
Hyperfine and spin-orbit interactions in semiconductor

nanostructures

Pericles Philippopoulos

Department of Physics

McGill University, Montreal

July 20, 2020

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of Philosophiae Doctor

c©Pericles Philippopoulos July 20, 2020



Time is the wisest councellor of all.

-Pericles



Abstract

Understanding the hyperfine and spin-orbit interactions is important for e.g. quantum

information processing with spin qubits. In this thesis, we investigate these interactions in

various semiconductor nanostructures. While the methods developed here have been applied

to specific nanostructures, they can be generalized to understand interactions (hyperfine,

spin-orbit, and potentially others) in other systems and/or materials.

This thesis includes an introductory chapter where we derive the hyperfine and spin-orbit

interactions from the Dirac equation and discuss the main theoretical tools used throughout

the text, k ·p theory and density-functional theory. In the succeeding chapter, we calculate the

hyperfine couplings for electrons and holes in GaAs and silicon through first-principles density-

functional theory. Our results are consistent with Knight-shift measurements for electrons.

For holes, experimental results are still limited and a direct comparison to experiment is not

possible. In the third chapter, we relate the dynamics of a hole spin after a spin echo pulse

sequence to the hole hyperfine coupling. In particular, we demonstrate how the hole hyperfine

couplings can be determined from measurements of hole spin echo envelope modulations. We

apply this concept to a boron acceptor in silicon, where the value of the hyperfine coupling

remains an open question. We show that direct measurements of boron-acceptor hyperfine

couplings can be obtained by modifying the direction of the applied magnetic field in existing

experiments. Finally, in the fourth chapter, we extend k · p theory beyond the envelope

function approximation. In doing so, we find a novel ‘dipolar’ heavy-hole spin-orbit coupling

in III-V semiconductor asymmetric quantum wells. This spin-orbit coupling is parametrized

by the heavy-hole/light-hole electric-dipole matrix element. We calculate this matrix element

and show that in GaAs, the dipolar spin-orbit coupling can represent a significant portion of

the linear Dresselhaus spin-orbit coupling.



Résumé

La compréhension des interactions hyperfines et spin-orbite est importante pour, par exemple,

le traitement de l’information quantique avec les qubits de spin. Dans cette thèse, nous

étudions ces interactions dans diverses nanostructures de semi-conducteurs. Bien que les

méthodes développées ici aient été appliquées à des nanostructures spécifiques, elles peuvent

être généralisées pour comprendre les interactions (hyperfines, spin-orbite et potentiellement

d’autres) dans d’autres systèmes et/ou matériaux.

Cette thèse comprend un chapitre d’introduction dans lequel nous dérivons les interactions

hyperfines et de spin-orbite de l’équation de Dirac et discutons des principaux outils théoriques

utilisés tout au long du texte, la théorie k · p et la théorie de la fonctionnelle de la densité.

Dans le chapitre suivant, nous calculons les couplages hyperfins pour les électrons et les trous

dans le GaAs et le silicium par le biais des premiers principes de la théorie de la fonctionnelle

de la densité. Nos résultats sont conformes aux mesures du Knight-shift pour les électrons.

Pour les trous, les résultats expérimentaux sont encore limités, et une comparaison directe

avec l’expérience n’est pas possible. Dans le troisième chapitre, nous mettons en relation la

dynamique d’un spin de trou après une séquence d’impulsions d’écho de spin avec le couplage

hyperfin du trou. En particulier, nous démontrons comment les couplages hyperfins des trous

peuvent être déterminés à partir des mesures des modulations de l’enveloppe de l’écho de spin

du trou. Nous appliquons ce concept à un accepteur de bore dans le silicium, où la valeur du

couplage hyperfin demeure une question ouverte. Nous montrons que des mesures directes

de couplages hyperfins accepteur de bore peuvent être obtenues en modifiant la direction

du champ magnétique appliqué dans les expériences existantes. Enfin, dans le quatrième

chapitre, nous étendons la théorie k · p au-delà de l’approximation de la fonction d’enveloppe.

Ce faisant, nous trouvons un nouveau couplage spin-orbite ‘dipolaire’ à trous lourds dans

des puits quantiques asymétriques de semi-conducteurs III-V. Ce couplage spin-orbite est

paramétré par l’élément de matrice électrique-dipôle à trous lourds et à trous légers. Nous

calculons cet élément de matrice et démontrons qu’en GaAs, le couplage spin-orbite dipolaire

peut représenter une partie significative du couplage spin-orbite Dresselhaus linéaire.



Preface

Contribution to original knowledge

This thesis is written in manuscript based format. The main portions of Chapters 2, 3, and 4

are manuscripts that have been published (Chapters 2 and 3) or have been submitted for

publication (Chapter 4). Thus, each of these chapters has its own introduction, conclusion,

and appendices. In addition, the addendum to Chapter 2 presents work that we intend to

submit as part of a future publication. In accordance with the McGill thesis regulations, each

manuscript (main portions of Chapters 2, 3, and 4 and the addendum to Chapter 2) contains

its own reference list. A master reference list is also provided at the end of the thesis which

includes all the references cited in the introduction, connecting material (prefaces to Chapters

2, 3, and 4) and conclusion of this thesis. Below, we give the reference for each completed

manuscript and list the specific contributions to original knowledge from each chapter.

First-principles hyperfine tensors for electrons and holes in GaAs and silicon

Pericles Philippopoulos, Stefano Chesi, and W. A. Coish

Phys. Rev. B 101, 115302 (2020).

Chapter 2

The contributions to original knowledge of Chapter 2 are:

• theoretically establishing the strength and symmetry of the hyperfine interaction for

electrons and holes in GaAs and silicon.

• developing DFT+k · p to compute Bloch waves for bands whose extrema are off-zone

center.

• calculating the hole hyperfine constants for holes in germanium (Addendum to Chapter

2).
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Hole spin echo envelope modulations

Pericles Philippopoulos, Stefano Chesi, Joe Salfi, Sven Rogge, and W. A. Coish

Phys. Rev. B 100, 125402 (2019).

Chapter 3

The contributions to original knowledge of Chapter 3 are:

• estimating the boron-acceptor hyperfine coupling based on empirical data and without

relying on the envelope function approximation.

• calculating hole-spin echo envelope modulations accounting for the anisotropic light-hole

g-tensor and hyperfine tensor.

Pseudospin-electric coupling for holes beyond the envelope-function approximation

Pericles Philippopoulos, Stefano Chesi, Dimitrie Culcer, and W. A. Coish

arXiv :2005.08821 (2020).

Submitted for consideration in Phys. Rev. B

Chapter 4

The contributions to original knowledge of Chapter 4 are:

• calculating k · p parameters and matrix elements of the Zeeman Hamiltonian for GaAs

using elk, an all electron density-functional theory code.

• calculating the GaAs valence-band electric-dipole matrix elements from first principles.

• deriving the dipolar spin-orbit coupling.

• demonstrating that the dipolar spin-orbit coupling is important for understanding the

GaAs linear Dresselhaus spin-orbit coupling in asymmetric quantum wells.
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1 Introduction

Understanding spin interactions in semiconductor nanostructures is important for a broad

range of applications. These applications include, but are not limited to, nuclear magnetic

resonance (NMR), spintronics, and sensing. Spin interactions can also be important for

fundamental studies of topological and other material properties. One of the most interesting

areas of current research related to semiconductor spin interactions is the development of a

quantum computer.

Quantum computers offer an exponential speedup over their classical counterparts in

performing certain tasks. These tasks include simulating quantum systems [1, 2], which

could lead to the discovery of new drugs, catalysts, and materials [3–5] and solving discrete-

log problems [6], which have been used to guarantee security in multiple cryptographic

algorithms [7–10]. The exponential improvement in performing these and other quantum-

information-processing tasks has acted as a major motivator for the development of quantum

computers. However, before a quantum computer can be developed, a physical qubit must

be established. The qubit (or quantum bit) is the fundamental unit of quantum information:

a quantum-mechanical two-level system which encodes quantum information. The qubit is

therefore the quantum analogue to the classical bit which encodes classical information.

Various proposals have nominated different physical systems as viable qubit candidates

[11–23]. Here, we focus on systems where the qubit is realized by two spin (or pseudospin)

states of an electron (or hole) confined to a semiconductor nanostructure. Because electrons

are spin-1/2 particles, their spin degree of freedom provides a natural choice for a qubit

(quantum two-level system). This type of qubit is commonly referred to as a ‘spin qubit’.

However, ‘spin qubit’ can also refer to a qubit comprised of a more general pseudospin.

If spin qubits are to be used for quantum information processing, the interactions that

influence the spin (or pseudospin), must be understood. In this thesis, we focus on two of

these interactions. The first is the magnetic dipole-dipole interaction between the electron

magnetic moment and the nuclear spins that make up the nanostructure host material: the

hyperfine interaction. The second is the coupling between the spin and orbital degrees of
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freedom of the electron: the spin-orbit interaction. In short, the goal of this thesis is to

calculate and understand hyperfine and spin-orbit interactions in various GaAs and silicon

nanostructures. Although we focus the analysis on specific nanostructures, the methods

employed can be extended to understand these interactions in other systems.

The remainder of this introductory chapter is organized as follows: In Sec. 1.1 we derive

the hyperfine and spin-orbit interactions from the Dirac Hamiltonian. In Secs. 1.2 and 1.3

we discuss the main theoretical methods employed in the remaining chapters. In Sec. 1.2

we focus on k · p theory under the envelope function approximation. Finally, in Sec. 1.3 we

discuss density-functional theory.

1.1 Dirac Equation

The aim of this section is to derive the hyperfine and spin-orbit interactions from the Dirac

Hamiltonian. The derivation given here is based on the analysis of the Dirac equation presented

in the book by Weissbluth, Ref. [24]. Similar derivations are presented in Refs. [25–27].

The Dirac equation is the relativistic equivalent to the Schrödinger equation. For an

electron in the presence of an electromagnetic field described by a scalar potential φ and a

vector potential A, the Dirac Hamiltonian is given by

H = cα · π + βmc2 − eφ. (1.1)

Here, π = p+ eA is the canonical momentum operator (p is the momentum operator), the

electron charge and rest mass are −e and m respectively, and

αi =

(
0 σi

σi 0

)
, β =

(
I2 0

0 −I2

)
(1.2)

are four-dimensional matrices constructed from the Pauli matrices, σi, and the two-dimensional

identity matrix, I2. Because the Dirac Hamiltonian is a 4× 4 matrix, a solution, ψ, to the
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eigenvalue equation, Hψ = εψ, is a four-component Dirac spinor

ψ =

(
ψ1

ψ2

)
, (1.3)

where ψ1 is a two-component spinor that describes the electron and ψ2 is a two-component

spinor that describes its anti-particle. The eigenvalue equation for H can be reduced to two

coupled matrix equations,

(ε′ + eφ)ψ1 − cσ · πψ2 = 0 (1.4)

and (
ε′ + 2mc2 + eφ

)
ψ2 − cσ · πψ1 = 0, (1.5)

where ε′ = ε−mc2 is the electron energy relative to its rest-mass energy. From Eq. (1.4), we

can estimate the relative magnitude of ψ1 and ψ2. Approximating ε′ + eφ ∼ 1
2
mv2 (kinetic

energy) and σ · π ∼ p = mv, where v is the electron velocity, we obtain

ψ1 ∼
c

v
ψ2. (1.6)

For non-relativistic electrons (c/v � 1), ψ1 is the important component of the Dirac spinor.

Therefore, we solve Eq. (1.5) for ψ2 and insert the result in Eq. (1.4) to obtain an equation

for ψ1 alone

H1ψ1 :=

[
−eφ+

1

2m
σ · πKσ · π

]
ψ1 = ε′ψ1, (1.7)

where

K =
2mc2

ε′ + 2mc2 + eφ
. (1.8)

The result is an eigenvalue equation, H1ψ1 = ε′ψ1, where the eigenstates are the electron

component of the Dirac spinors, ψ1, with associated eigenenergies ε′. The Hamiltonian

associated with this eigenvalue equation, H1, can be rewritten in terms of the electric field,

3



E = −∇φ, as:1

H1 = K
p2

2m
− eφ+Hc +Ha +HL +HSO +H ′, (1.9)

where

Hc =
e2~c2

(ε′ + 2mc2 + eφ)2
σ ·E ×A → contact hyperfine, (1.10)

Hd =
e~c2

ε′ + 2mc2 + eφ
σ · (∇×A) → dipolar hyperfine, (1.11)

HL =
2ec2

ε′ + 2mc2 + eφ
A · p → nuclear-orbital interaction, (1.12)

HSO =
~ec2

(ε′ + 2mc2 + eφ)2
E × p · σ → spin-orbit interaction. (1.13)

The term H ′ contains relativistic effects that do not depend on the spin, σ, of the electron

(e.g. the Darwin term, see Chapter 15 of Ref. [24] for more details). Throughout the remainder

of this thesis we neglect the spin-independent effects described by H ′ and focus instead on

the terms of Eqs. (1.10)-(1.13).

1.1.1 Hyperfine interaction

Contact hyperfine interaction

The contact hyperfine interaction is given by Eq. (1.10):

Hc =
e2~c2

(ε′ + 2mc2 + eφ)2
σ ·E ×A. (1.14)

In semiconductor nanostructures, the electron wavefunction is spread over many nuclei of the

underlying material (see Sec. 1.2.3, below). In general, each of these nuclei is charged and

may have a finite spin. The electromagnetic fields generated by a nuclear spin with charge

1. The property (σ ·O1)(σ ·O2) = O1 ·O2 + iσ ·O1 ×O2 for two vector operators O1 and O2 is used to
rewrite H1.
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Ze and magnetic moment µI can be written as:

φ(r) =
Ze

4πε0r
, E(r) = −∇φ(r) =

Ze

4πε0r3
r, (1.15)

and

A(r) =
µ0

4π

γI × r
r3

, (1.16)

where we have written µI = γI in terms of the nuclear gyromagnetic ratio, γ and the

nuclear-spin operator, I. For a non-relativistic electron (ε′ � mc2) in the presence of these

fields, we can approximate the contact hyperfine interaction by:

Hc ' µ0µBγδT(r) [σ · I − (σ · r̂)(I · r̂)] . (1.17)

Here, r̂ = r/r is a radial unit vector, µB = e~
2m

is the Bohr magneton, and

δT(r) =
1

4πr2

rT/2

(r + rT/2)2
, (1.18)

where rT = 1
4πε0

Ze2

mc2
= Zα2a0 is the Thomson radius and a0 is the Bohr radius.

We now consider matrix elements of Hc with respect to two arbitrary states, |a〉 and |b〉,

〈a|Hc |b〉 = µ0µBγ

∫
drδT(r)ψa(r)∗ [σ · I − (σ · r̂)(I · r̂)]ψb(r), (1.19)

where ψa(r) and ψb(r) are spinors with components ψσa (r) = 〈rσ|a〉 and ψσb (r) = 〈rσ|b〉.
Due to δT(r), the important contribution to this integral is from the region r . rT. The

only orbitals that have substantial weight in this region are the s1/2 and p1/2 solutions to the

Dirac equation (the subscript indicates the total angular momentum of the states, J = 1/2

in this case) [28]. The contact hyperfine interaction is therefore vanishingly small for all

other orbitals. The orbitals we will consider in the remainder of this thesis will either have s

symmetry (a reasonable approximation for conduction-band electrons in III-V semiconductors)

or p symmetry with total angular momentum, J = 3/2 (e.g. valence-band holes in III-V or

group IV semiconductors). For this reason, we focus on the contact hyperfine interaction

specifically for s orbitals. Since s orbitals are isotropic, the angular part of the integral in
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Eq. (1.19) results in: ∫
dΩ[σ · I − (σ · r̂)(I · r̂)] =

8π

3
σ · I. (1.20)

Therefore, in a subspace spanned by s orbitals [i.e. if ψa(r) and ψb(r) are both s orbitals],

the contact hyperfine interaction reduces to

Hc '
8π

3

µ0

4π
µBγδT (r)σ · I. (1.21)

Dipolar hyperfine and nuclear-orbital interactions

The dipolar hyperfine interaction [Eq. (1.11)],

Hd =
e~c2

ε′ + 2mc2 + eφ
σ · (∇×A), (1.22)

depends on the magnetic field generated by the nuclear magnetic moment, µI :

B = ∇×A =
µ0

4πr3
[3r̂ (µI · r̂)− µI ] . (1.23)

For a non-relativistic electron, substituting Eq. (1.23) and µI = γI into Eq. (1.22), we obtain

Hd '
µ0

4π
µBγfT(r)

3 (σ · r̂) (I · r̂)− σ · I
r3

, (1.24)

where

fT(r) =
r

r + rT/2
. (1.25)

Finally, the nuclear-orbital interaction [Eq. (1.12)],

HL =
2ec2

ε′ + 2mc2 + eφ
A · p, (1.26)

describes the coupling between a nuclear magnetic moment and an electron orbital magnetic

moment. For a non-relativistic electron, inserting Eq. (1.16) into Eq. (1.26) we have

HL '
µ0

4π

2µBγ

r3
fT(r)L · I, (1.27)
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where L = r × p is the electron orbital angular momentum operator.

We now repeat the procedure of Sec. 1.1.1 and consider matrix elements of Hd and HL with

respect to s orbitals. The matrix elements of HL vanish identically because, by definition, s

orbitals have a vanishing orbital angular momentum (l = 0). Because s orbitals are isotropic,

we can again compute the angular part of the integral originating from the matrix element of

Hd. In this case the result is:∫
dΩ[3 (σ · r̂) (I · r̂)− σ · I] = 0. (1.28)

Therefore, the dipolar hyperfine interaction also vanishes identically for s orbitals. Thus,

while only the contact hyperfine coupling will be relevant for s orbitals, the dipolar hyperfine

and nuclear-orbital interactions will be relevant for all other orbitals.

Total hyperfine Hamiltonian

The hyperfine interaction (the sum of three terms discussed above) couples the electron

magnetic moment (characterized by σ and L) and the nuclear magnetic moment (characterized

by I). This interaction is suppressed relative to the typical atomic (Bohr) energies by a

factor of α2 [29], where α = e2

4πε0~c '
1

137
is the fine structure constant. Accordingly, in

a nanostructure, the hyperfine interaction is usually too weak (relative to the Coulomb

interaction) to couple the electron orbital states. However, it can couple the low-energy

degrees of freedom that are typically used to define a spin qubit. Therefore, in a nanostructure,

where the electron wavefunction is spread over & 104 nuclei [30], the hyperfine interaction

can have a significant impact on the spin dynamics.

In this thesis, we focus mainly on spin qubits formed by semiconductor conduction-band

states or valence-band states. The conduction-band electrons in the semiconductors we

consider (III-V and group IV materials) have approximate s symmetry, while the valence-

band holes transform like p states with total angular momentum J = 3/2. Therefore,

as discussed above, the contact hyperfine interaction is relevant only for conduction-band

electrons, while the dipolar and nuclear-orbital interactions are relevant only for valence-band
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holes. In the remainder of this thesis, we write the total hyperfine interaction as

Hhf = Hc +Ha +HL (1.29)

=
µ0

4π
µBγ

[
8π

3
δT (r)σ + fT(r)

3 (σ · r̂) r̂ − σ +L

r3

]
· I. (1.30)

The hyperfine interaction results in an effective magnetic field experienced by the electron

spin (pseudospin) due to the nuclear spins in the surrounding lattice. This effective magnetic

field is called the Overhauser field. Conversely, the effective magnetic field due to the electron

magnetic moment acting on the nuclear spins is called the Knight field. The Overhauser field

can fluctuate as a result of nuclear dipole interactions and the hyperfine interaction [30,31].

Consequently, at a given instant in time, an electron confined to a nanostructure experiences a

random (and unknown) magnetic field. This random magnetic field leads to a randomization of

the electron spin along with a decay of any encoded quantum state. This randomization/decay

occurs on a decoherence time, typically denoted T ?2 . The hyperfine interaction has been

shown to be a major factor in limiting spin decoherence times for electron- and hole-spin

qubits [31–37]. Understanding the hyperfine interaction is therefore crucial when considering

spin dynamics in semiconductor nanodevices and associated applications in e.g. classical

spintronics, sensing, and quantum information processing.

1.1.2 Spin-orbit interaction

The last term originating from the Dirac equation that we consider is the spin-orbit interaction

[Eq. (1.13)]. In the non-relativistic limit, this term can be written as

HSO =
~ec2

(ε′ + 2mc2 + eφ)2
E × p · σ ' ~e

4m2c2
E × p · σ. (1.31)

As the name suggests, the spin-orbit interaction couples the spin degrees of freedom (σ)

of the electron to its orbital degrees of freedom (p). In the presence of the electric field

generated by a charged nucleus [see Eq. (1.15)], the spin-orbit coupling takes the well-known

∼ L · σ form [29]:

HSO =
µB
2e

rT
r(r + rT/2)2

L · σ ' µBrT
2er3

L · σ, (1.32)
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where the last approximation holds when the atomic wavefunction does not vary on the scale

of the Thomson radius, rT .

Various effective spin-orbit interactions can be derived from Eq. (1.31) for electrons and

holes confined to semiconductor nanostructures [38–43]. In general, each of these effective

spin-orbit interactions can couple states with different spin. This coupling allows electric

field fluctuations to induce spin relaxation [31,42,44,45]. In carefully engineered nanodevices,

the coupling to electric-field fluctuations of noisy external sources (e.g. fluctuations in gate

potentials) is less important than the fluctuations produced by phonons [31]. In particular,

phonon-assisted spin flips due to spin-orbit coupling can represent a dominant mechanism

for spin relaxation [44–53].2 Therefore, like the hyperfine interaction discussed above, the

spin-orbit interaction can impact the spin dynamics in semiconductor nanodevices.

Another important feature of the spin-orbit interaction is that it enables electric manip-

ulation of spins [54–58]. The most direct way of manipulating spins is through the use

of time-varying magnetic fields. However, magnetic manipulations are slow and lead to

difficulties associated with addressing individual spins [58–60]. Furthermore, generating

strong oscillating magnetic fields requires ancillary components (e.g. a microwave cavity)

which induce additional engineering constraints [55,59,61]. In contrast, generating oscillating

electric fields can be achieved by modulating the voltage on local gates. This approach is

simpler to implement and facilitates addressing individual spins [55]. Because the spin-orbit

coupling provides a mechanism by which electric fields couple to spins, understanding the

spin-orbit coupling can help to engineer better spin-qubit nanodevices.

In summary, the spin-orbit interaction may be important to achieve all-electric spin control

in semiconductor nanodevices. In addition, the spin dynamics in these devices can be

influenced by both the hyperfine and the spin-orbit interactions. The goal of this thesis is

to gain a better understanding of these interactions. The approach we take is to calculate

matrix elements of the corresponding Hamiltonians with respect to nanostructure eigenstates.

In the next section, we describe a common procedure to obtain these eigenstates: k ·p theory

under the envelope function approximation.

2. This relaxation occurs via a second order process. The spin-orbit coupling flips the spin while simultaneously
placing the electron in an excited orbital state and the electron-phonon coupling allows the electron to
relax back down to its orbital ground state. The net result is a spin-flip event (relaxation) in the orbital
ground state.
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1.2 Nanostructures

To use electron spins (or pseudospins) for quantum information processing or other applica-

tions, it is convenient (if not necessary) to first confine the electrons to some well-defined

region of space. One way of achieving this confinement is with carefully designed semicon-

ductor nanostructures. The semiconductor hosting the nanostructure provides a controlled

environment that can be engineered to confine single spins [31, 62, 63]. Moreover, electro-

static gates can be precisely deposited on the semiconductor in the vicinity of the confined

spins allowing for each one to be addressed (measured, manipulated) individually [31]. The

nanostructures of interest in this thesis are quantum dots in GaAs and silicon and impurities

in silicon (specifically, phosphorus donors and boron acceptors). While the techniques we

discuss in the remainder of this introduction have been employed to understand these specific

structures, they can be generalized and applied to other devices in different materials.

A quantum dot is a solid-state device that can be filled with electrons or holes. There are

many ways these devices can be fabricated. For example, an electron can be confined to a

GaAs gated lateral quantum dot [see Fig. 1.1 (a)]. In this architecture, a heterostructure is

made of a layer of GaAs and a layer of n-doped AlGaAs [31]. Because the GaAs band gap is

narrower than that of AlGaAs, there is band bending at the heterointerface [64]. Solving

Poisson’s equation, accounting for the band bending and the Coulomb interaction with the

ionized dopants in the AlGaAs layer [see Fig. 1.1 (a)], leads to a potential well [see Fig. 1.1

(b)] [64–66]. This potential well, known as a quantum well, has eigenstates that are localized

(along z in Fig. 1.1) at the heterointerface and occupied by electrons supplied by the dopants

in the AlGaAs layer [see Fig. 1.1] [31,65]. The result is the formation of a two-dimensional

electron gas (2DEG) situated at the GaAs/AlGaAs interface. The quantum well therefore

provides confinement along one dimension (z), limiting the electrons to planar motion (x-y

plane). Additional confinement (along x and y) can be achieved by applying voltages to

electrostatic gates patterned on top of the heterostructure [see Fig. 1.1(a)] [31,65,67]. The

applied voltages can be used to deplete areas of the two-dimensional electron gas and create

small quasi-zero-dimensional structures, known as gated lateral quantum dots. The voltages

can be tuned to make it energetically favorable for a certain number of electrons to occupy

the bound states of the quantum dot, thus localizing the bound electrons in space. Equivalent
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Figure 1.1: (a) Schematic of an AlGaAs/GaAs gate-defined lateral quantum dot. Confinement along
the z direction is obtained by band bending at the heterointerface which occurs, in part, due to the
Coulomb interaction with positively charged dopants (represented in orange) located in the AlGaAs
layer. Voltages applied to electrostatic gates (shown in blue) are used to deplete the two-dimensional
electron gas (labeled 2DEG in green) at the heterointerface (under the dashed circle). By tuning
the gate potentials, electrons can be confined to the depleted region. (b) Schematic of the potential,
U , experienced by the electron (or hole) along the z direction. Close to the heterointerface, the
potential is triangular. The discrete energy levels of the well are shown in orange and the Fermi
energy is shown in blue. All states below the Fermi energy will be occupied and are confined (along
the z direction) to the heterointerface.

quantum dots have also been fabricated to confine holes (for single-hole spin manipulation).3

Electrons and holes can also be confined to silicon quantum dots [72–74]. Another system

studied in the context of spin qubits is an electron (hole) bound to a donor (acceptor) in

silicon [75–77]. Group V substitutional impurities can be used to donate an electron to the

conduction band of silicon. At low enough temperatures, the extra electron remains bound

to the donor to produce an effective hydrogenic system [78]. The electron spin of this system

can be used as a qubit [60, 75]. Alternatively, group III substitutional impurities can be used

to accept an electron and populate the valence band of silicon with a hole. In this case,

holes (instead of electrons) remain bound to the acceptors at low enough temperatures. This

system has also been studied in the context of a (hole-)spin qubit [79,80].

Both quantum dots and impurities in silicon can confine particles over a length scale, l,

which is small enough for applications in, e. g. quantum information processing, but large

3. Because p-doped GaAs samples have shown electrical instability, measurements in these samples are
difficult [68–70]. However, recently, there has been success in the experimental study of undoped
samples [71]. Conceptually, quantum dots confining holes and electrons are equivalent.
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compared to a typical lattice constant of the host material, a (l� a). A standard approach

for investigating these systems analytically is to use k · p theory under the envelope function

approximation. We discuss this approach in the remainder of this section.

1.2.1 Bloch’s theorem

We begin by discussing the problem of solving for the eigenstates of an electron subject

to a periodic crystal potential, V0, and the associated spin-orbit coupling [Eq. (1.31)],

∝ (∇V0)× p · σ. The crystal potential, V0, is periodic such that V0(r +R) = V0(r) for any

lattice vector, R. Under the Born-Oppenheimer approximation, we assume that the state of

the lattice nuclei is decoupled from that of the electron and that the positions of the nuclei

are fixed at the positions, R + b, where the vectors b (basis for the lattice) locate the nuclei

within each unit cell [81]. The Hamiltonian associated with this problem is

H0 =
p2

2m
+ V0 +

~
4m2c2

p · σ × (∇V0). (1.33)

According to Bloch’s theorem, the eigenstates of this Hamiltonian, ψνk(r) = [ψ↑νk(r), ψ↓νk(r)]T ,

are spinors that can be labeled by a band index ν and a wavevector in the first Brillouin zone

of the lattice, k. These eigenstates (Bloch waves) have spin components

ψσνk(r) =
eik·r√
N
uσνk(r), (1.34)

where σ is a spin index, N is the number of unit cells in the crystal, and uσνk(r) are lattice-

periodic Bloch amplitudes, such that uσνk(r + R) = uσνk(r) for any lattice vector, R [see

Fig. 1.2(a)]. The Bloch amplitudes are normalized over the unit cell Ω:

∑
σ

∫
Ω

d3r |uσνk(r)|2 = 1. (1.35)

For convenience, we introduce a family of complete orthonormal bases. We label each of
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Figure 1.2: (a) Schematic of a k = 0 Bloch amplitude, uν(r) (shown in blue). This Bloch amplitude
is a solution to Eq. (1.41). The black dots represent the positively charged nuclei located at each
lattice site that generate a periodic potential, V0 (shown in black). (b) Eigenstate of the Hamiltonian
H0 + U [see Eq. (1.45)] within the envelope-function approximation. The confinement potential,
U(r) (shown in green), is assumed to be slowly-varying on the scale of the lattice constant of the
crystal (spacing between the black dots). The eigenstates can be written as slowly-varying envelope
functions, Ψν(r) (shown in red), modulating periodic Bloch amplitudes, uν(r) (in blue). This figure
is an adapted version of a figure that appeared in the author’s Master’s thesis [83].

these bases with k0 and write the basis states |νk〉k0 as [43,82]

〈rσ|νk〉k0 = ei(k−k0)·rψσνk0(r) =
eik·r√
N
uσνk0 . (1.36)

To simplify the derivations presented in the following subsections, we will focus on the k0 = 0

basis, |νk〉0 := |νk〉, written in terms of the Bloch amplitudes uν(r) := [u↑ν0(r), u↓ν0(r)]T as

〈rσ|νk〉 = eik·rψσν0(r) =
eik·r√
N
uσν (r). (1.37)

1.2.2 k · p perturbation theory

The goal of the calculation presented in this subsection is to express a general Bloch amplitude,

uνk(r), in terms of the k = 0 Bloch amplitudes, uν(r).4 An equivalent derivation can be used

to express arbitrary Bloch amplitudes in terms of any set of fixed k = k0 Bloch amplitudes.

