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Abstract

Solenoid actuators are one of the solutions for efficient gear shifting in electric vehicles

(EVs). In this thesis, a new approach for modeling solenoid actuators is proposed. Moreo-

ver, a robust force controller for the actuators is designed using the proposed modeling

approach. Such control problems are of interest in the study of gear shifting control in EVs

equipped with an automated manual transmission. In this thesis, experimental system iden-

tification along with the finite element method (FEM) are employed to model the dynamic

behavior of the solenoid actuators as well as the system uncertainties. Using experimental

system identification, a dynamic model of the actuators is obtained and a nonlinear alge-

braic model of the electromagnetic force versus current and air gap is proposed. Using the

properties of the magnetic materials and the geometry of the actuator, an FEM analysis

is performed using MagNet R© —a software developed by Infolytica— to obtain the dyna-

mics of the nominal system and verify the system identification results. Considering the

inherent uncertainties of the physical parameters involved in the actuation system as well

as the measurement errors, an uncertainty analysis is performed to obtain the dynamic

uncertainty model of the solenoid system. Moreover, considering the application of these

actuators in the gear shifting process, the closed-loop performance objectives are defined

with respect to the desired gear shifting quality. Knowing both the nominal system mo-

del and the uncertainty model, an H∞ robust controller is designed. The performance of

the resulting robust closed-loop control system is examined for the nominal and perturbed

systems and is shown to satisfy the objectives.
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Résumé

L’utilisation d’actionneurs à solénöıde est l’une des solutions pour effectuer des chan-

gements de vitesses efficaces dans les véhicules électriques. Dans cette thèse, une nouvelle

approche est proposée pour modéliser les actionneurs à solénöıde. De plus, un contrôleur

de force robuste pour ces actionneurs est conçu en utilisant l’approche de modélisation

proposée. De tels problèmes de contrôle sont pertinents dans l’étude des changements de vi-

tesse pour les véhicules électriques équipés d’une transmission manuelle automatisée. Dans

cette thèse, identification de système expérimentale ainsi que la méthode des éléments fi-

nis (MEF) sont utilisées pour modéliser le comportement dynamique des actionneurs à

solénöıde ainsi que les incertitudes du système. Un modèle dynamique des actionneurs est

obtenu grâce à identification de système expérimentale et un modèle algébrique non-linéaire

de la force électromagnétique par rapport au courant et à l’entrefer est proposé. En utili-

sant la géométrie de l’actionneur ainsi que les propriétés des matériaux magnétiques, une

analyse MEF est effectuée en utilisant MagNet R© —un logiciel développé par Infolytica—

dans le but d’obtenir la dynamique du système et de vérifier les résultats de identification

de système. Compte tenu des incertitudes inhérentes aux paramètres physiques interve-

nant dans le système d’actionnement ainsi que lors des erreurs de mesure, une analyse

d’incertitude est effectuée dans le but d’obtenir un modèle d’incertitude dynamique du

système électro-aimant. En considérant l’application de ces actionneurs dans le processus

de changement de vitesse, les objectifs de performance sont définis par rapport à la qua-

lité de changement de vitesse désirée. En connaissant tant le modèle du système nominal

que le modèle d’incertitude, un contrôleur H∞ est conçu. Les performances du système de

contrôle en boucle fermée sont étudiées autant pour le système nominal que pour le système

perturbé et les objectifs sont atteints.
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The secrets eternal neither you know nor I

And answers to the riddle neither you know nor I

Behind the veil there is much talk about us, why

When the veil falls, neither you remain nor I.

Khayyam
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Chapter 1

Introduction

1.1 Background

It may seem at first that Electric Vehicles (EVs) are a recent innovation to reduce the

air pollution produced by internal combustion engine vehicles (ICEVs). However, EVs were

invented approximately 50 years before the appearance of ICEVs. It is interesting to know

that the first vehicle with the maximum speed of over 100 km/h, which was built in 1899

and named “jamais contente” (never satisfied), was an EV [1].

It is not clear when the first EV was invented [2]. In 1828, a Hungarian inventor, Ányos

Jedlik designed and built the first electro-motor to be used in an electric car. Then, Robert

Anderson from Scotland, invented a carriage driven by an electric motor. In 1840, the idea

of using rails as the conductors of the electricity was patented. Even though, the early EVs

were in small scales, in 1842, more practical ones were invented by Thomas Davenport and

Robert Davidson. They both used non-rechargeable batteries to feed EVs electrically [2].

