
Active Vibration and Buckling Control of

Piezoelectric Smart Structures

Qishan Wang

Doctor of Philosophy

Civil Engineering and Applied Mechanics

McGill University

Montreal, Quebec

2012

Submitted in partial fulfillment of requirements for the degree of
Doctor of Philosophy

c©Qishan Wang 2012



DEDICATION

Dedicated to my Mom and Dad

ii



ACKNOWLEDGEMENTS

The author would like to thank his advisor Professor S. Shrivastava for his

guidance, comments, and support throughout this research. Thanks also go to

the office staff of the Department of Civil Engineering and Applied Mechanics at

McGill University who made the completion of this research possible. Professor

R. Gehr’s beautiful music and invaluable comments are also greatly appreciated.

Thanks are due to his office friends for their friendship and afternoon tea which

will last, and be missed, for a life time. Finally, the author would like to thank all

his family members for the continuous support to let him follow his dream.

iii



ABSTRACT

The objective of this dissertation is the vibration and buckling control of

piezo-laminated composite structures with surface bonded or embedded piezo-

electric sensors and actuators by using the finite element analysis and LQR/LQG

feedback control techniques.

The focus is mainly on two aspects: the finite element part and the active

control part.

(1) The finite element part:

Two finite element formulations for the piezo-laminated beams based on

the classical Bernoulli-Euler and the Timoshenko beam theories are developed

using the coupled linear piezoelectric constitutive equations, and the Hamilton

variational principle.

A C0 continuous, shear flexible, eight-node serendipity doubly curved shell

element for the piezolaminated composite plates and shells is also developed based

on the layer-wise shear deformation theory, linear piezoelectric coupled constitutive

relations, and Hamilton variational principle.

The developed elements can handle the transverse shear strains, composite

materials, and piezoelectric-mechanical coupling. Higher modes of vibration can

then be predicted more precisely for thin to medium-thick multilayered composite

structures. They are evaluated both for the vibration and buckling of beam, plate,

and shell structures.
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(2) The active control part:

The suppression of vibration of a cantilever piezo-laminated beam and the

control of the first two buckling modes of a simply supported piezo-laminated

beam are studied first. Then, the vibration and buckling control of a cantilever

piezo-laminated composite plate are studied. Furthermore, the vibration control of

a piezolaminated semicircular cylindrical shell is also studied.

The results of the finite element analysis are used to design a linear quadratic

regulator (LQR) controller and a linear quadratic Gaussian (LQG) compensator

with a dynamic state observer to achieve all the controls. The control design

begins with an approximate reduced modal model which can represent the system

dynamics with the least system modes. A state space modal model of the smart

structure which integrates the host structure with bonded piezoelectric sensors

and actuators, is then used to design the control system. The designed LQR/LQG

feedback controls are shown to be successful in suppressing the vibration and

stabilizing the buckling modes of structures.

Both the finite element analysis and the active control simulation results are

consistent with the existing theoretical analysis results and the experimental data

in the literature. Some important conclusions and interesting observations are

obtained.
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ABRÉGÉ

L’objectif de cette thése est le contrôle de la vibration et de flambage à

l’aide de l’analyse par éléments finis et LQR/LQG technologies de contrôle de

rétroaction pour les structures composites stratifiées piézo-électriques qui sont liés

ou incorporés de surface de capteurs et d’actionneurs piézoélectriques.

Il ya principalement deux parties ciblées.

La partie des éléments finis:

Deux formulations éléments finis pour les poutres laminées piézo-basé sur le

classique d’Euler-Bernoulli et la théorie des poutres de Timoshenko, respective-

ment, linéaires couplées piézoélectriques équations constitutives, et le principe de

variation de Hamilton sont développés. Un C0 continue, cisaillement flexible, à

huit nuds élément de coque à double courbure sérendipité pour les plaques piézo-

composites stratifiés et de coquillages est également dérivée basée sur la théorie

de la couche-sage déformation de cisaillement, linéaires piézo-électriques couplés

relations constitutives mécaniques, et le principe de variation de Hamilton.

Toute la poutre, plaque, et des éléments de coque développés ont considéré

la rigidité, de masse et les effets de couplage électromécanique du capteur piézo-

électrique et les couches de l’actionneur. Les éléments de structure développés

sont capables de traiter les effets non linéaires de déformation en cisaillement

transversal et la non-linéarité des matériaux composites, piézoélectrique-mécanique

d’accouplement, et peut prévoir plus précisément les modes supérieurs de vibra-

tion, et peut être appliquée à partir de minces d’épaisseur moyenne structures
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composites multicouches. Ils sont évalués à la fois les vibrations et analyse de

flambage de la poutre, plaque, et structures en coque.

La partie de commande actif:

La vibration de supprimer d’un porte à faux piézo-collé poutre, les deux

premiers modes de flambement contrôle d’un appui simple piézo-collé poutre, et

la vibration et le flambage contrôle de la charge d’un cantilever piézoélectrique

stratifié plaque composite sont étudiés. Les résultats de l’analyse par éléments finis

sont utilisés pour concevoir un régulateur linéaire quadratique (LQR) contrôleur

et un linéaire quadratique gaussienne (LQG) compensateur avec un observateur

d’état dynamique pour atteindre toutes les commandes.

Les conceptions de commandes commencent par une méthode modale modle

pour déterminer un modle modal réduit approximative qui peut représenter la

dynamique du systme avec les modes les moins systme inclus. Un modle modal

espace d’état de la structure intelligente qui a intégré la structure d’accueil d’collés

capteurs et d’actionneurs piézoélectriques, est ensuite utilisé pour concevoir le

systme de contrôle. Les contrôles visant commentaires LQR/LQG sont avérés

succs dans la suppression de la vibration et de stabiliser les modes de flambement

des structures.

Tant l’analyse par éléments finis et les résultats de simulation de contrôle

actives sont compatibles avec les résultats existants d’analyse théoriques et les

données expérimentales de la littérature. Quelques conclusions importantes et des

observations intéressantes sont obtenues.
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STATEMENT OF ORIGINALITY

To the author’s best knowledge, the results contained in this thesis are

original.

The C0 continuous, shear flexible, eight-node serendipity doubly curved

shell element based on the layer-wise shear deformation theory is developed and

programmed (using the Matlab software) by the author for the first time.

The developed element is used for active vibration and buckling control

applications of piezolaminated smart beams, plates and shells. The mainly new

contributions are:

1. Active control of the first two buckling modes of a simply-supported piezo-

laminated beam.

2. Active control of the first buckling mode of a cantilevered piezolaminated

composite plate.

3. The comparison of the vibration control of a cantilever piezolaminated beam

with its experimental results in the literature.

4. The comparison of the vibration control of a cantilever piezolaminated

composite plate with other known finite element analysis results.

5. The comparison of the vibration control of a piezolaminated semicircular

cylindrical shell with other known finite element analysis results.
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CHAPTER 1

Introduction and Overview

1.1 Background

1.1.1 Smart Structures and Applications

In modern engineering, smart structures have become an important research

topic and a new generation of engineering components have evolved. Srinivasan

& McFarland, in [1], defined smart structures as “the integration of actuators,

sensors, and controls with a material or structural component” or “material sys-

tems that have intelligence and life features integrated in the microstructure of the

material system to reduce mass and energy and produce adaptive functionality”.

The smart structure is a concept that borrows directly from the biological world.

Like the natural growth of the biological structures in the living world, smart

structures are able to respond to their environment and modify themselves to cater

for the new demands and requirements. This “smart” or “intelligent” feature is

conveyed in the book title “Smart Structures — Blurring the Distinction Between

the Living and the Nonliving” written by V.K.Wadhawan [2]. It is the origin of my

inspiration to do this “smart” research.

The evolutionary path of smart structures can be written in the following

sequence (see Wadhawan [2]):
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• Actively smart structures (sensor+feedback+enhanced actuator action+other

biomimetic features)

• Intelligent structures (actively smart structures+learning feature or cortical-

like intelligence)

• Wise structures (capable of taking moral and ethical decision)

• Collective intelligence (like the internet)

• Man-machine integration

This dissertation will deal with the very beginning of the subject: Actively

controlled structures (or smart structures), which have a high degree of integration

of the sensor, actuation, and control functions embedded in a distributed or

hierarchic manner. The integrated or embedded structural configurations in

this research are the laminated composite beams, plates, and shells bonded or

embedded with segmented or distributed piezoelectric layers as sensors and

actuators and microprocessors as controllers.

There are numerous applications of smart structures in different indus-

tries. These include aerospace and aviation, biomedical services, civil engineer-

ing, mechanical systems with various utilization possibilities in vibration and

noise control, buckling instability control, precision position and shape control,

non-destructive testing and structure health monitoring to identify damaged

components, structural fatigue life extending technology, etc.

1.1.2 Piezoelectric Materials

Piezoelectrics are the most popular smart materials. They belong to a class

of dielectrics which undergo deformation in response to an applied electric field

2



(converse piezoelectric effect) and produce voltage in response to mechanical

strains (direct piezoelectric effect). They are relatively linear at low fields and

bipolar, but exhibit hysteresis.

PZT (Lead Zirconate Titanate) is the best known piezoceramic material.

PVDF (Poly Vinylidene Fluoride) is a commonly used polymer piezofilm material.

They are in the form of thin wafers which can be readily bonded or embedded

in laminated composite structures. Piezoelectrics do not have piezoelectric

characteristics in their original state. Piezoelectric effects are induced through

poling by the application of large DC electric fields at a high temperature. Poled

piezoelectrics exhibit both direct and converse piezoelectric effects and can be used

as sensors and actuators.

1.1.3 Sensors, Actuators, and Controllers

Sensors are acting like the nerves of a living system. They can convert

structure strains, displacements, or their time derivatives into an electric field and

form a data acquisition system for the host structure (the body of living system).

Key factors for sensors are their sensitivity to strain or displacement, bandwidth,

and size. Typical sensors consist of strain gauges, accelerometers, fiber opticals,

piezofilms, and piezoceramics. PVDF is most commonly used as piezoelectric

strain sensors with 10000 V per strain sensitivity and low stiffness.

Actuators are like the muscles of a living system. They normally convert

electric inputs into actuation strain or displacement that is transmitted to the

host structure (the body) modifying its mechanical state. Important performance

parameters for actuators are maximum stroke or induced strain, stiffness, and
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bandwidth. PZT and PVDF are the commonly used piezoelectric actuators

with maximum induced strain of about 1000 microstrain and 700 microstrain

respectively.

Controllers are like the brain of a living system. They are designed to analyze

the response from the sensors and use the integrated control theory to command

the actuators to apply strains/displacements to alter system response. The active

control algorithms for smart structures include feedback, neural network, and fuzzy

logic.

1.1.4 Induced Strain Actuator

The total strain in the actuator is the sum of the mechanical strain caused

by the stress plus the induced strain caused by the electric field. The strain in the

host structure is obtained by establishing the displacement compatibility between

the host and the actuators.

An opposite electric field is applied along the poling axis which induces the

actuators bonded with the structure to expand or contract. For the extension

mode actuator, the poling direction is the Z-axis.

1.2 Literature Review

1.2.1 Finite Element Modeling of Piezoelectric Coupled Field

In the literature, modeling of embedded or bonded piezoelectric laminar

sensors/actuators, and the finite element method (FEM) implementation of

coupled field problems with such components have been addressed by many

authors.

4



Generally, piezoelectric elements are used in pairs, one on each side of a

structural plane. A classic configuration for a smart structure is a master structure

sandwiched between two piezoelectric thin layers acting as a distributed sensor

and actuator respectively. Both bonded and embedded piezoelectric sensors

and actuators result in a laminated layer. Layer-wise finite elements for the

multilayered composite structure should therefore be established.

Sunar & Rao [3] derived a finite element formulation of thermo-piezoelectric

problems starting from linear thermo-piezoelectric constitutive equations and

Hamilton’s principle. Suleman & Venkayya [4] proposed a 4-node plate element

using the Mindlin assumption to accommodate thick/thin plates and shells,

with each node possessing 3-translational and 3-rotational degrees of freedom

(DOF). In addition, the element has one electrical degree of freedom per piezo-

electric layer (voltage varying linearly across the thickness). It uses a reduced

integration scheme for the transverse shear stiffness to avoid the shear locking

phenomenon. The experimental work of Crawley and Anderson [5] showed a

nonlinear relationship between the applied voltage and the normal strain induced

in an unconstrained PZT plate for electric fields exceeding 100 V/mm. Yang and

Batra [6] presented a second-order theory (with quadratic relations of strain and

electric fields) and nonlinear constitutive equations for piezoelectric materials.

Adequate modeling of the effects of the application of large electric fields to the

piezoelectric layers requires improved finite elements. Kusculuoglu and Royston [7]

developed a 4-node Lagrange bilinear and an 8-node serendipity quadratic element

using Mindlin plate shear deformation theory for each layer of composite plates.
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A constraining matrix for enforcing shear continuity between the layers has also

been introduced in their work. Polit and Bruant [8] presented an 8-node plate

element based on the Mindlin first order shear deformation theory. The electric

potential is approximated using the layer-wise approach: both a linear variation

and a quadratic variation with respect to the thickness coordinate in each layer.

Thornburgh and Chattopadhyay [9] reported high-order models for the behavior of

piezo-laminated plates using nonlinear piezoelectric terms. Pai et al. [10] reported

an uncoupled induced-strain geometric nonlinearity theory for the dynamics and

active control of piezoelectric plates. Varelis and Saravanos [11] developed an

8-node parabolic plate element that includes nonlinear effects due to large dis-

placements and rotations. An incremental-iterative solution is formulated for the

analysis of coupled nonlinear piezo-laminated plates.

Tzou [12] proposed a generic theory for the intelligent shell system. Iozzi and

Gaudenzi [13] developed a four node shear deformable shell element for adaptive

piezo-laminated structures. Pinto Correia et al. [14] presented a shell conical

panel element. A mixed laminated theory is used which combines an equivalent

single layer higher order shear deformation with a layer-wise representation for the

electric potential through each piezoelectric layer.

A survey of the available beam/plate/shell elements for piezoelectric coupled

field problems has been given in Saravanos and Heyliger [15] and Benjeddou [16].
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1.2.2 Enhancement of Buckling Load of Piezo-laminated Structures

In this work, we will investigate the use of the two best known piezoelectric

materials, PZT (Lead Zirconate Titanate) piezoceramic and PVDF (PolyVinyli-

dene Flouride Film) piezo-polymer in enhancing the buckling load of structures.

The following are some of the important previous works on this research topic.

Chandrashekhara and Bhatia [17] used the first-order shear deformation

theory, linear kinematics, and linear constitutive relations for the PZT and

plate material. Their FEM results computed for a square thin plate with the

length/thickness ratio of 100 showed that the actuation of the PZT elements can

increase the buckling load. Thompson and Laughlan [18] experimentally showed

that the buckling load of graphite-epoxy strips can be increased from 19.8% to

37.1% by using PZT actuators. Meressi and Paden [19] analytically proved that

PVDF actuators mounted continuously along the length of a column could be used

to stabilize the first mode of the column.

Cui et al [20] defined the dynamic buckling load of a rectangular elastic-

plastic plate as the one for which the slope of the deflection vs. the load curve

suddenly increased. Varelis and Saravanos [21] incorporated nonlinear effects due

to large rotations to predict the buckling and post-buckling response of adaptive

composite beams and plates. Batra and Geng [22] employed second-order consti-

tutive equations to enhance the dynamic buckling load. They showed that PZT

elements bonded to the top and the bottom of a graphite-epoxy rectangular plate

when suitably activated can enhance the buckling load by 58.5%.
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1.2.3 Active Control Systems, Algorithms, and Controllers

Active control systems use sensors and actuators to activate the application

of forces on a structure. A control system usually has input and output to the

system; when the output of the system is fed back into the system as part of its

input, it is called the “feedback” which is used to adjust controller parameters.

Many authors have proposed different optimal feedback control algorithms and

systems for piezoelectric laminated structures.

For the feedback active control system, a linear quadratic regulator (LQR)

is one of the powerful optimization routines, which can be used to optimize

the feedback parameters. LQR controller is an optimal control theory based on

full state feedback assuming that all the information is available without any

consideration for state estimation. It’s difficult and sometimes impossible to

measure the whole states of the system. Then an observer or state estimator has

to be designed to estimate the state based solely on the measured output. A linear

quadratic Gaussian (LQG) compensator is the combination of the LQR controller

and the observer to be able to compensate the measurement noise of the sensor

output and the environment disturbances of the system dynamics. Other powerful

tools for control design are the system norms such as H2, H∞, and Hankel. They

are the measures of intensity of the system response to standard excitations.

Law and Huang [23], Balamurugan and Narayanan [24], and Narayanan and

Balamurugan [25] presented finite element modeling for beams, plates, and shells

and applied the LQR for active vibration control of smart laminated structures.

Bhattacharya et al. [26] adopted an Independent Modal Space Control (IMSC)
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based LQR control methodology for the active vibration control of laminated

spherical shells with different fiber orientation and varying radii of curvature.

Meressi and Paden [19] used the LQR to stabilize the first buckling mode and

increase the column critical buckling load by 3.8 times. Han and Lee [27] worked

on vibration control of a thin plate using the LQG algorithm.

Proportional-integral-derivative (PID) is the most common general-purpose

controller; see Goodwin et al. [28]. Chandrashekhara and Bhatia [17] demonstrated

a proportional control algorithm where the forces induced by actuators under the

applied voltage are optimized to enhance buckling loads; the sensor output is used

to determine the input to the actuator. Petersen et al. [29] used H∞ norm in a

robust control design.

1.2.4 Conclusions from the Literature Review

From the above literature reviews, it is clear that many researchers have

proposed different nonlinear analytical models and finite element formulations

on piezoelectric structures analysis and design. However, the following points are

noted.

1. Most of these models are limited to piezoelectric actuators or mechanical

structures. Finite element modeling and optimal active control of nonlinear

coupled systems with host structures is studied by only a few researchers.

2. There is a marked absence of papers about active buckling control of plates

and shells. The present research is mainly concentrated on active vibration

control of smart beams and plates.
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3. For the active buckling control of smart beams, most of the research uses

linear kinematics, linear constitutive relations, and the classical plate theory.

For a large electric field drive problem and active control of higher buckling

modes, the second order nonlinear constitutive model, the quadratic through

the thickness electric field, large strains, and shear strains effects have to be

studied.

In conclusion, solid understanding of the nonlinearities and the ability of

simulating them will lead to improved, and robust efficient system actuation and

monitoring. We must consider these mechanical nonlinearities and piezoelectric-

mechanical coupling effects in sensor/actuator modeling, finite element simulation,

and active optimal control design, especially in choosing the control algorithms and

strategies related to the coupled field piezoelectric structures.

1.3 Objectives of the Research

This dissertation is intended to improve the vibration and buckling control

of the piezoelectric laminated composite structures by using the finite element

analysis and modern control technologies.

Based on the discussions in the background and literature review sections, the

author would like to focus on the following special objectives and scope:

Active vibration and buckling control of piezoelectric laminated beams. By

applying finite element analysis (FEA), approximate reduced modal models are

built by including the first two vibration modes and the first six vibration modes.

Then, by applying optimal feedback control strategies (LQR/LQG), the vibration

of a cantilevered piezoelectric laminated beam will be controlled. As well, the first
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two buckling modes of a simply supported piezoelectric laminated beam will be

stabilized. Two finite element formulations based on the classical Euler-Bernoulli

and the Timoshenko beam theories and linear coupled piezoelectric constitutive

equations will be developed and evaluated. The results of the FEA will then be

used to design LQR/LQG compensators to achieve the control. The difference

between vibration suppressing and buckling stabilizing will be illustrated. Also the

optimal locations of segmented actuator pairs and sensors along the beams will be

explained for the more effective control.