4. The derivation presented here is based on the derivation given in Chapter 2 of Ref. [43].
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The Schrödinger equation for an electron under the influence of a periodic potential, V0, is

given by [
p2

2m
+ V0(r) +

~
4m2c2

p · σ ×∇V0(r)

]
ψνk(r) = ενkψνk(r), (1.38)

where the ενk are the eigenenergies associated with the eigenstates ψνk(r). Inserting Eq. (1.34)

into Eq. (1.38), we can obtain a differential equation for the Bloch amplitudes, uνk(r). In

Dirac notation this equation becomes [see Eq. (1.36)][
p2

2m
+ V0 +

~
4m2c2

p · σ ×∇V0 +
~2k2

2m
+

~
m
k · P

]
|ν0〉k = ενk |ν0〉k , (1.39)

where P = p+ ~
4mc2

σ ×∇V0 and we have used p→ −i~∇:

pψνk(r) =
~k√
N
eik·ruνk(r) +

eik·r√
N
puνk(r). (1.40)

At k = 0, Eq. (1.39) reduces to a Schrödinger-like equation for the Bloch amplitudes |ν0〉:[
p2

2m
+ V0 +

~
4m2c2

p · σ ×∇V0

]
|ν0〉 = εν0 |ν0〉 . (1.41)

The states |ν0〉 provide a complete orthonormal basis for the Bloch amplitudes [43]. An

arbitrary Bloch function can be expressed in this basis as

|ν0〉k =
∑
ν′

cν′νk |ν ′0〉 , (1.42)

where the coefficients cν′νk can be determined by inserting Eq. (1.42) into the Schrödinger

equation, Eq. (1.39), multiplying on the left by 〈ν ′′0|, and solving the resulting eigenvalue

equation: ∑
ν′

[(
εν′0 +

~2k2

2m

)
δν′′ν′ +

~
m
k · Pν′′ν′

]
cν′νk = ενkcν′′νk, (1.43)

with

Pν′′ν′ = 〈ν ′′0|P |ν ′0〉 . (1.44)
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Therefore, using Eqs. (1.42) and (1.43), the Bloch amplitudes, uσνk(r) =
√
N 〈rσ|ν0〉k, for

arbitrary k can be calculated from the k = 0 Bloch amplitudes, uσν (r) =
√
N 〈rσ|ν0〉,

provided the energies εν0 and matrix elements Pν′′ν′ are known. This technique is sometimes

referred to as k·p perturbation theory: Solving for the coefficients in Eq. (1.43) is equivalent to

performing perturbation theory with an unperturbed Hamiltonian H0 at k = 0 [see Eq. (1.41)]

and perturbation ~
m
k · P . This procedure will be useful when we discuss DFT+k · p, a

method used to calculate hyperfine parameters for materials that have band extrema that

are off zone center (see Chapter 2).

We note that here we have presented the double-group formulation of k · p theory [84]

where the spin-orbit coupling is included in the unperturbed Hamiltonian, H0 [see Eq. (1.41)].

In this case, the states |ν0〉 transform according to representations of the double group

associated with the symmetries of the crystal [85]. A common alternative approach is to

treat the spin-orbit coupling as a perturbation in addition to the k · P term. Within this

alternative approach, the Bloch amplitudes are product states of spin and orbital degrees of

freedom (each band is doubly spin degenerate) and the states |ν0〉 transform according to

representations of the single group associated with V0 (see, e.g., Chapter 2 of Ref. [43]).

1.2.3 Envelope function approximation

The previous two subsections dealt with eigenstates of the periodic Hamiltonian, H0 [Eq. (1.33)].

Here we consider the Hamiltonian H0 + U , where U is an additional potential that varies

slowly over the scale of a typical lattice constant of the host material. A common method for

determining the eigenstates of this Hamiltonian involves the envelope function approxima-

tion [43,82]. As we will show below, the resulting (approximate) eigenstates can be written as

slowly-varying envelope functions modulating the periodic Bloch amplitudes [see Fig. 1.2(b)].

The Schrödinger equation for an electron experiencing a periodic lattice potential, V0, and

a confining potential, U , can be written as:

(H0 + U) |Ψ〉 =

[
p2

2m
+ V0 +

~
4m2c2

p · σ × (∇V0) + U

]
|Ψ〉 = ε |Ψ〉 , (1.45)

where |Ψ〉 is an eigenstate and ε is the associated eigenenergy. We assume that U(r) varies on
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a length scale, l, that is much larger than a typical lattice constant of the crystal, a (a� l).

In other words, U(r) has Fourier components at wavevector q with significant weight only if

q � π/a. We expand |Ψ〉 in terms of the basis {|νk〉} [Eq. (1.37)]:

|Ψ〉 =
∑
ν′k′

Ψν′(k
′) |ν ′k′〉 , (1.46)

where the Ψν′(k
′) are known as envelope functions. Since U(r) varies slowly on the scale

of the lattice constant, we expect Ψν′(k
′) to have significant weight only when k′ � π/a.

Inserting Eq. (1.46) into Eq. (1.45) we obtain:∑
ν′k′

Ψν′(k
′) 〈νk| (H0 + U) |ν ′k′〉 = εΨν(k), (1.47)

where H0 is given by Eq. (1.33) and has matrix elements

〈νk|H0 |ν ′k′〉 =

[(
εν0 +

~2k2

2m

)
δνν′ +

~
m
k · Pνν′

]
δkk′ , (1.48)

which contain a k · P term, similar to Eq. (1.43). The matrix elements of U are given by

〈νk|U |ν ′k′〉 =
1

N

∑
Rσ

∫
Ω

drei(k
′−k)·(R+r)uσ∗ν (r)U(R+ r)uσν′(r), (1.49)

where we have divided the integral over the crystal into a sum of integrals over each unit

cell and have used the periodicity of the Bloch amplitudes, uσν (R + r) = uσν (r) for any

lattice vector R. We further simplify this integral by making use of the envelope function

approximation: Since U varies slowly over the unit cell and the envelope functions only

have substantial weight when k, k′ � π/a, we can approximate U(R + r) ≈ U(R) and

ei(k
′−k)·(R+r) ≈ ei(k

′−k)·R in the integrand of Eq. (1.49). The result is

〈νk|U |ν ′k′〉 ' 1

N

∑
R

U(R)ei(k
′−k)·Rδνν′ '

1

V

∫
drU(r)ei(k

′−k)·rδνν′ , (1.50)

where V is the total volume of the crystal. As can be seen from Eq. (1.50), the envelope
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function approximation neglects interband transitions generated by U (the matrix elements

of U are diagonal in the band index ν). This approximation is therefore justified provided

the off-diagonal matrix elements of U are negligible compared to the off-diagonal k · p matrix

elements [ ~
m
k · Pνν′ , see Eq. (1.48)]. Although the envelope function approximation is a

standard approach for understanding nanostructure eigenstates, in certain systems, the

interband transitions generated by U can lead to important effects. An example of such a

system is an asymmetric quantum well where some of these potential-generated transitions

are k independent (see Sec. 4.2) and therefore dominate the k · p interband contribution in a

small k regime. The triangular quantum well and the associated interband transitions are

the focus of Chapter 4, below.

Inserting Eqs. (1.48) and (1.50) into Eq. (1.47) we obtain an effective Schrödinger equation

for the envelope functions. In position space, this equation becomes

∑
ν′

[(
εν0 +

~2k2

2m
+ U(r)

)
δνν′ +

~
m
k · Pνν′

]
Ψν′(r) = εΨν(r), (1.51)

where Ψν(r) is an envelope function in position space,

Ψν(k) =
1√
V

∫
drΨν(r)e−ik·r, (1.52)

Ψν(r) =
1√
N

∑
k

Ψν(k)eik·r, (1.53)

and k → −i∇ is a differential operator that acts on Ψν(r). Thus, within the envelope

function approximation, the eigenstates of H0 + U can be written as

〈r|Ψ〉 =
∑
ν

Ψν(r)uν(r), (1.54)

where the envelope functions, Ψν(r), are determined from Eq. (1.51) and the Bloch amplitudes,

uν(r), are determined from Eq. (1.41). The Bloch amplitudes which vary on the scale of the

lattice constant, a, are modulated by the envelope functions which vary on length scale l,

such that a� l, as depicted schematically in Fig. 1.2(b).
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The procedure described in this section is a standard approach for obtaining eigenstates of

Eq. (1.45). The envelope function approximation is valid when the confinement varies slowly

compared on the scale of a typical lattice constant of the underlying crystal. The GaAs and

silicon lattice constants are ∼ 5 Å. Thus, this formalism works well when describing electrons

(or holes) confined to e.g. GaAs and silicon quantum wells and quantum dots, where the

dimensions are ∼ 10− 100 nm. For donor-/acceptor- impurities with finite nuclear charge in

semiconductors, the confining potential diverges as r → 0, U(r) ∼ 1/r. Therefore, although

it may be valid far from the donor/acceptor, the envelope function approximation breaks

down as r → 0. Consequently, to solve for the wavefunction close to the impurity [which

may be important for determining the impurity hyperfine coupling, Hhf ∼ 1/r2 as r → 0, see

Eq. (1.30)] other techniques are required. We discuss one such technique in Chapter 3.

The goal of this thesis is to calculate matrix elements of the hyperfine and spin-orbit

interactions with respect to nanostructure eigenstates [eigenstates of Eq. (1.45)]. Within the

envelope function approximation, these eigenstates have two components: (1) the envelope

functions, Ψν(r), and (2) the Bloch amplitudes, uν(r) [see Eq. (1.54)]. The envelope functions

can be determined by solving Eq. (1.51). If the confinement, U , and the k · p parameters,

Pνν′ , are known, Eq. (1.51) is a simple matrix equation. The Bloch amplitudes, uν(r), are

more difficult to evaluate. These amplitudes depend on the periodic lattice potential, V0 [see

Eq. (1.41)]. In principle, this potential describes the effective potential felt by the electrons

in the lattice due to (1) the positively charged nuclei that constitute the lattice and (2)

the other electrons in the crystal. Therefore, in general, one must account for many-body

interactions when calculating Bloch amplitudes. In this thesis, we account for these many-

body interactions through density-functional theory (DFT), which we describe in the next

section.

1.3 Density-functional theory

The wavefunction of an electron confined to a nanostructure can be calculated using k · p
theory under the envelope function approximation, provided the Bloch amplitudes, uν(r), are

known. In the formalism described above (Sec. 1.2), the Bloch amplitudes are determined by

solving Eq. (1.41). In general, electrons (or holes) interact with each other and a many-body
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wavefunction is required to describe the state of a system. Solving for this many-body

wavefunction, including the electron-electron interactions, is a complicated problem. However,

using density-functional theory (DFT), this many-body problem can be reduced to solving for

a set of single-particle states self-consistently. The goal of this section is to present DFT and

explain how it can be used to obtain an approximate description of the Bloch amplitudes.

The non-relativistic many-body (N electron) Schrödinger equation (including the Coulomb

interaction) is given by[
− ~2

2m

N∑
i=1

∇2
i +

N∑
i=1

Vnuc(ri) +
N∑
i=1

∑
j<i

Uee(ri, rj)

]
ψ(~r) = εψ(~r), (1.55)

where ri is the position coordinate of the ith electron, Vnuc(ri) is the single-particle potential

generated by the atomic nuclei in the lattice, Uee(ri, rj) is the interaction between the ith

and jth electron, ψ(~r) = ψ(r1, σ1, . . . , rN , σN) is the many-electron wavefunction (which

in principle can depend on the spin, σi, of each particle) and ε is the energy of the state.

For a large number of electrons (such as the number of electrons in a crystal), Eq. (1.55)

cannot be solved exactly, in general, because the Hilbert space associated with ψ(~r) is

exponentially large. Therefore, the full many-body Schrödinger equation can often only

be solved approximately. A strategy for obtaining an approximate solution is provided by

density-functional theory (DFT).

The starting point for DFT is two theorems proved by Hohenberg and Kohn [86,87]:5

1. The total energy of an electron system, ε, is a unique functional of the electron density,

ρ.

2. The energy functional from theorem 1 is minimized by the true ground-state electron

density.

These two theorems indicate that if the energy functional, ε[ρ], corresponding to the

Schrödinger equation, Eq. (1.55), were known, this functional could be minimized with

respect to the density ρ to find the true ground-state density. Because the true energy

5. For an alternative discussion beginning from this starting point, see also the M. Sc. thesis of the author,
Ref. [83]
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functional is, in general, not known, DFT relies on approximating this functional to obtain

an approximate ground-state density.

We begin by writing the energy functional, ε[ρ] as:

ε[ρ] = εnuc[ρ] + εH [ρ] +G[ρ], (1.56)

where the first term on the right-hand side describes the external potential acting on the

many-body system,

εnuc[ρ] =

∫
drVnuc(r)ρ(r) (1.57)

and the second term describes the Hartree term,

εH [ρ] =
1

2

e2

4πε0

∫ ∫
drdr′

ρ(r)ρ(r′)

|r − r′|
, (1.58)

where ε0 is the vacuum permittivity and the factor of 1/2 is included to avoid double counting

the contributions. The final term of Eq. (1.56) is a functional of the density which contains

all effects not captured by the first two terms. It is not possible to minimize ε[ρ] because a

general analytic form of G[ρ] is not known. The crucial step used to simplify this problem is

attributed to Kohn and Sham [88,89]. They wrote

G[ρ] = Ts[ρ] + εxc[ρ], (1.59)

where Ts[ρ] is the kinetic energy of a non-interacting electron system with density ρ(r),

and εxc[ρ] is known as the exchange-correlation energy. While Ts may not be a known

functional of the density, we know such a functional exists by the first Hohenberg-Kohn

theorem. The benefit of writing G[ρ] as in Eq. (1.59), is that, in terms of single-particle

orbitals φi(r), Ts = − ~2
2m

∑
i φ
∗
i (r)∇2φi(r) is well understood. The ground-state density

[density that minimizes Eq. (1.56)] can thus be determined by solving the following two

equations self consistently:

HKSφi(r) =

[
− ~2

2m
∇2 + Vnuc(r) + VH [ρ(r)] + Vxc[ρ(r)]

]
φi(r) = εiφi(r) (1.60)
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and

ρ(r) =
∑
iσ

φσ∗i (r)φσi (r). (1.61)

Here, the sum over the index i goes over the states with the N lowest eigenenergies, εi,

VH [ρ(r)] =
δεH
δρ(r)

=
e2

4πε0

∫
dr′

ρ(r′)

|r − r′|
(1.62)

is the Hartree potential which includes the Coulomb interaction of the electron with itself,

and

Vxc[ρ(r)] :=
δεxc
δρ(r)

(1.63)

is the exchange-correlation potential. For completeness we also write

Vn(r) =
δεnuc

δρ(r)
. (1.64)

The exchange-correlation potential contains corrections to the Hartree potential (e.g. Vxc

cancels the self-energy contribution) and the kinetic energy, as well as other quantum-

mechanical effects (e.g. Pauli exclusion, exchange). If the functional form of Vxc[ρ(r)] were

known, solving Eqs. (1.60) and (1.61) self-consistently would yield the true ground-state

density and energy. However, since it is unknown, many different approximate potentials

have been proposed [90–96].

Thus, the problem of minimizing the energy functional of Eq. (1.56) to find the ground-state

density has been reduced to solving for the eigenstates, φi(r), of an auxiliary non-interacting

system self-consistently [Eqs. (1.60) and (1.61)]. These eigenstates, known as Kohn-Sham
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orbitals, lead to a many-body state that can be written as a Slater determinant,6

ψKS ' |φ1, φ2, · · · , φN | . (1.66)

Except in the (rare) cases where the Hartree-Fock approximation becomes exact, ψKS is not

the true many-body ground-state wavefunction of the system under consideration. However,

this wavefunction does lead to the true ground-state density [via Eq. (1.61)].

In this section, we have neglected spin-orbit coupling. Otherwise, HKS [Eq. (1.60)] describes

the same system as H0 [Eq. (1.33)]. Therefore, we can approximate the effective single-particle

periodic potential, V0 of Eq. (1.38) by

V0(r) ' Vnuc(r) + VH [ρ(r)] + Vxc[ρ(r)]. (1.67)

Under this approximation, we can make the associations

ψνk(r)→ φi(r); ενk → εi. (1.68)

Therefore, we can approximate the Bloch waves, ψνk(r) and the eigenenergies, ενk, with the

Kohn-Sham orbitals, φi(r), and energies, εi. We expect this to be a good approximation in

the limit (of, e.g., weak correlation) where the true many-body ground-state wavefunction,

ψ(~r), can be well-represented by a single Slater determinant, such that ψ(~r) ' ψKS(~r).

In our analysis above, we have only included the simplest terms that are considered in

DFT. One common approach is to include relativistic corrections (such as the Darwin term)

to Eq. (1.60), but only include the spin-orbit interaction perturbatively. This approach is

known as the scalar-relativistic approximation. Because such calculations are relativistic, it is

important to understand that the orbitals φi will behave like solutions to the Dirac equation

6. The notation |φ1, φ2, · · · , φN | indicates a Slater determinant constructed with the single-particle orbitals
φ1, φ2, · · · , φN ,

ψKS = |φ1, φ2, · · · , φN | ⇔ ψKS(~r) =
1√
N !

∣∣∣∣∣∣∣∣∣
φ1(r1) φ2(r1) . . . φN (r1)
φ1(r2) φ2(r2) . . . φN (r2)

...
...

. . .
...

φ1(rN ) φ2(rN ) . . . φN (rN )

∣∣∣∣∣∣∣∣∣ (1.65)

.
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and not the Schrödinger equation. This distinction can lead to important consequences.

For example, while Schrödinger-like atomic s orbitals have a cusp at the location of the

positively charged nucleus [29], Dirac-like s orbitals diverge. This difference can have a

significant impact on calculating effects that depend strongly on the electronic density at

small radii [28, 97–99]. We discuss this impact, in the context of the hyperfine interaction, in

greater detail in Chapter 2 below.

As shown in the previous section, the wavefunctions of confined electrons can be written

as a product of the k = 0 Bloch waves and slowly-varying envelope functions. While k · p
theory gives the envelope functions, DFT can give the Bloch waves. Thus, combining these

techniques, the electron wavefunction can be calculated. With the wavefunction in hand,

we can, in principle, compute matrix elements of general operators. In the remainder of

this thesis we focus on understanding the hyperfine and spin-orbit interactions using these

wavefunctions.
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Preface to Chapter 2

In Chapter 1 we emphasized the importance of understanding spin dynamics in semiconduc-

tor nanodevices. An important factor that can influence these dynamics is the hyperfine

interaction with the nuclear spins in the underlying lattice. The focus of this chapter is to

understand this interaction by computing matrix elements of the hyperfine Hamiltonian.

Under the envelope function approximation, the hyperfine coupling for a spin can be

parametrized in terms of a hyperfine tensor. The entries in this tensor are written in terms

of material-dependent constants and envelope functions associated with the nanostructure

confinement. The hyperfine tensors determine the strength and symmetry of the hyperfine

interaction and characterize the magnitude and direction of the Overhauser field.

Here we compute the material-dependent hyperfine parameters using Bloch amplitudes

obtained from a density-functional theory calculation (see Sec. 1.3). Using these parameters

we theoretically establish the hyperfine tensors for conduction-band electrons and valence-

band holes in GaAs and silicon. The calculated electron hyperfine parameters are consistent

with Knight-shift measurements in GaAs and silicon. In the case of silicon, hyperfine

parameters have previously been evaluated using DFT [100], resulting in values inconsistent

with the Knight-shift measurements of Ref. [101]. Here, instead of the DFT approach of

Ref. [100] we introduce the DFT+k · p method which leads to silicon hyperfine parameters

consistent with the experimental results. For holes, theoretical work had been limited

to approximating the valence-band wavefunctions with hydrogen-like orbitals to compute

hyperfine parameters [35,102]. Instead, here we have calculated the valence-band hyperfine

parameters using wavefunctions obtained from first principles (DFT). To the best of our

knowledge, this is the first time such a calculation has been performed for the purpose of

obtaining the GaAs and silicon hole hyperfine parameters.

We note that the focus of this chapter is on the conduction- and valence-band subspaces

of GaAs and silicon. However, the procedure we present is general and can be applied to

compute hyperfine tensors for other materials and/or bands. For example, this procedure

can be applied to understand the hyperfine couplings for holes in germanium. Since the
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publication of the work presented in this chapter, we have calculated these hyperfine couplings.

The results of this calculation are given in an addendum to Chapter 2. We plan to submit

the content as part of a future publication.
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2 First-principles hyperfine tensors for

electrons and holes in GaAs and silicon

This chapter is the integral text (including references) from:

First-principles hyperfine tensors for electrons and holes in GaAs and silicon

Pericles Philippopoulos, Stefano Chesi, and W. A. Coish

Phys. Rev. B 101, 115302 (2020).

c©2020 The American Physical Society

Understanding (and controlling) hyperfine interactions in semiconductor nanostruc-

tures is important for fundamental studies of material properties as well as for quantum

information processing with electron, hole, and nuclear-spin states. Through a com-

bination of first-principles density-functional theory (DFT) and k · p theory, we have

calculated hyperfine tensors for electrons and holes in GaAs and crystalline silicon.

Accounting for relativistic effects near the nuclear core, we find contact hyperfine in-

teractions for electrons in GaAs that are consistent with Knight-shift measurements

performed on GaAs quantum wells and are roughly consistent with prior estimates

extrapolated from measurements on InSb. We find that a combination of DFT and

k · p theory (DFT+k · p) is necessary to accurately determine the contact hyperfine

interaction for electrons at a conduction-band minimum in silicon that is consistent

with bulk Knight-shift measurements. For hole spins in GaAs, the overall magnitude

of the hyperfine couplings we find from DFT is consistent with previous theory based

on free-atom properties, and with heavy-hole Overhauser shifts measured in GaAs

(and InGaAs) quantum dots. In addition, we theoretically predict that the heavy-hole

hyperfine coupling to the As nuclear spins is stronger and almost purely Ising, while the

(weaker) coupling to the Ga nuclear spins has significant non-Ising corrections. In the

case of hole spins in silicon, we find (surprisingly) that the strength of the hyperfine

interaction in the valence band is comparable to that in the conduction band and that
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the hyperfine tensors are highly anisotropic (Ising) in the heavy-hole subspace. These

results suggest that the hyperfine coupling cannot be ruled out as a limiting mechanism

for coherence (T ∗2 ) times recently measured for heavy holes in silicon quantum dots.
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2.1 Introduction

Semiconductor nanostructures are essential to confine spin qubits in quantum dots [1, 2] and

to implement other spintronic devices [3]. From the perspective of quantum transport and

low electronic noise, a near-ideal platform for these devices is provided by high-mobility

heterostructures based on GaAs [4, 5]. However, every stable isotope of Ga and As has a

finite nuclear spin, resulting in a coupling of the electron (or hole) spins to a large reservoir

of nuclear spins through the hyperfine interaction [6–8]. If the hyperfine interaction is not

fully understood and controlled, this interaction may lead to a randomization of the spins

in spintronic or spin-qubit devices. To avoid the effects of the strong hyperfine interactions

for electrons in GaAs, there have been many recent studies of alternative devices based on

electron spins in silicon, for which the majority isotope has no nuclear spin or based on hole

spins in either GaAs or silicon, for which the hyperfine couplings are weak.

A key advantage of hole spins over electron spins in GaAs is that holes have a weaker

hyperfine coupling [9–13]. Because the hole hyperfine interaction is anisotropic, it may be

possible to further reduce or eliminate the effects of the hole hyperfine coupling through

motional-averaging [9, 14–16]. An additional benefit of hole spins over electrons is a stronger

spin-orbit coupling, leading to robust all-electric hole-spin manipulation [17–21]. This

advantage afforded by a stronger spin-orbit coupling does not necessarily come at the cost of

significantly shorter spin-relaxation (T1) times in confined nanostructures [22,23]. Despite

these advantages, the electrical instability of p-doped GaAs nanostructures [24–26] has

made experimental investigations of these systems difficult. Recent advances in fabricating

few-hole quantum dots from undoped samples [27] have now opened up a greater range of

possibilities for hole-spin devices. Undoped devices have shown Pauli spin blockade [28,29,53],

and measurements have been performed revealing hole-spin relaxation times (T1) [30], g-

factors [29], and spin-orbit couplings [31]. Despite these advances, many details of the

hyperfine couplings for holes in GaAs and silicon remain largely unknown.

Electron spins in silicon quantum dots have now reached a level of control and coherence

that makes them serious contenders for elements of near-future quantum processors [32–35].

Because of the small abundance (∼ 4.7%) of spinful 29Si nuclei in natural silicon, electron

(and hole) spins in silicon nanostructures interact more weakly with the nuclear-spin bath.
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Coherence times for electron spins in natural silicon quantum dots are nevertheless often

limited by the hyperfine interaction [36]. Isotopically purified 28Si has been used as an

alternative nuclear-spin free host [37–42], but even in these systems, the hyperfine coupling

to the few remaining (residual) 29Si nuclear spins can have a measurable effect on a quantum-

dot-bound electron-spin [43,44].

Removing the nuclear spins from the host material suppresses decoherence, but it also

precludes the potential benefits of a finite hyperfine interaction. These benefits include

addressing the nuclear spins and using them as additional qubits for a quantum register [45,46]

or a quantum memory [46–48], and using the nuclear spins to apply local effective magnetic

fields on the electron or hole spins to locally manipulate them [49,50]. It is therefore important

to understand the strength and properties of the hyperfine Hamiltonian for electron and hole

spins in semiconductor nanostructures. This knowledge could allow negative effects to be

suppressed while maintaining potential advantages of the coupling with the nuclear spins.

Knowing material-specific hyperfine parameters is also important or required to interpret

measurements of physical quantities. These quantities include the degree of nuclear polariza-

tion from Overhauser shift measurements [51–54], and the nuclear spin polarization in the

quantum Hall regime [55–59].

The goal of this work is to accurately calculate the hyperfine parameters for electrons and

holes in GaAs and silicon. Earlier attempts at calculating hyperfine constants have relied

on estimates of the electronic density (or wave function) based on non-relativistic free-atom

properties such as the free-atom orbital radius [9, 60–62]. Instead, here we calculate the

hyperfine parameters using all-electron density-functional theory (DFT) accompanied by k ·p
theory (DFT+k · p), accounting for relativistic effects, and fully including the anisotropic

crystalline environment in our analysis. Typically, DFT procedures are used to calculate

electronic densities. If the electronic states under consideration can be approximated as

uncorrelated product states of spin and orbital degrees of freedom, the density alone is

sufficient to calculate the hyperfine parameters [63]. This approach has been used to calculate

hyperfine parameters for electrons in silicon [64]. However, this procedure cannot generally be

applied to states (such as the valence-band states of GaAs and silicon) where the spin-orbit

coupling is relevant and the states are therefore not necessarily product states. Moreover,

the density alone provides no information about the phase of the wave function. Thus, e.g.,
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matrix elements of the angular momentum operator cannot generally be calculated from

the density alone and the nuclear-orbital interaction [∼ L · I, see Eq. (2.5) below] is often

neglected [63,65–68]. In contrast, here we apply DFT to evaluate the Kohn-Sham orbitals,

which approximate the single-particle wave functions. This provides a description of the full

quantum state (accounting for the spin-orbit coupling and phase), so we are able to account

for all terms in the hyperfine Hamiltonian.

The hyperfine parameters for the conduction bands of GaAs and silicon have been estab-

lished experimentally through measurements of the Knight shift. The results found here from

DFT for the conduction band of GaAs are consistent with Knight shift measurements in

the fractional quantum Hall regime [57,69]. For silicon, the Knight shift has been measured

in n-doped bulk samples [70]. Density functional theory (without k · p) has been used to

calculate the hyperfine constants [64], however the results are inconsistent with the Knight

shift measurements of Ref. [70]. In contrast, we find here that a combined DFT+k · p
procedure yields hyperfine constants for electrons in silicon that are consistent with the

experiments of Ref. [70]. We further apply this procedure to the valence-band (hole-spin)

states of GaAs and silicon where we expect similarly accurate results. There have been fewer

experiments focused on the hole hyperfine interaction. Experiments thus far have relied on

extracting hole hyperfine couplings in GaAs (and InGaAs) quantum dots through the ratio

of the Overhauser shifts for electrons and holes [10–13]. Our theoretical results are roughly

consistent with these ratios. Moreover, in silicon, we find hyperfine constants for holes that

are consistent with recent T ∗2 times measured in silicon quantum dots [19], suggesting those

dephasing times may be limited by hyperfine interactions.

