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Abstract

The need to modify or “replan” a head and neck cancer patient’s radiotherapy treatment
arises when significant anatomical changes occur during their treatment course. While regular
patient imaging during treatment can be useful to identify when a patient needs to be
replanned, they continue to be treated with the sub-optimal original plans until a new plan is
created. For this reason, the ability to predict in advance if and when a patient’s plan will
require replanning would be advantageous so that the patient is treated with a more optimized

plan throughout their treatment course, improving the overall quality of treatment.

In this thesis, the relationship between clinical variables and the need to replan was
investigated. Data from the electronic health records of 490 head and neck cancer patients

were used, with special attention paid to patient weight loss and gain throughout treatment.

Weight loss was hypothesized to be a parameter that might be used to represent anatomical
changes in patients examined. As a result of a weight time series analysis, it was confirmed
that head and neck cancer patients lost weight during their radiotherapy treatment, consistent

with the literature (Zhao et al. 2015).

Given its clinical importance, the parameters that influenced weight loss were investigated
using a linear regression model. Additionally, the main predictors of when to replan a patient
were found to be the 20th to 25th treatment fraction and the weight loss (p < 0.05) using a
logistic regression model. However, some patients were nor replanned even if they lost a
significant amount of weight during radiotherapy, which raised the question of whether
weight loss was a reliable feature that would accurately represent the anatomical changes in

the neck region.

With the motivation to find a predictor that may reflect more accurately the anatomical
changes of head and neck cancer patients during radiotherapy, a technique to measure the
neck area loss using the set up images from historical head and neck cancer patients was

developed. The neck area and weight time series of 18 patients during radiotherapy were



compared and it was found that even if both quantities decreased during the patients’
treatments, they did so at different rates. This finding could explain why some patients were

not replanned even if they lost a significant amount of weight.



Résumé

La nécessité de modifier ou de “replanifier” les traitements de radiothérapie d’un patient
atteint d’un cancer de la téte et du cou survient lorsque des modifications anatomiques
importantes se produisent au cours des traitements. Bien que l'imagerie réguliére du patient
pendant le traitement puisse étre utile pour identifier le moment auquel un patient doit étre
replanifié, il continue a étre traité avec les plans d'origine sous-optimaux jusqu'a ce qu'un
nouveau plan soit créé. Pour cette raison, la capacité de prédire a 1'avance si et quand le plan
d'un patient nécessitera une replanification serait avantageuse afin que le patient soit traité

avec un plan plus optimisé tout au long des traitements, améliorant ainsi la qualité globale du

traitement.

Dans cette thése, la relation entre les variables cliniques et la nécessité de replanifier a été
¢tudi¢e. Les données des dossiers de santé €lectroniques de 490 patients atteints de cancer de
la téte et du cou ont été utilisées, une attention particuliere étant accordée a la perte et au gain

de poids des patients tout au long des traitements.

Notre hypothése ¢était que la perte de poids était un parameétre pouvant étre utilisé pour
représenter les changements anatomiques chez les patients examinés. A la suite d'une analyse
des séries temporelles chronologiques de poids, il a ét¢ confirmé que les patients atteints d'un
cancer de la téte et du cou ont perdu du poids pendant leur traitement de radiothérapie,

conformément a la littérature (Zhao et al. 2015).

Compte tenu de I’importance clinique du poids des patients, les parametres qui ont influencé
la perte de poids ont été étudiés a I'aide d'un modele de régression linéaire. Dans ce modele,
les principaux prédicteurs du moment optimal pour replanifier les traitements se sont avérés

étre notamment la 20e a la 25e fraction de traitement et la perte de poids (p < 0.05).

Cependant, certains patients n'étaient pas replanifiés méme s'ils perdaient une quantité

importante de poids pendant la radiothérapie, questionnant ainsi si la perte de poids était



réellement une caractéristique fiable représentant avec précision les changements

anatomiques dans la région de la téte et du cou.

Afin de trouver un prédicteur pouvant refléter plus précisément les changements anatomiques
des patients atteints de cancer de la téte et du cou pendant les traitements de radiothérapie,
une technique pour mesurer la diminution de I’aire dans la région du cou a été développée a
partir des images de configuration de patients atteints de cancer de la téte et du cou. Les
séries temporelles chronologiques de 1’aire dans la région du cou ainsi que du poids de 18
patients durant les traitements de radiothérapie ont été comparées et il a été constaté que
méme si ces deux quantités diminuaient au cours des traitements, elles le faisaient a des
rythmes différents. Cette découverte pourrait expliquer pourquoi certains patients n'ont pas

recu une replanification méme s'ils ont subi une importante perte de poids.
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1. Introduction
1.1 Overview of Thesis

The purpose of this research was to determine if the need to replan a head and neck cancer
patient during radiotherapy can be predicted based on available clinical data and images. This
thesis describes the search for replanning predictors through the retrospective statistical
analysis of radiotherapy data collected from 2012 to Fall 2019 at the McGill University
Health Centre in Montreal. Two analyses were used. The first analysis just used basic clinical
factors stored in the Electronic Health Records (EHR). The second analysis was created with
the additional inclusion of daily imaging and was compared to the first analysis in order to

determine if anatomical information provided added value.

This chapter introduces the basic concepts of radiotherapy, it describes the workflow in the
clinic and the replanning process and the role of medical imaging in treatment planning. It
gives the theoretical background needed to understand the statistical analysis techniques that
will be used in the following chapters. Chapter 2 introduces head and neck cancer
radiotherapy side effects and describes the current challenges in head and neck treatment
planning. Chapter 3 outlines the patient cohort and the methods used in this project to process
and analyze the data. In chapter 4 are exposed the results from the analysis described in
Chapter 3. Chapter 5 discusses the replanning predictors and compares results with the

literature to support the conclusions, which are presented in Chapter 6.

1.2. Radiotherapy

As a result of the interactions of the radiation with matter, some energy can be deposited in
the matter, which we refer to as radiation dose (Canadian Nuclear Safety Commission
(CNSC) 2020). Ionizing radiation is classified as radiation who has more energy that is
required to remove electrons from atoms (World Health Organization (WHO) 2016). The
ionizations caused by radiation can damage and potentially kill cells. This is especially true if

the ionization modifies a cell’s DNA sequence and prevents it from functioning properly.
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There are DNA repair pathways, but that they are not always able to fix all the damage. A
cell’s response to radiation damage may be in the form of apoptosis, in which the cell is
programmed to die, or by cell cycle arrest in which the cell stops its duplication and division

(Little 2003).

While radiation can cause cancer, it is also highly effective at killing cancer cells. There are
two main types of radiotherapy: (1) external beam radiotherapy (EBRT), which uses a
radiation source external to the patient’s body with the purpose of destroying cancer cells,
and (Baskar et al. 2012) (2) brachytherapy, which inserts radioactive material inside the body

to achieve the same goal (Canadian Cancer Society - Radiotherapy 2020).

1.2.1. Linear quadratic model and fractionation

Radiation is indiscriminate with regard to cancerous and healthy cells and has the potential to
kill both. The goal of radiotherapy, therefore, is to maximize the death of cancer cells while
minimizing the damage to healthy ones (Moding, Kastan, and Kirsch 2013). To do this,
radiotherapy specialists take advantage of the radiation responses of different tissues. The
linear quadratic model is a theoretical approximation to the cell survival curves of normal
tissue cells and tumour cells after irradiation. The survival S is a function of the dose

delivered in a single fraction D and it is described by the following equation:

S(D) = exp (— (a. D + pD)?)

Where a represents irreversible damage and B the reversible damage. Both parameters depend
on the type of tissue (Brenner 2008; van Leeuwen et al. 2018). Typical o/p ratios are on the
order of 3 for healthy cells and 10 for tumour cells (Orton 2020). Figure 1.3.4.1 illustrates the
survival curve of late reacting normal cells and cancer cells from zero dose to 8 Gy. For low
doses, normal tissue survival is greater than the cancer cells survival, while for larger doses,
the survival of cancer cells is greater than the normal tissue. In order to reduce the number of
surviving cancer cells to 1%, almost 99.5% of normal tissue must be sacrificed and would
almost certainly cause severe side effects for the patient. However, there was a much lower
dose of 2 Gy where the ratio of cancer cell kill and normal tissue preservation was

maximized, and it is this point that fractionation takes advantage of.
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Figure 1.3.4.1. Survival curve for cancer cells and normal tissue as a function of the dose delivered.
Parameters for cancer cells a = 0.4 Gy-1 and o/p = 10 Gy. Parameters for normal tissue: a = 0.22

Gy-1, o/f = 2.5 Gy. The figure was reproduced using the parameters from (Orton 2020).

Fractionated radiotherapy splits the total prescribed dose into small doses distributed in
several fractions. Fractionation improves the ratio of cancer to healthy cell kill because it
takes advantage of the four R’s of radiobiology: The healthy cells have the opportunity of
repopulate, the cancer cells have time to redistribute in the cell cycle (cells in M and G2
phases are more sensitive to radiation than cells in other phases), reoxygenation of the tumour
cells (the radiation is more more damaging for oxygenated cells) and repair of the healthy

cells (Pajonk, Vlashi, and McBride 2010).

1.2.2. Radiotherapy Treatment Modalities

There are different techniques, or modalities, used in EBRT. Modern modalities use
computers and advanced treatment machines to shape radiation beams based on the
morphology of a patient’s tumour to achieve better accuracy in the treatment and to reduce
the dose to healthy tissues near the tumour. The most common modalities are 3D conformal

radiotherapy (3D CRT), Intensity-modulated radiotherapy (IMRT), Volumetric Modulated
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Arc Therapy (VMAT) and Tomotherapy (Teoh et al. 2011). All these techniques aim to shape

the beam according to the shape of the tumour.

3D CRT uses multi-leaf collimators (MCL) and 3D images of the patient to shape the dose to
the tumour while maintaining a relatively uniform dose distribution. Unlike 3D-CRT, IMRT
uses the MCL to modulate the beam intensity. This modulation allows for increased sparing
of organs at risk (OARs) and can also help deliver a higher dose to the target. However,
because of this the dose delivered is not uniform and can lead to hotspots in the patient. For
this reason, it is important to check IMRT plans for dose in undesirable locations to avoid
causing potentially negative side effects from the radiotherapy (Gomez-Millan, Fernandez,

and Medina Carmona 2013).

IMRT treatment planning and quality assurance is more complex and computationally
intensive than 3D CRT planning. Even though the locoregional control improves with the
IMRT technique, it delivers more monitor units (MU) than 3D CRT and leakage through the
MLC and the head of the linac may induce secondary malignancies in the patients due to the

whole-body dose wash involved (Vallard et al. 2016).

VMAT is the most advanced of the three modalities and is a form of arc therapy in which the
MLCs move as the linac gantry moves around a static patient. VMAT has higher efficiency
and higher conformal dose distributions than IMRT. Higher efficiency implies less time for
dose delivery and less MUs than IMRT. Less toxicity for VMAT patients is also derived from
a higher conformity of the treatment (Teoh et al. 2011). Tomotherapy is a subtype of VMAT.

While it is possible to create 3D-CRT plans based on expertise and trial and error (forward
planning), the added complexity of moving MLCs in IMRT and VMAT plans necessitates a
different approach. Instead of forward planning, modern IMRT and VMAT treatments use an
inverse planning approach, in which the treatment planner specifies the requirements of the
treatment plan and has a computer try hundreds of possibilities to find the optimum one.
Parameters given to the system for this optimization problem include dose constraints,

prescription dose for the target, as well as number of beams or arcs.
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Both the IMRT and VMAT techniques enable sparing of critical structures in the head and
neck region such as the spinal cord and brainstem (Leer 2005). Additionally, both techniques
necessitate a well defined structure delineation because the radiation fields will be shaped to
the tumour (Leer 2005). A cost function is optimized to obtain the maximum dose to the
target while minimizing exposure to organs at risk. Recommended dose constraints to the

OARs are used in the optimization process.

In our clinic, VMAT is currently the most used radiotherapy technique for head and neck
cancer (HNC). However, IMRT and 3D CRT have historically also been used to treat some
HNC patients. Additionally, tomotherapy was used for a large number of patients between

2008 and 2016.

1.2.3. Radiotherapy Treatment Workflow

The radiotherapy treatment workflow starts with acquiring patient images on a special CT
scanner called a CT Simulator. Unlike a regular diagnostic CT scanner, the CT Simulator has
a flat tabletop, a wider bore, and positioning lasers so the patient can be positioned the same
way as they will need to be for treatment. Thermoplastic masks or vacuum bags are examples
of common devices fitted to patients at the time of simulation and worn at every fraction in
order to immobilize the patients during their radiotherapy treatment and ensure accuracy of
the treatment. In addition to any necessary immobilization devices, a set of ball bearings are
placed on the patient to mark the origin slice in the CT image that will be used for the
patient's positioning during radiotherapy (Beyzadeoglu, Ozyigit, and Selek 2015). The
placement of these bearings is marked on the patient with tiny tattoos for reference during the
treatment. Images taken at simulation are integrated into the patient’s chart in the EHR

where they are used to create the treatment plan.