For active vibration and buckling control of piezoelectric laminated composite

plates and shells, the following will be done. By using the Layer-Wise Shear

Deformation Theory (LWSDT), a doubly curved piezo-laminated composite shell

element will be developed. The developed element will be able to handle the

nonlinear effects of transverse shear strain and composite materials, piezoelectric-

mechanical coupling, and predict more precisely the higher modes of vibration

for thin to medium-thick multilayered composite structures. The LQG feedback

control will then be designed in conjunction with the FEA results to achieve the

active vibration and buckling controls.

Briefly the main objectives of the dissertation are as follows:

• Develop two coupled piezoelectric laminated beam elements and compare

their FEA results and active control applications.

• Optimize the locations of segmented piezoelectric sensors and actuators for

the effective control.
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• Design LQR/LQG feedback controls to stabilize the first two buckling modes

of piezoelectric laminated beams.

• Adapt the LWSDT theory to develop a coupled curvilinear piezoelectric

laminated composite shell element.

• Determine the approximate reduced modal model that will represent the

system dynamics with the least system modes included.

• Design LQR/LQG feedback control to suppress the vibration and stabilize

the buckling modes of plates and shells.

1.4 Organization of the Dissertation

The dissertation includes six chapters. Chapter 1 offers a number of back-

ground topics and reviews so as to lead to the motivations and objectives of the

research. Chapter 2 introduces mathematical models and finite element models of

piezoelectric structures. By using the Hamilton’s principle, displacement-strain re-

lations are combined with material constitutive equations, compatibility equations,

and stress equations of equilibrium to derive the dynamic governing equations of

piezoelectric laminated structures. Chapter 3 describes the active control design.

These two chapters are devoted mainly to the theoretical basis of the study on

which the following chapters dealing with the applications are built. Chapters

4 and 5 introduce appropriate beam, plate, and shell theory, including trans-

verse shear deformation effects, layer-wise composite material nonlinearity, and

piezoelectric-mechanical coupling to form the system control equations and derive

the reduced modal model to achieve the active controls. Chapter 4 deals mainly
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with the developing of piezoelectric beam elements and vibration and buckling con-

trol applications. Chapter 5 deals with the developing of piezoelectric composite

plate/shell element and corresponding vibration and buckling control applications.

Chapter 6 is the conclusion chapter and it summarizes the contributions of the

dissertation.
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CHAPTER 2

Mathematical and Finite Element Models of Piezolaminated Structures

2.1 Summary

First, the governing dynamic equations of a piezoelectric continuum are

derived from the Hamilton’s principle. These equations take into account the mass

and stiffness of the piezoelectric patches. By applying finite element modeling and

modal analysis techniques, finite element governing equations are then established

and transformed to the modal space.

The developed finite element has only considered the elastic degrees of

freedom and does not introduce voltage, electric charge or other electrical degrees

of freedom as additional ones. It is assumed that the electric field and electric

displacement across the thickness is uniform and aligned with the normal to the

mid-plane of the piezo layer. Thus the applied actuator voltage and also the

capacitance effect are considered constant throughout the piezo-layers.

2.2 Piezoelectric-Mechanical Constitutive Equations

According to the IEEE standard on piezoelectricity [30], linear piezoelectric

constitutive equations can be written in the form of coupled actuator and sensor

equations.

Actuator equation

{σ} = [cE]{ε} − [e]T{E} (2.1)
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Sensor equation

{D} = [e]{ε}+ [ǫε]{E} (2.2)

Alternative forms depending on the type of independant variables and

constants are

{ε} = [sE]{σ}+ [d]T{E} (2.3)

{D} = [d]{σ}+ [ǫσ]{E} (2.4)

{ε} = [sD]{σ}+ [g]T{D} (2.5)

{E} = −[g]{σ}+ [βσ]{D} (2.6)

{σ} = [cD]{ε} − [h]T{D} (2.7)

{E} = −[h]{ε}+ [βε]{D} (2.8)

in which {σ} = (σxx, σyy, σzz, σyz, σxz, σxy)
T , {ε} = (εxx, εyy, εzz, εyz, εxz, εxy)

T ,

{E}, and {D} are the stress, strain, electric field, and electric displacement vectors

respectively; [c] and [s] are the elastic stiffness and compliance matrices; [ǫ] and

[β] are the dielectric constant matrices; [e], [d], [g], and [h] are the matrices of the

piezoelectric constants; the superscripts E, σ, D, and ε mean that the values of

the constants matrices are evaluated at constant E, σ, D, and ε respectively. The

matrix superscript T indicates the matrix transpose.

In the following derivation, the h−type equation (2.7) will be chosen as the

actuator equation and the g−type equation (2.6) will be chosen as the sensor

equation. Also the following verified relations between elastic and piezoelectric
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constants will be used:

[cD][sD] = I6×6 (2.9)

[g] = [h][sD] (2.10)

2.3 Variational Principle

According to the Hamilton’s principle, for an undamped conservative system,

the governing dynamic equations of a piezoelectric continuum are obtainable from

δ

∫ t2

t1

(L+Wd)dt = 0 (2.11)

with

L =

∫

V

(J −H)dV (2.12)

J =
1

2
ρ{u̇}T{u̇} (2.13)

Wd =

∫

V

{u}T{FV }dV +

∫

S

{u}T{FS}dS + {u}T{FP} −QpzΦpz (2.14)

where t1 and t2 are the starting and ending time, V is the body volume, L is the

Lagrangian, J is the kinetic energy density, H is the electrical enthalpy density,

Wd is the work of external disturbance mechanical forces and the applied electrical

potential; {u} and {u̇} are the generalized displacement field and velocity field

respectively; a dot above a variable denotes its time derivative; {FV }, {FS}, and

{FP} are the body forces, the surface forces applied on the surface S, and the

concentrated load vector respectively; Φpz, Qpz, and ρ are the external voltage

applied to the piezo wafer, the electric charge of piezo patches, and the mass

density respectively.
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According to the linear piezoelectric theory (see the IEEE standard [30]), H

can be written as

H =
1

2
[{ε}T{σ} − {D}T{E}] (2.15)

Substituting the constitutive equations (2.7) and (2.6) into H and using the

relations (2.9) and (2.10), then substituting the H and J into L, the Hamilton’s

principle (2.11) yields

δ

∫ t2

t1

(Tk − Uε − Upe − Upc +Wd)dt = 0 (2.16)

Tk is the kinetic energy, Uε is the mechanical strain potential energy, Upe is the

electric potential energy of the piezo layers, and Upc is the mechanical-electrical

coupled potential energy of the piezo layer.

These energy terms can be written as

Tk =

∫

V

JdV =

∫

V

1

2
ρ{u̇}T{u̇}dV (2.17)

Uε =

∫

V

1

2
{ε}T [cD]{ε}dV (2.18)

Upe =

∫

V

−1

2
{DT}([g][h]T + [βT ]){D}dV (2.19)

Upc =

∫

V

−1

2
[{ε}T [h]T{D} − {D}T [h]{ε}]dV (2.20)

The variation of kinetic energy term of equation (2.16) can be integrated by parts

over the time interval as

∫ t2

t1

δJdt =

∫ t2

t1

ρ{δu̇}T{u̇}dt = [ρ{δu}T{u̇}]t2t1 −
∫ t2

t1

ρ{δu}T{ü}dt (2.21)

in which the first term vanishes as δu being equal to zero at t = t1 and t = t2.
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After taking the variation of all the terms in equation (2.16), one gets

−
∫

V

[ρ{δu}T{ü}+ {δε}T [cD]{ε} − {δε}T [h]T{D}

+{δD}T [h]{ε} − {δD}T ([g][h]T + [βT ]){D} − {δu}T{FV }]dV (2.22)

+

∫

S

{δu}T{FS}dS + {δu}T{FP} − δQpzΦpz = 0

2.4 Finite Element Model of Piezoelectric Laminated Structures

The element generalized displacements field u(X, t) can be defined by the

shape functions as

{u(X, t)} = [Nu(X)]{ui(t)} (2.23)

The element electric displacement of piezo layer De(X, t) is defined by the

element electric charge of piezo layer Qe(X, t) as

{De
pz(X, t)} = −{Qe

pz(X, t)/S
e
pz} (2.24)

where X and t are the position and time coordinates, Se
pz is the element area of

the effective surface electrode which is assumed as the entire piezoelectric patch,

the upper index e denotes an element, the lower indices pz denotes the piezo layer,

ui(t) is the corresponding element node displacement value, [Nu(X)] are the shape

functions. Later, these X and t variables are not explicitly written for simplicity.

As charge is collected only in the normal of the mid-plane of piezo-layers or

the thickness direction, only D3 is of interest:

{De
3} = −{Qe

pz/S
e
pz} (2.25)
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The strain field ε can be derived as

{ε} = [∂]{u} = [∂][Nu]{ui} = [Bu(X)]{ui(t)} (2.26)

where [∂] is the derivative operator matrix

[∂] =




∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x

∂
∂y

∂
∂x

0




(2.27)

Substituting these displacement, strain and electric displacement expressions

into the variational equations (2.22) and since the variations δui and δQ
e
pz are

arbitrary, the following finite element equations can be established from the

variational principle

[M e]{üi}+ [Ke
uu]{ui}+ [Ke

uQ]{Qe
pz} = {f e

i } (2.28)

[Ke
Qu]{ui}+ [Ke

QQ]{Qe
pz} = {Φe

pz} (2.29)

in which

[M e] =

∫

V

ρ[Nu]
T [Nu]dV (2.30)

[Ke
uu] =

∫

V

[Bu]
T [cD][Bu]dV (2.31)

[Ke
uQ] =

∫

V

1

Se
pz

[Bu]
T [h]TdV (2.32)
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[Ke
QQ] =

hepz
Se
pz

([g][h]T + [βT ]) (2.33)

[Ke
Qu] = [Ke

uQ]
T (2.34)

{f e
i } =

∫

V

[Nu]
T{FV }dV +

∫

S

[Nu]
T{FS}dS + [Nu]

T{FP} (2.35)

are respectively the element mass, stiffness, piezoelectric coupling, and capacitance

matrices as well as the external mechanical force vectors. {Φe
pz} is the element

applied voltage to the piezo layer and hepz is the thickness of the element piezo

layer.

After introducing structural damping and assembling the element equations

(2.28) and (2.29) for the whole structure, the global equations of dynamics

governing the piezoelectric embedded structure system can be written as

[M ]{Ü}+ [Cd]{U̇}+ [KUU ]{U}+ [KUQ]{Qpz} = {FM} (2.36)

[KQU ]{U}+ [KQQ]{Qpz} = {Φpz} (2.37)

where [M ], [KUU ], [KUQ], [KQU ], [KQQ], {FM}, and {Φpz} are the assembled global

inertial mass matrix, mechanical stiffness matrix, electromechanical coupling

matrix, electric capacitance matrix, external mechanical force vector and external

voltage applied to the piezo layer. {U} and {Qpz} are the global degrees of

freedom of the mechanical variables and the electric charges of the piezo layer.

[Cd] is the Rayleigh damping matrix, assumed to be a linear combination of

the structural mass and stiffness as

[Cd] = a[M ] + b[KUU ] (2.38)
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where a and b are the constants determined by the procedure given in [31].

2.5 Mathematical Model of Piezoelectric Laminated Structures

Piezoelectric smart structures are laminated composite composed of sensor

layers, actuator layers, and nonpiezoelectric multi-base layers. For simplicity, a

laminated rectangular plate/shell structure, with thickness configuration as shown

in Figure 2–1 is used to build the mathematical model.
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Figure 2–1: A laminated composite rectangular plate/shell configuration

Many composite materials are laminated structures or sandwich structures

and composed of numerous laminae, which are bonded toghether. One of the

major advantages that composites have over more conventional structures is the

ability of stacking laminae to result in the optimum laminate material properties.
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Generalized constitutive equations for one lamina of a composite material will first

be formulated.

2.5.1 Constraining Equations

The classical, first order shear deformation or other theories of structure

analysis utilize different strain-displacement relations to describe the displacements

and strains of a laminated or sandwich composite structure. Because all of the

individual laminae are bonded together, the same assumptions are made regarding

the elements through the laminate thickness. A continuity of displacements and

strains occurs across the laminated structure regardless of the orientation of

individual laminae.

In order to satisfy the shear strain continuity for the laminae as well as to

reduce the number of total system degrees of freedom, constraining equations are

constructed, for simplicity, considering the neutral axis layer as the second layer.

Thus, one writes:

{
q
}

= [Cq] {q} (2.39)

{q} = {u1, v1, u3, v3, · · · , uk, vk, · · · , un, vn}T (2.40)

{q} = {u2, v2, φ1
x, φ

1
y, φ

2
x, φ

2
y, · · · , φk

x, φ
k
y, · · · , φn

x, φ
n
y , w}T (2.41)

where uk, vk are the kth layer inplane displacements (k = 1, n), w is the transverse

displacement which is assumed to be uniform through the thickness, φk
x and

φk
y are the rotations of transverse normals about the y and x axes in kth layer

respectively.
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[Cq] =




1 0 −a0 0 −a1 0 0 0 0 0 0 0 0 0 0

0 1 0 −a0 0 −a1 0 0 0 0 0 0 0 0 0

1 0 0 0 a2 − a1 0 a3 0 0 0 0 0 0 0 0

0 1 0 0 0 a2 − a1 0 a3 0 0 0 0 0 0 0

1 0 0 0 a2 − a1 0 a4 0 a5 0 0 0 0 0 0

0 1 0 0 0 a2 − a1 0 a4 0 a5 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

. . . 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
. . . 0 0 0

1 0 0 0 a2 − a1 0 a4 0 a6 0 · · · · · · am 0 0

0 1 0 0 0 a2 − a1 0 a4 0 a6 · · · · · · · · · am 0




(2.42)

where [Cq] represents the constraining matrix; q and q are the dependent and

independent kinematic field variables vector of the problem, respectively; the

constants are,





m = odd → am = −hk

2
k = floor(m

2
) + 2

m = even → am = −hk k = floor(m
2
) + 1

m = 0 → a0 = −h1

2

n is the total number of layers, h1, hk are the thickness of the first and the kth

layer respectively. It should be noticed that constraining equation 2.39 is derived

by assuming the midplane layer is the second layer. Otherwise, the constraining

matrix [Cq] has to be rearranged correspondingly.
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2.5.2 Laminated Composite Constitutive Relations

Piezoelectric composite structures can be modeled as a laminate made of

laminae stacked together at various orientations with differing material properties

in each lamina, see Figure 2–2.
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middle surface

h1z0
z1

Figure 2–2: Laminate with coordinate notation of individual layers

For the k-th orthotropic lamina of the laminated composite plate and shell

structure, with little loss in numerical accuracy, simpler forms [32] (under the

hypothesis σ3 = ǫ3 = 0 and taking into account shear strains and stresses) of the
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stress-strain relations in the material principal coordinates (1, 2) can be defined as





σk
1

σk
2

σk
3

σk
4

σk
5

σk
6





=





σk
11

σk
22

σk
33

τ k23

τ k31

τ k12





=




ck11 ck12 0 0 0 0

ck21 ck22 0 0 0 0

0 0 ck33 0 0 0

0 0 0 ck44 0 0

0 0 0 0 ck55 0

0 0 0 0 0 ck66








ǫk11(= ǫk1)

ǫk22(= ǫk2)

ǫk33(= ǫk3)

2ǫk23(= ǫk4)

2ǫk31(= ǫk5)

2ǫk12(= ǫk6)





(2.43)

where the constants are, ck11 =
Ek

1

1−ν12ν21
, ck22 =

Ek
2

1−νk
12
νk
21

, ck33 = 0, ck12 = ν21c
k
11,

ck21 = ν12c
k
22,c

k
44 = Gk

23, c
k
55 = Gk

31, c
k
66 = Gk

12, and ν
k
ijE

k
j = νkjiE

k
i (i, j = 1, 2). It

should be noted that ǫk4, ǫ
k
5, and ǫ

k
6 are not tensor quantities, but they are widely

used in composite analyses.

In short form,
{
σk
}
=
[
Ck
] {
ǫk
}

(2.44)

Usually, the lamina material axes (1, 2) do not coincide with the reference axes

(x, y), as shown in Figure 2–3. The stress and strains on material and reference

axes are related as

6

-���������1

B
B
B
B
B
B
BM

x

y

1

2

θ
�����������������

Figure 2–3: Lamina material and reference axes
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



σk
1

σk
2

σk
3

σk
4

σk
5

σk
6





=
[
T k
]





σk
xx

σk
yy

σk
zz

σk
yz

σk
zx

σk
xy





(2.45)





ǫk1

ǫk2

ǫk3

ǫk4/2

ǫk5/2

ǫk6/2





=
[
T k
]





ǫkxx

ǫkyy

ǫkzz

ǫkyz

ǫkzx

ǫkxy





(2.46)

Here, it should be noticed that the coordinate transformations can be made

only with tensor stresses and tensor strains. In equation (2.43), it is necessary to

divide ǫk4, ǫ
k
5, and ǫ

k
6 by 2, where

[
T k
]
=




m2 n2 0 0 0 2mn

n2 m2 0 0 0 −2mn

0 0 1 0 0 0

0 0 0 m −n 0

0 0 0 n m 0

−mn mn 0 0 0 (m2 − n2)




(2.47)
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where m = cosθk and n = sinθk. The reverse transformations matrix [T k]−1 can be

derived by substituting the −θk to the m and n.

Equation (2.43) can be transformed to the reference coordinates by using the

equations 2.45 and 2.46.





σk
xx

σk
yy

σk
zz

σk
yz

σk
xz

σk
xy





=




Qk
11 Qk

12 Qk
13 0 0 Qk

16

Qk
12 Qk

22 Qk
23 0 0 Qk

26

Qk
13 Qk

23 Qk
33 0 0 Qk

36

0 0 0 Qk
44 Qk

45 0

0 0 0 Qk
45 Qk

55 0

Qk
16 Qk

26 Qk
36 0 0 Qk

66








ǫkxx

ǫkyy

ǫkzz

2ǫkyz

2ǫkxz

2ǫkxy





(2.48)

or in the succinct notation:
{
σk
}
=
[
Qk
] {
ǫk
}

(2.49)

where [Qk] = [T k]−1[Ck][T k].

Up to this point, the concentration has been on the stress-strain relations or

the material constitutive matrix. Now the other three sets of equations comprising

the equations of elasticity will be considered: the strain-displacement relations, the

equilibrium equations and the compatibility equations.