As better energy storage options were introduced, EVs became more popular in trans-

portation services. By 1900, EVs were commercialized very successfully and many Euro-
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Figure 1.1 Baker Electric EV

pean and American companies were prosperous in this field of industry. In Fig. 1.1, an EV

manufactured by Baker Electric Company can be seen.

By 1930s, EVs drastically disappeared from the automotive industry due to the following

reasons [2]:

• the road systems were improved and the cities were connected via roads. This led to

the manufacture of the vehicles which were able to drive longer distances than EVs,

• the discovery of new oil reservoirs contributed to the decline of gasoline prices and

this was a key factor in selecting fossil fuels as the primary source of energy for the

vehicle propulsion,

• the ICEVs were more affordable than the conventional EVs.

Even though EVs were not the preferable option in comparison to ICEVs by 1930s, some

vehicles such as electric trains were still in use. These trains were mostly used in coal

mines, where oxygen would be reserved for other purposes rather than the one consumed
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by fossil fuel motors. The newly built ICEVs had lower cost and could go to higher speeds

compared to the EVs. All these factors contributed in making ICEVs the most popular

type of vehicles until today.

After being forgotten for several decades in the automotive industry, EVs found their

way back to the market. In 1970s, increased concerns over environmental preservation and

conservation of non-renewable energy resources attracted more attentions toward EVs [3].

By that time, the automotive industry concerns were merely the vehicle cost and speed.

However, since the transportation sector was one of the biggest contributers to the emission

of green house gases, reduction of emissions from ICEVs became one of the main incentives

for reconsidering EVs. Subsequently, attention was devoted to electricity as an alternative

source of energy for vehicle propulsion rather than fossil fuel energy.

The electricity consumed by EVs can be generated from a variety of resources including

non-renewable energy resources such as nuclear energy and even fossil fuel energy resources

as well as renewable resources such as wind and solar energy. The total amount of green-

house gas emitted (known as carbon footprint [4]) by an EV depends on the fuel and the

method used for the generation of the electricity.

Electricity consumed by an EV can be stored on board in various forms of energies

such as chemical energy in batteries, kinetic energy of flywheels, and static energy of super

capacitors. These forms of energy would be converted to the electrical energy when needed.

Improvement of EVs’ efficiency is the topic of recent research, for example, [5] points out

the key aspects for management of lithium-ion battery in EVs.

In addition to focusing on EVs as an alternative to ICEVs, in order to decrease the

emission of pollutant to the environment, automotive companies started to improve the

efficiency of each component in their vehicles. Although, the fuel consumption and gas

emission of a vehicle depends on the efficiency of many components, the performance of
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the powertrain of a vehicle plays a significant role in defining the efficiency [6]. The main

components of the powertrain are engine and transmission system. The performance of

the transmission system is the decisive factor in the vehicle’s performance [7]. It has been

shown that in order to improve the efficiency of a powertrain, it is more cost effective to

improve the transmission system efficiency rather than the engine efficiency [8].

1.2 Transmission Systems

A transmission system is an assembly of speed adapting gears and the drive shaft that

makes the connection between motor and wheels. When the driver starts, stops, or even

drives slowly, there is a significant difference between the speed of the motor and the

wheels. The job of a transmission system is to adapt the wheels’ speed to the engine’s

speed using the speed changing gears. Therefore, the engine’s torque is transferred to the

wheels through the transmission system. There are various types of transmission systems

with different applications. In [9], the appropriate transmission systems for the specific

applications in various driveline configurations are investigated.

Each transmission system has its own advantages and disadvantages. Selecting an

appropriate type of transmission system for EVs is of significant importance. Manual

transmission is a common type of transmission system out of north America. Automatic

transmission (AT) and automated manual transmission (AMT) are two well-known types

of multi-speed transmission systems for ICEVs. AT and AMT can be used in EVs to

enhance the performance of the electric drivetrain by providing an appropriate number

of gear ratios. Each of these transmission systems are briefly introduced in the following

sections.
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1.2.1 Manual Transmission

Manual transmission is a well-known type of transmission system employed in motor

vehicles. In this type of transmission systems, gear shifting is executed mainly by means

of flywheel and pressure plate, clutch, and gears. Flywheel is attached to the engine via

a crankshaft from one side, and from the other side it is connected to the clutch. The

job of the pressure plate is to fix the clutch firmly to the flywheel in order to ensure that

the energy generated in engine is transmitted to the transmission system via the clutch,

whenever needed. When the clutch is engaged, it simplifies the connection between the

transmission system and the gears. At the same time as the driver is depressing the clutch

pedal, the clutch disengages and this will cause the gear shifting procedure to proceed

safely.

