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Abstract 
The need to modify or “replan” a head and neck cancer patient’s radiotherapy treatment              

arises when significant anatomical changes occur during their treatment course. While regular            

patient imaging during treatment can be useful to identify when a patient needs to be               

replanned, they continue to be treated with the sub-optimal original plans until a new plan is                

created. For this reason, the ability to predict in advance if and when a patient’s plan will                 

require replanning would be advantageous so that the patient is treated with a more optimized               

plan throughout their treatment course, improving the overall quality of treatment.  

 

In this thesis, the relationship between clinical variables and the need to replan was              

investigated. Data from the electronic health records of 490 head and neck cancer patients              

were used, with special attention paid to patient weight loss and gain throughout treatment. 

 

Weight loss was hypothesized to be a parameter that might be used to represent anatomical               

changes in patients examined. As a result of a weight time series analysis, it was confirmed                

that head and neck cancer patients lost weight during their radiotherapy treatment, consistent             

with  the literature (Zhao et al. 2015). 

 

Given its clinical importance, the parameters that influenced weight loss were investigated            

using a linear regression model. Additionally, the main predictors of when to replan a patient               

were found to be the 20th to 25th treatment fraction and the weight loss (p < 0.05) using a                   

logistic regression model. However, some patients were nor replanned even if they lost a              

significant amount of weight during radiotherapy, which raised the question of whether            

weight loss was a reliable feature that would accurately represent the anatomical changes in              

the neck region.  

 

With the motivation to find a predictor that may reflect more accurately the anatomical              

changes of head and neck cancer patients during radiotherapy, a technique to measure the              

neck area loss using the set up images from historical head and neck cancer patients was                

developed. The neck area and weight time series of 18 patients during radiotherapy were              
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compared and it was found that even if both quantities decreased during the patients’              

treatments, they did so at different rates. This finding could explain why some patients were               

not replanned even if they lost a significant amount of weight.  
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Résumé 

 
La nécessité de modifier ou de “replanifier” les traitements de radiothérapie d’un patient             

atteint d’un cancer de la tête et du cou survient lorsque des modifications anatomiques              

importantes se produisent au cours des traitements. Bien que l'imagerie régulière du patient             

pendant le traitement puisse être utile pour identifier le moment auquel un patient doit être               

replanifié, il continue à être traité avec les plans d'origine sous-optimaux jusqu'à ce qu'un              

nouveau plan soit créé. Pour cette raison, la capacité de prédire à l'avance si et quand le plan                  

d'un patient nécessitera une replanification serait avantageuse afin que le patient soit traité             

avec un plan plus optimisé tout au long des traitements, améliorant ainsi la qualité globale du                

traitement. 

 

Dans cette thèse, la relation entre les variables cliniques et la nécessité de replanifier a été                

étudiée. Les données des dossiers de santé électroniques de 490 patients atteints de cancer de               

la tête et du cou ont été utilisées, une attention particulière étant accordée à la perte et au gain                   

de poids des patients tout au long des traitements. 

 

Notre hypothèse était que la perte de poids était un paramètre pouvant être utilisé pour               

représenter les changements anatomiques chez les patients examinés. À la suite d'une analyse             

des séries temporelles chronologiques de poids, il a été confirmé que les patients atteints d'un               

cancer de la tête et du cou ont perdu du poids pendant leur traitement de radiothérapie,                

conformément à la littérature (Zhao et al. 2015). 

 

Compte tenu de l’importance clinique du poids des patients, les paramètres qui ont influencé              

la perte de poids ont été étudiés à l'aide d'un modèle de régression linéaire. Dans ce modèle,                 

les principaux prédicteurs du moment optimal pour replanifier les traitements se sont avérés             

être notamment la 20e à la 25e fraction de traitement et la perte de poids (p < 0.05).  

 

Cependant, certains patients n'étaient pas replanifiés même s'ils perdaient une quantité           

importante de poids pendant la radiothérapie, questionnant ainsi si la perte de poids était              

4 



 

réellement une caractéristique fiable représentant avec précision les changements         

anatomiques dans la région de la tête et du cou.  

 

Afin de trouver un prédicteur pouvant refléter plus précisément les changements anatomiques            

des patients atteints de cancer de la tête et du cou pendant les traitements de radiothérapie,                

une technique pour mesurer la diminution de l’aire dans la région du cou a été développée à                 

partir des images de configuration de patients atteints de cancer de la tête et du cou. Les                 

séries temporelles chronologiques de l’aire dans la région du cou ainsi que du poids de 18                

patients durant les traitements de radiothérapie ont été comparées et il a été constaté que               

même si ces deux quantités diminuaient au cours des traitements, elles le faisaient à des               

rythmes différents. Cette découverte pourrait expliquer pourquoi certains patients n'ont pas           

reçu une replanification même s'ils ont subi une importante perte de poids. 
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1. Introduction 

1.1 Overview of Thesis 
 
The purpose of this research was to determine if the need to replan a head and neck cancer                  

patient during radiotherapy can be predicted based on available clinical data and images. This              

thesis describes the search for replanning predictors through the retrospective statistical           

analysis of radiotherapy data collected from 2012 to Fall 2019 at the McGill University              

Health Centre in Montreal. Two analyses were used. The first analysis just used basic clinical               

factors stored in the Electronic Health Records (EHR). The second analysis was created with              

the additional inclusion of daily imaging and was compared to the first analysis in order to                

determine if anatomical information provided added value. 

 

This chapter introduces the basic concepts of radiotherapy, it describes the workflow in the              

clinic and the replanning process and the role of medical imaging in treatment planning. It               

gives the theoretical background needed to understand the statistical analysis techniques that            

will be used in the following chapters. Chapter 2 introduces head and neck cancer              

radiotherapy side effects and describes the current challenges in head and neck treatment             

planning. Chapter 3 outlines the patient cohort and the methods used in this project to process                

and analyze the data. In chapter 4 are exposed the results from the analysis described in                

Chapter 3. Chapter 5 discusses the replanning predictors and compares results with the             

literature to support the conclusions, which are presented in Chapter 6. 

 

1.2. Radiotherapy 
 
As a result of the interactions of the radiation with matter, some energy can be deposited in                 

the matter, which we refer to as radiation dose (Canadian Nuclear Safety Commission             

(CNSC) 2020). Ionizing radiation is classified as radiation who has more energy that is              

required to remove electrons from atoms (World Health Organization (WHO) 2016). The            

ionizations caused by radiation can damage and potentially kill cells. This is especially true if               

the ionization modifies a cell’s DNA sequence and prevents it from functioning properly.             
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There are DNA repair pathways, but that they are not always able to fix all the damage. A                  

cell’s response to radiation damage may be in the form of apoptosis, in which the cell is                 

programmed to die, or by cell cycle arrest in which the cell stops its duplication and division                 

(Little 2003).  

 

While radiation can cause cancer, it is also highly effective at killing cancer cells. There are                

two main types of radiotherapy: (1) external beam radiotherapy (EBRT), which uses a             

radiation source external to the patient’s body with the purpose of destroying cancer cells,              

and (Baskar et al. 2012) (2) brachytherapy, which inserts radioactive material inside the body              

to achieve the same goal (Canadian Cancer Society - Radiotherapy 2020). 

1.2.1. Linear quadratic model and fractionation 

Radiation is indiscriminate with regard to cancerous and healthy cells and has the potential to               

kill both. The goal of radiotherapy, therefore, is to maximize the death of cancer cells while                

minimizing the damage to healthy ones (Moding, Kastan, and Kirsch 2013). To do this,              

radiotherapy specialists take advantage of the radiation responses of different tissues. The            

linear quadratic model is a theoretical approximation to the cell survival curves of normal              

tissue cells and tumour cells after irradiation. The survival S is a function of the dose                

delivered in a single fraction D and it is described by the following equation: 

 

(D) xp (− α D D) )S = e ( + β 2  

 

Where α represents irreversible damage and β the reversible damage. Both parameters depend             

on the type of tissue ​(Brenner 2008​; van Leeuwen et al. 2018). Typical ratios are on the             /βα      

order of 3 for healthy cells and 10 for tumour cells (Orton 2020). Figure 1.3.4.1 illustrates the                 

survival curve of late reacting normal cells and cancer cells from zero dose to 8 Gy. For low                  

doses, normal tissue survival is greater than the cancer cells survival, while for larger doses,               

the survival of cancer cells is greater than the normal tissue. In order to reduce the number of                  

surviving cancer cells to 1%, almost 99.5% of normal tissue must be sacrificed and would               

almost certainly cause severe side effects for the patient. However, there was a much lower               

dose of 2 Gy where the ratio of cancer cell kill and normal tissue preservation was                

maximized, and it is this point that fractionation takes advantage of. 
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Figure ​1.3.4.1. Survival curve for cancer cells and normal tissue as a function of the dose delivered. 

Parameters for cancer cells​ α = 0.4 Gy-1 and α/β = 10 Gy. Parameters for normal tissue: α = 0.22 

Gy-1, α/β = 2.5 Gy. The figure was reproduced using the parameters from​ (Orton 2020). 

 

Fractionated radiotherapy splits the total prescribed dose into small doses distributed in            

several fractions. Fractionation improves the ratio of cancer to healthy cell kill because it              

takes advantage of the four R’s of radiobiology: The healthy cells have the opportunity of               

repopulate​, the cancer cells have time to ​redistribute in the cell cycle (cells in M and G2                 

phases are more sensitive to radiation than cells in other phases), ​reoxygenation of the tumour               

cells (the radiation is more more damaging for oxygenated cells) and ​repair of the healthy               

cells (Pajonk, Vlashi, and McBride 2010). 

1.2.2. Radiotherapy Treatment Modalities 

There are different techniques, or modalities, used in EBRT. Modern modalities use            

computers and advanced treatment machines to shape radiation beams based on the            

morphology of a patient’s tumour to achieve better accuracy in the treatment and ​to reduce               

the dose to healthy tissues near the tumour​. The most common modalities are 3D conformal               

radiotherapy (3D CRT), Intensity-modulated radiotherapy (IMRT), Volumetric Modulated        
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Arc Therapy (VMAT) and Tomotherapy (Teoh et al. 2011). All these techniques aim to shape               

the beam according to the shape of the tumour.  

 

3D CRT uses multi-leaf collimators (MCL) and 3D images of the patient to shape the dose to                 

the tumour while maintaining a relatively uniform dose distribution. Unlike 3D-CRT, IMRT            

uses the MCL to modulate the beam intensity. This modulation allows for increased sparing              

of organs at risk (OARs) and can also help deliver a higher dose to the target. However,                 

because of this the dose delivered is not uniform and can lead to hotspots in the patient. For                  

this reason, it is important to check IMRT plans for dose in undesirable locations to avoid                

causing potentially negative side effects from the radiotherapy (Gomez-Millan, Fernández,          

and Medina Carmona 2013). 

 

IMRT treatment planning and quality assurance is more complex and computationally           

intensive than 3D CRT planning. Even though the locoregional control improves with the             

IMRT technique, it delivers more monitor units (MU) than 3D CRT and leakage through the               

MLC and the head of the linac may induce secondary malignancies in the patients due to the                 

whole-body dose wash involved (Vallard et al. 2016). 

 

VMAT is the most advanced of the three modalities and is a form of arc therapy in which the                   

MLCs move as the linac gantry moves around a static patient. VMAT has higher efficiency               

and higher conformal dose distributions than IMRT. Higher efficiency implies less time for             

dose delivery and less MUs than IMRT. Less toxicity for VMAT patients is also derived from                

a higher conformity of the treatment (Teoh et al. 2011). Tomotherapy is a subtype of VMAT.  

 

While it is possible to create 3D-CRT plans based on expertise and trial and error (forward                

planning), the added complexity of moving MLCs in IMRT and VMAT plans necessitates a              

different approach. Instead of forward planning, modern IMRT and VMAT treatments use an             

inverse planning approach, in which the treatment planner specifies the requirements of the             

treatment plan and has a computer try hundreds of possibilities to find the optimum one.               

Parameters given to the system for this optimization problem include dose constraints,            

prescription dose for the target, as well as number of beams or arcs. 
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Both the IMRT and VMAT techniques enable sparing of critical structures in the head and               

neck region such as the spinal cord and brainstem (Leer 2005). Additionally, both techniques              

necessitate a well defined structure delineation because the radiation fields will be shaped to              

the tumour (Leer 2005). A cost function is optimized to obtain the maximum dose to the                

target while minimizing exposure to organs at risk. Recommended dose constraints to the             

OARs are used in the optimization process.  

 

In our clinic, VMAT is currently the most used radiotherapy technique for head and neck               

cancer (HNC). However, IMRT and 3D CRT have historically also been used to treat some               

HNC patients. Additionally, tomotherapy was used for a large number of patients between             

2008 and 2016.  