The inclusion of transverse shear deformations in the structural behavior,

usually results in an improved theory. For simplicity, the displacement field of

the kth layer lamina is based on the first-order shear deformation theory for the

proposed element.
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By the classical laminated composite structure theory, stress resultants N ,

stress couples M , and transverse shear resultants Q per unit width are defined for

the overall structure regardless of the number and the orientation of the laminae as

(Nx, Ny, Qy, Qx, Nxy) =

∫ h/2

−h/2

(σxx, σyy, τyz, τxz, τxy)dz (2.50)

(Mx,My,Mxy) =

∫ h/2

−h/2

(σxx, σyy, τxy)zdz (2.51)

For a composite laminate of n layers with stacking angle θk(k = 1, n) and layer

thickness hk(k = 1, n), the strain-displacement relations for small displacements

assumption is

{ǫ} =
{
ǫ0
}
+ z {κ} (2.52)

where the strain vector {ǫ} = {ǫxx, ǫyy, ǫzz, 2ǫyz, 2ǫxz, 2ǫxy}T , the strains of

mid-surface {ǫ0} =
{
ǫ0xx, ǫ

0
yy, 0, 2ǫ

0
yz, 2ǫ

0
xz, 2ǫ

0
xy

}T
, and the curvatures {κ} =

{κx, κy, 0, 0, 0, 2κxy}T

Substituting equation (2.52) into equation (2.48), then into equation (2.50)

and equation (2.51) results in:

{
N̄
}
= [D̄] {ǭ} (2.53)

where
{
N̄
}

= {Nx, Ny, Qy, Qx, Nxy,Mx,My,Mxy}T is the laminate force and

moment resultant corresponding to the mid-surface, the generalized strain vector

of the mid-surface is {ǭ} =
{
ǫ0xx, ǫ

0
yy, 2ǫ

0
yz, 2ǫ

0
xz, 2ǫ

0
xy, κx, κy, 2κxy

}T
, and
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[D̄] =




A11 A12 0 0 A16 B11 B12 B16

A12 A22 0 0 A26 B12 B22 B26

0 0 A44 A45 0 0 0 0

0 0 A45 A55 0 0 0 0

A16 A26 0 0 A66 B16 B26 B66

B11 B12 0 0 B16 D11 D12 D16

B12 B22 0 0 B26 D12 D22 D26

B16 B26 0 0 B66 D16 D26 D66




(2.54)

where, the extensional, bending-stretching coupling, and flexural stiffness coeffi-

cient matrices of the laminate are

([Aij], [Bij ], [Dij ]) =
n∑

k=1

∫ zk

zk−1

[Qij]
k(1, z, z2)dz (i, j, 1, 2, 6) (2.55)

and the transverse shear stiffness coefficient matrix of the laminate is

[Aij] =
n∑

k=1

κ2
∫ zk

zk−1

[Qij]
kdz (i, j, 4, 5) (2.56)

in which the shear correction factor κ2 is taken as 5
6
, see Reddy [33].

Since [Qij]
k are not functions of z, they can be integrated explicitly [34]

[Aij ] =
n∑

k=1

[Qij ]
k(zk − zk−1) (i, j, 1, 2, 6) (2.57)

[Bij ] =
n∑

k=1

[Qij]
k(z2k − z2k−1) (i, j, 1, 2, 6) (2.58)

[Dij ] =
n∑

k=1

[Qij]
k(z3k − z3k−1) (i, j, 1, 2, 6) (2.59)
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[Aij] =
n∑

k=1

κ2[Qij]
k(zk − zk−1) (i, j, 4, 5) (2.60)

2.5.3 System Governing Equations

Consider a general three layers piezoelectric structure with a non-piezoelectric

base layer bonded with or embedded in colocated actuator and sensor layers as in

Figure 2–4.

Figure 2–4: Piezolaminated composite shell configuration

Following the finite element formulation, both the equations of host structures

with induced strain actuator layers and the sensor equations can be obtained.

For the sensor layer, charge sensing is considered. With zero voltage, from

equation (2.37), the sensor electric charge {Qs} can be written as,

{Qs} = −[Ks
QQ]

−1[Ks
QU ]{U} (2.61)

and it is called the sensor equation, which is the output of the dynamic system.

For the actuator layer, voltage actuation is considered. By imposing a voltage

{Φa} on the actuator, from equation (2.37), the actuation charge {Qa} can be
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written as,

{Qa} = [Ka
QQ]

−1({Φa} − [Ka
QU ]){U} (2.62)

Combining equations (2.36), (2.61), and (2.62), the global dynamic governing

equations can be written as,

[M ]{Ü}+ [Cd]{U̇}+ [K⋆]{U} = {FM} − [Ka]{Φa} (2.63)

in which

[K⋆] = [KUU ]− [Ks
UQ][K

s
QQ]

−1[Ks
QU ]− [Ka

UQ][K
a
QQ]

−1[Ka
QU ] (2.64)

[Ka] = [Ka
UQ][K

a
QQ]

−1 (2.65)

2.6 Reduced-order modal model equations

The governing equations (2.63) are coupled dynamic system equations. They

can be decoupled by the modal coordinates representation. Modal coordinates

are defined through the displacements and velocities of structural (or natural)

modes. Since these coordinates are linearly independent, they are often used in the

dynamics analysis of complex structures modeled by finite elements to reduce the

system order.

Modal models of structures or the modal coordinate representation can

be obtained by the transformation of the previous nodal coordinates governing

equations. This transformation can be derived by the mode superposition method,

in which system modal matrix is used to transform the finite element nodal

displacement vector to the modal coordinate vector. An approximate reduced-

order model of the system in modal coordinates can then be obtained.
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The generalized nodal displacement vector {U(t) } can be approximated by:

{U (t)} ≈
nm∑

i=1

ψiqi (t) = [Ψ]{q (t)} (2.66)

where qi(t) represents the modal amplitude of mode i. The mode shapes ψi and

corresponding eigenfrequencies ωi are the solutions of the eigenvalue problem of

equation (2.63) with damping term neglected as

([K⋆]− ω2
i [M ]){qi} = 0 (2.67)

[Ψ] is the truncated modal shapes matrix. It can be given as:

[Ψ] = [ψ1, · · · , ψnm
] (nm < n) (2.68)

and {q(t)} is the modal coordinates vector, which is a time dependent vector of

order nm; here nm is the number of retained vibration modes or the number of

modes to be controlled.

The dimension of the modal model is the most obvious advantage over the

nodal model. The dimension of the modal representation is nm, while the nodal

representation is n, and typically we have nm << n, i.e., the order of the model in

modal coordinates is much lower than the model in nodal coordinates.

Another advantage of the models in modal coordinates is their definition

of damping properties. While the mass and stiffness matrices are derived in the

nodal coordinates from a finite-element model, the damping matrix is commonly

not known, but is conveniently evaluated in the modal coordinates. Usually, the

damping estimation is more accurate in modal coordinates.
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By assuming that the system response is governed by the first nm modes and

using the modal coordinates {q(t)} and equation (2.66), the system governing

equations (2.63) and the sensor equation (2.61) can then be transformed to the

reduced-order modal-space equations:

[M̄ ]{q̈}+ [C̄d]{q̇}+ [K̄⋆]{q} = {F̄M} − [K̄a]{Φa} (2.69)

{Qs} = −[Ks
QQ]

−1[Ks
QU ][Ψ]{q} (2.70)

[M̄ ] = [Ψ]T [M ][Ψ], [C̄d] = [Ψ]T [Cd][Ψ], [K̄⋆] = [Ψ]T [K⋆][Ψ], [K̄a] = [Ψ]T [Ka], and

{F̄M} = [Ψ]T{FM} are the modal mass, modal damping, modal stiffness, modal

actuator stiffness matrix, and external disturbing force vector, respectively.

Using the orthogonality properties of the mode shapes with respect to the

mass and stiffness matrices

[M̄ ] = [Ψ]T [M ][Ψ] = diag(mi) (2.71)

[K̄⋆] = [Ψ]T [K⋆][Ψ] = diag(miω
2
i ) (2.72)

A proportional damping is assumed

[C̄d] = [Ψ]T [Cd][Ψ] = diag(2miζiωi) (2.73)

ζi (i = 1, nm) is the damping coefficient.

The modal system equation (2.69) can be normalized with respect to mass as

{q̈}+ diag[2ζiωi]{q̇}+ diag[ω2
i ]{q} = [M̄ ]−1{F̄M} − [M̄ ]−1[K̄a]{Φa} (2.74)
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The system governing equations (2.63) are now decoupled into nm equations

corresponding to each individual mode and each mode corresponds to a natural

frequency ωi and a mode shape vector ψi (i = 1, nm).

The piezoelectric continuum linear decoupled dynamic system and sensor

output equations in modal space form can be written as

{q̈}+ diag[2ζiωi]{q̇}+ diag[ω2
i ]{q} = [M̄ ]−1{F̄M} − [M̄ ]−1[K̄a]{Φa} (2.75)

{Qs} = −[Ks
QQ]

−1[Ks
QU ][Ψ]{q} (2.76)
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CHAPTER 3

Active Control Design Scheme of Piezoelectric Structures

3.1 Summary

A control system is an arrangement of physical components connected or

related in such a manner as to command, regulate, direct, or govern itself or

another system for providing a desired system response. A basic control system

has an input, a process, and an output. The input and the output represent the

desired response and the actual response respectively. In other words, a control

system provides an output or response for a given input or stimulus. The basic

objective of a control system is of regulating the value of some physical variable or

causing that variable to change in a prescribed manner in time.

Control systems are typically classified as open-loop or closed-loop. Open-loop

control systems do not monitor or correct the output for disturbances whereas

closed-loop control systems do monitor the output and compare it with the input

by adding a feedback loop, which measures a control variable and returns the

output to influence it. In this chapter, an optimal LQR/LQG feedback closed-loop

control system design scheme is presented for the active control of smart structures

with piezoelectric sensors and actuators. By incorporating finite element analysis

formulations, this control scheme will be carried out on different applications in

the following chapters.
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Most linear control system analyses and design methods are given in the state-

space representation. The state-space standardization of structural models allows

for the extension of known control system properties into structural dynamics.

First, by introducing a state space variable, the structure system modal space

equations can be written in state space form. Next, stability analysis of the closed-

loop system is performed. Then, a Linear Quadratic Regulator (LQR) based on

the full state feedback control law and a dynamic observer (Kalman filter) to

estimate state variables based upon the sensor outputs are designed. Finally, a

Linear Quadratic Gaussian (LQG) compensator is designed by combining the LQR

controller with a state estimator. For simplicity, most of the matrix bracket-pairs

symbols are dropped off in this chapter.

3.2 State Space Model

The modal state-space representation is (Am, Bm, Cm) triple character-

ized by the block-diagonal state matrix, the modal input and output ma-

trices, which are Am = diag(Ami), Bm = [Bm1, · · · , Bmi, · · · , Bmnm
]T ,

Cm = [Cm1, · · · , Cmi, · · · , Cmnm
], i = 1, · · · , nm, where Ami, Bmi, and Cmi are

2 × 2 blocks, 2 × ac blocks (ac is the number of inputs), and sr × 2 blocks (sr

is the number of outputs), respectively. The state x = {x1, · · · , xi, · · · , xnm
}T ,

consists of nm independent components, xi = {xi1, xi2}T , that represent two states

of each mode. The ith component, or mode, has the state-space representation

(Ami, Bmi, Cmi) independently obtained from the state equations

ẋi = Amixi + Bmiu

yi = Cmixi

(3.1)
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The state vector xi can have different modal coordinates representations. In

this thesis, two modal models are used.

For the first modal model,

xi =





qi

q̇i





(3.2)

the blocks Ami, Bmi, and Cmi of the model are as follows:

Ami =




0 1

−ω2
i −2ζiωi


 , Bmi =




0

bmi


 , Cmi = [ cmqi cmvi ]; (3.3)

For the second modal model,

xi =





ωiqi

ζiωiqi + q̇i





(3.4)

By considering small damping ratios ζi (ζi
2 ≈ 0), the blocks Ami, Bmi, and Cmi of

the model are as follows:

Ami =



ζiωi ωi

ωi ζiωi


 , Bmi =




0

bmi


 , Cmi = [ cmqi

ωi
cmvi(1 + ζi) ]; (3.5)

where, qi and q̇i are the ith modal displacement and velocity, which, by coordinates

transformation equations (2.66), gives the original nodal displacement U and

velocity U̇ . The first modal model is a straightforward approach and it has direct

physical interpretation. However, its properties are not so useful as the second

modal model, which shows a symmetrical Ami matrix with small damping ratio

simplification.
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By introducing the state vector xi of the first modal model, the second-order

governing system equations (2.75) and sensor output equations (2.76) can be

converted to a standard first-order state-space form

{ẋ} = A{x}+ B{u}+ Bd{ud}

{y} = C{x}
(3.6)

which represents





q̇1

q̈1

q̇2

q̈2

· · ·

· · ·





=





0 1 0 0 · · · · · ·

−ω2
1 −2ζ1ω1 0 0 · · · · · ·

0 0 0 1 · · · · · ·

0 0 −ω2
2 −2ζ2ω2 · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·









q1

q̇1

q2

q̇2

· · ·

· · ·





−[M̄ ]−1[K̄a]{Φa}+ [M̄ ]−1{F̄M}

where the actuator input {u} = {Φa}, the sensor output {y} is the measured re-

action electric charge {Qs} appearing on the sensors. The sensor output matrix in

the first modal model form is Ci = [Cqi Cvi] and Cvi = 0, Cqi = −[Ks
QQ]

−1[Ks
QU ][Ψi]

is the function of both modal [Ψi] and sensor locations. Notice that all the m

subscripts in the modal model representations are dropped here. The actuator

voltage and mechanical disturbance force terms form the actuator input matrix B

and disturbance input matrix Bd.
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3.3 Stability Analysis of Closed-loop Feedback System

The stability of dynamic characteristics of structural systems has to be

guaranteed for any designed control system. The system natural response should

decay to a zero value or oscillate as time approaches infinity. In other words, a

control law must be established on the stability theory.

Considering a closed-loop feedback system as (3.6) but without the external

force disturbance term Bd{ud}

{ẋ} = A{x}+ B{u}

{y} = C{x}
(3.7)

Stability analysis can be done by the following definition: A continuous

Linear-Time-Invariant (LTI) system is asymptotically stable when all eigenvalues

of the system matrix A have negative real parts.

The eigenvalues of the system are the solutions of the characteristic equation

|sI − A| = sn + a1s
n−1 + · · ·+ an−1s+ an = 0 (3.8)

Given that the solutions are si = λi, i = 1, · · · , n, then the system is stable if

Re[λi(A)] < 0, i = 1, · · · , n. For the system (3.7) derived in the previous section,

the external input has to be taken into account. It can be defined as the Bounded

Input Bounded Output (BIBO) stability of the system as below:

For any bounded input u(t), a system is BIBO stable if the output y(t) and

the state x(t) are also bounded, i.e., ‖u(t)‖ ≤ c1, ∀t ≥ 0 =⇒ ‖y(t)‖ ≤ c2, ‖x(t)‖ ≤

c3, ∀t ≥ 0.
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Moreover, if u(t) converges to zero as t −→ ∞, then x(t) and y(t) also

converge to zero as t −→ ∞.

An alternative approach is based on the Lyapunov stability theory. Consider

an LTI system:

{ẋ} = A{x} (3.9)

Choosing a possible Lyapunov function as

V = {x}TP{x} (3.10)

where P is a positive definite real symmetric matrix. The time derivative of the V

gives

V̇ = {ẋ}TP{x}+ {x}TP{ẋ} (3.11)

Plugging equation (3.9) and after some algebraic manipulations, equation

(3.11) becomes

V̇ = {x}T (ATP + PA){x} (3.12)

By Lyapunov second method of stability theory, asymptotic stability needs a

positive definite matrix Q defined as

Q = −(ATP + PA) (3.13)

so that V̇ = −{x}TQ{x} < 0.

Therefore, the asymptotic stability can be defined as: The LTI system (3.9)

is stable if and only if there exists a positive definite P matrix which satisfies

equation (3.13) for a given positive definite matrix Q.
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The question of stability of the closed-loop system with a controller should

be answered before an implementation of the controller. In order to answer this

question, consider the general architecture of a closed-loop feedback control system

as shown in Figure 3–1.

Figure 3–1: Feedback Control Block Diagram

Where, r(s), d(s), n(s), y(s) are reference input, disturbance, sensor noise and

sensor output respectivly, Gc,Gp are the controller and plant gains. By simple

algebraic manipulations, the relation between reference input and sensor output

can be derived as

y(s)/r(s) =
GcGp

1 +GcGp
(3.14)

Thus feedback affects the gain Gp of a non-feedback system by a factor

1 + GcGp and produces a new closed-loop characteristic equation 1 + GcGp = 0.

Its solution determines the stability of the system which depends on both Gc, Gp

gains. The goal is to design the controller block (with gain Gc) to achieve the

desired system behavior and ensure the closed-loop system stable at the same

time.
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3.4 LQR Controller Design

Before designing the controller, whether the structural control system is

controllable or not must firstly be considered. Basically, the controllability is the

ability that a control input is able to control or alter all the state variables of a

system. The actuator numbers and locations, or actuators placement is therefore

determined by the controllability.

For our considered piezoelectric smart structures, after applying the modal

transformation, the obtained decoupled set of modal coordinate equations must

be controlled independently according to the controllability condition. This means

that there should be the same number of actuators as that of modal coordinates to

ensure the independent modal control.

3.4.1 Controllability

The system (3.7) is said to be controllable when given any initial state

x0 ∈ Rn at time t0, any final state xf ∈ Rn at finite time tf , there exists an control

input u(t) that takes the state of (3.7) from x0 to xf in time 0 ≤ t0 ≤ tf .

Mathematically, this means Controllability Grammian of the system should be

positive definite to guarantee the existence of u(t) [35].

Gc =

∫ tf

t0

eA(tf−τ)BBT eA
T (tf−τ)dτ (3.15)

It has been proved that Gc satisfies the Lyapunov equation:

AGc +GcA
T + BBT = 0 (3.16)
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As it is not easy to solve the Lyapunov equation for Gc, an alternative approach is

that one can compute the controllability matrix, which is defined by

[B AB A2B · · · An−1B] (3.17)

The system is controllable if and only if this matrix has the same rank n as the

size of the state vector.

3.4.2 Feedback Control Law

Figure (3–2) shows the feedback configuration without reference input and

disturbance-free.

-- -

6

�

-
x

z
yur = 0

-
j

G

C
ẋ = Ax+ Bu

Figure 3–2: Feedback control configuration

The key idea of a feedback control is to use the measured current state of a

system to construct an actuator control input. There are two different feedback

control laws applied to the control design.

In the case of the full state feedback law where it is assumed that all states

are measured and available for feedback. The full state feedback uses all state
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variables {x} to stabilize a system. The control input {u} is:

{u} = −G{x} (3.18)

By the previous stability analysis, the closed-loop system is stable if Re[λi(A−

BG)] < 0, i = 1, · · · , n. Therefore, the full state feedback control law design is

to find the feedback gain G which makes the closed-loop system stable. One of the

powerful tool for the full state feedback design is the LQR technique.

The output feedback uses the sensor output {y} as the control input {u}

{u} = −G{y}, {y} = C{x} (3.19)

The closed-loop system is stable if Re[λi(A−BGC)] < 0, i = 1, · · · , n. Since

usually the number of sensors or output is limited, it is not easy to find a feedback

control gain G to satisfy the stability condition in the output feedback control

design. There is no unified tool for an output feedback control design compared

with the LQR in full state feedback.

3.4.3 State Feedback LQR

LQR is an optimal control procedure which energy-like criteria are used and

the minimization procedure automatically produces controllers that are stable

and somewhat robust. The key idea is to design an optimal control to minimize a

cost function or a performance index which is a quadratic function of the desired

system response and required control force [36]:

J =

∫
∞

0

(
α {z(t)}T Q̄{z(t)}+ {u(t)}TR{u(t)}

)
dt (3.20)
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where, α is a positive constant, Q̄ and R are symmetric positive semi-definite and

positive definite weighting matrices on the controlled outputs {z(t)} and control

inputs {u(t)} respectively. A relatively larger Q̄ means more controlled output

response ability and a larger R puts more limit on applied input control force.