The remainder of this paper is organized as follows: In Sec. 2.2 we derive the hyperfine

Hamiltonian in the envelope-function approximation accounting for relativistic effects (a finite

Thomson radius) and write a projected effective hyperfine Hamiltonian for a nanostructure.

In Sec. 2.3 we define the hyperfine parameters for the states at the conduction-band minima

and valence-band maxima of GaAs and silicon. In Sec. 2.4 we describe the procedure used to

evaluate the hyperfine parameters, with the conclusions given in Sec. 2.5. Technical details

are provided in Appendices 2.A-2.F.
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2.2 Hyperfine interactions in nanostructures

The goal of this section is to parameterize the hyperfine interactions for a nanostructure in

terms of parameters obtained from a bulk calculation. This parameterization can be achieved

within the envelope function approximation where the nanostructure confinement potential

varies on a length scale that is large compared to the lattice constant of the host material.

In nanostructures where the confinement has quickly-varying features on the scale of the

lattice constant (e.g. donors or acceptors in silicon with 1/r confining potentials) [71], the

formalism developed here cannot be applied and other methods for calculating the hyperfine

interactions become necessary [72].

The hyperfine interaction for a many-electron system in contact with nuclear spins Il at

sites l in a nanostructure/molecule/etc. can generally be written (setting ~ = 1) as

Hhf =
∑
l

γilhl · Il. (2.1)

Here, γil is the gyromagnetic ratio of nuclear isotope il at site l and hl is the hyperfine field

operator acting on the many-electron spin/orbital space.

We consider only non-magnetic semiconductors where spin polarization of the core electrons

can be neglected. In this case, finite contributions to the hyperfine field arise only from

single-particle valence states associated with Bloch waves close to band extrema (valleys).

We further assume a nanostructure defined by a slowly-varying potential that modulates

a perfectly periodic crystal. This is the regime of validity for the usual envelope-function

approximation. In this regime, we rewrite the hyperfine field in terms of a matrix hj and

a multicomponent field operator Ψ(r). The matrix hj depends only on the properties of

the bulk crystal and atom j (e.g. j = Ga,As in GaAs) within the primitive cell, and Ψ(r)

accounts for the slowly-varying electronic spin/orbital/valley degrees of freedom, with r a
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lattice vector. Further restricting to only short-range1 contributions to the hyperfine coupling

leads to a local (contactlike) form,

hl ' v0Ψ†(rl)h
jlΨ(rl), (2.2)

where v0 is the volume per atom [e.g. v0 = Ω/2 for a primitive-cell volume Ω containing

two atoms, as is the case for diamond (silicon) and zincblende (III-V) lattices considered

below]. The matrix hjl depends only on the atomic species jl at site l (and not the isotope

il) provided we neglect the isotope mass effect [74], consistent with a Born-Oppenheimer

approximation. The vector rl is the lattice vector that locates the primitive cell containing

site l (e.g., if l and l′ are in the same primitive cell, then rl = rl′). The multicomponent field

operator Ψ(r) has elements

Ψν(r) =
1√
V
eikν ·r

∑
q

eiq·rcqν , (2.3)

with crystal volume V and where cqν annihilates an electron in an envelope state with

band/valley index ν, valley wavevector kν , and |q| is small compared to any reciprocal lattice

vector. The matrix hj describes the short-range contributions to the hyperfine field for atom

j at position δj within the primitive cell. The associated matrix elements are

hjνν′ =

∫
Ω

d3rψ†ν(r)h(r − δj)ψν′(r), (2.4)

h(r) =
µ0

4π
(2µB)

(
σ

2
·
←→
T (r) + σ0

1

r3
fT(r)L

)
, (2.5)

fT(r) =
r

r + rT/2
, (2.6)

1. In general, the hyperfine field at a nuclear site includes a contribution from electron density within
typical atomic dimensions of the nuclear spin (short-range contribution) and a contribution from electron
density localized at distant sites (long-range contribution). The long-range contribution is suppressed by
a factor ∼ (a0/a)3, where a0 is the Bohr radius and a is a typical inter-atomic distance. The long-range
contribution is thus typically negligible (see Appendix C of Ref. [9]). However, in certain cases with large
orbital currents or in materials with large g-factors, the long-range contributions can be significant (see
Ref. [73]).
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where ψν(r) = eikν ·ruν(r). Here, the spinor uν(r) =
[
u↑ν(r), u↓ν(r)

]T
describes the lattice-

periodic Bloch amplitude for the Bloch wave at wavevector k = kν . We have chosen to

normalize the Bloch amplitudes according to the convention:∫
Ω

d3ru†ν(r)uν′(r) =
Ω

v0

δνν′ . (2.7)

In Eq. (2.5), µ0 is the vacuum permeability, µB is the Bohr magneton, we have taken the bare

electron g-factor to be g ' 2, σ is the vector of Pauli matrices, and σ0 is the 2× 2 identity

matrix. The second term in Eq. (2.5) describes coupling of the nuclear magnetic moment

to the charge current generated by the electron angular momentum, L = r × (−i∇∇∇). The

factor fT(r) accounts for a cutoff at short distances on the order of the Thomson radius for a

nucleus of charge Z|e|, rT = Zα2a0 [where α = (1/4πε0)e2/~c ' 1/137 is the fine-structure

constant and a0 = ~/(mecα) is the Bohr radius]. The tensor
←→
T (r) accounts for both the

Fermi-contact and magnetic dipole-dipole interactions, with tensor elements:

Tαβ(r) =
8π

3
δT(r)δαβ +

3rαrβ − r2δαβ
r5

fT(r), (2.8)

δT(r) =
1

4πr2

dfT(r)

dr
, (2.9)

where α, β ∈ {x, y, z}. Equation (2.5), with (2.8), includes relativistic effects due to a finite

Thomson radius rT 6= 0. These relativistic effects can be significant for large-Z atoms [75–78],

so they are included here.

Relativistic effects due to rT 6= 0 have been neglected in other approaches [63, 64], but

we find that these corrections are essential for the present analysis. In particular, our

calculations make use of a basis of optimized single-particle states based on the scalar

relativistic equation [78,79]. The s-like (l = 0) solutions to the scalar relativistic equation

show a weak (integrable) divergence close to a pointlike nucleus, necessitating the cutoff in

Eq. (2.9) (see also Fig. 2.1).

An additional common simplification is to neglect the angular-momentum term in Eq. (2.5)

(see, e.g., Refs. [63,64]). In this approach, the hyperfine couplings are expressed purely in terms

of the electron spin density, without direct reference to the single-particle states and their
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Figure 2.1: Electron density near the As site in GaAs. The density is found from the lowest
unoccupied Kohn-Sham orbital in the conduction band at k = 0, ψσCB(r) (blue solid line, left
axis). The weight function f ′T(r) = 4πr2δT(r) = (rT/2)/(r + rT/2)2 (gray dashed line, right axis)
is used to evaluate the contact hyperfine coupling. For As (Z = 33), the Thomson radius is
rT = Zα2a0 = 1.76× 10−3 a0.

associated phase information. This procedure can be justified when calculating the isotropic

Fermi contact term due to s-like states, but for states having a partial-wave expansion with

l 6= 0 (as we consider below for the valence bands of silicon and GaAs), the angular-momentum

term can give a significant contribution to the hyperfine coupling. For example, for a p-like

heavy-hole state, |J = 3/2, l = 1,mJ = 3/2〉 (where J represents the total angular momentum,

l gives the orbital angular momentum, and mJ is the angular momentum projected onto

the relevant quantization axis), |〈L〉|
|〈σ/2〉| = 2, indicating that the nuclear orbital interaction

represents a significant portion of the anisotropic hyperfine interaction [see Eq. (2.5)] in this

case.
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2.2.1 Effective Hamiltonian

We take the hyperfine interaction to be weak compared to other electronic energy scales in a

nanostructure, allowing us to consider a projected effective Hamiltonian. When the electronic

system can be well-described by a finite-dimensional quasi-degenerate subspace of low-energy

states, {|n〉},2 we consider the effective Hamiltonian,

Hhf = PHhfP, (2.10)

where P =
∑

n |n〉 〈n| is a projector onto the finite-dimensional subspace {|n〉}. The effect of

the hyperfine interaction is then determined by the matrix elements 〈n|hl |n′〉.
Equation (2.10) applies to an arbitrary high-dimensional quasi-degenerate space, but a

common case is when the ground space is only twofold degenerate. For such a doubly

degenerate ground space, {|n〉} = {|+〉 , |−〉}, Eq. (2.10) gives

Hhf =
∑
l

[
S ·
←→
A l · Il + γilBl · Il

]
, (2.11)

where the hyperfine tensor
←→
A l and field Bl are given by:

Aαβl = 2γilTr{Sαhβl }, (2.12)

Bβ
l =

1

2
Tr{Phβl }, (2.13)

2. Within the envelope function approximation, a general state |n〉 can be written as 〈r|n〉 =
∑
ν F

n
ν (r)ψν(r),

where the sum,
∑
ν is over all spin/orbital/valley states and the Fnν (r) are the slowly-varying (on the

scale of the lattice constant) envelope functions. In practice, the sum,
∑
ν is restricted to some reasonable

set of orbitals and valleys. For example, |n〉 can be taken to be an eigenstate of the Luttinger Hamiltonian,
in which case the sum is restricted to the heavy-hole and light-hole states.
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(electrons) (holes)
isotope (i) Ai (µeV) Ai‖ (µeV) Ai⊥ (µeV)
69Ga in GaAs 74 1.4 0.35
71Ga in GaAs 94 1.7 0.45
75As in GaAs 78 11 0.02
29Si in silicon −2.4 −2.5 −0.01

Table 2.1: Hyperfine parameters calculated for GaAs and crystalline silicon. All parameters have
been found from k = 0 Bloch amplitudes approximated by Kohn-Sham orbitals established in DFT
using elk, an all-electron DFT code [79] (see Sec. 2.4 for details). The silicon conduction-band
parameter (A

29Si) is evaluated using DFT+k · p which accounts for the off-zone-center conduction-
band minima in silicon. The valence-band parameters (Ai‖ and Ai⊥) are given for a system where the

isotope i is located at an ‘A’ site, with a neighboring (‘B’ site) atom at
(

1
4 ,

1
4 ,

1
4

)
(see Sec. 2.3.3 and

Fig. 2.3). Numerical convergence has been verified for all parameters to within 2% of the reported
values.

and S is the vector of (pseudo)spin-1/2 operators:

Sx =
1

2
(|+〉 〈−|+ |−〉 〈+|) , (2.14)

Sy =
1

2i
(|+〉 〈−| − |−〉 〈+|) , (2.15)

Sz =
1

2
(|+〉 〈+| − |−〉 〈−|) . (2.16)

In the specific case where {|+〉 , |−〉} form a Kramers doublet, related by time-reversal

Θ: Θ |+〉 = eiφ0 |−〉 (where φ0 is a global phase), then we have the further simplification

Bl = (〈+|hl |+〉+ 〈−|hl |−〉) /2 = 0. This follows directly from the fact that hl is odd under

time reversal: ΘhlΘ
−1 = −hl. In this (common) scenario (as in the examples given below),

the influence of the hyperfine interactions will be well-described by the hyperfine tensor

matrix elements, Aαβl alone.
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2.2.2 Summary of key results

For a conduction-band electron confined to a nanostructure with a spin-independent envelope

function, and for a fixed valley: Ψσ(r) = Fe(r)cσ, we can identify a two-level system

|±〉 = c†± |0〉. This allows us to apply Eq. (2.12) with the spin operators given in Eqs. (2.14),

(2.15), (2.16). If the electronic state is well-described by an s-like band, the isotropic contact

interaction dominates, giving the well-known result for an electron spin in a quantum dot [6,7],

Aαβl = Ailv0 |Fe(rl)|2 δαβ, (2.17)

where Ail is the (bulk) contact hyperfine coupling for isotope il at site l (see Table 2.1).

Alternatively, for the valence band of a zincblende III-V semiconductor (GaAs, InAs, InSb,

etc.), or for the diamond-lattice form of a group IV element (Si, Ge, etc.), the states at

k = 0 transform according to the Γ8 irreducible representation of the Td double group. For

these states, we can project, for example, onto the two states that transform like states

of angular momentum Jz = mJ = ±3/2: |±〉 = |mJ = ±3/2〉 (the pure heavy-hole states).

These are separated in energy from the light-hole states (|mJ = ±1/2〉) under confinement

or strain. For these states, the s-wave component vanishes identically, and the dominant

hyperfine coupling arises from the dipole-dipole and angular-momentum terms. Assuming a

pseudospin-independent envelope function for the heavy hole, ΨmJ (r) = Fh(r)cmJ , Eq. (2.12)

gives

Axxl = −Ayyl = Ail⊥v0 |Fh(rl)|2 , (2.18)

Azzl = Ail‖ v0 |Fh(rl)|2 , (2.19)

where Ai‖ and Ai⊥ are valence-band hyperfine parameters (see Table 2.1), and all other

hyperfine-tensor elements vanish. Here, the relation Axxl 6= Ayyl is a consequence of the

fact that the diamond and zincblende lattices do not have a strict fourfold symmetry axis.

Equations (2.18) and (2.19) apply in a coordinate system where the site l is located at

(0, 0, 0) with a nearest-neighbor atom at
(

1
4
, 1

4
, 1

4

)
in units of the cubic-cell lattice constant

(see Sec. 2.3.3). More generally, the influence of the hyperfine coupling can be fully described

in the four-dimensional subspace of heavy holes and light holes in terms of the same two
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coupling constants, Ai⊥ and Ai‖, given in Table 2.1 (see Sec. 2.3.2).

The parameters Ai, Ai⊥, and Ai‖ fully characterize the bulk short-range hyperfine coupling

for electrons in an s-like conduction band and for holes in a valence band that transforms

according to the Γ8 representation of the Td double group. These parameters depend only on

the isotope i, through the gyromagnetic ratio γi, and on the material-dependent microscopic

Bloch functions ψν(r) through the matrix elements given in Eq. (2.4). To approximately

determine the relevant Bloch functions in GaAs and silicon, we have performed first-principles

DFT calculations. The k = 0 Bloch functions are then approximated directly with optimized

Kohn-Sham orbitals (rather than the density alone), providing an accurate representation

of the electron/hole states in the vicinity of atoms in the crystal (see Figs. 2.1 and 2.2 for

examples in the conduction and valence bands of GaAs, respectively). To find accurate Bloch

functions at an off-zone-center band extremum k = kν 6= 0 (as is the case in the conduction

band of silicon), we find it is necessary to determine the correct linear combination of k = 0

Kohn-Sham orbitals by diagonalizing an appropriate k · p Hamiltonian at k = kν . In each

case, the integral in Eq. (2.4) is then evaluated numerically giving the hyperfine parameters.

The results are shown in Table 2.1 for GaAs and silicon.

For the conduction bands of GaAs and silicon (electrons), we find contact hyperfine

couplings Ai that are consistent with known experimental values (see Table 2.2). There have

been fewer experimental studies related to the hyperfine coupling for holes. Moreover, in some

cases, experiments on hole spins have led to conflicting interpretations. On one hand, it has

been argued that the hyperfine interaction in the heavy-hole subspace is predominantly Ising

(Ai⊥ ' 0) because heavy-hole spin relaxation times have been measured to be consistent with

a negligible transverse hyperfine coupling in self-assembled InGaAs quantum dots [80]. In

addition, the heavy-hole transverse Overhauser shift has been observed to be small (again, in

self-assembled InGaAs quantum dots) [13]. Measurements of tunneling between spin-resolved

Landau levels in a two-dimensional hole gas in GaAs are also consistent with a negligible

transverse hyperfine coupling [81]. On the other hand, separate experiments measuring the

longitudinal Overhauser shift in GaAs/AlGaAs and InGaAs/GaAs quantum dots have been

interpreted to indicate a substantial p-d hybridization of the valence-band states near the Ga

sites, leading to non-negligible transverse hyperfine coupling to the Ga isotopes (Ai⊥ ∼ Ai‖) [11].

The results of this experiment, combined with the interpretation of Ref. [11], also suggest

38



substantial in-plane components of the total heavy-hole Overhauser field. Because the DFT

procedure used here gives direct access to the wave function, both the hyperfine couplings

and the p-d hybridization can be calculated (see Appendix 2.A). Here, we find an intriguing

mix of the two descriptions: For heavy holes, the coupling to the As site is stronger and

almost purely Ising (small transverse coupling), while the transverse coupling to the Ga site

is a significant fraction of its longitudinal coupling (see Table 2.1 and Appendix 2.A for a

possible explanation). However, due to the larger (Ising) hyperfine coupling to the As nuclear

spins, the total Overhauser field experienced by a heavy hole in a GaAs quantum dot will be

oriented predominantly along the growth direction of the quantum dot, even for a randomly

polarized nuclear-spin ensemble. The different behavior at Ga and As sites can be understood

as follows: Because As is more electronegative than Ga, the hole is more highly localized

around the As site in GaAs (see Fig. 2.2). The potential experienced by the hole in the

vicinity of the As site can thus be taken to be more spherically symmetric. Therefore, close

to the As site the hole wave function will approximate a pure angular-momentum eigenstate,

a p state (see Table 2.3 in Appendix 2.A, below). In contrast, the hole is not sufficiently

tightly bound to the Ga atom to fully mask the potential due to neighboring As atoms. In

the vicinity of the Ga atom, the hole adapts to the reduced tetrahedral symmetry of the

crystal and is therefore not in an angular-momentum eigenstate. Instead, the hole wave

function describes a p-d hybridized state (see Fig. 2.2 and Table 2.3). This p-d hybridization

leads to non-Ising corrections to the heavy-hole hyperfine Hamiltonian. At the same time,

the more delocalized nature of the hole wave function at the Ga sites leads to a significantly

smaller hyperfine coupling (due to the larger average distance from the nucleus).

For holes in silicon, we find an Ising hyperfine coupling (A
29Si
⊥ ' 0, see Table 2.1). The

strength of the coupling is comparable to the contact interaction (A
29Si) for the conduction

band of silicon. Typically, the anisotropic hyperfine coupling for (p-type valence-band) holes

is assumed to be weaker (by a factor of ∼ 5-10) than the contact hyperfine coupling for

(s-type conduction-band) electrons [9]. However, in silicon the states at the conduction-band

minima are s-p hybridized, reducing the effect of the contact interaction for conduction-band

states. We find that this reduction leads to a value that is comparable to the (normally

smaller) anisotropic hyperfine coupling in the valence band.
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Figure 2.2: Calculated density, ρ =
∣∣φ3/2(r)

∣∣2, of the mJ = 3/2 heavy-hole state in GaAs, resulting

from the Kohn-Sham orbital φ3/2(r). ρ1/5 (instead of ρ) is plotted using a color scale (in units of

a
−3/5
0 , with a0 the Bohr radius) so that the features of the density can be visible. The density is

shown along a cut in the (21̄1̄) plane. The spheres Sj define regions where the Kohn-Sham orbital
φ3/2(r) has been evaluated to extract the hyperfine tensor for atom j = Ga,As. Regions outside
of the spheres Sj are shown in white. The p symmetry can be seen around the As sites (labeled),
while the Ga site has a combination of p and d symmetry.

2.3 Bulk hyperfine parameters

Any Bloch wave ψσν (r) can be described near an atomic site j using the partial-wave expansion

ψσν (r + δj) =
∑
lm

Rjν
lmσ(r)Ylm(θ, φ), (2.20)

where Rjν
lmσ(r) are radial functions and Ylm(θ, φ) are the spherical harmonics. States that have

a contribution entirely from the l = 0 term to the sum in Eq. (2.20), namely s-like states, are

isotropic. Therefore, they have a vanishing dipolar and angular-momentum contribution to

the hyperfine interaction and contribute only via the contact part of the hyperfine interaction,

∝ δT(r) [see Eq. (2.8)].
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GaAs silicon
ηGa ηAs ηSi

(i) DFT at k = 0 (+k · p) 2500 3800 88
(ii) Knight shifts (Refs. [57], [69]) 2200 3500 −
(iii) Estimates (Ref. [60]) 2600 4400 −
(iv) Knight shift (Ref. [70]) − − 100± 10
(v) DFT at k = kν (Ref. [64]) − − 159.4± 4.5

Table 2.2: The parameter ηj characterizing the degree of localization of an electron around atom j
[see Eq. (2.23)]. This parameter, together with the gyromagnetic ratio γi, determines the contact
hyperfine coupling for isotope i, Ai [see Eq. (2.25)]. (i): Theoretical results from the present work.
(ii): Experimental Knight shifts measured for spin-polarized electronic states in GaAs quantum wells
have been used to extract ηj using the procedure descibed in Appendix 2.B.1. (iii): Theoretical
estimates reported in Paget et al. (Ref. [60]), extrapolated from measurements in InSb. (iv):
Experimental value of ηj extracted from Knight-shift measurements in bulk silicon (Ref. [70]). The
error bar describes the standard deviation of the results of different measurements. (v): Theoretical
value calculated by Assali et al., Ref. [64]. The error bar is based on a statistical error from different
runs (with different supercell sizes).

2.3.1 Conduction bands with s-like Bloch functions

We consider states coming from different equivalent valleys of an s-like band, such as the

conduction-band states of GaAs (1 valley) and silicon (6 valleys). In the limit of weak

spin-orbit coupling, these states can be written as product states of spin and orbit, which

means that the index ν = (v, χ), where v labels the orbital (valley) and χ labels the spin so

that the Bloch amplitudes can be written as ψσv,χ(r) = ψσv,σ(r)δσχ. We further assume that

the valleys are related by space-group transformations of the crystal so that

Rjvσ
00σ(r) = Rj

s(r) ∀ v, σ, (2.21)

i.e. the radial function associated with the s part of the Bloch function is identical for all

valleys. For these s states, the matrix elements of hj are given by:

hjvχv′χ′ =
2µ0

3
µB

ηj

v0

σχχ′ , (2.22)
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where the dimensionless parameter [70,82]

ηj = v0

〈∣∣Rj
s(r)

∣∣2〉
δT

(2.23)

characterizes the degree of localization of the electron at the atom j and is independent of

the valley index v because we have assumed that all valleys are equivalent (see Table 2.2). In

Eq. (2.23), we have introduced the notation

〈f(r)〉g =

∫ ∞
0

f(r)g(r)r2dr (2.24)

to indicate a weighted average of the function f with respect to the weighting function g.

The contact part of the hyperfine Hamiltonian can also be characterized by the parameter

Ai =
4µ0

3
µBγi

ηji

v0

, (2.25)

where ji labels the atom associated with isotope i (see Table 2.1).

2.3.2 Valence-band holes

We consider here a subspace spanned by states that transform according to the Γ8 represen-

tation of the Td double group. Examples include the states at the valence-band maxima of

silicon and III-V semiconductors such as GaAs.

A simple basis for the Γ8 representation of the Td double group is composed of the four

states with total angular momentum J = 3/2 and orbital angular momentum l = 1. Without

loss of generality, we take the [001] direction (the z-axis) to be a relevant quantization axis.

Under this convention, the states that transform like the states with mJ = ±3/2 units of

angular momentum about ẑ are the heavy-hole states and those that transform like the

mJ = ±1/2 states are light-hole states. In this four-dimensional subspace, we can therefore

label the states with the allowed mJ values, so that ν ∈ {−3/2,−1/2, 1/2, 3/2}. If the

expansion from Eq. (2.20) is performed up to l = 2 for each state (see Appendix 2.C.2), the

four Bloch amplitudes at the valence-band maximum can be parametrized by three different
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real radial functions,

Rj
p(r) = R

j,3/2
1,1,↑ (r), (2.26)

Rj
d(r) = iR

j,3/2
2,−1,↑(r), (2.27)

Rj
d′(r) = iR

j,3/2
2,0,↓ (r). (2.28)

The remaining radial functions Rj,mJ
l,m,σ(r) either vanish or are linear combinations of these three

(see Appendix 2.C.2). Even though the d′ orbital is allowed by symmetry, it is often neglected,

even in works where d-orbital hybridization for the hole states is taken into account [11].

Because this orbital corresponds to a state with opposite spin [↓, in this case, Eq. (2.28)]

relative to the p and d orbitals in the wave function [↑, Eqs. (2.26) and (2.27)], we expect

the weight of the d′ orbital, or equivalently the magnitude of the Rj
d′(r) radial function, to be

more significant in materials with large spin-orbit coupling.

In the subspace of heavy holes and light holes, the matrix hj, given by Eqs. (2.4), (2.5),

and (2.6), can be expressed as a linear combination of the angular-momentum matrices for a

spin-3/2 particle, Jβ, and J3
β, β ∈ {x, y, z} [12, 83]

hj =

(
1

3
hj‖ −

3

2
hj⊥

)
J +

2

3
hj⊥J , (2.29)

where J = (J3
x, J

3
y, J

3
z), and where hj⊥ and hj‖ are two hyperfine parameters. These two

parameters can be written in terms of the matrix elements of 1/r3 as

hj‖ =
µ0

2π
µB

[
8

5
M j

p,p −
12

7
M j

d,d −
4

7
M j

d′,d′

+
4

7

√
3

2
Re
(
M j

d,d′

)]
, (2.30)

hj⊥ =
µ0

2π
µB

[
6

7
M j

d,d +
2

7
M j

d′,d′ −
30

7

√
3

2
Re
(
M j

d,d′

)]
,
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Figure 2.3: Cubic unit cell for a zincblende or diamond lattice. The blue and red spheres represent
the two inequivalent sites in the zincblende lattice. We have chosen the blue atom to be at the
origin, 000 (A site, see main text), and a red atom to be located at 1

4
1
4

1
4 (B site). An A site can be

related to a B site by performing a translation of the coordinate system by (1
4 ,

1
4 ,

1
4), represented by

the blue arrow, followed by a rotation of the coordinate system by π/2 about the z axis. The red
arrow represents the vector (1

4 ,
1
4 ,

1
4) in the coordinate system with the B site at the origin, 000,

and an A site at 1
4

1
4

1
4 .

where

M j
λλ′ =

〈
Rj
λ(r)R

j
λ′(r)

r3

〉
fT

, (2.31)

for λ, λ′ ∈ {p, d, d′}, the numerical factors arise from angular integrals, and fT is the weighting

function given by Eq. (2.6). These two parameters can also be expressed in units of energy

(see Table 2.1) as

Ai⊥/‖ = γih
ji
⊥/‖. (2.32)

2.3.3 Choice of coordinate system

Crystals break pure rotational symmetry, therefore their electronic eigenstates cannot in

general be written as pure angular-momentum eigenstates. For example, in the valence bands

of GaAs and silicon, the eigensates can be approximated by a linear combination of p and d

orbitals (see Sec. 2.3.2). The presence of the d orbitals reflects the tetrahedral symmetry of
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the crystal and introduces the term proportional to J in the matrix hj [Eq. (2.29)] which

has consequences on the symmetries of the hyperfine tensor.

In both GaAs and silicon, the coordinate system can be set up so that the cubic unit cell

has one nucleus at 000, and another nucleus at 1
4

1
4

1
4

(Fig. 2.3). Given this specific coordinate

system, we can label as A all the sites related to 000 by a lattice vector and all sites related

to 1
4

1
4

1
4

by a lattice vector are labeled by B, with the understanding that all A sites are

equivalent and all B sites are equivalent.

Equations (2.1) and (2.2) for the hyperfine Hamiltonian within the envelope-function

approximation can be combined to define a Hamiltonian matrix associated with site l, Hl:

Hhf =
∑
l

v0Ψ†(rl)H
lΨ(rl), (2.33)

with

Hl = γilh
jl · Il. (2.34)

Here, we recall that il indicates the isotope situated at site l and jl indicates the atom situated

at site l. The hyperfine matrix Hl is simply the hyperfine Hamiltonian matrix expressed in

the basis of Bloch states, ψν(r) [see Eq. (2.4)]. In the subspace of valence-band states, this

matrix is given by inserting hj from Eq. (2.29) into Eq. (2.34). Restricting further to the

heavy-hole subspace, and for an isotope il located at an A site labeled by l, the matrix is

Hl,A
HH =

1

2

[
Ail‖ σzI

l,A
z + Ail⊥

(
σxI

l,A
x − σyI l,Ay

)]
, (2.35)

where I l,Aα are the nuclear spin operators for the nuclear spin at the A site labeled by l and

σα are Pauli matrices. As can be seen in Fig. 2.3, an A site can be related to a B site by

performing a translation of the coordinate system by (1/4, 1/4, 1/4) followed by a rotation of

the coordinate system by π/2 about the z axis. The result of this rotation is that x→ y and

y → −x. Under this rotation, Axx → Ayy and Ayy → Axx. Therefore, in the same coordinates

used to describe Hl,A
HH, the hyperfine coupling for an isotope il′ located at a B site (l′) is

Hl′,B
HH =

1

2

[
A
il′
‖ σzI

l′,B
z − Ail′⊥

(
σxI

l′,B
x − σyI l

′,B
y

)]
, (2.36)
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which has the opposite sign for the term with coefficient A⊥ relative to the Hamiltonian for

the A sites, Hl,A
HH [see Eq. (2.35)]. This sign difference for A sites and B sites may lead to

non-trivial interference effects in the dynamics of hole spins confined to III-V and group IV

nanostructures. We give the valence-band hyperfine couplings for GaAs and silicon in Table

2.1. In each case, the couplings are given assuming a coordinate system where the isotope

in question is at an A site. We also present the light-hole hyperfine Hamiltonian matrix in

Appendix 2.D.

2.4 First-principles electronic structure

In Eq. (2.2), the multi-component field operator, Ψ(R), acts on the envelope functions, while

hj accounts for the short-range electronic structure, determined by the Bloch waves, ψν(r).