 

1.2.3. Radiotherapy Treatment Workflow 

The radiotherapy treatment workflow starts with acquiring patient images on a special CT             

scanner called a CT Simulator. Unlike a regular diagnostic CT scanner, the CT Simulator has               

a flat tabletop, a wider bore, and positioning lasers so the patient can be positioned the same                 

way as they will need to be for treatment. Thermoplastic masks or vacuum bags are examples                

of common devices fitted to patients at the time of simulation and worn at every fraction in                 

order to immobilize the patients during their radiotherapy treatment and ensure accuracy of             

the treatment. In addition to any necessary immobilization devices, a set of ball bearings are               

placed on the patient to mark the origin slice in the CT image that will be used for the                   

patient's positioning during radiotherapy (Beyzadeoglu, Ozyigit, and Selek 2015). The          

placement of these bearings is marked on the patient with tiny tattoos for reference during the                

treatment. Images taken at simulation are integrated into the patient’s chart in the EHR              

where they are used to create the treatment plan.  

 

The treatment plan for the patient is designed by one or more dosimetrists, radiation              

oncologists, and medical physicists depending on the complexity of the case. The treatment             

planning consists of two stages. The first stage is the contouring of the targets, OARs and                

relevant structures on the image taken at the CT simulator. In the second stage the dose is                 

calculated and quality assurance checks are performed. 
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Target structures need to ensure neoplastic tissues that are both visible and invisible in              

medical images are always included in the region being irradiated and are therefore drawn in               

three stages. The first stage is the gross tumour volume (GTV), which consists of the tumour                

volume that is visible to the clinician's eyes. The next stage is the clinical target volume                

(CTV), which includes the GTV and an external margin that accounts for the potential              

microscopic spread of the disease (Burnet et al. 2004). Finally, the planning target volume              

(PTV) is created, which includes the CTV and an additional margin for positioning errors and               

movement at the treatment machine (Burnet et al. 2004). Sometimes the GTV is not drawn or                

the GTV and CTV are considered equivalent, usually in cases in which the tumour was               

removed surgically prior to radiotherapy (eg. breast) or when the disease is well encapsulated              

in one region without microscopic spread (eg. prostate) (Leer 2005). 

 

An example of a GTV enclosing a malignant neoplasm of the base of tongue, surrounded by                

the CTV and PTV margins are illustrated in figure 1.4.4.4.1. 

 

Figure 1.4.4.4.1. GTV, CTV and PTV structures contoured in a CT image for a  malignant neoplasm 

of the base of tongue.  
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The next stage of the treatment planning process is the designing of the patient’s treatment               

plan and the calculation of the planned dose distribution in the patient that will maximize the                

dose to the target and minimize the dose to the OARs (Jin et al. 2015). Additionally, the type                  

and modality of the plan will depend on the patient’s circumstances and the expertise of the                

treatment team. In general the dosimetrists will align basic radiation beams and work with the               

treatment planning software to meet the specifications of the radiation oncologist. Dose            

gradients are created to spare OARs. The plan has to be approved and go through quality                

assurance involving medical physicists, dosimetrists, radiation oncologists and radiation         

therapists before it can be used for treatment. 

 

Finally, the patient is treated according to the treatment plan that was individually planned for               

their circumstances. Before the delivery of each fraction, the radiation therapists (the staff             

responsible for delivering the treatment) ensure the patient is set up in the same position as at                 

the CT simulation using a combination of immobilization devices, lasers, and imaging            

(section 1.2.4). Significant changes in the patient’s anatomy could impact the dose to the              

target and OARs. Thus, the treatment plan will need to be modified to account for the                

anatomical changes, a step that is also known as a ​radiotherapy replan (Beyzadeoglu,             

Ozyigit, and Selek 2015). The replan is also performed when the patient’s position cannot be               

reproduced according to the treatment’s plan. The request for a replan will be added to the                

clinical tasks associated with the given patient. Reasons for replanning can include changes in              

mask or other immobilization device fitting or weight gain or loss (Green, Henke, and Hugo               

2019) due to edema or anorexia, respectively. Because a replan can take up to two days to                 

complete, patients continue on their current treatment plans until the modified plan is ready.              

Any new plans created to treat the same condition are grouped together with the original plan                

into one course of treatment, which is the total set of treatment plans included in a single                 

radiotherapy treatment. 

 

1.2.4. Image-Guided Radiotherapy (IGRT) 

Radiotherapy requires high precision for treatment delivery because failing to deliver the            

prescription dose to the target could have devastating consequences in the patient. ​However,              
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motion of the internal organs, image distortion by the acquisition scanner, and setup errors              

can all reduce the precision at which radiotherapy can be delivered.  

 

IGRT provides high precision in positioning of the patient that is required for a successful               

treatment using IMRT and VMAT techniques. One of the most popular imaging modalities             

for IGRT is cone beam CT (CBCT) because it has better soft tissue contrast than the other                 

on-board imaging techniques. CBCT is generally used to correct for errors in patients             

positioning before treatment. Additionally, CBCT images can be used to identify anatomical            

changes in patients. 

1.2.5. Adaptive radiotherapy (ART) 
 

Adaptive radiotherapy (ART) is a technique that takes into account the anatomy changes a              

patient undergoes during treatment and accounts for them as needed ​(Green, Henke, and             

Hugo 2019)​. ART can be performed online or offline. The main characteristics of online and               

offline ART are compared in table (1.2.5.1) (Green, Henke, and Hugo 2019). Additionally,             

some centers acquire images more frequently than others. ART requires a solid protocol for              

replanning and not all replans qualify as ART. In our clinic, no strict protocol for replanning                

is followed and the replans performed are not considered as ART.  

 

Table 1.2.5.1. Offline vs Online ART (Green, Henke, and Hugo 2019). 

Offline ART Online ART 

Uses image from fraction before Uses image from fraction to be treated 

Usually created in the time space between 
two treatment fractions 

Created with the patient positioned for the 
treatment. It could be before or during a 
treatment fraction. 

Manual image registration, contouring and 
calculation of the dose 

Both images and contours are registered to 
the adapted plan, a dosimetric threshold is 
used to decide if the adapted plan will be 
used instead of the current plan. 
Inconsistencies are fixed manually. 

The replan has the same workflow as a new 
treatment plan, needs a lot of work to finish 
it in the expected timeline 

Better treatment workflow than offline: 
Replanning + QA is performed on the 
treatment room 

22 

https://paperpile.com/c/bSKn2Q/2TXjT
https://paperpile.com/c/bSKn2Q/2TXjT


 

Less sensitivity than online for anatomical 
changes 

Since the anatomical changes are tracked 
continuously, the PTV margin is reduced 
and special attention to internal motion is 
required. 

  
 

In general, ART needs high definition images to map daily IGRT images to the original               

treatment plan. These are used to identify anatomical changes in the patient and are part of                

the first step of ART. Depending on the type of ART, the next step may be to select one of                    

the “plan of the days”, adjust the treatment based on the anatomy in the image, or treat the                  

patient with the current plan. If adjusting the treatment, a new plan including new contours               

and dose calculations is required along with quality assurance (QA). This can either be done               

rapidly with the patient in the treatment room (online ART) or overnight before the patient               

returns.  

 
 

1.3. Medical Imaging in Radiotherapy 

Medical imaging is important in radiotherapy to provide anatomical information for           

diagnostic, treatment planning, and for treatment setup purposes. Many types of medical            

imaging modalities exist, including Radiography, Computer Tomography (CT), Magnetic         

Resonance Imaging (MRI), and Positron Emission Tomography (PET) (Peter 2009). While           

MRI and PET provide useful functional information for diagnosis (for example, by detecting             

metastatic lymph nodes (Kim et al. 2016) and can have superior soft tissue contrast, CT is the                 

most common and important modality for treatment planning. This is because in addition to              

being more inexpensive and much quicker to acquire compared to MRI and PET, it gives a                

measure of electron density in the tissues (Loeffelbein et al. 2012). The electron density is               

important in order to calculate and apply heterogeneity corrections during treatment planning. 

1.3.1. Computed Tomography (CT) 

The acquisition of a CT image includes four important elements: an x-ray source, the object               

to be imaged, a detector array to measure the attenuation of the x-rays after they pass through                 

the object, and the algorithm that will be used to reconstruct the images. First, a series of                 
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regular radiographic projection images are acquired at many different angles around the            

object. Next, an algorithm is used to reconstruct the projections to obtain volumetric images              

used to diagnose and treat radiotherapy patients. Since the first CT scanner was built around               

1970, scanners have evolved to reduce the time of scan, optimize the detector array for               

image acquisition, and improve reconstruction algorithms for better image quality (Bushberg           

2020). 

 

In addition to providing 3D anatomical information and soft tissue contrast, one of the most               

important qualities of CT images are their units for measuring grayscale intensity. These             

intensity units, called Hounsfield Units (HU) describe the relation between the attenuation of             

the radiation in a specific tissue to its attenuation in water (Toga and Mazziotta      μt       μH20     

2002). HUs are calculated using the following equation: 

 

U 000 H = 1 × μH20

μ −μt  H20  

 

They are usually calibrated to the electron density of the patient scanned (Schneider, Pedroni,              

and Lomax 1996). As stated above, the electron density is useful to correct heterogeneities in               

radiotherapy treatment planning (Broder and Preston 2011). 

1.3.2. Cone Beam Computed  Tomography (CBCT) 

 
CBCT is a type of CT imaging commonly integrated with linear accelerators. Unlike             

conventional CT, which uses a narrow fan beam and detector array that images a small strip                

of the body, CBCT uses a cone beam and large flat panel detector that covers a wider area of                   

the body. For both systems, the x-ray source and detector rotate around the stationary patient               

(Bushberg 2020). 

 

Although the wide collimation aperture of CBCT allows for an entire image to be acquired in                

one rotation, it also leads to some consequences in the image. Because there are more               

scattered photons reaching the flat panel in CBCT, the image quality, in particular the              

soft-tissue contrast, of CBCT images is lower compared to fan-beam CT images (Niu and              

Zhu 2011).  

24 



 

 

The CBCT scans can be performed either considering the full beam or half of it. The full-fan                 

geometry is generally used for small anatomic sites such as head and neck, while the half-fan                

geometry is used for larger anatomic sites such as pelvis, chest and abdomen (Kaliyaperumal              

et al. 2017).  

1.3.3.  Image registration 

Sometimes it is important to compare two or more medical images to have more information,               

but it is important when doing so to compare the same thing in each image. In order to do                   

this, it is necessary to line up the anatomy of the two images so that they overlap and match                   

as much as possible. The process that maps one image to the space of a reference image is                  

known as image registration. 

 

There are two main types of registrations: rigid and deformable. The rigid are transformations              

that conserve the shape of the object. The deformable registrations modify the shape of the               

object to map the comparison image to the reference image. In both cases, the goal of                

registration is to find the transformation that best matches the voxel matrix of the comparison               

image to that of the reference (Tohka 2015). Rigid registrations only allow for rotations and               

translations of the entire voxel grid, whereas deformable registration allows for rotations,            

translations and scaling of not only the entire grid, but small sections of the matrix or                

individual voxels. 

 

In general, although deformable registration is desirable for medical images because the            

anatomy of patients may change from one image to another, rigid registration is a good               

approximation in most cases and is easier to perform. For example, the affine registration is a                

linear transformation that includes scaling, rotations and translation for a fixed body shape             

(Tohka 2015). 

1.3.4. Digital Imaging and Communications in Medicine (DICOM) images 

The DICOM format is used in medical informatics to store patient data in a standardized way.                

Different types of DICOM files exist for different types of information, such as CT, MRI,               

Ultrasound, and PET images, treatment plans, dose distributions, and image registrations.           
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Regardless of type, they all store information using DICOM headers, which are dictionaries             

that codify the information in a format that DICOM readers can translate (Medical Imaging &               

Technology Alliance, National Electrical Manufacturers Association 2020).When saving 3D         

images, the DICOM format saves each individual 2D slice of the 3D image as a separate file,                 

which a DICOM reader will read together to generate a 3D image in the viewer. 

 

1.3.5. Databases in Oncology 

In medical informatics, relational and non-relational databases are used to store and manage             

information in the clinic. A relational database is a tool that allows the user to store                

information in abstract tables that can be joined by common information in the data.              

Relational databases are used to store the headers from the DICOM images acquired during              

the patient's treatment. Using the DICOM headers, the relational database can be used to call               

the DICOM images stored in the Picture Archiving and Communication System (PACS),            

which is a non relational database (Gregg 2020). 

 

Because radiotherapy clinics have to handle a lot of electronic patient data, it is important to                

store them in an organized way. An EHR is an example of a relational database that                

integrates all patient information in a single source. On the other hand, non-relational             

databases such as the PACS, store image information. Most medical databases have end-user             

software to make it easy for clinicians to communicate with them.  