The feedback gain G is found from the solution of the corresponding Con-

troller Algebraic Riccati equation (CARE) [36]:

ATP + PA− PBR−1BTP + CT Q̄C = 0 (3.21)

where A and B are defined in equation (3.7), P is an auxiliary matrix which is the

solution of the CARE (3.21).

The control gain G is then given by:

G = R−1BTP (3.22)

Thus the control input {u} can be obtained from eqution (3.18) or (3.19).

The relative values of the weighing matrices Q̄ and R are selected to trade off

requirements on the smallness of the controlled results against requirements on the

smallness of the control force. Weighting matrix R can be set as βI with β as a

positive scalar design parameter. Consequently, α and β can be tuned to establish

a trade-off between these conflicting goals for the best control performance.

An efficient way of choosing Q̄ is to consider the objective of controlled

performance. If the measured sensor output {y} = C{x} is served as performance

output, i.e., {z} = {y}, the related state weight matrix Q can then be computed
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from output matrix C as Q = CT Q̄C. But usually the trial and error procedure is

taken to select the Q.

A crucial property of LQR controller design is that this closed-loop control

system is asymptotically stable (i.e., all the eigenvalues of A − BG have negative

real part) as long as the system (3.1) is controllable and observable when we

choose other than measured sensor output as the sole controlled output z{t}.

Another important property is that LQR controllers are inherently robust with

respect to process uncertainty. Moreover, it can also be used for multiple input

and output systems design.

3.5 Dynamic Observer Design

The drawback of the full state LQR control design is that the whole states x

of the process are required to be measurable. But in most of the control design,

the number of sensors is less than state variables due to the actual constraints.

A possible approach to overcome this difficulty is to estimate the state of the

process based solely on the measured output y of limited number of sensors. Here

the concern is to estimate values of the states when they cannot all be measured

directly, but only certain measurements are available. The Observability is a

primary requirement for the state estimating.

3.5.1 Observability

The system (3.7) is said to be observable when one can determine any initial

state x(ti) by using a finite output y(t) on a certain interval of time ti ≤ t ≤ tf .
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Mathematically, this means Observability Grammian of the system should be

positive definite [37].

Go =

∫ tf

ti

eA
T (ti−τ)CTCeA(ti−τ)dτ (3.23)

where, Go also satisfies the Lyapunov equation:

ATGo +GoA+ CTC = 0 (3.24)

Also, similar to the controllability matrix, an alternative approach is that one

can compute the observability matrix,




C

CA

CA2

...

CAn−1




(3.25)

The system is observable if and only if this matrix has the same rank n as the size

of the state vector.

3.5.2 Full Order Observers

An observer is needed to provide the feedback control law with estimated

state variables. The mathematical model of the dynamic observer is to construct

the physical system based on the sensor measurement.

We assume that x cannot be measured and our goal is to estimate its value

based on y. Suppose we construct the estimate x̂ by adding a correct term to the
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replicated process dynamics as

{
˙̂x
}
= A {x̂}+B {u}+ L ({y} − {ŷ})

{ŷ} = C {x̂}
(3.26)

where L is a given matrix, {x̂}, {ŷ} is an estimate of x, y.

To see if this would generate a good estimate for x, we can define the state

estimation error {e} = {x} − {x̂} and study its dynamics.

From (3.7) and (3.26), we conclude that {ė} = (A− LC){e}. This shows that

when the matrix A− LC is asymptotically stable, the error e converges to zero for

any input u, which means that {x̂} eventually converges to {x} as t −→ ∞.

It turns out that, even when A is unstable, in general we will be able to select

L so that A− LC is asymptotically stable. The system (3.26) can be rewritten as

{
˙̂x
}
= (A− LC) {x̂}+B{u}+ L{y} (3.27)

and is called the full order observer, L is the observer gain to be determined [38].

The main strategy of a dynamic observer design is to select the L to ensure

the closed-loop system A − LC stable. Full order observer has two inputs: u

(control input) and y (process measured output) and one output: {x̂} (state

estimate). Figure 3–3 shows how a full order observer is connected to the process.

3.6 LQR Compensator Design

The LQR controller and state observer can be combined into a complete

system which uses the estimated state variables from the observer in the feedback

control law:

{u} = −G{x̂} (3.28)
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x̂˙̂x = (A− LC)x̂+ Bu+ Ly

Cẋ = Ax+ Bu

?
-
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Figure 3–3: Full-order observer

Substituting the equation (3.28) to the equations (3.7) and (3.27), the

combined system is:

{ẋ} = A {x} −BG {x̂}
{
˙̂x
}
= (A− BG− LC) {x̂}+ L {y}

(3.29)

Substituting the output equation {y} = C{x} and rearranging the above

equations yield: 



ẋ

x̂





=




A −BG

LC A− BG− LC








x

x̂





(3.30)

The combined control system can be called LQR compensator. Separation

principle are used to check whether or not this combined closed-loop system is

stable. Using the property in linear algebra, the characteristic equation of the

combined system can be simplified as:

|λI − A+BG| |λI − A+ LC| = 0 (3.31)
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This characteristic equation consists of two separate parts: the feedback

control law and the dynamic observer. The system stability and control design

can therefore be achieved by the separation principle: The eigenvalues of the

closed-loop system (3.7) are given by both the state-feedback regulator dynamics

A − BG and state-estimator dynamics A − LC. In case these both matrices are

asymptotically stable, then so is the closed loop. This means that the feedback

gain G and the observer gain L can be designed separately.

3.7 LQG Compensator Design

3.7.1 Definition

Previously considered LQR controllers and state estimators were designed

under the assumed disturbance-free environment. However, in general the sensor

output is affected by measurement noise and the process dynamics are also affected

by disturbances. For vibration suppression purposes, it is expected that the

suppression requirements should be satisfied with natural frequencies both within

the controller bandwidth and within the disturbance spectra.

LQG (Linear system, Quadratic cost, Gaussian noise) controllers can typically

meet these conditions and they can be designed for both vibration suppression and

disturbance rejection purposes.

The closed-loop system configuration of the LQG controll system is shown in

Figure 3–4. In this figure (A,B,C) is the plant state-space triple, x is the state,

x̂ is the estimated state, u is the control input, y is the output, ŷ is the estimated

output. It consists of a stable plant or structure and a controller (G). The plant

output y is measured and supplied to the controller. Using the output y the
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Figure 3–4: LQG closed-loop system block diagram

controller determines the control signal u that drives the plant. Notice that the

curly brackets for the vectors are also dropped off for simplicity in this section.

The plant is described by the following state-space equations:

ẋ = Ax+ Bu+Bdd

y = Cx+ n
(3.32)

where the plant or the structure is perturbed by initial disturbance force, denoted

by d, and its output is corrupted by measurement noise n.

3.7.2 LQG Estimator

Rewrite the estimation error for (3.32) and (3.26), which leads to ė =

Ax+ Bdd− Ax̂− L(Cx+ n− Cx̂) = (A− LC)e+ Bdd− Ln
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Because of n and d, the estimation error will generally not converge to zero,

but will remain small by appropriate choice of the observer gain matrix L. This

motivates the so called LQG estimation problem: Find the observer gain L that

minimizes the asymptotic expected value of the estimation error e.

JLQG = lim
t→∞

E[‖e(t)‖2] (3.33)

where d(t) and n(t) are zero-mean Gaussian noise processes with power spectrum

Sd(ω) = QN ; Sn(ω) = RN ; ∀ω. QN = E(ddT ), RN = E(nnT ) are the covariances of

noises d and n. And they are uncorrelated from each other, i.e., E(dnT ) = 0.

The solution to this optimal LQG Problem gives the LQG estimator gain L as

L = PCTR−1
N (3.34)

where P is the unique positive-definite solution to the following Filter Algebraic

Riccati Equation (FARE)

AP + PAT +BdQNB
T
d − PCTR−1

N CP = 0 (3.35)

and this system is called the Kalman-Bucy filter. Different choices of QN and RN

result in different estimator gains L.

A crucial property of the system is that A − LC is asymptotically stable as

long as the system (3.32) is observable and controllable when we ignore u and

regard d as the sole input.
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3.7.3 LQG Compensator

Using the estimator equation(3.27) and referring the inner structure block

diagram of the LQG closed-loop system in Figure 3–4, the LQG compensator state

space equations from input y to output u can be derived as:

˙̂x = (A−BG− LC)x̂+ Ly

u = −Gx̂
(3.36)

From these equations, we obtain the LQG compensator triple (Alqg, Blqg, Clqg)

Alqg = A−BG− LC

Blqg = L

Clqg = −G

(3.37)

The open-loop system are given by (3.32), and the LQG follow from (3.37),

Defining a new state variable

xc =





x

e





(3.38)

where e = x− x̂, we obtain the closed-loop state-space equations in the form:

xc = Acxc +Bcd

z = Ccxc

(3.39)

where

Ac =



A BG

0 A− LC


 Bc =



Bd

Bd


 Cc =

[
C 0

]
(3.40)

is the closed-loop triple.
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3.7.4 The Balanced LQG Compensator

The solutions of the CARE and FARE depend on the states we choose.

Among the multiple choices there exists a state-space representation such that

the CARE and FARE solutions are equal and diagonal, see [39], [40], and [41],

assuming that the system is controllable and observable.

In this case we obtain P = M = diag(λi), i = 1, · · · , N, λ1 ≥ λ2 ≥ · · ·λN > 0,

where λi are its LQG singular (or characteristic) values and M is a diagonal

positive definite matrix. A state-space representation with this condition satisfied

is called an LQG balanced representation.

Let R be the transformation of the state x such that x = Rx̄. Then the

solutions of CARE and FARE in the new coordinates are S̄c = RTPR, S̄e =

R−1PR−T , and the weighting matrices are Q̄c = RTQR, Q̄e = R−1QR−T .

The transformation R to the LQG-balanced representation can be obtained

as follows: For a given state-space representation (A,B,C), firstly, decompose

the solutions of CARE and FARE as Sc = P T
c Pc and Se = PeP

T
e . Then, form

a matrix H, such that H = PcPe. Next, find the singular value decomposition

of H, H = VMUT . Lastly the transformation matrix can be obtained either as

R = PeUM
−1/2 or as R = P−1

c VM1/2.
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CHAPTER 4

Active Vibration and Buckling Control of Piezolaminated Beams

4.1 Summary

The goal is to increase the beam buckling loads by using piezoelectric sen-

sors/actuators along with optimal feedback control. First, both Euler-Bernoulli

and Timoshenko beam theory based laminated beam elements are formulated.

Then, LQG active control is designed to stabilize the first two buckling modes of

both simply supported and cantilevered beams.

The uniform beams are bonded with two pairs of segmented piezoelectric

sensors/actuators at top and bottom sides. The sensor’s measurements are taken

to estimate the system states. The beams are subjected to a slowly increasing

axial compressive load. Finite element formulations based on the classical Euler-

Bernoulli beam theory, Timoshenko First-order shear deformation theory, and

Layer-wise shear deformation theory and linear piezoelectric constitutive equations

for the piezoelectric sensor and actuator are presented. The associated reduced

order modal equations and state-space equations are derived for the design of an

LQG control.

The finite element analysis and the active control simulation results are

consistent with both theoretical analysis results and experimental data. The

designed full state feedback LQR controller and dynamic observer are shown to

be successful in stabilizing the first two buckling modes of the beams. Also the
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control simulation shows that the optimally located segmented sensor/actuator

pairs along the beam are more effective in the buckling control.

The problem addressed in this chapter is the active control of the first two

buckling modes of flexible beams. The controlled structures can bear more load

and have extensive application in high-performance, light-weight structural

systems, especially in aerospace engineering.

Meressi and Paden [19] have shown that the buckling of a simply supported

beam can be postponed beyond the first critical load by means of feedback control

using piezoelectric actuators and strain gauge sensors. Hence, the controlled beam

could support a load up to the second critical load. Berlin [42] constructed a

prototype composite column that was stabilized against buckling through the use

of piezoelectric actuators and non-adaptive control strategies. He demonstrated

that multiple buckling modes can be stabilized simultaneously. The load-bearing

strength of his controlled column was increased by 5.6 times. Some other re-

searchers have also discussed multi-mode control problems [43].

First, a finite element vibration and buckling analysis of axial compressed

simply-supported or cantilevered beam is performed. Next, the associated modal

equations and state-space equations of a reduced order system are derived. A

compensator combining the feedback control law and the dynamic observer is then

designed to stabilize the first two buckling modes of both simply-supported and

cantilevered beams. Lastly, some results and conclusions are given.
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4.2 Finite Element Formulation

4.2.1 Classical Laminated Beam Theory

The piezo-laminated beam assumes the substrate, sensor layers, and actuator

layers as a continuous structure and there is a linear distribution of strain. The

displacement and strain follow the Euler-Bernoulli assumption that the plane

cross-section normal to the beam axis remains plane and normal to the axis after

deformation. The transverse displacement of each layer is same and the shear

strains between the layers are negligible. The displacement field for the kth layer is

defined as

uk1 =u− z
∂w

∂x
(4.1)

uk3 =w

where,
{
uk1, u

k
3

}T
is the displacement field vector, u, w are the lateral displacement

on x-axis and the transverse displacement on z-axis of the midplane, respectively.

The mechanical strain energy for the kth layer can be written as

Uk
ǫ =

∫ L

0




EkAk

2

[
du

dx
+

1

2

(
dw

dx

)2
]2

+
EkIk

2

(
d2w

dx2

)2



 dx (4.2)

where, L, Ek, Ak, and Ik are the beam length, Young modulus, the area and

moment of inertia of the beam cross section for the kth layer, respectively.

The above can be explicitly written as

Uk
ǫ =

∫ L

0

{
EkAk

2

[(
du

dx

)2

+
du

dx

(
dw

dx

)2

+
1

4

(
dw

dx

)4
]
+
EkIk

2

(
d2w

dx2

)2
}
dx (4.3)
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For small displacement assumption, only the first term and the last term of

equation (4.3) are kept, and so

Uk
ǫ =

∫ L

0

[
EkAk

2

(
du

dx

)2

+
EkIk

2

(
d2w

dx2

)2

]dx (4.4)

Applying both linear and Hermitian interpolation polynomials as shape

functions to approximate the independent displacement field

u(x) = [N5 N6]





ui

uj




, w(x) = [N1 N3 N2 N4]





wi

dwi

dx

wj

dwj

dx





(4.5)

where, the subscripts i, j indicate the local node number of the element and the

shape functions are

N1 = 1− 3x2

l2
+ 2x3

l3
, N2 =

3x2

l2
− 2x3

l3
,

N3 = −x+ 2x2

l
− x3

l2
, N4 =

x2

l
− x3

l2
,

N5 = 1− x
l
, N6 =

x
l

(4.6)

where, l = |xj − xi|.

Substituting the discretized displacement equation (4.5) in the strain energy

equation (4.4) and integrating over the layer yields the element stiffness matrix of
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the kth layer as

[Kk]e =




EkAk

l
0 0 −EkAk

l
0 0

0 12EkIk

l3
6EkIk

l2
0 −12EkIk

l3
6EkIk

l2

0 6EkIk

l2
4EkIk

l
0 −6EkIk

l2
2EkIk

l

−EkAk

l
0 0 EkAk

l
0 0

0 −12EkIk

l3
−6EkIk

l2
0 12EkIk

l3
−6EkIk

l2

0 6EkIk

l2
2EkIk

l
0 −6EkIk

l2
4EkIk

l




(4.7)

4.2.2 Layer-Wise Shear Deformation Laminated Beam Theory

The piezo-laminated beam assumes each of the substrate, sensor layers, and

actuator layers as a Timoshenko beam. That is the plane cross-section normal to

the beam axis remains plane but does not remain normal to the axis any longer

after deformation. The transverse shear strain is not negligible. The displacement

field for the kth layer is defined as

uk1 = uk − zφk

uk3 = w
(4.8)

To ensure the continuity of displacement, uk1 must be equal at the interface of

base layer and piezo-layers. That is

ub − hb
2
φb = us +

hs
2
φs (4.9)

ub +
hb
2
φb = ua − ha

2
φa (4.10)
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here, b, s, and a represent the base, sensor, and actuator layer, respectively and

hb, hs, ha represent the thickness of the correspondent layers. us, ua can be solved

from the above equations as

us = ub − hb
2
φb − hs

2
φs (4.11)

ua = ub +
hb
2
φb +

ha
2
φa (4.12)

These are the constraint equations of the beam. The displacements for the base

layer and piezo-layers in matrix form become





ub1

ub3





=
[
Cb
]
{∆} (4.13)

[Cb] =




1 0 −z 0 0

0 0 0 0 1


 (4.14)

{∆} = { ub φa φb φs w }T (4.15)





us1

us3





= [Cs] {∆} (4.16)

[Cs] =




1 0 −hb/2 −(hs/2 + z) 0

0 0 0 0 1


 (4.17)
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



ua1

ua3





= [Ca] {∆} (4.18)

[Ca] =




1 ha/2− z hb/2 0 0

0 0 0 0 1


 (4.19)

where, [C] represents the constraint matrix.

Using the strain equation





ǫkxx

2ǫkxz





=




∂
∂x

0

∂
∂z

∂
∂x








uk1

uk3





(4.20)

The strains for the base layer and piezo-layers can be written as





ǫbxx

2ǫbxz





=
[
Hb
]
{∆} =

[
Cb
] [
∂b
]
{∆} (4.21)

[
∂b
]
=




∂
∂x

0 0 0 0

0 0 0 0 0

0 0 ∂
∂x

0 0

0 0 0 0 0

0 0 −1 0 ∂
∂x




(4.22)





ǫsxx

2ǫsxz





= [Hs] {∆} = [Cs] [∂s] {∆} (4.23)

61



[∂s] =




∂
∂x

0 0 0 0

0 0 0 0 0

0 0 ∂
∂x

0 0

0 0 0 ∂
∂x

0

0 0 0 −1 ∂
∂x




(4.24)





ǫaxx

2ǫaxz





= [Ha] {∆} = [Ca] [∂a] {∆} (4.25)

[∂a] =




∂
∂x

0 0 0 0

0 ∂
∂x

0 0 0

0 0 ∂
∂x

0 0

0 0 0 0 0

0 −1 0 0 ∂
∂x




(4.26)

where, [∂] represents the operator matrix.

The strain energy for the kth layer is

Uk
ǫ =

1

2

∫

V

{
ǫkxx 2ǫkxz

}


Ek 0

0 Gk








ǫkxx

2ǫkxz




dV (4.27)
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Substituting strains (4.21), (4.23), and (4.25) to the strain energy equation

(4.27) yields

Uk
ǫ =

1

2

∫

V

{
ub φa φb φs w

}
[Hk]T



Ek 0

0 Gk



[
Hk
]





ub

φa

φb

φs

w





dV (4.28)

where, k = a, b, s for actuator, base, and sensor layer respectively.

The independent displacements ub, φa, φb, φs, w are discretized as

{∆} =
{
ub φa φb φs w

}T
= [N ] {u} (4.29)

where [N ] and {u} are

[N ] =




N5 0 0 0 0 0 N6 0 0 0 0 0

0 N5 0 0 0 0 0 N6 0 0 0 0

0 0 N5 0 0 0 0 0 N6 0 0 0

0 0 0 N5 0 0 0 0 0 N6 0 0

0 0 0 0 N1 N3 0 0 0 0 N2 N4




(4.30)

{u} =

{
ubi φa

i φb
i φs

i wi w
′

i ubj φa
j φb

j φs
j wj w

′

j

}T

(4.31)

Here, the shape functions N1 · · ·N4 are Hermitian polynomials and N5, N6 are

linear interpolation functions given by (4.6).

