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Abstract 

There is a c1ass of plate buckling problems in which buckling occurs in the presence of a 

constraining medium. This type of buckling has been investigated by many researchers, 

mainly as buckling of elastic columns and plates on elastic foundations. Analytical 

solutions have been obtained by assuming the foundation to provide tensile as well as 

compressive reaction forces. The present work differs from the previous ones in two 

respects. One, the foundation is assumed to be one-sided, thus providing only the 

compressive resistance. Two, the plates are allowed to be stressed in the plastic, strain­

hardening range. Equations for determining the buckling stresses and wave1engths are 

obtained by solving the differential equations for simply supported and c1amped long 

rectangular plates stressed uniformly in the longitudinal direction. The relevance and the 

usefulness of the obtained formulas is demonstrated by comparing the predicted results 

with the experimental results of other researchers on buckling of concrete filled steel box­

section and HSS columns. It is shown that the theoretical buckling loads match quite 

c10sely with the experimental ones, and hence, should prove useful in formulating mIes 

for the design of such columns. 
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Résumé 

Il Y a une catégorie de problèmes liés au voilement des plaques minces dans lesquels le 

flambage se produit en présence d'un milieu de contrainte. Ce type de flambage a été 

considérablement étudié par les chercheurs comme étant un problème de flambage de 

colonnes et des plaques élastiques sur fondation élastique. Des solutions analytiques ont 

été obtenues en supposant que la fondation fournit de forces de réaction compressives 

aussi bien que de tension. Le travail actuel diffère du précédent à deux égards. 

Premièrement, on suppose que la fondation ne peut fournir que des réactions 

compressives. Deuxièmement, les plaques sont sollicitées dans le domaine post-élastique. 

Des formules pour les charges de flambage et les longueurs d'onde décrivant les modes de 

flambage sont obtenues, en résolvant les équations différentielles pour les cas des plaques 

longues rectangulaires soumises à un effort uniforme en direction longitudinale. La 

pertinence et l'utilité des formules obtenues sont démontrées en comparant les résultats 

prédits avec des résultats expérimentaux obtenus par d'autres chercheurs pour le 

flambage de tubes rectangulaires en acier remplis de béton et des colonnes tubulaires de 

type HSS. On remarque que les prédictions du flambage théorique sont très similaires 

aux résultats expérimentaux. En conséquence, le modèle théorique devrait s'avérer utile 

pour formuler des règles pour la conception de colonnes de ce type. 

-ii-



Acknowledgments 

l would like to express sincere thanks to my research supervisor Professor S. C. 

Shrivastava of Department of Civil Engineering and Applied Mechanics, McGill 

University, whose help, stimulating suggestions, and encouragement helped me at all 

times in doing the research and writing this thesis. 

l would like to express special thanks to my wife Weixia, whose love, patience, and 

unwavering support enabled me to complete this work. 

-111-



Table of Contents 

Abstract ................................................................................................................. .. 

Resume (French) ................................... ........................... ......... ....... .............. ......... 11 

Acknowledgments .. ................ .............................. .................. .................... ............. iii 

Table of Contents .................................................................................................... IV 

List of Major Symbols ............................................................................................ VI 

List of Figures ......................................................................................................... viii 

List of Tables .......................................................................................................... x 

Chapter 1 Introduction ........................................................................................ 1 

1.1 Definition of the problem ................................................................................. 1 

1.2 Literature review .............................................................................................. 6 

1.3 Statement of the objectives ............................................................................... 9 

Chapter 2 Elastic Buckling of Infinitely Long Plates on Elastic Foundations 10 

2.1 Goveming equations of equilibrium ................................................................. 10 

2.2 Buckling deflections in contact and no-contact zones ...................................... 17 

2.2.1 Solution for buckling deflections in contact zones .................................. 17 

2.2.2 Solution for buckling deflections in no-contact zones . ............... ............. 19 

2.3 Matching conditions between contact and no-contact regions ......................... 21 

2.4 Equations for buckling loads and wavelengths by the equilibrium method ..... 23 

2.5 Equations for buckling loads and wavelengths by the method ofvirtual work 25 

2.6 Solutions ofbuckling loads and wavelengths under simply supported edges '" 29 

2.7 Solutions ofbuckling loads and wavelengths under c1amped edges 33 

Chapter 3 Plastic Buckling of Infinitely Long Plates Resting 

on Elastic Foundations ...................................................................... 36 

3.1 Constitutive relations of the plasticity theories ................................................. 36 

3.2 Constitutive relations for a plastic bifurcation analysis .................................... 39 

3.3 Equations for buckling loads and wavelengths by the equilibrium method ..... 41 

-IV-



3.3.1 Equations for buckling displacements in the contact and no-contact 

regions .................................................................................................... 42 

3.3.2 Derivation of the buckling equations ....................................................... 43 

3.4 Equations for buckling loads and wavelengths by the method of virtual work 44 

3.5 Buckling loads and wavelengths for simply supported plates .......................... 45 

3.6 Buckling loads and wavelengths for clamped plates ........................................ 50 

Chapter 4 Application to Concrete-filled Steel Box Columns, and 

Verifications with Experiments ........................................................ 53 

4.1 Application to concrete-filled steel box columns ............................................. 53 

4.2 Verification with experiments ........................................................................... 57 

Chapter 5 Summary and Conclusions 66 

5.1 Summary ........................................................................................................... 66 

5.2 Conclusions ....................................................................................................... 69 

5.3 Suggestions for future work .............................................................................. 69 

References .... ............... ...... ........... ........................... ...... .......... ...... ...... ........ ........... 71 

-v-



~ .. 

a 

b 

Ac, As 

B,C,D,F 

B',C',D',F' 

cl' dl 

C2, d2 

e, 9 

D 

E 

Et 

Es 

J2 

f~ 
G 

k 

Mxx, Myy, Mxy 
N cr 

Nc 

N s 

NT 

Nu 

t 

List of Major Symbols 

plate length 

plate width 

area of concrete core, area of steel section 

general moduli for plate buckling analysis 

elastic-plastic moduli in plastic plate buckling 

related to roots of the characteristic equation in the contact part 

related to roots of the characteristic equation in the no-contact part 

parameters in elastic-plastic moduli, e = E / Es - 1, 9 = E / Et 

elastic rigidity of a plate 

y oung's modulus of elasticity 

tangent modulus 

secant modulus 

second invariant of the deviatoric stress Sij, J2 = ~SijSij 
crushing strength of concrete in cylinder test 

shear modulus 

modulus of elastic foundation 

moment stress resultants per unit length 

buckling load per unit length ( = acr t) 

ultimate strength ofconcrete core (= O.85f~ Ac) 

bifurcation load of the steel section of the column ( = a crAs) 

the capacity predicted by the present theory for the column 

the capacity obtained in experiments for the box columna 

deviatoric stress components, Sij = aij - !akkDij 

plate thickness 

WI (Xl, y), W2 (X2, y) buckling deflections in contact and no-contact regions 

x,y,z coordinate directions 

foundation modulus parameter ( = kb4 /1[4 D) 

coefficients of differential equations in contact and no-contact zones 

elastic buckling of simply supported plates 

coefficients of differential equations in contact and no-contact 

zones elastic buckling of clamped plates 

-Vl-



(PI (Xl) 

<P2 (X2) 
if; (y) 
À 

1/ 

2(,2ç 

coefficients of differential equations in contact and no-contact 

zones plastic buckling of simply supported plates 

coefficients of differential equations in contact and no-contact zones 

plastic buckling of clamped plates 

plate strains due to buckling, fij 

buckling function in x direction, contact part x = Xl 

buckling function in x direction, no-contact part x = X2 

buckling function in y direction 

buckling load parameter for a plate ( = Ncrb2 /7r2 D) 

J-L = 7r/b 

Poisson's ratio 

plate stresses due to buckling, (Jij 

von Mises equivalent stress, (Je = J3J; = J~SijSij 
yield stress of steel 

buckle lengths, contact and no-contact parts 

-Vll-



List of Figures 

Figure 1-1 Concrete-filled steel box section column [1] ....................................... 2 

Figure 1-2 Delamination in a composite plate - buckling mode ............................ 2 

Figure 1-3 Buckling modes of short plates ............................................................ 3 

Figure 1-4 Buckling mode of an infinitely long plate resting on a one-way elastic 

foundation, showing zones of contact and no-contact ......................... 4 

Figure 2-1 Buckling mode of an infinitely long plate constrained unilaterally 

by an elastic foundation ....................................................................... Il 

Figure 2-2 Forces and moments acting on a plate coordinate element .................. Il 

Figure 2-3 Longitudinal section ofbuckling mode ofan infinitely long plate resting 

on a one-way elastic foundation ...... .......... ......... ........ ...... ....... ......... ..... 16 

Figure 2-4 Buckling load coefficient - foundation stiffness parameter curves with 

different boundary conditions ......... ................... ........ ...... ........ ........ .... 31 

Figure 2-5 Wavelength to width ratio - foundation stiffness parameter curves with 

simply supported unloaded edges ....................................................... . 

Figure 2-6 Elastic buckling mode of an infinite plate resting on a rigid foundation 

Figure 2-7 Wavelength to width ratio - foundation stiffness parameter curves with 

32 

32 

clamped edges ...................................................................................... 35 

Figure 3-1 Uniaxial stress-strain curve for aluminum alloy 24S - T3 ................. 46 

Figure 3-2 Plastic buckling parameter .À vs. foundation stiffness lX for simply 

supported plates ..... ........ ........................ ...... ......... ....... ...... ......... ......... 48 

Figure 3-3 Contact length /plate-width vs. foundation stiffness for simply 

supported plates; Deformation theory results .. ........ ............. ......... ..... 49 

Figure 3-4 Contact length /plate-width vs. foundation stiffness for simply 

supported plates; IncrementaI theory results .. ........ ....... ....... ........ ........ 49 

Figure 3-5 Plastic buckling parameter .À vs. foundation stiffness lX for c1amped 

plates .................................................................................................... 51 

Figure 3-6 Contact length /plate-width vs. foundation stiffness for c1amped plates; 

Deformation theory results ...................... ...... ........ ....... ....... ........ ......... 52 

Figure 3-7 Contact length /plate-width vs. foundation stiffness for c1amped plates; 

IncrementaI theory results .......... :......................................................... 52 

-Vlll-



Figure 4-1 Typica1 fai1ure modes of concrete-filled box co1umns [1] ................... 54 

Figure 4-2 Sections of steel box co1umns .............................................................. 55 

Figure 4-3 Buck1ing mode sections of steel box co1umns ..................................... 56 

Figure 4-4 Buck1ing load coefficient Àcr vs. aspect ratio a/b for simp1y 

supported isotropic e1astic plates fixed to a foundation of stiffness ct [4] 57 

Figure 4-5 Ramberg- Osgood curve of steel ((J'y = 281MPa) used in the 

experiments conducted by Liang and Uy [5] ....................................... 58 

Figure 4-6 Ramberg-Osgood curve for steel used in the experiment conducted by 

Uy [6] .................................................................................................... 59 

Figure 4-7 Ramberg-Osgood curve for steel used in the experiment conducted by 

D. Liu et al. [1] ..................................................................................... 59 

Figure 4-8 Scatter for the present theoretica1 predictions vs. experiments in [5] 64 

Figure 4-9 Scatter for the present theoretica1 predictions vs. experiments in [6] 64 

Figure 4-10 Scatters for the present theory, EC4, AISC, and ACI vs. experiments 

in [1] .................................................................................................... 65 

-lX-



List of Tables 

Table 2.1 À, ( and ~ for elastic infinitely long simply supported plates 

resting on different tensionless foundations ....... ....... ...... ........ .......... .... 30 

Table 2.2 À, ( and ~ for elastic infinitely long, clamped plates resting on 

different tensionless foundations . ............... ........ ........ ...... ...... ............... 34 

Table 3.1 À, ( and ~ for an infinitely long simply supported Al alloy 24S - T3 

plate resting on elastic one-way foundations with different foundation 

parameter 0: (bit = 25, Deformation theory) ........................................ 47 

Table 3.2 À, ( and ~ for an infinitely long, simply supported Al alloy 24S - T3 

plate resting on elastic one-way foundations with different foundation 

parameter 0: (bit = 25, IncrementaI theory) .......................................... 47 

Table 3.3 À, (, ~ for an infinitely long, clamped Al alloy 24S-T3 plate resting 

on one-way elastic foundations for different foundation parameter 0: 

(bit = 25, Deformation theory) ............................................................. 50 

Table 3.4 À, (, ç for an infinitely long, clamped Al alloy 24S-T3 plate resting 

on one-way elastic foundations for different foundation parameter 0: 

(bit = 25, IncrementaI theory) .............................................................. 50 

Table 4.1 Comparison of the present theoretical predictions NT with experiments 62 

Table 4.2 Comparison of the present theoretical predictions NT with experiments 62 

Table 4.3 Geometrie and material properties of test specimens [1] ....................... 63 

Table 4.4 Comparison of the present theoretical predictions NT with 

experimental results [1], EC 4, AISC, and ACI .................................... 63 

-x-



Chapter 1 

Introduction 

1.1 Definition of the problem 

There are a number of problems dealing with the buckling of columns, plates, and shells 

in which buckling takes place in the presence of a constraining (solid or fluid) medium. 