The treatment plan for the patient is designed by one or more dosimetrists, radiation
oncologists, and medical physicists depending on the complexity of the case. The treatment
planning consists of two stages. The first stage is the contouring of the targets, OARs and
relevant structures on the image taken at the CT simulator. In the second stage the dose is

calculated and quality assurance checks are performed.
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Target structures need to ensure neoplastic tissues that are both visible and invisible in
medical images are always included in the region being irradiated and are therefore drawn in
three stages. The first stage is the gross tumour volume (GTV), which consists of the tumour
volume that is visible to the clinician's eyes. The next stage is the clinical target volume
(CTV), which includes the GTV and an external margin that accounts for the potential
microscopic spread of the disease (Burnet et al. 2004). Finally, the planning target volume
(PTV) is created, which includes the CTV and an additional margin for positioning errors and
movement at the treatment machine (Burnet et al. 2004). Sometimes the GTV is not drawn or
the GTV and CTV are considered equivalent, usually in cases in which the tumour was
removed surgically prior to radiotherapy (eg. breast) or when the disease is well encapsulated

in one region without microscopic spread (eg. prostate) (Leer 2005).

An example of a GTV enclosing a malignant neoplasm of the base of tongue, surrounded by

the CTV and PTV margins are illustrated in figure 1.4.4.4.1.

Figure 1.4.4.4.1. GTV, CTV and PTV structures contoured in a CT image for a malignant neoplasm

of the base of tongue.
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The next stage of the treatment planning process is the designing of the patient’s treatment
plan and the calculation of the planned dose distribution in the patient that will maximize the
dose to the target and minimize the dose to the OARs (Jin et al. 2015). Additionally, the type
and modality of the plan will depend on the patient’s circumstances and the expertise of the
treatment team. In general the dosimetrists will align basic radiation beams and work with the
treatment planning software to meet the specifications of the radiation oncologist. Dose
gradients are created to spare OARs. The plan has to be approved and go through quality
assurance involving medical physicists, dosimetrists, radiation oncologists and radiation

therapists before it can be used for treatment.

Finally, the patient is treated according to the treatment plan that was individually planned for
their circumstances. Before the delivery of each fraction, the radiation therapists (the staff
responsible for delivering the treatment) ensure the patient is set up in the same position as at
the CT simulation using a combination of immobilization devices, lasers, and imaging
(section 1.2.4). Significant changes in the patient’s anatomy could impact the dose to the
target and OARs. Thus, the treatment plan will need to be modified to account for the
anatomical changes, a step that is also known as a radiotherapy replan (Beyzadeoglu,
Ozyigit, and Selek 2015). The replan is also performed when the patient’s position cannot be
reproduced according to the treatment’s plan. The request for a replan will be added to the
clinical tasks associated with the given patient. Reasons for replanning can include changes in
mask or other immobilization device fitting or weight gain or loss (Green, Henke, and Hugo
2019) due to edema or anorexia, respectively. Because a replan can take up to two days to
complete, patients continue on their current treatment plans until the modified plan is ready.
Any new plans created to treat the same condition are grouped together with the original plan
into one course of treatment, which is the total set of treatment plans included in a single

radiotherapy treatment.

1.2.4. Image-Guided Radiotherapy (IGRT)

Radiotherapy requires high precision for treatment delivery because failing to deliver the

prescription dose to the target could have devastating consequences in the patient. However,
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motion of the internal organs, image distortion by the acquisition scanner, and setup errors

can all reduce the precision at which radiotherapy can be delivered.

IGRT provides high precision in positioning of the patient that is required for a successful
treatment using IMRT and VMAT techniques. One of the most popular imaging modalities
for IGRT is cone beam CT (CBCT) because it has better soft tissue contrast than the other
on-board imaging techniques. CBCT is generally used to correct for errors in patients
positioning before treatment. Additionally, CBCT images can be used to identify anatomical

changes in patients.

1.2.5. Adaptive radiotherapy (ART)

Adaptive radiotherapy (ART) is a technique that takes into account the anatomy changes a
patient undergoes during treatment and accounts for them as needed (Green, Henke, and
Hugo 2019). ART can be performed online or offline. The main characteristics of online and
offline ART are compared in table (1.2.5.1) (Green, Henke, and Hugo 2019). Additionally,
some centers acquire images more frequently than others. ART requires a solid protocol for
replanning and not all replans qualify as ART. In our clinic, no strict protocol for replanning

is followed and the replans performed are not considered as ART.

Table 1.2.5.1. Offline vs Online ART (Green, Henke, and Hugo 2019).

Offline ART

Online ART

Uses image from fraction before

Uses image from fraction to be treated

Usually created in the time space between
two treatment fractions

Created with the patient positioned for the
treatment. It could be before or during a
treatment fraction.

Manual image registration, contouring and
calculation of the dose

Both images and contours are registered to
the adapted plan, a dosimetric threshold is
used to decide if the adapted plan will be
used instead of the current plan.
Inconsistencies are fixed manually.

The replan has the same workflow as a new
treatment plan, needs a lot of work to finish
it in the expected timeline

Better treatment workflow than offline:
Replanning + QA is performed on the
treatment room
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Less sensitivity than online for anatomical | Since the anatomical changes are tracked
changes continuously, the PTV margin is reduced
and special attention to internal motion is
required.

In general, ART needs high definition images to map daily IGRT images to the original
treatment plan. These are used to identify anatomical changes in the patient and are part of
the first step of ART. Depending on the type of ART, the next step may be to select one of
the “plan of the days”, adjust the treatment based on the anatomy in the image, or treat the
patient with the current plan. If adjusting the treatment, a new plan including new contours
and dose calculations is required along with quality assurance (QA). This can either be done
rapidly with the patient in the treatment room (online ART) or overnight before the patient

returns.

1.3. Medical Imaging in Radiotherapy

Medical imaging is important in radiotherapy to provide anatomical information for
diagnostic, treatment planning, and for treatment setup purposes. Many types of medical
imaging modalities exist, including Radiography, Computer Tomography (CT), Magnetic
Resonance Imaging (MRI), and Positron Emission Tomography (PET) (Peter 2009). While
MRI and PET provide useful functional information for diagnosis (for example, by detecting
metastatic lymph nodes (Kim et al. 2016) and can have superior soft tissue contrast, CT is the
most common and important modality for treatment planning. This is because in addition to
being more inexpensive and much quicker to acquire compared to MRI and PET, it gives a
measure of electron density in the tissues (Loeffelbein et al. 2012). The electron density is

important in order to calculate and apply heterogeneity corrections during treatment planning.

1.3.1. Computed Tomography (CT)

The acquisition of a CT image includes four important elements: an x-ray source, the object
to be imaged, a detector array to measure the attenuation of the x-rays after they pass through

the object, and the algorithm that will be used to reconstruct the images. First, a series of
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regular radiographic projection images are acquired at many different angles around the
object. Next, an algorithm is used to reconstruct the projections to obtain volumetric images
used to diagnose and treat radiotherapy patients. Since the first CT scanner was built around
1970, scanners have evolved to reduce the time of scan, optimize the detector array for
image acquisition, and improve reconstruction algorithms for better image quality (Bushberg

2020).

In addition to providing 3D anatomical information and soft tissue contrast, one of the most
important qualities of CT images are their units for measuring grayscale intensity. These
intensity units, called Hounsfield Units (HU) describe the relation between the attenuation of
the radiation in a specific tissue u, to its attenuation in water p,,, (Toga and Mazziotta

2002). HUs are calculated using the following equation:

HU = 1000 x k—tux
220))

They are usually calibrated to the electron density of the patient scanned (Schneider, Pedroni,
and Lomax 1996). As stated above, the electron density is useful to correct heterogeneities in

radiotherapy treatment planning (Broder and Preston 2011).

1.3.2. Cone Beam Computed Tomography (CBCT)

CBCT is a type of CT imaging commonly integrated with linear accelerators. Unlike
conventional CT, which uses a narrow fan beam and detector array that images a small strip
of the body, CBCT uses a cone beam and large flat panel detector that covers a wider area of

the body. For both systems, the x-ray source and detector rotate around the stationary patient

(Bushberg 2020).

Although the wide collimation aperture of CBCT allows for an entire image to be acquired in
one rotation, it also leads to some consequences in the image. Because there are more
scattered photons reaching the flat panel in CBCT, the image quality, in particular the
soft-tissue contrast, of CBCT images is lower compared to fan-beam CT images (Niu and

Zhu 2011).
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The CBCT scans can be performed either considering the full beam or half of it. The full-fan
geometry is generally used for small anatomic sites such as head and neck, while the half-fan
geometry is used for larger anatomic sites such as pelvis, chest and abdomen (Kaliyaperumal

etal. 2017).

1.3.3. Image registration

Sometimes it is important to compare two or more medical images to have more information,
but it is important when doing so to compare the same thing in each image. In order to do
this, it is necessary to line up the anatomy of the two images so that they overlap and match
as much as possible. The process that maps one image to the space of a reference image is

known as image registration.

There are two main types of registrations: rigid and deformable. The rigid are transformations
that conserve the shape of the object. The deformable registrations modify the shape of the
object to map the comparison image to the reference image. In both cases, the goal of
registration is to find the transformation that best matches the voxel matrix of the comparison
image to that of the reference (Tohka 2015). Rigid registrations only allow for rotations and
translations of the entire voxel grid, whereas deformable registration allows for rotations,
translations and scaling of not only the entire grid, but small sections of the matrix or

individual voxels.

In general, although deformable registration is desirable for medical images because the
anatomy of patients may change from one image to another, rigid registration is a good
approximation in most cases and is easier to perform. For example, the affine registration is a
linear transformation that includes scaling, rotations and translation for a fixed body shape

(Tohka 2015).

1.3.4. Digital Imaging and Communications in Medicine (DICOM) images

The DICOM format is used in medical informatics to store patient data in a standardized way.
Different types of DICOM files exist for different types of information, such as CT, MRI,

Ultrasound, and PET images, treatment plans, dose distributions, and image registrations.
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Regardless of type, they all store information using DICOM headers, which are dictionaries
that codify the information in a format that DICOM readers can translate (Medical Imaging &
Technology Alliance, National Electrical Manufacturers Association 2020).When saving 3D
images, the DICOM format saves each individual 2D slice of the 3D image as a separate file,

which a DICOM reader will read together to generate a 3D image in the viewer.

1.3.5. Databases in Oncology

In medical informatics, relational and non-relational databases are used to store and manage
information in the clinic. A relational database is a tool that allows the user to store
information in abstract tables that can be joined by common information in the data.
Relational databases are used to store the headers from the DICOM images acquired during
the patient's treatment. Using the DICOM headers, the relational database can be used to call
the DICOM images stored in the Picture Archiving and Communication System (PACS),
which is a non relational database (Gregg 2020).

Because radiotherapy clinics have to handle a lot of electronic patient data, it is important to
store them in an organized way. An EHR is an example of a relational database that
integrates all patient information in a single source. On the other hand, non-relational
databases such as the PACS, store image information. Most medical databases have end-user

software to make it easy for clinicians to communicate with them.

1.4. Statistics

Statistics are essential to properly interpret the meaning of the data from a study. This
section describes the basic theory of hypothesis testing and some statistical tests and

statistical models relevant to this thesis.

1.4.1. Hypothesis testing

In clinical studies it is important to determine if two groups of patients with similar
characteristics but different treatments have different outcomes. The first step is to define the
groups to be compared. The second step is to formulate a null hypothesis and an alternative

hypothesis. The alternative hypothesis will state that the outcomes are different while the null
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hypothesis states that the outcomes are the same from a statistical point of view. Statistical
significance and clinical significance are not the same, if you increase the number of samples,
the result will be statistically significant eventually. However, it may not be of clinical
significance. On the other hand, a result can have poor statistics and still be clinically
significant. The third and last step in determining if two populations are distinct is to test the
null hypothesis. The test has to be chosen according to the distribution of the data. The null
hypothesis is evaluated according to a parameter o . If the p value (p) is smaller than o, the

null hypothesis will be rejected (Harris and Taylor 2003).

1.4.2. Commonly-used statistical tests

The two main statistical tests widely used are parametric and non parametric (Chin and Lee
2008). If we assume that we are working with data that is normally distributed or can be
approximated by a normal distribution we can use a parametric test to perform our statistical

analysis (Chin and Lee 2008).