The matrix hj can thus be found from a bulk calculation for the translationally-invariant

crystal. Here, we calculate hj using DFT.

Hyperfine parameters are often evaluated through the density alone [63–68]. Because the

matrix elements of orbital angular momentum, L = r × (−i∇), depend on the phase of

the wave function, the contribution from the nuclear-orbital interaction (∼ L · I) to the

hyperfine parameters hj‖ and hj⊥ cannot generally be calculated using the density alone. This

contribution is therefore often neglected [63,64,68]. Here, we assume the Kohn-Sham orbitals,

φν(r), can approximate the Bloch waves, ψν(r) (as has been done, e.g., in Ref. [84]). This

approximation is valid at least when correlations are weak, so that the many-body ground

state is well described by a single Slater determinant (Hartree-Fock limit).

All of the DFT calculations presented here are done using the elk code [79] with the

exchange-correlation functional of Perdew, Burke and Ernzerhof (GGA-PBE) [85]. elk is

an all-electron code that avoids potential pitfalls associated with extracting the short-range

electronic structure from a pseudopotential [64]. Within elk, the Kohn-Sham orbitals for the

valence electrons are calculated by solving the Dirac equation under the scalar relativistic

approximation [86], so it is essential to use the relativistic form of the hyperfine interaction

to find accurate results.

To compute the hyperfine parameters we run elk (with input file set for “very high quality”

[vhq parameter] convergence) [79], to compute the Kohn-Sham orbitals at the conduction-

46



band minima and valence-band maxima of GaAs and silicon. We then treat these Kohn-Sham

orbitals as approximations for the Bloch waves, ψν(r) ≈ φν(r).

2.4.1 Conduction band of GaAs

The Kohn-Sham orbital at the conduction-band minimum of GaAs (k = 0) is found to

be almost completely s-like (see Appendix 2.E). As explained in Sec. 2.3.1, this symmetry

property of the wave function implies that the hyperfine interaction will be dominated by the

contact term. The integral for the contact hyperfine interaction has a weighting function,

δT(r), that weights the points within a distance rjT from the nuclei strongly, where rjT is

the Thomson radius for atom j. It is therefore important to find an accurate description

of the Kohn-Sham orbital at short length scales (r . rjT). We sample the wave function

on an equally spaced one-dimensional (radial) grid of points starting from each atom j (Ga

or As) within the unit cell out to a distance of 100rjT. These values represent a numerical

description of the conduction-band wavefuntion ψ(r + δj). Because the s-component of the

wave function is spherically symmmetric, the radial functions are easily determined using

ψ(r + δj) = Y 0
0 (θ, φ)Rj

s(r) = Rj
s(r)/

√
4π. Once the radial functions have been obtained, we

numerically evaluate the integral from Eq. (2.23) (see Appendix 2.E).

Once the integral
〈
|Rj

s(r)|
2
〉
δT

has been evaluated, it can be used with Eqs. (2.23) and

(2.25) to evaluate ηj and the contact hyperfine parameter Ai for the isotopes of Ga and As

in GaAs. We have verified that ηj has converged with respect to certain parameters (e.g.,

the number of basis states and the density of k-points for which the calculation is performed;

see Appendix 2.F for the full list) to within 1% of its asymptotic value (see Appendix 2.F

for details). The resulting hyperfine constants (given in Table 2.1) are consistent with the

accepted values estimated by Paget et al. (Ref. [60]). The accuracy of this estimate may be

in question since it is based on measurements in an analogous material (InSb), rather than

direct measurements in GaAs. However, the hyperfine constants calculated here are also

consistent with Knight-shift measurements made on (fractional and integer) quantum-Hall

states in GaAs quantum wells [57,69] (see Table 2.2, and Appendix 2.B.1 for details).
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2.4.2 Conduction band of silicon

In contrast to GaAs, the conduction band of silicon has six minima (valleys). Each minimum

is situated at roughly 84% of the way to any of the six equivalent X points from the Γ point.

The states at the conduction-band minima of silicon are s-p hybridized. Even though an

anisotropic hyperfine interaction is not forbidden by symmetry (due to the s-p hybridization),

previous theoretical studies indicate that the contact part of the hyperfine Hamiltonian

dominates over the anisotropic piece in bulk silicon [64]. We therefore neglect the anisotropic

hyperfine interaction when investigating the hyperfine coupling in the conduction band of

silicon. Because only s states have a non-vanishing contact hyperfine interaction, we project

onto the s-like component of the states at the conduction-band minima and use the same

method described in Sec. 2.4.1 to evaluate the hyperfine constants for these states. The

result, ηSi = 160, is consistent with the theoretical result of Ref. [64], ηSi = 159.4± 4.5, which

was obtained using the Wien2k [87] all-electron DFT code with the non-relativistic formula

for the contact-hyperfine constant [taking the limit as rjT → 0 in Eq. (2.8)]. Both of these

calculations for the density directly at the conduction-band minima are, however, inconsistent

with the measured value ηSi = 100± 10, reported in Ref. [70], obtained from Knight-shift and

Korringa-relaxation measurements.3 This has led us to a different approach, described below.

In GaAs, where the conduction-band minimum is at the Γ point, we find accurate values of

the hyperfine parameters (see Sec. 2.4.1). In contrast, in silicon, where the conduction-band

minima are off zone center, we find hyperfine parameters that do not agree with experimental

results. Therefore, we have evidence that the DFT procedure used here is more accurate for

the Γ-point (k = 0) Bloch functions than for Bloch functions at other points in the Brillouin

zone. Because the point-group symmetry at the Γ point is the same as that of the full crystal

(as opposed to a subgroup of the crystal point group when k 6= 0), the states at the Γ point

have higher symmetry than the states at finite k. Since the basis set used in the elk code

consists of atomic states, which transform according to representations of the full rotation

group, it is plausible to expect that the Γ-point states are more accurate than the states at

3. The authors of Ref. [64] compared their result, ηSi = 159.4± 4.5, with the result reported in Ref. [82],
ηSi = 186± 18, which was derived from 29Si nuclear-spin relaxation measurements. Although these results
seem roughly consistent with each other, there was an error found in the analysis of Ref. [82] which, when
accounted for, leads to ηSi = 132± 13 (see Ch. IX, section III-A of Ref. [88]).
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finite k. In contrast to the direct DFT calculations at the band extrema described above,

here we now use k · p theory to calculate the wave functions at any finite k, starting from

the wave functions calculated with DFT at the Γ point (“DFT+k · p”).

To implement DFT+k ·p, we use the experimentally determined values for the k ·p matrix

elements and energy gaps presented first by Cardona and Pollak [89] and then extended by

Richard et al. [90] and diagonalize the k ·p matrix to determine the correct linear combination

of k = 0 Bloch amplitudes to describe the states at the conduction-band minima. We then

extract the Kohn-Sham orbitals at the Γ point (k = 0) and take the appropriate linear

combination and (after projecting onto the s-component) follow the procedure outlined in

Sec. 2.4.1 for the conduction-band states of GaAs. Although k · p theory is perturbative,

and improves as k → 0, in Refs. [89] and [90] the entire band structure is shown to be

accurately reproduced using these k · p matrix elements and energy gaps. Therefore, using

the matrix elements provided in these references should be sufficient for calculations at the

conduction-band minima of silicon.

The DFT+k · p procedure yields ηSi = 88, which is a factor of ∼ 2 different from the result

(ηSi = 160) found above for a calculation of the Bloch functions directly at the conduction-

band minima. Furthermore, this DFT+k · p result is approximately consistent with the

Korringa-relaxation-rate and Knight-shift measurements of Ref. [70], ηSi = 100 ± 10 (see

Appendix 2.B.1 for a discussion of the Knight shift). This level of consistency suggests

that DFT+k · p can be useful to perform accurate calculations in materials where the band

extrema are not situated at the Γ point. The agreement with experimental observations is

also consistent with the assumption of small anisotropic corrections to the Fermi contact

interaction. However, since the reduction of ηSi is due to a significant s-p hybridization,

it would still be interesting to assess the role of anisotropy. A proper account of these

effects would require applying the methods discussed here to the full bulk states (instead of

their s component), but should also take into account the specific nanostructure, e.g., the
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predominant valley states.4

2.4.3 Valence bands of GaAs and silicon

Because the top of the valence band is fourfold degenerate for GaAs and silicon, a general

valence-band Kohn-Sham orbital will be a linear combination of all four states. To calculate

the anisotropic hyperfine parameters for these valence-band states, we extract the values of a

Kohn-Sham orbital at the top of the valence band on a uniform grid of positions, and use

group-theoretic arguments to reconstruct φ3/2(r), the Kohn-Sham orbital that transforms

like the state with total angular momentum J = 3/2, orbital angular momentum l = 1 and

mJ = 3/2 (see Appendix 2.C). We then use the spherical harmonic expansion [Eq. (2.20)] to

obtain the radial functions listed in Eqs. (2.26), (2.27), and (2.28). We find that only the

radial functions for quantum number l up to l = 2 have significant weight (see Appendix

2.F).

The radial functions are inserted into Eq. (2.31) and the appropriate integrals, M j
λλ′ , are

computed numerically. The integrals from Eq. (2.31) are estimated by setting a cutoff for

the upper bound of integration at Rmax =
√

3a/8, where a is the cubic lattice constant

of the material under consideration and Rmax is the radius of the largest non-overlapping

spheres, Sj, centered at each nuclear site j (see Fig. 2.2). Setting the cutoff to Rmax is

equivalent to neglecting long-range contributions to the hyperfine interaction. We make a

further approximation, in the case of the anisotropic hyperfine parameters, and set fT(r)→ 1

(or equivalently rT → 0) when evaluating the matrix elements M j
λλ′ from Eq. (2.31). This

is justified because the relativistic radial functions vanish at the origin for all states except

s states and p states with total angular momentum J = 1/2 [76, 78]. The valence-band

states can be written as a linear combination of p states with J = 3/2 and d states [see

Eq. (2.46)]. Because the relativistic form is important for r . rT and the valence-band states

4. We note that in silicon nanostructures (e.g. quantum dots) the relevant eigenstates are formed by taking
linear combinations of the different bulk valley states (and potentially spin states, if spin-orbit coupling is
relevant). In these systems, the anisotropic hyperfine coupling may be significant in comparison to the
contact piece. If the specific linear combinations making up the eigenstates of a given nanostructure are
well understood, the theory presented here can be applied to calculate the appropriate hyperfine tensor.
Instead of projecting the bulk states onto the s component, the full bulk states could be used, appropriate
linear combinations taken, and hyperfine tensor elements computed using Eq. (2.12)
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vanish at the origin and vary on the scale of a Bohr radius, aB, corrections to the relativistic

form are suppressed by rT/aB . 10−3. Finally, we verify that the computed values of M j
λλ′

have converged with respect to the parameters listed in Appendix 2.F to within 2% of their

asymptotic values (see Appendix 2.F for details).

In Refs. [10–13], the ratio of the Overhauser shifts of electrons and holes in GaAs quantum

dots is measured. From the results of these measurements, the authors conclude A‖/A ∼ 10%

in GaAs, roughly consistent with the results presented here (see Table 2.1). In Ref. [19], T ∗2

times have been measured for a hole-spin qubit defined in a silicon complementary metal-

oxide-semiconductor (CMOS) quantum dot. It is not clear which mechanism limits T ∗2 in

these experiments. However, if the coherence times were limited by the hyperfine interaction,

the measured T ∗2 times would be consistent with the silicon hyperfine constants presented

here (see Appendix 2.B.2 for details).

2.5 Conclusions

We have calculated the hyperfine parameters for the conduction and valence bands of

GaAs and silicon using the Kohn-Sham orbitals from an all-electron DFT code (elk), fully

accounting for the relativistic form of the hyperfine coupling, and in the case of silicon, we

have introduced and employed an expanded DFT+k · p procedure.

For the conduction band of GaAs, our results for ηj are consistent with the accepted values

from Paget et al. (Ref. [60]) and with measurements of the Knight shifts in GaAs quantum

wells [57,69]. In silicon, our results are roughly consistent with measurements of the Korringa

relaxation times and measurements of the Knight shift [70] when we use the DFT+k · p
procedure (see Table 2.2).

In the procedure used here, we have accounted for d-orbital hybridization in the valence-

band states of GaAs. Similar to the analysis presented in Ref. [11], we find that this d-orbital

hybridization leads to the Ga nuclear spins (and not the As nuclear spins) in GaAs having a

substantial transverse hyperfine coupling (Ai⊥ ∼ Ai‖). However, while the results of Ref. [11]

(combined with their interpretation) suggest that heavy holes in a GaAs quantum dot may

experience a significant in-plane Overhauser field, we find that the total Overhauser field

experienced by a heavy hole in a GaAs quantum dot will point predominantly along the
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dot growth direction, even for an unpolarized nuclear-spin system. This anisotropy is a

consequence of the stronger hyperfine coupling to the As nuclear spins relative to the Ga

nuclear spins: A
75As
‖ � A

69Ga/71Ga
⊥ . This finding is consistent with measured heavy-hole spin

relaxation times [80], transverse Overhauser-field measurements [13], and measurements of

tunneling between spin-resolved Landau levels in a two-dimensional hole gas [81]. Moreover,

we find hyperfine constants that are roughly consistent in magnitude with conclusions drawn

in Refs. [10–13] from measurements of the ratio of the heavy-hole to electron Overhauser

fields. Additionally, if Ai⊥ has a significant magnitude only for the Ga nuclear spins, then in

nanostructures (quantum dots or quantum wells) with confined heavy holes and a magnetic

field along the growth direction, only the Ga nuclear spins can be dynamically polarized (along

the growth direction). Alternatively, if light holes are confined to similar nanostructures, all

nuclear spins can be dynamically spin polarized (see Appendix 2.D). Therefore, an additional

consequence of the hyperfine constants calculated here is that a larger Overhauser field can

be generated if light holes are used to dynamically spin polarize the nuclear spins in GaAs

instead of heavy holes. For silicon, our results are consistent with T ∗2 measurements made

in CMOS hole-spin quantum dots [19]. Moreover, in contrast to GaAs, where the hyperfine

coupling strength for holes is roughly an order of magnitude smaller than that of electrons

(A‖/A ∼ 0.1), in silicon, we find that the hyperfine coupling strengths for holes and electrons

are comparible (A‖ ∼ A).

For holes, experiments (including Overhauser-shift and T ∗2 measurements) often only

provide indirect measurements of the hyperfine interaction. For example, extracting the

hyperfine parameters from Overhauser-shift measurements requires knowledge of the hole

envelope functions, the degree of spin polarization of the nuclear spins, and isotopic alloying

disorder. Measuring the hole hyperfine coupling directly (e.g., through hole-spin echo envelope

modulations (HSEEM) [72]) could instead provide a direct and unambiguous measurement of

the hyperfine tensor matrix elements, allowing a direct comparison to the theoretical results

presented here.

The method explored here combines DFT, k · p theory, and group theory to arrive at an

approximate description of the crystal Bloch functions and not only the electronic density.

As demonstrated for the conduction band of silicon, k · p theory can be crucial in accurately

calculating the Bloch functions away from k = 0. The DFT+k · p procedure introduced
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here can therefore be important to understand properties of other materials that have band

extrema at finite k. These materials include graphene, nanotubes, Weyl semimetals, and

transition metal dichalcogenides. Furthermore, the wave function (including the phase) at all

points in the Brillouin zone is required, for example, to evaluate topological invariants (such

as Chern numbers). Therefore, DFT+k · p might be important in determining topological

invariants and cataloguing different topological phases of materials [91,92]. More generally,

this method can be applied to obtain an approximate description of the electronic wave

functions for semiconductor systems. These systems include quantum wells, quantum dots,

and defect centers in diamond. The electronic wave function can be used to calculate relevant

quantities in these systems, including, but not limited to hyperfine interactions, spin-orbit

interactions, and transition dipole matrix elements.
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Appendices to Chapter 2

2.A p-d hybridization of the valence-band states

In the past, calculations of hole hyperfine constants have been performed by approximating

the Bloch amplitudes with atomic p functions [9, 61]. Although they are the simplest

states that respect the crystal symmetries, p states are not general enough to completely

describe the valence-band Bloch functions (see, for example, the discussion in Sec. 2.3.2 or

Refs. [11,62,93–95]). The procedure described here allows us to calculate the weight of higher

angular momentum states, namely d states, in the valence-band Bloch functions. We can

quantify the contribution of the p and d states to the valence-band state around each atom as

wjλ =

∫ Rmax

0

∣∣Rj
λ(r)

∣∣2 r2dr∑
λ′,j

∫ Rmax

0

∣∣Rj
λ′(r)

∣∣2 r2dr
, (2.37)

for λ ∈ {p, d, d′}. The results are displayed in Table 2.3. The weight of the p-orbital

increases with the electronegativity of the nucleus (see Table 2.3). A basic estimate of

the electronegativity of the nuclei is given from the effective nuclear charge experienced

by the valence electrons of the free atoms calculated from Hartree-Fock theory [96]. In

GaAs, the As atom, Zeff = 7.4492 [96], has almost pure p symmetry, while the Ga atom,

Zeff = 6.2216 [96], has an admixture of p and d symmetries. As explained in Sec. 2.2.2, the

higher electronegativity of the As atom suggests a more spherically symmetric potential, and

consequently, a weaker p-d hybridization (see Fig. 2.2 and Table 2.3). In the case of GaAs,

this p-d hybridization leads to non-Ising corrections to the heavy-hole hyperfine coupling for

the Ga nuclear spins.

Additional evidence for this explanation can be found in Ref. [93]. In this reference, the

Bloch functions for various zincblende compounds are calculated (using empirical pseudopo-

tentials). From these calculations, the author concludes that, for the studied materials, as the

crystals become more ionic, the d-orbitals on the cationic site become more important, and
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present work Ref. [94]

atom (j) wjp wjd wjp wjd
Ga 0.13 0.07 0.15 0.20
As 0.79 0.01 0.62 0.03
Si 0.43 0.07 - -

Table 2.3: Weights, wjλ, of the p and d contributions for valence-band states for each atom in GaAs

and silicon. In Ref. [94] silicon is not studied. The weight wjd′ = 0 within the accurary of the present
procedure, which is consistent with the results reported in Ref. [94].

the wave function in the vicinity of the anionic site becomes more p-like, consistent with the

reasoning provided above. We also note that, although the d′ orbital is allowed by symmetry

(see Appendix 2.C), its contribution to the valence-band states vanishes within the accuracy

of this procedure.

Bogus lawski and Gorczyca, Ref. [94], have also projected the GaAs valence-band wave

functions onto the spherical harmonics. They used the empirical pseudopotential method

to obtain the wave functions. These wave functions are then expanded in terms of p and d

spherical harmonics centered at each atom j. They report results for the p and d contributions

to the states from each site. The results of Ref. [94] are roughly consistent with our own.

They also suggest that the contribution of the d′ orbitals is relatively small when compared

to the p and d orbitals (see Table 2.3).

Other works using empirical pseudopotentials [93] and tight-binding theory [95] have also

found significant p-d hybridization of the Bloch amplitudes near the Ga sites in GaAs. These

works have produced results in rough agreement with the results of Ref. [94] presented in

Table 2.3.

2.B Comparison with experimental results

2.B.1 Knight shift

The Knight shift, Kl, is the shift in magnetic resonance frequency of an isotope at site l due

to the average field 〈hl〉 [88]. Measurements of the Knight shift can be used to characterize
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the hyperfine interaction for electrons confined to a given nanostructure.

Measurements of the Knight shift have been made in quantum Hall states of GaAs [57, 69].

For non-interacting s-like electrons (such as those in the conduction-bands of GaAs and

silicon) in a quantum well with fully spin-polarized electrons, the Knight shift,

Kl =
v0A

il

2h
|F (zl)|2 n, (2.38)

is proportional to the hyperfine constant Ail . In Eq. (2.38), h is Planck’s constant, F (z) is

the quantum-well envelope function, and n is the sheet density of electrons in the quantum

well. In Ref. [57], the Knight shift for nuclei at the center of a GaAs quantum well was

measured using optically pumped nuclear magnetic resonance in three different samples in

the ν = 1/3 fractional quantum Hall state (having a fully spin-polarized ground state). For a

symmetric quantum well with infinite barriers, the largest Knight shift occurs directly in the

center of the well, and is proportional to |F (z = L/2)|2 = 2/L, where L is the well width.

Using this value for the envelope function, the hyperfine coupling was extracted from the

Knight-shift measurement and a value of A
71Ga
c = v0A

71Ga/h = (4.5 ± 0.2) × 10−13 cm3/s

was reported. This value can be converted into a value for ηjl (for atom jl at site l) using

Eq. (2.25), and is presented in Table 2.2. More recently, Knight-shift measurements have

been made in GaAs in the quantum Hall regime, close to a filling factor ν = 1 [69]. The

results for the Knight shifts for 69Ga and 75As relative to that of 71Ga (plotted in Fig. 1 of

Ref. [69]) can be combined with the Knight-shift measurement of Ref. [57] and Eq. (2.38) to

obtain values for the hyperfine constants for 69Ga and 75As. The values of ηjl obtained from

these measurements are consistent with our calculated values (see Table 2.2).

The Knight shift has also been measured in n-doped bulk silicon samples [70]. The extracted

hyperfine parameter is ηSi = 100± 10, approximately consitent with our calculated value of

ηSi = 88± 1 (see Table 2.2).

2.B.2 Hole-spin coherence times

The hyperfine field can limit coherence times for electrons or holes [19] trapped in nanostruc-

tures. Recently, Maurand et al. [19], measured the coherence time, T ∗2 = (59± 1) ns, of a

56



hole-spin qubit confined to a CMOS silicon quantum dot. Under the assumption that there

are enough nuclear spins interacting with the hole spin that the hyperfine-field value will be

Gaussian distributed, we can estimate the coherence time for the heavy-hole spin using [9]

1

2(T ∗2 )2
≈ 1

4N

∑
i

giIi(Ii + 1)(Ai‖)
2, (2.39)

where gi is the abundance of isotope i having nuclear spin Ii, and N is the number of nuclear

spins in the nanostructure. From the quantum dot level-spacing from Maurand et al. [19], we

estimate N ∼ 103, assuming a spherical quantum dot. Calculating T ∗2 from Eq. (2.39) using

our result for ASi
‖ , Ii = 1/2, and the natural abundance of 29Si (g29Si = 4.7%), we find T ∗2 to

be on the order of 100 ns. Our estimate of T ∗2 is therefore of the same order as the measured

value.

2.C Group theory and projection operators

To reconstruct the heavy-hole and light-hole states from an arbitrary linear combination of

these four states, we use the projection operator technique [97] from group theory.

The states at the top of the valence band of group IV and III-V semiconductors transform

according to the Γ8 representation of the tetrahedral double group, Td (or equivalently the Γ+
8

representation of the Oh double group) [97]. We start by constructing the Γ8 representation

and then show how it can be used along with the projection operators to determine states

that will contribute to the partial-wave expansion of the heavy-hole and light-hole states.

2.C.1 Construction of the Γ8 representation

A known basis for the Γ8 representation of the tetrahedral double group, Td, is the set of four

J = 3/2 angular momentum eigenstates with l = 1 (see Table D.1. p. 522 in Ref. [97]). In the

|J, l,mJ〉 basis, where J represents the total angular momentum, l gives the orbital angular

momentum, and mJ is the angular momentum projected onto the relevant quantization

axis (the z-axis, e.g. [001]), these states are |3/2, 1,±3/2〉, which transform like the heavy-

hole states, and |3/2, 1,±1/2〉, which transform like the light-hole states. According to the
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definition of basis vectors [97],

Oi |3/2, 1,mJ〉 =

3/2∑
m′
J=−3/2

[D(Γ8)(Oi)]mJm′
J
|3/2, 1,m′J〉 , (2.40)

where Oi ∈ Td is a symmetry operation and D(Γ8)(Oi) is the Γ8 representation of the Oi
symmetry.

Using the orthonormality of the basis states, we can construct the Γ8 representation

matrices as

[D(Γ8)(Oi)]mJm′
J

= 〈3/2, 1,m′J | Oi |3/2, 1,mJ〉 , (2.41)

for all symmetry operations Oi ∈ Td. Furthermore, we have

〈3/2, 1,m′J | Oi |3/2, 1,mJ〉 = σ(Oi)W 3/2

mJm
′
J
(ai, bi, ci), (2.42)

where σ(Oi) = 1 if the operation is a pure rotation, σ(Oi) = (−1)l if the operation involves

an inversion, and W J(a, b, c) is the J th Wigner D matrix. The angles ai, bi and ci are the

symmetry-dependent Euler angles, where ai is an initial rotation around the z-axis, bi a

subsequent rotation around a perpendicular axis, labeled y ([010]) and ci is the final rotation

around the z-axis (these angles can be found for the different symmetry operations Oi ∈
Td in Table I of Ref. [98]). Inserting Eq. (2.42) into Eq. (2.41), we can construct the Γ8

representation of the Td double group, {D(Γ8)(Oi)}.

2.C.2 Projection operators

Since each valence-band state transforms like one of the four |3/2, 1,mJ〉 states, we label

each state by mJ . This labeling is consistent with the notation developed above. We now

define the projection operators and show how to use them to construct the heavy-hole and

light-hole states. For the Γ8 basis states, the projection operators P̂mJm′
J
, are defined by the

equation

P̂mJm′
J
|m′J〉 = |mJ〉 , (2.43)
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where mJ and m′J run over the four basis states of the Γ8 representation. Under the Γ8

representation, the projection operators are written as [97]

P̂mJm′
J

=
1

12

∑
i

{[D(Γ8)(Oi)]−1}∗mJm′
J
Oi, (2.44)

where the numerical prefactor comes from the ratio of the order of the Γ8 representation to

the order of the double group Td.

Because the projection operators are linear, P̂3/2,3/2 can retrieve the component of any state

that transforms like |3/2〉 under the symmetry operations of the double group Td. Therefore,

by systematically applying the P̂3/2,3/2 projection operator to the 6 p-states (l = 1) and the

10 d-states (l = 2), we can calculate the d-orbital hybridized heavy-hole state |3/2〉. The

result is

〈r|3/2〉 =Rp(r) |1, 1〉 |+〉 − iRd(r) |2,−1〉 |+〉 (2.45)

− iRd′(r) |2, 0〉 |−〉 ,

where r is a radial coordinate, Rλ(r) are real radial functions and we have used the basis

of states |l,m〉 |σ〉. The basis vectors |l,m〉 |σ〉 are related to |J, l,mJ〉 basis vectors by the

Clebsch-Gordon coefficients. We then construct the other three states by applying the

projection operators P̂mJ ,3/2 to the state from Eq. (2.45)
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〈r| − 3/2〉 =Rp(r) |1,−1〉 |−〉+ iRd(r) |2, 1〉 |−〉

+ iRd′(r) |2, 0〉 |+〉 ,

〈r|+ 1/2〉 =Rp(r)

(√
2

3
|1, 0〉 |+〉+

√
1

3
|1, 1〉 |−〉

)
− iR̃1(r) |2, 2〉 |+〉 − iR̃2(r) |2,−2〉 |+〉

− iRd(r)√
3
|2,−1〉 |−〉 ,

〈r| − 1/2〉 =Rp(r)

(√
2

3
|1, 0〉 |−〉+

√
1

3
|1,−1〉 |+〉

)
+ iR̃1(r) |2,−2〉 |−〉+ iR̃2(r) |2, 2〉 |−〉

+ i
Rd(r)√

3
|2, 1〉 |+〉 ,

(2.46)

where R̃1(r) =
√

1/3Rd(r) +
√

1/2Rd′(r) and R̃2(r) =
√

1/2Rd′(r)−
√

1/3Rd(r).

Finally, we note that we also enforce

Θ 〈r|3/2〉 = eiφ0 〈r| − 3/2〉 (2.47)

where Θ is the time-reversal operator and φ0 is a global phase. This equation restricts the

relative phases of the p and d parts of the wave functions to be as shown in Eqs. (2.45) and

(2.46). We also note that we have omitted the kν quantum number for the valence-band

states since the valence-band maximum for group IV and III-V semiconductors is situated at

the Γ point, where k = 0.

The advantage of applying the projection operators to atomic orbitals is that the symmetry

of the states can be easily identified. For example, in the case of the valence-band states

of GaAs and silicon, the deviation from pure p symmetry (and the d-orbital hybridization)

can be easily understood by using the projection operators (as described above) to write the

states as in Eqs. (2.45) and (2.46). We note that the group theory projection operators can

also be applied directly to wave functions defined numerically on a grid of points by applying
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the symmetry operators Oi [see Eq. (2.44)] directly to the coordinates (for an implementation,

see Ref. [99]).

2.D Light-hole hyperfine Hamiltonian

Projecting the hyperfine matrix [Eq. (2.34)] onto the light-hole subspace results in

Hl,A
LH =

1

2

[(
1

3
Ail‖ − 4Ail⊥

)
σzI

l,A
z (2.48)

+

(
2

3
Ail‖ + Ail⊥

)(
σxI

l,A
x + σyI

l,A
y

) ]
, (2.49)

where the Pauli matrices, σα, act in the light-hole subspace. This hyperfine matrix is given

for an isotope il located at an A site labeled by l (see Sec. 2.3.3). In contrast to the heavy-

hole hyperfine matrix, the light-hole hyperfine matrix is invariant under Axx → Ayy and

Ayy → Axx. Therefore the hyperfine matrix for A sites is equivalent to the hyperfine matrix

for B sites. In addition, the logitudinal and transverse light-hole hyperfine couplings depend

on both A‖ and A⊥ [see Eqs. (2.48) and (2.49)]. Therefore, in contrast to heavy holes, even

when A⊥ � A‖ (e.g. for the As site in GaAs), the transverse light-hole hyperfine coupling is

of the same order as the longitudinal hyperfine coupling [see Eqs. (2.48) and (2.49)].