The well-known examples are buckling of columns and plates against elastic foundations. 

Generally, it is assumed that the structure is bonded to the foundation and the foundation 

can provide tensile as well as compressive forces of resistance. Such problems are termed 

as buckling of structures on two-way foundations. In contrast to this situation, the 

problems of buckling in which the structure is not bonded to the foundation, and thus the 

foundation only provides compressive resistance, are termed as one-way buckling 

problems. This latter category of problems is more difficult to analyze. The present work 

falls into this latter category. 

Concrete-filled box columns fabricated with steel plates, Fig. 1-1, or concrete-filled large 

HSS columns, have been used increasingly in building construction, especially in high­

rise buildings, in recent years. They provide the advantages of high strength, high 

ductility, large strain capacity, and reduction in construction costs. These advantages are 

typical of such composite structures. Neglecting the weak bond which might exist 

between the steel and concrete interfaces, the steel plates in the concrete-filled box 

column are constrained by the concrete only against their inward movement. The 

resistance to (one-way) buckling of such columns is increased considerably over those 

without the concrete filling. The buckling when it occurs, is localized, as shown in Fig. 

1-1 (c), Reference [1]. 
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Fig. 1-2 Delamination in a composite plate - buckling mode 

-2-



Short Plate 

Elastic Foundation 

(a) Lift-up huckling mode 

Short Plate 

Elastic Foundation 

(h) Downward huckling mode 

Fig. 1-3 Buckling modes of short plates 
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foundation, showing zones of contact and no-contact 
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The phenomenon of "lift-off' of welded railway tracks due to constrained thermal 

expansion is weIl known. Relevant studies [2, 3] have shown this to be a one-way 

buckling problem in which the foundation is unable to restrain the upward buckling of the 

railway track. The temperature induced 'pop-up' of a pipeline in the vertical plane is 

another example of one-way buckling problems. 

The interlaminar matrix delamination, Fig. 1-2, encountered frequently in composite 

materials, such as FRP (Fibre reinforced polymer) composites, can also be considered as 

a one-way buckling problem. That this is an important issue is evident from the 

numerous experimental and analytical investigations reported in the CUITent literature [2, 

3, 4]. Surface delamination in composites can also be thought of as a one-way plate 

buckling on account of bond failure from the larger substrate. The substrate acts as a one­

sided constraint on the surface delamination layer. 

The above stated and other relevant problems have driven the interests of many 

researchers. They are generaUy treated as stability problems of a plate or a column, with 

or without the consideration of self-weight, subjected to compressive loads and resting on 

elastic foundations, Figs. 1-3 and 1- 4. 

To seek solutions for this class of problem, a number of methodologies have been 

reported in the literature. Sorne researchers [5, 6, 7] have used the finite element and 

finite strip methods. The approximate numerical results thus found have usually proved to 

be of real, but limited, value. In many of these studies, the foundation was regarded as 

capable of providing both compressive as weIl as tensile reactions, despite the fact that 

this assumption may not have been a realistic one. 

The two types of assumptions regarding the foundation action lead to widely differing 

results. There are only few studies which have dealt with cases in which, although the 

foundation is elastic, the buckling of the overlying structure may take place in the plastic 

range. To the best of the author's knowledge, there are no exact solutions dealing with the 

plastic buckling of plates constrained by tensionless elastic foundations. This problem is 

obviously important for concrete-filled HSS or steel box columns, as plastic buckling is a 

more desirable mode of failure than elastic buckling. Therefore, the present work deals 

with determining exact analytical solutions use fui for both elastic and plastic ranges of 

behaviour. The theoretical problem is that of a thin infinitely long plate resting on a 

-5-
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tensionless elastic foundation, and subjected to uniform compreSSIve forces III the 

longitudinal direction. 

When a plate is supported on foundations that are tensionless, the buckling mode can be 

of one sign (lift-up or down, Fig. 1-3) or multi-sign having several waves (Fig. 1-4). The 

former mode is possible for short plates, and the situation can be analyzed by the c1assical 

plate buckling theory. If, however, the plate is long, the situation is completely changed. 

In this latter case there exists the possibility that, under certain compressive forces, 

regions of contact and no-contact would develop simultaneously. Within the no-contact 

regions, the plate lifts away from the foundation, and no forces exist between the plate 

and the foundation. In the contact parts, the plate elicits reaction forces from the 

foundation. The analysis required to find the equations for such buckling is quite difficult 

because, in a sense, a nonlinear eigenvalue problem is to be solved. The analysis is further 

complicated by virtue of the fact that strain-hardening plastic behaviour of the plate 

material is allowed to OCCUf. The results from the analysis are useful for both elastic and 

post-elastic i.e., plastic ranges of behaviour. For the latter case, usually treated in an ad 

hoc fashion, the present analysis fumishes a rational basis for computing the column 

capacity against buckling. As mentioned before, of special interest is the design of 

concrete-filled steel box and HSS colurnns against buckling. 

1.2 Literature review 

Although there are many studies on elastic buckling of plates on elastic foundations, there 

are only a few dealing with plastic buckling of plates, and none on plastic buckling of 

plates on tensionless foundations. Timoshenko [8] was one of the first authors to analyze 

deflection (not buckling) of rectangular plates subjected to transverse loads, and resting 

on elastic subgrades. A theory of plastic buckling with its application to geophysics was 

formulated by Bijlaard [9] in 1938. Bijlaard [10] applied the well-known plasticity 

theories and obtained bifurcation stresses for axially stressed plates. However, the 

substratum in Bijlaard's paper was taken to be providing both tensile and compressive 

reactions. The formulas for buckling loads of elastic plates resting on elastic foundations, 

were also derived in the book by V. Z. Vlasov and N. N. Leont'ev [11], but again for two­

way foundations. 

-6-



In all the works mentioned above the foundation was assumed to provide two-way 

resistance equally. Evidently, as pointed out before, this may not always be an acceptable 

physical situation. Sorne early researchers did try to address the problem of one-way 

contact in a different context. Weitsman [12] determined the radius of contact between an 

infinite elastic plate and a tensionless semi-infinite elastic half space when the plate is 

subjected to a concentrated transverse force against the half space. The problem was 

further investigated by Weitsman [13] who determined the displacements in the contact 

and no-contact regions, but did not discuss stability problems. The displacements of a free 

rectangular plate resting on a Winkler-type tensionless foundation, subjected to a 

uniformly distributed load, moment and a concentrated load against the foundation, were 

obtained by Zekai Celep [14] by addressing the contact and no-contact parts of the plate 

separately. However, no buckling issue was raised by this author either. 

With increasing application of composite materials in 1980's, researchers began to focus 

on the issue of delamination in composite components. Delamination in laminated plates 

was addressed by Herzl Chai et al. [3] as a one-way buckling (lift-up) problem, since the 

supporting sublaminate essentially behaves as a rigid foundation. John Roorda [2] 

presented, using the energy approach, the essential features of the mechanics of one-way 

buckling, and examined the growth of buckles and delamination in long, elastic plates, 

lying on or bonded to a horizontal boundary. However, both ofthese studies [2,3] did not 

specifically address the enhancement of buckling loads from the supporting foundation, 

as is the case with the present study. 

It appears that an analysis of the elastic buckling of infinitely long plates on a one-way 

elastic foundation was first performed by Paul Seide [15] in 1958. In this study, 

differential equations of equilibrium were used for the contact and contactless regions, 

respectively. The bifurcation load was secured by enforcing the matching conditions at 

the junction of these two regions. This solution assumes all four edges of the plate as 

simply supported. Subsequently Seide [16] also dealt with plastic buckling ofrectangular 

plates, but on a two-way elastic foundation and using the energy method. 

Among recent papers on this subject, it is of special interest to note the work of Khaled 

Shahwan and Anthony Waas [4, 17]. In these papers, energy methods were employed to 

analyze the elastic buckling of infinitely long plates on one-way elastic foundations. 

Exact solutions were obtained for plates simply supported on all four sides. Approximate 

-7-
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solutions were obtained for other cases of support conditions. The novel feature was that 

the plates were allowed to be of orthotropic elastic material. 

As mentioned above, up to the present moment, there are no works which have obtained 

solutions for the plastic buckling of infinitely long plates resting (i.e., with no bond) on 

tensionless elastic foundations. The present work obtains these loads by solving the 

differential equations of equilibrium. The results are exact for the simply supported 

plates. For clamped plates the differential equations are derived using the method of 

virtual work and a realistic approximation of the buckle forrn in the transverse direction, 

Furtherrnore, in contrast to the previous works, the theoretical results of the present work 

have been verified by comparison with experiments. 

One of the most relevant applications of the stability theory of plates supported on one­

way foundations, is in deterrnining the strength of concrete-filled steel box columns. As 

mentioned earlier, predicting and testing the capacities of such columns have become 

increasingly important in recent times due to their use in high-rise construction. Brain Uy 

et al. have conducted a number of experiments [5, 6, 7] to test the ultimate strengths of 

hollow as well as concrete-filled box columns of steel. In these researches the theoretical 

buckling loads (i.e., ultimate strength of steel sections) were found by numerical means 

namely by the finite strip method. Orthotropic plate behavior and energy methods were 

used by H. D. Wright [18, 19] to analyze buckling of such columns. Although Wright 

had considered many different cases of boundary conditions for the plate components of 

columns, the constraining influence of the concrete in-fill was taken into account only 

very roughly by adjusting the boundary conditions of the plates. 

The CUITent design codes, e.g., Eurocode 4 (EC4), American Institute of Steel 

Construction (AISC), and American Concrete Institute (ACI), generally deterrnine the 

axial compressive capacity of concrete-filled steel box columns by summing up the 

strength of the steel hollow section and of the concrete core. The strength of steel section 

is computed on the basis of elastic buckling or yield strength of the constituent steel 

plates of the section and modified by sorne empirical factors. However, these factors 

generally ignore the enhancement of the buckling strength of the plates due to the (one­

way) constraint provided by the concrete core. Also, sorne of these codes are not 

applicable to high strength steel or concrete materials. 
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1.3 Statement of the objectives 

In consideration of the foregoing discussion, the objectives for the present investigation 

were defined to be: 

(i) Derivation of the exact or quasi-exact solutions for the elastic bifurcation buckling of 

infinitely long plates resting on tensionless elastic foundations, subjected to axially 

compressive forces in the longitudinal direction. The solutions will consist of 

determining, by the equilibrium method or the virtual work method, the critical 

bifurcation loads and the corresponding wavelengths, for plates either simply supported 

or clamped along the unloaded edges, Fig. 1-4. 