One of the most common hypothesis tests is the Student’s #-test, which compares the mean of
two parametric distributions. t tests can be used for either one sample or two, and can also be
divided into paired and unpaired tests in the case of two samples. In a paired t-test, each
sample in the first group is compared to its companion in the other group. The two groups are
not independent, and often in medicine they involve the same patients at two different time
points. In unpaired t tests the samples of the two groups are independent from one another,
such as when a patient cohort is divided into a treatment and control group. The t test
assumes that the data are normally distributed. The general expression for the t statistic is as
follows:

X, — X
_ ] 2
[ = 2 2

S S
(1_ +2_)
m )

Where X|, X, are the means of the group, s,, s, are the variances, and n,and n, are the

number of samples of the two distributions (Kim 2015).

The Mann Whitney U test is the non-parametric analogue of the unpaired t test (Nahm 2016).

In order to calculate the statistic (U), the data are ranked according to the frequency of
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appearance. The Mann Whitney U test makes no assumptions about the shape of the
distributions and takes into consideration the medians of each distribution for the ranking

process (Hart 2001).

The Chi squared v test is another example of a non parametric test. Unlike the Mann
Whitney U test, it is used for categorical data (McHugh 2013). It is commonly used to
determine if there is any relation between the frequencies of events observed in different
groups. There are two important assumptions when using this test: The groups (in our case
groups of patients) are independent, and the categories of the variables considered have to be
exclusive between each other (McHugh 2013). The null hypothesis states that there is no
relation between the frequencies of events observed in different groups (McHugh 2013). P

values are calculated to evaluate the null hypothesis of this test (Harris and Taylor 2003).

1.4.3. Statistical learning models

Statistical models are mathematical expressions that use input data to make predictions about
the data. The goal of modelling is to develop a function f'to describe the relationship between
one or more explanatory variables, X, and the response variable Y in a way that minimizes the
random error E that captures the variability in Y that X cannot explain. This expression can be
simplified as following:
Y = f00) + E

It is important to note that the error in a model can be separated into the error that comes
from the algorithm optimization and the error that comes from factors related with the
acquisition of the data (the random error) (James et al. 2013). While the error associated with
the algorithm can always be optimized to a minimum value, the random error related to data
acquisition is irreducible by model optimization and will affect the ultimate performance of
the model.

Two important concepts to keep in mind when creating mathematical models of data are
variance and bias. Bias is defined as the error associated with modeling a real problem with a
mathematical approximation. Variance is the error associated with the variability of the
model when using data from other datasets. A balance between variance and bias is important

because when the model is broad enough to consider variability between datasets, it could
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lose reality representation. This is also known as the bias and variance tradeoff (James et al.

2013).

Depending on the characteristics of the data, different types of models should be applied. For
instance, regression models are useful to predict continuous data, while classification models
are useful to predict categorical data (James et al. 2013). The remainder of this section gives a

brief overview of two of the most common regression models.

1.4.3.1. Linear regression

Univariate linear regression is a basic model that predicts a variable Y as a function of a
single parameter X. The following linear equation is used to describe the relation X and Y:
Y(X) = By + X

Where B, is the intercept and B, is the slope of the curve. Both B;and B, are also known as
the linear regression coefficients of the model (James et al. 2013). A linear regression
algorithm looks to find the coefficients B,and B, that best describe the data. First, it is
important to determine if there is any relation between the two variables. This process is
performed by hypothesis t-testing in which the null hypothesis establishes that there is no
relation between X and Y (B, = 0). If the p - value is small enough, the null hypothesis that

there is no relationship between X and Y can be rejected.

Additionally, R* is a parameter that measures how well the model approximates a linear
curve. The closer R® approximates to 1, the better the data fits a line. For physics models the

R? approximates a lot to one, while for biology and marketing the variations are higher.

Multivariate linear regression is an extension of the univariate linear regression where more

explanatory variables are used and is described by the following equation:

Y =By +B X B X+ # By Xy

Where X, ..., X, are the N parameters considered in the modeland B X, ..., X are

the multivariate linear regression coefficients. In this case, the null hypothesis considers that
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B, =P, =...=By =0 and it is proved wrong when at least a regression coefficient is
different from zero. Moreover, the F statistic confirms the null hypothesis when it is equal to

one. When F > 1, at least one of the variables is related to Y (James et al. 2013).

1.4.3.2. Logistic regression

Logistic regression is a type of classification model that is usually used for qualitative or
categorical data (James et al. 2013). This makes it a particularly useful model for health care
data, which often includes many categorical variables like diagnosis, sex, cancer stage, and
more. Perhaps more important is that unlike in linear regression, where the response variable
Y is usually a continuous variable, Y in logistic regression is a categorical variable with two
possible values. This therefore makes it possible to create models to predict which of two
categories an individual will belong to, such as whether or not they develop complications,

metastisize, or as in the present study, require a radiotherapy replan.

Consider a logistic regression model with one explanatory variable X. The model estimates
the probability P(X) that a given individual will belong to a specific category given the value
of the variable X. The probabilities can have any value between zero and one and the
variable will be classified according to their highest probability. In a univariate logistic

regression, the probabilities are calculated using the sigmoid function as follows:

_ _exp (BetBiX)
P(X) ~ ltewp (%0"'%1)()

Where B,and B, are the logistic correlation coefficients. Similar to linear regression,
statistical tests can be done to evaluate the probability these coefficients are non-zero and

assess the quality of fit of the model.

One of the important concepts associated with logistic regression models is the odds ratio. An
odds ratio (OR) is the ratio of the probability of being classified as category Z (for example,
needing a radiotherapy replan) and the probability of not being classified as Z (not needing a
replan):

- P
OR = s

30



To simplify the logistic correlation coefficients to a linear expression, the log function is
applied to the odds ratio:
log (OR) =B, +B,X

For a multivariate logistic regression, the expression is generalized as following:
log (OR) =B, + B, X, + ... +ByXy
(James et al. 2013).

The odds ratio is a simple way to compare the probability of something happening to the
probability of something not happening. In this thesis, the criterion variable is the replanning
and the odds ratio can be interpreted as the ratio of the probability (p) of a patient being

replanned and the probability of a patient not being replanned.

OR =1— p=1-p — there is no relation between the predictor and the response

OR>1—p>1—p — higher probability that the predictor is related to the criterion

variable

OR <1— p<1—p — lower probability that the predictor is related to the criterion

variable

When the predictor is a continuous variable, the odds ratio determines if the probability is
higher or lower with an increment in the predictor (Szumilas 2010; Hosmer, Lemeshow, and

Sturdivant 2013).
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2. HNC radiotherapy replanning

2.1. Head and Neck cancer

Head and neck cancers (HNC) originate in the squamous cells of the mucosa of the upper
digestive tract (Haddad 2010) and are classified according to the site in the body they
originate from. Common sites include the oral cavity, nasal cavity, nasopharynx,
oropharynx, hypopharynx, larynx, and major salivary glands (Deschler, Moore, and Smith
2014). Tobacco and alcohol consumption are important risk factors for HNC. HPV is another
common risk factor in the development of HNC, especially HPV 16, which is the most

common type of virus linked to oropharyngeal cancer (Beynon et al. 2018).

2.1.1. HNC treatment

The head and neck area is a complex area for cancer treatment because it contains many
overlapping structures with important basic functions. Accordingly, the treatment for HNC
varies depending on the site, type, and stage of cancer. For the squamous cell carcinomas of
the head and neck (SCCHN), treatment involves a combination of multiple modalities such as
radiation therapy, surgery, and chemotherapy (Yeh 2010). The exact choice of treatment will
depend on the location of the neoplasm in the head and neck in order to reduce the
probability of treatment significantly impacting the functions of nearby organs or decreasing

patient quality of life (Haddad 2010).

2.1.1.1. Surgery

The goal of the surgery in cancer treatment is to remove all neoplastic tissue. However, it is
not always possible if the cancer is in an unresectable location. Additionally, because there
may be microscopic neoplastic cells in tissues nearby the visible lesion, an excision margin
must be defined. This is an additional portion of tissue removed to catch those microscopic
deposits. These margins play an important role in determining if a patient needs
complementary treatment such as radiotherapy or chemotherapy and to what degree (Homer

and Fardy 2016).
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2.1.1.2. Chemotherapy

Chemotherapy is the use of cytotoxic drugs that target rapidly dividing cells like cancerous
cells. It is a systemic treatment, meaning it circulates throughout the body instead of being
localized to one area like surgery or radiotherapy. Because of this, it can also attack healthy
cells that replicate quickly, such as skin, bone marrow cells, hair, and intestines, and cause

side effects (Airley 2009).

Common chemotherapy drugs for HNC include cisplatin, fluoropyrimidines, taxanes, and
cetuximab (Airley 2009). Chemotherapy can also be delivered as an induction or
consolidation therapy. Induction chemotherapy is the use of chemotherapy as the primary
treatment modality to cure disease, as opposed to consolidation or maintenance chemotherapy
which ensures a patient stays in remission once a primary treatment has succeeded.
Depending on the cancer, an induction treatment may result in a partial response or total
response (cancer elimination) of the disease to the treatment (Airley 2009). Chemotherapy
can also be applied together with radiation therapy or surgery in order to obtain better
outcomes and prevent the recurrence of the disease. The combination of chemotherapy and

radiotherapy is usually called concurrent chemoradiation.

2.1.1.3. Radiotherapy in HNC

External beam radiotherapy is the standard treatment for SCCHN. As mentioned before, it
can also be combined with other modalities such as surgery and chemotherapy for a better
prognosis of the patient. Radiotherapy is usually either delivered post-surgery to remove the
remaining microscopic disease, or it is used with chemotherapy alone to reduce the radiation
side effects on OARs and to prevent metastatic lesions. Depending on the area of the head
and neck, the radiotherapy treatment varies in prescribed dose, fractionation scheme,

radiation fields set up and the technique used (Yeh 2010).
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2.1.2. Treatment variations depending on the site location of HNC

Due to the complex nature of the head and neck area, the choice of treatment modality used

to treat HNC depends on the site location of the tumour, the stage of the lesion and must take

into account individual characteristics of the tumour and the patient (Yeh 2010). Table

1.3.5.1. shows which treatment modalities are commonly used and in what combination for

several HNC sites. One thing to note is that chemotherapy is usually only used for advanced

diseases and/or inoperable tumours (Yeh 2010).

Table 1.4.1.1. Treatment modalities that can be used alone or in combination for HNC patients (Yeh 2010).

HNC site location Radiotherapy |Surgery Chemotherapy Brachytherapy
Paranasal sinuses Yes Yes Inoperable
Small and superficial

Nasal Cavity Preferred lesions
Oral cavity Yes Yes Advanced stage
Nasopharynx Yes Difficult Advanced stage
Oropharynx and soft
palate Yes Yes Advanced stage
Tonsillar region
(oropharynx) Yes Yes
Base of the tongue Advanced stage
(oropharynx) Yes Yes (inoperable)
Oropharyngeal wall Yes Yes
Hypopharynx Yes Yes

Advanced stage
Larynx Yes Yes (inoperable)
Salivary glands Yes Yes
Thyroid gland Yes Yes Yes

2.1.3. Secondary effects induced by radiotherapy in HNC patients

Head and neck patients are prone to developing side effects that impact the quality of their

lives. Even before treatment, tumour growth may affect essential bodily functions like the

ability to chew, swallow, and taste food (Larsson, M., Hedelin, B. and Athlin, E. 2003).
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Furthermore, irradiation to organs such as the parotid and larynx has a negative impact on

basic functions such as swallowing, chewing, and speaking (Haddad 2010).

Because important OARs are usually close to HNC targets, radiotherapy side effects are very
common. Radiotherapy side effects may be temporary or permanent, and can include pain,
swelling of the mucosa (mucositis), decreased saliva production, dry mouth (xerostomia),

problems swallowing (dysphagia), nausea, and loss of taste (van der Laan et al. 2015).

Muzumder et al (2019) describe the acute toxicities observed in a cohort of 164 patients
treated with radiotherapy where 56.7% were treated with concurrent chemotherapy. 89% of
the patients developed mucositis, 98.5% dysphagia, 54.7% aspiration, 93.2% dermatitis,
31.8% nausea, 47.9% vomiting, 50% anorexia, 87.2% weight loss and 89.2% pain.
Muzumder et al also showed that most HNC patients develop mucositis and dysphagia by the
third week of their radiotherapy treatment. Additionally, mucositis was also found to be the

leading cause of interruption of the patient's treatment (Muzumder et al. 2019).