2.E s-like Kohn-Sham orbitals

The s-like states that contribute to the conduction-band minimum of GaAs are ‘almost purely

s-like,’ which we take to mean ∑
l>0N

ν
l

N ν
0

< 10−3, (2.50)

where

N ν
l =

l∑
m=−l

∑
σ,j

∫ Rmax

0

∣∣Rjν
lmσ

∣∣2 r2dr. (2.51)

In Eq. (2.51) Rmax =
√

3a/8, where a is the lattice constant. Rmax is half the distance

between nearest-neighbor atoms in the crystal.
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For s-like orbitals the contact hyperfine interaction dominates. Since the contact hyperfine

constants are determined by the integral
〈
|Rj

s(r)|
2
〉
δT

, we present here the procedure used to

evaluate this integral. Since the relativistic s-like radial function has a power-law divergence

at the origin [76,78], we fit the points that are within a distance of 10rjT from each atom with

a power law and evaluate the integral

〈∣∣Rj
s(r)

∣∣2〉in

δT
=

∫ 10rjT

0

∣∣Rj
fit,s(r)

∣∣2 δT(r)r2dr, (2.52)

where Rj
fit,s(r) = Λr−ξ is the best fit function to the radial part of the Kohn-Sham orbital,

with Λ and ξ being fit parameters. We then use a Riemann sum to evaluate the integral for

all points 10rjT < rn < 100rjT,

〈∣∣Rj
s(r)

∣∣2〉out

δT
=

100rjT∑
rn=10rjT

∣∣Rj
n

∣∣2 δT(rn)r2
n∆, (2.53)

where rn is the set of points where the radial function Rj
s(r) is sampled, Rj

n = Rj
s(rn), and

∆ = rn+1 − rn. We then approximate〈∣∣Rj
s(r)

∣∣2〉
δT
≈
〈∣∣Rj

s(r)
∣∣2〉in

δT
+
〈∣∣Rj

s(r)
∣∣2〉out

δT
. (2.54)

In Eq. (2.54) we have taken contributions to the integral [Eq. (2.24)] to be negligible for

r > 100rT. This approximation is justified because the scale at which the weighting function

in the integral [δT(r)] decays is given by rT [see Eq. (2.9)].

2.F Convergence criteria

For each parameter p (e.g. p can be the density of k states at which the DFT calculation is

performed), we construct αj(p), α ∈ {η, h⊥, h‖}. In other words, we evaluate αj for a range

of values of the parameter p. Once αj has been evaluated for multiple values of p, we fit
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αj(p) to a power law of the form

αj(p) = Λp−ξ + αj0, (2.55)

where Λ, ξ and αj0 are fit parameters and, in particular, αj0 is the asymptotic value of αj as a

function of p. In all cases, we find that∣∣αj(pvhq)− αj0
∣∣

αj0
< e, (2.56)

where pvhq is the ‘very high quality’ value of the paramter p, determined by elk [79], and

e = 0.01 for α = η and e = 0.02 for α ∈ {h⊥, h‖}. This procedure was carried out for the

parameters gmaxvr, lmaxvr, nempty, rgkmax, chgexs, swidth [79], as well as the number of

k points in the first Brillouin zone at which the Kohn-Sham orbitals were found, and the

number of points in the unit cell at which the wave functions were extracted.

In addition, we have verified the smallness of the error made in expanding the valence-band

states only up to l = 2 in the spherical harmonic expansion [see Eq. (2.20)]. Specifically, if

we define

Mj(lmax) =
∑
σ

∫
Sj
drdΩ

∣∣∣∑l=lmax

l=0

∑l
m=0R

jν
lmσ(r)Ylm(θ, φ)

∣∣∣2
r

, (2.57)

where the integral is over the sphere Sj surrounding atom j (see Fig. 2.2), we have verified

that
Mj(3)−Mj(2)

Mj(3)
< 0.001 (2.58)

for all atoms j in GaAs and silicon. Since the hyperfine parameters are calculated from

matrix elements of h(r) ∼ 1/r3 [see Eq. (2.5)] and Mj(lmax) is a (diagonal) matrix element

of 1/r3, Eq. (2.58) should be a good measure of the error made in neglecting terms with l > 2

when calculating hyperfine constants.
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R. Laviéville, L. Hutin, S. Barraud, M. Vinet, M. Sanquer, and

S. De Franceschi, A CMOS silicon spin qubit. Nat. Commun. 7(1) 1 (2016).

[20] A. Bogan, S. Studenikin, M. Korkusinski, L. Gaudreau, P. Zawadzki, A. S.

Sachrajda, L. Tracy, J. Reno, and T. Hargett, Landau-Zener-Stückelberg-

Majorana interferometry of a single hole. Phys. Rev. Lett. 120 207701 (2018).

[21] S. Studenikin, M. Korkusinski, M. Takahashi, J. Ducatel, A. Padawer-

Blatt, A. Bogan, D. G. Austing, L. Gaudreau, P. Zawadzki, A. Sachrajda

et al., Electrically tunable effective g-factor of a single hole in a lateral GaAs/AlGaAs

quantum dot. Commun. Phys. 2(1) 1 (2019).

[22] D. V. Bulaev and D. Loss, Spin relaxation and decoherence of holes in quantum

dots. Phys. Rev. Lett. 95(7) 076805 (2005).

[23] D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley,

D. V. Bulaev, and D. Loss, Observation of extremely slow hole spin relaxation in

self-assembled quantum dots. Phys. Rev. B 76(24) 241306 (2007).

[24] I. Zailer, J. E. F. Frost, C. J. B. Ford, M. Pepper, M. Y. Simmons, D. A.

Ritchie, J. T. Nicholls, and G. A. C. Jones, Phase coherence, interference, and

conductance quantization in a confined two-dimensional hole gas. Phys. Rev. B 49 5101

(1994).
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Addendum to Chapter 2 - Hyperfine

interaction for hole spins in germanium

Since the writing of the published portion of Chapter 2, hole spins in strained germanium

quantum dots have shown promise as qubit candidates. Like silicon, germanium possesses

a low abundance (∼ 7.8%) of spinful nuclei, which results in a weaker interaction with

the nuclear-spin bath via the hyperfine interaction (in comparison to e.g. GaAs). However,

hole spins in strained germanium possess an additional advantage: the small effective mass

weakens the engineering constraints required to build precise devices [1–3].

Recently, few-hole planar germanium quantum dots have been fabricated and studied. In

Ref. [4], a quantum dot in the single-hole regime was demonstrated. Relaxation times (T1),

and coherence times (T ∗2 ) have been measured in these devices and Pauli spin blockade has

been demonstrated [4, 5]. Furthermore, the strong spin-orbit coupling has been used for fast

all-electrical qubit manipulation [2]. These advances have laid the foundation for future

hole-spin germanium devices. However, the germanium hole hyperfine coupling has yet to be

established.

There is evidence suggesting that charge noise limits the phase coherence time, T ∗2 in

current germanium quantum-dot devices [4]. As germanium devices are engineered with a

decreasing amount of charge noise, it becomes increasingly likely that coherence times will

be limited by a different mechanism. The hyperfine interaction has been shown to be the

dominant decoherence mechanism in other host materials (e.g. GaAs, silicon). Even when

isotopically purifying silicon to remove the spinful nuclei (29Si), the hyperfine coupling to

the remaining residual nuclear spins has been shown to limit coherence times [6, 7]. It is

likely that the hyperfine interaction will also eventually limit the coherence times for hole

spins in germanium quantum dots. Therefore, quantifying the strength of this interaction for

germanium hole spins may be important to understand the decoherence in future germanium

devices.
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Figure 2.4: Calculated density, ρ =
∣∣φ3/2(r)

∣∣2, of the mJ = +3/2 heavy-hole state in germanium,

resulting from the Kohn-Sham orbital φ3/2(r). ρ1/5 is plotted (rather than ρ) using a color scale (in

units of a
−3/5
0 , with a0 the Bohr radius) so that the features of the density can be visible. The two

germanium nuclei within a primitive unit cell are each at the center of one of the circles. ρ is shown
along a cut in the (21̄1̄) plane. We neglect the long-range dipolar (hyperfine) coupling between the
nuclear spin and hole-spin density outside the sphere SGe.

Germanium hole hyperfine interaction

In the four-dimensional valence-band subspace of germanium (and silicon and III-V materials)

spanned by the heavy and light holes, the hyperfine interaction between a hole and a nuclear

spin I takes the following form [see Eq. (2.29)]

Hi
VB =

(
1

3
Ai‖ −

3

2
Ai⊥

)
J · I +

2

3
Ai⊥J · I, (2.59)

where i labels the nuclear isotope under consideration, J is the vector of spin-3/2 matrices

(where the heavy holes are labeled by mJ = ±3/2 and the light holes are labeled by

mJ = ±1/2), J = (J3
x, J

3
y, J

3
z), and where Ai⊥ and Ai‖ are two hyperfine parameters. This

Hamiltonian can be projected onto the heavy-hole subspace to obtain the heavy-hole hyperfine

Hamiltonian

Hi
HH = Ai‖szIz + Ai⊥ (sxIx − syIy) , (2.60)
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(electrons) (holes)
isotope (i) Ai (µeV) Ai‖ (µeV) Ai⊥ (µeV)
69Ga in GaAs 74 1.4 0.35
71Ga in GaAs 94 1.7 0.45
75As in GaAs 78 11 0.02
29Si in silicon −2.4 −2.5 −0.01
73Ge in germanium - −1.1 0.02

Table 2.4: Hyperfine parameters calculated for GaAs and crystalline germanium and silicon. All
parameters have been found from k = 0 Bloch amplitudes approximated by Kohn-Sham orbitals
established in DFT using elk, an all-electron DFT code. The silicon conduction-band parameter
(A

29Si) is evaluated using DFT+k ·p which accounts for the off-zone-center conduction-band minima
in silicon (see Sec. 2.4.2). These hyperfine couplings imply that the heavy-hole hyperfine Hamiltonian
is almost entirely Ising-like in germanium, silicon, and for the arsenic nuclear spins in GaAs [see
Eq. (2.60)]. Numerical convergence has been verified for all parameters to within 2% of the reported
values (see Appendix 2.F).

where s is a pseudospin-1/2 operator in the heavy-hole subspace. In Eq. (2.60), Ai‖ pa-

rameterizes the strength of the Ising part of the hyperfine coupling and Ai⊥ parameterizes

the strength of the transverse hyperfine coupling. In the light-hole subspace, the hyperfine

Hamiltonian has the form

Hi
LH =

(
1

3
Ai‖ − 4Ai⊥

)
szIz +

(
2

3
Ai‖ + Ai⊥

)
(sxIx + syIy) , (2.61)

where now s is a pseudospin-1/2 operator in the light-hole subspace. Using the Kohn-Sham

orbitals and the procedure outlined in Sec. 2.4.3, we can calculate the hyperfine parameters

for the valence band of germanium (again neglecting long-range contributions, see Fig. 2.4).

We obtain A
73Ge
‖ = −1.1µeV and A

73Ge
⊥ = 0.02µeV (see Table 2.4). These values imply that

the germanium heavy-hole hyperfine coupling is almost purely Ising-like [see Eq. (2.60)].

Contribution to T ∗2 from the hyperfine interaction

The hyperfine interaction can limit coherence times for electrons or holes trapped in quantum

dots. We consider a quantum dot defined in a quantum well of width, w, with parabolic
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in-plane confinement. The envelope function for such a dot can be written as [8],

F (r) = Fz(z)Fρ(ρ), (2.62)

with

Fz(z) =

√
2

w
sin
(πz
w

)
, z ∈ [0, w] (2.63)

and

Fρ(ρ) =
1√
πa∗B

exp

(
− ρ2

2a∗2B

)
, (2.64)

where z is the direction of the quantum-well confinement, ρ = (x, y) is the in-plane (perpen-

dicular to the z-axis) position vector, and a∗B is the effective Bohr radius of the quantum

dot. For an out-of-plane magnetic field (along z), if (1) the nuclear spin bath is in an infinite

temperature state so that the nuclear spins sample all possible spin configurations and (2)

there are enough nuclear spins interacting with the hole spin that the hyperfine-field value will

be Gaussian distributed, then we can estimate the coherence time for a quantum-dot-confined

heavy-hole spin [with envelope function given by Eq. (2.62)] using [8; see also Appendix

2.B.2]
1

2(T ∗2 )2
≈ 1

4N

∑
i

giIi(Ii + 1)(Ai‖)
2. (2.65)

In Eq. (2.65) gi is the abundance of isotope i having nuclear spin Ii, and N = πa∗2B w/v0 is the

number of nuclear spins in the quantum dot (v0 is the atomic volume of the host material).

Planar germanium quantum dots have recently been fabricated in germanium quantum wells

with w = 18 nm [2]. If, for example, we assume that the effective Bohr radius for these dots is

a∗B ' 50 nm (estimated from the dashed circle in Fig. 2a of Ref. [2]), then we expect T ∗2 ' 1µs

for a germanium heavy hole due to the hyperfine interaction (see Fig. 2.5). This value of

T ∗2 is slightly larger than the values measured in Ref. [4], T ∗2 = 140 ns and T ∗2 = 380 ns in

two different quantum dots (see Fig. 4b of Ref. [4]). There is evidence suggesting that the

measured coherence times are limited by charge noise. It is reasonable to expect the hyperfine

interaction to limit coherence times in future devices where charge noise is suppressed. It

is therefore important to understand the germanium valence-band hyperfine interaction if

germanium quantum dots are to host hole-spin qubits with long coherence times.
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Figure 2.5: T ∗2 as a function of effective Bohr radius a∗B of a lateral germanium quantum dot (in
blue), assuming an out-of-plane magnetic field, a well width w = 18 nm and an abundance of
73Ge (I73Ge = 9/2), g73Ge = 7.76% (natural germanium). The top axis indicates how many nuclei
are under the hole wavefunction (N = πa∗2B w/v0). The dashed lines represent the experimentally
measured values of T ∗2 from Ref. [4].
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Preface to Chapter 3

In the previous chapter, we used DFT to compute hyperfine parameters for electrons and

holes. Although there is experimental evidence that the values we calculated are accurate

for electrons, direct measurements of the hole hyperfine parameters are not yet available. In

this chapter, we calculate the coherence of the hole spin after a spin-echo pulse sequence as a

function of the hole hyperfine constants. We show how measurements of spin-echo envelope

modulations can be used to determine the hole hyperfine constants experimentally.

The system of interest in this chapter is a light hole bound to a boron acceptor in silicon.

While this system has been proposed as an interesting spin qubit, the hyperfine coupling

to the boron nuclear spin remains an open question. We estimate this hyperfine coupling

and demonstrate that our estimated value, which is on the order of 1% of the phosphorus

donor hyperfine coupling, would still be measurable via hole spin echo envelope modulations.

Because the confining potential (∼ 1/r) of a boron acceptor diverges at the boron site, the

envelope function approximation breaks down. Therefore, we base the estimate on empirical

observations instead of the theory presented in Chapter 2. However, the DFT method

presented in Chapter 2 can, in principle, be applied to a boron acceptor to more firmly

establish the hyperfine coupling. Due to the lack of translational symmetry, application of

the DFT method would involve a large supercell calculation. This (computationally intensive)

supercell calculation is beyond the scope of this thesis and is left for future work.

Hole spin echo envelope modulations provide a direct measurement of hole hyperfine

couplings. While we focus on the boron acceptor hyperfine coupling in this chapter, the

theory can be extended to other systems. If applied to systems where the envelope function

approximation is valid (e.g. quantum dots, quantum wells), this method could be used to

verify the hole hyperfine constants calculated in Chapter 2.

We note that at the time of publication of the manuscript presented in Chapter 3, Ref. [23]

of this chapter (see References for Chapter 3, below) was ‘in preparation’. Since, this reference

has been published and is reproduced as Chapter 2 of this thesis.
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3 Hole spin echo envelope modulations

This chapter is the integral text (including references) from:

Hole spin echo envelope modulations

Pericles Philippopoulos, Stefano Chesi, Joe Salfi, Sven Rogge, and W. A. Coish

Phys. Rev. B 100, 125402 (2019).

c©2019 The American Physical Society

Hole spins in semiconductor quantum dots or bound to acceptor impurities show

promise as potential qubits, partly because of their weak and anisotropic hyperfine

couplings to proximal nuclear spins. Since the hyperfine coupling is weak, it can be

difficult to measure. However, an anisotropic hyperfine coupling can give rise to a

substantial spin-echo envelope modulation that can be Fourier-analyzed to accurately

reveal the hyperfine tensor. Here, we give a general theoretical analysis for hole-spin-

echo envelope modulation (HSEEM), and apply this analysis to the specific case of

a boron-acceptor hole spin in silicon. For boron acceptor spins in unstrained silicon,

both the hyperfine and Zeeman Hamiltonians are approximately isotropic leading to

negligible envelope modulations. In contrast, in strained silicon, where light-hole spin

qubits can be energetically isolated, we find the hyperfine Hamiltonian and g-tensor are

sufficiently anisotropic to give spin-echo-envelope modulations. We show that there is an

optimal magnetic-field orientation that maximizes the visibility of envelope modulations

in this case. Based on microscopic estimates of the hyperfine coupling, we find that

the maximum modulation depth can be substantial, reaching ∼ 10%, at a moderate

laboratory magnetic field, B . 200 mT.
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3.1 Introduction

Recent theoretical [1, 2] and experimental [3, 4] work has shown that hole spins bound to

boron acceptors in silicon may be viable qubits. In this system, a strong spin-orbit coupling

can be used to manipulate the spins with electric fields while the influence of electrical noise

is suppressed [1]. This type of all-electrical control is more difficult in electron-spin systems,

where the spin-orbit interaction is weaker. A further possible advantage of hole spins is a

weak and anisotropic hyperfine coupling that can be controlled to extend spin coherence

times [5]. A hole spin bound to an acceptor in silicon therefore offers certain important

advantages over other spin qubits.

Hyperfine interactions can have a significant influence on the spin dynamics of both

electrons and holes in semiconductor nanostructures. To accurately control these spins, it

is important to first experimentally extract details of the relevant hyperfine parameters.

Spectroscopic techniques (e.g., paramagnetic spin resonance) can be used to resolve the

large hyperfine splittings for electrons bound to donor impurities [6, 7]. However, these

methods applied to, e.g., boron acceptors in silicon have not yet resolved the much smaller

hyperfine couplings expected for p-like orbitals composing the valence band, for which the

dominant contact interaction vanishes. For example, in Ref. [8] it has been estimated that

the hyperfine field for boron acceptors must be less than ∼ 0.7 mT to be consistent with

recent spin-resonance measurements. This is in contrast with the larger hyperfine field of

A/gµB ' 3.6 mT experienced by a phosphorus-donor-bound electron in Si (g ' 2) due to the

hyperfine coupling to a 31P nuclear spin (A/h ' 100 MHz). Spectral hole-burning experiments

showing the transfer of spin polarization from boron acceptors to surrounding 29Si nuclear

spins indicate that the hyperfine coupling must be finite, but of undetermined strength [9].

Although the hyperfine coupling has not yet been experimentally resolved for boron

acceptors in pure silicon, electron-nuclear double resonance (ENDOR) experiments have

established the hyperfine coupling and quadrupolar splittings for boron acceptors at several

lattice sites and in several polymorphs of SiC (specifically, 3C-, 4H- and 6H-SiC). These

experiments give hyperfine fields on the order of A/gµB ∼ 0.1 mT [10,11]. If the hyperfine

coupling is similarly weak for boron acceptors in pure silicon, it may not have been visible in

Ref. [8], but it would nevertheless have important implications for hole-spin dynamics.
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As an alternative to ENDOR, direct measurements of electron-spin-echo envelope modula-

tion (ESEEM) [12,13] can be a sensitive probe of the hyperfine coupling when that coupling

is anisotropic. This technique has been successfully applied, for example, to understand the

anisotropic hyperfine coupling for weakly coupled 29Si nuclear spins surrounding a phosphorus

donor impurity in isotopically enriched 29Si [14] and for 13C nuclear spins weakly coupled

to nitrogen-vacancy- (NV-) center spins in diamond [15]. The influence of echo envelope

modulation on decoherence/dynamics for donor-bound electrons and NV-center spins has

also been analyzed in detail theoretically [16–18].

Here, we theoretically establish conditions (e.g., strain, magnetic field) for an experiment to

extract hyperfine parameters from hole-spin-echo envelope modulations (HSEEM), applicable

to an acceptor impurity or quantum-dot-bound hole spin. In particular, we find that

envelope modulations will be negligible for hole spins in unstrained silicon, but by introducing

biaxial tensile strain, a light-hole spin qubit can show substantial modulations. For concrete

calculations, we focus on the case of a light hole bound to a boron acceptor in silicon, where

we expect the effect of envelope modulations to be significant. However, much of the analysis

presented here translates naturally to hole spins at other acceptor sites or in semiconductor

quantum dots in group IV or III-V materials having a valence band with states that transform

according to the Γ8 representation of the Td group at the band extremum. The HSEEM effect

studied here has the same basic origin as ESEEM, introduced by Rowan, Hahn, and Mims

(Refs. [12,13]). This effect is distinct from modulations arising from non-secular hyperfine

couplings for heavy-hole spin qubits [19,20], or from measurement feedback effects [21].

There are several issues that distinguish the case of HSEEM from the more conventional

ESEEM. For example, in contrast with the case of a donor-bound electron, acceptor-bound

hole spins have a highly anisotropic g-tensor. This anisotropy, along with the anisotropy of

the hyperfine interaction, result in a visibility (modulation depth) of envelope modulations

that has a non-trivial dependence on the applied magnetic-field orientation (Fig. 3.1, below).

The modulation depth also depends on the strength of the hyperfine interaction, relative to

the nuclear-spin Larmor frequency. To establish the maximum experimentally achievable

modulation depth, we have determined the optimal magnetic-field orientation for a boron

acceptor in silicon. In addition, we have estimated the form and typical energy scale

determining the acceptor hyperfine tensor from a semiempirical microscopic analysis.
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From the estimated hyperfine tensor for a boron acceptor, we evaluate the echo envelope

function for a light-hole spin qubit [Fig. 3.1(a), below]. We find substantial modulation

amplitude (& 10%) in a moderately weak magnetic field (B . 200 mT). The maximum

modulation depth can be achieved only when the magnetic-field orientation has been optimized

[see Fig. 3.1(b)]. This suggests that (under reasonable, but carefully designed experimental

conditions), the hyperfine tensor can be extracted for a boron acceptor spin.

The rest of this article is organized as follows: in Sec. 3.2 we review HSEEM and explain

how it can be used to measure hyperfine couplings. In Sec. 3.3 we estimate the hyperfine

tensor for a boron acceptor in silicon. In Sec. 3.4, we describe how the hyperfine tensor from

Sec. 3.3 can be combined with the general analysis of Sec. 3.2 to predict envelope modulations

for a light-hole spin qubit. In Sec. 3.5 we present our conclusions.

3.2 Hole-spin-echo envelope modulations (HSEEM)

3.2.1 Spin Hamiltonians

The hyperfine interaction for a hole-spin qubit in contact with a nuclear spin I can generally

be written (with ~ = 1) as [22]

Hhf = S ·
←→
A · I + B · I, (3.1)

where S is a pseudospin-1/2 operator acting in the two-dimensional qubit Hilbert space,
←→
A

is the hyperfine tensor, and B gives rise to a chemical shift that may depend on the hole

wavefunction, but is generally independent of the value of the pseudospin. If the qubit under

consideration is composed of a Kramers doublet (two states related by time reversal), B
vanishes identically [23]. In an applied magnetic field B, the full Hamiltonian is

H = µBB · ←→g · S − γB · I +Hhf , (3.2)

where ←→g is the hole-spin g-tensor, µB is the Bohr magneton, and γ is the nuclear-spin

gyromagnetic ratio. For simplicity, we take the direction of the magnetic field, B, to

define the z-axis (ẑ = B̂ = B/ |B|). We neglect the quadrupolar interaction between the
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nuclear spin and an electric-field gradient (this becomes exact for a nuclear spin I = 1/2

with a vanishing quadrupole moment or for a local cubic symmetry, leading to a vanishing

electric-field gradient [24]). The Hamiltonian, Eq. (3.2), can be rewritten in terms of the

nuclear-spin Zeeman splitting and the hole pseudospin splitting due to an effective magnetic

field, Beff = B · ←→g as

H = ΩSSc − ωIIz +Hhf , (3.3)

where ΩS = µB

∣∣B · ←→g ∣∣ = µB |Beff | is the pseudospin splitting due to Beff , ωI = γB is the

nuclear-spin Zeeman splitting, and Sc = ĉ · S, where ĉ := B̂eff = Beff/Beff .

When ΩS � |Aαβ|, we retain only the secular contributions (those that commute with Sc),

giving

H ' H0 = ΩSSc − ωIIz +H0
hf , (3.4)

H0
hf = AcxScIx + AcyScIy + AczScIz, (3.5)

where we restrict to the case B → 0. Terms that do not commute with the nuclear-spin

Zeeman term, ∼ Iz, are included since the nuclear-spin Zeeman energy may be comparable

to the hyperfine parameters, ωI ∼ Aαβ. Equations (3.4) and (3.5) are the standard starting

point for studies of electron-spin-echo envelope modulation [12,16,17].

3.2.2 Hahn echo envelope

In a hole-spin Hahn echo experiment, the hole pseudospin is initially aligned with the effective

magnetic field (i.e., along ĉ). A π/2-pulse is then applied, resulting in an equal superposition

of Zeeman eigenstates. After some time τ , a π-pulse is performed to invert the spin, followed

by a free evolution and detection after a further time τ .

The time-evolution operator describing the dynamics of this Hahn echo pulse sequence is

given by [12]

U(2τ) = U0(τ)RπU0(τ)Rπ/2, (3.6)
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where

U0(t) = e−iH0t (3.7)

is the the time-evolution operator under the Hamiltonian H0 [Eq. (3.4)] and

Rθ = e−iSbθ (3.8)

represents a rotation by angle θ around the b̂ axis, with â, b̂, and ĉ forming a right-handed

triad: â = b̂× ĉ. We take π- and π/2-pulses to be instantaneous relative to the time scale of

envelope modulations.

The echo envelope, V (τ), describes the coherence of this hole spin at the end of a Hahn

echo sequence and is defined as

V (τ) = 2Tr{ρ(2τ)σ+} = 2 〈σ+(2τ)〉 , (3.9)

where

σ+ = Sa + iSb, (3.10)

and the density operator at the end of the sequence is given by

ρ(2τ) = U(2τ)ρ(0)U †(2τ), (3.11)

with ρ(0) describing the initial state.

For explicit calculations, we now specialize to the case where the hole spin is prepared in

the Zeeman ground state, |⇓〉 〈⇓|, and the nuclear spin is described by a maximally mixed

(infinite-temperature) state, so that

ρ(0) =
1

2I + 1
I⊗ |⇓〉 〈⇓| , (3.12)

where |⇑〉 (|⇓〉) is an eigenstate of Sc with eigenvalue +1/2 (−1/2). The echo envelope, V (τ),

results from a sum over rotations of the hole pseudospin arising from each nuclear-spin Zeeman

eigenstate, labeled by mI , the eigenvalue of Iz. A consequence of the choice of (infinite-

temperature) initial conditions [Eq. (3.12)] is that the average 〈Sb(2τ)〉 = 0 is preserved
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throughout the evolution and V (τ) = 2 〈Sa(2τ)〉 (a real quantity). For a non-equilibrium

(or low-temperature thermal) state of the nuclear-spin system, V (τ) may generally become

complex and the specific expressions given below will not be realized. The echo envelope

V (τ) would, however, be constructed from the same Fourier components, realized from the

eigenvalues of H0. In an ensemble, a finite-temperature pseudo-pure hole-spin initial state

will result in the same dynamics described here, but with a reduction in V (τ) by a factor

ε ' ΩS/kBT at high spin temperature (for ΩS/kBT � 1).

3.2.3 Extracting hyperfine parameters

The full Hamiltonian (in the secular approximation and in a rotating frame at the hole

Zeeman frequency with corresponding unitary UZ(t) = eiΩSSct) is given, from Eqs. (3.4) and

(3.5), by

H̃ =
∑
β

ScAcβIβ − ωIIz, (3.13)

where β ∈ {x, y, z}.
Because H0

hf contains anisotropic terms (AcxScIx, AcyScIy), the nuclear-spin quantization

axis depends on the state of the hole spin. Inverting the hole-spin orientation with a π-pulse

during the Hahn echo sequence [Eq. (3.6)] then results in an interference effect. This produces

a beating (modulations) in the echo envelope function [12]. This signal can be used to

extract information about the hyperfine constants Acβ. There are well-known ways to do this

extraction (see, e.g., Ref. [14] where the envelope-modulation frequencies were measured as a

function of the magnetic-field orientation). Here, for completeness, we illustrate how these

parameters can be found in the present context and with a fixed magnetic-field orientation.

