considerable 

environmental co-benefits [120]. The positive relationship between energy consumption and 

HDI only holds at low to moderate consumption levels, implying that excess energy 

consumption can be eliminated with little to no impact on wellbeing [60]. 

However, as noted by Dholakia et al. [127], in practice it is often difficult to separate 

discretionary and non-discretionary energy use as consumption patterns are strongly 

informed by social norms which typically fail to distinguish need from want. There are also 

limits to volitional reductions in energy consumption, for example, many crucial socio-

technical capacities and modes of social organization are likely not viable at significantly lower 

levels of energy consumption [4, 14, 27, 95]. Currently, no countries in the world achieve 

sufficient provision of basic human needs for their populations with levels of energy and 
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material consumption that can be maintained indefinitely [128, 129], indicating the presence 

of fundamental trade-offs. At a minimum, it is likely necessary to establish a basic principle of 

sufficiency, without which energy demand will continue to be inflated by growing affluence 

without satisfying basic needs for much of the world’s population [120, 126, 130, 131]. 

Choices made regarding the composition and scale of the GES have acute intergenerational 

implications. Patterns of energy consumption can either be structured such that they favour 

current near-term affluence or the needs of future generations. Most notably, NRE resources 

used today are not available to meet the needs of future generations tomorrow. Questions 

of intergenerational allocation are inherently complex, characterized by deep uncertainties 

regarding future socio-economic trajectories, questions of appropriate moral principles, and 

the preponderance of ‘wicked’ collective action problems [132, 133]. 

Ultimately, modern societies need arrive at a mutually enhancing, or at least non-adversarial, 

relationship with the broader biosphere if they are to have an acceptable future [134, 135]. 

The GES exerts major impacts on the non-human world in via expansive infrastructures, 

climate change, waste heat and pollutants, and increasingly, direct harvesting of the biomass 

contained within living ecosystems [122, 136, 137]. This highlights the necessity for a general 

shift from anthropocentric problem framings towards greater ecocentrism in the 

consideration of pathways for GES transformation. 

The above ethical dilemmas are politically contentious and, in many cases, intractable due to 

the presence of fundamental social and biophysical trade-offs. While this research project 

does not aim to provide a suitable moral framework for GES transformation, a better 

understanding of the solution space from a systems perspective can be highly instructive for 

such efforts. For example, normative propositions presupposing no conflict between the 

present depletion of NRE and the provision of sufficient energy services to future generations, 

or the adoption of high-energy lifestyles globally without widespread and environmentally 

destructive bioenergy production, may be revealed as biophysically untenable. 

1.3.2 Epistemic humility and pluralism 

As Henri Poincaré famously observed, the choice of relevant facts is a central problem for any 

science [138]. However, the myriad challenges of the third energy transition cannot be fully 

understood via singular, definitive problem framings as they are fundamentally complex, 
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highly interconnected, urgent, and subject to numerous uncertainties and conflicting socio-

technical narratives [25, 139, 140]. Acknowledgement of this epistemic context highlights the 

inadequacy of conventional, largely deterministic problem-solving frameworks. Floyd et al. 

[54] stress the need for ‘knowledge humility’ regarding energy transition futures, noting, 

“The nature of the envisaged transition means that we are entering entirely 

unexplored territory, and the pathways that we walk into existence are subject 

to inherent, irreducible uncertainty. It is impossible to know up front just how 

these pathways will unfold, the full range of challenges that will be 

encountered along the way, and where the novel responses to them will take 

us.” 

Limitations in the quality and availability of detailed data pertaining to energy production and 

consumption presents another challenge [37, 141]. This is complicated by inconsistencies in 

the semantic definitions of energy flows applied between major data sources, leading to 

conflicting characterizations of the current state of the GES and even the nature of emerging 

trends [21, 142, 143]. Consequently, decision making under uncertainty requires greater 

transparency and the explicit quantification of the ‘strength of knowledge’ representing the 

sum of factors such as the mode of information production, the quality of source data, the 

degree of peer consensus, and the robustness of assumptions employed [144]. 

Given the presence of irreducible uncertainties in the study of GES transformations, 

approaches centred on epistemic humility and pluralism of socio-technical perspectives are 

needed [26, 54]. No one quantitative approach can offer a complete of description of complex 

phenomena, rather a diversity of methods, perspectives, and assumptions is increasingly vital 

[145, 146]. Levin et al. [110] note that given the nature of risk and uncertainty facing CAS, a 

greater emphasis on precaution is also warranted. Convergence toward a clear scientific 

consensus cannot be expected. As such, methods lacking sufficient transparency or 

representation of alternative possibilities should be treated with scepticism and avoided. 

Relevant research question: 

Where is the characterization of GES transformation pathways most constrained by 

insufficient strength of knowledge? 
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1.4 RESEARCH OBJECTIVES 

Rather than attempting to answer the epistemically dubious question what will happen in the 

third energy transition, this research project instead asks what can happen. As such, the 

research orientation embraced here, conceptually aligned with the emergent, self-organizing, 

and adaptive properties of complex systems, is essentially exploratory, not predictive. 

The foundational understanding of the GES as a CAS outlined in this chapter (and explored 

further in chapter 3) can be summarized as a basic axiom framing the research project: 

Pathways for the coupled evolution of the GES and HSES are fundamentally 

constrained by the set of feasible and viable metabolic possibilities for the 

autocatalytic production of exosomatic energy. 

This axiom can be demonstrated by analogy to biological organisms as a more intuitively 

familiar form of CAS: the continuation of their metabolic processes and adaptation to 

changing conditions is constrained by the basic requirement for sufficient net energy derived 

from available food sources. As noted by Brown et al. [10], “consider the analogy to biological 

metabolism: Gradually reducing an individual’s food supply leads initially to physiological 

adjustments, but then to death from starvation, well before all food supplies have been 

exhausted.” 

In summary, the ultimate purpose of this research project is to develop a CAS-cognizant 

methodological approach and practical tool for improving knowledge of the solution space 

for GES transformation, including barriers, opportunities, trade-offs, and achievable 

outcomes. This approach: 

• centres on system processes and constraints arising from the energetic, autocatalytic 

aspect of GES autopoiesis, rather than an exhaustive accounting of all metabolic 

processes, recognizing this as the most basic metabolic pattern giving rise to system 

bifurcation potential (i.e., the possibility of net energy trap outcomes, or metabolic 

collapse), 

• identifies the physical feasibility and viability of GES transformation pathways, 

including quantification of multiple pertinent aspects of the desirability of 
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transformation outcomes (using the definitions of these descriptors introduced in 

section 1.2.2), and 

• considers the central role of uncertainty and the strength of knowledge stemming 

from various input data, including implications for the characterization of GES 

transformation pathways.  

The primary research objective can be stipulated as follows: 

To identify the solution space of energetically feasible and viable 

pathways for transformation of the GES from present NRE dependence 

towards a future RE basis, under uncertainty. 

Note that the solution space defined here relates approximately to its broadest possible 

extent, as the consideration of non-energetic (i.e., social, political, and economic) factors can 

only diminish the set of energetic possibilities. Secondary research objectives are indicated 

by the research questions introduced in sections 1.2.2 and 1.3.2: 

• Identify the degree to which desirable transformation outcomes are physically 

achievable, including associated timeframes. 

• Identify the factors which most strongly influence desirable GES transformation 

outcomes. 

• Identify the interventions and policies that are best able to improve these outcomes 

(i.e., leverage points). 

• Identify the interventions and policies which entail undesirable and unintended 

outcomes. 

• Discuss possible implications for broader changes within the HSES which stem from the 

identified set of GES transformation pathways. 

• Identify where characterization of GES transformation is most constrained by 

insufficient strength of knowledge.  
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2 THE GLOBAL ENERGY SYSTEM 

2.1 PRIMARY ENERGY RESOURCES 

Energy is a universal quantity in all physical systems, widely understood as the capacity to 

perform physical work [13, 99]. The production of useful work, or thermal change, requires 

the presence of thermodynamic gradients representing natural concentrations of energy 

which can be brought into equilibrium with their surroundings via dissipative processes [3, 

21]. Primary energy resources can be defined as the subset of thermodynamic gradients 

which are socio-technically accessible and economically useful to human societies. These 

energy resources are present in kinetic, thermal, chemical, nuclear, gravitational, and 

radiative forms [13]. 

Primary RE resources, including solar, wind, hydro, geothermal, biomass, tidal, and oceanic 

energy, exist as natural energy fluxes that cannot be permanently depleted but can be 

exploited up to practical flow rate limits, or ‘technical potentials’, determined by various 

physical, technical, and economic factors. While rates of replenishment and local exhaustion 

effects do constrain short-term availability for some primary RE resources, such as biomass, 

hydro, geothermal, and wind energy [14], theoretically, RE production below respective 

sustainable technical potentials can be continued indefinitely. 

In contrast, primary NRE resources, such as oil, coal, natural gas, and the fissile fuels consist 

of geological stocks of chemical potential or nuclear energy which are progressively depleted 

until further production becomes impractical or uneconomic. The components of total NRE 

resources considered to technically and economically viable at a given time are termed 

‘reserves’ [74]. The estimated quantity of an initial resource to eventually be converted to 

reserves is known as the ultimately recoverable resource (URR)10. The URR less cumulative 

extraction to date represents the remaining ultimately recoverable resource (RURR). Many 

primary energy resources can also be used for non-energy purposes, primarily as chemical 

feedstocks and for the manufacture of construction materials. Sousa et al. [147] note that 

 
10  URR estimates are defined probabilistically, including both discovered resources and projections for 
undiscovered resources specified at varying confidence levels. 
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non-energy uses of primary energy resources, currently equivalent to approximately 5% of 

TPES, are growing in relative importance. 

The accessible magnitudes of all primary energy resources are fundamentally uncertain, as 

mentioned in section 1.1. The production of primary energy resources is technologically 

mediated, and consequently, technological advances can increase accessible reserves and 

technical potentials [6, 13, 38]. This process can be expected to continue, however, it is 

limited by the ultimately finite nature of the terrestrial resource base, constrained in all cases 

by either flow or stock limits. Smil [14] observes that economically and technically recoverable 

reserves, and accessible technical potentials, typically represent small shares of the 

respective in situ deposits or total energy fluxes. Hall et al. [53], Ayres et al. [148], and Benes 

et al. [149] caution that for primary NRE resources, the effect of geological depletion on 

reserves will inevitably overtake technological progress and may be doing so already in many 

cases. All primary energy resource magnitudes can be expected to asymptotically approach 

finite upper limits over time, subject to significant geographic diversity [14]. 

Resource estimates vary widely, particularly for RE resources as uncertainties regarding 

ultimate technical and economic limits are typically greater than for NRE [34, 150]. As such, 

assessments of primary RE resources cannot rely on their total physical availability (or energy 

content) alone. Floyd et al. [54] explain that “There are myriad socio-political, economic and 

engineering reasons why the practically realisable potential of renewables will remain a 

fraction only of even conservative estimates for technical potential.” According to Moriarty 

and Honnery [35], the definition of ‘sustainable’ RE technical potential is highly contentious – 

estimates can range over several orders of magnitude, particularly for biomass and solar, due 

to conflicting estimation methodologies, and consideration of declining resource quality and 

competing land uses. A growing scientific consensus urges scepticism regarding significant 

expansions of biomass energy over concerns of economic feasibility, technological 

uncertainties, competition with food production, limitations facing water and nutrient inputs, 

soil erosion, biodiversity loss, and compatibility with existing GES infrastructures [14, 23, 28, 

33, 35, 36, 78, 151]. Large-scale environmental impacts are also observed for hydroelectricity 

[35, 59], and wind energy [14, 152, 153], limiting their realizable potentials. 

Giampietro et al. [21] note that adequate descriptions of primary energy resources must 

include two interrelated factors: their gross magnitudes and their quality distributions. 
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Resource quality is discussed next, in section 2.1.1. It is also necessary to consider qualitative 

differences in primary energy resources in terms of temporal availability and implications for 

their prospective integration into the GES, as detailed in section 2.1.2. 

2.1.1 Primary energy quality 

The capacity to produce useful work, or thermal change, depends not only on the quantity of 

energy available but also its quality [13, 66, 154, 155]. Various perspectives on the factors 

constituting energy quality exist. Cleveland et al. [156] note that primary energy quality refers 

to various attributes describing the ability of resources to support useful activities, including 

energy density, geographical accessibility, flexibility of use, requirements for conversion and 

processing, and associated end-use efficiencies. Giampietro et al. [21] suggest that energy 

quality can be seen as a measure of concentration along respective thermodynamic gradients. 

According to Hall et al. [13], the quality of energy resources varies primarily with the energy 

costs of obtaining them. While primary energy resource magnitudes are widely studied, 

resource quality distinctions receive considerably less mainstream attention [13, 21, 39, 53, 

157]. 

Quality for any given natural resource is not homogeneous but rather can be described by a 

distribution. The specific quality distributions describing available primary energy resources 

are more important than, and in fact determine, their accessible magnitudes (reserves and 

technical potentials) due to the existence of thresholds below which production is 

uneconomic and energetically unfavourable (see Figure 5 below). Quality varies widely 

between primary energy resources, and between energy carriers11. Hall et al. [13] note that 

oil and gas are typically higher quality fuels than coal. Processed energy carriers are generally 

higher quality than the primary energy resources they are derived from, with electricity the 

highest quality among them representing a near equivalence to useful work, as described by 

Ayres and Warr [141]. 

Two prominent measures of energy quality are overviewed in this section: exergy and energy 

return on investment (EROI). Exergy is a thermodynamic attribute of all energy and material 

 
11 Energy carriers are finished, high-quality fuels used in end-use applications, such as electricity, heat, and liquid 
transportation fuels (discussed further in section 2.2.2). 
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flows, while EROI is defined for specific primary energy resources and energy production 

processes (up to the scale of society as a whole). 

2.1.1.1 Exergy 

The technical definition of exergy is the maximum amount of useful work recoverable from a 

physical system as it approaches equilibrium with its environment reversibly (i.e., infinitely 

slowly) [141, 154, 156, 158]. Exergy is a function of the organization and concentration of 

matter and energy and its corresponding distance from thermodynamic equilibrium, relative 

to a selected reference state. Exergy is similar to the standard heat of combustion, or 

enthalpy, and these two quantities are nearly identical for the fossil fuels [141, 156]. As 

described by Glucina and Mayumi [73], 

“Simply put, exergy is the energy remaining after “nature’s tax” has been 

subtracted during a transformation. In other words, exergy is the amount of 

energy in a system that is actually available to do work, and so is always less 

than or equal to the total energy of the same system.”  

Exergy is now widely recognized as an important concept at multiple scales: at the process 

level for the identification of potential efficiency improvements and at the macroeconomic 

level as instrumental to growth (discussed further in section 3.1.3) [16, 20, 26, 73, 141, 148, 

154, 156, 158-164]. While energy is conserved in all processes (the first law of 

thermodynamics), exergy is destroyed as useful work is extracted and equilibrium is 

approached [154, 158]. Ayres and Warr [141] and Romero and Linares [154] argue this fact 

makes exergy the more economically relevant measure. However, while exergy offers useful 

information and can be used to improve understanding of thermodynamic processes within 

the GES and HSES, the concept suffers from ambiguities preventing its use as a definitive 

measure of primary energy resource quality [21, 73, 154, 156, 158], including: 

• sensitivity to chosen reference conditions, 

• specification relative to idealised, reversible processes which are not practically 

achievable and, as such, are often not meaningful (discussed further in section 2.2.1), 

• ‘one-dimensionality’, excluding non-thermodynamic aspects of economic usefulness, 

such as transportability, cleanliness, cost of conversion, etc., and 

• confusions associated with arbitrary and anthropocentric definitions of useful work.  
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2.1.1.2 EROI 

Energy surpluses available to society can be analysed as gross energy flows but are more 

appropriately specified in terms of the net provision of energy to society, calculated as gross 

output less sum energy inputs to the production process. There is now a comprehensive 

literature outlining the biophysical and economic importance of net energy supplies for 

human societies [12, 13, 42, 51, 53, 66, 165-167]. Distinct supply contributions can also be 

considered on a net energy basis using a variety of related metrics, including EROI, the net 

energy ratio (NER), and energy payback time (EPBT), often calculated via similar techniques 

[168, 169]. EROI is one of the conceptually simplest and most useful measures, defined as the 

ratio of gross energy returned from an energy producing process to energy expended in the 

process over its lifetime [13, 37, 170]: 

EROI =
𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑟𝑜𝑚 𝑎 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑐𝑎𝑟𝑟𝑦 𝑜𝑢𝑡 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠
 

The EROI concept has origins in the work of Lotka, Boulding, Georgescu-Roegen, and Odum 

[26, 171-173], and was later developed further and standardized by Cleveland, Hall, Murphy, 

and others [13, 37, 39, 174]. Many estimates now exist for the of EROI for NRE and RE 

resources, both historically and currently, using a diversity of methods. EROI is typically 

calculated via the cumulative energy demand method or similar techniques: summing the 

energy inputs required over the capital lifecycle, considering both the direct and the indirect 

contributions along its production chain where possible [39, 117]. The primary energy 

resource flow itself is not counted as an energy input – only finished energy carriers diverted 

from other possible uses are included [175]. Alternative approaches are required to model 

EROI dynamically, with diverse methods developed by D’Alessandro et al. [91], Capellán-Pérez 

et al. [39], and Brandt [51]. 

Quality corrections are required where distinct energy inputs must be aggregated to a 

common basis. Multiple aggregation methods exist, including the use of thermal equivalents, 

economic price-based techniques such as the ‘Divisia Index’, and exergy analysis [156, 170]. 

Cleveland et al. [156] argue that economic methods are preferable, as prices give more 

comprehensive information about quality distinctions extending beyond thermodynamic 

factors which do not fully capture the practical value of different fuels. Murphy et al. [170] 
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propose both price and exergy quality adjustments, noting that “At a minimum, electricity 

should be multiplied by a factor of 2.6 to represent mean thermal requirements.” 

EROI can be defined at various stages within energy systems, subject to varying boundary 

definitions for the specification of energy inputs (i.e., the denominator) [39, 53, 170, 176]: 

• Standard EROI (EROIst) corresponds to the sum lifecycle energy requirements for the 

production of primary energy flows (onsite and offsite), including exploration 

activities, prior to processing and transportation (i.e., at the site boundary). 

• Point of Use EROI (EROIpou) corresponds to the sum energy requirements for the 

production and delivery of energy to the point of end-use (as finished energy carriers), 

including the lifecycle energy requirements of processing, transportation, and 

distribution. 

• Extended EROI (EROIext) corresponds to the sum energy requirements for effective 

provision of useful energy services, including energy carrier production and delivery, 

and the lifecycle energy requirements of requisite end-use capital. 

As boundaries specifying the inclusion of energy inputs expand, reported EROI values 

decrease, i.e., EROIst < EROIpou < EROIext [39, 86]. EROI can also be specified for entire countries 

or regions, termed ‘societal EROI’, by aggregating over all useful fuels. Estimation of societal 

EROI is technically challenging and remains a nascent field, but several attempts have been 

made [42, 166, 176-178]. 

Hall et al. [13] observe that EROI varies with resource exploitation, tending toward lower 

values over time with the successive utilization of lower quality resources. This phenomenon 

is a direct consequence of heterogenous quality distributions, depicted using the ‘resource 

pyramid’ shown in Figure 5. When ordered by quality, the highest quality and most 

economically valuable resources occupy the apex of the pyramid, while the much more 

abundant base of the pyramid consists of lower quality, less valuable resources. Three crucial 

observations can be made: 

1) Most cumulative production to date has come from the ‘conventional’ high-quality, 

low-cost end of the pyramid (erroneously informing expectations of future resource 

quality in many cases).  

2) While technically and economically recoverable reserves tend to increase over time 

as prices rise and technology improves, a significant proportion of the 
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‘unconventional’ resource will remain inaccessible due to technical and economic 

limits, as described by Smil [14]. 

3) Accessible resources are constrained by an energetic boundary below which no net 

energy is returned (EROI < 1), a limit which is largely unresponsive to technological 

improvements (discussed further in section 2.1.1.3).  

 

 

Figure 5: the resource quality pyramid (adapted from Heinberg [179]) 

For most significant primary energy resources and fuels, EROI has been declining steadily over 

recent decades  [37, 53, 56, 180]. Taylor and Tainter [4] note that “The energy return on 

investment (EROI) of fossil fuels has been historically high, but is now decreasing.” According 

to Court and Fizaine [181], the EROI of global oil and gas production reached their maximum 

values in the early 20th century, respectively around 50 and 150, and have subsequently 

declined, while the EROI of global coal production may not have yet reached its maximum 

value. RE resources tend to exhibit relatively low EROI compared to those previously seen for 

the fossil fuels, with the notable exception of hydropower [53, 88, 182]. In particular, the very 

low EROI of biomass-derived fuels is now widely recognized [36, 42, 53-55, 78]. 

Note that this research project employs EROI as the functional metric for primary energy 

resource quality due to its simplicity and extensive literature. Exergy, while conceptually 

important, is primarily useful for the aggregation of non-equivalent energy flows to a common 

unit of measurement and as such is not used (discussed further in section 3.1.2). 
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2.1.1.3 The physical basis of declining quality 

The main causal factor explaining declining EROI is an economically driven process of selecting 

and exploiting primary energy resources sequentially, in approximate order of quality, in 

terms of energy density, ease of exploitation, and geographical accessibility [9, 75, 82, 183]. 

Hall and Klitgaard [184] note that while the underlying mechanisms are different for NRE and 

RE, as RE resource sites are simply occupied rather than depleted, the resulting EROI decline 

is similar. The economic drivers of EROI declines are most obvious in the NRE resources, 

demonstrated by the rising extraction costs of marginal reserves as the highest quality 

resources are progressively depleted [42, 52, 181, 183]. Dale et al. [75] describe this process, 

noting, 

“In general, those resources that offer the best returns (whether financial or 

energetic) will be exploited first. Attention will then turn to resources offering 

lower returns as production continues. The result is that the accessibility of the 

resource declines as a function of production.”  

 

Figure 6: possible relationships between primary energy resource quality and production 

A variety of possible negative relationships between quality and production are depicted in 

Figure 6, ranging exponential to logarithmic. Note that the specific form of the relationship, 

reflecting the underlying resource quality distribution, is not well known for most primary 

energy resources due to limited data and the presence of complex interactions between 

supply, demand, prices, and technology that cannot be predicted with reasonable certainty. 
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The energetic implications of technological change for primary energy resource quality must 

also be considered. Technological learning effects typically decrease energy costs markedly in 

the early development phase, during prototyping and early diffusion, raising EROI [4, 38, 39, 

181]. However, as described by Hall [183], technological advances eventually approach 

practical limits and cease to keep up with depletion, causing EROI to begin to fall. Murphy et 

al. [170] agree that declining EROI indicates depletion is overwhelming technological change. 

According to Brand-Correa et al. [176], 

“In the case of fossil fuels, it is argued that the depletion of easily recoverable 

fossil fuel reserves is outpacing technological advancements for the 

improvement of fossil fuel extraction, leading to decreasing values of EROI for 

these fossil energy sources.” 

 Ongoing technological advances can allow the exploitation of lower quality energy resources 

but do not necessarily compensate for their declining quality or quantity. Verbruggen and Al 

Marchohi [185] note that in many cases, such as the application of enhanced recovery 

techniques in oil extraction, increases in recoverable reserves come directly at the expense 

of lower EROI. For mature primary energy technologies, improvements typically have a 

minimal effect on EROI, instead raising or maintaining power output, allowing for the 

conversion of additional NRE resources to reserves, or lowering production costs [13, 38, 39, 

84, 149, 184-186]. Odum [66] argues that while technological innovations often increase 

process level efficiencies, lifecycle net energy return is not typically improved due to the need 

for more advanced and energy-intensive manufacturing methods.  

In effect, more advanced technology is not always energetically favourable when seen from 

a lifecycle perspective. As such, Hall [56] argues that assumptions that technology can 

mitigate resource depletion and declining EROI should be treated with caution. EROI for 

mature energy technologies is instead primarily affected by physical, geological, and 

geographic factors impacting resource quality [38, 39, 42, 84], including: 

• decreasing energy and power densities of the primary energy gradient (e.g., lower 

grade hydrocarbons, lower wind speeds, lower insolation, lower land productivity), 
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• increased technical and infrastructural requirements for accessing more geologically 

challenging resources (e.g., deeper deposits, lower reservoir permeability, deep water 

drilling and production, secondary energy requirements for primary processing), 

• increased infrastructural and transportation requirements for accessing and 

integrating more geographically remote primary energy resources (e.g., electricity 

transmission for isolated RE resource sites, pipelines for distant oil and gas basins), 

• declining quality and rising energy intensity of required material inputs, particularly 

for critical metal ores, and 

• various other factors relating to operating under less ideal, more unstable, more 

complex, and more costly socio-technical conditions. 

Changes in resource predominance can be expected to have an impact at the level of overall 

system EROI. For example, Murphy [165] notes that declining production from conventional 

oil resources has initiated a global transition to unconventional oil, with lower EROI. The 

unfolding shift towards RE is also critically important in this regard. Murphy and Hall [52] 

caution that the lower EROI of most RE resources compared to NRE implies a significant 

reduction in aggregate EROI as the world transitions away from the carbon-intensive fossil 

fuels. However, plausible declines in system EROI are bounded; the RE resources with very 

large technical potentials, namely solar and wind, will likely vary only minimally with 

foreseeable production rates, suggesting forthcoming EROI declines at the system level will 

be asymptotic [53]. Hall [183] notes that, considering historical EROI trends, it is highly likely 

that EROI declines will continue. 

2.1.1.4 Implications of declining EROI 

As a measure of the thermodynamic quality of energy resources and their ability to yield 

necessary energetic surpluses, EROI is a critical indicator of the sustainability and long-term 

prospects of human societies  [8, 14, 37, 53, 56, 180]. As such, declining EROI presents serious 

societal challenges and will strongly influence GES transformation pathways. Cottrell [12] 

argues that while earlier, pre-industrial societies quickly detected and rectified energetic 

deficits, modern societies frequently fail to do this leaving them to be resolved instead by 

crisis or system change. Greater awareness of primary energy resource quality declines and 

visibility of the causal pathways involved are now central to improved decision-making. 
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Primary energy resources cannot be considered in isolation, as all require the broader GES to 

enable their use. No individual resource has the necessary characteristics or abundance to act 

as the sole energy source for society. Odum [66] notes that from the system perspective, 

poorer quality energy sources are dependent on effective energy subsidies from higher 

quality energy sources (i.e., higher grade energy must be expended to develop the lower 

grade) and can fail to be viable without them. Hall and Klitgaard [184] argue that this cross-

subsidisation of energy sources is occurring in current RE production, which remains heavily 

reliant on the petroleum-driven economy and associated infrastructures. According to Hall et 

al. [180], this dependency is particularly acute for energy sources with EROI values less than 

10, including biofuels and possibly solar photovoltaics (solar PV). Consequently, the true EROI, 

and even viability, of low quality RE resources is still highly uncertain independent of the fossil 

fuel economy and cannot be assumed, as noted by Day et al. [42]. 

A common response to the challenges of falling EROI is that any decline in the net energy ratio 

can simply be compensated by an increase in the absolute scale of energy production 

activities. This kind of energy sector ‘ramp up’ would be equivalent to increasing both the 

EROI denominator and numerator until the required quantity of net energy is provided. 

However, in practice, this supply-side response is subject to limitations in both critical 

resources and the factors of production12 , and diverts these away from the non-energy 

sectors of the economy. This EROI-driven reallocation of both energy and money implies a 

relative reduction in discretionary consumption and investment, and an increase in 

intermediate consumption [165, 184, 186]. Energy prices will also be affected as they tend to 

rise in inverse proportion to declining EROI, with the potential for highly non-linear effects as 

EROI falls below 10 [148, 165]. Brandt [51] constructs a four-sector input-output model 

showing that not only does falling EROI cause direct increases in material and energy use 

within the energy sector, but also indirect increases due to rising intermediate consumption 

of output from the non-energy sectors. These direct and indirect effects are also reported by 

Fagnart and Germain [167], who note that declining EROI increases the capital requirements 

of the economy while decreasing the average productivity of capital. EROI-driven 

 
12 Conventionally, the factors of economic production include capital and labour, although the inclusion of 
exergy and/or useful work is now well-supported, as discussed in section 3.1.3. 
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macroeconomic reallocation effects will likely be exacerbated by climate policy promoting a 

rapid shift towards RE, as described by Day et al. [42], 

“Rapidly transforming the energy system to lower EROI renewables to meet 

climate targets will mean that society must allocate substantially more GDP to 

investing in renewable energy plants, electric grids, energy storage, and liquid 

fuel substitutes. These compete with other economic drivers.” 

Constrained investment in the non-energy sectors of the economy and reductions in 

discretionary output have serious implications for sustainable economic scale and societal 

complexity. Economic growth rates will likely be adversely impacted by declining EROI [157, 

167, 184]. Murphy [165] argue that supply-side solutions will not be sufficient to offset these 

growing headwinds to long-term economic growth. Hall et al. [53] concur, concluding that an 

eventual cessation of economic growth is possible, or even likely. The macroeconomic 

implications of declining energy quality and EROI are discussed further in section 3.1.3. 

As described by Lambert et al. [166], net energy has a close association with the generation 

of societal benefits. Similarly, Day et al. [42] find a clear positive relationship between societal 

EROI and prosperity. Rye and Jackson [157] suggest that declining EROI is likely to cause 

reductions in material prosperity in the 21st century. These associations have led to a growing 

research interest in the possibility of a minimum level for societal EROI, below which modern, 

high-energy societies would become untenable. Using a variety of conceptual approaches, 

studies have estimated this minimum EROI to be as low as 3 and potentially as high as 11 

[178, 184]. Hall et al. [180] caution that estimates towards the lower end of this range would 

likely not include the provision of sufficient surplus for essential social services, such as 

education and healthcare. This threshold raises concerns regarding the ability of the scalable 

RE sources, solar and wind, to maintain the current configuration of the HSES, purely on net 

energy grounds. 

2.1.1.5 EROI limitations 

EROI is subject to several valid conceptual and methodological criticisms which must be 

adequately considered and addressed, particularly where EROI is used in a dynamic 

framework. Diesendorf and Wiedmann [175] observe that “The calculation of EROIs of 

technologies and systems has inherent uncertainties that require subjective judgements”. It 
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is widely appreciated that EROI depends strongly on the process boundaries applied in the 

analysis, which can produce large variances in reported values between studies using 

inconsistent boundaries [42, 184, 186]. Giampietro et al. [21] explain the determination of 

energy quality, in general, requires arbitrary criteria and is necessarily context-dependent, 

noting specific problems for the use of the EROI concept: 

• Aggregation of inputs requires criteria of equivalence to be specified, which arbitrarily 

references chosen ideal conversion processes. 

• No universally accepted aggregation methods exist, and the choice of method strongly 

affects the results of EROI analyses. 

• The EROI index fails to capture critical information, including: 

o the system levels at which various energy forms are defined, 

o heterogeneous requirements for non-energy inputs, 

o the absolute extent of associated primary energy gradients, and 

o the relevant spatial and temporal scales (including power level). 

• Low EROI estimates (< 2.5) are particularly sensitive to assumptions. 

• EROI as a measure of resource quality is meaningful only where inputs and outputs 

are defined within the same autocatalytic loop. 

Consequently, Giampietro et al. [21] conclude it is not possible to calculate a comprehensive 

net energy index over a complex set of energy transformations. Instead, EROI should only be 

used in conjunction with additional information regarding constraints facing the utilization of 

primary energy resources. 

2.1.2 Resource variability and intermittency 

Primary energy resources differ in their patterns of temporal availability. NRE resources are 

available almost continuously, while the natural energy fluxes constituting RE resources 

typically exhibit a combination of predictable temporal patterns and weather-related aleatory 

variability (with the notable exceptions of geothermal energy and large-scale hydropower). 

As such, most RE technologies, which primarily produce electricity, suffer from issues that 

become increasingly problematic during large-scale deployment stemming from both short-

term and seasonal variability (i.e., ‘intermittency’) across highly heterogenous spatial 

distributions [35, 85, 88, 99, 187]. Notably, this is true of solar PV and wind, the RE 

technologies with the greatest scalability [54, 81, 188]. As described by Odum [66], the 
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economic utilization of these intermittent resources requires the use of various means to 

buffer their inherent fluctuations. 

Electricity differs from other energy carriers as it is not a physical substance that can be easily 

stored for later use during times of excess supply. Consequently, electricity supply and 

demand must be matched on very short timescales to maintain stable, functioning 

transmission and distribution networks with acceptable standards of reliability (i.e., ‘security 

of supply’) [15, 59, 85]. Aggregate electricity demand is largely stochastic although subject to 

predictable diurnal and seasonal patterns, and typically some degree of responsiveness to 

supply availability. Consequently, supply is conventionally ‘dispatched’13 to meet expected 

demand. 

With the growing prevalence of intermittent, non-dispatchable RE supply in electricity 

systems, more frequent and larger imbalances between supply and demand will manifest 

across multiple timescales: milliseconds to seconds, minutes to hours, days to weeks, inter-

seasonal, and multiannual [189-191]. Established, low-cost methods for matching supply and 

demand already exist for shorter timescales and are widely used in electric power system 

operations, including scheduling, frequency regulation, reserve generation capacity, and 

short-term demand response (i.e., dispatchable demand). However, longer timescale 

imbalances will require more extensive solutions with significant associated energetic and 

monetary costs, subject to various physical and socio-technical limitations [84, 86, 192, 193]. 

Electricity systems can integrate more intermittent, non-dispatchable generation capacity 

while maintaining security of supply via multiple mitigation options [35, 54, 81, 85, 193-201]: 

1) Building additional infrastructures to manage imbalances over larger spatial and 

temporal scales, including bulk electricity storage and additional transmission capacity 

to improve the connectivity of electricity networks over large distances. 14  This 

infrastructural expansion requires various associated equipment for voltage and 

frequency regulation, distributed control, protection, and switching in both 

transmission (high-voltage) and distribution (low-voltage) networks. 

 
13 Dispatchable generation capacity can be separated into two functional sub-categories: baseload (relatively 
inflexible and slow-responding) and peaking (flexible and fast-responding). 
14 Storage includes the use of electrochemical, hydrological, pneumatic, thermal, and kinetic means. Enhancing 
long distance transmission capacity often relies on high-voltage direct current (HVDC) transmission technology. 
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2) Building greater quantities of intermittent electricity generation capacity than 

required (in terms of average power production) to raise the associated stochastic 

electricity supply profile, alongside the installation of backup dispatchable peaking 

generation capacity to cover supply shortfalls. This approach effectively lowers the 

average utilization of both intermittent and baseload generators, as it involves 

curtailing slow-responding and non-dispatchable output when supply exceeds 

demand, while simultaneously raising the average utilization of fast-responding 

peaking generation capacity. 

3) Improving the level of aggregate demand responsiveness to intermittent supply via 

various behavioural and technological means. 

4) Raising the technological and geographical diversity of intermittent generation to 

lower the stochasticity of the associated supply profile.15 

Electricity systems can typically tolerate low to moderate intermittent, non-dispatchable 

supply contributions (or RE ‘penetration level’) with minor operational adjustments only, 

depending on widely-varying degrees of flexibility across different systems, as noted by 

Heptonstall et al. [85] and Denholm and Hand [194]. However, the requirement for 

intermittency mitigation measures will rise approximately exponentially with increasing RE 

penetration levels in electricity systems if acceptable levels of security of supply are to be 

preserved [81, 193, 197, 198, 201-204]. Jenkins and Thernstrom [81] stress the importance of 

technological diversity and dispatchable generation capacity as the foundation for the 

successful integration of intermittent RE in electricity systems. 

The need for intermittency mitigation will negatively affect EROI at both the system level and 

for intermittent primary energy resources. The already low EROI for most RE resources is 

further reduced when the energy costs of intermittency mitigation are included [39, 86, 184]. 

This effect is influenced by the low exergy density of electrical storage devices where 

infrastructural mitigation is used [14, 82, 205]. Day et al. [42] find the inclusion of storage 

reduces EROI for wind and solar by 40-75%, but note that demand response can lessen this 

effect. Trainer [88] argues that if energy systems are pushed toward 100% RE, the energetic 

 
15  Temporal electricity output correlation is generally lower over longer distances and between distinct 
intermittent resources (and associated RE technologies). 



37 
 

costs of the required storage capacity may reduce system EROI below the level required to 

support high-energy societies. 

2.2 ENERGY TRANSFORMATIONS 

The provision of final energy services from primary energy resources requires multiple 

sequential conversion stages, as depicted in Figure 7. Cottrell [12] explains that input and 

output flows at each stage are qualitatively different, with the output typically being of 

greater practical value. Proportional losses at each stage can be quantified using the concept 

of efficiency: the ratio of output to input for any given conversion (at the process level, or in 

aggregate). Implementing efficiency improvements is a primary avenue for the promotion of 

desirable GES transformation outcomes. However, the dynamics of efficiency change are 

complex, and must be properly characterized to understand realistic prospects, as discussed 

in section 2.2.1. The production and use of energy carriers are detailed in section 2.2.2. Energy 

services and related efficiency considerations are then overviewed in section 2.2.3. 

 

Figure 7: energy conversion stages within the GES for the provision of energy services (adapted from Brockway et al. [206]) 

2.2.1 The efficiency paradox 

‘‘Civilisation […] is the economy of power, and our power is coal. It is the very 

economy of the use of coal that makes our industry what it is; and the more we 

render it efficient and economical, the more our industry will thrive, and our 

works of civilisation grow’’ 

– William Stanley Jevons [207] 
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Significant components of the losses evident at each conversion stage depicted in Figure 7 

are unavoidable due to the irreversible and asymmetrical nature of energy transformations 

[14, 21, 65, 71]. The entropy law (the second law of thermodynamics) places calculable 

theoretical efficiency limits on any energy conversion process [11, 16, 208-210]. Glucina and 

Mayumi [73] note that technological advances can approach but not exceed these limits, as 

they are functions of the extant thermodynamic gradients. For example, the maximum 

theoretical efficiency for heat engines depends on the available temperature differential only, 

known as the ‘Carnot efficiency’ [14, 65]. Conversion efficiencies can be specified relative to 

theoretical maxima using ‘second law efficiency’ (or ‘exergy efficiency’): the ratio of the 

theoretical minimum exergy to actual exergy consumed [141, 154]. It is important to note 

that thermodynamic efficiency measures and theoretical limits are not directly applicable 

beyond specific, well-defined processes, i.e., to sectoral or societal scales, as described by 

Giampietro et al. [21] and Ruzzenenti and Basosi [211] (discussed further in section 3.1.3.1). 

Theoretical efficiency limits correspond to reversible processes, which occur infinitely slowly 

[16, 73, 154, 208]. As such, a distinction must be made between ‘infinite time’ and ‘finite time’ 

thermodynamic efficiency limits. This distinction recognizes the role of time as a relevant 

resource, as moving further away from theoretical efficiency maxima and increasing the 

degree of irreversibility allows power output (energy per unit time) to increase [21, 68, 171, 

212]. According to Glucina and Mayumi [73], 

“[I]t has long been known that in real world production, there is a tradeoff 

between the speed of a process and its energy efficiency. This tradeoff is closely 

linked to the second law’s implication that maximally efficient (reversible) 

processes necessarily require infinite time. Real processes entail energy 

dissipative effects, which is what makes them irreversible; the dissipated heat 

can not be retrieved.” 

Court [16] explains that real-world systems strongly tend towards the greatest possible 

efficiency at the maximum attainable power level, which is substantially less efficient than 

the theoretical limit. Ruzzenenti and Basosi [211] note that sub-optimal efficiency levels result 

from the typically greater opportunity cost of time relative to the cost of energy inputs, 

observing that “consumers and producers can substitute energy for time by speeding up the 

process or the service provided or used.” Consequently, thermodynamic efficiencies across 
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many natural and human systems are typically observed close to the power maximizing 

efficiency level, which occurs at approximately half the theoretical efficiency maxima, and 

rarely exceeds 60% [141, 211, 212]. 

Thermodynamic conversion efficiencies for most energy technologies started from very low 

historical levels; order-of-magnitude improvements to the values seen today are common, as 

noted by Smil [6]. For many common energy conversion devices, process-level efficiency gains 

are now largely exhausted. Ayres and Warr [141] find little to no improvement in engine 

efficiencies since the 1970s. Similarly, Smil [14] notes only very minor efficiency gains in wind 

turbines and steam turbines (providing most of the world’s electricity) over the same 

timeframe. Ayres and Warr [141] argue that practically achievable efficiency gains are 

increasingly limited by the properties of materials used in energy device manufacture. 

However, further design improvements are still achievable, and significant process-level 

efficiency gains for many energy technologies will continue for the foreseeable future driven 

by technological learning effects [14, 28, 212-215]. Aside from thermodynamic conversion 

efficiencies, substantial efficiency gains are also realizable in the transformation of output 

power to useful energy services (discussed further in section 2.2.3). 

It is important to note that efficiency gains are not exogenous or automatic. Capital 

heterogeneity implies that improving efficiencies at the system level depends on the slow and 

costly process of replacing capital stocks [26, 216]. Furthermore, technological improvements 

associated with increased process-level efficiency typically require greater technological and 

organizational complexity, advanced materials and manufacturing methods, longer supply 

chains, and consequently, greater capital energy costs [28, 73, 141, 217]. As such, energy 

efficiency gains manifesting at the system level, associated with lifecycle energy efficiencies, 

are often more modest than expected. 

Another key consideration is the existence of rebound effects (also known as ‘Jevon’s 

paradox’): the tendency for improved efficiencies to result in increased demand, partially 

counteracting expected energy savings [141, 211, 218-221]. Rebound effects are, in part, a 

consequence of the power maximization of thermodynamic processes, described above. 

Ayres and Warr [141] note that while energy efficiencies are often analysed at the engineering 

design level, rebound effects at the system level are pervasive. Efficiency gains emerging from 

technology improvements are typically applied to scale increases, to produce greater 
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quantities of useful output, rather than input reductions [220, 221]. Brockway et al. [219] 

estimate that rebound effects may erode more than half of future expected energy savings 

from improved energy efficiency. 

Rebound effects are also associated with macroeconomic processes related to economic 

growth. Brockway et al. [219] argue that larger than commonly assumed system-level 

rebound effects may explain the close historical relationship between energy consumption 

and economic output. Ruzzenenti and Basosi [211] note that labour productivity is strongly 

enhanced by rising energy efficiency, suggesting that “energy efficiency may stimulate a 

process of factors substitution for industries or prompt marginal consumers who previously 

could not afford some energy services, to enter the market”, causing energy demand to grow 

in response. Ayres and Warr [141] and Sakai et al. [222] go further, suggesting that 

thermodynamic efficiency gains and the resulting increases in exergy and useful work 

production are, in fact, the primary engine of economic growth. 

This connection to growth has implications for the mitigation of rebound effects, as described 

by Glucina and Mayumi [73], 

 “In general, promoting energy efficiency means promoting “slowness” of 

process. This result would seem to add weight to the thesis that economic 

growth fueled by continuously more efficient use of energy, in the absence of 

imposed limits, is not possible.” 

The mitigation of rebound effects, although challenging, appears necessary to realize the full 

benefits of voluntary reductions in energy consumption and the promotion of energy 

efficiency via market interventions, such as carbon pricing [14, 148, 178]. This may require 

counteracting the role of the time scarcity in the consistent selection of power over efficiency. 

Explicit decisions will need to be made regarding the appropriate balance between economic 

growth and efficiency-driven downsizing of the GES to achieve desired outcomes. The 

relationship between efficiency and growth is discussed further in section 3.1.3. 

2.2.2 Energy carriers 

Energy carriers are high quality, energy dense, fungible, and transportable fuels or energy 

flows including (at the highest level of functional aggregation), electricity, liquid and gaseous 

fuels, and heat [21]. Energy carriers are: 
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• produced from primary energy flows via various secondary conversions and consumed 

by end-use devices to provide useful energy services (see Figure 7), 

• functionally distinct, exhibiting different physical characteristics, transportation and 

distribution systems, temporal flow constraints, and storage potential (as discussed 

for electricity in section 2.1.2), and 

• generally non-substitutable without corresponding changes in end-use devices. 

Giampietro et al. [21] notes that the production of energy carriers requires primary energy 

gradients and profiles of input energy carriers (i.e., autocatalysis), in addition to the necessary 

capital, labour, land, and material inputs. The GES now exhibits intractable dependencies on 

high-EROI, energy dense, transportable fuels [21]. Notably, liquid transportation fuels are of 

critical importance for the global economy as they enable complex, long-distance logistics 

networks and the international trade that these networks support [82, 205]. 

Limits to substitution within the GES arise, in large part, due to the non-equivalence of energy 

carriers. As discussed in section 2.1.2, most RE technologies produce electricity, underscoring 

the need for an overall electrification of various end-uses to facilitate the growth of RE and 

decarbonization of the GES [81, 223]. This presents a challenge, as electricity currently 

occupies only a minor share of global total final energy consumption despite its very high 

exergy and utility [21, 83, 86]. While some end-uses are easy to electrify, such as space 

heating and short-distance passenger transportation, others are much more challenging 

owing to technical, economic, and behavioural barriers, such as aviation, long-distance 

freight, and many high-temperature industrial processes [14, 42, 59, 82, 205]. According to 

Smil [14], “Refined liquid fuels that are used to energize all modern transportation (electric 

trains being the only notable exception) cannot be easily and rapidly replaced by 

alternatives.” Smil [28] notes that, “Replacing thermal electricity generation by new 

renewables is much easier than displacing liquid fossil fuels in transportation”. Similarly, Ayres 

and Warr [141] conclude that the transportation and construction sectors have little scope 

for large-scale electrification.  

The non-equivalence of the energy carriers can also explain why some primary production 

processes are carried out with very low, or even negative, net energy output. Giampietro et 

al. [21] note that such processes can represent an ‘upgrading’ of energy flows, producing an 

output flow of greater utility than the input flows (e.g., biofuel production). 
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The above underscores the need for explicit consideration of distinct energy carriers within 

GES transformation pathways and the processes of substitution between them. The 

functional non-equivalence of energy flow categories and associated capital stocks is 

discussed further in section 3.1.2.4. 

2.2.3 Energy services 

Societies and individuals alike do not require energy consumption per se but rather useful 

services corresponding to changes in the physical, spatial, visual, thermal, or informational 

states of matter. According to Fell [224], “energy services are those functions performed using 

energy which are means to obtain or facilitate desired end services or states.” Brand-Correa 

and Steinberger [11] describe energy services as “satisfiers” of human needs, delivered as the 

product of the energy transformation processes performed by end-use devices, which can 

vary in both nature (e.g., transport via motorbike vs. commercial airliner) and level (e.g., 

travelling more, heating to higher temperatures). They note that, in practice, service levels 

are more challenging to improve as they are limited by slowly changing systemic factors, such 

as available infrastructure and population density. ‘Final’ energy services refer to those 

delivered to the HSES, rather than used internally within the GES. The ultimate purpose of the 

GES can be seen as the provision of reliable flows of high-quality final energy services 

supporting the autopoietic processes of the HSES, as noted by Giampietro et al. [21] and 

discussed in section 1.2.2 (shown in Figure 3). 

Various classification schemata for energy services exist, based on chosen functional and 

technological distinctions, and levels of aggregation. As described by Spreng [74], 

“The effect each Joule of useful energy has when turning to waste heat or to 

embodied energy is different. The time, the place, and the purpose are 

different. In essence, energy performs a virtually infinite number of tasks for us. 

To speak about these tasks, then, requires that they be aggregated into a 

manageable number of classifications of energy services.” 

Brand-Correa and Steinberger [11] note that the aggregation of energy services can be 

challenging owing to the wide variety of possible units and representations, suggesting the 

basic categories of heat (at defined temperature levels), mechanical drive, light, electricity for 

appliances, and food. Fell [224] notes a diverse array of energy service categories considered 
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in the literature, with the most common being heating (including space, process, and water 

heating subcategories), space cooling, refrigeration, cooking, lighting, and motive power. 

Spreng [74] includes drying, mobile equipment, transport services, and chemical feedstocks. 

In contrast, Cullen and Allwood [225] use an energy service classification schema based on 

ultimate desired purposes, including transport (passenger and freight), structure, sustenance, 

hygiene, thermal comfort, communication, and illumination categories. The choice of energy 

service aggregations must, at a minimum, preserve functional distinctions while being aligned 

with the goals of the analysis. 

The study of energy systems has historically focussed on final energy consumption (of energy 

carriers) at the point of end-use [212]. However, this neglects 1) the conversion of energy 

carriers to useful energy, or end-use device output power, and 2) the application of this power 

for the provision of energy services (see Figure 7). Cullen et al. [212] note a critical distinction: 

the former step occurs within conversion devices and is well-understood, while the latter step 

is more ambiguous and is mediated by ‘passive systems’. As described by Court [16], “energy 

services (transport of passengers and goods, space heating, and illumination) are the 

outcomes of the interaction of useful energies (mechanical drive, heat, and light) with passive 

devices/infrastructures.” Cullen and Allwood [225] group passive systems into vehicles, 

factories, and buildings, noting the important role these systems play in the production of 

energy services from useful energy. Efficient passive systems reduce losses of useful energy 

and ‘trap’ energy more effectively as useful energy services, for example, well-insulated 

homes, aerodynamic vehicles, and brightly painted rooms [212]. Remaining realizable 

efficiency gains within the GES are largely associated with passive system design. According 

to Lovins [226],  

“Increasing energy end-use efficiency—technologically providing more desired 

service per unit of delivered energy consumed—is generally the largest, least 

expensive, most benign, most quickly deployable, least visible, least 

understood, and most neglected way to provide energy services.” 

Nakićenović and Grübler [216] concur, noting “energy services appear to be the least efficient 

and perhaps the weakest link in the efficiency of the whole energy system.” Consequently, 

greater attention must be given to the realistic, holistic design prospects for providing energy 

services with much lower energy inputs [227]. However, as cautioned by Nakićenović and 
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Grübler [216], improvements in passive system efficiency can be difficult to achieve due to 

the behavioural changes typically required. 

2.3 HISTORICAL ENERGY TRANSITIONS 

“The history of the development of industrial society has been a history of 

plowing surplus energy back into more energy converters.” 

– Earl Cook [228] 

To better understand the factors affecting GES transformation processes, it is instructive to 

examine the nature of historical energy transitions, including driving forces, dynamic 

processes, and constraints. Smil [14] notes that energy transitions are invariably socio-

economically disruptive and transformative, changing the form and structure of economic 

activities and compelling slow and costly infrastructural changes. These processes are 

fundamentally multi-dimensional, as described by Sovacool and Geels [124], occurring across 

four tangible ‘layers’: extractive industries, systems of conversion and supply, prime movers, 

and delivery infrastructures. They note associated changes are generally required across a 

broad set of institutions, markets, and political systems. 

As depicted in Figure 1, the addition of new energy sources has not historically displaced prior 

sources, but rather added to the total [6, 23, 89]. For example, while coal dropped from 

around 95% to less than 30% of TPES between 1900 and 2020 (excluding traditional biomass), 

consumption rose almost 10-fold over the same period [40, 43]. As described by Sgouridis 

and Csala [9], 

“[W]hile it is commonly perceived that the fossil fuel era has supplanted the 

use of biomass, traditional biomass remains a significant primary energy 

resource exceeding nuclear primary energy on a global scale. The same is true 

for the transitions from coal to petroleum and natural gas.”  

Overall, changes observed in the GES over the 20th and early 21st centuries demonstrate 

unambiguous trends towards greater absolute power and power density of both energy 

sources and uses, as outlined by Smil [14]. A significant share of energy surplus was historically 

reinvested back into the autocatalytic production of energy [9], expanding overall supply and 

reducing costs in a positive feedback loop. These changes were technology-enabled but 
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demand-led, driven by the falling costs and the increasing quality of energy services. Fouquet 

[229] notes the price of energy services, including price shocks, played a crucial role in 

creating the necessary incentives for energy transitions. Even where the costs of final energy 

services may initially be higher, new technologies can offer enhanced services levels and 

related amenities which spur their rapid uptake [229]. It should be noted that while the 

degree of technological progress enabling energy transitions has been remarkable, future 

advances cannot be predicted and are ultimately subject to both physical limits and declining 

returns on innovation [14, 188, 230]. 

Processes of technological change within energy transitions and associated time constraints 

are reviewed in section 2.3.1. Relevant learnings for future energy transitions are then 

summarized in section 2.3.2. 

2.3.1 Technological diffusion, inertia, and lock-in 

Ayres and Warr [141] explain that energy transitions are shaped by the diffusion of new 

technologies through a process of discontinuous, ‘Schumpeterian’ creative destruction. This 

process is subject to the ubiquitous logistic or ‘S-curve’16 diffusion of novel innovations: a slow 

formative experimentation phase, the emergence of better designs and declining costs 

through standardization, accelerating uptake aided by emulation and efficiencies of scale, and 

eventually, technological maturity and saturation [28, 215, 231, 232]. As explained by Smil 

[6], “New energy sources or techniques become dominant only after long periods of gradual 

diffusion.” The overall pace of change is primarily influenced by the extent and technological 

complexity of the required changes. According to Grübler et al. [231], 

“Adoption of technologies using existing infrastructures happens fast (a 

decade), upgrading existing infrastructures takes longer (up to three decades), 

and building entire new infrastructures (technological systems) involves 

transition times of four to 5 decades. Lastly, “systems of systems”, the 

ensemble of what constitutes our modern transport infrastructures (our 

waterways, railways, roads, and airways and associated communication 

networks) takes yet longer” 

 
16 ‘S-curve’ typically refers to the logistic curve, but technological diffusion can also be described by Gompertz, 
Weibull, or hyperlogistic functions. 
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As such, energy transitions cannot be predicted by developments at the technology or 

industry level and are constrained by dynamic, systemic factors which can significantly extend 

the transition process, including [215, 229, 231]: 

• the number of related technological, organizational, and institutional systems which 

must simultaneously change, 

• the need to replace long-lived and highly networked system components, 

• the necessity for investments in costly, large-scale infrastructures with a high adoption 

effort, with only long-term or non-market benefits, 

• greater technological novelty and the need for first movers to initiate the transition 

without the benefit of learning externalities and best practices, 

• the spatial scale of the transition (e.g., local, national, regional, or international), and 

• the presence of unfavourable technical, organizational, socio-political, or economic 

circumstances, including resistance from incumbent industries. 

Consequently, major energy transitions are typically slow, taking multiple decades or 

centuries to see substantial changes at the global level [9, 14, 28, 231, 232]. In contrast, 

energy transitions characterized by smaller scales, partial substitutions, technological 

modularity and maturity, and the existence of established precedents in other regions, can 

happen much more quickly [124, 231, 232]. 

An important phenomenon in energy transitions is known as technological or infrastructural 

‘lock-in’: a resistance to change frequently observed in embedded technological systems, and 

associated patterns of resource consumption, even where preferable alternatives are 

available [42, 232, 233]. Technological lock-in results from the logic of sunk investment, socio-

technical change reticence, and the overwhelming predominance of earlier technologies, as 

described by Cottrell [12]. Grübler et al. [231] notes that lock-in of ‘techno-institutional 

complexes’ is highly relevant to energy transitions, and typically forestalls subsequent 

transition processes, particularly for first movers or core markets. Jenkins and Thernstrom 

[81] argue that technological lock-in can frustrate decarbonization of the GES, as short-

sighted policies can result in suboptimal resource portfolios becoming embedded, with 

significant environmental costs. 
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Taken together, the processes of technological diffusion and lock-in manifest at the system 

level as a marked inertia evident in energy systems, greatly increasing the time, cost, and 

complexity of change. This phenomenon underscores the degree of path-dependence to be 

expected in the evolution of the GES. 

2.3.2 Lessons for future energy transitions 

The future of energy systems will not look like the past, or the present, as noted by Grübler 

et al. [215] and Sovacool and Geels [124]. However, lacking strong evidence of forthcoming 

socio-technical discontinuities, it is parsimonious to expect that fundamental patterns and 

relationships will continue to hold. As described in section 1.2, appeals to exponential 

technological progress in narrow domains are likely to be misleading when considering the 

macroscale evolution of the GES. 

From the brief discussion presented in this section, several tentative lessons can be drawn 

regarding the prospects for the forthcoming third energy transition: 

1) Energy transitions are shaped not only by techno-economic factors, but also by socio-

institutional contexts. 

2) The historical tendency for new energy sources to add to, rather than displace, prior 

energy sources implies that the growth of RE cannot be expected to reduce NRE use 

and related GHG emissions, absent other changes. 

3) The global transition will be slower than commonly expected, on the scale of at least 

a comprehensive change of technological systems, as defined by Grübler et al. [231], 

implying a corresponding timeframe of a half century or more. 

4) However, fast transitions are possible within smaller regions in the global periphery 

following the example set by first movers, especially where political support exists and 

where changes involve fewer technological elements characterized by modularity and 

clear economic benefits or improvements in the nature of energy services provided. 

5) Past energy transitions have been driven by demand and rapid technological change, 

shifting to progressively more energetically advantageous primary sources and 

technologies unlocking enhanced energy service levels at lower per unit costs. The 

forthcoming transition to RE does not appear capable of replicating this process. As 

cautioned by Sovacool and Geels [124], “While past transitions may have been rooted 

in abundance, future ones may involve scarcity.” 
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However, the future is unknown. As Fouquet [229] optimistically observes, “Crucially, energy 

transitions are non-deterministic. That is, energy transitions are not inevitable; instead, they 

depend on a series of actors and forces creating a new path.” This emerging future can only 

be properly understood via a broad survey of the theoretical foundations of energy transition, 

starting with the essential recognition of the GES as an example of a CAS. 
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3 THE CONCEPTUAL LANDSCAPE 

3.1 THE BIOPHYSICAL SYSTEMS PERSPECTIVE 

“Our inability to comprehend the behavior of complex and interdependent 

wholes […] makes any specific (and now so commonly proffered) scenarios of 

distant futures mere speculation. In contrast, outlining the extremes is easy, as 

the visions of future range from dismal to ecstatic.” 

– Vaclav Smil [69] 

Biophysical, systems-oriented perspectives of the relationships between energy, society, and 

the environment began to gain prominence in the early 1970s with the publication of the 

Limits to Growth report commissioned by the Club of Rome [104, 234, 235] and the rise of 

‘systems ecology’ spearheaded by Howard T. Odum [71, 171]. Both built on a new complex 

systems synthesis emerging from earlier work in the fields of cybernetics [236, 237], general 

systems theory [111, 238, 239], non-equilibrium thermodynamics [3, 240], biophysical 

economics [26, 241-243], biology and ecology [173, 244], and the mathematics of non-linear 

and dynamical systems [245, 246]. 

Complex systems theory is now an essential but under-appreciated conceptual backdrop for 

virtually all major problems facing the modern world. Chief among these is the transformation 

of high-energy, industrialized societies from NRE dependence towards RE. As discussed in 

section 1.2, approaches to investigating GES transformations must begin from an ontological 

foundation that recognizes two basic points: 

1) the GES is an example of a CAS, co-evolving with, and nested within, the broader HSES 

(depicted in Figure 3), and therefore, 

2) GES transformation is a complex, physically bounded, path-dependent, socio-

metabolic process. 

Consequently, employing a biophysical, complex systems perspective is essential to the 

formulation of meaningful problem framings and effective interventions for GES 

transformation. The essential characteristics of CAS are overviewed in section 3.1.1, followed 

by implications for energy and society in section 3.1.2. Relationships between power, 
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economic growth, and sustainable scale are then reviewed in section 3.1.3. Finally, energy 

systems modelling principles and techniques are outlined in section 3.1.4. 

3.1.1 Complex adaptive systems 

CAS consist of networks of dynamically interacting elements, or agents, possessing collective 

capacities to adapt and learn in response to changes in their environments [110, 247]. As 

described by Levin et al. [110], the individual agents constituting CAS follow relative simple 

rules and can be described as ‘boundedly-rational’. These agents possess distinct functional 

roles and heterogeneous rulesets (i.e., agendas), leading to varying patterns of competition, 

co-operation, resource exploitation, and parasitism. The macroscopic properties of CAS, 

distinct from the properties of the agents, emerge from such lower-level interactions [110]. 

King [31] notes that CAS are “goal-seeking, self-preserving, and self-organizing”. As discussed 

in section 1.2.2, CAS exhibit properties of path-dependence, self-organization and emergent 

behaviour, autopoiesis, feedback loops, and non-linearity. Positive feedback is responsible for 

growth, decline, and system phase shifts, while negative feedback is responsible for adaptive 

responses and system homeostasis [145]. CAS are characterized by path dependency (or 

‘hysteresis’) and are subject to irreversible evolutionary processes [21, 26, 110]. Court [16] 

notes that, “While strong tendencies can exist, system evolution is not deterministically 

extremal, but rather historically determined, context-specific and highly contingent.” Local 

changes in CAS have the effect of generating readjustments within the rest of the system 

while changes in boundary conditions extending beyond the relevant ‘stability domain’ can 

bring instability, phase shifts, or termination of the system. 

The degree of complexity exhibited by CAS refers to the number and variety of their 

constituent elements, and the density of interactions between these elements. Chaisson 

[248] notes that, across a variety of systems, complexity is closely related to energy and mass 

density. This implies that complexity is energetically expensive. As explained by Hall et al. [13], 

while complex systems cannot be reduced to energetic representations, energy (or more 

precisely, exergy) is an essential and limiting resource for the growth and maintenance of 

complex systems as the provision of any other necessary resource entails energy expenditure. 

Additionally, CAS are self-referential, or ‘impredicative’, defining for themselves what 

constitutes energy sources, useful work, and waste [21, 68]. 
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CAS arise via evolutionary processes and are universally dissipative structures, as noted by 

Prigogine and Stengers [3]. CAS maintain themselves far from thermodynamic equilibrium 

and increase their own internal order and power17 by accelerating the degradation of natural 

energy gradients [3, 16, 21, 64, 109, 110]. According to Giampietro et al. [21], in addition to a 

purely dissipative component (analogous to consumption), CAS also possess a hypercyclic 

component responsible for the autocatalytic production of energy inputs as well as processes 

of system growth and maintenance. They explain that the relative size of the dissipative 

component competes with the operation of the hypercycle, and in turn, the development of 

complexity. 

Growth patterns in CAS are adaptive to exogenous constraints. Given competition between 

dissipative and hypercyclic system components, CAS face fundamental trade-offs between 

short-term consumption and long-term development [21]. In all physical systems, growth 

eventually reaches limits (due to the finiteness of primary energy gradients in any given 

environment) and the system either enters a mature, conservation phase or collapses. 

According to Odum [66], when faced with little or no energetic surplus, systems grow 

selectively, investing energy in high diversity, high quality structures. In isolation, without 

energy inputs, all complex systems will quickly degrade, depleting their stored energy before 

ceasing to function [26]. As described by Court [16], “As thermodynamic constraints are 

applied to a system, maximum entropy production turns to minimum specific (per unit mass) 

energy dissipation – rapid growth turns to conservation, e.g. transition to a mature 

ecosystem.” 

CAS are typically arranged in nested hierarchies, both contained within and containing other 

CAS which operate over different spatial and temporal scales [21, 115, 247, 249]. For example, 

a population of organisms is comprised of individuals but is itself contained within an 

ecosystem. Similarly, the HSES contains the GES but is itself contained by the biosphere. As 

such, CAS are subject to both top-down and bottom-up causation. As noted by Giampietro et 

al. [21], there exist “multiple non-equivalent identities for the same system when it is 

observed at different scales”. This can be explained using Arthur Koestler’s concept of the 

 
17  Power maximization is, in fact, a primary characteristic of organisms favoured by natural selection, as 
described in section 3.1.3. 
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‘Holon’, depicted in Figure 8, describing the fundamentally dual nature of complex systems 

[21, 250-252]: 

• Each holon is simultaneously a whole and a part – parts express functions which are 

useful within the whole, while the whole provides functional meaning to the parts. For 

example, a firm is comprised of specific workers, offices, intellectual property, and 

capital equipment, while it also forms part of its wider industry. 

• The same functional role has diverse structural realizations which can change over 

time while the whole remains intact; system evolution and emergence occur as 

functional-structural mappings change. For example, traditional media outlets give 

way to social media companies, both fulfilling the functional role of information 

dissemination within society, giving rise to new patterns of social organization. 

• Holons exhibit both self-assertive and integrative tendencies within their hierarchy. 

Destroyed holons cause higher level holons to cease functioning, but holons on the 

same or lower levels can survive and reorganize. 

• The scale used to describe the function of the holon is higher than the scale used to 

describe its structure. Multi-scale analysis is required to fully capture the interactions 

involved. 

 

Figure 8: the nested hierarchical organization, or ‘holonic relations’, of CAS (adapted from Eddy et al. [251]) 

As described by Giampietro et al. [21], “the term holon underlines that what is special about 

the organization of living systems is the systemic coupling of a functional (the role) and a 

structural (realization of an organized structure) type in relation to higher and lower levels of 

organization.” The expression of structures and functions within complex systems 
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characterizing internal and external relations, respectively, arises from self-organization 

within dissipative systems [3, 27, 171].  

3.1.2 Implications for energy and society 

“Energy flow and sociopolitical organization are opposite sides of an equation. 

Neither can exist, in a human group, without the other, nor can either undergo 

substantial change without altering both the opposite member and the balance 

of the equation. Energy flow and sociopolitical organization must evolve in 

harmony.” 

– Joseph Tainter [253] 

Economic scale and complexity in human societies are ultimately constrained by their energy 

resource base [12, 13, 19, 42]. This basic fact will inevitably influence societal development, 

regardless of any social, technological, or political adaptions which seek to obviate limits. 

Societies compete for economic survival, growing rapidly via the autocatalytic acceleration of 

energy consumption in the presence of an energetic surplus to promote their own economic 

vitality, even at the expense of significant waste [13, 66]. According to Giampietro et al. [21], 

the hypercycle within society is shaped by choices regarding the use of energy surplus and, 

when surplus is sufficient, drives the development of societal complexity over time. Tainter 

[19] notes that this tendency towards greater complexity is central to the resolution of 

societal problems, implying voluntary reductions in energy consumption are unlikely. 

Energy and society follow a reflexive coevolution informed by their holonic relations. Notably, 

the dynamic capacity of the HSES to facilitate the transformation of the GES depends on the 

scale and composition of energy surplus, which is itself a function of the GES transformation 

pathway taken. Ayres and Warr [141] point out that this co-evolution is fundamentally path-

dependent, not optimal, in large part due to the technological lock-in phenomenon discussed 

in section 2.3.1. As outlined in section 1.2.2, two classes of constraints can limit the evolution 

of society and its ability to express desired functions: external, relating to the availability of 

sources and sinks (discussed further in section 3.1.2.3), and internal, relating to the ability to 

maintain the necessary internal structures required to control energy flows [21].  

Sgouridis and Csala [9] describe tight coupling between energy systems and economic 

systems subject to delays and pronounced non-linearities, noting “The global energy-
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economy system is complex, exhibiting strong feedback mechanisms.” As such, intervention 

in socio-ecological systems is difficult; changes will often yield unanticipated results and 

sufficiently large changes can lead to chaotic behaviour and system reorganization 

(invalidating ex-ante conceptual models and assumptions). Ruth [249] argues that policy 

interventions and investment decisions in complex systems need to be “cognizant of the 

temporal and spatial lags among decisions and outcomes” and “operating within constraints 

imposed by processes at higher and lower levels of the system hierarchy”. 

The existence of a hypercycle within the GES implies that TPES is not a sufficient measure of 

the energy available to society. Sgouridis and Csala [9] note that gross energy supply “is not 

fully available to society as a portion must be reinvested in further energy recovery”. This 

hypercyclic component of society can be expected to grow over time with the declining 

quality and falling EROI of primary energy production (described in section 2.1.1), forcing a 

relative decline in the dissipative, discretionary consumption-oriented component of society 

with potentially far-reaching consequences. This dynamic corresponds closely to the concept 

of energy gain described by Tainter et al. [8], which “constrains resource use, social 

organization, and landscape organization in human and other living systems” and informs 

likely changes engendered by the transition to RE-based, post-industrial societies. 

3.1.2.1 Socio-metabolic patterns 

According to Giampietro et al. [21], the term ‘societal metabolism’ can be used to describe 

patterns of exosomatic energy conversions under human control encompassing the 

production and consumption of energy carriers for the expression of useful functions within 

society. As described by Brown et al. [10], “Just as a body has a metabolism that burns food 

energy to survive and grow, a city or national economy has a metabolism that must burn fuel 

in order to sustain itself and grow.” Hall et al. [13] concur, noting that both human and natural 

systems rely on energy to acquire the necessary inputs for their internal metabolic processes. 

Sorman and Giampietro [27] note that socio-metabolic patterns can be defined, describing 

both societal scale and the complexity of structural and functional organization. Socio-

metabolic patterns of human energy and material use have historically fallen into distinct 

‘socio-metabolic regimes’: hunter-gatherer, agrarian, and industrial [17, 18]. According to 

Haberl et al. [18], global problems of sustainability relate strongly to these regimes and 
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transitions between them, noting “Transitions between these regimes fundamentally change 

socio-ecological interactions, whereas changes and variations within each regime are 

gradual.” Krausmann et al. [17] note that the successive socio-metabolic regimes can differ in 

their per capita energy and material use by up to an order of magnitude, producing 

profoundly different impacts on the natural world. According to Sorman and Giampietro [27], 

“Modern societies have had the possibility to become complex over time 

because of the progressive use of technologies and the benefit from high 

quality and easily accessible energy sources. The industrial civilization has been 

around for more than one century now, enough to establish a well-rooted and 

robust metabolic pattern. Changing such a pattern will not be easy.” 

The implications of socio-metabolic patterns extend beyond the physical, affecting the 

predominance and viability of various social, political, institutional, and cultural forms 

throughout society. Capra and Luisi [64] suggest that “The biological structure of an organism 

corresponds to the material infrastructure of a society, which embodies the society’s culture”. 

The close association between energy supplies and socio-cultural development was described 

by anthropologist Leslie White and is known as White’s law [5]: “Other things being equal, 

the degree of cultural development varies directly as the amount of energy per capita per 

year harnessed and put to work.” This basic observation gave rise to the anthropological 

theory of cultural materialism, proposed by Harris [7, 254], which stresses generalizable 

dependencies of the evolution of culture on material conditions, or ‘infrastructure’. This more 

general notion of the evolution and structure of societies is echoed by Smil [6], who cautions 

against using energy as a singular explanation of society and emphasizes that there are many 

other relevant aspects to consider. 

3.1.2.2 Power and capital 

The GES does not consist of energy flows alone, but also capital equipment and 

infrastructures required for the production, transformation, transportation, and utilization of 

theses flows. This relates to the observation by Giampietro et al. [21] that power levels must 

be explicitly considered within complex systems as time is a relevant dimension. The term 

‘power capacity’18, identifies technological capital capable of transforming a given exosomatic 

 
18 Power capacity is also known by the term ‘energy converters’. 
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input energy flow to produce a useful output flow [12, 26, 255]. Power capacity is quantified 

by its maximum long-term output flow rate (often equivalent to ‘nameplate capacity’), which 

is greater than its average utilization rate given by its temporal utilization profile. The 

definition of both energy carriers and primary energy resources depends on the functional 

characteristics of the associated power capacity type [12, 21]. 

The operation of the GES exhibits intrinsic structural dependencies on the production and 

maintenance of sufficient power capacity stocks, operating at all stages of the GES depicted 

in Figure 7 [21]. Various infrastructures are also required which are not directly involved in 

transforming energy flows but facilitate the operation of power capacity, such are roads, 

airports, electricity transmission networks, and various supporting industries. Georgescu-

Roegen [26] notes that the production and maintenance of these capital stocks depends on 

almost all economic sectors, either directly or indirectly. As Giampietro et al. [21] explain, the 

production and utilization of exosomatic energy flows require not only autocatalytic energy 

inputs and power capacity, but also human labour for control purposes. These distinct inputs 

cannot be assigned relative importance as they are fundamentally complementary. 

Ayres and Warr [141] note that capital involved in energy transformations can be measured 

in terms of its power capacity as well as its embodied energy. As all capital requires input 

energy to produce, the power capacity concept directly links energy flows with the hypercyclic 

component of the GES (as depicted in Figure 4). Odum [66] notes that technology 

improvements and associated efficiency gains represent diversions of high-quality energy into 

system structures. As such, evolution of the GES can be seen in terms of changes in the 

underlying power capacity and supporting infrastructure stocks, and in their patterns of 

utilization. Explicit consideration of changing profiles of power capacity, including dynamic 

metabolic implications and viability, is crucial but under-utilized in the study of GES 

transformations. As described by Diaz-Maurin [255], 

“The inclusion of power capacity in sustainability assessment would be very 

beneficial to the discussion over the energy and societal transitions as it makes 

it possible to consider the long-term effects of external constraints over the 

metabolism of human societies. […] Reconstructing patterns of use of power 

capacity across societal scales would be very beneficial for the study of the role 
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this factor played in the development of human societies and for facing the 

external constraints ahead.” 

Power capacity, defined as an aggregate quantity, is diffuse and does not exhibit one-to-one 

correspondence with tangible capital (devices) as most types represent composite power 

capacities. For example, passenger vehicles provide the energy service of transportation, but 

can also provide heating, cooling, information processing, and communication. Additionally, 

multiple conversion stages (as outlined in Figure 7) and associated power capacities can be 

contained within the same physical device, such as a blast furnace using coal (a primary 

energy flow) to provide high temperature process heat (an energy service).  

3.1.2.3 Scarcity and boundary conditions 

Energy scarcity can profoundly affect the viability and feasibility of CAS, including the coupled 

GES and HSES, via both internal and external constraints as discussed in section 3.1.2 and 

section 1.2.2. The former corresponds to energy transformations comprising socio-metabolic 

patterns and the dynamic provision of power capacity (outlined in sections 2.2, 3.1.2.1, and 

3.1.2.2, respectively). Notably, scarcity can arise endogenously from the failure of the 

hypercycle. This occurs when the production of energy carriers becomes insufficient for 

autocatalytic energy production and other metabolic demands of the GES while 

simultaneously providing energy services required by the HSES, posing a system bifurcation 

potential (i.e., the net energy trap). However, scarcity can also arise from exogenous factors 

representing a system’s boundary conditions, both in terms of both sources and sinks. 

On the source side, Giampietro et al. [21] note that socio-metabolic patterns and the 

autopoietic processes of the HSES are ultimately constrained by the magnitude and quality of 

primary energy sources (i.e., extant thermodynamic gradients described in section 2.1) 

available to the GES. In turn, GES autopoiesis is constrained by the dynamic capacity of the 

HSES to provide the necessary labour and resources. Both Hall et al. [13] and  Ayres and Warr 

[141] stress the importance and necessity of considering primary energy resource scarcity, 

and implications for societal stability and evolution. While metabolic requirements beyond 

energy must also be considered, exergy can only be used once to drive a useful process and 

is thereby destroyed, while most materials can be reused and recycled with sufficient exergy 

inputs. Also, as Georgescu-Roegen [26] cautions, the irreversibility of thermodynamic 
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processes implies that material waste generation within economies is unavoidable, with no 

possibility of perfect circularity. 

Regarding sinks, the most prominent scarcity relates to anthropogenic climate change, 

although sink limits can manifest at various spatial and temporal scales across ecosystems, 

including acute local impacts [14, 23, 33, 78-80, 103, 151, 256, 257]. The scale of these 

challenges is now immense, testing the ability of societies to grasp their true extent and 

possible ramifications, let alone proffer effective solutions. As noted by Smil [6], “there is no 

doubt that high-energy civilization has been engaged in an unprecedented geophysical 

experiment on a planetary scale.” Levin et al. [110] note that negative changes in socio-

ecological environments tend to accumulate imperceptibly slowly, and can be effectively 

ignored where societal decision making occurs at different system levels to the primary 

effects of these environmental feedbacks. 

The property of sustainability refers to the nature of relationship between a CAS and its 

environment. Giampietro et al. [21] define sustainability as maintaining the stability of the 

boundary conditions affecting a particular system. As such, boundary condition instability 

indicates unsustainable and transitory system behaviour and consequently, inevitable system 

re-organization (without exogenous restoration of boundary conditions). 

3.1.2.4 Functional differentiation and non-equivalence 

Primary energy resources and the fuels derived from them are not interchangeable with 

respect to all end-uses; they exist in qualitatively distinct, non-fungible forms [21, 42, 68, 158]. 

Similarly, the various power capacity types responsible for energy transformations at each 

conversion stage within the GES are functionally non-equivalent. Energy carriers, as defined 

in section 2.2.2, are an obvious case. For example, electricity cannot be used to operate an 

internal combustion engine while the application of heat serves no useful purpose to a 

personal computer. At the system level, this characteristic imposes non-trivial limits to 

substitution between distinct primary energy resources, energy carriers, and capital stocks 

for the provision of final energy services, as noted by Cleveland et al. [156].  

However, any tractable representation of energy systems must allow for sensible 

aggregations, which will necessarily overlook some degree of non-equivalence and non-

fungibility. As discussed in section 2.1.1, multiple aggregation methods exist for energy flows, 
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including the use of thermal equivalents, prices, or exergy. These common techniques are 

often applied in a conceptually invalid way. According to Giampietro et al. [21], energy flows 

“can only be defined and measured after having selected a narrative about a well-defined and 

finite set of energy conversions requiring the adoption of a pertinent scale of analysis.” The 

aggregation of distinct energy flows requires semantic definitions based on selected 

equivalence classes, or ‘typologies’, which reference specific means of conversion and 

environmental conditions, and are only meaningful over the same semantic category (even 

where quantities are denoted in the same physical unit). As such, it is necessary to avoid 

“nonsensical aggregation of energy forms defined within non-equivalent narratives about 

energy transformations” [21]. Similarly, Santos et al. [163] note that heterogenous capital 

stocks with dissimilar functional characteristics cannot be meaningfully aggregated. 

3.1.3 Power, growth, and economic scale  

“The flow of energy should the primary concern of economics” 

– Frederick Soddy [241] 

Georgescu-Roegen [26] observed that the economic history of humanity is best described as 

an “entropic struggle”, subject to both physical and social laws. Energy conversions are 

indispensable in all forms of economic production [20, 158, 160, 164]. As such, the energy 

perspective is paramount in understanding the economic process, as claimed by Hall et al. 

[13]. Social development, supported by economic prosperity, can also be seen as intimately 

tied with energy consumption [10, 71, 107]. Without sufficient, reliable energy inputs, there 

can be no functioning economy and no society. Despite this, as noted by Capellán-Pérez et al. 

[50], there remains a “lack of consensus in the literature about the quantification of the 

impact of energy scarcity on the future economic growth.” 

The discussion in this section reveals the global economy as fundamentally demand-driven 

but also physically bounded and supply-constrained. This view broadly aligns with heterodox 

economic theory, particularly post-Keynesian ecological theory as outlined by Kronenberg 

[258] and Fontana and Sawyer [259]. 

3.1.3.1 Economic development and growth 

There are clear historical correlations between energy consumption and the growth of 

economies [53, 71, 73, 141, 156]. According to Brown et al. [10], “Empirically, the central role 
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of energy in modern human economies is demonstrated by the positive relationship between 

energy use and economic growth”. King [31] notes that changes in energy technologies and 

corresponding increases in resource access enable profound changes in the size and 

structure of economies. Since the beginning of the industrial era, growth has been driven by 

the rapidly expanding exploitation and declining real costs of the fossil fuels – coal, oil and 

natural gas – allowing the progressive substitution of human labour with energy-consuming 

machines and the rise of mass production and consumption [21, 148, 260]. Equally important 

were the technological breakthroughs delivering vast increases in the efficiency of turning 

these energy sources in useful work and energy services [20, 26, 148, 163]. 

Markets and prices play a key role in the energy-growth dynamic. Ayres and Warr [141] 

suggest that economic growth is driven by a positive feedback between falling prices 

attributable to economies of scale and technological learning effects, demand growth, 

increased investment, and increased supply. Fizaine and Court [178] note that energy 

expenditures relative to gross domestic product (GDP) are inversely correlated with economic 

growth rates. This ratio reflects the balance between saving rates and consumption and is 

related to the tension between hypercyclic and dissipative system components,  influencing 

long-term economic trajectories. As in biological systems, growth competes with 

consumption [12, 26]. 

The laws of thermodynamics constrain both the economic process and the application of new 

technologies, as they determine what is physically possible [26, 141, 261]. As described by 

Glucina and Mayumi [73], 

“Where economics is concerned with production and consumption, 

thermodynamics is relevant. This is because production and consumption of 

material goods are essentially transformations of matter-energy, and as such 

are governed by the laws of thermodynamics.” 

The second law (entropy law) is particularly pertinent, as noted by Ayres and Nair [261] and 

Giampietro et al. [21], due to the incontrovertible limits it places on energy transformations, 

such as their fundamental asymmetry and irreversibility. Irreversibility also manifests at the 

system level, as the evolutionary path-dependence evident in economies [13, 210, 262]. 



61 
 

Fizaine and Court [178] and King [31] suggest that the laws of thermodynamics prevent 

economic growth ever becoming completely independent of energy consumption.  

As discussed in sections 2.1.1.1 and 2.2.1, exergy is instrumental to growth at the 

macroeconomic level. Georgescu-Roegen [26] argues that this can be explained by 

conceptualizing the economic process as a dissipative structure. Court [16] agrees, noting that 

economic development can only be understood through a “thermo-evolutionary” perspective 

centred on “energy conversion and exergy degradation set by physical constraints that 

determine the growth of production and income.” 

However, while exergy is necessary, it is insufficient to explain economic production and value 

[26]. Giampietro et al. [21] cautions that classical thermodynamics cannot be applied to 

complex, far-from-equilibrium systems as the first law provides trivial information only while 

the second law is not directly relevant to macroscopic energy analysis (it relates to specific 

thermodynamic cycles only). Glucina and Mayumi [73] echo this critical perspective on the 

applicability of thermodynamic analysis at the macroeconomic level, noting that 

thermodynamic considerations do not directly govern value. According to Baumgärtner [263], 

“[T]hermodynamics is necessary to identify which options and scenarios of 

resource use, economic production, and waste generation are feasible and 

which are not. However, it neither includes nor allows value statements, and 

as such, cannot provide answers to the normative questions imposed by 

sustainability.” 

3.1.3.2 Energy as a factor of production 

A growing body of empirical evidence supports the existence of a causative relationship from 

energy consumption to aggregate economic output (i.e., GDP), and not in the reverse 

direction as mainstream economic theory assumes [141, 148, 156, 159-163, 178]. This 

identifies energy as a relevant factor of economic production. As explained by Fizaine and 

Court [178], “energy is crucial for economic growth, which tends to reinforce the conclusion 

drawn by the biophysical movement and weakens the mainstream position which sees energy 

as a common (if not minor) factor of production.” 

The importance of energy has historically been downplayed due to its relatively low ‘cost 

share’: the ratio of (monetary) energy expenditures to GDP. However, output elasticities for 
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energy reveal a much greater importance than cost shares would indicate when calculated 

under non-equilibrium conditions [148, 163, 264]. According to Ayres and Warr [141], the 

relative importance of energy exceeds its cost share by up to an order of magnitude. 

There remains some disagreement regarding the most appropriate measure to represent 

energy as a factor of production, with various candidates including exergy, quality-adjusted 

energy, useful work, work mediated by information processing, and efficiency growth rates 

[73, 141, 148, 156, 159, 163, 264]. However, there is strong agreement that energy can 

account for a large part of ‘total factor productivity’, the component of economic growth not 

explained by changes in capital and labour (i.e., the conventional factors of production), 

typically attributed to technological progress and rising labour productivity [141, 159, 264]. 

Warr and Ayres [161] find that while technology does influence growth alongside energy, 

technological innovations affecting energy productivity have the most pronounced effects. As 

described by Cleveland et al. [156], 

“This runs counter to much of the conventional wisdom that technical 

improvements and structural change have decoupled energy use from 

economic performance. To a large degree, technical change and substitution 

has increased the use of higher quality energy and reduced use of lower quality 

energy.” 

Adequate consideration of the quality dimension is vital. For example, as noted by Smil [6], 

electrification had a significantly greater impact on economic growth than the rise of coal. 

Glucina and Mayumi [73] suggest that this shift toward higher-quality fuels may have been 

more impactful overall than improvements in energy efficiency. According to Cleveland et al. 

[156], properly accounting for energy quality yields important information than may remain 

obscured otherwise, including the declining energy surplus from fossil fuel extraction and the 

lack of decoupling between GDP and aggregate energy use, contrary to common perceptions.  

Importantly, energy cannot be perfectly substituted by other factors due to strong 

complementarity, i.e., the productivity of both capital and labour is supported by energy [12, 

26, 141, 163]. Hall et al. [13] note that exergy is consumed in the productive process while 

capital and labour are not, implying it is ultimately the scarcer input. Ayres et al. [148] observe 

weak substitutability only between energy and capital. These relationships are typically highly 
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non-linear, as noted by Ayres and Voudouris [260]. Furthermore, as the degree of 

substitutability between factors is likely significantly lower than is generally assumed, 

economic growth may be more vulnerable to conditions of potential energy scarcity than is 

currently considered in common energy transition narratives. 

While uncertainties and analytical issue persist, economic growth can be seen as closely 

connected with absolute energy supply, moderated by both changes in efficiencies and the 

relative size of the societal hypercycle (indicated by net energy metrics, such as EROI). 

3.1.3.3 Power maximization and metabolic scaling 

As discussed in section 2.2.1, dissipative processes tend towards the maximization of power, 

both at the process-level due to the power/efficiency trade-off and through macroscale 

rebound effects. Economic and societal development represents a continuation of organismic 

evolution in energy consumption, scale, and complexity, a process which generally follows 

the maximum power principle [3, 16, 32, 115, 211, 265]. This principle describes the acquired 

evolutionary propensity of complex systems to maximize their utilization rate (power) of 

available energy gradients, first observed by Alfred Lotka [173]. 

Ruzzenenti and Basosi [211] explain that this power maximization occurs via two paths 

originating on different hierarchical levels within the system – by increasing efficiency (under 

conditions of energy scarcity) or by increasing energy intake (under conditions of energy 

abundance). The opportunity cost, or scarcity, of time also plays a key role and can change 

the effective balance of power and efficiency, as outlined in in section 2.2.1. Smil [6] notes 

that maximizing short-term energy throughput, while evolutionarily adaptive, is often highly 

counterproductive in the modern context and can be considered the root cause of many 

serious social and environmental issues. 

The relationship between metabolic power and scale is non-linear, shaped by Kleiber’s law 

which observes that for biological organisms, basal metabolic rate (power consumption) 

scales with mass sublinearly, with an exponent of 3/4 (or 2/3 for some species) [31, 266]. 

Various explanations have been offered for this relationship, including trade-offs between 

structure and mass, heat radiation, network efficiency in nutrient distribution, and energy 

conservation during rest. Brown et al. [10] observes that a similar relationship exists within 

societal metabolism: 
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“The exponent for the scaling of energy use as a function of GDP, 0.76, is 

reminiscent of the three-quarter-power scaling of metabolic rate with body 

mass in animals […] The energy and other resources that sustain these systems 

are supplied by hierarchically branching networks, such as the blood vessels 

and lungs of mammals and the oil pipelines, power grids, and transportation 

networks of nations.” 

The above suggests that voluntary reductions in societal power for the promotion of desirable 

long-term outcomes may be more limited in scope than is commonly acknowledged. 

Efficiencies of metabolic scaling explain the relative (but not absolute) decoupling of 

economic growth and energy consumption noted by Brand-Correa and Steinberger [11], 

Csereklyei and Stern [267], and UNEP [268]. However, any decline in metabolic scale may 

incur a loss of such efficiencies, causing energy throughput to fall more slowly than aggregate 

economic output. 

3.1.3.4 Future trends and sustainable scale 

“Only widespread scientific illiteracy and innumeracy […] prevents most people 

from dismissing the idea of sustainable growth at healthy rates as an 

oxymoronic stupidity whose pursuit is, unfortunately, infinitely more tragic 

than comedic.” 

– Vaclav Smil [1] 

In the context of NRE depletion, falling primary energy quality, and a socio-metabolically 

demanding and energetically disadvantageous transformation to RE, future economic growth 

will be adversely affected and will likely reach eventual limits [54, 65, 148, 163, 169, 269]. This 

has broadly negative implications for material standards of living and sustainable levels of 

societal complexity [19, 50-52, 56, 141, 166, 270]. According to Bardi et al. [271], an eventual 

decline in societal complexity and scale will be driven primarily by diminishing returns in the 

exploitation of a wide range of natural resources, including energy. Responses to this situation 

are hampered by the limits to substitution facing energy as an essential factor of production. 

As cautioned by Odum [66], under conditions of a diminishing energy surplus, growth-

promoting policies and economic structures can quickly become an energy liability, 

exacerbating societal difficulties and raising the spectre of collapse.  
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Ayres and Warr [141] and Ayres and Voudouris [260] argue that future economic growth will 

depend on some combination of declines in the cost of primary energy and a trend towards 

increasing exergy-to-work efficiency. Efficiency gains have been declining since the 1970s and 

appear to be waning as a driver of growth [148, 159]. On the other hand, maintaining 

sufficient low-cost energy supplies required for economic growth may be untenable given 

falling primary energy quality and rising costs of exploitation. Heun and de Wit [55] posit that 

the energy cost share will likely rise over time causing declines in disposable income and 

growing recessionary pressures, eventually leading to falling energy demand, prices, and 

supply. Ayres et al. [148] note that continued economic growth appears doubtful given the 

trend towards higher energy prices, suggesting instead policies to accelerate increases in 

exergy efficiency while actively controlling for the rebound effect. Court [16] agrees, 

emphasizing a redoubled pursuit of greater efficiency as one of the few remaining avenues to 

materially improve economic prospects for human societies. However, as noted by Romero 

and Linares [154], the presence of significant rebound effects implies that efficiency 

improvements cannot be relied on to achieve sustainability. 

The importance of trends in energy quality for future growth is central and often overlooked. 

As discussed in section 2.1.1.4, declining EROI is associated with falling discretionary output, 

increased capital and energy requirements within the GES, and likely adverse impacts on 

economic growth. Furthermore, Ayres et al. [148] note that limits may have been reached in 

the shift from lower quality to higher quality energy carriers, constraining future growth.  

Sorman and Giampietro [27] remark on the seeming unavoidability of economic ‘degrowth’ 

in response, implying a reduction and simplification of socio-metabolic patterns: 

“[S]ocieties will be obliged to divert a very large share of hours of paid work, 

energy, technological capital, from the various sectors of the economy to be 

invested in the operation of the energy sector itself. […] the internal 

organization of the society and its structural and functional characteristics will 

be severely affected by this forced withdrawal of resources” 

In light of these converging constraints, Brown et al. [10] question the continued plausibility 

of trajectories seen over recent decades in population, resource extraction, technological 

progress, and material standards of living. They warn that “the nonlinear, complex nature of 

the global economy raises the possibility that energy shortages might trigger massive 
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socioeconomic disruption” while also suggesting major technological, socio-economic, 

demographic, and behavioural adaptations are still possible. Giampietro et al. [21] argue 

there is a “standard pattern of structural and functional change in the metabolic pattern of 

modern societies, associated with economic growth” and, as such, a trend towards less 

abundant and more costly energy “implies that the viability domain of the metabolic pattern 

of modern society is gradually contracting as both external and internal constraints tighten.” 

3.1.4 Dynamic energy systems modelling 

“Since all models are wrong the scientist cannot obtain a "correct" one by 

excessive elaboration. On the contrary following William of Occam he should 

seek an economical description of natural phenomena.” 

– George Box [272] 

Quantitative models are useful tools, allowing the mathematical representation of 

phenomena of interest for both predictive and elucidative purposes. This capacity is 

instrumental in in research, pedagogy, and policy making alike – as observed by Bernstein 

[273], “The ability to define what may happen in the future and to choose among alternatives 

lies at the heart of contemporary societies.” Building such models is a particularly challenging 

task for complex systems, requiring a pre-analytic assessment of the nature of models as 

epistemic devices including their limitations. 

The GES can be considered a ‘hyperobject’ as defined by Morton [274] – objects massively 

distributed in time and space, ecologically entangled, and existing beyond human 

comprehension as their totality cannot be perceived via any local manifestation. Narrative 

simplifications are required to render hyperobjects in forms amenable to investigation. This 

is the proper role of modelling, to create useful abstractions while losing as little important 

information as possible. Critically, what is lost in this process must be carefully considered 

and the modeller should avoid overconfidence in their model [21, 145, 275]. 

As remarked by Alfred Korzybski, “the map is not the territory”, implying that any given 

abstract representation must not be confused with reality. This maxim is reinforced by 

Gödel’s incompleteness theorem [276], which, as described by  Odum [115], effective rules 

out perfect understanding of a system from within, as the representation would be more 

complex than the system itself. Models are appropriate for the identification of implausibility 
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but cannot demonstrate objective truth (i.e., falsification over verification) and as such, are 

epistemically aligned with the post-positivist approach to science, as expounded by Karl 

Popper [277] and Thomas Kuhn [63]. Any knowledge derived from modelling must therefore 

be considered both contingent and imperfect, subject to a finite descriptive domain. 

All models require specific, subjective choices regarding the elements and relationships to 

represent. According to Floyd et al. [54], “What is assumed to be relevant for a particular 

model is a function, in part, of the modeller’s worldview, and worldviews give rise to 

perspectives that are unavoidably partial.” Modelling necessarily entails the exclusion of 

certain system aspects. As described in section 3.1.2.4, tractable representations of energy 

systems must allow for aggregation based on an appropriate selection of semantic categories 

corresponding to meaningful narratives about energy transformations. Giampietro et al. [21] 

note that these narratives must be suitable for the objectives of the analysis, and caution that 

improper aggregation can result in a “loss of grip on the physical side of the energy 

transformations.” In general, the validity of semantics must take precedence over calculation 

rigour to yield meaningful results. 

In principle, aggregations should be chosen to maximize the representation of distinct 

functional roles while minimizing the total number of included elements. Consequently, high-

level models focussing on the behaviour of a selected holon must prioritise functional 

representation, typically at the expense of exhaustive representation of structural details 

contained within lower level holons. This will inevitably disregard some constraints and 

feedbacks influencing the holon of interest via bottom-up causation (see Figure 8). As noted 

by  Ruth and Hannon [145], models should be as simple as possible and will therefore not 

reproduce all aspects of the real-world system they represent. Similarly, Levin et al. [110] note 

that models do not need to incorporate every possible detail, “indeed, the art of modelling is 

to incorporate the essential details, and no more.” According to Forrester [275], 

“There is no way to prove validity of a theory that purports to represent 

behavior in the real world. One can achieve only a degree of confidence in a 

model that is a compromise between adequacy and the time and cost of further 

improvement.” 
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Models also require the specification of boundaries of analysis, requiring the exclusion of 

certain interactions between the system and its environment. According to Giampietro et al. 

[21], “in energy analysis, quantification forces us to choose and adopt a pre-analytical 

definition of boundaries both in space and in time for the set of energy transformations of 

interest.” Ruth and Hannon [145] explain that chosen analytical boundaries effectively impose 

ceteris paribus assumptions, some of which may be justified while others are not. As 

described by Floyd et al. [54], 

“All models are conceived and implemented within superordinate, 

encompassing and exogenous contexts that are necessarily external to the 

model itself. These contexts are by definition fixed for the purpose of the 

modelling exercise – the model cannot respond to or influence them. There is a 

boundary beyond which the model cannot ‘see’, because those aspects of the 

real world are not endogenized. In the real world though, these superordinate 

contexts are always subject to potential change, possibly under the influence 

of changes originating from processes that are included in the model itself.” 

Aggregations and boundaries suitable for chosen objectives can be encapsulated in a task-

dependent ‘energy grammar’, as described by Giampietro et al. [21]: an energy grammar 

consists of a pre-analytically defined set of semantic categories (i.e., equivalence classes) and 

an associated set of formal categories (i.e., quantification protocols, or units). Explicitly 

specifying an energy grammar helps to avoid confusion and increase transparency regarding 

model development and the resulting valid descriptive domain. 

3.1.4.1 Systems-cognizant energy modelling approaches 

“Most misbehavior of corporate, social, and governmental systems arises from 

[…] dependence on erroneous intuitive solutions to complex behavior.” 

– Jay Forrester [275] 

Complex systems require vastly different methodologies than those applied to simple, 

deterministic phenomena. Levin et al. [110] suggest that the characteristic features of 

complex system pose significant challenges for modelling, making general analytical solutions 

impossible. Additional difficulties relate to the current ‘full world’ context faced by the nested 
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socio-metabolic systems comprising the HSES, described by Ruth [249], Daly [278], and 

Klitgaard and Krall [279]. However, modelling complex systems remains highly worthwhile 

and offers vital capabilities, as described by Motesharrei et al. [23]: 

“The ability of dynamic models to capture various interactions of complex 

systems, their potential to adapt and evolve as the real system changes and/or 

the level of the modelers’ understanding of the real system improves, their 

ability to model coupled processes of different temporal and spatial resolutions 

and scales, and their flexibility to incorporate and/or couple to models based 

on other approaches (such as agent-based modeling, stochastic modeling, etc.) 

render them as a versatile and efficient tool to model coupled Earth–Human 

Systems.” 

Rigorous quantitative methodologies are essential to understand the range of future 

potentialities, as intuition and linear thinking are fundamentally inadequate for evaluating 

the behaviour of complex systems [26, 275]. There is no universally valid protocol for 

energetic analysis of GES transformations, as noted by Giampietro et al. [21], and as such, 

prior attempts and established precedents offer little guidance, particularly where modelling 

approaches are not adequately oriented towards complexity. 

A useful complex system model must encompass the holons of interest in their entirety, with 

all internal elements and relationships endogenized (albeit in necessarily aggregated form), 

while interactions with other holons and the general environment are treated as exogenous. 

For example, socio-metabolic systems modelled at sub-global scales, such as at the national 

or regional level, will require arbitrary boundaries and the specification of complex exchanges 

with the rest of the global system (e.g., trade flows, migrations), and will fail to capture 

system-level emergent behaviours as significant feedbacks are be rendered static and 

exogenous. However, as described by Capellán-Pérez et al. [39], models designed for the 

global level often produce results applicable to sub-global scales due to high levels of 

technological and organizational similarity, and the presence of common challenges. 

Complex systems modelling must begin with a conceptually appropriate technique. The 

‘system dynamics’ modelling approach is well suited for quantitative analysis of complex 

systems characterized by non-linear behaviour arising from dynamic interactions across 
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multiple feedback loops [50, 275, 280]. System dynamics is based on the quantitative 

simulation of changing stock and flow elements using a system of equations updated via 

discrete, iterative calculation, or ‘time-stepping’, over a chosen simulation period [145]. 

According to Levin et al. [110], 

“Complexity entails substantial modelling challenges, but simple models can 

incorporate some elements of complexity to provide novel insights. […] At the 

core of all the recent advances are models of dynamic systems, represented by 

systems of differential equations.” 

Clear advantages are apparent in the system dynamics modelling approach, including 

consistency of the stock and flow basis with fundamental physical processes in complex 

systems [156] and the inclusion of non-linear feedbacks via the mutual dependence of 

variables [141]. As described by Forrester [275], “In system dynamics, description leads to 

equations of a model, simulation to understand dynamic behavior, evaluation of alternative 

policies, education and choice of a better policy, and implementation.” 

Formulating system dynamics models begins with causal loop mapping, which involves 

identifying causal relationships between system variables including their direction, polarity, 

and the presence of any time delays. Any resulting loops exhibiting a continuous sequence of 

influences can then be classified as either positive (reinforcing) or negative (balancing) and 

are largely responsible for observed system behaviour, as described in section 3.1.1. As noted 

by Forrester [275], this process provides useful information but is insufficient to understand 

system behaviour and must be followed by a process of iterative development to produce a 

model capable of achieving the stated research objectives. As noted by Ruth and Hannon 

[145], while models of complex systems focus on causal relationships between elements, they 

also typically incorporate control logic which requires auxiliary techniques extending beyond 

the conventional system dynamics approach. 

According to Giampietro et al. [21] complex energy systems analysis must include adequate 

functional representation of the following aspects contributing to non-linearity, stock and 

flow non-equivalence, and critical power thresholds within the metabolic pattern of society: 

• Necessary distinctions between gross and net energy carrier flows, and between 

throughput efficiencies and the lifecycle energy costs of capital, to properly 
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characterize the autocatalytic loop describing system-level energy production (i.e., 

this rules out linear, reductionist representations). 

• Specific, dynamic profiles of distinct energy carriers invested into non-equivalent 

power capacities across various hierarchical levels, both for the provision of final 

energy services via end-use capital and consumed within the autocatalytic loop. 

• The need for dynamic equilibrium between energy carrier supply and demand via a 

co-evolutionary process (i.e., this rules out the representation of either supply or 

demand in isolation). 

• The provision of final energy services required by the HSES to express necessary 

functions for its own autopoietic processes (thereby supporting the GES). 

Several additional considerations pertinent to modelling of GES transformation can be 

identified in the literature: 

• Soddy [241] advocates the use of biophysical flows rather than monetary flows as 

more fundamental to economic change. Monetary indicators have a limited 

correspondence, at best, to physical phenomena, within a narrow set of market 

conditions only (i.e., equilibrium) and cannot be used to reliably describe processes 

involved in major system transformations. 

• Levin et al. [110] note that most models ignore spatial heterogeneity due to the 

considerable analytical and computational difficulties this introduces, instead 

representing relevant spatial dynamics in the time domain via feedback delays. 

• Georgescu-Roegen [26] stresses the importance of representing dynamic qualitative 

change, alongside quantitative change, in both stocks and flows. 

• Grübler et al. [215] suggests endogenizing technological change processes requires 

the explicit representation of technological choice and allocation (i.e., goal seeking). 

• Ruth [249] and Ayres and Warr [141] describe the lack of mono-dimensional 

optimality within complex systems, noting that real-world behaviour is instead based 

on ‘satisficing’ multiple criteria. 

3.1.4.2 Prediction versus exploration 

“And the record is also unequivocal as far as the notion of any mechanistically 

preordained primary energy transitions is concerned: As in so many other 
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cases, complex and nuanced reality does not fit any simplistic deterministic 

models that are supposed to capture the past and reveal the future.” 

– Vaclav Smil [14] 

It is widely understood among expert modellers that models are of very limited usefulness for 

the direct prediction and management of complex systems, as described by Sorman and 

Giampietro [27] and Ravetz [281]. Georgescu-Roegen [26] explains that models serve multiple 

purposes, including facilitating arguments, clarifying results, and the correction of faulty 

reasoning, but have no meaning without dialectic reasoning and therefore do not predict. 

Ruth [249], Sterman [280], and Meadows [114] agree, noting the purpose of system dynamics 

modelling is rather to better understand system behaviour, particularly regarding possible 

system responses to interventions, i.e., the identification of system leverage points, as 

described in section 1.2.2. 

According to Giampietro et al. [21], the prediction of autopoietic systems is, in fact, not 

possible; models can only improve comprehension of available pathways while excluding 

those that are metabolically infeasible. As such, complex system models can be understood 

to have a fundamentally exploratory epistemic orientation. They are useful to present a 

plausible range of system potentialities and uncover behavioural tendencies not accessible 

via intuition or reductionism but should not be relied on as singular guides to the future.  

A common approach drawing on the exploratory strengths of modelling is scenario analysis, 

the implementation of selected sets of inputs designed to test model behaviour under specific 

narratives of interest. According to Grübler et al. [215], 

“Because uncertainties abound at the macro scale, almost every model-based 

analysis employs scenarios. Scenarios bound possible futures, and they make it 

possible to focus attention on analytically tractable issues, such as how the 

adjustment of one or more “policy’’ variables causes changes in emissions from 

a baseline scenario.” 

Scenarios also offer a partial approach to uncertainty, allowing selected uncertain input 

parameters or model structures to be varied over a typically small but representative set of 

discrete alternatives. Notably, system dynamics models are highly amenable to scenario 

analysis, as described by Capellán-Pérez et al. [50], 
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“Scenario methodology offers an approach to deal with the limited knowledge, 

uncertainty and complexity of natural and social sciences and, applied to 

System Dynamics models, can be used to group the variations of policies into 

coherent and meaningful scenarios. Each scenario (or storyline) represents an 

archetypal and coherent vision of the future”  

Scenario construction is subjective and results are often highly sensitive to the chosen 

implementation within the limits of a model [50, 145]. For this reason, scenarios should be 

used carefully, analysed primarily in reference to a default state or ‘base case’ of the model. 

It is important to note that while models can represent aspects of complexity, they are not 

truly complex themselves. Exogenous stressors can impact a complex system sufficiently to 

push it out of its domain of stability and towards a phase change characterized by system re-

organization. Levin et al. [110] note that complex system models necessarily assume the 

system will remain within its current basin of attraction, described by a corresponding system 

of equations, outside of which unanticipated behaviours will occur. As noted by Georgescu-

Roegen [26], “the strongest limitation to our power to predict comes from entropic 

indeterminateness, and especially from the emergence of novelty by combination.” 

Consequently, models cannot capture emergent behaviour or evolutionary processes 

occurring in response to novel conditions. As described by Ruth and Hannon [145], 

“By enclosing a selected number of system components in the model and 

determining the model–system’s behavior over time solely in response to the 

forces inside the model, the model becomes closed. Real systems, in contrast, 

are not closed but open, allowing for new, even unprecedented development 

in response to highly infrequent but dramatic changes in their environment.” 

As in all quantitative modelling, real-world events have the potential to invalidate complex 

system models. This does not render these models incorrect, only incomplete with repect to 

novel circumstances [145]. This observation is in alignment with the nature of models, 

discussed in section 3.1.4 – useful abstractions designed to represent only the subset of real-

world behaviours pertinent to the goal of the analysis. 
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3.1.4.3 Probabilistic approaches 

“Our knowledge of the way things work, in society or in nature, comes trailing 

clouds of vagueness. Vast ills have followed a belief in certainty.” 

– Kenneth Arrow [282] 

Modelling of the complex social-ecological systems implicated in major contemporary 

environmental and sustainability issues is subject to partial knowledge and irreducible 

uncertainty [27, 54, 113, 251]. As discussed in section 1.3.2, approaches to complex problems 

must acknowledge the presence of epistemic uncertainty and adequately address this via 

quantification of the strength of knowledge and fostering pluralism of socio-technical 

perspectives. Therefore, uncertainty must not be ancillary, but rather central to the practice 

of complex systems modelling. Scenario analysis, discussed in section 3.1.4.2, is a step 

towards this but is insufficient where uncertainty is pervasive. As noted Retortillo et al. [283], 

“A handful of simulation runs do not give much information when one faces 

large models with many stock variables, nonlinear dynamics and a high degree 

of uncertainty in the parameters, and the tools for analyzing large scale models 

are not very developed.” 

Attempts to quantify complex systems suffer from both aleatory uncertainties, or inherent 

temporal randomness, and epistemic uncertainties associated with the limits of knowledge 

pertaining to system structures, parameters, and boundary conditions. While epistemic 

uncertainty can be partially reduced through greater empirical efforts, at least for known 

uncertainties, aleatory uncertainty cannot. Saltelli et al. [284] warn of the possibility of an 

“uncertainty cascade” given excessive complexity – this must be recognized and averted 

where necessary. 

Epistemic uncertainty can originate not only from the strength of knowledge (associated with 

data quality), but also from indeterminacy in the selected semantic definitions of modelled 

functional elements, lacking structural specificity (as discussed in section 3.1.4). That is, valid 

alternate boundaries of modelled functional elements necessarily exist, as each is an 

aggregate across diverse structural types. While these boundaries have operative implications 

for modelled behaviour, ‘correct’ boundary definitions cannot be determined analytically. 

Consequently, an overriding pursuit of precision and specificity is often misplaced in high-
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level complex systems models. One answer to this indeterminacy is found in Georgescu-

Roegen’s concept of dialectical penumbras: semantic definitions and associated boundaries 

which intentionally avoid definitive and inflexible specification, instead admitting multiple 

valid interpretations [26].  

Comprehensive probabilistic modelling goes beyond the limitations of scenario analysis to 

test model uncertainty from all identifiable sources concurrently. Monte Carlo simulation 

achieves this by replacing estimates for all epistemically uncertain input parameter values 

with probability distributions, followed by repeated sampling of these distributions and 

simulation of the corresponding deterministic models (each referred to as a ‘realization’ of 

the model) [285-288]. This allows the creation of an arbitrarily large, representative set of 

modelled realizations, referred to as an ‘ensemble’. The value of this approach to modelling 

uncertainty within complex system models is emphasized by Motesharrei et al. [23]: 

“Uncertainty is another important challenge in producing future behavior and 

scenarios with models. This problem has been addressed successfully in 

meteorology by using, instead of a single forecast, an ensemble of typically 20–

200 model forecasts created by adding perturbations in their initial conditions 

and in the parameters used in the models. […] A similar approach, i.e., running 

ensembles of model projections with perturbed parameters, could be used with 

coupled Earth–Human System models to provide policymakers with an 

indicator of uncertainty in regional or global projections of sustainability 

associated with different policies and measures.” 

As noted by Harrison [289], a principal advantage of Monte Carlo simulation is the detection 

of consistent model tendencies at the ensemble level, given the sum effect of uncertainties 

across many input dimensions. Effectively, this achieves a system-level filtering of bias (e.g., 

optimism or pessimism in framing narratives) via the semi-independent variation of inputs. 

This is significant given that narratives regarding the future of the GES rooted in technological 

optimism, outlined in section  1.2, frequently presuppose a coincidence of favourable 

parameter values across many epistemically uncertain system attributes. With probabilistic 

modelling, such optimistic coincidences can be revealed as highly improbable and the 

corresponding socio-technical narratives are implicitly de-emphasized or refuted outright. 
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Monte Carlo methods also enable multivariate sensitivity analysis, noted as critical for 

complex systems modelling by Ayres and Warr [141] (discussed further in section 3.3.2). 

3.2 THE CURRENT STATE OF ENERGY MODELLING 

Energy modelling is employed extensively in both research and policy, for various purposes 

and across widely varying spatial and temporal scales ranging from local infrastructure 

planning to analysis of global GHG emission trajectories. Many of these disparate approaches 

are increasingly being oriented towards studying the prospects for a large-scale shift towards 

RE, but often remain entrenched in methodologies which conceptualize energy systems 

simplistically and reductively via a limited set of largely techno-economic problem framings. 

Notable shortcomings identified in the literature affecting major energy transition models 

and studies in widespread use are summarized in section 3.2.1. Recent developments in the 

emerging field of biophysical energy systems modelling are then outlined in section 3.2.2. 

3.2.1 Conventional approaches to the study of energy transitions 

Despite the significant diversity observed over the range of publicly available energy 

transition models and studies – in research scope, stated objectives, quantitative methods, 

and levels of detail – substantial conceptual similarities exist. Loftus et al. [223] classify four 

general approaches: 

• Top-down back-casting extrapolates deployment of preselected technology portfolios 

to achieve proposed target states. 

• Top-down Integrated Assessment Models (IAMs) use linked sub-models of energy, 

climate, and economic systems to determine minimum cost technology deployment 

strategies subject to a selected constraint (typically decarbonization targets). 

• Bottom-up energy systems modelling uses highly detailed and data-intensive regional 

and global energy system representations to construct scenarios consistent with 

selected goals. 