All the side effects combined with stress, low self esteem and depression can cause nutrition
problems and weight loss during radiotherapy, which in turn can lead to immunosuppression

and higher mortality in these patients (Larsson, M., Hedelin, B. and Athlin, E. 2003).

2.2. Current status and challenges of HNC radiotherapy replanning

In the literature, HNC replanning is less studied than weight loss, with a lot of studies
reporting a new ART strategy or reporting on how patients benefit from it, rather than
studying the factors associated with replanning. This section summarizes the current research
on tracking and predicting anatomical changes in patients to determine the factors that

determine replanning.

Radiotherapy dose distributions are conformal to the target. Thus, significant anatomical
changes in the neck region impact the accuracy of the radiotherapy treatment delivery and the

treatment plan has to be adapted accordingly. As mentioned in section 1.5.3, weight loss is a
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very common side effect in radiotherapy linked to anatomical changes of HNC patients.
Additionally, because of location, shrinkage of tumours or swelling of organs in response to

treatment impacts the anatomy in the treatment beam more than other cancers.

2.2.1. Anatomical changes during HNC treatment

The impact of tumour shrinkage on patient positioning errors is quantifiable with imaging
and has been found to be non-negligible. For example, a study by Hou ef a/ (2016) of 217
nasopharyngeal cancer patients found significant mean anterior-posterior (AP) positioning
errors of 2.9+ 1.1 mm for the target volume when patients had weight loss equal or lesser
than 5% of the initial weight. This setup error increased to 3.6 + 1.5 mm for patients with
weight loss higher than 5% and even exceeded 5.0 mm in 16% of patients (Hou et al. 2016).
For head and neck cancers, the extension margins added to the CTV vary from 3.0 mm to

5.0 mm (Chen et al. 2011).

The main predictors of replanning are tumour changes and the weight loss, but many studies
investigate as well the shrinkage of the parotids as a measure of the volume loss in the neck
region (Schwartz and Dong 2010; Barker et al. 2004; Loo et al. 2011). Additionally, many
studies are performed in small cohorts due to lack of automatization of the process and
problems of data availability. Most studies are performed with patients having standard

prescription doses (60 Gy, 66 Gy and 70 Gy delivered in 2 Gy/fx)

One study by Schwartz and Dong (2010) investigated the online adaptive radiotherapy of 22
oropharyngeal patients who completed radiotherapy in late stages of oropharyngeal cancer.
All patients needed to be replanned at least once and eight (36%) were replanned twice. The
median fraction at which the first replan occurred was 16, at which point both the CTV and
parotids had shrunk on average by 4% and 15% respectively. Total mean shrinkage by the
end of treatment was 15% for the CTV and 26% for the parotids (Schwartz and Dong 2010).

Baker et al (2004) and Loo et al (2011) found that weight and parotid volume decreased
during radiotherapy treatment. Loo et al (2011) reported a mean volume loss of 350 ml
ranging from 289 ml to 428 ml, when measuring the skin contour limited by the length of the

target volume. Baker et al (2004) reported a GTV median volume loss of 1.8% per day and
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69.5% at the end of the treatment. Additionally, Baker et al (2004) measured the shift of the
center of mass of the parotid glands during radiotherapy. They found that the parotid shifts
were highly correlated to weight loss. The median weight loss was greater than 6% at the end

of the treatment (Barker et al. 2004; Loo et al. 2011).

The high correlation between parotid shifts and weight loss found by Barker et al (2004) may
be an indication that the volume loss in the neck area is somehow linked to total weight loss
(Barker et al. 2004). However, taking into account that patients may have different body fat
distributions, their total weight loss may not represent accurately the volume loss in the neck.
This is why the correlation between weight loss and neck area loss will be investigated in this

thesis.

Because of these anatomical changes, replanning HNC patients to adapt their treatment plans
according to their individual weight loss and tumour response can improve the overall quality
of their treatments (Gensheimer and Le 2018). Studies suggest that for patients in late stages,
some sort of replanning improves the survival of the patients (L. Zhao et al. 2011). However,
different institutions have different criteria for replanning and consensus is lacking in the

literature on what are the best predictors.

Additionally, Ma et al (2014), found that the weight loss has a greater impact than the tumour

shrinkage in the dose distribution of the treatment plan. (Ma et al. 2014)

2.2.1.1. When to replan

The time of replanning is as important as the predictors, given that a prediction of when to
replan is the tool that would allow us to improve the clinical workflow. In this section the
studies of Brown et al (2016) and Guide et al (2016) are described regarding their predictions
of the time of replanning in HNC radiotherapy treatments of duration of 7 and 6 weeks,

respectively (Brown et al. 2016; Guidi et al. 2016).

Brown et al (2016) studied 21 oropharyngeal and node positive nasopharyngeal patients with

a total prescription dose of 70 Gy in 35 fractions and concurrent chemotherapy. Patients were
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imaged daily with CBCT and imaged a second time with a CT to identify if they needed a
replan. From those 21 patients only 5 were replanned (4.5% from the total number of
patients). The reason for replanning was that the dose planned for the brachial plexus was
surpassing the constraints. At the time of the second CT, the median weight loss of the
patients was 10.3%. Patients imaged a second time with CT, were grouped in replanned and
not replanned. The median fraction in which the second CT was acquired was 22 (10-25).
Additionally, replanned patients had an earlier CT and the median fraction for replanning was
significantly different between patients replanned and not replanned. Other anatomical
changes were measured at the time of the second CT, such as 42.8% volume loss of the
largest node and a volume loss of 20.3% and 21.7% for both parotid glands (Brown et al.
2016).

Guide et al (2016) used a machine learning approach to predict the time of replanning during
radiotherapy. They tracked the volume of the parotid during radiotherapy for 90 patients at
four different institutions. The total prescription dose for those patients was 66 Gy in 33
fractions in the tumour and 54 Gy in the lymph nodes. The decision of when to replan was
based on clinician perspective. Their software predicted that most patients were not receiving
good treatment at the 5th week of radiotherapy. Additionally the volume loss of the parotid
after 6 weeks was 23.7 £ 8.8% (Guidi et al. 2016).

Even though the definition of when a patient has to be replanned was specific to each clinic,
the decision for replanning was correlated to visible anatomical changes occurring at least
two weeks before the end of treatment. However, the volume estimation at the time of
replanning had statistical deficiency given that it was based on a really small dataset. Overall,
the time of replanning needs more studies before it can be determined accurately (Brown et

al. 2016; Guidi et al. 2016).

2.2.2. Factors that influence weight loss

While weight loss is one of the reported causes of replanning, it is not a perfect predictor. If
the effects of weight loss are more evident in the abdominal region rather than in the neck

region, a HNC patient may not need a replan. Weight loss instead may indicate eating
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problems that decrease quality of life and should be handled accordingly. For this reason,
many studies have examined possible predictors of weight loss during radiotherapy with and

without considering the relation to replanning.

According to Lonbro et al (2016); chemotherapy in addition to radiotherapy can increase the
weight loss of the patients. Additionally, different studies report different HNC site locations
associated with weight loss. Lonbro et al (2016); reported that pharyngeal and oral cavity
cancer increased the probability of weight loss (> 5%) when compared to glottic cancer
(laryngeal cancer). Ghadjar et al (2015); reported the weight loss of patients from oral cavity,
oropharynx, hypopharynx and larynx. Zhao et al (2015); classify oropharyngeal and oral
cavity as moderate predictors for weight loss (Lenbro et al. 2016; Ghadjar et al. 2015; Zhao
etal. 2015).

Both Caciedo et al (2015) and Lonbro et al (2016); reported higher weight loss for advanced
stages of cancer (III and IV) than for cancer earlier stages (I and II). Zhao et al (2015);
reported cancer stage as a strong predictor of weight loss (Cacicedo et al. 2014; Lonbro et al.
2016; Zhao et al. 2015). A higher body mass index (BMI) at the start or before treatment was
reported to be related to greater weight loss during radiotherapy (Lenbro et al. 2016; Zhao et
al. 2015). However, the height of patients was not systematically recorded at our clinic and

consequently, the BMI data was not considered for this thesis work.

A common practice to analyze weight loss during radiotherapy is the use of a 5% weight loss
threshold to classify and compare patients (Ghadjar et al. 2015; Lenbro et al. 2016; Cacicedo
et al. 2014). On the other hand, other studies reported the use of univariate and multivariate

analyses as well as observational studies (Zhao et al. 2015).

Most studies seem to predict the total weight loss during radiotherapy rather than reporting
the weight loss as a function of time. Additionally, they report the absolute change of weight
in kg, which makes it difficult to compare time series patients of different BMIs and adds

significant error bars to their studies (Cacicedo et al. 2014; Lenbro et al. 2016).
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Another observation from the literature is that weight loss studies were performed in cohorts
with a greater number of men than women (Cacicedo et al. 2014; Lenbro et al. 2016;
Ghadjar et al. 2015). This may be due to the fact that around 74% of HNC cases are men and
only 26% are women (Siegel, Miller, and Jemal 2020), but the relation between weight loss

and sex will also be investigated in this thesis.

Across the various retrospective studies reported in the literature and mentioned in this thesis,
the maximum number of patients analyzed in a single institution was 476 by Ghadjar et al
(2015). This shows that in general the number of HNC patients treated in a single clinic is
relatively small for statistical analysis, which is a limitation for a study that involves so many
predictors. On the other hand, the review from Zhao et al (2015); involves the results from a
total 6,159 patients. Even though the review has the limitation of not being able to use the
statistical power to analyze the predictors for all of the patients in a single shot, it can help to
point out which results are consistent across the treatments that different institutions apply

(Zhao et al. 2015; Ghadjar et al. 2015; Lonbro et al. 2016; Cacicedo et al. 2014).

2.2.3. Challenges for HNC replanning prediction

Regardless of the method used for radiotherapy replanning, it remains a time consuming
process that requires many clinical resources. In the literature, the decision of when to replan
was found to be correlated to anatomical changes such as weight loss, tumour and parotid
shrinkage, occurring at least 2 weeks before the end of treatment (Brown et al. 2016; Guidi et
al. 2016). A prediction of when to replan radiotherapy would thus be useful to reduce the
workflow of the clinic as well as the costs of replanning and potentially improve the

treatment of patients.
In general, small HNC cohorts were found in the literature for the investigation of weight loss
and tumour shrinkage. The use of small cohorts leads to poor statistics in the study of

replanning variables.

The role of data collection for research purposes is often underestimated. Some of the

challenges that are faced in the Radiation Oncology environment are the patient's privacy
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which makes the data unavailable to researchers, the low quality of the data and the lack of
standardization of the data. Those characteristics also limit the possibility to share data
between institutions to increase the repository, which is always useful for statistical analysis
and the implementation of machine learning algorithms. Small datasets make it difficult to
compare data between institutions and to study cohorts of many patients that share common

characteristics (Lustberg et al. 2017).

A limitation of using weight loss during radiotherapy as a replanning predictor, is that it may
not be representative of the volume changes in the neck region. Thus, there is a need to find a
parameter that shows the volume loss in the neck. In this thesis, it is proposed the neck area
parameter, that measures the change in the area in a single slice in the neck during
radiotherapy. This parameter will be evaluated and compared to the weight loss to measure

the track the proportional neck changes during radiotherapy.

2.2.4. Replanning predictors selection

There is still a lot of work to do to improve statistics regarding replanning predictors. Based
on our understanding of the literature, we decided to examine the following factors:
Anatomical changes during radiotherapy such as weight and area loss, the HNC site location,
the stage of the cancer, the presence of concurrent chemotherapy appointments during
radiotherapy, the radiotherapy information such as prescription dose and treatment fraction
and patients demographics such as sex and age at the start of the treatment. Those parameters

were integrated into a single dataset as illustrated in figure 2.2.4.1.
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Figure 2.2.4.1 Replanning predictors during radiotherapy that were examined in this thesis research
project.
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3. Methods

This thesis describes a retrospective study involving head and neck cancer patients treated
with radiotherapy at the McGill University Health Centre (MUHC). Within the radiotherapy
department, the radiotherapy treatment information is stored and managed using the Aria
Oncology Information System from Varian Medical Systems (Palo Alto, California), the
PACS information system and other repositories developed for local use. The steps followed
for the patients’ data collection, processing, storing and analysis will be described in this

chapter.

3.1. Patient Cohort

The cohort used in this study consisted of 490 HNC patients that completed radiotherapy
treatment between 2012 and Fall 2019. Patient data was eligible for inclusion inr this study if
the patients were diagnosed with cancer disease in the head and neck area and they were
treated with external beam radiation therapy with prescribed dose to the targets of 60 Gy, 66
Gy and 70 Gy delivered in 2 Gy/fx. Another requirement for these patients was to have

weight data available during their radiotherapy treatment.