(ii) Derivation of the exact or quasi-exact solutions for the plastic bifurcation buckling of 

the same class of plates stated above in (i) and shown in Fig. 1-4, by employing the 

constitutive relations of both the deformation and the incremental theories of plasticity, 

and by using the equilibrium method or the virtual work method of analysis. 

(iii) Application of the analytical results to concrete-filled steel box columns, and their 

verification by comparison with experimental results, other theoretical studies, and the 

loads calculated by the design codes. 

(iv) Discussion of the results of the present theory and their experimental verification. 

(v) Recommendations for future studies. 

It may be noted that in the present investigation, the plates are assumed to be thin, as well 

as geometrically perfect. The foundation is assumed to be a linear (Winkler) type. No 

attempt is made to delineate the effects of residual stresses in welded steel sheets. 
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Chapter 2 

Elastic Buckling of Infinitely Long Plates 
on Elastic Foundations 

The analysis of buckling of infinitely long plates resting on elastic foundations in this 

thesis is based on the following assumptions: 

(i) The plate is considered geometrically perfect. For analysis in this chapter, it is 

considered to be made of an isotropie elastic material. It is assumed to be thin with 

respect to length and width dimensions. Its self weight is considered negligible. It is 

loaded by uniformly compressive stress in the longitudinal direction only. The boundary 

conditions are assumed to allow the plate to remain in in-plane equilibrium under slowly 

increasing magnitude of this stress, until a critical value is reached, at which point the 

plate buckles with wavy out-of-plane displacements. Thus, the buckling considered is of 

the bifurcation type. 

(ii) The foundation is considered to be linear elastic, i.e., a Winkler foundation, with 

reaction forces proportional to the transverse deflections. 

(iii) The plate is assumed to be supported without any bonding with the foundation, and 

without any friction present. The foundation thus provides resistance to only its 

compression, and is therefore termed as a tensionless foundation. 

2.1 Governing equations of equilibrium 

Fig. 2-1 shows the coordinate system with respect to the plate geometry. The longitudinal 

edges are at y = 0 and y = b. The pre-buckling state of stress is that of uniform uniaxial 

compression, (Y xx = - (Y or, equivalently, N xx = - (Yt = - N. 
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b 
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Fig. 2-1 Buckling mode of an infinitely long plate constrained unilaterally 

by an elastic foundation 

Ner 

For a bifurcation buckling analysis, only the out-of-plane displacement of the plate needs 

to be considered. This buckling displacement is denoted by w(x, y), The three equations 

of equilibrium, two related to rotation in the x and y directions, and one related to 

translation in the z direction are (Fig. 2-2) as follows: 
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Fig. 2-2 Forces and moments acting on a plate coordinate element: (a) Axial force 
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Fig. 2-2 Forces and moments acting on a plate coordinate e1ement 
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8Mxx + 8Mxy _ Qx = 0 
8x 8y 

(2.1) 
wherein Mxx, Myy, M xy = Myx are moment stress resultants per unit length, Qx, Qy are 

the shear stress resultants per unit length, and k is the foundation modulus equal to the 

reaction force per unit area and per unit deflection of the plate. The expressions for the 

three moment stress resultants relating to the stresses are: 

t t t 

Mxx = 1: ZO"xx dz , Myy = 1: ZO"yydz, M xy = Myx = 1: ZO"xydz 
2 2 2 

(2.2) 

The shear stress resultants Qx and Qy may be expressed as: 

t t 

Qx = 1: O"xz dz, Qy = 1: O"yz dz 
2 2 

(2.3) 

Now, the plate is considered thin, and thereby Kirchhoff assumptions are employed. 

These kinematic assumptions imply no strain in the thickness direction, and as weIl no 

transverse shear strains. In other words, irrespective of the material behaviour, it is 

assumed that Ezz = Ezx = Ezy = O. These conditions are fulfilled by assuming that the 

fibers normal to the undeformed middle (z = 0) surface undergo no length change and 

remain normal to the deformed middle surface, In effect the three coordinate 

displacement functions are taken as 

8w 8w 
u(x, y) = - z 8x ' v(x, y) = - z ay , w = w(x, y) (2.4) 

with corresponding non-zero strains as 

(2.5) 
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Now, the stress assumptions are invoked, again irrespective of the particular material 

behaviour. It is assumed that (J' zz = 0, and the transverse shear stresses (J' xz, (J' yz, although 

non-zero, are not determinable from the stress-strain law. Their resultants Qx, Qyare 

however determinable from equations of equilibrium. The applicable stress-strain 

relations therefore involve only the in-plane stress and strain components. For linear 

elastic behaviour they are 

E E 
(J'xx = 1 _ v 2 (Exx + VEyy ), (J'yy = 1 _ v2 (VEx + Ey), (J'xy = 2 GEXY (2.6) 

where E is Y oung's modulus and v is Poisson's ratio. G is shear modulus, G = (E ) . 
21+v 

These expressions for stresses when substituted in the definitions of moment resultants 

lead to 

(2.7) 
Et3 

where D = ( 2) is called the flexural rigidity of the plate. The equations of 
12 1- v 

equilibrium now become 

(2.8) 
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The third equation in (2.8) is the goveming equation of the problem. This equation poses 

an eigenvalue problem for determining Ner, and has to be solved with stipulated boundary 

conditions on the edges. 

The buckling of a long plate in the presence of a tensionless foundations will occur with 

two distinct regions of deformation, one with contact and the other without contact with 

the foundation. Since the plate is considered infinitely long in the x direction, there will 

be an infinite number of buckling waves in this direction. On the other hand, since the 

plate is of finite width in the y direction, it is reasonable to assume that the minimum 

buckling load would correspond to only a single buckle in this direction. The way the 

plate would lift up in sorne areas, and would compress the foundation in other areas, is 

shown in Fig. 2-1. 

Let Wl(Xl, y) and W2(X2, y) represent the out-of-plane deflections in the contact (k =f 0) 

regions and no-contact (k = 0) regions respectively. Then the applicable differential 

equations are 

(2.9) 

in the contact areas, and 

(2.10) 

in the no-contact areas. 

In an effort to effect a separation of variables, solutions in the product form: 

(2.11) 

(2.12) 

are sought where <Pl (Xl) and <P2(X2) are functions of X alone, and 'lj;(y) is a function of y 

alone. Xl is the X coordinate in the contact region, whereas X2 is that in the no-contact 

region, as shown in Fig. 2-3. Thus, one obtains 
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(2.13) 

in the contact areas, and 

(2.14) 

in the no-contact areas. From these equations it is apparent that a separation of variables 

is possible if 

- ph!;, or equivalently, if 

(2.15) 

where KI and K 2 are arbitrary constants. For plates simply supported on sides y = 0 and 

y = b, one must have /-l = n
b
7r where n is an integer equal to the number of half waves in 

the y direction. It will be assumed on physical grounds that n = 1 corresponds to the 

least bifurcation load, i.e., the critical load. In the further analysis it will be assumed that 

/-l = i and, 'lj; = sin /-lY· 

Infinite Plate 

1 
One-way Foundation :---+ XI 

Fig. 2-3 Longitudinal section ofbuckling mode of an infinitely long plate 

resting on a one-way elastic foundation 
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2.2 Buckling deflections in contact and no-contact zones 

2.2.1 Solution for buckling deflections in contact zones 

From the above, the differential equation (2.13) valid for the contact region can be written 

as 

(2.16) 

where 

(2.17) 

It is to be noted that while f 2 is always a positive number, fi is unrestricted. To find the 

solution of this ordinary differential equation with constant coefficients, let 

1>1 (Xl) = al emx1 where al is an arbitrary constant. Then, satisfaction of the differential 

equation requires that m be a root of 

(2.18) 

Solving the quadratic equation, one obtains 

where 

(2.19) 

~ ean be negative, positive, or zero. Renee aU three possibilities must be eonsidered. 

Consider first the case ~ < 0, or equivalently 4 f 2 > fi, The four roots are the foUowing 

complex conjugate pairs. 
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where 

The solution can therefore be written as 

4>l(Xl) = A~ COSh(CIXl) cos(d1x1) + A;cosh(ClXl) sin(d1xl) + 
+ A~sinh(clxl) cos(d1Xl) + A~sinh(clxl) sin(dlxl) 

(2.20) 

(2.21) 

(2.22) 

where constants A~, A;, A~, and A~ depend in general on the matching conditions with 

the solution for the contactless part. Now if the origin for this solution is taken at the 

centre of the buckle, then the solution must be symmetric about Xl = O. This symmetry 

condition requires A; = A~ = O. Hence the solution becomes 

(2.23) 

From Fig. 2-3, it is apparent that at the ends, Xl = ± ( of this buckle, 4>1 ( ± () = 0, 

which then requires 

and finally the solution for this case (~ < 0) of roots is expressible as 

4>l(Xl) = A~ {sinh(clxl) sin(dlxd - tanh(cI()tan(dl()cosh(ClXl) cos(dIXl)} 

Since A~is arbitrary, it is permissible to replace it as A~ = A and write 
Cl 

(2.24) 

(2.25) 

The advantage of this change is that the solution in this form is valid for all values of Cl, 

real, zero, or purely imaginary. When ~ = 0, or equivalently when 4 r2 = ri, it is found 

that Cl = 0, and the above solution becomes the limit as Cl ---+ 0, 
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(2.27) 

Finally, if .6. > 0, or equivalently if 4 r 2 < ri, then Cl = i c~ = purely imaginary, and 

the general solution becomes, with Cl = i C~ 

(2.28) 

or, upon using the connection between hyperbolic and trigonometric functions, 

(2.29) 

which is of the same form, as when .6. > 0 is treated separately as a special case. 