• Bottom-up techno-economic assessments assess technology options in reference to 

specified criteria then construct scenarios based on preferential deployment of the 

highest-ranking technologies. 
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IAMs, or energy–economy–environment (E3) models, are of particular interest given their 

central role in informing and framing high-level governance, including international climate 

negotiations including those organized under the United Nations Framework Convention on 

Climate Change [146, 188, 290]. DeCarolis et al. [291] observes there has been a recent 

proliferation of E3 models, offering detailed quantitative simulations, support for decision 

making under uncertainty, and useful pedagogic tools. However, these models often exhibit 

a notable lack of transparency regarding modelling choices and assumptions, adversely 

affecting their robustness and credibility [146, 188, 291]. As such, many E3 models are 

effectively black boxes, making them difficult to compare and validate. 

Table 2 lists selected IAMs, global energy transition studies (many of which employ IAMs), 

and related meta-analyses which include an explicit focus on energy. Among these studies, 

energy system representations range from simple, linear economic optimization models to 

detailed, multi-scale, regionally disaggregated models. 

Table 2: selected global IAMs, energy transition studies, and meta-analyses with a significant energy focus 

IAMs Global energy transition studies Meta-analyses 

IMAGE [292] 

MESSAGEix [293] 

AIM/GCE [294] 

GCAM [295] 

REMIND-MAgPIE [296] 

MARKAL/TIMES [297] 

WEM [298] 

En-ROADS [299] 

E3ME [300] 

Pacala and Socolow [301] 

Barker and Scrieciu [302] 

Jacobson and Delucchi [303, 304] 

Randers and Gilding [305] 

Deep Decarbonization Pathways 

Project [306] 

van Vuuren et al. [307, 308] 

Edenhofer et al. [309] 

Worldwatch Institute [310] 

World Wildlife Fund [311] 

IPCC [312] 

Teske et al. [313] 

Singer et al. [314] 

IRENA [61] 

IRENA [315] 

Ram et al. [316] 

IEA [317] 

GEA [49] 

Magne et al. [318] 

Willson et al. [319] 

Söderholm et al. [320] 

Wilson et al. [321] 

Wiseman et al. [322] 

Loftus et al. [223] 

Kempener et al. [323] 

Stammer et al. [324] 

Eggler [325] 

 

The study of future energy transitions remains an immature field, limited by conceptual 

weaknesses in the available quantitative techniques (detailed in subsequent sections), clear 

motivated reasoning, and a historical dearth of prior examples of a similar degree of scale and 

complexity to the forthcoming third energy transition (as discussed in chapter 1 and section 

2.3). Giampietro et al. [21] observe that current energy transition scenarios, plans, and 

associated commentary are generally not conceptually robust. Substantial advances are 

necessary, as described by Loftus et al. [223], 

“To be reliable guides for policymaking, these types of scenarios clearly need 

to be supplemented by more detailed analyses addressing the key constraints 
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on energy system transformation, including technological readiness, economic 

costs, infrastructure and operational issues, and societal acceptability with 

respect to each of the relevant technology pathways.” 

It is not feasible here to carry out an exhaustive evaluation of the variety of quantitative 

energy transition models in widespread use today due to their extremely diverse modelling 

philosophies, quantitative methods, and underlying assumptions. However, a diversity of 

critical analyses from the literature are summarized in the following sections into four broad 

themes describing common issues: fundamental oversights regarding economic principles 

(section 3.2.1.1), ignorance of the complex systems basis of energy transition (section 

3.2.1.2), biases towards technological optimism (section 3.2.1.3), and unsubstantiated 

projections of key variables (section 3.2.1.4). 

3.2.1.1 Economic foundations 

Most energy modelling, as with other forms of techno-economic analysis, is heavily 

influenced by the prevailing corpus of mainstream, neoclassical economic theory [264, 326, 

327]. Consequently, energy modelling, and IAMs in particular, exhibit a distinct lack of 

plurality in economic perspectives, as noted by Capellán-Pérez et al. [188]. Georgescu-Roegen 

[26] describes neoclassical theory as fundamentally mechanistic, portraying the economic 

process as isolated and ahistorical, constrained by reliance on static marginalist analytical 

techniques and excessive mathematical abstraction. This theoretical basis is now a significant 

handicap in energy modelling, preventing the necessary conceptual reorientation suggested 

by a growing critical literature.  

Neoclassical theory largely fails to identify the biophysical basis of the economic process and 

associated constraints [13, 328]. This failure, and in particular the neglect of dependence on 

natural resources, can be seen as largely a result of historical circumstances of relative 

resource abundance [9, 13, 20]. As described by Hall et al. [13], 

“Since most modern economic theory was derived during times of expanding 

availability of high-grade energy resources, much of that theory could ignore 

the fundamental constraints imposed ultimately by the depletion of high-

quality energy and other resources.” 
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This oversight results in basic incompatibilities with thermodynamics. Most notably, the 

irreversibility of energy transformations, the role of power, and the unavoidability of waste 

generation are generally not considered within mainstream economics [31, 73, 222]. This 

strongly undermines the applicability of neoclassical theory to real-world economies 

comprised of biophysical processes. As noted by Glucina and Mayumi [73], “any model or 

method of analysis concerned with production and consumption, which is inconsistent with 

the laws of thermodynamics, should be viewed as highly questionable.”  

Overreliance on monetary quantification (discussed in section 3.1.4.1) is another clear 

weakness in E3 models. Cost and price, as mono-dimensional indicators, convey insufficient 

information to fully characterize economic systems, particularly regarding scarcity and 

dynamic change [21, 148, 188]. As remarked by Giampietro et al. [21], “Given the crucial 

importance of the issue of scale in the analysis of the metabolic pattern of society, using prices 

to study structural changes of the economy is like using a microscope to study the ecology of 

elephants.” This limitation is most apparent in studies that reduce complex processes of 

energy transition to the simple maximization of net benefits and consider interventions only 

via subsidies, carbon pricing, and other market instruments. Sgouridis et al. [46] note that all 

IAMs use such benefit maximization, or cost minimization, techniques introducing 

ambiguities regarding long-term price forecasts and the obfuscation of important physical 

processes. Technological allocation in energy modelling suffers from a reliance on cost 

minimization approaches rather than a wider consideration of biophysical criteria (such as 

EROI or mineral resource availability), as noted by Capellán-Pérez et al. [39] and Jenkins and 

Thernstrom [81]. Monetary aggregation of highly heterogeneous, non-fungible capital stocks 

is also inappropriate, often to the point of meaningless abstraction [12, 26, 141]. This is 

further exacerbated by practices common in E3 models that arbitrarily distort the time 

dimension, such as the use of high discount rates giving preferential consideration to near-

term costs and benefits at the expense of future needs, as described by Fiddaman [329]. 

Most IAMs inherit a predominantly static economic framework from neoclassical theory, 

favouring optimality (i.e., perfect markets) and general or partial equilibrium assumptions, 

largely for mathematical convenience [20, 31, 141, 188, 329]. This, and related concepts such 

as marginal productivity, are misleading and inapplicable to real-world economies which do 

not operate in equilibrium [26, 73]. As described by Ayres and Warr [141] and Ayres and 
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Voudouris [260], static equilibria are incompatible with growth, evolution, incentives, 

innovation, and structural change. Equilibrium conditions also serve to obfuscate the true 

importance of energy in economic production, as discussed in section 3.1.3.2. Some recent 

progress has been made – the E3ME IAM [300] and Barker and Scrieciu [302] (using E3ME) 

avoid general equilibrium and instead allow non-optimality. 

As discussed in section 3.1.3, the economic process is fundamentally dissipative, revealing 

energy (or exergy) as necessary but not sufficient for economic production. However, there 

is a relative lack of appreciation of energy as a factor of production in neoclassical theory [9, 

16, 73, 163, 261]. Cottrell [12] argues that the standard assumptions regarding the centrality 

of labour and capital in production break down upon introduction of energy converters driven 

by exosomatic energy. As described by Sgouridis and Csala [9], “the perceived abundance of 

fossil fuels that has allowed energy to be considered a necessary economic factor of 

production but in sufficient reserve quantities, that, like oxygen, can be accessed as 

necessary.” This omission effectively downplays the potential impacts of energy transition on 

economic output while overestimating the potential for absolute decoupling of energy and 

economy, as outlined by Brockway et al. [219]. Even where the aggregate role of energy in 

production is properly identified this is often not sufficient, for two reasons: 

1) Common assumptions of perfect factor substitutability fail to capture strong 

complementarity between capital, labour, and energy (described in section 3.1.3.2) 

[9, 73, 148, 163, 188, 327]. 

2) Sectoral economic structure, while critical due to sector interdependence and induced 

effects, is missed by common aggregate production functions [20, 188, 327]. 

Mainstream, neoclassical economic theory assumes economic growth and energy are 

independent, typically treating energy consumption simply as a consequence of growth [141, 

148, 327]. This has implications on both the source and sink sides of the economic system; 

potential limits to growth arising from energy resource shortages are typically dismissed [10, 

327] while it is assumed that energy-related GHG emissions can be reduced arbitrarily without 

materially affecting growth [148]. Consequently, E3 models often presuppose greater future 

prosperity relative to the present without confirming the energetic feasibility of this assertion, 

as described by Ayres et al. [148]. 
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Floyd et al. [54] notes that assumptions of continued economic growth are almost universal 

in E3 model formulations. This is typically implemented in the form of  exogenous economic 

growth projections [23, 329], often based on Solow-type economic growth models which 

ignore the role of energy (MESSAGEix [293] and GEA [49] are prominent examples) [141]. 

According to Ayres et al. [148], this is attributable to overestimation of the role of technology 

in driving economic growth and consequent expectations of inexorable growth into the future 

(i.e., “manna from heaven” as described by Solow [330]). Explicit and endogenous modelling 

of the macroeconomic role of energy is required in E3 models, particularly considering 

changes in the profile of energy carriers (of varying energy quality) available to the economy 

and associated economic constraints [141, 156, 169]. Foxon [20] and Ayres and Warr [141] 

argue that representations of endogenous growth also need to be closely linked to wider 

processes of structural change and co-evolution within economies. 

3.2.1.2 Complex systems blindness 

Most approaches to the current crises of energy, climate, and sustainability remain 

conceptually bound within the Cartesian-Newtonian scientific paradigm, lacking an 

appreciation of the biophysical, complex systems perspective, as described by Seibert and 

Rees [83]. As such, they are characteristically simplistic, deterministic, and mechanistic. 

Critically, almost all energy modelling approaches and associated energy transition studies 

fail to recognize the GES and HSES as CAS (described in sections 1.2.2 and 3.1) [21, 23, 42, 75, 

110, 327]. 

Nieto et al. [327] argue that this omission explains a lack of integration in E3 models between 

the representations of the economic system and the manifold biophysical systems that 

ultimately support it. Giampietro et al. [21] describe this more generally as a failure of 

reductionist analysis to capture complex adaptive behaviour, noting “it is impossible to deal 

with complex phenomena by adopting simplistic analytical tools based on reductionism.” This 

incompatibility between reductionist methods and complex systems is fundamental, as 

described by Dale et al. [75], “Dynamic systems are characterised by their complex nature, 

with many interacting causal and feedback loops that must be analysed at the systems level; 

they cannot be decomposed into simpler independent elements or processes.” Levin et al. 

[110] emphasize the negative consequences that can stem from ignorance of the 

characteristics of CAS, noting, 
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“[E]mpirical observations suggest that simple linear and reductionist dynamics 

give a misleading representation of how social-ecological systems work. 

Moreover, important features of complex adaptive systems must be studied 

and understood in an integrated way, because they all matter for the outcome 

of any management and policy intervention.” 

Giampietro et al. [21] note additional common methodological issues stemming from a lack 

of “complex perception and representation of the metabolic pattern of societies”, including: 

• failures to effectively consider multi-level system organization, and 

• the ‘truncation problem’, pertaining to the loss of information associated with chosen 

narrative simplifications and resulting representations (as discussed in section 3.1.4). 

Day et al. [42] conclude that “developing future energy policy requires a systems approach 

with global boundaries and new levels of appreciation of the complex mix of interrelated 

factors involved.” New, systems-cognizant methodologies are needed, including: 

• external constraints (boundary conditions) other than climate change, including finite 

NRE resources, heterogenous and declining primary energy resource qualities, and the 

evolving requirements of the HSES for the provision of energy services, 

• internal constraints associated with power capacities and the production of useful 

power, including the hypercyclic component of the GES and energy autocatalysis, 

• feedback loops and associated non-linear behaviour, 

• path-dependence stemming from dynamic co-evolutionary processes, 

• non-equivalence among energy carriers and other energy flows, and 

• the role of uncertainty and transparency regarding modelling limitations. 

As discussed in section 3.1.2.3, the sustainability of CAS is effectively indicated by the 

maintenance of the relevant boundary conditions, with failure to do so signalling transitory 

behaviour. While mitigation of climate change receives significant attention in E3 models and 

often represents their ostensible purpose, source constraints related to the availability and 

quality of primary energy and other resources are typically downplayed [21, 42, 188, 327]. 

Capellán-Pérez et al. [50] observe that few models recognize NRE resource limits and possible 

implications for energy transition, noting, “Most of the current Economy-Energy-Environment 

models tend to use (very) large resource estimates that are subject to high uncertainties and 
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are strongly biased towards overestimation.” For example, GEA [49] does not acknowledge 

issues of NRE depletion. This lack of supply-side biophysical limits explains the consistent 

underestimation of the challenge presented by energy transition built into most IAMs, 

typically seeing it simply as a demand-driven change in the supply mix constrained only by 

available monetary investments [188, 327]. As noted by Day et al. [42] “relatively few studies 

discuss the thermodynamic and biophysical implications of switching from fossil fuels to a 

renewable energy system.” Other biophysical factors subject to significant uncertainties, 

including supply intermittency, and mineral and land requirements, also receive cursory 

treatment at best [39, 42, 81, 188].  Ayres and Voudouris [260] caution that “energy policies 

need to continuously explore the existence of plausible signs of collision between increasing 

consumption of useful energy and the finite energy resources of the planet.”  

Explicit representations of heterogenous primary energy resource quality distributions, and 

associated declining quality trends via EROI or alternative metrics (discussed in section 2.1.1), 

are rare in E3 models [42, 157]. Capellán-Pérez et al. [188] note that this effectively disregards 

the implications of the rising energy investment flows required to achieve a transition to RE 

and the need to limit these by maintaining favourable EROI. According to Giampietro et al. 

[21] energy modelling lacks suitable methods even to assess the relative merits of energy 

sources based on a broad accounting of criteria, including biophysical factors. 

Fiddaman [329] notes that most energy transition modelling approaches include no 

representation of environmental impacts beyond climate change. However, various sink 

constraints are highly pertinent to energy transition, including general environmental 

degradation and biodiversity loss associated with the expansion of land-intensive RE sources 

such as biomass and hydropower [14, 35, 42, 54, 59, 79, 80]. Day et al. [42] concludes that “a 

disconnect exists between discussion of renewable energy development and the biophysical 

limits constraining that development.” Even regarding climate change, few modelling 

approaches adequately capture the potentially catastrophic or even existential nature of risks 

which cannot meaningfully be represented using calculable costs; an oversight seen in, for 

example, Edenhofer et al. [44], van Vuuren et al. [307], and Pacala and Socolow [301]. 

The ultimate purpose (or holonic functional role) of the GES can be seen as the provision of 

energy services required by the HSES for the expression of vital societal functions supporting 

its autopoiesis (as described in sections 2.2.3 and 3.1.2.1). However, Brand-Correa and 
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Steinberger [11] note that accounting frameworks used in energy modelling often report only 

final energy (i.e., energy carriers) delivered to consumers and omit the final conversion stages 

to useful energy and energy services. As such, E3 models fail to consider the scope for dynamic 

changes in energy service provisioning systems (including vastly more efficient integrated 

supply) as well as the nature and levels of energy services provided [11, 226]. Moriarty and 

Honnery [35] and Seibert and Rees [83] argue that absolute reductions in energy service 

consumption may be required, particularly among high consumers in developed countries, 

and should be explicitly considered. Currently, the possibility of such reductions is not 

included in most energy transition studies, as noted by Floyd et al. [54]. 

A comprehensive shift towards RE will be constrained by the rising energetic costs stemming 

from the hypercyclic component of the GES (as discussed in section 3.1.2). Such constraints 

arise endogenously, associated with autocatalytic energy production and the co-evolution of 

power capacities for the production of useful power via shifting metabolic patterns [21]. The 

dynamic profile of energy flows reinvested back into the GES must be accounted for as 

substantial increases are likely [54, 190, 331, 332]. Sgouridis and Csala [9] note that the 

predominant focus of energy transition research on the environmental impacts of fossil fuels 

has tended to overshadow the dynamic energy costs of the transition. For example, both 

WEM [298] and GEA [49] fail to take a critical perspective on the internal viability of their 

respective energy transition scenarios by considering the necessary reinvestment of energy. 

Giampietro et al. [21] note that the power capacity concept is typically neglected altogether 

in energy analysis due to insufficient attention given to time as a relevant dimension, resulting 

in significant ambiguities between power levels and energy flows. 

Non-linear behaviour arising from the interaction of multiple feedback loops is an essential 

aspect of CAS, as detailed in sections 3.1.1 and 3.1.2. As noted by Motesharrei et al. [23], 

interactions between the GES, HSES, and biosphere are crucial to understanding system 

behaviour, however, these are largely ignored by IAMs which instead rely heavily on 

exogenous projections of key variables. Arvesen et al. [221] explain that over-simplification 

or exclusion of these relationships, and second-order effects, leads to excessive optimism 

regarding technological solutions. The relative lack of feedback in IAMs can be largely 

attributed to their historical development from separate modules which were often not 

originally designed to be interlinked, as described by Capellán-Pérez et al. [188]. 
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Fiddaman [329] observes that most E3 models include no positive feedback mechanisms 

other than capital accumulation. This is a major conceptual deficit given that positive 

feedback loops play a vital role in processes of growth, change, and transformation in CAS. 

Giampietro et al. [21] agree, noting that simple, linear representations of energy systems 

cannot adequately capture feedback and its role in the evolution of metabolic patterns. There 

are important consequent implications for how these models and their quantitative results 

should be interpreted and used, as described by Motesharrei et al. [23]: 

“Nonlinear systems often feature important dynamics which would be missed 

if bidirectional interactions between subsystems are not modeled. These 

models also may call for very different measures and policy interventions for 

sustainable development than those suggested by models based on exogenous 

forecasts of key variables.” 

A special case of system feedback with particular importance for near-term policy formulation 

is the rebound effect, described in section 2.2.1. Brockway et al. [219] explain that the basic 

mechanisms driving rebound effects are typically absent in E3 models: 

“[T]he current generation of energy-economy models lacks the capacity to 

capture these rebound effects effectively. The inclusion of broader, economy-

wide rebound effects within energy and IAM models are vital if we are to have 

confidence in global energy scenarios, and if policymakers are to effectively 

anticipate and address the possibility of large rebounds.” 

The presence of feedback loops and system constraints (both exogenous and endogenous), 

together with a consideration of the time dimension, underscores the importance of path-

dependence arising from dynamic co-evolutionary processes, as described in sections 1.2.2 

and 3.1.1. In all analytical approaches employed in energy transition studies introduced in 

section 3.2.1 (described by Loftus et al. [223]), with the exception of  bottom-up techno-

economic assessments, the end goal or target system state is predetermined via normative 

criteria, with subsequent analysis then populating a series of changes expected to achieve 

this target. Wiseman et al. [322] notes that most large-scale studies of energy transition do 

not adequately explain their pathways, particularly where rapid societal change is assumed. 

This is inconsistent with the path-dependent and non-linear behaviour of CAS, raising serious 
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questions about the validity of mainstream energy transition scenarios. Capellán-Pérez et al. 

[39] explain that modelling path-dependence must include dynamic representations of both 

resource quality and energy investment lifecycles to accurate apportion energy costs and 

outputs over time, particularly given non-equilibrium, energy transition contexts. 

Another important consideration is the non-equivalence of distinct energy carriers and other 

energy flows, described in section 3.1.2.4. Explicit modelling of substitution processes 

involved in changing patterns of flows at the system level is necessary due to the non-

fungibility of associated power capacities and the dynamic metabolic costs associated with 

capital turnover. Modelling of non-equivalence is lacking in most E3 models, which often use 

dubious aggregation methods, as noted by Giampietro et al. [21]: “it is rare to find a systemic 

consideration, in the pre-analytical phase, of the epistemological nature of qualitative 

differences among non-equivalent energy forms”. 

Finally, the role of uncertainty and transparency regarding modelling limitations are both 

central to an appropriate contextualization of quantitative energy transition scenarios and 

their proper interpretations, not as predictions but as explorations of possible futures (as 

discussed in sections 3.1.4.2 and 3.1.4.3). However, adequate treatment of uncertainty, 

disclosure of contestable and often internally inconsistent assumptions, presentation of 

plausible alternatives, and comprehensive sensitivity analysis are uncommon in conventional 

E3 models and energy transition studies [54, 333]. Even where uncertainty is acknowledged, 

few studies attempt to materially address it, for example, Edenhofer et al. [44]. Furthermore, 

an implicit positivist orientation is common in energy modelling, resulting in a lack of 

distinction between models and the systems they represent. This is inadequate, as described 

by Floyd et al. [54]: 

“[E]nergy transition modelling exercises are necessarily based on myriad 

complex and often controversial assumptions that necessitate the 

interpretation of their findings strictly in relation to the model as an abstract 

representation of a real world as understood by the modeler. Any conclusions 

drawn from such studies should be presented and applied with due 

acknowledgement of the deep uncertainties and limitations inherent therein.” 
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These gaps are in urgent need of rectification before energy modelling can offer useful and 

meaningful descriptions of energy transition pathways and appropriate policy guidance. 

3.2.1.3 Technological optimism 

Conventional energy transition studies typically exhibit strong optimistic biases regarding 

ongoing technological innovation, infrastructural change, mitigation of impacts arising from 

supply intermittency, and socio-economic contexts affecting technological development. 

These biases both reflect and reinforce common socio-technical narratives of energy 

transition across a broad array of institutional settings. 

Mainstream perspectives on energy transition often prominently feature technologies which 

remain speculative and unproven at scale, despite significant uncertainties regarding their 

eventual availability [65, 81, 223]. As described by Grübler et al. [231], there is a “pro-

innovation bias of the literature, i.e. mostly successful diffusion or transition cases are studied 

and described, with failures remaining largely undocumented.” This is readily apparent 

among major studies – for example, GEA [49] exhibits significant optimism regarding new and 

unproven technologies with little consideration of potential downsides, leading to heavy 

emphasis placed on carbon capture and storage (CCS), next-generation nuclear energy, and 

geo-engineering. In many cases, a general lack of technical limitations at the system level is 

simply asserted (e.g., by Edenhofer et al. [44]), often by appeal to the very large magnitudes 

of many primary RE resources without considering possible constraints at other scales of 

analysis. As cautioned by Clack et al. [334], a complete energy transition to 100% RE would 

be extremely difficult with currently available technologies, particularly where technological 

portfolios are limited a priori to a narrow range of options. Jenkins and Thernstrom [81] also 

stress the importance of technological diversity, ruling out overwhelming reliance on selected 

energy sources, such as solar PV and wind. 

Even among existing technologies, the possibility for diminishing returns on innovation 

(discussed in section 2.2) is not widely acknowledged in energy transition studies and 

technological progress is assumed to either continue at a steady pace or accelerate, 

particularly regarding energy efficiency. Fiddaman [329] notes that most E3 models assume 

substantial, exogenously defined efficiency improvements and carbon intensity reductions. 

For example, GEA [49] assumes “very strong efforts in energy efficiency improvement for 
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buildings, industry and transportation, offering much-needed flexibility to the energy supply 

system” resulting in projected 60—75% declines in energy consumption between 2005 and 

2050 for developed regions in the ‘state of the art’ scenario. These assumptions are 

unsupported and are likely inconsistent with realistic efficiency gains emerging from power 

maximization under finite-time theoretical efficiency limits (as discussed in section 2.2.1). 

Many energy transition studies take relatively simplistic approaches to infrastructural change 

which fail to capture the degrees of complexity, interdependence, and cost involved. Smil [14] 

notes that this is particularly true of plans presupposing rapid, policy-led energy transitions. 

Loftus et al. [223] examine 17 decarbonization scenarios, finding “all of the studies present 

comparatively little detail on strategies to decarbonize the industrial and transportation 

sectors, and most give superficial treatment to relevant constraints on energy system 

transformations.” Electrification of transportation, heating, and industrial end-uses will play 

a central role in energy transition, facilitating the uptake of electricity-producing RE sources, 

however, associated infrastructural challenges, and the long lead times required, receive 

relatively little attention in major studies [81, 223]. Expectations for the electrification of 

industry and transportation are highest in the most optimistic transition studies, including as 

Jacobson and Delucchi [303, 304], Teske et al. [313], Worldwatch Institute [310], and World 

Wildlife Fund [311], and may be unrealizable, as noted by Loftus et al. [223]: 

“With multiple low-carbon electricity generation options and the possibility of 

wider electrification, the power sector will invariably be central to global 

decarbonization efforts. Nevertheless, reducing industrial and transportation 

sector emissions will not be accomplished through electrification alone, and 

decarbonization scenarios should focus greater attention on the challenges 

associated with these sectors.” 

Jenkins and Thernstrom [81] review 30 decarbonization studies, identifying critical 

weaknesses which require additional consideration and effective long-term planning, 

including the presence of sectors which are significantly more challenging to transform (e.g., 

aviation, shipping, heavy transport, and agriculture), costly and unproven technology 

portfolios required for deep decarbonization, and the implied necessity of large-scale CCS for 

full decarbonization. Edenhofer et al. [44] concede that IAMs do not adequately represent 

the electrification of the transport and heating sectors, and include insufficient temporal and 
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geographical resolution. Loftus et al. [223] concludes that “To be reliable guides for 

policymaking, scenarios such as these need to be supplemented by more detailed analyses 

realistically addressing the key constraints on energy system transformation.” 

Most E3 models project significant increases in the contribution of RE sources to TPES, but 

typically underrepresent or ignore the need for mitigation of resource intermittency, 

particularly at high penetration levels (as described in section 2.1.2) [44, 54, 59, 81, 223]. 

According to Day et al. [42], “most studies do not fully consider the complexities of multiple 

factors including production intermittency, storage, the need to replace a massive 

infrastructure network, and lack of fungibility of different energy sources.” Heard et al. [59] 

review 24 studies proposing the feasibility of 100% RE, finding none convincingly demonstrate 

the capacity to match supply and demand reliably across all required timescales. 

Loftus et al. [223] observe that most energy transition studies suggest a common portfolio of 

technological solutions including ‘smart grids’, demand response, high-voltage transmission 

expansion, and energy storage, but fail to adequately consider associated costs and 

integration issues. Notably, the provision of ‘ancillary services’ required for the stable 

operation of electricity networks, such as frequency regulation and reserve generation, are 

not typically considered in high RE penetration scenarios [59, 223]. Furthermore, key 

technological elements of proposed intermittency mitigation strategies are often speculative 

or unproven at scale, such as the production of hydrogen via electrolysis and other forms of 

medium- and long-term electricity storage [59, 81, 82, 223]. Consequently, aggressive energy 

transition scenarios claiming the feasibility of 100% RE without detailed assessments of 

intermittency mitigation tend to be overly optimistic and are highly questionable [39, 54, 59]. 

Finally, energy transition studies frequently disregard the myriad socio-economic 

dependencies of technological change, instead focussing solely on techno-economic factors. 

As described by Floyd et al. [54], “the management of ‘energy systems’ and their transitions 

is better understood not as a technological or even techno-economic challenge, but as a 

complex of interacting challenges that are essentially socio-technical in character.” Energy 

transition will necessarily affect societies in profound and transformative ways, as described 

in sections 1.2.2 and 3.1.2. Gambhir et al. [146] note that one of the main criticisms of IAMs 

centres on inadequate representation of real-world policies and processes involved in implied 

behavioural adaptations. Stammer et al. [324] conclude that many widely popularized energy 



90 
 

transition and climate scenarios are revealed as implausible when considered from both social 

and techno-economic perspectives. 

3.2.1.4 Unfounded projections 

E3 models and energy transition studies frequently invoke unsubstantiated projections of key 

variables, out of step with historical trends: 

• Brockway et al. [219] note that many global scenarios assume structural breaks in both 

efficiency growth trends and the historically close relationship between energy 

consumption and economic output (described in sections 3.1.3.1 and 3.2.1.1), despite 

little or no empirical evidence to support these assumptions. Loftus et al. [223] also 

identify historically unprecedented and likely implausible implied rates of change in 

the energy intensity of GDP across many studies, declining at approximately double 

the most rapid rates observed over recent decades. 

• The deployment rates of RE technologies are frequently assumed to increase 

discontinuously in the near future, up to 15-fold over historical rates – a buildout not 

likely to be practically achievable in real-world settings [14, 223]. To justify this, many 

studies make tenuous comparisons to prior, partial energy transitions which occurred 

under more energetically favourable conditions (as discussed in section 2.3). For 

example, GEA [49] compares the forthcoming transition to RE to the transition from 

coal to oil during the 20th century, drawing highly optimistic conclusions. 

• As noted by Loftus et al. [223], energy transition studies often assume very high rates 

of final energy demand reduction arising from efficiency gains. However, mechanisms 

to achieve such reductions and corresponding effects on the provision of energy 

services and economic output are typically ignored. These assumptions conflict with 

absolute increases in energy demand stemming from larger than expected rebound 

effects and demand growth needed for the amelioration of energy poverty worldwide, 

described by Brockway et al. [219]. 

The prevalence of such discontinuities in key variables, without sufficient empirical or 

theoretical justification, is strongly indicative of the presence of motivated reasoning in 

energy transition scenario development. Moreover, it highlights the epistemic weaknesses 

apparent in the normative, pre-analytical specification of energy transition end goals or target 

states in many analyses. 
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3.2.2 The emerging biophysical systems view 

The mounting critique of conventional approaches to the study of energy transition, 

summarized in section 3.2.1, has motivated several attempts to construct models with an 

explicit biophysical, complex systems orientation (described in chapter 3). This emerging field 

of energy modelling is briefly outlined in this section. 

Biophysical energy systems modelling approaches typically exhibit a greater focus on supply-

side constraints (i.e., primary energy and other resource limits) rather than the predominant 

climate change focus seen in most mainstream energy transition studies. To a lesser degree, 

these models have also included aspects of complex system behaviour, primarily non-linearity 

and path-dependence represented via feedback-rich system dynamics formulations. 

Formative attempts to create systems-based models incorporating biophysical factors include 

the World3 model used in the original Limits to Growth study [234], the STER model 

developed by Hounam [335] and later iterations including the ECCO model [336], Sterman 

[337], Bodger and Baines [338], and the FREE model [329, 339]. These models typically seek 

to either explore various plausible scenarios or maximize economic growth (or stability) 

subject to resource constraints. They all feature representations the productivity of primary 

energy production (including reinvested energy), avoid intertemporal optimization, and often 

include disequilibrium conditions, feedback delays, and endogenous technological change.  

Encouragingly, a significant increase in research in general biophysical systems modelling has 

begun in recent years, which, while still largely absent in major institutional and governmental 

settings, is gaining wider recognition within the modelling community. As noted by Sherwood 

et al. [328], 

“Within the last 10 years, a wide variety of research papers have been 

published that include some biophysical aspects in a model of the economy. 

These papers all have one thing in common: the model of the economy includes 

physical and/or energetic exchanges, as well as monetary exchange.” 

Hafner et al. [340] reviews 11 recent ecological macroeconomic energy models featuring 

representation of complexity, non-equilibrium, and uncertainty, concluding “the reviewed 

models are policy relevant, especially in the context of the complexity and urgency of rapid 

energy transitions, where increasingly policymakers require economic models able to capture 
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real-world characteristics.” Several recent examples relevant to energy transition are outlined 

in section 3.2.2.1 followed by a summary of their findings in section 3.2.2.2. 

3.2.2.1 Notable recent examples 

D’Alessandro et al. [91] create a stylized dynamic macroeconomic model to examine the 

effects of energy scarcity on economic growth during the transition to RE, tracking investment 

and stocks of capital, RE capacity, and fossil fuels. The EETRAP model, developed by Victor & 

Sers [341], uses a similar but expanded approach to simulate macroeconomic pathways for 

RE investments required to avoid exceeding selected GHG emissions targets, including 

consideration of EROI declines implied by the shift from NRE to RE. While energy is considered 

as a factor of production in both studies, several methodological issues are apparent, 

including their highly aggregated formulations (ignoring issues of functional stock and flow 

non-equivalence and non-fungibility), a lack of realistic capital lifecycle dynamics (with 

corresponding feedback delays), and little to no representation of intermittency mitigation – 

likely unsuitable for modelling high RE penetration levels. 

The GEMBA model developed by Dale [342] and Dale et al. [75, 343] goes beyond these 

limitations, using a top-down, globally aggregated, and empirically calibrated formulation to 

determine the sufficiency of RE resources to meet projected demand, the likelihood of energy 

descent, and wider physical system effects resulting from a transition to RE. GEMBA includes 

a detailed representation of the energy system and directly simulates processes behind 

declining EROI during the energy transition using biophysical criteria to represent primary 

energy resource quality rather than price-based methods (in contrast to conventional IAMs). 

However, GEMBA uses a relatively simplistic economy model (although based on ecological 

economics principles) and includes no environmental aspects aside from primary energy 

supply. The model does not consider stock and flow non-equivalence, effectively disregarding 

the implications of changing metabolic patterns, as conceded by Dale [342], “Energy sources 

are assumed to be perfectly substitutable, i.e. demand within the model is not specific to a 

particular energy source but rather just for energy, regardless of source or carrier.” 

Furthermore, capital outside of the supply sector is highly aggregated, implying 

underestimation of the energy costs of infrastructural change (i.e., capital turnover) required 

for energy carrier substitution. Uncertainty is considered via Monte Carlo simulation (1,000 

realizations) but is carried out with only three probabilistic model parameters. 
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The NETSET model developed by Sgouridis et al. [46] (based on earlier work by Sgouridis and 

Csala [9]) offers a unique approach among biophysical models, working backwards from 

selected GHG emissions budgets to determine a range of energy transition pathways that 

meet specified minimum per capita energy requirements (conceptually similar to top-down 

back casting, described in section 3.2.1). NETSET is globally aggregated and incorporates 

energy resource availability (using EROI), delayed price feedbacks (affecting demand, stock 

retirement, and reinvestment), and both energetic and economic dynamic processes to 

examine “basic energy metabolism relations” characterizing energy transition pathways. 

NETSET is primarily a physical model, without detailed macroeconomic representation, and is 

based on a demand-driven, supply constrained view of the energy system (i.e., consistent 

with the post-Keynesian ecological approach described in section 3.1.3). NETSET includes 

qualitative technological change, with efficiencies varying over time as functions of 

investment. 

Owing to its high-level approach designed to allow analytical solutions, NETSET does not 

feature significant technological detail, instead using aggregated RE and fossil fuel capital 

stocks. As acknowledged by Sgouridis and Csala [9], “Modeling and calibrating the dynamic 

relationship between energy prices, equipment turnover, technology development and 

utilization is a complex undertaking.” Several key variables are exogenously defined, including 

population, available energy efficiency improvements, per capita energy demand, and the 

energy intensity of GDP. NETSET does not consider stock and flow non-equivalence, likely 

underestimating energy carrier substitution costs, and disregards declining RE resource 

quality (justified by appeal to large RE resource magnitudes). NETSET is optimistic regarding 

intermittency mitigation at high RE penetration levels, assuming sufficient storage and 

demand side management. Notably, NETSET uses pre-determined energy consumption 

targets ranging between 0.7 and 6 kW per capita (a ‘2 kW society’ baseline is used by Sgouridis 

and Csala [9]) – the lower end of this range implies drastic reductions in final energy 

consumption relative to levels currently seen in developed countries. 

Perhaps the most detailed and fully realized biophysical energy model currently available is 

the open-source MEDEAS framework [188, 193]. MEDEAS was developed from the earlier 

WoLim model [50, 344], employs both bottom-up and top-down aspects, and is designed to 

test congruence between resource limitations (including minerals, land, and water) and 
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expected economic growth trajectories. MEDEAS exhibits a high level of detail in primary 

energy production and includes the use of production rate constraints as functions of RURR, 

representing physical depletion processes. Energy carrier non-fungibility is addressed, with 

dynamic substitution processes driven by scarcity. MEDEAS incorporates a hybrid post-

Keynesian ecological approach for macroeconomic representation including explicit sectoral 

economic structure, with production constraints imposed under conditions of energy scarcity. 

Inland transport and household energy demand are modelled in detail, via bottom-up 

methods. Feedbacks are modelled between climate emissions and economic growth, ranging 

from negligible at low levels to non-linear and potentially catastrophic at high levels. 

Additionally, MEDEAS endogenously calculates: 

• technological portfolios for intermittency mitigation, in response to RE penetration, 

• rising energy efficiencies considering thermodynamic efficiency limits and substitution 

processes between energy carriers,  

• dynamic EROI for intermittent RE sources, including mineral depletion effects, and 

• energy demand, via sectoral energy intensities (including induced effects). 

MEDEAS also includes comprehensive treatment of uncertainty. As noted by Capellán-Pérez 

et al. [188], “MEDEAS takes as reference the precautionary principle, which is the most robust 

approach in uncertainty contexts such as the one characterizing climate change and the 

sustainability crisis”. Consequently, unproven, speculative technologies such as CCS, 

hydrogen as an energy carrier, and next-generation nuclear are not included. MEDEAS 

includes uncertainty, sensitivity, robustness, and stability analyses using Monte Carlo 

simulation (1,000 realizations) with 72 probabilistic model parameters. 

However, MEDEAS exhibits several notable weaknesses. Transition pathways are driven by 

exogeneous GDP, population, and income distribution projections. The sectoral approach to 

demand modelling, while effective for capturing economic interdependencies, rules out 

explicit representation of end-use capital and energy service provision (aside from the inland 

transport and household sectors). As maximum improvements in sectoral energy intensities 

are based on statistical analysis of historical data, the potential for transformative change in 

end-use capital is not considered. Consequently, the hypercyclic component of the GES in 

MEDEAS is somewhat underdeveloped. MEDEAS does not include endogenous goal seeking 

behaviour (other than scarcity-induced adaptation), such as technology allocation or fuel 
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switching based on biophysical indicators, as noted by Capellán-Pérez et al. [39]. Various 

other path-dependent and feedback phenomena are not represented, such as the net energy 

trap (or equivalent) and rebound effects. 

Assumed URR values for NRE resources in MEDEAS are biased towards the upper end of the 

range of estimates in the literature. Critically, EROIst values for NRE and non-intermittent RE 

sources are assumed to be constant and MEDEAS approaches resource constraints using 

production rate limits instead. This approach to primary energy resource modelling is artificial 

and may not correspond closely to underlying physical processes – it is both pessimistic 

regarding the flexibility of production rates in response to changing economic and 

technological factors while being highly optimistic regarding dynamic net energy production 

over the duration of the energy transition. As Capellán-Pérez et al. [188] admit, “this approach 

does not capture the metabolic implications of the drop of the EROI of the system to very low 

levels”. Different temperature levels for heat are not considered, disregarding non-trivial 

technological limits to substitution, particularly for high-temperature industrial processes. 

MEDEAS is also relatively pessimistic regarding near-term climate damages, assuming these 

to begin to exceed incremental GDP additions at 1.75°C warming. Finally, MEDEAS includes a 

relatively low level of detail regarding feedback between the social and environmental 

systems, an area the authors note requires further attention. 

3.2.2.2 Indicated challenges 

Studies starting from a biophysical systems perspective typically find that achieving a 

successful global energy transition will be considerably more difficult than anticipated by 

conventional analyses, requiring comprehensive adaptations including profound behaviour 

change and reductions in energy service consumption [9, 35, 345]. For example, the NETSET 

model [46] identifies biophysically possible energy transition pathways, but only with drastic 

increases in RE investment rates (up to 100-fold) alongside large reductions in per capita final 

energy consumption. These modelled outcomes in NETSET are also strongly influenced by 

assumptions regarding delays before initiating a rapid transition, appropriate GHG emissions 

targets, and NRE EROI values. This transformation is likely to be highly socially and 

behaviourally challenging, as the authors warn, “The upfront energy invested in constructing 

a RE infrastructure subtracts from the net energy available for societal energy needs”. 
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D’Alessandro et al. [91], Victor & Sers [341], GEMBA [75, 342, 343], and MEDEAS [188, 193] 

all identify significant redirections of available investment and resource flows into the 

required RE infrastructures causing economic growth to decline, or even reverse (as described 

in sections 2.1.1.4 and 3.1.3.4). GEMBA model results indicate the capital requirements of the 

GES will likely increase during the energy transition, to approximately half the total capital of 

the global economy. D’Alessandro et al. [91] note a trade-off between higher growth rates 

and the accelerated depletion of NRE resources, risking energy scarcity, and conclude lower 

growth rates are preferable to facilitate the energy transition. Likewise, MEDEAS suggests low 

(or no) growth rates may be required for achievable energy transition scenarios. Victor & Sers 

[341] suggest that  the pursuit of steady economic growth during the energy transition is not 

advisable and may not be biophysically possible. The advantageous nature of reductions in 

economic growth for the energy transition is echoed by Keyßer and Lenzen [346]: 

“[D]egrowth scenarios minimize many key risks for feasibility and sustainability 

compared to technology-driven pathways, such as the reliance on high energy-

GDP decoupling, large-scale carbon dioxide removal and large-scale and high-

speed renewable energy transformation. However, substantial challenges 

remain regarding political feasibility. Nevertheless, degrowth pathways should 

be thoroughly considered.” 

MEDEAS results suggest current consumption growth trajectories worldwide are highly 

unsustainable regarding both resource limitations and the prospect of avoiding dangerous 

levels of climate change. GEMBA and MEDEAS both highlight the likelihood of a mid-21st 

century decline in net energy availability, with far-reaching economic consequences. 

3.3 POST-NORMAL SCIENCE 

Post-Normal Science (PNS) is a new approach to complex scientific problems characterized by 

uncertainty, urgency, conflicting perspectives, insufficient data, and a high degree of public 

interest, developed by Silvio Funtowicz and Jerome Ravetz in the early 1990s [25, 54, 139, 

347-349]. The term is defined in reference to Thomas Kuhn’s notion of ‘normal science’ and 

identifies the period preceding a revolution in science in which established ontological and 

methodological frameworks increasingly struggle to address mounting anomalies [63, 348]. 
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PNS starts from a basic stance of epistemic humility (as discussed in section 1.3.2), 

acknowledging the inability of singular problem framings to capture the complex nature of 

many modern, socio-ecological problems. As explained by Floyd et al. [54], 

“A disposition of knowledge humility entails reflexivity with respect to the 

epistemological foundations and commitments that inform transition-oriented 

decision making and action. Here the response to the dilemma of uncertainty 

and ignorance is not to deny it or seek to eliminate it, but to learn to live with 

it through reflexive governance.” 

The lack of singular, definitive problem framings demands a much greater degree of 

interdisciplinarity in complex problem solving than is typical presently, as described by Levin 

et al. [110] and Sherwood et al. [328]. Ravetz [350] notes that PNS advocates for a shift 

towards ‘extended peer communities’ and away from expert monopolies on knowledge, 

which often suffer from reductionism and conceptual rigidity. A PNS perspective 

fundamentally reorients the researcher, as described by Kay et al. [351], 

“In the post-normal paradigm, a scientist’s role in decision making shifts from 

inferring what will happen, that is, making predictions which are the basis of 

decisions, to providing decision makers and the community with an 

appreciation, through narrative descriptions, of how the future might unfold.” 

This scientific approach is highly applicable to the study of complex socio-ecological systems, 

including the forthcoming third energy transition, as noted by Tainter et al. [25]. According to 

Floyd et al. [54], “there is much insight to be gained by locating the investigation of energy-

society futures squarely within the domain of post-normal science”. Consideration of a wide 

range of plausible futures is now crucial. However, as described in section 3.2.1.2, many 

conventional energy transition models and studies do not explore a sufficient range 

alternative possibilities and fail to adequately acknowledge and address uncertainty. Charting 

a path forward requires consideration of modelling practices consistent with PNS (outlined in 

section 3.3.1) and the use of analytical techniques for the management of uncertainty and 

risk in complex energy systems modelling (section 3.3.2). 
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3.3.1 PNS modelling practices 

In addition to the overview of principles for biophysical systems modelling presented in 

section 3.1.4, several supplementary modelling practices originating from PNS can be 

introduced. At the most basic level, the limits of any quantitative method must be recognized 

and clearly communicated to allow the proper interpretation of results [21, 54, 284]. 

Funtowicz and Ravetz [348] suggest that computer models are essentially untestable and are 

subject to the ‘garbage in, garbage out’ (GIGO) principle. They note, “a GIGO science is one 

where the uncertainties in the inputs must be suppressed, lest the outputs become 

completely indeterminate.” 

The characteristic PNS response to limitations inherent to any given modelling approach is to 

embrace greater pluralism of perspectives in modelling. For example, Gambhir et al. [146] 

suggest that conventional IAMs “should increasingly be supplemented with other models and 

analytical approaches”. Ruth and Hannon [145] note that plurality and competition among 

models is needed to improve knowledge of the behaviour of real-world systems. As 

demonstrated by the current state of conventional energy transition analysis, outlined in 

section 3.2.1, uncritical emulation of prevailing modelling practices can become a major 

impediment to necessary advances. 

The formation of extended peer communities can also help in energy modelling, as no single 

researcher can claim definitive expertise – complex systems are inherently multi-scale and 

resist simplification. Ravetz [281] suggests a participatory approach to mathematical 

modelling, with less emphasis on prediction and control and more on understanding narrative 

framings and exploration of areas of ignorance. Although stakeholder policy design and 

extended peer communities can play a vital role in building better models, Ruth [249] notes 

that success can be limited by the availability of real-world data and sufficient understandings 

of the system, without which the process can result in “negotiated nonsense”. This stresses 

the need for a careful balance between valuing expertise and fostering broader participation. 

Socio-technical narratives and associated problem framings play a central role in quantitative 

analyses, but often go unrecognized due to their ubiquity and implicit portrayal as ‘common 

sense’. In fact, appropriate problem framings are often more important than technical or 

methodological aspects [21, 284, 352]. Saltelli et al. [326] argue that quantitative techniques 

cannot be considered neutral, but rather influence, and are influenced, by prevailing 
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narratives. Saltelli et al. [284] warn that “Mathematical models are a great way to explore 

questions. They are also a dangerous way to assert answers” and suggest that a high degree 

of transparency regarding normative values, researcher bias, potential consequences, and 

unknowns is required to ensure the productive use of models within society. 

Giampietro et al. [21] describe an epistemological impasse facing the quantitative analysis of 

complex energy systems, requiring comprehensive pre-analytical framing regarding: 

• the choice of methodology, 

• research objectives, 

• boundary conditions, and spatial and temporal scales of analysis, 

• semantic choices regarding relevant energy forms (i.e., an appropriate energy 

grammar, as described in section 3.1.4), 

• the intended approach to uncertainty and data quality, 

• choices regarding relevant indicators and their respective descriptive domains, and 

• interpretation of the usefulness of results. 

3.3.2 Sensitivity and diagnostic analysis 

The PNS perspective emphasizes the need to evaluate the implications of uncertainty in 

quantitative models via comprehensive ‘sensitivity audits’ [284, 326, 333, 353]. As described 

in section 3.1.4.3, uncertainty in models stems from both imperfect data quality and semantic 

indeterminacy resulting from the chosen modelling formulation. Sensitivity analyses are rare 

in conventional energy transition studies (as discussed in section 3.2.1.2), representing a 

major deficit. Even where they are performed, methodological flaws are common – in 

particular, the lack of simultaneous variation of inputs leaving most of the input space 

unexplored – as noted by Van Der Sluijs et al. [333]. 

Saltelli [354] defines sensitivity analysis as “the study of how the uncertainty in the output of 

a model (numerical or otherwise) can be apportioned to different sources of uncertainty in 

the model input”. Sensitivity values therefore provide an indication of the potential impacts 

of estimation errors in each uncertain model input with respect to a given model output. 

Monte Carlo simulation, by surpassing the limitations of deterministic models, is well-suited 

to the PNS perspective and can effectively facilitate multivariate sensitivity analysis via the 
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creation of result ensembles. Even so, epistemic limits facing of quantification of uncertainty 

are apparent and must be acknowledged. As described by Van Der Sluijs et al. [352], 

“Mainstream uncertainty methods such as Monte Carlo analysis, or Bayesian 

updating alone are not suitable for this class of problems because the main 

problem characteristic is that unquantifiable uncertainties dominate the 

quantifiable ones. Unquantifiable uncertainties include those associated with 

problem framings, model structures, assumptions, system boundaries, 

indeterminacies, and value ladenness.” 

Crucially, sensitivity analysis is necessary but often insufficient as is does not characterize the 

absolute risk of modelling errors. To determine absolute risk associated with each input, it is 

necessary to consider both the potential impacts of estimation errors (sensitivity) and the 

likelihood of estimation error (i.e., risk = impact × likelihood). This process of input risk 

identification can be performed using diagnostic analysis, described by Van Der Sluijs et al. 

[352] and Berner and Flage [144]. The primary purpose of diagnostic analysis is to identify 

inputs which must be treated with greater caution and critical scrutiny, and consequently, to 

highlight where further data gathering efforts would be most advantageous. 

The likelihood of input estimation error is related to the strength of knowledge attributable 

to the data sources and methods used to estimate the relevant probability distributions. 

Quantifying strength of knowledge is necessarily subjective and requires expert elicitation 

[352], but can be systematized. ‘Pedigree’ assessment is useful for this purpose, employing 

an ordinal scale to rate each uncertain input across distinct aspects of strength of knowledge, 

such as the mode of production, degree of peer acceptance, and realism of assumptions (see 

Berner and Flage [144]). The average of the component scores can be taken as the overall 

pedigree score representing the strength of knowledge for each input. Risk is then assessed 

as a function of sensitivity and pedigree scores for each uncertain input and can be 

categorized into risk levels defined by chosen thresholds, as illustrated in Figure 9. 
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Figure 9: diagnostic analysis example diagram, with risk category regions 

Risk category thresholds are arbitrary but are chosen to separate values along each axis into 

distinct, meaningful groups as effectively as possible. 

3.4 THE KNOWLEDGE GAP 

The study of future global energy transitions remains an immature and contested field of 

research, as discussed in section 3.2.1. Despite the pervasiveness and wide variety of energy-

economy-society forecasts, most are limited by a basic reductionist, techno-economic, and 

positivist orientation. In the author’s estimation, no conceptually valid best-practice 

methodologies for dynamic complex energy systems modelling have yet been developed. As 

introduced in section 3.1, any valid conceptual approach to the study of GES transformations 

must recognize the GES is an example of a CAS and understand energy transition as a complex, 

physically-bounded, path-dependent, socio-metabolic process. There is a lack of such systems-

cognizant GES models incorporating adequate treatment of irreducible uncertainty and 

necessary acknowledgement of the epistemic limitations of the implied approach. This deficit 

presents a clear gap in the literature. 

The model, and subsequent analysis of results, must be consistent with the conceptual 

synthesis presented in this chapter, including principles of dynamic systems modelling and 

modelling practices consistent with PNS, discussed in sections 3.1.4 and 3.3, respectively. 
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Note that it is not practical or appropriate to attempt to address all identified shortcomings 

of existing modelling approaches (discussed in section 3.2) in this research project – this can 

only address priority concerns while contributing to a growing plurality of models and 

perspectives. 

As described in section 1.4, the chosen primary research objective centres on exploratory 

modelling of the solution space of energetically feasible and viable pathways for GES 

transformation towards RE, under uncertainty. As a primarily physical approach, detailed 

representation of the global macroeconomy and feedback between the HSES and biosphere 

(including, for example, climate impacts on the HSES) are not within scope. This relates to 

selection of the GES as the holon of interest for modelling purposes (as described in section 

3.1.4). However, the following aspects are addressed (relevant sections indicated): 

• The implications of finite primary energy resources, heterogeneous resource quality 

distributions, and declining EROI for net energy production (section 2.1). 

• Endogenous technological change driven by goal seeking technology allocation 

(section 3.1.4.1) and technological learning effects (sections 2.1.1.3 and 2.2.1). 

• Distinctions between energy and power levels, including structural dependence on 

distinct, non-fungible capital stocks (section 3.1.2 and 3.1.2.2). 

• Representation of the hypercyclic component of the GES associated with the 

production of necessary capital (section 3.1.2.2), including energy costs of 

autocatalytic energy production (section 3.1.4.1) and constraints arising from the 

capacity of the HSES to provide the necessary labour and resources (section 3.1.2.3). 

• Disaggregated representation of non-equivalent energy flows to properly characterize 

the energetic metabolism of the GES (sections 3.1.2.4 and 3.1.4.1. 

• Representation of substitution processes between non-equivalent energy carriers via 

capital turnover, driven by technology allocation (sections 2.2.2 and 3.1.2.4). 

• Explicit modelling of the end-use conversion stage and the dynamic provision of 

energy services (sections 2.2.3 and 3.1.4.1). 

• Realistic time dynamics and delays, particularly for capital lifecycles (section 3.2.1.2). 

• Inclusion of supply intermittency impacts and required mitigation (section 2.1.2). 

• Representation of technological lock-in effects (sections 2.3.1 and 3.1.2). 
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• Avoidance of monetary quantification and time discounting in the model formulation 

(sections 3.1.4.1 and 3.2.1.1). 

• Representation of the bounded co-evolution of supply and demand (section 3.1.4.1), 

including rebound effects (sections 2.2.1 and 3.2.1.2) and the identification of net 

energy trap outcomes following terminal supply/demand divergence (section 3.1.2.3). 

• Characterization of high-level ecological impacts associated with GES transformation 

via the calculation of cumulative GHG emissions (section 3.1.2.3). 

Implementation of these aspects into a synthetic methodological approach to studying 

transformation pathways of the GES towards RE, starting with a pre-analytical framework 

aligned with PNS, is detailed in chapter 4.  
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4 METHODOLOGICAL APPROACH 

Equations presented in this thesis are simplified for brevity and clarity. Excluded details 

primarily concern recursive loop and error handling, corrections for initialization and 

boundary conditions, and interpolation functions. While expressions are presented as 

continuous, the systems dynamics modelling approach uses iterative calculation at discrete 

time steps due to variable interdependence in the form of feedback loops (as described in 

section 3.1.4.1). See section 9.4 for full calculation details. 

Vectors are denoted by bold, italicized, lower case letters and have units of power (EJ/year) 

unless otherwise stated. Matrices are denoted by italicized, upper case letters and are 

dimensionless unless otherwise stated. Hadamard, or elementwise, operations of 

multiplication, division, and exponentiation are denoted by the symbols ᴑ, ᴓ, and xᴑy, 

respectively. Vectors of zeros and ones are denoted 0 and j, respectively, with lengths inferred 

from the relevant linear algebraic operations. All vectors are treated as column vectors. 

4.1 PRE-ANALYTICAL FRAMEWORK 

The purpose of the pre-analytical framework described in this section is to define the 

ontological and epistemological foundations of the methodological approach developed to 

achieve the research objectives stated in section 1.4. Such foundations are crucial, as the 

transformation of the GES towards a RE basis represents an unprecedented, urgent, highly 

complex, and multi-scale challenge subject to conflicting socio-technical narratives, and as 

such, falls under the aegis of Post-Normal Science (PNS), as discussed in section 3.3. 

4.1.1 Conceptual orientation 

As described in section 3.1.4, CAS can be modelled using systems of equations developed via 

the system dynamics method. As discussed, system dynamics models are well suited for the 

quantitative simulation of non-linear behaviour arising from multiple, interacting feedback 

loops, but are not truly complex themselves and are unable to capture emergent behaviours 

under novel conditions outside of the system’s assumed domain of stability. This reinforces a 

fundamentally exploratory modelling orientation bound by a limited descriptive domain. The 

goal is not to produce a predictive model capable of forecasting real-world behaviour as this 
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is considered unattainable given the nature of CAS, and is inconsistent with the PNS 

perspective, as discussed in sections 3.1.4.2 and 3.3. 

GES transformation is considered primarily from a biophysical, complex systems perspective, 

focussing on feasibility and viability associated with the energetic, autocatalytic aspect of GES 

metabolism, as outlined in chapter 1. In contrast, comprehensive characterization of 

desirability requires detailed consideration of socio-economic factors that extends beyond 

the stated research objectives. Desirability is treated as indicative only, represented via goal 

seeking towards preferred states (detailed in section 5.2) and the quantification of high-level 

GES transformation outcomes (detailed in section 4.2.9.3). 

The general modelling approach to uncertainties in system interactions and boundary 

conditions is to use the least constraining defensible representations. This creates a pervasive 

but inevitable  optimism – as noted by Capellán-Pérez et al. [50], “The omission of restrictions 

when solving a system can only lead to optimistic results.” Consequently, hypothesized GES 

transformation outcomes reflecting greater degrees of desirability than indicated by the 

modelled solution space across multiple dimensions can be identified as either physically 

implausible or predicated on the existence of one or more of the following: 

1) significant (beneficial) feedbacks that are not modelled, 

2) model input parameters representing boundary conditions different from that 

modelled, biased towards greater optimism, 

3) novel technologies permitting functional roles different from those modelled, or 

4) decision making capable of performing better than that modelled. 

All of the above are considered improbable due to 1) the use of least constraining 

assumptions regarding the internal structure of the GES, 2) the very low statistical probability 

associated with the manifestation of consistent optimism across multiple key model 

parameters, 3) the rarity and slow diffusion of technological breakthroughs allowing new 

functional relations (as opposed to structural iterations, as discussed in sections 2.3.1 and 

3.1.1), and 4) the real-world ubiquity of social, political, and economic factors affecting 

decision making, with generally adverse implications for high-level transition outcomes 

relative to outcomes found via physical modelling (discussed further in section 5.2). 
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Necessarily, the identification of physical implausibility here is dependent on the range of 

socio-technical narratives implied by the full set of possible model configurations considered 

within the probabilistic formulation. By employing a highly inclusive set of initial states and 

boundary conditions and thereby maximizing the model’s descriptive domain, implausibility 

takes on a more reliable and unambiguous meaning. 

4.1.2 Boundaries and scale of analysis 

As discussed in section 3.1.4, designing an appropriate methodological approach requires the 

selection of a suitable scale of analysis, including levels of aggregation and analytical 

boundaries. Modelling GES transformation pathways while maintaining tractability 

necessitates a high-level approach involving substantial simplification and aggregation. The 

relative paucity of high-quality input data for quantification of the GES further supports the 

use of a simple, conceptual model, as greater model complexity is often overshadowed by 

irreducible uncertainties. However, the model must be complex enough to represent 

pertinent system behaviours that may influence and constrain GES transformation pathways. 

The chosen modelling approach is global and spatially aggregated, optimistically assuming no 

substantive geographic or geopolitical barriers regarding the distribution of GES 

infrastructures or movement of flows. However, it is disaggregated with respect to 

functionally non-equivalent energy flows and capital (see section 3.1.2.4). As discussed in 

section 3.1.4, high-level models must focus on functional representation of the system’s 

components at the expense of fully enumerating structural details and will therefore tend to 

overlook constraints that manifest at lower scales of analysis. Included energy flow and 

capital elements are chosen such that the modelling formulation is manageable while 

maintaining as much functional differentiation as possible. Given that globally aggregated 

capital stocks will necessarily encompass broad technological and operational diversity, 

modelled parameters refer to the functional averages applicable to these stocks. The selected 

temporal scale is from years to decades, covering the remainder of the 21st century. 

Social, political, and economic (i.e., non-energy) factors will not be directly considered in the 

modelling approach beyond a simple representation of feedback between the HSES and GES 

(described in section 4.2.4.5). While comprehensive a biophysical macroeconomic 

representation would be advantageous, as described in sections 3.1.3 and 3.2.1.1, this would 
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introduce vastly greater uncertainties and ambiguities, and is a considerable research 

endeavour in its own right, and is therefore not considered practical or within scope. 

However, macroeconomic implications for the broader HSES are discussed qualitatively in 

sections 7.2.5 and 8.1.5. 

As discussed in section 3.1.4, an explicit energy grammar must be defined prior to any 

meaningful quantification of the GES. Semantic categories constituting the energy grammar 

for the methodological approach outlined in this chapter can be summarized as follows: 

• The set of energy quantities, flows, and transformations under consideration is limited 

to anthropogenic, exosomatic, technologically mediated energy production, 

conversion, and end-use processes. This excludes the production and utilization of 

non-scalable or economically extraneous energy flows, for example, 

o food production and mechanical work performed using endosomatic energy 

(human or animal muscle power), 

o obsolete technologies such as sailing ships and steam locomotives, and 

o natural energy flows associated with the provision of ecosystem services. 

• Primary energy resources considered consist of natural energy fluxes and geological 

stocks of chemical potential or nuclear energy available for the production of the 

above energy flows, at scale. 

• As described above, energy flows and corresponding capital stocks are aggregated 

into equivalence classes to maximize functional differentiation within a manageable 

number of elements (arrays defining selected equivalence classes are presented in 

section 5.1). 

The formal category in all cases is power (EJ/year), quantified in terms of basic calorific 

content (heating values) or work, except for delivered energy services which require the 

application of semantic definitions based on ideal provision ‘reference modes’ (detailed in 

sections 4.2.1.3 and 4.2.2.5). 

The selected modelling approach is generally optimistic regarding ongoing improvements in 

technologies fulfilling existing functional roles, reflected in increasing process efficiencies, but 

does not include new functional roles corresponding to technologies that have not yet 

demonstrated commercial viability and scalability. The inclusion of speculative or unproven 

technologies is epistemically unjustified as no meaningful estimates can be made regarding 
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the likelihood or timing of their eventual availability. As such, the criteria applied for inclusion 

of technologies are as follows: 

• the technology must have advanced beyond the prototyping and pilot stages, 

• established technological standards and means of system integration must exist, 

• the technology must be commercially viable (without major subsidies), and  

• associated supply chains and secondary industries must exist at scale. 

In consideration of the above, the identified solution space is properly interpreted as a high-

level set of best-case GES transformation pathways and associated outcomes, generated from 

a biophysical, complex systems perspective, under uncertainty and excluding the possible 

impacts of speculative technologies. Additional scenarios are constructed to explore socio-

technical narratives of interest and query weaknesses evident in the chosen methodological 

approach (see section 5.3). As described in section 3.1.4.2, real-world events have the 

potential to invalidate the model, particularly where they correspond to a phase change to a 

novel system state. 

4.1.3 Epistemic uncertainty 

As discussed in sections 1.3.2, 3.1.4.3, and 3.3, analysis of GES transformation pathways 

requires acknowledgement of the high degree of irreducible uncertainty involved. Note that 

aleatory uncertainties are largely irrelevant at the spatial and temporal scales adopted for the 

methodological approach described here and can be disregarded.19 

In response to uncertainty arising from indeterminacy in high-level semantic definitions 

applied to CAS, discussed in section 3.1.4.2, a basic principle of semantic openness is adopted 

(analogous to Georgescu-Rogen’s dialectical penumbras discussed in section 3.1.4.3). This 

principle treats modelled elements and analytical boundaries (e.g., between the GES and 

wider HSES) as open to varying implicit definitions, without the possibility of a definitive 

standard. As such, modelling flexibility is given preference over precision. 

The GES transformation solution space is explored via Monte Carlo simulation of 

transformation pathways, under uncertainty. As discussed in section 3.3, the PNS perspective 

emphasizes the necessity of comprehensive sensitivity audits. Monte Carlo simulation offers 

 
19 This excludes the temporal variability of RE resources and corresponding effects manifesting at the system 
level, described in section 4.2.5. 
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an ideal approach to facilitate these audits by generating ensembles of GES transformation 

pathways and allowing comprehensive multivariate sensitivity and diagnostic analyses, 

outlined in sections 5.5.1 and 5.5.2, respectively. All input parameters subject to epistemic 

uncertainty are modelled probabilistically to capture the strength of knowledge and 

corresponding implications for GES transformation at the ensemble level. Uncertainty is 

represented to the degree possible given practical modelling limitations: 

• Uncertainty regarding model input parameter values is comprehensively represented 

via probability distributions (section 4.2.9.2). 

• Uncertainty regarding model structures and feedback loops is less well represented, 

as representation of the very large number plausible of alternatives is analytically 

prohibitive. However, this is partially addressed via scenario analysis and the 

exploration of specific socio-technical narratives (see section 5.3), and also aligns with 

conceptualizing the present modelling effort as part of a growing plurality of 

perspectives, not as a definitive approach (as discussed in section 3.3.1). 

4.2 PHYSICAL GES MODELLING PRINCIPLES 

As in the recent examples of biophysical energy systems models overviewed in section 

3.2.2.1, GES evolution is assumed to be driven by exogenous energy demand, and as such, 

the simulated solution space effectively identifies feasible and infeasible demand projections. 

However, unlike these studies, demand is represented at the level of final energy services 

(outlined in section 4.2.1.3), allowing explicit representation of dynamic substitution 

processes between distinct energy carriers (adaptation in end-use capital; see section 

4.2.2.2). The modelling approach also incorporates the aspects listed in section 3.4: 

• Structural representation of the GES via distinct power capacity stocks (section 4.2.2). 

• Modelling of end-use conversion and the provision of energy services (section 4.2.2.2). 

• Endogenous changes in power capacity efficiencies driven by technological learning 

effects and capital turnover, bounded by maximum theoretical efficiencies, including 

delayed feedbacks associated with the technological lock-in effect (section 4.2.2.5). 

• Heterogeneous primary energy resource quality distributions determining the energy 

costs of autocatalytic energy production, including terminal depletion thresholds for 

NRE resource production (section 4.2.4.1). 
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• Disaggregation of the metabolic energy costs of the GES to specific, dynamic energy 

carrier profiles (section 4.2.4.3). 

• Realistic time dynamics for energy infrastructure lifecycles, with representation of 

differences between distinct capital types (section 4.2.4.4). 

• Representation of the hypercyclic component of the GES subject to constraints arising 

from the limited capacity of the HSES to provide labour and resources (section 

4.2.4.5). 

• Representation of intermittency impacts and corresponding mitigation options within 

electricity systems (section 4.2.5). 

• Co-evolution of the supply and demand sectors with explicit modelling of changes in 

both over time and energy carrier substitution in response to signals of energy carrier 

scarcity, including partial representation of rebound effects (section 4.2.9.1). 

• Metrics relating to the implications of GES transformation pathways for climate 

change (cumulative energy related GHG emissions) and the identification of net 

energy trap outcomes following critical divergence between supply and demand 

(section 4.2.9.3). 

Note that goal seeking technology allocation (in terms of power capacity investment) drives 

system evolution, as discussed in section 4.2.9.1. This is an aspect of system control logic 

applied in the specific implementation of the modelling principles presented in this chapter, 

outlined in section 5.2. 

The high-level, spatially aggregated modelling approach described here can be considered 

‘semi-stylized’, particularly regarding model aspects subject to a relative lack of high-quality 

data or simplifying assumptions, particularly: 

• reconciliation of upstream and downstream model sectors using a cumulative 

supply/demand balance function (section 4.2.1.2), 

• representation of auxiliary infrastructures required by the GES (section 4.2.2.4), 

• estimation of the energy costs of secondary and end-use capital (section 4.2.4.2), 

• representation of exogenous model interfaces using stochastically generated logistic 

functions (section 4.2.8), 

• the specific heuristic method used for system control purposes (section 5.2), and 

• the wide probabilistic ranges for exogenous energy service demand (section 4.2.1.3). 
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Despite the semi-stylized nature of the modelling approach, inputs and model structures are 

intended to correspond to the real-world GES as closely as possible. Identified model 

limitations are listed in section 5.4. 

4.2.1 Energy flow schema 

The energy flow schema depicted in Figure 10 spans primary energy resources to energy 

carriers (EC) to delivered energy services (ES). Primary, secondary, and end-use power 

capacity (PC) stocks are involved in the production of primary flows, conversion of primary 

energy flows to ECs, and conversion of ECs to ESs, respectively. Note that energy losses are 

evident at all stages. This schema is spatially aggregated so is robust to varying degrees of 

infrastructural centralization. 

 

 

Figure 10: overview of the energy flow schema from primary energy resources to delivered energy services 

Note that all PC, EC, and ES types are disaggregated into distinct functional types, as specified 

in section 5.1. 

4.2.1.1 Primary energy resources 

Primary energy resources provide a series of primary RE and NRE flows to the secondary 

conversion stage, which can be described by vectors (specified in terms of flow rates) evolving 

as functions of time as the production of energy changes: 



112 
 

𝒑𝒓 = 𝒇(𝑡)  and  𝒑𝒏 = 𝒇(𝑡) 

Where pr consists of flows derived from all functionally distinct, renewable, primary energy 

resources available to the GES, and similarly, pn consists of flows from all distinct non-

renewable primary energy resources. These flows are limited by the physical availability of 

respective resources: 

𝒑𝒓 ≤ 𝒑𝒓𝒎  and  ∫ (𝒑𝒏 + 𝒑𝒏𝒆)
∞

𝑡=0
< 𝝎𝒏𝒎 

Where, prm is the vector of maximum RE flow rates, or technical potentials, 

ωnm (units of EJ) is the vector of maximum ultimate cumulative NRE production, and 

pne is the vector of direct (non-energy) use of NRE resources, as primary energy equivalent.  

That is, RE production is flow limited while NRE production is stock limited, by definition. 

Note, the direct use of primary energy resources without conversion to ECs is considered 

outside the boundary of the GES and is modelled as resource outflows only. For NRE, this is 

modelled as a vector of outward flows from NRE resource stocks, pne (expression given in 

section 4.2.1.3). For RE, non-energy use is ignored as RE technical potentials as modelled are 

those components of total resources assumed to be available for energy purposes.  

As discussed in section 2.1.1, the quality of primary energy resources quality is non-

homogeneous and can be described by quality distributions as functions of production 

relative to the above absolute limits. Production can be specified relative to respective limits 

using normalized vectors: exhaustion, x, for RE and depletion, d, for NRE (both 

dimensionless): 

𝒙(𝑡) = (𝒑𝒓 − 𝒑𝒓(0)) ᴓ (𝒑𝒓𝒎 − 𝒑𝒓(0)) 

𝒅(𝑡 = 𝜏) = ∫ (𝒑𝒏 + 𝒑𝒏𝒆)
𝜏

0

𝑑𝑡 ᴓ 𝝎 

Where, pr(0) is the vector of RE production rates at the beginning of the study period, and 

 ω (units of EJ) is the vector of NRE technically recoverable resources available with EROI values 

above specified terminal values (RURR at the beginning for the study period). 

Both prm and ω are defined as primary resource quantities accessible above specified terminal 

EROI values, after which production is assumed to be impractical and uneconomic. These 

accessible primary resource quantities and associated primary flows, pr and pn, are both 

defined net of losses for simplicity (making explicit modelling of primary losses unnecessary). 
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Note that it is possible for RE production to fall below its initial rate, in which case exhaustion 

becomes negative. In contrast, depletion of NRE resources can only increase. However, NRE 

depletion values can exceed one if cumulative production exceeds ω, after which EROI falls 

below terminal values (see section 4.2.4.1). In effect, the economic and technical limits to 

production determining technical potentials and RURR are treated as coincident with 

specified terminal EROI values. As a full treatment of economic factors involved in resource 

exploitation is out of scope for this study, primary energy resources, prm and ω, are modelled 

probabilistically to account for epistemic uncertainty (see section 4.2.9.2). Additionally, 

intermittency related feedbacks affect the production of primary energy resources, as 

described in section 4.2.4. 

4.2.1.2 Energy carriers 

As discussed in section 2.2.2, the non-equivalence of distinct ECs must be considered 

explicitly. Therefore, disaggregation of EC supply/demand imbalances and consequent 

implications for investment requirements and substitution are paramount. The dynamic 

supply and demand of ECs represents an operative interface, indicating relative scarcity or 

abundance due to dynamic changes or constraints affecting the production or consumption 

of ECs. EC supply and demand flows can be described by vectors, pi and po, respectively, 

evolving as functions of time as the production and consumption of energy changes: 

𝒑𝒊 = 𝒇(𝑡)  and  𝒑𝒐 = 𝒇(𝑡) 

Where both vectors consist of all functionally distinct ECs produced and consumed within the 

GES. Differences between the inflow and outflow of ECs over time can be tracked using a 

cumulative supply/demand balance vector, b (in units of EJ): 

𝒃(𝑡 = 𝜏) = ∫ (𝒑𝒊 − 𝒑𝒐)
𝜏

0
𝑑𝑡  (1) 

Note that while supply/demand imbalances over time are represented mathematically as 

integral functions, this does not necessarily correspond to commensurate physical quantities. 

Instead, the b vector can be seen as a price proxy and signal of scarcity or abundance 

motivating dynamic changes in investment and consumption, as discussed in section 4.2.9.1. 
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4.2.1.3 Energy services 

As discussed in section 2.2.3, the purpose of the GES is the provision of ESs required by the 

HSES. While final energy consumption is conventionally defined in terms of the outflow of ECs 

(or ‘final energy demand’), po, it is advantageous to extend the model boundary to include 

end-use (EU) PC and the dynamic provision of ESs. This conceptual expansion allows the 

dynamic, explicit representation of EC substitution processes, including investment flows and 

time required for capital turn-over. 

It is generally not possible to precisely delineate the component of energy delivered to end-

users comprising ‘useful’ services from that which is not useful. Therefore, flows of ESs can 

only be quantified with reference to chosen benchmarks. Thermodynamic energy input 

minima exist for any physical process (corresponding to maximum second law efficiency), 

such as the specific heat capacity for heating substances or the kinetic energy of motion. 

However, while relevant at the local process level, these minima are not applicable to 

definitions of useful energy at the global aggregate level due to the complexity and 

heterogeneity of real-world ES delivery systems and processes. As such, useful energy in the 

form of ESs requires semantic definitions; the corollary to the definition of efficiencies for the 

delivery of ESs, as discussed further in section 4.2.2.5. Delivered ES flows can be described by 

a vector evolving as a function of time as the consumption of energy changes: 

𝒑𝒅 = 𝒇(𝑡) 

Where pd consists of all functionally distinct ESs demanded by the HSES; the main set of 

independent variables driving GES evolution, as described in section 4.2. Owing to significant 

epistemic uncertainty regarding future ES demands, pd is modelled probabilistically (as 

described in section 4.2.9.2). ES demands as modelled exclude intermediate services used 

directly or indirectly for the construction, operation, and decommissioning of capital 

comprising the GES itself (modelling of this internal component of end-use energy 

consumption is detailed in section 4.2.4). 

The discretionary and non-discretionary components of ES demand are not differentiated. 

Discretionary demand can be expected to respond more strongly to signals of scarcity or 

abundance than non-discretionary demand (due to higher price elasticity of demand). 
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However, modelling of this distinction is out of scope, as it would require additional feedback 

loops and behavioural assumptions that extend beyond a physical representation of the GES. 

Aggregate ES demand can also be characterized by the metric ‘demand flexibility’, q 

(dimensionless scalar), to describe the normalized degree of demand responsiveness to 

temporal patterns in infrastructure utilization and the availability of supply. At the extremes, 

a value of zero implies no demand response while a value of one implies perfect correlation 

between demand and infrastructure capacity limitations and intermittent supply. Demand 

flexibility is assumed to increase over time as improved consumer responsiveness via 

behavioural and technological changes causes demand patterns to become more sensitive to, 

and synchronized with, primary energy availability and capacity constraints.  

𝑞 = 𝑓(𝑡)  where  0 ≤ 𝑞 ≤ 1 

See section 4.2.8 for details of functions for ES demand and demand flexibility (equations 

given in section 9.3.2). 

For simplicity, it is assumed that direct, non-energy NRE use, pne, is subject to similar 

underlying economic drivers to those affecting ES demands and, therefore, non-energy use 

scales with the mean of delivered ES demands relative to their initial levels, pd(0): 

𝒑𝒏𝒆 =
𝒑𝒏𝒆(0)

𝑛
∑ (𝒑𝒅 ᴓ 𝒑𝒅(0))𝒊

𝑛

𝑖=1
 

Where n is the length of ES demand type vectors. While the embodied energy in chemical 

feedstocks and other non-energy NRE uses could be considered among ESs, these flows are 

taken directly from the primary energy resource and do not traverse the energy flow schema 

shown in Figure 10. 

4.2.2 Power capacity 

As discussed in section 3.1.2, PC consists of technological capital capable of transforming 

exosomatic energy flows. Each PC stock is modelled as a homogenous and continuous 

quantity specified by maximum aggregate output flow rate. Note that the retrofitting of 

capital is consistent with this representation, via incremental additions of PC. Losses 

inevitably occur in any energy conversion, distribution, or utilization process, such that output 

power flows from PC are always less than the associated input flows, as depicted in Figure 11. 
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Figure 11: functional schematic of power capacity 

Changes in the production and consumption of ECs, pi and po, can be represented via evolving 

profiles of power capacities comprising the supply and demand sectors, respectively. These 

profiles are affected by additions of new PC, decommissioning of end-of-life PC, changes in 

utilization, and improvements in process efficiencies (ratios of input to output flows). 

PC stocks can be described by vectors, cx, calculated as integral functions starting from initial 

PC stocks, cx(0), PC addition flows, hx (units of EJ/year2), less decommissioning flows: 

𝒄𝒙(𝑡 = 𝜏) = 𝒄𝒙(0) + ∫ (𝒉𝒙 − 𝒄𝒙(0) ᴓ 𝒍𝒙)
𝒍𝒙

𝟎

𝑑𝑡 + ∫ (𝒉𝒙 − 𝒉𝒙(𝜏𝒋 − 𝒍𝒙))
𝜏𝒋

𝒍𝒙

𝑑𝑡 

The subscript x is replaced with r, n, s, and e to denote primary RE, primary NRE, secondary, 

and EU PC, respectively. The output power flows these sets of PC stocks produce are then 

described by vectors pr, pn, ps, and pe, respectively. Note that decommissioning flows are 

represented by delayed PC addition flows, hx(τj – lx), where lx is the vector of the operating 

lifetimes of PC (in units of years). As the delayed PC addition flow function for PC 

decommissioning is only defined after time lx has elapsed, decommissioning flows are 

represented by a uniform depletion of the initial PC stocks prior to this time. 

Additional PC quantities are not added immediately to operating PC stocks after investment 

decisions are made (in terms of PC additions, not monetary investment). Instead, these 

investment decision flows, ĥx (units of EJ/year2), are first added to stocks of PC in the 

construction phase, wx (in units of EJ/year): 

𝒘𝒙(𝑡 = 𝜏) = 𝒘𝒙(0) + ∫ (𝒉̂𝒙 −𝒘𝒙(0) ᴓ 𝒛𝒙)
𝒛𝒙

𝟎

𝑑𝑡 + ∫ (𝒉̂𝒙 − 𝒉̂𝒙(𝜏𝒋 − 𝒛𝒙))
𝜏𝒋

𝒛𝒙

𝑑𝑡 

Where zx is the vector of build times for new PC (in units of years). PC addition flows, hx, are 

then given by outflows from the stock of PC in the construction phase: 
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𝒉𝒙 = {
𝒘𝒙(0) ᴓ 𝒛𝒙 𝑓𝑜𝑟 𝑡𝒋 <  𝒛𝒙
𝒉̂𝒙(𝑡𝒋 − 𝒛𝒙) 𝑓𝑜𝑟 𝑡𝒋 ≥  𝒛𝒙

 

4.2.2.1 Upstream sector 

All PC affecting the supply of ECs, pi, can be termed the upstream sector. As depicted in Figure 

12, upstream PC can be separated into three stages (with losses modelled at the latter two 

stages only): 

1) production of primary RE or NRE flows (pr, pn), 

2) conversion of primary RE or NRE flows to output ECs (pr, pn → ps), and 

3) transportation and distribution of output ECs to the point of end-use (ps → pi). 

 

Figure 12: functional schematic of upstream power capacity 

Secondary conversion involves the production of ECs through various processes, including 

combustion, fuel refining, and electricity generation. Output ECs are then delivered to the 

point of end-use via transportation and distribution networks, such as electricity transmission 

networks, fuel tankers and pipelines, and steam systems for transmitting heat. Note that 

these networks and associated infrastructures are required for the delivery of ECs but are not 

included in the definition of secondary PC (see section 4.2.2.4). 

Secondary conversion can be nominal where ECs are produced at the primary stage (e.g., solar 

PV and hydroelectricity). Where this occurs, secondary PC is still typically needed for system 

integration (e.g., transformers and electrical equipment). Therefore, EC flows are considered 

delivered and available to the GES only after having traversed the secondary conversion stage. 

Note that the extant quantities of primary and secondary PC are mutually dependent, i.e., 

primary PC to produce primary flows and secondary PC to process these flows must be 

approximately equal over time, with unused capacity indicating sub-optimal investment. The 

practical handling of upstream synchronization of PC additions is detailed in section 5.2.5.2. 
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4.2.2.2 Downstream sector 

All PC affecting the final, non-energy system demand for ECs (a subset of po) can be termed 

the downstream sector. As depicted in Figure 13, downstream PC can be separated into two 

stages (with losses modelled at both stages): 

1) conversion of input EC flows to output power (po → pe), and 

2) provision of ESs using output power via passive systems (pe → pd) 

 

 

Figure 13: functional schematic of downstream power capacity 

EU conversion involves the production of useful output power by various means, including 

internal combustion engines, electric motors, and heating elements. Output power is then 

delivered as final ESs via various passive systems, such as passenger vehicles, driven systems, 

or furnaces [212, 225]. Note that passive systems are typically, but not always, included in the 

definition of EU PC (see section 4.2.2.4). 

Changing the profile of final EC consumption needed to meet ES demands, pd, requires PC 

addition flows, he, to change the composition of downstream PC stocks. While major changes 

in EU PC composition have historically required extensive reorganizations of infrastructure, 

production, trade, and population densities [6, 14], detailed modelling of these processes is 

out of scope. The energy costs of such spatial reorganization processes are assumed to: 

• be represented implicitly in exogenous ES demands and explicitly in the turnover of 

modelled auxiliary infrastructures (defined in section 4.2.2.4), and 

• pose no constraints to GES transformation beyond those modelled. 

Note that cogeneration and heat recovery (depicted in in Figure 13) allows for a partial return 

of ECs where large waste heat flows are generated (primarily from high temperature 

industrial processes). See sections 4.2.3 and 9.5.5.5 for modelling details. 
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4.2.2.3 Capacity utilization 

While PC is quantified with reference to a technical maximum (or ‘nameplate’) capacity to 

produce output power, aggregate PC is not used at full utilization due to various technical, 

operational, and economic factors, including the temporal heterogeneity of demand, typical 

use behaviours, and the need for downtime to maintain PC in working order. The average 

ratio between the actual output rate and maximum output rate can be used as a measure of 

PC utilization and is termed ‘capacity factor’ (CF). CFs for each category of PC stocks can be 

described over time by a vector, u (dimensionless): 

𝒖 = 𝒑 ᴓ 𝒄  where  𝒄 > 𝒑  such that  0 < 𝒖 < 1 

For upstream PC, capacity factors can increase up to defined limits: 

𝒄𝒙 ᴑ 𝒖𝒙 = 𝒑𝒙  where  𝒖𝒙 ≤ 𝜸𝒙 ᴑ 𝒖𝒙𝒎 

The subscript x is replaced with r, n, and s, to denote primary RE, primary NRE, and secondary 

PC, respectively. CF maxima are given by the vectors urm, unm, and usm. Note that CFs drop 

when capacity is unneeded. Effective upper limits can change due to dynamic interactions 

within electricity systems in response to intermittency mitigation, represented by the 

normalized vectors γr, γn, and γs, as described in section 4.2.5. Maximum secondary CFs can 

also fall due to active curtailment by system control to avoid destabilizing levels of EC surplus 

(see section 5.2.5.3 for details): 

𝒖𝒔𝒎 = 𝒇(𝒃) 

For downstream PC, ‘target’ CFs described by the vector uet change over time, as described in 

section 4.2.8 (equation given in section 9.3.1.3.1). Target CFs are optimistically assumed to 

rise as behavioural and technological changes lead to more efficient utilization of EU PC. CFs 

fall below target levels when more EU PC is present than needed to meet ES demands. 

𝒖𝒆𝒕 = 𝒇(𝑡) 

𝒄𝒆 ᴑ 𝒖𝒆 = 𝒑𝒆 

Unlike primary and secondary CF maxima, target CFs do not represent hard limits but rather, 

when exceeded, act as a trigger for investment in the relevant EU PC type to bring ue back to 

uet or below. This CF driven investment is described in section 5.2.5.1. 
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4.2.2.4 Auxiliary infrastructure 

Auxiliary infrastructure (AI) is defined here as the various capital stocks not directly involved 

in converting or transforming energy flows but required for the operation of PC: 

• In the upstream sector, supply infrastructures are required for the processing and 

transportation of primary RE and NRE flows, and for the delivery of ECs to the point of 

end-use (i.e., upstream AI supports the transformation of pr and pn to po). This includes 

capital required for the mitigation of supply intermittency in electricity systems, such 

as storage and additional transmission capacity, as detailed in section 4.2.5. 

• In the downstream sector, passive systems using applied power to deliver ESs often 

require extensive infrastructures for their operation, such as road and rail networks, 

ports, and airports (i.e., downstream AI supports the transformation of pe to pd). 

• For both upstream and downstream sectors, various direct and indirect requirements 

for socio-technical capacities can be considered part of aggregate AI, including 

institutions, organizational capacity, personnel training, and supporting industries. 

While EU passive systems are typically considered part of PC, not AI, separations between 

passive systems and associated AI are relatively ambiguous for some EU PC types, e.g., rail 

carriages and railways, and illuminated, heated, and cooled spaces. This implies a 

considerable degree of epistemic uncertainty, handled via probabilistic modelling as 

described in section 4.2.9.2. 

Like PC, AI is measured in terms of maximum power rate, however, AI must be sized to 

accommodate the maximum output level observed over the relevant temporal demand 

profile. As such, AI quantities required are determined by the ratios of peak to average 

utilization, or ‘peak factors’. Lower peak factors imply less temporal variability of AI utilization 

and vice versa. Peak factors can be described by the vectors vsa and vea (dimensionless), for 

secondary and EU AI, respectively, and can optimistically be expected to decline over time as 

demand flexibility, q, increases. As such, peak factors are assumed to decline linearly as 

functions of demand flexibility, with lower limits of one: 

𝒗𝒔𝒂 = (1 − 𝑞)(𝒗𝒔𝒃 − 𝒋) + 𝒋   and  𝒗𝒆𝒂 = (1 − 𝑞)(𝒗𝒆𝒃 − 𝒋) + 𝒋 
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Where vsb and veb are the base peak factor vectors defined at zero demand flexibility. As each 

AI type is associated with specific groupings of PC, required AI is specified via identity 

matrices, Isa and Iea: 

(𝐼𝑠𝑎 , 𝐼𝑒𝑎)𝑖𝑗 = {
1 𝑤ℎ𝑒𝑟𝑒 𝑃𝐶 𝑡𝑦𝑝𝑒 𝑖 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝐴𝐼 𝑡𝑦𝑝𝑒 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Secondary and EU AI requirement vectors, asa and aea, respectively, can then be calculated 

from average output power flows, ps and pe: 

𝒂𝒔𝒂 = 𝜸𝒇 ᴑ (𝒑𝒔
𝑻𝐼𝑠𝑎)

𝑻 ᴑ 𝒗𝒔𝒂  and  𝒂𝒆𝒂 = (𝒑𝒆
𝑻𝐼𝑒𝑎)

𝑻 ᴑ 𝒗𝒆𝒂 

Where the vector γf represents dynamic interactions within electricity systems in response to 

intermittency mitigation affecting secondary AI required, as described in section 4.2.5. 

Vectors of AI stocks in operation, csa and cea for secondary and EU AI, respectively, are 

modelled analogously to PC stocks (as integral functions, with wsa and wea representing stocks 

in construction) but do not have directly associated output power flows. Investments into AI 

can, for simplicity, be considered a direct consequence of the requirement vectors, asa and 

aea, with investment, ĥsa and ĥea, occurring in proportion to any deficit of AI in operation 

relative to the AI requirement: 

𝒉̂𝒔𝒂 = 𝜸𝒇𝒉 ᴑ 𝑚𝑎𝑥(𝟎, (𝒂𝒔𝒂 − 𝒄𝒔𝒂) ᴓ 𝒛𝒔𝒂)  and  𝒉̂𝒆𝒂 = 𝑚𝑎𝑥(𝟎, (𝒂𝒆𝒂 − 𝒄𝒆𝒂) ᴓ 𝒛𝒆𝒂) 

Where the vector γfh represents dynamic interactions within electricity systems in response 

to intermittency mitigation affecting AI investment flows, as described in section 4.2.5. As 

such, AI availability is not considered a hard limit for ES provision but will expand or shrink to 

accommodate changes in PC output power over time. This simplification is justified on the 

grounds that AI can be used, with some operational adjustments, to accommodate increased 

flows (overcapacity) but must ultimately be expanded to relieve pressure. This allows the 

energetic costs of AI to be dynamically included in GES transformation pathways without the 

use of complex logic for associated investment functions. 

4.2.2.5 Efficiencies 

Modelled energy losses occur within the GES at the primary, secondary, and end-use stages 

(with corresponding efficiencies) as depicted in Figure 14 and Figure 15. As discussed in 

section 2.2.1, process-level efficiencies are expected to continue to increase over time due to 

technological learning effects, causing proportional energy losses to decrease, but are 
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ultimately limited by achievable maxima stemming from technical limitations and practical 

design considerations including the power/efficiency trade-off. See sections 9.3.1.4.1 and 

9.5.6 for details of achievable efficiency maxima modelling and assumptions. 

Distinct efficiencies can be identified for both upstream and downstream PC. For the 

upstream sector (depicted in Figure 14): 

• Conversion efficiency is given by the ratio of the primary input flow to the output EC 

flow (at the physical PC boundary). 

• Reticulation efficiency is given by the ratio of the output EC flow to the flow of EC 

delivered to the point of end-use via distribution networks. 

• Note that there is no need for efficiencies to be explicitly modelled at the primary 

stage, as primary resource quantities, ω and prm, and associated primary flows, pr and 

pn, are both defined net of losses, as noted in section 4.2.1.1. 

 

Figure 14: upstream conversion and reticulation efficiencies in relation to PC 

For downstream PC (depicted in Figure 15): 

• Conversion efficiency is given by the ratio of the input EC flow to the output power 

flow (at the physical PC boundary). 

• EU to ES efficiency is given by the ratio of output power flow to the flow of useful ESs 

delivered via EU passive systems. 

 

Figure 15: downstream conversion and EU to ES efficiencies in relation to PC 
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As described in section 4.2.1.3, EU to ES efficiencies must be defined in relation to chosen 

semantic definitions of delivered ESs. The convention used here is to quantify output power 

relative to ‘reference modes’ selected such that the greatest identified practically attainable 

efficiencies for delivering each given ES (i.e., the highest achievable efficiency maxima across 

all relevant PC types) are determined to have EU to ES efficiency values of one. These 

reference modes correspond to the lowest possible EU PC output power flow per unit of 

delivered ES, representing ideal ES provision from an efficiency point of view. Other EU to ES 

efficiencies for each ES demand type are then specified relative to this reference mode 

efficiency. See sections 5.1 and 9.5.6.5 for details. 

Effective efficiencies for new PC, given by the vector ə, can be modelled as functions of time, 

as cumulative PC power output increases and technological learning effects accumulate. 

Subsequently, mean PC efficiencies of the aggregate stock, e, evolve as functions of 

investment as the composition of the PC stocks change: 

𝒆𝒙𝒚 = 𝒇(ə𝒙𝒚 (∫𝒑𝒙𝑑𝑡) , 𝒉𝒙) 

Where the subscript x is replaced by s and e to denote secondary and EU, respectively, and y 

is replaced by i and o to denote conversion (PC input) and reticulation or EU to ES (PC output) 

efficiencies, respectively. See section 4.2.8 for details (equations given in sections 9.3.1.4.1 

and 9.3.1.5.1). 

Effectively, the propagation of new PC to mean PC stock efficiencies represents path-

dependence associated with the technological lock-in phenomena discussed in section 2.3. 

Higher efficiency PC options will tend to get preferential investment, leading to more 

cumulative output and higher efficiency in a positive feedback loop. However, this effect will 

tend to diminish over time as learning effects and efficiency gains continue, with investment 

eventually shifting towards PC options with greater efficiency potential. 

4.2.3 Flow routing 

One-to-many and many-to-one mappings exist between linked PC types at sequential stages 

within the GES as vectors describing each PC category have different dimensions. To manage 

flow routing and required aggregations, a sequence of identity matrices must be constructed: 

• Irsi for mapping primary RE PC types to secondary PC types, 
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• Insi for mapping primary NRE PC types to secondary PC types, 

• Iso for mapping secondary PC types to EC types, 

• Iei for mapping EC types to EU PC types, and 

• Ieo for mapping EU PC types to ES types. 

Firstly, where all mappings are unitary, 

(𝐼𝑟𝑠𝑖 , 𝐼𝑛𝑠𝑖 , 𝐼𝑒𝑜)𝑖𝑗 = {
1 𝑤ℎ𝑒𝑟𝑒 𝑎 𝑓𝑙𝑜𝑤 𝑒𝑥𝑖𝑠𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑃𝐶 𝑡𝑦𝑝𝑒 𝑖 𝑎𝑛𝑑 𝑃𝐶 𝑜𝑟 𝐸𝑆 𝑡𝑦𝑝𝑒 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Special cases require non-unitary mappings. For Iso, this is due to multiple EC outputs for 

combined heat and power (CHP) PC types, which produce both electricity and heat (rows must 

represent actual output proportions and sum to one).  For Iei, cogeneration and waste heat 

recovery return a fraction of input energy as electricity and heat, respectively, for high 

temperature processes, reducing input factors for both ECs: 

(𝐼𝑠𝑜)𝑖𝑗 = {
1 𝑤ℎ𝑒𝑟𝑒 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑓𝑙𝑜𝑤 𝑒𝑥𝑖𝑠𝑡𝑠 𝑓𝑟𝑜𝑚 𝑃𝐶 𝑡𝑦𝑝𝑒 𝑖, 𝑡𝑜 𝐸𝐶 𝑡𝑦𝑝𝑒 𝑗

< 1 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑓𝑙𝑜𝑤 𝑓𝑟𝑜𝑚 𝑃𝐶 𝑡𝑦𝑝𝑒 𝑖 𝑡𝑜 𝐸𝐶 𝑡𝑦𝑝𝑒 𝑗 𝑖𝑠 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 (𝑟𝑜𝑤 𝑠𝑢𝑚𝑠 𝑡𝑜 1)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(𝐼𝑒𝑖)𝑖𝑗 = {
1 𝑤ℎ𝑒𝑟𝑒 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑓𝑙𝑜𝑤 𝑒𝑥𝑖𝑠𝑡𝑠 𝑓𝑟𝑜𝑚 𝐸𝐶 𝑡𝑦𝑝𝑒 𝑖, 𝑡𝑜 𝑃𝐶 𝑡𝑦𝑝𝑒 𝑗

< 1 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑛𝑒𝑡 𝑓𝑙𝑜𝑤 𝑓𝑟𝑜𝑚 𝐸𝐶 𝑡𝑦𝑝𝑒 𝑖 𝑡𝑜 𝑃𝐶 𝑡𝑦𝑝𝑒 𝑗 𝑖𝑠 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑑𝑢𝑒 𝑡𝑜 𝐸𝐶 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

As primary energy flows from a given primary PC type can flow to multiple secondary PC 

types, an allocation principle is required. For simplicity, it is assumed that secondary PC types 

receive shares of primary flows in proportion to their respective input capacities to process 

these flows. These input capacities are given by extant secondary PC quantities multiplied by 

maximum CF (maximum aggregate output capacities), divided by secondary conversion 

efficiency to shift from outputs to the corresponding input flows. Therefore, matrices of 

relative proportional mappings for primary RE and NRE flows to secondary PC output power, 

Frsi and Fnsi (units of EJ/year), are given by, 

𝐹𝑟𝑠𝑖 = 𝐼𝑟𝑠𝑖 ᴑ (𝒄𝒔 ᴑ 𝜸𝒔 ᴑ 𝒖𝒔𝒎 ᴓ 𝒆𝒔𝒊)
𝑻  and  𝐹𝑛𝑠𝑖 = 𝐼𝑛𝑠𝑖  ᴑ (𝒄𝒔 ᴑ 𝜸𝒔 ᴑ 𝒖𝒔𝒎 ᴓ 𝒆𝒔𝒊)

𝑻 

First, note that primary energy flows, pr and pn, are limited not only by primary PC maximum 

CFs but also by the above secondary maximum input capacities, aggregated by primary input 

type. Primary flows will maximize to the lower of these limits: 

𝒑𝒓 = 𝑚𝑎𝑥[𝒄𝒓 ᴑ 𝜸𝒓 ᴑ 𝒖𝒓𝒎 𝐹𝑟𝑠𝑖𝒋]𝑗  and  𝒑𝒏 = 𝑚𝑎𝑥[𝒄𝒏 ᴑ 𝜸𝒏 ᴑ 𝒖𝒏𝒎 𝐹𝑛𝑠𝑖𝒋]𝑗 
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The relative proportion matrices, Frsi and Fnsi, must be normalized over each primary input 

type and multiplied by secondary conversion efficiencies to give actual flow conversion 

factors. Therefore, matrices of conversion factor mappings for primary RE and NRE flows to 

secondary PC output power, Prsi and Pnsi, are given by, 

𝑃𝑟𝑠𝑖 = 𝒆𝒔𝒊
𝑻  ᴑ 𝐹𝑟𝑠𝑖 ᴓ 𝐹𝑟𝑠𝑖𝒋  and  𝑃𝑛𝑠𝑖 = 𝒆𝒔𝒊

𝑻  ᴑ 𝐹𝑛𝑠𝑖  ᴓ 𝐹𝑛𝑠𝑖𝒋 

The matrix of conversion factor mappings for secondary PC output power to delivered EC, Pso, 

is given by, 

𝑃𝑠𝑜 = 𝜸𝒔𝒐 ᴑ 𝒆𝒔𝒐 ᴑ 𝐼𝑠𝑜 

Where the vector γso represents dynamic interactions within electricity systems in response 

to intermittency mitigation affecting secondary reticulation efficiencies, as described in 

section 4.2.5. Composite matrices for the conversion of primary RE and NRE flows to delivered 

ECs, Crs and Cns, are then given by, 

𝐶𝑟𝑠 = 𝑃𝑟𝑠𝑖𝑃𝑠𝑜  and  𝐶𝑛𝑠 = 𝑃𝑛𝑠𝑖𝑃𝑠𝑜 

The supply of ECs can be described by the following equation: 

∴ 𝒑𝒊 = (𝒑𝒓
𝑻𝐶𝑟𝑠 + 𝒑𝒏

𝑻𝐶𝑛𝑠)
𝑻  (2) 

Similarly, ES demands can typically be met by multiple EU PC types, necessitating an allocation 

principle. As such, it is assumed that each ES demand is satisfied by EU PC types in proportion 

to their capacities to provide that ES at their respective target CFs. Downstream mappings 

must be characterized in the reverse direction, as exogenous ES demands propagate to 

aggregate EC inputs. ES provision capacities are given by extant EU PC quantities multiplied 

by EU target CFs (target aggregate output capacities), multiplied by EU to ES efficiencies to 

shift from output power to delivered ES flows. Therefore, the matrix of relative proportional 

mappings for ES demands satisfied by EU PC output power, Feo (units of EJ/year), is given by, 

𝐹𝑒𝑜 = 𝐼𝑒𝑜 ᴑ 𝒄𝒆 ᴑ 𝒖𝒆𝒕 ᴑ 𝒆𝒆𝒐 

These relative proportions must be normalized over each ES type and divided by EU to ES 

efficiencies to give actual flow conversion factors. Therefore, the matrix of conversion factor 

mappings for ES demands to EU PC output power, Peo, is given by, 

𝑃𝑒𝑜 = (𝐹𝑒𝑜 ᴓ 𝒋
𝑻𝐹𝑒𝑜) ᴓ 𝒆𝒆𝒐 
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The matrix of conversion factors for EU PC output power to input ECs, Pei, is given by, 

𝑃𝑒𝑖 = 𝐼𝑒𝑖 ᴓ 𝒆𝒆𝒊
𝑻  

The composite matrix for the conversion of ES demands to input ECs (propagation in the 

reverse direction to actual energy flow), Ce, is then given by, 

𝐶𝑒 = 𝑃𝑒𝑜
𝑇 𝑃𝑒𝑖

𝑇   

EC demand can be described by the following equation: 

∴ 𝒑𝒐 = (𝒑𝒅
𝑻𝐶𝑒)

𝑻
+ 𝒑𝒂 + 𝒑𝒄  (3) 

Where pa and pc are vectors representing intermediate, energy system related consumption 

of ECs (the autocatalytic loop and capital hypercycle, respectively, described in section 4.2.4). 

Finally, secondary penetration, or the vector of shares of total EC production capacity in both 

operation and construction phases by secondary PC type, ηs (dimensionless), can be 

calculated as, 

𝜼𝒔 = 𝑚𝑎𝑥 ((𝒄𝒔 +𝒘𝒔) ᴑ 𝜸𝒔 ᴑ 𝒖𝒔𝒎 ᴑ 𝑃𝑠𝑜 ᴓ ((𝒄𝒔 +𝒘𝒔) ᴑ 𝜸𝒔 ᴑ 𝒖𝒔𝒎)
𝑻
𝑃𝑠𝑜)

𝑖
 

For CHP PC types, the value returned is the higher of the respective heat and electricity 

penetration values. Similarly, EU penetration, or the vector of shares of total ES provision 

capacity in both operation and construction phases by EU PC type, ηe (dimensionless), can be 

calculated as, 

𝜼𝒆 = ((𝒄𝒆 +𝒘𝒆) ᴑ 𝒖𝒆 ᴑ 𝒆𝒆𝒐 ᴑ 𝐼𝑒𝑜 ᴓ ((𝒄𝒆 +𝒘𝒆) ᴑ 𝒖𝒆 ᴑ 𝒆𝒆𝒐)
𝑻
𝐼𝑒𝑜) 𝒋 

Note that some PC types are subject to penetration limits due to technical, operational, and 

economic factors that manifest as a proportion of total EC production, or ES provision, that 

cannot practiacally be met by a given PC type. These limits can be specified using the vectors 

ηsm and ηem: 

𝜼𝒔 ≤ 𝜼𝒔𝒎  and  𝜼𝒆 ≤ 𝜼𝒆𝒎 

4.2.4 Dynamic energy cost modelling 

The energy system related consumption of ECs (given by the sum of pa and pc) is a dynamic, 

delayed, path-dependent function of investment flows, ĥx, via PC and AI stocks in construction 

and operation phases, cx and wx, and the energy costs associated with these stocks: 



127 
 

• For primary PC, energy costs are modelled using EROI (detailed in section 4.2.4.1). 

• For secondary and EU PC and AI, energy costs are represented by the Energy Cost of 

Capital (ECC) metric, defined as the total energy input per unit of PC or AI (detailed in 

section 4.2.4.2). 

Note that energy costs above refer to EC flows required for the construction, operation, and 

ultimate decommissioning of PC or AI, but not energy throughput in the form of primary flows 

to secondary PC or input ECs to EU PC. As aggregation of non-equivalent energy flows is 

implied by the EROI and ECC metrics, energy quantities used in the calculation of both are 

expressed in terms of primary energy equivalent. 

Flows of delivered ECs are necessarily diverted into the expansion, operation, and 

replacement of capital stocks comprising the GES (i.e., the hypercyclic component). The 

upstream production of ECs is supported by EC flows towards primary RE and NRE PC, and 

secondary PC and AI, collectively termed the ‘autocatalytic loop’, pa (see Figure 16). 

 

Figure 16: upstream EROI and ECC in relation to PC and AI 

Similarly, the downstream provision of final ESs is supported by EC flows towards EU PC and 

AI, collectively termed the ‘capital hypercycle’, pc (see Figure 17). 
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Figure 17: downstream ECC in relation to PC and AI 

EROI and ECC are assumed to reflect total nth-order effects, i.e., the EC costs of industrial 

capacity needed to build new PC and AI, training needed to properly operate it, administrative 

support, et cetera. In other words, EROI and ECC are assumed to correspond to the full 

induced energy consumption attributable to the lifetime processes of respective capital 

within the GES. As most EROI and associated ECC estimates will be calculated via more limited 

system boundaries than full, nth-order accounting, the scale of energy system related 

consumption of ECs is represented conservatively. EROI and ECC are both modelled 

probabilistically to account for epistemic uncertainty (see section 4.2.9.2). 

Technological complexity can be expected to continue increasing for energy technologies 

alongside the learning effects and efficiency improvements discussed in section 4.2.2.5. 

However, as detailed in section 2.1.1.3, beyond the early development phase, ongoing 

technological improvements typically have a minimal effect on EROI and physical, geological, 

and geographic factors affecting resource quality dominate. In contrast, ECC is unaffected by 

resource quality, but is affected by a balance of technological and scale factors (discussed in 

section 4.2.4.2). Consequently, and considering immature and speculative technologies are 

excluded a priori (see section 4.1), it is assumed greater technological complexity does not 

affect either EROI or ECC. 

4.2.4.1 EROI 

As discussed in section 2.1.1.2, EROI can be defined at various stages within energy systems 

corresponding to different boundary definitions. The main modelled input for calculating 

energy costs associated with the production of primary flows, pr and pn, is standard EROI 

(EROIst). Point of Use EROI (EROIpou) can also be calculated for informational purposes by 
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including all necessary upstream energy costs (pa), and similarly, extended EROI (EROIext) can 

be calculated by including all necessary upstream and downstream energy costs (pa and pc). 

See section 4.2.9.3 for details. 

NRE and RE EROI can be expected to decrease as functions of primary energy resource 

depletion, d, and exhaustion, x, respectively. This is because, as discussed in section 2.1.1.3, 

the highest quality resources tend to be produced first leaving lower quality resources for 

subsequent production. Therefore, incremental additions of primary PC at the aggregate level 

will generally fall progressively further down respective resource quality distributions, directly 

affecting net energy return for this PC increment over its lifetime. Investment in new PC can 

be expected to cease after terminal EROI values are reached, indicating that further 

expansions in production are considered impractical or uneconomic. 

The EROI of new PC (additions to PC stocks) can be described by the vectors ʞr and ʞn 

(dimensionless) for RE and NRE, respectively. Subsequently, the mean EROI of the aggregate 

primary PC stocks, given by the vectors kr and kn (dimensionless), evolve as functions of 

investment as the composition of the PC stocks change: 

𝒌𝒏 = 𝒇(ʞ𝒏(𝒅), 𝒉𝒏)  and  𝒌𝒓 = 𝒇(ʞ𝒓(𝒙), 𝒉𝒓) 

NRE EROI decreases with cumulative NRE production while RE EROI changes in response to 

the RE production rate, therefore kr can increase if aggregate production rates fall whereas 

declines in kn are inexorable. RE resources are not depleted as energy flows are exploited and 

RE resources can be redeveloped after PC reaches its end of life. Consequently, it is possible 

for mean EROI to rise following PC decommissioning exceeding additions (see section 9.3.4.1). 

As RE exhaustion is defined relative to RE potential remaining at beginning of the study 

period, x can take negative values causing new PC RE EROI values to rise above their initial 

values. It is assumed here that primary energy resources can be adequately described by 

quality distributions in terms of EROI, ranging from currently observed values to terminal 

values (as d, x → j) via uncertain but declining paths (see section 4.2.8). 

For both RE and NRE, investment decision flows for new PC, ĥr and ĥn, cease after primary 

resources are fully exploited (x, d > j). However, for NRE, EROI can continue to fall below 

terminal values as existing PC continues operation and non-energy use, pne, persists (assumed 
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to be unaffected by EROI). See section 4.2.8 for details (equations given in sections 9.3.4.1 

and 9.3.4.2.1). 

4.2.4.2 Energy cost of capital 

ECC is used to represent the energy intensity of non-primary capital involved in the 

transformation of energy flows: secondary and EU PC and AI, represented by vectors ys, ye, 

ysa, and yea (units of years), respectively. ECC is defined as the total energy input per unit of 

installed PC or AI capacity, yielding the intuitive unit of years. This metric is similar to EPBT 

but is specified per unit maximum technical capacity rather than per unit power output. As 

such, ECC is independent of capacity utilization assumptions. For simplicity, ECC is 

optimistically modelled as static, given the likelihood of increasing capital energy costs due to 

rising socio-technical and organizational complexity associated with increased process-level 

efficiencies, as discussed in section 2.2.1). 

ECC can be estimated where EROI data defined at both the primary stage (EROIst) and the 

secondary stage (EROIpou) are available, with other ECC values established by reference to 

these estimates (via technology cost tiers; see section 9.5.9 for details). The energy intensity 

of secondary PC is not modelled using EROIpou directly, as secondary conversion processes are 

not directly influenced by resource quality factors underlying EROI modelling described in 

section 4.2.4.1. Where EROI data at the primary and secondary stages are available, these are 

converted to ECC values as follows: 

(𝒚𝒔)𝑖 = (𝒖𝒔𝒎)𝑖(𝒍𝒔)𝑖 (
(𝜺𝒔)𝑖
(𝒌𝒔)𝑖

−
1

(𝒆𝒔𝒊)𝑖(𝒋𝑻(𝒌𝒓 ᴑ 𝐼𝑟𝑠𝑖) + 𝒋𝑻(𝒌𝒏 ᴑ 𝐼𝑛𝑠𝑖))𝑖
𝑻
) 

Where, εs is a vector expressing conversion factors from secondary output type to primary energy 

equivalent (dimensionless; all entries 1, except for electricity output, where is 2.6 is used), and 

ks is the vector of EROI values defined at the secondary stage (EROIpou). 

As a derived metric with no independent estimates in the literature, ECC is subject to a high 

degree of epistemic uncertainty and must be modelled probabilistically (see section 4.2.9.2). 

Notably, ECC is modelled using log-normal distributions as plausible estimates can be 

expected to vary by orders of magnitude. 
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4.2.4.3 EC disaggregation 

Distinct ECs are generally non-equivalent and non-substitutable, as discussed in sections 2.2.2 

and 3.1.2.4. While the operative energy throughput flows associated with PC and AI are 

homogeneous and can be explicitly identified (primary flows, output ECs, input ECs, and EU 

output power) input energy cost flows associated with the autocatalytic loop or the capital 

hypercycle will consist of a profile of ECs. EC input proportions will vary by PC type based on 

physical capital characteristics and will change over time as the dominant modes for ES 

provision change. 