The data were grouped in sub cohorts when the data was available only for specific periods of
time. For example, chemotherapy data were only available from 2016 to 2019, and a

subcohort of 260 patients was created accordingly.

Additionally, a subcohort of just 18 patients was created for a pilot study to examine
anatomical changes in the neck. The 18 patients used for this study were randomly selected
from the patients treated in 2018 and 2019 with the requirement that they were in the initial

cohort and that they were all prescribed a dose of 70 Gy.

3.1.1. Radiotherapy plan considerations in the patient’s cohort selection

For data homogeneity, only one radiotherapy course of treatment (labelled C1) was
considered. This was fundamental in the hypothesis that patients receiving a second treatment

course could be more affected than the patients with only one course because they had
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received prior radiation. Additionally, only the first replan was analyzed given that only a few

patients had a second replan.

Initially, the following standard fractionations used in the MUHC for HNC radiotherapy
treatment were considered: 2 Gy/ fx delivered in 20 fx, 30 fx and 33 fx for a total prescribed

dose of 70 Gy, 66 Gy, 60 Gy and 50 Gy.

At the MUHC, the prescription dose of 70 Gy (2Gy/fx) is usually used for patients that are
treated by radiotherapy and for whom no surgical resection is performed. Chemotherapy is
used for advanced diseases (stage III and IV). The predominant cancer site location for this
prescription dose is oropharyngeal cancer because the clinicians try to avoid surgery to

preserve the vocal cords.

Additionally, the prescription dose of 60 Gy or 66 Gy (2 Gy/fx) has been used for HNC
patients characterized by a positive external margin and extranodal extension in the lymph
nodes. Radiotherapy treatment for this prescription is usually combined with surgery and

concurrent chemotherapy is used depending on the stage of cancer.

Furthermore, the 50 Gy (2 Gy/fx) prescription dose has been used for laryngeal cancer of
early stage (T1), which is treated mostly by Radiotherapy. Chemotherapy is rarely used for
these cancer conditions. Given the fact that the patients of 50 Gy total prescribed dose were
hardly ever replanned during their treatments, this group of patients was not included in the

further analysis.

Moreover, patients that received hyperfractionation (1.8 Gy/fx) and fractionation schemes

different from 2 Gy per fraction in 30, 33 and 35 fractions were not considered for this study.

3.2. Data Collection

For the purpose of this project, data from the patient’s treatment stored in the Aria database
and the AEHRA (Automatic Electronic Health Record Auditing) database, previously created

for data centralization for radiation oncology quality assurance at the MUHC, were required;
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(Joseph et al. 2014) and DICOM images stored in the institutional PACS. As the reader can
infer, the data from relational databases were obtained using the SQL language, while the

DICOM images were accessed through Varian’s Eclipse software.

In this thesis, the Aria database was used to gather information about the radiation treatments,
weight’s data, demographics of the cohort, diagnosis, stage of cancer and CBCT image data.
The treatment radiation data included the dates of the treatment, course of the treatment, plan
information, treatment fraction and prescribed dose. The image data consisted of the
filenames and dates of the CBCT images acquired during radiotherapy for treatment
positioning. The data were gathered for all 490 patients with the exception of the CBCT

image data that were only available for non Tomotherapy patients.

The AEHRA database was useful for two things: First, to identify which diagnosis codes
belong to the HNC classification. Second, to identify which patients in the cohort had
radiotherapy with concurrent chemotherapy. The chemotherapy data were only available

from 2016 onwards.

Additionally, CBCT images of 18 HNC patients acquired during their radiotherapy treatment
were identified and downloaded from Eclipse as DICOM files. Their respective treatment
plan data, CT images, structure files and image registration files were also obtained in
DICOM format. The DICOM files would be used as the input for the neck area script, which
was built to track cross sectional changes in the neck. Details about this script are described

in this chapter.

3.3. Data processing

The radiation oncology department of the MUHC offers a wide variety of data. However,the
data needed for the project was not in the expected format and it required the mining and

processing of the information described in this section.
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3.3.1. Considerations for data availability

The weight data come from nutrition appointments programmed according to each patient’s
individual needs. As a consequence, the weights were not acquired for every single day of
treatment. Due to the sparse nature of weight data, the frequency of the weights data and the

spacing between days were examined to determine the best way to approach the problem.

On the other hand, the CBCT images were acquired twice per week according to institutional

protocol. This information was verified on extraction from the Aria database.

Additionally, a common timeline for both images and weights data was investigated. The
data had to be grouped to reduce the number of missing data points. A potential way to pair
the weight’s data with the CBCT data was to group the data by week. However, if the
treatment starts on a day other than Monday, the treatment can be extended by an “extra

week”.

To avoid having different treatment durations for the same prescription dose, the better option
available was to group the data in samples of 5 fractions that would be the equivalent of one
week if the treatment started on Monday. This measure would also assure that the treatment
data were distributed evenly and the patients were compared at periods of their treatment in
which they received the same amount of dose. If we consider a daily fraction, there were five
fractions a week delivered for every patient. This structure also allows unifying the weight’s
data and CBCT data. On average, patients have two data points every five fractions from the

CBCT data, and only one data point from the weight’s data.

3.3.2. Other considerations to format the data in a useful manner for analysis

The following considerations were taken into account for preprocessing each patient’s data in

a useful way for analysis:

e Concurrent chemotherapy: The HNC patients were grouped in two categories:
“chemo” and “no chemo”. In the “chemo” category patients had at least one

concurrent chemotherapy appointment registered. The chemotherapy cycle was
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assumed to be administered during the appointment. Concurrent chemotherapy was a
factor that was observed to contribute to anatomical changes in the patients so it was
important to consider.

HNC site location: At the MUHC, diagnosis is classified according to the
International Classification of Diseases, Tenth Revision (ICD-10) codes (World
Health Organization (WHO) 2019). The HNC site location was derived from the
anatomy location of the disease. This classification was performed under the
motivation of analyzing the data by the irradiated area. Patients with oral cavity,
oropharyngeal, laryngeal, hypopharyngeal, major salivary glands, nasal cavity and
nasopharyngeal cancer were found. Given that diagnosis is related to the patient and
not to the radiation treatment, one patient could have more than one diagnosis in their
record. From the 490 patients’ cohort, nine patients belonged to two categories of
diagnosis and stage and one of them belonged to three. All of these patients were
considered in the analysis.

Stage of cancer: The stage of the cancer was an important parameter because it is a
determinant in the treatment modality selection and in the treatment plan. Just the
summary stage was used for the analysis because the TNM classification has too
many variants that divided the data into too many subgroups that did not have
statistical significance. For the same reason as for diagnosis, 12 patients had two
stages and one had three. All were considered in the analysis.

Sex: The sex of the HNC patients was extracted from the Aria database without the
need for further processing. The motivation to include this parameter was to analyze
the potential relation of sex in the anatomical changes of HNC patients.

Age at the start of the treatment: The possibility of different responses to the
treatment in HNC patients according to their age was interesting to analyze. The age
of the patients was obtained at the start of their treatment.

Replanning: Due to the lack of standardization of plan names, a Plan Replan
classification that unified the nomenclature of all the treatment plans was created. The
first digit of the Plan Replan classification corresponds to the number of the Plan and
the second digit corresponds to the number of the Replan. These parameters were
defined by the treatment course in question. Additionally, a binary classification was

added to identify if patients were replanned or not during their treatments.
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e Fraction of replan: Binary classification that has one in the fraction in which the
patients were replanned and zero otherwise.
o Weights at the fraction of replan: This classification was performed to identify a

potential threshold for the weights at the time of the replanning.

3.3.3. Calculation of Neck area data

As mentioned in chapter 2, the replanning of head and neck cancer patients is usually due to
the neck anatomy changing from what it was at the time the planning CT was taken. While
this is usually associated with weight loss, we recognized that not all patients will lose weight
in the head and neck region in the same way and that weight alone may not sufficiently
predict the need to replan a patient. For this reason, we conducted a small pilot experiment
where we calculated the cross-sectional area of patients’ necks over the course of treatment

using daily CBCT images.

The code to calculate neck areas was written in Python using the Pydicom, OpenCV,
Pandas, OS, Scipy and Numpy libraries (Andrade and Naseri 2020). The script uses CT
images, CBCT images, beam geometry, structure and registration DICOM files as input and
returns the calculation of the patient’s neck area at the same position over the course of their

treatment as output.

The input DICOM files are the following:

e (T DICOM files: One CT volumetric image consists of many files where every file
represents a slice of the volume. A CT image is of great importance because the
treatment plan was created on these images. There are as many CT images as
treatment plans.

e CBCT DICOM files: They also represent a CBCT volumetric image. The CBCT
images were acquired twice a week on average and they were used to verify the
patient’s positioning during RT treatment. On every fraction, the CBCT was

registered to the CT of their corresponding treatment plan.
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Registration (RE) DICOM file: The CBCTs were registered to the CT images during
the patient's treatment and the image was stored in the PACS system in DICOM
format. The registration sequence contains the frame of reference of the affine
transformation that maps two images. For this project, the rotation matrix was
assumed to be equal to the identity because rotation could be absorbed on the slice
thickness.

Structure (RS) DICOM file: This file contains the volumetric coordinates of the
structures contoured by the clinician for the treatment plan. Since they are associated
with the treatment plan, the frame of reference used was the same as the CT. The
coordinates are defined in mm. In particular, there were used the coordinates of the
submandibular gland structure to locate the neck in the 3D volume.

Beam geometry (RP) DICOM file: This file contains the data of all the beams used in
the treatment plan. This file was only used to obtain the isocenter coordinates in the

CT frame of reference.

To understand the process, it is important to remember that there is one CT image per plan,

there is at least one treatment plan per patient and there may or may not be a replan for each

patient. This results in more CBCT than CT images for a single patient. In turn, every CBCT

image accounts for one treatment fraction. The workflow of the neck area code for a single

patient and fraction is summarized in the following steps:

1.

2.

Load input images: The script reads both CT and CBCT volumetric images and stores
them in a 3D 512 x 515 x n grayscale matrix, where # is the number of axial slices
along the superior-inferior axis. It also identifies if the patient was replanned or not
and the treatment fraction number. The z axis is in the direction of the patient’s height
and the 3D volume can be seen as a collection of 2D arrays at different points on the

patient’s height. Each point represents an axial slice of the patient.

Registering the CBCT to the CT: Using the registration file, the script next registers
the CBCT and CT images to the same coordinate system. To do this, the CBCT and
CT meshes are first converted from pixels to mms to match the units of the affine
transformation stored in the registration file. Then, the CBCT matrix is translated into

three dimensions to align with the CT. While the affine transformation also includes a
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rotational component, the rotation is negligible and therefore ignored in this project.
Thus, only the translation in X, y and z axis is considered. Also, to map from one
reference frame to another is necessary to transform the pixels to mm using the pixel
spacing. This is to account for the difference in field of views between CT and CBCT

images.

Selecting a neck slice in the CT frame of reference: Because CBCT and CT files do
not have tags to identify an appropriate slice in the middle of the neck, we used the
structures drawn by clinicians on the planning CT image to identify a suitable neck
region. After investigating, we chose to use the z-coordinate of the center-of-mass of
the submandibular gland contour to select the slice to be used for area calculations.of
interest in the registered CBCT image. In figure 3.3.4.1 the contour of the left
submandibular gland cross section in the yz plane can be seen. This point was
selected because of its location in the neck with little interference from the shoulders.
Az is the length of the submandibular glands on the z axis. The coordinates of the
middle point Az/2 of the submandibular glands will be used to select a slice in the z

axis.
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Figure 3.3.4.1. Length of the left submandibular gland Az on the z axis in the plane yz of the

patient.

4. Obtaining the body contour of the region of interest at the level of the neck: Once the
appropriate slice was identified in the registered CBCT, the 2D cross section was
extracted using a thresholding technique using the OpenCV2 library (OpenCV 2020).
The function cv.findcontours identifies shapes based on pixel intensity and the body

contour is selected as the one with the maximum length.

5. Obtain the area of the body contour: The area of the neck at the selected location is
calculated with the cv2.moments(cnt) function from the OpenCV library that uses the

center of mass of the contour to find the area.

This process was used to calculate neck areas for a pilot investigation of 18 patients (11
replanned, 7 not replanned). Neck areas were calculated for all CBCTs for all patients. On
average, each patient had 14 CBCT images taken over the course of treatment. The output

data were stored in the weights project database.
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3.3.4. Normalization of the neck area and weights data for comparison between patients

Having data from various different sources, there was a need for data integration. Luckily, the
radiotherapy treatment parameters were common to the CBCT images data and relational
data. The fusion of the data was thus performed for every patient and it required the

normalization of the parameters.