63



Substituting the equation (4.29) to the strain energy equation (4.28) and

integrating over the layer yields the element stiffness matrix of the kth layer

[Kk]e =

∫

le
k


[N ]T



∫ hk/2

−hk/2

∫ bk/2

−bk/2

[Hk]T



Ek 0

0 Gk



[
Hk
]
dz dy


 [N ]


 dx (4.32)

4.2.3 Electric Potential Energy and Electromechanical Coupled Poten-

tial Energy

From the electric potential energy (2.19) and the electromechanical coupled

potential energy (2.20) for the piezo layers, the dielectric effect term and the

coupling term can be explicitly written as

Upz
pe =

∫

V pz
e

−1

2
(gpz31h

pz
31 + (βT

33)
pz)(Dpz)2dV (4.33)

U s
pc =

∫

V s
e

1

2
(hs31ε

s
xx)D

sdV (4.34)

Ua
pc =

∫

V a
e

−1

2
(εaxxh

a
31)D

adV (4.35)

where, superscripts s and a represent the sensor and actuator layer respectively;

the superscript pz represents the piezo layer, it can be s or a.

Substituting first the displacement (4.11) and (4.12) in the coupling potential

energy (4.34) and (4.35), then applying equation (4.29) to discretize them and

integrating over the layer, the coupled element stiffness matrix of the sensor and

actuator layers can be explicitly written as

[Ks
coup]

e =

∫

lse
hs31S

se[Hs
coup][N ]dx (4.36)
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where, Sse is the element cross section area of the sensor layer, lse is the element

length of the sensor layer and

[
Hs

coup

]
=

[
1
2

0 −hb

4
−hs

4
0

]




∂
∂x

0 0 0 0

0 ∂
∂x

0 0 0

0 0 ∂
∂x

0 0

0 0 0 ∂
∂x

0

0 0 0 0 ∂
∂x




(4.37)

[Ka
coup]

e =

∫

lae
ha31S

ae[Ha
coup][N ]dx (4.38)

where, Sae is the element cross section area of the actuator layer, lae is the element

length of the actuator layer and

[
Ha

coup

]
=

[
−1

2
−ha

4
−hb

4
0 0

]




∂
∂x

0 0 0 0

0 ∂
∂x

0 0 0

0 0 ∂
∂x

0 0

0 0 0 ∂
∂x

0

0 0 0 0 ∂
∂x




(4.39)

Similarly, integrating equation (4.33) yields the dielectric term

[Kpz
dielec]

e = −hepz(gpz31hpz31 + (βT
33)

pz) (4.40)
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4.2.4 Kinetic energy

From the definition of (2.17), the beam kinetic energy of the kth layer is

Tk =

∫

Vk

1

2
ρk{u̇k1 u̇k3}{

u̇k1

u̇k3

}dV (4.41)

For the classical Euler-Bernoulli beam, substituting the displacement equation

(4.1) into the kinetic energy equation (4.41) then discretizing them using equation

(4.5) and integrating over the layer will yield element mass matrix of the beam.

The consistent mass matrix for the kth layer can then be explicitly written [45] as

[Mk]e =
ρkAkl

420




140 0 0 70 0 0

0 156 22l 0 54 −13l

0 22l 4l2 0 13l −3l2

70 0 0 140 0 0

0 54 13l 0 156 −22l

0 −13l −3l2 0 −22l 4l2




(4.42)

For the shear deformable Timoshenko beam,substituting the displacement

(4.13), (4.16), and (4.18) into the kinetic energy equation (4.41) then discretizing

them using the equation (4.29) and integrating over the layer will yield element

mass matrices of the base, the sensor and the actuator layers for k = b, s, a

[Mk]e = ρk

∫

le
k

[
[N ]T

(∫ hk/2

−hk/2

∫ bk/2

−bk/2

[Ck]Tdz dy

)
[N ]

]
dx (4.43)
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4.2.5 Governing Equations of Motion

For the vibration analysis and control of the beam, the element dynamic

governing equations are (2.28) and (2.29). From the previous equations, all the

potential energy terms and kinetic energy terms for each layer are evaluated

individually. Consequently the element stiffness and mass matrices are formed

by adding all layers together. This formulation can be easily extended from three

layers beam to multilayered beam. After assembly of element matrices and vectors,

the global governing equation is equation (2.63).

For the buckling analysis and control of the beam, the element dynamic

buckling equations are

[M ]{Ü}+ [Cd]{U̇}+ [K⋆]{U} − P [KG]{U} = {FM} − [Ka]{Φa} (4.44)

where, the only new term is the geometric stiffness matrix KG and P is the axial

compressive load.

Considering small lateral displacement of the beam, the slowly increasing axial

compressive load P remains essentially constant. The membrane strain energy

caused by P is

Um =

∫

l

(Pǫm)dx (4.45)

here, the membrane strain is defined as Green strain in terms of the displacement

components u1 and u3 in coordinate directions x and z

ǫm = u1,x +
1

2
(u1,x

2 + u3,x
2) (4.46)
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With small displacement assumption, only first and third terms are kept, this

yields

Um =

∫

l

[P (u1,x +
1

2
u3,x

2)]dx (4.47)

For the classical Euler beam, substituting the displacement equation (4.1) into

the equation (4.47) then discretizing them using the equation (4.5) and integrating

over the layer will yield element geometric stiffness matrix Ke
G of the beam which

can be explicitly written [45] as

[KG]
e =

1

30l




30 0 0 −30 0 0

0 36 3l 0 −36 3l

0 3l 4l2 0 −3l −l2

−30 0 0 30 0 0

0 −36 −3l 0 36 −3l

0 3l −l2 0 −3l 4l2




(4.48)

Comparing the P [KG] with the elastic stiffness matrix (4.7), for the net

stiffness ±(EA + P )/l associated with the displacement u term, because of

EA >> |P | in any parctical problem, the extra P/l terms are negligible.

For the Timoshenko beam, substituting the displacement equation (4.13) into

the equation (4.47) and keeping only the terms associated the w, then discretizing

them using the equation (4.29) and integrating over the layer yields element

geometric stiffness matrix Ke
G as

[KG]
e =

∫ l

0
[N ]T ([∂G]

T [∂G])[N ]dx

[∂G] = { 0 0 0 0 ∂
∂x

}
(4.49)
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4.3 Model Validation

The present classical Euler and first order shear deformable Timoshenko

piezolaminated beam elements are validated by considering free vibrations of both

the simply supported (SS) and the cantilever beams (CF). For comparison with

the known results, both beams have the same modulus of elasticity E = 108Pa,

Possion’s ratio ν = 0.3, area of cross section A = b × h, length L = 1.0m,

width b = 0.10m, mass density ρ = 1.0kg/m3, shear correction factor κ = 5/6

and all using 40 elements to compute the first 12 natural frequencies for different

thickness h = 0.001, 0.01, 0.1. Non-dimensional natural frequencies are given

by ω̄ = ωL2
√

ρA
EIz

. Results are presented in Table 4–1 and Table 4–2. They are

in excellent agreement with Euler beam exact solution [46] and more accurate,

especially for the higher modes compared with Ferreiras result [47].

Table 4–1: Comparison of non-dimensional natural frequencies ω̄ for SS beam

Modes Euler exact Euler element Timoshenko element

h/L=0.001 h/L=0.01 h/L=0.1

1 9.8696 9.8730 9.8772 9.8755 9.7148
2 39.478 39.533 39.600 39.574 37.202
3 88.826 89.103 89.445 89.309 78.620
4 157.91 158.79 159.88 159.44 129.92
5 246.74 248.88 251.56 250.48 187.93
6 355.31 359.74 365.37 363.10 250.48
7 483.61 491.84 502.40 498.12 316.17
8 631.65 645.71 664.01 656.54 384.12
9 799.44 821.99 851.81 839.54 453.82
10 986.96 1021.4 1067.8 1048.5 524.94
11 1194.2 1244.7 1314.1 1285.0 597.33
12 1421.2 1492.9 1593.5 1550.8 670.90
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Table 4–2: Comparison of non-dimensional natural frequencies ω̄ for CF beam

Modes Euler exact Euler element Timoshenko element

h/L=0.001 h/L=0.01 h/L=0.1

1 3.51602 3.51598 3.51628 3.51600 3.48862
2 22.0345 22.0463 22.0683 22.0561 20.9368
3 61.6972 61.8034 61.9689 61.8871 55.1956
4 120.902 121.340 121.978 121.680 100.441
5 199.860 201.101 202.857 202.059 153.467
6 298.556 301.391 305.344 303.579 211.796
7 416.991 422.612 430.409 426.961 273.824
8 555.165 565.250 579.255 573.090 338.499
9 713.079 729.876 753.342 743.022 405.101
10 890.732 917.148 954.416 937.993 473.075
11 1088.12 1127.81 1184.54 1159.43 541.863
12 1305.26 1362.70 1446.15 1408.97 610.497

Another useful result observed from the above accuracy comparation of

dimensionless frequencies is that Euler element should be used for a thin beam

(h/L < 0.001) and Timoshenko element is for a moderate thickness beam (h/L ≥

0.001). The higher order frequencies cannot be well predicted by employing less

elements using a lower order theory.

Next, the lowest buckling loads are computed using both present classical

Euler and first order shear deformable Timoshenko piezolaminated beam elements

for the simply supported and the cantilever beams. Both beams have the same

modulus of elasticity E = 107Pa, Possion’s ratio ν = 1/3, area of cross section

A = b × h, length L = 1.0m, width b = 0.10m, mass density ρ = 1.0kg/m3, shear

correction factor κ = 5/6 and all using 40 elements to compute the first 12 natural

frequencies for different thickness cases h = 0.001, 0.01, 0.1m.
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The exact solution [48] is

Pcr =
π2EI

L2
eff


 1

1 + π2EI
L2

eff
κGA




where Leff is the effective beam length. For SS or pinned-pinned beams (Leff =

L) and for CF or clamped-free beams (Leff = 2L).

Table 4–3 shows the buckling loads for SS and CF beams computed using

40 elements of present Euler and Timoshenko elements. They show an excellent

agreement with the exact solution and results of Ferreira code [47].

Table 4–3: Comparison of beam critical loads

Simply support Cantilever

h/L 0.001 0.01 0.1 0.001 0.01 0.1

Exact 0.0082 8.2230 8013.8 0.0021 2.0560 2042.7
Present Euler element 0.0082 8.2247 8224.7 0.0021 2.0562 2056.2
Present Timoshenko 0.0082 8.2303 7959.6 0.0021 2.0565 2039.1
Ferreira Timoshenko 0.0082 8.2310 8021.8 0.0021 2.0566 2050.0

4.4 Case Studies

Three case studies are presented to demonstrate the validity and efficiency of

the proposed finite element analysis models and both active vibration suppression

and buckling control designs.

4.4.1 Active Vibration Control of an Experimental Cantilever Beam

The same experimental beam (Figure 4–1) tested by Yousefi-Koma [49] is

studied first.

The dimensions and mechanical-piezoelectric properties are listed in Table 4–4

and Table 4–5. The finite element model is given in Figure 4–2
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Figure 4–1: Physical model of a cantilever beam with sensors and actuators

��HH������PPPPPP

sensor#1

actuator

sensor#2

��HH

Figure 4–2: 20 elements analysis model of the experimental beam
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Table 4–4: Piezoelectric material properties and geometric specifications

PZT actuators PVDF sensors

Side/No.(T:top, B:bottom) T/1 B/2 T/1 T/2 B/3 B/4

Mid point position xa, xs(mm) 89.0 89.0 35.4 142.6 35.4 142.6
Half the length ma,ms(mm) 38.1 38.1 13.5 13.5 13.5 13.5
Width Wa,Ws(mm) 25.4 25.4 13.0 13.0 13.0 13.0
Thickness ta, ts(mm) 0.305 0.305 0.028 0.028 0.028 0.028
Density (Kg/m3) 7350.0 1780.0
Elastic modulus (Pa) 71.4× 109 2.0× 109

Electric permittivity ǫp(F/m) 150.4× 10−10 1.06× 10−10

Piezoelectric strain constant 200.0× 10−12 23.0× 10−12

d31(m/v)
Maximum electric field (v/µm) 1.0 30.0

Table 4–5: Aluminium beam properties and geometric specifications

Length Lb(mm) 508.0
Width Wb(mm) 25.4
Thickness tb(mm) 0.8
Density (Kg/m3) 2710.0
Elastic modulus(Pa) 72.0× 109

Poisson’s ratio 0.3333
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Using the same first two modal damping ratios (ζ) obtained from the experi-

ment which are 0.011 and 0.055, the first two natural frequencies of the experimen-

tal beam are presented in Table 4–6 for the beam without any piezo-elements and

Table 4–7 with bonded piezo-elements respectively.

Table 4–6: Frequencies of the experimental beam without any piezo-elements

Natural frequencies(Hz)

mode 1 mode 2

Analytical [50] 2.58 16.30
Abaqus [50] 2.59 16.29
ANSYS [50] 2.59 16.27

Present Euler element 2.5812 16.1762
Present Timoshenko element 2.5832 16.3313

Table 4–7: Frequencies of the experimental beam with bonded piezo-elements

Natural frequencies (HZ)

Mode ζi Experiment [49] Abaqus [50] ANSYS [51] Proposed FSDT

1 0.011 3.41 3.30 3.11 3.2972
2 0.055 16.90 16.21 16.07 16.1782

In the case of beam bonded with piezo-elements, the shear stress and shear

deformation between the beam and piezo-elements have to be considered on

account of the coupled piezoelectric-mechanical field. Timoshenko element should

be used to obtain better results. It is seen that the proposed First order Shear

Deformable Theory (FSDT) piezo-laminated beam element analysis results (all

with 20 elements) are quite closer to the experimental data compared with the

other two commercial finite element analysis programs results [50].
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Figure 4–3: Open loop responses of tip displacement in 3 and 30 seconds

As in the experimental study, the beam is under an initial tip displacement of

10mm and only the first two modes are included in the numerial simulation.

Figure 4–3 shows the no control open loop tip displacement of the free

vibration beam for 3 and 30 seconds respectively. Figure 4–4 gives the output

voltage of the sensor #1 in a 3 seconds period for the beam. It shows good

agreement with the experiment results [49].

For the LQR control, we have four equal states and sensors as only the first

two modes are considered. A full state feedback LQR controller can be designed.
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Figure 4–4: Open loop output voltage of sensor #1,#2 in 3 seconds

The state weight matrix Q and control input weight matrix R are chosen

based on the balance of desired control performance and control input limit. As

the tip vertical displacement is set as performance output, Q can be computed

from output matrix C with Q = CTC. Q̄ = I4×4 is chosen as a diagonal

matrix with equal elements for considering all of the sensor signals to be of equal

importance. R = βI with β = 1.3 and α = 108 are chosen such that the settling

time of one second of the tip displacement as the control performance while the

control voltage remains below the breakdown voltage (Vmax = ha∗1.0v/µm = 305v)

of the piezoelectric PZT-actuator (i.e. −305v < Vcontrol < 305v).

The Matlab control toolbox was used in simulation to obtain the control

state feedback gains G. Using full state feedback control law equation (3.18),

control voltage of the actuators can be obtained. The closed loop response of
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the beam tip displacement in Figure 4–5 has a 1 second settling time which is

20 times faster than the 20 seconds open loop case. Figure 4–7 plots the output

voltage of the sensor #1 and #2 (they are very close from the simulation results).

Figure 4–8 plots the output current of the sensor #3 and #4. Figure 4–6 shows

the corresponding control voltage of the actuators, which has an absolute value

less than Vmax = 305v. Fairly good agreements on beam tip displacement

response, sensor outputs, and applied control input force are observed between the

experiment and simulation results.
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Figure 4–5: LQR controlled tip displacement in 3 seconds

The piezoelectric materials are very sensitive to the environment noise and

process or plant disturbances. The output measurements of the sensors may

absorb all kind of acoustic, thermal, mechanical, and electrical disturbances. The

previous LQR controller was designed for the noise-free environment and cannot
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Figure 4–6: LQR control input voltage of the actuators

compensate for the noises. LQG compensator was then designed to serve both the

vibration control and disturbance rejection purposes.

Figure 4–9 and 4–10 show the LQG controlled tip displacement and control

input voltage respectively. As we see the closed loop response is very smooth and

the LQG has compensated the noise completely. The controlled results and the

required control voltage are almost identical to that of the LQR control system

without any noise, as is evident from comparison with the figures 4–5 and 4–6.

Figure 4–11 shows the LQR control system cannot dampen both the noise and

vibration. Also from Figure 4–12, the required control voltage (|Vcontrol| > 500v)

for the LQR system is high enough to destroy the piezoelectric PZT actuator

(Vmax = 305v), whereas the required control voltage of the LQG system is in the

acceptable range.
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Figure 4–7: Sensor #1,#2 output voltage in 3 seconds
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Figure 4–8: Sensor #3,#4 output current in 3 seconds

79



0 0.5 1 1.5 2 2.5 3
−0.01

−0.005

0

0.005

0.01
LQG controlled tip displacement in 3 seconds(with noise)

Time(sec)

D
is

pl
ac

em
en

t(
m

)

Figure 4–9: LQG controlled tip displacement with noise
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Figure 4–10: LQG control input voltage with noise
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Figure 4–11: LQR controlled tip displacement with noise
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Figure 4–12: LQR control input voltage with noise
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4.4.2 Active Buckling Control of a Simply Supported Beam

Figure 4–13: Physical model of a SS beam with sensors and actuators

The model studied, Figure 4–13, is a simply supported beam subjected to

axial compression. This was also studied by Meressi and Paden [19] with the

classical Euler-Bernoulli beam theory. The two sides of the beam are bonded with

two pairs of collocated segmented piezoelectric PVDF sensor and actuator. The

collocated sensor and actuator are identical in geometry and are the same PVDF

piezoelectric material. The material properties and geometric specifications of the

beam and the piezo-elements are in Table 4–8. For reducing the number of sensors,

the sensor/actuator pairs are placed at x = Lb/3 and x = 2Lb/3 so that the third

mode and its multiples are unobservable.

The beam is divided by 24 elements. Table 4–9 shows the first three critical

loads computed using the proposed Timoshenko beam element. Structural

damping coefficient of the first mode is assumed as ζ = 0.01 and the other modes

can then be obtained by Rayleigh damping method. The first two or four modes
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Table 4–8: SS beam and piezoelectric PVDF properties

beam PVDF

Length Lb(mm) 152.4 25.4
Width Wb(mm) 25.4 25.4
Thickness tb(mm) 1.0 0.110
Density (Kg/m3) 1000.0 1780.0
Elastic modulus(Pa) 5.0× 109 2.0× 109

Piezoelectric strain constant d31(m/v) – 21× 10−12

Electric permittivity ǫp(F/m) – 1.06× 10−10

Maximum electric field (v/µm) – 30

Table 4–9: The first three critical loads of the SS beam

Buckling mode Present Timoshenko element Exact solution

24 elements 40 elements

first 4.5492 4.5019 4.4968
second 18.8442 18.0634 17.9872
Third 45.0316 40.8527 40.4713

minimal realization model are used to realize an approximate reduced order

modal model of the system for the first buckling mode or the first two buckling

modes control respectively. The modal states are estimated from the two sensor

measurements by a dynamic observer. Then corresponding LQR controllers with

state observers are designed and active control designs are carried out to stabilize

the first buckling mode and the first two buckling modes of the beam respectively.