The energy cost metrics EROI and ECC are scalar ratios of aggregated energy input and output 

quantities (in terms of primary energy equivalent, with or without additional price- or exergy-

based quality adjustments). Therefore, input energy cost flows indicated by these metrics 

must be disaggregated to allow for correct dynamic representation of the energy system 

related consumption of ECs. Firstly, the EC proportions of final demand normalized by the 

sum primary energy equivalent can be characterized by the vector, δ: 

𝜹 =
(𝒑𝒅

𝑻𝐶𝑒)
𝑻

(𝜺 ᴑ (𝒑𝒅
𝑻𝐶𝑒)𝑻) ∙ 𝒋

  

Where ε is a vector expressing conversion factors from EC type to primary energy equivalent 

(dimensionless; all entries 1, except for electricity output, where is 2.6 is used). The δ vector 

can act as a reference for the input energy cost EC proportions associated with PC and AI 

types. This effectively assumes the composition of PC implicitly represented within the 

autocatalytic loop and the capital hypercycle approximately mirrors that of modelled EU PC 

(providing final ES demands). However, it is necessarily to allow for specified EC input energy 

cost proportions for given PC types relative to the EC proportions of final demand, due to 

identifiable differentiating physical capital characteristics. Assuming a persistent structural 

reliance of the hypercyclic component of the GES on specific ECs is justified on the basis that: 

• PC and AI comprising the GES are often highly geographically dispersed and resist 

centralization as they must link distant primary energy resources and demand centres. 

As such, persistent liquid transportation fuel inputs to PC and AI will tend to vary with 

the degree of geographical dispersion or remoteness, as transportation and logistics 

supporting more remote capital is difficult to electrify. 
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• Similarly, PC and AI comprising the GES often require heavy industry for their 

manufacture and contain significant embodied energy, as these infrastructures and 

devices typically must withstand near constant use and a wide variety of operating 

environments. As such, persistent heat inputs to PC and AI will tend to vary with the 

degree of heavy manufacturing required. 

• Consequently, electricity will tend to represent a lesser proportion of EC input energy 

costs for many PC and AI types relative to the electricity proportion of final demand. 

• Note that specific EC input energy cost proportions for PC and AI will still converge to 

zero if the corresponding EC proportions of final demand do. 

Vectors representing static EC input energy cost proportions for PC and AI relative to the EC 

proportions of final demand can be specified. These vectors can be denoted φxy 

(dimensionless) for the yth EC type (up to n) where the subscript x is replaced with r, n, s, sa, 

e, and ea to denote primary RE PC, primary NRE PC, secondary PC, secondary AI, EU PC, and 

EU AI respectively. Next, these vectors can be combined to form matrices of relative EC input 

energy cost proportions by PC or AI type, Φx: 

𝛷𝑥 = [𝝋𝒙𝟏 … 𝝋𝒙𝒏] 

Matrices of initial input EC proportions by PC or AI type, re-normalized with respect to sum 

primary energy equivalent across EC types, Sx(0), can then be expressed as, 

𝑆𝑥(0) = 𝜹(0)
𝑻 ᴑ 𝛷𝑥 ᴓ ((𝜺 ᴑ 𝜹(0))

𝑻
 ᴑ 𝛷𝑥) 𝒋 

Note that the vector for initial EC proportions of final demand, δ(0), is not directly calculable 

and is approximated, as described in section 4.2.7. Matrices of dynamic EC input energy cost 

proportions by PC or AI type, Sx, are then given by, 

𝑆𝑥 = (𝜹 ᴓ 𝜹(0))
𝑻
 ᴑ 𝑆𝑥(0) ᴓ ((𝜺 ᴑ 𝜹 ᴓ 𝜹(0))

𝑻
 ᴑ 𝑆𝑥(0)) 𝒋 

Note that this vector is again re-normalized with respect to sum primary energy equivalent 

across EC types as δ changes. 

Representation of price and exergy quality adjustments in disaggregated EC components is 

not attempted above, due to the diversity of such adjustments between EROI data sources 
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sampled (complete alignment not practicable; see section 9.5.8 for details), and the high 

degree of analytical ambiguity introduced by such adjustments. 

4.2.4.4 Lifecycle representation 

The input energy costs for PC and AI, and the energy output of PC, do not occur 

instantaneously or synchronously. Rather, to accurately capture GES dynamics, a given 

increment of capital must be described by a sequence of distinct states over time: 

construction, operational lifetime, and decommissioning [170, 355], as depicted in Figure 18. 

 

Figure 18: energy flows over the capital lifecycle (adapted from [170]) 

Two additional vectors can be used to describe the distribution of energy costs between 

capital lifecycle phases for all PC and AI types: 

• The capital fraction vector, denoted fx (dimensionless), specifies the shares of total 

primary equivalent input energy used for capital purposes (construction and 

decommissioning), or (C+D)/ (C+U+D) in Figure 18. 

• The decommissioning fraction vector, denoted gx (dimensionless), specifies the shares 

of capital energy used for decommissioning purposes, or D/C in Figure 18. 

Where the subscripts x are replaced with r, n, s, sa, e, and ea to denote primary RE PC, primary 

NRE PC, secondary PC, secondary AI, EU PC, and EU AI respectively. For simplicity, PC and AI 

lifetimes are modelled (probabilistically) as constant, regardless of the utilization of capacity, 

and the decommissioning phase is modelled as an instantaneous pulse. 
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Aggregate EC input energy costs constituting the autocatalytic loop and capital hypercycle, as 

indicated by the energy cost metrics, EROI and ECC, can be represented with appropriate EC 

proportions given by Sx correctly distributed over time with reference to the capital lifecycle. 

Separate components of EC input energy cost flows can be represented by vectors for 

construction, λx, operation, ξx, and decommissioning, πx. For primary PC,  

𝝀𝒓 = ((𝜺𝒓 ᴑ 𝒇𝒓 ᴑ (𝒋 − 𝒈𝒓) ᴑ 𝒍𝒓 ᴑ 𝒘𝒓 ᴑ 𝒖𝒓𝒎 ᴓ (𝒛𝒓 ᴑ ʞ𝒓𝒉))
𝑻
𝑆𝑟)

𝑻

 

𝝃𝒓 = ((𝜺𝒓 ᴑ (𝒋 − 𝒇𝒓) ᴑ 𝒄𝒓 ᴑ 𝒖𝒓 ᴓ 𝒌𝒓)
𝑻𝑆𝑟)

𝑻 

𝝅𝒓 = ((𝜺𝒓 ᴑ 𝒇𝒓 ᴑ 𝒈𝒓 ᴑ 𝒍𝒓 ᴑ 𝒉𝒓(𝑡𝒋 − 𝒍𝒓) ᴑ 𝒖𝒓𝒎 ᴓ ʞ𝒓𝒉(𝒙(𝑡𝒋 − 𝒍𝒓)))
𝑻

𝑆𝑟)
𝑻

 

and 

𝝀𝒏 = ((𝜺𝒏 ᴑ 𝒇𝒏 ᴑ (𝒋 − 𝒈𝒏) ᴑ 𝒍𝒏 ᴑ 𝒘𝒏 ᴑ 𝒖𝒏𝒎 ᴓ (𝒛𝒏 ᴑ ʞ𝒏))
𝑻
𝑆𝑛)

𝑻

 

𝝃𝒏 = ((𝜺𝒏 ᴑ (𝒋 − 𝒇𝒏) ᴑ 𝒄𝒏 ᴑ 𝒖𝒏 ᴓ 𝒌𝒏)
𝑻𝑆𝑛)

𝑻 

𝝅𝒏 = ((𝜺𝒏 ᴑ 𝒇𝒏 ᴑ 𝒈𝒏 ᴑ 𝒍𝒏 ᴑ 𝒉𝒏(𝑡𝒋 − 𝒍𝒏) ᴑ 𝒖𝒏𝒎 ᴓ ʞ𝒏(𝒅(𝑡𝒋 − 𝒍𝒏)))
𝑻

𝑆𝑛)
𝑻

 

Where εr and εn are vectors expressing conversion factors from primary flow type to primary 

energy equivalent (dimensionless; all entries 1, except for electricity output, where is 2.6 is 

used). Note that operational EC consumption for PC is assumed to scale linearly with CF, as 

lower utilization will require less maintenance related EC input, and vice versa. 

The vectors ʞrh(x(tj – lr)) and ʞn(d(tj – ln)) refer to the effective EROI of PC stock removals, for 

RE and NRE, respectively, given by new PC EROI vectors delayed by PC lifetimes (see section 

9.3.4.1): 

𝒙(𝑡𝒋 − 𝒍𝒓) ≈ 𝒑𝒓(0) ᴑ (𝑡𝒋 − 𝒍𝒓) ᴓ (𝒏𝒓 ᴑ (𝒑𝒓𝒎 − 𝒑𝒓(0)))  for  𝑡𝒋 < 𝒍𝒓 

and 

𝒅(𝑡𝒋 − 𝒍𝒏) ≈ 𝒑𝒏 ᴑ (𝑡𝒋 − 𝒍𝒏 ) ᴑ (𝒋 + (𝑡𝒋 − 𝒍𝒏 ) ᴓ 2𝒏𝒏) ᴓ 𝝎  for  𝑡𝒋 < 𝒍𝒏 

Where nr and nn are vectors of technology ages for RE and NRE PC, respectively (from 

technology inception to the start of the study period, in units of years). Note that for the 

calculation of these vectors for 0 < tj < lx, power output is assumed to take an approximately 
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linear trend from technology inception to the start of the study period. That is, prior to a single 

elapsed PC operational lifetime, ʞrh(x(tj – lr)) uses exhaustion, x, calculated at the RE output 

power rate at time tj – lr, while ʞn(d(tj – ln)) uses depletion, d, calculated via the time integral 

of NRE power output between tj – ln and 0. 

For secondary and EU PC and AI, replacing subscript x with s, sa, e, and ea, respectively, 

𝝀𝒙 = ((𝒇𝒙 ᴑ (𝒋 − 𝒈𝒙) ᴑ 𝒘𝒙 ᴑ 𝒚𝒙 ᴓ 𝒛𝒙)
𝑻𝑆𝑥)

𝑻 

𝝅𝒙 = ((𝒇𝒙 ᴑ 𝒈𝒙 ᴑ 𝒉𝒙(𝒕𝒋 − 𝒍𝒙) ᴑ 𝒚𝒙)
𝑻𝑆𝑥)

𝑻 

For secondary PC, operational EC consumption scales linearly with actual CF relative to 

maximum CF: 

𝝃𝒔 = (((𝒋 − 𝒇𝒔) ᴑ 𝒄𝒔 ᴑ 𝒖𝒔 ᴑ 𝒚𝒔 ᴓ (𝒍𝒔 ᴑ 𝒖𝒔𝒎))
𝑻
𝑆𝑠)

𝑻

 

For EU PC, operational EC consumption scales linearly with actual CF relative to target CF (i.e., 

operational EC consumption will rise above that indicated by ECC when ue > uet and fall when 

ue < uet): 

𝝃𝒆 = (((𝒋 − 𝒇𝒆) ᴑ 𝒄𝒆 ᴑ 𝒖𝒆 ᴑ 𝒚𝒆 ᴓ (𝒍𝒆 ᴑ 𝒖𝒆𝒕))
𝑻
𝑆𝑒)

𝑻

 

For secondary and EU AI, replacing subscript x with sa and ea, respectively, CF is not defined 

so operational EC consumption becomes, 

𝝃𝒙 = (((𝒋 − 𝒇𝒙) ᴑ 𝒄𝒙 ᴑ 𝒚𝒙 ᴓ 𝒍𝒙)
𝑻
𝑆𝑥)

𝑻

 

4.2.4.5 Energy system metabolism 

The autocatalytic loop, pa, is comprised of the sum of upstream energy cost flows: 

𝒑𝒂 =∑𝝀𝒓 , 𝝃𝒓, 𝝅𝒓, 𝝀𝒏, 𝝃𝒏, 𝝅𝒏 

Similarly, the capital hypercycle, pc, is comprised of the sum of downstream energy cost flows: 

𝒑𝒄 =∑𝝀𝒔 , 𝝃𝒔, 𝝅𝒔, 𝝀𝒔𝒂, 𝝃𝒔𝒂, 𝝅𝒔𝒂, 𝝀𝒆, 𝝃𝒆, 𝝅𝒆, 𝝀𝒆𝒂, 𝝃𝒆𝒂, 𝝅𝒆𝒂 

The sum of the autocatalytic loop and capital hypercycle (pa + pc; depicted in Figure 19) can 

be described as the metabolic energy consumption of the GES, referring to the sum energetic, 
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autopoietic processes required for the functioning and evolution of the GES over time (i.e. 

the GES hypercyclic component, as discussed in section 3.1.1). 

 

Figure 19: overview of the energy flow schema identifying the sum EC flows associated with the autocatalytic loop and 
capital hypercycle (the metabolic energy consumption of the GES) 

As discussed in chapter 1, the GES is nested within the HSES, providing essential energy 

services but also intrinsically dependent on its parent system. However, a comprehensive 

enumeration of these interactions is extremely complex, uncertain, and includes factors that 

extend far beyond a physical system representation. As such, the exogeneous interface 

between the GES and the HSES must be represented in simple, physical, high-level terms.  

The relative burden exerted by the GES on the HSES can be represented by GES metabolic 

energy consumption relative to total EC supply by EC type, or ‘energy system metabolic ratios’ 

(ESMRs), given by the vector κ (dimensionless): 

𝜿 = (𝒑𝒂 + 𝒑𝒄) ᴓ 𝒑𝒊  where  𝜿 ≪ 𝒋 

Giampietro et al. [21] note that these ratios, between the gross supply of ECs and the 

consumption of ECs within the GES, is a vital indicator of the quality of primary energy. There 

will necessarily be a negative relationship between this set of ratios and investment flows, ĥx. 

That is, it will generally not be socio-metabolically feasible to devote arbitrarily high 

proportions of EC supply to the maintenance of the GES and away from final consumption 
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purposes. In fact, the long-term proportion of EC supply directed towards the GES will be 

practically limited far below 100% due to limits facing the provision of the necessary 

processed materials, labour, and socio-technical capacities by the HSES. However, this broad 

relationship is subject to a very high degree of epistemic uncertainty, particularly considering 

such limits have not been seriously tested at the global scale in the context of modern 

industrial society, and therefore must be modelled probabilistically (see section 4.2.9.2). The 

nature of this feedback is determined as part of system control implementation, detailed in 

section 5.2.3. 

ESMRs are corrected for active curtailment of secondary CFs maxima, usm, due to excessive 

EC surplus (see section 5.2.5). Note that as ESMRs relate upstream and downstream energy 

costs to EC supply, and therefore correspond to the inverse of EROIext, disaggregated by EC 

component. 

4.2.5 Intermittency mitigation and impacts in electricity systems 

As discussed in section 2.1.2, non-linear dynamic relationships within electricity systems can 

be expected between the rising predominance of electricity generation from intermittent 

sources and both changes in the utilization of PC and associated AI requirements stemming 

from intermittency mitigation efforts. These interactions must be explicitly modelled to 

accurately capture high-level dynamic system processes involved in transformation of the GES 

towards RE, particularly given the need for greater electrification of ES provision. The 

intermittency mitigation options can be summarized as follows: 

1) Building additional AI associated with intermittent PC. 

2) Adding greater quantities of intermittent PC, lowering utilization. 

3) Improving the responsivity of consumers to the temporal availability of supply (i.e., 

demand flexibility, q, as discussed in section 4.2.1.3) 

4) Improving the technological and geographical diversity of intermittent generation. 

Options 1 and 2 are referred to here as AI mitigation and PC overbuild mitigation, respectively, 

and represent explicit alternative intermittency mitigation strategies. Options 3 and 4 are 

treated as implicit factors affecting the sum requirement for intermittency mitigation. 
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To model intermittency impacts and the dynamic effects of mitigation strategies, identity 

vectors (dimensionless) are defined to specify secondary PC types belonging to intermittent, 

baseload, and peaking categories: 

𝐼𝑚 = {
1 𝑤ℎ𝑒𝑟𝑒 𝑃𝐶 𝑡𝑦𝑝𝑒 𝑖 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑛𝑡 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐼𝑏 = {
1 𝑤ℎ𝑒𝑟𝑒 𝑃𝐶 𝑡𝑦𝑝𝑒 𝑖 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑏𝑎𝑠𝑒𝑙𝑜𝑎𝑑 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐼𝑝 = {
1 𝑤ℎ𝑒𝑟𝑒 𝑃𝐶 𝑡𝑦𝑝𝑒 𝑖 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑝𝑒𝑎𝑘𝑖𝑛𝑔 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

An additional category identifies nominal secondary conversion (due to electricity generation 

at the primary stage): 

𝐼𝑘 = {
1 𝑤ℎ𝑒𝑟𝑒 𝑃𝐶 𝑡𝑦𝑝𝑒 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑠𝑡𝑎𝑔𝑒

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Intermittent penetration, m (dimensionless scalar), the proportion of the total extant capacity 

to generate electrical output power consisting of intermittent generation, can then be 

calculated as, 

𝑚 =
(𝒄𝒔 ᴑ 𝒖𝒔𝒎) ∙ 𝐼𝑚

∑ (𝒄𝒔 ᴑ 𝒖𝒔𝒎 ᴑ 𝐼𝑠𝑜)𝑖𝑐
𝑛
𝑖=1

 

Where electricity represents the cth element in EC type vectors and secondary PC type vectors 

are of length n. Intermittent generation can also be characterized by the metric ‘intermittent 

diversity’, β (dimensionless scalar), to describe the distribution of intermittent generating 

capacity between various generation types. At the extremes, 0 implies power output from 

only one intermittent generation type while 1 implies perfect equality between all 

intermittent generation types.  

𝛽 =
(𝒄𝒔 ᴑ 𝒖𝒔𝒎) ∙ 𝐼𝑚

𝑚𝑎𝑥(𝒄𝒔 ᴑ 𝒖𝒔𝒎 ᴑ 𝐼𝑚)𝑖(𝐼𝑚 ∙ 𝒋 − 1)
−

1

𝐼𝑚 ∙ 𝒋
 

That is, intermittent diversity is given by the mean of intermittent generation capacity divided 

by the maximum, adjusted to bring the lower end of the range towards 0. Note that the actual 

range for β is not precisely 0 to 1 but converges to this range as the number of intermittent 

generation types represented increases. Greater intermittent diversity is assumed to reduce 

the need for intermittency mitigation, as temporal supply profiles for different intermittent 

generation types will not be correlated, reducing the potential scale of aggregate 
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supply/demand imbalances over shorter timescales. Greater demand flexibility, q, is also 

assumed to reduce the need for mitigation responses as demand will respond to align with 

the temporal profile of intermittent supply to a greater extent. A combined intermittency 

mitigation reduction factor, r (dimensionless scalar), can then be expressed as a linear 

function of β and q assuming the intermittent diversity and demand flexibility effects are 

independent and therefore multiplicative: 

𝑟 = (1 − 𝛽𝜁𝛽)(1 − 𝑞𝜁𝑞) 

Where ζβ and ζq (dimensionless scalars) are coefficients specified for intermittent diversity 

and demand flexibility, respectively, representing the total fractional reduction in 

intermittency mitigation required should either input be equal to one. Functions can be 

defined to characterize the dynamic modification of various electricity system parameters via 

the PC overbuild and AI mitigation options: 

𝜒𝑓 , 𝜒𝑔, 𝜒ℎ = 𝑟𝑓(𝑚) 

Where χf, χg, and χh (dimensionless scalars) refer to fractional modification of intermittent 

electricity AI required, intermittent electricity reticulation efficiencies, and upstream CF 

maxima, respectively (equations given in section 9.3.3.2.1.1). Note that the functions are 

scaled linearly by the combined intermittency mitigation reduction factor, r. As the two 

mitigation options are alternative strategies, the functions are defined assuming the 

associated mitigation option is fully selected. Actual parameter modification is then assigned 

based on a decision variable, ψ (dimensionless scalar), representing the selected balance 

between the two options. ψ takes a value of zero when PC overbuild mitigation is fully 

selected and conversely, a value of one when the AI mitigation is fully selected. ψ is optimized 

dynamically within system control implementation as detailed in section 5.2.4. 

To represent changes in the quantity of intermittent electricity AI required and the selected 

mitigation balance, the AI requirement and AI investment vectors, asa and ĥas (see section 

4.2.2.4), are modified dynamically using modification vectors, γf and γfh (dimensionless), 

defined as, 

(𝜸𝒇)𝒊
= {

𝜒𝑓  𝑤ℎ𝑒𝑟𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑛𝑡 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐴𝐼

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(𝜸𝒇𝒉)𝒊
= {

𝜓 𝑤ℎ𝑒𝑟𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑛𝑡 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐴𝐼
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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This implies that the full requirement for intermittent electricity AI grows as intermittent 

penetration increases, but the corresponding investment only takes place to the extent that 

the AI mitigation option is selected. AI mitigation has the side-effect of decreasing secondary 

reticulation efficiencies for intermittent generation from a combination of greater 

transmission distances and increased charge-discharge cycle losses associated with storage 

[193, 198, 201]. This modification of secondary reticulation efficiencies is represented via 

dynamic modification of the matrix of conversion factors for secondary PC output power to 

delivered EC, Pso (see section 4.2.3), using the modification vector, γso (dimensionless), where 

intermittent electricity AI represents the dth element in secondary AI type vectors: 

𝜸𝒔𝒐 = 𝒋 + 𝜒𝑔
(𝒄𝒔𝒂)𝑑
(𝒂𝒔𝒂)𝑑

𝐼𝑚 

Note that the ratio (csa)d/(asa)d, termed the built AI factor, represents the degree to which 

built intermittent electricity AI meets requirement for full AI mitigation. 

At high intermittent penetration levels and without the requisite AI, intermittent generation 

and baseload generation are curtailed and peaking generation must cover more frequent 

supply shortfalls due to electricity system balancing dynamics [190, 356]. Therefore, changes 

in upstream CF maxima associated with the PC overbuild mitigation option can be expected 

to affect the various categories of electricity generating PC differently: 

• Intermittent generation CF maxima will be suppressed by increasing intermittent 

penetration, as greater quantities of electricity output will need to be curtailed during 

more frequent instances of aggregate supply exceeding demand. 

• Baseload generation CF maxima will also be suppressed by increasing intermittent 

penetration; however, the magnitude of this effect may be greater or less than the 

effect on intermittent generation depending on specific electricity system balancing 

dynamics, including temporal demand profiles and the system system requirement for 

the baseload generation role. As such, the effect magnitude relative to intermittent 

generation is specified by dimensionless coefficient ρb > 0. 

• Peaking generation CF maxima will be increased by increasing intermittent 

penetration, as there will be a greater need for dispatchable, flexible generation 

during more frequent instances of aggregate demand exceeding supply. As such, the 
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effect magnitude relative to intermittent generation specified by dimensionless 

coefficient ρp < 0. 

Changes in upstream CF maxima at the primary and secondary stages are represented via 

dynamic modification of the primary RE and secondary maximum CF vectors, urm and usm (see 

section 4.2.2.3), using the modification vectors, γr and γs (dimensionless), defined as, 

𝜸𝒓 = 𝒋 + 𝜒ℎ (1 −
(𝒄𝒔𝒂)𝑑
(𝒂𝒔𝒂)𝑑

) 𝐼𝑟𝑠𝑖(𝐼𝑘 ᴑ 𝐼𝑚) 

and 

𝜸𝒔 = 𝒋 + 𝜒ℎ (1 −
(𝒄𝒔𝒂)𝑑
(𝒂𝒔𝒂)𝑑

) ((𝒋 − 𝐼𝑘) ᴑ 𝐼𝑚 + 𝜌𝑏𝐼𝑏 + 𝜌𝑝𝐼𝑝) 

Note that no primary NRE PC types produce electricity at the primary stage, and therefore, γn 

= j. All parameters involved in intermittency mitigation modelling are subject to a high degree 

of epistemic uncertainty and must be modelled probabilistically (see section 4.2.9.2). 

4.2.6 Causal loop diagrams 

The physical GES modelling approach described in previous sections can be depicted via 

causal loop diagrams relating key model variables and interactions; demand, energy flows, 

and PC utilization in Figure 20, PC and AI investment and lifecycle in Figure 21, and primary 

energy resources and EROI in Figure 22. Note that the causal loops associated with system 

control are given in Figure 25 (in section 5.2). Descriptions of feedback loops and associated 

phenomena are provided in section 9.2. Diagrams use the following conventions: 

• Bold elements are stocks, italic elements appear in more than one diagram. 

• Lines with a double bar are subject to a time delay. 

• Pluses (+) indicate causal influence in the same direction and minuses (-) in the 

opposite direction (arrows without either can influence in both directions). 

• Feedback loops are numbered, circled with an arrow indicating loop direction, and 

labelled with an R for reinforcing (positive) loops or a B for balancing (negative) loops. 

• Dotted lines indicate relationships that are simplified for clarity (fully detailed in a 

different diagram). 
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Figure 20: causal loop diagram for demand, energy flows, and PC utilization 

 

Figure 21: causal loop diagram for PC and AI investment and lifecycle 
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Figure 22: causal loop diagram for primary energy resources and EROI 

4.2.7 Initialization 

The initialization procedure is designed to establish initial values for all model variables using 

the simplest possible set of input information. As data to populate initial PC and AI stocks, 

cx(0) as defined in section 4.2.2, are not directly available these quantities instead must be 

calculated from known inputs. This can be achieved via an initial static energy flow calculation, 

mirroring the dynamic formulation using known initial variable values. Data to populate initial 

ES demands, pd(0) as defined in section 4.2.1.3, are also unavailable but are calculable via the 

static energy flow calculation. 

Initial primary flows, pr(0) and pn(0), CF maxima, urm, unm, usm, and initial target CFs, uet(0), are 

well known and represent the main inputs to the initial static energy flow calculation. Initial 

primary RE and NRE PC stocks, cr(0) and cn(0), can be calculated assuming CFs are initially at 

their long-term maxima and no modifications of CF maxima due to intermittency mitigation 

are applied (γr = j): 

𝒄𝒓(0) = 𝒑𝒓(0) ᴓ 𝒖𝒓𝒎  and  𝒄𝒏(0) = 𝒑𝒏(0) ᴓ 𝒖𝒏𝒎 

Calculation of initial secondary and EU PC stocks, cs(0) and ce(0), requires the definition of 

vectors for the initial input proportions of primary energy flows to secondary PC, and EC flows 

to EU PC, normalized across each flow type, ss and se (dimensionless), respectively. Secondary 

PC and AI stocks, cs and csa, can be calculated directly: 
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𝒑𝒔(0) = 𝒆𝒔𝒊(𝟎) ᴑ (𝒑𝒓(0)
𝑻𝐼𝑟𝑠𝑖 + 𝒑𝒏(0)

𝑻𝐼𝑛𝑠𝑖)
𝑻 ᴑ 𝒔𝒔 

→ 𝒄𝒔(0) = 𝒑𝒔(0) ᴓ 𝒖𝒔𝒎 

→ 𝒄𝒔𝒂(0) = (𝒑𝒔(0)
𝑻𝐼𝑠𝑎)

𝑻 ᴑ 𝒗𝒔𝒂(0) 

Initial EC supply, pi(0), and initial autocatalytic loop consumption, pa(0), are then given by, 

𝒑𝒊(0) = ((𝒆𝒔𝒐(𝟎) ᴑ 𝒑𝒔(0))
𝑻
𝐼𝑠𝑜)

𝑻

 

𝒑𝒂(0) =∑𝝀𝒓(0) , 𝝃𝒓(0), 𝝅𝒓(0), 𝝀𝒏(0), 𝝃𝒏(0), 𝝅𝒏(0) 

Where all the components of pa(0) on the RHS are calculated as per the dynamic equivalents 

given in sections 4.2.4.3 and 4.2.4.4 (see section 9.3.4.1 for details of initial mean PC EROI 

calculations) using initial input values and the following approximation: 

𝜹(0) ≈
𝒑𝒊(0)

(𝜺 ᴑ 𝒑𝒊(0)) ∙ 𝒋
 

That is, the initial EC proportions of final demand are assumed to be equivalent to the initial 

EC proportions of EC supply. This approximation is required as initial flow calculations of 

metabolic energy consumption of the GES and final EC demand require δ(0) as an input (which 

is itself a function of the metabolic energy consumption of the GES). Also, for all PC and AI 

stocks, cx(0), associated stocks in construction, wx(0), are calculated based on specified initial 

growth rates given by the vector ιx: 

𝒘𝒙(0) = (𝒋 + 𝜾𝒙) ᴑ 𝒄𝒙(0) ᴑ 𝒛𝒙 ᴓ 𝒍𝒙 

To complete the initial flow calculations, it is also assumed that initial EC supply, pi, and initial 

EC demand, po, are approximately equal (i.e., no initial supply/demand imbalance): 

𝑑𝒃(0)

𝑑𝑡
≈ 𝟎 

∴ 𝒑𝒆(0) = 𝒆𝒆𝒊(𝟎) ᴑ ((𝒑𝒊(0) − 𝒑𝒂(0) − 𝒑𝒄(0))
𝑻
𝐼𝑒𝑖)

𝑻

 ᴑ 𝒔𝒆 

The above expression cannot be solved analytically, as initial capital hypercycle consumption, 

pc(0), is unknown and is a function of initial EU output power and corresponding PC. As such, 

a numerical solution is required. This is achieved by iteratively estimating EU PC, ce(0), and 
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calculating the resulting capital hypercycle consumption until the above relation holds within 

an acceptable margin of error (mean square error < 0.001 EJ2/yr2; see the initial capital 

hypercycle non-linear iterative solver script in section 9.4.5.2). After a numerical solution for 

pe(0) is found, EU PC and AI stocks, ce(0) and cea(0), can be calculated: 

→ 𝒄𝒆(0) = 𝒑𝒆(0) ᴓ 𝒖𝒆𝒕 

→ 𝒄𝒆𝒂(0) = (𝒑𝒆(0)
𝑻𝐼𝑒𝑎)

𝑻 ᴑ 𝒗𝒆𝒂(0) 

Finally, initial ES demands, pd(0), can be calculated from initial EU output power and initial EU 

to ES efficiencies: 

𝒑𝒅(0) = ((𝒑𝒆(0) ᴑ 𝒆𝒆𝒐(𝟎))
𝑻
𝐼𝑒𝑜)

𝑻

 

4.2.8 Exogenous interface modelling 

The modelling approach described in previous sections involves instances where bounded 

relationships between two variables, representing factors exogenous to the modelling 

formulation, must be defined. Logistic (or sigmoid) functions are chosen to model these 

interfaces for specified dependent and independent variables. The general form of the logistic 

function used is, 

𝑓(𝑥) =
𝐿 − 𝑐

1 + 𝑒−𝑘(𝑥−𝑥𝑚)
+ 𝑐 

 

Where, L and c are the upper and lower function asymptotes, respectively, 

k is the logistic growth rate (determining the steepness of the curve), and 

xm is the x-value of the curve inflection point. 

Logistic curves are commonly observed in physical systems, arising from growth and 

saturation effects within constraints. Using this general function, a wide variety of curve 

shapes between two arbitrary points can be generated depending on the input parameters 

selected, including curves which are approximately linear, exponential, and logarithmic, as 

shown in Figure 23 (parameters displayed in the format (L, c, k, xm)).  
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Figure 23: logistic function examples, including approximate linear, exponential, and logarithmic curves 

Logistic modelling is used for the exogenous interface functions listed in Table 3, with 

probabilistically generated input parameters representing epistemic uncertainty (see section 

4.2.9.2). Note that logistic modelling is not applied to the ESMR interface described in section 

4.2.4.5 (see section 5.2.3 for details). 

Table 3: exogenous interface functions using logistic modelling, including reference section for function equations 

Dependent variable Independent variable Exogenous interface factor Section 

New PC EROI 

(ʞr, ʞn) 

RE exhaustion, NRE 

depletion 

(x, d) 

Primary energy resource quality 

distributions 
9.3.4.2.1 

New PC efficiency 

(əsi, əso, əei, əei) 

Cumulative secondary, EU 

power output 

(∫psdt, ∫pedt) 

Technological learning effects on 

PC efficiencies 
9.3.1.4.1 

EU CF target (uet) 

Time 

(t) 

Achievable levels of EU PC 

utilization 
9.3.1.3.1 

ES demand (pd) Final demand for delivered ESs 9.3.2.1 

Demand flexibility (q) 

Responsiveness of demand to the 

temporal availability of AI capacity 

and intermittent supply 

9.3.2.2 

Intermittent electricity 

AI multiplier (χf) 
Intermittent penetration 

(m) 

Electricity system AI dynamics for 

intermittency mitigation 
9.3.3.2.1.1 

Reticulation efficiency 

multiplier (χg) 

Electricity system reticulation 

efficiency impacts associated with 

AI mitigation 
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Dependent variable Independent variable Exogenous interface factor Section 

Maximum CF multiplier 

(χh) 

Electricity system CF impacts 

associated with PC overbuild 

mitigation 

4.2.9 Simulation of GES transformation pathways 

4.2.9.1 GES evolution 

The physical GES modelling approach described in this chapter centres on the reinvestment 

of energy required to support and transform the energy system over time while meeting 

society’s needs for ESs. Using equation 1 from section 4.2.1.2 and equations 2 and 3 from 

section 4.2.3, the cumulative supply/demand balance vector, b, can be rewritten as, 

𝒃(𝑡 = 𝜏) = ∫ ((𝒑𝒓
𝑻𝐶𝑟𝑠 + 𝒑𝒏

𝑻𝐶𝑛𝑠 − 𝒑𝒅
𝑻𝐶𝑒)

𝑻
− 𝒑𝒂 − 𝒑𝒄)

𝜏

0

𝑑𝑡 

Note that all terms on the RHS are functions of PC and AI stocks in various lifecycle stages 

within the GES, except for the vector of ES final demands, pd, which is exogenously (and 

probabilistically) defined and drives system evolution over time. This relation is central to the 

dynamic transformation of the GES. The relative scarcity or abundance of ECs acts as a bridge 

between the upstream and downstream sectors, allowing for a bounded co-evolution of 

supply and demand. Supply and demand are not forced into equality, but instead, imbalances 

provide signals for investment via upstream and/or downstream responses: 

• Adding upstream PC, boosting the supply of scarce ECs. 

• Shifting downstream PC composition towards modes of ES provision using more 

abundant ECs, conserving scarce ECs. 

• These responses are determined via system control, as detailed in section 5.2. 

As primary flows, pr and pn, are flow and stock limited, respectively, due to finite primary 

energy resources, the overall GES transformation process can be seen as demand-driven but 

supply-constrained (i.e., consistent with the post-Keynesian ecological perspective; see 

section 3.1.3). Primary energy resource constraints impose inevitable increases in the 

autocatalytic loop over time as primary energy resource quality declines, requiring more 

energy to be redirected into primary energy production processes. 

Any given sequence of PC investment flows, ĥx, will have subsequent, delayed impacts on 

energy flows, PC and AI stocks, capacity utilization, efficiency improvements, RE and NRE 
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EROI, and the autocatalytic loop and capital hypercycle. As such, investment flows at any 

given time will reflexively determine possibilities for future investment flows, as the potential 

to redirect a proportion of gross EC supply towards investment within the GES is dynamically 

limited via ESMR feedback (as discussed in section 4.2.4.5). The resulting path-dependent 

evolutionary trajectory of the GES represents a single, unique transformation pathway. 

Note that real-world ES demand destruction or stimulation in response to the cumulative EC 

supply/demand balance, b (as a price proxy), will act to flatten supply/demand imbalances 

and return b towards 0. While this is not explicitly modelled via the modification of pd, it is 

functionally consistent with the chosen representation of b as an integral function and the 

gradual elimination of cumulative EC imbalances via both upstream and downstream 

responses. That is, b will tend to be serially autocorrelated representing delayed price-

consumption feedback, as periods where demand exceeds supply (signalling higher prices) 

will necessarily be followed by periods where supply exceeds demand (signalling lower 

prices), and vice versa. Also, adaptation to EC scarcity or abundance is achieved via changes 

in downstream investment flows, ĥe, following changes in b, decreasing the consumption of 

scarce ECs and increasing the consumption of more abundant ECs. Where EC surplus 

(suggesting lower prices) accrues due to efficiency improvements, this fuel switching effect 

represents a partial endogenization of the rebound effect (as discussed in section 2.2.1). 

The internal viability of a given transformation pathway is defined by successfully avoiding a 

net energy trap (see section 3.1.2.3), indicated by the b vector returning towards 0 following 

deviations, while staying within acceptable bounds (see section 4.2.9.3). This outcome is 

contingent upon the specific sequence of ĥx as determined by system control, guided by 

chosen investment logic and normative goals for the GES transformation process (discussed 

in section 5.2). Conversely, failure of a given pathway (i.e., encountering a net energy trap) is 

indicated by an inexorable negative trend in at least one component of the b vector, implying 

insufficient EC supply to meet ES demands while supplying the metabolic energy consumption 

of the GES. This is a valid result only where the outcome is invariant to changes in the specific 

system control implementation and related parameters (detailed in section 5.2.3) 
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4.2.9.2 Probabilistic formulation 

The implications of epistemic uncertainty for the GES transformation solution space can be 

investigated via probabilistic modelling (as outlined in section 4.1.3). As discussed in section 

3.1.4.3, Monte Carlo methods can be applied to the repeated simulation of GES 

transformation pathways (each a model ‘realization’) to produce an ensemble representing 

the set of system possibilities given epistemic uncertainty in input parameters. This allows the 

detection of consistent system tendencies at the ensemble level (with implicit ensemble-level 

filtering of optimism or pessimism bias) and the identification of the potential impacts of 

estimation errors (i.e., sensitivity analysis; see section 5.5.1). Note that the initialization 

procedure, described in section 4.2.7, is carried out for each realization individually, after the 

sampling of probabilistic input distributions. 

Some input parameters are not expected to vary independently, as higher values in one will 

tend to occur alongside higher (or lower) values in others, and vice versa. This can occur due 

to exogenous factors and causal relationships affecting specific parameter categories, or the 

need to align implicit assumptions and semantic definitions (applying the principle of 

semantic openness) for the generation of input parameter value sets. As such, correlations 

between sampled values for specific parameter categories should be modelled where 

required (see section 9.4.7 for details). Input correlation offers a useful refinement of the 

input space given the high number of dimensions involved, limiting input parameter value 

sets to those considered to be more plausible. 

Selecting appropriate probability distribution types for input parameters is necessarily 

subjective, requiring expert elicitation. Note that it is not generally possible to perform valid 

statistical tests to determine distributions of best fit, as few relevant independent data 

sources exist for the estimation of most model input parameters (see section 9.5.1). The 

decision tree depicted in Figure 24 is used for the selection of appropriate distribution types 

(see sections 9.4.2 and 9.5 for distribution details) based on a preference hierarchy: 

• Normal and log-normal distributions are used where a sufficient number of 

independent parameter data sources exist to estimate population standard deviation, 

σ (typically six or more). This is preferable as the effects of low probability values of 

input parameters on model behaviour corresponding to the distribution tails are 

incorporated. 
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o For log-normal distributions, the logarithm of the input parameter is normally 

distributed, resulting in sampled values varying by orders of magnitude. 

o Truncated distributions are used where parameters have upper or lower limits. 

• Where available data sources are insufficient to estimate σ: 

o Triangular distributions are used where probability density function (PDF) 

maxima can be identified. 

o Uniform distributions are used where no clear PDF maxima can be identified. 

These simple distribution types suffer from PDF discontinuities at the 

distribution extremes, so are avoided where possible. 

• Pareto distributions are used solely where logistic function shape is controlled via 

specification of an upper asymptote, as explained in section 9.4.2.1. 

 

Figure 24: decision tree for the selection of probability distribution type for epistemically uncertain input parameters 

Failed GES transformation pathways (exhibiting a net energy trap outcome, as discussed in 

section 4.2.9.1) can be expected occur in a subset of realizations within any ensemble. Failure 

at the realization level can be generalized to the ensemble level as the metric ‘system 

stability’, defined as the failure incidence rate. 

4.2.9.3 Informational output metrics 

A series of informational output metrics external to feedback loops determining model 

behaviour can be constructed to track pertinent aspects of GES evolution. The following 
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metrics are used to characterize changes in the contribution of RE relative to NRE, net energy 

return at the point of end-use, climate implications of GES transformation, and the incidence 

of net energy trap outcomes. 

Total primary energy supply (TPES) in terms of primary energy equivalent is given by, 

𝒑𝒏 ∙ 𝒋 + (𝜺𝒓 ᴑ 𝒑𝒓) ∙ 𝒋 

The share of EC supply derived from RE sources by EC type is given by, 

𝒑𝒓
𝑻𝐶𝑟𝑠 ᴓ (𝒑𝒓

𝑻𝐶𝑟𝑠 + 𝒑𝒏
𝑻𝐶𝑛𝑠) 

The corresponding RE share of TPES, in terms of primary energy equivalent, is given by, 

(𝜺𝑻 ᴑ 𝒑𝒓
𝑻𝐶𝑟𝑠 ᴓ (𝜺

𝑻 ᴑ (𝒑𝒓
𝑻𝐶𝑟𝑠 + 𝒑𝒏

𝑻𝐶𝑛𝑠)) ∙ 𝒋) ∙ 𝒋 

Point of Use EROI (EROIpou) calculated at the system-level and disaggregated by EC type is 

given by, 

(𝒑𝒓
𝑻𝐶𝑟𝑠 + 𝒑𝒏

𝑻𝐶𝑛𝑠) ᴓ 𝒑𝒂
𝑻 

The global GHG emissions rate can be calculated using a vector of GHG emissions intensities 

by NRE type, θ (units of GtCO2e/EJ), and the non-energy GHG emissions rate, ς: 

(𝜽 ᴑ (𝒑𝒏 + 𝒑𝒏𝒆))
𝑻
∙ 𝒋 + 𝜍 

This metric assumes the GHG content of all NRE quantities produced ultimately reach the 

atmosphere, i.e., no CCS or other negative emissions technologies are represented. The 

corresponding cumulative global GHG emissions from the beginning of the study period at 

elapsed time τ, assuming a constant non-energy GHG emissions rate, is then given by, 

(𝜽 ᴑ ∫ (𝒑𝒏 + 𝒑𝒏𝒆)𝑑𝑡
𝜏

𝑡=0

)

𝑻

∙ 𝒋 + 𝜍𝜏 

Finally, failure of a given GES transformation pathway (implying a net energy trap outcome, 

as discussed in section 4.2.9.1) can be identified when the EC deficit (defined as negative 

cumulative supply/demand balance relative to total EC demand, by EC type) exceeds defined 

thresholds, either for individual ECs or as a mean across all ECs: 

𝑚𝑎𝑥(−𝒃 ᴓ 𝒑𝒐)𝑖 > 𝑎  or  
−(𝒃 ᴓ 𝒑𝒐)∙𝒋

𝑛
>  𝑏 
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Where EC type vectors are of length n. Failure can also be specified with reference to a 

supply/demand balance rate of change threshold: 

𝑚𝑎𝑥 (
−𝑑(𝒃 ᴓ 𝒑𝒐)

𝑑𝑡
)
𝑖
> 𝑐  or  

−𝑑(𝒃 ᴓ 𝒑𝒐)

𝑑𝑡
∙
𝒋

𝑛
> 𝑑 

Thresholds a, b, c, and d are arbitrary but should be selected such that they separate those 

realizations where recovery (b vector returning towards 0) is possible from those where EC 

deficits grow inexorably, as effectively as possible. That is, thresholds should correspond to 

GES bifurcation potential. As a corollary metric, stable time can be defined as the elapsed 

simulation time before failure thresholds are reached. A shorter stable time suggests greater 

inherent instability of the relevant pathway, and vice versa. 

5 THE PRESS MODEL 

The Probabilistic Renewable Energy Solution Space, or PRESS, model (v1.3) is an exploratory 

system dynamics computer model created to investigate the solution space for GES 

transformation from NRE to RE during the remainder of the 21st century, under uncertainty. 

This is an implementation of the physical GES modelling approach described in chapter 4. 

PRESS was built using the GoldSim simulation platform (version 12.1.2). This software is 

designed for the Monte Carlo simulation of complex systems using an extended system 

dynamics syntax. This platform is ideal for the physical GES modelling approach as it is 

methodologically aligned with a biophysical, complex systems perspective incorporating a 

high degree of epistemic uncertainty. 

GES evolution within transformation pathways generated by the PRESS model is 

endogenously directed during the simulation period via a control system, detailed in section 

5.2. The selected study period is from 2015 to 2100: 

• The study period begins at 2015 as this year approximately aligns with the majority of 

available data for the estimation of GES input parameters (without extrapolations 

requiring additional time series data). 

• The study period ends at 2100 as simulation of GES transformation pathways beyond 

this point is less policy-relevant and is subject to excessive uncertainties. 

https://www.goldsim.com/
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• Hence, results generated using the PRESS model correspond to GES transformation 

pathways begun in the year 2015 (i.e., results are optimistic regarding GES 

transformation potentialities relative to currently achievable outcomes). 

The PRESS model features 3,639 scalar input parameters, and 14,218 scalar and time series 

outputs. The model uses a simulation timestep of 6 weeks, resulting in 823 scheduled model 

time steps for each realization. Version history for the PRESS model is given in section 9.1. 

The calculation of input parameters, including data sources, data processing and assumptions, 

and final input parameter arrays are detailed in section 9.5. 

5.1 SELECTED ARRAY ELEMENTS 

The general arrays introduced in section 4.2 must be explicated by selecting specific elements 

comprising all vector types. These arrays simultaneously define chosen levels of aggregation 

and selected functional-structural mappings for high-level modelling of the GES (i.e., elements 

represent structural realizations with respect to the functional role defined by their 

characteristic inflow and outflow types). As established in the pre-analytical framework 

discussed in section 4.1, elements are chosen such that the simplified, high-level 

representation of the GES maintains as much functional differentiation as possible, while 

avoiding speculative and unproven technologies. Array elements are listed in Table 4. 

Table 4: selected array elements in the PRESS model with associated inflows and outflows 

Element set Index Label Inflow Outflow 

RE types 

1 Solar PV 

 

Electricity 

2 Solar thermal Solar thermal 

3 Wind Electricity 

4 Biomass Biomass 

5 Hydropower Electricity 

6 Geothermal Geothermal 

7 Other RE Electricity 

NRE types 

1 Oil Oil 

2 Natural gas Natural gas 

3 Coal Coal 

4 Nuclear fuels Nuclear fuels 

Secondary 

PC types 

1 Oil generation 

Oil 

Electricity 

2 Refining LaG fuels 

3 Oil heat Heat 

4 Gas generation 

Natural gas 

Electricity 

5 Gas to LaG LaG fuels 

6 Gas heat Heat 
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Element set Index Label Inflow Outflow 

7 Gas CHP Electricity and heat 

8 Coal generation 

Coal 

Electricity 

9 Coal to LaG LaG fuels 

10 Coal heat Heat 

11 Coal CHP Electricity and heat 

12 Nuclear generation Nuclear fuels 

Electricity 13 Solar PV generation Electricity 

14 Solar thermal generation 
Solar thermal 

15 Solar thermal heat Heat 

16 Wind generation Electricity 
Electricity 

17 Biomass generation 

Biomass 
18 Biofuels LaG fuels 

19 Biomass heat Heat 

20 Biomass CHP Electricity and heat 

21 Hydropower generation Electricity 
Electricity 

22 Geothermal generation 
Geothermal 

23 Geothermal heat Heat 

24 Other RE generation Electricity Electricity 

Secondary AI 

types 

1 Electricity AI 

 
2 Intermittent electricity AI 

3 LaG fuels AI 

4 Heat AI 

EC types 

1 Electricity 

 2 LaG fuels 

3 Heat 

EU PC types 

1 Electric lighting 

Electricity 

Illumination 

2 IPaC devices IPaC 

3 Electric mechanical 
Static mechanical 

4 LaG fuel mechanical 

LaG fuels 
5 ICEV light 

Transport passenger 

regional 

6 ICEV heavy passenger 

7 ICE rail passenger 

8 Electric vehicles 
Electricity 

9 Electric rail passenger 

10 Aviation passenger regional 

LaG fuels 

11 Shipping passenger regional 

12 Aviation passenger IC 
Transport passenger IC 

13 Shipping passenger IC 

14 ICEV heavy freight 

Transport freight regional 

15 ICE rail freight 

16 Electric rail freight Electricity 

17 Aviation freight regional 

LaG fuels 
18 Shipping freight regional 

19 Aviation freight IC 
Transport freight IC 

20 Shipping freight IC 

21 Electric cooling Electricity Cooling 

22 LaG fuel heating low temp. LaG fuels Low temp. heating 
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Element set Index Label Inflow Outflow 

23 Electric heating low temp. Electricity 

24 Heat heating low temp. Heat 

25 Electric heating high temp. Electricity 
High temp. process heat 

26 Heat heating high temp. Heat 

EU AI types 

1 Electrical AI 

 

2 IPaC AI 

3 LaG fuels AI 

4 Roading AI 

5 Electric vehicles AI 

6 Rail AI 

7 Rail electrification AI 

8 Aviation AI 

9 Shipping AI 

10 Heating AI 

ES types 

1 Illumination 

 

2 IPaC 

3 Static mechanical 

4 Transport passenger regional 

5 Transport passenger IC 

6 Transport freight regional 

7 Transport freight IC 

8 Cooling 

9 Low temp. heating 

10 High temp. process heat 

 

Primary energy resources consist of the fossil fuels (oil, coal, and natural gas) and nuclear 

fuels. Only fissile fuels used in current generation nuclear reactors are included (i.e., no 

experimental or speculative fuel types). Nuclear electricity generation is modelled at the 

secondary stage. Conventional and unconventional NRE resources are grouped together, as 

these categories can be defined within the same EROI quality distributions. For solar thermal, 

biomass, and geothermal primary RE resources, conversion to multiple ECs is possible and is 

modelled at the secondary stage. ‘Other RE’ includes all minor RE resources not otherwise 

specified, primarily ocean-based technologies such as tidal and wave power. 

Selected ECs are electricity, liquid and gaseous (LaG) fuels, and heat as these categories are 

approximately exhaustive and exhibit distinct functional characteristics: 

• Electricity is highly versatile and is the primary fuel for EU applications involving 

electric motors, electronic circuits, resistive heating and lighting, and electrochemical 

and semiconductor devices. 
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• Liquid and gaseous fuels (LaG fuels) are energy dense and portable combustible fuels, 

typically composed of various hydrocarbons (but can also include hydrogen and 

ammonia), primarily used in transportation and for mobile equipment. 

• Heat is generated from solid and gaseous combustible fuels, and from solar thermal 

and geothermal sources, and can be applied to both high temperature (> 500 K) 

process heat and low temperature (< 500 K) heating applications. 

• Note that limits to substitution exist within the LaG fuel and heat EC categories, as 

defined above. This is discussed further in section 5.4.  

Selected ES categories are based on Fell [224], modified to correspond to exhaustive and 

functionally distinct roles within the GES. Transportation is separated by passenger and 

freight, and by approximate geographical range, as functional distinctions are apparent 

between these groups (i.e, mutual substitutability is minimal). These selected ESs are listed 

in Table 5 along with predominant associated end-use sectors. 

Table 5: selected ESs and predominant associated end-use sectors 

Energy service End-use sector 

Illumination 

Residential and commercial 
Information processing and communication (IPaC) 

Cooling 

Low temperature heating 

Static mechanical work 
Industrial 

High temperature process heat 

Regional passenger transportation 
Transportation of people 

Intercontinental passenger transportation 

Regional freight transportation 
Transportation of goods 

Intercontinental freight transportation 

 

IPaC refers to all forms of communication, entertainment, computing, and information 

storage (including end user devices and the PC comprising IPaC networks). Cooling refers to 

refrigeration and space cooling. Static mechanical work consists of all mechanical work 

performed by PC for purposes other than transportation or cooling. Passenger and freight 

transportation are each split into two categories based on distance and geographical factors: 

• Regional transportation is typically land-based but can also utilize regional waterways 

and short- to medium-distance aviation. 
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• Intercontinental (IC) transportation is typically long-distance, transiting major 

geographical barriers such as oceans and territories lacking land-based transport 

infrastructure, and is practically limited to shipping and aviation. 

• Non-trivial functional differences are apparent between PC serving these two 

transportation categories, in terms of PC utilization and conversion efficiencies. 

Based on the selection of secondary PC types listed in Table 4, selected intermittent electricity 

generation PC types are solar PV, solar thermal generation, wind, and other RE. Selected 

baseload PC types are coal, nuclear, biomass, and geothermal generation. Selected peaking 

PC types are oil and gas generation (note, this includes both open-cycle and closed-cycle 

plant). Hydropower is not included in either baseload or peaking categories, as generating 

equipment is generally fast-responding but plant output is often constrained by local 

hydrology (particularly for smaller ‘run-of-river’ plant). 

The use of light internal combustion engine (ICE) vehicles (or ICEVs) for freight transportation 

is not included due small payloads carried in such applications which can be considered part 

of passenger transportation. Electric vehicles are assumed to include all functionally 

equivalent vehicle types using electricity as an input, including battery and hydrogen fuel cell 

vehicles. Note that based on the selection of EU PC types listed in Table 4, the corresponding 

reference modes representing eventual ideal ES provision (as discussed in section 4.2.2.5) are: 

• Electric mechanical for static mechanical work 

• Light vehicles (ICE and electric) for regional passenger transportation (highest 

plausible achievable EU to ES efficiency maxima of 52 kJ per passenger-km) 

• Passenger aviation for IC passenger transportation (256 kJ per passenger-km) 

• Freight rail (ICE and electric) for regional freight transportation (38 kJ per tonne-km) 

• Freight shipping for IC freight transportation (64 kJ per tonne-km) 

• See section 9.5.6.5 for calculation details. 

Secondary AI types are selected corresponding to each EC type, plus an additional category 

associated with the integration of intermittent generation into electricity systems (as 

discussed in section 4.2.5). EU AI types are selected corresponding to broad, overlapping 

infrastructural requirements: 
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• Infrastructure is required by all EU PC types for handling the associated EC input: 

electrical, LaG fuels, and heating. 

• Basic transportation infrastructure is required for all EU PC types providing 

transportation ESs: roading, rail, aviation (airports), and shipping (ports). 

• Supplemental infrastructure is required for specific EU PC types: IPaC (supplemental 

to electrical AI), electric vehicles (supplemental to roading AI), and rail electrification 

(supplemental to rail AI). 

Note that applying the criteria for technology inclusion introduced in section 4.1.2 excludes 

several notable technologies, specifically the production of hydrogen via electrolysis and all 

subsequent ‘power-to-X’ conversions, and niche applications such as illumination and 

absorption refrigeration using combustible fuels. 

For the specification of EC input energy cost proportions for PC and AI relative to the EC 

proportions of final demand, it is assumed electricity proportions are adjusted via 

normalization to account for specified relative proportions for LaG fuels and heat (i.e., φx1 = 

j; refer to section 4.2.4.3). 

5.2 SYSTEM CONTROL 

The purpose of system control is to determine time-dependent PC investment decision flow 

and intermittency mitigation decision variables, ĥr, ĥn, ĥs, ĥe, and ψ, in such a way that 

minimizes sum supply/demand imbalances relative to total EC consumption over the duration 

of the study period (in units of years2). This must be executed subject to primary energy 

resource and penetration limits while satisfying various secondary objectives: 

1) encouraging system-level energy efficiency by minimizing sum EC consumption, 

2) facilitating decarbonization of the GES by minimizing energy related cumulative GHG 

emissions, and 

3) maintaining high utilization of upstream PC by minimizing capacity imbalances 

between the primary and secondary stages. 

That is, 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑(∫|𝒃 ᴓ 𝒑𝒐|𝑑𝑡)
𝑖

𝑛

𝑖=1

 

Subject to, 
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𝒑𝒓 ≤ 𝒑𝒓𝒎  ∫ (𝒑𝒏 + 𝒑𝒏𝒆)
∞

𝑡=0
< 𝝎𝒏𝒎  𝜼𝒔 ≤ 𝜼𝒔𝒎  𝜼𝒆 ≤ 𝜼𝒆𝒎 

While achieving secondary objectives: 

1) 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝒑𝒐 ∙ 𝒋 

2) 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  (𝜽 ᴑ ∫ 𝒑𝒏𝑑𝑡) ∙ 𝒋 

3) 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑ |(𝒄𝒓 ᴑ 𝜸𝒓 ᴑ 𝒖𝒓𝒎 − 𝐹𝑟𝑠𝑖𝒋)𝑖|
𝑛
𝑖=1 + ∑ |(𝒄𝒏 ᴑ 𝜸𝒏 ᴑ 𝒖𝒏𝒎 − 𝐹𝑛𝑠𝑖𝒋)𝑖|

𝑚
𝑖=1  

Minimization of sum supply/demand imbalances, across time and all EC types, is chosen as 

the objective function as this is the paramount requirement for the GES as it is fundamental 

to efficient operation and avoidance of destabilizing deviations between supply and demand 

(including net energy trap outcomes). However, the presence of secondary objectives 

necessarily detracts from achieving optimality in the primary objective. 

The above system control specification can be accomplished via exhaustive simulation and 

optimization, but this approach is computationally prohibitive due to the number of 

simulation timesteps involved, each requiring specification of more than 4,000 independent 

decision variable values. Instead, a system control heuristic is used to dynamically regulate 

decision variables in response to the evolving state of the GES. This heuristic represents the 

collective decision-making capabilities of the HSES to control the reinvestment of energy into 

the GES, and: 

• assumes investment decisions are based on physical optimality in terms of net energy 

return, without being constrained by social, political, or economic barriers (thus yields 

an optimistic solution space for GES transformation, as discussed in section 4.1.1), 

• is simulated concurrently with GES transformation processes using a forward 

projection of the objective function, implying imperfect foresight, 

• is feedback-driven, analogous to real world decision-making processes and likely to be 

less prone to arriving at local optima than other non-linear optimization methods, 

• is similar in design to a proportional-integral-derivative control loop, widely used in 

engineering and operations research as described by Wang et al. [357], and 

• can be considered a satisficing method (i.e., ‘fast and frugal’ heuristic) due to the 

presence of multiple objectives [358-360]. 

To maximize the efficacy of the control system, and manage suboptimality and trade-offs 

associated with the multi-objective approach, the system control heuristic is calibrated via 
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specified control parameters at the ensemble level (see section 9.6 for details). Note that 

computational cost and software limitations prevents realization-level optimization and 

calibration (different optimized control parameter sets for each model realization). Note also 

that widely employed methods for the for calibration of computer models, including 

‘hindcasting’, are not suitable for the PRESS model as it is exploratory in design rather than 

predictive, and as such is not designed to replicate past system behaviour. Historical 

conditions shaping the evolution of the GES are not expected to represent future conditions, 

primarily due to: 

• a rising impetus to decarbonize the GES by accelerating the transition towards RE, 

resulting in discontinuities in both upstream and downstream investments, and 

• growth in the autocatalytic loop over time as primary energy resource quality declines. 

Causal loops associated with system control are depicted in Figure 25: 

• Minor inputs to the investment share calculation are omitted for clarity. 

• Blue feedback symbols identify feedback loops introduced in section 4.2.6. 

• Descriptions of feedback loops and associated phenomena are given in section 9.2. 

 

 

Figure 25: causal loop diagram for system control  
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Details of the components of the heuristic method are given in subsequent sections (5.2.1 to 

5.2.5.3), simplified for brevity and clarity. Refer to section 9.4.4 for full function details. 

5.2.1 EC deficit projection 

System control requires an approximate future projection of the main input to the objective 

function, the cumulative supply/demand balance vector, b, such that changes in the 

investment decision variables, ĥx, and subsequent expected changes in b can form a feedback 

loop. Using equation 1 from section 4.2.1.2 and equation 3 from section 4.2.3, 

𝒃(𝑡 = 𝜏) = ∫ (𝒑𝒊 − (𝒑𝒅
𝑻𝐶𝑒)

𝑻
− 𝒑𝒂 − 𝒑𝒄)

𝜏

0

𝑑𝑡 

This process is based on linear projection of the main components affecting b: 

• The current supply/demand balance flow rate, pi – po. 

• Expected changes in EC production, pi, due to changes in upstream PC. 

• Expected changes in EC final consumption, (pT
dCe) T, due to changes in downstream 

PC. 

• Expected changes the metabolic energy consumption of the GES, pa + pc, due to 

changes in upstream and downstream PC. 

Expected net changes in PC are given by additions less decommissioning, where additions are 

represented the PC stocks in construction, wx, and decommissioning within the construction 

period is indicated by the vector of PC additions delayed by PC lifetime minus build time, hx(tj 

+ zx – lx). Matrices, Ui, Uo, and Uκ (units of EJ/year), are constructed to represent projected 

changes in inflow and outflow rates for each EC (jth column) over a specified number of time 

increments (ith row) included in the investment planning timeframe: 

• Ui specifies future EC production rates associated with upstream PC in construction, 

minus expected decommissioning, phased in over the relevant PC build times. 

• Uo specifies future changes to EC consumption rates associated with downstream PC 

in construction, minus expected decommissioning, phased in over the relevant PC 

build times. 

• Uκ specifies future EC consumption rates associated with the construction of new PC, 

phased out over the relevant PC build times, and new PC operation. 



162 
 

A vector representing EC deficit by EC type, ɗ (in units of EJ), projected at a specified time 

horizon is then given by, 

ɖ = −(𝐽 ᴑ 𝒃𝑻  + ɤ𝑡𝑐𝐿(𝐽 ᴑ (𝒑𝒊 − 𝒑𝒐)
𝑻 + 𝑈𝑖 + 𝑈𝑜 + 𝑈𝜅))

𝑗

𝑻

 

Where, J is a matrix of ones (dimensionless), 

ɤtc is a time increment constant indicating the time period represented by each matrix row (in 

units of years), and 

L is a lower unitriangular matrix (dimensionless). 

L is used for the summation of cumulative totals by timestep. The jth column is taken to give 

ɗ, specified at time horizon ɤth (in units of years) where j = ɤth / ɤtc. 

5.2.2 Investment shares 

The determination of investment flows requires a prioritization mechanism, identifying 

investment options best able to minimize the objective function while promoting secondary 

objectives. To achieve this, matrices are constructed to represent ‘yield’ by PC type, Yi and Yo 

(dimensionless), to allow the comparison of upstream and downstream investment options, 

respectively, on a consistent net energy basis. Yield is defined in terms of the energy return 

per energy invested into each PC type (ith row) for each EC (jth column): 

• Yi represents upstream EC production and is calculated from new PC EROI and 

secondary ECC (ʞr, ʞn, ys, and ysa) disaggregated by EC type, CF maxima for upstream 

PC (urm, unm, and usm), and new PC efficiencies (əsi and əso).  

• Yo represents downstream avoided final EC consumption and is calculated from EU 

ECC (ye and yea) disaggregated by EC type, CFs for EU PC (ue), and new PC efficiencies 

(əei and əeo). Downstream yield uses actual CFs as these can diverge widely from CF 

target, strongly affecting yield calculations. 

• Note that these matrices include the energy costs of associated AI for both upstream 

and downstream yield, and energy costs of associated primary PC for upstream yield. 

Investment flows must respond to upstream and downstream penetration limits, ηsm and ηem. 

For this purpose, stepwise curtailment function vectors, ȿi and ȿo, for upstream and 

downstream, respectively, can be defined: 
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ȿ𝒙 =

{
 

 
𝒋  𝑤ℎ𝑒𝑟𝑒  𝜼𝒙 ≤ (1 − ɤ𝑐𝑡)𝜼𝒙𝒎

1

ɤ𝑐𝑡
(𝒋 − (𝜼𝒙 ᴓ 𝜼𝒙𝒎))  𝑤ℎ𝑒𝑟𝑒  (1 − ɤ𝑐𝑡)𝜼𝒙𝒎 < 𝜼𝒙 < 𝜼𝒙𝒎

𝟎  𝑤ℎ𝑒𝑟𝑒  𝜼𝒙  ≥  𝜼𝒙𝒎

 

Where ɤct (dimensionless) is a curtailment threshold constant specifying the fraction of the 

input variable range over which output is linearly curtailed towards zero (also used in the 

investment magnitude function as detailed in section 5.2.3 below). 

Next, matrices of utility values by PC type and EC type, Wi and Wo for upstream and 

downstream, respectively, can be calculated to compare the relative merits of each 

investment option to address the projected EC deficit, ɗ. For downstream investment options, 

𝑊𝑜 = ɤ𝑠ℎ(ɖ
𝑻 ᴑ 𝑌𝑜) 

Where ɤsh (units of 1/EJ) is an investment share coefficient scaling the magnitude of Wx 

matrices. Note that indices are rendered dimensionless by removing the unit of time. For 

upstream investment options, 

𝑊𝑖 = ɤ𝑠ℎ(ɖ
𝑻 ᴑ 𝑌𝑖  ᴑ (𝒋

𝑻𝐼𝑟𝑠𝑖 + 𝒋
𝑻 (𝐼𝑛𝑠𝑖  ᴑ (𝒋 −

𝑛ɤ𝑛𝑟𝜽

∑ 𝜽𝒊
𝑛
𝑖=1

 )

ᴑ𝑡𝒋

))

𝑻

) 

Where n is the vector length for NRE type vectors and ɤnr (dimensionless) is a selected mean 

NRE annual utility reduction rate. NRE utility reduction is implemented to decrease 

investment flows into upstream EC production from NRE sources over time representing the 

rising impetus to decarbonize the GES and associated policy efforts. The mean annual utility 

reduction rate is applied in proportion to the GHG emissions intensity of each NRE type 

relative to the mean GHG emissions intensity across all NRE types, hence higher emissions 

investment options will be phased out more rapidly. Note that NRE utility reduction is a 

forcing function rather than a hard constraint, progressively disincentivizing NRE production 

over time but still allowing investment flows towards NRE production where utility values are 

high enough. The value of ɤnr is selected to allow sufficient forcing without adverse impacts 

to system stability (see section 9.6 for details). 

Investment flow proportions directed towards each investment option (investment shares) 

are then calculated using logit choice functions, such that the value selected for ɤsh controls 
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the degree of concentration of investment flows into higher utility investment options (lower 

ɤsh values will spread investment flows more evenly between investment options): 

𝒉̂𝒔 ∝
ȿ𝒊 ᴑ (𝑒𝒋)

ᴑ𝑊𝑖𝒋

𝒋 ∙ (𝑒𝒋)ᴑ𝑊𝑖𝒋 + 𝒋 ∙ (𝑒𝒋)ᴑ𝑊𝑜𝒋
 

and 

𝒉̂𝒆𝒔 ∝
ȿ𝒐 ᴑ (𝑒𝒋)

ᴑ𝑊𝑜𝒋

𝒋 ∙ (𝑒𝒋)ᴑ𝑊𝑖𝒋 + 𝒋 ∙ (𝑒𝒋)ᴑ𝑊𝑜𝒋
 

Where the index vectors Wxj give the sum of utility values across all EC types, summarizing 

the relative merit each investment option. Note that the above relations are indicated in 

terms of proportionalities as investment shares must be corrected for the variable EC costs 

per unit of PC for each investment option. The calculation of primary PC investment flows 

associated with upstream investment options, ĥr and ĥn, are detailed in section 0. The vector 

ĥes indicates downstream investment flows originating from the above investment share 

calculation, as opposed to investment flows required to maintain EU PC utilization below 

target CFs, ĥet (detailed in section 5.2.5.1). 

The above investment allocation logic promotes energy efficiency at the system level by 

prioritizing investment options with higher yields, to the extent they address the projected 

EC deficit, ɗ. This minimizes sum EC consumption over time (secondary objective 1): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝒑𝒐 ∙ 𝒋 

In addition, the use of NRE utility reduction minimizes energy related cumulative GHG 

emissions to the extent possible within dynamic system constraints, by disincentivizing 

primary energy production from high GHG emissions intensity sources (secondary objective 

2): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  (𝜽 ᴑ ∫𝒑𝒏𝑑𝑡) ∙ 𝒋 

5.2.3 Investment magnitude 

A feedback loop between projected sum EC deficit and the total investment flow magnitude 

is needed as greater deficits will require greater total investment to rectify, and vice versa. 

However, as discussed in section 4.2.4.5, the reinvestment of energy back into the GES is 

necessarily limited by HSES constraints, as indicated by the ESMR vector, κ. To represent this 



165 
 

limitation, investment magnitude is defined as a stepwise function with curtailment based on 

the maximum ESMR relative to a specified ESMR limit, ɫ (dimensionless): 

∑𝒉̂𝒓, 𝒉̂𝒏, 𝒉̂𝒔, 𝒉̂𝒆𝒔 ∝ {

ɤ𝑚𝑐ɖ ∙ 𝒋  𝑤ℎ𝑒𝑟𝑒  𝑚𝑎𝑥(𝜿)𝒊 ≤ ɫ(1 − ɤ𝑐𝑡)
ɤ𝑚𝑐
ɤ𝑐𝑡

(ɫ − 𝑚𝑎𝑥(𝜿)𝒊)ɖ ∙ 𝒋  𝑤ℎ𝑒𝑟𝑒  ɫ(1 − ɤ𝑐𝑡) < 𝑚𝑎𝑥(𝜿)𝒊 < ɫ

𝟎  𝑤ℎ𝑒𝑟𝑒  𝑚𝑎𝑥(𝜿)𝒊 ≥ ɫ

 

Where ɤmc (units of 1/year2) is an investment magnitude coefficient, controlling the strength 

of the investment response. PC investment flow decision variables, ĥr, ĥn, ĥs, and ĥe, are then 

determined by the total investment magnitude split between upstream and downstream 

investment options based on investment shares described in section 5.2.2. 

5.2.4 Intermittency mitigation 

The optimal balance between the intermittency mitigation options, represented by ψ, will 

change depending on the relative scarcity of ECs as indicated by projected EC deficit, ɗ. Firstly, 

EC costs associated with the two intermittency mitigation options are calculated: 

• For AI mitigation, EC costs arise from the increased metabolic energy consumption of 

the GES associated with additional intermittent electricity AI, and lost EC due to the 

reduction of secondary reticulation efficiencies. 

• For PC overbuild mitigation, EC costs arise from lost EC production due to the 

reduction of primary and secondary CFs. 

Optimal ψ is then determined via an average of the lowest cost intermittency mitigation 

options for each EC type (indicated by one where AI mitigation is lower cost, zero otherwise), 

weighted by the normalized components of ɗ. This dynamically selects the balance of 

mitigation options best able to address the projected EC deficit. ψ is calculated using a script 

element in GoldSim (see section 9.4.5.1 for script details). 

5.2.5 PC utilization control 

5.2.5.1 EU CF regulation 

EU PC investment flows driven by EU PC utilization, denoted ĥet, are required for the upkeep 

of sufficient EU PC stocks (regardless of flows determined via the investment share and 

magnitude calculations, ĥes). These flows are required to alleviate over-utilization of PC 

indicated by EU CFs, ue, relative to target CFs, uet. Investment quantities are given by the 
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difference between ES demands and the ES flows EU PC (operating and in construction) can 

deliver if operating at target CFs, spread over the relevant PC build times, ze: 

𝒉̂𝒆𝒕 = 

{((𝒑𝒅
𝑻 − ((𝒄𝒆 ᴑ 𝒆𝒆𝒐 +𝒘𝒆 ᴑ ə𝒆𝒐) ᴑ 𝒖𝒆𝒕)

𝑻
𝐼𝑒𝑜) (ȿ𝒐 ᴑ 𝐹𝑒𝑜 ᴓ 𝒋

𝑻(ȿ𝒐 ᴑ 𝐹𝑒𝑜))
𝑻
)
𝑻

 ᴓ (𝒖𝒆𝒕 ᴑ ə𝒆𝒐 ᴑ 𝒛𝒆)  𝑤ℎ𝑒𝑟𝑒  𝒖𝒆 > 𝒖𝒆𝒕

𝟎  𝑤ℎ𝑒𝑟𝑒  𝒖𝒆 ≤ 𝒖𝒆𝒕

 

The sum investment flow vector for EU PC, ĥe, is then given by, 

𝒉̂𝒆 = 𝒉̂𝒆𝒔 + 𝒉̂𝒆𝒕 

5.2.5.2 Synchronization of upstream PC additions 

For upstream investment, primary PC investment flows, ĥr and ĥn, commensurate with 

secondary PC investment flows, ĥs, are required: 

𝒉̂𝒓 = (𝐼𝑟𝑠𝑖 ᴑ (𝒉̂𝒔 ᴑ 𝜸𝒔 ᴑ 𝒖𝒔𝒎 ᴓ 𝒆𝒔𝒊)
𝑻
) 𝒋 ᴓ (𝜸𝒓 ᴑ 𝒖𝒓𝒎) 

𝒉̂𝒏 = (𝐼𝑛𝑠𝑖  ᴑ (𝒉̂𝒔 ᴑ 𝜸𝒔 ᴑ 𝒖𝒔𝒎 ᴓ 𝒆𝒔𝒊)
𝑻
) 𝒋 ᴓ (𝜸𝒏 ᴑ 𝒖𝒏𝒎) 

However, corresponding primary and secondary PC types have non-equivalent PC lifetimes, 

lx, and build times, zx. As such, total stocks of primary and secondary PC tend to desynchronize 

over time. Delay functions for upstream investment flows are used to maintain approximate 

synchronization. These functions use default delay times equal to the difference between the 

corresponding primary and secondary build times applied to the PC quantities with the 

shorter build times (i.e., no delay for the PC with the longer build times). This allows 

corresponding primary and secondary PC to be brought into operation simultaneously. These 

delay times are dynamically modified where primary PC exceeds corresponding secondary PC, 

or vice versa. Delay times are shortened to expedite the addition of PC in deficit, promoting 

the minimization of unused upstream PC (secondary objective 3): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑|(𝒄𝒓 ᴑ 𝜸𝒓 ᴑ 𝒖𝒓𝒎 − 𝐹𝑟𝑠𝑖𝒋)𝑖|

𝑛

𝑖=1

+∑|(𝒄𝒏 ᴑ 𝜸𝒏 ᴑ 𝒖𝒏𝒎 − 𝐹𝑛𝑠𝑖𝒋)𝑖|

𝑚

𝑖=1

 

5.2.5.3 Upstream CF curtailment 

Excessive accumulation of ECs (b >> 0) can cause destabilization of the GES transformation 

pathway due to prolonged underinvestment and consequent large swings in the 

supply/demand balance flow rate, pi – po. To promote system stability, active curtailment of 
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upstream CFs is required, representing falling utilization of PC due to oversupply. This 

curtailment can be achieved via a stepwise function to linearly curtail the production of ECs 

in surplus: 

𝒖𝒔𝒎 = {𝒖𝒔𝒎(0) ᴑ 

𝒖𝒔𝒎(0)  𝑤ℎ𝑒𝑟𝑒  𝒃 ᴓ 𝒑𝒐 ≤ 𝟎

𝐼𝑠𝑜 (𝒋 −
𝒃 ᴓ 𝒑𝒐
ƃ

)   𝑤ℎ𝑒𝑟𝑒  𝟎 < 𝒃 ᴓ 𝒑𝒐 < ƃ𝒋

𝟎  𝑤ℎ𝑒𝑟𝑒  𝒃 ᴓ 𝒑𝒐 ≥ ƃ𝒋

 

Where usm(0) is the initial maximum secondary CF, prior to any curtailment effect, and ƃ (units 

of years) is the specified EC surplus limit. This limit increases linearly as a function of time as 

greater cumulative surplus is allowable without adversely impacting system stability as 

elapsed simulation time increases. 

5.3 SCENARIOS 

The effects of various exogenous factors, trends, and circumstances on GES transformation 

pathways can be tested using scenario analysis. This, in effect, represents a reduction of the 

full range of socio-technical narratives implicitly considered in the standard ‘base case’ of the 

model to more specific ranges of interest. Scenario results can be used to infer optimal 

strategies, system leverage points, and policy implications for GES transformation. The 

simulation of diverse scenarios also serves to stress-test and further validate the model, 

particularly regarding weaknesses and limitations in the chosen methodological approach 

discussed in sections 4.1 and 5.4. 

Scenarios are subjectively defined, representing a range of narratives present in the literature 

and popular commentary on the forthcoming energy transition (i.e., scenarios are not based 

on a formal survey or quantification of such narratives, but are instead based on the author’s 

interpretation). It should be noted that as scenarios are sensitive to their specific 

implementation, they should be considered primarily in reference to the model base case, as 

described in section 3.1.4.2. The selected scenarios are summarized in Table 6. 
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Table 6: summary of scenarios implemented in the PRESS model 
Sc

en
ar

io
 

N
am

e
 

Description 

1 
Energy 

Breakthrough 

A new high-EROI, dispatchable, scalable technology for electricity production 

is available from the beginning of the study period. This scenario approximates 

the immediate availability of next generation nuclear (treated as functionally 

renewable), ocean thermal energy conversion (OTEC), or a similar 

breakthrough technology. To represent this, the ‘Other RE’ primary energy 

category is modified to be dispatchable, have an initial EROI of 50, and be 

effectively inexhaustible. 

2 Relocalization 

A general trend towards greater economic and social relocalization 

eventuates, reflected in aggregate ES demands. Demand for the 

transportation declines over the simulated period. Transportation of goods 

declines strongly while the transportation of people declines moderately, and 

greater declines are observed for IC transportation. To represent this, mean 

reductions of 25%, 50%, 60%, and 75% from 2015 levels are modelled for 

regional and IC passenger transportation, and regional and IC freight 

transportation, respectively. 

3 
RE Rapid 

Deployment 

An expedited phase out of NRE investment is attempted. This represents a 

pronounced shift in subsidies away from NRE and towards RE, or similar policy 

mechanisms. To represent this, the mean NRE annual utility reduction rate, 

ɤnr, is quadrupled, from 2.5% to 10% per year. 

4 
Climate 

Constraints 

Strong emissions regulations are introduced, such as absolute emissions caps 

or aggressive carbon taxes, aimed at secondary and end-use technologies with 

high GHG emissions intensities. In particular, the conversion of gas and coal to 

LaG fuels, electricity generation from fossil fuels, light internal combustion 

engine vehicles (ICEVs), and aviation are severely limed in this scenario. To 

represent this, penetration limits, ηsm and ηem, for affected PC types are 

reduced to values between 50% and 5% (lower limits for less critical and/or 

higher GHG emissions intensity technologies). 

5 

Delayed 

Consumer 

Response 

A significant delay occurs in the willingness of consumers to shift consumption 

behaviours towards ES provision using more efficient EU PC types. 

Consequently, downstream investment determined by the control system 

(based on physical optimality) is suspended for a period of 35 years. To 

represent this, no downstream investment flows originating from the 

investment share and magnitude calculations, ĥes, occur before 2050. During 

this period, downstream investment is driven by EU PC utilization only (ĥet). 

6 

Policy 

Recommendation

s 

Changes in model parameters corresponding to policy recommendations 

found via sensitivity analysis (i.e., leverage points) are implemented to the 

degree considered plausible (see section 5.5.1 and section 6.3.2). As such, this 

scenario can be seen as a highly optimistic best-case narrative, assuming 

planning foresight based on an understanding of the solution space for 

physical GES transformation. To represent this: 

• modelled ES demands are reduced, strongly for static mechanical work 

and high temperature process heat (at least 25% reductions from 2015 

levels), moderately for IPaC, low temperature heating, and all 
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Sc
en

ar
io

 

N
am

e
 

Description 

transportation ESs excluding IC passenger transportation (no increases 

from 2015 levels, reductions still possible), 

• penetration limits for electricity generation from coal and IC freight 

aviation are reduced to 10%, and 

• mean and SD ECC values are reduced by 50% for secondary PC associated 

with coal (except coal heat), biofuels, and geothermal generation, and for 

secondary AI for intermittent electricity mitigation. 

 

These scenarios are implemented through the introduction of specific sets of model 

parameter values and additional functions affecting model interactions. See section 9.7 for 

scenario implementation details. 

5.4 IDENTIFIED LIMITATIONS 

As discussed in sections 4.1 and 4.2, the PRESS model and associated physical GES modelling 

approach are considered semi-stylized due to the high-level, spatially aggregated perspective, 

simplifying assumptions, and data limitations for the estimation of input parameter 

probability distributions. Consequently, potential limitations associated with the 

methodology presented in this chapter have been identified: 

• Differences in the qualitative preferences for specific modes of ES provision are not 

modelled. In effect, this assumes indifference of the end-user to various aspects of ES 

provision, such as speed, convenience, privacy, and cost. Accounting for behavioural 

factors and preferences affecting mode choice for ES provision, expressed dynamically 

and globally over time, is considered out of scope. However, scenario 5 (Delayed 

Consumer Response) explores the implications of behavioural change reticence. 

• Explicit modelling of the introduction of CCS for the abatement of GHG emissions in 

the upstream sector, and associated energetic costs, is not attempted. While 

cumulative GHG emissions as modelled could theoretically be reduced via these 

measures, this would come at the expense of a larger autocatalytic loop with unknown 

implications for GES transformation pathways. 

• The model lacks the adverse impacts of rising global mean surface temperatures due 

to climate change, and reductions in mean utilization of PC due rising intermittent 



170 
 

penetration (PC overbuild mitigation), on thermal conversion efficiencies at the 

secondary stage. 

• Thermal electricity generating PC types modelled at the secondary stage are 

aggregates of open-cycle and closed-cycle plant, which are subject to different mean 

utilization levels (CF maxima) and generator types (peaking or baseload). This 

effectively assumes that the composition of such PC types remains similar over time. 

• The increasing energy costs of non-renewable, non-energy resource extraction (e.g., 

minerals) required for the GES due to decreasing resource quality are not modelled. 

While this can be expected to increase EROI for specific energy technologies, this 

effect is less relevant for a high-level, aggregated modelling approach and is 

represented only exogenously via probabilistic ES demand trends. 

• Pre-simulation power output estimates, used in new PC efficiency and EROI functions, 

are based on assumed linear production trends (from technology inception to the start 

of the study period). This is less accurate than using actual historical time series power 

output data, but required given a relative paucity of such data for all PC types. 

• The time-dependent effects of energy production efficiencies on primary energy 

resource magnitudes (affecting solar PV and wind resources, in particular) are not 

modelled. Instead, resource quantities, prm and ω, are defined as the energy resources 

which are ultimately accessible for simplicity. 

• For RE PC, lower EROI values will, in reality, manifest partially as reduced capacity 

utilization due to poorer quality resources (weaker, more intermittent natural energy 

fluxes). For simplicity, this is represented via reduced EROI alone without resource 

quality affecting CF maxima. 

• The model lacks explicit representation of feedbacks between EC scarcity or 

abundance (represented by b, as a price proxy) and ES demands, pd. However, this is 

mitigated by probabilistic modelling of pd and the representation of b as an integral 

function, with the downstream consumption of ECs changing in response to b 

(including fuel switching, as discussed in section 4.2.9.1). This is functionally consistent 

with rebound effects stemming from behavioural adaptation to price, although not 

necessarily in alignment with real-world rebound effect magnitudes. 
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• Price- and exergy-based quality adjustments for EROI are not represented in 

disaggregated EC components, due to the complexities and ambiguities this 

introduces to the disaggregated EC formulation. Instead, adjustment for primary 

energy equivalents (a factor of 2.6 applied to electricity) is considered sufficient. 

• Downstream PC stocks involved in GES metabolic consumption (the autocatalytic loop 

and capital hypercycle) are not explicitly modelled but rather represented by the 

energy costs metrics, EROI and ECC (with required EC expenditures are taken directly 

from b). This is optimistic as it effectively disregards capacity constraints and lifecycle-

related delays associated with these PC stocks. It also assumes EROI and ECC values 

are comprehensive and include nth-order requirements (as discussed in section 4.2.4). 

• The estimation of ECC, as a derived metric with no available independent estimates, 

is subject to a high degree of epistemic uncertainty and estimates can be expected to 

vary by orders of magnitude (as discussed in section 4.2.4.2). Furthermore, the use of 

technology cost tiers for establishing ECC estimates by comparison (see section 9.5.9) 

is speculative. However, this is mitigated by the general probabilistic formulation, the 

use of input correlations (see section 9.4.7.3), and multiple lines of reasoning to 

establish appropriate probability distributions for these input parameters. 

• The model is initialized using the initial EC proportions of EC supply as an 

approximation of the initial EC proportions of final EC demand, δ(0) (as discussed in 

section 4.2.7). This effectively assumes that implicitly modelled downstream PC stocks 

involved in GES metabolic consumption have a similar initial composition to the 

explicitly modelled downstream PC stocks involved in final consumption. This is not 

strictly accurate due to the existence of φ vectors; however, approximation is 

necessary as a full numerical solution would require a more complex iterative solver, 

increasing computational cost and the risk of associated errors. 

• For model initialization, it is assumed that the distribution of PC and AI ages along their 

respective lifecycles is uniform. This is a limitation of the material delay element in the 

GoldSim software used to represent stocks of PC and AI in the construction and 

operation lifecycle stages. While this is likely to be appropriate for most mature PC 

types, it may overestimate decommissioning in the early study period for emerging PC 

types (e.g., solar PV and wind) and underestimate decommissioning for PC types being 
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phased out (e.g., coal generation). Note that this error diminishes later in the study 

period, until it is gone by t > max(lx)x,i, but some residual influence of the error remains 

due to path-dependency. 

• As all forms of heat production at the secondary stage are treated as interchangeable, 

industrial processes that have a direct reliance on specific primary energy flows may 

not be represented adequately. For example, steel production requires coke derived 

from coal, both to provide high temperature process heat (the ES) and as a chemical 

reactant in blast furnaces. Such processes are not generally amenable to substitution 

in heat production. While substitution limits are partially represented using 

probabilistic EU penetration limits, ηem, detailed representation of the industrial 

sector is considered out of scope and is not attempted. 

• Similarly, LaG fuels are treated as homogenous and interchangeable, which is not 

strictly accurate at the process or industry level. However, as PC types using different 

LaG fuels are generally functionally similar, and refining methods exist to adjust the 

chemical composition of fuels, it is optimistically assumed that the supply of specific 

LaG fuel components does not represent a significant constraint at the system level. 

• For EU PC providing heating ESs, passive systems are assumed to be similar and have 

homogeneous EU to ES efficiency parameters. This is likely appropriate for low 

temperature heating, but less certain for high temperature process heat where there 

is a greater technological diversity of passive systems. As the representation of diverse 

industrial processes is out of scope, the related uncertainty is addressed by the general 

probabilistic formulation. 

• New PC efficiencies are modelled as functions of cumulative power output, 

representing technological learning effects (see section 4.2.2.5) but can also be 

expected to respond to EC scarcity or abundance (represented by b), i.e., increasing 

faster to address EC deficits or more slowly during period of surplus. However, this 

effect is behavioural in origin and is therefore considered out of scope. 

• Due to the complexity and variety of methods and terminology involved in EROI 

calculation among the sources sampled (see section 9.5.8), collected values are not 

strictly harmonized. EROI methods are often relatively opaque and therefore 

exhaustive harmonization is not possible without introducing ad hoc assumptions. 
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Where possible, selected EROI estimates correspond to EROIst or EROI1,lab as defined 

by Murphy et al. [170]. Note that this approach is consistent with the principle of 

semantic openness discussed in section 4.1. 

• The EC proportions of the metabolic energy consumption of the GES, pa + pc, are 

assumed to follow the EC proportions of final demand, δ (with constant specified 

relative differences via the φ vectors). This is appropriate for most PC and AI types as 

these are aggregates of technologically diverse capital, but may be less suitable in 

cases where PC types are comprised of relatively homogeneous technologies 

(structural types) with distinct EC requirements (e.g., solar PV and nuclear generation). 

• The direct use of NRE resources for non-energy purposes, pne, is assumed to scale with 

the mean of delivered ES demands relative to their initial levels. However, elements 

of pne can be expected to correlate much more strongly with some ES demands than 

others (e.g, the use of NRE resources as chemical feedstocks will be primarily 

correlated with the industrial ES demands). A detailed representation of these 

correlations is not attempted. 

• Competing uses of NRE and RE resources for non-energy purposes are not 

represented. For example, growing demands on biomass to replace NRE resources for 

chemical feedstocks in a wide range of sectors, from manufacturing to 

pharmaceuticals [28], is not explicitly considered. This relates to the definition of 

probabilistically modelled RE resources given in section 4.2.1.1: RE technical 

potentials, prm, refer to the components of total resources available for energy 

purposes (after consideration of competing uses). 

• As discussed in sections 4.2.4.5 and 5.2.3, the reinvestment of energy into the GES is 

limited by the ESMR vector, κ. The exogeneous interface between the GES and the 

HSES is extremely complex and is subject to highly non-linear behaviour and causal 

influences (particularly regarding the discretionary components of ES demands, pd). 

Characterizing the nature of these relationships is not practicable within a high-level 

physical representation of the GES. The intent is only to represent the ineluctability of 

such feedback and the corresponding risk of encountering a net energy trap outcome. 
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5.5 RESULTS ANALYSIS 

Results analysis requires the generation of ensembles of GES transformation pathways via 

Monte Carlo simulation (as discussed in section 4.2.9.2), using the GoldSim platform. Latin 

Hypercube sampling is used to divide the probability distribution for each input parameter 

into equally likely ‘strata’, one for each realization, which are then placed in a random 

sequence and assigned to realizations to be simulated in the ensemble (using strata mid-

points). This method ensures uniform sampling of the input parameter space. Ensembles of 

1,000 model realizations are then simulated for the base case and for each scenario. Sampling 

sequences are repeated to allow direct comparison of realizations where required. Refer to 

Appendix B in GoldSim Technology Group [361] for probabilistic simulation details. 

Graphical analysis is performed on selected output variable time series representing pertinent 

aspects of GES evolution, summarized in Table 7. Output variables are assessed at the 

ensemble level as probabilistic ‘envelopes’ defined by specified output variable percentiles 

over time. Central tendencies are indicated by envelope means and medians, while the 

practical limits are given by percentile extrema (the 5th and 95th percentiles). The analysis of 

the base case is comprehensive, including both central tendencies and practical limits over 

time, whereas scenario analysis generally focusses on differences in central tendencies 

relative to the base case. Note that failed realizations are included for the analysis of 

cumulative EC supply/demand balance and system stability but excluded elsewhere to depict 

envelopes representing only feasible and viable GES transformation pathways. 

Table 7: summary of selected ensemble output variables for results analysis 

GES aspect Selected output variables Failures Notes 

Supply/demand 

balance 

• EC deficit (–b ᴓ po) 

• Mean EC deficit 

In
cl

u
d

ed
 

Omitted for scenario 

analysis 

System stability 

• Failure rate 

• Failure rate confidence intervals 

• Stable time distributions 

 

Supply 

• TPES 

• Primary energy flows (pr and pn) 

• EC supply (pi) 

Ex
cl

u
d

ed
 

Primary energy flows 

adjusted for primary 

energy equivalence for 

scenario analysis 

Demand 

• Final EC consumption (po – pa – pc) 

• GES metabolic EC consumption (pa + pc) 

• Mean autocatalytic loop and capital hypercycle 

consumption 

• ES demands (pd) 

• GES metabolism 

details omitted for 

scenario analysis 

• ES demands for 

scenarios given in 

section 10.3 
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GES aspect Selected output variables Failures Notes 

Primary resources 
• NRE depletion (d) 

• RE exhaustion (x) 

 RE share of supply 
• RE shares of EC supply 

• RE share of TPES 

EROI 
• PC mean EROI (kr and kn) 

• EC point-of-use EROI 

Upstream capacity 

factors 

• Median primary CFs (ur and un) 

• Median secondary CFs (us) 

• Medians used due to 

distribution skew 

• Omitted for scenario 

analysis 

Downstream 

capacity factors 

• Median EU CFs (ue) 

• EU CF targets (uet) 

Secondary 

penetration 
Mean secondary penetration by EC type (ηs) Range (95th percentile 

minus 5th) results given in 

section 10.1.2 
End-use 

penetration 
Mean EU penetration by ES type (ηe) 

Secondary 

efficiencies 

• PC mean secondary conversion efficiencies (esi) 

• PC mean secondary reticulation efficiencies (eso) 

• Results for electric 

cooling given in 

section 10.2 

• Omitted for scenario 

analysis 

End-use 

efficiencies 

• PC mean EU conversion efficiencies (eei) 

• PC mean EU to ES efficiencies (eeo) 

GHG emissions 
• Cumulative GHG emissions 

• Cumulative GHG emissions distributions 
 

Intermittency 

impact in 

electricity systems 

• Intermittent penetration (m) 

• Intermittent diversity (q) 

• Intermittent CF multiplier (χh) 

• Intermittent reticulation efficiency multiplier (χg) 

• Built AI factor 

• Intermittent electricity AI ((csa)d) 

• Scenario results 

given in section 10.5 

• Omitted for scenario 

analysis 

GES metabolism ESMRs (κ)  

 

The combination of probabilistic envelopes across all relevant model output variables then 

represents the ‘leading edge’ (i.e., physically best-case outcomes, probabilistically defined) of 

the solution space for GES transformation identified by the PRESS model. 

In addition, Sankey diagrams are created from ensemble mean energy flows across all GES 

stages for specified snapshots: 2015, 2050, and 2100 for the base case and 2100 for each 

scenario. These diagrams allow the direct visualization of the central tendency of GES 

evolution, including primary energy sources, the composition of ECs, efficiencies and 

associated waste energy flows, GES metabolic consumption, and final delivered ESs. Note, 

flows depicted in Sankey diagrams are not adjusted for primarily energy equivalence as no 

aggregation of non-equivalent flow types is involved. 

Finally, comprehensive sensitivity and diagnostic analyses, described in the following 

sections, are performed for the base case to better understand: 
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• the strength and direction of relationships between input parameter values and the 

final values of selected output variables representing high-level GES transformation 

outcomes, and 

• the levels of risk associated with input parameters considering both the above and the 

strength of knowledge arising from the data sources and estimation methods used. 

5.5.1 Sensitivity analysis 

Monte Carlo simulation enables assessment of the potential impacts of estimation errors for 

each probabilistic input parameter (as discussed in section 3.1.4.3). The determination of 

input parameter sensitivity is based on multivariate analysis applied to an expanded 

ensemble of 10,000 model realizations (to improve the quality of calculated statistics). 

Sensitivity must be defined relative to a chosen realization-level result, Y. Two results are 

selected with strong high-level implications for the desirability of GES transformation 

outcomes: stable time and cumulative GHG emissions. Both selected results correspond to 

serious threats that must be avoided to achieve a successful GES transformation. 

To properly quantify potential impacts of input parameter estimation errors in the PRESS 

model, the definition of sensitivity must: 

• capture both the statistical significance (correlation coefficients) and the slope 

(regression coefficients) of monotonic relationships between input parameter values 

Xi and selected results Y to indicate overall relationship strength, 

• detect both linear and non-linear correlations, 

• allow direct comparison of sensitivity between the two selected results Y, and 

• account for specified input parameter correlations (as described in section 4.2.9.2). 

To satisfy the above criteria, a normalized sensitivity metric is proposed, given by, 

ʑ𝑦,𝑖 =
|𝑆𝑅𝐶𝑦,𝑖| ∙ 𝑚𝑎𝑥(|𝑝𝑦,𝑖,𝑣𝑎𝑙𝑢𝑒|, |𝑝𝑦,𝑖,𝑟𝑎𝑛𝑘|)

𝑚𝑎𝑥 (|𝑆𝑅𝐶𝑦,𝑖| ∙ 𝑚𝑎𝑥(|𝑝𝑦,𝑖,𝑣𝑎𝑙𝑢𝑒|, |𝑝𝑦,𝑖,𝑟𝑎𝑛𝑘|))
𝑖

 

Where, ʑy,i is the sensitivity metric value for selected result Y and input parameter values Xi, 

SRCy,i is the standardized regression coefficient of result Y with respect 

to input parameter values Xi, 

py,i,value is the partial correlation of result Y to input parameter values Xi, and 

py,i,rank is the rank partial correlation of result Y to input parameter values Xi. 
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Partial correlation coefficients are used to emphasize the unique contributions of input 

parameters and remove the effect of specified input parameter correlations. The maximum 

of rank and value correlation coefficients is taken to admit either linear or non-linear 

monotonic relationships. Note that ʑy,i is a measure of relative relationship strength and 

therefore, the sign of SRCy,i must be referenced to determine the direction of the relationship. 

See Appendix B in [361] for details of the statistical inputs used above. Normalized sensitivity 

values of particular importance can be identified using selected lower and upper thresholds, 

μy + 2σy and μy + 2σy, respectively (where μy is the mean and σy is the standard deviation of 

normalized sensitivity values for result Y across all input parameters X).  

Normalized sensitivity values for both selected results, stable time and cumulative GHG 

emissions, can be summed to provide an indication of the sensitivity of GES transformation 

desirability, broadly conceived, to each input parameter (treating both selected results Y as 

approximately equally important). Signs are applied to sensitivity values (based on the sign of 

SRCy,i) to distinguish between desirable and undesirable effects. The resulting sum sensitivity 

values are then ordered to identify input parameters for which estimation errors have the 

greatest potential impacts. This is carried out separately for input parameters categorized as 

decision and non-decision parameters: 

• Decision parameters correspond to aspects of the GES over which human control can 

be exerted and are at least partially amenable to active modification via policy, such 

as efficiencies, ES demands, and penetration limits. 

• Non-decision parameters correspond to factors that are not subject to control, 

including primary energy resources, the initial state of the GES, and the nature of 

intermittency mitigation options within electricity systems. 

• Note, this is not to be confused with system control decision variables (see section 

5.2). 

• See section 9.8 for decision and non-decision parameter designations by input array. 

The analysis of sum sensitivity for decision parameters uses additional aggregations based on 

notional policy recommendations (i.e., sum sensitivity values for input parameters 

approximately aligned with the same policy action are aggregated). Note, this allows sum 

sensitivity values for a given policy recommendation to exceed one. These policy 

recommendations are analogous to system leverage points, described in section 1.2.2. The 
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results of this analysis are used in the design of the policy recommendations scenario (S6) 

described in section 5.3. 

5.5.2 Diagnostic analysis 

As outlined in section 3.3.2, the absolute risk associated with each input parameter can be 

identified via diagnostic analysis, considering both the potential impact of input parameter 

estimation error (normalized sensitivity, as defined in section 5.5.1) and the likelihood of 

error. For PRESS model input parameters, pedigree assessment is carried out using the ordinal 

five-point grading scale shown in Table 8 (based on Van Der Sluijs et al. [352]). The three 

distinct aspects representing strength of knowledge are chosen to be relevant to the data 

gathering and parameter estimation process used for the PRESS model (see section 9.5). Note 

that pedigree assessment for the PRESS model is performed at the level of input arrays 

(results given in section 9.8). 

Table 8: pedigree assessment scoring criteria 

Score Number of data sources Limiting quality of data sources Strength of assumptions 

5 5+ Meta-study No assumptions required 

4 4 Comprehensive report Very strong 

3 3 Broad empirical study Strong 

2 2 Limited empirical study Moderate 

1 1 Simple calculation/estimate Weak 

0 0 (own estimate) Informal/speculative Very weak 

 

Diagnostic analysis is performed separately for each selected GES transformation result: 

stable time and cumulative GHG emissions. Based on the pedigree assessment results, 

selected upper and lower pedigree thresholds are 3 and 1, respectively. As outlined in section 

3.3.2, the primary purpose of diagnostic analysis is to identify input parameters which require 

greater critical attention and to direct further data gathering and processing efforts. Particular 

attention must be given to input parameters categorized as high risk for both selected results.  
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6 RESEARCH FINDINGS 

Ensemble results for the base case (1,000 realizations) are summarized in section 6.1, 

regarding both central tendencies and outer limits of variable envelopes, where possible. 

Scenarios results are presented in section 6.2, primarily regarding differences in ensemble 

central tendencies relative to the base case. Result of sensitivity and diagnostic analyses are 

then presented in sections 6.3 and 6.4, respectively. 

6.1 BASE CASE 

Penetration ranges, and end-use efficiencies for electric cooling are given in sections 10.1 and 

10.2, respectively. Refer to section 5.5 for details of the approach to results analysis. 

6.1.1 Sankey diagrams 

 

Figure 26: Sankey diagram for mean GES energy flows in 2015 

Mean ensemble energy flows across all GES stages (failed realizations excluded) at specified 

years are depicted below: 2015 in Figure 26, 2050 in Figure 27, and 2100 in Figure 28. Note 

that Figure 26 also represents the mean initial state of the GES for all scenarios (scenario 

Sankey diagrams for 2100 presented in section 6.2.1). As these diagrams depict ensemble 

mean values, input and output totals at each node do not necessarily equal. Note that the 

Sankey diagrams use aggregated subsets of EU PC types and ES types for display purposes. 
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Figure 27 depicts marked shifts in energy flows in 2050 relative to 2015. At the primary stage, 

the production of fossil fuels is significantly reduced, both in absolute terms and as a share of 

TPES. Notably, the mean production of oil declines by 63%. Production of primary flows from 

nuclear fuels and all RE types increase strongly, particularly geothermal and solar thermal (by 

approximately 700% and 1600%, respectively). The combined contribution from wind and 

solar PV is around 13 EJ/year by this time (a 200% increase from 2015). Despite a 30% 

reduction in total demand for LaG fuels, the conversion of biomass, natural gas, and coal to 

LaG fuels increases strongly, by 3200% and 5800%, respectively. A pronounced shift in ECs 

towards electricity occurs. This is reflected in EC consumption at the EU stage, particularly in 

high temperature process heating, rail, and light vehicles. The composition of metabolic GES 

energy consumption changes significantly, with a reduction in the capital hypercycle and a 

strong increase in the autocatalytic loop. This indicates greater capital efficiency at the EU 

stage but a higher energy cost of primary energy production. There is a pronounced increase 

in the provision of all ESs. Waste heat flows are reduced in both absolute and relative terms, 

particularly those originating from the EU stage, reflecting higher efficiencies. 

 

Figure 27: Sankey diagram for mean GES energy flows in the base case in 2050 

Figure 28 depicts a continuation of several trends observed between 2015 and 2050. Mean 

oil production continues to decline, to 4% of TPES by 2100. RE production continues to grow 

in both relative and absolute terms, however, this growth is more balanced between the 

various RE types than prior to 2050. Mean solar PV and wind output amounts to 41 EJ/year 
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by 2100, still a minor share of TPES. Growth in the conversion of biomass, natural gas, and 

coal to LaG fuels, continues albeit at a slower rate. Growth in the autocatalytic loop 

accelerates, as the energy cost of primary energy production continues to increase, partially 

due to the advanced depletion of most NRE resources by this time. Delivered ES flows 

continue to increase at a slower rate. 

Several trends observed early in the GES transformation appear to stall after 2050, including 

the decline in natural gas production, the decline in the capital hypercycle, the shift in ECs 

towards electricity, and the decline in total waste heat flows. Notably, two key trends reverse 

direction: 

• the production of nuclear fuels begins to decline due to primary resource depletion, 

and 

• coal production rises 42% from 2050, approaching 2015 levels, driven primarily by 

residual demand for heat and LaG fuels. 

 

Figure 28: Sankey diagram for mean GES energy flows in the base case in 2100 

6.1.2 Supply/demand balance 

As described in section 4.2.9.1, failed realizations corresponding to a net energy trap outcome 

can be identified by thresholds applied to EC deficit, defined as negative cumulative 

supply/demand balance relative to demand, by EC type (–b ᴓ po). For the analysis of PRESS 

model, thresholds are chosen to separate possible recovery from terminal deficit, as 
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effectively as possible. To define realization failure, any of the following criteria must be true 

at some point during the simulated period: 

• any individual EC deficit component must exceed 5 years, 

• the mean EC deficit across all components must exceed 3 years, or 

• the mean rate of change of EC deficit across all components must exceed one. 

This is depicted in Figure 29; six realizations are selected from an ensemble for 10,000 

realizations for illustration purposes, three failed and three successful (labelled with 

realization number). Note that the highlighted lines show the LaG fuels component of EC 

deficit for each realization, with other components displayed using transparent lines. Stable 

times (elapsed simulation time prior to failure criteria being met) are indicated for failed 

realizations. The rate of change limit refers to a failure threshold defined by (mean) gradient. 

 

Figure 29: examples of realization success (green) and failure (red) defined by EC deficit trends 

Figure 30 shows mean EC deficit trends by EC component for the successful and failed 

realization subgroups. The failed subgroup exhibits a clear divergence towards greater deficit, 

indicating inexorable EC shortages characteristic of net energy trap outcomes. Conversely, 

the successful subgroup maintains a tendency to self-correct towards 0. In both subgroups, 

maintaining sufficient supplies of LaG fuels appears to be more challenging than for other ECs, 

especially in the late simulation period. 
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Figure 30: mean EC deficit trends by EC component for successful and failed realization subgroups 

 

Figure 31: EC deficit envelopes by EC component for successful realizations 

Probabilistic envelopes for EC deficit by EC component for the successful realization subgroup 

are shown in Figure 31. The supply of heat and LaG fuels consistently exceeds demand early 
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in the simulation period. LaG fuel deficits become more common in the late simulation period. 

Supply and demand of electricity remain approximately balanced over the simulation period. 

6.1.3 System stability 

Figure 32 shows the cumulative probability distribution for stable time. Note that failed 

realizations are included here, by necessity, and stable time is equal to the full simulation 

period of 85 years for successful realizations. Mean stable time is 84.5 years. 99% of 

realizations have stable times exceeding 68 years (i.e., no realization failure prior to 2083), 

with the risk of failure rising sharply after this time. The final failure rate in the base case is 

5% (indicated by the intercept of the trend line with the vertical axis) implying a small but 

non-trivial risk of a net energy trap outcome. The blue bars show the 90% confidence interval 

for the failure rate (4.7% to 5.4%).  

 

Figure 32: cumulative probability distribution for stable time, including 90% confidence interval for failure rate 

6.1.4 Supply 

The probabilistic envelope for total primary energy supply (TPES) for successful realizations is 

depicted in Figure 33. TPES declines markedly from the beginning of the simulation period to 

around 2035. After this time, TPES stays relatively constant or increases. By 2100, mean and 

median TPES has returned to its initial level. The 95th percentile for TPES in 2100 exceeds the 
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initial level by approximately 75%, while the 5th percentile represents a reduction of 53% from 

the initial level. Note that contributions to TPES are adjusted for primary energy equivalence. 

 

Figure 33: envelope for total primary energy supply (TPES) 

Figure 34 shows mean primary energy supply by resource, adjusted for primary energy 

equivalence. NRE supply declines rapidly from the start of the simulation period until 

approximately 2050, after which coal and natural gas partially recover while oil continues to 

decline, to 12% of its initial level. Nuclear fuel supply grows to a peak approximately twice its 

initial level by 2060 before declining to less than its initial level by 2100. Supply from all RE 

sources grows over the simulation period, most strongly for geothermal, solar thermal, wind, 

solar PV, and other RE. However, biomass and hydropower are still the largest RE sources by 

2100, closely followed by wind. 
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Figure 34: mean primary energy supply by resource (NRE types in bold; adjusted for primary energy equivalence) 

 

Figure 35: envelopes for primary NRE supply by resource 

Envelopes for NRE supply by resource, shown in Figure 35, show far wider distributions for 

coal and natural gas than for oil and nuclear fuels from 2035 onwards, implying greater 

uncertainties. While it is possible for coal and natural gas to reach stable minima and continue 
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to decline, respectively (indicated by the 5th percentiles), it is also possible to see strong 

growth in supply from both resources after 2035, reaching 69% and 81% above their initial 

levels, respectively (indicated by the 95th percentiles). Oil exhibits monotonous declines while 

nuclear fuels peaks around 2060 before declining in essentially all realizations. It is possible 

for oil and nuclear fuels supply to reach zero by 2072 and 2091, respectively. 

Envelopes for the major resources constituting RE supply, shown in Figure 36, exhibit 

significant growth over the simulated period. All have very wide and expanding distributions, 

solar PV and wind in particular, implying considerable uncertainties. Biomass and hydropower 

production declines until around 2035 and 2025, respectively, after which they resume 

growth. It is possible for solar PV and wind to remain minor contributors to overall supply, as 

indicated by the 5th percentiles. 

 

Figure 36: envelopes for primary RE supply by resource (major) 

Envelopes for the minor contributions to RE supply, shown in Figure 37, exhibit strong initial 

growth. However, this growth is weaker and less consistent in the later simulation period, 

after 2045. Solar thermal and geothermal have very wide and expanding distributions, 

implying high uncertainties. 
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Figure 37: envelopes for primary RE supply by resource (minor) 

 

Figure 38: envelopes for EC supply 

Figure 38 shows envelopes for EC supply. LaG fuel and heat supply decline markedly until 

around 2035. Electricity shows consistent growth from this time while LaG fuel and heat stay 

relatively constant. This is consistent with a general trend towards greater electrification 
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despite uncertainties indicated by widening distributions. However, limits are apparent in 

reducing the shares of LaG fuel and heat in total EC supply, and in no realizations do these 

components converge towards zero. 

6.1.5 Demand 

Envelopes for final, non-energy related EC demand, shown in Figure 39, follow similar profiles 

to EC supply (in Figure 38) with initial rapid declines flowed by growth or gradual decline. 

Shares of LaG fuel and heat in final EC demand are slightly reduced relative to supply from 

around 2060. Note that initial uncertainties in final EC demand are greater than 

corresponding uncertainties in supply. 

 

Figure 39: envelopes for final (non-GES) EC demand 

Figure 40 shows envelopes for GES metabolic EC demand. These exhibit instabilities early in 

the simulated period followed by generally stable trends, in central tendencies and envelope 

extrema, to approximately 2055. After this time, GES metabolic demand for all ECs increases 

consistently towards 2100 with widening uncertainties. Note that while unlikely, the lower 

limits of the distributions (5th percentiles) allow for approximately constant GES metabolic 

demand over the simulated period. The mean composition of this GES metabolic demand 

shifts rapidly from a roughly equal split between the autocatalytic loop and capital hypercycle 
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initially to predominantly autocatalytic loop consumption by around 2030, followed by slower 

increases in the share allocated to the autocatalytic loop. 

 

Figure 40: envelopes for GES metabolic EC demand, including autocatalytic loop and capital hypercycle shares 

Figure 41, Figure 42, and Figure 43 show envelopes for the major, moderate, and minor ES 

demand components, respectively, in terms of absolute delivered ES flows defined via 

reference modes introduced in section 4.1.2. These delivered ES flows span three orders of 

magnitude. For all ES demands, slight declines are possible, but growth is more likely. Note 

that Figure 43 is presented with a logarithmic vertical axis. 
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Figure 41: envelopes for ES demands (major) 

 

Figure 42: envelopes for ES demands (moderate) 
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Figure 43: envelopes for ES demands (minor; semi-logarithmic) 

6.1.6 Primary resources 

Envelopes for NRE depletion, d, shown in Figure 44 and Figure 45, depict earlier and more 

aggressive depletion for nuclear fuels and oil than for natural gas and coal. For all resources, 

it is possible to reach a value of one by 2100, at which point production may continue (below 

specified terminal EROI values) but further investment in PC ceases. This highly likely for 

current generation nuclear fuels and moderately likely for oil, but relatively unlikely for coal 

and natural gas. For the fossil fuels, depletion gradients in both the means and envelope 

extrema quickly fall below their initial levels but remain relatively constant in the later part of 

the simulation period. For nuclear fuels, depletion accelerates from 2030 before reaching an 

inflection point between 2060 and 2070. For all NRE resources, distributions progressively 

widen, indicating significant uncertainties. 
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Figure 44: envelopes for NRE depletion of primary resources, including EROI terminal limit (high depletion) 

 

Figure 45: envelopes for NRE depletion of primary resources, including terminal EROI limit (low depletion) 
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Figure 46: envelopes for RE exhaustion of primary resources (low exhaustion) 

Envelopes for RE exhaustion, x, shown in Figure 46, depict slow increases in resource 

utilization with significant ranges of possible outcomes. Mean exhaustion values by 2100 are 

less than 40% and upper limits are less than 80%, implying total available resources will not 

be fully utilized. In contrast, the RE resources in Figure 47 can reach near total exhaustion at 

the upper envelope limits, while means converge towards 50-60% exhaustion. Both biomass 

and hydropower can enter negative exhaustion in the early part of the simulated period, 

implying production rates below their initial levels. Uncertainty in solar PC exhaustion is 

relatively low until around 2070. Biomass exhaustion is subject to particularly high 

uncertainties over the entire simulated period. 
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Figure 47: envelopes for RE exhaustion of primary resources (high exhaustion) 

6.1.7 RE share of supply 

 

Figure 48: envelopes for RE share of supply by EC type 

As shown in Figure 48, the shares of electricity and heat production coming from RE resources 

start at similar levels, but the share for electricity is able to increase more consistently and to 
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a higher level. The RE share of electricity production is likely to be well over 50% by 2100. The 

RE share of heat production is likely to remain below 50%. The share for LaG fuels starts at a 

very low level but can increase substantially, to at least 15% and up to 45% by 2100. None 

approach 100% RE shares before 2100. All exhibit widening distributions implying significant 

uncertainties. 