1.4. Statistics  

Statistics are essential to properly interpret the meaning of the data from a study. This               

section describes the basic theory of hypothesis testing and some statistical tests and             

statistical models relevant to this thesis.  

1.4.1.  Hypothesis testing 

In clinical studies it is important to determine if two groups of patients with similar               

characteristics but different treatments have different outcomes. The first step is to define the              

groups to be compared. The second step is to formulate a null hypothesis and an alternative                

hypothesis. The alternative hypothesis will state that the outcomes are different while the null              
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hypothesis states that the outcomes are the same from a statistical point of view. Statistical               

significance and clinical significance are not the same, if you increase the number of samples,               

the result will be statistically significant eventually. However, it may not be of clinical              

significance. On the other hand, a result can have poor statistics and still be clinically               

significant. The third and last step in determining if two populations are distinct is to test the                 

null hypothesis. The test has to be chosen according to the distribution of the data. The null                 

hypothesis is evaluated according to a parameter . If the p value (p) is smaller than , the       α          α   

null hypothesis will be rejected (Harris and Taylor 2003). 

1.4.2.  Commonly-used statistical tests 

The two main statistical tests widely used are parametric and non parametric (Chin and Lee               

2008). If we assume that we are working with data that is normally distributed or can be                 

approximated by a normal distribution we can use a parametric test to perform our statistical               

analysis (Chin and Lee 2008)​. 

 

One of the most common hypothesis tests is the Student’s ​t-test, which compares the mean of                

two parametric distributions. t tests can be used for either one sample or two, and can also be                  

divided into paired and unpaired tests in the case of two samples. In a paired t-test, each                 

sample in the first group is compared to its companion in the other group. The two groups are                  

not independent, and often in medicine they involve the same patients at two different time               

points. In unpaired t tests the samples of the two groups are independent from one another,                

such as when a patient cohort is divided into a treatment and control group. The t test                 

assumes that the data are normally distributed. The general expression for the t statistic is as                

follows: 

 t = x − x1 ˆ 2̂

 +( n1

s
1 

2

n2

s
2 

2)  

  

Where are the means of the group, are the variances, and and are the , xx1̂  2̂       , ss1  2     n1  n2   

number of samples of the two distributions (Kim 2015). 

 

The ​Mann Whitney U test is the non-parametric analogue of the unpaired t test (Nahm 2016).                

In order to calculate the statistic (​U​), the data are ranked according to the frequency of                
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appearance. The ​Mann Whitney U test makes no assumptions about the shape of the              

distributions and takes into consideration the medians of each distribution for the ranking             

process (Hart 2001). 

 

The ​Chi squared test is another example of a non parametric test. Unlike the ​Mann   χ2             

Whitney U test​, it is used for categorical data (McHugh 2013). It is commonly used to                

determine if there is any relation between the frequencies of events observed in different              

groups. There are two important assumptions when using this test: The groups (in our case               

groups of patients) are independent, and the categories of the variables considered have to be               

exclusive between each other (McHugh 2013). The null hypothesis states that there is no              

relation between the frequencies of events observed in different groups (McHugh 2013). P             

values are calculated to evaluate the null hypothesis of this test (Harris and Taylor 2003). 

1.4.3.  Statistical learning models 

Statistical models are mathematical expressions that use input data to make predictions about             

the data. The goal of modelling is to develop a function ​f ​to describe the relationship between                 

one or more explanatory variables, ​X, ​and the response variable ​Y in a way that minimizes the                 

random error ​E that captures the variability in ​Y that ​X cannot explain. This expression can be                 

simplified as following: 

 f (X) EY =  +   

It is important to note that the error in a model can be separated into the error that comes                   

from the algorithm optimization and the error that comes from factors related with the              

acquisition of the data (the random error) (James et al. 2013). While the error associated with                

the algorithm can always be optimized to a minimum value, the random error related to data                

acquisition is irreducible by model optimization and will affect the ultimate performance of             

the model.  

Two important concepts to keep in mind when creating mathematical models of data are              

variance and bias. ​Bias is defined as the error associated with modeling a real problem with a                 

mathematical approximation. ​Variance is the error associated with the variability of the            

model when using data from other datasets. A balance between variance and bias is important               

because when the model is broad enough to consider variability between datasets, it could              
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lose reality representation. This is also known as the bias and variance tradeoff (James et al.                

2013). 

 

Depending on the characteristics of the data, different types of models should be applied. For               

instance, regression models are useful to predict continuous data, while classification models            

are useful to predict categorical data (James et al. 2013). The remainder of this section gives a                 

brief overview of two of the most common regression models. 

1.4.3.1.  Linear regression 

Univariate linear regression is a basic model that predicts a variable Y as a function of a                 

single parameter X. The following linear equation is used to describe the relation X and Y: 

(X) XY = β0 + β1  

Where is the intercept and is the slope of the curve. Both and are also known as β0     β1        β0  β1     

the linear regression coefficients of the model (James et al. 2013). A linear regression              

algorithm looks to find the coefficients and that best describe the data. First, it is      β0  β1         

important to determine if there is any relation between the two variables. This process is               

performed by hypothesis t-testing in which the null hypothesis establishes that there is ​no              

relation between X and Y ​( ). If the p - value is small enough, the null hypothesis that     β1 = 0              

there is no relationship between X and Y can be rejected. 

 

Additionally, is a parameter that measures how well the model approximates a linear R2              

curve. The closer approximates to 1, the better the data fits a line. For physics models the   R2                

 approximates a lot to one, while for biology and marketing the variations are higher.R2   

 

Multivariate linear regression is an extension of the univariate linear regression where more             

explanatory variables are used and is described by the following equation: 

 

X X .. XY = β0 + β1  1 + β2  2 + . + β N  N   

 

Where are the N parameters considered in the model and are , …, XX1   N           Xβ X , ..., 1  1  β N  N  

the multivariate linear regression coefficients. In this case, the null hypothesis considers that             
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and it is proved wrong when at least a regression coefficient isβ1 = β2 = ... = βN = 0              

different from zero. Moreover, the F statistic confirms the null hypothesis when it is equal to                

one. When , at least one of the variables is related to Y (James et al. 2013)​.F > 1  

1.4.3.2.  Logistic regression 

Logistic regression is a type of classification model that is usually used for qualitative or               

categorical data (James et al. 2013). This makes it a particularly useful model for health care                

data, which often includes many categorical variables like diagnosis, sex, cancer stage, and             

more. Perhaps more important is that unlike in linear regression, where the response variable              

Y is usually a continuous variable, ​Y ​in logistic regression is a categorical variable with two                

possible values. This therefore makes it possible to create models to predict which of two               

categories an individual will belong to, such as whether or not they develop complications,              

metastisize, or as in the present study, require a radiotherapy replan.  

 

Consider a logistic regression model with one explanatory variable ​X. The model estimates             

the probability ​P(X) that a given individual will belong to a specific category given the value                

of the variable ​X. The probabilities can have any value between zero and one and the                

variable will be classified according to their highest probability. In a univariate logistic             

regression, the probabilities are calculated using the sigmoid function as follows: 

 

(X)P = exp (β +β X)0 1
1+exp (β +β X)0 1

 

 

Where and are the logistic correlation coefficients. Similar to linear regression,β0 β1  

statistical tests can be done to evaluate the probability these coefficients are non-zero and 

assess the quality of fit of the model.  

 

One of the important concepts associated with logistic regression models is the odds ratio. An 

odds​ ​ratio (OR)​ is the ratio of the probability of being classified as category Z (for example, 

needing a radiotherapy replan) and the probability of not being classified as Z (not needing a 

replan): 

RO = P (X)
1 − P (X)  

30 



 

To simplify the logistic correlation coefficients to a linear expression, the log function is 

applied to the odds ratio: 

og Xl (OR) = β0 + β1  

 

 For a multivariate logistic regression, the expression is generalized as following: 

og X ... Xl (OR) = β0 + β1 1 + . + βN N  

(James et al. 2013). 

 

The odds ratio is a simple way to compare the probability of something happening to the                

probability of something not happening. In this thesis, the criterion variable is the replanning              

and the odds ratio can be interpreted as the ratio of the probability ​(p) of a patient being                  

replanned and the probability of a patient not being replanned.  

→ → there is no relation between the predictor and the responseRO = 1  p = 1 − p   

→  →  higher probability that the predictor is related to the criterionRO > 1 p > 1 − p  

variable 

→  →  lower probability that the predictor is related to the criterionRO < 1 p < 1 − p  

variable 

When the predictor is a continuous variable, the odds ratio determines if the probability is 

higher or lower with an increment in the predictor (Szumilas 2010​;​ ​Hosmer, Lemeshow, and 

Sturdivant 2013)​. 
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2. HNC radiotherapy replanning 

2.1. Head and Neck cancer 
 
Head and neck cancers (HNC) originate in the squamous cells of the mucosa of the upper                

digestive tract (Haddad 2010) and are classified according to the site in the body they               

originate from. Common sites include the oral cavity, nasal cavity, nasopharynx,           

oropharynx, hypopharynx, larynx, and major salivary glands (Deschler, Moore, and Smith           

2014). Tobacco and alcohol consumption are important risk factors for HNC. HPV is another              

common risk factor in the development of HNC, especially HPV 16, which is the most               

common type of virus linked to oropharyngeal cancer (Beynon et al. 2018)​. 

2.1.1. HNC treatment 

The head and neck area is a complex area for cancer treatment because it contains many                

overlapping structures with important basic functions. Accordingly, the treatment for HNC           

varies depending on the site, type, and stage of cancer. For the squamous cell carcinomas of                

the head and neck (SCCHN), treatment involves a combination of multiple modalities such as              

radiation therapy, surgery, and chemotherapy (Yeh 2010). The exact choice of treatment will             

depend on the location of the neoplasm in the head and neck in order to reduce the                 

probability of treatment significantly impacting the functions of nearby organs or decreasing            

patient quality of life  (Haddad 2010). 

2.1.1.1. Surgery 

The goal of the surgery in cancer treatment is to remove all neoplastic tissue. However, it is                 

not always possible if the cancer is in an unresectable location. Additionally, because there              

may be microscopic neoplastic cells in tissues nearby the visible lesion, an excision margin              

must be defined. This is an additional portion of tissue removed to catch those microscopic               

deposits. These margins play an important role in determining if a patient needs             

complementary treatment such as radiotherapy or chemotherapy and to what degree (Homer            

and Fardy 2016). 
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2.1.1.2. Chemotherapy 

Chemotherapy is the use of cytotoxic drugs that target rapidly dividing cells like cancerous              

cells. It is a systemic treatment, meaning it circulates throughout the body instead of being               

localized to one area like surgery or radiotherapy. Because of this, it can also attack healthy                

cells that replicate quickly, such as skin, bone marrow cells, hair, and intestines, and cause               

side effects (Airley 2009). 

 

Common chemotherapy drugs for HNC include cisplatin, fluoropyrimidines, taxanes, and          

cetuximab (Airley 2009). Chemotherapy can also be delivered as an induction or            

consolidation therapy. Induction chemotherapy is the use of chemotherapy as the primary            

treatment modality to cure disease, as opposed to consolidation or maintenance chemotherapy            

which ensures a patient stays in remission once a primary treatment has succeeded.             

Depending on the cancer, an induction treatment may result in a partial response or total               

response (cancer elimination) of the disease to the treatment (Airley 2009). Chemotherapy            

can also be applied together with radiation therapy or surgery in order to obtain better               

outcomes and prevent the recurrence of the disease. The combination of chemotherapy and             

radiotherapy is usually called concurrent chemoradiation. 

 

2.1.1.3. Radiotherapy in HNC 

External beam radiotherapy is the standard treatment for SCCHN. As mentioned before, it             

can also be combined with other modalities such as surgery and chemotherapy for a better               

prognosis of the patient. Radiotherapy is usually either delivered post-surgery to remove the             

remaining microscopic disease, or it is used with chemotherapy alone to reduce the radiation              

side effects on OARs and to prevent metastatic lesions. Depending on the area of the head                

and neck, the radiotherapy treatment varies in prescribed dose, fractionation scheme,           

radiation fields set up and the technique used (Yeh 2010). 
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2.1.2. Treatment variations depending on the site location of HNC 

Due to the complex nature of the head and neck area, the choice of treatment modality used                 

to treat HNC depends on the site location of the tumour, the stage of the lesion and must take                   

into account individual characteristics of the tumour and the patient (Yeh 2010). Table             

1.3.5.1. shows which treatment modalities are commonly used and in what combination for             

several HNC sites. One thing to note is that chemotherapy is usually only used for advanced                

diseases and/or inoperable tumours (Yeh 2010). 

 

Table 1.4.1.1. Treatment modalities that can be used alone or in combination for HNC patients (Yeh 2010). 