The two parameters that were investigated to track the anatomical changes of patients during
their radiotherapy treatments are the patient’s weights and the area in a region of interest in

the neck.

As mentioned before, the first step in the data integration was to sample the patients' weights
and the CBCT images every 5 fractions, and to unify and homogenize the number of the
time-series data points per patient. Another step for the integration of the data was the
normalization of the data points to the first value, allowing determination if the variables

increased or decreased their value during the patient's treatment.

For the CBCTs, the data normalization of the replanned patients was straightforward since all
the patients were imaged on the first day, following the MUHC protocol. However, there was
an extra normalization needed for replanned patients. In that case, there were two treatment
plans and the data points from the second treatment were normalized to the last data point of

the first treatment.

In the case of the weights data, there was the challenge of patients not weighted during their
first five fractions of radiotherapy treatment. To account for the missing data points, patients'
weight was tracked backwards to 15 days before their start of the treatments. This step was
based on the assumption that patients' weight may not vary significantly before radiotherapy
treatment. However, there were patients with no weights registered 15 days before
radiotherapy or during their first 5 fractions. In this case, the first weight available was taken

as the first weight of the treatment.
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Additionally, linear interpolation was used to fill the missing values for patients in which
their weights data were sparse even after the five fractions sampling.

For both CBCTs and weights, the data points were normalized for every patient, and the data
points acquired between five fractions were averaged to obtain the same number of points for

both parameters.

3.4. Data Storage

Since the project’s data were distributed across various sources, we created the
weights project database in order to gather and store the processed data for analysis. The
weights project database was created using Python and MySQL and is securely mounted on
a Linux server within the department. The database has raw data and mined data, cleaned and
processed from the Aria and AEHRA databases and relational data obtained from DICOM

image processing.

A local repository in the MUHC network was created to temporarily store the CBCT images
for the 18 plans examined in neck area study. To trace the files to their origin, the names of
the folders storing the files were arranged to have information about the plan or replan and

fraction number.

Finally, the neck area table was created in the weights project database to store the output of
the neck area script. The flowchart of the complete process of the creation of the

weights project database is illustrated in figure 3.4.1.
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Figure 3.4.1. Flowchart of information into the weights_project database
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Table 3.4.1. Content of weights_project database tables

Table name

Content

Area weight integration

Contains the area of a region of interest of the neck and the patients’ weight
integrated data from 18 HNC patients ready to be analyzed. (2018 - 2019)

CBCT images

CBCT images names from RT HNC patients (data from 2016 - 2019)
*Input table

Diagnosis categories

HNC cancer categories by cancer site location
*Input table

Diagnosis categories catalogue

Dictionary between the ICD-10 HNC diagnosis codes and HNC categories
*Input table

Neck area

Neck area of a region of interest of the head and neck (for 18 HNC patients)
(2018 - 2019)
*Input table

Patientld catalogue

Dictionary of Patientld to anonymous ID (for 490 HNC patients)
*Input table

Patient age

Patients age at the start of their radiotherapy treatment (for HNC patients
2012 - 2019)
*Input table

Replanning_predictors

Contains the weights processed data from 490 HNC patients ready to be
analyzed. (2012 - 2019)
*Qutput table

Replanning_predictors chemo

Contains the weights processed data from 260 HNC patients ready to be
analyzed. Includes concurrent chemotherapy information (2016 - 2019)
*Qutput table

RT plan_data

RT plan data: specifies prescribed dose, plan and replan of HNC patients
(2012 - 2019)
*Input table

RT treatment dates

RT treatment plan dates by fraction number and plan (for HNC patients from
2012 - 2019)
*Input table

Weights data

Patients’ weights (for HNC patients from 2012 - 2019)
*Input table
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3.5. Data analysis

In addition to descriptive statistics like mean, median and standard errors, various statistical
tests and models were used to compare the replanned and non-replanned populations. This

section outlines these tests and models.
3.5.1. Univariate analysis between patients replanned and not replanned

A univariate exploratory analysis was performed to explore which factors may be related to
the replanning. Continuous and categorical variables for replanned and not-replanned patients
were compared. Each subcategory of the HNC site location, the presence of concurent
chemotherapy, patient sex and cancer stage variables were compared proportionally between
replanned and not-replanned patients. Additionally, a x> test was used to verify that the

relation between the categories and the replanning was statistically significant.

On the other hand, the distributions of the patients' age and total weight loss were compared
between replanned and not-replanned patients using the Mann Whitney U test. For this work,

the null hypothesis stated that there was no difference between replanning distributions.

Both the %> and Mann Whitney U tests were performed using the Scipy package from
Python.

3.5.2. Multivariate regression models

Multivariate linear and logistic regression models were chosen to find the predictors of the

anatomical changes (weight loss) and when to replan a patient.

There were two models of linear regression and logistic regression: The first model included
all 490 patients without adjuvant-chemo data, and the second model included only the 290
patients from when chemo data were available. From all the variables considered in the
models, only the relative weight was considered continuous while the rest of the variables

were considered categorical. The models were calculated using the linear model function /m
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from the R statistical package. Also, the 95% confidence intervals (CI) were calculated for

each of the coefficients considered in the models.

The models were runned several times to find the best combination of variables that would
produce statistically significant regression coefficients. In the case of the linear regression
model, the R”parameter was also used to choose the best model. The variable sex was
excluded from all the final models because it was not found to be statistically significant in

either the univariate or multivariate models (p > 0.05).

Since the weight was the only parameter from which we had enough information to
understand which parameters affect the anatomical changes during radiotherapy, a linear
regression model was created to predict the relative changes in the weight. For the 490
patients cohort, the independent variables were HNC site location, cancer stage, prescription
dose and patients age. In the 260 subcohort, the HNC site location, cancer stage were
replaced by the presence of concurrent chemotherapy. Even though age was not found to be
correlated to the replan in the univariate analysis, it was used in the linear model to see if it

had any relation with the weight loss.

On the other hand, the logistic regression models were used to find the predictors of the time
of replanning. The fraction number at the time of replan was modeled using a binary variable,
which had the value of one, only if the patient was replanned at that fraction, and zero
otherwise. The independent variables were the weight loss (%) during radiotherapy, the

treatment fraction and the presence of concurrent chemotherapy.
3.5.3. Anatomical changes time series analysis

The preprocessing of the data facilitated the construction of time series of neck area and
weight to track anatomical changes during radiotherapy. Medians, means, and standard error
were calculated to represent the data relative weight of the patients sampled in 5-fraction

increments. In particular, time series for each prescription dose were created.
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First, the weight time series were compared to the replanning fraction. Afterwards, a pilot
study compared neck area and weight to identify if the weight represents accurately the
anatomical changes in the neck. Mann Whitney U tests were performed to determine if the
replanned and not-replanned patients’ time series were significantly different at each fraction
for both area and weight. Additionally, differences between area and weight at each fraction
were computed for all patients. Finally, the relative changes in the neck area and patient’s

weight were compared.
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4. Results

4.1. Univariate evaluation of replanning

To begin, a preliminary exploratory analysis comparing characteristics between patients who
were and were not replanned was conducted to identify potential factors that may have
influenced the choice to replan. These characteristics included HNC site location, the
presence of concurent chemotherapy, patient sex, patient age and cancer stage. Although
these factors are not directly related to the anatomical changes associated with replanning,

they may have played an indirect role.

Patients were classified according to their prescription dose in the 60 Gy, 66 Gy and 70 Gy
groups. The majority (58%) of patients were prescribed 70 Gy, compared to 60 Gy (18%) and
66 Gy (24%). Interestingly, the 70 Gy prescription also had the highest proportion of patients
replanned (50%), equal to those not replanned, compared to the proportion of patients
replanned in the 66 Gy (32%) and 60 Gy (24%) prescriptions. Figure 4.1.1. shows the
proportions of patients replanned and not replanned as a percentage of the total population of
490 HNC patients. Additionally, differences in the prescription dose between patients

replanned and not replanned were confirmed statistically significant by a ¥ test (p < 0.005).
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Figure 4.1.1. Proportion of patients replanned and not replanned in groups of total prescribed doses of
60 Gy, 66 Gy and 70 Gy. Total of 490 HNC patients.
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Figure 4.1.2 shows the proportions of patients replanned and not replanned according to sex
(a), HNC site location (b), cancer stage (c) and concurrent chemotherapy (d). Additionally,
table 4.1.1 complements the figures 4.1.1 and 4.1.2 (a - d) with the frequency counts and p -
values from x> tests comparing the number of patients replanned and not replanned of each

variable.

The relation between patients sex and replanning is not statistically significant (NS) as shown
in table 4.1.1 and figure 4.1.2 a). Also, a dominance of male HNC patients is preserved in the

data with 71% of male patients in the main cohort.

On the other hand, HNC site location does have a statistically significant impact on the replan
(p < 0.005) as shown in table 4.1.1 and figure 4.1.1. b). They also show that oropharyngeal
cancer is the only cancer category which incidence increases (124%) in the patients replanned
compared to the not replanned patients. Nasopharyngeal cancer incidence remains equal but
is proportionally higher for replanned patients, while the rest of HNC site location

proportionally decreased in replanned patients.

Cancer stage is also significantly different (p < 0.05) between replanned and not replanned
patients (table 4.1.1 and figure 4.1.2 c. In both groups, advanced stages (III and IV) are
dominant over early stages (I and II). Undefined stages (X) are the second more common
stage after stage IV. Stages (IV and X) are the only two categories that increased their

incidence in replanned patients compared to not replanned patients.

Moreover, the relation between the concurrent chemotherapy and replan is shown in (table
4.1.1 and figure 4.1.2 d). A limitation of this study was to have the information from
chemotherapy appointments only for 260 patients from 2016 to 2019. From the graph, it can
be observed that patients replanned, more often received chemotherapy. Moreover, the

relation between chemotherapy and replanning is statistically significant (p < 0.005).
Figure 4.1.3 illustrates the distribution of the patient’s age at the start of the treatment. Figure
4.1.4 shows the total weight loss distribution at the end of the treatment. Mann—Whitney U

tests were performed to compare age and weight loss of replanned and not replanned patients.

59



Both patients replanned and not replanned seem to have similar age distributions (p = 0.30).

The median age at the start of the treatment is around 63 + 11 years for both distributions.
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Figure 4.1.2. (a-d) Proportions of patients replanned and not replanned for patients sex, HNC site
location, cancer stage and concurrent chemotherapy. There were considered 490 patients for (a-c) and
260 patients for (d).



Table 4.1.1. Frequencies and y? p -values of prescription doses, patients sex, HNC site location,

cancer stage and concurrent chemotherapy in patients replanned and not replanned.

All Replanned | Not replanned
N=490 N=201 N=289
Prescription dose P <0.005
60 (Gy) 86 (18%) 21 (10%) 65 (22%)
66 (Gy) 120 (24%) 38 (19%) 82 (28%)
70 (Gy) 284 (58%) 142 (71%) | 142 (49%)
Sex P=0.32 (NS)
Female 141 (29%) 53 (26%) 88 (30%)
Male 349 (71%) 148 (74%) | 201 (70%)
HNC site location P < 0.005
Hypopharyngeal 19 (4%) 8 (4%) 11 (4%)
Laryngeal 92 (19%) 33 (16%) 59 (20%)
Major salivary 25 (5%) 3 (1%) 22 (8%)
Nasal cavity 29 (6%) 8 (4%) 21 (7%)
Nasopharyngeal 18 (4%) 9 (4%) 9 (3%)
Oral cavity 117 (24%) 40 (20%) 77 (27%)
Oropharyngeal 168 (34%) 93 (46%) 75 (26%)
Other 33 (7%) 11 (5%) 22 (8%)
Stage P <0.05
I 22 (4%) 6 (3%) 16 (6%)
II 33 (7%) 8 (4%) 25 (9%)
111 76 (16%) 25 (12%) 51 (18%)
v 198 (40%) 92 (46%) 106 (37%)
X 173 (35%) 74 (37%) 99 (34%)
All Replanned | Not replanned
N=260 N=76 N=184
Chemo P <0.005
Yes 171 (66%) 63 (83%) 108 (59%)
No 89 (34%) 13 (17%) 76 (41%)

On the other hand, weight loss was significantly different for replanned and not replanned
patients (p < 0.005). The median weight loss was 6.26 =4.54 (%) for patients replanned,

while it was 4.69 +4.60 (%) for patients not replanned.
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Figure 4.1.3. Violin plots of the age of the patients replanned and not replanned at the start of their
radiotherapy treatment. Total 490 HNC patients.
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Figure 4.1.4. Box plots of the weight loss of the patients replanned and not replanned at the end of
their radiotherapy treatment. Total 490 HNC patients.