2.2.2 Solution for buckling deflections in no-contact zones 

When there is no contact with the foundation, the modulus k = 0, and the separated 

equation reads 

in which 

r'! = NeT _ 2 p,2 ( = rI, same as before), and r; = p,4 
D 

(2.30) 

(2.31) 

(2.32) 

Analogous to the analysis for the contact cases, one must now find the applicable 

solutions. Assuming CP2(X2) = a2enx2 where a2 is sorne constant, it is found that for it to 

be a solution of the differential equation, n must be a root of 

(2.33) 
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Solving the quadratic equation, one ob tains 

(2.34) 

where 

(2.35) 

Again three cases of roots might arise. However, by using the device introduced earlier, 

all three cases can be considered by one formula. Let /:1' < 0, or equivalently 4r; > r?, 
The four roots are the following complex conjugate pairs: 

where 

The solution can therefore be written as 

<P2(X2) = Bi cosh(c2x2) cos(d2X2) + B~cosh(c2x2) sin(d2x2) 

+ B~sinh(c2x2) COS(d2X2) + B~sinh(c2x2) sin(d2x2) 

(2.36) 

(2.37) 

(2.38) 

where constants Bi, B~, B~, and B~ depend in general on the matching conditions with 

the solution for the contact part. Now if the origin for this solution is taken at the centre 

of the buckle then the solution must be symmetric about X2 = O. This symmetry condition 

requires B~ = B~ = O. Hence the solution becomes 

(2.39) 

The length of a typical contactless buckle is taken as 2ç, with origin at the centre of the 

buckle. Then the symmetric condition, <P2( - X2) = <P2(X2), plus the fact that the 

deflection is zero atthe ends of the buckle, <P2( ± ç) = 0, Fig. 2-3, it is found that the 

solution may be written as 
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(2.40) 

where B is a constant. As before this form of the solution is applicable to aU three cases 

of !:l.l < 0, !:l.' = 0, and !:l.' > O. Sirnilar to the case of !:l.' < 0, setting C2 = i c~ the 

formula of the deflection in contactless zones for !:l.' > 0 foUows 

(2.41) 

2.3 Matching conditions between contact and no-contact regions 

In the previous section, separate solutions were obtained for the contact and no-contact 

regions of the buckled plate. Since they belong to the sarne plate, they must be compatible 

along the comrnon edges between the two parts. At these edges the two solutions must 

have the same deflection, same slope, sarne bending moment, and same shear. As shown 

in Fig. 2-3, the common edges occur at Xl = ( for the contact part, ant at X2 = - ç for 

the no-contact part. The equality of deflections, has already been accounted for by 

requiring them to be zero at the cornmon edges. The remaining rnatching conditions are 

dW11 dW21 
dXl Xl =( = dX2 X2=-~ 

(2.42) 

(2.43) 

(2.44) 

The first equation, by virtue of the product solutions (2.11) and (2.12) leads to the 

equality of the first derivatives, as 

(2.45) 
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For the second condition, recall the expression (2.7) for the bending moment Mxxin terms 

of the derivatives of deflection. For example, 

M 
1 

- - D(8
2
w 1 8

2
w1 )1 xx - 2 + /J 2 

x[=( 8x1 8y x[=( 
(2.46) 

Now, since w1 (Xl, y) = 4>1 (xI)~(y), and <PI (() = 0, the above equation becomes 

(2.47) 

In a similar fashion, for the no-contact zone it follows that 

(2.48) 

Hence, regardless of ~(y), the equality of the bending moments at the common edges 

requires equality of the second derivatives of the two solutions: 

d
24>(X1) 1 d

2
4>2(X2) 1 

dXI Xl =( - dx~ X2=-Ç 
(2.49) 

The expression for the shear force Q x at the common edge as part of the contact zone is, 

(2.50) 

which, in view of the product solution (2.11) and (2.12), reduces to 

(2.51) 

Analogously, the expression for the no-contact zone reduces to 

(2.52) 
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Renee, in view of the matching of the first derivatives of the two solutions, the equality of 

the shears requires equality of the third derivatives, i.e., 

d3<pl~Xl) 1 d3<p2~X2) 1 

dX1 Xj= ( dX2 x2=-i; 
(2.53) 

To summarize, the four matching conditions reduce to equality of the three successive 

derivatives together with the functions being zero at the common edges. These conditions 

have been derived on the basis of the product solution, but without regard to the specifie 

nature of the function 'ljJ(y). This observation is important for the product solutions to be 

obtained by the virtual work rnethod. 

These conditions are used to determine buckling load and wavelength equations in the 

next section. 

2.4 Equations for buckling loads and wavelengths by the equilibriurn method 

Let the first derivatives at the cornrnon edges of the two regions be expressed as 

(2.54) 

which, as indicated, are evaluated after performing the indicated differentiation, and 

where it rnay be noted that while an is a function of (, a12 is that of ç. The equality ofthe 

first derivatives requires that 

Sirnilarly, the equality of the second and third derivatives rnay be expressed as 

a21A - a22B = 0 

a31A - a32B = 0 

where 
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(2.57) 

(2.58) 

are evaluated as indicated. A Mathematica [20] program can be written to ob tain the 

coefficients au, al2 etc. 

Apparently, there are thus three equations with two unknowns A and B. However, the 

fact is that the length of buckling regions 2( and 2ç and the buckling load also are 

unknowns of the problem. The constants A and B are eliminated between two pairs of the 

above equations as follows. Thus, elimination of A and B from the first and second, and 

from first and third, gives the following two equations: 

(2.59) 

(2.60) 

The third relation obtained from second and third equations (2.56), a2la32 - a22a31 = 0, 

is a linear combination of the previous two, and is therefore an identity. This relation is 

not used in the following, but it might be used as a check on the accuracy of the numerical 

results. The two equations may be called the buckling equations, are expressible as 

Eql = d2sech(c2ç)sec(d2ç){ cos(2d2ç) + cosh(2c2Ç)}* 

{sech( Cl ()sin( dl ()+ dl sinh( CI ()sec( dl ()) - dlsech( Cl ()sec( dl (){ cos(2dl () + 
Cl 

cosh(2cl ())*{ sech( c2ç)sin( d2ç)+ d2 sinh( c2ç)sec( d2ç)} = 0 (2.61) 
C2 

Eq2 = - {(ci - 3dî)sech(cI()sin(dl ()+ dl (3ci - dÎ)sinh(CI()sec(dl ()}{sech(c2ç)* 
Cl 

sin(d2ç) + d2 sinh(c2ç)sec(d2ç)} + {sech(cI()sin(d1()+ dl sinh(cI()sec(d1()}* 
C2 Cl 

{( c~ - 3 d~) sech( c2ç)sin( d2Ç) + d2 (3c~ - dDsinh( c2ç)sec( d2ç)} = 0 (2.62) 
C2 

These equations can be simplified as the following two equations 
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Eql = _1_ {cIsin(2dl()+dlsinh(2cI()} __ 1_{ c2sin(2d2ç)+d2Sinh(2c2ç)} = 0 
cldl {cos(2dl() + cosh(2cl()} C2d2 cos(2d2ç) + cosh(2c2Ç) 

(2.63) 

Eq2 = _1_ {cIsin(2dl() + dlsinh(2cI()} + 

Cl dl {(ci _ 3 dDsin(2dl ()+ dl (3ci - dî)sinh(2cI ()} 
Cl 

{C2 sin(2d2ç) + d2sinh(2c2ç)} _ 0 

C2 d2 {( c~ - 3 dDsin(2d2ç) + d2 (3c~ - d~)sinh(2c2ç)} -
C2 

1 
(2.64) 

These latter equations are more convenient for the trial and error procedure of solving 

them. For a plate of given dimensions, b and t, material properties, E and v, and a given 

foundation modulus k, the way these equations are used to calculate the minimum Ner 

and the corresponding buckle lengths 2( and 2ç is explained later in Section 2.6. 

2.5 Equations for buckling loads and wavelengths by the method of virtual work 

The above analysis is exact in the sense that no mathematical approximations were made 

to arrive at the solution. This was possible because the boundary conditions of simply 

supports at y = 0, b allowed separation of variables. For other boundary conditions at 

these edges, say fixed edges, one may resort to the method of virtual work or energy 

methods to find approximate analytical solutions. Using the energy method, the buckling 

loads for infinitely long orthotropic e1astic plates resting on one-way elastic foundations 

were derived in Ref. [17]. 

Here, the more general method of virtual work is adopted. For a buckled plate the virtual 

work expression, assuming validity of the Kirchhoffkinematic hypothesis, is 

{ 8 w 8 /5w { 
- J A Ner 8x 8x dA + J A F /5w dA (2.65) 
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where wand /5w are respectively the actual and virtual displacements of the plate, Ner is 

the buckling load per unit length of the side of the plate, A here denotes the area of the 

plate, and F is the foundation reaction force per unit area of the plate. 

Let the general relations between stress and strain increments arising due to bifurcation 

buckling be written as 

(2.66) 

where B, C, 15, Fare appropriate moduli at the bifurcation state. These moduli are 

assumed constant throughout the plate body. Now, according to Kirchhoffhypothesis, the 

strains are related to the displacement derivatives as 

(2.67) 

which when substituted in the constitutive relations (2.7), give the moment resultants, 

upon invoking their definitions, as 

The virtual work expression can therefore be written as 

(2.69) 

where F = k w has been substituted, k being the foundation modulus, which in the 

present case of tensionless foundation is allowed to be zero in the no-contact zones. The 

assumption is now made that the deflection is the product of two functions, 

w(x,y) =~(x)~(y) (2.70) 
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where 'Ij;(y) is a suitably chosen known function of y which satisfies the desired boundary 

conditions at y = 0, b edges. Then 'Ij;(y) is not subject to any variation, and therefore 

8w(x, y) = 8</>(x) 'Ij;(y), 

88w = d8</> 'Ij; 88w = 8</> d'lj; 
8x dx' 8y dy 

(2.71) 

With this assumption incorporated, one obtains 

(2.72) 

Introducing the symbols 

(2.73) 

the virtual work expression can be written as 

(2.74) 

The integration is with respect to x, the longitudinal coordinate. Since the end points are 

at infinity, one is not interested in the boundary conditions, but only the differential 

equation. The latter is obtained as coefficient of 8</>, when integration by parts has 

reduced d;~t and d:: to 8</>. The differential equation thus obtained is 
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(2.75) 

Dividing throughout by J3"iÎJl the above equation can be written in the form 

(2.76) 

where 

(2.77) 

This equation is exactly of the same form as the equations (2.16) in the contact zones 

when k =1= ° and (2.33) in no-contact zones when k = 0, which has been obtained in the 

case of simply supported plates by the equilibrium method, allowing separation of 

variables. For the no-contact zone, k = 0, and the coefficients for the differential 

equation for 4>2 (X2) are 

(2.78) 

For linear elastic isotropie materials 

_ _ Et3 _ _ _ _ _ 

B = D = ( 2) = D, C = liB, 2F = D - C 
12 1 - 11 

(2.79) 

The coefficients become 

(2.80) 

For a simply supported plate 'IjJ(y) = sin 1[; = sin J-LY , where J-L = i, one finds 

(2.81) 
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(2.82) 

Hence, the coefficients in the differential equation become 

(2.83) 

which then leads to the same differential equations as those obtained by the exact 

equilibrium method: 

(2.84) 

in contact regions, and 

(2.85) 

in contactless regions for the infinite isotropic plates, simply supported on unloaded 

edges. 

2.6 Solutions of buckling loads and wavelengths for simply supported plates 

The two buckling equations, Eqs. (2.63) and (2.64), obtained by the equilibrium method 

for the simply supported plate, are now solved to determine the minimum stress which 

would cause buckling. These equations are, however, nonlinear. In each of the two 

equations there are three variables, namely the buckling load NeT' the contact area buckle 

length 2(, and the no-contact buckle length 2ç. One cannot find a solution for three 

unknown variables from two equations. It is necessary to have a third condition. This 

condition is supplied by the fact that the buckling load NeT must be a minimum. In the 

procedure adopted .here, one assumes a value of 2(, the contact buckle length, and then 

finds the other two unknowns from the two buckling equations. This is do ne with 

different values of 2( (employing a trial and error procedure) until that value for which 

the buckling load NeT has the lowest value. The corresponding variable 2ç, the buckle 

length of the no-contact zones, is also then obtained. The Mathematica program for 
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doing these calculations can be constructed without much difficulty. The interested reader 

may also obtain the author's pro gram by contacting him via the department address. 

To incorporate with previous works, particularly Reference [17], the following non­

dimensional quantities are introduced: 

(2.86) 

Thus, NeT is replaced by À, and k is replaced by a. It may be recalled that the buckling 

load for an infinitely long simply supported plate, without a foundation, NeT = 4:: D 

corresponds to À = 4. Therefore, naturally with a foundation present, À > 4. 

As mentioned previously, a Mathematica pro gram was written to solve the buckling 

equations. A set of numerical results comprising of À, ( and ~ values were obtained for 

the simply supported plate. Table 2.1 lists these values for the tensionless foundation 

modulus k varying from 0 to 00. 