HNC  site location Radiotherapy Surgery Chemotherapy Brachytherapy 

Paranasal sinuses Yes Yes Inoperable  

Nasal Cavity Preferred 
Small and superficial 
lesions   

Oral cavity Yes Yes Advanced stage  

Nasopharynx Yes Difficult Advanced stage  

Oropharynx and soft 
palate Yes Yes Advanced stage  

Tonsillar region 
(oropharynx) Yes Yes   

Base of the tongue 
(oropharynx) Yes Yes 

Advanced stage 
(inoperable)  

Oropharyngeal wall Yes Yes   

Hypopharynx Yes Yes   

Larynx Yes Yes 
Advanced stage 
(inoperable)  

Salivary glands Yes Yes   

Thyroid gland Yes Yes  Yes 

 
 

2.1.3. Secondary effects induced by radiotherapy in HNC patients 

Head and neck patients are prone to developing side effects that impact the quality of their                

lives. Even before treatment, tumour growth may affect essential bodily functions like the             

ability to chew, swallow, and taste food (Larsson, M., Hedelin, B. and Athlin, E. 2003).               
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Furthermore, irradiation to organs such as the parotid and larynx has a negative impact on               

basic functions such as swallowing, chewing, and speaking (Haddad 2010). 

 

Because important OARs are usually close to HNC targets, radiotherapy side effects are very              

common. Radiotherapy side effects may be temporary or permanent, and can include pain,             

swelling of the mucosa (mucositis), decreased saliva production, dry mouth (xerostomia),           

problems swallowing (dysphagia), nausea, and loss of taste (van der Laan et al. 2015). 

 

Muzumder et al (2019) describe the acute toxicities observed in a cohort of 164 patients               

treated with radiotherapy where 56.7% were treated with concurrent chemotherapy. 89% of            

the patients developed mucositis, 98.5% dysphagia, 54.7% aspiration, 93.2% dermatitis,          

31.8% nausea, 47.9% vomiting, 50% anorexia, 87.2% weight loss and 89.2% pain.            

Muzumder ​et al also showed that most HNC patients develop mucositis and dysphagia by the               

third week of their radiotherapy treatment. Additionally, mucositis was also found to be the              

leading cause of interruption of the patient's treatment (Muzumder et al. 2019). 

 

All the side effects combined with stress, low self esteem and depression can cause nutrition               

problems and weight loss during radiotherapy, which in turn can lead to immunosuppression             

and higher mortality in these patients (Larsson, M., Hedelin, B. and Athlin, E. 2003). 

  

2.2. Current status and challenges of HNC radiotherapy replanning 

 

In the literature, HNC replanning is less studied than weight loss, with a lot of studies                

reporting a new ART strategy or reporting on how patients benefit from it, rather than               

studying the factors associated with replanning. This section summarizes the current research            

on tracking and predicting anatomical changes in patients to determine the factors that             

determine replanning. 

 

Radiotherapy dose distributions are conformal to the target. Thus, significant anatomical           

changes in the neck region impact the accuracy of the radiotherapy treatment delivery and the               

treatment plan has to be adapted accordingly. As mentioned in section 1.5.3, weight loss is a                
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very common side effect in radiotherapy linked to anatomical changes of HNC patients.             

Additionally, because of location, ​shrinkage of tumours or swelling of organs in response to              

treatment impacts the anatomy in the treatment beam more than other cancers.  

2.2.1. Anatomical changes during HNC treatment 

The impact of tumour shrinkage on patient positioning errors is quantifiable with imaging             

and has been found to be non-negligible. For example, a study by Hou ​et al (2016) of 217                  

nasopharyngeal cancer patients found significant mean anterior-posterior (AP) positioning         

errors of for the target volume when patients had weight loss equal or lesser  .9 .1 mm2 ± 1              

than 5% of the initial weight. This setup error increased to for patients with           .6 .5 mm3 ± 1     

weight loss higher than 5% and even exceeded in 16% of patients (Hou et al. 2016).        .0 mm5          

For head and neck cancers, the extension margins added to the CTV vary from to              .0 mm3   

(Chen et al. 2011)..0 mm5  

 

The main predictors of replanning are ​tumour changes and the ​weight loss​, but many studies               

investigate as well the shrinkage of the parotids as a measure of the volume loss in the neck                  

region (Schwartz and Dong 2010; ​Barker et al. 2004​; ​Loo et al. 2011)​. Additionally, many               

studies are performed in small cohorts due to lack of automatization of the process and               

problems of data availability. Most studies are performed with patients having standard            

prescription doses (60 Gy, 66 Gy and  70 Gy delivered in 2 Gy/fx)  

 

One study by ​Schwartz and Dong (2010) investigated the online adaptive radiotherapy of 22              

oropharyngeal patients who completed radiotherapy in late stages of oropharyngeal cancer.           

All patients needed to be replanned at least once and eight (36%) were replanned twice. The                

median fraction at which the first replan occurred was 16, at which point both the CTV and                 

parotids had shrunk on average by 4% and 15% respectively. Total mean shrinkage by the               

end of treatment was 15% for the CTV and 26% for the parotids (Schwartz and Dong 2010). 

 
Baker et al (2004) and ​Loo et al (2011) found that weight and parotid volume decreased                

during radiotherapy treatment. ​Loo et al (2011) reported a mean volume loss of 350 ml               

ranging from 289 ml to 428 ml, when measuring the skin contour limited by the length of the                  

target volume. ​Baker et al (2004) reported a GTV median volume loss of 1.8% per day and                 
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69.5% at the end of the treatment. Additionally, Baker et al (2004) measured the shift of the                 

center of mass of the parotid glands during radiotherapy. They found that the parotid shifts               

were highly correlated to weight loss. The median weight loss was greater than 6% at the end                 

of the treatment (Barker et al. 2004; Loo et al. 2011). 

 

The high correlation between parotid shifts and weight loss found by ​Barker et al (2004) may                

be an indication that the volume loss in the neck area is somehow linked to total weight loss                  

(Barker et al. 2004). However, taking into account that patients may have different body fat               

distributions, their total weight loss may not represent accurately the volume loss in the neck.               

This is why the correlation between weight loss and neck area loss will be investigated in this                 

thesis. 

 

Because of these anatomical changes, replanning HNC patients to adapt their treatment plans             

according to their individual weight loss and tumour response can improve the overall quality              

of their treatments (Gensheimer and Le 2018). Studies suggest that for patients in late stages,               

some sort of replanning improves the survival of the patients (L. Zhao et al. 2011). However,                

different institutions have different criteria for replanning and consensus is lacking in the             

literature on what are the best predictors.  

 

Additionally, ​Ma et al (2014), found that the weight loss has a greater impact than the tumour                 

shrinkage in the dose distribution of the treatment plan. (Ma et al. 2014) 

 

2.2.1.1. When to replan 

The time of replanning is as important as the predictors, given that a prediction of when to                 

replan is the tool that would allow us to improve the clinical workflow. In this section the                 

studies of ​Brown et al (2016) and ​Guide et al (2016) are described regarding their predictions                

of the time of replanning in HNC radiotherapy treatments of duration of 7 and 6 weeks,                

respectively (Brown et al. 2016; Guidi et al. 2016). 

 

Brown et al (2016) studied 21 oropharyngeal and node positive nasopharyngeal patients with             

a total prescription dose of 70 Gy in 35 fractions and concurrent chemotherapy. Patients were               
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imaged daily with CBCT and imaged a second time with a CT to identify if they needed a                  

replan. From those 21 patients only 5 were replanned (4.5% from the total number of               

patients). The reason for replanning was that the dose planned for the brachial plexus was               

surpassing the constraints. At the time of the second CT, the median weight loss of the                

patients was 10.3%. Patients imaged a second time with CT, were grouped in replanned and               

not replanned. The median fraction in which the second CT was acquired was 22 (10-25).               

Additionally, replanned patients had an earlier CT and the median fraction for replanning was              

significantly different between patients replanned and not replanned. Other anatomical          

changes were measured at the time of the second CT, such as 42.8% volume loss of the                 

largest node and a volume loss of 20.3% and 21.7% for both parotid glands (Brown et al.                 

2016). 

 

Guide et al (2016) used a machine learning approach to predict the time of replanning during                

radiotherapy. They tracked the volume of the parotid during radiotherapy for 90 patients at              

four different institutions. The total prescription dose for those patients was 66 Gy in 33               

fractions in the tumour and 54 Gy in the lymph nodes. The decision of when to replan was                  

based on clinician perspective. Their software predicted that most patients were not receiving             

good treatment at the 5th week of radiotherapy. Additionally the volume loss of the parotid               

after 6 weeks was (Guidi et al. 2016).3.7 .8%2 ± 8  

 

Even though the definition of when a patient has to be replanned was specific to each clinic,                 

the decision for replanning was correlated to visible anatomical changes occurring at least             

two weeks before the end of treatment. However, the volume estimation at the time of               

replanning had statistical deficiency given that it was based on a really small dataset. Overall,               

the time of replanning needs more studies before it can be determined accurately (Brown et               

al. 2016; Guidi et al. 2016). 

2.2.2. Factors that influence weight loss 
 
While weight loss is one of the reported causes of replanning, it is not a perfect predictor. If                  

the effects of weight loss are more evident in the abdominal region rather than in the neck                 

region, a HNC patient may not need a replan. Weight loss instead may indicate eating               
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problems that decrease quality of life and should be handled accordingly. For this reason,              

many studies have examined possible predictors of weight loss during radiotherapy with and             

without considering the relation to replanning.  

 

According to ​Lonbro et al (2016); chemotherapy in addition to radiotherapy can increase the              

weight loss of the patients. Additionally, different studies report different HNC site locations             

associated with weight loss. ​Lonbro et al (2016); reported that pharyngeal and oral cavity              

cancer increased the probability of weight loss when compared to glottic cancer       ≥ %)( 5       

(laryngeal cancer). ​Ghadjar et al (2015); reported the weight loss of patients from oral cavity,               

oropharynx, hypopharynx and larynx. ​Zhao et al (2015); classify oropharyngeal and oral            

cavity as moderate predictors for weight loss (Lønbro et al. 2016; Ghadjar et al. 2015; Zhao                

et al. 2015). 

 

Both ​Caciedo et al (2015) and ​Lonbro et al (2016); reported higher weight loss for advanced                

stages of cancer (III and IV) than for cancer earlier stages (I and II). ​Zhao et al (2015);                  

reported cancer stage as a strong predictor of weight loss (Cacicedo et al. 2014; ​Lønbro et al.                 

2016​; Zhao et al. 2015). A higher body mass index (BMI) at the start or before treatment was                  

reported to be related to greater weight loss during radiotherapy (Lønbro et al. 2016; Zhao et                

al. 2015). However, the height of patients was not systematically recorded at our clinic and               

consequently, the BMI data was not considered for this thesis work. 

 

A common practice to analyze weight loss during radiotherapy is the use of a 5% weight loss                 

threshold to classify and compare patients (Ghadjar et al. 2015; Lønbro et al. 2016; Cacicedo               

et al. 2014). On the other hand, other studies reported the use of univariate and multivariate                

analyses as well as observational studies (Zhao et al. 2015). 

 

Most studies seem to predict the total weight loss during radiotherapy rather than reporting              

the weight loss as a function of time. Additionally, they report the absolute change of weight                

in kg, which makes it difficult to compare time series patients of different BMIs and adds                

significant error bars to their studies  (Cacicedo et al. 2014; Lønbro et al. 2016). 
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Another observation from the literature is that weight loss studies were performed in cohorts              

with a greater number of men than women (Cacicedo et al. 2014; Lønbro et al. 2016;                

Ghadjar et al. 2015). This may be due to the fact that around 74% of HNC cases are men and                    

only 26% are women (Siegel, Miller, and Jemal 2020), but the relation between weight loss               

and sex will also be investigated in this thesis. 

 

Across the various retrospective studies reported in the literature and mentioned in this thesis,              

the maximum number of patients analyzed in a single institution was 476 by ​Ghadjar et al                

(2015). This shows that in general the number of HNC patients treated in a single clinic is                 

relatively small for statistical analysis, which is a limitation for a study that involves so many                

predictors. On the other hand, the review from ​Zhao et al ​(2015); involves the results from a                 

total 6,159 patients. Even though the review has the limitation of not being able to use the                 

statistical power to analyze the predictors for all of the patients in a single shot, it can help to                   

point out which results are consistent across the treatments that different institutions apply             

(Zhao et al. 2015; Ghadjar et al. 2015; Lønbro et al. 2016; Cacicedo et al. 2014). 

2.2.3. Challenges for HNC replanning prediction 
 
Regardless of the method used for radiotherapy replanning, it remains a time consuming             

process that requires many clinical resources. In the literature, the decision of when to replan               

was found to be correlated to anatomical changes such as weight loss, tumour and parotid               

shrinkage, occurring at least 2 weeks before the end of treatment (Brown et al. 2016; Guidi et                 

al. 2016). A prediction of when to replan radiotherapy would thus be useful to reduce the                

workflow of the clinic as well as the costs of replanning and potentially improve the               

treatment of patients.  