The RE share of TPES, shown in Figure 49, increases strongly after a brief initial decline. The 

mean and median increase to approximately 35% by 2050 and 50% by 2100. At the most 

optimistic limit, the RE share of TPES increases to around 43% by 2050 and 70% by 2100. 

 

Figure 49: envelope for RE share of TPES 

6.1.8 EROI 

Envelopes for PC mean NRE EROI, shown in Figure 50 and Figure 51, show strongly declining 

trends despite considerable initial uncertainties. PC mean NRE EROI values remain in the same 

order as their initial values during the simulated period, except for nuclear fuels, which is 

likely to fall below coal EROI before 2100. Notably, EROI distributions for all NRE sources 

narrow over time, indicating convergence to ultimate EROI values. By 2100, the upper 

distribution limits for PC mean EROI for all NRE sources is below 40. It is possible for all NRE 

PC mean EROI values to fall below 10 by this time. 
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Figure 50: envelopes for NRE PC mean EROI (high) 

 

Figure 51: envelopes for NRE PC mean EROI (low) 

Envelopes for PC mean RE EROI, shown in Figure 52 and Figure 53, exhibit generally declining 

trends. However, EROI declines are relatively muted for solar PV and wind, with means falling 
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by only 6% and 22%, respectively. Biomass is unique as it is subject to increasing EROI after 

2035 before declining again after 2055 (observed both in the distribution mean and extrema).  

 

Figure 52: envelopes for RE PC mean EROI (high) 

 

Figure 53: envelopes for RE PC mean EROI (low) 
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As with NRE EROI, distributions for RE sources narrow over time, indicating convergence to 

ultimate EROI values, with the exception of biomass which is subject to increasing 

uncertainty. By 2100, mean EROI values for all RE sources still exceed 10. However, lower 

distribution limits begin or fall below 10 for solar PV, biomass, geothermal, and other RE. 

Figure 54 depicts envelopes for point-of-use EROI trends for ECs. These envelopes exhibit 

declines over the simulated period, with pronounced instabilities prior to 2055 in central 

tendencies and envelope extrema, particularly at the upper distribution limits (95th 

percentiles). Mean point-of-use EROI values decline between 44% and 47% from their initial 

values by 2100, to below 10 for all ECs. Electricity EROI remains consistently higher than heat 

and LaG fuel EROI during the simulated period. It is possible for point-of-use EROI for all ECs 

to drop below 3 by 2100. 

 

Figure 54: envelopes for point-of-use EROI by EC type 

6.1.9 Capacity factors 

PC utilization trends, driven by relative EC surplus or abundance, are indicated by median CFs. 

Medians are used to indicate central tendencies due to the presence of highly skewed CF 

distributions. 
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6.1.9.1 Upstream 

As described in section 4.2.2.3, initial CFs for primary and secondary PC are assumed to 

coincide with their long-term maxima. 

Median CFs for primary and secondary NRE PC are shown in Figure 55 and Figure 56. Early CF 

declines occur for all PC types, most notably for secondary heat production prior to 2030. 

Median CFs for secondary PC then typically increase slowly towards their respective CF 

maxima, reaching or approaching these between 2035 and 2070. Median CFs for primary PC 

generally oscillate between 70% and 100% of CF maxima following initial declines. Nuclear 

primary and secondary PC median CFs exhibit marked declines after 2070 due to advanced 

primary resource depletion. 

 

Figure 55: primary and secondary PC median CFs for coal and nuclear 
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Figure 56: primary and secondary PC median CFs for oil and natural gas 

Median CFs for primary and secondary RE PC are shown in Figure 57 and Figure 58. Again, 

early CF declines occur for all PC types, most notably for biomass and secondary heat 

production prior to 2030 (median declines of up to 32% from CF maxima).  

 

Figure 57: primary and secondary PC median CFs for biomass and geothermal 
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Figure 58: primary and secondary PC median CFs for RE types excluding biomass and geothermal 

As with NRE, secondary PC median CFs recover from these declines between 2035 and 2070 

while primary PC median CFs generally oscillate between 70% and 100% of CF maxima. 

6.1.9.2 Downstream 

Dotted lines in Figure 59, Figure 60, and Figure 61 represent target CFs, indicating the levels 

at which investment flows are triggered to bring CFs back below target levels, as described in 

section 4.2.2.3. 

Median CFs for transportation related EU PC are shown in Figure 59 and Figure 60. All PC types 

exhibit significant early CF declines, with median declines between 54% and 69% from initial 

CF targets by 2030 due to rapid changes in transportation penetration. Following initial 

declines, most median CFs remain suppressed, partially recovering by mid-century before 

declining moderately again over the late simulation period. This implies transportation 

related EU PC tends towards significant oversupply (approximately double the aggregate 

amount required for transportation ES provision), despite ongoing behaviourally driven 

increases in target CFs. Note that CF (actual and target) trends overlap for rail (ICE and 

electric) and regional aviation in Figure 59, and for light vehicles (ICE and electric), rail (ICE 

and electric), and regional aviation and shipping in Figure 60. 
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Figure 59: EU PC median CFs for freight transportation 

 

Figure 60: EU PC median CFs for passenger transportation 

Median CFs for EU PC excluding transportation are shown in Figure 61. All PC types shows CF 

declines between two and six years after the beginning of the simulated period, with median 

declines between 9% and 59% from initial CF targets. Two groups are apparent, with the first 
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recovering towards CF targets by mid to late century (IPaC devices, electric lighting, and 

electric cooling) and the second experiencing continual declines toward the end of the 

simulation period (all other). The former group consists of PC types with one-to-one mappings 

with ES demands (i.e., where no alternative PC exists). Within the latter group, electric and 

heat high temperature process heating experience the greatest median CF declines from 

initial CF targets by 2100 (50%), followed by LaG fuel, electric, and heat low temperature 

heating (31%). Note that CF trends and targets overlap for electric and heat high temperature 

process heating, and LaG fuel, electric, and heat low temperature heating. 

 

Figure 61: EU PC median CFs for EU PC types excluding transportation 

6.1.10 Penetration 

6.1.10.1 Secondary 

Figure 62, showing mean secondary penetration by secondary PC type for the production of 

electricity, depicts a strong decline in combined fossil fuel penetration from 2020 to 2060 with 

an approximately static trend after this time. Nuclear penetration grows significantly by mid-

century before declining to less that its initial level. Penetration for all RE sources grows, most 

strongly for wind, solar PV, and hydropower. However, hydropower penetration ceases 

growing after 2065 and remains stable. Electricity production from biomass CHP grows 
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alongside and is approximately equal to direct biomass generation. In contrast, penetration 

for natural gas and coal CHP remains minor relative to direct natural gas and coal generation. 

 

Figure 62: mean secondary penetration by secondary PC type for electricity 

 

Figure 63: mean secondary penetration by secondary PC type for LaG fuels 
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Figure 63, showing mean secondary penetration by secondary PC type for the production of 

LaG fuel, depicts a strong shift away from the predominance of oil refining from 2025, 

declining to around 15% of supply by 2070 and continuing to fall slowly after this time. The 

gap is filled by continued growth in biofuel production, rising to almost 30% by 2100, and 

strong growth in the conversion of natural gas and coal to LaG fuels from currently negligible 

levels to approximately 20% and 40%, respectively. 

Figure 64, showing mean secondary penetration by secondary PC type for the production of 

heat, depicts a marked persistence of fossil fuels, declining from a combined penetration level 

of approximately 75% to 65% by 2100. This fossil fuel component changes in composition 

during the simulated period, with strong declines in natural gas after 2035, increases in oil 

and natural gas CHP from 2025, and increases in coal from 2055. The RE component of heat 

production shifts from primarily biomass to greater shares from solar thermal, geothermal, 

and biomass CHP during the early part of the simulation period. 

 

Figure 64: mean secondary penetration by secondary PC type for heat 

A summary of secondary penetration variations is given in section 10.1.1. 
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6.1.10.2 End-use 

Figure 65, showing mean EU penetration by EU PC type for the provision of regional passenger 

transportation, depicts an immediate and rapid shift away from light ICE vehicles largely 

towards passenger rail. After 2040, light ICE vehicles account for less than 5% of regional 

passenger transportation. The increase in rail is split between ICE and electric until around 

2045, after which electric continues to grow to almost 60% by 2100 and ICE declines towards 

10%. The penetration of heavy ICE vehicles declines more slowly, from more than 20% to less 

than 5% during the simulated period. Aviation provides an approximately constant share of 

regional passenger transportation, between 5% and 10%, until declining to less than 5% after 

2060. Passenger shipping increases from less than 5% initially to almost 15% by 2045 before 

declining back towards 5% by 2100. Overall, these trends represent a general shift from 

private to mass transit. Electric vehicles increase very slowly until 2045, then somewhat faster 

after this time, reaching approximately 15% by 2100. 

 

Figure 65: mean EU penetration by EU PC type for regional passenger transportation 

Figure 66, showing mean EU penetration by EU PC type for the provision of regional freight 

transportation, depicts a rapid shift away from heavy ICE vehicles (which reaches negligible 

levels around 2045). Freight rail (ICE and electric) and aviation initially increase rapidly, 

however, aviation soon reaches a maximum level less than 10% before declining slowly to 
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negligible levels while rail continues to grow. The increase in rail is split between ICE and 

electric until around 2040, after which electric continues to grow to almost 70% by 2100 and 

ICE declines to around 25%. Freight shipping stays constant at around 15% until mid-century, 

after which it declines slowly to less than 10%. 

 

Figure 66: mean EU penetration by EU PC type for regional freight transportation 
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Figure 67: mean EU penetration by EU PC type for low temperature heating 

Figure 67, showing mean EU penetration by EU PC type for the provision of low temperature 

heating, depicts direct use of heat offset by increases in electric and LaG fuel heating I the 

early simulated period. LaG heating penetration peaks around 2030 at less than 15% before 

declining to around 5% by 2100. Electric heating penetration continues to grow, reaching 

around 35% by 2100. The penetration of the direct use of heat stays relatively constant after 

2030, around 55%. 

A summary of EU penetration variations for the above ES types is given in section 10.1.2. 

Envelopes for the shares of IC passenger and freight transportation provided by aviation (as 

opposed to shipping), shown in Figure 68, exhibit initially rapid changes. IC passenger 

transportation shifts from almost entirely based on aviation to between 15% and 50% 

shipping by 2030. After this, the mean aviation share increases again towards 90% by 2100. 

However, the lower distribution limit (5th percentile) continues to decline indicating that it is 

possible (but unlikely) for shipping to provide a progressively greater share of IC passenger 

transportation, up to 75% by 2100. For IC freight transportation, the share provided by 

aviation increases strongly to between 20% and 55% by 2030, after which a slow decline 

occurs, to between 5% and 35% by 2100. IC passenger transportation exhibits a widening 
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distribution over time implying greater uncertainties while for freight, uncertainty peaks early 

in the simulated period before declining moderately. 

 

Figure 68: envelopes for the aviation shares of IC passenger and freight transportation 

Envelopes for the shares of static mechanical work and high temperature process heat 

provided using electricity (as opposed to LaG fuels and heat, respectively), shown in Figure 

69, depict a general trend towards greater electrification over the simulated period. The 

electrified share for static mechanical work exhibits an initial decline of 5% to 20% before 

increasing modestly from 2030. By 2100, between 70% and 95% of static mechanical work is 

provided using electricity. The electrified share for high temperature process heat initially 

increases strongly, from around 5% to between 10% and 45% by 2045, after which it stays 

approximately constant (although subject to high uncertainty). 
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Figure 69: envelopes for the electrified shares of static mechanical work and high temperature process heat  

6.1.11 Efficiencies 

6.1.11.1 Secondary 

Figure 70 shows the progression in secondary conversion and reticulation efficiencies 

(indicated by 5-year increment markers linked by lines), by secondary PC type, towards their 

respective achievable maxima (indicated by bold markers). Secondary efficiency 

improvements are typically minor (< 0.1) and trends generally approach but do not converge 

to their achievable maxima. Note that LaG fuel production is modelled with perfect 

reticulation efficiencies (losses modelled at the EU stage) and where ECs are produced at the 

primary stage, corresponding secondary conversion efficiencies are modelled as perfect 

(nominal secondary conversion). 
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Figure 70: secondary PC mean efficiency trends and achievable maxima (markers at 5-year increments) 

6.1.11.2 End-use 

Figure 71 and Figure 72 show the progression in EU conversion and EU to ES efficiencies 

(indicated by 5-year increment markers linked by lines), by EU PC type, towards their 

respective achievable maxima (indicated by bold markers). EU conversion efficiency 

improvements are typically minor (< 0.1) except for electric lighting, IPaC devices, and low 

temperature heating (electric and LaG fuels). However, substantial EU to ES efficiency 

improvements are seen for many EU PC types. IPaC devices are the only PC type to exhibit 

mean conversion efficiency gains exceeding EU to ES efficiency gains. As with secondary 

efficiencies, trends generally approach but do not converge to their achievable maxima. Note 

that heat consumption is modelled with perfect conversion efficiencies (conversion modelled 

at the secondary stage). 
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Figure 71: EU PC mean efficiency trends and achievable maxima (low conversion efficiency; markers at 5-year increments) 

 

Figure 72: EU PC mean efficiency trends and achievable maxima (high conversion efficiency; markers at 5-year increments) 

End-use efficiencies for electric cooling are given in section 10.2 (conversion efficiencies for 

this PC type are substantially above one). 
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6.1.12 GHG emissions 

Cumulative GHG emissions results can be compared with emissions budgets for a 66% chance 

of remaining below warming thresholds of 1.5°C and 2°C above pre-industrial levels, sourced 

from Millar et al. [362] and Friedlingstein et al. [363], respectively. Note that these emissions 

budgets are subject to considerable uncertainty, and as such exhibit significant overlap. As 

described in section 4.2.9.3, calculated emissions assume no CCS and a constant rate for non-

energy emissions. 

As shown in Figure 73, while the mean and lower distribution limit exhibit marked decreases 

in the total GHG emission rate (indicated by trend gradient), the upper distribution limit 

remains on an approximately linear trend over the simulated period. 1.5°C and 2°C emissions 

budget range extrema are displayed with dotted lines in the diagram. Considering uncertainty 

in both emissions budget ranges and the envelope for cumulative GHG emissions, the 1.5°C 

budget is depleted by 2036 at the earliest and 2071 at the latest, while the 2°C budget is 

depleted by 2038 at the earliest and 2077 at the latest. Mean cumulative GHG emissions by 

2050 are approximately equal to the budget range midpoints (slightly above for 1.5°C and 

slightly below for 2°C). Cumulative GHG emissions by 2100 are between 66% and 190% above 

the 2°C budget range midpoint (mean of 123%). 

 

Figure 73: envelope for cumulative GHG emissions including emissions budget ranges 
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Cumulative probability distributions for cumulative GHG emissions in 2025, 2050, 2075, and 

2100, shown in Figure 74, exhibit a clear progression in emissions over the simulated period 

with steadily widening distributions indicating growing uncertainty. While the 2025 

distribution is well below the 1.5°C and 2°C emissions budget ranges, the entire 2050 

distribution is situated within these ranges, implying that cumulative emissions by this time 

will risk more than 1.5°C and 2°C of warming. By 2075, it is approximately 95% likely that the 

2°C budget range upper limit has been exceeded. By 2100, cumulative emissions are well past 

both the 1.5°C and 2°C budgets (by almost 1200 GtCO2e at the median).  

 

Figure 74: cumulative probability distributions for cumulative GHG emissions including emissions budget ranges 

6.1.13 Intermittency impacts in electricity systems 

All variables describing intermittency impacts and mitigation in electricity systems are defined 

in section 4.2.5. Scenario results relative to the base case are given in section 10.4. 

Envelopes for intermittent penetration and diversity metrics are presented in Figure 75. 

Intermittent penetration rises steadily over the simulated period with a widening distribution, 

from less than 5% initially to between 19% and 53% by 2100 (mean of 33%). Meanwhile, 

intermittent diversity rises strongly from 20% initially to between 30% and 78% by 2040 

(mean of 51%) with a widening distribution, before declining slowly to between 21% and 66% 

by 2100 (mean of 41%) with a relatively constant distribution. 
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Figure 75: envelopes for intermittent penetration and diversity in electricity systems 

 

Figure 76: envelopes for CF max. and reticulation efficiency multipliers in response to intermittent penetration 

Envelopes for intermittent CF maximum and reticulation efficiency multipliers are presented 

in Figure 76. The mean and distribution lower limit for intermittent CF maximum multiplier 

decreases over the simulated period but exhibits oscillations prior to 2060. This multiplier can 



217 
 

range from 0% to almost -25% by 2100 (mean of -6%). The intermittent reticulation efficiency 

also decreases but more steadily and is subject to significantly less uncertainty, ranging 

between 1% and -8% by 2100 (mean of -4%). 

Envelopes for built AI factor and intermittent electricity AI are presented in Figure 77. Built AI 

factor quickly occupies the full possible range, from 2035, with a mean between 60% and 

80%. The lower distribution limit (5th percentile) rises after 2075 to around 30%, implying PC 

overbuild mitigation alone is not sufficient in the late simulation period. Installed intermittent 

electricity AI increases strongly from very minor levels initally to up to 4000 EJ/year by 2100 

(mean of 1000 EJ/year) but is subject to very high uncertainty, particularly after 2070. 

 

Figure 77: envelopes for built AI factor and intermittnet electricity AI in response to intermittent penetration 

6.1.14 GES metabolism 

The potential relative size of GES metabolism can be inferred from envelopes for ESMRs, 

shown in Figure 78. As discussed in section 4.2.4.5, these results indicate relative burdens 

imposed on the wider global socio-economic system by the GES. Distinct positive trends are 

observed, with oscillations early in the simulated period, prior to 2040. ESMRS range between 

3% and 12% initially (means ranging from 6% and 7%), rising to between 5% and 44% by 2100 

(means ranging from 16% to 19%). After 2050, the ESMR for electricity is consistently lower 

than ESMRs for heat and LaG fuels, in both the mean and distribution extrema. Note that with 
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the selected curtailment threshold (0.8), the investment magnitude curtailment range starts 

between 10% and 20%, depending on the ESMR limit, with complete curtailment possible at 

50%. The above ESMR values correspond approximately to ranges for EROIext of 33 to 8.3 

(mean of 15) initially and 20 to 2.3 (mean of 5.7) by 2100. 

 

Figure 78: envelopes for ESMRs inclusing shaded curtailment region 

6.2 SCENARIO ANALYSIS 

Results for scenario specific ES demands and intermittency impacts in electricity systems are 

given in sections 10.3 and 10.4, respectively. Refer to section 5.3 for scenario descriptions and 

to section 9.7 for scenario implementation details. 

6.2.1 Sankey diagrams 

The scenario Sankey diagrams below can be compared to Figure 26 depicting the mean state 

of the GES in 2015 to indicate change over time, and to Figure 28 depicting the mean state of 

the GES in 2100 in the base case to indicate scenario impacts. 

The Energy Breakthrough scenario (Figure 79) exhibits a contribution to primary energy 

supply from ‘Other RE’ 1300% higher than in the base case by 2100 (‘Other RE’ is modelled as 

an effectively inexhaustible, dispatchable, high EROI source of electricity in this scenario). This 

expanded contribution largely displaces primary energy flows from coal, natural gas, and solar 
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PV. Other aspects of the GES are slightly improved relative to the base case: a reduced 

autocatalytic loop, reduced waste heat flows, and greater electrification (primarily for high 

temperature process heating and low temperature heating, reducing heat demand). 

 

Figure 79: Sankey diagram for mean GES energy flows in scenario 1 (Energy Breakthrough) in 2100 

 

Figure 80: Sankey diagram for mean GES energy flows in scenario 2 (Relocalization) in 2100 

The Relocalization scenario (Figure 80) exhibits reductions in all primary energy flows relative 

to the base case by 2100, with the greatest reductions coming from biomass, natural gas, and 

coal. All transportation EU types see substantial reductions in EC consumption (mostly LaG 

fuels), resulting from lower transportation ES demands. There are also minor reductions in 
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the autocatalytic loop and waste heat flows. However, there are slight increases in LaG fuel 

consumption by mechanical devices and low temperature heating. 

The RE Rapid Deployment scenario (Figure 81) exhibits little change relative to the base case 

by 2100. Most measures are very slightly higher (< 1%), notably coal and natural gas 

production, EC production, and autocatalytic loop consumption. Nuclear fuel production and 

high temperature process heating see minor reductions. 

 

Figure 81: Sankey diagram for mean GES energy flows in scenario 3 (RE Rapid Deployment) in 2100 

The Climate Constraints scenario (Figure 82) exhibits substantial changes relative to the base 

case by 2100. Primary energy flows from coal production are reduced by 33% relative to the 

base case at the same time and by 45% relative to 2015 levels. However, this comes at the 

expense of higher TPES and increases in primary energy flows from biomass, natural gas, and 

oil (14%, 9%, and 165% higher than the base case in 2100, respectively). A greater trend 

towards electrification is observed than in the base case, primarily for high temperature 

process heating and low temperature heating, reducing heat demand. Total waste heat flows 

are increased by around 5%. 
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Figure 82: Sankey diagram for mean GES energy flows in scenario 4 (Climate Constraints) in 2100 

 

Figure 83: Sankey diagram for mean GES energy flows in scenario 5 (Delayed Consumer Response) in 2100 

The Delayed Consumer Response scenario (Figure 83) exhibits significant differences in the 

composition of primary energy flows relative to the base case by 2100. Production rates of 

biomass, coal, and natural gas are reduced by 5%, 8%, and 6%, respectively. This gap is filled 

primarily by the production of nuclear fuels, which is 80% higher than the base case. Few 

other measures are substantially different. 

The Policy Recommendations scenario (Figure 84) exhibits the most significant mean changes 

relative to the base case by 2100. All primary energy flows are reduced, most notably coal, 
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natural gas, oil, and solar PV, by 67%, 61%, 54%, and 84%, respectively. Total EC supply is 

significantly lower, and demand is reduced in all EU types, with increased electrification of 

low temperature heating, but lower electrification of high temperature process heating, 

mechanical devices, and rail. Sum autocatalytic loop consumption, representing the energy 

cost of primary energy production, is 76% lower than the base case at the same time and by 

22% lower than 2015. Total waste heat flows are reduced by 55%. 

 

Figure 84: Sankey diagram for mean GES energy flows in scenario 6 (Policy Recommendations) in 2100 

6.2.2 System stability 

Figure 85 summarizes system stability across all scenarios, in terms of the failure rate and 

mean stable time. Scenarios 1, 2, and 6 have positive impacts on system stability relative to 

the base case, decreasing the failure rate below 2% (0% for scenario 6), and increasing mean 

stable time above 84.8 years. 90% confidence intervals for scenario 3 and the base case 

overlap for both failure rate and mean stable time, indicating no statistically significant 

differences except higher variances for scenario 3. Scenario 5 has modest negative impacts 

on system stability, increasing the failure rate to 10% and decreasing mean stable time to 83.9 

years. Scenario 4 has a strongly detrimental impact on system stability, with a failure rate of 

29% and a mean stable time of 80.3 years. 
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Figure 85: mean failure rate and stable time by scenario, including 90% confidence intervals 

 

Figure 86: cumulative probability distributions for stable time by scenario, including 90% confidence intervals for failure rate 

Cumulative probability distributions for stable time by scenario, shown in Figure 86, show 

improved system stability for scenarios 1, 2, and 6, and diminished system stability for 

scenarios 4 and 5. Scenarios 1 and 2 show very similar distributions, with overlapping 90% 
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confidence intervals. Scenario 6 exhibits a flat distribution, implying perfect system stability 

for the modelled ensemble. Scenario 5 entails a negative impact on system stability slightly 

greater in magnitude to the positive impact observed in scenarios 1 and 2. For scenario 4, 

system stability is severely impacted after 2055 with the majority of failures occurring 

between 2075 and 2090 (indicated by a steeper gradient between 60 to 75 years). 

6.2.3 Supply 

Mean TPES by scenario relative to the base case, shown in Figure 87, indicates increases in 

total energy requirements in scenarios 4 and 5, and decreases in scenarios 2 and 6. Scenarios 

1 and 3 exhibit minor increases only and scenarios 4 and 5 are subject to distinct oscillations, 

before all four converge to approximately the same level as the base case by 2100. Scenarios 

2 and 6 exhibit steady decreases in TPES relative to the base case, amounting to 

approximately 110 EJ/year and 360 EJ/year by 2100, respectively. 

 

Figure 87: mean total primary energy supply (TPES) relative to the base case, by scenario 

Figure 88 depicts mean primary energy supply by resource, by scenario, in 2025, 2050, 2075, 

and 2100. Mean TPES in 2100 is higher than in 2025 for all scenarios except scenario 6. 

Scenario 2 exhibits a marked decline in TPES from 2025 to 2050, before increasing slowly over 

the later simulation period to around 18% less than the base case by 2100. Until 2075, 

combined fossil fuel supply is lowest in scenario 6, followed by scenarios 4 and 2. However, 
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by 2100 combined fossil fuel supply is still lowest in scenario 6, but followed by scenarios 2 

and 1. Other RE supply is highest in scenario 1, but this appears to displace significantly more 

RE supply (largely wind, solar PV, biomass, and hydropower) than NRE supply. Note, 

quantities in Figure 88 are adjusted for primary equivalence to allow direct comparison. 

 

Figure 88: mean primary energy supply by resource, by scenario (NRE types in bold; adjusted for primary energy equivalence) 

6.2.4 Demand 

Mean final demand for ECs by scenario, relative to the base case, is shown in Figure 89, Figure 

90, and Figure 91 for electricity, LaG fuels, and heat, respectively. Scenarios 1 and 4 see 

stronger electrification trends, with the rise in electricity consumption displacing mainly heat 

consumption, however, this is much more rapid and to a significantly greater degree in 

scenario 4. Scenario 2 shows reductions in final electricity and LaG fuel consumption relative 

to the base case (10 EJ/year and 27 EJ/year lower than the base case by 2100, respectively) 

but little change in final heat consumption. Scenario 3 shows a slight increase in the final 

consumption of all ECs. Scenario 5 sees strong increases in final LaG fuel and heat 

consumption relative to the base case (approximately 17 EJ/year higher by 2025 and 50 

EJ/year higher by 2050, respectively) with substantially lower electrification in the early part 

of the simulated period, however, the final consumption of all ECs converges to the levels 

seen in the base case by 2100. Scenario 6 exhibits substantial steady declines in all three ECs 
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relative to the base case, with combined consumption of ECs 130 EJ/year lower than the base 

case by 2100. 

 

Figure 89: mean final (non-GES) electricity demand relative to the base case, by scenario 

 

Figure 90: mean final (non-GES) LaG fuel demand relative to the base case, by scenario 
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Figure 91: mean final (non-GES) heat demand relative to the base case, by scenario 

Scenario specific differences in mean ES demands are given in section 10.3. 

6.2.5 Primary resources 

Figure 92 summarizes mean NRE depletion and RE exhaustion of primary energy resources by 

2100 relative to the base case, by scenario. Scenario 1 shows minor (< 0.1) reductions in 

depletion or exhaustion for most primary energy resources except for slight increases (< 0.03) 

for oil and biomass, and a very large decrease in other RE exhaustion (resulting from treating 

this resource as effectively inexhaustible). Both scenarios 2 and 6 result in reduced depletion 

or exhaustion of all primary energy resources by 2100, however this is much more 

pronounced in scenario 6, particularly for nuclear fuels, hydropower, and biomass (0.38, 0.35, 

and 0.66 reductions in mean depletion or exhaustion relative to the base case, respectively). 

Scenario 3 exhibits slight changes only, except for biomass which sees a 0.1 increase in mean 

exhaustion relative to the base case. Scenario 4 increases depletion or exhaustion for most 

primary energy resources (particularly for nuclear fuels and biomass) except for natural gas 

and coal, which are reduced by 0.08 and 0.2, respectively). Scenario 5 sees few significant 

changes in depletion or exhaustion relative to the base case, except for a decrease in nuclear 

fuels depletion and an increase in biomass exhaustion, by 0.09 and 0.08, respectively. 
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Figure 92: mean NRE depletion and RE exhaustion of primary energy resources in 2100 relative to the base case, by scenario 

6.2.6 RE share of supply 

Figure 93, showing mean RE shares of TPES in 2050 and 2100 by scenario, identifies few 

statistically significant differences due to wide and overlapping 90% confidence intervals. By 

2050, the RE shares of TPES are largely in the 26-47% range, possibly higher in scenario 4 (32% 

to 49%) and possibly lower in scenario 5 (22% to 37%). By 2100, the typical range of RE shares 

of TPES has increased to 30-72% range, although possibly higher in scenario 1 (45% to 83%). 
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Figure 93: mean RE share of TPES in 2050 and 2100 by scenario, including 90% confidence intervals 

6.2.7 EROI 

 

Figure 94: mean PC mean EROI in 2100 relative to 2015 by scenario (low) 

Mean PC mean EROI for primary energy resources and mean point-of-use EROI for ECs in 2100 

by scenario, relative to their initial values, are shown in Figure 94 and Figure 95. NRE resources 

exhibit major declines of 55% or more by 2100 due to depletion effects. Nuclear fuels 
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experience the greatest mean EROI declines, by 89% or more. Mean EROI values for fossil 

fuels decline by 57-83%, with the largest declines typically occurring for oil, followed by 

natural gas and coal.  

RE resources generally exhibit lesser declines in mean EROI by 2100, although several distinct 

groups are apparent, associated with the size of the absolute technical potential: 

• Solar thermal, hydropower, geothermal, and other RE typically decline 40-60% (except 

in scenario 6). 

• Wind and biomass typically decline 10-35% (except in scenario 6). 

• Solar PV declines no more 12%. 

Mean point-of-use EROI for ECs typically declines 30-50% by 2100 (except in scenario 6). 

Mean final EROI values are lowest in scenario 4 for all RE resources, nuclear fuels, and 

electricity, while mean final EROI is higher for natural gas and coal. Mean final EROI values 

are universally highest in scenario 6 (except for other RE in scenario 1, as an artefact of 

scenario implementation). Impacts on final EROI values are generally positive in scenarios 1 

(weakly) and 2 (strongly), negative in scenario 5, and neutral in scenario 3. 

 

Figure 95: mean PC mean EROI and point-of-use EROI in 2100 relative to 2015 by scenario (high) 
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6.2.8 Penetration 

6.2.8.1 Secondary 

Mean secondary penetration by secondary PC type by scenario for electricity, shown in Figure 

96, exhibits relatively minor differences between scenarios at each timestep, except for 

strong growth in other RE in scenario 1. Between 2025 and 2100, mean fossil fuel penetration 

in electricity production is lowest in scenarios 1, 4, and 6. However, by 2100 mean fossil fuel 

penetration is highest in scenario 4. Mean penetration appears relatively insensitive to the 

modelled scenarios for oil, geothermal, coal CHP, natural gas CHP, solar thermal, biomass, 

and biomass CHP, and other RE (with the exception of scenario 1). In contrast, hydropower, 

wind, solar PV, nuclear, natural gas, and coal penetration responds more strongly to modelled 

scenario conditions. 

 

Figure 96: mean secondary penetration by secondary PC type by scenario for electricity 
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Figure 97: mean secondary penetration by secondary PC type by scenario for LaG fuels 

Mean secondary penetration by secondary PC type by scenario for LaG fuels, shown in Figure 

97, exhibits strong convergence after 2050 for all scenarios except scenario 4 (which sets 

reduced penetration limits for the conversion of coal and natural gas to LaG fuels). By the 

2050 timestep, progress towards the final penetration levels has proceeded furthest in 

scenario 5 but is somewhat lagging in scenarios 2 and 6. In scenario 4, oil refining and the 

production of biofuels are consistently much higher than other scenarios after 2050.  

Mean secondary penetration by secondary PC type by scenario for heat, shown in Figure 98, 

again exhibits relatively minor differences between scenarios at each timestep. Scenario 4 

sees significantly greater penetration for CHP using natural gas, coal, and biomass, relative to 

other scenarios, primarily displacing the direct use of coal. Growth in solar thermal, 

geothermal, and oil penetration begins earlier in scenario 5, prior to 2025. By 2100, scenarios 

1 and 6 see the lowest mean fossil fuel penetration in heat production, closely followed by 

scenario 2, although differences between all scenarios are minor. 
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Figure 98: mean secondary penetration by secondary PC type by scenario for heat 

6.2.8.2 End-use 

Figure 99 shows mean EU penetration by EU PC type by scenario for the the provision of the 

regional passenger transportation ES. Scenarios 2 and 6 show consistently lower penetration 

levels for electric rail and electric vehicles, with correspondingly higher penetration in other 

EU PC types, particularly ICE rail, shipping, and aviation. Conversely, scenario 4 shows 

consistently higher penetration levels for electric rail and electric vehicles and lower 

penetration in other EU PC types, particularly ICE rail and light ICE vehicles. By 2075 rail (ICE 

and electric) has become the dominant mode for regional passenger transportation while the 

use of aviation and ICE vehicles is minor in all scenarios. Due to a delayed repsonse in 

downstream investment, scenario 5 exhibits fewer changes from initial penetration levels 

before 2050. 
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Figure 99: mean EU penetration by EU PC type by scenario for regional passenger transportation 

Figure 100 shows mean EU penetration by EU PC type by scenario for the the provision of the 

regional freight transportation ES. Scenarios 2 and 6 show consistently lower penetration 

levels for electric rail, with correspondingly higher penetration in all other EU PC types except 

heavy ICE vehicles. Conversely, scenario 4 shows consistently higher penetration levels for 

electric rail and lower penetration in other EU PC types, particularly ICE rail. By 2075 rail (ICE 

and electric) has become the dominant mode for regional freight transportation while the use 

of aviation and heavy ICE vehicles is minor in all scenarios. As with passenger transportation, 

scenario 5 exhibits fewer changes from initial penetration levels before 2050. 
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Figure 100: mean EU penetration by EU PC type by scenario for regional freight transportation 

 

Figure 101: mean EU penetration by EU PC type by scenario for low temperature heating 

Figure 101 shows mean EU penetration by EU PC type by scenario for the the provision of the 

low temperature heating ES. Higher electrification of low temperature heating is seen in 
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scenarios 4 and 6, with correspondingly lower heat penetration. As with transportation, 

scenario 5 exhibits fewer changes from initial penetration levels before 2050. 

Mean shares of IC passenger and freight transportation provided by aviation (as opposed to 

shipping), are shown in Figure 102. Rapid changes occur in the early simulation period for all 

scenarios, with aviation penetration decreasing from near 100% for passenger transportation 

and increasing from near 0% for freight transportation. These changes occur more slowly in 

scenario 5, with mean aviation shares converging to those observed in the base case between 

2050 and 2100. Scenarios 1 and 3 show negligible differences from the base case. Scenario 2 

exhibits moderate changes (by < 12%) relative to the base case, with lower mean aviation 

shares for IC passenger transportation and higher mean aviation shares for IC freight 

transportation. In scenario 4, mean aviation shares are significantly lower than the base case, 

particularly for IC passenger transportation (reaching almost 80% shipping by 2040). Scenario 

6 exhibits somewhat lower (by < 10%) mean aviation penetration for IC passenger 

transportation and the lowest mean aviation penetration for freight (remaining below 17%).  

 

Figure 102: mean aviation shares of IC passenger and freight transportation by scenario 

Mean shares of static mechanical work and high temperature process heat provided using 

electricity (as opposed to LaG fuels and heat, respectively) by scenario, are shown in Figure 

103. In general, a process of electrification of these two ESs is observed. This is despite early 
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declines in the mean electrified share of static mechanical work, between 10% and 15% from 

the 2015 level, in all scenarios except scenario 4 where a steady increase occurs. The mean 

electrified shares of static mechanical work exceed 80% by 2100 in all scenarios except 2 and 

6, in which mean shares are essentially unchanged from their initial levels. Electrification of 

high temperature process heat is consistently higher in scenario 4 than in the base case (up 

to 30% higher mean). Scenarios 5 and 6 show lagging electrification of high temperature 

process heat relative to the base case, while scenario 1 sees a minor boost after 2050 (< 10%), 

and scenarios 2 and 3 exhibit little difference. 

 

Figure 103: mean electrified shares of static mechanical work and high temperature process heat by scenario 

6.2.9 GHG emissions 

Figure 104 shows mean cumulative GHG emissions by scenario relative to the base case. 

Scenarios 1 and 3 see moderate decreases and increases (< 75 GtCO2e) in mean cumulative 

GHG emissions relative to the base case, respectively, accruing primarily in the late simulation 

period. Scenarios 2 and 4 achieve significant reductions of similar magnitude in cumulative 

GHG emissions relative to the base case, reaching mean reductions of 312 GtCO2e and 206 

GtCO2e by 2100, respectively. Scenario 5 exhibits significantly increased mean cumulative 

GHG emissions relative to the base case, peaking by 2080 before declining slightly to 150 

GtCO2e by 2100. Scenario 6 achieves the lowest mean cumulative GHG emissions by a wide 
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margin, with reductions steadily increasing over the simulated period to 832 GtCO2e less than 

the base case by 2100 (equivalent to approximately 26 years of 2015 global GHG emissions). 

Considering mean trends across the modelled scenarios, emissions budgets corresponding to 

1.5°C and 2°C are depleted by 2036 and 2039 at the earliest (in scenario 5) and 2074 and 2081 

at the latest (in scenario 6), respectively. 

 

Figure 104: mean cumulative GHG emissions by scenario including emissions budget ranges, relative to the base case 

Cumulative probability distributions for cumulative GHG emissions by scenario are shown in 

Figure 105 (for 2050) and Figure 106 (for 2100). The lower emissions budget range limits for 

1.5°C and 2°C are both exceeded by distribution minima for all scenarios by 2050. The upper 

emissions budget range limit for 1.5°C is meaningfully exceeded only by scenario 5 by this 

time (with less than 10% likelihood). The upper emissions budget range limit for 2°C is 

exceeded by distribution minima for all scenarios by 2100. However, significant differences 

exist between scenarios, with median cumulative GHG emissions spanning a range of 975 

GtCO2e and maxima spanning almost 2400 GtCO2e (between scenarios 5 and 6). These 

quantities amount to approximately 30 and 74 years of 2015 global GHG emissions, 

respectively, implying vastly different climate outcomes depending on policy choices. 

Scenario 4 exhibits a low distribution gradient above the 70th percentile in 2100, indicating 

that very high emissions outcomes are relatively more common in this scenario compared to 
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those with a similar median effect (i.e., scenario 2). Notably, distribution minima coincide for 

all scenarios over time suggesting adverse circumstances affect the likelihood but not the 

potential magnitude of emission reductions. 

 

Figure 105: cumulative probability distributions for cumulative GHG emissions in 2050 by scenario including emissions budget 
ranges 
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Figure 106: cumulative probability distributions for cumulative GHG emissions in 2100 by scenario including emissions budget 
upper limits 

6.2.10 GES metabolism 

Figure 107 shows mean ESMRs for each EC, by scenario, relative to the base case. Scenarios 

1 and 2 appear to be similarly beneficial, with steadily increasing reductions in ESMRs relative 

to the base case (as much as 0.05), however, this benefit appears earlier but grows more 

slowly in scenario 2. Scenario 3 appears to be to be limited to a greater extent by the 

availability of electricity and heat. Scenario 3 exhibits minor differences only. Scenarios 4 and 

5 appear to impose greater burdens on the global socio-economic system relative to the base 

case and appear to be limited to a greater extent by LaG fuel availability. Scenario 4 sees the 

greatest mean ESMR observed during the simulated period around 2075 (0.22), raising 

questions of feasibility. Scenario 6 exhibits the lowest ESMRs, between 0.06 and 0.08 lower 

than the base case by 2100. 
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Figure 107: mean ESMRs by scenario relative to the base case 

6.3 SENSITIVITY ANALYSIS 

Refer to section 5.5.1 for sensitivity analysis details, including the calculation of the 

normalized sensitivity metric. Results here describe an ensemble of 10,000 realizations, with 

failed realizations included for stable time, but excluded for cumulative GHG emissions. 

Figure 108 shows cumulative probability distributions for normalized sensitivity for both 

selected results, including upper and lower sensitivity thresholds. The sensitivity distribtution 

for cumulative GHG emissions exhibits lower mean and median sensitivity but is long-tailed, 

suggesting many input parameters have little impact but a small group have very high impact. 

Stable time is influenced by a wider range of input parameters. Sensitivity thresholds for 

stable time are 0.065 and 0.110. Sensitivity thresholds for cumulative GHG emissions are 

0.063 and 0.117. 
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Figure 108: cumulative probability distributions for normalized sensitivity for selected results, including sensitivity thresholds 

Charts in sections 6.3.1 and 6.3.2 include only input parameters with sensitivity values above 

one of the higher sensitivity thresholds or above both lower sensitivity thresholds. Note, 

contributions to sum normalized sensitivity are presented as negative where increases in the 

relevant input parameter are associated with undesirable outcomes (indicated by the sign of 

SRCy,i). Additional sensitivity results for input parameters above lower sensitivity thresholds 

are given in section 10.5. 

6.3.1 Non-decision input parameters 

Sum normalized sensitivity values across both selected results for non-decision input 

parameters, ordered by absolute sum, are presented in Figure 109. These input parameters 

are therefore identified as those not considered amenable to human control having the 

greatest relative importance for GES transformation outcomes.  

These results highlight the overwhelming importance of primary energy resource availability 

and quality for minimizing the risk of encountering net energy trap outcomes, particularly 

biomass potential (the single highest sensitivity input parameter relating to this outcome). 

Solar thermal, geothermal, and coal initial resource magnitudes are also crucial for system 

stability. Furthermore, EROI parameters characterizing resource quality for coal, oil, and 

natural gas exhibit high sensitivity. Together, these primary energy resource related input 
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parameters represent the majority of absolute sum normalized sensitivity for stable time 

presented in Figure 109. Interestingly, higher initial EU to ES efficiencies for IC freight 

shipping, regional freight aviation, passenger electric rail, and electric mechanical systems, 

and the upper asymptote for the CF target for IPaC devices have significant negative impacts 

on system stability. Higher CapEx fractions for hydropower are also moderately negative for 

system stability. 

 

Figure 109: non-decision input parameters by sum normalized sensitivity across both selected results 

Cumulative GHG emissions are also primarily affected by primary energy resource related 

input parameters. Higher nuclear fuel and geothermal initial resource magnitudes correspond 



244 
 

to lower cumulative GHG emissions by the end of the simulated period, and vice versa. 

Cumulative GHG emissions are also moderately affected by initial EU to ES efficiencies for IC 

freight shipping, high temperature heating using heat fuels, and electric mechanical systems 

(negatively), and low temperature heating using heat fuels (positively). 

Notably, coal initial resource and EROI contributions to sum normalized sensitivity are both 

significant (above respective lower sensitivity thresholds) and exhibit contrary effects on 

desirable outcomes (highlighted in Figure 109). This suggests greater coal availability and 

quality have significant positive implications for system stability, but strongly negative 

implications for cumulative GHG emissions by the end of the simulated period, and vice versa. 

6.3.2 Policy recommendations 

Sum normalized sensitivity values across both selected results for policy recommendations, 

ordered by sum, are presented in Figure 110. Results identify grouped input parameters 

aligned with policy actions having the greatest potential impacts on GES transformation 

outcomes, or system leverage points as described in section 5.5.1. 

Reductions in ES demands represent the major leverage points for minimizing cumulative 

GHG emissions within the simulated period, particularly high temperature process heat and 

static mechanical work (representing the majority of absolute sum normalized sensitivity for 

cumulative GHG emissions presented in Figure 110). Low temperature heating, IPaC, and 

regional passenger and freight (regional and IC) transportation also offer significant 

contributions. These demand reductions generally have positive (or neutral) effects on 

system stability, particularly for high temperature process heat and static mechanical work. 

Note that policy recommendations for reducing demand include input parameters for both 

the initial rate of change and ultimate magnitude of demand. 

Decreases in ECC via design improvements aimed at reducing PC lifecycle energy costs have 

significant positive effects on system stability, specifically for biofuel production, coal CHP, 

intermittent electricity AI, geothermal electricity generation, the conversion of coal to LaG 

fuels, and coal electricity generation. These reductions in ECC have minor mixed effects on 

cumulative GHG emissions, except for significant negative effects associated with the 

conversion of coal to LaG fuels and coal electricity generation (normalized sensitivity of 0.06 
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and 0.11, respectively; highlighted in Figure 110). ECC reductions in coal CHP have a minor 

negative impact on cumulative GHG emissions (normalized sensitivity ~0.03). 

Finally, accelerated retirements (by reducing operational lifetimes) of electricity generation 

from coal and IC freight aviation are significantly positive for cumulative GHG emissions and 

system stability, respectively (normalized sensitivity > 0.1). Accelerated retirement of coal 

electricity generation has a minor impact on system stability (normalized sensitivity ~0.01). 

 

Figure 110: decision input parameters grouped by policy action by sum normalized sensitivity across both selected results 

6.4 DIAGNOSTIC ANALYSIS 

Refer to section 5.5.2 for diagnostic analysis details, including the definition of pedigree score. 
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6.4.1 Stable time 

The diagnostic diagram for stable time, shown in Figure 111, shows few high-risk input 

parameters (9), but a relatively high number in the medium risk category (50). Pedigree scores 

are clustered due to the ordinal five-point grading scale used and averaging of component 

scores for the calculation of overall pedigree. 

 

Figure 111: diagnostic diagram for stable time (semi-logarithmic) 

High-risk input parameters for stable time are given in Table 9. The most notable group relate 

to ES demand (ES final demand multipliers and initial rates of change) for high temperature 

process heat and static mechanical work. These parameters have high normalized sensitivity 

values and low strength of knowledge as no suitable sources exist to independently project 

future ES demands as defined in the PRESS model, necessitating the use of own estimates 

subject to relatively weak assumptions (see section 9.8 for pedigree assessment component 

scores). Notably, ECC for intermittent electricity AI is subject to very low strength of 

knowledge as this input parameter is lacking suitable data sources and is defined using a cost 

proxy calculation and an order-of-magnitude range (see section 9.5.9.2 for details). 

As discussed in section 5.5.2, particular attention must be given to input parameters 

categorized as high risk for both selected results. These are listed in bold red text in Table 9. 
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Table 9: high risk input parameters found via diagnostic analysis for stable time 

Input parameter 
Normalized 

sensitivity 

Pedigree 

score 

ES final demand multiplier – high temp. process heat 0.266 0.7 

ES final demand multiplier – static mechanical work 0.264 0.7 

Terminal EROI – oil 0.258 1.0 

ECC – intermittent electricity AI 0.253 0.3 

Initial ES demand rate of change – high temp. process heat 0.221 1.0 

Initial ES demand rate of change – static mechanical work 0.171 1.0 

Terminal EROI – natural gas 0.128 1.0 

CapEx fraction – hydropower 0.117 0.7 

PC lifetime – aviation freight IC 0.111 1.0 

 

Medium risk results for stable time, given in section 10.6, exhibit two notable groups of input 

parameters: one with high normalized sensitivity (above the upper sensitivity threshold, 0.11) 

and moderate pedigree (2.7), and another with moderate normalized sensitivity (above the 

lower sensitivity threshold, 0.67) and very low pedigree (0.3). The first group includes ECC (for 

biofuel production, coal CHP, the conversion of coal to LaG fuels, coal electricity generation, 

and geothermal electricity generation), initial EROI for coal, and initial EU to ES efficiencies 

(for regional freight aviation, IC freight shipping, and passenger electric rail). The second 

group includes parameters for ECC (for passenger electric rail, LaG fuels AI, electrical AI, and 

regional passenger aviation) and the LaG fuel EC split factor for electric vehicles. 

6.4.2 Cumulative GHG emissions 

The diagnostic diagram for cumulative GHG emissions, shown in Figure 112, shows relatively 

few input parameters in the high and medium risk categories (11 in each), in line with the 

long-tailed distribtuion of normalized sensitivity shown in Figure 108. 
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Figure 112: diagnostic diagram for cumulative GHG emissions (semi-logarithmic) 

High-risk input parameters for cumulative GHG emissions are given in Table 10. Input 

parameters that appear in high or medium risk categories for both selected results are listed 

in bold text, with input parameters categorized as high risk for both selected results 

highlighted red. Input parameters relating to ES demand are again important, including high 

temperature process heat and static mechanical work (as in Table 9), but also ES final demand 

multipliers for low temperature heating and regional passenger transportation, and initial 

rates of change for all transportation ES. The ES final demand multiplier for low temperature 

heating merits particular attention due to the combination of high sensitivity and low 

pedigree. 

Table 10: high risk input parameters found via diagnostic analysis for cumulative GHG emissions 

Input parameter 
Normalized 

sensitivity 

Pedigree 

score 

Initial ES demand rate of change – high temp. process heat 1.000 1.0 

Initial ES demand rate of change – static mechanical work 0.845 1.0 

ES final demand multiplier – low temp. heating 0.530 0.7 

ES final demand multiplier – high temp. process heat 0.528 0.7 

ES final demand multiplier – static mechanical work 0.417 0.7 

Initial ES demand rate of change – transport freight IC 0.344 1.0 

Initial ES demand rate of change – transport passenger regional 0.219 1.0 
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Input parameter 
Normalized 

sensitivity 

Pedigree 

score 

Initial ES demand rate of change – IPaC 0.185 1.0 

PC lifetime – coal generation 0.157 1.0 

ES final demand multiplier – transport passenger regional 0.126 0.7 

Initial ES demand rate of change – transport freight regional 0.123 1.0 

 

Medium risk results for cumulative GHG emissions, given in section 10.6, exhibit two notable 

input parameters. The first is initial EROI for coal, with high normalized sensitivity (0.65, well 

above the upper sensitivity threshold) and moderate pedigree (2.7). The second is the ES final 

demand multiplier for IC freight transportation, with moderate normalized sensitivity (0.1, 

above the lower sensitivity threshold) and low pedigree (0.7). 
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7 DISCUSSION 

7.1 PROPER INTERPRETATION OF PRESS RESULTS 

The solution space identified by the PRESS model is limited to the descriptive domain outlined 

in the pre-analytical framework presented in section 4.1. As such, the envelopes presented in 

chapter 6, represent the best outcomes (probabilistically defined) for GES transformation that 

can be expected from a biophysical, complex systems perspective, given the implied set of 

sociotechnical narratives represented in the relevant scenario (or base case). The use of least 

constraining defensible assumptions, initialization to the year 2015, and system control logic 

based on physically optimality contribute to a high degree of overall optimism. While real-

world GES transformations cannot be predicted, outcomes more desirable than indicated by 

the solution space are revealed as highly improbable. However, emergent or exogenous 

changes capable of invalidating the basic model formulation will also invalidate the modelled 

solution space (as discussed in section 4.1.1). 

 

Figure 113: solution space visualization for the base case in 2050 and 2100 

The solution space is highly multi-dimensional, encompassing all modelled output variables, 

but can be visualized for selected scenarios and dimensions (including time), as shown in 
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Figure 113. The bordered regions indicate modelled probabilistic envelopes presented in 

chapter 6, dark regions indicate physically implausible outcomes, and coloured bars show the 

possible range of less desirable outcomes (i.e., real-world outcomes are not limited in their 

degree of undesirability). For example, an energy transition scenario forecasting more than a 

6-fold increase in global intermittent penetration in electricity supply by 2050, or more than 

a 50% decline in TPES by 2100, can be seen as implausible and should be treated with a high 

degree of scepticism. 

As noted in chapter 5, the PRESS model features over 14,000 scalar and time series outputs. 

It is therefore not possible to comprehensively examine all observable changes, across all 

probabilistic levels. As such, results discussed in this chapter relate to a high-level summary 

of GES transformation outcomes, focussing on changes with the greatest relevance to 

achievable outcomes, system interactions, and various aspects of desirability. All results refer 

to the base case unless otherwise specified. 

7.2 THE SOLUTION SPACE FOR GES TRANSFORMATION 

Results in sections 6.1.4 and 6.1.5 show that substantial reorganizations of the GES are 

physically achievable. Notably, it is possible to greatly improve the provision of final ESs from 

the same or smaller TPES. TPES can drop by as much as half of its initial level, and in the most 

optimistic case can remain stable thereafter. However, the most drastic system-level 

improvements are generally seen before 2050 and improvements in both PC efficiencies and 

compositions are largely exhausted by this time. After 2035, mean TPES gradually returns 

towards its initial level driven by rising (mean) ES demands; although, this is subject to a broad 

range of possibilities (270-1000 EJ/year by 2100). This considerable range of outcomes is 

largely related to exogenous and probabilistic ES demands as the primary drivers of GES 

evolution (see ES demand envelopes in section 6.1.5), discussed further in section 7.3. 

Modelled scenarios affect TPES materially. Scenarios 4 (Climate Constraints) and 5 (Delayed 

Consumer Response) show moderate increases in mean TPES over the simulated period while 

scenario 2 (Relocalization) shows moderate decreases. Notably, scenario 6 (Policy 

Recommendations) results in strong, consistent reductions in mean TPES of more than 50% 

relative to the base case by 2100. These results suggest ES demand reductions strongly affect 
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the overall scale of the GES, as expected, while aggressive interventions and delays will largely 

result in scale increases. 

7.2.1 The upstream sector 

Figure 34 shows it is possible to rapidly reduce the production of fossil fuels, at least initially 

– results show mean production peaks for all fossil fuels coinciding with the beginning of the 

simulated period. These early declines are most notable for coal and oil, with gas production 

minimally affected. However, coal and gas production cannot be reduced to zero. In contrast, 

oil is heavily depleted by mid-century (depicted in Figure 44) with mean production remaining 

steady at around 20 EJ/yr – less than 15% of its 2015 production rate – and production rates 

of zero observed in some realizations after 2070. This persistence of fossil fuels occurs despite 

strong reductions applied to NRE utility values in the investment share calculation (as 

described in section 5.2.2). Also, rebounds are observed in both mean coal and gas production 

after 2050 contrary to widespread expectations. Fossil fuel persistence has strong 

implications for GHG emissions, outlined in section 7.2.7. The mean production of nuclear 

fuels approximately doubles towards mid-century before declining after 2075 due to 

depletion effects (as outlined in section 5.1, nuclear fuels modelled in PRESS refer to the fissile 

fuels used in current-generation reactors only). 

Mean RE production grows significantly over the simulated period but is split more equally 

between the available RE resources than many conventional forecasts anticipate. In fact, 

primary RE production remains dominated by biomass and hydropower over the entire 

simulated period, although their mean contribution to total mean RE production falls from 

90% in 2015 to approximately 50% by 2100. Wind and solar, the RE resources with the 

greatest technical potentials, play a moderate role only in most realizations, although both 

are subject to high degrees of uncertainty. As shown in Figure 46 and Figure 47, among all RE 

resources, by 2100 only biomass, solar, and wind have significant remaining room to grow in 

many realizations. 

Consequently, the RE share of TPES will likely not exceed 45% by 2050, or 70% by 2100, and 

may be limited to as low as 37% by 2100 (as shown in Figure 49). These bounds are relatively 

insensitive across modelled scenarios, as depicted in Figure 93. Hence, while RE sources can 

assume a central role within the GES, a 100% RE basis does not appear possible during the 
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21st century. This is an important finding and raises serious doubts regarding many 

mainstream energy transition models and scenarios (such as those outlined in section 3.2.1). 

PRESS is not unique in this regard; the RE share of TPES projected by the MEDEAS model is 

slightly higher, but in the same approximate range [188]. IRENA [315] summarize energy 

transition scenarios in the literature, finding that a significant number project more than a 

50% RE share of TPES by 2050 – PRESS results reveal these scenarios as highly implausible. 

Strong electrification is foundational to achieving a successful energy transition, as discussed 

in section 2.2.2. PRESS results reflect this – Figure 38 and Figure 39 show significant shifts in 

the mean composition of EC supply and demand, respectively, from initial predominance of 

LaG fuels and heat towards electricity. Electricity shifts from the least to most important EC 

over the simulated period, with mean supply overtaking heat before 2030 and LaG fuels 

before 2050 (unadjusted for EC quality). However, this trend is subject to significant variability 

between realizations. Note that electrification is less apparent in the metabolic EC 

consumption of the GES itself, as shown in Figure 40, indicating a greater ongoing reliance on 

LaG fuels and heat relative to final consumption. 

As shown in section 6.1.10.1, the mean penetration of fossil fuels in the production of all ECs 

declines over the simulated period – most significantly for electricity and LaG fuels. Notably, 

mean coal penetration in heat production remains steady and grows slightly after mid-

century. The most significant shift is observed in LaG fuel production, with oil refining 

declining strongly (accounting for approximately half of production by 2050 and less than 15% 

by 2100) and the gap being filled by biofuels and the conversion of coal and gas to LaG fuels 

(i.e., via the Fischer-Tropsch process). 

These trends largely account for the persistence of fossil fuels in primary supply, and 

rebounds in coal and gas production after 2050. It can be inferred that there is an enduring 

system requirement for these resources for the production of heat and LaG fuels as the GES 

reaches practical limits in the rate of electrification. This is particularly concerning given the 

high costs, significant environmental impacts, and low conversion efficiencies of Fisher-

Tropsch conversion, as noted by Capellán-Pérez et al. [344]. Curtailment of this and other high 

emissions technologies is explored in Scenario 4, the implications of which are discussed in 

sections 7.2.5 and 7.2.7. 
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For biomass, the rise of biofuel production is initially offset by declines in biomass for heat 

production (largely traditional uses), causing mean biomass production to decline until 

around 2040, after which production grows strongly, surpassing 2015 levels. Critically, the 

global biomass technical potential is close to exhaustion by 2100 in some realizations. Such 

an outcome would risk of overexploitation of biomass beyond sustainable levels, potentially 

causing large-scale deforestation, biodiversity loss, impacts to hydrological cycles, and 

competition with agricultural land requirements [14, 23, 28, 33, 35, 36, 78, 151]. Notably, 

scenario 6 is strongly desirable regarding limiting the exhaustion of biomass resources, as 

depicted in Figure 84 and Figure 92.  

7.2.2 The downstream sector 

Penetration results in section 6.1.10.2 show strong and rapid changes in the composition of 

EU PC, most markedly for transportation. This is notable given that the transport sector is 

critical for all economic activity, as it underpins global supply chains, but remains highly 

dependent on affordable supplies of LaG fuels, as noted by Capellán-Pérez et al. [193] and 

Friedemann [205]. These rapid changes indicate that shifting away from the dominant modes 

of provisioning ESs, described below, represents one of the most immediate and effective 

ways to facilitate GES transformation. 

Mean penetration results for regional passenger transportation show rapid shifts away from 

private vehicles and towards mass transit during the early years of the simulated period. 

Penetration growth is strongly concentrated in rail, with electric rail taking precedence after 

mid-century. Regional freight transportation sees a similar shift towards rail. This is consistent 

with the significantly greater efficiency and greater ease (and lower cost) of electrification of 

rail transportation relative to road-based modes noted by Grübler et al. [364] and Graus et al. 

[365]. However, the indicated scale of rail infrastructure buildout would entail considerable 

socio-economic consequences, as observed by Mediavilla et al. [366], “railways and changes 

in mobility patterns require more profound social transformations and costly infrastructures”. 

There is a clear need for further study in this area. 

In contrast, penetration for electric vehicles (EVs) grows only slowly, reaching a mean 

penetration level of 15% by 2100 (although can rise as high as 40% in some realizations). 

These uncertain and likely modest prospects for EVs stands in stark contrast to expectations 
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reflected in the vast majority of conventional energy transition studies described by Loftus et 

al. [223], but is in general agreement with MEDEAS model findings [193]. Shipping and 

aviation play relatively minor roles for both passenger and freight regional transportation 

after initial mean increases prior to 2050. 

For IC transportation, initially rapid changes are seen in mean penetration (between shipping 

and aviation) for both passenger and freight transportation, after which means gradually 

return towards initial levels. However, envelope limits for IC passenger transportation 

penetration shift markedly towards shipping, indicating a significant number of realizations in 

which shipping becomes a major, or even dominant, mode for long-distance passenger travel. 

This may indicate potential for the return of mixed purpose (passenger and freight) long-

distance shipping. 

Outside of the transport sector, electrification is also observed in low temperature heating, 

high temperature process heat, and mechanical systems (as depicted in Figure 67 and Figure 

69). However, these trends are much more modest, highly uncertain (particularly for low 

temperature heating, between electric and heat fuels), and are essentially exhausted by 2040, 

resulting in significant residual heat and LaG fuel demand. 

Overall, scenarios have relatively muted effects on the downstream sector, except for 

scenario 5 prior to 2050 (as modelled) and scenario 4, which sees significantly higher 

electrification of all ESs and a steep reduction in IC passenger aviation (selecting shipping 

instead) relative to the base case. Scenario 6 also achieves substantially higher electrification 

of low temperature heating. 

7.2.3 Efficiencies and PC utilization 

Improvements in energy efficiency offer the simplest and cheapest path towards reducing 

GHG emissions and the overall scale of the GES, as described by GEA [49]. Endogenous 

efficiency improvements play a significant role in the PRESS model. 

EU efficiency results presented in section 6.1.11.2 depict strong gains in EU to ES efficiencies, 

associated with the design of EU passive systems (described in sections 2.2.3 and 4.2.2.2). 

These gains are most significant for electric lighting, mechanical devices, light vehicles, freight 

rail, IC passenger aviation, low temperature heating, and high temperature process heating. 

As such, the GES transformation solution space as modelled is predicated on significant 
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improvements in EU passive system design, with important implications for consumer 

expectations and behaviours. Most notably, regional transportation modes would quickly 

cease to resemble currently prevalent iterations, particularly for light vehicles – as noted by 

Paoli and Cullen [218], “passive system improvements or changes have a visible impact on the 

user. For example, to increase passive system efficiency in road transport, cars should be 

smaller and more streamlined”. 

Other efficiency gains shown in section 6.1.10.1 (EU conversion, and secondary conversion 

and reticulation), are comparatively minor. Note that in all cases, mean increases in efficiency 

(shown in Figure 70, Figure 71, and Figure 72) fall short of achievable maxima, although 

significant variability is seen over the ensemble. This stems from modelling choices 

representing both the design practicality of large efficiency gains and the power/efficiency 

trade-off, outlined in section 2.2.1 (modelling details in section 9.3.1.4.1). 

Downstream sector CF results, given in section 6.1.9.2, show that the mean utilization of many 

EU PC types remains far below their respective EU CF targets over the simulated period, 

despite the increases in these targets assumed in PRESS (described in section 4.2.2.3). This CF 

suppression effect is likely driven by 1) the propagation of efficiency gains into aggregate 

stocks via investment in new PC (energetically favourable, despite diminished utilization), and 

2) realization-level mode switching resulting from oscillations in the relative scarcity of ECs. It 

is unclear whether CF suppression is a real phenomenon manifesting at the system level or a 

modelling artefact, presenting another avenue for future research. Nevertheless, greater PC 

utilization, in part driven by increased use of social ES provisioning systems (such as transit-

as-a-service, and a wider shift from private to public amenities) will continue to play an 

important role, as outlined by Grübler et al. [364] and Vogel et al. [128]. 

7.2.4 Electricity systems 

The evolution of electricity systems is crucial given the marked trend towards electrification 

described in section 7.2.1. The main challenge to overcome is the integration of rising levels 

of intermittent, non-dispatchable supply, as described in section 4.2.5. As shown in section 

6.1.13, global intermittent penetration in electricity systems unlikely to exceed 25% by 2050, 

or 50% by 2100, and may remain below 20% during the simulated period. This represents the 
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possibility of strong growth in intermittent RE, but at much less optimistic rates than many 

mainstream energy transition scenarios suggest. 

Depending on the intermittent penetration level and balance of mitigation options selected 

(i.e., PC overbuild mitigation vs. AI mitigation), intermittent RE types may see up to 25% 

reduction in CFs with commensurate reductions in baseload CFs – a substantial loss of 

potential power output. AI mitigation is favoured over PC overbuild mitigation on average, 

although subject to significant uncertainty spanning the entire possible range from 2035 

onwards. Consequently, large stocks of intermittent electricity AI may be needed at higher 

intermittent penetration levels (up to 4,000 EJ/year by 2100), eclipsing TPES. An 

infrastructure buildout on this scale would represent a highly complex and socio-

metabolically challenging global undertaking, deserving further research attention. 

All modelled scenarios exhibit either unchanged or lower mean intermittent penetration 

levels relative to the base case by 2100 (depicted in section 10.4). This further supports 

measured expectations for the rapid deployment of intermittent RE, particularly solar and 

wind. Notably, scenarios 1 (Energy Breakthrough) and 6 result in significantly reduced mean 

requirements for intermittent electricity AI, up to 85% lower than the base by 2100, easing 

the associated socio-metabolic burden. 

7.2.5 Socio-metabolic implications 

Strong trends in declining primary energy resource quality are observed over the simulated 

period, as depicted in section 6.1.8. For NRE, all mean standard EROI (EROIst) values exhibited 

by PC stocks fall below 20 by 2100, with oil, gas and nuclear fuels falling below 10. In some 

realizations, EROIst values for oil and nuclear fuels fall to very low levels, below 5, due to 

depletion effects. For RE, two groups are apparent: 

• For solar PV, biomass, geothermal, and other RE, mean EROIst values converge to 

between 12 and 17 by 2100, and all fall below 10 in some realizations (most 

significantly for solar PV and other RE). 

• For wind, hydropower, and solar thermal, mean EROIst values converge to between 38 

and 62 by 2100, with values remaining above 10 in all realizations. 

By 2100, only this second group of high-EROI RE resources exhibit the possibility for EROIst 

values above 40, across all primary energy resources. Despite significant uncertainty in EROIst, 
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particularly in initial values, narrowing distributions observed for all primary energy resources 

(except biomass) indicate convergence in these trends. Point-of-use EROI (EROIpou) values for 

the production and delivery of electricity, LaG fuels, and heat show similar declines, as shown 

in Figure 54. Mean EROIpou values for all three fall below 10 by 2100 and can potentially drop 

below 3 (although subject to a wide range). As such, the declining quality of the primary 

energy gradients sustaining both the GES and HSES appears to represent a clear and 

unavoidable feature constraining future GES transformations.  

This manifests in the rising relative socio-metabolic burden imposed by the hypercyclic 

component of the GES. As shown in Figure 40, mean GES metabolic EC consumption increases 

strongly from around 2060, at the latest, with an early shift from the capital hypercycle 

towards the autocatalytic loop. This is reflected in ESMR envelopes shown in Figure 78, 

extending noticeably into the region which may curtail reinvestment flows within the GES. 

However, significant uncertainties are present; by 2100, GES metabolic EC consumption may 

account for as little as 5% or as much as 45% of gross EC supply. Extended EROI (EROIext), 

corresponding to the inverse of ESMR, can fall as low as 2.3 by 2100 (with a mean of 5.7), 

indicating serious challenges to the socio-metabolic feasibility of GES transformation. 

Notably, mean modelled initial ESMRs (6-7%) approximately align with the 2017 REN21 report 

[204], which notes that “The energy industry itself accounts for another 6% of TPES through 

its net demand for energy.” Dupont et al. [177] estimates worldwide societal EROI in 2018 

was between 9.4 and 8.5 – and although societal EROI does not correspond directly to EROIext 

(the former being typically lower) – the implied ESMR range is 11-12%, coinciding with the 

initial upper limit of the envelope modelled in PRESS. These comparisons add strongly to 

confidence in the ESMR metric as an appropriate measure of the relative scale of the GES. 

The observed EROI declines at all levels of the GES underscore the likelihood of serious 

impacts to economic prosperity and growth, and societal complexity, discussed in sections 

2.1.1.4 and 3.1.3.4. Capellán-Pérez et al. [39] find approximately similar EROIst trajectories to 

the results discussed above, risking a decline into “dangerous territory” where the 

maintenance of complex, high-energy societies is no longer possible. As noted in section 

2.1.1.4, estimates of minimum societal EROI in the literature range between 3 and 11, 

although values toward the lower end of this range would likely not account for the provision 

of essential social services. Hall and Klitgaard [184] note that historically, stable and 
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prosperous societies have existed with EROI values as low as 4, but these were not 

industrialised. Brandt [51] estimates a minimum EROIext for complex societies of around 2.25 

(ESMR of 44%). Therefore, the range of EROIext reductions implied by PRESS results – with 

corresponding societal EROI lower still – appears likely to seriously impact the basic socio-

metabolic pattern of modern, high-energy societies.  

Modelled scenarios significantly affect observed trends in EROIst, EROIpou, and ESMR, as 

depicted in sections 6.2.7 and 6.2.10. Overall, greater socio-metabolic impacts are implicated 

in scenarios 4 and 5, and reduced impacts in scenarios 1, 2, and 6, relative to the base case. 

These findings stress the negative consequences of both delays and aggressive interventions 

in the overall scale and burden of the GES (within the HSES), while highlighting the 

considerable benefits attainable through reductions in ES demands. Scenario 6 exhibits 

marked improvements in all metrics, with a mean reduction in ESMR approaching 10% 

relative to the base case – this emphasizes the value of utilizing identified leverage points in 

policy design. Scenario 4, while reducing EROIst declines in the NRE resources, sees the 

greatest ESMRs observed during the simulated period (with mean values over 20%) around 

2075. This underscores the likely socio-metabolic infeasibility of major system interventions 

via ‘forcing’ policies consisting of inflexible constraints, formulated a priori, with insufficient 

understanding of system behaviour. 

7.2.6 System stability 

System stability, representing the ensemble incidence rate of net energy trap outcomes, is 

directly related to the ability of the GES to maintain approximate equivalence of supply and 

demand over the simulated period. Due to the significant and rapid changes observed in in 

both the upstream and downstream sectors (described in sections 7.2.1 and 7.2.2), early 

oscillations in the EC supply/demand balance are observed, as depicted in section 6.1.2. LaG 

fuels typically go into surplus during the early part of the simulation, prior to 2050, largely 

due to the general trend towards greater electrification of transportation described in section 

7.2.2. However, after 2050, LaG fuels tend towards deficit more than heat or electricity, 

implying this EC is limiting factor for GES transformation. This result is supported by the 

MEDEAS model [188], which finds liquid fuel scarcity may become acute in the first half of the 

21st century, driven by depletion dynamics. 
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Note that early simulation period model oscillations observed in EC supply/demand balance 

are also seen in GES metabolic EC consumption, ESMRs, EROIpou, and CF maxima for 

intermittent PC. This behaviour is a modelling artefact resulting from representing 

supply/demand balance mathematically as an integral function (as described in section 

4.2.9.1) and should not be interpreted literally. These model oscillations diminish quickly and 

are largely eliminated by 2040. 

The base case probability distribution for stable time, depicted in Figure 32, shows reductions 

in system stability beginning around 2055 and accelerating after 2080. The indicated risk of a 

net energy trap before 2100 is 5%. However, estimates of system stability in PRESS reflect 

highly optimistic, best-case outcomes. The incidence of net energy trap outcomes depends 

strongly on the exogeneous interface between the GES and the HSES, which is represented in 

a simplified, high-level, and relatively non-constraining form, as described in section 4.2.4.5. 

As such, the real-world risk of net energy trap outcomes is likely substantially higher and may 

become a significant threat much earlier than indicated here. 

Scenario results for system stability, given in section 6.2.2, show moderately positive effects 

in scenarios 1 and 2, and neutral to moderately negative impacts in scenarios 3 (RE Rapid 

Deployment) and 5. Notably, scenario 6 exhibits no net energy trap outcomes over all 1,000 

modelled realizations. Scenario 4 shows strongly negative impacts on system stability, with 

the risk of a net energy trap rising more rapidly and to a much higher level – almost 30% by 

2100. These results reinforce the strategic value of leverage points and the risks of major, ill-

conceived system interventions. Interestingly, technological breakthroughs in new supply, 

such as next generation nuclear or OTEC, appear to have an underwhelming potential to avoid 

a net energy trap (as demonstrated by scenario 1). Note that early simulation period model 

oscillations, described above, are observed in TPES in scenarios 4 and 5. 

7.2.7 GHG emissions 

Results for GHG emissions, presented in section 6.1.12, show that the global emissions rate 

can drop significantly and rapidly, between 17% and 52% from 2015 levels by 2040, but 

cannot fall to zero due to the persistence of fossil fuels in the upstream sector described in 

section 7.2.1. By 2100, the emissions rate may exceed its initial level. Consequently, 

cumulative GHG emissions rise inexorably, surpassing the emissions budget corresponding to 



261 
 

a 66% chance of remaining below 1.5°C by 2071, and the 2°C budget by 2077, at the latest. 

The very high degree of uncertainty evident here relates to the net effect of uncertainties in 

the GHG emissions rate and the probabilistic ranges corresponding to emissions budget 

estimates. The 2°C budget is potentially exceeded as early as 2038 in some realizations. 

Modelled GHG emissions assume the global non-energy emissions rate is approximately static 

over the simulated period (as noted in section 4.2.9.3). Modelling non-energy emissions is not 

within scope and affects informational output metrics only, so can easily be adjusted 

analytically. Assuming instead that non-energy emissions decline linearly to zero by 2100 

reduces total cumulative emissions by approximately 380 GtCO2e. Similarly, assuming a 

decline to zero by 2050 reduces total cumulative emissions by 610 GtCO2e. Applying the 

latter, more optimistic assumption, to modelled cumulative GHG emissions by 2100 indicates 

a very small (< 1%) probability of emissions below the 2°C budget. As such, is extremely 

unlikely that targets established under the Paris Agreement will be achieved without the 

large-scale deployment of CCS or other negative emissions technology. 

The MEDEAS model [188] finds that the 1.5 and 2°C thresholds will likely passed before mid-

century. Similarly, Stammer et al. [324] conclude that social constraints to energy transition 

imply that both deep decarbonization by 2050, and limiting warming below 1.7°C, are 

implausible. These findings are are broadly in line with PRESS results. 

Newell et al. [62] and Keyßer and Lenzen [346] note that a significant number of global energy 

transition and decarbonization scenarios forecast global GHG emissions below 10 

GtCO2e/year by 2050. Many of these scenarios also project cumulative emissions between 

2018 and 2100 of less than 600 GtCO2e [346]. In contrast, PRESS results suggest emissions 

rates below 22 GtCO2e/year by 2050, and cumulative emissions below 1700 GtCO2e by 2100, 

are physically implausible. However, these scenarios typically rely heavily on large-sale CCS, 

so are not directly comparable to PRESS. Jenkins and Thernstrom [81] note that “Power sector 

CO2 emissions must fall nearly to zero by 2050 to achieve climate policy goals.” PRESS results 

suggest this is not realistic, as depicted in Figure 62. 

Cumulative GHG emissions scenario results, given in section 6.2.9, show all scenarios 

potentially exceeding both the 1.5°C and 2°C limits by 2050, and exceeding these limits by 

2100. However, there are marked difference between scenarios, particularly apparent at 
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higher percentiles. Scenarios 2 and 4 are both beneficial, exhibiting reductions in cumulative 

GHG emissions of similar magnitude relative to the base case. However, scenarios 2 achieves 

these reductions with far fewer adverse consequences for system stability and socio-

metabolic burden (as discussed in sections 7.2.5 and 7.2.6, respectively). Scenario 6 see the 

best outcomes for cumulative emissions by a wide margin; reductions relative to the base 

case are approximately twice as large as those observed in scenarios 2 and 4. 

Scenario 5 is the only scenario to substantially increase cumulative emissions relative to the 

base case, underscoring the negative consequences of delays or slow progress in necessary 

downstream, behavioural adaptations. The underwhelming system-level benefits of 

technological breakthroughs (scenario 1), noted in section 7.2.6,  is also apparent in the 

reduction of cumulative GHG emissions. Scenario 3 has no significant impact on emissions, 

suggesting that policy approaches based simply on the promotion of RE (i.e., via subsidies or 

carbon pricing) will not be effective in achieving decarbonization at the system level. 

Sgouridis and Csala [9] note a “safe emissions budget” of 1120 GtCO2e for the period of 2015 

to 2100, corresponding approximately to the 1.5°C budget range mid-point. Of all modelled 

scenarios, only scenario 6 comes close – under very optimistic assumptions for non-energy 

emissions (a complete phase out by 2050) scenario 6 has an appreciable, albeit small, chance 

of remaining below this limit. Overall, scenario results suggest that it is highly unlikely 

eventual warming will remain below 2°C without relying on speculative and unproven large-

scale CCS, regardless of selected policy interventions. 

7.3 SENSITIVITY AND LEVERAGE POINTS 

Sensitivity analysis reveals the potential impacts of estimation errors for each probabilistic 

input parameter on a selected model output, as described in section 3.3.2. These are the 

factors which most strongly influence desirable GES transformation outcomes. For non-

decision parameters, not amenable to human control or modification, sensitive parameters 

also represent major systemic risk factors which are likely to strongly influence and constrain 

achievable outcomes. For decision parameters, sensitivity analysis can be used to identify 

system leverage points and formulate appropriate policy recommendations cognizant of 

system behaviour 
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Sensitivity analysis results for non-decision parameters, given in section 6.3.2, identify the 

critical importance of primary energy availability and quality. The highest positive sensitivity 

values for stable time (indicating system stability) are observed for biomass, solar thermal, 

and geothermal technical potentials, oil and gas terminal EROI, and coal initial RURR. These 

resources are all crucial for heat or LaG fuel production during the late simulation period. This 

further emphasizes the limits to electrification and the persistent need for non-electricity ECs 

within the metabolic pattern of the GES, described in sections 7.2.1 and 7.2.2. The technical 

potential of biomass available for energy production is the most important non-decision 

parameter affecting system stability, by a wide margin. Biomass is the only RE capable of 

conversion to both heat and LaG fuels. However, the true sustainable potential of biomass 

energy is both highly uncertain and contentious, as described in section 2.1. Large expansions 

of biomass harvesting for energy purposes entail significant environmental impacts, as 

discussed in section 7.2.1, and will likely represent a major future pressure point between the 

HSES and the wider biosphere. This centrality of primary energy gradients is understandable 

given their fundamental role as the ultimate source of all exosomatic energy flows, enabling 

the ongoing autopoiesis of both the GES and HSES, as discussed in section 3.1. 

Primary energy resource parameters also exhibit high sensitivity for GHG emissions, 

particularly initial coal RURR and EROI. Greater availability and quality of coal results in 

significantly higher cumulative GHG emissions over the simulated period, and vice versa. 

These finding reveal a tension between the strong, contrary effects of coal on desirable 

outcomes in stable time and emissions. For example, a rebound in coal consumption may be 

required to avert a net energy trap – largely for LaG fuel production via the Fisher-Tropsch 

process (in light of likely LaG fuel scarcity noted in section 7.2.6) – but this will come with 

serious climate risks. GHG emissions are also substantially affected by nuclear fuel and 

geothermal resources, with higher resource magnitudes resulting in reduced emissions, and 

vice versa. 

Several surprising and unintuitive sensitivity results are seen for non-decision parameters. 

Significant negative impacts on system stability are seen for higher initial EU to ES efficiencies 

for IC freight shipping, regional freight aviation, passenger electric rail, and electric 

mechanical systems. Moderate negative impacts on cumulative GHG emissions are seen for 

higher initial EU to ES efficiencies for IC freight shipping, high temperature heating using heat 
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fuels, and electric mechanical systems. These results indicate that higher efficencies, 

particularly in EU passive systems, cannot be assumed to be universally beneficial or yield 

intuitive results at the system level. Reasons for these relationships are unclear as input 

parameter values will affect GES transformation via complex and path-dependent causal 

interactions. Further research is necessary to uncover specific dynamic processes involved. 

Sensitivity analysis results for decision parameters, identifying system leverage points, are 

given in section 6.3.2. These results possess considerable practical value and deserve greater 

emphasis in strategies for facilitating energy transition and climate change mitigation. 

The two most significant leverage points for the promotion of desirable GES transformation 

outcomes, by far, are the ES demands for high temperature process heat and static 

mechanical work. Reducing these demands greatly improves both system stability and GHG 

emissions over the simulated period. However, such reductions are limited in practice as they 

imply curtailment of the industrial sector (see Table 5), affecting economic output and the 

expression of required functions within the HSES. The strong association between these ES 

demands and the incidence of net energy trap outcomes indicates that demand levels at the 

upper end of the modelled ranges (maximum 5-fold increase between 2015 and 2100, for 

both) are likely unfeasible. Notably, high temperature process heat faces strong limits to 

electrification (as shown in Figure 69), contributing to the persistence of heat demand in the 

GES. ES demand reductions for regional passenger and IC freight transportation, and IPaC also 

have significant positive effects on both outcomes, but to a lesser degree. 

Technology improvements for the reduction of lifecycle energy costs of capital (ECC) appear 

to be beneficial for system stability, specifically for biofuel production, coal CHP, intermittent 

electricity AI, geothermal electricity generation, the conversion of coal to LaG fuels, and coal 

electricity generation. This highlights the need for a lifecycle perspective in technological 

design, rather than purely cost or process efficiency. 

Reducing ES demand for low temperature heating and regional freight transportation 

improves GHG emissions, with negligible effects on system stability. The accelerated 

retirement of PC (by reducing operational lifetime) can also yield positive effects; system 

stability is improved by the accelerated retirement of IC freight aviation PC, while GHG 

emissions are improved by the accelerated retirement of PC for electricity generation from 
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coal. The reduction of ECC for the conversion of coal to LaG fuels and coal electricity 

generation, while beneficial for system stability as noted above, is moderately detrimental for 

GHG emissions. This indicates a trade-off between improving the lifecycle efficiency of coal 

conversion and discouraging the use of coal (reminiscent of the rebound effect). 

Interestingly, improvements in demand flexibility and reductions in ES demand for IC 

passenger transportation, often the focus of decarbonization narratives, do not appear to 

have significant system-level impacts on either outcome. 

7.4 EPISTEMIC RISKS 

Diagnostic analysis results, given in section 6.4, identify absolute risks of estimation errors for 

each probabilistic input parameter on a selected model output, considering both impact and 

likelihood of estimation errors. As such, diagnostic result highlight epistemic risks, where the 

characterization of GES transformation is most constrained by insufficient strength of 

knowledge. 

The greatest source of epistemic risk stem from input parameters appearing in high risk 

categories identified via diagnostic analysis for both stable time and cumulative GHG 

emissions (presented in Table 9 and Table 10). These include ES demand final levels and initial 

rates of change for high temperature process heat and static mechanical work. Input 

parameters appearing in high or medium risk categories for both selected results also present 

significant epistemic risk, including ES demand initial rates of change for regional passenger 

and IC freight transportation. These results suggest that improving the strength of knowledge 

regarding plausible future trajectories for exogenous ES demands, particularly in the 

industrial and transport sectors, would be highly beneficial for reducing epistemic risks. Other 

notable input parameters subject to high epistemic risk due to either very high normalized 

sensitivity (> 0.25) or very low pedigree (< 0.5) include terminal EROI for oil and ECC for 

intermittent electricity AI (affecting stable time), and the ES demand final level for low 

temperature heating (affecting GHG emissions). 

All of the above parameters represent the best areas to focus additional data gathering and 

processing efforts to boost the associated strength of knowledge. This would substantially 

improve confidence in the solution space modelled in PRESS, expanding the descriptive 

domain while refining the represented set of socio-technical narratives.  
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8 SUMMARY AND CONCLUSIONS 

“But the myth of the reductionist-scientific character of our studies of the 

future, and indeed of all complex systems, cannot hold. Only by being aware of 

our metaphors, and our ignorance, can we fashion the scientific tools we need 

for guiding our steps into the future, now appreciated as unknown and 

unknowable, but where our greatest challenge lies.” 

– Jerry Ravetz [281] 

The GES is not simply a collection of technologies and resources within an unchanging 

environment, but rather, is fundamentally an example of a CAS. Its historical development 

and set of possible futures are shaped by its function within society, its essential biophysical 

dependencies, and the dynamic interactions and feedbacks which comprise its internal 

structures. As such, the complex, path-dependent process involved in its transformation from 

one energetic foundation to another cannot be properly understood or represented using 

conventional analytical methods based in reductionism.  

The study of possible futures for the third energy transition, from fossil fuel dependence 

towards a re-established solar civilization, must depart from an appropriate conceptual 

vantage point. No definitive quantitative description is possible for complex systems, 

compelling a research orientation beginning from a position of epistemic humility. However, 

exploring dynamic pathways for GES transformation by considering the basic metabolic 

pattern arising from the autocatalytic production of exosomatic energy is a largely overlooked 

research avenue which can yield vital insights. This is carried out by developing a new 

methodology starting with an explicit pre-analytical framework, followed by the creation of 

the PRESS model designed to identify a solution space of energetically feasible and viable 

pathways for transformation of the GES from NRE dependence towards a RE basis, with 

explicit treatment of irreducible uncertainty. 

8.1 KEY FINDINGS 

The primary research objective and all secondary objectives stated in section 1.4 are 

successfully achieved through the identification of the GES transformation solution space and 

subsequent quantitative analysis, the results of which are summarized in this section. 
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Note that in accordance with the pre-analytical framework introduced in section 4.1, the 

research findings presented here assume ongoing efficiency improvements in existing 

technologies but do not include fundamentally new functional roles which have not yet been 

demonstrated at scale, have no epistemic basis for inclusion, and for which no meaningful 

parameter estimates can be given. The advent of such technologies will, of course, invalidate 

the findings of this research project but not its underlying methodological approach which 

can be updated with new modelled elements and input data, as required. 

8.1.1 The centrality of primary energy and demand 

The transformation of the GES is bound on two sides, by finite primary energy resources of 

variable and declining qualities and the requirements for the provision of vital energy services 

to society. Modelled results identify the critical importance of both to the evolution of new 

metabolic patterns and corresponding GES transformation pathways. Most notably, coal and 

biomass resources, and demands for high temperature process heat and static mechanical 

work are shown to be highly significant factors influencing transformation outcomes (see 

sections 6.3 and 7.3).  

Technological change is intrinsic to this process but cannot obviate fundamental primary 

energy constraints or allow arbitrary increases in demand. Even speculative technological 

breakthroughs in new supply have a relatively muted impact, in contrast to widely held 

expectations. As primary energy resources are not within human control, the primary 

leverage points for promoting desirable transformation outcomes lie in demand reductions. 

This finding is reflected in a growing literature emphasizing the critical role of energy service 

demands in shaping possibilities for energy transition [14, 54, 232]. At a minimum, results 

suggest that aggregate global increases demand for high temperature process heat and static 

mechanical work approaching or exceeding 500% between 2015 and 2100 are physically 

implausible (see section 7.3), constraining the future growth of the industrial sector. 

Future trajectories for energy service demand in the industrial and transport sectors also 

represent the primary area where insufficient strength of knowledge constrains the 

characterization of the solution space, as revealed by diagnostic analysis results (see section 

7.4). As such, an improved understanding of the plausible ranges for these trajectories, and 

related socio-metabolic implications, is now vital. 
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8.1.2 The heat and liquid fuels problem 

While there are no appreciable limits in total available primary energy gradients given the 

magnitude of direct solar irradiance reaching the surface of the Earth, constraints emerge 

instead from the specific profiles of non-fungible energy forms required within the metabolic 

pattern of the GES. For example, there is no immediate primary resource constraint to the 

production of electricity from intermittent RE sources such as solar and wind, but this form 

of energy cannot rise to arbitrary contributions to TPES due to the metabolic costs of system 

integration and residual demand for heat and liquid fuels (which cannot be driven to zero via 

electrification; see section 7.2.2). Consequently, the modelled solution space indicates a 

pronounced persistence of fossil fuels in primary supply, particularly for coal and natural gas 

(see Figure 34). Liquid fuel scarcity is a growing threat, especially after 2050, incentivizing the 

conversion of coal and natural gas to liquid fuels (see section 7.2.1), with highly adverse 

impacts for GHG emissions (see section 7.2.7). 

8.1.3 Limits to achievable pace of change 

The achievable pace of change is a primary consideration for energy transition as it has a 

direct bearing on the mitigation of climate change and other major societal challenges related 

to energy. Modelled results show that initially rapid changes are physically possible, driven 

primarily by downstream changes in the prevailing end-use modes for providing 

transportation energy services (including a marked shift from private vehicles towards 

efficient mass transit; see section 7.2.2). Substantial changes in the upstream production of 

energy carriers follow, but at a slower pace due to the extensive, long-lived infrastructures 

involved (see section 7.2.1). However, after this initial period of change, subsequent trends 

at the system level are gradual or may reverse direction due to negative (balancing) 

feedbacks. For example, the rising RE share of TPES slows considerably after mid-century, 

gradually approaching a mean value of 50% by 2100 (see Figure 49), while TPES itself falls 

initially before resuming a gradual growth trend after 2035 (see Figure 33). This behaviour 

may call into question the more extreme scenarios projecting continued rapid energy 

transitions toward expected targets (discussed in section 3.2.1). 

8.1.4 The prospects for demand-led versus supply-led transitions 

While most socio-technical narratives currently focus on supply-led energy transitions, 

demand-led transformations are likely more impactful, as noted by Grübler et al. [364]. This 
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is reflected in PRESS model results indicating the limited benefits and potentially severe 

consequences of supply-side ‘forcing’ via the application of inflexible, top-down constraints 

on selected high emissions intensity technologies (exemplified by the Climate Constraints 

scenario). These unintended and unintuitive consequences arise from system feedbacks not 

captured by conventional analyses and tend to strongly aggravate both the risk of net energy 

trap outcomes and the relative socio-metabolic burdens imposed by the GES (see sections 

7.2.5 and 7.2.6). Intended results can be partially achieved, but much less effectively overall 

than demand-side approaches (particularly compared to demand-side interventions based on 

identified leverage points; see section 7.3). Additionally, results suggest that supply-side 

technological breakthroughs or rapid deployment initiatives for RE typically fail to realize 

expected benefits due to pervasive system feedbacks (see section 7.2.7). 

8.1.5 Societal complexity and growth 

The modelled solution space indicates that the declining EROI of primary energy resources 

results in significant increases in the share of gross energy supply redirected back into the 

autocatalytic process of energy production, particularly after 2060 (see Figure 78). As 

discussed in section 3.1.3, this rising redirection of energy and other resources away from the 

dissipative component of society has strong implications for economic growth and 

sustainable levels of societal complexity. In this context, the prevailing socio-metabolic 

pattern of high-energy industrialized societies may be undermined. As noted by Glucina and 

Mayumi [73], “the real problem is a conflict between the physical impossibility of continual 

growth and the perceived political impossibility of limiting growth.” 

These trends remain even in the presence of technological breakthroughs delivering 

abundant, high-EROI resources for electricity production (see section 7.2.5). The socio-

metabolic feasibility of significant energy service demand reductions corresponding to 

identified leverage points, such as curtailing the industrial sector, are also called into question 

as these services are required for the expression of vital functions within society (see section 

7.3). 

8.1.6 Converging risks 

Results suggest that GHG emissions reductions on the scale required to keep global mean 

temperature increases below 2°C are not physically plausible without the large-scale 
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deployment of CCS or other negative emissions technologies (which remains fundamentally 

speculative). This conclusion is robust; it holds for all modelled scenarios and over all 

probabilistic levels (see Figure 105). The modelled option which comes closest to this goal is 

to implement system-cognizant interventions designed around identified leverage points 

(i.e., the Policy Recommendations scenario detailed in Table 6). The basic implausibility of 

achieving widely accepted climate goals identifies a major societal risk and a clear deficit in 

current energy transition planning. 

The modelled risk of encountering a net energy trap during the 21st century is low but non-

trivial at approximately 5% (see Figure 32). However, this is a very conservative estimate given 

the degree of optimism reflected in the solution space, implying that the real-world risk is 

likely substantially higher (and potentially arriving sooner). This risk is sensitive to socio-

technical narratives and is strongly increased by delays in consumer behaviour change or even 

more so by major ‘forcing’ interventions intended to restrict GHG emissions (see Figure 85). 

These observations are in agreement with Capellán-Pérez et al. [50], who note “a significant 

systemic-energy scarcity risk exists: future global energy demand-driven transitions as 

performed in the past might be unfeasible.” In contrast, the utilization of leverage points in 

policy design can largely eliminate the risk of a net energy trap. 

Another major risk relates to the indicated expansions of both coal and biomass after 2050 

(see Figure 35), potentially exacerbating both global and local environmental impacts related 

to their production and use. This risk is not widely perceived at present, as coal and biomass 

energy are not projected to grow strongly in most mainstream energy transition scenarios. 

8.1.7 Synergies and trade-offs 

The most significant interventions that have the potential to synergistically reduce both the 

risk of a net energy trap and GHG emissions are reductions in energy service demand for high 

temperature process heat and static mechanical work, as noted in section 8.1.1, and regional 

passenger transportation and IC freight transportation. The value of these synergies is 

exemplified by the strong improvements observed in the Policy Recommendations scenario 

relative to the base case, across all metrics. 

As noted in section 7.2, there are opportunities in the expansion of transportation 

infrastructures which can provide combined passenger and freight transportation at scale, 



271 
 

including rail and long-distance shipping. Notably, this trend would represent a largely 

unexpected return to transportation modes more common in the 20th century and earlier. 

Notable trade-offs are also apparent in the modelled results. Firstly, there is a clear trade-off 

between delays in substantial demand-side adaptation and achievable outcomes for both net 

energy trap risk and GHG emissions (i.e., exhibited by the Delayed Consumer Response 

scenario; see Figure 86 and Figure 104). The time element is critical – GEA [49] stresses that 

an effective energy transition requires immediate action. Secondly, there is a trade-off 

between coal consumption required for averting a net energy trap and the serious associated 

climate risks (see Figure 109). This will likely bring coal back into focus as a high-profile and 

contentious policy issue in the coming decades, with various socio-technical perspectives 

either supporting or resisting its expansion. 

8.2 REALIZING THE SOLUTION SPACE 

The pervasive optimism reflected in the PRESS model formulation cannot be expected to 

reflect the real-world. However, to the extent this optimism can be translated into reality, 

vastly improved energy transition outcomes will be within reach. 

The following are achievable improvements either implicitly included in, or indicated by, the 

identified solution space offering effective avenues to facilitate GES transformation and 

promote desirable outcomes: 

• Shifting away from embedded, inefficient end-use modes for the provision of energy 

services is required, such as moving from private vehicles for short-distance 

transportation to a greater reliance on electric rail. At present, this necessary mode-

switching is difficult to achieve due to upfront infrastructure costs and a high degree 

of change reticence among governments, institutions, and individuals. 

• End-use modes must also undergo major redesigns in passive systems for the express 

purpose of much higher efficiencies in the final conversion of useful power to 

delivered energy services. This has strong implications for consumer expectations and 

behaviours, particularly for regional passenger transportation where new vehicles 

would necessarily be much smaller and lighter. New social norms, laws and 

regulations, markets, and supporting industries would be required. 
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• The implementation of these and other efficiency gains must actively control for 

rebound effects, preventing the redirection of efficiency improvements into scale and 

power increases, to deliver beneficial reductions in energy consumption. 

• A general shift away from individualist models of energy service provision towards 

more efficient and integrated social provisioning is needed. 

• Technological innovations in power capacity must focus on reducing full lifecycle 

energy costs rather than simply improving process-level efficiencies. This requires 

significantly wider use of detailed lifecycle assessment methods and a greater 

awareness of the importance of embodied energy. 

• Decision making in all domains related to the energy transition must embrace an 

expanded scope through multi-criteria analysis, including a primary focus on 

biophysical criteria. Relatively less emphasis should be placed on narrow, economic 

measures such as cost-benefit analysis (as discussed in section 3.2.1.1). 

8.3 REFRAMING GES TRANSFORMATION 

A comprehensive transformation of the GES towards an RE basis will necessarily test the limits 

of modern societies to supply the required investments, adapt energy consumption 

behaviours, re-engineer production processes and infrastructures, and successfully integrate 

rising levels of intermittent RE supply. This must occur within the context of complex co-

evolutionary processes, non-linear feedback, irreversibility, and emergent phenomena within 

the GES and HSES. For this reason, the GES cannot be designed a priori. Common narratives 

informed by experience to date have little guidance to offer for the future. 

Unfortunately, prevailing narratives remain confined by technological optimism and, as such, 

will consistently underestimate both the difficulty of GES transformation and its broader 

implications for both society and the biosphere. As observed by Heuberger and Mac Dowell 

[367] and Loftus et al. [223], energy futures are often communicated to and understood by 

the general public without sufficient nuance or critical attention. This reflects the need for a 

deeper shift in scientific paradigm, from a mechanistic worldview to a complex systems 

perspective, both in the participatory generation of scientific knowledge and in popular 

understandings of this knowledge. Critically, complex problems cannot be compressed or 
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diminished into simple narratives without losing important information, effectively ruling out 

definitive problem framings. 

Societal problems over the modern era have typically been solved by the application of more 

technology and consequently more energy consumption, as described by Hall et al. [53] and 

Tainter [19]. This strategy is no longer feasible, presenting modern society with a serious 

dilemma. Solutions will instead have to come primarily from behavioural adaptation. Energy 

and society can no longer be understood as separate, with energy simply a product like any 

other – energy underpins the very existence of the complex systems of which we are a part. 

As our energy basis changes so too will the structure of society. Modern, high-energy 

societies, at least in their current forms, may soon be relegated to history – a grand energetic 

experiment never to be repeated. 

Successful transformation of the GES is foundational to an acceptable future. We cannot 

remain on the same path, nor can we expect technology to solve the problem for us. 

Successfully navigating the challenges ahead will requiring a greater degree of technological 

realism and approaches to scientific problems rooted in epistemic humility and pluralism, 

such as Post-Normal Science. The solution space identified here can, among a plurality of 

system-cognizant approaches, provide essential tools for revealing the landscape ahead. 

The third energy transition will be a multi-generational project. While it does not appear to 

be possible to ‘solve’ the twin threats of climate change and fossil fuel depletion, it is possible 

to buy significant time to allow deeper social and cultural transformations to unfold. These 

transformations will need to be guided by clear normative principles, including the 

preferential use of vital energy services for the protection of wellbeing rather than the growth 

of affluence. Ultimately, real, substantive solutions will need come from a profound shift in 

worldview and the discovery of complexity at the heart of the converging crises we face. 

8.4 WHAT CAN BE DONE WITH THIS INFORMATION? 

As noted in section 1.2, the popularization of knowledge regarding what energy transition 

fundamentally is and what can be expected for the future is sorely needed. This research 

project is therefore of significant value to both researchers and policy makers seeking to 

understand what can be achieved in energy transitions, how fast these transitions can unfold, 

and what they might mean for society and the biosphere at large. 
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This research, consisting of the basic methodological approach, the PRESS model itself, and 

the modelled solution space for GES transformation, can serve five crucial purposes: 

1) Enhancing realism and improving energy literacy in energy transition discourses by 

providing a biophysical, complex systems perspective which is currently 

underrepresented. 

2) Contributing to best practices for complex energy systems modelling, including 

encouraging greater transparency and acknowledgment of epistemic uncertainty. 

3) Adding to a necessary plurality of models offering contrasting perspectives on energy 

transition. 

4) Utilizing the modelled solution space for the identification of physically implausible 

socio-technical narratives in energy transition studies and plans. 

5) Applying the identified system leverage points to improve the overall efficacy and 

system-cognizance of policy design. 

In simple terms, the research presented here can substantially improve the state of 

knowledge regarding possible energy transitions by: 

• demonstrating the value of the biophysical, complex systems perspective, 

• enabling the ‘stress testing’ of conventional scenarios and plans which do not embrace 

this perspective, and 

• alerting policy makers to the presence of both beneficial and detrimental impacts 

associated with interventions in the GES. 

As noted by Ruth [249], “For decisions to be viable, they must be acceptable under a wide 

range of assumptions about present and future system behaviour.” Due to its probabilistic 

nature, this research adds significantly to the ability of researchers and policy makers to check 

their quantitative projections against an expanded set of behavioural assumptions for the 

GES. 

8.5 AVENUES FOR FUTURE RESEARCH 

Various areas have been identified during this project which would benefit from additional 

research. These include addressing the model limitations listed in section 5.4, to the extent 

possible, in addition to the following: 
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• More rigorous data gathering and processing efforts to improve the strength of 

knowledge – particularly for high-risk input parameters identified via diagnostic 

analysis (summarized in section 7.4) and stylized parameters such as ECC values. 

• More realistic control systems, including exhaustive optimization in place of the 

heuristic method used for system control (i.e., allowing for replacement of control 

parameters with direct use of investment flows by time interval as decision variables; 

as an alternative approach). 

• Endogenization of control variables where possible. 

• Nesting regional and/or national PRESS-like (or other) models to better represent 

spatial and geographical dynamics and associated constraints. 

• Investigation of the socio-economic implications and feasibility of rapid shifts in PC 

compositions, particularly where new, large-scale infrastructures are required – such 

as global expansions of rail or intermittent electricity AI. 

• Aligning the probabilistic generation of logistic curves representing exogenous model 

interfaces with statistical analyses of available empirical data. 

• Further disaggregation and dynamic representation of additional inputs, including 

ECC, CapEx fraction, decommissioning fraction, etc. 

• Explicit modelling of the effect of cumulative output on RE EROI (i.e., including 

technological learning effects as many RE PC types are still relatively immature). 

• Investigation of unexpected negative impacts on system stability and cumulative GHG 

emissions observed for higher initial passive system efficiencies, primarily in 

transportation and mechanical systems. 

• Further disaggregation of spatial scales in transporation by introducing a 

local/regional transportation distinction and realistic logic for the allocation of 

available PC between these scales. 
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9 APPENDIX 1: PRESS MODEL DOCUMENTATION 

Probabilistic Renewable Energy Solution Space Model version 1.3  

9.1 VERSION HISTORY 

Version Date Description 

1.3 31/01/2021 Final stable model build including re-optimization of control parameters 

1.2 11/01/2021 • Fixed ECC inputs following input data calculation error 

• Investment share calculations updated to correct for variable EC cost 

• Upstream CF curtailment for excessive surplus introduced 

1.1 13/07/2020 • Fixed thermal equivalence weighting for EROI and ECC calculations (for 

electricity component) 

• Separated intermittent electricity AI as an independent secondary AI 

category, including updated modifiers 

• Simplified and condensed efficiency function input arrays 

• Changed efficiency calculations for oil heat and coal CHP 

• Various other fixes 

1.0 24/05/2020 Initial stable model build 

9.2 FEEDBACK LOOP DESCRIPTIONS 

Feedback loops listed here relate to the causal loop diagrams in sections 4.2.6 and 5.2. Table 

11 lists balancing (negative) feedback loops and Table 12 lists reinforcing (positive) feedback 

loops. Loops listed in blue text originate in system control. 

Table 11: descriptions and associated phenomena for balancing feedback loops 

Identifier Description Phenomena 

B1 

Increases in secondary reticulation efficiency cause greater EC production 

reducing EC deficit, which can lead to increased upstream curtailment, lower 

secondary CF, reduced secondary output, and slower subsequent gains in 

secondary reticulation efficiency. 

Diminishing 

efficiency gains 

B2 
Increased production of ECs leads to reduced EC deficit which can increase 

upstream curtailment, reducing secondary CF and lowering production of ECs. 

Surplus avoidance via 

upstream 

curtailment 

B3 
Increases in EU to ES efficiency reduce EU CF causing reduced EU output and 

slower subsequent gains in EU to ES efficiency. 

Diminishing 

efficiency gains 

B4 
Increases in upstream investment increase GES metabolic consumption and 

ESMR, which can decrease investment. 

Metabolic limit to 

investment 

B5 
Increases in upstream investment increase secondary AI, GES metabolic 

consumption, and ESMR, which can decrease investment. 

Metabolic limit to 

investment 

B6 
Increases in upstream investment eventually increase upstream 

decommissioning, GES metabolic consumption and ESMR, which can decrease 

investment. 

Metabolic limit to 

investment 
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Identifier Description Phenomena 

B7 
Increases in upstream investment increase secondary PC, GES metabolic 

consumption, and ESMR, which can decrease investment. 

Metabolic limit to 

investment 

B8 
Increases in EC deficit increase upstream investment, secondary PC, and EC 

production, which reduces EC deficits. 

Supply-side deficit 

resolution 

B9 
Increases in downstream investment increase GES metabolic consumption and 

ESMR, which can decrease investment. 

Metabolic limit to 

investment 

B10 
Increases in downstream investment increase EU AI, GES metabolic consumption, 

and ESMR, which can decrease investment. 

Metabolic limit to 

investment 

B11 
Increases in downstream investment eventually increase downstream 

decommissioning, GES metabolic consumption and ESMR, which can decrease 

investment. 

Metabolic limit to 

investment 

B12 
Increases in downstream investment increase EU PC, GES metabolic 

consumption, and ESMR, which can decrease investment. 

Metabolic limit to 

investment 

B13 
Increases in downstream investment increase EU PC, decreasing EU CF, which can 

decrease downstream investment. 

Upkeep of end-use 

capital 

B14 
Increases in downstream investment increase EU PC, decreasing EU CF, final EC 

consumption, and EC deficit, which can decrease downstream investment. 

End-use power 

capacity utilization 

B15 
Increases in downstream investment increase EU PC, decreasing EU CF and final 

EC consumption, increasing ESMR, which can decrease downstream investment. 

End-use power 

capacity utilization 

B16 
Depletion of NRE resource decreases NRE EROI, increasing GES metabolic 

consumption, upstream investment, and eventually upstream decommissioning, 

reducing NRE PC slowing depletion of NRE resource. 

NRE resource quality 

decline 

B17 
Exhaustion of RE potential decreases RE EROI, increasing GES metabolic 

consumption, upstream investment, and eventually upstream decommissioning, 

reducing RE PC slowing exhaustion of RE potential. 

RE resource quality 

decline 

B18 
Depletion of NRE resource decreases NRE EROI, increasing GES metabolic 

consumption and ESMR, which can decrease investment and NRE power 

capacity, slowing depletion of NRE resource. 

NRE resource quality 

decline 

B19 
Exhaustion of RE potential decreases RE EROI, increasing GES metabolic 

consumption and ESMR, which can decrease investment and RE power capacity, 

slowing exhaustion of RE potential. 

RE resource quality 

decline 

B20 
Increases in upstream investment increase RE PC, which can increase 

intermittent penetration, secondary AI, GES metabolic consumption, and ESMR, 

which can decrease investment. 

Intermittent 

penetration feedback 

B21 
Increases in upstream investment increase NRE PC, GES metabolic consumption, 

and ESMR, which can decrease investment. 

Metabolic limit to 

investment 

B22 
Increases in upstream investment increase RE PC, GES metabolic consumption, 

and ESMR, which can decrease investment. 

Metabolic limit to 

investment 

B23 
Decreases in RE EROI increases GES metabolic consumption, upstream 

investment, and eventually upstream decommissioning, slowing declines in RE 

EROI. 

RE resource 

redevelopment 

B24 

Decreases in RE EROI increases GES metabolic consumption and ESMR, which can 

decrease upstream investment and eventually upstream decommissioning, 

reducing RE PC slowing exhaustion of RE potential which reduces declines in RE 

EROI. 

RE resource 

redevelopment 

B25 
Increases in projected EC deficit increase investment magnitude and committed 

upstream investment, reducing projected EC deficit. 

Projected supply-side 

deficit resolution 

B26 
Increases in projected EC deficit increase investment magnitude and committed 

targeted downstream investment, reducing projected EC deficit. 

Projected demand-

side deficit resolution 

B27 
Targeted increases in downstream investment increases EU PC avoiding 

consumption of ECs in deficit, which reduces EC deficits and downstream 

investment. 

Demand-side deficit 

resolution 
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Table 12: descriptions and associated phenomena for reinforcing feedback loops 

Identifier Description Phenomena 

R1 
Increases in upstream investment increase secondary PC and EC production, 

reducing ESMR, which can lead to higher upstream investment. 

Metabolic limit 

growth/decline 

R2 
Increases in upstream investment eventually increase upstream 

decommissioning, decreasing secondary AI, GES metabolic consumption, and 

ESMR, which can increase investment. 

Decommissioning 

feedback 

R3 
Increases in upstream investment eventually increase upstream 

decommissioning, decreasing secondary PC, GES metabolic consumption, and 

ESMR, which can increase investment. 

Decommissioning 

feedback 

R4 
Increases in downstream investment increase EU PC and final EC consumption, 

reducing ESMR, which can increase investment. 

Metabolic limit 

growth/decline 

R5 
Increases in downstream investment eventually increase downstream 

decommissioning, decreasing EU AI, GES metabolic consumption, and ESMR, 

which can increase investment. 

Decommissioning 

feedback 

R6 
Increases in downstream investment eventually increase downstream 

decommissioning, decreasing EU PC, GES metabolic consumption, and ESMR, 

which can increase investment. 

Decommissioning 

feedback 

R7 
Increases in downstream investment increase EU PC, final EC consumption, and 

EC deficit, which can increase downstream investment. 

Demand-side scale 

growth/decline 

R8 
Increases in upstream investment increase GES metabolic consumption, EC 

deficit, and upstream investment. 

Commissioning 

feedback 

R9 
Increases in downstream investment increase GES metabolic consumption, EC 

deficit, which can increase downstream investment. 

Commissioning 

feedback 

R10 
Depletion of NRE resource decreases NRE EROI, increasing GES metabolic 

consumption, increasing upstream investment and NRE PC, which accelerates 

depletion of NRE resource. 

NRE resource quality 

decline 

R11 
Exhaustion of RE potential decreases RE EROI, increasing GES metabolic 

consumption, increasing upstream investment and RE PC, which accelerates 

exhaustion of RE resource. 

RE resource quality 

decline 

R12 
Decreases in NRE EROI increase EC deficit, projected EC deficit, investment 

magnitude, and upstream investment, decreasing NRE EROI. 

Projected NRE 

resource quality 

decline 

R13 
Decreases in RE EROI increase EC deficit, projected EC deficit, investment 

magnitude, and upstream investment, decreasing RE EROI. 

Projected RE 

resource quality 

decline 
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9.3 MODEL SECTORS 

 

Figure 114: screenshot of the PRESS model within the GoldSim software UI 

The PRESS model contains nine model sectors, five open and four localized, and 11 subsectors 

across three levels of containment. These sectors are arranged into three layers: energy flow, 

power capacity and infrastructure, and system control, as shown in Figure 114. 