For the Hamiltonian, H̃, and for the initial conditions given by Eq. (3.12), the echo envelope

can be approximated by [13,25]

V (τ) ≈ 1− V0

2
[1− cos(ω+τ)][1− cos(ω−τ)], (3.14)

where

ω± =

√(
±Acz

2
− ωI

)2

+

(
Anc

2

)2

(3.15)
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Figure 3.1: (a) Spin-echo envelope function, V (τ), for a light hole bound to a 11B acceptor in silicon.
The exact numerical result from Eq. (3.9) (blue solid line) is compared to the approximate form
from Eq. (3.14) (red dashed line). The magnetic field is taken to have magnitude B = 200 mT and
is oriented to maximize the modulation depth, θ = θmax ' 0.2π [see Fig. 3.1(b)]. (b) Modulation
depth V0 as a function of the magnetic field orientation angle θ (see inset) at a magnetic field
strength of B = 200 mT. The light holes transform like states of angular momentum J3 = ±1/2
about the x3 axis. For example, for biaxial tensile strain along [100] and [010], the ground-state
doublet will be composed of J3 = ±1/2 light-hole states where x3 corresponds to the [001] direction.
The effective magnetic field, Beff , is defined above Eq. (3.3) in the main text. The modulation
depth is independent of the azimuthal angle since both the Zeeman Hamiltonian [Eqs. (3.38) and
(3.39)] and the hyperfine Hamiltonian, Eq. (3.26), are cylindrically symmetric in this case.
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are the nuclear-spin precession frequencies, and where

Anc =
√
A2
cx + A2

cy (3.16)

is the non-collinear part of the hyperfine interaction. In addition, the modulation depth V0 is

given by

V0 =
4

3
I(I + 1)k; k =

(ωIAnc)
2

(ω+ω−)2
, (3.17)

and k is a parameter introduced in Ref. [13] that gives the spin-echo modulation depth for

a nuclear spin I = 1/2. Equation (3.14) applies in the limit of a small modulation depth,

with corrections of order ∼ O(k2) [25]. The parameter k depends on both the orientation

and the magnitude of the magnetic field, B. The orientation of B determines the ĉ axis

and k depends on ĉ through Anc [see Eqs. (3.16) and (3.17)]. We can therefore maximize

k with an appropriate choice for the magnetic-field orientation [Fig. 3.1(b)]. Furthermore,

since ωI ∝ B, if ωI � Anc, then k ∝ 1/B2 [see Eq. (3.17)]. Thus, k (and V0) are strongly

suppressed in a strong magnetic field.

From measurements of V (τ), the hyperfine parameters, Acz and Anc, can be determined

independently via Fourier analysis, provided the nuclear-spin Larmor frequency, ωI , is known.

If the qubit under consideration were not composed of a Kramers doublet, the nuclear-spin

Larmor frequency may generally be affected by a finite chemical shift B 6= 0, introduced in

Eq. (3.1) (this could be the case, e.g., for a mixed heavy-hole/light-hole qubit system). In

such a situation, ωI should be measured independently to establish the hyperfine parameters.

The analysis presented here has so far neglected a finite Hahn-echo decay time (T2). To

extract the hyperfine coupling ∼ Acz from envelope modulations, it is important that the

envelope decay time be sufficiently long. A minimal condition to resolve the coupling constant

Acz is T2 > ~/Acz. We discuss this condition in the context of a light-hole qubit at a boron

acceptor impurity in silicon in Sec. 3.4.1, below.
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3.3 Hyperfine tensor for a boron acceptor in silicon

Both the form and typical size of the hyperfine tensor can have an important influence on

the visibility of envelope modulations. To accurately estimate the hyperfine tensor, it is

important to have a precise description of the electronic state in the immediate vicinity of the

nucleus. In general, this requires careful consideration of central-cell corrections, since the

envelope-function approximation breaks down due to the ∼ 1/r singularity in the impurity

potential [26–28]. If we are willing to forgo a high degree of accuracy, a reasonable procedure

is to start from the states evaluated within the envelope-function approximation and to adjust

these states appropriately to account for short-ranged corrections. A similar approach was

followed by Kohn and Luttinger (Ref. [29]) in early work on the hyperfine coupling for a

phosphorus donor impurity in silicon.

Two corrections to the wavefunctions are required in the Kohn-Luttinger approach. First,

the bulk silicon Bloch functions should be replaced by atomic-like functions of appropriate

symmetry and extent to characterize the wavefunction near the impurity nucleus. Second, the

electronic density should be rescaled to account for short-ranged corrections in the ‘central-cell’

(this is equivalent to rescaling the envelope function very close to the impurity nucleus).

This central-cell correction is indicated by the fact that the binding energy calculated in

the envelope-function approximation underestimates the true binding energy, suggesting a

higher density near the impurity is required to account for the short-ranged potential. To

calculate the hyperfine coupling for a phosphorus donor, Kohn and Luttinger estimated a

rescaling parameter based directly on the experimentally measured binding energy and the

solution to an envelope-function equation in an exterior region (outside a specified cutoff

radius). This procedure has the disadvantage that the result depends on the choice of cutoff

radius. Here, we take a slightly different approach. To estimate the rescaling parameter for a

boron acceptor in silicon, we take advantage of the experimentally well-established hyperfine

coupling for a phosphorus donor. The phosphorus donor and boron acceptor in silicon have

similar binding energies (see Table 3.1, below), suggesting the two problems may have similar
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electrostatics.1 Based on this observation, we can extract the rescaling parameter from the

known hyperfine coupling for a phosphorus donor and use it as an approximate proxy for

the rescaling parameter of the boron acceptor. This procedure avoids potential ambiguity

in the choice of cutoff radius. Based on the results obtained by Kohn and Luttinger for a

donor impurity, we expect this procedure should give the strength of the hyperfine tensor for

a boron acceptor to within a factor of 2-3, sufficient to establish whether the tensor can be

measured experimentally under reasonable conditions.

For a donor or acceptor impurity, the wavefunction associated with spin σ =↑, ↓ for a

ground-state doublet labeled by pseudospin σ′ can be approximated (far from the impurity

nucleus) with the envelope-function approximation assuming Nv degenerate valleys related

by symmetry (e.g., Nv = 6 for the conduction band of silicon and Nv = 1 for the valence

band of silicon) [30]:

〈rσ| σ′〉 = Ψσ
σ′(r) =

1√
Nv

∑
ν∈Sσ′

Fν(r)ψσνkν (r). (3.18)

Here, Fν(r) is an envelope function that solves the Schrödinger equation for a slowly varying

impurity potential and with an effective-mass tensor associated with band/valley index ν at

wavevector k = kν . The symbol Sσ′ indicates the subset of symmetry-related band/valley

states associated with pseudospin σ′. We have neglected spin-orbit coupling in the envelope

equation, leading to a spin-independent envelope function Fν(r). However, the Bloch functions

ψσνk(r) solve the Schrödinger equation for the perfectly periodic bulk crystal potential including

the short-ranged spin-orbit coupling:

ψσνk(r) = eik·ruσνk(r). (3.19)

1. Here, we use the term ‘electrostatics’ to describe the problem of finding the full wavefunction of the
impurity-bound hole. This includes the long-range properties (band properties like the effective mass) and
short-range properties (such as the core electronic structure of the impurity atom). If the electrostatics
of the phosphorus donor and the boron acceptor are similar, then the rescaling parameter (central-cell
corrections) should also be similar. While the similarity in binding energies is fully consistent with the
two impurities having similar electrostatics, we cannot rule out the possibility of an accidental coincidence
in binding energy. Ultimately, the true value of the hyperfine coupling (and central-cell correction) should
be established experimentally, as proposed here.
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The lattice-periodic Bloch amplitudes uσνk(r) are normalized over the primitive-cell volume,

Ω, and the envelope functions are normalized over all space:

∑
σ

∫
Ω

d3r |uσνk(r)|2 = 1;
1

Ω

∫
d3r |Fν(r)|2 = 1. (3.20)

To separate the isotropic and anisotropic hyperfine interactions, it is useful to expand the

Bloch functions around the impurity site at r = 0 in terms of spherical harmonics,

ψσνkν (r) =
∑
lm

Rσν
lm(r)Ylm(θ, φ), (3.21)

where Rσν
lm(r) are radial functions.

We first restrict to the case of donor states, where the dominant contribution to the

hyperfine interaction arises from the l = 0 (s-like) term in the expansion given in Eq. (3.21).

From the transformation properties of the valley states under crystalline and time-reversal

symmetries, all l = 0 contributions can be related to a common radial function Rs(r),

independent of σν:

Rσν
00 (r) = αsRs(r), ν ∈ Sσ, (σ = σ′), (3.22)

where αs is a parameter controlling the degree of s-hybridization, and Rs(r) describes the

radial function in the immediate vicinity of the impurity, normalized to an atomic volume

(4
3
πr3

0 = Ω/2): ∫ r0

0

drr2 |Rs(r)|2 = 1. (3.23)

For the l = 0 (s-like) contribution, only the isotropic Fermi contact interaction contributes,

yielding the effective spin Hamiltonian for the conduction-band states [29,31]:

HC
hf = AiS · I, (3.24)

where Ai is the contact hyperfine interaction, proportional to the on-site electronic density,

and i labels the nuclear isotope. Within the envelope-function approximation, we take

Fν(r) ' Fν(0) to be approximately constant in the vicinity of the nucleus. Consistent with

this limit, applying Eq. (3.18), and the expansion, Eq. (3.21), gives the hyperfine coupling to
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a phosphorus-donor nuclear spin (i = 31P) in silicon [23,29]:

A
31P =

µ0

3π
µBγ31PNv |αs|2 |FP(0)|2 |Rs(0)|2 . (3.25)

Here, µ0 is the vacuum permeability and Nv = 6 for the conduction band of silicon. We have

approximated the envelope function for a phosphorus donor with the form for an isotropic

effective mass, Fν(r) ' FP (r), independent of the band/valley index ν (consistent with Kohn

and Luttinger, Ref. [29]). The weight factor, |αs|2, has been estimated in Ref. [32] for a P

donor (by diagonalizing the k · p matrix presented in Ref. [33]), giving |αs|2 ≈ 0.38.

We now consider states relevant to acceptor impurities, with pure p symmetry (states

that only have an l = 1 contribution to their spherical harmonic expansion). The top of

the valence band in bulk silicon is fourfold degenerate. This degeneracy is generally broken

into two Kramers doublets (at zero magnetic field) due to confinement and strain in the

vicinity of an acceptor impurity. Here, we consider the pair of states ν = σ′ that transform

like the J3 = ±1/2 (light-hole) states of the Γ8 representation of the Td double group (which

we label with ν = σ′ =⇑ and ν = σ′ =⇓), where J3 characterizes angular momentum about

the x3 axis. The effective hyperfine Hamiltonian then takes the anisotropic form [found by

projecting Eq. (3.41) in Appendix 3.B onto the light-hole subspace] [23,34]

HLH
hf =

1

3
Ai‖ [S3I3 + 2 (S1I1 + S2I2)] , (3.26)

where Ai‖ is the hyperfine parameter for isotope i and Sj and Ij, with j ∈ {1, 2, 3},
are (pseudo)spin operators obeying the usual commutation relations: [Sj, Sk] = iεjklSl,

[Ij, Ik] = iεjklIl. The coordinate system defined by xj (j = 1, 2, 3) is generally determined

by strain/confinement in the vicinity of the acceptor,2 independent of the orientation of the

applied magnetic field B (∝ ẑ) and the effective field acting on the hole spin due to an

anisotropic g-tensor, Beff (∝ ĉ). The relationship between these quantities is indicated in the

inset of Fig. 3.1(b).

2. In the case of a flat (quasi-2D) unstrained quantum dot, the effective mass results in a heavy-hole
(J3 = ±3/2) ground state. For an acceptor impurity or quantum dot under biaxial in-plane tensile strain
along [100] and [010], the light-hole (J3 = ±1/2) states may describe the ground state. The x3 axis is the
out-of-plane direction (e.g., the growth axis for a quantum dot defined in a 2D hole gas at a heterostructure
interface). For example, for a growth axis along [001], we could take x3 = [001], x1 = [100], and x2 = [010].
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Averaging the hyperfine Hamiltonian as in the case of a phosphorus donor, described above,

but now for states describing a boron acceptor impurity in silicon, gives [23]

Ai‖ =
4µ0

5π
µBγi |FB(0)|2

∫ r0

0

dr |Rp(r)|2 /r, (3.27)

where Fν(r) = FB(r) is the boron-acceptor envelope function and Rp(r) is the radial part

of the Bloch function at the valence-band maximum in silicon (k = 0), normalized over an

atomic volume. As described above, we have assumed pure p-like states, αp = 1. Accounting

for p-d hybridization of the acceptor state would, in general, modify the anisotropy of the

hyperfine tensor [23,34]. In writing Eq. (3.27), we have furthermore neglected long-ranged

contributions to the hyperfine interaction between a nuclear spin and electron/hole spin

density in a distant unit cell [5,35]. The radial function Rp(r) is related to the radial functions

from Eq. (3.21) through

R↑⇑10 (r) = R↓⇓10 (r) =

√
2

3
Rp(r), (3.28)

R↓⇑11 (r) = R↑⇓1−1(r) =

√
1

3
Rp(r), (3.29)

where all other Rσν
lm(r) vanish and the numerical factors are determined by Clebsch-Gordan

coefficients [23].

To account for deviations in the wavefunctions in the central-cell region, we now make

two adjustments to the usual envelope-function approximation, as described above. First,

the radial functions Rs(p)(r) associated with the silicon Bloch functions are replaced with

hydrogenic orbitals having an effective core charge determined by Hartree-Fock theory for

free boron and phosphorus atoms (taken from Ref. [36]). Specifically, we replace Rs(r) with

a 3s radial function with effective charge ZP = 5.64 for the phosphorus donor and Rp(r) is

replaced with a 2p hydrogenic radial function with effective charge ZB = 2.42 for the boron

acceptor. Second, the scaling parameters |FP (B)(0)|2 should be determined to account for the

central-cell correction. With the normalization given in Eq. (3.20), |FP (B)(0)|2 corresponds

to the probability to find the electron/hole in the central-cell region. For a phosphorus donor

impurity, Eq. (3.25) can be used to extract |FP (0)|2 from the known value of the hyperfine

96



coupling [6], A
31P/2π = 117 MHz:

|FP (0)|2 = 0.014. (3.30)

Equation (3.30) should be contrasted with the result from a direct application of the Kohn-

Luttinger envelope function,
∣∣FKL

P (0)
∣∣2 = Ω/πala

2
t = 0.0019 with aj = a0κm0/mj; j = l, t.

Here, a0 is the Bohr radius, m0 is a free-electron mass, κ = 11.7 is the dielectric constant

for bulk silicon, and the longitudinal/transverse effective masses are ml = 0.98, mt = 0.19.

Empirically, the hyperfine coupling is therefore enhanced by a factor of ' 7 relative to the

value expected within the envelope-function approximation. Based on density functional

calculations for bulk silicon [23], we find that replacing the silicon Bloch functions with a 3s

hydrogenic function for phosphorus leads to a further enhancement of the hyperfine coupling

by a factor of ' 3. The combination of these two effects, due to central-cell corrections

and strain in the vicinity of the donor, lead to more than an order-of-magnitude increase in

the hyperfine coupling relative to what would be expected from a näıve application of the

envelope-function approximation.

To approximate the hyperfine coupling for a boron acceptor from Eq. (3.27), we take

|FB(0)|2 ≈ |FP(0)|2 , (3.31)

with |FP (0)|2 established empirically from Eq. (3.30). Equation (3.31) is justified by the

observation that the binding energies of phosphorus donors and boron acceptors are similar

(see Table 3.1), and hence that the electrostatics and resulting central-cell corrections may

therefore be similar. Note that effective mass theory fails in the vicinity of the impurity

potential, so it is not clear what (if any) further corrections could be made to Eq. (3.31) to

account for the different effective masses in the conduction and valence bands. The ultimate

accuracy of Eq. (3.31) should be determined experimentally through direct measurements of

the hyperfine coupling constants. Here, we use this relation only to establish the plausibility

of measuring envelope modulations for a boron-acceptor-bound light-hole spin qubit under

realizable experimental conditions. Using the assumption given in Eq. (3.31) gives

A
11B
‖ /2π ≈ 1 MHz. (3.32)
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i I δi E (meV) γi/2π (MHz
T

)
Hyperfine

(MHz)
31P 1/2 100% 44 [37] 17 Ai/h = 117 [6]
10B 3 20% 45 [37] 0.46 Ai‖/h ≈ 0.3
11B 3/2 80% 45 [37] 1.4 Ai‖/h ≈ 1

Table 3.1: The isotope (i), nuclear spin (I), natural isotopic abundance (δi), measured binding
energy (E) from Ref. [37], gyromagnetic ratio (γi), and hyperfine parameters for a phosphorus donor
and a boron acceptor in silicon. The value for A

31P was measured in Ref. [6] and Ai‖ for boron

acceptors [see Eq. (3.26)] was estimated, as described in the main text.

This result is also displayed in Table 3.1. This hyperfine coupling is sufficiently small that it

may not have been resolved in the experiments of Ref. [8], but should be observable in the

HSEEM experiments described above. Although it is not clear that the values should be the

same (or even comparable), the estimate given in Eq. (3.32) for a boron acceptor in silicon is

within a factor of ∼ 3 of the hyperfine coupling for boron acceptors in SiC measured with

ENDOR [10,11]. While the hyperfine coupling for boron acceptors in SiC may not be a good

measure of the hyperfine coupling for boron acceptors in silicon, the ENDOR experiments

described in Refs. [10,11] provide evidence that even the weak (relative to electrons) hyperfine

interaction for holes can have a measurable effect.

The estimated value given in Eq. (3.32) has been used to generate the plots in Fig. 3.1,

where we have considered the case of 11B as an example. The hyperfine coupling for a boron

acceptor in silicon (as estimated here) is roughly two orders of magnitude smaller than the

coupling for a phosphorus donor. Nevertheless, an HSEEM experiment would show echo

envelope modulations with reasonable visibility V0 & 0.1 at sufficiently low magnetic fields

B . 200 mT.

3.4 HSEEM for a hole-spin qubit

A boron-acceptor-bound hole spin will generally couple to the nuclear spin associated with

either of the stable isotopes, 10B (I = 3) or 11B (I = 3/2). In addition, the hole spin

may also couple to proximal 29Si (I = 1/2, natural abundance 4.7%). In what follows,
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we will neglect coupling to nearby 29Si. This is justified either by the weaker overlap of

the hole envelope function with nuclear spins far from the central boron potential, or by

considering acceptors in isotopically purified 28Si/30Si (both isotopes having nuclear spin

I = 0). Furthermore, since both boron isotopes have a nuclear spin I > 1/2 and the boron

acceptor in silicon has tetrahedral (Td) symmetry, the nuclear quadrupolar interaction does

not generally vanish. However, when the quadrupolar spitting is much smaller than the

anisotropic part of the hyperfine interaction, the quadrupolar interaction can be neglected

in calculating echo-envelope modulations [10]. We are unaware of direct measurements for

the quadrupolar splittings or hyperfine couplings for boron acceptors in silicon. However,

ENDOR measurements on several polymorphs of SiC give quadrupolar splittings that are

∼ 10% of the measured value of Anc [10, 11]. The crystalline and electronic structure of SiC

differs from that of silicon and may generally lead to distinct values of the hyperfine coupling

and quadrupolar splitting. Nevertheless, our estimated value of the hyperfine coupling for a

boron acceptor in silicon is comparable to the measured values for boron acceptors in SiC

(see Sec. 3.3). Provided the quadrupolar splittings in both materials are also similar, ignoring

the quadrupolar interaction is well justified here.

In Ref. [4], hole-spin-echo experiments have been carried out for both strained and un-

strained samples. Without externally applied strain, the ground space of a boron acceptor in

silicon is fourfold degenerate, spanned by the heavy-hole (J3 = ±3/2) and light-hole states

(J3 = ±1/2). We neglect the small anisotropy term, [q ' 0 in Eq. (3.37)] resulting in a

valence-band Zeeman Hamiltonian ∝ J ·B under an applied magnetic field B. We further

consider pure p-like states (αp = 1), giving Ai⊥ = 0 in Eq. (3.40), resulting in a hyperfine

coupling ∝ J · I [Eq. (3.41)]. Under these conditions, the secular hyperfine coupling (the

part that commutes with the valence-band Zeeman Hamiltonian) will commute with the

nuclear Zeeman term for any orientation of the applied magnetic field, B. The result is

that the nuclear-spin quantization axis will be independent of the hole-spin state, and there

will be no echo envelope modulations under these conditions. In contrast, under biaxial

tensile strain, the ground space is spanned by only the light-hole (J3 = ±1/2) states [see,

for example, Ref. [38] or Eq. (1) in the supplemental material of Ref. [4]]. For light-hole

states, both the effective Zeeman Hamiltonian [Eq. (3.38) in Appendix 3.A] and the hyperfine

Hamiltonian [Eq. (3.26)] show strong anisotropy. In this case, we expect substantial envelope
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modulations for the appropriate orientation of B. Up to small corrections, the dynamics

of the acceptor-bound light-hole spin coupled to a boron nuclear spin will therefore be well

described by the analysis presented in Sec. 3.2.3.

For a light-hole spin bound to a boron acceptor (boron isotope i) in silicon, Aicz and Ainc can

be determined using the light-hole hyperfine tensor [Eq. (3.26)] and the g-tensor described in

Appendix 3.A, following the procedure outlined in Sec. 3.2.1. This procedure gives

Aicz =

√
5− 3 cos(2θ)

3
√

2
Ai‖, (3.33)

Ainc =
1

2

√
1− cos(4θ)

5− 3 cos(2θ)
Ai‖. (3.34)

Inserting Eqs. (3.33) and (3.34) into Eq. (3.17) gives the orientation (θ) dependence of the

modulation depth, V0. In Fig. 3.1(a), we show the echo envelope, V (τ), for a light-hole spin

bound to a 11B acceptor. The magnetic field orientation θ has been chosen to maximize the

modulation depth, V0 [Fig. 3.1(b)]. The plots have been obtained using the estimate for A
11B
‖

discussed in Sec. 3.3. Recent spin-echo experiments have been performed on an ensemble of

boron acceptors in strained silicon, where the light-hole spin can be energetically isolated [4].

In these experiments, the applied magnetic field was oriented in-plane [corresponding to

θ = π/2 in Fig. 3.1(b)] to maintain a high quality factor for a superconducting resonator

used for inductive detection. Since we predict V0 ' 0 for θ = π/2, we do not expect envelope

modulations to be visible under the specific conditions of Ref. [4]. However, our analysis

predicts significant modulations for a similar experiment with an out-of-plane component of

magnetic field.

For illustrative purposes, we have focused here on the case of a single boron acceptor in

silicon, and have considered the example of 11B. The same analysis gives the envelope modu-

lation for a 10B acceptor if we account for the difference in nuclear spin I and gyromagnetic

ratio γi for the two isotopes i (see Table 3.1). In particular, we can relate the two signals

noting that both the nuclear Larmor frequencies and the hyperfine couplings are related by

the gyromagnetic ratios: ωiI/ω
i′
I = Ai‖/A

i′

‖ = γi/γi′ . This relationship assumes two isotopes of

the same chemical species and neglects small corrections to the electronic structure due to
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the difference in nuclear mass. The echo envelope signal arising from an ensemble of many

boron acceptors including both isotopes will be given by a weighted average:

V (τ) = δ10BV10B(τ) + δ11BV11B(τ), (3.35)

where Vi(τ) is the echo envelope for isotope i [displayed in Eq. (3.14)], and δi is the isotopic

abundance of isotope i. When the Larmor frequency of each isotope is much larger than the

hyperfine coupling, ωiI � Ai‖, the modulation depth and frequencies determining V10B(τ) are

simply related to those for V11B(τ) [see Eqs. (3.15) and (3.17)]:

ω
11B
± =

γ11B

γ10B

ω
10B
± ; V

11B
0 '

I(I + 1)|I= 3
2

I(I + 1)|I=3

V
10B

0 , (3.36)

where ωi± and V i
0 are the frequencies and modulation depth parametrizing the echo envelope

Vi(τ). If the isotopes in the sample are distributed according to the natural isotopic abundances

(see Table 3.1), Eq. (3.36) results in modulation frequencies ω
11B
± ≈ 3ω

10B
± and a relative

amplitude δ11BV
11B

0 /(δ10BV
10B

0 ) ' 5
4
. Thus, for a natural isotopic abundance, we expect the

envelope modulations arising from the two isotopes to have comparable amplitudes and the

modulation frequencies are simply related by the gyromagnetic ratios of the two isotopes.

3.4.1 Model limitations

Several limitations of the model have alredy been discussed. Here, we collect and discuss the

most significant limitations to be considered if an experiment is to accurately extract the

hyperfine parameters.

Finite coherence time—To extract the hyperfine couplings experimentally from envelope

modulations, the Hahn-echo decay time, T2, should exceed the typical inverse hyperfine

coupling strengths. From our estimate of the hyperfine coupling (Anc/h ∼ Acz/h ∼ A‖/h '
1 MHz for 11B as given in Table 3.1), this gives the requirement T2 � ~/A‖ ' 0.2µs.

Recent experiments (Ref. [4]) have demonstrated significantly longer Hahn-echo decay times,

T2 = 0.9 ms, at B ' 200 mT for light-hole spins at boron acceptors in isotopically purified
28Si. This suggests that recently measured coherence times are long enough to extract the
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hyperfine parameters from envelope modulations.

Non-uniform strain distribution—For an ensemble of acceptor impurities, a non-uniform

strain distribution will generally lead to damped envelope modulations, on a time scale tdamp.

This effect is commonly observed for phosphorus donor impurities in silicon, even without

intentionally introducing additional strain [17]. For an experiment in which biaxial tensile

strain is induced, as in Ref. [4], we estimate the variation in the hyperfine parameters δAαβ

across the sample from the degree of heavy-hole/light-hole mixing generated by the Bir-Pikus

Hamiltonian [38, 39]. This gives a variation δAαβ/A‖ ∼ δε/ε, where ε is the average strain

along x1 and x2 and δε describes the variation in strain accross the sample. To resolve

the modulation frequencies with a resolution . A‖, we therefore require a sufficiently long

damping time tdamp ∼ ~/δAαβ � ~/A‖. In terms of strain, this condition requires a variation

that is small compared to the average, δε/ε� 1.

3.5 Conclusions

Understanding the hyperfine coupling of valence-band (hole) spin states is an important

step to predicting and controlling spin qubits derived from these states. Boron-acceptor-

spin qubits show potential for rapid local electric-field control, with relative immunity to

electric-field noise [1, 2, 4], but the hyperfine couplings for these qubits are still relatively

poorly understood. This hyperfine coupling may be small enough that it is difficult to resolve

with certain spectroscopic techniques [8], but, as we have shown, it may lead to a significant

echo envelope modulation at moderate magnetic fields.

As a concrete example, we have calculated the echo envelope function for a hole spin

confined to a boron acceptor in silicon. Without induced strain, the hole spin will show

virtually no envelope modulations. In contrast, a qubit defined in, e.g., the two-dimensional

light-hole subspace will show substantial modulations. This qubit can be energetically isolated

through biaxial tensile strain. The form of the hyperfine tensor in this case is given by the

symmetry of the underlying electronic states. By accounting for semiempirical corrections

to the envelope-function approximation, we have estimated the typical size of the hyperfine

parameter. With this knowledge, we have shown that it is possible to maximize the visibility of

envelope modulations with an appropriate orientation of the applied magnetic field. Similarly,
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an experiment with the ‘incorrect’ magnetic-field orientation [θ = 0, π/2 in Fig. 3.1(b)] would

show no modulation at all.

When the envelope modulations are visible, they can be used to accurately quantitatively

determine the hyperfine tensor for a hole-spin qubit at an acceptor impurity, allowing for

better control of hole-spin qubits and the nuclear spins that couple to them.

There will be small corrections to the analysis presented here due, e.g., to the electric

quadrupolar interaction with a nuclear spin I > 1/2, p-d hybridization of the microscopic

electronic states, and further central-cell corrections that are not captured in our simple

semiempirical approach. Many of these effects (beyond the scope of the present work)

could potentially be captured using ab initio methods that have previously been applied to

phosphorus donors in silicon [40]. An especially intriguing future question is whether the

hyperfine tensor for an acceptor-spin qubit can be efficiently tuned or modulated through

local strain or electric fields. The strong anisotropy present in hole-spin hyperfine coupling

may also provide an advantage in directly controlling the nuclear spin for a quantum memory

or ancilla qubit [41].
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Appendices to Chapter 3

3.A g-tensor for light holes

To obtain the g-tensor for light holes, we consider the Luttinger Hamiltonian [42]. The

Zeeman term in the valence-band subspace of silicon can be written as [42,43]3

Hz = 2µBκB · J + 2µBqB ·J , (3.37)

where J = (J3
x , J

3
y , J

3
z ). In the case of silicon, κ = −0.42 and q = 0.01 [43]. Since |q| � |κ|,

we neglect the term proportional to q for simplicity. Neglecting mixing with heavy-hole states,

we project Hz onto the light-hole subspace, and write the resulting matrix as

HLH
z = µBB · ←→g · S, (3.38)

where

←→g = 2

2κ 0 0

0 2κ 0

0 0 κ

 (3.39)

is the g-tensor for light holes in silicon. We note that the g-tensor is written in a basis

(x1, x2, x3), where x3 is the hole-spin quantization axis.