 

In general, small HNC cohorts were found in the literature for the investigation of weight loss                

and tumour shrinkage. The use of small cohorts leads to poor statistics in the study of                

replanning variables.  

 

The role of data collection for research purposes is often underestimated. Some of the              

challenges that are faced in the Radiation Oncology environment are the patient's privacy             
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which makes the data unavailable to researchers, the low quality of the data and the lack of                 

standardization of the data. Those characteristics also limit the possibility to share data             

between institutions to increase the repository, which is always useful for statistical analysis             

and the implementation of machine learning algorithms. Small datasets make it difficult to             

compare data between institutions and to study cohorts of many patients that share common              

characteristics (Lustberg et al. 2017). 

 

A limitation of using weight loss during radiotherapy as a replanning predictor, is that it may                

not be representative of the volume changes in the neck region. Thus, there is a need to find a                   

parameter that shows the volume loss in the neck. In this thesis, it is proposed the neck area                  

parameter, that measures the change in the area in a single slice in the neck during                

radiotherapy. This parameter will be evaluated and compared to the weight loss to measure              

the track the proportional neck changes during radiotherapy.  

2.2.4. Replanning predictors selection 

 
There is still a lot of work to do to improve statistics regarding replanning predictors. Based                

on our understanding of the literature, we decided to examine the following factors:             

Anatomical changes during radiotherapy such as ​weight and area loss​, the HNC site location,              

the stage of the cancer, the presence of concurrent chemotherapy appointments during            

radiotherapy, the radiotherapy information such as prescription dose and treatment fraction           

and patients demographics such as sex and age at the start of the treatment. Those parameters                

were integrated into a single dataset as illustrated in figure 2.2.4.1. 
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Figure 2.2.4.1 Replanning predictors during radiotherapy that were examined in this thesis research 
project.  
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3. Methods 

This thesis describes a retrospective study involving head and neck cancer patients treated             

with radiotherapy at the McGill University Health Centre (MUHC). Within the radiotherapy            

department, the radiotherapy treatment information is stored and managed using the Aria            

Oncology Information System from Varian Medical Systems (Palo Alto, California), the           

PACS information system and other repositories developed for local use. The steps followed             

for the patients’ data collection, processing, storing and analysis will be described in this              

chapter.  

3.1. Patient Cohort 
 
The cohort used in this study consisted of 490 HNC patients that completed radiotherapy              

treatment between 2012 and Fall 2019. Patient data was eligible for inclusion inr this study if                

the patients were diagnosed with cancer disease in the head and neck area and they were                

treated with external beam radiation therapy with prescribed dose to the targets of 60 Gy, 66                

Gy and 70 Gy delivered in 2 Gy/fx. Another requirement for these patients was to have                

weight data available during their radiotherapy treatment.  

 

The data were grouped in sub cohorts when the data was available only for specific periods of                 

time. For example, chemotherapy data were only available from 2016 to 2019, and a              

subcohort of 260 patients was created accordingly.  

 

Additionally, a subcohort of just 18 patients was created for a pilot study to examine               

anatomical changes in the neck. The 18 patients used for this study were randomly selected               

from the patients treated in 2018 and 2019 with the requirement that they were in the initial                 

cohort and that they were all prescribed a dose of 70 Gy.  

3.1.1. Radiotherapy plan considerations in the patient’s cohort selection 

For data homogeneity, only one radiotherapy course of treatment (labelled C1) was            

considered. This was fundamental in the hypothesis that patients receiving a second treatment             

course could be more affected than the patients with only one course because they had               
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received prior radiation. Additionally, only the first replan was analyzed given that only a few               

patients had a second replan. 

 

Initially, the following standard fractionations used in the MUHC for HNC radiotherapy            

treatment were considered: 2 Gy/ fx delivered in 20 fx, 30 fx and 33 fx for a total prescribed                   

dose of  70 Gy, 66 Gy, 60 Gy and 50 Gy.  

 

At the MUHC, the prescription dose of 70 Gy (2Gy/fx) is usually used for patients that are                 

treated by radiotherapy and for whom no surgical resection is performed. Chemotherapy is             

used for advanced diseases (stage III and IV). The predominant cancer site location for this               

prescription dose is oropharyngeal cancer because the clinicians try to avoid surgery to             

preserve the vocal cords. 

 

Additionally, the prescription dose of 60 Gy or 66 Gy (2 Gy/fx) has been used for HNC                 

patients characterized by a positive external margin and extranodal extension in the lymph             

nodes. Radiotherapy treatment for this prescription is usually combined with surgery and            

concurrent chemotherapy is used depending on the stage of cancer. 

 

Furthermore, the 50 Gy (2 Gy/fx) prescription dose has been used for laryngeal cancer of               

early stage (T1), which is treated mostly by Radiotherapy. Chemotherapy is rarely used for              

these cancer conditions. Given the fact that the patients of 50 Gy total prescribed dose were                

hardly ever replanned during their treatments, this group of patients was not included in the               

further analysis.  

 

Moreover, patients that received hyperfractionation (1.8 Gy/fx) and fractionation schemes          

different from 2 Gy per fraction in 30, 33 and 35 fractions were not considered for this study.  

3.2. Data Collection 
 
For the purpose of this project, data from the patient’s treatment stored in the ​Aria database                

and the ​AEHRA (Automatic Electronic Health Record Auditing) database, previously created           

for data centralization for radiation oncology quality assurance at the MUHC, were required;             
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(Joseph et al. 2014) and DICOM images stored in the institutional PACS. As the reader can                

infer, the data from relational databases were obtained using the SQL language, while the              

DICOM images were accessed through Varian’s Eclipse software. 

 

In this thesis, the ​Aria database was used to gather information about the radiation treatments,               

weight’s data, demographics of the cohort, diagnosis, stage of cancer and CBCT image data.              

The treatment radiation data included the dates of the treatment, course of the treatment, plan               

information, treatment fraction and prescribed dose. The image data consisted of the            

filenames and dates of the CBCT images acquired during radiotherapy for treatment            

positioning. The data were gathered for all 490 patients with the exception of the CBCT               

image data that were only available for non Tomotherapy patients. 

 

The AEHRA database was useful for two things: First, to identify which diagnosis codes              

belong to the HNC classification. Second, to identify which patients in the cohort had              

radiotherapy with concurrent chemotherapy. The chemotherapy data were only available          

from 2016 onwards. 

 

Additionally, CBCT images of 18 HNC patients acquired during their radiotherapy treatment            

were identified and downloaded from Eclipse as DICOM files. Their respective treatment            

plan data, CT images, structure files and image registration files were also obtained in              

DICOM format. The DICOM files would be used as the input for the neck area script, which                 

was built to track cross sectional changes in the neck. Details about this script are described                

in this chapter.  

 

3.3. Data processing 

The radiation oncology department of the MUHC offers a wide variety of data. However,the              

data needed for the project was not in the expected format and it required the mining and                 

processing of the information described in this section.  

45 



 

3.3.1. Considerations for data availability 

The weight data come from nutrition appointments programmed according to each patient’s            

individual needs. As a consequence, the weights were not acquired for every single day of               

treatment. Due to the sparse nature of weight data, the frequency of the weights data and the                 

spacing between days were examined to determine the best way to approach the problem. 

 

On the other hand, the CBCT images were acquired twice per week according to institutional               

protocol. This information was verified on extraction from the Aria database. 

 

Additionally, a common timeline for both images and weights data was investigated. The             

data had to be grouped to reduce the number of missing data points. A potential way to pair                  

the weight’s data with the CBCT data was to group the data by week. However, if the                 

treatment starts on a day other than Monday, the treatment can be extended by an “extra                

week”.  

 

To avoid having different treatment durations for the same prescription dose, the better option              

available was to group the data in samples of 5 fractions that would be the equivalent of one                  

week if the treatment started on Monday. This measure would also assure that the treatment               

data were distributed evenly and the patients were compared at periods of their treatment in               

which they received the same amount of dose. If we consider a daily fraction, there were five                 

fractions a week delivered for every patient. This structure also allows unifying the weight’s              

data and CBCT data. On average, patients have two data points every five fractions from the                

CBCT data, and only one data point from the weight’s data. 

3.3.2. Other considerations to format the data in a useful manner for analysis 

The following considerations were taken into account for preprocessing each patient’s data in 

a useful way for analysis: 

 
● Concurrent chemotherapy: The HNC patients were grouped in two categories:          

“chemo” and “no chemo”. In the “chemo” category patients had at least one             

concurrent chemotherapy appointment registered. The chemotherapy cycle was        
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assumed to be administered during the appointment. Concurrent chemotherapy was a           

factor that was observed to contribute to anatomical changes in the patients so it was               

important to consider. 

● HNC site location: At the MUHC, diagnosis is classified according to the            

International Classification of Diseases, Tenth Revision (ICD-10) codes (World         

Health Organization (WHO) 2019). The HNC site location was derived from the            

anatomy location of the disease. This classification was performed under the           

motivation of analyzing the data by the irradiated area. Patients with oral cavity,             

oropharyngeal, laryngeal, hypopharyngeal, major salivary glands, nasal cavity and         

nasopharyngeal cancer were found. Given that diagnosis is related to the patient and             

not to the radiation treatment, one patient could have more than one diagnosis in their               

record. From the 490 patients’ cohort, nine patients belonged to two categories of             

diagnosis and stage and one of them belonged to three. All of these patients were               

considered in the analysis. 

● Stage of cancer: The stage of the cancer was an important parameter because it is a                

determinant in the treatment modality selection and in the treatment plan. Just the             

summary stage was used for the analysis because the TNM classification has too             

many variants that divided the data into too many subgroups that did not have              

statistical significance. For the same reason as for diagnosis, 12 patients had two             

stages and one had three. All were considered in the analysis. 

● Sex: The sex of the HNC patients was extracted from the Aria database without the               

need for further processing. The motivation to include this parameter was to analyze             

the potential relation of sex in the anatomical changes of HNC patients. 

● Age at the start of the treatment: The possibility of different responses to the              

treatment in HNC patients according to their age was interesting to analyze. The age              

of the patients was obtained at the start of their treatment. 

● Replanning: Due to the lack of standardization of plan names, a ​Plan_Replan            

classification that unified the nomenclature of all the treatment plans was created. The             

first digit of the ​Plan_Replan classification corresponds to the number of the ​Plan ​and              

the second digit corresponds to the number of the ​Replan. ​These parameters were             

defined by the treatment course in question. Additionally, a binary classification was            

added to identify if patients were​ replanned or not​ during their treatments. 
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● Fraction of replan: Binary classification that has one in the fraction in which the              

patients were replanned and zero otherwise. 

● Weights at the fraction of replan: ​This classification was performed to identify a             

potential threshold for the weights at the time of the replanning.  

 

 

3.3.3. ​ Calculation of Neck area data 

As mentioned in chapter 2, the replanning of head and neck cancer patients is usually due to                 

the neck anatomy changing from what it was at the time the planning CT was taken. While                 

this is usually associated with weight loss, we recognized that not all patients will lose weight                

in the head and neck region in the same way and that weight alone may not sufficiently                 

predict the need to replan a patient. For this reason, we conducted a small pilot experiment                

where we calculated the cross-sectional area of patients’ necks over the course of treatment              

using daily CBCT images. 

 

The code to calculate ​neck areas was written in Python using the Pydicom, OpenCV,              

Pandas, OS, Scipy and Numpy libraries (Andrade and Naseri 2020). The script uses CT              

images, CBCT images, beam geometry, structure and registration DICOM files as input and             

returns the calculation of the patient’s neck area at the same position over the course of their                 

treatment as output. 

 

The input DICOM files are the following: 

 

● CT DICOM files: One CT volumetric image consists of many files where every file              

represents a slice of the volume. A CT image is of great importance because the               

treatment plan was created on these images. There are as many CT images as              

treatment plans. 

● CBCT DICOM files: ​They also represent ​a CBCT volumetric image. The CBCT            

images were acquired twice a week on average and they were used to verify the               

patient’s positioning during RT treatment. On every fraction, the CBCT was           

registered to the CT of their corresponding treatment plan.  
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● Registration (RE) DICOM file​: The CBCTs were registered to the CT images during             

the patient's treatment and the image was stored in the PACS system in DICOM              

format. The registration sequence contains the frame of reference of the affine            

transformation that maps two images. For this project, the rotation matrix was            

assumed to be equal to the identity because rotation could be absorbed on the slice               

thickness. 