À 

(lb 
~/b 

Table 2.1 À, ( and ~ for elastic infinitely long simply supported plates 

resting on different tensionless foundations 

a=O a = 1.0 a = 1000 a = 1.0 x 105 a = 00 

4.0 4.332 5.316 5.333 5.333 
0.5 0.414 0.075 0.024 0 
0.5 0.535 0.759 0.832 0.866 

Figure 2-4 provides a graph of À versus a. Also shown on this graph are the results for 

the c1amped plate, to be discussed later. The graph shows that as the foundation modulus 

increases the buckling load also increases. On the other hand, as shown in Fig. 2-5, the 

wavelength of the contact buckles decreases as the modulus increases, Inversely, the 

wavelength of no-contact regions increases. When a reaches a large value, (the 

foundation is then practically rigid), the bucking load coefficient À reaches its maximum 

value of 5.333, the contact wavelength to width ratio (lb approximates 0, and the no­

contact wavelength to width ~/b reaches its highest value 0.866. The case (lb = 0 
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means that the plate has only line contact and buckles unilaterally, i.e., onlyaway from 

the foundation, Fig. 2-6. 

The maximum value of À = 5.333, means that the maximum increase in the buckling 

load due to a foundation is 33% over that when there is no foundation. 
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Fig. 2-4 Buckling load coefficient (À) - foundation stiffness parameter (a) curves 

with different boundary conditions 
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Fig. 2-6 Elastic buckling mode ofan infinite plate resting on a rigid foundation [6] 
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2.7 Solutions of buckling loads and wavelengths under clamped edges 

Following Ref. [17], it is assumed that for an infinitely long plate in x direction and 

clamped at the edges y = 0, b, a suitable solution is w(x, y) = 4>(x )sin2
( :y) to represent 

the deflection of the plate. This choice of '!jJ(y) = sin2 (:y) satisfies the conditions of 

deflections and slopes being zero at the longitudinal edges, i.e., 

( 0) - (b)_ow(x,y)1 _ow(x'Y)1 -0 w x, - w x, - oy y=o - oy y=b - (2.87) 

. d'!jJ(y) d'!jJ(y) 
smce '!jJ(O) = '!jJ(b) = ~IY=o = ~Iy=b = 0 (2.88) 

The method of virtual work needs to be used to find the buckling load and wavelength 

under c1amped boundary conditions. Now, recall that the coefficients in the solution 

equations (2.84) and (2.85) are given by 

(2.89) 

For the function '!jJ(y) = sin2 :y = sin 2f-ty, where f-t = ~, one finds 

(2.90) 

and hence for a plate of the isotropic elastic material, the above coefficients become 

(2.91) 

Using these coefficients for determining Cl, dl and C2, d2 for substituting in into Eqs. 

(2.63) and (2.64) and carrying out the iterative numerical procedure outlined in Section 

2.6, one can arrive at the solution of the critical buckling stresses and the corresponding 

wavelengths, see Table 2.2. 

The results in Table 2.2 are analogous to the case of simply supported plates. The 

buckling loads and the wavelengths vary with the foundation modulus in the same way. 
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The buckling load of a long clamped plates with no foundation corresponds to À = 7.285, 

When the foundation is rigid the value of the buckling coefficient is maximum, 

À = 10.362, which represents an increase of 42%. Variation of the buckling load 

coefficient À versus foundation stiffness parameter Œ was shown in Fig. 2-4. The 

variation of the wavelength to width ratio (1 b versus foundation stiffness parameter Œ is 

shown in Fig. 2-7. 

It must be realized that whereas the solution for the simply supported plates was exact, 

that for the clamped plate is based on an assumed mode shape in the y direction. The 

latter is therefore an approximate solution, the goodness of which cannot be ascertained 

exactly. However on physical grounds, the results should be accurate enough, since the 

assumed mode shape is quite realistic. 

À 

(lb 
çlb 

Table 2.2 À, ( and ç for elastic infinitely long, clamped plates 

resting on different tensionless foundations 

Œ=O Œ = 1.0 Œ = 1000 Œ = 1.0 X 105 

7.285 7.483 10.229 10.362 
0.5 0.320 0.075 0.024 
0.5 0.339 0.467 0.536 

-34-

Œ = 00 

10.362 
0 

0.570 



,.Q 
........ 
~ 

0.50 
: 

: 

0.45 : 

0.40 .. _-
i 

1 

0.35 1 
1 

_._~~ 

0.30 

0.25 

0.20 

0.15 

i 

\ 
! 
i 

i 

"' """" 0.10 - 1 
0.05 i 

o 50 100 150 200 250 

Fig. 2-7 Wavelength to width ratio - foundation stiffness parameter curves 

with clamped unloaded edges 

-35-



~­

! 

Chapter 3 

Plastic Buckling of Infinitely Long Plates 
Resting on Elastic Foundations 

This chapter is concemed with the plastic buckling of infinitely long plates on elastic 

foundations. The main difference with the preceding chapter is that now the material 

moduli are those for an elastic-plastic, strain-hardening material. Aluminum is a typical 

example of such material, and also sorne types of steel which do not exhibit a yield 

plateau like mild steel, but have a rising strain-hardening behaviour. The kinematic 

assumptions made here are identical to those in the previous chapter. Hence the equations 

of equilibrium are identical, and so is the virtual work expression. 

3.1 Constitutive relations of the plasticity theories 

The following discussion is elementary and restricted to the purpose of this thesis. The 

reader may consult standard books on the theory ofplasticity, notably the one by Hill [21] 

for detailed discussions and explanations. 

The constitutive relations needed here for the present bifurcation analyses are of the 

incremental type. Given a present state of deformation, with stresses {aO} and strains 

{éO}, they relate the increments in stresses {da }to the increments in strains {dé}, i.e., 

{da }=[D]{ dt} (3.1) 

where [D] is the matrix of elastic/plastic moduli. The matrix [D] incorporates the 

postulated plastic behaviour of the material, and generally depends on the existing 

stresses {aO} and strains {éO}. There are two competing theories of plasticity which are 

simple, and therefore most often used. They are called the J2 incremental and J2 

deformation theories of plasticity. They both incorporate the following observed and 

experimentally corroborated behaviour of metals. First, they satisfy the condition of zero 

plastic volume change in recognition of the fact that, for metals, plasticity arises due to 
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slip displacements of metal crystals over slip planes. Secondly, they obey the von Mises, 

or alternatively, the J2 yield condition: 

O"e = /3.h. = O"~(cp) (3.2) 

This condition says that, potentially, a plastic deformation is possible if the CUITent stress 

point, typified by 0" e = /3.h. for a general state of stress, lies on the CUITent yield 

surface. 0" e is called the von Mises equivalent stress. This yield surface depends on the 

total plastic strain cp accumulated during previous history of plastic straining. The yield 

surface expands uniformly in the stress space with increasing cp. This behaviour, valid 

for small strains, is called isotropie hardening. An increment of stress when the stress 

point (before the increment) is situated on the yield surface will result in dO"e = 3
2 

dJ2
• If 

O"e 
then, dJ2 > ° there is loading, i.e. there is further plastic deformation. If dJ2 = 0, there 

is neutral loading in the sense that although no plastic deformation takes place, the 

material remains in the yield state by virtue of the fact that the stress point is still on the 

yield surface, and there is possibility of plastic increments of strain for a second 

increment of stress. When however, dJ2 < 0, there is unloading. The stress point is no 

longer on the yield surface (it has come inside) and small enough increments of stresses 

will only pro duce elastic strains. 

The incremental theory postulates relations between the deviatoric stress 
O"kk 8 d hl· .. Th 1· .. Sij = O"ij - 3 ij an tep astIc stram mcrements. e e astIc stram mcrements are 

related to the stress increments by the standard elastic law for plates. Thus, 

(3.3) 

where, h is the hardening parameter related to the position of the stress point on the 

uniaxial stress-strain curve of the material, and [ CE 1 is the standard compliance matrix for 

linear isotropie elastic behaviour. Under the small strain assumption, the total strain 

increments are taken to be the sum of the elastic and plastic parts. The combined relations 

may be expressed as 

{ dE} = [Cd { dO" }, or by inverting them as {dO"} = [Dt]{ dE } (3.4) 
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where [Ct] denotes the incremental compliance matrix, and [Dt] stands for the 

incremental moduli matrix. It is the inverted form which is needed in the further 

deve10pment of the theory. 

The deformation theory postulates relations between the deviatoric stress 

Sij = (J"ij - (J"~k Oij and the total plastic strains. The elastic strains are related to the stress 

by the standard elastic law for plates. Thus, 

(3.5) 

where now <p is the hardening parameter related to the position of the stress point on the 

uniaxial stress-strain curve of the material, and [CE] is the same matrix as earlier. The 

total strains are taken to be the sum of the elastic and plastic parts. The combined 

relations may be expressed as 

{E} = [CsH (J"}, or by inverting them as {(J"} = [DsH E} (3.6) 

where [Cs] denotes the elastic/plastic compliance matrix, and [Ds] is the inverse of [Cs] 
and may be called the matrix of the secant moduli. 

The difference between the incremental theory and the deformation theory is now c1ear. 

While the former provides a relation between stress and strain increments, the latter 

postulates a relation between the total quantities. The deformatian theory is therefore like 

a nonlinear elasticity theory with stress dependent moduli. The incremental theory on the 

other hand is history dependent and employs the notion of loading and unloading. The 

two theories however become identical if the loading is proportional in that d(J"ij = Œ (J"ij. 

Based on experimental and theoretical considerations, the incremental theory is 

considered a correct theory of plasticity. However, its application is more difficult. 

Therefore, despite its weak foundations the deformation theory continues to be used 

because of its relative simplicity. Moreover, for bifurcation problems, especially of plane 

plates, the bifurcation loads predicted by the incremental theory are sometimes absurdly 

higher than the experimental values. Paradoxically, the bifurcation loads predicted by the 

deformation theory for plane plates are in good and conservative agreement with the test 

results, and also invariably lower than the bifurcation loads from the incremental theory 

[22]. Therefore from a practical point of view it is the deformation theory buckling loads 
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which should be used, like in the present work. The incremental theOly is known to be 

very imperfection sensitive, and hence the maximum loads computed by the incremental 

theory can be made to agree with the experimentalloads if a realistic imperfection growth 

analysis can be carried out. However, this latter procedure is time consuming, and gives 

uncertain answers depending upon the amplitudes of the imperfections, and is usually not 

recommended. 

3.2 Constitutive relations for a plastic bifurcation analysis 

Now, for a bifurcation analysis, one needs incremental relations, even for the deformation 

theory. In buckling of the axially stressed plates, the state of stress changes suddenly from 

a uniaxial one to a multiaxial state, with increments in stress and strain occurring in other 

directions due to buckling. The needed incremental relations for the deformation theory 

are obtained by differentiating the total relations indicated above. Without further going 

into details, it can be said that the applicable stress strain relations can be expressed as 

[10,25] 

{ dO"} = [Dl{ dE} or explicitly as 

dO"xx = B'dExx + C'dEyy , dO"yy = C'dExx + D'dEyy , dO"xy = 2F' dExy (3.7) 

where it can be shown that 

B' = E( g+ 3e + 3) 
g(5 + 3e - 411) - (1- 211)2 

C' = 2E (g - 1 + 211) 
g(5 + 3e - 411) - (1- 211)2 

D'- 4g 
- g(5 + 3e - 411) - (1- 211)2 

F,= __ E __ _ 
2 + 211 + 3e 

(3.8) 

and where in the above 
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E E 
e=--l g=-

Es ' Et 
(3.9) 

These two parameters e and gare found from the uniaxial stress strain curve of the 

material at the stress level equal to the applied axial stress. Es is the secant modulus at 

this level, and Et is the corresponding tangent modulus. 

The above relations, valid for the deformation theory, can be specialized to those for the 

incremental theory by putting e = 0 in the above definitions of the moduli. Furthermore, 

putting g = 1, and e = 0 results in the relations for the elastic behaviour. 