4.2. Anatomical changes time series (weight loss) and replanning

Unlike other variables, weight loss was found to have a direct relation to the replanning since

the changes in the weight are known to cause visible anatomical changes in the patients.
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Now, the replanning fraction was investigated with the purpose of identifying the time in
which the replanning occurred within each group. Differences in the time of replan between
groups follow from differences in treatment durations. Since there were daily fractions
delivered for most patients, the treatment was approximately three days longer for the 66 Gy
and one week longer for the 70 Gy group in comparison to the 60 Gy group. In figure 4.2.1
the replanning frequency can be observed as a function of fraction number for each of the
prescribed dose groups. The number of replans peaked at 25 and 30 fractions for the 70 Gy
group. For the 60 Gy group, the replans occurred earlier, peaking at the 25th fraction. Finally,
for the 66 Gy group, the replans peaked in the 20th to 25th fraction. Thus, most of the replans
occur two weeks before the end of the treatment. No replans occur during the last week of the

treatment because the new treatment plan may not be processed on time.
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Figure 4.2.1. Replanning frequency as a function of the fraction number for HNC patients. A total of
201 patients out of 490 patients were replanned. (2012 - 2019)

In figure 4.2.2, the median weight series of patients replanned and not replanned from the 60
Gy, 66 Gy and 70 Gy groups is presented. The total number of HNC patients considered for
this graph was 480. Every point in each curve represents the median weight acquired every

five fractions. The dashed lines represent the not replanned patients while the solid lines
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represent the replanned patients. This graph confirms that the patients lost weight during

radiotherapy for patients with prescription doses of 60 Gy, 66 Gy and 70 Gy.

The median weight loss also changed between patients replanned and not replanned for
different prescription doses. The 66 Gy group had a clear weight loss threshold around 4%
between patients replanned and not replanned, while other groups did not. The 60 Gy group
median weight loss was above 4% for both replanned and not replanned patients. Finally, the
replanned and not replanned patients from the 70 Gy group, had over 4% weight loss during
treatment. The fact that no threshold was found for the 70 Gy group is surprising given that
this group has the highest proportion of replanned patients. The overlap between standard

errors is observed even at the 25 fractions in which the higher cases of replan were observed.
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Figure 4.2.2. Median weight series of the 490 HNC patients undergoing radiotherapy who were
considered in this thesis project. Number of fractions sampled in 5 fractions increment. (2012 - 2019)

Additionally, the 70 Gy group has a visibly greater proportion of oropharyngeal, laryngeal
and nasopharyngeal cancer patients (figure 4.2.3) and concurrent chemotherapy patients
(figure 4.2.4), which may be a possible explanation for patients losing more weight for this

prescription dose than others.
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A higher incidence of chemotherapy patients in the 60 Gy group for patients replanned when

compared to not replanned (figure 4.2.4) could also help to explain why the patients of the 66

Gy group had a clear threshold of 4% weight loss for replanning.
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Figure 4.2.3. Proportions of HNC site location for replanned and not replanned patients with
prescription doses of 60 Gy, 66 Gy and 70 Gy. Total of 490 patients.
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Figure 4.2.4. Proportions of concurrent chemotherapy patients for replanned and not replanned
patients with prescription doses of 60 Gy, 66 Gy and 70 Gy. Total of 260 patients.

4.3. Multivariate regression models

The previous sections studied weight loss and replanning using univariate statistics.

However, these two phenomena depend on more than one variable and using a multivariate

model allows us to identify stronger predictors over weaker predictors.
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4.3.1. Anatomical changes predictors (weight loss predictors)

The predictors of weight loss during radiotherapy were investigated using a multivariate
linear regression model, where the regression coefficients were used to determine the

magnitude of the correlation.

In table 4.3.1.1 can be observed the coefficients obtained from the 490 patients multivariate

linear regression model. The following observations are derived from this model:

e The weight decreases as a function of the fraction number. At the 25th fraction
patients lose around 3.65% more weight than the patients at fraction 5.

e The 70 Gy group lost more weight when compared to the 66 Gy group, while the 60
Gy negative coefficient was not statistically significant.

e Patients at cancer stages II, III and IV lose more weight than the patients at cancer
stage |

e The nasopharyngeal, oropharyngeal and major salivary glands cancer are correlated to
negative changes in the weight compared to hypopharyngeal cancer. Other HNC
categories are not statistically significant.

e The age at the start of the treatment has a small positive contribution to the weight

changes.

In table 4.3.1.2 the coefficients obtained from the multivariate linear regression model to
calculate the weight changes for 260 HNC patients with chemotherapy data available can be
observed. The confidence intervals from table 4.3.1.2 have a wider range than table 4.3.1.1
The difference in accuracy can be due to the higher number of patients used in the model of
table 4.3.1.1. It is important to mention that when the chemotherapy data were available, the
stage of cancer and HNC site location were not statistically significant (p > 0.05) and they

were removed from the model.
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Table 4.3.1.1. Multivariate linear regression coefficients to predict the patient’s relative weight during
radiotherapy using the data of 490 HNC patients (2012-2019). Independent variables: Fraction
number, prescribed dose, cancer stage, HNC site location, age at the start of the treatment.
Multiple R? = 0.2586. F statistic = 61.59.

Coefficients CI25 CI 97.5 P value
(Intercept) 99.83% 98.84% 100.82%| < 0.005
Fraction number (compared to 5 fx)
10 fx -1.02% -1.49% -0.56%| <0.005
15 fx -1.59% -2.05% -1.13%| <0.005
20 fx -2.52% -2.99% -2.06%| <0.005
251x -3.65% -4.11% -3.18%| <0.005
301x -4.54% -5.00% -4.07%| <0.005
331ix -5.16% -5.65% -4.66%| <0.005
35ix -5.98% -6.53% -3.43%) < 0.005
Total prescribed dose (compared to 66 Gy)
60 Gy 0.30% -0.13% 0.72% 0.172
70 Gy -0.85% -1.23% -0.46%| < 0.005
Cancer Stage (compared to stage I)
Stage I1 -1.28% -2.06% -0.51%| <0.005
Stage III -1.10% -1.79% -0.42%| <0.005
Stage IV -1.03% -1.67% -0.39%| <0.005
Stage X -0.87% -1.54% -0.21%| < 0.005
HNC site location (compared to oral cavity)
Hypopharyngeal 0.31% -0.39% 1.01%) 0.390
Laryngeal 0.06% -0.38% 0.50% 0.798
Major salivary 0.93% 0.29% 1.57%| <0.005
Nasal cavity 0.37% -0.23% 0.97% 0.222
Nasopharyngeal -1.21% -1.94% -0.48%| <0.005
Oropharyngeal -0.91% -1.36% -0.47%| <0.005
Other 0.08% -0.49% 0.65% 0.774
Start age 0.03% 0.02% 0.04%| <0.005

The following observations are derived from table 4.3.1.2:
e The negative contributions to the weight associated to the radiotherapy fraction
number are present in this model and they are consistent to the 490 patients model.
e Patients with chemotherapy appointments lose more weight than those without
chemotherapy appointments.
The contributions of the prescribed dose and the patient’s age to the weight changes were

consistent with the previous model.
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Table 4.3.1.2. Multivariate linear regression coefficients to predict the patient’s relative weight during
radiotherapy using 260 HNC patients (2016-2019). Independent variables: Fraction number,
prescribed dose, concurrent chemotherapy and age at the start of the treatment.

Multiple R* = 0.1695. F statistic = 39.73.

Coefficients| CI 2.5 C197.5 P value
(Intercept) 100.32% 08.68% 101.95%| p<0.005
Fraction number (compared to 5 fx)
10 fx -1.18% -2.15% -0.22%| p<0.005
15 fx -1.34% -2.30% -0.37%| p<0.005
20 fx -2.23% -3.20% -1.27%| p<0.005
25 fx -3.68% -4.65% -2.72%| p<0.005
30 fx 4.58% -5.54% -3.61%| p<0.005
33fx -5.43% -6.46% -4.41%| p<0.005
35 fx -6.82% -7.98% -5.67%| p<0.005
Total prescribed dose (compared to 66 Gy)
60 Gy -0.76% -1.61% 0.08% 0.073
70 Gy -1.50% -2.16% -0.85%| p<0.005
Chemo (Compared to no chemo) -2.35% -2.94% -1.76%| p<0.005
Start age 0.03% 0.01% 0.06%| p<0.005

Finally, interaction terms between chemotherapy, HNC categories and stage of cancer may be

interesting to revise but they were not statistically significant to be considered in the model.

An important observation from both models, is that the confidence intervals for weight are
overlapped from fraction 15 to 35 which makes it difficult to determine a weight loss

threshold at every fraction.

4.3.2. Replanning predictors

The odds ratio (OR) obtained from a multivariate logistic regression model were used to find

the predictors of the time of replanning.

Table 4.3.2.1, shows the odds ratio (OR) from a multivariate logistic regression of 490
patients that predicts the fraction of replanning. The 25th fraction has the highest odds ratio
of all the fractions (compared to fraction 5). This result agrees with the higher numbers of
replans found in the 66 Gy and 70 Gy (Figure 4.2.1). Additionally, the odds ratio of the

weight loss are greater than one, which confirms that the probability of replanning increases
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with each unit (%) of weight loss. Table 4.3.2.2, shows the odds ratio (OR) of a multivariate
logistic regression of 260 patients that predicts the fraction of replanning. This model
includes the concurrent chemotherapy variable. Since the replanned patients have higher odds
than the patients not replanned (p < 0.05), the concurrent chemotherapy is also a predictor of

replanning.

Table 4.3.2.1 Odds ratio (OR) from multivariate logistic regression model to predict the fraction of
replanning. Total number of patients: 490 (2012-2019). Independent variables: Fraction number and
normalized weight.

OR CI25 CI197.5 P value
(Intercept) 0.027 0.015 0.045 p < 0.005
Fraction number (compared to 5 fx)
10 fx 1.549 0.776 3.212 0.223
15fx 2.044 1.066 4.126 p<0.05
20 fx 2.704 1.451 5.362 p <0.005
25 fx 3.393 1.839 6.689 p <0.005
30 fx 2.401 1.263 4.835 p < 0.005
331x 0.185 0.042 0.594 p<0.05
35 fx 0.000 0.000 0.000 0.968
Weight loss (%) 1.067 1.031 1.104 p <0.005

Table 4.3.2.2 Odds ratio (OR) from multivariate logistic regression model to predict the fraction of
replanning. Total number of patients: 260 (2012-2019). Independent variables: Fraction number,
concurrent chemotherapy and normalized weight.

OR CI25 C197.5 P value
(Intercept) 0.006 0.001 0.019 p < 0.005
Fraction number (compared to 5 fx)
10 fx 2.088 0.564 9.856 0.295
15 fx 3.093 0.929 13.963 0.090
20 fx 5.467 1.802 23.700 p<0.05
25fx 6.829 2.291 29.404 p <0.005
30 fx 3.014 0.909 13.648 0.098
I3 fix 0.483 0.058 3.139 0.448
35fix 0.000 0.000 104.131 0.977
Chemo (Compared to no chemo) 2.280 1.265 4.419 p<0.05
Weight loss (%) 1.054 1.010 1.095 p<0.05
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4.4. Area vs weight

Since overall weight loss may not accurately reflect weight changes in the head and neck
region, we also investigated how neck size changes during radiotherapy treatment for a
subcohort of 70 Gy prescription patients.

Of the 18 patients examined, 11 were replanned and 7 were not, as shown in figure 4.4.1. No
patients were replanned before the 15th fraction. Most replans occured at the 25 fraction,

similar to what was seen in the larger cohort.

Number of patients

Mo replan 15 20 25 30
Fraction Number

Figure 4.4.1. Patients replanned and not replanned for 18 HNC patients (2018- 2019).

Figure 4.4.2 shows the median weight and area loss at each time point over the course of
radiotherapy for replanned and not replanned patients. The median area of the patients
replanned is lower than the area of the patients not replanned. In summary, the patients lose
area more rapidly than the weight at the start of the treatment until their stabilization from the
25th fraction to the end of their treatment. The difference in slope from area and weight

suggests that the area value is more sensitive to the anatomical changes in the neck area.
Additionally, figure 4.4.3 illustrates with detail the distribution of the weight and area loss at

the 25th to the end of their treatment at the 35th fraction. The values at the 25th fraction are

important given that most replans occur at this fraction of the treatment.
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From figures 4.4.2 and 4.4.3 there can be observed that the values of the weights for the non
replanned and replanned patients are overlapping under the uncertainties at each fraction,

which agrees with the global behaviour observed in figure 4.2.2.