As the unmodeled dynamics can cause instability which are known as control and

observation spillovers, an extended modes evaluation model is then constructed to

see the spillover effects of the higher order residual modes.
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First, an LQR controller is designed to stabilize the first buckling mode. For

comparing with the results of [19], it is assumed that the two sensors and the

two actuators are serially combined as one respectively so that the sums of their

measurements are taken as the system output and control input correspondingly

and the derivative of the sensor output can be computed. All even modes are

uncontrollable as the symmetrical locations of the actuators while the third mode

and its multiples are unobservable as the sensors are placed at nodes of these

modes. Thus the first and the fifth modes are the first two modes in a minimal

realization of the system. The weight matrices Q = CTC,R = I and control

parameters α = 1014, β = 2 are used for the LQR controller design.

The feedback gain [G] is computed for an axial load exceeding the second

critical load Pcr2. The first buckling mode is then stabilized to the second buckling

load Pcr2 so that the beam is forced to buckle in the second mode. The stability of

the system under any fixed axial loads less than Pcr2 can be verified [19]. Figures

4–14 and 4–15 are the resulting closed-loop sensor output to a unit impulse load

applied on the middlespan of the beam and the control input voltage for an axial

compressive load P = 0.9Pcr2. The time and frequency responses of the unit

impulse load for the axial compressive load P = 0.9Pcr2 in figures 4–16 and 4–17

show the uncontrolled and controlled buckling displacements (the control starting

from 0.002 second as seen in the Figure 4–16). Thus the buckling load can be

improved to 3.6 times of the first critical load.

Both Figure 4–14 and Figure 4–15 show that the closed-loop responses

are consistent with the results of Meressi and Paden [19] for the axial load
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Figure 4–14: Closed-loop sensor output voltage for axial load P = 0.9Pcr2
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Figure 4–15: Actuator control input voltage for axial load P = 0.9Pcr2
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Figure 4–16: Time response of unit impulse load for axial load P = 0.9Pcr2
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Figure 4–17: Frequency response of unit impulse load for axial load P = 0.9Pcr2
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P = 3.8Pcr1. Comparing their control peak input voltages (about -90v–60v) with

Figure 4–15 (-30v–80v) shows that the segmented actuator pairs (only 1/3 the

length of the distributed actuator) at the optimal locations along the beam have

better control effects than the distributed actuator.

Next, same as the first mode control, the second mode can be stabilized to

the third buckling load Pcr3. Only the two sensors and the two actuators are not

combined now. For any loads less than Pcr3, the stability of the system can also

be proved. The first, second, fourth, and fifth modes are the first four modes in a

minimal realization of the system. The same weight matrices Q = CTC,R = I and

control parameters α = 1014, β = 2 are used for the LQR controller design.

The resulting closed-loop sensor outputs to the same unit impulse load

and the control input voltages of the actuators for the axial compressive load

P = 0.9Pcr3 are shown in figures 4–18, 4–19 and 4–20. Because of the symmetrical

locations of the sensors, they have the same output voltage. The two actuators are

used to control two different modes separately. The actuator 1 is for the fourth

mode control input and the actuator 2 is for the fifth mode control input. The

time and frequency responses of the unit impulse load for the axial compressive

load P = 0.9Pcr3 are shown in figures 4–21 and 4–22.

Both the control peak input voltages (about -600v–600v and -1000v–1000v)

are in the safe range which below the breakdown voltage (Vmax = ha × 30.0v/µm =

3300v) for the present 0.110mm thickness PVDF actuator. The time response of

the impulse load shows that the displacement dies down after a short settling time

when the control is applied. The designed compensator has stabilized the first two
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Figure 4–18: Closed-loop sensor output voltage for axial load P = 0.9Pcr3
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Figure 4–19: Actuator 1 control input voltage for axial load P = 0.9Pcr3
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Figure 4–20: Actuator 2 control input voltage for axial load P = 0.9Pcr3
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Figure 4–21: Time response of unit impulse load for axial load P = 0.9Pcr3
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Figure 4–22: Frequency response of unit impulse load for axial load P = 0.9Pcr3

buckling modes for any P ≤ Pmax= Pcr3 and therefore is a robust control. Thus the

buckling load is improved to 8.1 times of the first buckling load.

In the above system models, modal control of the beam is based on the first

few modes of vibration. However the un-modeled dynamics can cause instability

through what are known as control and observation spill-overs. To see the effect of

spill-over, an extended evaluation model containing modes 7 and 11 in addition to

modes 1 and 5 for the first buckling mode control is realized. The sensor output

in Figure 4–23, control input in Figure 4–24 and the time and frequency responses

of the unit impulse load for the axial compressive load P = 0.9Pcr2 in figures 4–25

and 4–26 show that there is no significant effect of the uncontrolled modes on the

dynamics of the controlled modes. Therefore the spill-over has not posed a serious

problem which is consistent to the theoretical analysis and known simulation
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results [19]. For the real case control design, the controller can be designed using a

low-order reduced model and its stability can be verified for a high-order model.
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Figure 4–23: Extended model sensor output voltage for axial load P = 0.9Pcr2
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Figure 4–24: Extended model actuator control input for axial load P = 0.9Pcr2
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Figure 4–25: Extended model time response for axial load P = 0.9Pcr2
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Figure 4–26: Extended model frequency response for axial load P = 0.9Pcr2
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4.4.3 Comparison of Active Vibration and Buckling Control of a

Simply Supported Beam

All first 6 modes were included in a reduced-order modal model to design

an LQR controller with a dynamic observer for the active vibration and buckling

control of the same simply supported beam as in the last case. It is seen that both

vibration suppression and buckling control are based on the same dynamic modal

mode control method so that the same control designs can be carried out.

The figures 4–27 to 4–42 shown here are for the free vibration suppression

without an axial compression load P = 0 and with an axial load P = 0.9Pcr1, the

first buckling mode control with P = 0.9Pcr2, and the first two buckling modes

control with P = 0.9Pcr3 with the same control parameters.

The following comparison results can be observed:

• The Bode plots show that only the first three modes have great significance.

The other higher frequencies do not show clear poles.

• The sensor output and the actuator input voltage decreased as the axial

compressive load increased till the first buckling load and increased slowly

thereafter with the increase in the compressive load.

• Both the uncontrolled and controlled impulse response time and frequency

plots show that multimode control with selected minimal targeting modes

as in the last case has better overall control results and lower control efforts

compared with all the six modes included in this case.

• The buckling control has no difference compared with the vibration suppres-

sion. Only the targeting vibration and buckling frequencies, mode shapes,
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and damping ratios are varied as the geometric stiffness varied with the

increased axial compressive load.
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Figure 4–27: Closed-loop sensor output voltage for axial load P = 0
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Figure 4–28: Actuator control input voltage for axial load P = 0
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Figure 4–29: Time response of unit impulse load for axial load P = 0
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Figure 4–30: Frequency response of unit impulse load for axial load P = 0
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Figure 4–31: Closed-loop sensor output voltage for axial load P = 0.9Pcr1
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Figure 4–32: Actuator control input voltage for axial load P = 0.9Pcr1
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Figure 4–33: Time response of unit impulse load for axial load P = 0.9Pcr1

10
2

10
3

10
4

10
5

10
−12

10
−10

10
−8

10
−6

frequency, rad/s

di
sp

la
ce

m
en

t(
m

)

Figure 4–34: Frequency response of unit impulse load for axial load P = 0.9Pcr1
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Figure 4–35: Closed-loop sensor output voltage for axial load P = 0.9Pcr2
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Figure 4–36: Actuator control input voltage for axial load P = 0.9Pcr2
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Figure 4–37: Time response of unit impulse load for axial load P = 0.9Pcr2
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Figure 4–38: Frequency response of unit impulse load for axial load P = 0.9Pcr2

99



0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0

0.5

1
Sensor output voltage

Time(sec)

S
en

so
r 

ou
tp

ut
 V

o(
v)

Figure 4–39: Closed-loop sensor output voltage for axial load P = 0.9Pcr3
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Figure 4–40: Actuator control input voltage for axial load P = 0.9Pcr3
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Figure 4–41: Time response of unit impulse load for axial load P = 0.9Pcr3
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Figure 4–42: Frequency response of unit impulse load for axial load P = 0.9Pcr3
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4.5 Conclusions

1. The finite element analysis and the active control simulation results are

consistent with both theoretical analysis results and experimental data.

2. The modal model approach with an LQR/LQG control technique gives

very efficient control results to both the vibration suppression and buckling

control.

3. The model size reduction technique is necessary in the design of complex

real-life structures to determine the smallest model while keeping accurate

representation of the frequency response characteristics. Therefore, for large

finite element analysis structures, approximate reduced modal model of some

selected modes and dynamic states estimator design are a must.

4. The well-tuned LQR optimal controller can trade off requirements of

good control results or dynamic performance and smallest control efforts.

Therefore, by choosing the state weight matrix Q and control weight matrix

R, or the control parameters α and β, the vibration can be damped quickly

within the desired settling time while the control voltage remains below the

breakdown voltage of the piezoactuators as the worked out cases have shown.

5. The LQG compensator can be designed to eliminate the effect of noise such

as the environment disturbances and piezoelectric sensor noise. Numerical

simulations show that the required control voltage of LQR controller is very

high in the presence of noise, whereas the LQG control voltage is in the

acceptable range. Therefore, the LQG technique can compensate for the

noise successfully.
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6. The segmented piezoelectric actuaors can be designed to control each

individual mode independently. As in the case 2, two buckling modes can

be controlled simultaneously with two piezoactuators, each has its suitable

control input voltage to control the specific mode separately.

7. The first two buckling modes of a simply-supported beam can be stabilized

by feedback control using piezoelectric sensors and actuators. Therefore the

controlled beam can support a load up to the third buckling load.

8. The designed controller which is based on a fixed axial load Pcr can stabilize

the modeled modes for any P ≤ Pcr. Therefore, the control is robust to slow

load variations.

9. There is no significant effect of the uncontrolled modes on the dynamics of

the controlled modes. Therefore, controller can be designed using a low-order

model and the stability can be verified for a high-order model.

10. The numerical results show that proper placement of sensors and actuators

can maximize the control effect. In the future, more research should be done

to design an efficient controlled structure system with optimal piezoelectric

patches placements.
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CHAPTER 5

Active Vibration and Buckling Control of Piezoelectric Laminated

Composite Plates and Shells

5.1 Summary

The basic analysis model of a smart structure is a host structure with surface-

bonded or embedded piezoelectric sensor and actuator layers. The sensors, actu-

ators, and substrate are integrated as plies of a laminated structure undergoing

consistent deformations. In this chapter, a curvilinear shell element is devel-

oped for the vibration and buckling analysis of piezoelectric coupled laminated

composite plates and shells.

Finite element formulations are derived based on the nonlinear Layer-Wise

Shear Deformation Theory (LWSDT) for laminated doubly curved shells and the

linear coupled piezoelectric constitutive equations. The independent kinematic

field variables (or the total degrees of freedom of the system), are the three

displacements of the base layer and the cross section rotations of all the layers,

are discretized with eight-node serendipity quadratic elements. An orthotropic

laminated composite material for the base layers combined with an orthotropic

piezoelectric material properties for the sensor and actuator layers is formulated to

model the material nonlinearities and piezoelectro- mechanical coupling terms.

The proposed finite element analysis model is then applied to both thin and

moderately thick piezoelectric laminated plates and shells for both vibration and

104



buckling analysis. The plates, which are flat shells, can be modeled as a special

case of the proposed doubly curved shell element by setting the two principal radii

of curvature to infinity. Modeling accuracy is evaluated by comparing with theory

and experimental results. It has been showed to be consistently good compared

with the known results and has some advantages in coping with the nonlinearities

and coupling effects.

5.2 Nonlinear Layer-Wise Shear Deformation Theory for Laminated

Doubly Curved Shells

For moderately thick laminated composite shells, because of the anisotropic

material, there is a bending-stretching coupling. The shear deformation and rotary

inertia cannot be neglected. Many shear models have been introduced ,such as

First-order Shear Deformation Theory (FSDT), Higher-order Shear Deformation

Theory (HSDT), and Layer-Wise Shear Deformation Theory (LWSDT).

The FSDT is based on the Reissner-Mindlin theory. Transverse shear strains

are assumed to have a uniform distribution through the shell thickness, which gives

uniform shear stresses. There is nonzero shear stresses at top and bottom free

surfaces which violates the physical boundary condition. A shear correction factor

has to be applied for the free surfaces equilibrium considerations and reduced

integration technology is introduced in order not to overestimate the shear forces

for the application to the thin shells.

For the HSDT, a cubic variation of in-plane displacement through the

thickness results in a quadratic variation of transverse shear strain. This assumed

distribution satisfies the traction-free boundary condition on free surfaces but lacks
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accurate representation of layer-wise variation of shear strain caused by different

material properties of laminae as the FSDT.

For the LWSDT, attributed to Reddy [52] as well as Sun and Whitney [53],

the in-plane displacement is assumed piecewise linearly along the thickness in each

layer. So there is a shear strain variation from layer to layer even though it is

assumed uniform in each layer.

Clearly only LWSDT appears appropriate to model the layer-variations

of material stiffness. In the case of a single layer, the LWSDT reduces to the

FSDT. Many researchers have shown that to analyze the piezoelectric laminated

structures accurately, it is important to model the transverse shear of each layer

using the LWSDT and incorporate piezoelectric-mechanical coupling effects [54].

A doubly curved laminated shell with rectangular base is considered, as shown

in Figure 5–1.

Figure 5–1: Doubly curved shell with rectangular base

The coordinate system is chosen such that x and y are principal lines of

curvature of the midplane, which is obtained for z = 0, and z is taken always
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perpendicular to the midplane. The laminated shell is made of a finite number of

orthotropic layers, oriented arbitrarily with respect to the shell curvilinear coordi-

nate system (x, y, z). Rx and Ry are the constant principal radii of curvature.

According to the LWSDT, the displacement field in each single layer is

based on the first-order shear deformation theory (FSDT). The displacements

of a generic point (x, y, z) in kth layer are related to the midplane displacements

(uk, vk, w) of the layer by [55]

uk1(x, y, z) = (1 +
z

Rx

)uk(x, y) + zφk
x(x, y)

uk2(x, y, z) = (1 +
z

Ry

)vk(x, y) + zφk
y(x, y) (5.1)

uk3(x, y, z) = w(x, y)

where the transverse displacement w is assumed to be uniform through the

thickness, φk
x and φk

y are the rotations of transverse normals about the y and x

axes in kth layer respectively. Rx and Ry are constant principal radii of curvature.

The plate is the “flat shell” special case with Rx = Ry = ∞.

5.3 Piezoelectric Laminated Composite Shell Element

5.3.1 Element Model

The element developed is composed of a nonpiezoelectric composite layer

sandwiched by two piezoelectric layers, shown in Figure 5–2. The respective layers

are similarly discretized with one element through the thickness regardless of the

number of layers for efficient computation. The following two assumptions are

made in the element formulation:
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1. No slippage between each layer and all sublayers are perfectly bonded.This

means that shear continuity is always satisfied.

2. Transverse displacement of each layer is assumed to be the same as the

midplane layer.

With LWSDT, the element formulation is derived with full satisfaction of these

assumptions.

The local coordinate system of the element is defined so that (ξ, η) are

curvilinear and originate at the center of the element midplane.

Figure 5–2: Doubly curved 8-node quadratic serendipity composite shell element

By using the constraining equations, the in-plane displacements of layers other

than the midplane layer can be defined in terms of the in-plane displacements of

the midplane layer and the cross-sectional rotations of all layers. Numbers of the

total system degrees of freedom are reduced and the independent nodal degrees of

freedom vector is the {q} (equation (2.41)).
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5.3.2 Element Shape Functions

Using standard discretization techniques, the element independent kinematic

field variables vector q (2.41) can be approximated by element shape functions as

{q} =
ne∑

i=1

(




Ni 0 0 · · · 0

0 Ni 0 · · · 0

0 0 Ni · · · 0

...
...

...
. . . · · ·

0 0 0 · · · Ni




{qi}) = [N ] {u} (5.2)

with [N ] = [[N1], [N2], · · · , [Nne], [Ni] = Ni[I]], and {u} = ({q1}T , {q2}T , · · · , {qne}T )T .

where ne is the number of nodes per element. Ni and {qi} are the shape function

and the independent variables vector for the ith node respectively. [I] is a ni × ni

identity matrix. ni is the number of element independent variables {q}. The su-

perscript e which denotes the parameter at the element level is dropped here for

simplicity.

A eight-node serendipity isoparametric quadrilateral shell element is imple-

mented here. Natural coordinates and nodal convention of the shape function are

shown in Figure 5–2. Nodal shape functions are derived using the same interpola-

tion polynomial for both the coordinates and kinematic fields as the following:

û = α1 + α2ξ + α3η + α4ξ
2 + α5ξη + α6η

2 + α7ξ
2η + α8ξη

2 (5.3)
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Derived nodal shape functions are,

Ni =
1
4
(1 + ξξi)(1 + ηηi)(ξξi + ηηi − 1) (i = 1, 3, 6, 8) (5.4)

Ni =
1
2
(1− ξ2)(1 + ηηi) (i = 2, 7) (5.5)

Ni =
1
2
(1 + ξξi)(1− η2) (i = 4, 5) (5.6)

Since all nodes are defined at the element boundary, the serendipity element

makes the construction of the element connectivity matrix straight forward.

5.3.3 Displacement-Strain Relations

Using the displacement equation (5.1) of LWSDT, strain equations for the kth

layer can be written as

{ǫk} =





ǫkm

0





+





zǫkb

ǫks





(5.7)

where the mid-surface membrane strains ǫkm, the bending strains ǫkb , and the shear

strains ǫks are [55]

{
ǫkm
}
=





uk,x + (w/Rx)

vk,y + (w/Ry)

uk,y + vkx





(5.8)

{ǫkb} = −





θkx,x

θky,y

θkx,y + θky,x − uk,y/Rx − vk,x/Ry





(5.9)
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{ǫks} =





−θkx + w,x − uk/Rx

−θky + w,y − vk/Ry





(5.10)

Substituting the discretized element independent displacement (5.2) to the

constraint relations (2.39), element constrained displacement field can also be

represented in terms of the element nodal coordinate vector u as:

{q} = [Ck
q ][S

k][N ]{u} (5.11)

where, Sk is the operators matrix related to the shell curvature part, [Ck
q ] is the

stored constraining relations truncated from Cq matrix for the kth layer.

Substituting these discretized element displacements {q} (5.2) and { q } (5.11)

into the above strains equation (5.7), element strains can be written as:

{ǫk} = [Ck
q ][H

k][N ]{u} = [Bk]{u} (5.12)

where, Hk represents both the strain differential operators matrix and the opera-

tors matrix Sk.

5.3.4 Potential and Kinetic Energy

The element mechanical strain energy for the kth layer of composite shell is

Uk
ε = 1

2

∫ a

0

∫ b

0

∫ ze
k

ze
k−1

(σk
xxǫ

k
xx + σk

yyǫ
k
yy + τ kxyγ

k
xy + κ2xτ

k
xzγ

k
xz + κ2yτ

k
yzγ

k
yz)

×(1 + z/Rx)(1 + z/Ry)dxdydz
(5.13)

where, the shear correction factor κ2x = κ2y =
5
6
.