● Structure (RS) DICOM file​: This file contains the volumetric coordinates of the            

structures contoured by the clinician for the treatment plan. Since they are associated             

with the treatment plan, the frame of reference used was the same as the CT. The                

coordinates are defined in ​mm​. In particular, there were used the coordinates of the              

submandibular gland structure to locate the neck in the 3D volume.  

● Beam geometry (RP) DICOM file​: This file contains the data of all the beams used in                

the treatment plan. This file was only used to obtain the isocenter coordinates in the               

CT frame of reference. 

 

To understand the process, it is important to remember that there is one CT image per plan,                 

there is at least one treatment plan per patient and there may or may not be a replan for each                    

patient. This results in more CBCT than CT images for a single patient. In turn, every CBCT                 

image accounts for one treatment fraction. The workflow of the neck area code for a single                

patient and fraction is summarized in the following steps:  

1. Load input images: The script reads both CT and CBCT volumetric images and stores              

them in a 3D 512 x 515 x ​n grayscale matrix, where ​n ​is the number of axial slices                   

along the superior-inferior axis. It also identifies if the patient was replanned or not              

and the treatment fraction number. The z axis is in the direction of the patient’s height                

and the 3D volume can be seen as a collection of 2D arrays at different points on the                  

patient’s height. Each point represents an axial slice of the patient. 

 

2. Registering the CBCT to the CT: ​Using the registration file, the script next registers              

the CBCT and CT images to the same coordinate system. To do this, the CBCT and                

CT meshes are first converted from pixels to mms to match the units of the affine                

transformation stored in the registration file. Then, the CBCT matrix is translated into             

three dimensions to align with the CT. While the affine transformation also includes a              
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rotational component, the rotation is negligible and therefore ignored in this project.            

Thus, only the translation in x, y and z axis is considered. Also, to map from one                 

reference frame to another is necessary to transform the pixels to mm using the pixel               

spacing. This is to account for the difference in field of views between CT and CBCT                

images. 

 

3. Selecting a neck slice in the CT frame of reference: Because CBCT and CT files do                

not have tags to identify an appropriate slice in the middle of the neck, we used the                 

structures drawn by clinicians on the planning CT image to identify a suitable neck              

region. After investigating, we chose to use the z-coordinate of the center-of-mass of             

the submandibular gland contour to select the slice to be used for area calculations.of              

interest in the registered CBCT image. In figure 3.3.4.1 the contour of the left              

submandibular gland cross section in the yz plane can be seen. This point was              

selected because of its location in the neck with little interference from the shoulders.              

Δz is the length of the submandibular glands on the z axis. The coordinates of the                

middle point of the submandibular glands will be used to select a slice in the z  z/2Δ                

axis. 
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Figure 3.3.4.1. Length of the left submandibular gland ​Δz​ on the z axis in the plane yz of the 

patient. 

 

4. Obtaining the body contour of the region of interest at the level of the neck: Once the                 

appropriate slice was identified in the registered CBCT, the 2D cross section was             

extracted using a thresholding technique using the OpenCV2 library ​(OpenCV 2020)​.           

The function cv.findcontours identifies shapes based on pixel intensity and the body            

contour is selected as the one with the maximum length. 

 

5. Obtain the area of the body contour​: The area of the neck at the selected location is                 

calculated with the ​cv2.moments(cnt) ​function from the OpenCV library that uses the            

center of mass of the contour to find the area. 

 

This process was used to calculate neck areas for a pilot investigation of 18 patients (11                

replanned, 7 not replanned). Neck areas were calculated for all CBCTs for all patients. On               

average, each patient had 14 CBCT images taken over the course of treatment. The output               

data were stored in the ​weights_project​ database. 
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3.3.4. Normalization of the neck area and weights data for comparison between patients 

 
Having data from various different sources, there was a need for data integration. Luckily, the               

radiotherapy treatment parameters were common to the CBCT images data and relational            

data. The fusion of the data was thus performed for every patient and it required the                

normalization of the parameters. 

 

The two parameters that were investigated to track the anatomical changes of patients during              

their radiotherapy treatments are the patient’s weights and the area in a region of interest in                

the neck. 

 

As mentioned before, the first step in the data integration was to sample the patients' weights                

and the CBCT images every 5 fractions, and to unify and homogenize the number of the                

time-series data points per patient. Another step for the integration of the data was the               

normalization of the data points to the first value, allowing determination if the variables              

increased or decreased their value during the patient's treatment. 

 

For the CBCTs, the data normalization of the replanned patients was straightforward since all              

the patients were imaged on the first day, following the MUHC protocol. However, there was               

an extra normalization needed for replanned patients. In that case, there were two treatment              

plans and the data points from the second treatment were normalized to the last data point of                 

the first treatment.  

 

In the case of the weights data, there was the challenge of patients not weighted during their                 

first five fractions of radiotherapy treatment. To account for the missing data points, patients'              

weight was tracked backwards to 15 days before their start of the treatments. This step was                

based on the assumption that patients' weight may not vary significantly before radiotherapy             

treatment. However, there were patients with no weights registered 15 days before            

radiotherapy or during their first 5 fractions. In this case, the first weight available was taken                

as the first weight of the treatment.  

 

52 



 

 

Additionally, linear interpolation was used to fill the missing values for patients in which              

their weights data were sparse even after the five fractions sampling. 

For both CBCTs and weights, the data points were normalized for every patient, and the data                

points acquired between five fractions were averaged to obtain the same number of points for               

both parameters. 

3.4. Data Storage 
 

Since the project’s data were distributed across various sources, we created the            

weights_project database in order to gather and store the processed data for analysis. The              

weights_project ​database was created using Python and MySQL and is securely mounted on             

a Linux server within the department. The database has raw data and mined data, cleaned and                

processed from the ​Aria and ​AEHRA databases and relational data obtained from DICOM             

image processing. 

 

A local repository in the MUHC network was created to temporarily store the CBCT images               

for the 18 plans examined in neck area study. To trace the files to their origin, the names of                   

the folders storing the files were arranged to have information about the plan or replan and                

fraction number.  

 

Finally, the ​neck_area table was created in the ​weights_project database to store the output of               

the neck area script. The flowchart of the complete process of the creation of the               

weights_project​ database is illustrated in figure 3.4.1.  

 

Figure 3.4.1. Flowchart of information into the ​weights_project ​database 

53 



 

 Table 3.4.1. Content of weights_project database tables 

Table name  Content 

Area_weight_integration Contains the area of a region of interest of the neck and the patients’ weight 
integrated data from 18 HNC patients ready to be analyzed. (2018 - 2019) 

CBCT_images CBCT images names from RT HNC patients (data from 2016 - 2019) 
 *Input table 

Diagnosis categories HNC cancer categories by cancer site location 
 ​*Input table 

Diagnosis categories catalogue Dictionary between the ICD-10 HNC diagnosis codes and HNC categories 
 *Input table 

Neck_area Neck area of a region of interest of the head and neck (for 18 HNC patients) 
(2018 - 2019) 
 *Input table 

PatientId catalogue Dictionary of PatientId to anonymous ID (for 490 HNC patients) 
*Input table 

Patient_age Patients age at the start of their radiotherapy treatment (for HNC patients 
2012 - 2019) 
*Input table 

Replanning_predictors Contains the weights processed data from 490 HNC patients ready to be 
analyzed. (2012 - 2019) 
*Output table 

Replanning_predictors_chemo Contains the weights processed data from 260 HNC patients ready to be 
analyzed. Includes concurrent chemotherapy information (2016 - 2019) 
*Output table 

RT_plan_data RT plan data: specifies prescribed dose, plan and replan of HNC patients 
(2012 - 2019)  
*Input table 

RT_treatment_dates RT treatment plan dates by fraction number and plan (for HNC patients from 
2012 - 2019)  
*Input table 

Weights_data Patients’ weights (for HNC patients from 2012 - 2019)  
*Input table 
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3.5.  Data analysis 

In addition to descriptive statistics like mean, median and standard errors, various statistical             

tests and models were used to compare the replanned and non-replanned populations. This             

section outlines these tests and models. 

3.5.1. Univariate analysis between patients replanned and not replanned 
 
A univariate exploratory analysis was performed to explore which factors may be related to              

the replanning. Continuous and categorical variables for replanned and not-replanned patients           

were compared. Each subcategory of the HNC site location, the presence of concurent             

chemotherapy, patient sex and cancer stage variables were compared proportionally between           

replanned and not-replanned patients. Additionally, a test was used to verify that the      χ2         

relation between the categories and the replanning was statistically significant.  

 

On the other hand, the distributions of the patients' age and total weight loss were compared                

between replanned and not-replanned patients using the Mann Whitney U test. For this work,              

the null hypothesis stated that there was no difference between replanning distributions.  

 

Both the and Mann Whitney U tests were performed using the Scipy package from  χ2              

Python. 

3.5.2. Multivariate regression models 

Multivariate linear and logistic regression models were chosen to find the predictors of the              

anatomical changes (weight loss) and when to replan a patient.  

 

There were two models of linear regression and logistic regression: The first model included              

all 490 patients without adjuvant-chemo data, and the second model included only the 290              

patients from when chemo data were available. From all the variables considered in the              

models, only the relative weight was considered continuous while the rest of the variables              

were considered categorical. The models were calculated using the linear model function ​lm             
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from the R statistical package. Also, the 95% confidence intervals (CI) were calculated for              

each of the coefficients considered in the models.  

 

The models were runned several times to find the best combination of variables that would               

produce statistically significant regression coefficients. In the case of the linear regression            

model, the parameter was also used to choose the best model. The variable sex was  R2              

excluded from all the final models because it was not found to be statistically significant in                

either the univariate or multivariate models (p > 0.05).  

 

Since the weight was the only parameter from which we had enough information to              

understand which parameters affect the anatomical changes during radiotherapy, ​a linear           

regression model was created to predict the relative changes in the weight. For the 490               

patients cohort, the independent variables were HNC site location, cancer stage, prescription            

dose and patients age. In the 260 subcohort, the HNC site location, cancer stage were               

replaced by the presence of concurrent chemotherapy. Even though age was not found to be               

correlated to the replan in the univariate analysis, it was used in the linear model to see if it                   

had any relation with the weight loss.  

 

On the other hand, ​the logistic regression models ​were used to find the predictors of the time                 

of replanning​. The fraction number at the time of replan was modeled using a binary variable,                

which had the value of one, only if the patient was replanned at that fraction, and zero                 

otherwise. The independent variables were the weight loss (%) during radiotherapy, the            

treatment fraction and the presence of concurrent chemotherapy. 

3.5.3. ​ Anatomical changes time series analysis 
 
The preprocessing of the data facilitated the construction of time series of neck area and               

weight to track anatomical changes during radiotherapy. Medians, means, and standard error            

were calculated to represent the data relative weight of the patients sampled in 5-fraction              

increments. In particular, time series for each prescription dose were created. 
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First, the weight time series were compared to the replanning fraction. Afterwards, a pilot              

study compared neck area and weight to identify if the weight represents accurately the              

anatomical changes in the neck. Mann Whitney U tests were performed to determine if the               

replanned and not-replanned patients’ time series were significantly different at each fraction            

for both area and weight. Additionally, differences between area and weight at each fraction              

were computed for all patients. Finally, the relative changes in the neck area and patient’s               

weight were compared.  
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4. Results 

4.1. Univariate evaluation of replanning 

To begin, a preliminary exploratory analysis comparing characteristics between patients who           

were and were not replanned was conducted to identify potential factors that may have              

influenced the choice to replan. These characteristics included HNC site location, the            

presence of concurent chemotherapy, patient sex, patient age and cancer stage. Although            

these factors are not directly related to the anatomical changes associated with replanning,             

they may have played an indirect role. 

 

Patients were classified according to their prescription dose in the 60 Gy, 66 Gy and 70 Gy                 

groups. The majority (58%) of patients were prescribed 70 Gy, compared to 60 Gy (18%) and                

66 Gy (24%). Interestingly, the 70 Gy prescription also had the highest proportion of patients               

replanned (50%), equal to those not replanned, compared to the proportion of patients             

replanned in the 66 Gy (32%) and 60 Gy (24%) prescriptions. Figure 4.1.1. shows the               

proportions of patients replanned and not replanned as a percentage of the total population of               

490 HNC patients. Additionally, differences in the prescription dose between patients           

replanned and not replanned were confirmed statistically significant by a test (p < 0.005).χ2  

 
Figure 4.1.1. Proportion of patients replanned and not replanned in groups of total prescribed doses of 

60 Gy, 66 Gy and 70 Gy. Total of 490 HNC patients. 
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Figure 4.1.2 shows the proportions of patients replanned and not replanned according to sex              

(a), HNC site location (b), cancer stage (c) and concurrent chemotherapy (d). Additionally,             

table 4.1.1 complements the figures 4.1.1 and 4.1.2 (a - d) with the frequency counts and p -                  

values from tests comparing the number of patients replanned and not replanned of each  χ2              

variable.  