GoldSim software features and modelling conventions are detailed in GoldSim Technology 

Group [361]. The model is constructed to conform to a 500-element limit imposed on the 

academic GoldSim license used for this research. 
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Figure 115: overview of the PRESS model and functional layers 

The three functional layers within the PRESS model serve distinct purposes but exhibit mutual 

dependence, as depicted in Figure 115:  

• Layer one contains primary NRE stocks, ω, all energy flows from primary energy 

resources to the provision of ES demands, px, flow routing matrices, Cx, and 

corresponding utilization and efficiencies of PC, ux and ex. Layer one also contains the 

static flow calculation and non-linear iterative solver required for model initialization. 

• Layer two models PC and AI stocks constituting the GES and enabling the energy flows 

in layer one. These stocks progress through construction and operating lifecycle 

phases, wx and cx, with associated EC input energy costs, λx, ξx, and πx, calculated from 

the energy cost metrics, EROI, kx, and ECC, yx, disaggregated into constituent ECs. 

• Layer three contains the system control heuristic, taking in information regarding the 

evolving state of the GES from layers one and two and dynamically regulating PC 

investment flow and intermittency mitigation decision variables, ĥr, ĥn, ĥs, ĥe, and ψ, 

in response. These decision variables determine the evolution of stocks in layer two. 
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System control also dynamically adjusts PC utilization in layer one to maintain system 

stability. 

9.3.1 Energy flow 

The energy flow sector (shown in Figure 116) is part of layer one and is responsible for the 

calculation of EC inflows and outflows, pi and po, the cumulative supply/demand balance 

vector, b, the final demand EC proportion vector, δ, the ESMR vector, κ, and the summation 

of autocatalytic loop and capital hypercycle vectors, pa and pc. Integrator elements are used 

for smoothing functions where required for promoting system stability. Various informational 

output metrics are also calculated here, including RE shares by EC type, system RE share, and 

point-of-use EROI by EC type. 

 

Figure 116: screenshot of the energy flow sector within the GoldSim software UI 
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9.3.1.1 Initialization 

 

Figure 117: screenshot of the initialization subsector within the GoldSim software UI 

The initialization subsector (shown in Figure 117) is responsible for the static flow calculation 

for model initialization as discussed in section 4.2.7. 

Note that the normalized initial PC input proportion vectors, ss and se, are randomized with 

specified error fractions (see sections 9.5.3.1 and 9.5.3.2) and re-normalized such that the 

sum across each input type is equal to one. 

9.3.1.1.1 Initial ES metabolism 

The initial ES metabolism subsector (shown in Figure 118) is responsible for the calculation of 

initial autocatalytic loop consumption, and initial capital hypercycle consumption via a non-

linear iterative solver, as discussed in section 4.2.7. The iterative solver script (the 

Initial_Cap_HC_Solver element in Figure 118) is given in section 9.4.5.2. A warning element 

is used to notify the user when the solver fails to converge to a suitable solution. 
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Figure 118: screenshot of the initial ES metabolism subsector within the GoldSim software UI 

9.3.1.2 Primary resource 

 

Figure 119: screenshot of the primary resource subsector within the GoldSim software UI 

The primary resource subsector (shown in Figure 119) is responsible for the calculation of 

primary energy flows, pr and pn, RE exhaustion, x, and NRE depletion, d. As described in 
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section 4.2.3, primary energy flows are given by the lower of maximum primary PC outputs 

and corresponding aggregate secondary input capacities. The total primary energy supply 

(TPES) and cumulative global GHG emissions informational output metrics are also calculated 

here. 

9.3.1.3 Flow routing 

The flow routing subsector (shown in Figure 120) is responsible for the calculation of flow 

routing matrices, PC CFs, EU CF target trends (equations given in section 9.3.1.3.1), cumulative 

power outputs. Active upstream CF curtailment (section 5.2.5.3) is also implemented here. 

 

Figure 120: screenshot of the flow routing subsector within the GoldSim software UI 

Figure 121 depicts flow mappings between PC types at the primary, secondary, and EU stages, 

and ES demands specified by the flow mapping identity matrices, Irsi, Insi, Iso, Iei, and Ieo 

introduced in section 4.2.3. NRE associated PC is listed in bold. Note that dotted lines indicate 

a partial return of input ECs due to cogeneration and waste heat recovery. 
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Figure 121: flow mappings between PC types at the primary, secondary, and EU stages, and ES demands 

9.3.1.3.1 Logistic function for EU CF target trends 

EU CF targets are expected to increase over time, from initial values to specified values after 

a defined simulation base period, ȶ (units of years): 

𝒖𝒆𝒕 = 𝝊𝒆𝒕 ᴓ (𝒋 + (𝝊𝒆𝒕 ᴓ 𝒖𝒆𝒕(0) − 𝒋)
ᴑ(1−

𝑡
ȶ
)𝒋
 ᴑ (𝝊𝒆𝒕 ᴓ 𝒖𝒆𝒕(ȶ) − 𝒋)

ᴑ
𝑡𝒋
ȶ ) 

Where, uet is the vector of EU CF targets (dimensionless), 

υet is the upper function asymptote vector (dimensionless), 

uet(0) is the vector of EU CF targets at t = 0, and 

uet(ȶ) is the vector of EU CF targets at t = ȶ. 

υet is selected from Pareto distributions, as detailed in section 9.4.2.1, uet(0) is selected from 

uniform distributions, and uet(ȶ) is selected from log-uniform distributions (lower magnitudes 

more likely due to practical considerations). 

9.3.1.4 New PC efficiencies 

The new PC efficiencies subsector (shown in Figure 122) is responsible for the calculation of 

secondary and EU conversion (PC input), and secondary reticulation and EU to ES (PC output) 
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efficiencies for new PC, as cumulative secondary and EU PC power output increases. 

Equations are given in section 9.3.1.4.1. 

 

Figure 122: screenshot of the new PC efficiencies subsector within the GoldSim software UI 

9.3.1.4.1 Logistic function for new PC efficiency trends 

The effective efficiencies for new secondary or EU PC increases as functions of secondary or 

EU cumulative power output, due to technological learning effects. Ayres and Warr [141] 

conclude that the use of logistic curves to project future efficiency improvements, as 

functions of cumulative production, is justified. Cumulative power output from each PC type 

must be normalized by total pre-simulation cumulative power output to give the vector ƥx 

(dimensionless): 

ƥ𝒙(𝑡 = 𝜏) = ∫ 𝒑𝒙

𝜏

0

𝑑𝑡 ᴓ ∫ 𝒑𝒙

𝟎

−𝒏𝒙

𝑑𝑡 ≈ 2∫ 𝒑𝒙

𝜏

0

𝑑𝑡 ᴓ (𝒏𝒙 ᴑ 𝒑𝒙(0)) 

Where, Subscript x is replaced with s and e to denote secondary and EU, respectively, and 

nx is a vector of technology ages (from technology inception to the start of the study period, 

in units of years). 

Pre-simulation power output is assumed to take an approximately linear trend from 

technology inception to the start of the study period. Note that while using historical power 

output time series would be more accurate, and this linear approximation is likely to 

underestimate pre-simulation cumulative power output for mature technologies and 
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overestimate it for new technologies, historical time series are not available for PC types as 

defined in the modelling formulation. Linear approximations are considered acceptable given 

other sources of stochasticity modelled in the generation of the logistic functions (see section 

9.4.2). 

Vectors of efficiencies for new PC additions, əy, can then be given by, 

 

ə𝒚 = 𝜶𝒚 + (𝝊𝒚 − 𝜶𝒚) ᴓ 

(𝒋 + ((𝝊𝒚 − ə𝒚(𝟎))  ᴓ (ə𝒚(𝟎)

− 𝜶𝒚))
ᴑ(𝒋−ƥ𝒙 ᴓ ƣ𝒙)

 ᴑ (𝒋 ᴓ (𝒋 ᴓ (𝒋 + (𝝊𝒚 − ə𝒚(𝟎))  ᴓ (ə𝒚(𝟎) − 𝜶𝒚))

− (ə𝒚(𝟎) − 𝒆𝒚(𝟎))  ᴓ (𝝊𝒚 − 𝜶𝒚)) − 𝒋)

ᴑ(ƥ𝒙 ᴓ ƣ𝒙)

) 

Where, Subscript y is replaced with si and so (and the subscript x replaced by s) to denote secondary 

conversion and reticulation efficiencies, and with ei and eo (and the subscript x replaced by e) 

to denote EU conversion and EU to ES efficiencies, respectively, 

ƣx is the normalized pre-simulation cumulative output from the PC stock in operation at the 

beginning of the study period (dimensionless), 

əx(0) is the vector of initial new PC efficiency values at ƥx = 0 (t = 0), 

υy is the upper function asymptote vector (dimensionless), and 

αy is the lower function asymptote vector (dimensionless). 

The normalized pre-simulation cumulative output, ƣx, is calculated over half of PC lifetime 

prior to the beginning of the study period, assuming a uniform PC age distribution and a linear 

pre-simulation trend in power output. The values are negative as they refer to points left of 

the origin on the x-axis. This vector allows the new PC efficiency curve to coincide with the 

specified PC stock mean efficiency, ex(0): 

ƣ𝒙 = (𝒍𝒙 ᴓ 𝒏𝒙) ᴑ (𝒍𝒙 ᴓ 𝟒𝒏𝒙 − 𝒋) 

∴ ƥ𝒙 ᴓ ƣ𝒙 = 2∫ 𝒑𝒙

𝜏

0

𝑑𝑡 ᴓ (𝒍𝒙 ᴑ 𝒑𝒙(𝟎) ᴑ (𝒍𝒙 ᴓ 𝟒𝒏𝒙 − 𝒋))  

əx(0) values are selected from triangular distributions spanning the initial mean PC stock 

efficiencies to the maximum final efficiencies, as initial new PC efficiencies are more likely 
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closer to the initial mean PC stock efficiencies than the maximum theoretical efficiencies 

(probability maxima at initial mean PC stock efficiencies). υy values are selected from uniform 

distributions spanning the initial new PC efficiencies to the maximum theoretical efficiencies. 

Initial mean PC stock EU to ES efficiencies, eeo(0), are uncertain and are drawn from uniform 

distributions, spanning specified error ranges (see section 9.4 for details). αy values 

correspond to approximate efficiency values at the time of technology inception and are 

selected from distributions spanning zero to the initial mean PC stock efficiencies (0 < αy < 

ey(0)): 

• Triangular distributions are used for secondary and EU conversion efficiencies, with 

probability maxima at zero, as these efficiencies are more likely closer to zero than the 

average of existing PC at the time of technology inception (notes that for many energy 

conversion technologies, efficiencies started out much lower than their present day 

values [6, 141]). 

• Uniform distributions are used for secondary reticulation and EU to ES efficiencies, as 

values at the time of technology inception are not biased to the lower ends of the 

distribution ranges. 

9.3.1.5 Mean stock efficiencies 

The mean stock efficiencies subsector (shown in Figure 123) is responsible for the calculation 

of secondary and EU conversion (PC input), and secondary reticulation and EU to ES (PC 

output) efficiencies for mean PC stocks, as the composition of PC stocks change. Equations 

are given in section 9.3.1.5.1. Function numerators are modelling using material delay 

elements in GoldSim. 
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Figure 123: screenshot of the mean stock efficiencies subsector within the GoldSim software UI 

9.3.1.5.1 Propagation of new PC efficiency values to mean PC stock values 

Mean efficiency values for the extant PC stocks depend on the time-path of investment (the 

sequence of additions and subsequent decommissioning). Changes in new PC values 

propagate into mean PC stock values only to the extent that new investment occurs. Mean 

PC stock values also change as PC is removed at the end of life. These functions are 

implemented in GoldSim using material delay elements to represent the numerators. 

𝒆𝒙(𝑡 = 𝜏) = (𝒆𝒙(𝟎) ᴑ 𝒄𝒙(0) + ∫ (ə𝒙 ᴑ 𝒉𝒙 − ə𝒙(ƥ𝒙(𝜏𝒋 − 𝒍𝒙)) ᴑ 𝒉𝒙(𝜏𝒋 − 𝒍𝒙))
𝜏

0

𝑑𝑡)  ᴓ 

(𝒄𝒙(0) + ∫ (𝒉𝒙 − 𝒉𝒙(𝜏𝒋 − 𝒍𝒙))
𝜏

0

𝑑𝑡) 

Where, Subscript x is replaced with si, so, ei, and eo to denote secondary conversion, secondary 

reticulation, EU conversion, and EU to ES efficiencies, respectively, and 

For τj < lx: ə𝒙(ƥ𝒙(𝜏𝒋 − 𝒍𝒙)) ≈ 𝒆𝒙(𝟎). 

The vectors əx are approximated as initial mean PC efficiency values for times prior to the 

start of the study period. 
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9.3.2 Demand 

The demand sector (shown in Figure 124) is part of layer one and is responsible for the 

calculation of ES demand trends, pd, and demand flexibility, q, as functions of time. Equations 

are given in sections 9.3.2.1 and 9.3.2.2, respectively. 

 

Figure 124: screenshot of the demand sector within the GoldSim software UI 

9.3.2.1 Logistic function for ES demand trends 

ES demands are widely expected to increase over time as more people gain access to modern 

energy services typical of lifesyles in the global North. However, as the primary exogenous 

variable tested by PRESS, a wide range of potential outcomes is included in the modelling 

formulation, including the possibility for declines in ES demands. 

𝒑𝒅 = 𝒑𝒅(∞) ᴓ (𝒋 + (𝒑𝒅(∞) ᴓ 𝒑𝒅(0) − 𝒋) ᴑ (𝑒𝒋)
ᴑ(
𝑑𝒑𝒅(0)
𝑑𝑡

𝑡 ᴓ (𝒑𝒅(∞) ᴓ 𝒑𝒅(0)−𝒋))
) 

Where, pd is the vector of ES demands (units of EJ/year), 

pd(0) is the vector of initial ES demands (units of EJ/year), 

pd(∞) is the final function asymptote vector (units of EJ/year), and 

dpd(0)/dt is the vector of initial rates of change of ES demand (units of EJ/year2). 

pd(∞) ᴓ pd(0) is specified directly as a vector of input multiples (eventual ES demand relative 

to initial), selected from specified uniform distributions, as pd(0) is calculated as part of the 

initialization procedure. Input multiples, pd(∞) ᴓ pd(0), can be less than one implying declining 
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ES demand over time, however, as there is a greater range for positive values, the likelihood 

of growth appropriately exceeds the likelihood of decline. It is assumed the lower function 

asymptote is zero (for pd(∞) ᴓ pd(0) > j) for simplicity and to bound curves to realistic 

gradients. dpd(0)/dt is negative for pd(∞) ᴓ pd(0) < j, with values selected from uniform 

distributions. 

9.3.2.2 Logistic function for demand flexibility trends 

Demand flexibility is expected to increase over time, from intial values to specified values 

after a defined simulation base period, ȶ (units of years): 

𝑞 =
𝜐𝑞

1 + (
𝜐𝑞
𝑞(0)

− 1)
1−
𝑡
ȶ
(
𝜐𝑞
𝑞(ȶ)

− 1)

𝑡
ȶ

 

Where, q is demand flexibility (dimensionless), 

υq is the upper function asymptote (dimensionless), 

q(0) is the demand flexibility value at t = 0, and 

q(ȶ) is the demand flexibility values at t = ȶ, selected from a uniform distribution. 

For intermittent electricity, demand flexibility has a double effect on the AI requirement: 1) 

reducing the need for mitigation infrastructure as intermittent penetration rises, and 2) 

reducing the intermittent electricity AI peak factor. These effects are assumed to be 

multiplicative for the dynamic intermittent electricity AI requirement, as the first relates to 

the temporal correlation of demand with intermittent supply and the second to correlation 

of demand with intermittent electricity AI capacity. This is optimistic, as these two responses 

are not independent. υq is the upper function asymptote (dimensionless), selected from a 

Pareto distribution as detailed in section 9.4.2.1. q(ȶ) is selected from a uniform distribution. 

9.3.3 PC and AI sectors 

9.3.3.1 Primary NRE and RE 

The primary NRE and RE sectors (shown in Figure 125) are part of layer two and are 

responsible for the calculation of evolving primary NRE and RE PC stocks, from investment 

flows, ĥr and ĥn, to ultimate decommissioning, via the construction and operating lifecycle 

phases (modelling using material delay elements in GoldSim). Primary NRE and RE EC input 

energy cost proportion matrices, Sx and Sn, are also calculated here, allowing the 
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determination of dynamic EC input energy cost vectors for PC construction, operation, and 

decommissioning.  

 

Figure 125: screenshot of the primary NRE and RE sectors (identical) within the GoldSim software UI 

9.3.3.2 Secondary 

The secondary sector (shown in Figure 127) is part of layer two and is responsible for the 

calculation of evolving secondary PC and AI stocks, from investment flows, ĥs, to ultimate 

decommissioning, via the construction and operating lifecycle phases (modelling using 

material delay elements in GoldSim). The secondary EC input energy cost proportion matrix, 

Ss, is also calculated here, allowing the calculation of dynamic EC input energy cost vectors for 

PC construction, operation, and decommissioning. Additions to secondary AI stocks defined 

by the AI investment vector, ĥsa, also requires the calculation of the corresponding peak factor 

vector, vsa, and AI requirement vector, asa (as described in section 4.2.2.4). 
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Figure 126: screenshot of the secondary sector within the GoldSim software UI 

Figure 127 depicts requirement mappings between secondary PC types and secondary AI 

types specified by the AI requirement identity matrix, Isa, introduced in section 4.2.2.4. 
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Figure 127: mapping diagram from secondary PC types to required secondary AI types 

9.3.3.2.1 Electricity system 

 

Figure 128: screenshot of the electricity system subsector within the GoldSim software UI 

The electricity system subsector (shown in Figure 128) is responsible for the calculation of 

variables representing high-level dynamic interactions within electricity systems, including 
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intermittent penetration, m, intermittent diversity, β, the combined intermittency mitigation 

reduction factor, r, and the built AI factor, (csa)d/(asa)d. These variables are used to calculate 

electricity system multipliers, χf, χg, and χh (equations given in section 9.3.3.2.1.1) for the 

dynamic modification of electricity system parameters via the decision variable for 

intermittency mitigation, ψ (determined by system control; see section 9.3.6). Generation 

type identity vectors, Im, Ib, Ip, and Ik, intermittency mitigation reduction factor coefficients, 

ζβ and ζq, and intermittent penetration generation response coefficients, ρb and ρp, are also 

defined here. 

9.3.3.2.1.1 Logistic functions for electricity system multipliers 

Multipliers representing dynamic interactions within the electricity system change as 

functions of intermittent penetration, m. Each is defined assuming full intermittency 

mitigation via the associated mitigation option (AI mitigation for χf and χg, and PC overbuild 

mitigation for χh) as the actual balance of mitigation is controlled by the decision variable ψ. 

All multipliers are scaled linearly by r, the combined intermittency mitigation reduction factor 

capturing the effects of intermittent diversity and demand flexibility. 

𝜒𝑓 =
𝑟

𝑟(0)

𝜐𝑓

1 + (𝜐𝑓 − 1)
1−𝑚

1−𝑚(0) (
𝜐𝑓

𝜒𝑓(1)
− 1)

𝑚−𝑚(0)
1−𝑚(0)

 

Where, χf refers to the fractional modification of intermittent electricity AI required (dimensionless 

scalar; takes an initial value of 1), 

χf(1) is the value of fractional modification of intermittent electricity AI required at 100% 

intermittent penetration, and 

υf is the upper function asymptote (dimensionless scalar). 

𝜒𝑥 = 𝑟

(

 
 𝜐𝑥

1 + (𝜐𝑥 − 1)
1−𝑚

1−𝑚(0) (
𝜐𝑥

𝜒𝑥(1)
− 1)

𝑚−𝑚(0)
1−𝑚(0)

− 1

)

 
 

 

Where, Subscript x is replaced by g and h to refer to the fractional modification of intermittent 

electricity reticulation efficiencies and upstream CF maxima, respectively, 

χg and χh (dimensionless scalars) take initial values of approximately zero, 

χg(1) and χh(1) are the values of fractional modification of intermittent electricity reticulation 

efficiencies and upstream CF maxima at 100% intermittent penetration, respectively, and 
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υg and υh are the upper function asymptotes. 

υf, υg, and υh are selected from Pareto distributions as detailed in section 9.4.2.1. χg(1) and 

χh(1) are selected from uniform distributions. Upper function asymptotes and function values 

at 100% intermittent penetration for χg and χh are specified assuming one as the initial 

function value, as these functions are specified at this level prior to being reduced by one for 

the application of these multipliers within the model formulation. 
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9.3.3.3 End-use 

 

Figure 129: screenshot of the end-use sector within the GoldSim software UI 

The end-use sector (shown in Figure 129) is part of layer two and is responsible for the 

calculation of evolving EU PC and AI stocks, from investment flows, ĥe (given by ĥes + ĥet), to 

ultimate decommissioning, via the construction and operating lifecycle phases (modelling 

using material delay elements in GoldSim). The EU EC input energy cost proportion matrix, Se, 
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is also calculated here, allowing the calculation of dynamic EC input energy cost vectors for 

PC construction, operation, and decommissioning. Additions to EU AI stocks defined by the AI 

investment vector, ĥea, also requires the calculation of the corresponding peak factor vector, 

vea, and AI requirement vector, aea (as described in section 4.2.2.4). 

Figure 130 depicts requirement mappings between EU PC types and EU AI types specified by 

the AI requirement identity matrix, Iea, introduced in section 4.2.2.4. 

 

Figure 130: mapping diagram from EU PC types to required EU AI types 

9.3.4 EROI 

The EROI sector (shown in Figure 131) is part of layer two and is responsible for the calculation 

of RE and NRE EROI for mean PC stocks, as the composition of PC stocks change. Equations 

are given in section 9.3.4.1. Function numerators are modelling using material delay elements 

in GoldSim. Note that RE PC available for redevelopment can accumulate temporarily, 

modelled using a reservoir element.  
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Figure 131: screenshot of the EROI sector within the GoldSim software UI 

9.3.4.1 Propagation of new PC EROI values to mean PC stock values 

Mean EROI values for the extant PC stocks depend on the time-path of investment (the 

sequence of additions and subsequent decommissioning). Changes in new PC values 

propagate into mean PC stock values only to the extent that new investment occurs. Mean 

PC stock values also change as PC is removed at the end of life. These functions are 

implemented in GoldSim using material delay elements to represent the numerators. 

For RE EROI, 

𝒌𝒓(𝑡 = 𝜏) = (𝒌𝒓(𝟎) ᴑ 𝒄𝒓(0) + ∫ (ʞ𝒓𝒉 ᴑ 𝒉𝒓 − ʞ𝒓𝒉(𝒙(𝜏𝒋 − 𝒍𝒙)) ᴑ 𝒉𝒓(𝜏𝒋 − 𝒍𝒓))
𝜏

0

𝑑𝑡)  ᴓ 

(𝒄𝒓(0) + ∫ (𝒉𝒓 − 𝒉𝒓(𝜏𝒋 − 𝒍𝒓))
𝜏

0

𝑑𝑡) 

 

Where, 𝒌𝒓(𝟎) = ʞ𝒓 (𝒙 = −𝒑𝒓(0) ᴑ 𝒍𝒓 ᴓ (2𝒏𝒓 ᴑ (𝒑𝒓𝒎 − 𝒑𝒓(0)))), 

For τj < lr: ʞ𝒓𝒉(𝒙(𝜏𝒋 − 𝒍𝒙)) ≈ 𝒌𝒙(𝟎), 

ʞr is the vector of EROI for new RE PC additions, 

ʞrh is the vector of RE EROI for new PC additions adjusted for RE resource development, and 

nr is the vector of technology ages for RE PC (from technology inception to the start of the 

study period, in units of years). 
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Where RE PC decommissioning exceeds additions, higher than current EROI resources 

occupied by end-of-life PC can become available and be redeveloped: 

ʞ𝒓𝒉 = {
ʞ𝒓 + (𝒉𝒓(𝜏𝒋 − 𝒍𝒓) ᴓ 𝒉𝒓 − 𝒋) ᴑ (ʞ𝒓𝒉(𝒙(𝜏𝒋 − 𝒍𝒓)) − ʞ𝒓)  𝑤ℎ𝑒𝑟𝑒  𝒉𝒓(𝜏𝒋 − 𝒍𝒓) > 𝒉𝒓

ʞ𝒓  𝑤ℎ𝑒𝑟𝑒  𝒉𝒓(𝜏𝒋 − 𝒍𝒓) ≤ 𝒉𝒓
 

And for NRE EROI, 

𝒌𝒏(𝑡 = 𝜏) = (𝒌𝒏(𝟎) ᴑ 𝒄𝒏(0) + ∫ (ʞ𝒏 ᴑ 𝒉𝒏 − ʞ𝒏(𝒅(𝜏𝒋 − 𝒍𝒏)) ᴑ 𝒉𝒏(𝜏𝒋 − 𝒍𝒏))
𝜏

0

𝑑𝑡)  ᴓ 

(𝒄𝒏(0) + ∫ (𝒉𝒏 − 𝒉𝒏(𝜏𝒋 − 𝒍𝒏))
𝜏

0

𝑑𝑡) 

Where, 𝒌𝒏(𝟎) = ʞ𝒏(𝒅 = −𝒑𝒏 ᴑ 𝒍𝒏 ᴑ (𝒋 − 𝒍𝒏 ᴓ 4𝒏𝒏) ᴓ 2𝝎), 

For τj < ln: ʞ𝒏(𝒅(𝜏𝒋 − 𝒍𝒏)) ≈ 𝒌𝒏(𝟎), 

ʞn is the vector of EROI for new NRE PC additions, and 

nn is the vector of technology ages for NRE PC (from technology inception to the start of the 

study period, in units of years). 

The vectors ʞrh and ʞn are approximated as initial mean PC EROI values for times prior to the 

start of the study period. For the calculation of initial mean PC EROI values, power output is 

assumed to take an approximately linear trend from technology inception to the start of the 

study period: 

• kr(0) uses exhaustion calculated at the output power rate at time –lr/2 (assuming a 

uniform initial PC age distribution). 

• kn(0) uses depletion calculated via the time integral of output between –ln/2 and 0 

(assuming a uniform initial PC age distribution). 

9.3.4.2 New PC EROI 

The new PC EROI subsector (shown in Figure 132) is responsible for the calculation of RE and 

NRE EROI for new PC, as RE exhaustion and NRE depletion increases. Equations are given in 

section 9.3.4.2.1. Function numerators are modelling using material delay elements in 

GoldSim. 
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Figure 132: screenshot of the new PC EROI subsector within the GoldSim software UI 

9.3.4.2.1 Logistic functions for new PC EROI trends 

ʞ𝒓 = 𝝊𝒓 ᴓ (𝒋 + (𝝊𝒓 ᴓ ʞ𝒓(𝒋) − 𝒋)
ᴑ𝒙 ᴑ (𝝊𝒓 ᴓ (𝝊𝒓  − ʞ𝒓(𝟎)) − 𝒋)

ᴑ(𝒙−𝒋)
) 

 

ʞ𝒏 = 𝝊𝒏 ᴓ (𝒋 + (𝝊𝒏 ᴓ ʞ𝒏(𝒋) − 𝒋)
ᴑ𝒅 ᴑ (𝝊𝒏 ᴓ (𝝊𝒏  − ʞ𝒏(𝟎)) − 𝒋)

ᴑ(𝒅−𝒋)
) 

Where, ʞr and ʞn are the vectors of EROI for new PC for RE and NRE, respectively, 

d is the depletion vector (NRE) and x is the exhaustion vector (RE), 

υr and υn are the upper function asymptote vectors, 

ʞr(j) and ʞn(j) are the vectors of terminal EROI values, and 

ʞr(0) and ʞn(0) are the vectors of initial EROI values. 

υr and υn correspond to approximate pre-simulation peak EROI values and are specified via 

drop (pre-simulation decline) values, selected from uniform distributions, as the initial and 

pre-simulation peak distributions cannot be used directly due to distribution overlap. ʞr(j) and 

ʞn(j) correspond to full primary resource exploitation (x = j and d = j), at which point new PC 

investment is prevented, although NRE PC can continue operating, bringing EROI below 

terminal values). These values are selected from uniform distributions. ʞr(0) and ʞn(0) are 

selected from truncated normal distributions with terminal EROI values representing lower 

bounds. Function lower asymptotes are assumed to be 0 for simplicity (EROI cannot go 

negative and at extreme depletion levels, energy is expended with negligible return). 
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9.3.5 Energy cost of capital 

The energy cost of capital sector (shown in Figure 133) is part of layer two and is responsible 

for the calculation of ECC for secondary and EU PC and AI. As ECC values are modelled as 

static, this sector contains only elements for the sampling of probability distributions. 

 

Figure 133: screenshot of the energy cost of capital sector within the GoldSim software UI 

9.3.6 System control 

 

Figure 134: screenshot of the system control sector within the GoldSim software UI 

The system control sector (shown in Figure 134) comprises layer three and is responsible for 

the calculation of time-dependent PC investment flow and intermittency mitigation decision 

variables, ĥr, ĥn, ĥs, ĥe, and ψ. This involves intermittency mitigation optimization (see script 
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details in section 9.4.5.1), and the calculation of the EC deficit vector, investment magnitude, 

and the realization-level failure informational output metric (failure detection). Control 

parameters and input parameter correlation factors (see section 9.4.7) are specified here. 

This sector also contains the objective function, used only during the optimization and 

calibration process (see section for 9.6 details). 

Note that it is possible that the initial ESMR ratio maxima is situated within the curtailment 

band the ESMR limit, depending on the optimized value of the curtailment threshold constant 

(max(κ(0))i > ɫ(1 – ɤct)). This is justified on the basis that investment within the GES could be 

considered to already be competing with other economic priorities. In the worst case, this 

corresponds to an initial minor curtailment of GES investment, not a hard limit. 

9.3.6.1 EC committed 

 

Figure 135: screenshot of the EC committed subsector within the GoldSim software UI 

The EC committed subsector (shown in Figure 135) is responsible for the calculation of the 

projected EC deficit vector at the specified time horizon, ɗ. This involves the calculation of EC 

flow change projection matrices, Ui, Uo, and Uκ., using ‘shape matrices’ specifying normalized 
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phase in and phase out patterns by PC type. The pre-emption of decommissioning flows is 

represented GoldSim using material delay elements. An integrator element is used for 

smoothing the projected EC deficit vector where rapid increases occur. 

9.3.6.2 Investment share 

The investment share subsector (shown in Figure 136) is responsible for the calculation of 

investment flow proportions directed towards each investment option (investment shares). 

This involves the calculation of yield matrices, Yi, and Yo, from upstream and downstream CFs 

and investment cost functions (from EROI and ECC, disaggregated by EC type). Yield is 

converted to corresponding utility matrices, Wi, and Wo, using projected EC deficit. 

Investment shares are then determined using logit choice functions, with proportions 

adjusted to an equivalent investment input basis using investment cost functions. Upstream 

and downstream curtailment functions are also applied to utility and investment shares based 

on penetration levels, preventing overinvestment into constrained investment options. 

 

Figure 136: screenshot of the investment share subsector within the GoldSim software UI 

Note that upstream yield and investment calculations: 

• reference CF maxima as the synchronization of upstream additions (see section 

9.3.6.3) minimizes capacity gaps between the primary and secondary stages causing 

upstream CFs to return to maxima over the long-term, and 

• include the effects of the dynamic modification of electricity system parameters due 

to intermittent penetration (i.e., these effects are reflected in utility values). 
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Dynamic adjustments are made to curtailment function vectors and utility matrices: 

• ȿi and ȿo are modified to account for primary resource availability and capacity 

utilization. 

o Values are reduced for very low PC utilization levels, curtailing further 

investment where a large surplus of PC already exists (ȿx → 0 as ux → 0). 

o For upstream curtailment, values are reduced towards zero when primary 

energy resources enter advanced stages of depletion or exhaustion (ȿi → 0 as 

d, x → j). 

• Wi and Wi are modified to account for fully curtailed and negative utility values, and 

reduced utility associated with the elimination of surplus: 

o Investment options at or above penetration limits (ȿx = 0) or with negative sum 

rows (i.e., no net benefit) are removed by setting utility values to a very low 

number (-9). 

o The projected EC deficit vector, ɗ, has a scaling factor applied to negative 

values such that utility values associated with eliminating surplus is reduced 

relative to eliminating deficit. This asymmetric response is required as EC 

deficits are associated with net energy trap outcomes, so must be avoided 

more strongly than surpluses. However, negative values of ɗ cannot be ignored 

entirely as excessive surplus can also cause system instability. 

• See section 9.4.4 for full calculation details. 

9.3.6.3 Invest synchronization 

The invest synchronization subsector (shown in Figure 137) is responsible for the 

synchronization of upstream PC additions to minimize capacity gaps between the primary and 

secondary stages. Delays in upstream investment flows are modelled using material delay 

elements in GoldSim, with variable delay times driven by the magnitude of capacity gaps (to 

expedite the addition of PC in deficit). Note that further adjustments to investment flows are 

applied to correct for differences between the operational lifetimes of associated primary and 

secondary PC types (decommissioning flow pre-emption), using integrator elements as 

smoothing functions. The calculation of EU PC investment flows driven by EU PC utilization, 

denoted ĥet, is also carried out here, with magnitude limits applied to prevent excessive 

swings in EU PC utilization. 
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Figure 137: screenshot of the invest synchronization subsector within the GoldSim software UI 

9.4 MODEL FUNCTIONS AND PARAMETERS 

9.4.1 Global parameters 

Name Description Unit Value 

EC_Invest_Capacity_Floor 
Minimum value for scale factor for investment in response to sum forecast 
EC deficit (prevents total investment cessation) 

EJ/yr^2 0.01 

Asymptote_Max_Factor 

Used in logistic functions: value of two implies that curves can range from 
being near the asymptote to being near the inflection point by end of the 
simulation (99% chance of inflection point prior to the end of the 
simulation) 

 2 

Minimum_PC_Timeframe 
Minimum time for upstream investment signal to lead to additions to PC in 
the build phase (non-zero minimum required for material delay elements) 

yr 0.2 

PC_Zero_Approx 
Approximation used in place of zero to avoid divide by zero errors (mostly 
where denominator is a PC stock) 

EJ/yr 0.001 

Simulation_Base_Period 
Base period used in time-dependent functions (sim. duration can be 
changed so should not be used) 

yr 80 

Utility_Remove 

Discrete reduction applied to utility vector where specific PC investment 
should not take place (curtailment value reaches zero or Scenario 5 in 
effect) 

 -9 

EC_Deficit_Limit_Base 
Initial value for the allowable EC deficit limit (cumulative surplus before CF 
reductions occur) 

yr -2 

EC_Deficit_Limit_Slope 

Coefficient for change in the allowable EC deficit limit (linear function, base 
plus slope reached at sim. base period; cumulative surplus before CF 
reductions occur) 

yr -8 
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infrastructure build 
time (investment 
decision to operation) 

yr 

En
d

_u
se

_A
I_

ty
p

es
 

U
n

if
o

rm
 

A
I_

B
u

ild
_T

im
e_

In
p

u
t[

*,
 M

in
] 

A
I_

B
u

ild
_T

im
e_

In
p

u
t[

*,
 M

ax
] 

   

1
1

.1
1

 

En
d

-u
se

 

A
u

xi
lia

ry
_L

if
et

im
e

 

Vector of values for 
end-use auxiliary 
infrastructure lifetime 
(in operation) 

yr 

En
d

_u
se

_A
I_

ty
p

es
 

U
n

if
o

rm
 

A
I_

Li
fe

ti
m

e_
In

p
u

t[

*,
 M

in
] 

A
I_

Li
fe

ti
m

e_
In

p
u

t[
*,

 M
ax

] 

   

1
1

.1
2

 

En
d

-u
se

 

P
C

_C
ap

Ex
_F

ra
ct

io
n

 Vector of fractions of 
end-use power 
capacity investment 
energy devoted to 
capital (construction 
and 
decommissioning) 

 

En
d

_u
se

_P
C

_t
yp

es
 

U
n

if
o

rm
 

P
C

_C
ap

Ex
_F

ra
ct

io
n

_I
n

p
u

t[
*,

 M
in

] 

P
C

_C
ap

Ex
_F

ra
ct

io
n

_I
n

p
u

t[
*,

 M
ax

] 

   

1
1

.1
 

En
d

-u
se

 

P
C

_D
ec

o
m

m
is

si
o

n
_

Fr
ac

ti
o

n
 

Vector of fractions of 
end-use power 
capacity investment 
energy devoted to 
capital used in the 
decommissioning 
stage 

 

En
d

_u
se

_P
C

_t
yp

es
 

U
n

if
o

rm
 

P
C

_D
ec

o
m

m
is

si
o

n
_

Fr
ac

ti
o

n
_I

n
p

u
t[

*,
 

M
in

] 

P
C

_D
ec

o
m

m
is

si
o

n
_

Fr
ac

ti
o

n
_I

n
p

u
t[

*,
 

M
ax

] 

   

1
1

.2
 

En
d

-u
se

 

P
C

_E
C

_S
p

lit
_H

ea
t_

Fa
ct

o
r 

Vector of initial 
fractions of end-use 
power capacity input 
energy consisting of 
heat, divided by the 
heat share of initial 
EC supply 

 

En
d

_u
se

_P
C

_t
yp

es
 

U
n

if
o

rm
 

P
C

_E
C

_S
p

lit
_H

ea
t_

Fa
ct

o
r_

In
p

u
t[

*,
 

M
in

] 

P
C

_E
C

_S
p

lit
_H

ea
t_

Fa
ct

o
r_

In
p

u
t[

*,
 

M
ax

] 

   

1
1

.4
 

En
d

-u
se

 

P
C

_E
C

_S
p

lit
_L

aG
_F

ac
t

o
r 

Vector of initial 
fractions of end-use 
power capacity input 
energy consisting of 
liquid and gaseous 
fuels, divided by the 
LaG share of initial EC 
supply 

 

En
d

_u
se

_P
C

_t
yp

es
 

U
n

if
o

rm
 

P
C

_E
C

_S
p

lit
_L

aG
_F

ac
t

o
r_

In
p

u
t[

*,
 M

in
] 

P
C

_E
C

_S
p

lit
_L

aG
_F

ac
t

o
r_

In
p

u
t[

*,
 M

ax
] 

   

1
1

.3
 

En
d

-u
se

 

P
o

w
er

_C
ap

ac
it

y_
B

u
ild

_T
im

e 

Vector of values for 
end-use power 
capacity build time 
(investment decision 
to operation) 

yr 

En
d

_u
se

_P
C

_t
yp

es
 

U
n

if
o

rm
 

P
C

_B
u

ild
_T

im
e_

In
p

u
t[

*,
 M

in
] 

P
C

_B
u

ild
_T

im
e_

In
p

u
t[

*,
 M

ax
] 

   

1
1

.5
 

En
d

-u
se

 

P
o

w
er

_C
ap

ac
it

y_
Li

fe
ti

m
e Vector of values for 

end-use power 
capacity lifetime (in 
operation) 

yr 

En
d

_u
se

_P
C

_t
yp

es
 

U
n

if
o

rm
 

P
C

_L
if

et
im

e_
In

p
u

t[
*,

 M
in

] 

P
C

_L
if

et
im

e_
In

p
u

t[
*,

 M
ax

] 

   

1
1

.6
 



327 
 

Se
ct

o
r 

El
e

m
e

n
t 

n
am

e
 

Description U
n

it
 

A
rr

ay
 la

b
e

ls
 

D
is

tr
ib

u
ti

o
n

 

M
in

im
u

m
 

M
ax
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M
o

st
 li

ke
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M
e

an
 

St
an

d
ar

d
 

d
e

vi
at

io
n

 

In
p

u
t 

re
f.

 

En
er

gy
 C

o
st

 O
f 

C
ap

it
al

 

En
d

_U
se

_A
I_

EC
C

 Vector of ECC values 
for end-use auxiliary 
infrastructure (log-
normal dist. as 
estimates vary by 
orders of magnitude) 

yr 

En
d

_u
se

_A
I_

ty
p

es
 

Lo
g-

N
o

rm
al

 

   

En
d

_U
se

_A
I_

EC
C

_I
n

p
u

t[
*,

 M
ea

n
] 

En
d

_U
se

_A
I_

EC
C

_I
n

p
u

t[
*,

 S
D

] 

7
.4

 

En
er

gy
 C

o
st

 O
f 

C
ap

it
al

 

En
d

_U
se

_P
C

_E
C

C
 Vector of ECC values 

for end-use power 
capacity (log-normal 
dist. as estimates vary 
by orders of 
magnitude) 

yr 

En
d

_u
se

_P
C

_t
yp

es
 

Lo
g-

N
o

rm
al

 

   

En
d

_U
se

_P
C

_E
C

C
_I

n
p

u
t[

*,
 M

ea
n

] 

En
d

_U
se

_P
C

_E
C

C
_I

n
p

u
t[

*,
 S

D
] 

7
.3

 

En
er

gy
 C

o
st

 O
f 

C
ap

it
al

 

Se
co

n
d

ar
y_

A
I_

EC
C

 Vector of ECC values 
for secondary 
auxiliary 
infrastructure (log-
normal dist. as 
estimates vary by 
orders of magnitude) 

yr 

Se
co

n
d

ar
y_

A
I_

ty
p

es
 

Lo
g-

N
o

rm
al

 

   

Se
co

n
d

ar
y_

A
I_

EC
C

_I
n

p
u

t[
*,

 M
ea

n
] 

Se
co

n
d

ar
y_

A
I_

EC
C

_I
n

p
u

t[
*,

 S
D

] 

7
.2

 

En
er

gy
 C

o
st

 O
f 

C
ap

it
al

 

Se
co

n
d

ar
y_

P
C

_E
C

C
 

Vector of ECC values 
for secondary power 
capacity (log-normal 
dist. as estimates vary 
by orders of 
magnitude) 

yr 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

Lo
g-

N
o

rm
al

 

   

Se
co

n
d

ar
y_

P
C

_E
C

C
_I

n
p

u
t[

*,
 M

ea
n

] 

Se
co

n
d

ar
y_

P
C

_E
C

C
_I

n
p

u
t[

*,
 S

D
] 

7
.1

 

En
er

gy
 F

lo
w

/F
lo

w
 

R
o

u
ti

n
g 

En
d

_U
se

_C
F_

Ta
rg

et
_A

sy
m

p
to

te
 Vector of the upper 

asymptotes of the EU 
CF target function 
(lower values more 
common) 

 

En
d

_u
se

_P
C

_t
yp

es
 

P
ar

et
o

 

En
d

_U
se

_C
F_

Ta
rg

et

_F
in

al
 

    

n
/a

 

En
er

gy
 F

lo
w

/F
lo

w
 R

o
u

ti
n

g 

En
d

_U
se

_C
F_

Ta
rg

et
_F

in
al

 

Vector of the final 
values of the EU CF 
target function (at 
sim. base period; log-
uniform dist.) 

 

En
d

_u
se

_P
C

_t
yp

es
 

Lo
g-

U
n

if
o

rm
 

In
it

_E
n

d
_U

se
_C

F_
Ta

rg
et

 

In
it

_E
n

d
_U

se
_C

F_
Ta

rg
et

 *
 

(v
ec

to
r(

1
) 

+ 

EU
_C

F_
Ta

rg
et

_F
in

al
_M

ax
_F

ac
to

r)
 

   

3
.3

 

En
er

gy
 F

lo
w

/F
lo

w
 

R
o

u
ti

n
g 

In
it

_E
n

d
_U

se
_C

F_
T

ar
ge

t Vector of the initial 
values of the EU CF 
target function 

 

En
d

_u
se

_P
C

_t
yp

es
 

U
n

if
o

rm
 

In
it

_E
n

d
_U

se
_C

F_
T

ar
ge

t_
In

p
u

t[
*,

 
M

in
] 

In
it

_E
n

d
_U

se
_C

F_
T

ar
ge

t_
In

p
u

t[
*,

 

M
ax

] 

   

3
.2
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M
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M
e

an
 

St
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ar

d
 

d
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vi
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In
p

u
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re
f.

 

En
er

gy
 

Fl
o

w
/I

n
it

ia
liz

at
io

n
 

En
d

_U
se

_P
ro

p
_R

a
n

d
 

Random error vector 
for the initial 
proportions of energy 
carrier input flowing 
into each EU PC type 
(between -1 and 1) 

 

En
d

_u
se

_P
C

_t
yp

es
 

U
n

if
o

rm
 

ve
ct

o
r(

-1
) 

ve
ct

o
r(

1
) 

   

n
/a

 

En
er

gy
 

Fl
o

w
/I

n
it

ia
liz

at
io

n
 

In
it

_E
n

d
_U

se
_P

ea
k

_F
ac

to
r 

Vector of the initial 
values of peak factor 
for each EU AI type 
(defined assuming 
zero demand 
flexibility) 

 

En
d

_u
se

_A
I_

ty
p

es
 

U
n

if
o

rm
 

In
it

_E
n

d
_U

se
_P

ea
k

_F
ac

to
r_

In
p

u
t[

*,
 

M
in

] 

In
it

_E
n

d
_U

se
_P

ea
k

_F
ac

to
r_

In
p

u
t[

*,
 

M
ax

] 

   

1
.6

 

En
er

gy
 

Fl
o

w
/I

n
it

ia
liz

at
io

n
 

In
it

_S
ec

o
n

d
ar

y_
P

ea
k

_F
ac

to
r 

Vector of the initial 
values of peak factor 
for each secondary AI 
type (defined 
assuming zero 
demand flexibility) 

 

Se
co

n
d

ar
y_

A
I_

ty
p

es
 

U
n

if
o

rm
 

In
it

_S
ec

_P
ea

k_
Fa

ct
o

r_
In

p
u

t[
*,

 M
in

] 

In
it

_S
ec

_P
ea

k_
Fa

ct
o

r_
In

p
u

t[
*,

 M
ax

] 

   

1
.5

 

En
er

gy
 

Fl
o

w
/I

n
it

ia
liz

at
io

n
 

Se
co

n
d

ar
y_

P
ro

p
_R

an
d

 Random error vector 
for the initial 
proportions of 
primary resource 
input flowing into 
each secondary PC 
type (between -1 and 
1) 

 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

U
n

if
o

rm
 

ve
ct

o
r(

-1
) 

ve
ct

o
r(

1
) 

   

n
/a

 

En
er

gy
 F

lo
w

/N
ew

 P
C

 

Ef
fi

ci
en

ci
es

 

En
d

_U
se

_C
o

n
ve

rs
io

n
_

Ef
f_

B
as

e
 

Vector of the lower 
asymptotes of the EU 
conversion efficiency 
function: between 0 
and initial PC mean 
efficiency value 
(triangular dist. 
towards lower values) 

 

En
d

_u
se

_P
C

_t
yp

es
 

Tr
ia

n
gu

la
r 

ve
ct

o
r(

0
) 

En
d

_U
se

_C
o

n
ve

rs
io

n
_

Ef
f_

In
p

u
t[

*,
 M

in
] 

ve
ct

o
r(

0
) 

  

4
.4

 

En
er

gy
 F

lo
w

/N
ew

 

P
C

 E
ff

ic
ie

n
ci

es
 

En
d

_U
se

_E
S_

Ef
f_

B
a

se
 

Vector of the lower 
asymptotes of the EU 
to ES efficiency 
function: between 0 
and initial PC mean 
efficiency value 

 

En
d

_u
se

_P
C

_t
yp

es
 

U
n

if
o

rm
 

ve
ct

o
r(

0
) 

In
it

_E
n

d
_U

se
_E

S_
Ef

f_
P

C
_M

ea
n

 

   

4
.5

 

En
er

gy
 F

lo
w

/N
ew

 

P
C

 E
ff

ic
ie

n
ci

es
 

Fi
n

al
_E

n
d

_U
se

_C
o

n
ve

rs
io

n
_E

ff
 

Vector of the upper 
asymptotes of the EU 
conversion efficiency 
function: between 
initial new PC value 
and maximum 
theoretical value 

 

En
d

_u
se

_P
C

_t
yp

es
 

U
n

if
o

rm
 

In
it

_E
n

d
_U

se
_C

o
n

v

er
si

o
n

_E
ff

 

En
d

_U
se

_C
o

n
ve

rs
io

n
_E

ff
_I

n
p

u
t[

*,
 M

ax
] 

   

4
.4
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A
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M
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m
 

M
o
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M
e

an
 

St
an

d
ar

d
 

d
e

vi
at

io
n

 

In
p

u
t 

re
f.

 

En
er

gy
 F

lo
w

/N
ew

 P
C

 

Ef
fi

ci
en

ci
es

 

Fi
n

al
_E

n
d

_U
se

_E
S_

Ef
f Vector of the upper 

asymptotes of the EU 
to ES efficiency 
function: between 
initial new PC value 
and maximum 
theoretical value 

 

En
d

_u
se

_P
C

_t
yp

es
 

U
n

if
o

rm
 

In
it

_E
n

d
_U

se
_E

S_
Ef

f 

In
it

_E
n

d
_U

se
_E

S_
Ef

f_
P

C
_M

ea
n

 
* 

(v
ec

to
r(

1
) 

+ 

Fi
n

al
_E

U
_E

S_
Ef

f_
M

ax
_F

ac
to

r)
 

   

4
.6

 

En
er

gy
 F

lo
w

/N
ew

 P
C

 

Ef
fi

ci
en

ci
es

 

Fi
n

al
_S

ec
_C

o
n

ve
rs

io
n

_
Ef

f 

Vector of the upper 
asymptotes of the 
secondary conversion 
efficiency function: 
between initial new 
PC value and 
maximum theoretical 
value 

 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

U
n

if
o

rm
 

In
it

_S
ec

_C
o

n
ve

rs
io

n
_E

f

f 

Se
c_

C
o

n
ve

rs
io

n
_E

ff
_I

n
p

u
t[

*,
 M

ax
] 

   

4
.1

 

En
er

gy
 F

lo
w

/N
ew

 P
C

 

Ef
fi

ci
en

ci
es

 

Fi
n

al
_S

ec
_R

et
ic

u
la

ti
o

n
_E

ff
 

Vector of the upper 
asymptotes of the 
secondary 
reticulation efficiency 
function: between 
initial new PC value 
and maximum 
theoretical value 

 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

U
n

if
o

rm
 

In
it

_S
ec

_R
e

ti
cu

la
ti

o
n

_

Ef
f 

Se
c_

R
et

ic
u

la
ti

o
n

_E
ff

_I
n

p
u

t[
*,

 M
ax

] 

   

4
.2

 

En
er

gy
 F

lo
w

/N
ew

 P
C

 

Ef
fi

ci
en

ci
es

 

In
it

_E
n

d
_U

se
_C

o
n

ve
rs

io
n

_E
ff

 

Vector of the initial 
values of the EU 
conversion efficiency 
function: between 
initial PC mean value 
and maximum 
theoretical value 
(triangular dist. 
towards lower values) 

 

En
d

_u
se

_P
C

_t
yp

es
 

Tr
ia

n
gu

la
r 

En
d

_U
se

_C
o

n
ve

rs
io

n
_E

ff
_

In
p

u
t[

*,
 M

in
] 

En
d

_U
se

_C
o

n
ve

rs
io

n
_E

ff
_

In
p

u
t[

*,
 M

ax
] 

En
d

_U
se

_C
o

n
ve

rs
io

n
_E

ff
_

In
p

u
t[

*,
 M

in
] 

  

4
.1

 

En
er

gy
 F

lo
w

/N
ew

 P
C

 

Ef
fi

ci
en

ci
es

 

In
it

_E
n

d
_U

se
_E

S_
Ef

f 

Vector of the initial 
values of the EU to ES 
efficiency function: 
between initial PC 
mean value and 
maximum theoretical 
value (triangular dist. 
towards lower values) 

 

En
d

_u
se

_P
C

_t
yp

es
 

Tr
ia

n
gu

la
r 

In
it

_E
n

d
_U

se
_E

S_
Ef

f_
P

C
_M

ea

n
 

In
it

_E
n

d
_U

se
_E

S_
Ef

f_
P

C
_M

ea
n

 *
 (

ve
ct

o
r(

1
) 

+ 

Fi
n

al
_E

U
_E

S_
Ef

f_
M

ax
_F

ac
to

r)
 

In
it

_E
n

d
_U

se
_E

S_
Ef

f_
P

C
_M

ea
n

   

4
.5
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M
e

an
 

St
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d
ar

d
 

d
e

vi
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io
n

 

In
p

u
t 

re
f.

 

En
er

gy
 F

lo
w

/N
ew

 P
C

 E
ff

ic
ie

n
ci

es
 

In
it

_E
n

d
_U

se
_E

S_
Ef

f_
P

C
_M

ea
n

 

Vector of the initial 
PC mean values for 
EU to ES efficiency: 
range given by 
estimates +/- 
assigned error value 

 

En
d

_u
se

_P
C

_t
yp

es
 

U
n

if
o

rm
 

In
it

_E
n

d
_U

se
_E

S_
Ef

f_
In

p
u

t[
*,

 

N
u

m
er

al
]*

 (
ve

ct
o

r(
1

) 
- 

In
it

_E
n

d
_U

se
_E

S_
Ef

f_
In

p
u

t[
*,

 E
rr

o
r]

) 

In
it

_E
n

d
_U

se
_E

S_
Ef

f_
In

p
u

t[
*,

 
N

u
m

er
al

]*
 (

ve
ct

o
r(

1
) 

+ 

In
it

_E
n

d
_U

se
_E

S_
Ef

f_
In

p
u

t[
*,

 E
rr

o
r]

) 

   

4
.5

 

En
er

gy
 F

lo
w

/N
ew

 P
C

 

Ef
fi

ci
en

ci
es

 

In
it

_S
ec

_C
o

n
ve

rs
io

n
_E

ff
 Vector of the initial 

values of the 
secondary conversion 
efficiency function: 
between initial PC 
mean value and 
maximum theoretical 
value (triangular dist. 
towards lower values) 

 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

Tr
ia

n
gu

la
r 

Se
c_

C
o

n
ve

rs
io

n
_E

ff
_I

n
p

u
t

[*
, M

in
] 

Se
c_

C
o

n
ve

rs
io

n
_E

ff
_I

n
p

u
t

[*
, M

ax
] 

Se
c_

C
o

n
ve

rs
io

n
_E

ff
_I

n
p

u
t

[*
, M

in
] 

  

4
.1

 

En
er

gy
 F

lo
w

/N
ew

 P
C

 

Ef
fi

ci
en

ci
es

 

In
it

_S
ec

_R
e

ti
cu

la
ti

o
n

_E
ff

 

Vector of the initial 
values of the 
secondary 
reticulation efficiency 
function: between 
initial PC mean value 
and maximum 
theoretical value 
(triangular dist. 
towards lower values) 

 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

Tr
ia

n
gu

la
r 

Se
c_

R
et

ic
u

la
ti

o
n

_E
ff

_I
n

p
u

t[
*,

 

M
in

] 

Se
c_

R
et

ic
u

la
ti

o
n

_E
ff

_I
n

p
u

t[
*,

 
M

ax
] 

Se
c_

R
et

ic
u

la
ti

o
n

_E
ff

_I
n

p
u

t[
*,

 
M

in
] 

  

4
.2

 

En
er

gy
 F

lo
w

/N
ew

 P
C

 

Ef
fi

ci
en

ci
es

 

Se
c_

C
o

n
ve

rs
io

n
_E

ff
_B

a
se

 

Vector of the lower 
asymptotes of the 
secondary conversion 
efficiency function: 
between 0 and initial 
PC mean efficiency 
value (triangular dist. 
towards lower values) 

 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

Tr
ia

n
gu

la
r 

ve
ct

o
r(

0
) 

Se
c_

C
o

n
ve

rs
io

n
_E

ff
_I

n
p

u
t[

*,
 M

in
] 

ve
ct

o
r(

0
) 

  

4
.1

 

En
er

gy
 F

lo
w

/N
ew

 P
C

 

Ef
fi

ci
en

ci
es

 

Se
c_

R
et

ic
u

la
ti

o
n

_E
ff

_B
as

e
 

Vector of the lower 
asymptotes of the 
secondary 
reticulation efficiency 
function: between 0 
and initial PC mean 
efficiency value 

 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

U
n

if
o

rm
 

ve
ct

o
r(

0
) 

Se
c_

R
et

ic
u

la
ti

o
n

_E
ff

_I
n

p
u

t[
*,

 M
in

] 

   

4
.2

 

En
er

gy
 F

lo
w

/P
ri

m
ar

y 

R
es

o
u

rc
e

 

In
it

ia
l_

N
R

E_
R

es
o

u
rc

e
 

Vector of initial 
remaining non-
renewable energy 
stocks by type, in 
terms of RURR (above 
terminal EROI; log-
normal dist. as 
estimates vary by 
orders of magnitude) 

EJ 

N
R

E_
ty

p
es

 

Lo
g-

N
o

rm
al

 

   

In
it

ia
l_

N
R

E_
R

es
o

u
rc

e
_I

n
p

u
t[

*,
 M

ea
n

] 

In
it

ia
l_

N
R

E_
R

es
o

u
rc

e
_I

n
p

u
t[

*,
 S

D
] 

2
.1
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A
rr
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ls
 

D
is
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u
ti
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M
in
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m
 

M
ax
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u

m
 

M
o

st
 li

ke
ly

 

M
e

an
 

St
an

d
ar

d
 

d
e

vi
at

io
n

 

In
p

u
t 

re
f.

 

En
er

gy
 F

lo
w

/P
ri

m
ar

y 

R
es

o
u

rc
e

 

R
E_

P
o

te
n

ti
al

 

Vector of initial 
remaining sustainably 
exploitable 
renewable energy 
flows by type (above 
terminal EROI; log-
normal dist. as 
estimates vary by 
orders of magnitude) 

EJ 

R
E_

ty
p

es
 

Lo
g-

N
o

rm
al

 (
tr

u
n

ca
te

d
) 

In
it

ia
l_

R
E_

O
u

tp
u

t_
R

at
e

 

ve
ct

o
r(

9
9

9
9

9
 E

J/
yr

) 

 

R
E_

P
o

te
n

ti
al

_I
n

p
u

t[
*,

 
M

ea
n

] 

R
E_

P
o

te
n

ti
al

_I
n

p
u

t[
*,

 S
D

] 

2
.2

 

ER
O

I/
N

ew
 P

C
 E

R
O

I 

In
it

ia
l_

N
R

E_
ER

O
I 

Vector of the initial 
values of the NRE 
EROI function for new 
PC (normal dist.) 

 
N

R
E_

ty
p

es
 

N
o

rm
al

 (
tr

u
n

ca
te

d
) 

N
R

E_
ER

O
I_

Te
rm

in
al

_I
n

p
u

t[
*,

 M
ax

] 

ve
ct

o
r(

9
9

9
) 

 

In
it

ia
l_

N
R

E_
ER

O
I_

In
p

u
t[

*,
 M

ea
n

] 

In
it

ia
l_

N
R

E_
ER

O
I_

In
p

u
t[

*,
 S

D
] 

6
.4

 

ER
O

I/
N

ew
 P

C
 E

R
O

I 

In
it

ia
l_

R
E_

ER
O

I 

Vector of the initial 
values of the RE EROI 
function for new PC 
(normal dist.) 

 

R
E_

ty
p

es
 

N
o

rm
al

 (
tr

u
n

ca
te

d
) 

R
E_

ER
O

I_
Te

rm
in

al
_

In
p

u
t[

*,
 M

ax
] 

ve
ct

o
r(

9
9

9
) 

 

In
it

ia
l_

R
E_

ER
O

I_
In

p
u

t[
*,

 M
ea

n
] 

In
it

ia
l_

R
E_

ER
O

I_
In

p
u

t[
*,

 S
D

] 

6
.1

 

ER
O

I/
N

ew
 P

C
 

ER
O

I 

N
R

E_
ER

O
I_

D
ro

p
 Vector of the 

differences between 
the upper asymptotes 
and initial values of 
the NRE EROI 
function 

 

N
R

E_
ty

p
es

 

U
n

if
o

rm
 

N
R

E_
ER

O
I_

D
ro

p

_I
n

p
u

t[
*,

 M
in

] 

N
R

E_
ER

O
I_

D
ro

p
_I

n
p

u
t[

*,
 M

ax
] 

   

6
.6

 

ER
O

I/
N

ew
 P

C
 

ER
O

I 

N
R

E_
ER

O
I_

Te
rm

in
al

 

Vector of the final 
values (depletion = 1) 
of the NRE EROI 
function (lowest 
acceptable EROI for a 
viable energy source) 

 

N
R

E_
ty

p
es

 

U
n

if
o

rm
 

N
R

E_
ER

O
I_

Te
rm

in
al

_I
n

p
u

t[
*,

 
M

in
] 

N
R

E_
ER

O
I_

Te
rm

in
al

_I
n

p
u

t[
*,

 

M
ax

] 

   

6
.5

 

ER
O

I/
N

ew
 P

C
 

ER
O

I 

R
E_

ER
O

I_
D

ro
p

 

Vector of the 
differences between 
the upper asymptotes 
and initial values of 
the RE EROI function 

 

R
E_

ty
p

es
 

U
n

if
o

rm
 

R
E_

ER
O

I_
D

ro
p

_I
n

p
u

t[
*,

 M
in

] 

R
E_

ER
O

I_
D

ro
p

_I
n

p
u

t[
*,

 M
ax

] 

   

6
.3

 

ER
O

I/
N

ew
 P

C
 

ER
O

I 

R
E_

ER
O

I_
Te

rm
i

n
al

 

Vector of the final 
values (exhaustion = 
1) of the RE EROI 
function (lowest 
acceptable EROI for a 
viable energy source) 

 

R
E_

ty
p

es
 

U
n

if
o

rm
 

R
E_

ER
O

I_
Te

rm
i

n
al

_I
n

p
u

t[
*,

 
M

in
] 

R
E_

ER
O

I_
Te

rm
i

n
al

_I
n

p
u

t[
*,

 

M
ax

] 

   

6
.2

 

P
ri

m
ar

y 
N

R
E 

C
ap

Ex
_F

ra
ct

io
n

 Vector of fractions of 
NRE investment 
energy devoted to 
capital (construction 
and 
decommissioning) 

 

N
R

E_
ty

p
es

 

U
n

if
o

rm
 

C
ap

Ex
_F

ra
ct

io
n

_

In
p

u
t[

*,
 M

in
] 

C
ap

Ex
_F

ra
ct

io
n

_
In

p
u

t[
*,

 M
ax

] 

   

8
.1
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M
in
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ax
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u
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M
o

st
 li

ke
ly

 

M
e

an
 

St
an

d
ar

d
 

d
e

vi
at

io
n

 

In
p

u
t 

re
f.

 

P
ri

m
ar

y 
N

R
E 

D
ec

o
m

m
is

si
o

n
_

Fr
ac

ti
o

n
 

Vector of fractions of 
NRE investment 
energy devoted to 
capital used in the 
decommissioning 
stage 

 

N
R

E_
ty

p
es

 

U
n

if
o

rm
 

D
ec

o
m

m
is

si
o

n
_

Fr
ac

ti
o

n
_I

n
p

u
t[

*
, M

in
] 

D
ec

o
m

m
is

si
o

n
_

Fr
ac

ti
o

n
_I

n
p

u
t[

*

, M
ax

] 

   

8
.2

 

P
ri

m
ar

y 
N

R
E 

EC
_S

p
lit

_H
ea

t_
F

ac
to

r 

Vector of initial 
fractions of NRE input 
energy consisting of 
heat, divided by the 
heat share of initial 
EC supply 

 

N
R

E_
ty

p
es

 

U
n

if
o

rm
 

EC
_S

p
lit

_H
ea

t_
F

ac
to

r_
In

p
u

t[
*,

 
M

in
] 

EC
_S

p
lit

_H
ea

t_
F

ac
to

r_
In

p
u

t[
*,

 

M
ax

] 

   

8
.4

 

P
ri

m
ar

y 
N

R
E 

EC
_S

p
lit

_L
aG

_F
ac

to
r 

Vector of initial 
fractions of NRE input 
energy consisting of 
liquid and gaseous 
fuels, divided by the 
LaG share of initial EC 
supply 

 

N
R

E_
ty

p
es

 

U
n

if
o

rm
 

EC
_S

p
lit

_L
aG

_F
ac

to

r_
In

p
u

t[
*,

 M
in

] 

EC
_S

p
lit

_L
aG

_F
ac

to
r_

In
p

u
t[

*,
 M

ax
] 

   

8
.3

 

P
ri

m
ar

y 
N

R
E 

P
o

w
er

_C
ap

ac

it
y_

B
u

ild
_T

im
e 

Vector of values for 
NRE build time 
(investment decision 
to operation) 

yr 

N
R

E_
ty

p
es

 

U
n

if
o

rm
 

P
C

_B
u

ild
_T

im

e_
In

p
u

t[
*,

 
M

in
] 

P
C

_B
u

ild
_T

im
e_

In
p

u
t[

*,
 

M
ax

] 

   

8
.5

 

P
ri

m
ar

y 
N

R
E 

P
o

w
er

_C
ap

ac
it

y_
Li

fe
ti

m
e 

Vector of values for 
NRE lifetime (in 
operation) 

yr 

N
R

E_
ty

p
es

 

U
n

if
o

rm
 

P
C

_L
if

et
im

e_
I

n
p

u
t[

*,
 M

in
] 

P
C

_L
if

et
im

e_
I

n
p

u
t[

*,
 M

ax
] 

   

8
.6

 

P
ri

m
ar

y 
R

E 

C
ap

Ex
_F

ra
ct

i
o

n
 

Vector of fractions of 
RE investment energy 
devoted to capital 
(construction and 
decommissioning) 

 

R
E_

ty
p

es
 

U
n

if
o

rm
 

C
ap

Ex
_F

ra
ct

i

o
n

_I
n

p
u

t[
*,

 
M

in
] 

C
ap

Ex
_F

ra
ct

i
o

n
_I

n
p

u
t[

*,
 

M
ax

] 

   

9
.1

 

P
ri

m
ar

y 
R

E 

D
ec

o
m

m
is

si
o

n
_

Fr
ac

ti
o

n
 

Vector of fractions of 
RE investment energy 
devoted to capital 
used in the 
decommissioning 
stage 

 

R
E_

ty
p

es
 

U
n

if
o

rm
 

D
ec

o
m

m
is

si
o

n
_

Fr
ac

ti
o

n
_I

n
p

u
t[

*
, M

in
] 

D
ec

o
m

m
is

si
o

n
_

Fr
ac

ti
o

n
_I

n
p

u
t[

*

, M
ax

] 

   

9
.2

 

P
ri

m
ar

y 
R

E 

EC
_S

p
lit

_H
ea

t_
F

ac
to

r 

Vector of initial 
fractions of RE input 
energy consisting of 
heat, divided by the 
heat share of initial 
EC supply 

 

R
E_

ty
p

es
 

U
n

if
o

rm
 

EC
_S

p
lit

_H
ea

t_
F

ac
to

r_
In

p
u

t[
*,

 
M

in
] 

EC
_S

p
lit

_H
ea

t_
F

ac
to

r_
In

p
u

t[
*,

 

M
ax

] 

   

9
.4

 

P
ri

m
ar

y 
R

E 

EC
_S

p
lit

_L
aG

_F
ac

to
r 

Vector of initial 
fractions of RE input 
energy consisting of 
liquid and gaseous 
fuels, divided by the 
LaG share of initial EC 
supply 

 

R
E_

ty
p

es
 

U
n

if
o

rm
 

EC
_S

p
lit

_L
aG

_F
ac

to

r_
In

p
u

t[
*,

 M
in

] 

EC
_S

p
lit

_L
aG

_F
ac

to
r_

In
p

u
t[

*,
 M

ax
] 

   

9
.3
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D
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M
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M
ax
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M
o

st
 li

ke
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M
e

an
 

St
an

d
ar

d
 

d
e

vi
at

io
n

 

In
p

u
t 

re
f.

 

P
ri

m
ar

y 
R

E 

P
o

w
er

_C
ap

ac

it
y_

B
u

ild
_T

im
e 

Vector of values for 
RE build time 
(investment decision 
to operation) 

yr 

R
E_

ty
p

es
 

U
n

if
o

rm
 

P
C

_B
u

ild
_T

im

e_
In

p
u

t[
*,

 
M

in
] 

P
C

_B
u

ild
_T

im
e_

In
p

u
t[

*,
 

M
ax

] 

   

9
.5

 

P
ri

m
ar

y 
R

E 

P
o

w
er

_C
ap

ac
it

y_
Li

fe
ti

m
e 

Vector of values for 
RE lifetime (in 
operation) 

yr 

R
E_

ty
p

es
 

U
n

if
o

rm
 

P
C

_L
if

et
im

e_
I

n
p

u
t[

*,
 M

in
] 

P
C

_L
if

et
im

e_
I

n
p

u
t[

*,
 M

ax
] 

   

9
.6

 

Se
co

n
d

ar
y/

El
ec

tr
ic

it
y 

Sy
st

em
 

C
F_

M
ax

_B
as

el
o

ad
_C

o
ef

f Sets the magnitude of 
the CF reduction 
response to 
intermittent 
penetration, relative 
to the intermittent 
generator response, 
for baseload 
generators 

  

U
n

if
o

rm
 

C
F_

M
ax

_B
as

el
o

ad
_C

o
ef

f_
I

n
p

u
t[

M
in

] 

C
F_

M
ax

_B
as

el
o

ad
_C

o
ef

f_
I

n
p

u
t[

M
ax

] 

   

1
0

.1
9

 

Se
co

n
d

ar
y/

El
ec

t

ri
ci

ty
 S

ys
te

m
 

C
F_

M
ax

_M
u

lt
_A

sy
m

p
to

te
 

Sets the upper 
asymptote of the 
intermittent CF 
maximum multiplier 
(lower values more 
common) 

  

P
ar

et
o

 

1
     

n
/a

 

Se
co

n
d

ar
y/

El
ec

tr
ic

it
y 

Sy
st

em
 

C
F_

M
ax

_P
ea

ke
r_

C
o

ef
f 

Sets the magnitude of 
the CF reduction 
response to 
intermittent 
penetration, relative 
to the intermittent 
generator response, 
for peaking 
generators 

  

U
n

if
o

rm
 

C
F_

M
ax

_P
ea

ke
r_

C
o

ef
f_

In

p
u

t[
M

in
] 

C
F_

M
ax

_P
ea

ke
r_

C
o

ef
f_

In
p

u
t[

M
ax

] 

   

1
0

.1
8

 

Se
co

n
d

ar
y/

El
ec

tr
ic

it
y 

Sy
st

em
 

D
em

an
d

_F
le

x_
C

o
ef

f 

Sets the magnitude of 
the fractional 
reduction in 
intermittent response 
(CF, intermittent AI, 
reticulation 
efficiency) needed 
when demand 
flexibility is equal to 1 

  

U
n

if
o

rm
 

D
em

an
d

_F
le

x_
C

o
ef

f_
In

p
u

t

[M
in

] 

D
em

an
d

_F
le

x_
C

o
ef

f_
In

p
u

t
[M

ax
] 

   

1
0

.1
7

 

Se
co

n
d

ar
y/

El
ec

tr
ic

it
y 

Sy
st

em
 

D
iv

er
si

ty
_C

o
ef

f 

Sets the magnitude of 
the fractional 
reduction in 
intermittent response 
(CF, intermittent AI, 
reticulation 
efficiency) needed 
when intermittent 
diversity is equal to 1 

  

U
n

if
o

rm
 

D
iv

er
si

ty
_C

o
ef

f_
In

p
u

t[
M

in

] 

D
iv

er
si

ty
_C

o
ef

f_
In

p
u

t[
M

a
x]

    

1
0

.1
6
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_A
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 Sets the upper 
asymptote of the 
intermittent AI 
required multiplier 
(lower values more 
common) 

  

P
ar

et
o

 

In
te

rm
it

_A
I_

M
u

l

t_
Fi

n
al

 

    

n
/a

 

Se
co

n
d

ar
y/
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ic
it

y 
Sy

st
em
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rm
it

_A
I_

M
u

lt
_F

in
al

 Sets the final value (at 
intermittent 
penetration of 1) of 
the intermittent AI 
required multiplier 

  

U
n

if
o

rm
 

In
te

rm
it

_A
I_

M
u

lt
_F

in
al

_I
n

p
u

t[
M

in
] 

In
te

rm
it

_A
I_

M
u

lt
_F

in
al

_I
n

p
u

t[
M
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1
0
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tr
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it

y 
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st
em

 

R
et

ic
_E

ff
_M

u
lt

_A
sy

m
p

to
te

 

Sets the upper 
asymptote of the 
intermittent 
reticulation efficiency 
multiplier (lower 
values more 
common) 

  

P
ar

et
o

 

1
     

n
/a

 

Se
co

n
d

ar
y/

El
ec

t

ri
ci

ty
 S

ys
te

m
 

R
et

ic
_E

ff
_M

u
lt

_
Fi

n
al

 

Sets the final value (at 
intermittent 
penetration of 1) of 
the intermittent 
reticulation efficiency 
multiplier 

  

U
n

if
o

rm
 

R
et

ic
_E

ff
_M

u
lt

_

Fi
n

al
_I

n
p

u
t[

M
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] 

R
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_E

ff
_M

u
lt

_
Fi

n
al

_I
n

p
u
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M
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]    

1
0

.1
4

 

Se
co

n
d

ar
y 

A
I_

C
ap

Ex
_F

ra
ct

io
n

 Vector of fractions of 
secondary auxiliary 
infrastructure 
investment energy 
devoted to capital 
(construction and 
decommissioning) 
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n
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A
I_
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p

e
s 

U
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A
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C
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_F

ra
ct

io
n

_

In
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*,
 M
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C
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p
u
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1
0
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Se
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n
d
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y 

A
I_

D
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o
m

m
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o

n
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c
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o

n
 

Vector of fractions of 
secondary auxiliary 
infrastructure 
investment energy 
devoted to capital 
used in the 
decommissioning 
stage 
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m
is

si
o

n
_F

ra
c

ti
o

n
_I

n
p

u
t[

*,
 M

in
] 

A
I_

D
ec

o
m

m
is

si
o

n
_F

ra
c

ti
o

n
_I

n
p

u
t[

*,
 M
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1
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d
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y 

A
I_
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_S

p
lit
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o

r 

Vector of initial 
fractions of secondary 
auxiliary 
infrastructure input 
energy consisting of 
heat, divided by the 
heat share of initial 
EC supply 
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n
d
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A
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] 

   

1
0
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0

 

Se
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n
d

ar
y 

A
I_

EC
_S

p
lit

_L
aG

_F
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to
r 

Vector of initial 
fractions of secondary 
auxiliary 
infrastructure input 
energy consisting of 
liquid and gaseous 
fuels, divided by the 
LaG share of initial EC 
supply 

 

Se
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n
d

ar
y_

A
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p
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n
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rm
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_S
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*,
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] 

A
I_
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ac

to
r_

I
n

p
u

t[
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1
0
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n
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u
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Vector of values for 
secondary auxiliary 
infrastructure build 
time (investment 
decision to operation) 

yr 

Se
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n
d
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A
I_

ty
p
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U
n
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rm
 

A
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B
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 M
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A
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B
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t[

*,
 M
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] 

   

1
0

.1
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Se
co

n
d

ar
y 

A
u
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ry
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if
et
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e

 

Vector of values for 
secondary auxiliary 
infrastructure lifetime 
(in operation) 

yr 

Se
co

n
d
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A
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p
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U
n

if
o

rm
 

A
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Li
fe
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m

e_
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p
u

t[
*
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] 

A
I_
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m

e_
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p
u

t[
*

, M
ax
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1
0

.1
2

 

Se
co

n
d

ar
y 

P
C

_C
ap

Ex
_F

ra
ct

io
n

 Vector of fractions of 
secondary power 
capacity investment 
energy devoted to 
capital (construction 
and 
decommissioning) 
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n
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P
C
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U
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rm
 

P
C

_C
ap

Ex
_F
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u
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] 

P
C
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ct
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n

_I
n

p
u

t[
*,

 M
ax

] 

   

1
0

.1
 

Se
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n
d

ar
y 

P
C

_D
ec

o
m

m
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o

n
_F

r
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ti
o

n
 

Vector of fractions of 
secondary power 
capacity investment 
energy devoted to 
capital used in the 
decommissioning 
stage 

 

Se
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n
d
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P
C

_t
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U
n

if
o

rm
 

P
C

_D
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m
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p
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 M
in

] 
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m
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r
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n
_I

n
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u
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*,
 M
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1
0

.2
 

Se
co

n
d

ar
y 

P
C

_E
C

_S
p

lit
_H

ea
t_

Fa
ct

o
r 

Vector of initial 
fractions of secondary 
power capacity input 
energy consisting of 
heat, divided by the 
heat share of initial 
EC supply 

 

Se
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n
d
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P
C

_t
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U
n
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rm
 

P
C

_E
C

_S
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] 
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t_
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*,
 M
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] 

   

1
0
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Se
co

n
d

ar
y 

P
C

_E
C

_S
p

lit
_L

aG
_F

ac
t

o
r 

Vector of initial 
fractions of secondary 
power capacity input 
energy consisting of 
liquid and gaseous 
fuels, divided by the 
LaG share of initial EC 
supply 

 

Se
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n
d

ar
y_

P
C

_t
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U
n
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rm
 

P
C
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C

_S
p
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t

o
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] 
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 M
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] 

   

1
0

.3
 

Se
co

n
d

ar
y 

P
o

w
er

_C
ap
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it

y_
B

u
ild

_T
im

e 

Vector of values for 
secondary power 
capacity build time 
(investment decision 
to operation) 

yr 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

U
n

if
o

rm
 

P
C

_B
u

ild
_T

im
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p

u
t[

*,
 M
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] 

P
C

_B
u
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p

u
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1
0
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Se
co

n
d

ar
y 

P
o

w
er

_C
ap
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it

y_
Li
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m
e 

Vector of values for 
secondary power 
capacity lifetime (in 
operation) 

yr 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

U
n

if
o

rm
 

P
C

_L
if

et
im

e_
In

p
u

t[
*,

 

M
in

] 

P
C

_L
if
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e_
In

p
u

t[
*,

 
M

ax
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1
0

.6
 

Sy
st

em
 

C
o

n
tr

o
l/

In
ve

st
 

Sh
ar

e 

EU
_P

en
et

ra
ti

o
n

_L
i

m
it

 

Vector of penetration 
limits for EU PC types 
(at this limit, no 
further investment 
can occur due to 
operational 
limitations) 

 

En
d

_u
se

_P
C

_t
yp

es
 

U
n

if
o

rm
 

EU
_P

en
et

ra
ti

o
n

_L
i

m
it

_I
n

p
u

t[
*,

 M
in

] 

EU
_P

en
et

ra
ti

o
n

_L
i

m
it

_I
n

p
u

t[
*,

 M
ax

] 

   

1
2

.3
 

Sy
st

em
 C

o
n

tr
o

l/
In

ve
st

 

Sh
ar

e 

Se
c_

P
en

et
ra

ti
o

n
_L

im
it

 

Vector of penetration 
limits for secondary 
PC types (at this limit, 
no further investment 
can occur due to 
operational 
limitations) 

 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

U
n

if
o

rm
 

Se
c_

P
en

et
ra

ti
o

n
_L

im
it

_I
n

p
u

t[
*,

 M
in

] 

Se
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P
en
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ti
o

n
_L
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_I
n

p
u

t[
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 M
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] 

   

1
2

.2
 

Sy
st

em
 C

o
n

tr
o

l 

EC
_S

p
lit

_H
ea

t_
C

o
rr

el
at

o
r 

Random number 
between 0 and 1 used 
as an independent 
reference for 
correlating the initial 
fraction of PC and AI 
input energy 
consisting of heat 
relative to the heat 
share of initial EC 
supply 

  

U
n

if
o

rm
 

0
 

1
    

1
2

.9
 

Sy
st

em
 C

o
n

tr
o

l 

EC
_S

p
lit

_L
aG

_C
o

rr
el

at
o

r 

Random number 
between 0 and 1 used 
as an independent 
reference for 
correlating the initial 
fraction of PC and AI 
input energy 
consisting of LaG fuels 
relative to the LaG 
fuels share of initial 
EC supply 

  

U
n

if
o

rm
 

0
 

1
    

1
2

.9
 

Sy
st

em
 C

o
n

tr
o

l 

ER
O

I_
EC

C
_C

o
rr

el
at

o
r 

Random number 
between 0 and 1 used 
as an independent 
reference for 
correlating ECC 
estimates and the 
initial values of the 
EROI functions (in 
opposite directions) 

  

U
n

if
o

rm
 

0
 

1
    

1
2

.1
0
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o
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M

R
_L

im
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Sets the upper limit 
for the share of EC 
inflow that can be 
used within the GES 
metabolism 
(investment in new 
PC drops to zero at 
this limit) 

  

Tr
ia

n
gu

la
r 

ES
M

R
_L

im
it

_I
n

p
u

t[
M

in

] 

ES
M

R
_L

im
it

_I
n

p
u

t[
M

a
x]

 

ES
M

R
_L

im
it

_I
n

p
u

t[
M

in
]   

1
2

.1
 

 

9.4.2.1 Shape factor for Pareto distributions 

Logistic functions for demand flexibility and EU CF target as functions of time (see section 

9.3.2), and electricity system multipliers as functions of intermittent penetration (see section 

9.3.3.2.1.1), use upper function asymptotes as inputs to control the shape of the curves. 

These shapes are more sensitive to the choice of asymptote near the lower ends of the 

possible ranges. As such, these regions must be sampled more frequently to provide a greater 

representation of logistic function shapes: 

• To achieve this, probability distributions specifying upper asymptotes for these 

functions use the Pareto distribution (Type I): 

o These distributions are specified such that cumulative probabilities of 0.99 

occur between lower limits and twice the lower limit. 

• The lower ends of these ranges correspond to the inflection point being at the middle 

of the x range (2055 for time dependent trends, 50% intermittent generation 

penetration for electricity system multipliers) while the upper extremes correspond 

to the inflection point at the extremes of the x range (2055 for time dependent trends, 

50% intermittent generation penetration for electricity system multipliers), 

respectively. I.e., the function inflection point located at: 

o 2055 to 2100 for time dependent trends, 

o 50% to 100% intermittent generation penetration for the intermittent 

electricity AI required multiplier, and 

o 50% to 0% intermittent generation penetration for the intermittent electricity 

reticulation efficiency and upstream maximum CF multipliers. 
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• The Pareto distribution CDF expression can be rearranged to give the shape 

parameter: 𝑙𝑛(0.01) 𝑙𝑛(1 2⁄ )⁄ , or the vectorized equivalent. 

• This adjustment is used only where the upper asymptote parameter is not physically 

meaningful (unlike ES demand, EROI, and efficiency trends, where an upper asymptote 

value is specified). 

9.4.3 Stocks 
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d

d
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n

s)
 

R
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e
 

o
f 
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a

n
ge

 

(w
it

h
d

ra
w

al
 r

e
q

u
e

st
s)

 

 D
e
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y 

ti
m

e
 

En
d

-u
se

 

A
u

xi
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ry
_A

d

d
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n

 

M
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l 

D
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Vector of stocks of 
end-use auxiliary 
infrastructure peak 
capacity in the build 
phase 

EJ/yr 
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d

_u
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p
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_E
U

_A
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G
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w
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* 
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d
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I /
 

A
u
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e 

A
u
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n
v

es
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R
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e  

A
u
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u
i
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e 
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d
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A
u
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_O

p
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n

 

M
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l 

D
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Vector of stocks of 
end-use auxiliary 
infrastructure peak 
capacity in the 
operating phase 

EJ/yr 
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d
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A
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_L
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et
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e 

En
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se

 

P
o

w
er

_C
ap
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i
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_A

d
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n
 

M
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l 

D
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Vector of stocks of 
end-use nameplate 
EU power capacity in 
the build phase 
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1
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w
th

_R
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C
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P
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w
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e
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_P
C
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P
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w
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u
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e 

En
d

-u
se

 

P
o

w
er

_C
ap
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it
y_

O
p

e
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o

n
 

M
at

er
ia

l 

D
el

ay
 

Vector of stocks of 
end-use nameplate 
EU power capacity in 
the operating phase 

EJ/yr 

En
d

_u
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_P
C

_
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es
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it
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P
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m
e 
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w

 

EC
_C

o
n

su
m

p
ti

o
n

 

In
te

gr
at

o
r 

Vector of cumulative 
consumption by EC 
type (both final 
demand and ES 
metabolism); moving 
average of input used 
as smoothing 
function 

EJ 

EC
_t

yp
es

 

ve
ct

o
r(

0
 E

J)
 

Su
p

p
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_D
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d

_B
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.W
it

h
d
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e

 

  

En
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gy
 F
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w

 

EC
_I

n
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o
w

_I
n
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g 
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gr
at

o
r 

Vector of cumulative 
production by EC 
type; moving average 
of input used as 
smoothing function 

EJ 
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_t

yp
es
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o
r(

0
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n
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o
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w
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m
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n
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g 
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o
r 

Vector of cumulative 
GES metabolic 
consumption by EC 
type; moving average 
of input used as 
smoothing function 

EJ 

EC
_t

yp
es

 

ve
ct

o
r(

0
 E

J)
 

A
u

to
ca

ta
ly

ti
c_

Lo

o
p

 +
 

C
ap

it
al

_H
yp

er
cy

c

le
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A
rr

ay
 la

b
e

ls
 

In
it

ia
l v

al
u

e
/o

u
tf

lo
w

 

R
at

e
 o

f 
ch

an
ge

/i
n

p
u

ts
 

(a
d

d
it

io
n

s)
 

R
at

e
 

o
f 

ch
a

n
ge

 

(w
it

h
d

ra
w

al
 r

e
q

u
e

st
s)

 

 D
e

la
y 

ti
m

e
 

En
er

gy
 F

lo
w

 

Su
p

p
ly

_D
em

an
d

_B
al

an
ce

 

R
es

er
vo

ir
 

Vector of cumulative 
production minus 
consumption by EC 
type (indicates 
cumulative 
supply/demand 
imbalances) 

EJ 

EC
_t

yp
es

 

ve
ct

o
r(

0
 E

J)
 

EC
_I

n
fl

o
w

_R
at

e 

EC
_F

in
al

_D
em

an
d

 +
 A

u
to

ca
ta

ly
ti

c_
Lo

o
p

 +
 

C
ap

it
al

_H
yp

er
cy

cl
e

 

  

En
er

gy
 

Fl
o

w
/F

lo
w

 

R
o

u
ti

n
g 

En
d

_U
se

_O
u

tp
u

t 

In
te

gr
at

o
r 

Vector of cumulative 
power output by EU 
PC type (drives EU 
efficiency 
improvements) 

EJ 

En
d

_u
se

_P
C

_t
yp

es
 

ve
ct

o
r(

0
 E

J)
 

En
d

_U
se

_O
u

tp
u

t_
R

at
e

 

  

En
er

gy
 

Fl
o

w
/F

lo
w

 

R
o

u
ti

n
g 

Se
co

n
d

ar
y_

O
u

tp

u
t 

In
te

gr
at

o
r 

Vector of cumulative 
power output by 
secondary PC type 
(drives secondary 
efficiency 
improvements) 

EJ 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

ve
ct

o
r(

0
 E

J)
 

Se
co

n
d

ar
y_

O
u

tp
u

t_
R

at
e

 

  

En
er

gy
 F

lo
w

/M
ea

n
 S

to
ck

 
Ef

fi
ci

en
ci

es
 

En
d

_U
se

_C
o

n
v_

Ef
f_

M
ea

n

_I
n

te
g 

M
at

er
ia

l D
e

la
y 

Vector of cumulative 
new PC end-use 
conversion efficiency 
weighted by PC 
additions for PC in 
operation (for 
tracking mean 
efficiency of PC in 
operation) 

EJ/yr 

En
d

_u
se

_P
C

_t
yp

es
 

En
d

_U
se

_C
o

n
ve

rs
io

n
_E

ff
_

In
p

u
t[

*,
 M

in
] 

* 

In
it

ia
l_

En
d

_U
se

_P
C

 /
 

En
d

_U
se

_S
ec

to
r.

P
o

w
er

_C

ap
ac

it
y_

Li
fe

ti
m

e 

En
d

_U
se

_C
o

n
v_

Ef
f_

A
d

d
_

W
ei

gh
ti

n
g 

 

En
d

_U
se

_S
ec

to
r.

P
o

w
er

_C
ap

ac
it

y_
Li

fe
ti

m
e 

En
er

gy
 F

lo
w

/M
ea

n
 

St
o

ck
 E

ff
ic

ie
n

ci
es

 

En
d

_U
se

_E
S_

Ef
f_

M
ea

n

_I
n

te
g 

M
at

er
ia

l D
e

la
y 

Vector of cumulative 
new PC end-use to ES 
efficiency weighted 
by PC additions for PC 
in operation (for 
tracking mean 
efficiency of PC in 
operation) 

EJ/yr 

En
d

_u
se

_P
C

_t
yp

es
 

In
it

_E
n

d
_U

se
_E

S_
Ef

f_
P

C
_M

ea
n

 *
 

In
it

ia
l_

En
d

_U
se

_P
C

 /
 

En
d

_U
se

_S
ec

to
r.

P
o

w
er

_C
ap

ac
it

y_
Li

fe
ti

m
e

 

En
d

_U
se

_E
S_

Ef
f_

A
d

d
_

W
ei

gh
ti

n
g 

 

En
d

_U
se

_S
ec

to
r.

P
o

w
er

_C
ap

ac
it

y_
Li

fe
ti

m
e

 

En
er

gy
 F

lo
w

/M
ea

n
 S

to
ck

 
Ef

fi
ci

en
ci

es
 

Se
c_

C
o

n
v_

Ef
f_

M
ea

n
_I

n
te

g 

M
at

er
ia

l D
e

la
y 

Vector of cumulative 
new PC secondary 
conversion efficiency 
weighted by PC 
additions for PC in 
operation (for 
tracking mean 
efficiency of PC in 
operation) 

EJ/yr 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

Se
c_

C
o

n
ve

rs
io

n
_E

ff
_I

n
p

u
t

[*
, M

in
] 

* 

In
it

ia
l_

Se
co

n
d

ar
y_

P
C

 /
 

Se
co

n
d

ar
y_

Se
ct

o
r.

P
o

w
er

_

C
ap

ac
it

y_
Li

fe
ti

m
e

 

Se
c_

C
o

n
v_

Ef
f_

A
d

d
_W

ei
gh

ti
n

g  

Se
co

n
d

ar
y_

Se
ct

o
r.

P
o

w
er

_
C

ap
ac

it
y_

Li
fe

ti
m

e
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A
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e

ls
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it
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l v
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u

e
/o

u
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w

 

R
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e
 o

f 
ch

an
ge

/i
n

p
u
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(a
d

d
it

io
n

s)
 

R
at

e
 

o
f 

ch
a

n
ge

 

(w
it

h
d

ra
w

al
 r

e
q

u
e

st
s)

 

 D
e

la
y 

ti
m

e
 

En
er

gy
 F

lo
w

/M
ea

n
 S

to
ck

 
Ef

fi
ci

en
ci

es
 

Se
c_

R
et

ic
_E

ff
_M

ea
n

_I
n

te
g 

M
at

er
ia

l D
e

la
y 

Vector of cumulative 
new PC secondary 
reticulation efficiency 
weighted by PC 
additions for PC in 
operation (for 
tracking mean 
efficiency of PC in 
operation) 

EJ/yr 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

Se
c_

R
et

ic
u

la
ti

o
n

_E
ff

_I
n

p
u

t[
*,

 M
in

] 
* 

In
it

ia
l_

Se
co

n
d

ar
y_

P
C

 /
 

Se
co

n
d

ar
y_

Se
ct

o
r.

P
o

w
er

_

C
ap

ac
it

y_
Li

fe
ti

m
e

 

Se
c_

R
et

ic
_E

ff
_A

d
d

_W
ei

gh
ti

n
g  

Se
co

n
d

ar
y_

Se
ct

o
r.

P
o

w
er

_
C

ap
ac

it
y_

Li
fe

ti
m

e
 

En
er

gy
 F

lo
w

/P
ri

m
ar

y 
R

es
o

u
rc

e
 

N
R

E_
R

es
o

u
rc

e
 

R
es

er
vo

ir
 Vector of remaining 

non-renewable 
energy stocks by type, 
in terms of RURR 
(above terminal EROI) 

EJ 
N

R
E_

ty
p

es
 

In
it

ia
l_

N
R

E_
R

es
o

u
rc

e
 

ve
ct

o
r(

0
 E

J/
yr

) 

N
R

E_
Se

co
n

d
ar

y_
In

p
u

t_
R

at
e 

+ 
D

ir
ec

t_
N

R
E_

U
se

 

  

ER
O

I 

N
R

E_
ER

O
I_

P
C

_M
ea

n
_I

n

te
g 

M
at

er
ia

l D
e

la
y 

Vector of cumulative 
new NRE PC EROI 
weighted by PC 
additions for PC in 
operation (for 
tracking mean EROI of 
PC in operation) 

EJ/yr 

N
R

E_
ty

p
es

 

In
it

_N
R

E_
ER

O
I_

P
C

_M
ea

n
* 

In
it

ia
l_

N
R

E_
P

C
 /

 
P

ri
m

ar
y_

N
R

E_
Se

ct
o

r.
P

o

w
er

_C
ap

ac
it

y_
Li

fe
ti

m
e

 

N
R

E_
ER

O
I_

A
d

d
_W

ei
gh

t
in

g  

P
ri

m
ar

y_
N

R
E_

Se
ct

o
r.

P
o

w
er

_C
ap

ac
it

y_
Li

fe
ti

m
e

 

ER
O

I 

R
E_

ER
O

I_
P

C
_M

ea
n

_I
n

t

eg
 

M
at

er
ia

l D
e

la
y 

Vector of cumulative 
new RE PC EROI 
weighted by PC 
additions for PC in 
operation (for 
tracking mean EROI of 
PC in operation) 

EJ/yr 

R
E_

ty
p

es
 

In
it

_R
E_

ER
O

I_
P

C
_M

ea
n

* 
In

it
ia

l_
R

E_
P

C
 /

 
P

ri
m

ar
y_

R
E_

Se
ct

o
r.

P
o

w

er
_C

ap
ac

it
y_

Li
fe

ti
m

e 

R
E_

ER
O

I_
A

d
d

_W
ei

gh
ti

n
g  

P
ri

m
ar

y_
R

E_
Se

ct
o

r.
P

o
w

er
_C

ap
ac

it
y_

Li
fe

ti
m

e 

ER
O

I 

R
E_

R
ed

ev
el

o
p

m
en

t_
P

o
te

n
t

ia
l 

R
es

er
vo

ir
 Vector of cumulative 

unused RE potential 
available for 
redevelopment (post-
decommissioning) 

EJ/yr 

R
E_

ty
p

es
 

ve
ct

o
r(

0
 E

J/
yr

) 

m
ax

(P
ri

m
ar

y_
R

E_
Se

ct
o

r.
P

o
w

er
_C

ap
ac

it
y_

O
p

e
ra

ti
o

n
 -

 

P
ri

m
ar

y_
R

E_
Se

ct
o

r.
P

o
w

er
_

C
ap

ac
it

y_
A

d
d

it
io

n
, v

e
ct

o
r(

0
 

EJ
/y

r^
2

))
 

P
ri

m
ar

y_
R

E_
Se

ct
o

r.
P

o
w

er
_C

ap

ac
it

y_
A

d
d

it
io

n
 

  

P
ri

m
ar

y 
N

R
E 

P
o

w
er

_C
ap

ac
i

ty
_A

d
d

it
io

n
 

M
at

er
ia

l D
e

la
y 

Vector of stocks of 
NRE nameplate 
power capacity in the 
build phase 

EJ/yr 

N
R

E_
ty

p
es

 

(v
ec

to
r(

1
) 

+ 

In
it

_N
R

E_
G

ro
w

th
_R

at
e)

 *
 

In
it

ia
l_

N
R

E_
P

C
 

/ 

P
o

w
er

_C
ap

ac
i

ty
_L

if
et

im
e

 

N
R

E_
P

C
_I

n
ve

s
t  

P
o

w
er

_C
ap

ac
i

ty
_B

u
ild

_T
im

e 

P
ri

m
ar

y 
N

R
E 

P
o

w
er

_C
ap

ac

it
y_

O
p

e
ra

ti
o

n
 

M
at

er
ia

l 

D
el

ay
 

Vector of stocks of 
NRE nameplate 
power capacity in the 
operating phase 

EJ/yr 

N
R

E_
ty

p
es

 

In
it

ia
l_

N
R

E_
P

C
 /

 
P

o
w

er
_C

ap
ac

it
y_

Li
fe

ti
m

e 

P
o

w
er

_C
ap

ac
it

y_
A

d
d

it
io

n
 

 

P
o

w
er

_C
ap

ac
it

y_
Li

fe
ti

m
e 
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b
e
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it

ia
l v

al
u

e
/o

u
tf

lo
w

 

R
at

e
 o

f 
ch

an
ge

/i
n

p
u

ts
 

(a
d

d
it

io
n

s)
 

R
at

e
 

o
f 

ch
a

n
ge

 

(w
it

h
d

ra
w

al
 r

e
q

u
e

st
s)

 

 D
e

la
y 

ti
m

e
 

P
ri

m
ar

y 
R

E 

P
o

w
er

_C
ap

ac
i

ty
_A

d
d

it
io

n
 

M
at

er
ia

l D
e

la
y 

Vector of stocks of RE 
nameplate power 
capacity in the build 
phase 

EJ/yr 

R
E_

ty
p

es
 

(v
ec

to
r(

1
) 

+ 
In

it
_R

E_
G

ro
w

t

h
_R

at
e)

 *
 

In
it

ia
l_

R
E_

P
C

 /
 

P
o

w
er

_C
ap

ac
i

ty
_L

if
et

im
e

 

R
E_

P
C

_I
n

ve
st

 

 

P
o

w
er

_C
ap

ac
i

ty
_B

u
ild

_T
im

e 

P
ri

m
ar

y 
R

E 

P
o

w
er

_C
ap

ac

it
y_

O
p

e
ra

ti
o

n
 

M
at

er
ia

l 

D
el

ay
 

Vector of stocks of RE 
nameplate power 
capacity in the 
operating phase 

EJ/yr 

R
E_

ty
p

es
 

In
it

ia
l_

R
E_

P
C

 

/ 
P

o
w

er
_C

ap
ac

it
y_

Li
fe

ti
m

e 

P
o

w
er

_C
ap

ac
it

y_
A

d
d

it
io

n
 

 

P
o

w
er

_C
ap

ac
it

y_
Li

fe
ti

m
e 

Se
co

n
d

ar
y 

A
u

xi
lia

ry
_A

d
d

it
io

n
 

M
at

er
ia

l 

D
el

ay
 

Vector of stocks of 
secondary auxiliary 
infrastructure peak 
capacity in the build 
phase 

EJ/yr 

Se
co

n
d

ar
y_

A
I

_t
yp

es
 

(v
ec

to
r(

1
) 

+ 

In
it

_S
ec

_A
I_

G
ro

w
th

_R
at

e
) 

* 

In
it

ia
l_

Se
co

n
d

ar
y_

A
I /

 

A
u

xi
lia

ry
_L

if
e

ti
m

e 

A
u

xi
lia

ry
_I

n
v

es
tm

en
t_

R
at

e  

A
u

xi
lia

ry
_B

u
il

d
_T

im
e 

Se
co

n
d

ar
y 

A
u

xi
lia

ry
_O

p

er
at

io
n

 

M
at

er
ia

l 

D
el

ay
 

Vector of stocks of 
secondary auxiliary 
infrastructure peak 
capacity in the 
operating phase 

EJ/yr 

Se
co

n
d

ar
y_

A
I

_t
yp

es
 

In
it

ia
l_

Se
co

n

d
ar

y_
A

I /
 

A
u

xi
lia

ry
_L

if
e

ti
m

e 

A
u

xi
lia

ry
_A

d
d

it
io

n
 

 

A
u

xi
lia

ry
_L

if
e

ti
m

e 

Se
co

n
d

ar
y 

P
o

w
er

_C
ap

ac
i

ty
_A

d
d

it
io

n
 

M
at

er
ia

l D
e

la
y 

Vector of stocks of 
secondary nameplate 
power capacity in the 
build phase 

EJ/yr 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

(v
ec

to
r(

1
) 

+ 

In
it

_S
ec

_P
C

_G
ro

w
th

_R
at

e)
 *

 

In
it

ia
l_

Se
co

n
d

ar
y_

P
C

 /
 

P
o

w
er

_C
ap

ac
i

ty
_L

if
et

im
e

 

Se
co

n
d

ar
y_

P
C

_I
n

ve
st

_D
el

ay
 

 

P
o

w
er

_C
ap

ac
i

ty
_B

u
ild

_T
im

e 

Se
co

n
d

ar
y 

P
o

w
er

_C
ap

ac

it
y_

O
p

e
ra

ti
o

n
 

M
at

er
ia

l 

D
el

ay
 

Vector of stocks of 
secondary nameplate 
power capacity in the 
operating phase 

EJ/yr 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

In
it

ia
l_

Se
co

n

d
ar

y_
P

C
 /

 
P

o
w

er
_C

ap
ac

it
y_

Li
fe

ti
m

e 

P
o

w
er

_C
ap

ac
it

y_
A

d
d

it
io

n
 

 

P
o

w
er

_C
ap

ac
it

y_
Li

fe
ti

m
e 

Sy
st

em
 C

o
n

tr
o

l/
EC

 
C

o
m

m
it

te
d

 

EC
_D

ef
ic

it
_H

o
ri

zo
n

_I
n

te
g 

In
te

gr
at

o
r 

Vector of cumulative 
forecast EC deficit at 
the selected time 
horizon; moving 
average of input used 
as smoothing 
function 

EJ-yr 

EC
_t

yp
es

 

ve
ct

o
r(

0
 E

J-
yr

) 

EC
_D

ef
ic

it
_H

o
ri

zo
n

 

  

Sy
st

em
 C

o
n

tr
o

l/
EC

 
C

o
m

m
it

te
d

 

EU
_P

C
_P

la
n

_H
o

ri
zo

n
 

M
at

er
ia

l D
e

la
y 

Vector of stocks of EU 
PC set to be 
decommissioned 
within the build time 
of the corresponding 
EU PC type 

EJ/yr 

En
d

_u
se

_P
C

_t
yp

es
 

In
it

ia
l_

En
d

_U
se

_P
C

 /
 

En
d

_U
se

_S
ec

to
r.

P
o

w
er

_C
ap

ac
it

y_
Li

fe
ti

m
e

 

EU
_P

C
_D
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o

m
m

_P
re

e
m

p
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P
la

n
 

 

En
d

_U
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_S
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r.

P
o

w
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_C
ap
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it
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B

u
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_T
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 D
e
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y 

ti
m

e
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o
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o

l/
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C

o
m

m
it

te
d

 

Se
c_

P
C

_P
la

n
_H

o
ri
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n

 

M
at

er
ia

l D
e

la
y 

Vector of stocks of 
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9.4.3.1 Additional parameters 

A lower bound of vector(0 EJ/yr) is used for RE_Redevelopment_Potential, as usage of 

accumulated RE potential for redevelopment should be prevented when there is none 

available. 

Moving averages are calculated for EC_Consumption, EC_Inflow_Integ, and 

ES_Metabolism_Integ (using Averaging_Period) and EC_Deficit_Horizon_Integ (using 

Invest_Adjust_Time). These smoothing functions minimize short-term variations in critical 

feedback loops for greater system stability. 