As in the previous chapters, h−type equation (2.7) is chosen as the actuator

equation and g−type equation (2.6) is chosen as the sensor equation. These
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piezoelectric constitutive equations can be extended to the two dimensional

plate/shell structure as:





σpz
11

σpz
22





=




Epz
1

1−νpz
12

νpz
21

Epz
1

νpz
21

1−νpz
12

νpz
21

Epz
2

νpz
12

1−νpz
12

νpz
21

Epz
2

1−νpz
12

νpz
21








ǫpz11

ǫpz22





−



h31

h32


 {D3} (5.14)

E3 =

[
−g31 −g32

]




σs
11

σs
22





+ βT
33{D3} (5.15)

where, Epz
1 and Epz

2 are Young’s moduli of the piezo layer in the 1 and 2 directions,

νpz12 is Poisson’s ratio, D3 and E3 are the electric displacement and electric field in

the 3 direction, h31, h32, g31, and g32 are the piezoelectric constants in 31 and 32

directions and σ33 = D1 = D2 = E1 = E2 = 0 is assumed.

From equations (2.20), (5.14), and (5.15), the element electromechanical

couple potential energy of the piezo layer can be written as:

Upc =
1

2

∫

Ωe



∫ ze

k

ze
k−1

[
−h31 −h32

]




ǫpz11

ǫpz22





{D3}dz


 dxdy (5.16)

From equations (2.19), (5.14), and (5.15), the element dielectric potential

energy of the piezo layer can be written as:

Upe =
1

2

∫

Ωe

[∫ ze
k

ze
k−1

(βT
33 + g31h31 + g32h32){D3}2dz

]
dxdy (5.17)
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From equation (2.17), the element kinetic energy for the kth layer of the

composite shell, including rotary inertia, can be written as:

T k
se =

1

2
ρk
∫ a

0

∫ b

0

∫ ze
k

ze
k−1

(u̇21 + u̇22 + u̇23)× (1 + z/Rx)(1 + z/Ry)dxdydz (5.18)

where ρk is the mass density of the kth layer of the shell and the overdot denotes

time derivative.

By substituting the displacement equation (5.1) into (5.18), and assuming uni-

form thickness and the same density for all the layers of a laminate in particular,

the element total kinetic energy for all layers can be simplified as:

T k
s = 1

2

∫ a

0

∫ b

0
{ρh(u̇2 + v̇2 + ẇ2) + ρh3

12

[
φ̇2
x + φ̇2

y + 2φ̇xu̇(
2
Rx

+ 1
Ry

)
]

+ρh3

12

[
2φ̇yv̇(

1
Rx

+ 2
Ry

) + 3( u̇2

Rx
+ v̇2

Ry
)( 1

Rx
+ 1

Ry
) + ẇ2

RxRy

]
+O(h4)}dxdy

(5.19)

where, h is the shell thickness.

5.3.5 Element Stiffness and Mass Matrices

According to the Hamilton principle (2.11), the Hamilton equation for the

piezoelectric laminated composite shell can be written as

δ

∫ t2

t1

[T k
s −

n∑

k=1

(Uk
ε )− Upε − Upe − Upc +Wd]dt = 0 (5.20)

By substituting the discretized element independent displacement (5.2) and

element constaining layers displacement (5.11) into the element kinetic energy

(5.18) and substituting strains (5.12) and stress-strain relation (2.49) into the

mechnical strain energy equation (5.13) and electromechanical couple potential

energy of the piezo layer (5.16), the application of the Hamilton principle (5.20)
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yields element governing dynamic equations of motion as:

[M ]e{üe}+ [Kuu]
e{ue}+ [Ka

uQ]
e{Qa}e + [Ks

uQ]
e{Qs}e = {FM}e (5.21)

where, {ue} is the element nodal displacement, {Qa}e is the element actuator

charge, {Qs}e is the element sensor charge, and {FM}e is the applied element

mechanical external force.

The lement mass matrix is

[M ]e =

∫

Ωe

[∫ ze
k

ze
k−1

n∑

k=1

(ρk[N ]T [Sk]T [Ck
q ]

T [Ck
q ][S

k][N ])dz

]
dxdy (5.22)

The element stiffness matrices can be written as

[Kuu]
e =

∫

Ωe

[∫ ze
k

ze
k−1

n∑

k=1

([N ]T [Hk]T [Ck
q ]

T [Qk][Ck
q ][H

k][N ])dz

]
dxdy (5.23)

By applying the membrane, bending, and shear strains equations (5.8), (5.9),

(5.10), the corresponding strain-displacement matrix membrane component [Bm],

bending component [Bb], shear component [Bs] can be obtained. Then, element

stiffness can be integrated explicitly as

[Kuu]
e = [Kmm]

e + [Kmb]
e + [Kbm]

e + [Kbb]
e + [Kss]

e (5.24)

which [Kmm]
e is the membrane part of the stiffness matrix, [Kmb]

e and [Kbm]
e are

the membrane-bending coupling components, [Kbb]
e is the bending part, and [Kss]

e

is the shear part, defined as

[Kmm]
e =

n∑

k=1

∫

Se

[Bm]
T [Aij ][Bm]dxdy (i, j, 1, 2, 6) (5.25)
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[Kmb]
e =

n∑

k=1

∫

Se

[Bm]
T [Bij][Bb]dxdy (5.26)

[Kbm]
e =

n∑

k=1

∫

Se

[Bb]
T [Bij ][Bm]dxdy (5.27)

[Kbb]
e =

n∑

k=1

∫

Se

[Bb]
T [Dij ][Bb]dxdy (5.28)

[Kss]
e =

n∑

k=1

∫

Se

[Bs]
T [Aij ][Bs]dxdy (i, j, 4, 5) (5.29)

where, extensional, bending-stretching coupling, and flexural stiffness coefficients

matrix of the laminate are (2.57), (2.58), and (2.59); transverse shear stiffness

coefficients matrix of the laminate is (2.60).

Element coupled stiffness matrices are

[Ka
uQ]

e =
1

2Se

∫

Ωe

[∫ ze
k

ze
k−1

[
−h31 −h32

]
[Ca

q ][H
a][N ])dz

]
dxdy (5.30)

[Ks
uQ]

e =
1

2Se

∫

Ωe

[∫ ze
k

ze
k−1

[
−h31 −h32

]
[Cs

q ][H
s][N ])dz

]
dxdy (5.31)

where, Se is the element area of the piezo layer in the xy−plane.

Element electric stiffness matrix for the piezo layer, or the dielectric inverse

capacitance term can be explicitly written as

[Kpz
QQ]

e =
hpz
Se

(βT
33 + g31h31 + g32h32) (5.32)

5.3.6 Control Equations of Motion

For the vibration analysis and control of the piezoelectric laminated shell,

after assembly of element matrices and vectors of the previous element dynamic
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governing equation (5.21) with the damping term added, the global governing

equation can be written as:

[M ]{Ü}+ [Cd]{U̇}+ [KUU ]{U}+ [Ka
UQ]{Qa}+ [Ks

UQ]{Qs} = {FM} (5.33)

Considering the same three layers piezoelectric structure as in Figure 2–

4, substituting the sensor charge (2.61) and actuator charge (2.62), the global

dynamic governing equations of the piezoelectric laminated shell can be written in

the same way as (2.63).

For the buckling analysis and control of the piezoelectric laminated shell, the

global dynamic buckling equations are

[M ]{Ü}+ [Cd]{U̇}+ [K⋆]{U} − P [KG]{U} = {FM} − [Ka]{Φa} (5.34)

where, the new term is the geometric stiffness matrix KG and P is the in-plane

buckling load.

Considering small lateral displacement of the piezoelectric laminated plate

(Rx = Ry = ∞), the strain energy for an initially stressed plate with in-plane

compressive stress load σ̂0 is [59]

UG =

∫

V

(σ̂0)T εLdV (5.35)

after neglecting terms with third and higher powers in displacement gradients,

εL =




1
2
((∂u

∂x
)2 + ( ∂v

∂x
)2 + (∂w

∂x
)2)

1
2
((∂u

∂y
)2 + (∂v

∂y
)2 + (∂w

∂y
)2)

∂u
∂x

∂u
∂y

+ ∂v
∂x

∂v
∂y

+ ∂w
∂x

∂w
∂y




(5.36)
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Substituting the discretized displacement (5.2) into (5.36) and integrating

over the layers, will yield element geometric stiffness matrix Ke
G. After element

assembly, the global geometric stiffness matrix KG can be written as [59]:

KG = KGb +KGs (5.37)

In the above, the bending contribution is given by

KGb =

∫ 1

−1

∫ 1

−1

GT
b σ

0Gbh |J | dξdη (5.38)

where,

σ0 =



σ0
x τ 0xy

τ 0xy σ0
y


 (5.39)

and for a given node i,

Gi
b =




∂Ni

∂x
0 0

∂Ni

∂y
0 0


 (5.40)

The shear contribution is given as

KGs =

∫ 1

−1

∫ 1

−1

GT
s1σ

0Gs1
h3

12
|J | dξdη +

∫ 1

−1

∫ 1

−1

GT
s2σ

0Gs2
h3

12
|J | dξdη (5.41)

for a given node i,

Gi
s1 =




0 ∂Ni

∂x
0

0 ∂Ni

∂y
0


 (5.42)

Gi
s2 =




0 0 ∂Ni

∂x

0 0 ∂Ni

∂y


 (5.43)
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Although the shear contribution for the geometric stiffness matrix is negligible for

thin plates, its effects can be significant for thicker plates.

5.4 Model Validation

The proposed doubly curved eight-node piezolaminated composite shell

element (Q8) is first validated by considering both a simply supported on all

sides(SSSS) laminated composite plate and a clamped on all sides(CCCC) lam-

inated composite plate free vibration problems. Both plates have the same

geometry and material properties and are modeled with the present shell element

with the principal radii of curvature Rx = Ry = ∞. The material properties for all

layers of the laminates are identical: moduli of elasticity E11/E22 = 40; moduli of

shear G23 = 0.5E22, G13 = G12 = 0.6E22; Possion’s ratios ν12 = 0.25, ν21 = 0.00625;

mass density ρ = 1.0kg/m3; shear correction factor κ = π2/12 and the thickness of

all layers are equal.

The first 6 natural frequencies are computed for symmetric three cross-ply

(0◦/90◦/0◦) rectangular laminates with different length-to-width ratios a/b = 1, 2,

thickness-to-width ratios t/b = 0.001, 0.2. For comparison with the known results,

non-dimensional natural frequencies are given by ω̄ = (ωb2/π2)
√

ρh
D0

, where

D0 = E22h
3/12(1− ν12ν21).

The convergence study of frequency parameters ω̄ for SSSS plate is presented

in Table 5–1, while the corresponding convergence study for CCCC plate is

performed in Table 5–2. In both SSSS and CCCC cases, the results converge well

to Liew’s [56] [57] meshfree results and Ferreira’s [47] finite element results using

four-node bilinear quadrilateral element Q4 (30× 30).
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Table 5–1: Convergence study of non-dimensional frequencies ω̄ for SSSS plate

a/b t/b Q8 mesh Modes

1 2 3 4 5 6

1 0.001 5× 5 6.7314 11.8920 25.5751 26.3716 41.0443 43.1898
10× 10 6.6261 9.4612 16.2982 25.1296 26.6165 27.0241
20× 20 6.6255 9.4480 16.2083 25.1154 26.5004 26.6697
Liew 6.6252 9.4470 16.2051 25.1146 26.4982 26.6572

0.2 5× 5 3.5342 5.7950 7.2343 8.6006 9.4259 10.3137
10× 10 3.5331 5.7753 7.2117 8.5640 9.2667 10.3135
20× 20 3.5331 5.7740 7.2102 8.5617 9.2556 10.3135
Liew 3.5939 5.7691 7.3972 8.6876 9.1451 11.2080

2 0.001 5× 5 2.5403 8.1811 9.3456 19.1729 20.8766 23.1012
10× 10 2.3628 6.6416 6.6738 9.6358 14.3856 14.4385
20× 20 2.3620 6.6257 6.6650 9.4488 14.2893 14.3869
Liew 2.3618 6.6252 6.6845 9.4470 14.2869 16.3846

0.2 5× 5 1.9347 3.5457 4.9463 5.4471 5.8067 7.1705
10× 10 1.9340 3.5339 4.9243 5.3666 5.7760 7.0651
20× 20 1.9339 3.5331 4.9229 5.3610 5.7741 7.0590
Liew 1.9393 3.5939 4.8755 5.4855 5.7691 7.1177
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Table 5–2: Convergence study of non-dimensional frequencies ω̄ for CCCC plate

a/b t/b Q8 mesh Modes

1 2 3 4 5 6

1 0.001 5× 5 20.6676 33.1251 43.4429 51.3462 53.7696 64.1933
10× 10 14.7837 18.3406 26.5386 39.5027 39.5878 42.9800
20× 20 14.6668 17.6214 24.5353 35.5906 39.1626 40.7943
Liew 14.6655 17.6138 24.5114 35.5318 39.1572 40.7685

0.2 5× 5 4.3889 6.7120 7.5500 9.1467 10.0776 11.2690
10× 10 4.3862 6.6808 7.5264 9.1008 9.8953 11.1123
20× 20 4.3860 6.6787 7.5248 9.0979 9.8824 11.1015
Liew 4.4468 6.6419 7.6996 9.1852 9.7378 11.3991

2 0.001 5× 5 9.9913 16.9988 17.9351 24.3452 27.3404 29.1293
10× 10 5.2982 11.1666 11.2488 17.4578 20.8329 21.2108
20× 20 5.1071 10.5342 10.5908 14.3643 19.5870 19.7219
Ferreira 5.1221 10.6156 10.6727 14.4537 19.9064 20.0430

0.2 5× 5 3.0579 4.2183 5.8837 5.9200 6.6287 7.8328
10× 10 3.0549 4.2049 5.8017 5.8855 6.5869 7.5385
20× 20 3.0548 4.2040 5.7962 5.8832 6.5842 7.5166
Liew 3.0452 4.2481 5.7916 5.9042 6.5347 7.6885
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Table 5–3: Comparison of non-dimensional buckling parameter N cr for a SSSS
isotropic square plate under uniaxial load N0

x

h/a=0.001 h/a=0.01 h/a=0.05 h/a=0.1 h/a=0.2

Thin-plate theory 4.0 4.0 4.0 4.0 4.0
Exact solution – – 3.924 3.741 3.150
Closed form solution 4.0 – 3.944 3.786 3.264
10× 10 Q4 4.0666 – 3.9930 3.7890 3.1665
Present element Q8 4.0360 4.0297 3.9597 3.7579 3.1399

Next, for an isotropic simply supported square plate (without any piezoelec-

tric elements) under uniaxial N0
x , which represents the initial compressive load per

unit length applied in the x direction, the critical buckling load obtained by the

proposed element is validated with existing solutions in the literature.

Table 5–3 summarizes results for plates of various length-to-thickness ratios

and compares with the solutions of finite element formulation and code by

Ferreira [47], exact solution by Srinivas and Rao [58], and closed form solution [59].

A 10 × 10 Q8 present shell element is used with the principal radii of curvature

Rx = Ry = ∞. Non-dimensional buckling parameter N cr = N̂0
xb

2/πD is presented,

where N̂0
x represents the corresponding critical load.

The non-dimensional critical buckling load computed using the present

element model is in good agreement with the exact solutions as shown in the table.

Also as the h/a ratio increases, the solution based on the classical Kirchhoff plate

theory results in significant error.
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Furthermore, in order to verify the proposed element model for the buck-

ling analysis of smart composite plates, both graphite/epoxy SSSS and CCCC

rectangular orthotropic laminated plates are investigated.

To compare with Mandell’s [60], [61] experimental results for uniaxial buckling

load of SSSS orthotropic plates, a description of the plates tested is given in Table

5–4. The ply layup 5(0, 90) indicates that the stacking sequence is 0◦/90◦/0◦90◦/0◦

with respect to the load direction (i.e., the x-axis). ‘Thornel’ plates were made

of graphite/epoxy with the same material properties specified as in [65], namely,

E11 = 30× 106psi, E22 = 0.75× 106psi, G12 = 0.375× 106psi, and ν12 = 0.25.

Table 5–4: Description of orthotropic plates tested by Mandel

Plate number Material Fiber by volume Layup of plies Dimensions(in)

201 Thornel-25 40.0% (0,90,90,0) 10× 10× 0.055
202 Thornel-25 40.0% 9(0,90) 10× 10× 0.121
204 Thornel-40 60.0% 5(0,90) 10× 10× 0.043
205 Thornel-40 60.0% 5(90,0) 10× 10× 0.043
206 Thornel-40 60.0% (0,90,90,0) 10× 10× 0.034
207 Thornel-40 60.0% (90,0,0,90) 10× 10× 0.034

As shown in Table 5–5, the critical loads obtained from present element

model converge to the upper bound of the theoretical and experimental solutions.

Limited by the speed and memory of the computer used, the convergence study

is only executed to 15 × 15 elements. The values in parentheses of the ‘Buckling

mode’ column are the number of half-waves of the first buckling mode shape. The

critical buckling load for all plates was observed in the(1,1) mode, except for the

plate No.207, which buckled first in the (2,1) mode as shown in Figure 5–3.
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Figure 5–3: The first four buckling modes of Mandell’s plate No.207

Table 5–5: Critical loads −N cr, lb/in for Mandell’s SSSS orthotropic plates

Plate No. Buckling mode Experimental Theoretical Present element

10× 10 15× 15

201 (1,1) 21.7 19.1 16.9656 16.9309
202 (1,1) 189 204 179.6950 179.3752
204 (1,1) 15.5 18.7 18.4742 17.5775
205 (1,1) 16.3 18.7 18.4742 17.5775
206 (1,1) 6.69 8.72 9.1356 9.1165
207 (2,1) 6.65 7.44 7.4840 7.2551
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Table 5–6: Critical uniaxial buckling parameters −σcrb
2/E22h

2 for CCCC plates
under uniaxial load σ0

x

Laminate description cross-ply angle-ply
Layup of four plies (0,90,0,90) (45,-45,45,-45)

a/b 1.0 1.5 2.0 1.0 1.5 2.0

Zhang [64] 109.90 – – 106.87 – –

Chia 112.65(1) 87.74(2) 76.83(3) 113.67(1) 95.73(2) 89.86(3)
( [62] [63])
Present Q8 111.6899 90.1845 86.6119 107.5126 97.1852 96.9318
(10× 10)
Present Q8 110.31(1) 86.92(2) 81.10(3) 105.46(1) 92.76(2) 89.62(3)
(15× 15)

Results are shown in Table 5–6 for a set of cross-ply and angle-ply (±45◦)

CCCC plates, each composed of four plies graphite/epoxy with plate thickness

h = 0.091 inch. They are consistent with the results by the Galerkin method

obtained by Chia and Prabhakara [62], [63] with the displacement function

carrying 6 sigificant figures and by Zhang and Mathews [64] with the displacement

function carrying 15 siginificant figures. The values in parentheses are the number

of half-waves of the first buckling mode shape in the load σ0
x (x-) direction.

Last, the Scordelis -Lo Roof test problem [67] for shell element is studied

to verify the proposed element model for the static and vibration analysis of

cylindrical shells.