It is now convenient to change the notation slightly. From now on, the increments in 

strain and stress due to buckling will be denoted by Exx, Eyy. Exy and (}'xx, (}'yy. (}'xy. Thus, 

the above relations will read as 

(}' xx = B' Exx + C'Eyy , (}' yy = C' fxx + D'Eyy , (}' xy = 2 F' Exy (3.10) 

with exactly the same meaning for the moduli as above. 

One may now recall the Kirchhoff kinematic hypothesis to connect the buckling strains to 

buckling deflection w(x, y) as 

Exx = (3.11) 

In accordance with Shanley's concept of plastic bifurcation occurring under increasing 

load [23, 24], so that the plastic strains increase over the entire thickness of the plate, the 

moduli are those of loading, and hence the stresses are 

The moment stress resultants due to buckling are then 

Mxx = l t
/
2 

z(}'xxdz = _ ~ (B' 82~ + C' 82~) 
-t/2 12 8x 8y 
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j
t/2 

Myy = z CYyydz = 
-t/2 

_ f (C' Ô
2

W + D' Ô
2
W) 

12 ôx2 ôy2 

M xy = jt/2 zCYxydz = _ f(2pl ô
2
w ) 

-t/2 12 ôxôy 

(3.13) 

3.3 Equations for buckling loads and wavelengths by the equilibrium method 

A procedure similar to the elastic case is now followed to derive the exact buckling 

conditions for a plate simply supported along the longitudinal edges, y = 0, b. 

The applicable equilibrium equations, independent of the material behaviour, are 

(3.14) 

in the contact zones, and 

(3.15) 

in the no-contact zones. 

Substitution of the expressions in terms of the curvatures transforms (3.14) and (3.15) to 

(3.16) 

and 

(3.17) 

-41-



3.3.1 Equations for buckling displacements in the contact and no-contact regions 

The boundary conditions of S'imply supports at y = 0, b, admits a product solution in the 

form, in the contact zones, as 

(3.18) 

where n is the number of half waves in the y direction. As previously, n = 1 corresponds 

to the critical buckling mode, and hence J-t = 7r lb. Substitution of this solution in the 

differential equation for the contact zones results in 

(3.19) 

By setting 

f _ 12 NeT' 2C' + 4F' D' 12 k 
3 - B't3 - J-t2 B' ,f4 = B,J-t4 + B't3 ' (3.20) 

the above can be written as 

(3.21) 

Similarly in the no-contact zones by denoting the displacement as 

(3.22) 

it is found that <P2(X2) must satisfy 

d4cp2 ( 12 NeT' _ 2 2C' + 4F') d2cp2 D' 4 A. _ 0 
dx~ + B't3 J-t B' dx~ + B' J-t 'f'2-

(3.23) 

Introducing the symbols 
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r' - r - 12 N er _ 2 2C' + 4F' d r' _ D' 4 
3 - 3 - B

'
t3 IL B' ' an 4 - B' IL (3.24) 

the above equation can be written as 

(3.25) 

3.3.2 Derivation of the buckling equations 

The solution fOTIn of the functions <Pl (Xl) is exactly the same as that obtained for the 

elastic case, namely 

except that Cl and dl are obtained from the present definitions of r 3 and r 4 for the plastic 

case (rather than ri and r 2 of the elastic case). 

Likewise, for the no-contact zone <P2 (X2) is of the same as in the elastic case, namely 

except that C2 and d2 are obtained from the present detinitions of r~ and r~for the plastic 

case. 

As mentioned in Section 2.3 as weIl as 2.4, previously, the product solution ensures that 

the matching conditions remain the same, which at the common edges of the contact and 

no-contact zones require equality of the functions to zero, and equality of the tirst, 

second, and third derivatives. The two buckling equations are of the same fOTIn as for the 

e1astic case, repeated here for convenience 

Eql = _1_ {cIsin(2dl()+dlsinh(2cI()} __ 1_{c2sin(2d2ç)+d2sinh(2c2ç)} = 0 
cldl {cos(2dl() + cosh(2cl()} C2d2 cos(2d2ç) + cosh(2c2ç) 

(2.63) 

-43-



(2.64) 

Therefore, the method of solving Eqs. (2.63) and (2.64) explained previously in Chapter 2 

can also be applied to the plastic buckling equations. However, in solving these 

equations, one must remember that the moduli to be used here are stress dependent (and 

not constants as was the case with elastic buckling). 

3.4 Equations for buckling loads and wavelengths by the method of virtual work 

There is no need to repeat the virtual work method introduced in the last Chapter. The 

method was developed using a general form of the constitutive relations with 13, C, D, 
and Fas symbols for the moduli. Here these moduli are identified as the elastic-plastic 

moduli B', C', D', F' defined by Eq. (3.8). 

The forms of the deflections are taken as 

(3.26) 

(3.27) 

Thus leads to the differential equation for the contact zones 

(3.28) 

where 

(3.29) 
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and the equation for the no-contact zones 

(3.30) 

where 

(3.31) 

For a plate clamped on the edges y = 0, b, the mode form 'lj;(y) satisfying the condition 

of zero deflections and zero slopes is assumed to be the same as for the elastic case, as 

(3.32) 

from the equation (2.73), one then finds 

(2.81) 

And hence for a plate of the isotropic elastic material, the above coefficients become 

(3.33) 

The form of the solution functions 4>1 (Xl) and 4>2(X2) is the same in Section 2.5. The 

matching conditions also remain unchanged. Rence the forms of the two buckling 

equations are the same as Eqs. (2.63) and (2.64) except that the moduli are stress 

dependent, and the quantities Cl, dl, C2, d2 have to be found from the present definition 
- - -/ -/ 

of r 3 , r 4, r 3' r 4. 

3.5 Buckling loads and wavelengths for simply supported plates 

The plastic buckling problem is a bit more complicated than the elastic one. The reason is 

that the tangent and secant moduli required in the calculations are dependent on the 

stress-strain curve of the plate material, and on the critical stress at which these moduli 
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must be computed. Therefore, a part of the input data is the uniaxial stress-strain curve. 

Here, as an example, the plate material is taken as an Aluminum alloy, 24S-T3. For this 

alloy one has E = 76,535 MPa, 11 = 0.32, and the 0.2% proof stress (equivalent to the 

yield stress) O"y = 300 MPa. The following Ramberg-Osgood function is suitable [25, 26] 

for expressing strain as a function of stress: 

0" cr 002 ( 0" cr )7 
E = 76 535 + o. 300 , (3.34) 

The E - 0" graph ofthis function is shown in Fig. 3-1. 
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Fig. 3-1 Uniaxial stress-strain curve for Aluminum alloy 24S - T3 

By using Eqs. (2.63) and (2.64) through the Mathematica software and employing both 

the deformation and the incremental theories, one finds a set ofresults of À, (/b and t;,/b 
for an infinitely long plate simply supported on longitudinal edges, resting on a one-way 

elastic foundation, and loaded by uniform compressive force in x direction. The results 

are mathematically exact unlike those for the c1amped plate (to be discussed shortly) 
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which are based on an assumed but reasonable mode shape. These results are shown in 

Table 3.1 for the deformation theory, and in Table 3.2 for the incremental theory. 

Table 3.1 À, ( and ç- for an infinitely long simply supported Al alloy 24S - T3 plate 

resting on elastic one-way foundations with different foundation parameter Œ 

(bit = 25, Deformation theory) 

Œ=O Œ = 1.0 Œ = 1000 Œ = 1.0 X 105 Œ = 00 

À 2.602 2.672 2.797 2.798 2.798 
(lb 0.5 0.320 0.056 0.018 0 
Ç-Ib 0.5 0.446 0.639 0.693 0.707 

Table 3.2 À, ( and ç- for an infinitely long, simply supported Al alloy 24S - T3 plate 

resting on elastic one-way foundations with different foundation parameter Œ 

(bit = 25, IncrementaI theory) 

Œ=O Œ = 1.0 Œ = 1000 Œ = 1.0 X 105 Œ = 00 

À 3.363 3.524 3.978 3.986 3.986 
(lb 0.5 0.290 0.054 0.017 0 
Ç-Ib 0.5 0.379 0.548 0.599 0.615 

These results show that the plate indeed buckles in the plastic range. For Œ = 0, i.e., with 

no foundations, the buckling loads from the present theory are equal to the ones 

calculated by Bijlaard [10]. As usual, the bifurcation buckling loads from the incremental 

theory are significantly higher than the ones predicted by the deformation theory. Also, 

the buckling loads are affected by the width to thickness bit ratio. Relatively stockier 

plates with smaller bit will undergo plastic buckling. 

As expected, the buckling load increases and the contact length decreases with the 

increase in the foundation modulus. However, the maximum increase in the buckling load 

is limited to 7.5% for the deformation the ory, and 18.5% for the incremental theory. Fig. 

3-2 shows the effect of the increase in foundation modulus on the buckling load for the 

above plate. It is c1ear from this figure that the maximum increase in buckling load can be 

realized by relatively soft foundations. 
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The contact length decreases with the increase in the foundation modulus, as shown in 

Fig. 3-3 for the deformation theory and in Fig. 3-4 for the incremental theory. Evidently 

the contact length diminishes rapidly as the foundation modulus is increased. The contact 

length is about 10% of the width for a considerable range (50-200) of the foundation 

parameter. 
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3.6 Buckling loads and wavelengths for c1amped plates 

The plate in this section is c1amped along its longitudinal edges and resting on a one-way 

elastic foundation. Hence equations (2.63) and (2.64) corresponding to the method of 

virtual work need to be used to obtain the minimum buckling loads and wavelengths. The 

solution is semi-exact since a reasonable mode shape was assumed in the longitudinal 

direction to effect the separation of variables. Mathematically, it is not possible to say 

how good are the results, but physically we may compare them with experiments. The 

plate material is Aluminum alloy 24S - T3, with a uniaxial stress-strain curve shown 

previously (Fig. 3-1). 

Following the same procedure as in the last section, one obtains a series of results for À, 

(lb and f,lb as functions of the foundation stiffness parameter a. These results are 

determined for both the deformation and the incremental theories. Table 3.3 shows sorne 

ofthese results for the deformation theory, whereas Table 3.4 gives the parallel results for 

the incremental theory. 

Table 3.3 À, (, f, for an infinitely long, c1amped Al alloy 24S-T3 plate resting on one-way 

elastic foundations for different foundation parameter a (bit = 25, Deformation theory) 

a=O a = 1.0 a = 1000 a = 1.0 x 105 a = 00 

À 3.033 3.062 3.238 3.242 3.242 
(lb 0.5 0.240 0.049 0.015 0 
çlb 0.5 0.270 0.389 0.433 0.451 

Table 3.4 À, (, f, for an infinitely long, c1amped Al alloy 24S-T3 plate resting on one-way 

elastic foundations for different foundation parameter a (bit = 25, Incrementai theory) 

a=O a = 1.0 a = 1000 a = 1.0 x 105 a = 00 

À 5.342 5.440 6.757 8.892 8.897 
(lb 0.5 0.220 0.053 0.017 0 
f,lb 0.5 0.235 0.330 0.497 0.517 
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For the deformation theory the maximum increase in the buckling parameter À for this 

plate (bit - 25) is less than 7%. For the incremental theory it is more than 66%. These 

increases in À versus foundation parameter Œ are seen more c1early in Fig. 3-5. The 

predictions are quite insensitive to stiffness parameter Œ > 25 for the deformation theory 

and Œ > 100 for the incremental theory 

Fig. 3-6 and 3-7 express the variation of the contact length versus the foundation 

parameter Œ. The contact length decreases rapidly first as the foundation modulus is 

increased, but settles down to about 10% of the platewidth at Œ = 75. 
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Chapter 4 

Application to Concrete-filled Steel Box Columns, and 
Verifications with Experiments 

This chapter presents applications as weIl as verifications of the theoretical buckling 

analyses of the preceding chapter. First, the present theory is employed for calculating 

the ultimate loads of concrete-filled steel box columns. Then, these theoretical results are 

verified against available experimental results of other researchers, namely those of 

Dalin Liu [1] and of Brain Uy, Q. and Q. Liang [5, 6]. Comparison of the theoretical 

results is also made with the values obtained by using empirical equations of the CUITent 

design codes of different countries. 