9.4.4 Functions 

9.4.4.1 Expression, summation, and conditional functions 
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* (ES_Final_Demand_Mult / (vector(1) + 
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exp(min(vector(700), Initial_ES_Demand_RoC * ETime / 
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En
d

-u
se

 

A
I_

A
d

d
it

io
n

_

EC
_U

se
 

Ex
p

re
ss

io
n

 Vector of rates of energy 
carrier use for the 
purposes of adding new 
end-use auxiliary 
infrastructure 

EJ/yr 

EC
_t

yp
es

 sumc((vector(End_use_AI_types, 1) - 
AI_Decommission_Fraction) * AI_CapEx_Fraction * 
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En
d

-u
se

 

A
I_

D
ec

o
m

m
is

si
o

n
_E

C
_U

se
 

Ex
p

re
ss

io
n
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sumc(AI_Decommission_Fraction * AI_CapEx_Fraction * 
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(Demand_EC_Split / Initial_Supply_EC_Split) * 
AI_Initial_EC_Split / sumr(EC_Thermal_Equivalence * 
(Demand_EC_Split / Initial_Supply_EC_Split) * 
AI_Initial_EC_Split) 
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 Fractional share of total 
energy production from 
RE sources, adjusted for 
thermal equivalence 

  

sumv(EC_RE_Fraction * (EC_Thermal_Equivalence * 
EC_Inflow_Integ.Moving_Average / 
sumv(EC_Thermal_Equivalence * 
EC_Inflow_Integ.Moving_Average))) 

En
er

gy
 

Fl
o

w
/F

lo
w

 
R

o
u

ti
n

g 

EC
_D

ef
ic

it
_L

i

m
it

 

Ex
p

re
ss

io
n

 Lower allowable limit for 
EC deficit (upper limit for 
surplus; at this limit, 
corresponding secondary 
PC CF is reduced by 99%) 

yr  

~EC_Deficit_Limit_Base + 
(ETime/~Simulation_Base_Period) * 
~EC_Deficit_Limit_Slope 

En
er

gy
 

Fl
o

w
/F
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w

 
R

o
u
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n

g 
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_E
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C

o
n
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n
 

Ex
p

re
ss
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n

 Matrix of the conversion 
of energy service demand 
to input ECs (refers to 
reverse direction) 

 

EC
_t

yp
es

, 

ES
_t

yp
es

 

mult(End_Use_Output_Matrix, End_Use_Input_Scaled) 

En
er

gy
 

Fl
o

w
/F
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R

o
u
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n

g 
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d
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y_
Fa
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o

r 

Ex
p
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ss
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n

 

Vector of capacity factors 
by end-use PC type 

 

En
d

_u
se

_P
C

_
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p

es
 

End_Use_Output_Rate / max(vector(~PC_Zero_Approx), 
End_Use_Sector.Amount_in_Transit) 

En
er

gy
 

Fl
o

w
/F

lo
w

 
R

o
u
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n

g 
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d
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F_
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r
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t 
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p
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n

 

Vector of target capacity 
factors by end-use PC 
type (above target value, 
upkeep investment is 
triggered; follows logistic 
curve) 

 

En
d

_u
se

_P
C

_t
yp

es
 

End_Use_CF_Target_Asymptote / (vector(1) + 
(((End_Use_CF_Target_Asymptote / 
Init_End_Use_CF_Target) - vector(1))^(1 - (ETime / 
~Simulation_Base_Period))) * 
(((End_Use_CF_Target_Asymptote / 
End_Use_CF_Target_Final) - vector(1))^(ETime / 
~Simulation_Base_Period))) 

En
er

gy
 

Fl
o

w
/F
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w

 
R

o
u

ti
n

g 
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d
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se
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n

p
u

t

_S
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p
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n

 Matrix of conversion of 
end-use power output to 
input ECs (refers to 
reverse direction) 

 

En
d

_u
se

_P
C

_t
y

p
es

, E
C

_t
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es
 

trans(End_Use_Input_ID / 
End_Use_Conversion_Eff_PC_Mean) 
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w
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n
g 
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d
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u
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u
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M
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 Matrix of conversion of 
energy service demand to 
end-use power output 
(refers to reverse 
direction) 

 

ES
_t

yp
es

, 

En
d

_u
se

_P
C

_t
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es
 

End_Use_Output_Scaled / End_Use_ES_Eff_PC_Mean 

En
er
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o

w
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u
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n

g 
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d

_U
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u

t

p
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p
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Vector of power output 
by end-use PC type 

EJ/yr 

En
d

_u
se

_P
C

_
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p
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sumc(ES_Demand * End_Use_Output_Matrix) 

En
er

gy
 F

lo
w
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Matrix of normalized 
energy service provision 
by end-use PC type 

 

ES
_t
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es

, 

En
d

_u
se

_P
C

_t
yp

es
 

trans((End_Use_Output_ID * 
End_Use_Sector.Amount_in_Transit * 
End_Use_CF_Target * End_Use_ES_Eff_PC_Mean) / 
sumc(End_Use_Output_ID * 
End_Use_Sector.Amount_in_Transit * 
End_Use_CF_Target * End_Use_ES_Eff_PC_Mean)) 
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Matrix of conversion of 
NRE input to EC output 

 

N
R

E_
ty

p
es

, 

EC
_t

yp
es

 

mult(NRE_Secondary_Input_Matrix, 
Secondary_Output_Matrix) 

En
er

gy
 F

lo
w

/F
lo

w
 

R
o

u
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n
g 

N
R

E_
Se
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n

d
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u
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M
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x 

Ex
p
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Matrix of conversion of 
NRE input to secondary 
power output 

 

N
R

E_
ty

p
es

, 

Se
co

n
d

ar
y_

P
C

_t
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es
 

Sec_Conversion_Eff_PC_Mean * 
NRE_Secondary_Input_Scaled 

En
er

gy
 F
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w

/F
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w
 

R
o

u
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n
g 

N
R

E_
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n
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I

n
p

u
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R
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e_
M
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Ex
p
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n

 Vector of maximum 
secondary capacity to 
process primary NRE 
input by NRE type 

EJ/yr 
N

R
E_

ty
p

es
 

sumr(NRE_Secondary_Input_ID * 
Secondary_Sector.Amount_in_Transit * 
Secondary_CF_Max / Sec_Conversion_Eff_PC_Mean) 

En
er

gy
 F
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w

/F
lo

w
 

R
o

u
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n
g 

N
R
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n

d
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p
u
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_S
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p
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 Matrix of normalized 
capacity to process 
primary NRE input by 
secondary PC type 

 

N
R

E_
ty

p
es

, 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

(NRE_Secondary_Input_ID * 
Secondary_Sector.Amount_in_Transit * 
Secondary_CF_Max / Sec_Conversion_Eff_PC_Mean) / 
sumr(NRE_Secondary_Input_ID * 
Secondary_Sector.Amount_in_Transit * 
Secondary_CF_Max / Sec_Conversion_Eff_PC_Mean) 

En
er

gy
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o

w
/F
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w

 
R

o
u
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n

g 

R
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n
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n
 

Ex
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 Matrix of conversion of 
RE input to EC output 

 

R
E_

ty
p

es
, 

EC
_t
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es

 

mult(RE_Secondary_Input_Matrix, 
Secondary_Output_Matrix) 

En
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 F
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w

/F
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w
 

R
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n
g 

R
E_
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n
d
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M
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x 
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p
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Matrix of conversion of 
RE input to secondary 
power output 

 

R
E_
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p

es
, 

Se
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n
d

ar
y_

P
C

_t
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Sec_Conversion_Eff_PC_Mean * 
RE_Secondary_Input_Scaled 
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o

w
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R
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R
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I
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R
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e_
M
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p
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 Vector of maximum 
secondary capacity to 
process primary RE input 
by RE type 

EJ/yr 

R
E_

ty
p

es
 

sumr(RE_Secondary_Input_ID * 
Secondary_Sector.Amount_in_Transit * 
Secondary_CF_Max / Sec_Conversion_Eff_PC_Mean) 

En
er

gy
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w
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R
o
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n
g 

R
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 Matrix of normalized 
capacity to process 
primary RE input by 
secondary PC type 

 

R
E_

ty
p

es
, 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

(RE_Secondary_Input_ID * 
Secondary_Sector.Amount_in_Transit * 
Secondary_CF_Max / Sec_Conversion_Eff_PC_Mean) / 
sumr(RE_Secondary_Input_ID * 
Secondary_Sector.Amount_in_Transit * 
Secondary_CF_Max / Sec_Conversion_Eff_PC_Mean) 

En
er

gy
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o

w
/F
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w

 
R

o
u
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n

g 
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n
d
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y_

C
a

p
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it
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o
r 
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p
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n

 

Vector of capacity factors 
by secondary PC type 

 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 Secondary_Output_Rate / 

max(vector(~PC_Zero_Approx), 
Secondary_Sector.Amount_in_Transit) 
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u
rt

ai
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p

re
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Linearly curtails 
secondary PC CF when EC 
deficit of the relevant EC 
type goes negative, up to 
a maximum of 99% at the 
surplus limit 

 

Se
co

n
d

ar
y_

P
C

_t

yp
es

 

max(vector(0.01), sumr(if(EC_Deficit_Prev > 
vector(EC_types, 0 yr), vector(EC_types, 1), 
if(EC_Deficit_Prev < vector(EC_types, EC_Deficit_Limit), 
vector(EC_types, 0), vector(EC_types, 1) - 
(EC_Deficit_Prev / EC_Deficit_Limit))) * 
Secondary_Output_ID)) 

En
er

gy
 F

lo
w

/F
lo

w
 

R
o

u
ti

n
g 

Se
co

n
d

ar
y_

C
F_

M
ax

 

Ex
p
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Vector of maximum 
capacity factors by 
secondary PC type 
(reduced by increased 
intermittent penetration 
and curtailment due to 
oversupply) 

 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 Initial_Secondary_CF_Max * max(vector(0), vector(1) + 

((vector(1) - Primary_Generation_ID) * 
Secondary_Sector.Sec_Intermittent_ID + 
Secondary_Sector.Sec_Peaker_ID * 
Secondary_Sector.CF_Max_Peaker_Coeff + 
Secondary_Sector.Sec_Baseload_ID * 
Secondary_Sector.CF_Max_Baseload_Coeff) * 
Secondary_Sector.CF_Max_Mult_Actual) * 
Secondary_CF_Curtailment 

En
er

gy
 

Fl
o

w
/F

lo
w

 
R

o
u

ti
n

g 
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n
d
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y_

O

u
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u
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M
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x 
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p
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 Matrix of conversion of 
secondary power output 
to delivered ECs (reduced 
by increased intermittent 
penetration) 

 

Se
co

n
d

ar
y_

P

C
_t

yp
es

, 
EC

_t
yp

es
 

Secondary_Output_ID * Sec_Reticulation_Eff_PC_Mean * 
(vector(1) + Secondary_Sector.Sec_Intermittent_ID * 
Secondary_Sector.Retic_Eff_Mult_Actual) 

En
er

gy
 

Fl
o

w
/F

lo
w

 
R

o
u

ti
n

g 

Se
co

n
d
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O
u
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u

t_
R
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p
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n

 

Vector of power output 
by secondary PC type 

EJ/yr 

Se
co

n
d

ar
y_

P

C
_t

yp
es

 sumc(NRE_Secondary_Input_Rate * 
NRE_Secondary_Input_Matrix) + 
sumc(RE_Secondary_Input_Rate * 
RE_Secondary_Input_Matrix) 

En
er

gy
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o

w
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n
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n
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n
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S 

M
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m

 

C
o

n
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rg
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In
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p
t 

Skips realization and 
proceeds to the next 
when initialization fails to 
converge to a viable 
solution 

  On False: Initial_Cap_HC_Solver.Converged 
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w
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C
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p
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Vector of initial rates of 
energy carrier use for the 
purposes of adding new 
NRE PC and 
decommissioning end-of-
life NRE PC 

EJ/yr 

EC
_t

yp
es

 

sumc((vector(NRE_types, 1) - 
Primary_NRE_Sector.Decommission_Fraction) * 
NRE_CF_Max * Primary_NRE_Sector.CapEx_Fraction * 
((vector(NRE_types, 1) + Init_NRE_Growth_Rate) * 
(Initial_NRE_PC / Initial_NRE_EROI) * 
Primary_NRE_Sector.Initial_EC_Split)) + 
sumc(Primary_NRE_Sector.Decommission_Fraction * 
Primary_NRE_Sector.CapEx_Fraction * NRE_CF_Max * 
(Initial_NRE_PC / Init_NRE_EROI_PC_EoL) * 
Primary_NRE_Sector.Initial_EC_Split) 

En
er

gy
 

Fl
o

w
/I

n
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liz
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n
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n
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l E

S 
M

et
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R
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C
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p
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n

 Vector of initial rates of 
energy carrier use for the 
purposes of operating 
existing NRE power 
capacity 

EJ/yr 

EC
_t

yp
es

 sumc((vector(NRE_types, 1) - 
Primary_NRE_Sector.CapEx_Fraction) *  NRE_CF_Max * 
(Initial_NRE_PC  / Init_NRE_EROI_PC_Mean) * 
Primary_NRE_Sector.Initial_EC_Split) 
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Vector of initial rates of 
energy carrier use for the 
purposes of adding new 
RE PC and 
decommissioning end-of-
life RE PC 

EJ/yr 

EC
_t

yp
es

 

sumc(RE_Output_Thermal_Equiv * (vector(RE_types, 1) - 
Primary_RE_Sector.Decommission_Fraction) * 
Initial_RE_CF_Max * Primary_RE_Sector.CapEx_Fraction 
* ((vector(RE_types, 1) + Init_RE_Growth_Rate) * 
(Initial_RE_PC / Initial_RE_EROI) * 
Primary_RE_Sector.Initial_EC_Split)) + 
sumc(RE_Output_Thermal_Equiv * 
Primary_RE_Sector.Decommission_Fraction * 
Primary_RE_Sector.CapEx_Fraction * Initial_RE_CF_Max 
* (Initial_RE_PC / Init_RE_EROI_PC_EoL) * 
Primary_RE_Sector.Initial_EC_Split) 

En
er

gy
 

Fl
o

w
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n
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liz
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n
/I

n
i
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 E
S 
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C
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p
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n

 Vector of initial rates of 
energy carrier use for the 
purposes of operating 
existing RE power 
capacity 

EJ/yr 

EC
_t

yp
es

 sumc(RE_Output_Thermal_Equiv * (vector(RE_types, 1) - 
Primary_RE_Sector.CapEx_Fraction) *  Initial_RE_CF_Max 
* (Initial_RE_PC  / Init_RE_EROI_PC_Mean) * 
Primary_RE_Sector.Initial_EC_Split) 

En
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Vector of initial rates of 
energy carrier use for the 
purposes of adding new 
secondary AI and 
decommissioning end-of-
life secondary AI 

EJ/yr 

EC
_t

yp
es

 

sumc((vector(Secondary_AI_types, 1) - 
Secondary_Sector.AI_Decommission_Fraction) * 
Secondary_Sector.AI_CapEx_Fraction * 
((vector(Secondary_AI_types, 1) + 
Init_Sec_AI_Growth_Rate) * Initial_Secondary_AI * 
Secondary_AI_ECC / 
Secondary_Sector.Auxiliary_Lifetime) * 
Secondary_Sector.AI_Initial_EC_Split) + 
sumc(Secondary_Sector.AI_Decommission_Fraction * 
Secondary_Sector.AI_CapEx_Fraction * 
(Initial_Secondary_AI / 
Secondary_Sector.Auxiliary_Lifetime) * 
Secondary_AI_ECC * 
Secondary_Sector.AI_Initial_EC_Split) 

En
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 Vector of initial rates of 
energy carrier use for the 
purposes of operating 
existing secondary 
auxiliary infrastructure 

EJ/yr 

EC
_t

yp
es

 sumc((vector(Secondary_AI_types, 1) - 
Secondary_Sector.AI_CapEx_Fraction) *  
(Initial_Secondary_AI * Secondary_AI_ECC / 
Secondary_Sector.Auxiliary_Lifetime) * 
Secondary_Sector.AI_Initial_EC_Split) 

En
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gy
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Vector of initial rates of 
energy carrier use for the 
purposes of adding new 
secondary PC and 
decommissioning end-of-
life secondary PC 

EJ/yr 

EC
_t

yp
es

 

sumc((vector(Secondary_PC_types, 1) - 
Secondary_Sector.PC_Decommission_Fraction) * 
Secondary_Sector.PC_CapEx_Fraction * 
((vector(Secondary_PC_types, 1) + 
Init_Sec_PC_Growth_Rate) * Initial_Secondary_PC * 
Secondary_PC_ECC / 
Secondary_Sector.Power_Capacity_Lifetime) * 
Secondary_Sector.PC_Initial_EC_Split) + 
sumc(Secondary_Sector.PC_Decommission_Fraction * 
Secondary_Sector.PC_CapEx_Fraction * 
(Initial_Secondary_PC / 
Secondary_Sector.Power_Capacity_Lifetime) * 
Secondary_PC_ECC * 
Secondary_Sector.PC_Initial_EC_Split) 
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gy
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 Vector of initial rates of 
energy carrier use for the 
purposes of operating 
exisiting secondary power 
capacity 

EJ/yr 

EC
_t

yp
es

 sumc((vector(Secondary_PC_types, 1) - 
Secondary_Sector.PC_CapEx_Fraction) *  
(Initial_Secondary_PC * Secondary_PC_ECC / 
Secondary_Sector.Power_Capacity_Lifetime) * 
Secondary_Sector.PC_Initial_EC_Split) 
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Sum of initial EC flows for 
construction, operation, 
and decommissioning of 
primary and secondary PC 
and AI 

EJ/yr 

EC
_t

yp
es

 Init_NRE_CapEx_EC_Use, Init_NRE_Operation_EC_Use, 
Init_RE_CapEx_EC_Use, Init_RE_Operation_EC_Use, 
Init_Sec_AI_Operation_EC_Use, 
Init_Sec_AI_CapEx_EC_Use, Init_Sec_PC_CapEx_EC_Use, 
Init_Sec_PC_Operation_EC_Use 

En
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gy
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Matrix of normalized 
initial flow of ECs to end-
use PC types 

 

EC
_t

yp
es

, 

En
d

_u
se

_P
C

_t
yp

es
 

Init_End_Use_Prop_Input[*, Numeral] * 
(vector(End_use_PC_types, 1) + End_Use_Prop_Rand * 
Init_End_Use_Prop_Input[*, Error]) * End_Use_Input_ID 
/ sumr(Init_End_Use_Prop_Input[*, Numeral] * 
(vector(End_use_PC_types, 1) + End_Use_Prop_Rand * 
Init_End_Use_Prop_Input[*, Error]) * End_Use_Input_ID) 

En
er

gy
 

Fl
o

w
/I

n
it

ia
li

za
ti

o
n

 

In
it

ia
l_

EC
_N

et
_S

u
p

p
ly

 

Ex
p

re
ss

io
n

 

Vector of initial net EC 
supply (minus initial 
autocatalytic loop value) 

EJ/yr 
EC

_t
yp

es
 

Initial_EC_Supply - Initial_Autocatalytic_Loop 

En
er

gy
 

Fl
o

w
/I

n
it

ia
liz

at
io

n
 

In
it

ia
l_

EC
_

Su
p

p
ly

 

Ex
p

re
ss

io
n

 

Vector of initial gross EC 
supply 

EJ/yr 

EC
_t

yp
es

 

sumc(Initial_Secondary_Output_Rate * 
Sec_Reticulation_Eff_Input[*, Min] * 
Secondary_Output_ID) 

En
er

gy
 

Fl
o

w
/I

n
it

ia
liz

at
io

n
 

In
it

ia
l_

En
d

_U
se

_A
I 

Ex
p

re
ss

io
n

 

Vector of initial end-use 
AI stocks (in operation) 

EJ/yr 

En
d

_u
se

_

A
I_

ty
p

es
 

sumc(Initial_End_Use_Output_Rate * 
End_Use_Sector.PC_AI_ID) * ((Init_End_Use_Peak_Factor 
- vector(1)) * vector(1 - Initial_Demand_Flex) + vector(1)) 

En
er

gy
 

Fl
o

w
/I

n
it

ia
liz

at
i

o
n

 

In
it

ia
l_

En
d

_U
se

_O
u

tp
u

t_
R

at
e

 

Ex
p

re
ss

io
n

 

Vector of initial end-use 
power output 

EJ/yr 

En
d

_u
se

_P
C

_t
y

p
es

 End_Use_Conversion_Eff_Input[*, Min] * 
sumc((Initial_EC_Net_Supply - Initial_Cap_HC_Solver) * 
Init_End_Use_Prop_Norm) 

En
er

gy
 

Fl
o

w
/I

n
it

ia
l

iz
at

io
n

 

In
it

ia
l_

En
d

_U
se

_P
C

 

Ex
p

re
ss

io
n

 

Vector of initial end-use 
PC stocks (in operation) 

EJ/yr 

En
d

_u
se

_P

C
_t

yp
es

 

Initial_End_Use_Output_Rate / Init_End_Use_CF_Target 

En
er

gy
 

Fl
o

w
/I

n
it

ia
l

iz
at

io
n

 

In
it

ia
l_

ES
_

D
em

an
d

 

Ex
p

re
ss

io
n

 

Vector of initial energy 
services delivered 

EJ/yr 

ES
_t

yp
es

 

sumc(Initial_End_Use_Output_Rate * 
End_Use_Output_ID * Init_End_Use_ES_Eff_PC_Mean) 

En
er

gy
 

Fl
o

w
/I

n
it

ia
l

iz
at

io
n

 

In
it

ia
l_

N
R

E

_P
C

 

Ex
p

re
ss

io
n

 

Vector of initial NRE PC 
stocks (in operation) 

EJ/yr 

N
R

E_
ty

p
es

 

(Initial_NRE_Output_Rate - Initial_Direct_NRE_Use) / 
NRE_CF_Max 

En
er

gy
 

Fl
o

w
/I

n
it

ia
l

iz
at

io
n

 

In
it

ia
l_

R
E_

P
C

 

Ex
p

re
ss

io
n

 

Vector of initial RE PC 
stocks (in operation) 

EJ/yr 

R
E_

ty
p

es
 

Initial_RE_Output_Rate / Initial_RE_CF_Max 

En
er

gy
 

Fl
o

w
/I

n
it

ia
l

iz
at

io
n

 

In
it

ia
l_

Se
co

n
d

ar
y_

A
I 

Ex
p

re
ss

io
n

 

Vector of initial 
secondary AI stocks (in 
operation) 

EJ/yr 

Se
co

n
d

ar
y

_A
I_

ty
p

es
 

sumc(Initial_Secondary_Output_Rate * 
Secondary_Sector.PC_AI_ID) * 
((Init_Secondary_Peak_Factor - vector(1)) * vector(1 - 
Initial_Demand_Flex) + vector(1)) 
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En
er

gy
 F

lo
w

/I
n

it
ia

liz
at

io
n

 

In
it

ia
l_

Se
co

n
d

ar
y_

O
u

tp
u

t_
R

at
e

 

Ex
p

re
ss

io
n

 

Vector of initial 
secondary power output 

EJ/yr 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

Sec_Conversion_Eff_Input[*, Min] * 
(sumc((Initial_NRE_Output_Rate - 
Initial_Direct_NRE_Use) * (Init_Secondary_Prop_Input[*, 
Numeral] * (vector(1) + Secondary_Prop_Rand * 
Init_Secondary_Prop_Input[*, Error]) * 
NRE_Secondary_Input_ID / 
sumr(Init_Secondary_Prop_Input[*, Numeral] * 
(vector(1) + Secondary_Prop_Rand * 
Init_Secondary_Prop_Input[*, Error]) * 
NRE_Secondary_Input_ID))) + 
sumc(Initial_RE_Output_Rate * 
(Init_Secondary_Prop_Input[*, Numeral] * (vector(1) + 
Secondary_Prop_Rand * Init_Secondary_Prop_Input[*, 
Error]) * RE_Secondary_Input_ID / 
sumr(Init_Secondary_Prop_Input[*, Numeral] * 
(vector(1) + Secondary_Prop_Rand * 
Init_Secondary_Prop_Input[*, Error]) * 
RE_Secondary_Input_ID)))) 

En
er

gy
 

Fl
o

w
/I

n
it

ia
li

za
ti

o
n

 

In
it

ia
l_

Se
co

n
d

ar
y_

P
C

 

Ex
p

re
ss

io
n

 

Vector of initial 
secondary PC stocks (in 
operation) 

EJ/yr 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

Initial_Secondary_Output_Rate / 
Initial_Secondary_CF_Max 

En
er

gy
 

Fl
o

w
/I

n
it

ia
liz

at
io

n
 

In
it

ia
l_

Su
p

p
ly

_E
C

_S
p

lit
 

Ex
p

re
ss

io
n

 Vector of fractional 
shares of initial supply by 
EC, adjusted for thermal 
equivalence (does not 
sum to one) 

 

EC
_t

yp
es

 

Initial_EC_Supply / sumv(EC_Thermal_Equivalence * 
Initial_EC_Supply) 

En
er

gy
 

Fl
o

w
/M

ea
n

 S
to

ck
 

Ef
fi

ci
en

ci
es

 

En
d

_U
se

_C
o

n
v_

Ef

f_
A

d
d

_W
ei

gh
ti

n
g 

Ex
p

re
ss

io
n

 

Vector of new PC end-use 
conversion efficiency 
weighted by PC additions 

EJ/yr
^2 

En
d

_u
se

_P
C

_t
yp

e

s End_Use_Sector.Power_Capacity_Addition * 
End_Use_Conversion_Eff 

En
er

gy
 

Fl
o

w
/M

ea
n

 S
to

ck
 

Ef
fi

ci
en

ci
es

 

En
d

_U
se

_C
o

n
ve

rs

io
n

_E
ff

_P
C

_M
ea

n
 

Ex
p

re
ss

io
n

 

Vector of mean end-use 
conversion efficiency for 
PC in operation 

 

En
d

_u
se

_P
C

_t
yp

e

s 

if(End_Use_Sector.Amount_in_Transit < 
vector(~PC_Zero_Approx), End_Use_Conversion_Eff, 
End_Use_Conv_Eff_Mean_Integ.Amount_in_Transit / 
max(End_Use_Sector.Amount_in_Transit, 
~PC_Zero_Approx)) 

En
er

gy
 

Fl
o

w
/M

ea
n

 
St

o
ck

 E
ff

ic
ie

n
ci

es
 

En
d

_U
se

_E
S_

Ef
f

_A
d

d
_W

ei
gh

ti
n

g 

Ex
p

re
ss

io
n

 

Vector of new PC end-use 
to ES efficiency weighted 
by PC additions 

EJ/yr
^2 

En
d

_u
se

_P
C

_t
yp

es
 End_Use_Sector.Power_Capacity_Addition * 

End_Use_ES_Eff 

En
er

gy
 

Fl
o

w
/M

ea
n

 S
to

ck
 

Ef
fi

ci
en

ci
es

 

En
d

_U
se

_E
S_

Ef
f_

P
C

_M
ea

n
 

Ex
p

re
ss

io
n

 

Vector of mean end-use 
to ES efficiency for PC in 
operation 

 

En
d

_u
se

_P
C

_t
yp

e

s 

if(End_Use_Sector.Amount_in_Transit < 
vector(~PC_Zero_Approx), End_Use_ES_Eff, 
End_Use_ES_Eff_Mean_Integ.Amount_in_Transit / 
max(End_Use_Sector.Amount_in_Transit, 
~PC_Zero_Approx)) 
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Expression/condition/inputs 

En
er

gy
 

Fl
o

w
/M

ea
n

 S
to

ck
 

Ef
fi

ci
en

ci
es

 

Se
c_

C
o

n
v_

Ef
f_

A
d

d
_W

ei
gh

ti
n

g 

Ex
p

re
ss

io
n

 Vector of new PC 
secondary conversion 
efficiency weighted by PC 
additions 

EJ/yr
^2 

Se
co

n
d

ar
y_

P
C

_t
y

p
es

 Secondary_Sector.Power_Capacity_Addition * 
Sec_Conversion_Eff 

En
er

gy
 F

lo
w

/M
ea

n
 

St
o

ck
 E

ff
ic

ie
n

ci
es

 

Se
c_

C
o

n
ve

rs
io

n
_E

ff
_P

C
_M

ea
n

 

Ex
p

re
ss

io
n

 Vector of mean 
secondary conversion 
efficiency for PC in 
operation 

 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

if(Secondary_Sector.Amount_in_Transit < 
vector(~PC_Zero_Approx), Sec_Conversion_Eff, 
Sec_Conv_Eff_Mean_Integ.Amount_in_Transit / 
max(Secondary_Sector.Amount_in_Transit, 
vector(~PC_Zero_Approx))) 

En
er

gy
 F

lo
w

/M
ea

n
 

St
o

ck
 E

ff
ic

ie
n

ci
es

 

Se
c_

R
et

ic
_E

ff
_A

d
d

_

W
ei

gh
ti

n
g 

Ex
p

re
ss

io
n

 Vector of new PC 
secondary reticulation 
efficiency weighted by PC 
additions 

EJ/yr
^2 

Se
co

n
d

ar
y_

P
C

_t
yp

e

s Secondary_Sector.Power_Capacity_Addition * 
Sec_Reticulation_Eff 

En
er

gy
 F

lo
w

/M
ea

n
 

St
o

ck
 E

ff
ic

ie
n

ci
es

 

Se
c_

R
et

ic
u

la
ti

o
n

_E

ff
_P

C
_M

ea
n

 

Ex
p

re
ss

io
n

 Vector of mean 
secondary reticulation 
efficiency for PC in 
operation 

 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

if(Secondary_Sector.Amount_in_Transit < 
vector(~PC_Zero_Approx), Sec_Reticulation_Eff, 
Sec_Retic_Eff_Mean_Integ.Amount_in_Transit / 
max(Secondary_Sector.Amount_in_Transit, 
vector(~PC_Zero_Approx))) 

En
er

gy
 F

lo
w

/N
ew

 P
C

 E
ff

ic
ie

n
ci

es
 

En
d

_U
se

_C
o

n
ve

rs
io

n
_E

ff
 

Ex
p

re
ss

io
n

 Vector of new PC end-use 
conversion efficiency 
(follows logistic curve; 
function of cumulative 
end-use power output) 

 

En
d

_u
se

_P
C

_t
yp

es
 

((Final_End_Use_Conversion_Eff - 
End_Use_Conversion_Eff_Base) / (vector(1) + 
(((Final_End_Use_Conversion_Eff - 
Init_End_Use_Conversion_Eff) / 
(Init_End_Use_Conversion_Eff - 
End_Use_Conversion_Eff_Base))^(vector(1) - 
End_Use_Output_Norm)) * ((((vector(1) + 
((Final_End_Use_Conversion_Eff - 
Init_End_Use_Conversion_Eff) / 
(Init_End_Use_Conversion_Eff - 
End_Use_Conversion_Eff_Base)))^vector(-1) - 
((Init_End_Use_Conversion_Eff - 
End_Use_Conversion_Eff_Input[*, Min]) / 
(Final_End_Use_Conversion_Eff - 
End_Use_Conversion_Eff_Base)))^vector(-1) - 
vector(1))^End_Use_Output_Norm))) + 
End_Use_Conversion_Eff_Base 

En
er

gy
 F

lo
w

/N
ew

 P
C

 E
ff

ic
ie

n
ci

es
 

En
d

_U
se

_E
S_

Ef
f 

Ex
p

re
ss

io
n

 Vector of new PC end-use 
to ES efficiency (follows 
logistic curve; function of 
cumulative end-use 
power output) 

 

En
d

_u
se

_P
C

_t
yp

es
 

((Final_End_Use_ES_Eff - End_Use_ES_Eff_Base) / 
(vector(1) + (((Final_End_Use_ES_Eff - 
Init_End_Use_ES_Eff) / (Init_End_Use_ES_Eff - 
End_Use_ES_Eff_Base))^(vector(1) - 
End_Use_Output_Norm)) * ((((vector(1) + 
((Final_End_Use_ES_Eff - Init_End_Use_ES_Eff) / 
(Init_End_Use_ES_Eff - End_Use_ES_Eff_Base)))^vector(-
1) - ((Init_End_Use_ES_Eff - 
Init_End_Use_ES_Eff_PC_Mean) / (Final_End_Use_ES_Eff 
- End_Use_ES_Eff_Base)))^vector(-1) - 
vector(1))^End_Use_Output_Norm))) + 
End_Use_ES_Eff_Base 
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En
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 F
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w

/N
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 P
C

 

Ef
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en
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En
d

_U
se

_O
u

tp
u

t_
N

o
rm

 

Ex
p

re
ss

io
n

 
Vector of normalized 
end-use output power (1 
between incept date and 
sim. beginning) divided by 
normalized mean PC 
output power value 
(negative), assuming 
linear output trend since 
incept 

 

En
d

_u
se

_P
C

_t
yp

es
 

max(vector(-49), 2 * End_Use_Output / 
(Initial_End_Use_Output_Rate * 
End_Use_Sector.Power_Capacity_Lifetime * 
((End_Use_Sector.Power_Capacity_Lifetime / (4 * 
(vector(StartTime + 1900 yr) - End_Use_Incept_Year))) - 
vector(1)))) 

En
er

gy
 F

lo
w

/N
ew

 P
C

 E
ff

ic
ie

n
ci

es
 

Se
c_

C
o

n
ve

rs
io

n
_E

ff
 

Ex
p

re
ss

io
n

 

Vector of new PC 
secondary conversion 
efficiency (follows logistic 
curve; function of 
cumulative secondary 
power output) 

 
Se

co
n

d
ar

y_
P

C
_t

yp
es

 

((Final_Sec_Conversion_Eff - Sec_Conversion_Eff_Base) / 
(vector(1) + (((Final_Sec_Conversion_Eff - 
Init_Sec_Conversion_Eff) / (Init_Sec_Conversion_Eff - 
Sec_Conversion_Eff_Base))^(vector(1) - 
Secondary_Output_Norm)) * ((((vector(1) + 
((Final_Sec_Conversion_Eff - Init_Sec_Conversion_Eff) / 
(Init_Sec_Conversion_Eff - 
Sec_Conversion_Eff_Base)))^vector(-1) - 
((Init_Sec_Conversion_Eff - Sec_Conversion_Eff_Input[*, 
Min]) / (Final_Sec_Conversion_Eff - 
Sec_Conversion_Eff_Base)))^vector(-1) - 
vector(1))^Secondary_Output_Norm))) + 
Sec_Conversion_Eff_Base 

En
er

gy
 F

lo
w

/N
ew

 P
C

 E
ff

ic
ie

n
ci

es
 

Se
c_

R
et

ic
u

la
ti

o
n

_E
ff

 

Ex
p

re
ss

io
n

 

Vector of new PC 
secondary reticulation 
efficiency (follows logistic 
curve; function of 
cumulative secondary 
power output) 

 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

((Final_Sec_Reticulation_Eff - Sec_Reticulation_Eff_Base) 
/ (vector(1) + (((Final_Sec_Reticulation_Eff - 
Init_Sec_Reticulation_Eff) / (Init_Sec_Reticulation_Eff - 
Sec_Reticulation_Eff_Base))^(vector(1) - 
Secondary_Output_Norm)) * ((((vector(1) + 
((Final_Sec_Reticulation_Eff - Init_Sec_Reticulation_Eff) / 
(Init_Sec_Reticulation_Eff - 
Sec_Reticulation_Eff_Base)))^vector(-1) - 
((Init_Sec_Reticulation_Eff - 
Sec_Reticulation_Eff_Input[*, Min]) / 
(Final_Sec_Reticulation_Eff - 
Sec_Reticulation_Eff_Base)))^vector(-1) - 
vector(1))^Secondary_Output_Norm))) + 
Sec_Reticulation_Eff_Base 

En
er

gy
 F

lo
w

/N
ew

 P
C

 

Ef
fi

ci
en

ci
es

 

Se
co

n
d

ar
y_

O
u
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u

t_
N

o
rm

 

Ex
p

re
ss

io
n

 

Vector of normalized 
secondary output power 
(1 between incept date 
and sim. beginning) 
divided by normalized 
mean PC output power 
value (negative), 
assuming linear output 
trend since incept 

 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

max(vector(-49), 2 * Secondary_Output / 
(Initial_Secondary_Output_Rate * 
Secondary_Sector.Power_Capacity_Lifetime * 
((Secondary_Sector.Power_Capacity_Lifetime / (4 * 
(vector(StartTime + 1900 yr) - Sec_Incept_Year))) - 
vector(1)))) 

En
er

gy
 

Fl
o

w
/P

ri
m
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y 

R
es

o
u

rc
e

 

D
ir

ec
t_

N
R

E_
U

se
 

Ex
p

re
ss

io
n

 

Vector of direct (non-
energy) use of primary 
resource by NRE type 
(initial values scale with 
the mean of final ES 
demand relative to initial 
ES demand) 

EJ/yr 

N
R

E_
ty

p
es

 

Initial_Direct_NRE_Use * meanv(ES_Demand / 
Initial_ES_Demand) 

En
er

gy
 

Fl
o

w
/P

ri
m

ar
y 

R
es

o
u

rc
e

 

G
H

G
_E

m
is

si
o

n
s 

Ex
p

re
ss

io
n

 

Cumulative GHG 
emissions based on 
primary energy GHG 
intensity values (includes 
constant estimate for 
agriculture and land use 
emissions) 

  sumv((Initial_NRE_Resource - NRE_Resource) * 
GHG_Intensity) + Non_ES_Emissions * ETime 
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N
R
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o
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Ex
p
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Vector of capacity factors 
by NRE type 

 

N
R

E_
ty

p
es

 

NRE_Secondary_Input_Rate / 
max(vector(~PC_Zero_Approx), 
Primary_NRE_Sector.Amount_in_Transit) 

En
er

gy
 

Fl
o

w
/P

ri
m
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R
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o
u
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e

 

N
R

E_
D

ep
le

ti

o
n

 

Ex
p

re
ss

io
n

 Vector of normalized 
resource depletion by 
NRE type (0 at sim. 
beginning, 1 when 
terminal EROI is reached) 

 

N
R

E_
ty

p
es

 

(Initial_NRE_Resource - NRE_Resource) / 
Initial_NRE_Resource 

En
er

gy
 

Fl
o

w
/P
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y 

R
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o
u
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e

 

N
R

E_
P
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d

u
ct
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n

_R

at
e_

M
ax

 

Ex
p

re
ss

io
n

 Vector of maximum 
primary NRE capacity to 
produce output by NRE 
type 

EJ/yr 

N
R

E_
ty

p
es

 

Primary_NRE_Sector.Amount_in_Transit * NRE_CF_Max 

En
er

gy
 

Fl
o

w
/P

ri
m

ar
y 

R
es

o
u
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e

 

N
R

E_
Se

co
n

d
ar

y
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n

p
u
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R
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e

 

Ex
p

re
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n

 Vector of actual primary 
NRE output by NRE type 
(minimum of primary and 
secondary capacities) 

EJ/yr 

N
R

E_
ty

p
es

 

min(NRE_Production_Rate_Max, 
NRE_Secondary_Input_Rate_Max) 

En
er

gy
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w
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u
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R
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C
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r 
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p
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io
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Vector of capacity factors 
by RE type 

 

R
E_

ty
p

es
 

RE_Secondary_Input_Rate / 
max(vector(~PC_Zero_Approx), 
Primary_RE_Sector.Amount_in_Transit) 

En
er

gy
 

Fl
o

w
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R
es

o
u

rc
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R
E_

C
F_

M
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p
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 Vector of maximum 
capacity factors by RE 
type (reduced by 
increased intermittent 
penetration) 

 

R
E_

ty
p

es
 

Initial_RE_CF_Max * (vector(1) + 
Secondary_Sector.RE_Intermittent_ID * 
Secondary_Sector.CF_Max_Mult_Actual) 

En
er

gy
 

Fl
o

w
/P
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m
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y 

R
es

o
u

rc
e

 

R
E_

Ex
h

au
st
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n
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p
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n

 Vector of normalized 
resource exhaustion by 
RE type (0 at sim. 
beginning, 1 when 
terminal EROI is reached) 

 

R
E_

ty
p

es
 

min(vector(99), (Primary_RE_Sector.Amount_in_Transit * 
RE_CF_Max - Initial_RE_Output_Rate) / (RE_Potential - 
Initial_RE_Output_Rate)) 

En
er

gy
 

Fl
o

w
/P

ri
m

ar
y 

R
es

o
u

rc
e

 

R
E_

P
ro

d
u

ct
io

n
_R

at
e_

M
ax

 

Ex
p

re
ss

io
n

 Vector of maximum 
primary RE capacity to 
produce output by RE 
type 

EJ/yr 

R
E_

ty
p

es
 

Primary_RE_Sector.Amount_in_Transit * RE_CF_Max 

En
er

gy
 

Fl
o

w
/P

ri
m

ar
y 

R
es

o
u

rc
e

 

R
E_

Se
co

n
d

ar

y_
In

p
u

t_
R

at
e

 

Ex
p

re
ss

io
n

 Vector of actual primary 
RE output by RE type 
(minimum of primary and 
secondary capacities) 

EJ/yr 

R
E_

ty
p

es
 

min(RE_Production_Rate_Max, 
RE_Secondary_Input_Rate_Max) 

En
er

gy
 

Fl
o

w
/P

ri
m

ar
y 

R
es

o
u

rc
e

 

To
ta

l_
P

ri
m

ar
y_

E

n
er

gy
_S

u
p

p
ly

 

Ex
p

re
ss

io
n

 Sum of primary energy 
production (excluding 
direct), adjusted for 
thermal equivalence 

EJ/yr 

R
E_

ty
p

es
 

sumv(NRE_Secondary_Input_Rate) + 
sumv(RE_Secondary_Input_Rate * 
RE_Output_Thermal_Equiv) 
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ER
O

I/
N

ew
 P

C
 E

R
O

I 

N
R

E_
ER

O
I 

Ex
p

re
ss

io
n

 
Vector of new PC EROI by 
NRE type (follows logistic 
curve; function of NRE 
depletion; EROI does not 
consider penetration 
effects as these are 
modelled explicitly, i.e. 
reflects resource quality 
only) 

 

N
R

E_
ty

p
es

 

max(vector(0.01), (NRE_EROI_Drop + Initial_NRE_EROI) / 
(vector(1) + ((((NRE_EROI_Drop + Initial_NRE_EROI) / 
NRE_EROI_Terminal) - vector(1))^NRE_Depletion) * 
((((NRE_EROI_Drop + Initial_NRE_EROI) / 
NRE_EROI_Drop) - vector(1))^(NRE_Depletion - 
vector(1))))) 

ER
O

I/
N

ew
 P

C
 E

R
O

I 

R
E_

ER
O

I 

Ex
p

re
ss

io
n

 

Vector of new PC EROI by 
RE type (follows logistic 
curve; function of RE 
exhaustion; EROI does 
not consider penetration 
effects as these are 
modelled explicitly, i.e. 
reflects resource quality 
only) 

 

R
E_

ty
p

es
 max(vector(0.01), (RE_EROI_Drop + Initial_RE_EROI) / 

(vector(1) + ((((RE_EROI_Drop + Initial_RE_EROI) / 
RE_EROI_Terminal) - vector(1))^RE_Exhaustion) * 
(((((RE_EROI_Drop + Initial_RE_EROI) / RE_EROI_Drop) - 
vector(1))^(RE_Exhaustion - vector(1)))))) 

ER
O

I 

In
it

_N
R

E_
D

ep
l

et
io

n
_P

C
_E

o
L 

Ex
p

re
ss

io
n

 Vector of initial NRE 
depletion for end-of-life 
PC (negative), assuming 
linear output trend since 
incept 

 

N
R

E_
ty

p
es

 

- ((Initial_NRE_Output_Rate - Initial_Direct_NRE_Use) / 
Initial_NRE_Resource) * 
Primary_NRE_Sector.Power_Capacity_Lifetime * 
(vector(1) - 
((Primary_NRE_Sector.Power_Capacity_Lifetime) / (2 * 
NRE_Technology_Age))) 

ER
O

I 

In
it

_N
R

E_
D

ep
le

t

io
n

_P
C

_M
ea

n
 

Ex
p

re
ss

io
n

 Vector of initial mean PC 
NRE depletion (negative), 
assuming linear output 
trend since incept 

 

N
R

E_
ty

p
es

 ((Initial_NRE_Output_Rate - Initial_Direct_NRE_Use) * 
Primary_NRE_Sector.Power_Capacity_Lifetime / (2 * 
Initial_NRE_Resource)) * 
((Primary_NRE_Sector.Power_Capacity_Lifetime / (4 * 
NRE_Technology_Age)) - vector(1)) 

ER
O

I 

In
it

_N
R

E_
ER

O
I_

P

C
_E

o
L 

Ex
p

re
ss

io
n

 Vector of initial EROI for 
end-of-life NRE PC, 
assuming linear output 
trend since incept 

 

N
R

E_
ty

p
es

 

(NRE_EROI_Drop + Initial_NRE_EROI) / (vector(1) + 
((((NRE_EROI_Drop + Initial_NRE_EROI) / 
NRE_EROI_Terminal) - 
vector(1))^Init_NRE_Depletion_PC_EoL) * 
((((NRE_EROI_Drop + Initial_NRE_EROI) / 
NRE_EROI_Drop) - 
vector(1))^(Init_NRE_Depletion_PC_EoL - vector(1)))) 

ER
O

I 

In
it

_N
R

E_
ER

O
I_

P

C
_M

ea
n

 

Ex
p

re
ss

io
n

 Vector of initial NRE PC 
mean EROI, assuming 
linear output trend since 
incept 

 

N
R

E_
ty

p
es

 

(NRE_EROI_Drop + Initial_NRE_EROI) / (vector(1) + 
((((NRE_EROI_Drop + Initial_NRE_EROI) / 
NRE_EROI_Terminal) - 
vector(1))^Init_NRE_Depletion_PC_Mean) * 
((((NRE_EROI_Drop + Initial_NRE_EROI) / 
NRE_EROI_Drop) - 
vector(1))^(Init_NRE_Depletion_PC_Mean - vector(1)))) 

ER
O

I 

In
it

_R
E_

ER
O

I

_P
C

_E
o

L 

Ex
p

re
ss

io
n

 Vector of initial EROI for 
end-of-life RE PC, 
assuming linear output 
trend since incept 

 

R
E_

ty
p

es
 (RE_EROI_Drop + Initial_RE_EROI) / (vector(1) + 

((((RE_EROI_Drop + Initial_RE_EROI) / RE_EROI_Terminal) 
- vector(1))^Init_RE_Exhaustion_PC_EoL) * 
(((((RE_EROI_Drop + Initial_RE_EROI) / RE_EROI_Drop) - 
vector(1))^(Init_RE_Exhaustion_PC_EoL - vector(1))))) 

ER
O

I 

In
it

_R
E_

ER
O

I_
P

C
_M

ea
n

 

Ex
p

re
ss

io
n

 Vector of initial RE PC 
mean EROI, assuming 
linear output trend since 
incept 

 

R
E_

ty
p

es
 (RE_EROI_Drop + Initial_RE_EROI) / (vector(1) + 

((((RE_EROI_Drop + Initial_RE_EROI) / RE_EROI_Terminal) 
- vector(1))^Init_RE_Exhaustion_PC_Mean) * 
(((((RE_EROI_Drop + Initial_RE_EROI) / RE_EROI_Drop) - 
vector(1))^(Init_RE_Exhaustion_PC_Mean - vector(1))))) 
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ER
O

I 

In
it

_R
E_

Ex
h

au
s

ti
o

n
_P

C
_E

o
L 

Ex
p

re
ss

io
n

 Vector of initial RE 
exhaustion for end-of-life 
PC (negative), assuming 
linear output trend since 
incept 

 

R
E_

ty
p

es
 - Initial_RE_Output_Rate * 

(Primary_RE_Sector.Power_Capacity_Lifetime / 
RE_Technology_Age) / (RE_Potential - 
Initial_RE_Output_Rate) 

ER
O

I 

In
it

_R
E_

Ex
h

au
s

ti
o

n
_P

C
_M

ea
n

 

Ex
p

re
ss

io
n

 Vector of initial mean PC 
RE exhaustion (negative), 
assuming linear output 
trend since incept 

 

R
E_

ty
p

es
 - Initial_RE_Output_Rate * 

(Primary_RE_Sector.Power_Capacity_Lifetime / (2 * 
RE_Technology_Age)) / (RE_Potential - 
Initial_RE_Output_Rate) 

ER
O

I 

N
R

E_
D

ep
le

ti
o

n
_

P
C

_E
o

L 

Ex
p

re
ss

io
n

 

Vector of NRE depletion 
for end-of-life PC 

 
N

R
E_

ty
p

es
 

min(vector(0), ((Initial_NRE_Output_Rate - 
Initial_Direct_NRE_Use) / Initial_NRE_Resource) * 
(vector(ETime) - 
Primary_NRE_Sector.Power_Capacity_Lifetime) * 
(vector(1) + ((vector(ETime) - 
Primary_NRE_Sector.Power_Capacity_Lifetime) / (2 * 
NRE_Technology_Age)))) 

ER
O

I 

N
R

E_
ER

O
I_

A
d

d
_W

ei
gh

ti
n

g 

Ex
p

re
ss

io
n

 

Vector of new NRE PC 
EROI weighted by PC 
additions 

EJ/yr
^2 

N
R

E_
ty

p
es

 

Primary_NRE_Sector.Power_Capacity_Addition * 
NRE_EROI 

ER
O

I 

N
R

E_
ER

O
I_

P
C

_E
o

L 

Ex
p

re
ss

io
n

 Vector of EROI for end-of-
life NRE PC (uses delayed 
value after one lifetime 
elapsed) 

 

N
R

E_
ty

p
es

 

if(ETime < 
Primary_NRE_Sector.Power_Capacity_Lifetime, 
(NRE_EROI_Drop + Initial_NRE_EROI) / (vector(1) + 
((((NRE_EROI_Drop + Initial_NRE_EROI) / 
NRE_EROI_Terminal) - 
vector(1))^NRE_Depletion_PC_EoL) * ((((NRE_EROI_Drop 
+ Initial_NRE_EROI) / NRE_EROI_Drop) - 
vector(1))^(NRE_Depletion_PC_EoL - vector(1)))), 
NRE_EROI_Delay) 

ER
O

I 

N
R

E_
ER

O
I_

P
C

_M
ea

n
 

Ex
p

re
ss

io
n

 

Vector of NRE PC mean 
EROI 

 

N
R

E_
ty

p
es

 

max(vector(0.01), 
if(Primary_NRE_Sector.Amount_in_Transit < vector(2 * 
~PC_Zero_Approx), NRE_EROI, 
NRE_EROI_PC_Mean_Integ.Amount_in_Transit / 
max(Primary_NRE_Sector.Amount_in_Transit, 
vector(~PC_Zero_Approx)))) 

ER
O

I 

N
R

E_
Te

ch
n

o
l

o
gy

_A
ge

 

Ex
p

re
ss

io
n

 Vector of maximum 
technology age by NRE 
type (calculated from 
corresponding secondary 
incept years) 

yr 

N
R

E_
ty

p
es

 

maxr((vector(Secondary_PC_types, StartTime + 1900 yr) - 
Sec_Incept_Year) * NRE_Secondary_Input_ID) 

ER
O

I 

R
E_

ER
O

I_
A

d
d

_W
ei

gh
ti

n
g 

Ex
p

re
ss

io
n

 

Vector of new RE PC EROI 
weighted by PC additions 

EJ/yr
^2 

R
E_

ty
p

es
 

Primary_RE_Sector.Power_Capacity_Addition * 
RE_EROI_Addition_Mean 

ER
O

I 

R
E_

ER
O

I_
A

d
d

it
io

n
_

M
ea

n
 

Ex
p

re
ss

io
n

 

Vector of effective EROI 
for PC additions by RE 
type (assumes any 
unused RE potential 
available is preferentially 
redeveloped due to 
greater resource quality) 

 

R
E_

ty
p

es
 max((RE_Redevelopment_Potential.Withdrawal_Rate / 

Primary_RE_Sector.Power_Capacity_Addition) * 
(max(RE_EROI_PC_EoL, RE_EROI) - RE_EROI) + RE_EROI, 
RE_EROI_Terminal) 
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ER
O

I 

R
E_

ER
O

I_
P

C
_E

o
L 

Ex
p

re
ss

io
n

 Vector of EROI for end-of-
life RE PC (uses delayed 
value after one lifetime 
elapsed) 

 

R
E_

ty
p

es
 

if(ETime < Primary_RE_Sector.Power_Capacity_Lifetime, 
(RE_EROI_Drop + Initial_RE_EROI) / (vector(1) + 
((((RE_EROI_Drop + Initial_RE_EROI) / RE_EROI_Terminal) 
- vector(1))^RE_Exhaustion_PC_EoL) * (((((RE_EROI_Drop 
+ Initial_RE_EROI) / RE_EROI_Drop) - 
vector(1))^(RE_Exhaustion_PC_EoL - vector(1))))), 
RE_EROI_Addition_Delay) 

ER
O

I 

R
E_

ER
O

I_
P

C
_

M
ea

n
 

Ex
p

re
ss

io
n

 

Vector of RE PC mean 
EROI 

 

R
E_

ty
p

es
 

max(vector(0.01), 
if(Primary_RE_Sector.Amount_in_Transit < vector(2 * 
~PC_Zero_Approx), RE_EROI_Addition_Mean, 
RE_EROI_PC_Mean_Integ.Amount_in_Transit / 
max(Primary_RE_Sector.Amount_in_Transit, 
vector(~PC_Zero_Approx)))) 

ER
O

I 

R
E_

Ex
h

au
st

i

o
n

_P
C

_E
o

L 

Ex
p

re
ss

io
n

 

Vector of RE exhaustion 
for end-of-life PC 

 

R
E_

ty
p

es
 min(vector(0), Initial_RE_Output_Rate * ((vector(ETime) - 

Primary_RE_Sector.Power_Capacity_Lifetime) / 
RE_Technology_Age) / (RE_Potential - 
Initial_RE_Output_Rate)) 

ER
O

I 

R
E_

Te
ch

n
o

lo

gy
_A

ge
 

Ex
p

re
ss

io
n

 Vector of maximum 
technology age by RE 
type (calculated from 
corresponding secondary 
incept years) 

yr 

R
E_

ty
p

es
 

maxr((vector(Secondary_PC_types, StartTime + 1900 yr) - 
Sec_Incept_Year) * RE_Secondary_Input_ID) 

P
ri

m
ar

y 

N
R

E 

A
d

d
it

io
n

_E

C
_U

se
 

Ex
p

re
ss

io
n

 Vector of rates of energy 
carrier use for the 
purposes of adding new 
NRE power capacity 

EJ/yr 

EC
_t

yp
es

 sumc((vector(NRE_types, 1) - Decommission_Fraction) * 
(Power_Capacity_Lifetime / Power_Capacity_Build_Time) 
* NRE_CF_Max * CapEx_Fraction * 
(Power_Capacity_Addition.Amount_in_Transit / 
NRE_EROI) * EC_Split) 

P
ri

m
ar

y 
N

R
E 

D
ec

o
m

m
is

si
o

n
_E

C
_U

se
 

Ex
p

re
ss

io
n

 Vector of rates of energy 
carrier use for the 
purposes of 
decommissioning NRE 
power capacity 

EJ/yr 

EC
_t

yp
es

 sumc(Decommission_Fraction * CapEx_Fraction * 
NRE_CF_Max * Power_Capacity_Lifetime * 
(Power_Capacity_Operation / NRE_EROI_PC_EoL) * 
EC_Split) 

P
ri

m
ar

y 
N

R
E 

EC
_S

p
lit

 

Ex
p

re
ss

io
n

 Matrix of the EC 
composition of NRE 
investment energy, 
adjusted for thermal 
energy equivalence 

 

N
R

E_
ty

p
es

, 

EC
_t

yp
es

 (Demand_EC_Split / Initial_Supply_EC_Split) * 
Initial_EC_Split / sumr(EC_Thermal_Equivalence * 
(Demand_EC_Split / Initial_Supply_EC_Split) * 
Initial_EC_Split) 

P
ri

m
ar

y 

N
R

E 

In
it

ia
l_

EC
_

Sp
lit

 

Ex
p

re
ss

io
n

 Initial shares of NRE input 
energy by EC type, 
adjusted for thermal 
energy  

 

N
R

E_
ty

p
es

, 

EC
_t

yp
es

 Initial_Supply_EC_Split * matrix(vector(1), 
EC_Split_LaG_Factor, EC_Split_Heat_Factor) / 
sumr(EC_Thermal_Equivalence * Initial_Supply_EC_Split 
* matrix(vector(1), EC_Split_LaG_Factor, 
EC_Split_Heat_Factor)) 

P
ri

m
ar

y 
N

R
E 

O
p

er
at

io
n

_E
C

_U
se

 

Ex
p

re
ss

io
n

 Vector of rates of energy 
carrier use for the 
purposes of operating 
existing NRE power 
capacity 

EJ/yr 

EC
_t

yp
es

 sumc((vector(NRE_types, 1) - CapEx_Fraction) *  
NRE_Capacity_Factor * 
(Power_Capacity_Operation.Amount_in_Transit / 
NRE_EROI_PC_Mean) * EC_Split) 

P
ri

m
ar

y 
R

E 

A
d

d
it

io
n

_E
C

_U
se

 

Ex
p

re
ss

io
n

 

Vector of rates of energy 
carrier use for the 
purposes of adding new 
RE power capacity 
(adjusted for thermal 
equivalence of primary 
electricity output) 

EJ/yr 

EC
_t

yp
es

 

sumc(RE_Output_Thermal_Equiv * (vector(RE_types, 1) - 
Decommission_Fraction) * (Power_Capacity_Lifetime / 
Power_Capacity_Build_Time) * Initial_RE_CF_Max * 
CapEx_Fraction * 
(Power_Capacity_Addition.Amount_in_Transit / 
RE_EROI_Addition_Mean) * EC_Split) 
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P
ri

m
ar

y 
R

E 

D
ec

o
m

m
is

si
o

n
_E

C
_U

se
 

Ex
p

re
ss

io
n

 
Vector of rates of energy 
carrier use for the 
purposes of 
decommissioning RE 
power capacity (adjusted 
for thermal equivalence 
of primary electricity 
output) 

EJ/yr 

EC
_t

yp
es

 sumc(RE_Output_Thermal_Equiv * 
Decommission_Fraction * CapEx_Fraction * 
Initial_RE_CF_Max * Power_Capacity_Lifetime * 
(Power_Capacity_Operation / RE_EROI_PC_EoL) * 
EC_Split) 

P
ri

m
ar

y 
R

E 

EC
_S

p
lit

 

Ex
p

re
ss

io
n

 

Matrix of the EC 
composition of RE 
investment energy 
(adjusted for thermal 
equivalence of primary 
electricity output) 

 

R
E_

ty
p

es
, 

EC
_t

yp
es

 (Demand_EC_Split / Initial_Supply_EC_Split) * 
Initial_EC_Split / sumr(EC_Thermal_Equivalence * 
(Demand_EC_Split / Initial_Supply_EC_Split) * 
Initial_EC_Split) 

P
ri

m
ar

y 
R

E 

In
it

ia
l_

EC
_S

p
l

it
 

Ex
p

re
ss

io
n

 Initial shares of RE input 
energy by EC type 
(adjusted for thermal 
equivalence of primary 
electricity output) 

 

R
E_

ty
p

es
, 

EC
_t

yp
es

 Initial_Supply_EC_Split * matrix(vector(1), 
EC_Split_LaG_Factor, EC_Split_Heat_Factor) / 
sumr(EC_Thermal_Equivalence * Initial_Supply_EC_Split 
* matrix(vector(1), EC_Split_LaG_Factor, 
EC_Split_Heat_Factor)) 

P
ri

m
ar

y 
R

E 

O
p

er
at

io
n

_E
C

_U
se

 

Ex
p

re
ss

io
n

 

Vector of rates of energy 
carrier use for the 
purposes of operating 
existing RE power 
capacity (adjusted for 
thermal equivalence of 
primary electricity 
output) 

EJ/yr 

EC
_t

yp
es

 sumc(RE_Output_Thermal_Equiv * (vector(RE_types, 1) - 
CapEx_Fraction) *  RE_Capacity_Factor * 
(Power_Capacity_Operation.Amount_in_Transit / 
RE_EROI_PC_Mean) * EC_Split) 

Se
co

n
d

ar
y/

El
ec

tr
ic

it
y 

Sy
st

em
 

C
F_

M
ax

_M
u

lt
 

Ex
p

re
ss

io
n

 

Fractional reduction in 
maximum CF for 
intermittent generation 
(plus baseload and 
peaking generation via 
respective coefficients) in 
the absence of alternative 
mitigation (follows 
logistic curve; function of 
intermittent penetration, 
reduced by increases in 
intermittent diversity and 
demand flexibility) 

  

((CF_Max_Mult_Asymptote / (1+ 
((CF_Max_Mult_Asymptote - 1)^((1 - 
Intermittent_Penetration) / (1 - 
Init_Intermittent_Penetration))) * 
(((CF_Max_Mult_Asymptote / CF_Max_Mult_Final) - 
1)^((Intermittent_Penetration - 
Init_Intermittent_Penetration) / (1 - 
Init_Intermittent_Penetration))))) - 1) * 
Combined_Mult_Reduction 

Se
co

n
d

ar
y/

El
ec

tr
ic

it
y 

Sy
st

em
 

C
F_

M
ax

_M
u

lt
_A

ct
u

al
 

Ex
p

re
ss

io
n

 

Effective fractional 
reduction in maximum CF 
for intermittent 
generation (plus baseload 
and peaking generation 
via respective 
coefficients) given the 
level of built intermittent 
AI mitigation 

  CF_Max_Mult * (1 - Intermit_AI_Built_Factor_Prev) 
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Se
co

n
d

ar
y/

El
ec

tr
ic

it
y 

Sy
st

em
 

C
o

m
b

in
ed

_M
u

lt
_R

ed
u

ct
io

n
 

Ex
p

re
ss

io
n

 
Combined fractional 
reduction in modification 
of maximum CF, 
reticulation efficiency and 
intermittent AI required 
as a function of 
intermittent diversity and 
demand flexibility 

  (1 - Intermittent_Diversity * Diversity_Coeff) * (1 - 
Demand_Flexibility * Demand_Flex_Coeff) 

Se
co

n
d

ar
y/

El
ec

tr
ic

it
y 

Sy
st

em
 

In
it

_C
o

m
b

in
ed

_M
u

lt
_R

ed
u

ct
io

n
 

Ex
p

re
ss

io
n

 

Initial combined 
fractional reduction in 
modification of maximum 
CF, reticulation efficiency 
and intermittent AI 
required as a function of 
intermittent diversity and 
demand flexibility 

  

(1 - ((((sumv(Initial_Secondary_PC *  
Initial_Secondary_CF_Max * Sec_Intermittent_ID) / 
sumv(Sec_Intermittent_ID)) / maxv(Initial_Secondary_PC 
* Initial_Secondary_CF_Max * Sec_Intermittent_ID)) / (1 
- 1 / sumv(Sec_Intermittent_ID))) - 1 / 
sumv(Sec_Intermittent_ID)) * Diversity_Coeff) * (1 - 
Initial_Demand_Flex * Demand_Flex_Coeff) 

Se
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y/
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Initial fractional share of 
total electricity 
generation from 
intermittent sources 
(defined in terms of 
generation potential prior 
to transmission and 
distribution, i.e. peakers 
at maximum technical CF) 

  

sumv(Initial_Secondary_PC * if(Sec_Peaker_ID = 
vector(Secondary_PC_types, 1), (1 + 
CF_Max_Peaker_Coeff * (CF_Max_Mult_Final - 1)) * 
Initial_Secondary_CF_Max, Initial_Secondary_CF_Max) * 
Sec_Intermittent_ID) / sumv(Initial_Secondary_PC * 
if(Sec_Peaker_ID = vector(Secondary_PC_types, 1), (1 + 
CF_Max_Peaker_Coeff * (CF_Max_Mult_Final - 1)) * 
Initial_Secondary_CF_Max, Initial_Secondary_CF_Max) * 
Secondary_Output_ID[*, Electricity]) 

Se
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y/
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te
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 Normalized level of 
intermittent AI in 
operation relative to the 
total required for full 
mitigation via AI 

  min(1, Auxiliary_Operation.Amount_in_Transit[2] / 
max(~PC_Zero_Approx, Auxiliary_Requirement[2])) 

Se
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M
u
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Fractional increase in 
intermittent AI required 
in the absence of 
alternative mitigation 
(follows logistic curve; 
function of intermittent 
penetration, reduced by 
increases in intermittent 
diversity and demand 
flexibility) 

  

(Combined_Mult_Reduction / 
Init_Combined_Mult_Reduction) * 
(Intermit_AI_Mult_Asymptote / (1+ 
((Intermit_AI_Mult_Asymptote - 1)^((1 - 
Intermittent_Penetration) / (1 - 
Init_Intermittent_Penetration))) * 
(((Intermit_AI_Mult_Asymptote / 
Intermit_AI_Mult_Final) - 1)^((Intermittent_Penetration - 
Init_Intermittent_Penetration) / (1 - 
Init_Intermittent_Penetration))))) 
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Ratio of mean 
intermittent generation 
potential to maximum 
intermittent generation 
potential (1 when all 
equal, << 1 when one 
dominates) 

  

(((sumv(Power_Capacity_Operation.Amount_in_Transit *  
Initial_Secondary_CF_Max * Sec_Intermittent_ID) / 
sumv(Sec_Intermittent_ID)) / 
maxv(Power_Capacity_Operation.Amount_in_Transit * 
Initial_Secondary_CF_Max * Sec_Intermittent_ID)) / (1 - 
1 / sumv(Sec_Intermittent_ID))) - 1 / 
sumv(Sec_Intermittent_ID) 
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n
d

ar
y/
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Fractional share of total 
electricity generation 
from intermittent sources 
(defined in terms of 
generation potential prior 
to transmission and 
distribution, i.e. peakers 
at maximum technical CF) 

  

sumv(Power_Capacity_Operation.Amount_in_Transit * 
if(Sec_Peaker_ID = vector(Secondary_PC_types, 1), (1 + 
CF_Max_Peaker_Coeff * (CF_Max_Mult_Final - 1)) * 
Initial_Secondary_CF_Max, Initial_Secondary_CF_Max) * 
Sec_Intermittent_ID) / 
sumv(Power_Capacity_Operation.Amount_in_Transit * 
if(Sec_Peaker_ID = vector(Secondary_PC_types, 1), (1 + 
CF_Max_Peaker_Coeff * (CF_Max_Mult_Final - 1)) * 
Initial_Secondary_CF_Max, Initial_Secondary_CF_Max) * 
Secondary_Output_ID[*, Electricity]) 
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p
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 Vector of intermittent 
generation by RE type 
(value of 1 indicates that 
electricity production is 
considered intermittent) 

 

R
E_

ty
p

es
 

sumr(Sec_Intermittent_ID * Primary_Generation_ID * 
RE_Secondary_Input_ID) 

Se
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n
d
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y/
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ec
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st
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R
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u
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p
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Fractional reduction in 
secondary reticulation 
efficiency for intermittent 
generation in the absence 
of alternative mitigation 
(follows logistic curve; 
function of intermittent 
penetration, reduced by 
increases in intermittent 
diversity and demand 
flexibility) 

  

((Retic_Eff_Mult_Asymptote / (1+ 
((Retic_Eff_Mult_Asymptote - 1)^((1 - 
Intermittent_Penetration) / (1 - 
Init_Intermittent_Penetration))) * 
(((Retic_Eff_Mult_Asymptote / Retic_Eff_Mult_Final) - 
1)^((Intermittent_Penetration - 
Init_Intermittent_Penetration) / (1 - 
Init_Intermittent_Penetration))))) - 1) * 
Combined_Mult_Reduction 

Se
co

n
d

ar
y/

El
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t
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R
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u
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A
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u
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p
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Fractional reduction in 
secondary reticulation 
efficiency for intermittent 
generation given the level 
of built intermittent AI 
mitigation 

  Retic_Eff_Mult * Intermit_AI_Built_Factor_Prev 

Se
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n
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y 

A
I_

A
d

d
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n

_
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_U
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p
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 Vector of rates of energy 
carrier use for the 
purposes of adding new 
secondary auxiliary 
infrastructure 

EJ/yr 

EC
_t

yp
es

 sumc((vector(Secondary_AI_types, 1) - 
AI_Decommission_Fraction) * AI_CapEx_Fraction * 
(Auxiliary_Addition.Amount_in_Transit * 
Secondary_AI_ECC / Auxiliary_Build_Time) * AI_EC_Split) 

Se
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n
d
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y 

A
I_

D
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o
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C
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Vector of rates of energy 
carrier use for the 
purposes of 
decommissioning end-of-
life secondary auxiliary 
infrastructure 

EJ/yr 

EC
_t

yp
es

 

sumc(AI_Decommission_Fraction * AI_CapEx_Fraction * 
Auxiliary_Operation * Secondary_AI_ECC * AI_EC_Split) 

Se
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n
d
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y 

A
I_

EC
_S

p
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p
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Matrix of the EC 
composition of secondary 
auxiliary infrastructure 
investment energy, 
adjusted for thermal 
energy equivalence 

 

Se
co

n
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y_

A
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t
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es

, E
C

_t
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es
 

(Demand_EC_Split / Initial_Supply_EC_Split) * 
AI_Initial_EC_Split / sumr(EC_Thermal_Equivalence * 
(Demand_EC_Split / Initial_Supply_EC_Split) * 
AI_Initial_EC_Split) 

Se
co

n
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y 

A
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 Initial shares of secondary 
auxiliary infrastructure 
input energy by EC type, 
adjusted for thermal 
energy  

 

Se
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p
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, E
C

_t
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Initial_Supply_EC_Split * matrix(vector(1), 
AI_EC_Split_LaG_Factor, AI_EC_Split_Heat_Factor) / 
sumr(EC_Thermal_Equivalence * Initial_Supply_EC_Split 
* matrix(vector(1), AI_EC_Split_LaG_Factor, 
AI_EC_Split_Heat_Factor)) 
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A
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O
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Ex
p

re
ss

io
n

 Vector of rates of energy 
carrier use for the 
purposes of operating 
existing secondary 
auxiliary infrastructure 

EJ/yr 

EC
_t

yp
es

 sumc((vector(Secondary_AI_types, 1) - 
AI_CapEx_Fraction) *  
(Auxiliary_Operation.Amount_in_Transit * 
Secondary_AI_ECC / Auxiliary_Lifetime) * AI_EC_Split) 
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 Rate of investment in 
new secondary auxiliary 
infrastructure peak 
capacity 

EJ/yr
^2 

Se
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n
d
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y_

A
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p
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vector(1, Intermittency_Mitigation, 1, 1) * max(vector(0 
EJ/yr), Auxiliary_Requirement - 
Auxiliary_Operation.Amount_in_Transit) / 
Auxiliary_Build_Time 
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n

 Sum requirement for 
secondary auxiliary 
infrastructure peak 
capacity 

EJ/yr 

Se
co

n
d

ar
y_

A
I

_t
yp

es
 sumc(Power_Capacity_Operation.Amount_in_Transit * 

Secondary_Capacity_Factor * PC_AI_ID) * Peak_Factor * 
vector(1, Intermit_AI_Mult, 1, 1) 
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n
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P
C
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Ex
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 Vector of rates of energy 
carrier use for the 
purposes of adding new 
secondary power capacity 

EJ/yr 

EC
_t

yp
es

 sumc((vector(Secondary_PC_types, 1) - 
PC_Decommission_Fraction) * PC_CapEx_Fraction * 
(Power_Capacity_Addition.Amount_in_Transit * 
Secondary_PC_ECC / Power_Capacity_Build_Time) * 
PC_EC_Split) 

Se
co

n
d
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y 

P
C

_A
I_

ID
 

Ex
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ss
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Matrix of secondary AI 
requirement identities by 
secondary PC type 

 
Se

co
n

d
ar

y_
P

C
_t
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es

, 

Se
co

n
d
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y_

A
I_
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p
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matrix(Secondary_Output_ID[*, 1], Sec_Intermittent_ID, 
Secondary_Output_ID[*, 2], Secondary_Output_ID[*, 3]) 
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Vector of rates of energy 
carrier use for the 
purposes of 
decommissioning end-of-
life secondary power 
capacity 

EJ/yr 

EC
_t

yp
es

 

sumc(PC_Decommission_Fraction * PC_CapEx_Fraction * 
Power_Capacity_Operation * Secondary_PC_ECC * 
PC_EC_Split) 

Se
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n
d
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P
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p
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Matrix of the EC 
composition of secondary 
power capacity 
investment energy, 
adjusted for thermal 
energy equivalence 

 

Se
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n
d
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P
C

_t

yp
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, E
C

_t
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es
 

(Demand_EC_Split / Initial_Supply_EC_Split) * 
PC_Initial_EC_Split / sumr(EC_Thermal_Equivalence * 
(Demand_EC_Split / Initial_Supply_EC_Split) * 
PC_Initial_EC_Split) 

Se
co

n
d
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P
C

_I
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p
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 Initial shares of secondary 
power capacity input 
energy by EC type, 
adjusted for thermal 
energy  
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p
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, E

C
_t
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Initial_Supply_EC_Split * matrix(vector(1), 
PC_EC_Split_LaG_Factor, PC_EC_Split_Heat_Factor) / 
sumr(EC_Thermal_Equivalence * Initial_Supply_EC_Split 
* matrix(vector(1), PC_EC_Split_LaG_Factor, 
PC_EC_Split_Heat_Factor)) 
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 Vector of rates of energy 
carrier use for the 
purposes of operating 
existing secondary power 
capacity 

EJ/yr 

EC
_t

yp
es

 

sumc((vector(Secondary_PC_types, 1) - 
PC_CapEx_Fraction) * (Secondary_Capacity_Factor / 
Initial_Secondary_CF_Max) *  
(Power_Capacity_Operation.Amount_in_Transit * 
Secondary_PC_ECC / Power_Capacity_Lifetime) * 
PC_EC_Split) 

Se
co

n
d
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y 

P
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Vector of ratios of peak 
to average power output 
by secondary AI type 
(reduced linearly by 
increasing demand 
flexibility) 

 

Se
co

n
d
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y_

A
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t
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es

 

(Init_Secondary_Peak_Factor - vector(1)) * vector(1 - 
Demand_Flexibility) + vector(1) 
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Matrix of forecast EC 
supply/demand balance 
(EC deficit, measured in 
EJ) by time elapsed from 
the current timestep 
(each row represents 0.5 
year increment) 

EJ 

P
la

n
_h

o
ri

zo
n

, 

EC
_t

yp
es

 

- (matrix(1) * Supply_Demand_Balance + 
mult(matrix(Plan_horizon, Plan_horizon, if(row >= col, 
0.5 yr, 0 yr)), matrix(1) * 
(EC_Inflow_Integ.Moving_Average - 
EC_Consumption.Moving_Average) + 
EC_Upstream_Rate_Commit + 
EC_Downstream_Rate_Commit - 
EC_Invest_Rate_Commit - EC_Upkeep_Rate_Commit)) 
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Ex
p

re
ss

io
n

 Vector of forecast EC 
supply/demand balance 
(EC deficit, measured in 
EJ) at the selected time 
horizon 

EJ 

EC
_t

yp
es

 vector(vinterp(EC_Deficit_Commit[*, 1], 
Invest_Time_Horizon / 0.5 yr), 
vinterp(EC_Deficit_Commit[*, 2], Invest_Time_Horizon / 
0.5 yr), vinterp(EC_Deficit_Commit[*, 3], 
Invest_Time_Horizon / 0.5 yr)) 

Sy
st

em
 C

o
n

tr
o

l/
EC

 C
o

m
m

it
te

d
 

EC
_D

ef
ic
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o
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n

_N
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Ex
p
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Vector of normalized 
forecast EC 
supply/demand balance 
(EC deficit, measured in 
EJ) at the selected time 
horizon (uses lower of 
moving average and 
actual, minimum set to 
zero with vector sum of 1; 
represents relative 
priority of ECs) 

 

EC
_t

yp
es

 

(min(EC_Deficit_Horizon, 
EC_Deficit_Horizon_Integ.Moving_Average) - 
vector(EC_types, minv(min(EC_Deficit_Horizon, 
EC_Deficit_Horizon_Integ.Moving_Average)))) / 
sumv(min(EC_Deficit_Horizon, 
EC_Deficit_Horizon_Integ.Moving_Average) - 
vector(EC_types, minv(min(EC_Deficit_Horizon, 
EC_Deficit_Horizon_Integ.Moving_Average)))) 

Sy
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em
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o
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o

l/
EC
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o
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d
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p
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Vector of forecast EC 
supply/demand balance 
(EC deficit, measured in 
EJ) at the selected time 
horizon, with negatives 
values reduced in 
magnitude (uses lower of 
moving average and 
actual) 

EJ 

EC
_t

yp
es

 

if(min(EC_Deficit_Horizon, 
EC_Deficit_Horizon_Integ.Moving_Average) < vector(0 
EJ), EC_Surplus_Scale_Factor * min(EC_Deficit_Horizon, 
EC_Deficit_Horizon_Integ.Moving_Average), 
min(EC_Deficit_Horizon, 
EC_Deficit_Horizon_Integ.Moving_Average)) 

Sy
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em
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l/
EC
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o

m
m

it
te

d
 

EC
_D

o
w

n
st

re
am

_R
at

e

_C
o

m
m

it
 

Ex
p

re
ss

io
n

 

Matrix of net change to 
EC outflows due to 
forecast changes in EU PC 
stocks by time elapsed 
from the current 
timestep (each row 
represents 0.5 year 
increment) 

EJ/yr 

P
la

n
_h

o
ri

zo
n

, E
C

_t
yp

es
 

mult(EU_Additions_Shape_Matrix, 
End_Use_Capacity_Factor * 
(End_Use_Sector.Amount_in_Transit_2 * 
(mult(End_Use_Output_ID * End_Use_ES_Eff, 
EC_ES_Conversion) - End_Use_Input_Scaled) - 
EU_PC_Plan_Horizon.Amount_in_Transit * 
(mult(End_Use_Output_ID * End_Use_ES_Eff_PC_Mean, 
EC_ES_Conversion) - End_Use_Input_Scaled))) 
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em
 C

o
n

tr
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l/
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o

m
m

it
te

d
 

EC
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n
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Matrix of net change to 
EC outflows due to 
investments in new PC 
and AI by time elapsed 
from the current 
timestep (each row 
represents 0.5 year 
increment) 

EJ/yr 

P
la

n
_h

o
ri

zo
n

, E
C

_t
yp

es
 

mult(Sec_Invest_Shape_Matrix, 
(Secondary_Sector.Amount_in_Transit_2 + 
Secondary_PC_Invest_Delay.Amount_in_Transit) * 
((Secondary_Sector.Power_Capacity_Lifetime + 
max(Primary_Build_Time, 
Secondary_Sector.Power_Capacity_Build_Time)) * 
Secondary_Sector.PC_CapEx_Fraction / 
max(Primary_Build_Time, 
Secondary_Sector.Power_Capacity_Build_Time)) * 
Upstream_Invest_EC_Cost) + 
mult(End_Use_Invest_Shape_Matrix, 
End_Use_Sector.Amount_in_Transit_2 * 
((End_Use_Sector.Power_Capacity_Lifetime + 
End_Use_Sector.Power_Capacity_Build_Time) * 
End_Use_Sector.PC_CapEx_Fraction / 
End_Use_Sector.Power_Capacity_Build_Time) * 
Downstream_Invest_EC_Cost) 
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Matrix of net change to 
EC outflows due to 
forecast changes in 
upkeep requirements for 
PC and AI in operation by 
time elapsed from the 
current timestep (each 
row represents 0.5 year 
increment) 

EJ/yr 

P
la

n
_h

o
ri

zo
n

, E
C

_t
yp

es
 

mult((Secondary_CF_Max / Initial_Secondary_CF_Max) * 
Sec_Additions_Shape_Matrix * 
(Secondary_Sector.Amount_in_Transit_2 + 
Secondary_PC_Invest_Delay.Amount_in_Transit -
Sec_PC_Plan_Horizon.Amount_in_Transit), 
((Secondary_Sector.Power_Capacity_Lifetime + 
max(Primary_Build_Time, 
Secondary_Sector.Power_Capacity_Build_Time)) * 
(Secondary_Sector.PC_CapEx_Fraction - 
vector(Secondary_PC_types, 1)) / 
Secondary_Sector.Power_Capacity_Lifetime) * 
Upstream_Invest_EC_Cost) + 
mult((End_Use_Capacity_Factor / End_Use_CF_Target) * 
EU_Additions_Shape_Matrix * 
(End_Use_Sector.Amount_in_Transit_2 - 
EU_PC_Plan_Horizon.Amount_in_Transit), 
((End_Use_Sector.Power_Capacity_Lifetime + 
End_Use_Sector.Power_Capacity_Build_Time) * 
(End_Use_Sector.PC_CapEx_Fraction - 
vector(End_use_PC_types, 1)) / 
End_Use_Sector.Power_Capacity_Lifetime) * 
Downstream_Invest_EC_Cost) 
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em
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EC
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Matrix of net change to 
EC inflows due to forecast 
changes in secondary PC 
stocks by time elapsed 
from the current 
timestep (each row 
represents 0.5 year 
increment) 

EJ/yr 

P
la

n
_h

o
ri

zo
n

, E
C

_t
yp

es
 mult(Sec_Additions_Shape_Matrix, 

((Secondary_Sector.Amount_in_Transit_2 + 
Secondary_PC_Invest_Delay.Amount_in_Transit) * 
Sec_Reticulation_Eff - 
Sec_PC_Plan_Horizon.Amount_in_Transit * 
Sec_Reticulation_Eff_PC_Mean) * 
(vector(Secondary_PC_types, 1) + 
Secondary_Sector.Sec_Intermittent_ID * 
Secondary_Sector.Retic_Eff_Mult_Actual) * 
Secondary_CF_Max * Secondary_Output_ID) 
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em
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Matrix of normalized EU 
investment flows by time 
elapsed from the current 
timestep (each row 
represents 0.5 year 
increment) 

 

P
la

n
_h

o
ri

zo
n

, 

En
d

_u
se

_P
C

_t
yp

es
 matrix(Plan_horizon, End_use_PC_types, 

if(getitem(End_Use_Sector.Power_Capacity_Build_Time, 
col) > 0.5 * row yr, 1 - (0.5 * row yr / 
getitem(End_Use_Sector.Power_Capacity_Build_Time, 
col)), 0)) * 
if(End_Use_Sector.Power_Capacity_Build_Time < 0.5 yr, 
End_Use_Sector.Power_Capacity_Build_Time / 0.5 yr, 
vector(End_use_PC_types, 1)) 

Sy
st

em
 C

o
n

tr
o

l/
EC

 

C
o

m
m

it
te

d
 

EU
_A

d
d

it
io

n
s_

Sh
a

p
e_

M
at

ri
x 

Ex
p

re
ss

io
n

 

Matrix of normalized EU 
EC intake flows by time 
elapsed from the current 
timestep (each row 
represents 0.5 year 
increment) 

 

P
la

n
_h

o
ri

zo
n

, 

En
d

_u
se

_P
C

_t
yp

es
 

matrix(Plan_horizon, End_use_PC_types, 
if(getitem(End_Use_Sector.Power_Capacity_Build_Time, 
col) <= 0.5 * row yr, 1, 0.5 * row yr / 
getitem(End_Use_Sector.Power_Capacity_Build_Time, 
col))) 

Sy
st

em
 C

o
n

tr
o

l/
EC

 

C
o

m
m

it
te

d
 

Se
c_

A
d

d
it

io
n

s_
Sh

ap
e

_M
at

ri
x 

Ex
p

re
ss

io
n

 

Matrix of normalized 
secondary EC output 
flows by time elapsed 
from the current 
timestep (each row 
represents 0.5 year 
increment) 

 

P
la

n
_h

o
ri

zo
n

, 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

matrix(Plan_horizon, Secondary_PC_types, 
if(getitem(max(Primary_Build_Time, 
Secondary_Sector.Power_Capacity_Build_Time), col) <= 
0.5 * row yr, 1, 0.5 * row yr / 
getitem(max(Primary_Build_Time, 
Secondary_Sector.Power_Capacity_Build_Time), col))) 
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Sy
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C
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m
m

it
te

d
 

Se
c_

In
ve

st
_S

h
ap

e_
M

at
ri

x 

Ex
p

re
ss

io
n

 
Matrix of normalized 
secondary investment 
flows by time elapsed 
from the current 
timestep (each row 
represents 0.5 year 
increment) 

 

P
la

n
_h

o
ri

zo
n

, 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 

matrix(Plan_horizon, Secondary_PC_types, 
if(getitem(max(Primary_Build_Time, 
Secondary_Sector.Power_Capacity_Build_Time), col) > 
0.5 * row yr, 1 - (0.5 * row yr / 
getitem(max(Primary_Build_Time, 
Secondary_Sector.Power_Capacity_Build_Time), col)), 0)) 

Sy
st

em
 

C
o

n
tr

o
l/

In
ve

st
 

Sy
n

ch
ro

n
iz

at
io

n
 

En
d

_U
se

_P
C

_I
n

ve
st

 

Ex
p

re
ss

io
n

 

Vector of investment 
flows for EU 
(downstream) PC given 
by invest share and invest 
magnitude calculations 
(investment signal for 
system transformation) 

EJ/yr
^2 

En
d

_u
se

_P
C

_t
yp

es
 

if(ETime = 0 yr, vector(0), vector(1)) * max(vector(0 
EJ/yr^2), Downstream_Invest_PC_Share * 
EC_Invest_Magnitude) 

Sy
st

em
 C

o
n

tr
o

l/
In

ve
st

 

Sy
n

ch
ro

n
iz

at
io

n
 

En
d

_U
se

_P
C

_I
n

ve
st

_S
u

m
 

Ex
p

re
ss

io
n

 

Vector of sum investment 
flows for EU 
(downstream) PC 
including investment 
signal and upkeep 
function (capped by 
maximum turnover 
factor) 

EJ/yr
^2 

En
d

_u
se

_P
C

_t
yp

es
 

if(ETime = 0 yr, vector(0), vector(1)) * 
min((sumr(ES_Demand * End_Use_Output_ID) / 
(End_Use_CF_Target * End_Use_ES_Eff * 
End_Use_Sector.Power_Capacity_Lifetime)) * 
PC_Invest_Max_Fraction, End_Use_PC_Invest + 
End_Use_PC_Upkeep) 

Sy
st

em
 C

o
n

tr
o

l/
In

ve
st

 

Sy
n

ch
ro

n
iz

at
io

n
 

En
d

_U
se

_P
C

_U
p

ke
ep

 

Ex
p

re
ss

io
n

 

Vector of investment 
flows for EU 
(downstream) PC given 
by upkeep requirements 
(returns CF to CF target 
based on prevailing PC 
composition) 

EJ/yr
^2 

En
d

_u
se

_P
C

_t
yp

es
 

max(vector(0 EJ/yr^2), sumc(max(vector(ES_types, 0 
EJ/yr), ES_Demand - sumc(End_Use_Output_ID * 
End_Use_Sector.Amount_in_Transit * 
End_Use_CF_Target * End_Use_ES_Eff_PC_Mean) - 
sumc(End_Use_Output_ID * 
(End_Use_Sector.Amount_in_Transit_2 + 
End_Use_PC_Invest_Delay.Amount_in_Transit) * 
End_Use_CF_Target * End_Use_ES_Eff)) * 
End_Use_Output_Scaled * Downstream_Invest_Curtail / 
sumr(End_Use_Output_Scaled * 
Downstream_Invest_Curtail)) / (End_Use_CF_Target * 
End_Use_ES_Eff * 
End_Use_Sector.Power_Capacity_Build_Time)) 

Sy
st

em
 C

o
n

tr
o

l/
In

ve
st

 

Sy
n

ch
ro

n
iz

at
io

n
 

N
R

E_
P

C
_I

n
ve

st
 

Ex
p

re
ss

io
n

 

Vector of investment 
flows for primary NRE PC 
synchronized with 
corresponding secondary 
PC investment (includes 
invest signal, stock 
replacement, and 
primary/secondary 
capacity adjustment) 

EJ/yr
^2 

N
R

E_
ty

p
es

 

if(NRE_Depletion >= vector(1), vector(0), vector(1)) * 
max(vector(0 EJ/yr^2), sumr(Secondary_CF_Max * 
(Primary_PC_Invest_Delay / Sec_Conversion_Eff) * 
NRE_Secondary_Input_ID / NRE_CF_Max) + 
NRE_PC_Invest_Adj + if(ETime < 
Primary_NRE_Sector.Power_Capacity_Build_Time, 
vector(0 EJ/yr^2), NRE_PC_Decomm_Preempt)) 

Sy
st

em
 C

o
n

tr
o

l/
In

ve
st

 

Sy
n

ch
ro

n
iz

at
io

n
 

N
R

E_
P

C
_I

n
ve

st
_A

d
j 

Ex
p

re
ss

io
n

 Vector of adjustments to 
NRE PC investment for 
the purpose of balancing 
primary and secondary PC 
quantities 

EJ/yr
^2 

N
R

E_
ty

p
es

 

if(NRE_Depletion >= vector(1), vector(0), vector(1)) * 
max(- sumr(Secondary_CF_Max * 
(Primary_PC_Invest_Delay / Sec_Conversion_Eff) * 
NRE_Secondary_Input_ID / NRE_CF_Max) - if(ETime < 
Primary_NRE_Sector.Power_Capacity_Build_Time, 
vector(0 EJ/yr^2), NRE_PC_Decomm_Preempt), 
((NRE_Secondary_Input_Rate_Max - 
NRE_Production_Rate_Max) / NRE_CF_Max - 
NRE_PC_Invest_Adj_Integ) / ~Minimum_PC_Timeframe) 

Sy
st

em
 

C
o

n
tr

o
l/

In
ve

s
t 

Sy
n

ch
ro

n
iz

at
i

o
n

 
P

ri
m

ar
y_

B
u

il

d
_T

im
e 

Ex
p

re
ss

io
n

 

Vector of corresponding 
primary PC build times by 
secondary PC type 

yr 

Se
co

n
d

ar
y_

P

C
_t

yp
es

 sumc(Primary_NRE_Sector.Power_Capacity_Build_Time 
* NRE_Secondary_Input_ID) + 
sumc(Primary_RE_Sector.Power_Capacity_Build_Time * 
RE_Secondary_Input_ID) 
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Sy
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Sy
n

ch
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n
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io

n
 

R
E_

P
C

_I
n

ve
st

 

Ex
p

re
ss

io
n

 
Vector of investment 
flows for primary RE PC 
synchronized with 
corresponding secondary 
PC investment (includes 
invest signal, stock 
replacement, and 
primary/secondary 
capacity adjustment) 

EJ/yr
^2 

R
E_

ty
p

es
 

if(RE_Exhaustion_Commit > vector(1), vector(0), 
vector(1)) * max(vector(0 EJ/yr^2), 
sumr(Secondary_CF_Max * (Primary_PC_Invest_Delay / 
Sec_Conversion_Eff) * RE_Secondary_Input_ID / 
RE_CF_Max) + RE_PC_Invest_Adj + if(ETime < 
Primary_RE_Sector.Power_Capacity_Build_Time, 
vector(0 EJ/yr^2), RE_PC_Decomm_Preempt)) 

Sy
st

em
 C

o
n

tr
o

l/
In

ve
st

 

Sy
n

ch
ro

n
iz

at
io

n
 

R
E_

P
C

_I
n

ve
st

_A
d

j 

Ex
p

re
ss

io
n

 Vector of adjustments to 
RE PC investment for the 
purpose of balancing 
primary and secondary PC 
quantities 

EJ/yr
^2 

R
E_

ty
p

es
 

if(RE_Exhaustion_Commit > vector(1), vector(0), 
vector(1)) * max(- sumr(Secondary_CF_Max * 
(Primary_PC_Invest_Delay / Sec_Conversion_Eff) * 
RE_Secondary_Input_ID / RE_CF_Max) - if(ETime < 
Primary_RE_Sector.Power_Capacity_Build_Time, 
vector(0 EJ/yr^2), RE_PC_Decomm_Preempt), 
((RE_Secondary_Input_Rate_Max - 
RE_Production_Rate_Max) / RE_CF_Max - 
RE_PC_Invest_Adj_Integ) / ~Minimum_PC_Timeframe) 

Sy
st

em
 C

o
n

tr
o

l/
In

ve
st

 

Sy
n

ch
ro

n
iz

at
io

n
 

Se
co

n
d

ar
y_

P
C

_I
n

ve
st

 

Ex
p

re
ss

io
n

 

Vector of investment 
flows for primary and 
secondary (upstream) PC 
given by invest share and 
invest magnitude 
calculations (investment 
signal for system 
transformation; capped 
by maximum turnover 
factor) 

EJ/yr
^2 

Se
co

n
d

ar
y_

P
C

_t
yp

es
 if(ETime = 0 yr, vector(0), vector(1)) * 

min((sumr(max(vector(EC_types,0 EJ/yr), 
EC_Inflow_Integ.Moving_Average) * 
Secondary_Output_ID) / (Initial_Secondary_CF_Max * 
Sec_Reticulation_Eff * 
Secondary_Sector.Power_Capacity_Lifetime)) * 
PC_Invest_Max_Fraction, max(vector(0 EJ/yr^2), 
Upstream_Invest_PC_Share * EC_Invest_Magnitude)) 

Sy
st

em
 C

o
n

tr
o

l/
In

ve
st

 S
h

ar
e

 

D
o

w
n

st
re

am
_I

n
ve

st
_C

u
rt

ai
l 

Ex
p

re
ss

io
n

 

Vector of curtailment 
coefficients for EU PC 
(downstream) investment 
(takes into account 
penetration level relative 
to limit and capacity 
factor relative to CF 
maxima) 

 

En
d

_u
se

_P
C

_t
yp

es
 

if((End_Use_Penetration / EU_Penetration_Limit) < 
vector(1 - Curtailment_Threshold), vector(1), 
if(End_Use_Penetration >= EU_Penetration_Limit, 
vector(0), (vector(1) - (End_Use_Penetration / 
EU_Penetration_Limit)) / Curtailment_Threshold)) * 
min(vector(1), End_Use_Capacity_Factor / 
End_Use_CF_Target) * if((End_Use_Capacity_Factor / 
End_Use_CF_Target) < vector(1 - 
Curtailment_Threshold), vector(0), 
if((End_Use_Capacity_Factor / End_Use_CF_Target) > 
vector(1), vector(1), ((End_Use_Capacity_Factor / 
End_Use_CF_Target) - vector(1 - Curtailment_Threshold)) 
/ Curtailment_Threshold)) 

Sy
st

em
 C

o
n

tr
o

l/
In

ve
st

 

Sh
ar

e 

D
o

w
n

st
re

am
_I

n
ve

st
_E

C
_C

o
st

 

Ex
p

re
ss

io
n

 

Matrix of normalized (per 
unit PC, per year) lifetime 
downstream EC cost by 
EU PC type (construction, 
operation, and 
decommissioning; 
expressed as uniform 
flow) 

 

En
d

_u
se

_P
C

_t
yp

es
, 

EC
_t

yp
es

 End_Use_PC_ECC_Disag_Ratio + End_Use_CF_Target * 
mult(End_Use_Sector.PC_AI_ID * 
End_Use_Sector.Peak_Factor, 
End_Use_AI_ECC_Disag_Ratio) 

Sy
st

em
 

C
o

n
tr

o
l/

In
ve

st
 

Sh
ar

e 

D
o

w
n

st
re

am
_I

n

ve
st

_E
C

_Y
ie

ld
 

Ex
p

re
ss

io
n

 Matrix of ratios of net 
downstream EC saved per 
unit EC invested by EU PC 
type 

 

En
d

_u
se

_P
C

_t
yp

es
, E

C
_t

yp
es

 

End_Use_Capacity_Factor * (mult(End_Use_Output_ID * 
End_Use_ES_Eff, EC_ES_Conversion) - 
End_Use_Input_Scaled) / Downstream_Invest_EC_Cost - 
matrix(1) 
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D
o

w
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n
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st
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C
_S

h
ar

e 

Ex
p

re
ss

io
n

 
Vector of fractional 
shares of downstream 
investment by EU PC type 
translated to PC 
quantities (inversely 
scaled by PC cost and 
normalized, weighted by 
relative EC importance) 

 

En
d

_u
se

_P
C

_t
yp

es
 

sumr((Downstream_Invest_Share * 
(matrix(End_use_PC_types, EC_types, 1) / 
Downstream_Invest_EC_Cost) / 
(sumc(Upstream_Invest_Share * 
(matrix(Secondary_PC_types, EC_types, 1) / 
Upstream_Invest_EC_Cost)) + 
sumc(Downstream_Invest_Share * 
(matrix(End_use_PC_types, EC_types, 1) / 
Downstream_Invest_EC_Cost)))) * 
EC_Deficit_Horizon_Norm) 

Sy
st

em
 C

o
n

tr
o

l/
In

ve
st

 

Sh
ar

e 

D
o

w
n

st
re

am
_I

n
ve

st
_S

h
ar

e 

Ex
p

re
ss

io
n

 

Vector of fractional 
shares of downstream 
investment by EU PC type 
(given by logit function of 
utility; without 
curtailment upstream 
plus downstream sums to 
1) 

 

En
d

_u
se

_P
C

_t
yp

es
 

Downstream_Invest_Curtail * 
exp(Downstream_Invest_Utility) / 
(sumv(exp(Upstream_Invest_Utility)) + 
sumv(exp(Downstream_Invest_Utility))) 

Sy
st

em
 C

o
n

tr
o

l/
In

ve
st

 S
h

ar
e

 

D
o

w
n

st
re

am
_I

n
ve

st
_U

ti
lit

y 

Ex
p

re
ss

io
n

 

Vector of downstream 
utility values by EU PC 
type (sum product of 
yield and scaled forecast 
supply/demand balance 
by EC type, multiplied by 
specified utility 
coefficient) 

 

En
d

_u
se

_P
C

_t
yp

es
 

min(vector(700), if(Downstream_Invest_Curtail = 
vector(0) OR sumr(Downstream_Invest_EC_Yield * 
EC_Deficit_Horizon_Scaled) < vector(0 EJ) OR (Scenario_5 
= 1 AND ETime < 35 yr), vector(~Utility_Remove), 
Utility_Share_Coeff * sumr(Downstream_Invest_EC_Yield 
* EC_Deficit_Horizon_Scaled))) 

Sy
st

em
 

C
o

n
tr

o
l/

In
ve

st
 

Sh
ar

e 

En
d

_U
se

_A
I_

EC

C
_D

is
ag

_R
at

io
 

Ex
p

re
ss

io
n

 Matrix of EU AI ECC 
values split by EC type 
divided by sum lifecycle 
time (EC input per unit, 
per year) 

 

En
d

_u
se

_A
I_

ty
p

es
, E

C
_t

yp
es

 

End_Use_AI_ECC * End_Use_Sector.AI_EC_Split / 
(End_Use_Sector.Auxiliary_Lifetime + 
End_Use_Sector.Auxiliary_Build_Time) 

Sy
st

em
 

C
o

n
tr

o
l/
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ve

st
 

Sh
ar

e 

En
d

_U
se

_P
C

_E

C
C

_D
is

ag
_R

at
io

 

Ex
p

re
ss

io
n

 Matrix of EU PC ECC 
values split by EC type 
divided by sum lifecycle 
time (EC input per unit, 
per year) 

 

En
d

_u
se

_P
C

_t
y

p
es

, E
C

_t
yp

es
 End_Use_PC_ECC * End_Use_Sector.PC_EC_Split * 

(End_Use_Sector.PC_CapEx_Fraction + (vector(1) - 
End_Use_Sector.PC_CapEx_Fraction) * 
(End_Use_Capacity_Factor / Init_End_Use_CF_Target)) / 
(End_Use_Sector.Power_Capacity_Lifetime + 
End_Use_Sector.Power_Capacity_Build_Time) 

Sy
st

em
 C

o
n

tr
o

l/
In

ve
st

 

Sh
ar

e 

En
d

_U
se

_P
en

et
ra

ti
o

n
 

Ex
p

re
ss

io
n

 Vector of fractional 
shares of energy service 
provision by EU PC type 
(includes committed PC 
investments) 

 

En
d

_u
se

_P
C

_t
yp

es
 

maxr((End_Use_Sector.Amount_in_Transit + 
End_Use_Sector.Amount_in_Transit_2 + 
End_Use_PC_Invest_Delay.Amount_in_Transit) * 
End_Use_Capacity_Factor * End_Use_ES_Eff_PC_Mean * 
End_Use_Output_ID / 
sumc((End_Use_Sector.Amount_in_Transit + 
End_Use_Sector.Amount_in_Transit_2 + 
End_Use_PC_Invest_Delay.Amount_in_Transit) * 
End_Use_Capacity_Factor * End_Use_ES_Eff_PC_Mean * 
End_Use_Output_ID)) 

Sy
st

em
 

C
o

n
tr

o
l/

In
ve

s
t 

Sh
ar

e 

N
R

E_
ER

O
I_

D
i

sa
g_

In
ve
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e 

Ex
p

re
ss

io
n

 Matrix of inverse NRE 
EROI values split by EC 
type divided by sum 
lifecycle time (EC input 
per unit, per year) 

 

N
R

E_
ty

p
es

, 

EC
_t

yp
es

 

Primary_NRE_Sector.EC_Split / NRE_EROI 
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e 

Ex
p

re
ss

io
n

 
Matrix of inverse RE EROI 
values split by EC type 
divided by sum lifecycle 
time (EC input per unit, 
per year; adjusted for 
thermal equivalence of 
primary electricity 
output) 

 

R
E_

ty
p

es
, E

C
_t

yp
es

 

RE_Output_Thermal_Equiv * 
(Primary_RE_Sector.EC_Split * 
(Primary_RE_Sector.CapEx_Fraction + (vector(1) - 
Primary_RE_Sector.CapEx_Fraction) * (RE_CF_Max / 
Initial_RE_CF_Max)) / RE_EROI_Addition_Mean) 

Sy
st

em
 

C
o

n
tr

o
l/
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ve

st
 

Sh
ar

e 

R
E_

Ex
h

au
st

io
n

_C
o

m

m
it

 

Ex
p

re
ss

io
n

 Vector of RE exhaustion 
values to be reached 
when all committed RE 
PC comes online 

 

R
E_

ty
p

es
 

((Primary_RE_Sector.Amount_in_Transit + 
Primary_RE_Sector.Amount_in_Transit_2 + 
sumr((Initial_Secondary_CF_Max / 
Sec_Conversion_Eff_PC_Mean) * 
Primary_PC_Invest_Delay.Amount_in_Transit * 
RE_Secondary_Input_ID / RE_CF_Max)) * 
Initial_RE_CF_Max - Initial_RE_Output_Rate) / 
(RE_Potential - Initial_RE_Output_Rate) 

Sy
st

em
 C

o
n

tr
o

l/
In

ve
st

 S
h

ar
e

 

Se
c_

A
I_

EC
C

_D
is

ag
_R

at
io

 

Ex
p

re
ss

io
n

 Matrix of secondary AI 
ECC values split by EC 
type divided by sum 
lifecycle time (EC input 
per unit, per year) 

 

Se
co

n
d

ar
y_

A
I_

ty
p

es
, E

C
_t

yp
es

 

Secondary_AI_ECC * Secondary_Sector.AI_EC_Split / 
(Secondary_Sector.Auxiliary_Lifetime + 
Secondary_Sector.Auxiliary_Build_Time) 

Sy
st

em
 

C
o

n
tr

o
l/

In
ve

st
 

Sh
ar

e 

Se
c_

P
C

_E
C

C
_D

is

ag
_R

at
io

 

Ex
p

re
ss

io
n

 Matrix of secondary PC 
ECC values split by EC 
type divided by sum 
lifecycle time (EC input 
per unit, per year) 

 

Se
co

n
d

ar
y_

P
C

_t

yp
es

, E
C

_t
yp

es
 Secondary_PC_ECC * Secondary_Sector.PC_EC_Split * 

(Secondary_Sector.PC_CapEx_Fraction + (vector(1) - 
Secondary_Sector.PC_CapEx_Fraction) * 
(Secondary_CF_Max / Initial_Secondary_CF_Max)) / 
(Secondary_Sector.Power_Capacity_Lifetime + 
Secondary_Sector.Power_Capacity_Build_Time) 

Sy
st

em
 C

o
n

tr
o

l/
In

ve
st

 S
h

ar
e

 

Se
co

n
d

ar
y_

P
en

et
ra

ti
o

n
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Vector of fractional 
shares of gross EC 
production by secondary 
PC type (prior to 
transmission and 
distribution; includes 
committed PC 
investments; note: for 
CHP, the result is the 
maximum of heat and 
electricity penetration 
values) 
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 maxr((Secondary_Sector.Amount_in_Transit + 

Secondary_Sector.Amount_in_Transit_2 + 
Secondary_PC_Invest_Delay.Amount_in_Transit) * 
Secondary_CF_Max * Secondary_Output_Matrix / 
sumc((Secondary_Sector.Amount_in_Transit + 
Secondary_Sector.Amount_in_Transit_2 + 
Secondary_PC_Invest_Delay.Amount_in_Transit) * 
Secondary_CF_Max * Secondary_Output_Matrix)) 
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Vector of actual fractional 
shares of gross EC 
production by secondary 
PC type (prior to 
transmission and 
distribution; note: for 
CHP, the result is the 
maximum of heat and 
electricity penetration 
values) 
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sumr(Secondary_Output_Rate * 
Secondary_Output_Matrix / 
sumc(Secondary_Output_Rate * 
Secondary_Output_Matrix)) 
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Expression/condition/inputs 
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Vector of curtailment 
coefficients for primary 
and secondary PC 
(upstream) investment 
(takes into account 
penetration level relative 
to limit, NRE depletion, 
committed RE 
exhaustion, and capacity 
factor relative to CF 
maxima) 
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n
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if((Secondary_Penetration / Sec_Penetration_Limit) < 
vector(1 - Curtailment_Threshold), vector(1), 
if(Secondary_Penetration >= Sec_Penetration_Limit, 
vector(0), (vector(1) - (Secondary_Penetration / 
Sec_Penetration_Limit)) / Curtailment_Threshold)) * 
(sumc(RE_Secondary_Input_ID) + sumc(if(NRE_Depletion 
< vector(NRE_types, 1 - Curtailment_Threshold), 
vector(NRE_types, 1), if(NRE_Depletion > 
vector(NRE_types, 1), vector(NRE_types, 0), 
(vector(NRE_types, 1) - NRE_Depletion) / 
Curtailment_Threshold)) * NRE_Secondary_Input_ID)) * 
(sumc(NRE_Secondary_Input_ID) + 
sumc(if(RE_Exhaustion_Commit < vector(RE_types, 1 - 
Curtailment_Threshold), vector(RE_types, 1), 
if(RE_Exhaustion_Commit > vector(RE_types, 1), 
vector(RE_types, 0), (vector(RE_types, 1) - 
RE_Exhaustion_Commit) / Curtailment_Threshold)) * 
RE_Secondary_Input_ID)) * 
if((Secondary_Capacity_Factor / Secondary_CF_Max) < 
vector(1 - Curtailment_Threshold), vector(0), 
((Secondary_Capacity_Factor / Secondary_CF_Max) - 
vector(1 - Curtailment_Threshold)) / 
Curtailment_Threshold) 
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Matrix of normalized (per 
unit PC, per year) lifetime 
upstream EC cost by 
secondary PC type 
(construction, operation, 
and decommissioning; 
expressed as uniform 
flow) 
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 Sec_PC_ECC_Disag_Ratio + Secondary_CF_Max * 
(mult(Secondary_Sector.PC_AI_ID * 
Secondary_Sector.Peak_Factor * 
vector(Secondary_AI_types, 1, 
Secondary_Sector.Intermit_AI_Mult * 
Intermittency_Mitigation, 1, 1), Sec_AI_ECC_Disag_Ratio) 
+ mult(trans((NRE_Capacity_Factor / NRE_CF_Max) * 
NRE_Secondary_Input_ID / Sec_Conversion_Eff), 
NRE_EROI_Disag_Inverse) + 
mult(trans((RE_Capacity_Factor / RE_CF_Max) * 
RE_Secondary_Input_ID / Sec_Conversion_Eff), 
RE_EROI_Disag_Inverse)) 
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 Matrix of ratios of net 
upstream EC produced 
per unit EC invested by 
EU PC type 
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 Secondary_CF_Max * Secondary_Output_ID * 

Sec_Reticulation_Eff * (vector(1) + 
Intermittency_Mitigation * 
Secondary_Sector.Sec_Intermittent_ID * 
Secondary_Sector.Retic_Eff_Mult_Actual) / 
Upstream_Invest_EC_Cost - matrix(1) 
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Vector of fractional 
shares of upstream 
investment by secondary 
PC type translated to PC 
quantities (inversely 
scaled by PC cost and 
normalized, weighted by 
relative EC importance) 
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sumr((Upstream_Invest_Share * 
(matrix(Secondary_PC_types, EC_types, 1) / 
Upstream_Invest_EC_Cost) / 
(sumc(Upstream_Invest_Share * 
(matrix(Secondary_PC_types, EC_types, 1) / 
Upstream_Invest_EC_Cost)) + 
sumc(Downstream_Invest_Share * 
(matrix(End_use_PC_types, EC_types, 1) / 
Downstream_Invest_EC_Cost)))) * 
EC_Deficit_Horizon_Norm) 
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Vector of fractional 
shares of upstream 
investment by secondary 
PC type (given by logit 
function of utility; 
without curtailment 
upstream plus 
downstream sums to 1) 
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Upstream_Invest_Curtail * exp(Upstream_Invest_Utility) 
/ (sumv(exp(Upstream_Invest_Utility)) + 
sumv(exp(Downstream_Invest_Utility))) 
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Vector of upstream utility 
values by secondary PC 
type (sum product of 
yield and scaled forecast 
supply/demand balance 
by EC type, multiplied by 
specified utility 
coefficient) 
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n
d
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P
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_t
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min(vector(700), if(Upstream_Invest_Curtail = vector(0) 
OR sumr(Upstream_Invest_EC_Yield * 
EC_Deficit_Horizon_Scaled) < vector(0 EJ), 
vector(~Utility_Remove), Utility_Share_Coeff * 
sumr(Upstream_Invest_EC_Yield * 
EC_Deficit_Horizon_Scaled) * 
(sumc(RE_Secondary_Input_ID) + 
sumc(NRE_Secondary_Input_ID * (vector(NRE_types, 1) - 
NRE_Annual_Utility_Reduction * GHG_Intensity / 
meanv(GHG_Intensity))^(ETime / 1 yr))))) 
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Cumulative EC deficit 
(measured in years of 
current consumption) by 
EC type (positive values 
indicate surplus; can be 
considered a proxy for EC 
price) 

yr 

EC
_t

yp
es

 if(EC_Consumption.Moving_Average <= 2 * 
~PC_Zero_Approx, vector(0 yr), - 
(Supply_Demand_Balance / 
EC_Consumption.Moving_Average)) 
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Ex
p
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 Vector sum of cumulative 
EC deficit (measured in 
years of current 
consumption) above the 
EC deficit limit 

yr^2  sumv(EC_Deficit_Integral) 
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n

 

Scale factor for 
investment in response to 
sum forecast EC deficit 
(corresponds to 
additional commitment 
to sum lifecycle EC 
expenditure per year; 
linear function given by 
specified capacity 
coefficient; reduced 
when any ESMR 
approaches ESMR limit; 
minimum given by 
specified capacity floor) 

EJ/yr
^2 

 

max(~EC_Invest_Capacity_Floor, 
EC_Invest_Capacity_Coeff * sumv(max(vector(EC_types, 
0 EJ), EC_Deficit_Horizon_Integ.Moving_Average)) * 
if(maxv(ESMR) <= ESMR_Limit * (1 - 
Curtailment_Threshold), 1, (ESMR_Limit - maxv(ESMR)) / 
Curtailment_Threshold)) 
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 Invest capacity scale 
factor translated to 
applicable multiple given 
EC cost associated with 
invest PC share vectors 

EJ/yr
^2 

 

sumv(EC_Deficit_Horizon_Norm * 
((EC_Inflow_Integ.Moving_Average / 
sumv(EC_Inflow_Integ.Moving_Average)) * 
EC_Invest_Capacity) / max(vector(EC_types, 0.001), 
sumc(Upstream_Invest_PC_Share * 
Upstream_Invest_EC_Cost) + 
sumc(Downstream_Invest_PC_Share * 
Downstream_Invest_EC_Cost))) 
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Condition trigger to 
detect when EC deficit 
magnitude or rate of 
change is no longer 
consistent with a feasible 
transition pathway 

  

On True: meanv(EC_Deficit) > 3 yr; On True: 
maxv(EC_Deficit) > 5 yr; On True: 
meanv(EC_Consumption.Moving_Average / 
max(vector(EC_types, ~PC_Zero_Approx), 
EC_Inflow_Integ.Moving_Average)) > 2 

Sy
st

em
 

C
o

n
tr

o
l 

Tr
an

si
ti

o
n

_S
t

ab
le

_T
im

e 
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le
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r Returns time elapsed 
prior to transition failure 
(successful transition 
return sim. duration) 

yr  If: Transition_Failure.ETime > 0 yr, Then: 
Transition_Failure.Etime, Else: ETime 
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9.4.4.2 Previous value and information delay functions 
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m
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P
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Vector of values of EC_Deficit 
calculated in the previous 
timestep 

yr  EC_Deficit vector(0 yr)  

ER
O

I 

N
R

E_
ER

O
I_

D
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 D
el

ay
 

Vector of new PC EROI by 
NRE type, delayed by PC 
lifetime (for end-of-life PC) 

 

N
R

E_
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NRE_EROI 
Initial_NRE_E

ROI 

Primary_NRE_Sect
or.Power_Capacity

_Lifetime 
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O

I 

R
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 D
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Vector of new PC EROI by RE 
type, delayed by PC lifetime 
(for end-of-life PC) 

 
R
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p
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RE_EROI_Add
ition_Mean 

Initial_RE_ER
OI 

Primary_RE_Sector.
Power_Capacity_Lif

etime 
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 Normalized level of 

intermittent AI in operation 
relative to the total required 
for full mitigation via AI, 
calculated in the previous 
timestep 

  Intermit_AI_B
uilt_Factor 

0  
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o
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 D
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Vector of EU PC additions 
delayed by lifetime minus 
build time (PC flow to be 
decommissioned at the end 
of the planning horizon) 

EJ/yr^2 
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End_Use_Sec
tor.Power_Ca
pacity_Additi

on 

Initial_End_U
se_PC / 

End_Use_Sec
tor.Power_Ca
pacity_Lifeti

me 

End_Use_Sector.Po
wer_Capacity_Lifeti

me - 
End_Use_Sector.Po
wer_Capacity_Build

_Time 
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Vector of secondary PC 
additions delayed by 
secondary lifetime minus 
composite build time of the 
corresponding secondary PC 
type and associated primary 
PC (PC flow to be 
decommissioned at the end 
of the planning horizon) 
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Secondary_Se
ctor.Power_C
apacity_Addit

ion 

Initial_Second
ary_PC / 

Secondary_Se
ctor.Power_C
apacity_Lifeti

me 

Secondary_Sector.
Power_Capacity_Lif

etime - 
max(Primary_Build

_Time, 
Secondary_Sector.
Power_Capacity_B

uild_Time) 
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Vector of NRE PC additions 
delayed by lifetime minus 
build time (PC flow to be 
decommissioned at the end 
of the planning horizon) 

EJ/yr^2 
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C / 
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_Lifetime - 
Primary_NRE_Sect
or.Power_Capacity

_Build_Time 
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Vector of adjustments to NRE 
PC investment for the 
purpose of balancing primary 
and secondary PC quantities, 
delayed by NRE PC build time 

EJ/yr^2 
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NRE_PC_Inve
st_Adj 

vector(0 
EJ/yr^2) 

Primary_NRE_Sect
or.Power_Capacity

_Build_Time 
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Vector of RE PC additions 
delayed by lifetime minus 
build time (PC flow to be 
decommissioned at the end 
of the planning horizon) 

EJ/yr^2 
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Vector of adjustments to RE 
PC investment for the 
purpose of balancing primary 
and secondary PC quantities, 
delayed by RE PC build time 

EJ/yr^2 

R
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RE_PC_Invest
_Adj 

vector(0 
EJ/yr^2) 

Primary_RE_Sector.
Power_Capacity_B

uild_Time 
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 D
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 Vector of secondary PC 

additions delayed by 
secondary lifetime minus the 
corresponding primary PC 
build time (PC flow to be 
decommissioned at the end 
of the planning horizon) 

EJ/yr^2 
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Secondary_Se
ctor.Power_C
apacity_Lifeti
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Secondary_Sector.
Power_Capacity_Lif

etime - 
Primary_Build_Tim

e 

9.4.5 Scripts 

Model scripts are created using GoldSim’s inbuilt scripting functionality. This tool is based on 

the C++ scripting language. 

9.4.5.1 Intermittency mitigation optimization 

 

Sector System Control 

Element name Intermittency_Mitigation 

Description Weighting function to find the optimal balance of mitigation for electricity generation intermittency 

based on mitigation costs and relative EC importance (0 corresponds to CF reductions only, 1 to 

mitigation using AI only) 

Unit  

Array labels  

Initial value 0 

 

Script Code: 

----------------- 

// Implicit variable defining the result of the script. 

VALUE Result 

Script: 

------- 

VALUE<Vector[EC_types]>[EJ/yr] CF_Reduction_EC_Cost = - sumc(Primary_RE_Sector.Amount_in_Transit * 

Initial_RE_CF_Max * Secondary_Sector.RE_Intermittent_ID * Secondary_Sector.CF_Max_Mult * RE_EC_Conversion) - 

sumc(Secondary_Sector.Amount_in_Transit * Initial_Secondary_CF_Max * Secondary_Sector.Sec_Intermittent_ID * 

(vector(Secondary_PC_types, 1) - Primary_Generation_ID) * Secondary_Sector.CF_Max_Mult * Secondary_Output_Matrix) 

VALUE<Vector[EC_types]>[EJ/yr] Intermit_AI_EC_Cost = mult(Secondary_Sector.Auxiliary_Requirement * 

vector(Secondary_AI_types, 0, 1, 0, 0), Sec_AI_ECC_Disag_Ratio) - sumc(Secondary_Output_Rate * Secondary_Output_ID * 

Sec_Reticulation_Eff_PC_Mean * Secondary_Sector.Sec_Intermittent_ID * Secondary_Sector.Retic_Eff_Mult) 
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Result = sumv(if(~Intermit_AI_EC_Cost > ~CF_Reduction_EC_Cost, vector(EC_types, 0), vector(EC_types, 1)) * 

max(vector(EC_types, 0), EC_Deficit_Horizon_Norm)) 

9.4.5.2 Initial capital hypercycle solver 

 

Sector Energy Flow/Initialization/Initial ES Metabolism 

Element name Initial_Cap_HC_Solver 

Description 
Iterative solver to find the sum of initial EC flows for construction, operation, and decommissioning 

of end-use PC and AI consistent with initial net EC supply 

Unit EJ/yr 

Array labels EC_types 

Initial value 0.22 * Initial_EC_Net_Supply 

 

Script Code: 

----------------- 

// Implicit variable defining the result of the script. 