In order to be able to drive a vehicle equipped with manual transmission, the driver

needs to know some skills in gear shifting. This would not make driving a pleasant experi-

ence, especially for the ones who have difficulty in changing gears. Although, the manual

transmission does not provide ease of driving, it is counted as the transmission system with

the highest efficiency of %96.2 [10]. In this type of transmission, lubricant is splashed to

keep the transmission internals lubricated. A portion of losses in a vehicle equipped with

manual transmission is produced by lubricant churning. Furthermore, seal friction and gear

mesh losses are considered as additional sources of losses [11].

In Fig. 1.2, a schematic of a manual transmission system is illustrated. The main

components of the manual transmission system such as flywheel (1), clutch (2), and gears

(3) can be seen in this figure.
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Figure 1.2 Manual transmission components: flywheel (1), clutch (2), and
gears (3) [12]

1.2.2 Automatic Transmission

Although, manual transmission is a very efficient transmission system, it does not pro-

vide comfort to the driver. To improve the driving experience, automatic transmission

(AT) is introduced by the automotive industry. In ATs, changing the prefixed gear ratios

is accomplished automatically while the vehicle is moving. In this type of transmission,

there is no need for the driver to change the gear ratios manually.

AT operates using a hydraulic actuator, a torque converter (fluid coupling) and some

planetary gear sets to build specific gear ratios. The vehicle’s motor is hydraulically con-

nected to the gear box by the torque converter. To transfer the motor torque to the

transmission system, the torque converter acts very similar to the automatic clutch. Also,
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Figure 1.3 Electric motor (1), hydraulic torque converter (2), and 8-speed
automatic transmission (3) cutaway in an automatic transmission [13]

it allows the motor to remain idle when the driver stops the vehicle while in gear. A picture

of the automatic transmission is shown in Fig. 1.3. In this figure, components such as the

vehicle’s motor (1), the hydraulic torque converter with lock up clutch (2), and the 8-speed

automatic transmission (3) are illustrated.

Even though, ease of driving is an advantage of ATs, they are less efficient than con-

ventional manual transmissions. Viscous and pumping losses in the torque converters and

hydraulic actuators are the main factors of the low efficiency of ATs. Moreover, the contin-

uous operation of hydraulic pumps in order to provide the sufficient energy for actuation,

clutch cooling, and lubrication of the bearing and the clutch contributes to lower the effi-

ciency of ATs. The overall efficiency of vehicles equipped with ATs are 86.3% [6,7, 11].
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1.2.3 Automated Manual Transmission

Automated manual transmission (AMT) systems were developed to take advantage of

benefits of both manual transmissions and ATs. In order to develop an AMT system,

actuators are added to a manual transmission system for the purpose of providing an

appropriate number of gear ratios and enabling the control of the friction clutch. The

transmission control unit is responsible for the control of gear shifting process.

The process of the gear ratio shifting in AMTs is different from ATs. Since changing

gears is not done automatically in this type of transmission, it is similar to the manual

transmission working principle, except the fact that changing gears is facilitated by means

of some electric devices. These electric devices such as sensors, processors and actuators

replace the clutch pedal, utilized by the driver in manual transmission, to execute the gear

shifting task. In this type of transmission, the friction clutch is depressed by the actuator

when the actuator is activated. The actuator is operated when the gear shifting command

is received from the transmission control unit or the driver. Then, the required force for

gear changing is produced and exerted on the friction clutch. This force is then transferred

to the synchronizer which is responsible for smooth engagement of the gears.

The reason for developing this type of transmission system is that the electric equipment

reaction is more precise and less faulty than a human reaction. The idea is to have a

complete and effective clutch operation using electric equipment when having drivers with

different skill levels in gear shifting.

As mentioned earlier, AMT combines the advantages of the manual and automatic

transmissions. This transmission system is more fuel and cost efficient than ATs (it has the

same efficiency as manual transmissions [14]). From the convenience stand point, AMTs are

the preferred options in comparison with manual transmissions. Overall, owing to the high
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efficiency and convenience of AMTs, they are the preferred option for EVs in comparison

with ATs and manual transmissions. Also, from the transmission manufacturing point of

view, it is very easy to switch the vehicle production line from manual transmission to

AMTs. In order to transform a manual transmission system to AMT, it is only required to

install clutch and transmission actuators and a transmission control unit, which is basically

the control module part, on the assembly line.