In order to compare the distributions at different points of the patients treatment, Mann
Whitney U tests were used to compare the replanned and not replanned distributions for area
and weight. In the case of the area, the difference between distributions was statistically
significant (p < 0.05) for all the fractions with the exception of 10 and 15. In the case of the
weight the difference between distributions was not statistically significant from the 10 to 33
fractions. However, even if the distributions were significantly different, they still have
certain overlap that implies that there is no threshold value for either of weight and area that

could be used as ground truth for the replanning.
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Figure 4.4.2. Median time series of weight and area for 18 patients undergoing radiotherapy. (2018 -
2019). Solid lines represent patients replanned and dashed lines represent patients not replanned.
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Figure 4.4.3. The value loss at 25 fx and 35 fx for area (green) and weight (purple) of the patients
replanned (R) vs not replanned (NR) Total: 18 patients (2018 - 2019).

As seen in figures 4.4.2 and 4.4.3, the area and weight trends are not equivalent. Figure 4.4.4
shows the normalized area - normalized weight difference at every 5 fraction increments for
patients replanned and not replanned. When area is equal to weight, the value is zero. As we
can observe, most medians are below zero, which means that area is smaller than weight at
every fraction. Thus area is decreasing at a faster rate than weight as we previously saw in
figure 4.4.2. Moreover, we can see that for replanned patients, the difference between area
and weight is even more abrupt, which could explain why some patients were replanned even

if they lost a significant amount of weight.
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Figure 4.4.4. Differences of relative area and weight (%) during radiotherapy for patients replanned
and not replanned. Total: 18 patients (2018 - 2019).

In figure 4.4.5 the normalized values of the area and weight at the fraction of replanning are
shown. The median neck area at the 25 fraction could be used as a threshold for replanning in

future work.
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Figure 4.4.5. The value of the area and weight at the replanning. Total: 11 patients replanned (2018 -
2019).
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5. Discussion

5.1. Univariate analysis of replanning and anatomical changes

For the purpose of this work, the treatment fraction numbers give information about two
variables considered in this study: the cumulated dose received by the patient and the time
measured from the start of the treatment. Since all plans were standard fractionation (2
Gy/fx), all three groups had received the same radiation dose at each timepoint, the only
difference, dose wise, is that some groups ultimately had more time points. Shorter overall
treatment could explain why earlier replans occurred for the 60 Gy group compared to the 66
Gy and 70 Gy groups. Also, no replans occurred for the last fractions of the treatment for any
prescription dose. This is likely due to the fact that the workload of replanning is not justified
for a few fractions. The main prescription dose differences reside in the HNC site location

and the use of concurrent chemotherapy.

For our cohort, most replannings were performed two weeks before the end of the treatment
for all prescription doses, which also matches with literature findings (Brown et al. 2016;
Guidi et al. 2016). The peak of the replans occurred at the 25th fraction for 70 Gy, 20th-25th
fractions for 66 Gy and 20th fraction for 60 Gy. Brown et al (2016) found that the median
fraction at which replanning occurred was at the 22nd fractions for a 70 Gy prescription dose,
which falls approximately within the same timeline as our result (Brown et al. 2016).
Additionally, Guidi et al (2016) found that patients with a prescribed dose of 60 Gy required
a replan from the 4th week of treatment (or 15th-20th fraction according to our timeline),

which also agrees with our result (Guidi et al. 2016).

In our work, weight loss was observed during radiotherapy for patients from all prescription
doses. At the same time, weight loss was found to be correlated to the presence or absence of
replanning (y? test, p < 0.005), results that agree with findings in the literature (Gensheimer
and Le 2018; Ma et al. 2014). Additionally, patients of different prescription doses lost
weight at different rates during radiotherapy. In particular, patients from the 70 Gy group had

a higher weight loss rate compared to other prescription doses. Moreover, the replans were
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more common for the 70 Gy than the 60 Gy or 66 Gy patients. Thus, the greater rate of

replanning in the 70 Gy group may be related to the higher median weight loss rate in this

group.

Some factors that may explain a greater weight loss of patients within the 70 Gy group are
the presence of more patients with oropharyngeal and nasopharyngeal cancer than in the
other groups. The oropharyngeal and nasopharyngeal cancer sites have been found to be
associated with greater weight loss than other cancer sites (Ottosson et al. 2013; Zeng et al.
2016). Moreover, the presence of a higher number of concurrent chemotherapy patients may
be related to a higher rate of weight loss in the 70 Gy group. Studies from the literature have

shown that chemotherapy is a weight loss predictor (Ghadjar et al. 2015).

We confirmed univariate correlations (y2test, p < 0.05) between the replanning and the
following variables: HNC site location, cancer stage and concurrent chemotherapy. This is
not surprising because all of these variables have been shown to be predictors of weight loss
(Zhao et al. 2015) and weight loss has been found to be a predictor of replanning. HNC site
location determines the irradiated region (Yeh 2010), and patients develop more or less
weight loss depending on the affected organs (Muzumder et al. 2019; Grundmann, Mitchell,
and Limesand 2009). Cancer stage also determines the use of concurrent chemotherapy for
advanced diseases (Yeh 2010). Likewise, concurrent chemotherapy contributes to both
weight loss and treatment response (Ghadjar et al. 2015; Igbal et al. 2017), which are relevant

for replanning (Gensheimer and Le 2018).

The presence of concurrent chemotherapy in most replanned patients in the 66 Gy group may
also explain why it was the only group with a clear difference in median weight loss between

patients replanned and not replanned.

5.2. Multivariate analysis of replanning

The multivariate linear regression model was useful to confirm that the weight loss
decreased during radiotherapy, given that the linear regression coefficient decreases with the

more fractions the patient receives. It also confirmed that the weight loss depends on multiple
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variables and it was useful to identify which parameters have stronger correlations to weight

loss.

The linear models also confirmed that the patients with 70 Gy prescription dose lose more
weight than the patients with 66 Gy (p < 0.005), behaviour that was observed in the
univariate analysis. When comparing linear regression coefficients from patients in different
stages, patients in early stages (I), were observed to lose more weight than patients in later
stages (II, III and IV). Similar behaviour has been observed by Lonbro et al (2016) when
comparing early stages (I - II) to late stages (III- IV) (Lenbro et al. 2016). Additionally, the
linear model shows that oropharyngeal and nasopharyngeal cancer patients lose more weight

than patients with oral cavity cancer.

The linear regression coefficients for the age at the start of the treatment were statistically
significant in the two linear models. However, they were too small to be clinically significant,

which explains why age was not relevant for replanning in the univariate analysis.

An interesting observation is that when the chemotherapy variable was considered, the cancer
stage and HNC location did not remain statistically significant. This suggests that

chemotherapy is a stronger predictor of weight loss than cancer stage and HNC location.

The multivariate linear regression models give a rough approximation of the patient's weight
during radiotherapy. However it is not possible to use them to obtain accurately the patient's
weight at each fraction as indicated in the wide confidence intervals of the regression
coefficients and the the low R?(< 0.3) value. This may be due to the variability of the
weights data, that come from patients’ weight not being acquired in a systematic way. Also,
there are other variables such as stress and self esteem of patients that impact their weight
that we are not considering (Larsson, M., Hedelin, B. and Athlin, E. 2003). The two linear
models had similar performance, even though they considered different variables. Also a

bigger dataset could help to improve the statistics of the models.

The logistic regression model was useful to find the main predictors of replanning (p < 0.05):

the treatment fraction (because each treatment fraction adds dose to the patient), the weight
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loss and the presence of concurrent chemotherapy. Whereas concurrent chemotherapy is
expected to have an impact on the tumour response (Igbal et al. 2017), it is not commonly
referred to as a predictor of replanning. However, studies have shown that concurrent
chemotherapy can have an indirect impact on the replanning. For example, Ma et al (2014)
found greater variations in the parotid volume in patients undergoing concurrent

chemotherapy treatment (Ma et al. 2014).

Additionally, the 20th - 25th fraction had the highest probability of replanning of all fractions
(compared to fraction 5), behaviour that also was observed in the univariate analysis. This
timeline is associated with a median weight loss of 4%, which is consistent with the 4.4%
weight loss at the 21st fraction reported as a predictor of replanning by Ma et al (2014) (Ma
et al. 2014).

A bigger dataset would have been useful for the logistic regression model, because the
fraction of replan was modeled as a binary variable assigning the value of one only if the
patient was replanned in a certain fraction. Thus, the ratio of ones to zeros is smaller for the

fractions with less replans, worsening the statistics.

The fact that all 70 Gy patients lost almost the same relative amount of weight during
radiotherapy, can be explained by the presence of a high number of patients of oropharyngeal
cancer and concurrent chemotherapy for both replanned and not-replanned patients.
Additionally, the residual variability of the weight loss likely contributed to the ambiguity of
the replanning decision. Accordingly, we asked ourselves why some patients were replanned
and others not. This could have two possible explanations:

- Weight loss does not accurately reflect change in the head and neck region.

- Replanning is not standardized

5.3. Area vs weight
To evaluate these two possibilities, we created a new parameter to analyze the changes on a

localized region of the neck, the neck area. Studies in the literature use different approaches

to track anatomical changes, for example, the volume of the parotid has been used for this
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purpose (Barker et al. 2004; Loo et al. 2011). Additionally, Loo et al (2011) measured the

volume enclosed in the target volume.

The important differences between neck area and weight throughout radiotherapy are that the
neck area decreases at a faster rate than the weight until it is stabilized at the end of the
treatment. For most cases, the median neck area was smaller than the median weight. For the
replanned patients the difference between neck area and weight was larger than for
not-replanned patients. Thus, the differences between weight and neck area confirm the
explanation that says that the weight loss does not accurately represent changes in the head

and neck region.

Nevertheless, overlapping of the median neck area of replanned and not-replanned patients
was also observed in this small study. It becomes visible even at the 25th fraction that was
most frequently replanned. The difference between the neck area of patients replanned and
not replanned is too small to determine a neck area threshold for replanning. This behaviour
suggests that our second guess is correct and the replanning is not standardized. In other
words, there are some patients who lost a similar amount of neck area as the replanned

patients but they were not replanned for any reason.

A standardization in the replanning process would be useful to provide assurance that all
patients will receive an updated treatment plan if needed. There are, however, a few
challenges for replan standardization. The most important of these is that in our clinic, there
are no reliable tools that allow clinicians to measure the anatomical changes of patients

during radiotherapy.

In this work, the weight and the neck area were proposed as two potential parameters that
could be used for anatomical change tracking. When the weight was compared to the neck
area during radiotherapy, there were found discrepancies that suggest that the weight is not a
good parameter to track anatomical changes. That leaves the neck area as the best option to

track anatomical changes.
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However, the neck area code, as written for this thesis project, is just a prototype and needs to
be optimized before any clinical implementation. The software is adapted for a local
repository of DICOM images and the next step would be to adapt it to leverage data from the
PACS system and from the Aria database. Eclipse scripting could be a potential solution but
it has not been investigated within the scope of this project. Another important point to
consider is that the software would have to be used at the treatment room for which an

appropriate interface would be needed.

As a starting point for standardization, the median neck area at the 25th fraction could be
used as a threshold for replanning. Patients that lose neck area beyond 6 % would have to be
replanned. The neck area study could also be extended to the 490 patients to improve the
statistics. Once replanning is standardized, a prediction of replanning could be made based on

the neck area parameter’s performance at the start of treatment.
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6. Conclusions

In our cohort, the main predictors of replanning were identified as the 20th - 25th treatment
fraction and the weight loss. Chemotherapy was also found to be a predictor of replanning but
it could have an indirect effect on the replanning because of its strong correlation with weight
loss. Other predictors of weight loss were HNC site location and cancer stage but the

correlation was not statistically significant when chemotherapy was considered.

Additionally, a new parameter was proposed to measure the changes in the neck area. Given
the limited amount of neck area data available in this preliminary study, the neck area loss
parameter was only used to test if the weights data can be used as a measure of the anatomy
changes in the neck region. The weight and neck area were found to decrease at different
rates during radiotherapy. The differences between weight and neck area loss were more
evident for replanned patients, which suggested that weight was not an accurate or sufficient

representation of the anatomical changes in the head and neck region.

However, neither the weight nor the neck area had a clear threshold for replanning, which
means that some patients were not replanned even if they lost a significant amount of weight
or area. As a consequence, the current data cannot be used to identify and classify replanned
and not replanned patients until the replanning process is standardized. In particular, a
threshold of a 6% neck area loss from the start of the treatment could be implemented in the
replanning workflow as a first approach to standardize replanning. This threshold could be
optimized by improving the statistics with a bigger dataset and a dosimetric impact analysis
would be required. Overall, replanning standardization would be useful to formulate

predictions of when to replan radiotherapy for head and neck cancer patients.
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