3. The convention used here is that the pseudo-angular-momentum J measures the pseudo-angular-momentum
of the crystal. Therefore, a hole in state J3 = m indicates that an electron with J3 = −m has been
anihilated from the filled valence band, and the remaining member of the Kramers doublet has J3 = m.
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3.B Hyperfine Hamiltonian in the valence band of silicon

The hyperfine Hamiltonian projected onto the four-dimensional subspace spanned by the

valence-band states at the Γ point of silicon can be written as [23]

HVB
hf =

(
1

3
Ai‖ −

3

2
Ai⊥

)
J · I +

2

3
Ai⊥J · I, (3.40)

where Ai‖ and Ai⊥ are hyperfine parameters. We neglect Ai⊥ in our calculations, consistent

with valence-band states that are pure p-states (αp = 1) leaving

HVB
hf ≈

1

3
Ai‖J · I. (3.41)

Thus, in the limit of pure p-states, the hyperfine interaction is invariant under simultaneous

rotations of the pseudospin-3/2, J, and the nuclear spin, I.
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Preface to Chapter 4

As explained in Sec. 1.2.3, under the envelope function approximation, the confinement

potential is assumed to generate no interband transitions. In this chapter, we go beyond

the envelope function approximation and include these transitions in our analysis of heavy

holes in an asymmetric quantum well. We consider a triangular quantum well generated by a

constant electric field and the associated electric-dipole coupling of the valence-band states.

In the valence-band subspace, this coupling can be viewed as a pseudospin-electric coupling

for hole spins. Similar to the approach described in Chapter 2, we use the Kohn-Sham

orbitals to compute the valence-band electric-dipole matrix elements. A consequence of these

non-vanishing matrix elements is a new dipolar spin-orbit coupling which had previously

been neglected. We demonstrate that the dipolar spin-orbit coupling may be important when

trying to understand certain system properties (e.g. heavy-hole spin splitting) quantitatively.

In addition to the electric-dipole matrix elements described above, we also use the Kohn-

Sham orbitals to calculate other material parameters. In particular, we compute momentum

and Zeeman-Hamiltonian matrix elements. The level of accuracy of the results varies, but in

all cases said results are of the same order of magnitude as the accepted values. Thus, we

demonstrate the versatility of the approach outlined in Chapter 2 by calculating material

parameters other than hyperfine couplings. These parameters include: electric-dipole matrix

elements, k · p parameters, g-tensors, and spin-orbit couplings.

Because the valence band of GaAs is fourfold degenerate at the Γ point, a general Kohn-

Sham orbital, evaluated using DFT, will be a linear combination of all four states. Since the

material parameters mentioned above are defined with respect to particular matrix elements

of the corresponding operators, specific Kohn-Sham orbitals must be extracted from the

general linear combination. To perform this extraction, we have written a freely-available code

implementing group-theoretic projection operators (see Chapter 4 of Ref. [85] or Appendix

2.C.2) available on Github, Ref. [103]. This code can project any function defined on a grid of

points onto an arbitrary basis function of a (single or double) group representation, provided

the associated matrix representation of the group is known.
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We note that while this chapter has not been published, it has been submitted for

consideration in Physical Review B. A preprint of the paper is available on the arXiv [104].
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4 Pseudospin-electric coupling for holes

beyond the envelope-function

approximation

This chapter is the integral text (including references) from:

Pseudospin-electric coupling for holes beyond the envelope-function approximation

Pericles Philippopoulos, Stefano Chesi, Dimitrie Culcer, and W. A. Coish

arXiv :2005.08821 (2020).

Submitted for consideration in Phys. Rev. B

In the envelope-function approximation, interband transitions produced by electric

fields are neglected. However, electric fields may lead to a spatially local (k-independent)

coupling of band (internal, pseudospin) degrees of freedom. Such a coupling exists

between heavy-hole and light-hole (pseudo-)spin states for holes in III-V semiconductors,

such as GaAs, or in group IV semiconductors (germanium, silicon, ...) with broken

inversion symmetry. Here, we calculate the electric-dipole (pseudospin-electric) coupling

for holes in GaAs from first principles. We find a transition dipole of 0.5 debye, a

significant fraction of that for the hydrogen-atom 1s→ 2p transition. In addition, we

derive the Dresselhaus spin-orbit coupling that is generated by this transition dipole

for heavy holes in a triangular quantum well. A quantitative microscopic description

of this pseudospin-electric coupling may be important for understanding the origin

of spin splitting in quantum wells, spin coherence/relaxation (T ∗2 /T1) times, spin-

electric coupling for cavity-QED, electric-dipole spin resonance, and spin non-conserving

tunnelling in double quantum dot systems.
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4.1 Introduction

A standard theoretical tool for studying electrons (or holes) confined to nanostructures is

k · p theory under the envelope function approximation [1, 2]. Within this formalism, one

ignores interband coupling due to an electric field (∝∇U) arising from the slowly-varying

part of the potential, U . This established procedure has been used to understand two distinct

forms of spin-orbit coupling for semiconductors [1]: Rashba spin-orbit coupling [3] (arising

from inversion asymmetry in U , structure inversion asymmetry) and Dresselhaus spin-orbit

coupling [4] (arising from inversion asymmetry in the underlying crystal, bulk inversion

asymmetry).

Beyond the envelope function approximation, an electric field can lead to interband coupling.

For states that transform like the Γ8 representation of the tetrahedral double group (Td),

this coupling can be parameterized by a single constant, χ [5]. The unit cell of, e.g., bulk

silicon or germanium has a center of inversion symmetry,1 which precludes any interband

electric-dipole coupling in the valence-band subspace, leading to χ = 0. However, in the

presence of an acceptor (or any other impurity), inversion symmetry is broken and the

point-group symmetry is reduced to Td. This reduction in symmetry gives rise to a finite

electric-dipole matrix element between the heavy-hole and light-hole states (which transform

like the Γ8 representation of Td) [5]. The interband coupling influences the spectrum of

acceptors in silicon in the presence of an electric field [6] and could allow for better control of

acceptor spin qubits in silicon [7].

In contrast to silicon or germanium, III-V semiconductors do not have a center of inversion

symmetry and the valence-band states transform according to the Γ8 representation of Td.

Therefore, the electric field can couple valence-band states, even in the absence of an acceptor.

Specifically, this interband coupling allows for an AC electric field to generate Rabi oscillations

between heavy-hole and light-hole pseudospin states, even without heavy-hole/light-hole

mixing. In the case of III-V semiconductors, the interband coupling parameter χ is a material

1. Strictly speaking, silicon is not inversion symmetric. It has a diamond crystalline structure and is therefore
symmetric under the (non-symmorphic) symmetry operation which can be described by an inversion of
the crystal about a lattice site followed by a translation of the crystal by (1/4,1/4,1/4). Although it is not
a proper inversion, this symmetry still precludes interband electric-dipole coupling in the valence-band
subspace.
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parameter that can be evaluated given the crystal eigenstates (Bloch functions). Recently, the

Bloch amplitudes for the valence band of GaAs have been approximated using the Kohn-Sham

orbitals from an all-electron density-functional theory calculation [8]. Here, we evaluate the

k · p parameters and band gaps in GaAs using the technique described in Ref. [8]. The

resulting calculated parameters are in reasonable agreement with empirically established

k · p parameters (with some exceptions, discussed below). We apply the same technique to

calculate χ.

A nonzero transition dipole (χ 6= 0) in III-V semiconductors modifies the heavy-hole

spin-orbit interactions for a two-dimensional hole gas in an asymmetric quantum well. Here,

we study the heavy-hole spin-orbit couplings for a simple (single-subband) valence-band

model. We find a spin-orbit coupling term in the heavy-hole subspace that is linear in the

wavevector (k‖), with Dresselhaus symmetry, and that is proportional to χ. Because it

originates from the finite interband transition dipole matrix element, we call this term dipolar

spin-orbit coupling. From this analysis, we find the dipolar spin-orbit coupling is of the same

order as other known contributions.

Including the dipolar spin-orbit coupling in our analysis, we are able to characterize the

heavy-hole spin splitting in a triangular GaAs quantum well. The dipolar spin-orbit coupling

can affect the interpretation of experiments sensitive to the Dresselhaus spin-orbit coupling.

In recent experiments, the leakage current passing through a double quantum dot containing

holes in the Pauli-spin-blockade regime was measured as a function of the direction of an

applied magnetic field (angle relative to the current) [9]. The angular dependence of the

observed current was consistent with spin-orbit coupling that is almost entirely Dresselhaus-

like. In other recent experiments, the relaxation time, T1, for a heavy-hole spin in a GaAs

quantum dot was measured as a function of the strength of an applied magnetic field,

B [10]. The measured relaxation times are consistent with T1 ∝ B−5, which is a signature of

Dresselhaus spin-orbit coupling, provided the k‖-linear Rashba contribution is negligible [11].

These two experiments indicate that characterizing the Dresselhaus spin-orbit coupling is

crucial to understanding heavy-hole-spin dynamics in these systems. Therefore, the dipolar

spin-orbit coupling can play an important role in understanding heavy-hole spin dynamics.

The rest of this article is organized as follows: In Sec. 4.2 we introduce the interband electric

dipole coupling into the k · p formalism going beyond the enevelope-function approximation.
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In Sec. 4.3 we discuss the first-principles calculation of material parameters (e. g. k · p
parameters) for GaAs. In Sec. 4.4 we derive the spin-orbit couplings for heavy holes in a

triangular quantum well. Conclusions are given in Sec. 4.5.

4.2 Electric-dipole coupling within the k · p formalism

The goal of this section is to rederive the k · p Hamiltonian, extending beyond the envelope-

function approximation. In this extension, in addition to intraband terms generated within

the usual envelope-function approximation, we also include interband coupling generated by

the confining potential.

We begin from the Hamiltonian H = H0 + U , where H0 describes a perfectly periodic

crystal (including the spin-orbit coupling) and U = eE · r, where −e is the electron charge

and E is a uniform electric field. The term U models the potential experienced by electrons

or holes in an asymmetric quantum well at a heterointerface.

The eigenstates of H0 are Bloch waves. These states can be represented by spinors,

ψνk(r) =
[
ψ↑νk(r), ψ↓νk(r)

]T
, with components

ψσνk(r) =
1√
N
eik·ruσνk(r), (4.1)

where ν is a band index, k is a wavevector restricted to the first Brillouin zone, σ is a spin

index, N is the number of unit cells in the crystal and uσνk(r) are lattice-periodic Bloch

amplitudes, which are normalized over the primitive-cell volume, Ω:

∑
σ

∫
Ω

d3r |uσνk(r)|2 = 1. (4.2)

The eigenenergies associated with the states ψνk(r) are labeled ενk. A convenient complete

orthonormal basis can be written in terms of the k = 0 Bloch amplitudes, and is given by a

set of spinors φνk(r) =
[
φ↑νk(r), φ↓νk(r)

]T
, with components [1, 12],

φσνk(r) = 〈rσ|νk〉 =
1√
N
eik·ruσν (r), (4.3)
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where uσν (r) := uσν0(r).

Any eigenstate |Ψ〉 of the Hamiltonian H can be expressed in terms of the states |ν ′k′〉 as

|Ψ〉 =
∑
ν′k′

Ψν′(k
′) |ν ′k′〉 , (4.4)

where Ψν′(k
′) are coefficients that describe the envelope functions in k-space for a slowly-

varying potential.

We insert Eq. (4.4) into the Schrödinger equation to obtain:∑
ν′k′

Ψν′(k
′) 〈νk| (H0 + U) |ν ′k′〉 = εΨν(k), (4.5)

where ε is the eigenenergy of |Ψ〉. We now evaluate the matrix elements 〈νk| (H0 + U) |ν ′k′〉
from Eq. (4.5) to obtain a matrix equation for the envelope functions. Within the double-group

formulation of k · p theory [13], we write

〈νk|H0 |ν ′k′〉 = δkk′

[(
εν0 +

~2k2

2m

)
δνν′ +

~
m
k · πνν′

]
, (4.6)

with

πνν′ =
∑
σ

∫
Ω

druσ∗ν (r)

[
p+

~
2mc2

S ×∇V0(r)

]
uσν′(r), (4.7)

where V0 is the periodic potential and S is the electron spin-1/2 operator. The term ~
m
k ·πνν′

in Eq. (4.6) is taken as a perturbation in k · p theory. In contrast to the single-group

formulation of k · p theory, where the spin-orbit coupling is also a perturbation [1], here we

include the spin-orbit coupling in the unperturbed portion of the k · p Hamiltonian, so that

εν0 is defined by [13][
p2

2m
+ V0 +

~
2m2c2

p · S × (∇V0)

]
|ν0〉 = εν0 |ν0〉 . (4.8)
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We write the matrix elements of U using standard manipulations as

〈νk|U |ν ′k′〉 ' e

V
δνν′

∫
drei(k

′−k)·rE · r

+
e

N
E ·

∑
Kσ

δk−k′,K

∫
Ω

dreiK·ruσ∗ν (r)ruσν′(r), (4.9)

where V = NΩ is the crystal volume and where the first term gives the usual envelope-

function approximation [1]. This term results after assuming that the slowly varying envelope

functions have substantial Fourier components only for k, k′ � π/a. In the same limit, only

the K = 0 contribution to the second term is relevant, giving

〈νk|U |ν ′k′〉 ' e

V
δνν′

∫
drei(k

′−k)·rE · r

+ eaBE · dνν′δkk′ , (4.10)

where −eaBdνν′ is the dipole matrix element,2 with

dνν′ =
∑
σ

∫
Ω

druσ∗ν (r)ruσν′(r)/aB, (4.11)

and eaB ' 2.5 D (aB is the Bohr radius and D is a debye). We note that both terms in

Eq. (4.10) arise at leading (zeroth) order in the same small parameter, |k − k′|a� 1.

To derive an effective Schrödinger equation for the envelope functions, we insert Eqs. (4.6)

and (4.10) into Eq. (4.5). We then write the envelope functions in position space using

Ψν(k) =
1√
V

∫
dre−ik·rΨν(r). (4.12)

2. If the electric field, E, and the corresponding magnetic vector potential, A, are time dependent, the
electric dipole operator, −eE · r, can be reexpressed as − e

mA · p, using a gauge transformation. However,
in the zero-frequency limit, the − e

mA · p operator can exhibit singular behaviour (see e.g. Chapter 5
of Ref. [14]). To avoid such complications, we focus here only on the E · r form of the electric dipole
operator.
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The resulting Schrödinger equation is∑
ν′

[
Hνν′

k·p +Hνν′

E

]
Ψν′(r) = εΨν(r), (4.13)

where

Hνν′

k·p =

[
εν0 +

~2k2

2m
+ eE · r

]
δνν′ +

~
m
k · πνν′ , (4.14)

with k→ −i∇, and

Hνν′

E = eaBE · dνν′ . (4.15)

Eq. (4.13) acts as a Schrödinger equation for the long-range degrees of freedom, described by

the envelope functions, Ψν(r). While the standard envelope-function approximation neglects

interband transitions generated by the potential U , here they are included via Hνν′
E .

In the rest of this paper, we determine the size of the electric-dipole term [Eq. (4.15)]

for the heavy-hole and light-hole bands of GaAs from first principles, and analyze some

consequences of this term for an asymmetric quantum well. The general methods described in

this section can, however, be applied to a wide range of other materials and bands, whenever

the matrix elements dνν′ are nonzero.

4.3 First-principles material parameters for GaAs

To find general material parameters (e. g. πνν′ ,dνν′), we need an accurate description of the

Bloch amplitudes, uν(r) [see Eqs. (4.7) and (4.11)]. These parameters have been calculated

for GaAs using various techniques, including tight-binding methods [15] and density functional

theory (DFT) with empirical pseudopotentials [16, 17] (or a combination of both, where

the tight-binding parameters are calculated within DFT [18]). In pseudopotential methods,

the core electrons around each nucleus are ‘frozen’. Interactions between valence-shell and

core-shell electrons are then included at the level of an effective potential. In contrast,

all-electron DFT techniques solve for the (Kohn-Sham) orbitals of all electrons (including the

core electrons). An all-electron approach may be important to describe the electronic states

at short length scales, close to the nuclei. All-electron DFT can be performed using, e.g., the

open-source elk code [19,20]. The Kohn-Sham orbitals resulting from elk have been used
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to accurately calculate hyperfine parameters for electrons and holes in GaAs and silicon [8].

In this paper, we use an equivalent procedure to evaluate other GaAs material parameters

(k · p parameters and the matrix elements dνν′).

From elk, we have extracted optimized Kohn-Sham orbitals for GaAs at the Γ point

(k = 0). From these orbitals, we have evaluated matrix elements of the momentum operator,

giving k · p parameters P , P ′, and Q (see Appendix 2.F for details). The calculated band

structure is shown in Fig. 4.1, resulting in a first-principles estimate for the band gaps. In Table

4.1, we compare the k ·p parameters and energy gaps found from this procedure with accepted

values (tabulated in the book by Winkler, Ref. [1]). We comment on agreement/disagreement

of these parameters with the accepted values in Sec. 4.3.1, below.

In addition to the k · p parameters, there are two parameters (κ, q) that characterize the

strength and symmetry of the Zeeman interaction. These parameters are derived as follows.

In the presence of a magnetic field B, the electron Zeeman Hamiltonian is

HZ = −µ ·B, (4.16)

where µ is the magnetic moment,

µ = −µB
~

(gLL+ gsS) . (4.17)

In Eq. (4.17), µB is the Bohr magneton, gL = 1 and gs = 2 are g-factors, L is the electron

orbital angular momentum operator and S is the electron spin operator. In the valence band

of GaAs, where ν and ν ′ span the heavy-hole and light-hole states (Γ8 representation of the

Td double group), the effective Zeeman Hamiltonian matrix is [1, 21]:

HZ = 2κµBB · J + 2qµBB · J , (4.18)

where J = (Jx, Jy, Jz) is the vector of spin-3/2 matrices, J = (J3
x , J

3
y , J

3
z ), and the parameters

κ and q are determined through matrix elements of the magnetic moment operator µ.3 The

3. For example, κ and q can be calculated by solving the following two equations:

− 〈Jz = 3/2|µz |Jz = 3/2〉 = 3κ+
27

4
q (4.19)
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0.0 0.2 0.4 0.6 0.8 1.0

CB

HH

LH

SO

Figure 4.1: GaAs band structure generated using the elk code [19, 20]. The band structure is
given between high-symmetry points L → Γ → X. The labels Γj1j2 , j1 ∈ {6, 7, 8}, j2 ∈ {c, v} for
each band at the Γ point indicate the representation of the basis states with the subscript j2 = c
(v) indicating conduction- (valence-) band states. See Sec. 3.3 of Ref. [1] for more details. Inset:
schematic showing detail of the topmost valence bands and lowest conduction band. The labels CB,
HH, LH, SO indicate the conduction band, heavy-hole band, light-hole band, and split-off band,
respectively.
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Parameter Present Work Winkler (Ref. [1])

P 7.9 eVÅ 10.493 eVÅ
Q 7.4 eVÅ 8.165 eVÅ
P ′ 1.7i eVÅ 4.780i eVÅ
E0 0.41 eV 1.519 eV
∆0 0.33 eV 0.341 eV
E ′0 3.5 eV 4.488 eV
∆′0 0.18 eV 0.171 eV
κ 0.61 1.20
q 0.01 0.01
χ 0.2 -

Table 4.1: Material parameters found from density functional theory (present work) and the accepted
values from Table D.1 of Ref. [1]. The k · p parameters P , Q, and P ′ are defined in Eq. (3.3) of
Ref. [1]. For a discussion of the convergence of the calculation, see Appendix 4.A.

parameters κ and q, calculated from first principles, are compared with the accepted values

in Table 4.1.

As described above, matrix elements of the momentum operator (∝ P, P ′, Q), band gaps

(E0, E
′
0,∆0,∆

′
0), and matrix elements of the magnetic moment operator (∝ κ, q) are sufficient

to parametrize k ·p theory within the envelope-function approximation. However, as described

in Sec. 4.2, in certain circumstances, matrix elements of the electric-dipole operator (∝ dνν′)
may also be relevant. In a subspace spanned by states that transform according to the Γ8

representation of the tetrahedral double group (e.g., the heavy-hole and light-hole states),

the effective projected electric-dipole Hamiltonian matrix derived from Hνν′
E is [5]:

HE =
1√
3
eaBχ [Ex{Jy, Jz}+ Ey{Jz, Jx}+ Ez{Jx, Jy}] , (4.21)

and

− 〈Jz = 1/2|µz |Jz = 1/2〉 = κ+
1

4
q, (4.20)

where the states |Jz〉 are the valence-band orbitals that transform like states with total angular momentum
Jz along ẑ.
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where χ is a parameter that controls the strength of the electric-dipole matrix elements. We

have numerically evaluated the matrix elements dνν′ [see Eq. (4.15)] giving χ = 0.2 (listed

in Table 4.1). While HE arises physically from the electric-dipole operator, this term can

be written as an effective pseudospin J = 3/2 quadrupole term (similar to that analyzed in

Refs. [22, 23]).4

The electric-dipole term given by Eq. (4.21) may lead to important measurable effects.

For example, when this term is included, an oscillating electric field can drive electric-dipole

transitions between heavy-hole and light-hole states. For crystals with a center of inversion

symmetry, χ = 0 identically and these transitions vanish. However, in GaAs we find (within

DFT) that the heavy-hole/light-hole transition dipole is eaBχ ' 0.5 D, a substantial fraction

(' 40%) of that for a 1s → 2p hydrogen atom transition.5 In Sec. 4.4 below, we explore

further consequences of this term for an asymmetric quantum well.

4.3.1 Accuracy of first-principles parameters

The results given in Table 4.1 show a broad range of agreement between the parameters

calculated here within DFT and the accepted values listed in Ref. [1]. The spin-orbit gaps,

∆0,∆
′
0, and parameter q are well-reproduced in DFT (within 5% of the accepted values).

However, P,Q, and E ′0 deviate by 20%-30%, and the calculated P ′, E0, and κ differ from the

accepted values by as much as a factor of 4. We note that the spin-orbit gaps ∆0,∆
′
0 depend

on short-range properties of the wavefunctions near the nuclear cores (where the spin-orbit

coupling diverges ∝ ∇V (r) ∝ 1/r2). This level of agreement is consistent with the agreement

found previously for short-range hyperfine parameters [8]. In contrast, the other parameters

4. Specifically, we can rewrite Eq. (4.21) as HE = eaBχ
(
ExQ̃yz + c.p.

)
. Here, “c.p.” indicates cyclic

permutations and Q̃ij = {Ji, Jj} is proportional to the usual quadrupole matrix up to an additive

constant [24]: Qij = eQ
[
3
2 Q̃ij − δijJ(J + 1)

]
/ [6J(2J − 1)], with quadrupole moment Q. Thus, although

this term is generated through an electric dipole coupling, the usual dipole selection rules do not apply
(with respect to the pseudospin). In particular, HE allows for “double-quantum” transitions having
|∆Jz| = 2 (e.g. |Jz = +3/2〉 ↔ |Jz = −1/2〉).

5. The electric-dipole matrix element describing this hydrogenic transition is given by e 〈1 0 0|x |2 1 ± 1〉 =
pχ1s→2p, where χ1s→2p ≈ 0.5 (χ/χ1s→2p ≈ 0.4) and the states, |n lm〉 are the hydrogen-atom eigenstates
(n is the principal quantum number, l is the orbital angular momentum, and m is the orbital angular
momentum along the axis of quantization).
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listed above depend on the electronic structure far from the nuclear cores. For example, in a

tight-binding theory, the band gaps E0 and E ′0 depend on overlaps of atomic wavefunctions

localized at different sites.

The discussion above indicates a strong degree of confidence in the accuracy of the DFT

procedure in calculating short-range quantities. For longer-range quantities, the results are

mixed but nevertheless produce the correct order of magnitude: the calculated quantities

are all within a factor of ∼ 4 of their accepted value. We therefore expect the true value of

the parameter χ to be within a factor of ∼ 4 of the value reported here. To unambiguously

establish the accuracy of the calculated value of χ, a direct comparison to experiment is

required. As discussed above, observation of electrically driven heavy-hole light-hole Rabi

oscillations would provide a direct measurement of χ. Another possible experiment that

could quantitatively establish χ would be measurements of the heavy-hole spin splitting and

spin-orbit coupling, which we discuss in the next two sections.

4.4 Spin-orbit interactions for a triangular quantum well

The goal of this section is to explore the influence of HE [Eq. (4.21)] on heavy-hole spin-

orbit coupling for an asymmetric quantum well. We consider a quantum well formed at a

heterointerface where the confinement can be described by a triangular potential due to an

electric field E = Ezẑ,

U(z) =

∞ z ≤ 0,

eEzz z > 0.
(4.22)

For the valence band of a III-V semiconductor, where ν and ν ′ are restricted to the heavy-hole

(HH) and light-hole (LH) states, we write the Hamiltonian matrix

H = HL + U(z)I4 +H1 +H3 +HE, (4.23)

where I4 is the 4× 4 identity matrix and

HL =
~2

2m

[(
γ1 +

5

2
γ2

)
k2I4 − 2γ2(k · J)2

]
(4.24)
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γ1 γ2 Ck b41 b42 b51 b52 r41

(eVÅ) (eVÅ
3
) (eVÅ

3
) (eVÅ

3
) (eVÅ

3
) (eÅ

2
)

6.85 2.10 −0.0034 −81.93 1.47 0.49 −0.98 −14.62

Table 4.2: GaAs valence-band parameters. The parameters γ1 and γ2 are taken from Table D.1 of
Ref. [1]; Ck, b41, b42, b51, and b52 are taken from Table 6.3 of Ref. [1]. The parameter r41 is taken
from Table 6.6 of Ref. [1].

is the Luttinger Hamiltonian within the spherical approximation, with parameters γ1 and γ2

(see Table 4.2 for values in GaAs). The term H1 is linear in k [25]:

H1 = −2Ck√
3

[
kx{Jx, J2

y − J2
z }+ c.p.

]
, (4.25)

while H3 is cubic in k:

H3 = −b41

[
{kx, k2

y − k2
z}Jx + c.p.

]
− b42

[
{kx, k2

y − k2
z}J3

x + c.p.
]

− b51

[
{kx, k2

y + k2
z}{Jx, J2

y − J2
z }+ c.p.

]
− b52

[
k3
x{Jx, J2

y − J2
z }+ c.p.

]
, (4.26)

where Ck, b41, b42, b51, and b52 are material parameters (see Table 4.2 for values in GaAs). In

Eqs. (4.24), (4.25), and (4.26), k is a differential operator, k = −i∇. In contrast to H1 and

H3, HE depends on the strength of the electric field, Ez [see Eq. (4.21)]. However, HE, H1,

and H3 share a common origin: they all stem from bulk-inversion asymmetry. Therefore, a

general theory accounting for bulk-inversion asymmetry should include HE.

To derive the effective heavy-hole spin-orbit Hamiltonian, we rewrite H as

H = H0 +H′, (4.27)

whereH0 contains the potential energy, U , and the diagonal part of the Luttinger Hamiltonian,
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HL, giving matrix elements

Hνν′

0 = [(HL)νν + U(z)] δνν′ . (4.28)

The eigenfunctions of Hνν
0 are Ψ

kx,ky ,n
ν (r) = F kx(x)F ky(y)F n

ν (z), where F kx(x) and F ky(y)

are plane waves, while the envelope function F n
ν (z) solves the differential equation:[

− ~2

2mν

d2

dz2
+ U(z)

]
F n
ν (z) = εnνF

n
ν (z). (4.29)

Here, mν is the effective mass (mHH = m
γ1−2γ2

for heavy holes and mLH = m
γ1+2γ2

for light

holes), and εnν is the energy for subband n. The envelopes, F n
ν (z), are given by Airy functions

(see Appendix 4.B).

We project the Hamiltonian matrix H onto the lowest subband (n = 1) to obtain a 4× 4

Hamiltonian matrix, Ĥ (see Appendix 4.C for a discussion of the influence of higher subbands,

n > 1). The ‘hat’ on Ĥ indicates that the matrix describes only the lowest subband, n = 1.

The matrix elements of Ĥ can be written in terms of diagonal matrix elements of k2
z , e.g.,

〈
k2
z

〉
= −

∫ ∞
0

dzF 1
HH(z)

d2

dz2
F 1

HH(z), (4.30)

together with the following parameters:

l = −
√

3~2

2m
ξγ2 (4.31)

and

λ =

√
3~2

m
γ2η1, (4.32)

where

ξ =

∫ ∞
0

dzF 1
HH(z)F 1

LH(z), (4.33)

and

ηi =

∫ ∞
0

dzF 1
HH(z)

di

dzi
F 1

LH(z), (4.34)
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where di

dzi
is the ith derivative with respect to z.

Using second-order degenerate perturbation theory (an approximate Schrieffer-Wolff trans-

formation [26]), we project the Hamiltonian matrix, Ĥ, onto the heavy-hole subspace. This

gives the effective 2× 2 heavy-hole Hamiltonian:

ĤHH = ε(k‖) + Ĥc + ĤD, (4.35)

where k‖ = kxx̂ + kyŷ, ε(k‖) = ε1HH + (γ1 + γ2)
~2k2‖
2m

, Ĥc represents cubic (in k‖) spin-orbit

coupling and ĤD represents the linear (in k‖) Dresselhaus spin-orbit coupling. The model

studied here also leads to a linear Rashba spin-orbit coupling (see Appendix 4.D). However,

for the range of electric fields considered, we find the linear Rashba spin-orbit coupling to be

at most ∼ 10% of the linear Dresselhaus spin-orbit coupling (see Fig. 4.7 below). Therefore,

for simplicity, we neglect the linear Rashba spin-orbit coupling in the main text and restrict

the discussion of this term to Appendix 4.D.