The roof is shown in Figure 5–4. It has radius R = 25, length L = 50,

thickness t = 0.25, subtended angle of 80◦, Youngs modulus E = 4.32 × 108,

and Poisson’s ratio ν = 0.0 (all in consistent units). The roof is supported at
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each end by rigid diaphragms, and the other two edges are free. Uniform vertical

gravity load of 90.0 per unit area is applied. The converged numerical solution of

the vertical displacement at midside of free edge is 0.3024, as reported in [67]. The

solution comparison is given in Table 5–7 and the solution of the proposed shell

element agrees well with the analytical solution and other finite element solution.

Figure 5–4: Scordelis -Lo Roof

Table 5–7: Scordelis -Lo roof deflection at roof centre of free edge

Element for a quarter roof 4× 4 8× 8 16× 16
Element for whole roof 8× 8 16× 16 32× 32

EAS element [68] for a quarter roof 0.2897 0.2973 0.3024
Proposed element for the whole roof 0.2954 0.3027 0.3028

Analytical solution [67] 0.3024
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5.5 Case Studies

Active controls of both vibration and buckling of the same cantilevered lami-

nated composite plate and active vibration control of a semicircular piezolaminated

steel shell are studied.

As shown in Figure (5–5), a graphite/epoxy composite cantilever plate

(Rx = Ry = ∞) with PZT piezoceramic senor and actuator bonded to both the

upper and lower surfaces is considered. The plate consists of four composite layers

(−45◦/45◦/− 45◦/45◦) of 2.5mm thickness each. The two outer piezoelectric layers

are of 0.1mm thickness each. The material properties are as in Table 5–8.

Figure 5–5: A composite cantilever plate with distributed PZT sensor and actuator

As shown in Figure (5–6), a semicircular steel shell embedded with PZT

piezoceramic senor and actuator layers on the top and bottom surfaces is consid-

ered. The shell is 150mm wide and 6mm thick with the inner radius of 300mm or

(Rx = R = 300mm, Ry = Rxy = ∞) for the proposed plate/shell element. One

end of the shell is fixed and the other end is free. The thicknesses of the two outer

piezoelectric layers are 0.25mm. The material properties are as Table 5–8.
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Table 5–8: Graphite/epoxy, PZT piezoceramic and Steel material properties

Piezoceramic Graphite/epoxy Steel
Properties PZT-G1195N T300/976

Elastic modulus E11(Pa) 63.0× 109 150.0× 109 2.1× 1011

Elastic modulus E22 = E33(Pa) 63.0× 109 9.0× 109 2.1× 1011

Shear modulus G12(Pa) 24.2× 109 7.1× 109 −−
Shear modulus G13 = G23(Pa) 24.2× 109 2.5× 109 −−
Poisson’s ratio ν12 = ν13 = ν23 0.3 0.3 0.3
Density (ρKg/m3) 7600.0 1600.0 7800.0
Electric permittivity 1.53× 10−8 −− −−
(ǫ11 = ǫ22(F/m))
Electric permittivity ǫ33(F/m) 1.50× 10−8 −− −−
Piezoelectric strain constant 2.54× 10−10 −− −−
(d31 = d32(m/V ))

Figure 5–6: A semicircular piezolaminated shell with one end fixed
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5.5.1 Active Vibration Control of a Cantilever Composite Plate

This case was also studied by Balamurugan and Narayanan [24]. In their

paper, a nine-noded quadrilateral shell element was derived and different classical

control laws, including constant gain negative velocity feedback, direct propor-

tional feedback and Lyapunov feedback are applied to compare the vibration

control performance. As shown here, consistent results are obtained.

Table 5–9 shows the first six natural frequencies comparation. The first four

modes are well matched, only the two higher modes shift away. Also the first four

mode shapes are showed in Figure 5–7.

Table 5–9: The first six natural frequencies (Hz) for a cantilever composite plate

Mode Q9 shell element [24] Present Q8 shell element(40× 4)

1 27.05 26.3616
2 127.11 123.8683
3 169.17 164.1050
4 475.86 455.8193
5 780.64 640.6344
6 797.76 761.5805

From the results of the first case study about the vibration control of a

cantilever beam of the previous chapter, while only first two modes are used to

design the LQR/LQG controller, still effective control results have been obtained.

The intuitive choice is proved to be consistent with the physical and experimental

results. For the more complex composite laminated plate case, first we have to

determine the smallest states model which can keep an accurate representation of

the frequency response characteristics.
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Figure 5–7: The first four vibration modes of a composite cantilever plate with
distributed PZT sensor and actuator
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Suppose the first six modes are chosen to build an approximate reduced

model. Then a balanced LQG state space representation can be given. By the

definition of the previous section “The balanced LQG compensator”, λi, i =

1, · · · , 6 are LQG singular values of the structure system and its approximate

LQG singular values λapprox =
√
Sc × Se. From the control Grammian Gc in

equation 3.15 and the observer Grammian Go in equation 3.23, Hankel singular

values can be obtained as γ =
√
Gc ×Go. Then the approximate reduced LQG

compensator singular values σ = γ × λapprox can be obtained. Figure 5–8 shows all

the singular values sorted in increasing or decreasing order. It can be seen that the

approximate LQG singular values of the reduced model are the same as the LQG

singular values of the structure system and this means that the six modes reduced

model can accurately represent the full states finite element model. Furthermore,

the sorted approximate LQG compensator singular values show that only the first

mode has a large contribution to the impulse response of the tip displacement, the

other modes can be reduced.

Next, only the first mode is used to design an LQR/LQG compensator to

control the vibration of the cantilever composite plate. An impulse load of 0.1N is

applied at the free end of the plate. The dynamic response is calculated by using

only the first mode. As in the study by Balamurugan and Narayanan [24], the

damping is ignored.

To design an LQR/LQG compensator, we have one mode (or two states) least

reduced model to control. As the derivative of the sensor output is assumed to

be computed, with one surface bonded sensor and one surfaced bonded actuator,
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Figure 5–8: LQG singular values, approximate LQG singular values and approxi-
mate LQG compensator singular values
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a full state feedback LQR controller can be designed. While the tip vertical

displacement is set as performance output, the state weight matrix Q can be

computed from output matrix C with Q = CTC and control parameters are taken

as α = 104 and β = 1.

Figure 5–9 shows the impulse response of the plate’s tip displacement, for

which the control is started after a lapse of 0.5s in order to compare both the

controlled and uncontrolled responses. It shows good agreements with the study

[24]. The corresponding frequency response of the uncontrolled and controlled

tip displacement is shown in Figure 5–10. The sensor output voltage and the

actuator control voltage are shown in Figures 5–11 and 5–12. It is seen that

the actuator control voltage has an absolute value less than the breakdown

voltage (Vmax = ha × 1.0v/µm = 100v) of the piezoelectric PZT-actuator (i.e.

−100v < Vcontrol < 100v). The designed LQR/LQG controller has suppressed the

vibration of the plate under the tip impulse load.
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Figure 5–9: Tip displacement of the smart composite plate
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Figure 5–10: Frequency responses of the smart composite plate

Then the active vibration control of the plate subjected to random loading is

studied. The random load as in Figure 5–13, which is a band limited white noise

of Power Spectral Density (PSD = 1.1722 × 10−6N2/(rad/s)) in the frequency

range of 0-1000Hz, is applied on the tip of the cantilever plate. The uncontrolled

and controlled responses at the free end of the plate are shown in figures 5–14

and 5–15. Figure 5–16 shows the control input of the actuator is well below the

breakdown voltage. The mean square response (MSR) for the both uncontrolled

and controlled cases are 7.4421 × 10−8 and 2.0486 × 10−10, respectively. The MSR

reduction factor is about 363, which indicates that the distributed sensors and

actuators are effective in controlling the random vibration also.
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Figure 5–11: Sensor output voltage
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Figure 5–12: Actuator control input voltage
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Figure 5–13: Random load history in the frequency range of 0–1000Hz
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Figure 5–14: Uncontrolled response of the smart composite plate due to the ran-
dom loading
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Figure 5–15: Controlled response of the smart composite plate due to the random
loading
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Figure 5–16: Actuator control input of the smart composite plate due to the ran-
dom loading
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5.5.2 Active Buckling Control of the Cantilever Composite Plate

The active buckling control of the same plate as the last case with uniaxial

compressive load per unit length Nx applied in the x-direction is studied in this

case. Table 5–10 shows the first six buckling loads Pcr and Figure 5–17 shows the

first four buckling mode shapes. The results show the critical buckling load can be

increased to the second buckling load (i.e. 210840.66N/m) theoretically which is

about 9 times of the first buckling load (i.e. 23483.67N/m).

Table 5–10: The first six buckling loads (N/m) for a cantilever composite plate

Mode 1 2 3 4 5 6

Pcr 23483.67 210840.66 582420.08 1130344.14 1840004.69 2689188.84

The weight matrices Q = CTC,R = I and control parameters α = 104

and β = 1 are kept the same as in the active vibration control design of the last

case study. The feedback gain matrix [G] is computed for an axial load exceeding

P = Pcr2 so that the plate is forced to buckle in the second mode.

Both the one mode minimal model and the first six modes reduced model

of the system are studied. Figure 5–18 shows all the singular values sorted in

increasing or decreasing order. It can be seen again that the approximate LQG

singular values of the six-mode reduced model are the same as the LQG singular

values of the structure system so that the six-mode reduced model can accurately

represent the full state finite element model. From the sorted LQG compensator

singular values, three modes have large contributions to the impulse response of

the tip displacement, the minimal realization of the system should include at least

these three modes. But for the approximate LQG compensator singular values,
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Figure 5–17: The first four buckling modes of a composite cantilever plate with
distributed PZT sensor and actuator
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Figure 5–18: LQG singular values, approximate LQG singular values of both sys-
tem and LQG compensator

only the first mode has a large contribution (about 8 times of the second one) to

the impulse response of the tip displacement, thus the other modes can be reduced.

Next the six-mode model is applied for the first buckling mode control design.

The resulting sensor output voltage to a 0.1N impulse load applied on the tip

of the plate and the control input voltage of the actuator for the axial compressive

load P = 0.9Pcr2 are shown in figures 5–19 and 5–20. The time and frequency

responses of the impulse load for the axial compressive load P = 0.9Pcr2 are shown
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Figure 5–19: Sensor output voltage of the buckling smart plate

in figures 5–21 and 5–22. The time response shows the uncontrolled buckling

displacement and controlled stabilizing displacement and the sensor output shows

the corresponding voltage outputs also in both uncontrolled and controlled cases.

For the comparison, both the controlled frequency responses of the two models

are shown in Figure 5–22. Obviously the only one-mode model cannot control

the higher two modes and two more sesors/actuators segmented pairs are needed

to build an approximate minimal reduced model. It is seen that the actuator

control voltage in 5–20 has an absolute value less than the breakdown voltage

(Vmax = ha × 1.0v/µm = 100v) of the piezoelectric PZT-actuator. The designed

LQR/LQG controller has stabilized the first buckling mode to the second buckling

load Pcr2.
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Figure 5–20: Actuator control input of the buckling smart plate
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Figure 5–21: Tip displacement of the buckling smart plate
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Figure 5–22: Frequency responses of the buckling smart plate
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5.5.3 Active Vibration Control of a Semicircular Piezolaminated Steel

Shell

This case was also studied by Balamurugan and Narayanan [24]. The analysis

in this thesis shows that consistent results are obtained.

Table 5–11 shows the first six natural frequencies comparison. They are well

matched with the shell modeled using the same mesh size (25× 4).

Table 5–11: The first six natural frequencies (Hz) for a semicircular piezolaminated
steel shell

Mode Q9 shell element [24] Present Q8 shell element

1 7.16 7.1749
2 11.59 11.5669
3 22.61 22.6180
4 63.26 63.3035
5 77.4 77.3141
6 172.7 172.4277

The first six modes are chosen to build an approximate reduced model. As

shown in Figure 5–23, the approximate LQG singular values of the reduced model

are the same as the LQG singular values of the structure system. This means that

the six modes reduced model can accurately represent the full states finite element

model. But the sorted approximate LQG compensator singular values also show

that only the first and the third modes have contributions to the impulse response

of the tip displacement, the other modes can be reduced. From the physical view,

the second and the fourth modes are in the width direction and hence do not

participate in the radial and hoop direction responses.

From the above observation, we can determine the smallest model which can

keep an accurate representation of the frequency response characteristics to include
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only the first and third modes. Next, only these two transverse modes are used to

design an LQR/LQG compensator to control the vibration of this piezolaminated

semicircular shell. An initial structural dampings are assumed to be 0.0020 and

0.0064 for the two modes. An impact line load of 2000/3 (N/m) is applied at the

free end of the shell along the hoop direction as in the study by Balamurugan and

Narayanan [24] for comparison. The dynamic tip responses without and with

control are evaluated.

A free time response of the shell’s tip displacement without control is shown

in Figure 5–24. It can be noticed that the higher mode hoop displacement (u)

with higher structural damping in the figure dies down quickly. The sensor output

voltage in Figure 5–25 shows a beat-like phenomenon due to the strong coupling

between the first two transverse modes.

Next, an LQR/LQG compensator can be designed following the same proce-

dures as before. The radial vertical displacement (w) at the free end of the shell is

set as the performance output, the state weight matrix Q can be computed from

output matrix C with Q = CTC and control parameters are taken as α = 1010 and

β = 1.

Figure 5–26 shows controlled tip responses of the piezolaminated semicircular

shell. The actuator control input voltage is also shown in Figure 5–27. It is seen

that the actuator control voltage has an absolute value less than the breakdown

voltage (Vmax = ha × 1.0v/µm = 250v) of the piezoelectric PZT-actuator (i.e.

−250v < Vcontrol < 250v). The designed LQR/LQG controller has suppressed the

vibration of the semicircular shell under the tip hoop impact load.
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Figure 5–24: Tip displacements of the piezolaminated semicircular shell
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Figure 5–25: Sensor output voltage of the piezolaminated semicircular shell
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Figure 5–26: Controlled tip displacements of the piezolaminated semicircular shell

The corresponding frequency response of the uncontrolled and controlled tip

displacement is shown in Figure 5–28. It can also be seen from this Bode plot that

the second and fourth frequencies have the smallest pole amplitudes compared

with the other four modes as they are the width direction displacements and do

not contribute to the transverse responses.

Lastly, Figure 5–29 shows the controlled tip frequency responses between

the two modes (the first and the third mode) least states model control and the

six modes (actually only four transverse modes participated) approximate model

control.
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Figure 5–27: Actuator control input voltage of the piezolaminated semicircular
shell
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5.6 Conclusions

1. The finite element analysis and the active control simulation results of the

composite plate are consistent with both theoretical analysis results and

experimental data.

2. The modal model approach with an LQR/LQG control technique gives

much more efficient control results to both the vibration suppression and

buckling control with lesser control input peak voltages when compared to

the classical controls.

3. The model size reduction technique is necessary in the design of complex

real-life structures to determine the smallest states model while keeping

accurate representation of the frequency response characteristics. By singular

values analysis, the least modes which have the most contributions to the

structute system response can be selected to build an approximate reduced

modal model.

4. The distributed sensors usually need the dynamic states estimator for the

large states structure control.

5. The LQG compensator are also effective in controlling the random vibra-

tions. Numerical simulations show that the required control voltage of the

LQG control is in the acceptable range.

6. The first buckling mode of a cantilever plate has been stabilized by feedback

control using distributed piezoelectric sensor and actuator. Therefore

the controlled plate can support a load up to the second buckling load

theoretically.
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CHAPTER 6

Contributions, Conclusions and Future Work

6.1 Contributions

1. Piezoelectric laminated beam elements are developed and are applied to

active controls of both a cantilevered and a simply supported beam bonded

with segmented piezoelectric sensors and actuators. The beam elements

are derived based on both classical Euler-Bernoulli theory and layer-wise

Timoshenko shear deformation theory. The former for thin beam analysis

and the latter for medium thick composite beam analysis. Also, the proposed

beam elements are validated with the known theoretical and experimental

results and are capable of simulating piezoelectric coupling effects and shear

effects of multilayered composite beams accurately.

2. Active vibration suppression of a cantilever beam is studied using LQR/LQG

optimal control techniques for different kinds of loading environments.

Based on the modal model approach, both full state LQR controller and

full state LQG compensator are designed for the effective vibration controls.

The control simulation results of both LQR control without environment

disturbances or sensor noises and LQG control with the noises are consistent

with both the theoretical analysis results and the experimental data in the

literature.
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3. The control of the first two buckling modes of a simply supported beam

under the impulse load is studied using the appoximate reduced modal model

and LQR/LQG optimal control techniques. The control simulation results

show that the LQR/LQG are very effective in enhancing the buckling load

of the beam with the actuator peak control input voltages in the safe range

of the breakdown voltage of the piezoelectric actuators. Also, a comparison

between the vibration suppression and the buckling control of the same

simply supported beam shows that there is essentially no difference between

them and the control can be achieved with the same reduced modal model

and LQR/LQG control techniques.

4. Piezoelectric laminated shell elements are developed and are used for active

control of vibration and buckling of a cantilevered plate surface bonded with

distributed piezoelectric sensor and actuator. The shell elements are derived

based on the shear flexible curvilinear shell theory. The proposed doubly

curved piezolaminated eight-noded serendipity composite shell element is C0

continuous and having an independent cross-sectional rotation for each layer

as a degree of freedom. It can model each layer as an individual Mindlin

plate and the displacement continuity between each layer renders the element

capable of modeling the piezo layers. The element is validated with the

existing theoretical and experimental results in the literature.

5. Vibration suppression of a piezolaminated composite plate with distributed

sensor and actuator is studied for both impulse and random loading. Both

the one mode least reduced modal model and six modes modal model are
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used to design the LQR controllers and static estimators to achieve the

control. The control results of both the impulse and random loading are

consistent with those in the literature.

6. Buckling control of the first mode of the same piezolaminated composite

plate. Numerical simulations show that the first buckling mode has been

stabilized and the critical buckling load is enhanced to the second theoretical

buckling load with the required control voltage of the actuator in the

acceptable safe range.

7. Vibration suppression of a piezolaminated semicircular cylindrical shell with

distributed sensor and actuator is studied for linear impact loading. Both the

two modes least reduced modal model and six modes modal model are used

to design the LQR controllers and static estimators to achieve the control.

The control results are consistent with those in the literature.

6.2 Conclusions and Future Work

The vibration and buckling controls of piezolaminated composite beam,

plate, and shell structures with integrated piezoelectric sensors and actuators

are studied in this dissertation. The finite element model is based on layer-wise

first order shear deformation theory in conjunction with linear piezoelectric

constitutive relations. The proposed beam, plate, and shell elements are validated

by comparing with existing results in the literature.

Modal model approach with LQR/LQG control techniques is applied to design

the feedback control systems for the vibration suppression and buckling control of

the structures. The control results show that a full state LQR/LQG compensator
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with a dynamic states observer are effective in controlling the impulse or random

load excited vibrations and are capable to achieve control of the environmental

disturbances and sensor noise.

The model size reduction technique is used to determine the smallest states

model while keeping accurate representation of the frequency response char-

acteristics. By singular values analysis, the least modes which have the most

contributions to the structute system response are selected to build the approx-

imate reduced modal model which makes the control of the large states finite

element model of the structures possible.

In the future studies, following areas of improvement would be appropriate for

the continuation of this research:

• Implementation of active buckling control of piezolaminated composite shell.

• Implementation of a better nonlinear piezoelectric constitutive equation

which can precisely represent the piezoelectric-mechanical coupling effects.

• Implementation of an effective model which can estimate the hysteretic

behaviour of the piezoelectric material and integrating it with the control

system design.

• Implementation of other control system design such as H∞.

• Implementation of other applications such as noise control and structural

health monitoring.
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