There is a fast-growing interest toward AMTs. A survey, which was taken on six AMT

vehicles in Europe, reported in [15], has discussed the factors to improve the gear shifting

quality in this type of transmission. In [14], a non-linear model of an AMT actuated

with electro-hydraulic actuator is developed and the validity of the model is confirmed by

performing experimental tests on a commercial car.

1.3 Literature Review

In this section, a detailed literature review will be presented. The literature review will

focus on the following topics:

1. Common types of the actuators used in the gear shifting system

2. Actuator modeling

3. Actuator control

Each topic is elaborated in a subsection.

1.3.1 Actuator Selection

An actuator is a controllable device that converts one form of energy to motion. De-

pending on the principles that an actuator is working on, the primary form of energy could
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be electric, hydraulic, pneumatic, or even rotary mechanical [16]. Actuators are classi-

fied based on the form of energy they convert, such as electromagnetic, electrohydraulic,

etc [17], [18].

Selection of the appropriate type of actuator for one specific purpose may seem difficult.

To select the right actuator which can meet the desired requirements in each task, the

following information is required:

• the type and the corresponding characteristics of each type of actuator,

• the form of energy that is available as the input for the actuator,

• and, if applicable, a means to convert the available source of energy to the one

compatible with the actuator input.

Actuators are selected depending on demanded performance and desirable characteris-

tics required by the user. For example, in some applications high forces are required and

therefore, an actuator with high actuation forces must be selected regardless of the stroke

it can provide. The performance attributes of different actuators are presented in Fig. 1.4.

In this figure, the dashed diagonal line is separating the actuators with the work capacity

of more than 0.1 Nm from the ones with less work capacity.

In Fig. 1.4, it can be observed that each actuator can provide a certain range of force

and stroke characteristics. If the force or stroke of the actuator is the main concern of the

user, this figure could help the user to choose the right type of actuator. However, when

the maximum working frequency and the mass of an actuator are concerns of the user, Fig.

1.5 can be of help for selection of the right type of actuators. In this figure, the operating

area of different actuators versus maximum working frequency and the actuator’s weight

is illustrated. When a user has a clear description of what characteristics are required, the

actuator can be easily selected.

Looking at Fig. 1.4 and Fig. 1.5 reveals that magnetostrictive and piezoelectric actuators
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Figure 1.4 A comparison of maximum output force versus maximum stroke
for different actuators [18]
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Figure 1.5 A comparison of maximum working frequency versus weight for
different actuators [18]
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could provide high force density and fast responses while they are not good for long stroke

applications. On the other hand, hydraulic and electric cylinder actuators are capable of

providing long strokes and high forces, while their response time is not very fast. Therefore,

in selection of actuators a trade-off between the performance objectives is required. The

user needs to identify the critical and non-critical performance characteristics of the task

in order to select the right type of actuator.

1.3.1.1 Actuator Application in Automotive Industry

Actuators play a significant role in simplifying tasks in various fields of industry. Ac-

tuators have been employed in the automotive industry to fulfill various tasks in different

vehicle components. Considering the capability of actuators to provide vast performance

characteristics, they have been employed in different transmission systems. The actuators

that are used in this field of industry are mostly hydraulic, electrohydraulic, and electrome-

chanical actuators.

In the following sections, most of the actuators used in transmission systems are intro-

duced and their advantages and disadvantages are discussed. Despite the fact that some of

the actuators are not very efficient, they are still in use in transmission systems.

1.3.1.2 Hydraulic Actuators

Pure hydraulic actuators have been employed in ATs due to the high force density that

they can provide. However, they have some disadvantages that have made automotive in-

dustry experts think about alternatives to hydraulic actuators. Some of these disadvantages

are listed below.

• Hydraulic actuators have low efficiency due to the presence of parasitic losses similar

to the one in ATs [19].
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• Hydraulic actuators are complex, because there are a number of solenoid valves em-

ployed in such actuators to transfer the hydraulic pressure to where the force should

be exerted [11].

• The hydraulic fluid can leak and therefore, hydraulic actuators require regular main-

tenance.

Despite the above-mentioned disadvantages of this type of actuators, hydraulic actua-

tors are still in use for gear control in transmission systems. This is because they can provide

high forces. Moreover, the hydraulic pumps of these actuators can be mounted away from

the actuation point, which is an advantage for the transmission systems employing such

type of actuator.