4.1 Application to concrete-filled steel box columns 

Concrete-filled steel box columns, of square or rectangular shapes, are being used 

extensively in multi-storey building construction throughout the world [l, 5, 18]. These 

columns are formed by pouring concrete into fabricated steel-box columns after they have 

been secured and positioned on site. They are more cost-effective than bare (unfiIled) 

steel columns as weIl as reinforced concrete columns. The behaviour of the concrete­

filled steel box columns is influenced by deformation ofboth steel and encased concrete. 

Numerous experiments conducted in recent years have revealed that typical failure modes 

of concrete-filled columns are buckling in steel sections and crushing in concrete, see Fig. 

4-1. Based on the present theory, the buckling of a steel section is identified with the 

buckling of the steel plates of the box section, taking into consideration the constraining 

influence of the in-filled concrete. Consequently, the ultimate strength for concrete-filled 

box columns is calculated from the buckling load of steel plates, and the maximum 

capacity in compression of the concrete core. The combined failure load, based upon 

simultaneous buckling of steel box column plates and crushing of concrete, is expressed 

as 

(4.1) 
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in which, N s = acrAs, is the buckling load of steel box sections, and Ne = 0.85 f~Ac is 

the maximum concrete capacity in compression. acr denotes the critical buckling stress of 

steel plates unilaterally constrained by the in-filled concrete. The foundation modulus k 

(also called the normal stiffness) of concrete is generally taken [5] as 23 GPa. This value 

corresponds to an a around 500, 000 (depending on bit ratio of the column section). For 

rectangular columns, the applicable width-to-thickness ratio is the larger one, i.e., bit as 

shown in Fig. 4-2. The plates with larger width will buckle first and the corresponding 

bit must be used in the formulas to calculate the buckling stress a cr. As is the area of 

steel section, As = 4bt for square sections and As = 2bt + 2ht for rectangular sections. 

f~ is the strength of test cylinders and Ac equals to the area of the concrete section. The 

modification factor 0.85 is used to account for the uncertainty between the concrete 

strength in laboratory and in situ. In the above formula, although the influence of concrete 

confinement on the steel plates has been accounted for, the confinement effect of steel on 

the encased concrete is not. This latter effect in a concrete-filled rectangular columns is 

limited to the corners of the section and is small enough to be omitted [5]. 

(a) (b) (c) 

Fig. 4-1 Typical failure modes of concrete-filled box columns [1] 
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Determination of a cr in Equation (4.1) is the most important step to calculate the ultimate 

strength of concrete-filled steel box columns. For determining acr , the properties of steel 

should be ascertained, especially the stress-strain curve in the elastic as well plastic 

ranges. This stress-strain curve is usually obtained from coupon tests of the steel of the 

box sections. This curve is then modeled approximately by an analytical expression, 

expressing strain as a function of stress, E = E ( a ). In the present work, the stress-strain 

curves are modeled by adopting the well-known Ramburg-Osgood representation [26]. 

The applicable boundary conditions at the edges of plates, for an un-filled section are 

taken as simply supported. However, for plates of the concrete-filled sections, the 

appropriate conditions are those for clamped plates. These assumptions, as depicted in 

Fig. 4-3, model the actual conditions quite closely. 

Although analytical results were presented for both the J2 incremental and J2 deformation 

theories of plasticity, it was found (and it is weIl known for bare plates) that the 

bifurcation stress predicted on the basis of the incremental theory is too high compared 

with the experimental values. On the other hand, the bifurcation stress calculated from the 

deformation theory matches quite well with experiments, and in fact provides slightly 
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conservative (i.e., safe) predictions. Therefore as a practical option, the theoretical results 

of only the deformation theory will be used in this chapter. This is quite acceptable as the 

deformation theory has been in wide use in engineering practice. 
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(b) Hollow steel box columns 

Fig. 4-3 Buckling modes of steel box columns 

In reality, the length of the column is generally much greater than its width. Thus, the 

plates making up the box column can be considered to be "infinitely" long to fulfill the 

conditions of the present theory. It is well-known [27] that the buckling load of a plate is 

not affected by its aspect ratio (length a to width b ratio) if it is greater than 4. In this 

connection, it is worthwhile to mention the work of Shahwan [4], in which he showed 

that for axially compressed elastic plates attached to an elastic (Winkler) foundation, their 

buckling loads varied little with plate's aspect ratio, after it is larger than even one. Figure 

4-4, taken from Ref. [4] makes this point very clearly. The graph shows variation of the 

elastic buckling stress with the aspect ratio, It can be observed that the higher the 

foundation modulus, the less is the deviation of the buckling stress with that at aspect 

ratio of unity. The above conclusion is extended here to the plastic buckling of 

unilaterally constrained plates. Thus, the theory developed for infinitely long plates is 

suitable for the practical cases of plates of finite lengths. 
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Fig. 4-4 Buckling load coefficient .ÀCT vs. aspect ratio ajb for simply supported isotropic 

elastic plates fixed to a foundation of stiffness a [4] 

4.2 Verification with experiments 

As mentioned before, there are a number of experiments that have been reported in the 

literature on the strength of concrete-filled steel box columns. These tests employed both 

the normal strength and high strength steels. Here the theoretical results are compared 

with the results of the tests which were conducted by Q. Q. Liang et al. [5], Brain Uy [6] 

and Dalin Liu et al. [1]. These experiments cover a variety of steel and con crete types, 

and columns with filled as weIl as ho119w sections, square sections, and rectangular 

sections. 

According to the test data reported by Liang and Uy [5], the stress-strain curve of the steel 

used by them was approximated by the author as a Ramberg-Osgood curve by the 

following equation [25]: 

(4.2) 
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The graphical representation ofthis equation is shown in Fig. 4-5. 
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Fig. 4-5 Ramberg- Osgood curve of steel (O"y = 281MPa) used in the experiments 

conducted by Liang and Uy [5] 

Similarly, the Ramberg-Osgood curves were derived for the experiments conducted by 

Uy [6], and by Dalin Liu et al. [1] respectively. The curve for the former series of tests 

[6] was found to be 

€ = EO" + 0.002 ( !!.- )34 
O"y 

and for the latter ones [1] as 

€ = EO" + 0.002 ( !!.- )46 
O"y 

The graphs of these equations are shown in Fig. 4-6 and 4-7 respectively. 
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Using the respective Ramberg-Osgood representations, one can determine the secant and 

tangent moduli as functions of the axial stress. These moduli are needed in the buckling 

equations of Chapter 3, to determine the buckling stress according to the deformation 

theory of plasticity. Formula (4.1) can then be used to obtain the theoreticaUy predicted 

failure load for the individual specimen of each experiments mentioned above. The 

comparisons between the present theory and each experiment are shown in Table 4.1-4.5. 

For the study [5], with data tabulated in Table 4.1, there are six specimens for which aU 

sections are square. The strengths of both the steel and concrete are normal (not high 

strength). It is found that the results of the presented theory are little lower (i.e., on safe 

side) than the experimental results, and the differences lie in the range of 0.1 % to 12% 

with an average of 4%. There are three specimens showing nearly the same values 

between the predictions and tests. Thus, the present theoretical results are in better 

agreement with the test results than those computed by other researchers by using the 

finite strip method of analysis; their results are lower than the test results from 2% to 18% 

with the average of 8%. 

The agreement with test results is even better for the experiment reported in [6], see Table 

4.2. For 8 specimens, there is a mean difference of only 1 % from the experimental results, 

and three of them are almost the same as the experiments. The exceptions, are the 

specimens HSS14 and HSS15. The differences for them are quite out of line, which 

suggests a discrepancy in the reported data. The distinct characteristic in this set of test is 

that the steel is of the high strength variety. Hence, the comparisons for the cases in [5] 

and [6] show that the present theory can be used for both high and low strength steel box 

columns. 

For the experiments reported in [1], comparison is made for up to 10 specimens, not only 

between the theoretical and experimental results but also with the values obtained by 

using the equations of the design codes of different countries, as shown in Table 4.3 and 

Table 4.4. The present theoretical results are aU on the safe side (i.e. below the 

experimental values), and can be seen to be more accurate than those calculated by the 

design formulas of AISC and AC!. However, the results from the equations of EC4 

compare quite weU with the experiments. In comparison with the test results, the mean 

values of the calculated results are lower by about 10%, 15%, 14% and 9% for the present 

theoretical prediction, AISC, ACI, and EC4, respectively. Thus, the results from EC4 

appear a little better than the present theory for this series of tests. However, one should 
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keep in mind the limitation of the EC4 equations. The EC4 formulas are applicable only 

to the cases where concrete and steel strengths are not greater than 40 MPa and 355 MPa 

respectively. Renee, in fact, EC4 formulas should not be employed for this series of 

experiments to predict the column capacities, because the strengths of both the concrete 

and the steel are over the stipulated limitations. In these experiments, the steel and 

concrete are both of high strength, and thus the point can be made that the present 

theoretical predictions for concrete-filled steel box columns are applicable for the various 

classes of strengths of steel and con crete used in construction. 

The scatter of the present predictions versus each set of experiments are shown in Figs. 

4-8,4-9, and 4-10. Fig. 4-10 also contains scatters for predictions from the various design 

equations. The conclusion evident from these figures is that the present theoretical 

predictions are mostly below the experimental values, but not overly conservative. 
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Table 4.1 Comparison of the present theoretical predictions NT with experiments [5] 

1 2 3 4 5 6 7 8 9 10 11 
Specimen bxh bit O"y f~ O"cr Nu NT Nt Nr/Nu Nt/Nu 

NSI 180 x 180 60 294 33.6 291.1 1555 1554 1428.6 0.999 0.919 
NS7 240 x 240 80 292 40.6 259.2 3095 2734 2548.8 0.883 0.824 
NS13 300 x 300 100 281 44 187.3 4003 4040 3953.3 1.009 0.988 
NSl4 300 x 300 100 281 47 187.3 4253 4270 4182.8 1.003 0.983 
NSl5 300 x 300 100 281 47 187.3 4495 4270 4182.8 0.950 0.931 
NSl6 300 x 300 100 281 47 187.3 4658 4270 4182.8 0.917 0.898 
Mean 0.960 0.924 

Note: that the elastic modulus of steel is E = 200 GPa; b, h = widths of steel sheet in each 

direction (mm), t- thickness of steel sheet (3 mm), O"y = yielding stress of steel (MPa), f~ = 

ultimate strength of concrete cylinder test (MPa), O"cr = buckling load of steel plate (MPa), Nu 

= ultimate testing load of specimens (kN), NT = ultimate predicted load by the present theory 

(kN), Nt = ultimate load predicted by Q. Q. Liang (kN). 