VALUE<Vector[EC_types]>[EJ/yr] Result 

Script: 

------- 

VALUE Solve_Limit = 99 

VALUE[EJ^2/yr^2] MSE_Threshold = 0.001 EJ^2/yr^2 

VALUE Initial_Band_Size = 0.75 

VALUE Band_Scaling_Factor = 0.75 

VALUE[EJ/yr] Min_Band = 0.005 EJ/yr 

VALUE<Vector[EC_types]>[EJ/yr] Cap_HC_0 = 0.22 * Initial_EC_Net_Supply 

VALUE<Vector[EC_types]>[EJ/yr] Cap_HC_1 = vector(0 EJ/yr) 

VALUE<Matrix[EC_types,Pos]>[EJ/yr] Cap_HC_Mat = matrix(0 EJ/yr) 

VALUE<Vector[EC_types]>[EJ/yr] Band = ~Cap_HC_0 * ~Initial_Band_Size 

VALUE<Vector[End_use_PC_types]>[EJ/yr] Output = vector(0 EJ/yr) 

VALUE<Vector[End_use_PC_types]>[EJ/yr] PC = vector(0 EJ/yr) 

VALUE<Vector[End_use_AI_types]>[EJ/yr] AI = vector(0 EJ/yr) 

VALUE<Vector[EC_types]>[EJ/yr] PC_Addition = vector(0 EJ/yr) 

VALUE<Vector[EC_types]>[EJ/yr] PC_Decomm = vector(0 EJ/yr) 

VALUE<Vector[EC_types]>[EJ/yr] PC_Operation = vector(0 EJ/yr) 

VALUE<Vector[EC_types]>[EJ/yr] AI_Addition = vector(0 EJ/yr) 

VALUE<Vector[EC_types]>[EJ/yr] AI_Decomm = vector(0 EJ/yr) 

VALUE<Vector[EC_types]>[EJ/yr] AI_Operation = vector(0 EJ/yr) 

VALUE<Vector[Pos]>[EJ^2/yr^2] MSE_Pos = vector(99999 EJ^2/yr^2) 

CONDITION Converged (variable exposed) = false 

VALUE Solve_Count (variable exposed) = 0 

REPEAT 

FOR (EC = 1; ~EC <= GetRowCount(~Cap_HC_0); EC = ~EC + 1) 

Cap_HC_Mat[*,*] = matrix(~Cap_HC_0, ~Cap_HC_0, ~Cap_HC_0) 

Cap_HC_Mat[~EC,1] = max(0 EJ/yr, ~Cap_HC_0[~EC] - ~Band[~EC]) 

Cap_HC_Mat[~EC,3] = min(Initial_EC_Net_Supply[~EC], ~Cap_HC_0[~EC] + ~Band[~EC]) 

FOR (Pos = 1; ~Pos <= GetColumnCount(~Cap_HC_Mat); Pos = ~Pos + 1) 
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Cap_HC_1[*] = ~Cap_HC_Mat[*, ~Pos] 

Output[*] = End_Use_Conversion_Eff_Input[*, Min] * sumc((Initial_EC_Net_Supply - ~Cap_HC_1) * 

Init_End_Use_Prop_Norm) 

PC[*] = ~Output / Init_End_Use_CF_Target 

AI[*] = sumc(~Output * End_Use_Sector.PC_AI_ID) * ((Init_End_Use_Peak_Factor - vector(1)) * vector(1 - 

Initial_Demand_Flex) + vector(1)) 

PC_Addition[*] = sumc((vector(End_use_PC_types, 1) - End_Use_Sector.PC_Decommission_Fraction) * 

End_Use_Sector.PC_CapEx_Fraction * ((vector(End_use_PC_types, 1) + Init_EU_PC_Growth_Rate) * ~PC * End_Use_PC_ECC 

/ End_Use_Sector.Power_Capacity_Lifetime) * End_Use_Sector.PC_Initial_EC_Split) 

PC_Decomm[*] = sumc(End_Use_Sector.PC_Decommission_Fraction * End_Use_Sector.PC_CapEx_Fraction * (~PC / 

End_Use_Sector.Power_Capacity_Lifetime) * End_Use_PC_ECC * End_Use_Sector.PC_Initial_EC_Split) 

PC_Operation[*] = sumc((vector(End_use_PC_types, 1) - End_Use_Sector.PC_CapEx_Fraction) * (~PC * End_Use_PC_ECC / 

End_Use_Sector.Power_Capacity_Lifetime) * End_Use_Sector.PC_Initial_EC_Split) 

AI_Addition[*] = sumc((vector(End_use_AI_types, 1) - End_Use_Sector.AI_Decommission_Fraction) * 

End_Use_Sector.AI_CapEx_Fraction * ((vector(End_use_AI_types, 1) + Init_EU_AI_Growth_Rate) * ~AI * End_Use_AI_ECC / 

End_Use_Sector.Auxiliary_Lifetime) * End_Use_Sector.AI_Initial_EC_Split) 

AI_Decomm[*] = sumc(End_Use_Sector.AI_Decommission_Fraction * End_Use_Sector.AI_CapEx_Fraction * (~AI / 

End_Use_Sector.Auxiliary_Lifetime) * End_Use_AI_ECC * End_Use_Sector.AI_Initial_EC_Split) 

AI_Operation[*] = sumc((vector(End_use_AI_types, 1) - End_Use_Sector.AI_CapEx_Fraction) * (~AI * End_Use_AI_ECC / 

End_Use_Sector.Auxiliary_Lifetime) * End_Use_Sector.AI_Initial_EC_Split) 

MSE_Pos[~Pos] = meanv((~Cap_HC_1 - (~PC_Addition + ~PC_Decomm + ~PC_Operation + ~AI_Addition + ~AI_Decomm + 

~AI_Operation))^2) 

END FOR // Pos 

Cap_HC_0[~EC] = ~Cap_HC_Mat[~EC, vIndex(~MSE_Pos, minv(~MSE_Pos))] 

Band[~EC] = max(~Min_Band, ~Band[~EC] * ~Band_Scaling_Factor) 

END FOR // EC 

Solve_Count = ~Solve_Count + 1 

Converged = meanv(~MSE_Pos) < ~MSE_Threshold 

UNTIL (~Converged OR ~Solve_Count = ~Solve_Limit) 

Result[*] = ~Cap_HC_0 

9.4.6 Miscellaneous array label sets 

Index Normal_dist_inputs Uniform_dist_inputs Range_inputs Trend_points 

1 Mean Max Numeral Initial 

2 SD Min Error Final 

In addition, two ordinal label sets are used: 

• Plan_horizon (0 to 20; representing the planning timeframe) 

• Pos (1 to 3; for search intervals within the Initial_Cap_HC_Solver script) 

9.4.7 Input parameter correlations 

GoldSim offers input stochastic element correlation functionality which can be used to 

simulate interdependency between input parameters.  
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9.4.7.1 ES final demand 

All entries of the ES final demand multiplier vector (ES_Final_Demand_Mult) are correlated 

to each other using a correlation matrix with a base correlation factor of 0.5 (still significant 

randomness) as increases in demand for one ES is more likely to occur with increases in other 

ESs, and vice versa. Sub-groups are assumed to be more highly correlated (correlation factor 

0.8) due to sectoral similarity in patterns of consumption: 

• Illumination, IPaC, cooling, and low-temp heating (household/commercial) 

• Static mechanical and high temp process heat (industrial) 

• Regional and IC passenger transportation (movement of people) 

• Regional and IC freight transportation (movement of goods) 

9.4.7.2 EC split factors for heat and LaG fuels 

All LaG fuel EC split factor vectors for PC and AI (EC_Split_LaG_Factor for RE primary and NRE 

primary sectors, PC_EC_Split_LaG_Factor and AI_EC_Split_LaG_Factor for secondary and 

end-use sectors) are correlated to a uniformly distributed, unitary, scalar stochastic element 

(EC_Split_LaG_Correlator). Similarly, all heat EC split factor vectors for PC and AI 

(EC_Split_Heat_Factor for RE primary and NRE primary sectors, PC_EC_Split_Heat_Factor 

and AI_EC_Split_Heat_Factor for secondary and end-use sectors) are correlated to another 

uniformly distributed, unitary, scalar stochastic element (EC_Split_Heat_Correlator). The 

correlation factor used for both is 0.8. 

The LaG factor represents geographical remoteness and the need for transportation and 

servicing that will be difficult to electrify, while the heat factor represents the degree of heavy 

industry required for manufacturing and maintenance. Bias in consumption of ECs for 

particular PC and AI types within the autocatalytic loop and capital hypercycle (GES 

metabolism) relative to final consumption is likely to relate to that seen in similar PC and AI 

types (as defined in sections 9.5.10, 9.5.11, 9.5.12, and 9.5.13). This correlation reflects 

alignment in the epistemically uncertain degree of structural dependence on particular ECs 

for upkeep and transformation of the GES over time. 

9.4.7.3 EROI and ECC 

All vectors for EROI (Initial_NRE_EROI and Initial_RE_EROI) and ECC (Secondary_PC_ECC, 

Secondary _AI_ECC, End_Use_PC_ECC, and End_Use_AI_ECC), including pre-simulation EROI 

declines (NRE_EROI_Drop and RE_EROI_Drop), are correlated to a uniformly distributed, 
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unitary, scalar stochastic element (EROI_ECC_Correlator). The correlation factor used is 0.5 

(still significant randomness) and is applied with a negative sign for ECC as these values are 

negatively proportional to EROI as boundary definitions change. 

Studies estimating EROI (and by extension, ECC) use pre-analytic boundary definitions that 

can be more or less comprehensive regarding various production activities and second- or 

third-order dependencies. The ‘true’ boundary from a functional perspective extent is 

epistemically uncertain, but values will tend to rise or fall together when similar boundaries 

are implicitly assumed. For EROI, this correlation extends to drop (pre-simulation decline) 

values as both are subject to the same boundary assumption effect. 

9.4.7.4 Initial NRE resource 

All entries of the initial NRE resource vector (Initial_NRE_Resource) are correlated to each 

other using a correlation matrix with a correlation factor of 0.5 (still significant randomness). 

Actual resource quantities accessible above terminal EROI (larger than ‘reserves’, which 

depend on economic viability) are epistemically uncertain. Optimism or pessimism in 

resource estimates is likely to affect other estimates similarly when using consistent 

assumptions and methodologies, although not with a high degree of correlation due to 

differences in geology, technologies, geopolitical factors, resource distribution, etc. 

9.4.7.5 Efficiencies 

Subgroups of efficiency estimates are subject to correlation effects due to underlying 

technological and design similarities. This affects estimates for initial, final, base (observed at 

the time of technology inception), and PC mean (for EU to ES only) efficiencies. Correlation 

matrices are used with a base correlation factor of 0, as most pairs of vector entries are not 

expected to be correlated. 

9.4.7.5.1 Secondary conversion 

The following technology subgroups are correlated with a 0.5 correlation factor: 

• Primary fuels to heat conversion (burners, furnaces, boilers, etc.) – oil, gas, coal, and 

biomass heat 

• Synthetic fuels (Fischer-Tropsch synthesis) – gas to LaG and coal to LaG 

• Combined heat and power (CHP) – gas, coal, and biomass 

• Heat cycle electricity generation – coal, nuclear, solar thermal, biomass, and geothermal 

generation 
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The resulting correlation matrix is applied to the Init_Sec_Conversion_Eff, 

Final_Sec_Conversion_Eff, and Sec_Conversion_Eff_Base vectors. 

9.4.7.5.2 Reticulation systems 

The following technology subgroups are correlated with a 0.8 correlation factor due to a high 

degree of technological similarity: 

• Electricity reticulation (electricity transmission and distribution) 

• Heat reticulation (steam systems, direct heating, heating elements, etc.) 

LaG fuel reticulation correlations are not needed as reticulation is assumed to be perfectly 

efficient (no uncertainty). Combined heat and power (CHP) using gas, coal and biomass are 

each correlated to both of the above subgroups with a factor of 0.5. The resulting correlation 

matrix is applied to the Init_Sec_Reticulation_Eff, Final_Sec_Reticulation_Eff, and 

Sec_Reticulation_Eff_Base vectors. 

9.4.7.5.3 End-use conversion 

The following technology subgroups are correlated with a 0.5 correlation factor: 

• Electric motors – electric mechanical, electric vehicles, and electric rail (passenger and 

freight) 

• Internal combustion engines – LaG fuel mechanical, all ICEV, all ICE rail, and all shipping 

In addition, jet engines (all aviation) are correlated with a 0.8 correlation factor due to a high 

degree of technological similarity. Heat conversion correlations are not needed as conversion 

is assumed to be perfectly efficient (no uncertainty; conversion losses modelled at secondary 

stage). The resulting correlation matrix is applied to the Init_End_Use_Conversion_Eff, 

Final_End_Use_Conversion_Eff, and End_Use_Conversion_Eff_Base vectors. 

9.4.7.5.4 End-use passive systems 

The following technology subgroups are correlated with a 0.5 correlation factor due to passive 

system design similarities (innovations in one can generally be applied to others in the same 

category): 

• Mechanical systems – electric and LaG mechanical 

• Light vehicles – ICEV light and electric vehicles 

• Heavy vehicles – ICEV heavy (passenger and freight) 

• Rail – all rail 

• Aircraft – all aviation 

• Ships – all shipping 
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• Low temperature heating – LaG fuels, heat, and electric heating low 

• High temperature heating – heat and electric heating high 

The resulting correlation matrix is applied to the Init_End_Use_ES_Eff, 

Final_End_Use_ES_Eff, End_Use_ES_Eff_Base, and Init_End_Use_ES_Eff_PC_Mean vectors. 

9.5 INPUT PARAMETER CALCULATIONS AND ASSUMPTIONS 

9.5.1 Data sources 

 Title Citation Used for input reference: 

1 BP Statistical Review of World Energy 2019 [40] 
1.1, 1.3, 1.4, 1.7, 1.8, 1.9, 1.10, 
1.12, 2.1, 2.4 

2 
EIA - Table 8.1. Average Operating Heat Rate for Selected Energy 
Sources 

[368] 4.1 

3 IEA Extended World Energy Balances [369] 
1.1, 1.2, 1.3, 1.4, 1.7, 1.8, 1.9, 
1.10, 1.12, 1.11, 2.1, 2.5, 2.6, 
3.4, 4.1, 4.2 

4 Fuels - Higher and Lower Calorific Values [370] 2.1 

5 EIA International Energy Outlook 2019 [371] 
1.1, 1.2, 1.3, 1.7, 1.8, 1.9, 1.10, 
1.11, 1.12, 2.4, 3.1, 4.5 

6 
Electricity End Uses, Energy Efficiency, and Distributed Energy 
Resources baseline 

[372] 1.2, 1.11 

7 
Energy Efficiency Analysis: Biomass-to-Wheel Efficiency Related 
with Biofuels Production, Fuel Distribution, and Powertrain Systems 

[373] 1.1, 4.1 

8 IIASA Global Energy Assessment [49] 1.2, 2.1, 2.2, 4.4, 4.5, 4.6 

9 The Shift Project - Historical Energy Production Statistics [41] 2.1 

10 World Limits Model (WoLiM) 1.5 Model Documentation [344] 
2.1, 2.2, 2.4, 7.2, 10.6, 10.13, 
10.14 

11 Global energy modelling: a biophysical approach (GEMBA) [342] 2.2, 4.3, 6.1, 6.4, 6.6, 7.1 

12 Meta-analysis of non-renewable energy resource estimates [150] 2.1 

13 Bioenergy: how much can we expect for 2050? [374] 2.2 

14 Bioenergy and climate change mitigation: an assessment [375] 2.2 

15 Projection of world fossil fuels by country [376] 2.1 

16 When will oil, natural gas, and coal peak? [377] 2.1 

17 A global coal production forecast with multi-Hubbert cycle analysis [378] 2.1 

18 What is the global potential for renewable energy? [34] 2.2 

19 Renewable Energy and Electricity [379] 2.4 

20 Refinery Utilization and Capacity [380] 3.1 

21 Refinery Economics [381] 3.1 

22 Why Capacity and Utilization Are the Keys to Refining Revenue  [382] 3.1 

23 
Economic Feasibility and Investment Decisions of Coal and Biomass 
to Liquids 

[383] 3.1 

24 Biomass for Electricity Generation [384] 3.1 

25 Direct Utilization of Geothermal Energy [385] 3.1 

26 Monthly Biodiesel Production Report [386] 3.1 

27 Electricity Generation Baseline Report [387] 2.4, 3.1 

28 Waste heat recovery technologies and applications [388] 3.4, 3.5 

29 GE Global Power Plant Efficiency Analysis [389] 4.1 

https://articles2.marketrealist.com/2015/12/capacity-utilization-keys-refining-revenue/
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 Title Citation Used for input reference: 

30 Estimation of Energy Efficiencies of U.S. Petroleum Refineries [390] 4.1 

31 A review on coal-to-liquid fuels and its coal consumption [391] 4.1 

32 Concentrated solar power plants: Review and design methodology [392] 4.1 

33 
Global energy efficiency improvement in the long term: a demand- 
and supply-side perspective 

[365] 4.1, 4.2, 4.4, 4.5, 4.6 

34 Electric power transmission and distribution losses (% of output) [393] 4.2 

35 
Opportunities for Energy Efficiency Improvements in the U.S. 
Electricity Transmission and Distribution System 

[394] 4.2 

36 Energy in world history [6] 4.3, 4.7 

37 Historical Timeline: History of Alternative Energy and Fossil Fuels [395] 4.3, 4.7 

38 An Interactive Timeline: The History of Power [396] 4.3 

39 Short history and present trends of Fischer–Tropsch synthesis [397] 4.3 

40 The History of Steel: From Iron Age to Electric Arc Furnaces [398] 4.7 

41 Technical limits for energy conversion efficiency [218] 4.4 

42 Theoretical efficiency limits for energy conversion devices [213] 4.1, 4.4 

43 Reducing Energy Demand: What Are the Practical Limits? [212] 1.2, 4.4, 4.6 

44 Energy efficiency in transport [399] 4.5 

45 Energy efficiency increased [400] 4.5 

46 Transportation Energy Data Book [401] 4.5 

47 Transportation Sector – Energy Use Analysis [402] 4.5 

48 Energy in nature and society: general energetics of complex systems [99] 4.3 

49 Tracking Transport [403] 4.5 

50 Transparent Cost Database [404] 2.4, 3.1 

51 
A Comparative Analysis of Energy Costs of Photovoltaic, Solar 
Thermal, and Wind Electricity Generation Technologies 

[405] 6.1, 7.1 

52 
Dynamic Energy Return on Energy Investment (EROI) and material 
requirements in scenarios of global transition to renewable 
energies 

[39] 6.1, 7.1 

53 
Order from Chaos: A Preliminary Protocol for Determining the EROI 
of Fuels 

[170] 3.6 

54 
Dynamic EROI Assessment of the IPCC 21st Century Electricity 
Production Scenario 

[119] 
2.4, 3.1, 6.1, 6.4, 7.1, 9.1, 9.2, 
9.5, 9.6, 10.1, 10.2, 10.5, 10.6 

55 
A Preliminary Investigation of Energy Return on Energy Investment 
for Global Oil and Gas Production 

[406] 6.4, 6.6 

56 
Long-Term Estimates of the Energy-Return-on-Investment (EROI) of 
Coal, Oil, and Gas Global Productions 

[181] 6.4, 6.6 

57 
The implications of the declining energy return on investment of oil 
production 

[165] 6.4, 6.6 

58 
A comprehensive assessment of the energy performance of the full 
range of electricity generation technologies deployed in the United 
Kingdom 

[407] 6.1, 7.1 

59 
Concentrated Solar Power: Actual Performance and Foreseeable 
Future in High Penetration Scenarios of Renewable Energies 

[408] 3.1, 7.1 

60 
Energy intensities, EROIs (energy returned on invested), and energy 
payback times of electricity generating power plants 

[409] 6.1, 7.1, 10.13 

61 EROI of different fuels and the implications for society [53] 6.1, 6.4, 6.6, 7.1 

62 
Can we afford storage? A dynamic net energy analysis of renewable 
electricity generation supported by energy storage 

[84] 10.13 

63 A Framework for Incorporating EROI into Electrical Storage [190] 10.13 

64 The costs and impacts of intermittency – 2016 update [85] 10.13 

65 Electricity storage for intermittent renewable sources [195] 10.14 
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 Title Citation Used for input reference: 

66 Emission Factors for Greenhouse Gas Inventories [410] 2.6 

67 Statistics - Specific Carbon Dioxide Emissions of Various Fuels [411] 2.6 

68 Global Emissions [123] 2.7 

69 How have global CO2 emissions changed over time? [412] 2.7 

9.5.2 Preliminary data processing 

Three sources contained large data sets that required processing to render data in a form 

suitable for PRESS. In most cases, this is due to the need for different levels of aggregation 

and disaggregation corresponding to the PRESS model formulation. The following sections list 

data processing steps taken prior to utilization of these sources for specific input arrays. 

9.5.2.1 BP Statistical Review of World Energy [40] 

• Values are converted to common units of EJ (energy) and EJ/yr (power) using the provided 

conversion table. 

• Primary energy quantities are adjusted for nuclear, hydropower, and renewables to 

reverse the thermal equivalence method used by BP and align with the PRESS model 

treatment of primary energy sources. 

• Biofuels production is removed from oil consumption as it is modelled explicitly in PRESS. 

• Where possible, 2013-2018 values are averaged to give indicative values approximately 

aligned with 2015: 

o Where only 2017 and 2018 data are available, these are averaged and assumed to 

provide a suitable indication for ~2015 (insufficient information to do otherwise). 

o Where only 2018 is available, the values are used as given. 

9.5.2.2 IEA Extended World Balances [369] 

9.5.2.2.1 Notes 

• IEA uses the “primary energy equivalent” convention for electricity and heat produced 

from non-combustible sources (nuclear, geothermal, solar, hydropower, wind): 

o “The principle adopted by the IEA is that the primary energy form is the first energy 

form downstream in the production process for which multiple energy uses are 

practical.” 

o The production of electricity is considered to be primary for hydropower, wind, 

tide/wave/ocean, and solar photovoltaic. 

o Heat is considered primary for direct uses and the by-product of electricity 

generation for nuclear, geothermal and solar thermal. 

o For downstream transformations, the IEA adopts the “physical energy content” 

method. 

o This aligns with the PRESS model formulation. 

• The IEA assumes an average gross calorific value of 38 TJ/million m3 for natural gas. 

• The IEA notes significance variation in data quality by region: 
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• Primary conversion efficiencies are assumed based on surveyed average values: 

o 10% for geothermal electricity 

o 50% for geothermal heat 

o 33% for solar thermal electricity and nuclear electricity 

o 100% for solar thermal heat 

• No final non-energy consumption is reported for biomass (biomass considered by the IEA 

is the component used for energy purposes only). 

9.5.2.2.2 Data processing 

• Where data is not available, refinery own use is estimated to be 5% of refinery 

throughput, 

split between refinery gas and fuel oil. 

• Data for latest 5-year period (2013 to 2017) is exported (2018 data not available at time 

of analysis) and averaged to give indicative values approximately aligned with 2015. 

• Electricity output values are converted from GWh to EJ. 

• Product categories with (5-year average) values less than 0.1 EJ are disregarded as 

insignificant: 

o Gas coke 

o Aviation gasoline 

o Gasoline type jet fuel 

o Paraffin waxes 

o Bio jet kerosene 

• Primary energy sources are aggregated as follows: 
Oil Coal Solar Biomass 

• Crude oil 

• Natural gas liquids 

• Other hydrocarbons 

(includes oil shale and 

oil sands) 

 

• Anthracite 

• Coking coal 

• Other bituminous coal 

• Sub-bituminous coal 

• Lignite 

• Solar photovoltaics 

• Solar thermal 

• Primary solid biofuels 

• Biogases 

• Biogasoline 

• Biodiesels 

• Other liquid biofuels 

• Charcoal 

• Energy carriers are aggregated as follows: 

 
Liquid and gaseous (LaG) fuels Heat 

• Motor gasoline excl. biofuels 

• Kerosene type jet fuel excl. biofuels 

• Heat (traded) 
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• Other kerosene 

• Gas/diesel oil excl. biofuels 

• Fuel oil 

• Biogasoline 

• Biodiesels 

• Other liquid biofuels 

• Heat (final consumption; 

estimation described 

below) 

 

• Non-traded heat final consumption is assumed to be represented by the total final 

consumption (excluding non-energy use) of the following products, with a representative 

50% conversion efficiency (aligns with IEA convention but does not match modelled 

secondary conversion efficiencies in 9.5.6.1 perfectly, however this difference is 

insignificant for the calculation of normalized end-use input proportion values): 

o Coal (aggregated) 

o Natural gas (aggregated) 

o Petroleum coke 

o Coke oven coke 

o Coke oven gas 

o Blast furnace gas 

• Heat output flows are calculated as totals (traded and non-traded) for heat plants (main 

activity and CHP). 

• Waste flows are insignificant (<1% TPES) and do not fit either the definition of NRE as a 

stock or RE as a flow, so are ignored: 

o Practically, these flows will always be limited to a small fraction of the total and 

depend on the availability of concentrated combustible or convertible wastes. 

o Insufficient information is available to separate these flows from main primary 

flows (additional assumptions do not add clarity and provide little functional 

difference). 

• The primary energy equivalent of final non-energy consumption is calculated as the final 

non-energy consumption plus the sum of transformed (secondary) flows, multiplied by 

the fraction of non-energy to total final consumption over all derivative products. 

9.5.2.3 Dynamic EROI Assessment of the IPCC 21st Century Electricity Production Scenario 

[119] 

• Total lifecycle energy inputs are calculated by summing construction, decommissioning, 

and operations (after converting to a total per peak capacity). Fuel processing is excluded 

as this either covers primary activities (nuclear) or represents a loss of fuel (e.g., gas 

flaring) that should be reflected by the relevant conversion efficiency. 

• For RE, EROI values are used and the CapEx fraction, decommissioning fraction, build time, 

and lifetime are assumed to refer to primary PC. 

• For NRE, EROI values are used to calculate corresponding ECC values for secondary PC (see 

9.5.9.1). 

• For nuclear, the fuel processing cost is assumed to refer to primary activities and is 

converted to a primary-level EROI value (using thermal equivalent for electricity). 

• As stated, gas refers to CCGT and hydro to run-of-river (assumed to be representative of 

aggregate PC as modelled in PRESS). 
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• EROI estimates for solar PV span a wide range, but the report assumes a trend towards 

higher values. A representative value is taken for initial RE EROI. 

9.5.3 Initialization 

9.5.3.1 Init_Secondary_Prop_Input 
Input reference: 1.1 

Description: Matrix of normalized estimates of initial flow of primary energy to secondary PC types and 

associated maximum fractional error 
Sources: 1, 3, 5, 7 

General calculations and assumptions 

• Raw primary inputs to secondary conversion are converted to an input vector normalized by primary input type 

(values for each primary input type sum to one) 

• A standard error of ±0.1 (as a fraction of the normalized estimate; uniform) is assumed for all primary inputs, except 

biofuels: 

o Data is aggregated from many national sources, of varying quality. 

o Availability of secondary data sources ensure major errors are minimized. 

o Misreporting and unreported energy transactions, and approximations and assumptions used in data 

collation can create systematic errors, particularly for minor energy sources and biomass. 

o Random error means normalization is violated – this is corrected by renormalizing the resulting vector after 

assigning errors in each model realization (see expression for Initial_Secondary_Output_Rate in section 

9.4.4). 

Source-specific calculations and assumptions 

Sources 1 & 5 2013-2018 average values for electricity generation are converted back to primary equivalents using 

secondary conversion efficiency values from 9.5.6.1 

Source 3 • Raw values for electricity generation inputs are given by the sums of primary inflows to main 

and autoproducer electricity plants, by primary fuel type. 

• Oil heat is given by the sum of primary oil inflows to main and autoproducer heat plants (likely 

an underestimate, but value insignificant). 

• Gas and coal CHP values are given by the respective sums of primary inflows to main and 

autoproducer CHP plants. 

• Where required, primary heat values are calculated as the difference between TPES for the 

relevant fuel type, excluding primary equivalent non-energy use, and use categories associated 

with other energy carriers. 

• Refinery input includes quantities for non-energy products – energy-only refinery input is 

estimated as total refinery input multiplied by the ratio of TPES excluding non-energy to total 

TPES. 

• IEA data reports output energy from biofuel production at the primary level, not calorific value 

of biomass input, however the PRESS model treats biofuel production as a secondary process 

so needs total biomass input: 

o IEA has a mismatch in semantic definition of biomass primary energy (non-equivalent 

categories aggregated). 

o Assume cellulosic wastes are recovered from biofuel production and used for 

electricity and heat. 

o Source 7 [373] gives biomass to fuel efficiencies around 50% for most biofuel 

production methods – primary value reported by IEA is divided by 0.5 to give primary 

biomass input. 

o Due to increased uncertainty associated with this adjustment, biofuels have a higher 

error factor (±0.2). 

9.5.3.2 Init_End_Use_Prop_Input 
Input reference: 1.2 
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Description: Matrix of normalized estimates of initial flow of ECs to end-use PC types and associated maximum 

fractional error 

Sources: 3, 5, 6, 8, 43 

General calculations and assumptions 

• Refers to EC flows for final consumption (non-energy system) purposes only, as GES requirements are represented 

explicitly via the autocatalytic loop and capital hypercycle (modelled end-use PC is the component used for final 

consumption purposes only). 

• Raw EC inputs to end-use PC are converted to an input vector normalized by EC type (values for each EC sum to one). 

• This vector is populated using proportions of total EC consumption (including GES requirements); therefore, it is 

assumed that the normalized flow proportions between the GES requirements and final consumption are 

approximately equivalent. 

• For simplicity, electricity production at the final consumption stage using LaG fuels (onsite, typically small-scale) can 

be subsumed into the LaG fuel mechanical category as it is functionally equivalent and will remain a small proportion 

of the total. 

• Air travel can be split into freight and passenger assuming 10% freight (approximate value based on an informal 

search) at both the regional and intercontinental levels. 

• Likewise, shipping can be split into freight and passenger assuming 50% freight at the regional level (passenger 

cruises significant at this range) and 95% freight at the intercontinental level (primarily large tankers and cargo ships, 

very little passenger transportation). 

• Error factor of ±0.2 is used for all PC types: 

o This is higher error than for 9.5.3.1, due to paucity, incompleteness, and lower quality of data. 

o In addition, more approximations and assumptions are required to disaggregate available data sources to 

the required categories. 

o Random error means normalization is violated – this is corrected by renormalizing the resulting vector after 

assigning errors in each model realization (see expression for Init_End_Use_Prop_Norm in section 9.4.4). 

Source-specific calculations and assumptions 

Source 3 • Raw transport EC inputs (aggregated) are given by the relevant inputs to transportation final 

consumption categories: World aviation bunkers, Domestic aviation, Road, Rail, World marine 

bunkers, and Domestic navigation: 

o Further disaggregation is needed to define passenger/freight shares. 

o The IEA's international/domestic distinction does not exactly correspond to the 

modelled regional/IC distinction (a component of international will also be regional), 

so this could be refined using other data sources. 

• The difference between total final LaG fuel consumption, excluding non-energy consumption, 

and the LaG fuel consumption in the transportation sector is assumed to represent the sum of 

LaG fuel mechanical plus LaG fuel heating (by definition, due to exhaustive categories): 

o LaG fuel mechanical includes electricity generation from LaG fuel (small generators). 

o This split is approximated as 90% mechanical and 10% heat (mechanical uses deemed 

order of magnitude more common than heat; high uncertainty). 

• Heat fuel heating high and low are estimated by summing calculated heat final consumption by 

sector and an evaluation of the likely end uses based on the nature of the relevant sector: 

o High heat - Mining and quarrying, Construction, Iron and steel, Chemical and 

petrochemical, Non-ferrous metals, Non-metallic minerals, Transport equipment, 

and Machinery 

o Low heat - Food and tobacco, "Paper, pulp and printing", Wood and wood products, 

Textile and leather, Industry not elsewhere specified, Residential, Commercial and 

public services, Agriculture/forestry, Fishing, and Final consumption not elsewhere 

specified 

o This split is approximate at best and therefore, entails high uncertainty. 

• For electrified rail, 28% is assumed for passenger services and 72% for freight, as per source 43. 

Source 5 Data for transport proportions used in place of that available from source 6 below as it applies to 

the global level: 

• Primary energy supply values for oil, coal and natural gas are converted from quad BTU to EJ. 

• ICEV light and ICEV heavy passenger/freight total matches IEA total very closely. 
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• EIA data indicates more energy usage in rail, for both passenger and freight – likely due to 

treatment of electricity and thermal equivalent at primary level – insufficient information given 

to resolve, also indicated ratios are similar, so no changes made. 

• Totals for passenger aviation and marine transport are very similar between IEA and EIA so no 

changes are made. 

Source 6 Data from figures 1.7, 1.9, & 4.7: 

• For residential and commercial, Other Uses (undefined MELs) and Cooking & Cleaning 

Appliances are both assumed to be approximately 50% heating and 50% mechanical load 

(approximate; high uncertainty). 

• Manufacturing electricity end-use, depicted in figure 4.7, is assumed to be typical of industrial 

electricity use: 

o Motors, HVAC, and other process are assigned to electric mechanical. 

o Electro-chemical, and conventional boiler are assigned to electric heating low. 

o Process cooling and refrigeration is assigned to electric cooling. 

o Process heating is assigned to electric heating high. 

o Other is assigned to IPaC. 

• As this data refers to the US, global proportions of electricity consumption within each sector 

(residential, commercial, industrial) are assumed to be similar (high uncertainty). 

• The sectoral proportions are weighted by total sectoral electricity consumption from source 3 

(IEA) to give representative global system electricity proportions. 

• The high heat estimate is particularly uncertain as only one aggregate industrial sector is 

represented. 

 

Figure 5.7 can be used to establish splits between passenger and freight EC consumption, and also 

for ICEV light and heavy for ~2015 (read graphically to give approximate proportions): 

• The chart indicates primary energy, so it is necessary to assume similar split for LaG use 

(transformations/losses for all transport types using the same EC are similar). 

• Passenger rail – 0.2 

• Air (domestic) – 6 

• Shipping (domestic) – 2 

• Freight rail – 1 

• It is necessary to assume that global transport proportions for the categories above are similar 

to the US (high uncertainty). 

Source 8 • Estimated motorized passenger travel shares by mode given in figure 9.7 on page 586 (chapter 

9) – world chart. 

• The indicated data source is the IEA, but this appears to be no longer available directly. 

• Data pertains to 2005 – assume travel mode shares are similar in 2015 

• Values are converted to LaG fuel input proportions by dividing by composite end-use 

efficiencies (from inputs 4.4 and 4.5) for each PC type. 

• Results are then scaled to absolute equivalents by multiplying by the sum of equivalent 

categories from source 5. 

• Final calculated estimates using source 3 values use the average of the above and alternative 

estimates. 

• Insufficient information is available to resolve air travel into regional and IC (unclear whether 

international is reported). 

9.5.3.3 Initial_NRE_Output_Rate 
Input reference: 1.3 

Description: Vector of estimates for the initial rates of primary NRE power output, including direct use 
Sources: 1, 3, 5 

General calculations and assumptions 

For all sources, available data between 2013 and 2018 are averaged to give approximate values aligned with 2015 

Source-specific calculations and assumptions 
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Source 1 • Production figures are used for Oil, Natural Gas and Coal. 

• Consumption figures are used for Nuclear. 

Source 5 • Primary energy supply values for oil, coal and natural gas are converted from quad BTU to EJ. 

• The assumed conversion factor for nuclear is not stated (likely higher factor due to lower 

primary energy value relative to other sources). 

9.5.3.4 Initial_RE_Output_Rate 
Input reference: 1.4 

Description: Vector of estimates for the initial rates of primary RE power output 

Sources: 1, 3 

General calculations and assumptions 

• For all sources, available data between 2013 and 2018 are averaged to give approximate values aligned with 2015. 

• Biomass output value is adjusted to account for biofuel primary input, as detailed in 9.5.3.1. 

Source-specific calculations and assumptions 

Source 3 IEA reports total biomass output including low temperature heat uses (traditional biomass), unlike 

other major sources such as EIA and BP. 

9.5.3.5 Init_Sec_Peak_Factor_Input 
Input reference: 1.5 

Description: Matrix of maximum and minimum estimates for peak factor for each secondary AI type (defined 

assuming zero demand flexibility) 
Sources: (Own estimate) 

General calculations and assumptions 

• Peak factor is a measure of AI utilization and refers to the average ratio of peak flow rate to average throughput, 

observed at the network scale. 

• No suitable data available – this information is not widely reported. 

• High resolution EC production data could be analysed, but this data is regionally specific and unlikely to be 

representative of global infrastructure utilization. 

• EC transportation will always be subject to varying demand (temporally heterogeneous flow rates), hence peak factor 

is > 1. 

• Electricity AI has a higher peak factor than LaG fuels AI due to presence of strong diurnal and seasonal patterns – 

assume peak factor between 1.3 and 2 (medium temporal heterogeneity; an informal search revealed values from 

US, Ireland, South Africa, and Australia to span this range, with some outliers over 2). 

• Intermittent electricity AI is characterized by a high peak factor due to short charge/discharge and/or peak 

transmission windows (not directly affected by intermittent RE diversity as infrastructure is typically geographically 

dispersed and built to serve concentrations of particular RE sources) – assume peak factor between 2 and 5 (high 

temporal heterogeneity). 

• Peak factors for LaG fuels AI and heat AI are lower as both are subject to diurnal and seasonal patterns, but have an 

ability to store energy as fuel and hold local reserves – assume peak factor between 1.1 and 1.3 (low temporal 

heterogeneity). 

9.5.3.6 Init_End_Use_Peak_Factor_Input 
Input reference: 1.6 

Description: Matrix of maximum and minimum estimates for peak factor for each EU AI type (defined assuming 

zero demand flexibility) 

Sources: (Own estimate) 

General calculations and assumptions 

• Peak factor is a measure of AI utilization and refers to the average ratio of peak flow rate to average throughput, 

observed at the network scale. 

• No suitable data available – this information is not widely reported. 

• It is unclear how these values could be calculated directly, as the AI they relate to is not concretely defined (by design) 

and it is left semantically open due to functional uncertainty. 
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• End-use AI can be broadly categorised into medium and high temporal heterogeneity based on an assessment of the 

nature of demand for corresponding energy services: 

o End-use AI tends to face lower average utilization rates and more prominent usage peaks than secondary 

infrastructure. 

o AI associated with transportation and logistics is assumed to be subject to medium temporal heterogeneity 

(between 1.3 and 2) as utilization is typically optimized for operational efficiency to some degree – LaG, 

roading, rail, rail electrification, aviation, shipping. 

o AI associated primarily with residential and commercial energy services is assumed to be subject to high 

temporal heterogeneity (range 2 to 4) as optimizing utilization is not a primary operational consideration 

– electrical, IPaC, EV, heating. 

9.5.3.7 Init_NRE_Growth_Rate 
Input reference: 1.7 

Description: Vector of estimates for the initial annual growth rates of primary NRE PC 
Sources: 1, 3, 5 

General calculations and assumptions 

Assume growth rate in output or throughput is equivalent to the growth rate in underlying PC (no change to capacity 

factors) 

Source-specific calculations and assumptions 

Source 1 Annual growth rates between 2013 and 2018 are averaged for all NRE primary sources (production 

data for oil, natural gas and coal, consumption data for nuclear). 

Source 3 Growth rate in production values between 2013 and 2017 are averaged. 

Source 5 Annual growth rates between 2013 and 2018 are averaged for all NRE primary sources. 

9.5.3.8 Init_RE_Growth_Rate 
Input reference: 1.8 

Description: Vector of estimates for the initial annual growth rates of primary RE PC 

Sources: 1, 3, 5 

General calculations and assumptions 

Assume growth rate in output or throughput is equivalent to the growth rate in underlying PC (no change to capacity 

factors) 

Source-specific calculations and assumptions 

Source 1 Annual growth rates between 2013 and 2018 are averaged for all RE primary sources (electricity 

generation data for hydropower, generation capacity for solar PV, wind, geothermal). 

Source 3 Growth rate in production values are averaged between 2013 and 2017. 

Source 5 Annual growth rates between 2013 and 2018 are averaged for installed generating capacity. 

9.5.3.9 Init_Sec_PC_Growth_Rate 
Input reference: 1.9 

Description: Vector of estimates for the initial annual growth rates of secondary PC 

Sources: 1, 3, 5 

General calculations and assumptions 

Assume growth rate in output or throughput is equivalent to the growth rate in underlying PC (no change to capacity 

factors) 

Source-specific calculations and assumptions 

Source 1 • Annual growth rates between 2013 and 2018 are averaged. 

• Electricity generation data used for: 

o Oil generation 

o Gas generation 

o Coal generation 

o Nuclear generation 

o Hydropower 

o Solar PV 
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o Wind 

• Production data is used for biofuels. 

• Assume that secondary PC growth rates equivalent to that indicated at the primary level for: 

o Geothermal generation 

o Refining (Oil) 

Source 3 • Annual growth rates between 2013 and 2017 are averaged. 

• For each secondary PC type, the most appropriate categories as reported by the IEA are 

identified, normally corresponding to the process input flow. 

• The same flow aggregations are used as elsewhere for IEA data. 

Source 5 • Where capacity data is not directly available, assume that secondary PC growth rates are 

equivalent to that indicated at the primary level where there is a direct correspondence 

between primary and secondary: 

o Wind 

o Solar PV 

o Refining (Oil) 

o Geothermal generation (Geothermal) 

o Hydropower 

o Other renewable 

9.5.3.10 Init_Sec_AI_Growth_Rate 
Input reference: 1.10 

Description: Vector of estimates for the initial annual growth rates of secondary AI 

Sources: 1, 3, 5 

General calculations and assumptions 

• AI growth rates are derived from estimates in 9.5.3.9. 

• The growth rate for electricity AI assumed to be average of growth rates for gas, coal, nuclear and hydropower 

generation (dominant forms of electricity generation as of 2015). 

• The growth rate for intermittent electricity AI assumed to be average of growth rates for solar PV and wind 

generation (dominant forms of intermittent electricity generation as of 2015). 

• The growth rate for LaG AI assumed to be same as growth rate for refining (dominant form of LaG fuel production 

as of 2015). 

• The growth rate for heat AI assumed to be average of growth rates for gas and coal heat (dominant forms of heat 

production as of 2015). 

9.5.3.11 Init_EU_PC_Growth_Rate 
Input reference: 1.11 

Description: Vector of estimates for the initial annual growth rates of EU PC 

Sources: 3, 5, 6 

General calculations and assumptions 

Assume growth rate in output or throughput is equivalent to the growth rate in underlying PC (no change to capacity 

factors) 

Source-specific calculations and assumptions 

Source 3 General end-use categories can be identified from IEA dataset using similar designations as used in 

9.5.3.2: 

• Misc. electrical (indicated by final electricity consumption for residential and commercial 

sectors; used for lighting, IPaC, electric mechanical, electric cooling, electric heating low/high) 

• Misc. LaG fuel (indicated by final LaG demand excl. non-energy and transportation 

consumption; used for LaG mechanical and heating) 

• ICEVs (indicated by road LaG consumption; used for ICEV light/heavy passenger and heavy 

freight) 

• ICE rail (indicated by rail LaG consumption; used for ICE rail passenger/freight) 

• EVs (indicated by road electricity consumption; used for electric vehicles) 

• Electric rail (indicated by rail electricity consumption; used for electric rail passenger/freight) 
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• Aviation regional (indicated by domestic aviation LaG consumption; used for aviation regional 

passenger/freight) 

• Shipping regional (indicated by domestic navigation LaG consumption; used for shipping 

regional passenger/freight) 

• Aviation IC (indicated by world aviation bunkers; used for aviation IC passenger/freight) 

• Shipping IC (indicated by world marine bunkers; used for shipping IC passenger/freight) 

• Heat low (indicated by coal and natural gas low heat industrial grouping (described in 9.5.3.2); 

used for heat fuel heating low) 

• Heat high (indicated by coal and natural gas high heat industrial grouping (described in 9.5.3.2); 

used for heat fuel heating high) 

Source 6 • Transport end-use PC growth rates are calculated from direct ES provision where available and 

fuel consumption otherwise: 

o Total seat miles used for aviation passenger, not revenue seat miles 

o Light-duty vehicles used for ICEV light 

o Buses used for ICEV passenger heavy 

o Passenger rail used for ICE rail passenger and electric rail passenger 

o Heavy-duty trucks used for ICEV heavy freight 

o Freight rail used for ICE rail freight and electric rail freight 

o Marine vessels used for shipping freight regional and IC 

• An estimate for combined low temperature heat is given by coal and natural gas consumption 

in the residential and commercial sectors. 

• An estimate for combined high temperature process heat is given by coal and natural gas 

consumption in the industrial sector. 

9.5.3.12 Init_EU_AI_Growth_Rate 
Input reference: 1.12 

Description: Vector of estimates for the initial annual growth rates of EU AI 

Sources: 1, 3, 5 

General calculations and assumptions 

• AI growth rates are derived from estimates in 9.5.3.11. 

• The growth rates for electrical AI and IPaC AI are assumed to be same as growth rate for general electrical end uses 

(uniform growth rate). 

• The growth rate for LaG AI is assumed to be average of growth rates for ICEV light & heavy freight, aviation, and 

shipping (dominant forms of LaG fuel usage as of 2015). 

• The growth rate for roading AI is assumed to be average of growth rates for ICEV light & heavy (dominant forms of 

road usage as of 2015). 

• The growth rate for EV AI is assumed to be same as growth rate for EV PC. 

• The growth rate for rail AI is assumed to be average of growth rates for all rail types. 

• The growth rate for rail electrification AI is assumed to be average of growth rates for electric rail. 

• The growth rate for aviation AI is assumed to be average of growth rates for all aviation. 

• The growth rate for shipping AI is assumed to be average of growth rates for all shipping. 

• The growth rate for heating AI is assumed to be average of growth rates for heat fuel heating high and low. 

9.5.4 Primary resource 

9.5.4.1 Initial_NRE_Resource_Input 
Input reference: 2.1 

Description: Matrix of mean and standard deviation estimates for initial remaining non-renewable energy stocks 

by type, in terms of remaining URR (above terminal EROI) 

Sources: 1, 3, 4, 8, 9, 10, 12, 15, 16, 17 

General calculations and assumptions 

NRE resource estimates are assumed to be log-normally distributed: 

• Estimates vary by orders of magnitude. 



390 
 

• Medians are less than means (distributions skew to the low side). 

• Distributions have high kurtosis (long tail on the high side). 

• Distributions have zero probability density bordering 0 EJ. 

Source-specific calculations and assumptions 

Source 1 For coal proved reserves, values are converted to EJ using calorific values from source 4, assuming 

30.5 MJ/kg for anthracite and bituminous (weighted towards bituminous as it is more common) and 

22 MJ/kg for sub-bituminous and lignite (weighted towards sub-bituminous as it is more common). 

Source 8 • Values from table 7.1, conventional are added to unconventional where appropriate. 

• Reserve values are used over resource values as resource estimates are highly uncertain and 

speculative, also significant proportions will be unattainable due to negative net energy. 

• High estimate for unconventional are gas not used as this is highly speculative and is an outlier 

relative to other estimates – includes significant contribution from gas hydrates (unproven and 

non-commercial). 

• The unconventional uranium estimate is not used as it is not counted as reserves – highly 

speculative and production to date is insignificant. 

Source 9 • Cumulative extraction is calculated by summing all values (in EJ) back to the beginning of the 

dataset (1900) for each resource. These values are used to calculate RURR as of 2015 from URR 

values from other sources. 

• This may underestimate coal extraction to date somewhat, as production in the 19th century 

was significant, so a linear production trend is assumed for global coal production between 

1800 and 1900 (calculated cumulative production 1900-2014 + 50 × 1900 production). 

Source 10 • NRE URR values as reported in table 2 are converted to 2015 RURR by subtracting 2014 

cumulative extraction values from source 9: 

o Including low, medium, and high cases where given. 

o Conventional and unconventional are added where appropriate. 

• Values from sources 15 and 16 are ignored as these are surveyed separately. 

Source 12 • As the distributions of estimates contain erroneously high and outdated estimates (particularly 

for coal, nuclear and oil) percentile outputs are chosen to construct low, medium and high cases 

uninfluenced by the high tail-end of the distributions. 

• Due to high spread exhibited and given that the listed distributions for each resource were not 

designed with physical modelling in mind, the given distribution parameters are not used: 

o The normal distributions have significant probability density bordering URR = 0 EJ, 

which is physically implausible. 

o The alternative distributions (GEV, log-logistic, Frechet, Cauchy, and fatigue life) tend 

to exhibit excessively long tails to the high end to represent erroneously high and 

outdated estimates. 

o For conventional gas, where higher estimates are more recent, the distribution is 

more symmetrical than for other NRE so using the 75th percentile is appropriate. 

o For conventional oil, there were early erroneously low estimates for URR prior to 

1960 – to correct for this, the median, 75th and 90th percentiles are used for the low, 

medium and high cases, respectively (still avoids tail region containing outdated 

overestimates). 

• The low case is constructed from the 25th percentile for each resource (table 2; median for 

conventional oil). The low case for nuclear fuel is ignored, as the 25th percentile value only just 

exceeds cumulative extraction to date, which is physically implausible. 

• The medium case is constructed from the median for each resource (table 2; 75th percentile for 

conventional oil) plus the low estimate for total unconventional gas (Laherrere). 

• The low and medium cases include the low estimate for total unconventional gas (Laherrere) 

and the low estimate for unconventional oil (1000 EJ tar sands plus 1000 EJ shale oil – 

approximate GEV distribution PDF maxima, read from figures A6 and A8). 

• The high case is constructed from the 75th percentile for each resource (table 2; 90th percentile 

for conventional oil), adding the high estimate for total unconventional gas (Edmonds and Reilly 

for coal seam plus Bentley for tight gas) and the high estimate for unconventional oil (2100 EJ 
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tar sands and 4500 EJ shale oil – approximate normal distribution PDF maxima, read from 

figures A5 and A7). 

Source 15 • URR values are taken from table 1 (low, BG, and high). 

• High values for gas and oil are ignored as these contain large contributions from hydrates and 

kerogen respectively (unproven and non-commercial; the authors note these values should be 

used with caution). 

Source 16 Utot (URR) values from tables 1, 2 & 3 are converted to EJ using standard conversion factors (listed 

in the ‘Conversion factors’ sheet). 

9.5.4.2 RE_Potential_Input 
Input reference: 2.2 

Description: Matrix of mean and standard deviation estimates for initial remaining sustainably exploitable 

renewable energy flows by type (above terminal EROI) 

Sources: 8, 10, 11, 13, 14, 18 

General calculations and assumptions 

• Technical potential estimates exceeding 500 EJ are ignored as these generally pay little attention to various pertinent 

constraints which reduce net energy to non-viable levels (see source 18 [34]): 

o They also entail an unacceptable level of ambiguity and uncertainty given that they exceed current TPES. 

o Where distinctions are made between technical potential and ‘realizable’ or ‘economic’ potential (typically 

much lower) the latter are used as the modelled potential is that which is assumed to exceed the terminal 

EROI value. 

• High estimates are ignored where unrealistic assumptions are apparent (not taking into account supporting 

infrastructures, transmission requirements, spacing and servicing issues, etc. – as noted by source 10 [344]). 

• The distributions are truncated on the low side by initial RE output rates (this assumes present day RE output rates 

are sustainable and provide demonstrated minima to distributions of potential resource). 

Source-specific calculations and assumptions 

Source 8 • Technical potential estimates are taken from table 7.2. 

• Only biomass and hydropower estimates are used as others appear to be largely speculative 

and use unrealistic assumptions. 

Source 10 • Biomass total potential is taken from table 3 (NPP harvestable corresponds to biomass total 

primary flow). 

• Solar thermal is given in table 4 (0.7 TWth). 

• Geothermal (electricity plus heat) primary potential is given on page 36 (0.6 TWth). 

• TWe values from table 5 are converted to EJ/yr: 

o The wind estimate includes onshore and offshore. 

o The sum of biomass, waste & MSW and oceanic, as reported in table 5, is used for 

Other RE. 

Source 11 Percentile outputs are chosen to construct low, medium and high cases, similarly to source 12 for 

9.5.4.1: 

• The low case for each resource uses the 25th percentile, the medium case uses the median, and 

the high case uses the 75th percentile: 

o For solar (PV and thermal), the 10th and 25th (and median for solar thermal) are used 

due to the very high estimate range stemming from unrealistic assumptions. 

o Median values are still very high, to the point of being effectively unlimited relative 

to today’s TPES (1330 EJ/yr for PV and 186 EJ/yr for thermal), which introduces heavy 

kurtosis to the relevant distributions. 

• The 75th percentile for geothermal is not used, as all estimates exceeding 1000 EJ/yr assume 

the availability of ‘hot-dry rock’ technology which is still in early development and unproven on 

a large scale. 

• The sum of tidal and wave is used for Other RE: 

o OTEC is ignored as it remains speculative. 

o Wave is used in place of ‘all ocean’ as the latter includes deployment of speculative 

technologies at scale. 
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Source 18 • For Hafele (1981), ‘realizable’ potential values are used. 

• For Lightfoot/Green (2002), the maxima and minima are taken as discrete estimates. 

• For Klimenko et al. (2009), ‘economic’ potential values are used. 

• Geothermal electricity values are divided by 0.1 to represent primary heat equivalent (IEA 

standard conversion factor for geothermal generation), which is then added to the geothermal 

heat value. 

9.5.4.3 NRE_CF_Max 
Input reference: 2.3 

Description: Vector of estimates for the maximum capacity factors of primary NRE PC 

Sources: (own estimate) 

General calculations and assumptions 

• No data available for NRE capacity utilization at the global level, however, this tends to be high as strong economic 

incentives exist to avoid excess capacity. 

• Oil and gas wells are typically kept at high levels of utilization after commissioning, with only infrequent shut ins for 

maintenance, well testing, and operational reasons – an approximate capacity factor of 95% is assumed. 

• Coal and nuclear fuel production both depend on expansive mining operations which can be closed for various 

reasons including maintenance, weather, labour, and economic issues – a lower figure for capacity factor of 85% is 

assumed. 

9.5.4.4 Initial_RE_CF_Max 
Input reference: 2.4 

Description: Vector of estimates for the initial maximum capacity factors of primary RE PC 

Sources: 1, 5, 10, 19, 27, 50, 54 

General calculations and assumptions 

• Assume present day capacity factors are indicative of practical maxima. Currently intermittent generation 

penetration is low, so minimal curtailment is occurring. 

• Where electricity generation is considered secondary, the capacity factor is assumed to be the same as the primary 

level (conversion equipment is typically sized the same or slightly higher power capacity than primary supply). 

• Assume biomass capacity factor is 75%. Use of available productive capacity will tend to be maximized, but as an 

agricultural system, losses, crop failures and climatic variations will limit this to a lower practical maximum. 

Source-specific calculations and assumptions 

Source 1 Solar PV and wind generation output values are averaged over the 2013-2018 period and divided by 

installed capacity over the same period to give capacity factors. 

Source 5 • Primary energy supply values for oil, coal and natural gas are converted from quad BTU to EJ. 

• For sources where electricity generation is considered primary, generation output values are 

averaged over the 2013-2018 period and divided by installed capacity over the same period to 

give capacity factors: 

o Average must be used as capacity factor is largely determined by resource 

availability. 

o Generation output in terms of billion kWh is converted to GW to align with installed 

capacity. 

• Reported capacity values from EIA are not applicable as they are seasonally adjusted, which 

does not align with PRESS model formulation. 

Source 10 • Values are taken from table 5. 

• The midpoint of 0.6 is used for hydro. 

• 0.22 is chosen for wind (weighted towards onshore, as this is more common). 

Source 19 • This source does not report seasonally or intermittency adjusted values – appropriate for PRESS 

model formulation. 

• Projected or expected figures are ignored, as are those for specific installations. 

• Where a range is given, the mid-point is used. 

Source 50 • Averages are calculated over each broad category corresponding to RE PC types. 

• Ocean energy assumed to represent RE Other. 
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9.5.4.5 Initial_Direct_NRE_Use 
Input reference: 2.5 

Description: Vector of estimates for the direct (non-energy) consumption flows of NRE 

Sources: 3 

General calculations and assumptions 

Non-energy flows are used, as calculated in source 3 data processing described in section 9.5.2.2. 

9.5.4.6 GHG_Intensity 
Input reference: 2.6 

Description: Vector of estimates for the emissions intensity of primary NRE production (in terms of GtCO2e per 

EJ) 

Sources: 66, 67 

Source-specific calculations and assumptions 

Source 67 • The sub-bituminous coal value is used for Coal (common coal types are in the middle of the 

GHG intensity range). 

• The value is converted to GtCO2e/EJ. 

Source 68 • The hard coal value is used for Coal (conservative, as GHG intensity is lower than for soft or 

brown coals) 

• The value is converted to GtCO2e/EJ. 

9.5.4.7 Non_ES_Emissions 
Input reference: 2.7 

Description: Vector of estimates for the rate of non-energy emissions (exogenous to the GES, but contributes to 

cumulative emissions) 

Sources: 68, 69 

General calculations and assumptions 

Non-energy emissions are assumed remain constant over time: 

• This effectively assumes any increases in agriculture, forestry, and other land use activities, which are likely due to a 

growing global population, are balanced by reductions in emissions intensity in the relevant sectors (optimistic). 

• Modelling of uncertainty in non-energy emissions is beyond scope. 

Source-specific calculations and assumptions 

Source 69 The sum of non-energy sectors for 2013 is used (26%, not including bunker fuels). 

Source 70 The global total for 2015 is used. 

9.5.5 Flow routing 

9.5.5.1 Initial_Secondary_CF_Max 
Input reference: 3.1 

Description: Vector of estimates for the initial maximum capacity factors of secondary PC (lower than technical 

maxima for peaking generators) 

Sources: 5, 20, 21, 22, 23, 24, 25, 26, 27, 50, 54, 59 

General calculations and assumptions 

• Where electricity generation is considered primary, the same capacity factor as at the secondary level is assumed 

(conversion equipment typically sized the same or slightly higher power capacity than primary supply). 

• Oil heating is typically used residentially on a seasonal basis and operates below maximum power output most of 

the time – assume capacity factor of 0.2 (40% of year, 50% average loading). 

• As no readily available data exists for Gas-to-Liquids utilization rates, its capacity factor is assumed to be the same 

as refining (similar large-scale industrial petrochemical processing, with strong incentives to maximize utilization). 

• Gas, coal, and biomass heating are used for both industrial and residential/commercial uses: 

o Industrial uses of gas (high utilization rate) are larger than residential (low utilization rate) and much larger 

than commercial. 

o Coal use is dominated by heavy industry. 
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o Biomass availability is more variable and includes significant component of traditional usage (typically for 

cooking in temperate developing countries), implying much lower utilization of PC on average. 

o A capacity factor of 0.7 is assumed for gas heating, 0.2 for biomass, and 0.8 for coal heating. 

o These values are uncertain, but not particularly important given the low capital requirements for heat PC 

at the secondary level. 

• Coal, gas, and biomass CHP serve both industrial and residential purposes (often district heating): 

o Heating needs are seasonal, but CHP output will often be sized to provide for base needs, not peak. 

o Gas CHP unit require less maintenance downtime; coal and biomass require more due to the use of solid 

fuels. 

o Coal CHP is more common for industrial purposes. 

o Biomass availability is variable. 

o Capacity factors of 0.8 for gas, 0.7 for coal, and 0.6 for biomass are assumed. 

Source-specific calculations and assumptions 

Source 5 • Primary energy supply values for oil, coal and natural gas are converted from quad BTU to EJ. 

• For sources where electricity generation is considered secondary, annual generation output 

values are divided by installed capacity over the 2013-2018 period and the resulting maxima 

are taken to give capacity factors. 

o Maxima are used as these represent the highest practical level of utilization (not 

determined by resource availability). 

o Generation output in terms of billion kWh is converted to GW to align with installed 

capacity. 

• These figures are ‘real world’ capacity factor maxima, not technical maxima – must take 

account of typical grid balancing conditions and operational constraints. 

• Reported capacity values from EIA are not applicable as they are seasonally adjusted, which 

does not align with PRESS model formulation. 

Source 20 • The maximum of ‘operable utilization rate’ for the period of 2013-2018 is used for refining. 

• Global refining utilization is assumed to be similar to the US. 

Source 23 Reported ‘operating capacity’ is used. 

Source 24 Biomass conversion capacity factors are calculated from values given in tables 9 and 10 – dedicated 

biomass corresponds to biomass generation and industrial cogeneration to biomass CHP. 

Source 25 The global geothermal capacity factor from table 1 is used. 

Source 26 • The maximum of the annual averages of output divided by capacity is calculated and used for 

biofuel production capacity factor. Only 8 months are available for 2019 – annual capacity is 

adjusted pro rata. 

• This report details biodiesel in the US only – global biofuel production is assumed to have 

similar capacity factor. 

Source 27 • For coal generation, the maxima from figure 5-2 is used, given that recent market conditions 

have suppressed coal generation utilization rates and it is unclear such market conditions will 

continue indefinitely. 

• As noted on page 89, open-cycle and closed-cycle gas-fired generators have different capacity 

factors – the latter tend to act as baseload supply and the former as peaking plant: 

o Baseload generation is in some cases becoming uneconomic due to the rising 

penetration of intermittent generation (even at still low levels) and greater peaking 

requirements. As such, the estimate should be weighted towards the lower open-

cycle figure. 

o Figure 6-3 shows a maximum for open-cycle gas generation of approximately 15% 

since 2011. 

o A base capacity factor maximum of 25% is assumed for gas generation as a whole. 

o This represents a balance between the average of the open-cycle and closed-cycle 

values (in order to establish initial PC quantity more accurately) and the maximum 

open-cycle value representing the longer-term realistic maximum capacity factor (not 

including the explicitly modelled change in gas generation capacity factor due to 

intermittent penetration, which potentially has a dominant effect). 
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• For biomass generation, a maximum value of 70% is chosen – assumes LFG/MSW dominates 

other biomass generation. 

• Solar is ignored as only utility scale installation is discussed here, which has higher capacity 

values, but global solar is dominated by small-scale. 

• For oil generation, the maximum value for steam turbines (15%) is chosen as they are common 

and assumed to be representative (optimistic). 

Source 50 • Averages are calculated from the available data for each broad category corresponding to 

modelled RE PC types. 

• Estimates are assumed to reflect approximate proportions of the various sub-categories 

presented here. 

Source 59 Assume representative value for solar CSP of 0.25 (based on range given in table 2). 

9.5.5.2 Init_End_Use_CF_Target_Input 
Input reference: 3.2 

Description: Matrix of maximum and minimum estimates for the initial target capacity factors of EU PC (level 

above which replacement investment is initiated) 

Sources: (Own estimate) 

General calculations and assumptions 

• Initial capacity factors are assumed based on assessment of the nature of each end-use PC type and its typically 

patterns of use. 

• Light vehicles: 

o Using an informal search for average household vehicle utilization (kilometres per year), and assuming full 

utilization is roughly equivalent to continuous 150 km/hr, initial capacity factor for ICEV light is 

approximately 1% (high uncertainty). 

o Alternatively, Smil notes that average light vehicle fuel consumption is 50 GJ/yr: 

▪ This corresponds to around 15 GJ/yr output power (30% conversion efficiency). 

▪ The average light vehicle has a power rating of approximately 100 kW (3200 GJ per year). 

▪ This implies a CF value of 0.005, or 0.5%. 

o Assume similar average patterns of use between vehicle types in this category: 2-wheelers, 3-wheelers, 

light duty vehicles, etc. 

• End-use PC types associated primarily with household use (ICEV light, EVs, low temperature heating) have the lowest 

utilization, followed by commercial (freight, lighting, cooling), and industrial (mechanical, high temperature process 

heat). 

• Vehicles typically have low capacity factors as they are normally used intermittently and, when used, are operated 

near their maximum power output levels for short periods only: 

o For freight transportation, significant downtime is required for loading, unloading, fuelling, and 

coordination of freight volumes with available capacity and routes. 

o Household vehicles operate only sporadically, as required by owners (parked for much of the time). 

o Rated vehicle power output is for maximum acceleration requirements, not cruising. 

o Aviation, rail, heavy freight, and shipping are typically operated at higher capacity factors as they represent 

large amounts of capital and are typically operated by commercial enterprises seeking to maximize 

utilization. 

o Intercontinental transportation capacity factors are higher than regional as trips are longer and, as such, 

loading, unloading, and fuelling are less frequent. 

• Much of low temperature heating and cooling demand is seasonal (aside from cooking and general appliance usage) 

– this means capacity is not used for the much of the year. Low temperature heating and cooling PC is typically 

operated at maximum rated output for only short periods. 

• Lighting and IPaC have higher capacity factors as they are used on a semi-consistent basis and power output is 

approximately constant. 

9.5.5.3 EU_CF_Target_Final_Max_Factor 
Input reference: 3.3 

Description: Vector of estimates for the maximum fractional increase in target capacity factors of EU PC (value 

at sim. base period relative to initial) 



396 
 

Sources: (Own estimate) 

General calculations and assumptions 

• Maximum possible fractional increases from the initial capacity factor target are assumed based on the nature of 

each end-use PC type and its potential for further optimization and shared usage. Increases in the capacity factor 

target would stem largely from greater time utilization of existing end-use PC, not operating at higher levels relative 

to nameplate power rating (which sets a practical upper limit for final capacity factor target <<1, with the exception 

of IPaC PC which typically operates near its rated power). 

• PC types are grouped into four tiers representing remaining potential for increased utilization: 

o Very low (assume up to 20% increase): 

▪ High temperature process heat (heat fuels and electric) 

▪ These represent intensive industrial applications that are already highly optimized in terms of 

utilization. 

o Low (assume up to 50% increase): 

▪ Lighting, IPaC, mechanical (LaG and electric), shipping, aviation, heavy freight, and freight rail 

▪ These are already largely optimised in terms of utilization, but further improvements are possible 

through shared utilization and more advanced logistics optimization. 

o Medium (assume up to 100% increase): 

▪ ICEV heavy, passenger rail (LaG and electric), cooling, and low temperature heating 

▪ Significant capacity factor increases possible through shared utilization of heating and cooling, 

and efficiencies of scale in mass transit. 

o High (assume up to 300% increase): 

▪ ICEV light 

▪ Light private vehicles could be subject to strong increases in capacity factor as Transport as a 

Service (TaaS) models become more common and private ownership of vehicles ceases to be the 

dominant mode of private mobility. 

9.5.5.4 Secondary_Output_ID 
Input reference: 3.4 

Description: Matrix of EC output identity by secondary PC type (split across electricity and heat for CHP) 

Sources: 3 

General calculations and assumptions 

This input matrix consists of identities only, except for the energy carrier output split (heat and electricity) for the three 

CHP types (gas, coal, and biomass). 

Source-specific calculations and assumptions 

Source 3 • Main activity and autoproducer CHP outputs of heat and electricity are summed for coal and 

natural gas CHP. 

• Main activity only is used for biomass as autoproducer CHP does not report any heat output. 

• Fractions (summing to one) are calculated for each. 

• This assumes the split between main activity and autoproducer CHP remains roughly constant 

over time (almost equal for coal). 

• Also assumes this split is relatively inflexible and cannot be easily modified. 

9.5.5.5 End_Use_Input_ID 
Input reference: 3.5 

Description: Matrix of EC input identity by EU PC type (includes cogeneration and heat recovery for high temp. 

process heat) 

Sources: 28 

General calculations and assumptions 

• This input matrix consists of identities only, except for cogeneration and waste heat recovery factors. 

• Source 28 reviews various waste heat recovery technologies, for both electricity production and heat recovery – 

most can recover <10% of input energy. There are operational limitations to heat recovery, which “largely depends 

on key factors such as the quality, quantity and the nature of heat source in terms of suitability and effectiveness.” 
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• Heat recovery via heat exchangers is more common than cogeneration (high temperature waste heat required for 

cogeneration as the process is limited by Carnot efficiency). 

• In many cases, operational, design, or economic factors will limit cogeneration and waste heat recovery. 

• Therefore, assume 2% of aggregate input energy to high temperature processes is recovered as electricity, and 5% 

as low temperature heat. 

• It is assumed these factors are static and unresponsive to technological improvements. 

9.5.5.6 EC_Thermal_Equivalence 
Input reference: 3.6 

Description: Vector of thermal equivalence factors by EC type (electricity has greater thermal equivalent energy 

value than heat and LaG fuels) 

Sources: 53 

Source-specific calculations and assumptions 

Source 53 At a minimum, electricity inputs and outputs must be converted to primary energy equivalent (using 

2.6 as the conversion factor). 

9.5.5.7 NRE_Secondary_Input_ID 
Input reference: 3.7 

Description: Matrix of NRE input identities by secondary PC type 

Sources:  

General calculations and assumptions 

Values are equal to one where a given secondary PC type utilizes a primary energy type and zero otherwise. 

9.5.5.8 RE_Secondary_Input_ID 
Input reference: 3.8 

Description: Matrix of RE input identities by secondary PC type 

Sources:  

General calculations and assumptions 

Values are equal to one where a given secondary PC type utilizes a primary energy type and zero otherwise. 

9.5.5.9 End_Use_Output_ID 
Input reference: 3.9 

Description: Matrix of energy service output identities by EU PC type 

Sources:  

General calculations and assumptions 

Values are equal to one where a given end-use PC type provides an ES type and zero otherwise. 

9.5.6 PC efficiencies 

9.5.6.1 Sec_Conversion_Eff_Input 
Input reference: 4.1 

Description: Matrix of ranges for secondary conversion efficiency (min. corresponds to the initial PC mean value 

and max. corresponds to the maximum theoretical value; a value of 1 indicates that no secondary 

conversion occurs) 

Sources: 2, 3, 7, 29, 30, 31, 32, 33, 42 

General calculations and assumptions 

Values for biomass heat are optimistic given the predominance of traditional uses of biomass for cooking which are highly 

inefficient: 

• Corrections to account for this are infeasible due to lack of data and may introduce unacceptable ambiguities. 

• These uses do not rely on significant PC investment and global data on fuel collection is incomplete, so may lie at 

least partially outside the GES as modelled. 
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Maxima: 

There is limited room for growth in secondary conversion efficiency (diminishing returns on investment, most 

technologies are mature, and many are limited by low Carnot efficiency). Where required (used alongside available 

estimates), the assumed approximate magnitude for increases is based on comparison to available values and an 

assessment of technological maturity and potential. Estimates are calculated based on percentage increases from initial 

values: 

• No increase (where secondary conversion does not occur; value static at 1) 

• Low increase (5%) – refining (cannot exceed 1) 

• Medium increase (15%) – heat (oil, gas, coal, biomass, and geothermal) 

• High increase (25%) – CHP (gas, coal, and biomass), coal to LaG, gas to LaG, solar thermal generation, biomass 

generation, biofuels, and geothermal heat (all are immature or currently minor sources and significant further 

improvements can be expected) 

Source-specific calculations and assumptions 

Source 2 Minima: 

• Values are converted to percentage by dividing BTUs per kWh by heat rates. 

• 2013-2018 averages (~2015) are calculated for oil, gas, nuclear, and coal generation. 

Source 3 Minima: 

2013-2018 average (~2015) sum output is divided by sum input to estimate conversion efficiency by 

fuel type for the following categories: 

• Generation – electricity plants (main activity and autoproducer) 

• Heat – heat plants (main activity and autoproducer) 

• Refining – oil refineries (including feedstocks) 

• CHP – heat plus electricity output from main activity and autoproducer CHP plants 

Source 7 Minima: 

• For biofuels production, a representative biomass-to-fuel efficiency value of 45% is taken from 

the technology-specific ranges given in figure 4 (assumes the contribution of ester diesel is 

minimal). 

• For biomass generation, current biomass-to-fuel efficiency of 32% is used (discussed in the 

results section). 

Maxima: 

• For biofuels production, a representative maximum potential biomass-to-fuel efficiency value 

of 60% is taken from the technology-specific ranges given in figure 4 (assumes minor 

technological progress beyond that stated). 

• For biomass generation, potential biomass-to-fuel efficiency of 43% is used (as discussed in the 

results section). 

Source 31 Minima: 

A representative figure from the range given of 65% is assumed (this assumes more DCL than ICL). 

Source 32 Minima: 

An approximate value for ~2015 for solar CSP efficiency is taken from table 8 (17%). 

Source 33 Maxima: 

• Stated assumed technical potential efficiency values in transformation sector section are used. 

• As noted, authors assume single digit efficiency improvements in transformation sector for 

technologies beyond those directly considered. 

Source 42 Minima: 

• Values are taken from table 1. 

• Value for renewables is ignored as it appears ambiguous and insufficient information is given. 

9.5.6.2 Sec_Reticulation_Eff_Input 
Input reference: 4.2 

Description: Matrix of ranges for secondary reticulation efficiency (min. corresponds to the initial PC mean value 

and max. corresponds to the maximum theoretical value; a value of 1 indicates that no reticulation 

losses occur) 

Sources: 3, 34, 35 
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General calculations and assumptions 

Assume reticulation efficiency for LaG fuels is 1 (lossless). There would in fact be small losses due to spill and fuel 

requirements of transportation, but due to lack of data and for simplicity these are assumed to be zero. 

 

Minima: 

Assume all reticulation efficiencies by EC type are identical, except: 

• Reticulation efficiencies for geographically dispersed RE generation (solar PV, solar thermal, wind, hydropower, and 

other RE) are assumed to be is less than the average base value (95%) due to higher transmission requirements (a 

larger proportion will not be collocated with population centres). 

• CHP efficiencies are assumed to be averages of electricity and heat reticulation efficiencies weighted by CHP split 

factors from 9.5.5.4. 

 

Maxima: 

• Electricity: 

o Best practice values for electricity transmission and distribution losses are not suitable due to 

geographic/climate differences. 

o Source 33 notes the potential for 6% improvement in distribution efficiency. 

o Source 35 details several options for reducing losses in transmission (table 1) and distribution (table 2) in 

the US power system: 

▪ Most involve economic or operational trade-offs so cannot be exploited to their full technical 

potential. 

▪ A plausible representative maximum reduction in aggregate losses of 50% is assumed, through a 

portfolio of technological options. 

▪ 50% reduction in losses corresponds to approximately 8% increase in assumed base reticulation 

(transmission and distribution) efficiency. 

▪ This value refers to low intermittent penetration (the effect of AI built for intermittency 

mitigation, dynamically reducing reticulation efficiency for intermittent generation, is explicitly 

modelled). 

• No improvement occurs for LaG fuels, as reticulation efficiency is assumed to be lossless. 

• Maximum potential reticulation efficiency for heat is assumed to be 15% (final reticulation efficiency of 95%). Further 

improvements are unlikely due to diminishing returns and unavoidable losses. 

• For CHP, the electricity and heat fractional improvements are weighted by CHP split factors from 9.5.5.4 to give 

applicable maximum final reticulation efficiencies. 

Source-specific calculations and assumptions 

Source 3  • Calculated 2013-2017 averages are used (~2015). 

• For both electricity and LaG fuels, final consumption is divided by total output from 

transformation processes to give reticulation efficiency. 17% losses for global electricity likely 

includes significant electricity theft as technical losses do not typically exceed 13%. 

• For heat, only the traded quantity can be analysed – traded heat final consumption is divided 

by total heat plant output. Traded heat reticulation efficiency is assumed to be typical of all 

heat reticulation. 

Source 34  The 2014 value is used. 

Source 35 Approximate value for ~2015 of 8% is taken from figure 1. 

9.5.6.3 Sec_Incept_Year 
Input reference: 4.3 

Description: Vector of approximate incept years by secondary PC (year functional category became widely 

available) 

Sources: 11, 36, 37, 38, 39, 48 

General calculations and assumptions 

• Assume oil-fired generation was available approximately 10 years after the first coal-fired power plants (oil-fired 

generation was briefly competitive at this time). 
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• Assume solar thermal heat dates to the first commercial solar thermal water heaters, available just before 1900. This 

is earlier than advanced thermosiphon systems and concentrated solar power, but much later than many 

preindustrial passive solar food processing and building techniques. 

Source-specific calculations and assumptions 

Source 11 Incept years before calibration (table 7-1) are used for each relevant PC type. Where multiple 

options exist, they are assumed to be for heat (typically this is the earliest use for each fuel): 

• OTEC is ignored (speculative and unproven). 

• Values for gas heat and solar PV are ignored (questionable; estimates derived from source 36 

are more reliable). 

Source 36 Approximate (decadal) incept years are taken from the text. Where multiple options exist, dates 

corresponding to technological innovations marking the beginning of current types of PC are used 

(i.e. obsolete precursors not functionally interchangeable with current technologies are ignored): 

• Oil – first commercial wells and early refining of finished products 

• Gas – first gas networks and early gas turbines (heat slightly earlier than turbines) 

• Coal – first coal electricity generating plants 

• Nuclear – first commercial reactors 

• Solar PV – first uses of monocrystalline panels 

• Wind – first commercial wind turbines for rural electricity generation 

Source 37 First instances of each type of PC are located on the timeline and the approximate (decadal) incept 

years are taken: 

• Oil – first commercial oil well drilled in Pennsylvania 

• Biofuels – first diesel engines to run on vegetable oil, ethanol as a fuel already well established 

• Solar PV – first silicon solar cell developed at Bell Laboratories 

• Nuclear – first nuclear power reactor to generate electricity built in Idaho 

• Geothermal – first commercial scale geothermal electric plants built in California 

• Solar thermal generation – first large scale solar-thermal power plant begins operation in 

California 

Source 38 First instances of each type of PC are located on the timeline and the approximate (decadal) incept 

years are taken: 

• Gas generation – first gas turbines 

• Wind – first large-scale wind farm 

• Biomass generation – first wood-fired power plant 

• Other generation – first tidal power project (other RE encompasses more than tidal, but the 

total remains insignificant and this approximate date indicates these technologies are relatively 

new) 

Source 48 Smil notes that CHP did not enter widespread use until the 1970s (for gas and coal; biomass CHP 

comes at the same time as biomass generation). 

9.5.6.4 End_Use_Conversion_Eff_Input 
Input reference: 4.4 

Description: Matrix of ranges for EU conversion efficiency (min. corresponds to the initial PC mean value and 

max. corresponds to the maximum theoretical value; a value of 1 indicates that no EU conversion 

occurs) 

Sources: 8, 33, 41, 42 

General calculations and assumptions 

• This efficiency refers to EC input converted to applied output power, at the physical boundary of the device. 

• Assumes the use of heat pumps remains minor as maximum potential end-use conversion efficiency for electric 

heating low is less than 1 (can be 3-4 for ground source heat pumps): 

o This assumes the share of ES demand for low temperature heating which can be met by heat pumps 

(primarily space heating) remains low compared with cooking, water heating, and others. 

o This assumption is justified on the grounds that large increases in end-use to ES efficiency for low 

temperature heating (up to a factor of 2.7) and/or stable or declining final demand would be consistent 

with a shift towards passive design that significantly reduces the need for continuous space heating. 
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o PRESS version 1.1 tested with 2.5 as the maximum value for electric heating low end-use conversion 

efficiency. Little impact on the primary transition metrics is observed (transition failure rate increases by 

0.001, mean cumulative GHG emissions by 2100 decreases by <50 GtCO2e, RE fraction for heat increases 

by ~10%). 

Source-specific calculations and assumptions 

Source 8 • Motor efficiencies taken from figure 8.20. Assumed values are used for electrical mechanical 

and electric vehicles. 

• Virtualization of computer servers has potential energy savings of 70% (section 10.4.3.10): 

o Assume comparable savings are achievable for other IPaC devices. 

o The average minimum conversion efficiency is increased accordingly. 

• Research and development in LED lighting is expected to eventually lead to lamps reaching 200 

lm/W (section 10.4.3.8): 

o This gives a maximum conversion efficiency of 0.3, relative to a theoretical maximum 

of ~650 lm/W 

o This approximate theoretical maximum is based on black-body radiation in the visible 

spectrum, emitting uniformly in all directions, assuming no adjustment for preferred 

wavelengths. 

• Section 10.4.3.8 notes that older heating equipment in buildings is 60-70% efficient, whereas 

new equipment can be up to 95% efficient: 

o The minima and maxima are used for LaG fuels and electric heating, respectively. 

o This does not apply to heat, as conversion occurs at the secondary stage. 

Source 33 Global average technical potential for improvement in luminous efficacy (equivalent to end-use 

conversion efficiency) is given in table 8 (60%). The minimum value is increased by this factor to give 

the maximum. 

Source 41 • Values are taken from table 2. 

• Representative values are taken from the ranges given for the most appropriate device or 

devices for each end-use category (for both current and TEL – minima and maxima, 

respectively). 

• For the electric lighting maximum, a multiplier of 5 is selected, representing the approximate 

difference between current and TEL ranges. 

• Where the end-use PC uses a heat cycle, the indicated efficiencies are impratical as they 

correspond to the Carnot efficiency (zero power output). As per source 43, an approximation 

factor of 0.5 is used. 

Source 42 • Values are taken from table 3. 

• Only electric lighting, IPaC, electric heating (low and high temperature), and LaG fuel heating 

values are used as others relate to the conversion of ECs to motion (extends beyond the end-

use to ES efficiency definition) or conversion of primary energy to ECs (secondary stage). 

• For LaG fuel heating, a representative value of 0.62 is chosen (oil & gas burners). 

9.5.6.5 Init_End_Use_ES_Eff_Input 
Input reference: 4.5 

Description: Matrix of estimates of initial PC mean values for EU to ES efficiency and associated maximum 

fractional error 

Sources: 5, 8, 33, 44, 45, 46, 47, 49 

General calculations and assumptions 

• This efficiency refers to applied output power, at the physical boundary of the device, converted to useful energy 

services, defined relative to selected reference modes representing ideal service provision. 

• A rough approximation is used for the potential increase of end-use to ES efficiency of passenger shipping in input 

4.6, so the initial values are treated with higher uncertainty (0.5). 

• Other transport modes are assessed based on observed variation in reported values and assigned an error factor 

(0.2 or 0.5): 

o The baseline level of uncertainty regarding end-use to ES efficiencies for transportation modes at the global 

level is high, due to geographic heterogeneity and a lack of comprehensive data, therefore, a minimum 

error factor of 0.2 is assumed. 



402 
 

o Significant variation in the energy intensity of freight aviation is seen between sources 45 and 47, so the 

corresponding values are treated with higher uncertainty (0.5). 

o Passenger shipping and ICEV heavy passenger also exhibit larger differences in reported efficiencies 

between sources, so the corresponding values are treated with higher uncertainty (0.5). 

Reference modes: 

• Where multiple modes exist for a given ES, each type of passive system is assessed via the available literature the 

mode with the highest potential final efficiency (utilizing maxima from 9.5.6.6) representing the reference mode: 

o Equivalent passive systems are assumed to be mechanical (electric and LaG fuel), light vehicles (ICE and 

electric), passenger rail (ICE and electric), passenger aviation (regional and IC), passenger shipping (regional 

and IC), freight rail (ICE and electric), freight aviation (regional and IC), freight shipping (regional and IC), 

low temperature heating (LaG fuels, electric, and heat), and high temperature heating (electric and heat). 

o While this assumption is not strictly accurate for non-transport PC due to the significant diversity of passive 

systems associated with different PC types, insufficient information exists to resolve these differences. 

o Mechanical and high temperature heating passive systems entail greater differences in passive systems 

(e.g., electric motor vs. internal combustion drivetrains, blast vs. arc furnaces), therefore, are modelled 

with greater uncertainty (0.2). 

o This alignment of passive systems fits with the assumption that each mode is structurally interchangeable 

regarding the satisfaction of ES demand, often using equivalent AI. 

• As a validation check on calculated reference mode efficiencies, the efficiency for travel by bicycle on a flat surface 

is approximately 14 kJ/p-km for 60W applied power (not total metabolic power) by a 70 kg cyclist. Therefore, it is 

assumed that the passive systems of transport modes using exosomatic energy might, at best, use approximately 

four times more applied energy per passenger-kilometre than bicycles under ideal conditions. This greater use of 

applied energy is justified due to a significantly higher power level (see section 2.2.1), luggage capacity, and the 

greater structural protection and weatherization required for general purpose vehicles relative to bicycles. 

Source-specific calculations and assumptions 

Source 5 For passenger aviation, seat-miles per gallon values from the aircraft efficiency dataset (averaged 

2013-2018 for ~2015) are converted to end-use to ES efficiency by first converting to MJ/p-km (using 

142.2 MJ/gal for aviation fuel) then taking the inverse, multiplying by the corresponding minima 

from 9.5.6.4 (to decompose to end-use to ES efficiency), then dividing the reference mode end-use 

to ES efficiency value by the result: 

• Regional jets stock value used for regional. 

• Average aircraft stock value used for IC. 

Source 8 Values are read from figure 9.12, pg. 589, chapter 9 (Energy intensity of domestic transport system 

in Japan): 

• Car value used for ICEV light (2.2 MJ/p-km). 

• Bus value used for ICEV heavy passenger (0.8 MJ/p-km). 

• Rail passenger value used for electric rail passenger (0.15 MJ/p-km). 

• Air value used for aviation passenger regional (1.7 MJ/p-km). 

• Rail freight value used for electric rail freight (0.2 MJ/t-km). 

• Truck value used for ICEV heavy freight (3.8 MJ/t-km). 

• Shipping value used for shipping freight regional (0.6 MJ/t-km). 

• Data is from 2008, assumed similar in 2015 (time series not provided). 

• The rail values are appropriate for electric rail as the Japanese rail system is largely electrified. 

• Values are not used for IC as data refers to domestic (regional) transportation. 

Source 33 Composite MJ/p-km and MJ/t-km values from table 3 are converted to end-use to ES efficiency by 

taking the inverse, multiplying by the corresponding minima from 9.5.6.4 (to decompose to end-use 

to ES efficiency), then dividing the reference mode end-use to ES efficiency value by the result: 

• For light vehicles: 

o Assume an average of 1.5 occupants per vehicle. 

o Assume initially 90% LDV, 8% two-wheel, and 2% three-wheel. 

o Use volumetric energy density of gasoline of 34 MJ/L. 

• For ICEV heavy freight, assume 25% medium freight and 75% heavy freight. 
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• Due to similarity in passive systems, end-use to ES efficiency values for passenger rail and 

freight rail are aligned by decomposing using the average of current end-use conversion 

efficiency across ICE and electric modes: 

o This is an approximation, assuming approximately equal initial proportions of ICE and 

electric modes (supported by 9.5.3.2). 

o The approximation entails higher uncertainty (0.2). 

• Data is from 2005, assumed similar in 2015 (time series not provided). 

Source 44 • Representative values are taken from Land Passenger Transport means table, estimated by 

comparing examples given to average global fleet composition: 

o 2 MJ/p-km for ICEV light 

o 0.6 MJ/p-km for ICEV heavy passenger 

o 0.5 MJ/p-km for electric vehicles 

o 0.25 MJ/p-km for rail passenger (ICE and electric) 

o 1.74 MJ/p-km for passenger aviation (approximate value for the Boeing 747-400, 

using 45 MJ/L for aviation fuel, assuming 80% average occupancy) 

o 5.7 MJ/p-km for the MS Oasis of the Seas, assuming full occupancy and 35 MJ/L for 

diesel fuel: 

▪ This compares to 0.72 MJ/p-km reported for German passenger ship 

transport. 

▪ The latter value is assumed for shipping passenger regional. 

▪ For shipping passenger IC, cruise ships are not designed primarily for 

transportation efficiency and significantly more efficient designs are likely 

achievable with current technology should mass ocean transit return at 

scale, however, energy requirements are likely higher than short-distance 

ferries due to longer trips, greater supply and amenity requirements, and 

higher speeds – to represent this balance, the average of the two values is 

taken to give a representative value. 

▪ For passenger shipping, the potential increase factor (in 9.5.6.6) is doubled 

to account for significant design changes that would occur between current 

ocean cruise ships (representing the base value but not designed for 

efficient transportation) and re-emergent ocean-based mass transit. 

▪ This is a rough approximation so shipping passenger IC is treated with 

higher uncertainty in (0.2). 

• The Freight table value for rail freight in the UK (0.41 MJ/t-km) is used for ICE rail freight. This 

value refers to primary energy input so is used for ICE mode and the resulting end-use to ES 

efficiency is assumed for electric rail freight due to similarity in passive systems. 

Source 45 • Approximate values are taken directly from table, between 2015 and 2016. 

• As values relate to primary energy, rail passenger and freight values are used for ICE modes and 

the resulting end-use to ES efficiencies are assumed for electric rail due to similarity in passive 

systems. 

• For passenger rail, a value midway between regional and long-distance is assumed (0.7 MJ/p-

km). 

Source 46 • Representative values chosen from the 2015 row in tables 2.14, 2.15 and 2.16: 

o 4000 BTU/p-mile for ICEV light (in between car and light truck, assuming closer to the 

car value) 

o 4000 BTU/p-mile for ICEV heavy passenger (high, due to low mass transit occupancy 

in the US) 

o 2500 BTU/p-mile for aviation passenger regional 

o 1600 BTU/p-mile for ICE rail passenger (intercity and commuter) 

o 800 BTU/p-mile for electric rail passenger (rail) 

o 300 BTU/ton-mile for ICE rail freight 

o 214 BTU/ton-mile for shipping freight regional (2014 value for waterborne 

commerce) 

o Trucking is ignored as values are not per transported payload weight. 
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• Values are converted using 1 BTU = 947.8 MJ and 1 ton = 0.907 tonnes. 

Source 47 • 2015 values are used. 

• Light vehicles are used for ICEV light. 

• Passenger rail are used for ICE rail passenger (mainly diesel for rail in Canada). 

• Freight rail are used for ICE rail freight (mainly diesel for rail in Canada). 

• The same passive system equivalences are used as with other sources. 

Source 49 Values are read from the Energy intensity of passenger transport modes section (2018 chart): 

• Assume values are appropriate for 2015. 

• The cars value is used for ICEV light (2.8 MJ/p-km). Assume weighting from large cars and 2/3-

wheelers cancel. 

• The buses and minibuses value is used for ICEV heavy passenger (0.7 MJ/p-km). 

• Assume rail refers to electric rail as the value is too low for ICE rail (0.2 MJ/p-km). 

• The aviation value is used for aviation passenger regional and IC (2.8 MJ/p-km). 

9.5.6.6 Final_EU_ES_Eff_Max_Factor 
Input reference: 4.6 

Description: Vector of the maximum fractional increase from initial PC mean EU to ES efficiency to the upper 

asymptotes of the EU to ES efficiency function 

Sources: 8, 33, 43 

General calculations and assumptions 

• This factor sets the upper end of the possible range for increases in end-use to ES efficiency, in terms of a multiple 

of the initial value (higher values indicate greater potential for increased efficiency of passive systems). 

• Given that the potential increase for electric lighting from source 43 is very optimistic and relies on ideal but 

unrealistic conditions, an estimate of 2 (a doubling of end-use to ES efficiency) is included. 

Source-specific calculations and assumptions 

Source 8 • The passive system changes detailed are discussed in isolation, therefore, these directly 

correspond to end-use to ES efficiency and do not need to be decomposed. 

• Most of the technological options discussed are mutually exclusive and therefore, are not 

cumulative. In addition, most are applicable under particular conditions only, and some refer 

to the replacement of obsolete, less efficient technology that does not represent average PC. 

• Percent savings for electrical mechanical is taken from table 8.19 (Total Cost-effective Saving 

from Electricity use in Pump, Compressed Air, and Fan Systems). The same factor is assumed 

for LaG mechanical due to similar passive systems. 

• Percent savings for low temperature heating is taken from section 8.4.3 (Steam and Process 

Heating Systems) and section 10.4.3 (Options Related to Building-Scale Energy Systems and to 

Energy Using Devices): 

o Steam systems do not encompass all low temperature heating (residential and 

commercial space heating, cooking, etc.) but do comprise a significant proportion – 

these can achieve savings of around 20%. 

o Steam systems also include some high temperature heating but this represents a 

lower proportion so is not used for that estimate. 

o Space heating requirements in temperate climates can be reduced by up to 67%. 

o Better insulation can reduce heating requirements in cold climates by 75-90%. 

o DCV can save 20–30% of the combined ventilation, heating, and cooling energy use 

in commercial buildings. 

o 50% of the heat in hot wastewater can be captured and used to preheat cold 

incoming water or air. 

o Heat pumps using CO2 as a working fluid enable about 30% energy savings compared 

to conventional water heaters. 

o Taking account of the above, a representative maximum potential value of 60% 

aggregate savings in low temperature heating is assumed (optimistic). 

• Percent savings for electric cooling is taken from section 10.4.3 (Options Related to Building-

Scale Energy Systems and to Energy Using Devices): 
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o District cooling schemes can reduce cooling requirements by 45%. 

o Air conditioning savings can be up to 60% in some cases. 

o Integrating more vegetation into buildings can reduce cooling by 10-30% in some 

cases. 

o Better insulation can reduce heating requirements in cold climates by 75-90%. 

o Natural ventilation in temperate climates can reduce cooling requirements by 30-

40%. 

o Evaporative cooling in arid regions can reduce cooling requirements by 92-95% (but 

depends on water availability). 

o Underground earth pipe cooling can reduce summer cooling loads by 65%. 

o Solid desiccant systems can reduce overall energy use for cooling and 

dehumidification by 50%. 

o Savings in combined cooling and ventilation energy use of 30–60% can be achieved 

through a combination of DV and CC cooling. 

o DCV can save 20–30% of the combined ventilation, heating, and cooling energy use 

in commercial buildings. 

o New efficient refrigerators use 30% less energy than the maximum 

allowed under regulations. 

o Taking account of the above, a representative maximum potential value of 75% 

aggregate savings in electric cooling is assumed (optimistic). 

• Percent savings for electric lighting taken from section 10.4.3.8: 

o Retrofits of fluorescent lighting can typically achieve 30–50% lighting electricity 

savings. 

o New construction can reach 75% savings for electric lighting compared to current 

standards. 

o Annual savings of 30–80% from daylighting of perimeter offices in commercial 

buildings are achievable. 

o Taking account of the above, a representative maximum potential value of 75% 

aggregate savings in electric lighting is assumed (optimistic). 

o Percent savings for IPaC devices taken from section 10.4.3.10: 

o Energy savings of 50–70% are possible from active power management. 

o A representative maximum potential value of 60% aggregate savings in IPaC devices 

is assumed (optimistic). 

Source 33 • Indicated improvements are mostly in terms of composite conversion and end-use to ES 

efficiency (efficiency improvements are not separated by conversion and end-use stages). 

• World average values are taken from table 3 – the 2005 value is divided by the 2050 technical 

potential to give the multiplier factor for composite conversion and end-use to ES efficiency: 

o This assumes the 2050 technical potentials correspond to the long-term end-use to 

ES efficiency function asymptotes (no improvement beyond this). 

o This is optimistic, as the baseline is 2005, not 2015 (arbitrary adjustments would be 

needed to correct for this). 

• To decompose these to end-use to ES efficiency alone, values are divided by the corresponding 

end-use conversion efficiency multipliers from 9.5.6.4: 

o For ICEV light, LDV values are used. This is optimistic as largest light vehicle efficiency 

improvement is indicated for LDV. 

o For ICEV heavy freight, the average of medium and heavy freight is used, assuming 

approximately equal fleet composition. 

o Where there is overall design similarity in passive systems (drivetrain and chassis), 

estimates are aligned: 

▪ ICEV light and electric vehicles 

▪ Passenger aviation and freight aviation (internal layouts already largely 

optimized, improvements to come from engine and aerodynamics) 

▪ National marine factor is used for all shipping types. 
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▪ For rail, potential end-use to ES efficiency increases are calculated using 

average end-use conversion efficiency multipliers from 9.5.6.4, across ICE 

and electric modes. 

▪ For high and low temperature heating, potential end-use to ES efficiency 

increases are calculated using average end-use conversion efficiency 

multipliers from 9.5.6.4, across electric and heat, and electric, heat, and 

LaG fuels respectively. 

• For high temperature heating (heat and electric), minimal detail is given, but a representative 

value of 30% energy (input) saving is chosen based on potential process improvements 

surveyed in the Industry section. 

• For low temperate heating (LaG fuels, heat, and electric), a representative value of 50% 

efficiency improvement is chosen based on estimates given in table 7. Only space heating is 

discussed here – this is assumed to be a reasonable approximation given that space heating 

currently dominates low temperate heating demand. 

• For electric cooling (cold appliances and air conditioning) and IPaC devices (other appliances), 

the stated potential savings of 60% and 65% (average), respectively, are converted to 

composite efficiency improvements and decomposed to end-use to ES efficiency improvement 

alone. This assumes similar savings are possible for non-residential PC. 

• Insufficient information is given to provide estimates for static mechanical or lighting (the 

stated luminous efficacy corresponds to conversion efficiency, not end-use to ES efficiency). 

Source 43 • Values from table 1: 

o Appliance, driven system, and train 

o From tables S.8, S.15 & S.21 

• Maximum end-use to ES efficiency increase factors are calculated from F, the fraction of current 

energy use that could be saved, by the expression 1 (1 − 0.01𝐹)⁄ . 

• Where an end-use category corresponds to more than one system type given in table 1, a 

weighted average is calculated, with energy supplied to the system as the weighting factor. 

• Authors conclude there are “no practical energy savings available in the passive systems of 

consumer electronics” (refers a large component of IPaC devices). 

• Driven systems (excluding refrigeration) are assumed to represent LaG fuel static mechanical. 

• Driven systems (excluding refrigeration), washing machine, dishwasher and other appliance 

(weighted by electricity component) are assumed to represent electric static mechanical. 

• Truck is used for ICEV heavy passenger and freight (definition includes buses, but passive 

systems are similar). 

• Freight train (table S.21) is used for ICE and electric rail freight. 

• Passenger train (table S.21) is used for ICE and electric rail passenger. 

• Increases in efficiency for transportation modes do not include increased occupancy. 

Adjustments are not made as estimates for modes where occupancy can be substantially 

increased (cars, buses, passenger rail) are already highly optimistic and, in some cases, this may 

compete with the assumed changes in design parameters (particularly weight reductions). 

• Refrigerator/freezer (appliances) refrigeration and cooled space are assumed to represent 

electric cooling. 

• For low temperature and high temperature heating, respectively, passive systems are assumed 

to be identical for all ECs as different weightings produce significant discrepancies in the 

maximum increase factors that inappropriately favour some PC types over others: 

o This is necessary to align with underlying assumption that low temperature and high 

temperature heating ES demands are each homogeneous. 

o Heated space (weighted by half the total energy consumption for this system: 36 EJ), 

cooker (weighted by total energy consumption), clothes dryer, and hot water systems 

are assumed to represent all forms of low temperature heating. 

o Furnace and steam systems are assumed to represent both forms of high 

temperature heating. 
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9.5.6.7 End_Use_Incept_Year 
Input reference: 4.7 

Description: Vector of approximate incept years by EU PC (year functional category became widely available) 

Sources: 36, 37, 40 

Source-specific calculations and assumptions 

Source 36 Approximate (decadal) incept years taken from the text. Where multiple options exist, dates 

corresponding to technological innovations marking the beginning of current types of PC are used 

(i.e. obsolete precursors not functionally interchangeable with current technologies are ignored): 

• Aviation – first turbojet aircraft 

• Electric cooling – widespread diffusion of refrigeration 

• Electric heating low temperature – first large-scale electrification of cities 

• Shipping – first marine diesel engines 

• IPaC – first integrated circuits 

• ICEV heavy – beginning of trucking industry and bus services 

• ICE rail – earliest replacement of locomotive steam engines with diesel and diesel-electric 

Source 37 First instances of each type of PC are located on the timeline and the approximate (decadal) incept 

years are taken: 

• ICEV light – Model T goes into mass production 

• Electric vehicles – GM’s EV1 electric car is made available to the public 

Source 40 • The year the world’s first commercial electric arc furnace came into operation is used for 

electric heating high temperature. 

• This estimate entails high uncertainty, due to the wide variety of technologies used in high 

temperature electric heating, including heating elements, electric arcs, steam systems, and 

others. 

• Electric arc furnaces are selected as a representative technology they are a major case where 

the use of electricity can compete with heat fuels in industrial processes (the production of 

metal alloys). 

9.5.7 Demand 

9.5.7.1 ES_Final_Demand_Mult_Input 
Input reference: 5.1 

Description: Matrix of maximum and minimum estimates for the fractional increase from initial ES demand to 

the upper asymptotes of the ES demand function 

Sources:  (Own estimate) 

General calculations and assumptions 

The ESs are grouped and approximate potential ranges relative to today’s consumption levels based on their general 

characteristics and outlook: 

• Future demand scenarios are not known: 

o Aggregate declines are possible, but generally not expected. 

o Increases are more likely and easier to reconcile with a stable global socio-economic context (not assumed, 

but the global system will seek to achieve this outcome). 

• Uniform distributions are assumed: 

o Future ES demand scenarios cannot be known with enough specificity to justify the choice of a more 

complex distribution. 

o As the primary set of independent parameters to be tested by PRESS, these should be as free of arbitrary 

assumptions as possible. 

• The developed world (OECD) population is approximately 20% of the world total and the developing world per capita 

consumption of many energy services is significantly lower. Therefore, the world population (allowing for population 

growth) consuming at the current developed world level corresponds to a multiple of approximately 5. 

• A core group of ESs constitutes illumination, static mechanical, transport passenger regional, transport freight 

regional, cooling, and high temperature process heat: 
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o This group is primarily residential, commercial, and industrial ES demand, and the regional movement of 

people and goods, except for IPaC and low temperature heating, which are special cases. 

o For this group, a final demand multiplier range of 0.5 to 5 is assumed. 

o This range gives an order of magnitude difference, approximately spanning world average consumption 

dropping to current developing world levels, to world average consumption rising to current developed 

world levels. 

o Growth is more likely than decline due to the uniform distribution (mean is >1). 

o These energy services are general in nature, not subject to unusual pressures for growth or high 

dependence on geopolitical factors. 

• IPaC 

o A final demand multiplier range of 0.8 to 10 is assumed. 

o Due to the relative immaturity, at the global level, of IPaC infrastructure, and the high social utility of IPaC 

services, this ES is considered to have stronger growth imperatives and to be more resistant to declines. 

o Significant growth may continue in developed countries, with the developing world seeking to catch up. 

o Aggregate declines are possible, but very unlikely. 

• Intercontinental movement of goods and people: 

o This group is comprised of transport passenger IC and transport freight IC. 

o A final demand multiplier range of 0.2 to 8 is assumed. 

o This range represents higher uncertainty, as these energy services are less intrinsically necessary, strongly 

dependent on economic and geopolitical conditions, and could fall substantially but are also generally 

expected to continue a strong growth trajectory. 

• Low temperature heating: 

o A final demand multiplier range of 0.2 to 2 is assumed. 

o Strong increases are less likely as space heating in cold and temperate climates is already relatively 

ubiquitous, while cooking and other non-discretionary uses of low temperature heat do not grow rapidly. 

o Warmer climates have little to no requirement for space heating. 

o Climate change may further limit the scope for increases in demand for low temperature heating. 

o Strong declines are possible through building redesigns and shifting attitudes changing the nature of heat 

provision (heating people directly and smaller spaces rather than entire buildings, etc.). 

9.5.7.2 Initial_ES_Demand_RoC_Max 
Input reference: 5.2 

Description: Estimate for the initial maximum annual rate of change of the ES demand function 

Sources: (Own estimate) 

General calculations and assumptions 

A maximum initial rate of change of 5% per year is assumed: 

• Population growth and increasing per capita consumption are unlikely to exceed this rate of change at the global 

level. 

• This rate of change is applied symmetrically to growing and declining ES demand trends (positive and negative, 

respectively). 

9.5.7.3 Initial_Demand_Flex 
Input reference: 5.3 

Description: Estimate for the initial value of the demand flexibility function (initial fraction of final demand 

responsive to short-term supply availability) 

Sources: (Own estimate) 

General calculations and assumptions 

Assume a small but non-negligible initial proportion of demand is flexible and responsive to price signals (5%). 

9.5.7.4 Final_Demand_Flex_Input 
Input reference: 5.4 

Description: Vector of maximum and minimum estimates for the final value of the demand flexibility function (at 

sim. base period) 
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Sources: (Own estimate) 

General calculations and assumptions 

The proportion of flexible, price-responsive demand reached at the simulation base period (80 years, or 2095) is assumed 

to be uniformly distributed, ranging from 10% to 50%: 

• 10% represents an approximate doubling from current levels and is considered entirely possible and likely, 

particularly given policy efforts directed at achieving this. 

• 50% is considered an upper limit, beyond which ES demand is largely inflexible and non-discretionary due to 

operational and temporal limitations (cannot follow supply on the timescales required). 

9.5.8 EROI 

9.5.8.1 Initial_RE_EROI_Input 
Input reference: 6.1 

Description: Matrix of mean and standard deviation estimates for initial new PC EROI by RE type 

Sources: 11, 51, 52, 54, 58, 60, 61 

General calculations and assumptions 

• Data is not available for EROI at the primary level for solar thermal and geothermal (EC production modelled as 

secondary in PRESS): 

o The maximum estimate for secondary EROI (from 9.5.9.1) is taken as a practical lower bound, as primary 

EROI cannot be lower than secondary. 

o A practical maximum of 100 is assumed for solar thermal and 50 for geothermal at the primary level (similar 

to other high-EROI primary resources, such as hydropower or offshore wind). 

• A truncated normal distribution is assumed: 

o There is a central tendency in EROI estimates, with possibility of significant deviation. 

o Distributions are truncated to the maxima of terminal EROI ranges, as initial EROI values lower than this 

are highly unlikely and could lead to improperly generated logistic curves for EROI as a function of resource 

exhaustion. 

Source-specific calculations and assumptions 

Source 11 Mean and median values are taken from table 6-2 for RE sources where electricity production is 

considered primary, plus biomass. 

Source 51 25th and 75th percentile values for wind all and PV all are taken from figure 3 then inverted to give 

upper and lower EROI estimates. 

Source 52 • Initial EROIst values for dispatchable RE electricity generation are taken from table 1. 

• Oceanic is assumed to represent other RE. 

Source 58 EROI estimates for RE sources where electricity production is considered primary are taken from 

figure 4. 

Source 60 • EROI values are taken from figure 2 for RE sources where electricity production is considered 

primary. 

• ‘EMROI’ is used as this uses primary energy equivalence, in line with PRESS modelling 

formulation. 

Source 61 As values in section 3.3 are given by PV technology, not as global installed averages, a representative 

range for solar PV is selected from within the values given (10 to 30). 

Source 62 • Approximate EROI values for sources where electricity production is considered primary are 

taken from figure 3. 

• A range is taken from table 1 for solar PV (6 to 12). 

9.5.8.2 RE_EROI_Terminal_Input 
Input reference: 6.2 

Description: Matrix of maximum and minimum estimates for the final values (exhaustion = 1) of the RE EROI 

function (lowest acceptable EROI for a viable energy source) 

Sources: (Own estimate) 

General calculations and assumptions 
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• For most RE sources, the minimum acceptable EROI is assumed to range between 1 (absolute minimum, where input 

equals output) and 5 (low EROI that may challenge economic viability). 

• Exceptions are biomass and RE other, where the upper limit for terminal EROI is 2: 

o Biomass terminal EROI is lower due to lower EROI for traditional modes of harvesting requiring only simple 

inputs and also the ability to produce more desirable ECs via biomass, namely LaG fuels, which may justify 

operating at lower EROI values. 

o RE other terminal EROI is lower due to its lower bound for initial EROI. 

9.5.8.3 RE_EROI_Drop_Input 
Input reference: 6.3 

Description: Matrix of maximum and minimum estimates for the pre-simulation decline in the RE EROI function 

(between upper asymptote and initial value) 

Sources: (Own estimate) 

General calculations and assumptions 

• Declines should refer to the period after technology incept years, from technological maturity to ~2015. 

• Scarce timeseries data for the EROI of RE sources is available as most are currently producing at negligible rates 

compared with technical potential, with minor EROI declines observed to date. 

• Consequently, little information can be discerned regarding the characteristics of the associated resource quality 

distributions. 

• Therefore, the minimum drop value for most RE sources is assumed to be 0 (no change between original and current 

new EROI). Hydropower, geothermal, and biomass are exceptions to this, as these occupy a significant share of their 

technical potentials – as such, their minimum drop values are assumed to be 10% of the means of current EROI 

estimates from 9.5.8.1. 

• The maximum conceivable drop value for all RE sources is assumed to be 100% of the means of current EROI 

estimates for technologies that occupy a significant share of their technical potentials (hydropower, geothermal, and 

biomass), and 10% for all others. 

• This provides ranges that are an order of magnitude apart for significantly exhausted versus non-exhausted RE 

sources, relative to mean EROI estimates. 

9.5.8.4 Initial_NRE_EROI_Input 
Input reference: 6.4 

Description: Matrix of mean and standard deviation estimates for initial new PC EROI by NRE type 

Sources: 11, 54, 55, 56, 57, 61 

General calculations and assumptions 

• EROI estimates are assumed to include exploration activities required to locate and prove reserves. 

• As only one estimate was found for nuclear fuels, upper and lower bounds are assumed to be ±25% of this estimate. 

• Truncated normal distributions are assumed: 

o There is a central tendency in EROI estimates, with possibility of significant deviation. 

o Distributions are truncated to the maxima of terminal EROI ranges, as initial EROI values lower than this 

are unlikely and could lead to improperly generated logistic curves for EROI as a function of resource 

depletion. 

Source-specific calculations and assumptions 

Source 11 Mean and median values are taken from table 6-2. 

Source 54 See section 9.5.2.3. 

Source 55 • The best guess linear extrapolation given in figure 2 is used – approximately 14 for ~2015. 

• This value is assumed for both gas and oil. 

Source 56 Values are read from figure 9, taking the new model and price-based method as separate estimates. 

Source 57 The indicated approximate global oil EROI value of 17 used (page 5). 

Source 62 • An approximate range for oil is taken from figure 9 (10 to 40; 2010 values assumed equivalent 

to ~2015). This is optimistic as gas EROI normally reported as higher than oil EROI. 

• An approximate range for gas is taken from figure 10. 

• An approximate range for coal is taken from figure 11. 
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9.5.8.5 NRE_EROI_Terminal_Input 
Input reference: 6.5 

Description: Matrix of maximum and minimum estimates for the final values (depletion = 1) of the NRE EROI 

function (lowest acceptable EROI for a viable energy source) 

Sources: (Own estimate) 

General calculations and assumptions 

For all NRE sources, the minimum acceptable EROI is assumed to range between 1 (absolute minimum, where sum of 

input flows equals output flow) and 5 (low EROI that may begin to challenge economic viability). 