1.3.1.3 Electrohydaulic Actuators

Electrohydaulic actuators are equipped with an electric motor, which recharges the hy-

draulic accumulator using a pump. The advantage they offer is that they do not constantly

consume power (unlike hydraulic actuators). The electrical power is only used periodically

to recharge the accumulator [14]. Even though the power consumption of this type of

actuators is significantly lower, they mostly have disadvantages similar to the hydraulic

actuators in terms of complexity and inefficiency. In order to improve their efficiency,

higher flow rates should be produced which consequently requires larger components such

as pump, valves, etc. This will lead to the increases in the overall costs.

1.3.1.4 Electromechanical Actuators

Electromechanical actuators have recently become the new option for transmission ap-

plications specially in AMTs and dual clutch transmissions (DCTs). They are more efficient

and less complex than hydraulic and electrohydraulic actuators. Therefore, they are con-
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sidered as alternatives to the old actuators in automotive industry [19].

Electromagnetic actuators are considered among the family of electromechanical actua-

tors. Electromagnetic actuators use the magnetic fields as the medium to convert electrical

energy to mechanical energy. Solenoid actuators use the same principle to generate elec-

tromagnetic force. To better understand how force is generated in solenoid actuators, it is

important to understand the core principles in electromagnetic force generation.

1.3.1.5 Solenoid Actuators

Solenoid actuators provides numerous advantages such as having high power density in

a limited stroke, low cost, reduced complexity, and fast switching. This type of actuators

are the actuator of choice in industry [20–24]. They are widely used in various fields of

industry for diverse applications, such as

• drug delivery [25],

• diesel vehicle fuel injection systems [26],

• antilock braking systems [27] and

• robotics [28].

Considering the advantages of solenoid actuators as well as accessibility of electricity in

EVs, in this thesis we suggest the use of solenoid actuators in EVs’ transmission systems.

In Chapter 2, we provide a detailed feasibility analysis for this suggestion.

Given the wide use of solenoid actuators in different areas, a vast literature exists on

the modeling of these actuators. In the next section, we provide a literature review on the

modeling approaches of solenoid actuators.
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1.3.2 Solenoid Actuator Modeling

In the field of control systems, a dynamic system should be modeled mathematically.

The mathematical model represents the characteristics of the dynamic system and its rela-

tionships by sets of equations. This model provides the necessary requirement for control-

ling the dynamic system [29].

From a modeling point of view, abundant studies have been conducted on solenoid

actuator modeling. Most notably, [24] is a valuable work with regard to the modeling

technique. This paper presents a nonlinear dynamic model of a proportional solenoid valve

actuator. The proportional solenoid valve is divided into two parts, solenoid valve and the

spool assembly. The solenoid valve is modeled as a resistive-inductive circuit. The spool is

modeled as a mechanical spring-mass-damper system. The model proposed in this paper

takes the magnetic saturation and hysteresis effects into account. To verify the accuracy of

the model, experimental results are compared with the simulation results. Although this

paper does not model a solenoid actuator explicitly, the equations used in this work are

the same as the equations governing solenoid actuators.

A simplified model of a solenoid in valve applications is suggested in [30]. In this study,

it has been assumed that the actuator behaves as a linear first-order lag transfer function.

The drawback of this modeling approach is that it does not consider the effects of hysteresis

and saturation of magnetic material.

In another attempt to describe the magnetic characteristics, the study in [31] is con-

ducted to predict the flux patterns within the solenoid based on the results from FEM

analysis. This approach is used to describe the skin effect on the time lag flux. Also, a

description of the magnetization process in transient state is obtained using this approach.

The electromagnetic force and other performance characteristics are determined using the
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transient magnetization. This approach to the modeling is accurate, even though it is not

successful in providing a model for control design purposes.

In [23], the author developed a solution to increase the stroke of a solenoid actuator

by augmenting two oscillating springs which are controlled electromagnetically. In this

paper, a mathematical model is introduced using finite element analysis. The dynamic

model of motion is integrated in this model. Furthermore, experimental tests are carried

out to verify the mathematical model. Finally, it has been concluded that this approach is

successful in increasing the stroke of solenoid actuators because it requires less energy for

providing long stroke and fast response.

In [32], the authors analyzed the electromagnetic control valve behavior under the per-

turbation of a magnetic field. In this study, a numerical model of the actuator is achieved

by a non-linear 2D finite element analysis. Experimental tests are performed under the

same perturbations and at the end, the numerical and experimental modelings have been

compared.