 

The relation between patients sex and replanning is not statistically significant (NS) as shown              

in table 4.1.1 and figure 4.1.2 a). Also, a dominance of male HNC patients is preserved in the                  

data with 71% of male patients in the main cohort.  

 

On the other hand, HNC site location does have a statistically significant impact on the replan                

(p < 0.005) as shown in table 4.1.1 and figure 4.1.1. b). They also show that oropharyngeal                 

cancer is the only cancer category which incidence increases (124%) in the patients replanned              

compared to the not replanned patients. Nasopharyngeal cancer incidence remains equal but            

is proportionally higher for replanned patients, while the rest of HNC site location             

proportionally decreased in replanned patients. 

 

Cancer stage is also significantly different (p < 0.05) between replanned and not replanned              

patients (table 4.1.1 and figure 4.1.2 c. In both groups, advanced stages (III and IV) are                

dominant over early stages (I and II). Undefined stages (X) are the second more common               

stage after stage IV. Stages (IV and X) are the only two categories that increased their                

incidence in replanned patients compared to not replanned patients.  

 

Moreover, the relation between the concurrent chemotherapy and replan is shown in (table             

4.1.1 and figure 4.1.2 d). A limitation of this study was to have the information from                

chemotherapy appointments only for 260 patients from 2016 to 2019. From the graph, it can               

be observed that patients replanned, more often received chemotherapy. Moreover, the           

relation between chemotherapy and replanning is statistically significant (p < 0.005). 

 

Figure 4.1.3 illustrates the distribution of the patient’s age at the start of the treatment. Figure                

4.1.4 shows the total weight loss distribution at the end of the treatment. Mann–Whitney U               

tests were performed to compare age and weight loss of replanned and not replanned patients.               
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Both patients replanned and not replanned seem to have similar age distributions (p = 0.30).               

The median age at the start of the treatment is around  years for both distributions.3 16 ± 1  

 
 

 
Figure 4.1.2. (a-d) Proportions of patients replanned and not replanned for patients sex, HNC site 

location, cancer stage and concurrent chemotherapy. There were considered 490 patients for (a-c) and 
260 patients for (d). 
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 Table 4.1.1. Frequencies and p -values of prescription doses, patients sex, HNC site location, χ2  
cancer stage and concurrent chemotherapy in patients replanned and not replanned. 

 
 

On the other hand, weight loss was significantly different for replanned and not replanned              

patients (p < 0.005). The median weight loss was (%) for patients replanned,        6.26 .54 ± 4     

while it was (%) for patients not replanned..69 .604 ± 4  
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Figure 4.1.3. Violin plots of the age of the patients replanned and not replanned at the start of their 
radiotherapy treatment. Total 490 HNC patients. 

  

 

Figure 4.1.4. Box plots of the weight loss of the patients replanned and not replanned at the end of 
their radiotherapy treatment. Total 490 HNC patients. 

4.2. Anatomical changes time series (weight loss) and replanning 

Unlike other variables, weight loss was found to have a direct relation to the replanning since                

the changes in the weight are known to cause visible anatomical changes in the patients.  
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Now, the replanning fraction was investigated with the purpose of identifying the time in              

which the replanning occurred within each group. Differences in the time of replan between              

groups follow from differences in treatment durations. Since there were daily fractions            

delivered for most patients, the treatment was approximately three days longer for the 66 Gy               

and one week longer for the 70 Gy group in comparison to the 60 Gy group. In figure 4.2.1                   

the replanning frequency can be observed as a function of fraction number for each of the                

prescribed dose groups. The number of replans peaked at 25 and 30 fractions for the 70 Gy                 

group. For the 60 Gy group, the replans occurred earlier, peaking at the 25th fraction. Finally,                

for the 66 Gy group, the replans peaked in the 20th to 25th fraction. Thus, most of the replans                   

occur two weeks before the end of the treatment. No replans occur during the last week of the                  

treatment because the new treatment plan may not be processed on time. 

 

Figure 4.2.1. Replanning frequency as a function of the fraction number for HNC patients. A total of 
201 patients out of 490 patients were replanned. (2012 - 2019) 

 

In figure 4.2.2, the median weight series of patients replanned and not replanned from the 60                

Gy, 66 Gy and 70 Gy groups is presented. The total number of HNC patients considered for                 

this graph was 480. Every point in each curve represents the median weight acquired every               

five fractions. The dashed lines represent the not replanned patients while the solid lines              
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represent the replanned patients. This graph confirms that the patients lost weight during             

radiotherapy for patients with prescription doses of 60 Gy, 66 Gy and 70 Gy. 

 

The median weight loss also changed between patients replanned and not replanned for             

different prescription doses. The 66 Gy group had a clear weight loss threshold around 4%               

between patients replanned and not replanned, while other groups did not. The 60 Gy group               

median weight loss was above 4% for both replanned and not replanned patients. Finally, the               

replanned and not replanned patients from the 70 Gy group, had over 4% weight loss during                

treatment. The fact that no threshold was found for the 70 Gy group is surprising given that                 

this group has the highest proportion of replanned patients. The overlap between standard             

errors is observed even at the 25 fractions in which the higher cases of replan were observed.  

 
Figure 4.2.2. Median weight series of the 490 HNC patients undergoing radiotherapy who were 

considered in this thesis project. Number of fractions sampled in 5 fractions increment. (2012 - 2019) 
 

Additionally, the 70 Gy group has a visibly greater proportion of oropharyngeal, laryngeal             

and nasopharyngeal cancer patients (figure 4.2.3) and concurrent chemotherapy patients          

(figure 4.2.4), which may be a possible explanation for patients losing more weight for this               

prescription dose than others. 
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A higher incidence of chemotherapy patients in the 60 Gy group for patients replanned when               

compared to not replanned (figure 4.2.4) could also help to explain why the patients of the 66                 

Gy group had a clear threshold of 4% weight loss for replanning.  

 

Figure 4.2.3. Proportions of HNC site location for replanned and not replanned patients with 
prescription doses of 60 Gy, 66 Gy and 70 Gy. Total  of 490 patients. 

Figure 4.2.4. Proportions of concurrent chemotherapy patients for replanned and not replanned 
patients with prescription doses of 60 Gy, 66 Gy and 70 Gy. Total of 260 patients.  

4.3. Multivariate regression models 

The previous sections studied weight loss and replanning using univariate statistics.           

However, these two phenomena depend on more than one variable and using a multivariate              

model allows us to identify stronger predictors over weaker predictors. 
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4.3.1. Anatomical changes predictors (weight loss predictors) 

The predictors of weight loss during radiotherapy were investigated using a multivariate            

linear regression model, where the regression coefficients were used to determine the            

magnitude of the correlation. 

 

In table 4.3.1.1 can be observed the coefficients obtained from the 490 patients multivariate              

linear regression model. The following observations are derived from this model: 

 

● The weight decreases as a function of the fraction number. At the 25th fraction              

patients lose around 3.65% more weight than the patients at fraction 5. 

● The 70 Gy group lost more weight when compared to the 66 Gy group, while the 60                 

Gy negative coefficient was not statistically significant. 

● Patients at cancer stages II, III and IV lose more weight than the patients at cancer                

stage I 

● The nasopharyngeal, oropharyngeal and major salivary glands cancer are correlated to           

negative changes in the weight compared to hypopharyngeal cancer. Other HNC           

categories are not statistically significant. 

● The age at the start of the treatment has a small positive contribution to the weight                

changes. 

 

In table 4.3.1.2 the coefficients obtained from the multivariate linear regression model to             

calculate the weight changes for 260 HNC patients with chemotherapy data available can be              

observed. The confidence intervals from table 4.3.1.2 have a wider range than table 4.3.1.1              

The difference in accuracy can be due to the higher number of patients used in the model of                  

table 4.3.1.1. It is important to mention that when the chemotherapy data were available, the               

stage of cancer and HNC site location were not statistically significant (p > 0.05) and they                

were removed from the model. 
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 Table 4.3.1.1. Multivariate linear regression coefficients to predict the patient’s relative weight during 
radiotherapy using the data of 490 HNC patients (2012-2019). Independent variables: Fraction 

number, prescribed dose, cancer stage, HNC site location, age at the start of the treatment.  
Multiple R​2​ = 0.2586. F statistic = 61.59. 

 
 

The following observations are derived from table 4.3.1.2: 

● The negative contributions to the weight associated to the radiotherapy fraction           

number are present in this model and they are consistent to the 490 patients model. 

● Patients with chemotherapy appointments lose more weight than those without          

chemotherapy appointments. 

The contributions of the prescribed dose and the patient’s age to the weight changes were               

consistent with the previous model.  
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Table 4.3.1.2. Multivariate linear regression coefficients to predict the patient’s relative weight during 

radiotherapy using  260 HNC patients (2016-2019). Independent variables: Fraction number, 
prescribed dose, concurrent chemotherapy and age at the start of the treatment.  

Multiple R​2​ = 0.1695. F statistic = 39.73. 

 
Finally, interaction terms between chemotherapy, HNC categories and stage of cancer may be 

interesting to revise but they were not statistically significant to be considered in the model. 

 

An important observation from both models, is that the confidence intervals for weight are 

overlapped from fraction 15 to 35 which makes it difficult to determine a weight loss 

threshold at every fraction.  

4.3.2. Replanning predictors 

The odds ratio (OR) obtained from a multivariate logistic regression model were used to find               

the predictors of the time of replanning.  

 

T​able 4.3.2.1, shows the odds ratio (OR) from a multivariate logistic regression of 490              

patients that predicts the fraction of replanning. The 25th fraction has the highest odds ratio               

of all the fractions (compared to fraction 5). This result agrees with the higher numbers of                

replans found in the 66 Gy and 70 Gy (Figure 4.2.1). Additionally, the odds ratio of the                 

weight loss are greater than one, which confirms that the probability of replanning increases              

68 



 

 

 

with each unit (%) of weight loss. ​T​able 4.3.2.2, shows the odds ratio (OR) of a multivariate                 

logistic regression of 260 patients that predicts the fraction of replanning. This model             

includes the concurrent chemotherapy variable. Since the replanned patients have higher odds            

than the patients not replanned (p < 0.05), the concurrent chemotherapy is also a predictor of                

replanning.  

 

Table 4.3.2.1 Odds ratio (OR) from multivariate logistic regression model to predict the fraction of 
replanning. Total number of patients: 490 (2012-2019). Independent variables: Fraction number and 

normalized weight. 

 
 

Table 4.3.2.2 Odds ratio (OR) from multivariate logistic regression model to predict the fraction of 
replanning. Total number of patients: 260 (2012-2019). Independent variables: Fraction number, 

concurrent chemotherapy and normalized weight.  
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4.4. Area vs weight 

Since overall weight loss may not accurately reflect weight changes in the head and neck               

region, we also investigated how neck size changes during radiotherapy treatment for a             

subcohort of 70 Gy prescription patients.  

Of the 18 patients examined, 11 were replanned and 7 were not, as shown in figure 4.4.1. No                  

patients were replanned before the 15th fraction. Most replans occured at the 25 fraction,              

similar to what was seen in the larger cohort.  

 

Figure 4.4.1.  Patients replanned and not replanned for 18 HNC patients (2018- 2019).  
 
Figure 4.4.2 shows the median weight and area loss at each time point over the course of                 

radiotherapy for replanned and not replanned patients. The median area of the patients             

replanned is lower than the area of the patients not replanned. In summary, the patients lose                

area more rapidly than the weight at the start of the treatment until their stabilization from the                 

25th fraction to the end of their treatment. The difference in slope from area and weight                

suggests that the area value is more sensitive to the anatomical changes in the neck area. 

 

Additionally, figure 4.4.3 illustrates with detail the distribution of the weight and area loss at               

the 25th to the end of their treatment at the 35th fraction. The values at the 25th fraction are                   

important given that most replans occur at this fraction of the treatment.  
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From figures 4.4.2 and 4.4.3 there can be observed that the values of the weights for the non                  

replanned and replanned patients are overlapping under the uncertainties at each fraction,            

which agrees with the global behaviour observed in figure 4.2.2.  

 

In order to compare the distributions at different points of the patients treatment, Mann              

Whitney U tests were used to compare the replanned and not replanned distributions for area               

and weight. In the case of the area, the difference between distributions was statistically              

significant (p < 0.05) for all the fractions with the exception of 10 and 15. In the case of the                    

weight the difference between distributions was not statistically significant from the 10 to 33              

fractions. However, even if the distributions were significantly different, they still have            

certain overlap that implies that there is no threshold value for either of weight and area that                 

could be used as ground truth for the replanning.  

 

Figure 4.4.2. Median time series of weight and area for 18 patients undergoing radiotherapy. (2018 - 
2019). Solid lines represent patients replanned and dashed lines represent patients not replanned. 
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Figure 4.4.3. The value loss at 25 fx and  35 fx for area (green) and weight (purple) of the patients 
replanned (R) vs not replanned (NR) Total: 18 patients (2018 - 2019).  