9.5.8.6 NRE_EROI_Drop_Input 
Input reference: 6.6 

Description: Matrix of maximum and minimum estimates for the pre-simulation decline in the NRE EROI function 

(between upper asymptote and initial value) 

Sources: 11, 55, 56, 57, 61 

General calculations and assumptions 

Declines should refer to the period after technology incept years, from technological maturity to ~2015. Peak observed 

EROI values from all sources converted to a uniform distribution of drop (delta) values: 

• The maxima are formed by subtracting the initial EROI estimate minima from the corresponding peak EROI estimate 

maxima. 

• The minima are formed by subtracting the initial EROI estimate means from the corresponding peak EROI estimate 

means. 

Source-specific calculations and assumptions 

Source 11 • Coal maximum and minimum peak values are taken from figure 6-2. 

• Oil maximum and minimum peak values are taken from figure 6-4. 

• Gas maximum and minimum peak values are taken from figure 6-7. 

Source 55 Approximate peak value is taken from figure 1. 

Source 56 • Values are read from figure 9 and table 4, taking the new model and price-based method as 

separate estimates. 

• As these peaks occur significantly after technology incept years, it is assumed they still offer a 

suitable upper asymptote) for EROI functions, which are normalized to prior production 

assuming a linear increase. 

Source 57 The indicated approximate global oil peak EROI value of 30 I used (page 5). 

Source 62 • The range for oil peak values is taken from figure 9. 

• The range for oil peak values is taken from figure 10. 

• The range for coal peak values is taken from figure 11. 

9.5.9 Energy Cost of Capital 

9.5.9.1 Secondary_PC_ECC_Input 
Input reference: 7.1 

Description: Matrix of mean and standard deviation estimates for energy cost of capital by secondary PC type 

(defined relative to initial CF) 

Sources: 11, 51, 52, 54, 58, 59, 60, 61 

General calculations and assumptions 

• Where EROI estimates at the primary and secondary stages are available, these are converted to ECC as detailed in 

section 4.2.4.2. 

• High, low, and best guess ECC estimates are calculated from minimum, maximum, and mean secondary EROI using 

maximum, minimum, and mean primary EROI and PC lifetime, respectively. 

• These estimates form indicative ranges which are then grouped and approximated, with secondary PC lacking 

associated EROI estimates assigned to groups based on similar levels of technological and capital complexity. 

• Log-normal distributions are used as ECC estimates can be expected to vary by orders of magnitude. 
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• Standard deviation is assumed to be the same as the mean, as this allows for a distribution where the 50th percentile 

is not significantly less than the mean, but a wide range over an order of magnitude in either direction is still possible 

(more than 99.9% of the distribution lies between 0.1σ and 10σ). 

• Best guess ECC estimates for geothermal generation and oil generation are not useful but grouping is still possible 

by inspection of high estimates, and assessment of capital similarity: 

o Oil generation has only one associated secondary EROI estimate (likely low). 

o Geothermal generation low and best guess ECC estimates are less than zero which is not physically 

meaningful but implies low secondary PC ECC. 

• Four tiers are identified for ECC: 

o High cost (2.5 years) – biofuels and biomass generation (large energy inputs required for feedstock 

preparation and process requirements, i.e., mainly operational energy costs) 

o Medium cost (1.5 years) – coal and nuclear generation (applied to other PC considered to be in a similar 

cost: oil generation, refining, coal and gas to LaG, refining, coal and biomass CHP, and geothermal 

generation) 

o Low cost (0.5 years) – gas generation and solar thermal generation (applied to gas CHP, and geothermal 

generation) 

o Minimal cost (0.05 years) – all other, including secondary PC for heat and processes where EC production 

is considered primary (an order of magnitude lower than the other tiers, but a significant range is still 

possible) 

Source-specific calculations and assumptions 

Source 11 Mean and median values are taken from table 6-2 for sources where EC production is considered 

secondary (excluding outliers). Bio-diesel and bio-ethanol are considered together for biofuels. 

Source 51 25th and 75th percentile values for CSP are read from figure 3 then inverted to give upper and lower 

EROI estimates. 

Source 52 Initial primary EROI value for biomass generation is taken from table 1. 

Source 54 See section 9.5.2.3. 

Source 58 EROI estimates (for secondary electricity production) are taken from figure 4. 

Source 59 A representative value for primary EROI is taken from table 8 (present system, scenario 1; this input 

does not include penetration level effects in PRESS as these are modelled explicitly). 

Source 60 • Values are taken from figure 2 for generation types where electricity production is considered 

secondary. 

• ‘EMROI’ is used as this uses primary energy equivalence, in line with PRESS modelling 

formulation. 

Source 62 Approximate values for RE sources where electricity production is considered secondary are taken 

from figure 3. 

9.5.9.2 Secondary_AI_ECC_Input 
Input reference: 7.2 

Description: Matrix of mean and standard deviation estimates for energy cost of capital by secondary AI type 

Sources: 10 

General calculations and assumptions 

• Transmission and distribution costs typically make up a significant  proportion of final cost of electricity, but less than 

the cost of generation [413]. Assuming a consistent embodied energy of prices [414], and taking into account the 

peak factor for electricity AI, this indicates an ECC for electricity AI of approximately 0.2 years. 

• While the transportation and distribution of LaG fuels and heating fuels is less capital intensive than electricity, costs 

are significant, approaching or exceeding the commodity cost [415, 416]. As such, ECC for LaG fuels AI and heat AI is 

conservatively estimated at 0.1 years (by comparison to electricity AI). 

• Log-normal distributions are used as ECC estimates can be expected to vary by orders of magnitude. 

• Standard deviation is assumed to be the same as the mean, as this allows for a distribution where the 50th percentile 

is not significantly less than the mean, but a wide range over an order of magnitude in either direction is still possible 

(more than 99.9% of the distribution lies between 0.1σ and 10σ). 

Source-specific calculations and assumptions 
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Source 10 • Table 6 shows balancing costs initially around $3.50 2011 USD/MWh, rising to $7 2011 

US/MWh for intermittent penetration > 50%. 

• This compares levelized cost of energy between $10 and $20 USD/MWh for most sources. 

• Hence, assuming a consistent embodied energy of costs [414], and taking into account the peak 

factor for intermittent electricity AI and CFs of secondary generation, the (initial, low 

intermittent penetration) ECC of intermittent electricity AI can be conservatively estimated 

at 0.1 years: 

o Initially less than, but comparable to, electricity AI (assuming balancing costs 

represents full effective mitigation of intermittency). 

o This ECC is subject to a higher initial average peak factor. 

o The effective ECC will increase with higher intermittent penetration and decrease 

with higher intermittent diversity and demand flexibility. 

9.5.9.3 End_Use_PC_ECC_Input 
Input reference: 7.3 

Description: Matrix of mean and standard deviation estimates for energy cost of capital by EU PC type (defined 

relative to initial CF) 

Sources: (Own estimate) 

General calculations and assumptions 

• A cursory calculation can be performed for light vehicles (ICEV light): 

o An average power light vehicle is rated for 100 kW output power, which represents power capacity of 3200 

GJ per year. 

o Smil [417] notes that the average light vehicle requires approximately 100 GJ for its manufacture 

(optimistic, as some estimates are a factor of 2 or 3 higher than this). 

o This does not include energy required for upkeep (servicing and replacement parts), so this value is 

increased by 50% (approximate adjustment). 

o This implies an ECC of 150 𝐺𝐽 3200 𝐺𝐽/𝑦𝑟⁄ = 0.05 years. 

o The embodied energy of electric vehicles is higher, so assuming similar driving habits and a similar 

proportion of energy required for upkeep, the corresponding ECC value is estimated at 0.1 years. 

• For electric lighting, a typical (~10W) LED bulb, representing 315 MJ/yr power capacity, requires approximately 50 

MJ in its manufacture [418]: 

o This corresponds to an ECC value of 0.15 years. 

o While LED is now the dominant lighting technology, this figure is reduced to 0.1 years as a conservative 

estimate, as embodied energy relative to power capacity is much higher for LED than for other lighting 

technologies. 

• As very little data exists for the embodied energy of end-use PC, as defined in PRESS, similarity in ECC values among 

end-use PC types is assumed (lifetime input energy relative to nameplate capacity is relatively uniform, dependent 

on few factors). Effectively, this means shorter-lived PC is more energy intensive per output power than long-lived 

PC. 

• Log-normal distributions are used as ECC estimates can be expected to vary by orders of magnitude. 

• Standard deviation is assumed to be the same as the mean, as this allows for a distribution where the 50th percentile 

is not significantly less than the mean, but a wide range over an order of magnitude in either direction is still possible 

(more than 99.9% of the distribution lies between 0.1σ and 10σ). 

• CF, representing average to peak power ratio, must also be considered as embodied energy relative to power 

capacity for PC with very low CF is unlikely to be as high (this category of PC requires short bursts of power that are 

not sustained for long so do not require the same level of sustained structural support, e.g.,  vehicles are not designed 

to operate continuously at peak acceleration). 

• End-use PC types are split into three tiers based on capital complexity (indicated by cost) and CF (low average to 

peak power ratio) with ECC values set by comparison with estimates above: 

o High cost (0.2 years) – IPaC devices, shipping (all), and high temperature heating (electric and heat fuels) 

o Medium cost (0.1 years) – electric vehicles, mechanical (electric and LaG fuels), rail (all), aviation (all) 

o Low cost (0.05 years) – all other 
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9.5.9.4 End_Use_AI_ECC_Input 
Input reference: 7.4 

Description: Matrix of mean and standard deviation estimates for energy cost of capital by EU AI type 

Sources: (Own estimate) 

General calculations and assumptions 

• For end-use AI, costs per unit delivered power are typically minor but not negligible. 

• Higher associated peak factors mean more AI will be required per unit delivered power. 

• Log-normal distributions are used as ECC estimates can be expected to vary by orders of magnitude. 

• Standard deviation is assumed to be the same as the mean, as this allows for a distribution where the 50th percentile 

is not significantly less than the mean, but a wide range over an order of magnitude in either direction is still possible 

(more than 99.9% of the distribution lies between 0.1σ and 10σ) 

• End-use AI types are split into two tiers based on capital complexity (indicated by cost), with estimated ECC values 

set by comparison with secondary PC and AI and end-use PC: 

o High cost (0.1 years) – IPaC, roading, rail, aviation, and shipping 

o Low cost (0.05 years) – all other 

9.5.10 Primary NRE sector 

9.5.10.1 CapEx_Fraction_Input 
Input reference: 8.1 

Description: Matrix of maximum and minimum possible values for the fraction of NRE investment energy devoted 

to capital (construction and decommissioning) 

Sources: (Own estimate) 

General calculations and assumptions 

Two tiers are identified based on the relative magnitude of ongoing operation and maintenance energy costs: 

• Low cost (assume CapEx fraction between 75% and 90%) – oil and natural gas (resources are fluids; activities include 

pumping, well logging, inspections, running production equipment) 

• High cost (assume CapEx fraction between 50% and 75%) – coal and nuclear fuels (resources are solids; activities 

include operating heavy mining equipment, bulk material processing, earthworks, and demolition) 

9.5.10.2 Decommission_Fraction_Input 
Input reference: 8.2 

Description: Matrix of maximum and minimum possible values for the fraction of NRE investment energy devoted 

to capital used in the decommissioning stage 

Sources: (Own estimate) 

General calculations and assumptions 

Two tiers are identified based on complexity and cost of site decommissioning and restoration: 

• Low cost (assume decommissioning fraction between 0% and 5%) – oil and natural gas (site remediation involves 

shutting in and cementing wells, removing production equipment and sometimes site clean-up) 

• High cost (assume decommissioning fraction between 10% and 20%) – coal and nuclear fuels (site remediation often 

involves closing open mining pits, removing large amounts of production equipment, decommissioning bulk handling 

facilities, removing hazardous tailings, and ongoing site containment measures) 

9.5.10.3 EC_Split_LaG_Factor_Input 
Input reference: 8.3 

Description: Matrix of maximum and minimum possible values for the initial fraction of NRE input energy 

consisting of liquid and gaseous fuels, divided by the LaG share of initial EC supply 

Sources: (Own estimate) 

General calculations and assumptions 

This is a measure of geographical remoteness. Remaining NRE energy resources tend to be increasingly remote, therefore, 

the LaG factor can be assumed to be above one (range 1 to 1.4). 
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9.5.10.4 EC_Split_Heat_Factor_Input 
Input reference: 8.4 

Description: Matrix of maximum and minimum possible values for the initial fraction of NRE input energy 

consisting of heat, divided by the heat share of initial EC supply 

Sources: (Own estimate) 

General calculations and assumptions 

This is a measure of the degree of heavy industry as well as direct process heat requirements. NRE energy resources 

require significant heavy capital equipment and, in many cases, supplementary process heat, therefore, the heat factor 

can be assumed to be above one (range 1 to 1.4). 

9.5.10.5 PC_Build_Time_Input 
Input reference: 8.5 

Description: Matrix of maximum and minimum possible values for NRE power capacity build time (investment 

decision to operation) 

Sources: (Own estimate) 

General calculations and assumptions 

• Assume exploration activities precede PC investment and cause no additional delays beyond that modelled for NRE 

PC. 

• All primary NRE infrastructure requires significant time to build, rarely shorter than several years. 

• Two tiers are identified based on complexity and cost of planning, permitting, and construction: 

o Short (assume average build times between 2 and 5 years) – oil and natural gas 

o Long (assume average build times between 5 and 10 years) – coal and nuclear fuels 

9.5.10.6 PC_Lifetime_Input 
Input reference: 8.6 

Description: Matrix of maximum and minimum possible values for NRE power capacity lifetime (in operation) 

Sources: (Own estimate) 

General calculations and assumptions 

• All primary NRE infrastructures have lifetimes in the decades, but rarely beyond 40 years due to depletion of the in-

situ resource. 

• Two tiers are identified based on typical resource production profiles: 

o Short (assume average lifetimes between 10 and 25 years) – oil and natural gas 

o Long (assume average build times between 15 and 40 years) – coal and nuclear fuels 

9.5.11 Primary RE sector 

9.5.11.1 CapEx_Fraction_Input 
Input reference: 9.1 

Description: Matrix of maximum and minimum possible values for the fraction of RE investment energy devoted 

to capital (construction and decommissioning) 

Sources: 54 

General calculations and assumptions 

Three tiers are identified based on relative magnitude of ongoing operation and maintenance energy costs (with reference 

to estimates from source 54; see 9.5.2.3): 

• Low cost (assume CapEx fraction between 90% and 100%) – solar PV, wind, and hydropower (basic turbine/panel 

and structural maintenance only) 

• Medium cost (assume CapEx fraction between 75% and 90%) – solar thermal, geothermal, and other RE (more 

extensive maintenance of working fluid and generation systems) 

• High cost (assume CapEx fraction between 25% and 75%) – biomass (large energy inputs required for feedstock 

preparation and process requirements; this encompasses both modern and traditional biomass energy – operation 

and maintenance costs are assumed to be high relative to capital for both) 
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9.5.11.2 Decommission_Fraction_Input 
Input reference: 9.2 

Description: Matrix of maximum and minimum possible values for the fraction of RE investment energy devoted 

to capital used in the decommissioning stage 

Sources: 54 

General calculations and assumptions 

Based on complexity and cost of site decommissioning and restoration (with reference to estimates from source 54), 

assume decommissioning fraction between 0% and 5% for all RE types (RE installations typically do not have major 

decommissioning and site remediation costs). 

9.5.11.3 EC_Split_LaG_Factor_Input 
Input reference: 9.3 

Description: Matrix of maximum and minimum possible values for the initial fraction of RE input energy 

consisting of liquid and gaseous fuels, divided by the LaG share of initial EC supply 

Sources: (Own estimate) 

General calculations and assumptions 

This is a measure of geographical remoteness – two tiers are identified:  

• Most RE energy resources tend to be geographically remote and the best sites are relatively concentrated (solar 

thermal, wind, hydropower, geothermal, and other RE), or require significant mechanization to cover large fuel 

collection areas (biomass), therefore, the heat factor can be assumed to be above one (range 1 to 1.4). 

• Solar PV is not generally remote in most regions and suitable sites are more accessible, therefore, the heat factor 

can be assumed to be around one (range 0.8 to 1.2). 

9.5.11.4 EC_Split_Heat_Factor_Input 
Input reference: 9.4 

Description: Matrix of maximum and minimum possible values for the initial fraction of RE input energy 

consisting of heat, divided by the heat share of initial EC supply 

Sources: (Own estimate) 

General calculations and assumptions 

This is a measure of the degree of heavy industry required as well as direct process heat requirements:  

• Most RE energy resources tend to require significant heavy capital equipment, concrete, steel and high-temperature 

manufacturing processes (all except biomass), therefore, the heat factor can be assumed to be above one (range 1 

to 1.4). 

• Biomass does not necessarily require significant heavy capital equipment, concrete, steel or high-temperature 

manufacturing processes (particularly for local, small-scale and traditional biomass), but does often require heat for 

feedstock preparation and process requirements, therefore, the heat factor can also be assumed to be above one 

(range 1 to 1.4). 

9.5.11.5 PC_Build_Time_Input 
Input reference: 9.5 

Description: Matrix of maximum and minimum possible values for RE power capacity build time (investment 

decision to operation) 

Sources: 54 

General calculations and assumptions 

• Primary RE infrastructure generally requires less time to build than NRE. 

• Three tiers are identified based on complexity and cost of planning, permitting, and construction (with reference to 

estimates from source 54): 

o Short (assume average build times between 1 and 3 years) – solar PV 

o Long (assume average build times between 4 and 8 years) – hydropower 

o Medium (assume average build times between 2 and 5 years) – all other 

9.5.11.6 PC_Lifetime_Input 
Input reference: 9.6 
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Description: Matrix of maximum and minimum possible values for RE power capacity lifetime (in operation) 

Sources: 54 

General calculations and assumptions 

• Primary RE infrastructure generally has longer lifetimes than NRE as depletion of the resource does not occur, but 

with significant variation. 

• Three tiers are identified based on typical useful lifetimes of capital equipment (with reference to estimates from 

source 54): 

o Medium (assume average lifetimes between 30 and 50 years) – biomass and geothermal 

o Long (assume average lifetimes between 50 and 100 years) – hydropower (dams may last longer but 

generating equipment must be replaced) 

o Short (assume average lifetimes between 20 and 30 years) – all other 

9.5.12 Secondary sector 

9.5.12.1 PC_CapEx_Fraction_Input 
Input reference: 10.1 

Description: Matrix of maximum and minimum possible values for the fraction of secondary power capacity 

investment energy devoted to capital (construction and decommissioning) 

Sources: 54 

General calculations and assumptions 

• Secondary PC generally has higher ongoing operation and maintenance energy costs than primary PC as conversion 

processes are typically energy intensive. 

• Three tiers are identified based on relative magnitude of ongoing operation and maintenance energy costs (with 

reference to estimates from source 54; see 9.5.2.3): 

o Low cost (assume CapEx fraction between 90% and 100%) – oil and gas heat, and all secondary PC where 

electricity generation is considered primary 

o High cost (assume CapEx fraction between 25% and 75%) – refining, coal generation, coal to LaG, coal CHP, 

nuclear generation, and all biomass (all require large energy inputs for fuel processing and ancillary 

operational needs) 

o Medium cost (assume CapEx fraction between 50% and 75%) – all other 

9.5.12.2 PC_Decommission_Fraction_Input 
Input reference: 10.2 

Description: Matrix of maximum and minimum possible values for the fraction of secondary power capacity 

investment energy devoted to capital used in the decommissioning stage 

Sources: 54 

General calculations and assumptions 

Three tiers are identified based on complexity and cost of site decommissioning and restoration (with reference to 

estimates from source 54; see 9.5.2.3): 

• Low cost (assume decommissioning fraction between 0% and 5%) – oil and gas generation, oil and gas heat, solar PV 

(equipment is relatively easy to remove, sites do not need extensive remediation efforts) 

• High cost (assume decommissioning fraction between 10% and 30%) – nuclear generation (site remediation often 

involves extensive decontamination and radioactive waste removal, followed by ongoing site monitoring and 

containment measures) 

• Medium cost (assume decommissioning fraction between 5% and 10%) – all other 

9.5.12.3 PC_EC_Split_LaG_Factor_Input 
Input reference: 10.3 

Description: Matrix of maximum and minimum possible values for the initial fraction of secondary power capacity 

input energy consisting of liquid and gaseous fuels, divided by the LaG share of initial EC supply 

Sources: (Own estimate) 

General calculations and assumptions 

This is a measure of geographical remoteness – two tiers are identified:  
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• Some secondary PC types tend to be co-located with remote RE energy resources (solar PV, solar thermal generation, 

wind, hydropower, geothermal heat and generation, and other RE), therefore, the LaG factor can be assumed to be 

above one (range 1 to 1.4). 

• Most secondary PC types are not particularly remote and tend to be located closer to demand centres (all other), 

therefore, the LaG factor can be assumed to be around one (range 0.8 to 1.2). 

9.5.12.4 PC_EC_Split_Heat_Factor_Input 
Input reference: 10.4 

Description: Matrix of maximum and minimum possible values for the initial fraction of secondary power capacity 

input energy consisting of heat, divided by the heat share of initial EC supply 

Sources: (Own estimate) 

General calculations and assumptions 

This is a measure of the degree of heavy industry required as well as direct process heat requirements. Secondary PC 

(energy conversion and fuel upgrading) requires significant heavy capital equipment and in many cases supplementary 

process heat, therefore, the heat factor can be assumed to be above one (range 1 to 1.4). 

9.5.12.5 PC_Build_Time_Input 
Input reference: 10.5 

Description: Matrix of maximum and minimum possible values for secondary power capacity build time 

(investment decision to operation) 

Sources: 54 

General calculations and assumptions 

Three tiers are identified based on complexity and cost of planning, permitting, and construction (with reference to 

estimates from source 54): 

• Short (assume average build times between 0.5 and 1 years) – all heat and RE sources where electricity generation 

is considered primary 

• Long (assume average build times between 5 and 10 years) – refining, coal and gas to LaG, and nuclear generation 

• Medium (assume average build times between 3 and 6 years) – all other 

9.5.12.6 PC_Lifetime_Input 
Input reference: 10.6 

Description: Matrix of maximum and minimum possible values for secondary power capacity lifetime (in 

operation) 

Sources: 10, 54 

General calculations and assumptions 

• Secondary PC generally has long lifetimes, higher for more complex and costly PC types. 

• Three tiers are identified based on typical useful lifetimes of capital equipment (with reference to sources 10 and 

54): 

o Medium (assume average lifetimes between 30 and 50 years) – all NRE associated PC except nuclear, 

biofuels, hydropower, and geothermal heat and generation 

o Long (assume average lifetimes between 40 and 60 years) – nuclear generation 

o Short (assume average lifetimes between 20 and 30 years) – all other 

9.5.12.7 AI_CapEx_Fraction_Input 
Input reference: 10.7 

Description: Matrix of maximum and minimum possible values for the fraction of secondary auxiliary 

infrastructure investment energy devoted to capital (construction and decommissioning) 

Sources: (Own estimate) 

General calculations and assumptions 

Two tiers are identified based on relative magnitude of ongoing operation and maintenance energy costs: 

• Low cost (assume CapEx fraction between 90% and 100%) – heat and LaG AI 

• High cost (assume CapEx fraction between 50% and 75%) – electricity and intermittent electricity AI (more complex 

infrastructure requiring more maintenance, replacement parts, and operational energy requirements) 
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9.5.12.8 AI_Decommission_Fraction_Input 
Input reference: 10.8 

Description: Matrix of maximum and minimum possible values for the fraction of secondary auxiliary 

infrastructure investment energy devoted to capital used in the decommissioning stage 

Sources: (Own estimate) 

General calculations and assumptions 

Based on complexity and cost of site decommissioning, assume decommissioning fraction between 0% and 5% for all 

secondary AI types. 

9.5.12.9 AI_EC_Split_LaG_Factor_Input 
Input reference: 10.9 

Description: Matrix of maximum and minimum possible values for the initial fraction of secondary auxiliary 

infrastructure input energy consisting of liquid and gaseous fuels, divided by the LaG share of initial 

EC supply 

Sources: (Own estimate) 

General calculations and assumptions 

This is a measure of geographical remoteness – two tiers are identified:  

• Some secondary AI types tend to span vast distances (electricity and intermittent electricity), therefore, the LaG 

factor can be assumed to be above one (range 1 to 1.4). 

• Other secondary AI types are not particularly remote and tend to be primarily concentrated closer to demand centres 

(heat and LaG), therefore, the LaG factor can be assumed to be around one (range 0.8 to 1.2). 

9.5.12.10 AI_EC_Split_Heat_Factor_Input 
Input reference: 10.10 

Description: Matrix of maximum and minimum possible values for the initial fraction of secondary auxiliary 

infrastructure input energy consisting of heat, divided by the heat share of initial EC supply 

Sources: (Own estimate) 

General calculations and assumptions 

This is a measure of the degree of heavy industry required as well as direct process heat requirements. Secondary AI (EC 

transmission, transport, and distribution) requires significant heavy capital equipment and in some cases supplementary 

process heat, therefore, the heat factor can be assumed to be above one (range 1 to 1.4). 

9.5.12.11 AI_Build_Time_Input 
Input reference: 10.11 

Description: Matrix of maximum and minimum possible values for secondary auxiliary infrastructure build time 

(investment decision to operation) 

Sources: (Own estimate) 

General calculations and assumptions 

Two tiers are identified based on complexity and cost of planning, permitting, and construction: 

• Short (assume average build times between 0.5 and 1 years) – intermittent electricity and heat (simple and/or often 

built within an existing infrastructure footprint) 

• Long (assume average build times between 3 and 6 years) – electricity and LaG (more complex infrastructure typically 

involving greenfield development) 

9.5.12.12 AI_Lifetime_Input 
Input reference: 10.12 

Description: Matrix of maximum and minimum possible values for secondary auxiliary infrastructure lifetime (in 

operation) 

Sources: (Own estimate) 

General calculations and assumptions 

• Secondary AI generally has long lifetimes (transmission and distribution networks, pipelines, trucking, rail and 

shipping, terminals, etc.) except for intermittent electricity AI involving electrochemical storage. 
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• Two tiers are identified based on typical useful lifetimes of capital equipment: 

o Short (assume average lifetimes between 15 and 25 years) – intermittent electricity (will be shorter if 

dominated by electrochemical storage, longer if dominated by grid overbuild and other measures; this is 

not explicitly modelled) 

o Long (assume average lifetimes between 30 and 60 years) – all other 

9.5.12.13 Intermit_AI_Mult_Final_Input 
Input reference: 10.13 

Description: Vector of maximum and minimum estimates for the final value (at intermittent penetration of 1) of 

the intermittent AI required multiplier (defined in the absence of alternative mitigation) 

Sources: 10, 60, 62, 63, 64 

General calculations and assumptions 

• This input refers to the final (100% intermittent generation) multiplier for the quantity of AI required (per unit of 

intermittent generation output) for intermittency mitigation, in the limiting case where no alternative mitigation 

measures occur (e.g., increased demand flexibility, CF curtailment for intermittent generation). 

• Considering estimates given in the studies reviewed: 

o These studies typically consider either intermittent generation penetration levels much lower than 100%, 

inadequate levels of intermittency mitigation (e.g., low storage capacity ignoring inter-seasonal 

requirements), or a combination of mitigation measures beyond infrastructure, therefore, will tend to 

underestimate in the quantity of AI required in the limiting case. 

o Following consideration of these limitations in the studies below, an increase in the quantity of AI required 

for intermittent generation (energy cost per unit of delivered intermittent electricity) of one to two orders 

of magnitude is assumed (final multiplier of 10 to 100). 

o This order of magnitude range broadly spans the available estimates, without unwarranted precision given 

underlying uncertainties. 

o This range assumes no optimization of mitigation approaches beyond storage technology selection and 

identification of the optimal storage versus transmission overbuild balance (composition of intermittent 

electricity AI). 

Source-specific calculations and assumptions 

Source 10 • Table 6 shows balancing costs initially around $3.50 2011 USD/MWh, rising to $7 2011 

US/MWh for intermittent penetration > 50%. 

• Balancing costs are estimated only up to 50% penetration. 

• A doubling of the aggregate quantity of intermittent electricity AI required at 100% 

penetration, from the 50% level, can be expected at a minimum (assuming at least a linear 

increase with intermittent penetration) 

• This corresponds to an approximate multiplier of 4. 

Source 60 Comparing reported buffered and unbuffered EROI values indicates buffering infrastructure to cost 

approximately 1.5 to 4 times as much as the underlying generation output in energy terms: 

• Considering ECC estimates for secondary PC and corresponding primary EROI, this would imply 

final effective ECC for intermittency buffering to be in the approximate range of 2 to 15 years. 

• Given the range of possible values for peak factor for intermittent electricity AI, this implies an 

increase in the quantity of AI required in the range of 5 to 100. 

• This assumes this level of buffering (10 days storage) is sufficient for 100% penetration (highly 

optimistic). 

Source 62 • Figure 4 shows increases in combined EPBT for wind & solar for 72 hrs storage of approximately 

0.8 to 1 years (ignoring geologic storage only). 

• This is highly optimistic, as seasonal storage requirements much longer than 72 hours are not 

considered. 

• This translates to an increase in the energy intensity of intermittent electricity AI by an 

approximate factor of 2 to 5, given the range of possible values for peak factor for intermittent 

electricity AI. 

Source 63 • Table 3 indicates that the embodied energy of storage is 4 (wind) to 113 (solar PV) times more 

than that of generation capacity over the same timeframe (50 years), depending on the choice 

of storage technology (PHS is much lower, but is geographically limited). 
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• This translates to an increase in the energy intensity of intermittent electricity AI of 

approximately 30 to 300, taking into average peak factors for intermittent electricity AI. 

• The high end of this range should be disregarded, as it corresponds to using only 

electrochemical storage (without transmission overbuild) combined with solar PV, alongside 

very low levels of demand flexibility. 

Source 64 • This review suggests integration costs of £15 to £45/MWh for 50% penetration (~$20 to $65 

USD/MWh). 

• The upper end of this range, corresponding to relatively inflexible systems where few other 

mitigation measures are taken, should be used. 

• This is roughly equivalent to higher LCOE values, implying an increase in the energy intensity of 

intermittent electricity AI of approximately 10 (an order of magnitude increase). 

• This figure is highly optimistic, given that it relates to 50% penetration, so a doubling of the 

aggregate quantity of intermittent electricity AI required at 100% penetration, from the 50% 

level, can be expected at a minimum (assuming at least a linear increase with intermittent 

penetration). 

9.5.12.14 Retic_Eff_Mult_Final_Input 
Input reference: 10.14 

Description: Vector of maximum and minimum estimates for the final value (at intermittent penetration of 1) of 

the intermittent reticulation efficiency multiplier (defined in the absence of alternative mitigation) 

Sources: 65 

General calculations and assumptions 

Assume upper and lower limits for the intermittent RE reticulation efficiency multiplier at 100% intermittent penetration, 

in the limiting case where no alternative mitigation measures occur (e.g., increased demand flexibility, CF curtailment for 

intermittent generation, etc.): 

• The upper limit (80%) corresponds approximately to a combination of long-distance transmission efficiency and 

round-trip storage efficiency, weighted towards transmission. 

• The lower limit (60%) corresponds approximately to a combination of long-distance transmission efficiency and 

round-trip storage efficiency, weighted towards storage. 

Source-specific calculations and assumptions 

Source 65 • Local efficiencies for intermittent generation plus storage are found to be in the range of 70% 

to 90%. 

• Adding the effect of typical transmission efficiency to this to give a system-level figure gives 

approximately 60% to 80%. 

9.5.12.15 CF_Max_Mult_Final 
Input reference: 10.15 

Description: Estimate for the final value (at intermittent penetration of 1) of the CF reduction multiplier (defined 

in the absence of alternative mitigation; approximates 0 by definition) 

Sources: 10 

General calculations and assumptions 

It is assumed intermittent RE PC behaves similarly to baseload PC near the lower CF asymptote (with different slope). 

Source-specific calculations and assumptions 

Source 10 • As shown in figure 22 on page 41, NREL assumes the CF of baseload generation converges to 

zero as intermittent penetration rises to 100%. 

• The logistic function cannot accept zero as a lower asymptote, so 0.01 is used as an 

approximation. 

9.5.12.16 Diversity_Coeff_Input 
Input reference: 10.16 

Description: Vector of maximum and minimum estimates for the magnitude of the fractional reduction in 

intermittent response (CF reduction, intermittent AI increase, reticulation efficiency reduction) 

needed when intermittent diversity is equal to 1 
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Sources: (Own estimate) 

General calculations and assumptions 

• A higher diversity of intermittent RE sources that are not correlated to each other in output will lessen the need for 

intermittency mitigation measures to some degree. 

• Assume a fractional reduction in need for mitigation measures when intermittent diversity is equal to one is between 

0.1 and 0.25 (perfect diversity of intermittent RE sources requires 10-25% less mitigation effort). 

• This is significant, but relatively minor, as even with high diversity periods where all intermittent RE output is near 

zero in any region will still occur. 

9.5.12.17 Demand_Flex_Coeff_Input 
Input reference: 10.17 

Description: Vector of maximum and minimum estimates for the magnitude of the fractional reduction in 

intermittent response (CF reduction, intermittent AI increase, reticulation efficiency reduction) 

needed when demand flexibility is equal to 1 

Sources: (Own estimate) 

General calculations and assumptions 

It is assumed the fractional reduction in need for mitigation measures when demand flexibility is equal to one is between 

0.25 and 0.75 (perfect flexibility of demand requires 25-75% less mitigation effort): 

• This is potentially highly significant, as demand-side adaptation to align with intermittent supply can greatly reduce 

the need for mitigation measures. 

• Note that even with perfect demand flexibility, high intermittent penetration still requires mitigation measures as 

demand cannot always conform perfectly to intermittent RE output due to operational and temporal limiations (e.g., 

industrial process demand). 

9.5.12.18 CF_Max_Peaker_Coeff_Input 
Input reference: 10.18 

Description: Vector of maximum and minimum estimates for the magnitude of the CF reduction response to 

intermittent penetration, relative to the intermittent generator response, for peaking generators 

Sources: (Own estimate) 

General calculations and assumptions 

• Peaker CF moves in the opposite direction to intermittent RE and baseload CF as intermittent penetration increases: 

o Higher intermittent output increases the need for fast peaking generation to fill gaps between supply and 

demand. 

o Note that this does not necessarily increase the quantity of peaking generation capacity in the system 

(although this can happen indirectly due to higher CF affecting yield calculations), only its utilization. 

• Gas and oil generation PC does not consist entirely of peaking plant, as closed-cycle turbines will also be present, 

although these could become less common in the future electricity system as the need for slow-ramping baseload 

generation declines. 

• A lower limit is given by the final practical level that peaker CF could conceivably reach while still being classified as 

peaking plant – a final CF of 0.7 for gas generation corresponds to a peaker coefficient of approximately -0.7. 

• An upper limit of -0.5 is assumed (peaker CF to converge to at least 150% of its original value as intermittent 

penetration approaches 100%). 

9.5.12.19 CF_Max_Baseload_Coeff_Input 
Input reference: 10.19 

Description: Vector of maximum and minimum estimates for the magnitude of the CF reduction response to 

intermittent penetration, relative to the intermittent generator response, for baseload generators 

Sources: (Own estimate) 

General calculations and assumptions 

• Baseload CF moves in the same direction as intermittent RE CF. Baseload utilization is reduced as intermittent 

penetration increases, due to operational limitations and the costs of more frequent start-up and shutdown 

procedures. 

• Assume baseload exhibits between 50% and 150% of the CF response of intermittent RE: 
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o The relative response compared with that of intermittent RE at high intermittent generation penetration 

levels is uncertain. 

o Both curves converge to the same lower asymptote of CF = 0.01 near 100% intermittent generation 

penetration. 

9.5.12.20 Sec_Intermittent_ID 
Input reference: 10.20 

Description: Vector of intermittent generation identities by secondary PC type 

Sources: (Own estimate) 

General calculations and assumptions 

• Assume intermittent generation includes: 

o Solar PV 

o Solar thermal generation 

o Wind 

o Other RE 

• These RE sources are not intermittent to the same degree, e.g., solar thermal generation is typically sited in places 

where sunshine is much more consistent than typical small-scale solar PV. 

• Other RE is currently very minor but consists mostly of wave and tidal energy, which are intermittent. 

• Hydropower is not counted as intermittent – although run-of-river hydropower can be intermittent it is a small 

component of overall hydropower globally. 

• Other RE is considered non-intermittent (dispatchable) in scenario 1 (Energy breakthrough). 

9.5.12.21 Sec_Baseload_ID 
Input reference: 10.21 

Description: Vector of baseload generation identities by secondary PC type 

Sources:  

General calculations and assumptions 

Values are equal to one for electricity generator types considered to be baseload (dispatchable) and zero otherwise 

9.5.12.22 Sec_Peaker_ID 
Input reference: 10.22 

Description: Vector of peaking generation identities by secondary PC type 

Sources:  

General calculations and assumptions 

Values are equal to one for electricity generator types considered to be peaking plant (dispatchable and rapidly ramping, 

designed to respond to short-term demand variations) and zero otherwise. 

9.5.13 End-use sector 

9.5.13.1 PC_CapEx_Fraction_Input 
Input reference: 11.1 

Description: Matrix of maximum and minimum possible values for the fraction of end-use power capacity 

investment energy devoted to capital (construction and decommissioning) 

Sources: (Own estimate) 

General calculations and assumptions 

• End-use PC generally has lower relative ongoing operation and maintenance energy costs than primary or secondary 

PC, as these are typically devices and vehicles designed to convert ECs to energy services (simpler and more 

standardized than primary or secondary PC), requiring only basic maintenance. 

• Two tiers are identified based on relative magnitude of ongoing operation and maintenance energy costs: 

o Low cost (assume CapEx fraction between 90% and 100%) – all electricity consuming end-use PC except 

EVs and electric heating high 

o High cost (assume CapEx fraction between 75% and 90%) – all other (greater upkeep requirements due to 

mechanical and high temperature processes) 
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• EVs have a lower CapEx fraction because battery replacement must occur mid-life to enable full vehicle lifetime. 

9.5.13.2 PC_Decommission_Fraction_Input 
Input reference: 11.2 

Description: Matrix of maximum and minimum possible values for the fraction of end-use power capacity 

investment energy devoted to capital used in the decommissioning stage 

Sources: (Own estimate) 

General calculations and assumptions 

Two tiers are identified based on complexity and cost of PC decommissioning and disposal/recycling: 

• High cost (assume decommissioning fraction between 5% and 10%) – IPaC, electric vehicles, all rail, shipping and 

aviation, all high temperature heating 

• Low cost – all other – assume decommissioning fraction between 0% and 5% 

9.5.13.3 PC_EC_Split_LaG_Factor_Input 
Input reference: 11.3 

Description: Matrix of maximum and minimum possible values for the initial fraction of end-use power capacity 

input energy consisting of liquid and gaseous fuels, divided by the LaG share of initial EC supply 

Sources: (Own estimate) 

General calculations and assumptions 

This is a measure of geographical remoteness. End-use PC is not typically geographically remote and tends to be located 

closer to demand centres, the LaG factor for all end-use PC types can be assumed to be around one (range 0.8 to 1.2). 

9.5.13.4 PC_EC_Split_Heat_Factor_Input 
Input reference: 11.4 

Description: Matrix of maximum and minimum possible values for the initial fraction of end-use power capacity 

input energy consisting of heat, divided by the heat share of initial EC supply 

Sources: (Own estimate) 

General calculations and assumptions 

This is a measure of the degree of heavy manufacturing required as well as embodied energy – two tiers are identified:  

• Some end-use PC types require significant heavy industry to produce and contain large quantities of high-embodied 

energy materials and components (IPaC, heavy vehicles, all rail, shipping and aviation, all high temperature heating), 

therefore, the heat factor can be assumed to be above one (range 1 to 1.4). 

• Most end-use PC types require only standard manufacturing processes (all other), therefore, the heat factor can be 

assumed to be around one (range 0.8 to 1.2). 

9.5.13.5 PC_Build_Time_Input 
Input reference: 11.5 

Description: Matrix of maximum and minimum possible values for end-use power capacity build time 

(investment decision to operation) 

Sources: (Own estimate) 

General calculations and assumptions 

Three tiers are identified based on complexity and cost of manufacturing and lead times involved: 

• Long (assume average build times between 1 and 3 years) – all rail, shipping, aviation, and all high temperature 

heating 

• Medium (assume average build times between 0.5 and 1 years) – light and heavy vehicles 

• Short (assume average build times between 0.2 and 0.5 years) – all other 

9.5.13.6 PC_Lifetime_Input 
Input reference: 11.6 

Description: Matrix of maximum and minimum possible values for end-use power capacity lifetime (in operation) 

Sources: (Own estimate) 

General calculations and assumptions 
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• As end-use PC types are mostly vehicles or consumer goods, lifetimes are typically much shorter than primary or 

secondary PC, rarely beyond 30 years. 

• Three tiers are identified based on typical useful lifetimes: 

o Short (assume average lifetimes between 5 and 10 years) – electric lighting and IPaC  

o Medium (assume average lifetimes between 10 and 20 years) – LaG fuel mechanical, light and heavy 

vehicles, electric cooling, all heating low 

o Long (assume average lifetimes between 20 and 40 years) – all other 

9.5.13.7 AI_CapEx_Fraction_Input 
Input reference: 11.7 

Description: Matrix of maximum and minimum possible values for the fraction of end-use auxiliary infrastructure 

investment energy devoted to capital (construction and decommissioning) 

Sources: (Own estimate) 

General calculations and assumptions 

Two tiers are identified based on relative magnitude of ongoing operation and maintenance energy costs: 

• High cost (assume CapEx fraction between 75% and 90%) – IPaC, roading, rail, aviation, and shipping 

• Low cost (assume CapEx fraction between 90% and 100%) – all other 

9.5.13.8 AI_Decommission_Fraction_Input 
Input reference: 11.8 

Description: Matrix of maximum and minimum possible values for the fraction of end-use auxiliary infrastructure 

investment energy devoted to capital used in the decommissioning stage 

Sources: (Own estimate) 

General calculations and assumptions 

Two tiers are identified based on complexity and cost of end-use AI decommissioning and site restoration: 

• High cost (assume decommissioning fraction between 5% and 10%) – roading, rail, aviation, and shipping 

• Low cost (assume decommissioning fraction between 0% and 5%) – all other 

9.5.13.9 AI_EC_Split_LaG_Factor_Input 
Input reference: 11.9 

Description: Matrix of maximum and minimum possible values for the initial fraction of end-use auxiliary 

infrastructure input energy consisting of liquid and gaseous fuels, divided by the LaG share of initial 

EC supply 

Sources: (Own estimate) 

General calculations and assumptions 

This is a measure of geographical remoteness – two tiers are identified:  

• Some end-use AI types tend to be distributed along transit corridors (LaG, roading, EV, rail, and rail electrification), 

therefore, the LaG factor can be assumed to be above one (range 1 to 1.4). 

• Other end-use AI types are not particularly remote and tend to be primarily concentrated closer to demand centres 

(all other), therefore, the LaG factor can be assumed to be around one (range 0.8 to 1.2). 

9.5.13.10 AI_EC_Split_Heat_Factor_Input 
Input reference: 11.10 

Description: Matrix of maximum and minimum possible values for the initial fraction of end-use auxiliary 

infrastructure input energy consisting of heat, divided by the heat share of initial EC supply 

Sources: (Own estimate) 

General calculations and assumptions 

This is a measure of the degree of heavy industry required as well as embodied energy – two tiers are identified:  

• Some end-use AI types require significant heavy industry to produce and contain large quantities of high-embodied 

energy materials such as concrete and steel (IPaC, roading, rail, shipping, and aviation), therefore, the heat factor 

can be assumed to be above one (range 1 to 1.4). 

• Other end-use AI types require only standard construction and installation processes (all other), therefore, the heat 

factor can be assumed to be around one (range 0.8 to 1.2). 



426 
 

9.5.13.11 AI_Build_Time_Input 
Input reference: 11.11 

Description: Matrix of maximum and minimum possible values for end-use auxiliary infrastructure build time 

(investment decision to operation) 

Sources: (Own estimate) 

General calculations and assumptions 

Two tiers are identified based on complexity and cost of planning, permitting, and construction: 

• Long (assume average build times between 3 and 6 years) – roading, rail, shipping, and aviation (more complex 

infrastructure often involving greenfield development) 

• Short (assume average build times between 0.5 and 1 years) – all other (simple or often built within existing 

infrastructure footprint) 

9.5.13.12 AI_Lifetime_Input 
Input reference: 11.12 

Description: Matrix of maximum and minimum possible values for end-use auxiliary infrastructure lifetime (in 

operation) 

Sources: (Own estimate) 

General calculations and assumptions 

• End-use AI generally has long lifetimes, except for IPaC and EV AI due to rapid obsolescence of technology. 

• Two tiers are identified based on typical useful lifetimes of capital equipment: 

o Short (assume average lifetimes between 5 and 15 years) – IPaC and EV 

o Long (assume average lifetimes between 25 and 50 years) – all other 

9.5.13.13 PC_AI_ID 
Input reference: 11.13 

Description: Matrix of EU AI requirement identities by EU PC type 

Sources:  

General calculations and assumptions 

Values are equal to one where a given EU PC type requires associated AI and zero otherwise: 

• EU PC types that consume electricity, LaG fuels, and heat are assumed to require electrical AI, LaG AI and heating 

AI, respectively. 

• All road vehicles are assumed to require roading AI. 

• All rail types are assumed to require rail AI. 

• All aviation types are assumed to require aviation AI. 

• All shipping types are assumed to require shipping AI. 

• IPaC, EVs, and electrified rail are assumed to require additional AI specific to their type. 

9.5.14 System control 

9.5.14.1 ESMR_Limit_Input 
Input reference: 12.1 

Description: Vector of maximum and minimum estimates for the upper limit for the share of EC inflow that can 

be used within the GES metabolism (investment in new PC drops to zero at this limit) 

Sources: (Own estimate) 

General calculations and assumptions 

• The ESMR refers to the upper limit for the share of EC inflow that can be used within the GES metabolism, rather 

than for final consumption (investment in new PC drops to zero at this limit). 

• This limit must be somewhere between the initial maximum ESMR and one (where all inflow for a particular EC is 

being consumed within the GES metabolism). 

• The lower bound established by comparison to the initial maximum ESMR, allowing for the curtailment threshold 

(optimistically assuming that investment flows are not initially constrained due to the ESMR) 
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o Running 200 model realizations reveals that the initial maximum ESMR can be expected to fall within 0.03 

to 0.12 (P5 to P95), with a mean of approximately 0.07 (initial maximum is for heat ESMR in all cases, but 

values are similar for LaG fuels and electricity) 

o To be initially unconstrained for most realizations (beginning of the curtailment range starting at 0.1) with 

a curtailment threshold value of 0.8 implies a lower bound for the ESMR limit of 0.5 

• Lower values are more likely than higher as values close to one would be much more likely to imply an unmanageable 

diversion of energy from final consumption, hence a triangular distribution is used (with probability maximum at the 

lower bound and zero at the upper bound). 

o The cumulative probability of exceeding falls as the value rises. 

o Little else is known about the shape of the distribution, so a linear PDF is appropriate. 

• This means the investment curtailment range starts at a minimum of 0.1 and a maximum of 0.2 (where full 

investment is still possible; corresponds to ESMR limits of 0.5 and 1 respectively) up to the actual ESMR limit (where 

investment is completely curtailed due to excessive ESMR). 

9.5.14.2 Sec_Penetration_Limit_Input 
Input reference: 12.2 

Description: Vector of maximum and minimum estimates for the penetration limits for secondary PC types (at 

this limit, no further investment can occur due to operational limitations) 

Sources: (Own estimate) 

General calculations and assumptions 

Assume penetration limits for secondary PC types (upstream) based on the characteristics of the PC in relation to EC 

demand: 

• Constrained to low penetration (can only feasibly provide a minor contribution to EC supply; assume penetration 

limit between 10% and 30%) – oil heat, all CHP, and all RE heat (all suitable for niche uses only due to technical 

limitations or required co-location of demand; RE sources cannot supply heat levels required for some industrial 

processes) 

• Constrained to less than full penetration (can provide most, but not all, EC supply; assume penetration limit between 

75% and 100%) – gas and coal to LaG and biofuels (limited fuel hydrocarbon fractions can be produced), gas heat 

(coal required for some industrial processes), and coal, geothermal and nuclear generation (baseload plant unable 

to meet all electricity demand due to ramping limitations) 

• Unconstrained – all other 

9.5.14.3 EU_Penetration_Limit_Input 
Input reference: 12.3 

Description: Vector of maximum and minimum estimates for the penetration limits for EU PC types (at this limit, 

no further investment can occur due to operational limitations) 

Sources: (Own estimate) 

General calculations and assumptions 

Assume penetration limits for end-use PC types (downstream) based on the characteristics of the PC in relation to ES 

demand: 

• Constrained to low penetration (can only feasibly provide a minor contribution to ES due to practicality issues; 

assume penetration limit between 10% and 30%) – regional shipping (geographic constraints), regional aviation 

(suitable only for longer distances), and LaG heating (air quality issues and suitable only for residential usage in cold 

climates) 

• Constrained to less than full penetration (can provide most, but not all, of a particular ES; assume penetration limit 

between 75% and 100%) – electrical mechanical (some mechanical energy is required far from electricity supply), 

LaG fuel mechanical (noise and air quality issues), rail (some proportion of transportation demand will always be 

to/from locations far from rail networks), electric vehicles (some proportion of transportation demand will always 

be beyond electric vehicle range limitations, outside regions with charging infrastructure), IC shipping (geographic 

constraints), and high temperature electric heating (heating using electricity unsuitable for some high temperature 

industrial processes) 

• Unconstrained – all other 
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9.5.14.4 NRE_Annual_Utility_Reduction 
Input reference: 12.4 

Description: Assumed baseline annual rate of reduction in upstream utility values linked to NRE sources (actual 

rate weighted by emissions intensities; required to represent policy efforts directed to transitioning 

away from NRE towards RE) 

Sources: (Own estimate) 

General calculations and assumptions 

2.5%/yr is used as the base annual reduction in upstream utility for NRE sources: 

• This gives a utility halving time of approximately 28 years (a reduction in utility of ~90% occurs over the simulated 

period). 

• This base rate is weighted by NRE emissions intensity (GtCO2e/EJ) of each fuel relative to the average across all NRE. 

9.5.14.5 Scenario_5 
Input reference: 12.5 

Description: Scenario 5 identity 

Sources: (Own estimate) 

General calculations and assumptions 

This value is equal to 1 when scenario 5 is active and 0 otherwise. This acts as a switch to block any downstream 

investment based on utility (upkeep only) until 35 years have elapsed (2050). 

9.5.14.6 EC_Surplus_Scale_Factor 
Input reference: 12.6 

Description: Scaling factor applied to negative values of forecast EC supply/demand balance (EC deficit, 

measured in EJ) at the selected time horizon (used for utility calculation; represents balance 

between stability and efficiency in share calculation) 

Sources: (Own estimate) 

General calculations and assumptions 

• A scaling factor is applied to negative values of forecast EC supply/demand balance (EC deficit, measured in EJ) at 

the selected time horizon. 

• Negative values (surplus) should not be acted on as strongly as positive values (deficit). 

• This affects the upstream and downstream utility calculations and is tuned to balance stability and efficiency in the 

investment share calculation. 

• 0.1 was used after testing various values. 

9.5.14.7 Invest_Time_Horizon 
Input reference: 12.7 

Description: Selected time horizon for calculating forecast EC supply/demand balance 

Sources: (Own estimate) 

General calculations and assumptions 

• This is the selected time horizon for calculating forecast EC supply/demand balance. 

• A higher value will optimize for long-term outcomes at the cost of larger short-term variations in the supply/demand 

balance. 

• 10 years was selected after testing various values. 

9.5.14.8 PC_Invest_Max_Fraction 
Input reference: 12.8 

Description: Maximum ratio between actual investment flow for any secondary/EU PC type and the investment 

flow which would be required if all EC production/ES provision was provided by that PC type 

Sources: (Own estimate) 

General calculations and assumptions 

• This is a maximum allowable ratio between actual investment flow for any secondary or end-use PC type and the 

investment flow which would be required if all EC production or ES provision was provided by that PC type. 
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• This limit is required to prevent overinvestment in PC due to temporary spikes in investment signals. 

• A factor of 10 was selected after testing various values. 

9.5.14.9 EC_Split_Correlation_Factor 
Input reference: 12.9 

Description: Estimate for correlation factor used in the generation of EC split heat and LaG factors 

Sources: (Own estimate) 

General calculations and assumptions 

• This is the correlation factor used in the stochastic generation of EC split heat and LaG factors. 

• This is needed as EC split heat and LaG factors are not independent, i.e., higher values in one will tend to occur with 

higher values in others. 

• As the strength of this relationship is expected to be relatively high, a correlation factor of 0.8 is used. 

9.5.14.10 EROI_ECC_Correlation_Factor 
Input reference: 12.10 

Description: Estimate for correlation factor used in the generation of EROI and ECC values 

Sources: (Own estimate) 

General calculations and assumptions 

• This is the correlation factor used in the stochastic generation of EROI and ECC values. 

• This is needed as EROI and ECC values are not independent, i.e., higher values in one will tend to occur with higher 

values in others. 

• As the strength of this relationship is expected to be moderate, a correlation factor of 0.5 is used. 

9.5.15 Final input arrays 

The arrays are displayed in landscape, grouped by the primary (higher order) label set. All 

arrays except those in red text have been transposed for display purposes. 

9.5.15.1 NRE types 
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1.3   181.6 126.1 160.9 27.0 

1.7   0.016 0.022 -0.010 0.019 

2.1 
Mean 10115 14103 17886 2824 

SD 3787 6817 6688 845 

2.3   0.95 0.95 0.85 0.85 

2.5   22.9 7.0 2.2 0.0 

2.6   0.072 0.053 0.093 0.000 

6.4 
Mean 18.9 34.9 52.7 185.0 

SD 9.1 25.0 25.4 37.8 

6.5 
Max 5 5 5 5 

Min 1 1 1 1 

6.6 
Max 90 200 79 185 

Min 30 57 19 19 

8.1 Max 0.9 0.9 0.75 0.75 
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Min 0.75 0.75 0.5 0.5 

8.2 
Max 0.05 0.05 0.2 0.2 

Min 0 0 0.1 0.1 

8.3 
Max 1.4 1.4 1.4 1.4 

Min 1 1 1 1 

8.4 
Max 1.4 1.4 1.4 1.4 

Min 1 1 1 1 

8.5 
Max 5 5 10 10 

Min 2 2 5 5 

8.6 
Max 25 25 40 40 

Min 10 10 15 15 

9.5.15.2 RE types 
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1.4   1.08 1.35 3.21 55.29 14.26 2.59 0.02 

1.8   0.308 0.055 0.138 0.010 0.023 0.044 0.147 

2.2 
Mean 101.5 79.5 106.2 176.1 47.8 72.4 7.4 

SD 54.8 70.2 100.2 104.3 20.8 59.9 4.4 

2.4   0.14 0.33 0.26 0.75 0.43 0.84 0.35 

6.1 
Mean 12.2 75.5 45.9 18.0 87.0 31.0 20.1 

SD 7.3 24.5 23.9 2.0 38.6 19.0 15.2 

6.2 
Max 5 5 5 2 5 5 2 

Min 1 1 1 1 1 1 1 

6.3 
Max 1.2 7.6 4.6 18.0 87.0 31.0 2.0 

Min 0 0 0 1.8 8.7 3.1 0 

9.1 
Max 1 0.9 1 0.75 1 0.9 0.9 

Min 0.9 0.75 0.9 0.25 0.9 0.75 0.75 

9.2 
Max 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Min 0 0 0 0 0 0 0 

9.3 
Max 1.2 1.4 1.4 1.4 1.4 1.4 1.4 

Min 0.8 1 1 1 1 1 1 

9.4 
Max 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

Min 1 1 1 1 1 1 1 

9.5 
Max 3 5 5 5 8 5 5 

Min 1 2 2 2 4 2 2 

9.6 Max 30 30 30 50 100 50 30 
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Min 20 20 20 30 50 30 20 

9.5.15.3 Secondary PC types 

9.5.15.3.1 Label index 1-12 
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1.1 
Numeral 

0.046
7 

0.953
2 

0.000
2 

0.343
2 

0.005
4 

0.544
7 

0.106
7 

0.505
6 

0.002
3 

0.348
2 

0.143
9 

1.000
0 

Error 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

1.9   -0.012 0.016 -0.083 0.035 -0.011 0.011 -0.012 0.013 0.149 -0.033 -0.004 0.009 

3.1   0.26 0.93 0.20 0.42 0.93 0.70 0.80 0.67 0.89 0.80 0.70 0.89 

3.4 

Electricity 1 0 0 1 0 0 0.54 1 0 0 0.63 1 

LaG_fuels 0 1 0 0 1 0 0 0 1 0 0 0 

Heat 0 0 1 0 0 1 0.46 0 0 1 0.37 0 

3.7 

Oil 1 1 1 0 0 0 0 0 0 0 0 0 

Natural_gas 0 0 0 1 1 1 1 0 0 0 0 0 

Coal 0 0 0 0 0 0 0 1 1 1 1 0 

Nuclear_fuels 0 0 0 0 0 0 0 0 0 0 0 1 

3.8 

Solar_PV 0 0 0 0 0 0 0 0 0 0 0 0 

Solar_thermal 0 0 0 0 0 0 0 0 0 0 0 0 

Wind 0 0 0 0 0 0 0 0 0 0 0 0 

Biomass 0 0 0 0 0 0 0 0 0 0 0 0 

Hydropower 0 0 0 0 0 0 0 0 0 0 0 0 

Geothermal 0 0 0 0 0 0 0 0 0 0 0 0 

Other 0 0 0 0 0 0 0 0 0 0 0 0 

4.1 
Max 0.50 0.98 0.79 0.52 0.55 0.89 0.74 0.44 0.85 0.94 0.66 0.39 

Min 0.32 0.94 0.69 0.42 0.44 0.78 0.59 0.34 0.68 0.81 0.53 0.33 

4.2 
Max 0.96 1.00 0.95 0.96 1.00 0.95 0.96 0.96 1.00 0.95 0.96 0.96 

Min 0.89 1.00 0.83 0.89 1.00 0.83 0.86 0.89 1.00 0.83 0.87 0.89 

4.3   1890 1870 1870 1940 1930 1930 1970 1883 1930 1800 1970 1956 

7.1 
Mean 1.5 1.5 0.05 0.5 1.5 0.05 0.5 1.5 1.5 0.05 1.5 1.5 

SD 1.5 1.5 0.05 0.5 1.5 0.05 0.5 1.5 1.5 0.05 1.5 1.5 

10.1 
Max 0.75 0.5 1 0.75 0.75 1 0.75 0.5 0.5 0.75 0.5 0.5 

Min 0.5 0.25 0.9 0.5 0.5 0.9 0.5 0.25 0.25 0.5 0.25 0.25 

10.2 
Max 0.05 0.1 0.05 0.05 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.3 

Min 0 0.05 0 0 0.05 0 0.05 0.05 0.05 0.05 0.05 0.1 
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10.3 
Max 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

Min 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

10.4 
Max 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

Min 1 1 1 1 1 1 1 1 1 1 1 1 

10.5 
Max 6 10 1 6 10 1 6 6 10 1 6 10 

Min 3 5 0.5 3 5 0.5 3 3 5 0.5 3 5 

10.6 
Max 50 50 50 50 50 50 50 50 50 50 50 60 

Min 30 30 30 30 30 30 30 30 30 30 30 40 

10.20   0 0 0 0 0 0 0 0 0 0 0 0 

10.21   0 0 0 0 0 0 0 1 0 0 0 1 

10.22   1 0 0 1 0 0 0 0 0 0 0 0 

12.2 
Max 999 999 0.3 999 1 1 0.3 1 1 999 0.3 1 

Min 999 999 0.1 999 0.75 0.75 0.1 0.75 0.75 999 0.1 0.75 

9.5.15.3.2 Label index 13-24 
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1.1 

Numeral 
1.000

0 
0.090

3 
0.909

7 
1.000

0 
0.061

6 
0.123

7 
0.781

8 
0.032

9 
1.000

0 
0.805

3 
0.194

7 
1.000

0 

Error 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 

1.9   0.325 0.132 0.049 0.142 0.122 0.051 -0.001 0.034 0.023 0.043 0.105 0.104 

3.1   0.14 0.33 0.33 0.26 0.73 0.74 0.20 0.63 0.40 0.77 0.28 0.35 

3.4 

Electricity 1 1 0 1 1 0 0 0.45 1 1 0 1 

LaG_fuels 0 0 0 0 0 1 0 0 0 0 0 0 

Heat 0 0 1 0 0 0 1 0.55 0 0 1 0 

3.7 

Oil 0 0 0 0 0 0 0 0 0 0 0 0 

Natural_gas 0 0 0 0 0 0 0 0 0 0 0 0 

Coal 0 0 0 0 0 0 0 0 0 0 0 0 

Nuclear_fuels 0 0 0 0 0 0 0 0 0 0 0 0 

3.8 

Solar_PV 1 0 0 0 0 0 0 0 0 0 0 0 

Solar_thermal 0 1 1 0 0 0 0 0 0 0 0 0 

Wind 0 0 0 1 0 0 0 0 0 0 0 0 

Biomass 0 0 0 0 1 1 1 1 0 0 0 0 

Hydropower 0 0 0 0 0 0 0 0 1 0 0 0 

Geothermal 0 0 0 0 0 0 0 0 0 1 1 0 
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Other 0 0 0 0 0 0 0 0 0 0 0 1 

4.1 
Max 1.00 0.27 1.00 1.00 0.39 0.60 0.91 0.69 1.00 0.12 0.63 1.00 

Min 1.00 0.22 1.00 1.00 0.27 0.48 0.79 0.55 1.00 0.10 0.50 1.00 

4.2 
Max 0.91 0.91 0.95 0.91 0.96 1.00 0.95 0.96 0.91 0.96 0.95 0.91 

Min 0.84 0.84 0.83 0.84 0.89 1.00 0.83 0.86 0.84 0.89 0.83 0.84 

4.3   1965 1980 1900 1960 1980 1900 1800 1980 1888 1960 1900 1970 

7.1 
Mean 0.05 0.5 0.05 0.05 2.5 2.5 0.05 1.5 0.05 0.5 0.05 0.05 

SD 0.05 0.5 0.05 0.05 2.5 2.5 0.05 1.5 0.05 0.5 0.05 0.05 

10.1 
Max 1 0.75 0.75 1 0.5 0.5 0.5 0.5 1 0.75 0.75 1 

Min 0.9 0.5 0.5 0.9 0.25 0.25 0.25 0.25 0.9 0.5 0.5 0.9 

10.2 
Max 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Min 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

10.3 
Max 1.4 1.4 1.2 1.4 1.2 1.2 1.2 1.2 1.4 1.4 1.4 1.4 

Min 1 1 0.8 1 0.8 0.8 0.8 0.8 1 1 1 1 

10.4 
Max 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

Min 1 1 1 1 1 1 1 1 1 1 1 1 

10.5 
Max 1 6 6 1 6 6 1 6 1 6 1 1 

Min 0.5 3 3 0.5 3 3 0.5 3 0.5 3 0.5 0.5 

10.6 
Max 30 30 30 30 30 50 30 30 50 50 30 30 

Min 20 20 20 20 20 30 20 20 30 30 20 20 

10.20   1 1 0 1 0 0 0 0 0 0 0 1 

10.21   0 0 0 0 1 0 0 0 0 1 0 0 

10.22   0 0 0 0 0 0 0 0 0 0 0 0 

12.2 
Max 999 999 0.3 999 999 1 0.3 0.3 999 1 0.3 999 

Min 999 999 0.1 999 999 0.75 0.1 0.1 999 0.75 0.1 999 

9.5.15.4 End-use PC types 

9.5.15.4.1 Label index 1-13 
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1.2 Numeral 
0.10

5 
0.12

1 
0.38

2 
0.13

5 
0.37

3 
0.05

3 
0.00

4 
0.00

2 
0.00

3 
0.03

4 
0.00

9 
0.05

4 
0.00

3 
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Error 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

1.11   
0.02

0 
0.02

0 
0.02

0 

-
0.01

0 

0.02
3 

0.02
4 

0.04
2 

0.14
7 

0.05
7 

0.05
2 

0.01
3 

0.04
9 

0.03
3 

3.2 
Max 0.4 0.6 0.4 0.2 

0.01
5 

0.05 0.2 
0.01

5 
0.2 0.2 0.2 0.2 0.3 

Min 0.2 0.2 0.2 0.1 
0.00

5 
0.02 0.1 

0.00
5 

0.1 0.1 0.1 0.1 0.2 

3.3   0.5 0.5 0.5 0.5 3 1 1 3 1 0.5 0.5 0.5 0.5 

3.5 

Electricity 1 1 1 0 0 0 0 1 1 0 0 0 0 

LaG_fuels 0 0 0 1 1 1 1 0 0 1 1 1 1 

Heat 0 0 0 0 0 0 0 0 0 0 0 0 0 

3.9 

Illumination 1 0 0 0 0 0 0 0 0 0 0 0 0 

IPaC 0 1 0 0 0 0 0 0 0 0 0 0 0 

Static_mechanical 0 0 1 1 0 0 0 0 0 0 0 0 0 

Transport_passenge
r_regional 

0 0 0 0 1 1 1 1 1 1 1 0 0 

Transport_passenge
r_IC 

0 0 0 0 0 0 0 0 0 0 0 1 1 

Transport_freight_r
egional 

0 0 0 0 0 0 0 0 0 0 0 0 0 

Transport_freight_IC 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cooling 0 0 0 0 0 0 0 0 0 0 0 0 0 

Low_temp_heating 0 0 0 0 0 0 0 0 0 0 0 0 0 

High_temp_process
_heat 

0 0 0 0 0 0 0 0 0 0 0 0 0 

4.4 
Max 0.39 0.58 0.95 0.52 0.38 0.42 0.49 0.97 0.98 0.46 0.52 0.46 0.52 

Min 0.13 0.20 0.89 0.42 0.18 0.25 0.35 0.90 0.94 0.35 0.42 0.35 0.42 

4.5 
Numeral 0.10 0.59 0.43 0.43 0.13 0.25 0.23 0.13 0.22 0.08 0.17 0.41 0.19 

Error 0.1 0.1 0.2 0.2 0.2 0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.5 

4.6   7.67 0.55 0.93 0.83 5.44 0.84 0.47 5.44 0.47 1.04 1.06 1.04 1.06 

4.7   1880 1960 1880 1890 1890 1920 1920 2000 1900 1950 1890 1950 1890 

7.3 
Mean 0.1 0.2 0.1 0.1 0.05 0.05 0.1 0.1 0.1 0.1 0.2 0.1 0.2 

SD 0.1 0.2 0.1 0.1 0.05 0.05 0.1 0.1 0.1 0.1 0.2 0.1 0.2 

11.1 
Max 1 1 1 0.9 0.9 0.9 0.9 0.9 1 0.9 0.9 0.9 0.9 

Min 0.9 0.9 0.9 0.75 0.75 0.75 0.75 0.75 0.9 0.75 0.75 0.75 0.75 

11.2 
Max 0.05 0.1 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Min 0 0.05 0 0 0 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

11.3 
Max 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

Min 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

11.4 
Max 1.2 1.4 1.2 1.2 1.2 1.4 1.4 1.2 1.4 1.4 1.4 1.4 1.4 

Min 0.8 1 0.8 0.8 0.8 1 1 0.8 1 1 1 1 1 

11.5 Max 0.5 0.5 0.5 0.5 1 1 3 1 3 3 3 3 3 
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Min 0.2 0.2 0.2 0.2 0.5 0.5 1 0.5 1 1 1 1 1 

11.6 
Max 10 10 40 20 20 20 40 20 40 40 40 40 40 

Min 5 5 20 10 10 10 20 10 20 20 20 20 20 

11.1
3 

Electrical_AI 1 1 1 0 0 0 0 1 1 0 0 0 0 

IPaC_AI 0 1 0 0 0 0 0 0 0 0 0 0 0 

LaG_AI 0 0 0 1 1 1 1 0 0 1 1 1 1 

Roading_AI 0 0 0 0 1 1 0 1 0 0 0 0 0 

EV_AI 0 0 0 0 0 0 0 1 0 0 0 0 0 

Rail_AI 0 0 0 0 0 0 1 0 1 0 0 0 0 

Rail_electrification_
AI 

0 0 0 0 0 0 0 0 1 0 0 0 0 

Aviation_AI 0 0 0 0 0 0 0 0 0 1 0 1 0 

Shipping_AI 0 0 0 0 0 0 0 0 0 0 1 0 1 

Heating_AI 0 0 0 0 0 0 0 0 0 0 0 0 0 

12.3 
Max 999 999 1 1 999 999 1 1 1 0.3 0.3 999 1 

Min 999 999 0.75 0.75 999 999 0.75 0.75 0.75 0.1 0.1 999 0.75 

9.5.15.4.2 Label index 13-26 
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1.2 
Numeral 

0.22
7 

0.00
8 

0.00
8 

0.00
4 

0.00
9 

0.00
6 

0.06
5 

0.13
9 

0.01
5 

0.18
8 

0.57
1 

0.05
0 

0.42
9 

Error 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

1.1
1 

  
0.01

9 
0.00

0 
0.01

5 
0.04

2 
0.02

0 
0.03

9 
0.03

1 
0.02

0 

-
0.01

0 

0.02
0 

-
0.00

4 

0.02
0 

-
0.00

4 

3.2 
Max 0.15 0.2 0.2 0.2 0.3 0.3 0.4 0.15 0.15 0.15 0.15 0.75 0.75 

Min 0.05 0.1 0.1 0.1 0.2 0.2 0.2 0.05 0.05 0.05 0.05 0.5 0.5 

3.3   0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1 0.2 0.2 

3.5 

Electricity 0 0 1 0 0 0 0 1 0 1 0 0.98 -0.02 

LaG_fuels 1 1 0 1 1 1 1 0 1 0 0 0 0 

Heat 0 0 0 0 0 0 0 0 0 0 1 -0.05 0.95 

3.9 
Illumination 0 0 0 0 0 0 0 0 0 0 0 0 0 

IPaC 0 0 0 0 0 0 0 0 0 0 0 0 0 



436 
 

In
p

u
t 

re
fe

re
n

ce
 

Se
co

n
d

ar
y 

la
b

e
ls

 

IC
EV

_h
ea

vy
_f

re
ig

h
t 

IC
E_

ra
il_

fr
ei

g
h

t 

El
ec

tr
ic

_r
a

il_
fr

ei
g

h
t 

A
vi

a
ti

o
n

_f
re

ig
h

t_
re

g
io

n
a

l 

Sh
ip

p
in

g
_f

re
ig

h
t_

re
g

io
n

a
l 

A
vi

a
ti

o
n

_f
re

ig
h

t_
IC

 

Sh
ip

p
in

g
_f

re
ig

h
t_

IC
 

El
ec

tr
ic

_c
o

o
lin

g
 

La
G

_f
u

el
_h

ea
ti

n
g

_l
o

w
 

El
ec

tr
ic

_h
ea

ti
n

g
_l

o
w

 

H
ea

t_
h

ea
ti

n
g

_l
o

w
 

El
ec

tr
ic

_h
ea

ti
n

g
_h

ig
h

 

H
ea

t_
h

ea
ti

n
g

_h
ig

h
 

Static_mechanical 0 0 0 0 0 0 0 0 0 0 0 0 0 

Transport_passenger
_regional 

0 0 0 0 0 0 0 0 0 0 0 0 0 

Transport_passenger
_IC 

0 0 0 0 0 0 0 0 0 0 0 0 0 

Transport_freight_re
gional 

1 1 1 1 1 0 0 0 0 0 0 0 0 

Transport_freight_IC 0 0 0 0 0 1 1 0 0 0 0 0 0 

Cooling 0 0 0 0 0 0 0 1 0 0 0 0 0 

Low_temp_heating 0 0 0 0 0 0 0 0 1 1 1 0 0 

High_temp_process_
heat 

0 0 0 0 0 0 0 0 0 0 0 1 1 

4.4 
Max 0.42 0.49 0.98 0.46 0.52 0.46 0.52 6.50 0.94 0.95 1.00 0.95 1.00 

Min 0.25 0.35 0.94 0.35 0.42 0.35 0.42 5.00 0.71 0.73 1.00 0.80 1.00 

4.5 
Numeral 0.07 0.39 0.39 0.03 0.28 0.05 0.32 0.13 0.25 0.25 0.25 0.41 0.41 

Error 0.2 0.2 0.2 0.5 0.2 0.5 0.5 0.1 0.1 0.1 0.1 0.2 0.2 

4.6   1.14 1.14 1.14 1.04 1.06 1.04 1.06 5.89 2.71 2.71 2.71 1.01 1.01 

4.7   1920 1920 1900 1950 1890 1950 1890 1920 1880 1900 1800 1910 1800 

7.3 
Mean 0.05 0.1 0.1 0.1 0.2 0.1 0.2 0.05 0.05 0.05 0.05 0.2 0.2 

SD 0.05 0.1 0.1 0.1 0.2 0.1 0.2 0.05 0.05 0.05 0.05 0.2 0.2 

11.
1 

Max 0.9 0.9 1 0.9 0.9 0.9 0.9 1 0.9 1 0.9 0.9 0.9 

Min 0.75 0.75 0.9 0.75 0.75 0.75 0.75 0.9 0.75 0.9 0.75 0.75 0.75 

11.
2 

Max 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0.1 0.1 

Min 0 0.05 0.05 0.05 0.05 0.05 0.05 0 0 0 0 0.05 0.05 

11.
3 

Max 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

Min 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

11.
4 

Max 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.2 1.2 1.2 1.2 1.4 1.4 

Min 1 1 1 1 1 1 1 0.8 0.8 0.8 0.8 1 1 

11.
5 

Max 1 3 3 3 3 3 3 0.5 0.5 0.5 0.5 3 3 

Min 0.5 1 1 1 1 1 1 0.2 0.2 0.2 0.2 1 1 

11.
6 

Max 20 40 40 40 40 40 40 20 20 20 20 40 40 

Min 10 20 20 20 20 20 20 10 10 10 10 20 20 

11.
13 

Electrical_AI 0 0 1 0 0 0 0 1 0 1 0 1 0 

IPaC_AI 0 0 0 0 0 0 0 0 0 0 0 0 0 

LaG_AI 1 1 0 1 1 1 1 0 1 0 0 0 0 

Roading_AI 1 0 0 0 0 0 0 0 0 0 0 0 0 

EV_AI 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rail_AI 0 1 1 0 0 0 0 0 0 0 0 0 0 

Rail_electrification_
AI 

0 0 1 0 0 0 0 0 0 0 0 0 0 
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Aviation_AI 0 0 0 1 0 1 0 0 0 0 0 0 0 

Shipping_AI 0 0 0 0 1 0 1 0 0 0 0 0 0 

Heating_AI 0 0 0 0 0 0 0 0 0 0 1 0 1 

12.
3 

Max 999 1 1 0.3 0.3 999 1 999 0.3 999 999 1 999 

Min 999 0.75 0.75 0.1 0.1 999 0.75 999 0.1 999 999 0.75 999 

9.5.15.5 EC types 
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9.5.15.6 Secondary AI types 
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1.5 
Max 2 5 1.3 1.3 

Min 1.3 2 1.1 1.1 

1.10   0.020 0.233 0.016 -0.011 

7.2 
Mean 0.2 0.1 0.1 0.1 

SD 0.2 0.1 0.1 0.1 

10.7 
Max 0.75 0.75 1 1 

Min 0.5 0.5 0.9 0.9 

10.8 
Max 0.05 0.05 0.05 0.05 

Min 0 0 0 0 

10.9 
Max 1.4 1.4 1.2 1.2 

Min 1 1 0.8 0.8 

10.10 
Max 1.4 1.4 1.4 1.4 

Min 1 1 1 1 

10.11 
Max 6 1 6 1 

Min 3 0.5 3 0.5 

10.12 Max 60 25 60 60 
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9.5.15.7 End-use AI types 
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1.6 
Max 4 4 2 2 4 2 2 2 2 4 

Min 2 2 1.3 1.3 2 1.3 1.3 1.3 1.3 2 

1.12   0.020 0.020 0.032 0.022 0.147 0.029 0.036 0.046 0.024 -0.004 

7.4 
Mean 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.1 0.05 

SD 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.1 0.05 

11.7 
Max 1 0.9 1 0.9 1 0.9 1 0.9 0.9 1 

Min 0.9 0.75 0.9 0.75 0.9 0.75 0.9 0.75 0.75 0.9 

11.8 
Max 0.05 0.05 0.1 0.2 0.1 0.1 0.1 0.2 0.2 0.05 

Min 0 0 0.05 0.1 0.05 0.05 0.05 0.1 0.1 0 

11.9 
Max 1.2 1.2 1.4 1.4 1.4 1.4 1.4 1.2 1.2 1.2 

Min 0.8 0.8 1 1 1 1 1 0.8 0.8 0.8 

11.10 
Max 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.4 1.2 

Min 0.8 1 0.8 1 0.8 1 0.8 1 1 0.8 

11.11 
Max 1 1 1 6 1 6 1 6 6 1 

Min 0.5 0.5 0.5 3 0.5 3 0.5 3 3 0.5 

11.12 
Max 50 15 50 50 15 50 50 50 50 50 

Min 25 5 25 25 5 25 25 25 25 25 

9.5.15.8 ES types 
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5.1 
Max 5 10 5 5 8 5 8 5 2 5 

Min 0.5 0.8 0.5 0.5 0.2 0.5 0.2 0.5 0.2 0.5 
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9.5.15.9 Uniform dist. inputs 
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5.4 0.5 0.1 

10.13 100 10 

10.14 0.8 0.6 

10.16 0.25 0.1 

10.17 0.75 0.25 

10.18 -0.5 -0.7 

10.19 1.5 -0.5 

12.1 1 0.5 

9.5.15.10 Scalar inputs 

Input reference 2.7 5.2 5.3 10.15 12.4 12.5 12.6 12.7 12.8 12.9 12.10 

Value 9 0.05 0.05 0.01 0.025 0 0.1 10 10 0.8 0.5 

 

9.6 OPTIMIZATION AND CALIBRATION 

The PRESS model optimization procedure is carried out using GoldSim’s inbuilt optimization 

functionality. The selected objective function to be minimized for the optimization is the time 

integral of the absolute EC supply/demand imbalance (in units of years) summed across all EC 

types (EC_Deficit_Integral_Sum). This measures the total amount of deviation from perfect 

supply/demand balance over the simulation period. The optimization is subject to the 

required condition that all realizations in the optimization sequence are successful 

(Transition_Failure.Completion_Status = false). For the definition of transition failure, as 

discussed in section 4.2.9.3, selected thresholds are: a > 5 years, b > 3 years, and d > 1 (deficit 

growing faster than elapsed time). Note that parameter c is not defined. 

The directly optimized control parameters are listed in Table 13 along with other deterministic 

input parameters which are manually tested and selected for optimal system control. 

Table 13: summary of control parameters used in the PRESS model 

Optimized control parameters Ancillary control parameters 

• EC_Invest_Capacity_Coeff (ɤmc) 

• Averaging_Period 

• Curtailment_Threshold (ɤct) 

• Invest_Adjust_Time 

• Utility_Share_Coeff (ɤsh) 

• Invest_Time_Horizon (ɤth) 

• EC_Invest_Capacity_Floor 

• Asymptote_Max_Factor 

• Minimum_PC_Timeframe 

• PC_Zero_Approx 

• Simulation_Base_Period 

• PC_Invest_Max_Fraction 

• Utility_Remove 

• NRE_Annual_Utility_Reduction (ɤnr) 

• EC_Surplus_Scale_Factor 

• EC_Deficit_Limit_Base 

• EC_Deficit_Limit_Slope 
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The optimization is repeated for a sequence of selected (deterministic) input sets to find 

optimized control parameter values that are stable over a wide range of model realizations. 

The optimization is first carried out at specified input distribution quantiles, beginning at the 

0.5 quantile (median), then alternated up and down by increments of 0.1 (0.4, 0.6, 0.3, 0.7, 

etc.). The optimization is then carried out for the global mean input set. 

Due to the high degree of non-linearity present in PRESS, appropriate exploration of the input 

space and avoidance of local optima is required. For better exploration, randomized 

optimization sequences are used. To avoid local optima, objective function and control 

parameter values are averaged across the best 5 realizations, excluding those where a 

significant jump in objective value occurs. Where an optimal value converges on its defined 

boundary during the optimization process, the boundary is relaxed and the optimization for 

that realization is restarted. 

9.6.1 Global ensemble optimality check and manual adjustment 

Optimization based on specified (deterministic) realizations suffers from over-tuning. Control 

parameter values can be found that minimize the objective function as far as possible for a 

given realization, but do not do the same globally for a large ensemble of stochastically 

generated realizations. This is particularly apparent where linear dependence between an 

optimized control parameter and input quantile has been observed. 

With the control parameter values found via realization-level optimization as a starting point, 

global ensemble-level optimality can be checked by comparing result distributions for the 

objective function and associated outputs. This global check is carried out by running an 

ensemble of 100 realizations (using Latin hypercube sampling strata mid-points) using the 

scenario manager tool within GoldSim. The five main optimized control parameters and 

selected ancillary control parameters below are tested via this method: 

• Invest_Time_Horizon 

• PC_Invest_Max_Fraction 

• NRE_Annual_Utility_Reduction 

• EC_Surplus_Scale_Factor 

• Plan_horizon length 

• Transition failure criteria (a, b, c, and d) 
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Discrete test increments are used simultaneously for each input being tested with successive 

iterations using smaller increments (5 steps compared initially, reduced to 3 steps as 

adjustments become smaller). The following outputs are compared, in order of importance: 

transition failure rate, the objective function distribution, and transition stable time 

distribution. The transition failure status by realization is also checked to ensure adjustments 

do not create new realization-level failures. 

9.6.2 Optimization and calibration results 

9.6.2.1 Final values 

Name Description Unit Value 

Averaging_Period 
Time period used for moving averages of EC inflow, EC outflow, and 
GES metabolism 

Years 0.5 

Curtailment_Threshold 
(ɤct) 

Fractional band over which curtailment occurs for investment share 
(in response to penetration levels, NRE depletion, and RE exhaustion) 
and investment capacity (in response to ESMR relative to the ESMR 
limit) 

 0.8 

EC_Invest_Capacity_Coeff 
(ɤmc) 

Coefficient used to control the magnitude of the investment response 
to sum forecast EC deficit 

1/year2 0.016 

Invest_Adjust_Time 
Time period used for moving average of cumulative forecast EC deficit 
at the selected time horizon 

Years 1.75 

Utility_Share_Coeff 
(ɤsh) 

Coefficient used to control the distribution of investment to available 
upstream and downstream options (secondary and EU PC) via the 
invest share logit function 

1/EJ 0.00002 

 

9.6.2.2 Optimization sequence 

Table 14 summarizes the steps of the optimization procedure and final adjustments to control 

parameter values. Green values below are the calculated means across the best five 

realizations (with lowest objective function values) produced by the optimization process, 

excluding those exhibiting a discontinuity in objective function value. 

Table 14: PRESS model optimization sequence results and finalized control parameter values 

Control parameter 
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Unit Years  1/year2 Years 1/EJ Years2 

Starting value 0.75 0.75 0.03 1.5 0.0002   
  Limits Upper 3 1 0.05 5 0.001 
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Lower 0.1 0.25 0.005 0.25 5E-06   

Input 
quantile 

0.5 1.28 0.83 0.031 2.01 0.00023 76.3 

0.4 0.79 0.67 0.032 2.17 0.00028 81.9 

0.6 1.14 0.85 0.033 2.12 0.00036 79.0 

0.3 0.91 0.81 0.035 1.73 0.00016 79.9 

0.7 0.50 0.78 0.024 1.02 0.00048 80.3 

0.2 0.56 0.67 0.024 1.20 0.00033 177.7 

0.8 0.19 0.72 0.019 0.64 0.00007 79.1 

0.15 2.18 0.81 0.036 0.47 0.00030 267.8 

0.85 0.12 0.91 0.040 2.08 0.00095 64.4 

Global mean input 1.20 0.71 0.028 1.89 0.00037 82.3 

Summary 
statistics 

Mean 0.89 0.78 0.030 1.53 0.00035 106.9 

Median 0.85 0.79 0.032 1.81 0.00032 80.1 

Minima 0.12 0.67 0.019 0.47 0.00007 64.4 

Maxima 2.18 0.91 0.040 2.17 0.00095 267.8 

Selected 0.85 0.8 0.030 1.75 0.00035 
  

  Global ensemble 
optimality adjustment 

0.5 n/a 0.016 n/a 0.00002 

 

The mean, median, maximum, and minimum values for all control parameter values are 

reviewed and appropriate global optima values are selected. Global ensemble-level 

optimality adjustments are then applied where significant improvements are possible. The 

0.1 quantile was found to be unable to produce a successful realization, so this was changed 

to 0.15 (and 0.9 to 0.85 for symmetry). 

Linear dependence between optimized control parameter values and input quantile is also 

checked. An R2 of 0.46 was observed for Averaging_Period (higher input quantiles tend to 

have shorter optimal averaging periods). Further testing revealed a minimal impact from this 

dependence on the objective function and system stability, and this is confirmed via the global 

ensemble optimality check and adjustment for this variable. R2 is less than 0.2 for all other 

optimized control parameters indicating minimal dependence on the input quantile. 

Systematic checks during the optimization sequence confirmed that reductions in the 

objective function (implying greater system stability) via the modification of control 

parameters do not appear to come at the expense of other key metrics of energy transition 

success, including cumulative GHG emissions, EROIpou, and the RE share of TPES. This implies 

that the choice of objective function is appropriate. Furthermore, the incidence of realization 

failures is stable as control parameters approach their final, globally adjusted values. 
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Therefore, the system control heuristic can be considered stable and reliable as a means of 

producing best-case GES transformation pathways. 

9.7 SCENARIO IMPLEMENTATION 

Scenarios are implemented in PRESS using the scenario manager functionality in Goldsim. 

Relevant input arrays are designated as scenario inputs able to accept specified parameter 

modifications for each scenario, as described in Table 15. 

Table 15: implementation details for scenarios in the PRESS model 
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Implementation in the PRESS model 
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• The new technology is assumed to have an EROI of 50, at a similar level to other high-EROI energy 

production such at hydropower or coal. 

• This new generation type is assumed to be non-baseload, non-intermittent, and with maximum 

CF unaffected by intermittent penetration (similarly to hydropower). 

 

Implementation: 

• Mean entry for Other in RE_Potential_Input (input ref. 2.2) set to 9999 EJ/yr and SD set to 1 

EJ/yr 

• Mean entry for Other in Initial_RE_EROI_Input (input ref. 6.1) set to 50 and SD set to 0 

• Other entry in Sec_Intermittent_ID (input ref. 10.20) set to 0 

2 

R
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• Aggregate personal mobility is curtailed but less so than the flow of goods (personal mobility 

prioritized over long economic supply chains). 

• IC transportation is assumed to decline more on average than regional, for both people and goods, 

as IC transportation has a greater discretionary component. 

• For freight, greater declines can occur than considered in the base case. 

 

Implementation: 

ES_Final_Demand_Mult_Input (input ref. 2.2) modified: 

• Max entry for Transport_passenger_regional set to 1 

• Max entry for Transport_passenger_IC set to 0.8 

• Max entry for Transport_freight_regional set to 0.6 and Min set to 0.2 

• Max entry for Transport_freight_IC set to 0.4 and Min set to 0.1 

3 

R
E 

R
a

p
id

 

D
ep
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ym

en
t The mean NRE annual utility reduction rate applied in the base case, ɤnr, is quadrupled to apply a 

greater system forcing over time. 

 

Implementation: 

NRE_Annual_Utility_Reduction (input ref. 12.4) set to 0.1 
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Implementation in the PRESS model 
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High GHG emissions intensity technologies are subject to much lower penetration limits than in the 

base case, beyond which no further investment will occur. 

 

Implementation: 

Max and Min entries modified to the same value (uniform distribution becomes deterministic): 

• In Sec_Penetration_limit_Input (input ref. 12.2): 

o Gas_generation set to 0.25 

o Gas_to_LaG set to 0.1 

o Coal_generation set to 0.1 

o Coal_to_LaG set to 0.05 

o Coal_heat set to 0.25 

• In EU_Penetration_limit_Input (input ref. 12.3): 

o LaG_fuel_mechanical set to 0.25 

o ICEV_light set to 0.25 

o ICEV_heavy_passenger set to 0.5 

o ICE_rail_passenger set to 0.25 

o Aviation_passenger_regional set to 0.1 

o Aviation_passenger_IC set to 0.25 

o ICEV_heavy_freight set to 0.25 

o ICE_rail_freight set to 0.5 

o Aviation_freight_regional set to 0.1 

o Aviation_freight_IC set to 0.25 

o Heat_heating_low set to 0.25 

o Heat_heating_high set to 0.5 
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Investments maintain changes in end-use capital composition approximately in line with trends 

observed at the beginning of the simulation period. 

 

Implementation: 

Scenario_5 (input ref. 12.5) set to 1. This sets values calculated by the Downstream_Invest_Utility 

function to the value of Utility_Remove prior to an elapsed simulation time of 35 yr (see section 

9.4.4). 
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Implementation in the PRESS model 
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Changes are enacted in the model in accordance with the composite sensitivity score (changes in higher 

scoring input parameters prioritized) to a level degree considered ambitious but plausible. 

 

Implementation: 

• Max entries in ES_Final_Demand_Mult_Input (input ref. 2.2) are modified: 

o Static_mechanical and High_temp_process_heat are set to 0.75 (at least 25% 

aggregate reductions from present day levels by 2100) 

o IPaC, Transport_passenger_regional, Transport_freight_regional, 

Transport_freight_IC, and Low_temp_heating are set to 1 (no aggregate increases 

beyond present day levels) 

• Max and Min entries set to 0.1 (uniform distribution becomes deterministic): 

o Coal_generation in Sec_Penetration_limit_Input (input ref. 12.2) 

o Aviation_freight_IC in EU_Penetration_limit_Input (input ref. 12.3) 

• Mean and SD entries in Secondary_PC_ECC_Input (input ref. 7.1) and Secondary_AI_ECC_Input 

(input ref. 7.2) are reduced by 50%: 

o Coal_generation (to 0.75 yr) 

o Coal_to_LaG (to 0.75 yr) 

o Coal_CHP (to 0.75 yr) 

o Biofuels (to 1.25 yr) 

o Geothermal_generation (to 0.25 yr) 

o Intermittent_electricity_AI (to 0.05 yr) 

9.8 PEDIGREE ASSESSMENT 

Pedigree assessment is carried out for probabilistic inputs arrays only, as deterministic inputs 

are not included in sensitivity or diagnostic analysis. Each input array is assessed based on the 

three criteria summarized in Table 8, and a composite mean score is calculated representing 

the relative strength of knowledge for the input array. Results are presented in Table 16 

below. Input arrays considered to contain decision parameters (at least partially subject to 

control via policy) are also indicated. 

Table 16: pedigree assessment results and decision variable status by input array 

Input 
reference 

Input array name 
Number of 

sources 
Limiting quality 

of sources 
Strength of 

assumptions 
Mean 
score 

Decision 
parameter? 

1.1 Init_Secondary_Prop_Input 3 4 1 2.67 No 

1.2 Init_End_Use_Prop_Input 5 2 1 2.67 No 

1.5 Init_Sec_Peak_Factor_Input 0 1 1 0.67 No 

1.6 Init_End_Use_Peak_Factor_Input 0 1 1 0.67 No 

2.1 Initial_NRE_Resource_Input 5 3 3 3.67 No 

2.2 RE_Potential_Input 5 3 4 4.00 No 

3.2 Init_End_Use_CF_Target_Input 0 0 2 0.67 No 

3.3 EU_CF_Target_Final_Max_Factor 0 1 2 1.00 Yes 

4.1 Sec_Conversion_Eff_Input 5 2 2 3.00 Yes 
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Input 
reference 

Input array name 
Number of 

sources 
Limiting quality 

of sources 
Strength of 

assumptions 
Mean 
score 

Decision 
parameter? 

4.2 Sec_Reticulation_Eff_Input 3 4 2 3.00 Yes 

4.4 End_Use_Conversion_Eff_Input 4 3 2 3.00 Yes 

4.5 Init_End_Use_ES_Eff_Input 5 2 1 2.67 No 

4.6 Final_EU_ES_Eff_Max_Factor 3 3 1 2.33 Yes 

5.1 ES_Final_Demand_Mult_Input 0 1 1 0.67 Yes 

5.2 Initial_ES_Demand_RoC_Max 0 1 2 1.00 Yes 

5.4 Final_Demand_Flex_Input 0 0 1 0.33 Yes 

6.1 Initial_RE_EROI_Input 5 2 1 2.67 No 

6.2 RE_EROI_Terminal_Input 0 1 2 1.00 No 

6.3 RE_EROI_Drop_Input 0 1 1 0.67 No 

6.4 Initial_NRE_EROI_Input 5 2 1 2.67 No 

6.5 NRE_EROI_Terminal_Input 0 1 2 1.00 No 

6.6 NRE_EROI_Drop_Input 5 2 1 2.67 No 

7.1 Secondary_PC_ECC_Input 5 2 1 2.67 Yes 

7.2 Secondary_AI_ECC_Input 0 1 0 0.33 Yes 

7.3 End_Use_PC_ECC_Input 0 1 0 0.33 Yes 

7.4 End_Use_AI_ECC_Input 0 1 0 0.33 Yes 

8.1 CapEx_Fraction_Input 0 1 1 0.67 No 

8.2 Decommission_Fraction_Input 0 1 1 0.67 No 

8.3 EC_Split_LaG_Factor_Input 0 1 0 0.33 No 

8.4 EC_Split_Heat_Factor_Input 0 1 0 0.33 No 

8.5 PC_Build_Time_Input 0 1 2 1.00 No 

8.6 PC_Lifetime_Input 0 1 2 1.00 Yes 

9.1 CapEx_Fraction_Input 0 1 1 0.67 No 

9.2 Decommission_Fraction_Input 0 1 1 0.67 No 

9.3 EC_Split_LaG_Factor_Input 0 1 0 0.33 No 

9.4 EC_Split_Heat_Factor_Input 0 1 0 0.33 No 

9.5 PC_Build_Time_Input 0 1 2 1.00 No 

9.6 PC_Lifetime_Input 0 1 2 1.00 Yes 

10.1 PC_CapEx_Fraction_Input 0 1 1 0.67 No 

10.2 PC_Decommission_Fraction_Input 0 1 1 0.67 No 

10.3 PC_EC_Split_LaG_Factor_Input 0 1 0 0.33 No 

10.4 PC_EC_Split_Heat_Factor_Input 0 1 0 0.33 No 

10.5 PC_Build_Time_Input 0 1 2 1.00 No 

10.6 PC_Lifetime_Input 0 1 2 1.00 Yes 

10.7 AI_CapEx_Fraction_Input 0 1 1 0.67 No 

10.8 AI_Decommission_Fraction_Input 0 1 1 0.67 No 

10.9 AI_EC_Split_LaG_Factor_Input 0 1 0 0.33 No 

10.10 AI_EC_Split_Heat_Factor_Input 0 1 0 0.33 No 

10.11 AI_Build_Time_Input 0 1 2 1.00 No 

10.12 AI_Lifetime_Input 0 1 2 1.00 Yes 
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Input 
reference 

Input array name 
Number of 

sources 
Limiting quality 

of sources 
Strength of 

assumptions 
Mean 
score 

Decision 
parameter? 

10.13 Intermit_AI_Mult_Final_Input 5 2 0 2.33 No 

10.14 Retic_Eff_Mult_Final_Input 0 1 2 1.00 No 

10.16 Diversity_Coeff_Input 0 1 1 0.67 No 

10.17 Demand_Flex_Coeff_Input 0 1 1 0.67 No 

10.18 CF_Max_Peaker_Coeff_Input 0 1 1 0.67 No 

10.19 CF_Max_Baseload_Coeff_Input 0 1 1 0.67 No 

11.1 PC_CapEx_Fraction_Input 0 1 1 0.67 No 

11.2 PC_Decommission_Fraction_Input 0 1 1 0.67 No 

11.3 PC_EC_Split_LaG_Factor_Input 0 1 0 0.33 No 

11.4 PC_EC_Split_Heat_Factor_Input 0 1 0 0.33 No 

11.5 PC_Build_Time_Input 0 1 2 1.00 No 

11.6 PC_Lifetime_Input 0 1 2 1.00 Yes 

11.7 AI_CapEx_Fraction_Input 0 1 1 0.67 No 

11.8 AI_Decommission_Fraction_Input 0 1 1 0.67 No 

11.9 AI_EC_Split_LaG_Factor_Input 0 1 0 0.33 No 

11.10 AI_EC_Split_Heat_Factor_Input 0 1 0 0.33 No 

11.11 AI_Build_Time_Input 0 1 2 1.00 No 

11.12 AI_Lifetime_Input 0 1 2 1.00 Yes 

12.1 ESMR_Limit_Input 0 1 2 1.00 Yes 

12.2 Sec_Penetration_Limit_Input 0 1 1 0.67 Yes 

12.3 EU_Penetration_Limit_Input 0 1 1 0.67 Yes 
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10 APPENDIX 2: ADDITIONAL RESULTS 

Supplementary results referred to in chapter 6 are presented here. 

10.1 PENETRATION 

Range magnitudes are given by the difference between envelope upper and lower limits (5th 

and 95th percentiles) and act as a indicators for uncertainty over time in the respective output 

variable. 

10.1.1 Secondary 

Secondary penetration range magnitudes for secondary PC, depicted in Figure 138 and Figure 

139, show generally increasing ranges, and therefore uncertainties, for all PC types. For the 

majority of PC types, range magnitudes increase relatively steadily with decreasing gradients 

after mid-century, reaching less than 20% by 2100. These PC types see minor variations only 

in penetration between realizations. The greatest range magnitudes by 2100 (> 25%), and 

highest associated uncertainties in ultimate penetration, primarily relate to alternative modes 

for LaG fuel and heat production, specifically oil refining, the conversion of coal and natural 

gas to LaG fuels, biofuels production, and coal and natural gas heat. Oil refining, the 

conversion of coal to LaG fuels, gas heat, biomass heat, and solar thermal heat all exhibit early 

peaks, between 2035 and 2060, before declining then increasing again. This indicates greater 

transitory variations in penetration between realizations during the early simulation period. 

Oil heat and nuclear generation exhibit late peaks, between 2070 and 2090, before declining. 

Wind and solar PV exhibit increasing gradients after mid-century, implying growing variations 

in penetration between realizations over the late simulation period 
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Figure 138: secondary penetration range magnitudes for secondary NRE PC 

 

Figure 139: secondary penetration range magnitudes for secondary RE PC 
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10.1.2 End-use 

 

Figure 140: EU penetration range magnitudes for passenger transportation PC 

EU penetration range magnitudes for EU PC are depicted in Figure 140, Figure 141, and Figure 

142. This excludes mechanical systems, high temperature process heating, and IC 

transportation (ranges for these PC types are given in section 6.1.10.2). Range magnitude 

trends can be seperated into two general groups. The first group sees strong increases in 

range magnitudes, reaching 25% or more by 2100, implying major variations in penetration 

between these modes. This group include all rail types (electric and ICE, passenger and 

freight), electric vehicles, electric and heat low temperature heating. Note that ICE passenger 

rail reaches a peak by 2050 before declining by approximately 20% from 2055 to 2100. Range 

magnitude trends for all other PC types are under 20% by 2100 following initial increases or 

transitory oscillations, indicating minor variations only in penetration between realizations. 

Notably, this group includes all ICE vehicles (light and heavy, passenger and freight), and 

regional aviation and shipping (passenger and freight). 
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Figure 141: EU penetration range magnitudes for freight transportation PC 

 

Figure 142: EU penetration range magnitudes for low temperature heating PC 

10.2 EFFICIENCIES 

Figure 143 shows the progression in EU conversion and EU to ES efficiencies (indicated by 5-

year increment markers linked by a line) for electric cooling towards the achievable maxima 
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(indicated by a bold marker). Efficiency gains accelerate in the first three 5-year periods, 

before slowing as efficiencies get closer to their achievable maxima. Note that EU conversion 

efficiency for electric cooling is substantially above one as useful delivered power output is 

greater than electric power input, due to the nature of the heat cycle used for cooling and 

refrigeration. 

 

Figure 143: EU PC mean efficiency trend and achievable maxima for electric cooling (markers at 5-year increments) 

10.3 ES DEMAND 

Modelled scenarios 2 and 6 (Relocalization and Policy Recommendation) entail modification 

to base case ES demands, as described in section 5.3. The resulting changes in mean ES 

demands are depicted in Figure 145 for scenario 2, and Figure 144 and Figure 146 for scenario 

6. 
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Figure 144: scenario differences in mean ES demands (S2) 

 

Figure 145: scenario differences in mean ES demands (S6; major) 
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Figure 146: scenario differences in mean ES demands (S6; moderate and minor) 

10.4 INTERMITTENCY IMPACTS IN ELECTRICITY SYSTEMS 

Figure 147 summarizes mean output variables describing intermittency impacts and 

mitigation in electricity systems by scenario, relative to the base case, in 2050 and 2100. Mean 

intermittent penetration is increased only in scenario 4 in 2050, by 16%, but is reduced or 

unchanged in all other scenarios and times, by up to 34% (scenario 1 in 2100). Mean 

intermittent diversity is reduced only in scenario 5 in 2050, by 6%, but is increased or 

unchanged in all other scenarios and times, by up to 36% (scenario 1 in 2100). Relative to the 

base case (in which AI mitigation is generally favoured), a greater tendency towards AI 

mitigation is seen only in scenario 2, while greater tendencies towards PC overbuild mitigation 

is seen in most other scenarios, particularly scenarios 1, 4, and 5. Mean absolute quantities 

of intermittent electricity AI are increased only in scenario 4 in 2050, by 72%, but are reduced 

or unchanged in all other scenarios and times, by up to 85% (scenario 6 in 2100). Scenarios 1 

and 6 exhibit consistently lower mean intermittent penetration and quantities of intermittent 

electricity AI, and higher intermittent diversity and intermittent reticulation efficiencies. 

Scenario 2 sees consistently low quantities of intermittent electricity AI and the smallest 

reductions in intermittent CF maxima of all scenarios. Scenario 3 shows minor differences 

from the bae case only. By 2100, scenario 4 sees the greatest reductions in intermittent CF 
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maxima of all scenarios. Scenario 5 exhibits major differences from the base case in 2050, 

driven by a preference for PC overbuild mitigation leading to larger reductions in intermittent 

CF maxima but higher intermittent reticulation efficiencies. However, by 2100 scenario 5 has 

largely converged with the base case. 

 

Figure 147: mean electricity system intermittency mitigation variables relative to the base case in 2050 and 2100 

10.5 SENSITIVITY ANALYSIS 

Sensitivity analysis results beyond those presented in section 6.3 (input parameters with 

normalized sensitivity values between upper and lower sensitivity thresholds excluding 

results above lower thresholds for both selected results), are presented in Table 17 and Table 

18 for non-decision and decision input parameters, respectively. Note, in response to 

increases in input parameter values, negative cumulative GHG emissions SRCy,i values and 

positive stable time SRCy,i values are associated with desirable outcomes. 

Table 17: additional sensitivity results for non-decision input parameters above lower sensitivity thresholds 

Input parameter 
Selected 

result 
SRCy,i 

Normalized 

sensitivity 

Decommissioning fraction – electric mechanical systems 

Stable time 

-0.03 0.104 

EC split LaG factor – electric vehicles 0.037 0.095 

Intermittent electricity AI required multiplier (at 100% penetration) -0.036 0.089 

Terminal EROI – coal 0.028 0.089 
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Input parameter 
Selected 

result 
SRCy,i 

Normalized 

sensitivity 

CapEx fraction – oil heat 0.027 0.088 

RE potential – hydropower 0.021 0.087 

EU to ES efficiency at technology inception – IPaC devices -0.026 0.077 

Initial EU to ES efficiency – shipping passenger regional -0.041 0.069 

Pre-simulation EROI decline – wind -0.026 0.067 

Initial NRE resource – oil 0.015 0.067 

Initial EU to ES efficiency – electric mechanical Cumulative 

GHG 

emissions 

-0.047 0.101 

Initial EU to ES efficiency – high temp. heating using heat fuels -0.045 0.093 

 

Table 18: additional sensitivity results for decision input parameters above lower sensitivity thresholds 

Input parameter 
Selected 

result 
SRCy,i 

Normalized 

sensitivity 

Final EU to ES efficiency – electric rail passenger 

Stable time 

0.047 0.107 

Penetration limit – solar thermal heat 0.026 0.103 

Final CF target – IPaC devices 0.046 0.100 

AI lifetime – heating AI 0.026 0.095 

Final EU to ES efficiency – low temp. heating using heat fuels 0.034 0.094 

Final secondary reticulation efficiency – gas CHP -0.038 0.094 

ECC – electric rail passenger -0.03 0.092 

Penetration limit – biomass heat 0.029 0.092 

Final secondary reticulation efficiency – biomass heat 0.042 0.092 

ESMR limit 0.028 0.086 

Final secondary reticulation efficiency – oil generation -0.041 0.085 

Final secondary conversion efficiency – biofuels 0.029 0.080 

Final EU to ES efficiency – ICE rail freight -0.035 0.080 

Initial EU conversion efficiency – electric mechanical systems 0.032 0.079 

Final EU to ES efficiency – electric mechanical systems 0.032 0.079 

Penetration limit – shipping freight IC 0.026 0.077 

Secondary reticulation efficiency at technology inception – solar 

thermal heat 
0.037 0.077 

Final EU conversion efficiency – electric mechanical systems -0.031 0.077 

ECC – LaG fuels AI 0.027 0.075 

EU conversion efficiency at technology inception – electric rail 

passenger 
-0.029 0.075 

Initial secondary reticulation efficiency – coal CHP -0.034 0.074 

Final EU to ES efficiency – electric rail freight 0.033 0.072 

Final EU to ES efficiency – shipping passenger regional 0.045 0.071 

ECC – electrical AI -0.026 0.070 

Initial secondary conversion efficiency – biomass heat 0.021 0.069 

PC lifetime – coal to LaG 0.016 0.068 

Final CF target – high temp. electric heating 0.038 0.068 

Final CF target – high temp. heating using heat fuels -0.038 0.068 

Initial EU conversion efficiency – electric lighting 0.026 0.067 
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Input parameter 
Selected 

result 
SRCy,i 

Normalized 

sensitivity 

ECC – aviation passenger regional 0.026 0.067 

Initial ES demand rate of change – transport passenger IC Cumulative 

GHG 

emissions 

0.037 0.104 

ES final demand multiplier – transport freight IC 0.049 0.102 

ES final demand multiplier – transport freight regional 0.038 0.063 

 

10.6 DIAGNOSTIC ANALYSIS 

Medium risk input parameters found via diagnostic analysis are presented in Table 19 and 

Table 20, for the stable time and cumulative GHG emissions selected results, respectively. 

Table 19: medium risk input parameters found via diagnostic analysis for stable time 

Input parameter 
Normalized 

sensitivity 

Pedigree 

score 

ECC – biofuels 0.411 2.7 

ECC – coal CHP 0.294 2.7 

Initial EROI – coal 0.273 2.7 

ECC – coal to LaG fuels 0.205 2.7 

ECC – coal generation 0.158 2.7 

ECC – geothermal generation 0.158 2.7 

Initial EU to ES efficiency – aviation freight regional 0.149 2.7 

Initial EU to ES efficiency – shipping freight IC 0.147 2.7 

Initial EU to ES PC mean efficiency – electric rail passenger 0.112 2.7 

Final EU to ES efficiency – electric rail passenger 0.107 2.3 

Decommissioning fraction – electric mechanical 0.104 0.7 

Penetration limit – solar thermal heat 0.103 0.7 

Final CF target – IPaC devices 0.100 1.0 

AI lifetime – heating AI 0.095 1.0 

EC split LaG factor – electric vehicles 0.095 0.3 

Final EU to ES efficiency – low temp. heating using heat fuels 0.094 2.3 

Final secondary reticulation efficiency – gas CHP 0.094 3.0 

ECC – electric rail passenger 0.092 0.3 

Penetration limit – biomass heat 0.092 0.7 

Final secondary reticulation efficiency – biomass heat 0.092 3.0 

Initial ES demand rate of change – transport passenger regional 0.092 1.0 

Initial EU to ES PC mean efficiency – electric mechanical 0.090 2.7 

Intermittent electricity AI required multiplier (at 100% penetration) 0.089 2.3 

Terminal EROI – coal 0.089 1.0 

CapEx fraction – oil heat 0.088 0.7 

ESMR limit 0.086 1.0 

Final secondary reticulation efficiency – oil generation 0.085 3.0 

Final secondary conversion efficiency – biofuels 0.080 3.0 
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Input parameter 
Normalized 

sensitivity 

Pedigree 

score 

Initial ES demand rate of change – transport freight IC 0.080 1.0 

Final EU to ES efficiency – ICE rail freight 0.080 2.3 

Initial EU conversion efficiency – electric mechanical systems 0.079 3.0 

Final EU to ES efficiency – electric mechanical systems 0.079 2.3 

Penetration limit – shipping freight IC 0.077 0.7 

EU to ES efficiency at technology inception – IPaC devices 0.077 2.7 

Secondary reticulation efficiency at technology inception – solar thermal heat 0.077 3.0 

Final EU conversion efficiency – electric mechanical systems 0.077 3.0 

ECC – LaG fuels AI 0.075 0.3 

EU conversion efficiency at technology inception – electric rail passenger 0.075 3.0 

Initial secondary reticulation efficiency – coal CHP 0.074 3.0 

Final EU to ES efficiency – electric rail freight 0.072 2.3 

Final EU to ES efficiency – shipping passenger regional 0.071 2.3 

ECC – electrical AI 0.070 0.3 

Initial EU to ES efficiency – shipping passenger regional 0.069 2.7 

Initial secondary conversion efficiency – biomass heat 0.069 3.0 

PC lifetime – coal to LaG 0.068 1.0 

Final CF target – high temp. electric heating 0.068 1.0 

Final CF target – high temp. heating using heat fuels 0.068 1.0 

Pre-simulation EROI decline – wind 0.067 0.7 

Initial EU conversion efficiency – electric lighting 0.067 3.0 

ECC – aviation passenger regional 0.067 0.3 

 

Table 20: medium risk input parameters found via diagnostic analysis for cumulative GHG emissions 

Input parameter 
Normalized 

sensitivity 

Pedigree 

score 

Initial EROI – coal 0.647 2.7 

Initial EU to ES PC mean efficiency – high temp. heating using heat fuels 0.149 2.7 

Initial EU to ES efficiency – low temp. heating using heat fuels 0.128 2.7 

ECC – coal generation 0.108 2.7 

Initial ES demand rate of change – transport passenger IC 0.104 1.0 

ES final demand multiplier – transport freight IC 0.102 0.7 

Initial EU to ES efficiency – electric mechanical 0.101 2.7 

Initial EU to ES efficiency – heat heating high 0.093 2.7 

Initial EU to ES PC mean efficiency – electric mechanical 0.069 2.7 

ES final demand multiplier – transport freight regional 0.063 0.7 

ECC – coal to LaG fuels 0.063 2.7 

 