Table 4.2 Comparison of the present theoretical predictions NT with experiments [6] 

1 2 3 4 5 6 7 8 9 
Specimen bxh bit O"y f~ O"cr Nu NT Nr/Nu 
HSSHI 100 x 100 20 750 NA 774.0 1644 1548 0.942 
HSSH2 100 x 100 20 750 NA 774.0 1561 1548 0.992 
HSSI 100 x 100 20 750 28 793.8 1836 1826 0.994 
HSS2 100 x 100 20 750 28 793.8 1832 1826 0.997 
HSS8 150 x 150 30 750 30 763.9 2868 2865 0.999 
HSS9 150 x 150 30 750 30 763.9 2922 2865 0.980 

HSS14 200 x 200 40 750 32 727.9 3710 4000 1.078 
HSS15 200 x 200 40 750 32 727.9 3483 4000 1.148 
Mean 1.016 

Note: the Young's modulus of steel is 200 GPa; the symbols are same as in Table 4.1; 

the specimens ofHSSHl and HSSH2 are hollow section steel columns without 

concrete core. 
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Table 4.3 Geometrie and material properties of test specimens [1] 

1 2 3 4 5 6 7 8 
Specimen B x H(mm) b x h(mm) t(mm) bit E(OPa) ay(MPa) f~(MPa) 

CI-I 100.3 x 98.2 91.4 x 89.8 4.18 22 207 550 70.8 
CI-2 101.5 x 100.6 93.1 x 92.2 4.18 22 207 550 70.8 
C2-1 101.2 x 101.1 92.8 x 92.7 4.18 22 207 550 82.1 
C2-2 100.7 x 100.4 92.3 x 92.0 4.18 22 207 550 82.1 
C3 182.8 x 181.2 174.4 x 172.8 4.18 42 207 550 70.8 
C4 181.8 x 180.4 173.4 x 172.0 4.18 42 207 550 82.1 

C5-1 120.7 x 80.1 112.3 x 71.7 4.18 27 207 550 70.8 
C5-2 119.3 x 80.6 110.9 x 72.2 4.18 27 207 550 70.8 
C6-1 119.6 x 80.6 111.2 x 72.2 4.18 27 207 550 82.1 
C6-2 120.5 x 80.6 112.1 x 72.2 4.18 27 207 550 82.1 

Note: B x H = the dimension of section of columns, b x h = the dimension of section of 

concrete cores and widths of steel sheet in each direction; the other symbols have the same 

meaning as in Tables 4.1, 4.2. 

1 
Specimen 

CI-I 
CI-2 
C2-1 
C2-2 
C3 
C4 

C5-1 
C5-2 
C6-1 
C6-2 
Mean 

Table 4.4 Comparison of the present theoretical predictions NI' 

with experimental results [1], EC 4, AISC, and ACI 

2 3 4 5 6 7 8 9 10 
acr Nu NT NE NA NI Nr/Nu NE/Nu NA/Nu 

572.0 1490 1366 1376 1291 1301 0.917 0.923 0.867 
572.0 1535 1403 1413 1325 1335 0.914 0.921 0.863 
572.0 1740 1488 1513 1409 1419 0.855 0.870 0.810 
572.0 1775 1475 1499 1397 1407 0.831 0.844 0.787 
543.8 3590 3393 3468 3171 3193 0.945 0.966 0.883 
543.8 4210 3653 3778 3429 3456 0.868 0.898 0.814 
564.9 1450 1354 1375 1282 1301 0.934 0.948 0.884 
564.9 1425 1347 1368 1276 1295 0.946 0.960 0.895 
564.9 1560 1427 1461 1353 1375 0.915 0.937 0.867 
564.9 1700 1436 1470 1361 1383 0.845 0.865 0.801 

0.897 0.913 0.847 

11 
NI/Nu 
0.873 
0.870 
0.816 
0.793 
0.890 
0.821 
0.898 
0.909 
0.881 
0.814 
0.856 

Note: EC4 = Eurocode 4, AISC = American Institute of Steel Construction, ACI = American 

Concrete Institute; The symbols a cr , Nu, NI' are the same as in Table 4.1. The symbols NE, NA, 

NI denote the results calculated by design equations of EC4, AISC, and ACI receptively. 
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Chapter 5 

Summary and Conclusions 

5.1 Summary 

Exact and semi-exact analyses have been performed to derive equations for obtaining 

bifurcation buckling loads, and wavelengths for infinitely long plates, stressed axially and 

resting on tensionless foundations. The plate material is considered to be linear elastic, as 

well as plastic. The elastic behaviour is modeled according to the standard linear relations 

employed for plate structures. The plastic behaviour is considered to be of the nonlinear 

strain-hardening type, employing the J2 incremental as well as the J2 deformation 

theories of plasticity. No bond is assumed to exist between the plate and the foundation. 

The foundation is thus unable to provide any tensile or frictional resistance. The 

compressive resistance from the foundation is assumed to be linearly proportional to plate 

deflection, with a constant modulus (modeling a one-way Wrinkler foundation). The 

plates are considered to be thin, and the usual kinematic assumptions for such plates are 

assumed to hold, regardless of the material behaviour. Two cases of boundary conditions 

are dealt with: (1) Plates simply supported along the two longitudinal (unloaded) edges, 

and (2) those with these edges clamped. Since the plates are considered infinitely long, 

the boundary conditions at infinity do not come into play, and therefore do not have any 

influence on the buckling loads or the wavelengths. The plates are assumed perfectly 

plane without any imperfections, and hence the buckling problem solved is that of a 

bifurcation type. In other words, the problem is posed as an eigenvalue problem. The 

eigenvalues are the bifurcation buckling loads, and the eigenmodes are the buckling 

modes. The analysis is exact for the simply supported case, but semi-exact for the 

clamped case. The main novelty of the investigation lies in including the plasticity 

effects, and applying the theoretical results to the practical problem of determining the . 

buckling loads of concrete-filled steel box and HSS columns. 

Chapter 1 gives a background on the general topic of plates resting on elastic foundations. 

Although there is considerable literature on this subject for the cases when the plate is 

bonded to the foundation, there are comparatively much less works on the subject when 

the plate is not bonded (or debonded) and the foundation is able to provide only the 
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compressive resistance. For the specifie topic of buckling of plates on such tensionless 

foundations, the two most important works are by Shahwan [17] on elastic buckling of 

plates and of Seide [16] on plastic buckling. However, the work of Seide [16] dealt only 

with the elastic foundations with two-way actions. Hence the present work is the only one 

dealing with plastic buckling ofplates on one-way elastic foundations. 

The relevance of the present work to practical problems is also mentioned in this 

introductory chapter. The most immediate application, as mentioned above, is to the 

buckling of concrete-filled steel box and HSS columns. If the bonding between the steel 

plates and the concrete core is disregarded (as a safe and realistic assumption) then such 

problems faU into the category of the present study. The other important application, not 

pursued in this work, is to layered composite materials, in which delamination of a layer 

may be considered as a one-way elastic or plastic buckling. 

The theoretical investigations in Chapter 2 are concemed with the elastic buckling of 

infinitely long plates on elastic foundations. The theory is developed first by adopting the 

equilibrium approach, and exact solutions are obtained for the buckling of plates simply 

supported on longitudinal edges and resting on tensionless foundations. Later, in this 

chapter, the method of virtual work is used to derive approximate equations for cases 

where separation of variables (used in the equilibrium method) may not be possible. The 

method of virtual work presented here is more general than the energy method, and 

includes the latter. The way the constitutive relations are specified makes the analysis 

applicable to the buckling of orthotropic elastic plates and also to plastic buckling of 

plates. This method is applied to derive the buckling conditions for a plate resting on 

tensionless foundations and c1amped along the longitudinal edges. The solution gives the 

buckling load and the wavelengths in both the contact and no-contact zones. This solution 

is the same as that treated in Reference [17]. Although the results in Chapter 2 are not 

new, the method to obtain them is compact and new. 

The results of Chapter 3, insofar as the plastic buckling of plates on tensionless 

foundations are concemed, are original to this thesis, and presented here for the first 

time. The theoretical development foUows that of Chapter 2, but the plate material is 

allowed to be stressed beyond the yield into the strain-hardening plastic range. 

Accordingly, the constitutive relations of commonly used plasticity theories, namely the 

J2 incremental and the J2 deformation theories of plasticity are employed. Buckling 

equations are derived by the exact equilibrium method for plates simply supported on 
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longitudinal edges, and by the method of virtual work for plates c1amped on these 

boundaries. The latter results are utilized in Chapter 4 for the buckling of concrete filled 

steel box columns. It should also be realized that although the J2 incremental theory is 

the correct phenomenological theory of pl asti city, its results are found to be highly 

imperfection sensitive in the case of buckling of plates. On the other hand, bifurcation 

results of the J2 deformation theory are found quite acceptable, and in fact conservative, 

in comparison with experiments. Accordingly, it is only the bifurcation results of the J2 

deformation theory that are used in Chapter 4 for comparison with experiments on 

concrete-filled columns. Hutchinson has justified the use of the J2 deformation theory in 

plastic buckling of plates [Ref. 28, p. 98]. He states that "... for a restricted range of 

deformations, J2 deformation theory coincides with a physically acceptable incremental 

theory which develops a corner on its yield surface ... most of the results which have been 

obtained using J2 deformation theory are rigorously (his italics) valid bifurcation 

predictions ... ". 

As the foundation modulus k increases, the contact wavelength decreases and the no­

contact wavelength increases. As k ---+ 00, i.e., as the foundation becomes rigid, the 

contact wavelength becomes zero and the bifurcation loads assume their maximum values 

as a logical consequence. For elastic buckling, it is found that the maximum enhancement 

over the case when no foundation is present (k = 0) is 33% for simple supports, and 

42% for c1amped supports along the longitudinal (unloaded) edges. 

Compared to elastic buckling, the foundation effect on plastic buckling of plates is not as 

pronounced. For the stress-strain behaviour of the aluminum alloy 24S-T3 plate material, 

and the width to thickness ratio bit = 25, the plastic bifurcation load for simply 

supported plates goes up by 7% from when k = 0 to when k = 00. This ratio for the case 

of the c1amped plate is 18%. 

Although the analysis assumes infinitely long plates, the results seem to be applicable to 

plates with moderate aspect ratio. The study [4] points out that for a plate subjected to 

axial compression and resting on a tensionless foundation, its bifurcation load is little 

changed if the aspect ratio is greater than 1, especially if the foundation modulus is large. 

The results of the present theory are therefore applicable to most practical situations. 

In Chapter 4, the results were compared with experimental results of other researchers, 

and also with empirical values from the design codes of different countries. The 
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comparison with three sets of test results on hollow or concrete-filled steel box columns, 

found that the values from the present theory to be 4% lower, 1 % higher and 10% lower, 

respectively. These predicted values are in closer agreement with test results than the 

predictions of other researchers and those obtained by employing the empirical design 

code formulas. 

5.2 Conclusions 

In conclusion, one may reiterate the following points. 

(1) The present study has performed, for the first time, exact and semi-exact analyses of 

(strain-hardening) plastic buckling of plates resting on one-way elastic foundations and 

subjected to uniform compressive forces in the longitudinal direction. The analysis is 

exact for plates simply supported on the long edges, and is semi-exact for plates clamped 

at these edges. 

(2) The analytical predictions were compared with three independent sets of experimental 

data on buckling of concrete filled steel-box columns commonly used in engineering 

practice. The predictions of the present theory were in exceptionally good agreement with 

the diverse test results. 

(3) Because of the good agreement between the present results and the test results, the 

present analytical results provide a rational basis for formulating comprehensive design 

criteria and equations applicable to high and low strength steel-box columns. 

(4) The present exact and semi-exact analytical results may serve as bench mark results 

for validating fini te element results. 

5.3 Suggestions for future work 

This type of investigation would be useful to other problems in practice, especially in 
aeronautical industry, such as the stability of other in-filled metal box columns (of say 
aluminum), delamination in sandwich plates, and delamination 'pop-up' in composite 
materials, etc. 
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For structural designer's convenience, one may also pursue the following tasks: 

(1) Construct charts and tables to determine criticalload coefficients from width to 
thickness ratios for steel plates, assuming rigid foundations. 

(2) Modify the theoretical results for safe, economical, and comprehensive design 
equations. 
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