 
 

As seen in figures 4.4.2 and 4.4.3, the area and weight trends are not equivalent. Figure 4.4.4                 

shows the normalized area - normalized weight difference at every 5 fraction increments for              

patients replanned and not replanned. When area is equal to weight, the value is zero. As we                 

can observe, most medians are below zero, which means that area is smaller than weight at                

every fraction. Thus area is decreasing at a faster rate than weight as we previously saw in                 

figure 4.4.2. Moreover, we can see that for replanned patients, the difference between area              

and weight is even more abrupt, which could explain why some patients were replanned even               

if they lost a significant amount of weight. 
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Figure 4.4.4. Differences of relative area and weight (%) during radiotherapy for patients replanned 
and not replanned. Total: 18 patients (2018 - 2019).  

 
In figure 4.4.5 the normalized values of the area and weight at the fraction of replanning are                 

shown. The median neck area at the 25 fraction could be used as a threshold for replanning in                  

future work. 

 
Figure 4.4.5. The value of the area and weight at the replanning. Total: 11 patients replanned (2018 - 

2019). 
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5. Discussion  

5.1. Univariate analysis of replanning and anatomical changes 

For the purpose of this work, the treatment fraction numbers give information about two              

variables considered in this study: the cumulated dose received by the patient and the time               

measured from the start of the treatment. Since all plans were standard fractionation (2              

Gy/fx), all three groups had received the same radiation dose at each timepoint, the only               

difference, dose wise, is that some groups ultimately had more time points. Shorter overall              

treatment could explain why earlier replans occurred for the 60 Gy group compared to the 66                

Gy and 70 Gy groups. Also, no replans occurred for the last fractions of the treatment for any                  

prescription dose. This is likely due to the fact that the workload of replanning is not justified                 

for a few fractions. The main prescription dose differences reside in the HNC site location               

and the use of concurrent chemotherapy. 

 

For our cohort, most replannings were performed two weeks before the end of the treatment               

for all prescription doses, which also matches with literature findings (Brown et al. 2016;              

Guidi et al. 2016). The peak of the replans occurred at the 25th fraction for 70 Gy, 20th-25th                  

fractions for 66 Gy and 20th fraction for 60 Gy. ​Brown et al (2016) found that the median                  

fraction at which replanning occurred was at the 22nd fractions for a 70 Gy prescription dose,                

which falls approximately within the same timeline as our result (Brown et al. 2016).              

Additionally, Guidi et al (2016) found that patients with a prescribed dose of 60 Gy required                

a replan from the 4th week of treatment (or 15th-20th fraction according to our timeline),               

which also agrees with our result (Guidi et al. 2016). 

 

In our work, weight loss was observed during radiotherapy for patients from all prescription              

doses. At the same time, weight loss was found to be correlated to the presence or absence of                  

replanning ( test, p < 0.005), results that agree with findings in the literature (Gensheimer χ2              

and Le 2018; Ma et al. 2014). Additionally, patients of different prescription doses lost              

weight at different rates during radiotherapy. In particular, patients from the 70 Gy group had               

a higher weight loss rate compared to other prescription doses. Moreover, the replans were              
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more common for the 70 Gy than the 60 Gy or 66 Gy patients. Thus, the greater rate of                   

replanning in the 70 Gy group may be related to the higher median weight loss rate in this                  

group.  

 

Some factors that may explain a greater weight loss of patients within the 70 Gy group are                 

the presence of more patients with oropharyngeal and nasopharyngeal cancer than in the             

other groups. The oropharyngeal and nasopharyngeal cancer sites have been found to be             

associated with greater weight loss than other cancer sites (Ottosson et al. 2013; Zeng et al.                

2016). Moreover, the presence of a higher number of concurrent chemotherapy patients may             

be related to a higher rate of weight loss in the 70 Gy group. Studies from the literature have                   

shown that chemotherapy is a weight loss predictor (Ghadjar et al. 2015). 

 

We confirmed univariate correlations ( test, p < 0.05) between the replanning and the    χ2          

following variables: HNC site location, cancer stage and concurrent chemotherapy. This is            

not surprising because all of these variables have been shown to be predictors of weight loss                

(Zhao et al. 2015) and weight loss has been found to be a predictor of replanning. HNC site                  

location determines the irradiated region ​(Yeh 2010)​, and patients develop more or less             

weight loss depending on the affected organs (Muzumder et al. 2019; Grundmann, Mitchell,             

and Limesand 2009). Cancer stage also determines the use of concurrent chemotherapy for             

advanced diseases (Yeh 2010). Likewise, concurrent chemotherapy contributes to both          

weight loss and treatment response (Ghadjar et al. 2015; Iqbal et al. 2017), which are relevant                

for replanning (Gensheimer and Le 2018). 

 

The presence of concurrent chemotherapy in most replanned patients in the 66 Gy group may               

also explain why it was the only group with a clear difference in median weight loss between                 

patients replanned and not replanned.  

5.2. Multivariate analysis of replanning  

The ​multivariate linear regression model ​was useful to confirm that the weight loss             

decreased during radiotherapy, given that the linear regression coefficient decreases with the            

more fractions the patient receives. It also confirmed that the weight loss depends on multiple               
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variables and it was useful to identify which parameters have stronger correlations to weight              

loss.  

 

The linear models also confirmed that the patients with 70 Gy prescription dose lose more               

weight than the patients with 66 Gy (p < 0.005), behaviour that was observed in the                

univariate analysis. When comparing linear regression coefficients from patients in different           

stages, patients in early stages (I), were observed to lose more weight than patients in later                

stages (II, III and IV). Similar behaviour has been observed by ​Lonbro et al (2016) when                

comparing early stages (I - II) to late stages (III- IV) (Lønbro et al. 2016). Additionally, the                 

linear model shows that oropharyngeal and nasopharyngeal cancer patients lose more weight            

than patients with oral cavity cancer.  

 

The linear regression coefficients for the age at the start of the treatment were statistically               

significant in the two linear models. However, they were too small to be clinically significant,               

which explains why age was not relevant for replanning in the univariate analysis. 

 

An interesting observation is that when the chemotherapy variable was considered, the cancer             

stage and HNC location did not remain statistically significant. This suggests that            

chemotherapy is a stronger predictor of weight loss than cancer stage and HNC location.  

 

The multivariate linear regression models give a rough approximation of the patient's weight             

during radiotherapy. However it is not possible to use them to obtain accurately the patient's               

weight at each fraction as indicated in the wide confidence intervals of the regression              

coefficients and the the low (< 0.3) value. This may be due to the variability of the     R2             

weights data, that come from patients’ weight not being acquired in a systematic way. Also,               

there are other variables such as stress and self esteem of patients that impact their weight                

that we are not considering (Larsson, M., Hedelin, B. and Athlin, E. 2003). The two linear                

models had similar performance, even though they considered different variables. Also a            

bigger dataset could help to improve the statistics of the models.  

 

The logistic regression model was useful to find the main predictors of replanning (p < 0.05):                

the treatment fraction (because each treatment fraction adds dose to the patient), the weight              
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loss and the presence of concurrent chemotherapy. Whereas concurrent chemotherapy is           

expected to have an impact on the tumour response (Iqbal et al. 2017), it is not commonly                 

referred to as a predictor of replanning. However, studies have shown that concurrent             

chemotherapy can have an indirect impact on the replanning. For example, ​Ma et al (2014)               

found greater variations in the parotid volume in patients undergoing concurrent           

chemotherapy treatment (Ma et al. 2014). 

 

Additionally, the 20th - 25th fraction had the highest probability of replanning of all fractions               

(compared to fraction 5), behaviour that also was observed in the univariate analysis. This              

timeline is associated with a median weight loss of 4%, which is consistent with the 4.4%                

weight loss at the 21st fraction reported as a predictor of replanning by ​Ma et al (2014) (Ma                  

et al. 2014). 

 

A bigger dataset would have been useful for the logistic regression model, because the              

fraction of replan was modeled as a binary variable assigning the value of one only if the                 

patient was replanned in a certain fraction. Thus, the ratio of ones to zeros is smaller for the                  

fractions with less replans, worsening the statistics. 

 

The fact that all 70 Gy patients lost almost the same relative amount of weight during                

radiotherapy, can be explained by the presence of a high number of patients of oropharyngeal               

cancer and concurrent chemotherapy for both replanned and not-replanned patients.          

Additionally, the residual variability of the weight loss likely contributed to the ambiguity of              

the replanning decision. Accordingly, we asked ourselves why some patients were replanned            

and others not. This could have two possible explanations: 

- Weight loss does not accurately reflect change in the head and neck region. 

- Replanning is not standardized 

5.3. Area vs weight  

 
To evaluate these two possibilities, we created a new parameter to analyze the changes on a                

localized region of the neck, the neck area. Studies in the literature use different approaches               

to track anatomical changes, for example, the volume of the parotid has been used for this                
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purpose (Barker et al. 2004; Loo et al. 2011). Additionally, ​Loo et al (2011) measured the                

volume enclosed in the target volume.  

 

The important differences between neck area and weight throughout radiotherapy are that the             

neck area decreases at a faster rate than the weight until it is stabilized at the end of the                   

treatment. For most cases, the median neck area was smaller than the median weight. For the                

replanned patients the difference between neck area and weight was larger than for             

not-replanned patients. Thus, the differences between weight and neck area confirm the            

explanation that says that the weight loss does not accurately represent changes in the head               

and neck region.  

 

Nevertheless, overlapping of the median neck area of replanned and not-replanned patients            

was also observed in this small study. It becomes visible even at the 25th fraction that was                 

most frequently replanned. The difference between the neck area of patients replanned and             

not replanned is too small to determine a neck area threshold for replanning. This behaviour               

suggests that our second guess is correct and the replanning is not standardized. In other               

words, there are some patients who lost a similar amount of neck area as the replanned                

patients but they were not replanned for any reason. 

 

A standardization in the replanning process would be useful to provide assurance that all              

patients will receive an updated treatment plan if needed. There are, however, a few              

challenges for replan standardization. The most important of these is that in our clinic, there               

are no reliable tools that allow clinicians to measure the anatomical changes of patients              

during radiotherapy.  

 

In this work, the weight and the neck area were proposed as two potential parameters that                

could be used for anatomical change tracking. When the weight was compared to the neck               

area during radiotherapy, there were found discrepancies that suggest that the weight is not a               

good parameter to track anatomical changes. That leaves the neck area as the best option to                

track anatomical changes.  
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However, the neck area code, as written for this thesis project, is just a prototype and needs to                  

be optimized before any clinical implementation. The software is adapted for a local             

repository of DICOM images and the next step would be to adapt it to leverage data from the                  

PACS system and from the Aria database. Eclipse scripting could be a potential solution but               

it has not been investigated within the scope of this project. Another important point to               

consider is that the software would have to be used at the treatment room for which an                 

appropriate interface would be needed. 

 

As a starting point for standardization, the median neck area at the 25th fraction could be                

used as a threshold for replanning. Patients that lose neck area beyond 6 % would have to be                  

replanned. The neck area study could also be extended to the 490 patients to improve the                

statistics. Once replanning is standardized, a prediction of replanning could be made based on              

the neck area parameter’s performance at the start of treatment. 
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6. Conclusions 

In our cohort, the main predictors of replanning were identified as the 20th - 25th treatment                

fraction and the weight loss. Chemotherapy was also found to be a predictor of replanning but                

it could have an indirect effect on the replanning because of its strong correlation with weight                

loss. Other predictors of weight loss were HNC site location and cancer stage but the               

correlation was not statistically significant when chemotherapy was considered. 

 

Additionally, a new parameter was proposed to measure the changes in the neck area. Given               

the limited amount of neck area data available in this preliminary study, the neck area loss                

parameter was only used to test if the weights data can be used as a measure of the anatomy                   

changes in the neck region. The weight and neck area were found to decrease at different                

rates during radiotherapy. The differences between weight and neck area loss were more             

evident for replanned patients, which suggested that weight was not an accurate or sufficient              

representation of the anatomical changes in the head and neck region.  

 

However, neither the weight nor the neck area had a clear threshold for replanning, which               

means that some patients were not replanned even if they lost a significant amount of weight                

or area. As a consequence, the current data cannot be used to identify and classify replanned                

and not replanned patients until the replanning process is standardized. In particular, a             

threshold of a 6% neck area loss from the start of the treatment could be implemented in the                  

replanning workflow as a first approach to standardize replanning. This threshold could be             

optimized by improving the statistics with a bigger dataset and a dosimetric impact analysis              

would be required. Overall, replanning standardization would be useful to formulate           

predictions of when to replan radiotherapy for head and neck cancer patients. 
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