4.4.1 Cubic spin-orbit coupling

The cubic spin-orbit coupling term is

Ĥc = iγR
(
k3

+σ− − k3
−σ+

)
+ γD (k+k−k+σ− + k−k+k−σ+) , (4.36)

where γR and γD are the cubic Rashba and Dresselhaus spin-orbit couplings, respectively,

k± = kx ± iky, and σ± = (σx ± iσy)/2 are Pauli matrices. For the triangular potential chosen

here, γR ' γR1 (see Appendix 4.E), where

γR1 = − 2λl

∆HL

(4.37)

and γD ' γD1 + γD2 , where

γD1 =
lCkξ

2

∆HL

, (4.38)

and

γD2 =
3~2γ2

8m∆HL

[
(4b41 + 7b42 + 2b51) ξη2 − 8b51η

2
1

]
. (4.39)
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Figure 4.2: Magnitude of the cubic spin-orbit coupling coefficients γR1 [in blue, see Eq. (4.37)], γD2
[in green, see Eq. (4.39)], and γD1 [in yellow, see Eq. (4.38)] as a function of electric field, Ez. The
material parameters used (for GaAs) are given in Table 4.2.

In Eqs. (4.37), (4.38), and (4.39) ∆HL = ε1HH − ε1LH is the heavy-hole/light-hole splitting in

the lowest subband. As can be seen from Fig. 4.2, for electric field strengths Ez & 106 V/m,

we have |γR| � |γD| ' |γD1 + γD2 |. We thus find that the cubic spin-orbit coupling is

predominantly Rashba-like (consistent with, e.g., Ref. [27]).

4.4.2 Linear spin-orbit coupling

Spin-dependent transport and spin-relaxation measurements performed on heavy-holes in

GaAs quantum dots are consistent with a spin-orbit coupling that is substantially Dresselhaus-

like [9, 10]. As demonstrated in Sec. 4.4.1, when the cubic spin-orbit coupling dominates over
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the linear spin-orbit coupling (large k‖ regime), we find a Rashba-like heavy-hole spin-orbit

coupling. However, the linear spin-orbit coupling that dominates for small k‖ is predominantly

Dresselhaus-like [as described above following Eq. (4.35)]. This observation may suggest that

the experiments conducted in Refs. [9, 10] are sensitive to the small-k‖ spin-orbit coupling

analyzed here.

The linear Dresselhaus spin-orbit coupling is

ĤD = β (k−σ+ + k+σ−) . (4.40)

The coefficient β can be written as a sum of five terms:

β = βCk + βχ + β0 + βb1 + βb2, (4.41)

where

βCk =

√
3Ck
2

, (4.42)

βχ =
2λeaBEzχξ

∆HL

, (4.43)

β0 = −2λCkη1

∆HL

, (4.44)

βb1 =
3

4
(b42 + b51)

〈
k2
z

〉
, (4.45)

and

βb2 =

√
3b52λη3

∆HL

. (4.46)

The dipolar spin-orbit coupling term (the term with coefficient βχ) arises from non-vanishing

electric-dipole matrix elements (HE with χ 6= 0). Therefore, it vanishes identically within

the envelope-function approximation. However, βχ is of the same order as the other linear

Dresselhaus spin-orbit coefficients for Ez & 106 V/m (see Fig. 4.4). As can be seen in

Fig. 4.4, βχ, βb1, and βb2 vary as a function of electric field. In fact, there is a value of the

electric field where βb1 exactly cancels βCk (see gray line in Fig. 4.4). For an electric field,

Ez ∼ 9 × 106 V/m, the dipolar spin-orbit coupling (∝ βχ) contributes approximately half
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Figure 4.3: Spin splitting, ∆, in GaAs from eigenvalues of Eq. (4.35) (in blue) as a function of
k‖ = kx (k‖ = k‖x̂) for an electric field Ez = 106 V/m. The top horizontal axis indicates the hole
sheet density, np = k2

‖/(2π), associated with a Fermi wavevector, kF = k‖. The splitting is linear in

k‖ for k‖ . 0.02 nm−1, meaning the linear Dresselhaus spin-orbit coupling dominates in this region.

The splitting due to the spin-orbit coupling term with coefficient γR1 (in yellow) dominates at large
k‖. The material parameters used (for GaAs) are given in Table 4.2.
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Figure 4.4: Magnitude of the linear Dresselhaus spin-orbit coupling coefficient, β (black solid line)
as a function of electric field, Ez. The dotted lines give the different contributions to β: βCk [in
green, see Eq. (4.42)], βb1 [in red, see Eq. (4.45)], βχ [in blue, see Eq. (4.43)], β0 [in yellow, see
Eq. (4.44)], and βb2 [in purple, see Eq. (4.46)]. The material parameters used (for GaAs) are listed
in Table 4.2. The gray line indicates the value of Ez for which βCk + βb1 = 0.
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of the total spin splitting at small k‖, where the linear Dresselhaus term dominates (see

Fig. 4.5). The dipolar spin-orbit coupling is therefore necessary for a quantitative theory of

spin-orbit couplings for heavy holes in asymmetric GaAs quantum wells. Specifically, this

term may be relevant in interpreting the experimental results of Refs. [9, 10].

The spin splitting has been measured for heavy-holes in GaAs quantum wells through

Shubnikov-de Haas oscillations [28]. Provided similar measurements could be performed with

a typical confining electric field and range of sheet density as given in Fig. 4.5, the value of χ

determined here could be confirmed.

Heavy-hole relaxation time, T1

In Ref. [10], the relaxation time T1 has been measured for a quantum-dot-confined heavy-hole

spin as a function of the out-of-plane magnetic field, B. The measurements reveal the

dependence T1 ∝ B−5, which is characteristic of a relaxation channel dominated by phonon-

assisted spin flips driven by either a linear spin-orbit coupling or by a cubic Dresselhaus

spin-orbit coupling (this dependence is, however, inconsistent with a cubic Rashba spin-orbit

coupling). The observation that the cubic Dresselhaus spin-orbit coupling can be neglected

when calculating heavy-hole spin splittings (see Fig. 4.3) provides some evidence that it can

also be neglected in the context of spin relaxation. Moreover, because the linear Dresselhaus

spin-orbit coupling dominates the linear Rashba spin-orbit coupling (see Appendix 4.D), it is

plausible that the former is responsible for T1 in Ref. [10]. Provided the linear Dresselhaus

term (β) controls T1 in this experiment, we can use the measured value as a quantitative

check on our prediction for the value of β shown in Fig. 4.4.

In the limit of a weak out-of-plane magnetic field B (hole Zeeman energy, gµBB, small

compared to the orbital level spacings Ex, Ey, for an elliptical dot) and for coupling to

piezoelectric phonons (which dominates for weak magnetic fields), the relaxation rate due to

phonon-assisted spin flips driven by linear Dresselhaus spin-orbit coupling is given by [29]

1

T1

' 4(eh14β)2

105π~4ρc5
t

(
1 +

3c5
t

4c5
l

)
(gµBB)5

(
1

E4
x

+
1

E4
y

)
. (4.47)

In this equation, h14 = 1.4 × 109 V/m is the piezoelectric potential, ρ = 5300 kg/m3 is
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Figure 4.5: Total spin splitting, ∆, (blue line) and spin splitting assuming χ→ 0 (yellow line). For
this choice of electric field (Ez = 9× 106 V/m), βχ is the largest contribution to the spin splitting
(see Fig. 4.4). The top horizontal axis indicates the hole sheet density, np = k2

‖/(2π), associated

with a Fermi wavevector, kF = k‖. The material parameters used (for GaAs) are displayed in Table

4.2.
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the material (GaAs) density, ct = 3350 m/s is the transverse acoustic phonon velocity,

cl = 4730 m/s is the longitudinal acoustic phonon velocity, g = 1.35 is the heavy-hole out-of-

plane g factor [10], and Ex, Ey are the lowest two orbital level spacings for a quantum dot

defined by parabolic confinement along the x− and y−directions.

The measurements of Ref. [10] yield T1 = (2.5µs · T5)B−5. Using the range of coefficients

presented in Fig. 4.4, β ' 0.35-0.40 meV nm, and for an anisotropic quantum dot with orbital

level spacings Ex ' Ey/3 ' 0.3 meV (see the supplementary material of Ref. [30]),6 we obtain

T1 ' (1.7-2.2µs · T5)B−5, remarkably close to the measured value.7 This level of agreement

suggests that the model presented in Sec. 4.4, which includes the dipolar spin-orbit coupling,

may indeed give a highly accurate value for the linear Dresselhaus spin-orbit coupling.

4.4.3 Comments on the model

The model presented in this section attempts to capture the main features of the spin-orbit

coupling for GaAs heavy holes confined to an asymmetric quantum well. Earlier works have

calculated the heavy-hole spin splitting accounting for many-body effects by using a potential

calculated self-consistently under the Hartree approximation (accounting for charges in both

the inversion and depletion layers of an AlGaAs-GaAs heterojunction) [31–33]. However,

in these studies, bulk-inversion asymmetry was neglected. More recently, heavy-hole spin

splittings have been computed using wavefunctions obtained from a variational solution to the

Poisson and Schrödinger equations [27]. This procedure was shown to give results consistent

with experiments, even in the parameter regime where the perturbation theory that projects

the full Hamiltonian onto the lowest heavy-hole subband breaks down. While the theory

presented Ref. [27] includes bulk-inversion asymmetry by considering the terms H1 and H3,

HE is neglected.

6. The device investigated in Ref. [30] was fabricated with the same procedure as the device studied in
Ref. [10]. In the supplementary material of Ref. [30], the quantum-dot spectrum is calculated based on a
theoretical model and simulations of the quantum-dot device. The orbital level spacings, Ex and Ey, were
extracted from this spectrum [Fig. 1(a) of the supplementary material of Ref. [30] at B = 0].

7. The range of values reported here would overlap with the measured value if, e.g., the true level spacing
were larger than the estimated value (Ex ' 0.3 meV) by only 3%. Moreover, the hole-spin Zeeman
splitting is comparable to the orbital level spacing for the range of magnetic fields (B ' 0.5 T− 1.5 T)
studied in Ref. [10]. For this range of magnetic fields, there could be a substantial (order unity) correction
to Eq. (4.47).
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The potential considered in this paper is a triangular well [U(z) = eEzz] which we take to

represent the total effective potential experienced by holes at the heterointerface. Although

we have not fully accounted for many-body effects, the benefit of using an analytic form for

the potential is that the spin-orbit couplings and spin splitting can be investigated analytically.

Other works have adopted a similar approach. For example, in Ref. [34], the spin-orbit

coupling has also been calculated starting from the Luttinger Hamiltonian. However, in this

reference terms involving bulk-inversion asymmetry were neglected (H1,H3,HE → 0). If bulk

inversion asymmetry is neglected in our model, the linear spin-orbit coupling vanishes and we

find only a cubic Rashba heavy-hole spin-orbit coupling with coefficient γR1 , consistent with

the results of Ref. [34]. In Ref. [35], the heavy-hole spin-orbit couplings were calculated using

a similar procedure to that described in Sec. 4.4: The Schrieffer-Wolff transformation was

applied to Ĥ to obtain the effective heavy-hole Hamiltonian ĤHH. Although bulk-inversion

asymmetry was included in Ref. [35] through the spin-orbit parameters βCk and βb1, the

parameters βχ, β0, and βb2 were neglected. In the present case, we find there is a range

of electric field Ez for which βχ, β0, and βb2 give the dominant contribution to the linear

Dresselhaus spin-orbit coupling (and are all of the same order, see Figs. 4.4, 4.5).

While the Hamiltonian matrix H [Eq. (4.23)] includes terms that describe bulk-inversion

asymmetry, certain terms that describe structure-inversion asymmetry are neglected (these are

the k-linear terms listed in Table 6.5 of Ref. [1]). The dominant term among those that have

been neglected has a coefficient r41 (see Sec. 6.3.3 of Ref. [1] and Ref. [35]) and off-diagonal

matrix elements ∼ r41Ezk‖. This term couples the same valence-band states as the term

with coefficient b41 in Eq. (4.26), and which has off-diagonal matrix elements ∼ b41η2k‖. For

GaAs, we find that |r41|Ez < |b41|η2 for the range 106 V/m ≤ Ez . 107 V/m considered

here. Because terms that depend on b41 are neglected (they lead to spin-orbit couplings that

are smaller than those considered in Secs. 4.4.1 and 4.4.2, see Appendices 4.E and 4.D for

justification), this justifies neglecting the contributions described above in the present work.

Finally, we also note that in the model described here, Ez provides the confinement that

lifts the heavy-hole/light-hole degeneracy. Therefore, as Ez decreases, ∆HL decreases. A

smaller splitting, ∆HL, leads to larger corrections to the perturbation theory used to project

Ĥ onto the two-dimensional heavy-hole subspace. This perturbation theory has a small

parameter εod/∆HL, where εod represents an off-diagonal element of H (the magnitude of
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εod increases with k‖). For Ez = 106 V/m and k‖ . 0.1 nm−1, we find εod/∆HL . 0.1 for all

off-diagonal elements εod. A breakdown of perturbation theory for k‖ & 0.1 nm−1 is consistent

with the results shown in Fig. 4.6. See also Appendix 4.C for further discussion of the validity

of the perturbation theory.

4.5 Conclusions

We have extended k · p theory to account for interband coupling generated by the triangular-

well confining potential at a heterointerface. In subspaces where the basis states transform

according to the Γ8 representation of the tetrahedral double group (e.g., the heavy-hole and

light-hole states at k = 0 in a III-V semiconductor), this coupling can be parameterized by a

single material-dependent parameter χ. Here, we have focused on the valence band of GaAs,

but an equivalent analysis could be applied to other materials/bands. Using the Kohn-Sham

orbitals from an all-electron density functional theory calculation, we find χ = 0.2 for GaAs.

This value for χ leads to a transition dipole of eaBχ ' 0.5 D, only a factor of ∼ 2 smaller than

that of a hydrogenic 1s to 2p transition. Rabi-frequency measurements for the light-hole to

heavy-hole transition in GaAs would allow for χ to be established experimentally. The finite

value of χ found here may be important for understanding electric-dipole spin resonance

(EDSR) for GaAs hole-spin qubits with heavy-hole light-hole mixing. This EDSR mechanism

may even be present in group IV semiconductor nanostructures (silicon, germanium, . . . )

that are sufficiently strained to significantly break inversion symmetry on the scale of the

lattice.

The finite value of χ 6= 0 in III-V semiconductors (or in group IV materials with broken

inversion symmetry due, e.g., to strain) leads to a new form of spin-orbit coupling: the dipolar

spin-orbit coupling. Because the dipolar spin-orbit coupling has Dresselhaus symmetry, it

may be relevant to the measurements of Refs. [9, 10], which show experimental evidence of

Dresselhaus spin-orbit coupling. More generally, a better understanding of the pseudospin-

electric coupling may explain spin coherence/relaxation (T ∗2 /T1) times, spin-electric coupling

for cavity-QED, electric-dipole spin resonance, and spin non-conserving tunnelling in double

quantum dot systems.

A central observation of this paper is that the electric-dipole term HE results in important
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physical consequences. This term leads, e.g., to a modified spin splitting for heavy holes

in a two-dimensional hole gas or to driven Rabi oscillations between heavy holes and light

holes under the influence of a time-dependent electric field. The electric-dipole term does

not vanish at k = 0, unlike all other inter-band terms in conventional k · p theory (within

the envelope-function approximation). Thus, long-wavelength (small k) properties of holes

will generally be influenced by HE, even for k → 0, when the standard envelope-function

approximation is expected to be accurate.

Acknowledgments

WAC and PP acknowledge support from NSERC, FRQNT, and the Gordon Godfrey Bequest.

DC was supported by the Australian Research Council Centre of Excellence in Future Low-

Energy Electronics Technologies (project CE170100039) funded by the Australian Government.

SC acknowledges support from the National Key Research and Development Program of

China (Grant No. 2016YFA0301200), NSFC (Grant No. 11974040), and NSAF (Grant No.

U1930402).

The authors are grateful to R. Winkler for helpful discussions.

137



Appendices to Chapter 4

4.A Calculating material parameters

To calculate the k · p, Zeeman-Hamiltonian, and position-operator matrix elements, we

start by calculating the Kohn-Sham orbitals from the necessary bands at the Γ point of

GaAs. Then, using the group theoretic projection operators (see Ref. [36] and Appendix C of

Ref. [8]), we project these orbitals onto states with the appropriate symmetry. For example,

one k · p matrix element is [1]

P =
~
m
〈S| px |X〉 , (4.48)

where |S〉 is the s-like conduction-band k = 0 Bloch function and |X〉 is the p-like valence-

band k = 0 Bloch function that transforms like the coordinate x under the symmetry

operations of the crystal. To evaluate the matrix element, Eq. (4.48), we first calculate the

Γ-point Kohn-Sham orbitals for the conduction and valence bands of GaAs. Because the top

of the valence band of GaAs is fourfold degenerate, a general valence-band Kohn-Sham orbital

will be a linear combination of all four states (two heavy-hole and two light-hole states).

Using group-theoretic projection operators [8, 36, 37], we project the general valence-band

Kohn-Sham orbital onto the orbital that transforms like x to obtain |X〉. Because the GaAs

conduction band is s-like (isotropic) the only Γ-point conduction-band Kohn-Sham orbital is

|S〉 and no projection is necessary in this case. Once we obtain |S〉 and |X〉, we evaluate P

(see Table 4.1). We apply a similar procedure to evaluate the other k · p matrix elements, P ′

and Q [P , P ′, and Q are defined in Eqs. (3.3a), (3.3b) and (3.3c) of Ref. [1]], as well as κ, q,

and χ (see Sec. 4.3). The code used to implement these projections has been made freely

available [37].

For all the parameters listed in Table 4.1, we have used the “very high quality” parameter

set of the elk code (vhighq set to .true. in the input file) [19] to calculate the Kohn-Sham

orbitals. This set of parameters was shown to yield precise results (which have converged

with respect to multiple parameters to within 2% of their asymptotic values, see Ref. [8])
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when calculating the hyperfine couplings in GaAs and silicon [8].

4.B Solution to triangular confining potential

Eq. (4.29) can be solved by the envelope functions

F n
ν (z) = CνAi

([
2mν

~2e2E2
z

]1/3

[eEzz − εnν (z)]

)
, (4.49)

where Cν is a normalizing constant, and Ai(z) is an Airy function. The eigenenergies are

given by

εnν = −
(
~2e2E2

z

2mν

)1/3

an, (4.50)

where an is the nth zero of Ai(z). If we define

Λν(z) =

(
2mνeEz

~2

)1/3(
z − εnν (z)

eEz

)
, (4.51)

we can write Cν as

Cν =

[
(2mνeEz/~2)

1/3

Ai′(Λν(0))− Λν(0)Ai2(Λν(0))

]1/2

. (4.52)

4.C Contributions to the heavy-hole spin splitting from

higher subbands

In the approach described in the main text, the full Hamiltonian H [Eq. (4.23)] is projected

onto the lowest subband to obtain the four-dimensional Hamiltonian, Ĥ. Ĥ is then projected

onto the heavy-hole subspace using perturbation theory (Schrieffer-Wolff transformation) to

obtain an effective two-dimensional Hamiltonian, ĤHH [Eq. (4.35)]. To verify the spin-splitting

obtained from the Schrieffer-Wolff procedure (green line in Fig. 4.6), we have numerically

diagonalized the four-dimensional Hamiltonian arising from the lowest subband, Ĥ, resulting

in the spin splitting shown in the blue line of Fig. 4.6. To address the effect of the first
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Figure 4.6: Heavy-hole spin splitting in GaAs computed by diagonalizing the effective 2× 2 Hamil-
tonian obtained from the Schrieffer-Wolff transformation, as described in the main text (in green),
by diagonalizing the 4 × 4 Hamiltonian in the lowest valence-band subband (in blue), and by
diagonalizing the 8× 8 Hamiltonian in the two lowest valence-band subbands (in yellow). The top
horizontal axis indicates the hole sheet density, np = k2

‖/(2π), associated with a Fermi wavevector,

kF = k‖. All calculations were preformed for a triangular well with electric field Ez = 106 V/m with

material parameters used (for GaAs) given in Table 4.2.
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Figure 4.7: Linear spin-orbit coupling coefficients. The magnitude of the Dresselhaus coefficient (in
blue), β, is larger than the magnitude of the Rashba coefficient (in yellow), α, for all values of Ez
considered. The values for the material parameters (for GaAs) are listed in Table 4.2.

excited subband, we have also numerically diagonalized the eight-dimensional Hamiltonian,

giving the yellow line shown in Fig. 4.6. From Fig. 4.6, perturbation theory breaks down at

large k‖ (k‖ & 10−1 nm−1). For the analysis presented here to give quantitatively accurate

results, we therefore require k‖ . 10−1 nm−1. For a two-dimensional hole gas with Fermi

wavevector kF = k‖, this implies a low sheet density, np . 10−11 cm.
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4.D Linear Rashba spin-orbit coupling

In addition to the linear Dresselhaus spin-orbit coupling discussed in Sec. 4.4.2, a linear

Rashba spin-orbit coupling can be derived from the same model:

ĤR = iα (k+σ+ − k−σ−) , (4.53)

where α is the linear Rashba spin-orbit coupling coefficient. This coefficient depends on the

strength of the electric field, Ez, as well as the material-specific parameters χ, Ck, b41, b42, b51,

b52 and γ2. In Fig. 4.7 we compare the value of α to the linear Dresselhaus coefficient, β. We

find that (for the values of Ez considered) |α| . 10%|β|. For simplicity, We neglect the linear

Rashba spin-orbit coupling in the analysis presented in the main text. However, we note

that the the linear Rashba coefficient could be calculated and included in the analysis. The

procedure to do so would be similar to that outlined in Sec. 4.4: project the Hamiltonian H
onto the lowest subband subspace to obtain Ĥ, perform the Schrieffer-Wolff transformation

on the Hamiltonian Ĥ to project it onto the heavy-hole subspace, and then collect the terms

linear in k‖ that possess Rashba symmetry [Eq. (4.53)].

4.E Additional cubic spin-orbit coupling

In addition to the cubic spin-orbit couplings discussed in Sec. 4.4.1 (γR1 , γD1 , and γD2 ) there are

extra small terms that we discuss here for completeness. According to the model presented

in Sec. 4.4, the cubic Rashba spin-orbit coupling coefficient is given by,

γR = γR1 + γR2 , (4.54)

where γR1 is given by Eq. (4.37) of the main text and

γR2 =
4b41 + 7b42 − 2b51 + 2b52

32∆HL

ξ (4.55)

×
(

3b52η3 − 2
√

3Ckη1 +
√

3EzeaBχξ
)
.
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Figure 4.8: Cubic spin-orbit coupling coefficients −γD1 (in yellow), −γD3 (in green), and γR2 (in blue)
as a function of electric field, Ez. |γD1 |, is orders of magnitude smaller than the dominant cubic
spin-orbit coupling term characterized by γR1 (see Sec. 4.4.1), however it is larger (in magnitude)
than both γD3 and γR2 , for the values of Ez considered here. The values for the material parameters
(for GaAs) are listed in Table 4.2.

143



Similarly, the Dresselhaus spin-orbit coupling has an additional contribution:

γD = γD1 + γD2 + γD3 , (4.56)

where γD1 is given by Eq. (4.38) of the main text, γD2 is given by Eq. (4.39) of the main text,

and

γD3 =
3

16
(b51 + 3b52 − b42). (4.57)

As shown in Fig. 4.2, for the range of electric fields considered, the cubic spin-orbit coupling

parameters satisfy |γR1 | � |γD2 | > |γD1 | . The additional terms contributing to γR and γD (γR2

and γD3 ) are even smaller (in magnitude) than γD1 (see Fig. 4.8) over the range of electric

fields considered and are therefore neglected throughout the main text.
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5 Conclusion

Spins confined to semiconductor nanostructures have a broad range of applications. These

include, but are not limited to, sensing, classical spintronics, and quantum information

processing. These applications rely on knowing the state of the confined spins. Therefore,

understanding the spin dynamics in semiconductor nanodevices is an important problem. In

this thesis, we have investigated two factors that influence these dynamics: the hyperfine

and spin-orbit interactions. In Chapter 2, we calculated the hyperfine couplings for electrons

and holes in GaAs and silicon using the Kohn-Sham orbitals from DFT. The results are

consistent with electron Knight-shift measurements. For holes, experiments are limited and a

direct comparison between the DFT and experimental values is not yet possible. In Chapter

3 we estimated the hyperfine coupling for boron acceptors in silicon, whose value remains an

open question. Because the envelope function approximation breaks down in this system, we

based the estimate on the experimentally determined phosphorus donor hyperfine coupling.

We also demonstrated how measurements of hole spin echo envelope modulations could be

used as a direct measure of the hole-hyperfine interaction for boron acceptors in silicon.

Finally, in Chapter 4, we went beyond the envelope function approximation to calculate the

electric-dipole coupling between the heavy-hole and light-hole bands in GaAs. This coupling

leads to a new linear Dresselhaus spin-orbit term in the heavy-hole subspace, the dipolar

spin-orbit coupling, which may be important to understand recent experimental results.

The work presented in this thesis can be extended in different ways to further understand

the hyperfine and spin-orbit interactions in semiconductor nanosystems. For instance, in

Chapter 3 we focused on hole spin echo envelope modulations due to the hyperfine coupling

between a light hole and a single boron nuclear spin in silicon. This theory can be extended

to understand the echo envelope signal based on coupling to multiple nuclear spins. Such

an analysis could be applied to quantum dots (or other nanostructures where the envelope

function approximation is valid) to determine the hole hyperfine couplings in GaAs, silicon,

and/or germanium from measurements of hole spin echo envelope signals. The results of such

a measurement could be compared to the hyperfine parameters computed in Chapter 2 to
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validate the predictions for holes.

The calculation presented in Chapter 2 can also be extended to account for strain. The

symmetry of the hyperfine Hamiltonian can be drastically different depending on the subspace

under consideration. For example, in GaAs and silicon, while the conduction-band hyperfine

Hamiltonian is isotropic, the heavy-hole hyperfine Hamiltonian is Ising-like (highly anisotropic).

The symmetry of the hyperfine Hamiltonian can greatly influence the spin dynamics: e.g. in

contrast to isotropic hyperfine Hamiltonians, Ising hyperfine Hamiltonians can be exploited

to extend coherence times with a properly chosen applied magnetic field [105]. Thus, it would

be interesting to investigate (perhaps using DFT) how strain modifies the crystal eigenstates

and, in turn, the symmetries of the effective hyperfine Hamiltonian (in relevant subspaces).

Such an investigation could lead to an understanding of how to strain different crystals to

achieve advantageous effective hyperfine Hamiltonians.

In Chapter 4, we listed the important heavy-hole spin-orbit couplings present in an

asymmetric GaAs quantum well. This list includes the dipolar spin-orbit coupling which

may be necessary to obtain a quantitatively accurate description of the heavy-hole system.

Recent measurements of the heavy-hole relaxation time, T1 [53], and heavy-hole leakage

current in the Pauli spin-blockade regime [106] have been shown to be consistent with a

heavy-hole spin-orbit coupling that is almost entirely Dresselhaus-like. We hypothesized in

Chapter 4 that since the Rashba and Dresselhaus spin-orbit couplings dominate at large

and small k‖ respectively, that the observables of Refs. [53, 106] are sensitive to the states at

small k‖. This hypothesis can be tested by computing T1 [49, 51, 107] and spin-flip tunneling

rates [108,109] in the respective systems and verifying if the results are consistent with the

measurements. These calculations could also lead to a deeper understanding of these systems.

For example, ascertaining the parametric dependencies of T1, accounting for all the spin-orbit

coupling terms (including the dipolar spin-orbit coupling), could be useful to determine how to

suppress spin relaxation. More generally, understanding the spin-orbit-mediated electric-field

couplings in these systems could lead to a better understanding of how to electrically drive

Rabi oscillations and manipulate spins.

The theory presented throughout this thesis has been primarily applied to specific materials,

i.e. GaAs, silicon, and germanium. However, the methods developed can be generalized and

used to calculate hyperfine and spin-orbit parameters for other systems. Thus, these methods
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could be useful to catalog spin-qubit systems (accounting for e.g. crystaline symmetries,

nanostructure geometry, and strain) with respect to their effective hyperfine and spin-orbit

Hamiltonians. Such a catalog would allow one to chose the optimal spin-qubit system based

on the intended application.

The methods discussed in this thesis can be extended even further, beyond applications

to spin qubits. The results for the hyperfine parameters (Chapter 2) and spin-orbit gaps

(Sec. 4.3.1) provide some evidence that the DFT procedure we have presented can be used

to obtain a fairly accurate description of the wavefunctions (at least near the atomic cores).

A crucial component of the DFT procedure of Chapter 2 is DFT+k · p, which allows us

to extend the accuracy of the k = 0 Bloch functions to all finite k states. With accurate

wavefunctions in hand, matrix elements of general operators can be computed and bulk

properties besides hyperfine and spin-orbit couplings can be calculated. These properties

include, but are not limited to, polarizabilities, magnetic susceptibilities, and electron-phonon

couplings. As touched upon in Sec. 2.5, this procedure may also be useful to calculate

topological invariants for candidate topological materials. Thus, the DFT and DFT+k · p
procedures are extremely versatile and can potentially be used to predict properties of new

or existing materials or to design materials with desired qualities.
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A. Miard, A. Lemâıtre, X. Marie, and M. Chamarro, Hole–nuclear spin

interaction in quantum dots. Phys. Rev. Lett. 102 146601 (2009).
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R. Laviéville, L. Hutin, S. Barraud, M. Vinet, M. Sanquer, and

S. De Franceschi, A CMOS silicon spin qubit. Nat. Commun. 7(1) 1 (2016).

[75] A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl,
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