In [33], an optimized geometry of a constant force solenoid actuator is designed and

compared to the original one based on an FEM analysis. In this paper, the solenoid is

designed to provide constant force values independent of the plunger position, which is

the desired feature in fluid flow control. Also, a pattern for force distribution around the

plunger is determined. The forces of both proposed and original actuators were measured

and compared.

1.3.3 Solenoid Actuator Control

Closed-loop control of solenoid actuators is a topic that has been extensively studied

given the diverse applications of this type of actuators. In [34], a safe seating (with low

range velocities such as 0.1 m/s) position control method is proposed. This method is
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only based on the observation of the electrical signals. This control approach has removed

the acoustical noises and increased the actuator’s life time. Also, the system complexity

is reduced using this method. The closed-loop system has been tested on a combustion

test engine and has met the desirable objectives under cylinder pressure and input voltage

variations.

In [35], a novel position estimation method is presented which is based on the incre-

mental inductance of the solenoid. The inductance is obtained from the derivative of the

current rise which is measured by a current rise measurement system. Position is then

interpolated using a look-up table of incremental inductance, current, and position. The

method’s applicability is verified by an industrial solenoid valve.

A nonlinear sensorless sliding mode estimation method is proposed in [36]. In this paper,

current measurement is used for the solenoid actuator’s position and speed estimation.

Moreover, hysteresis and saturation effects are neglected and their impacts are compensated

in the robust control design. Also, a closed-loop nonlinear position controller is developed

using the position estimation from the estimation algorithm proposed and is experimentally

tested.

In [37] another position estimation method without any position measurement is sug-

gested. In this paper, position is estimated based on the flux analysis. The flux is obtained

by the secondary coil voltage integration which is added at each electromagnet. By this

method, the flux and plunger position are accessible for the position closed-loop control

purpose. The method is implemented and its validity is confirmed.
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1.4 Thesis Contribution

The following results of this research are the main contributions of the author to the

advancement of knowledge:

a) The use of solenoid actuators for the gear shifting task of EVs equipped with AMT is

proposed.

b) To ensure that solenoid actuators can fulfill the proposed task, a detailed feasibility

analysis is presented.

c) A detailed modeling of a solenoid actuator based on three different approaches, namely,

(i) theoretical, (ii) numerical (FEM), and (iii) experimental is presented.

d) Having the actuator’s geometry and the magnetic properties of the actuator’s material,

the actuator is modeled in FEM environment. The actuator’s steady state and transient

state response is achieved using FEM.

e) In order to verify the results from FEM analysis, experimental tests are carried out to

model the dynamic and steady state behavior of the actuator. Building the experimental

setup and acquiring data from the experimental tests are accomplished with the help of

Mr. Hossein Vahid Alizadeh and Mr. Mir Saman Rahimi Mousavi, PhD. candidates in

CIM.

f) Using experimental tests, the dynamic and steady state impact of air gap spacer exis-

tence in a solenoid actuator is investigated.

g) The sources of uncertainty involved in the modeling of the actuator are identified.

h) A new configuration for the control of the force of the actuator is suggested which

transform the force control problem to the current control problem.

i) Considering the presence of uncertainties, a robust controller is designed using the H∞
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optimal control method. The goal of the controller is to ensure that the closed-loop

system is robustly stable to all uncertainties.

j) The satisfactory controller performance is validated using simulation of the closed-loop

system under presence of uncertain conditions.

1.5 Thesis Outline

The succeeding chapters are composed as follows:

• In the beginning of Chapter 2, we analyze the required force for gear shifting in an

AMT. Then, a feasibility analysis is performed to determine if solenoid actuators

are able to meet the required characteristics of a gear shifting task in an AMT.

Furthermore, a suitable solenoid actuator is selected. In the remainder of the chapter,

three different approaches for the modeling of the selected actuator are presented.

The first approach is the simplified theoretical approach. The second approach is

modeling of the actuator using FEM. The FEM analysis is performed by MagNet R©—a

software developed by Infolytica. FEM is a very accurate tool for solving sophisticated

Maxwell’s equations. The experimental approach is introduced as a complementary

approach to the FEM modeling. An experimental setup is built for this purpose.

Finally, an algebraic non-linear model of force versus current and air gap length as

well as several uncertain linear dynamic models of current versus voltage are proposed.

• In Chapter 3, considering the parametric uncertainties involved in the modeling of

the actuator, an uncertainty analysis is performed. Since models with uncertainties

should satisfy robustness and performance objectives, the design of a robust force

control system is necessary. The controller should be designed so that the closed-loop

system perfectly operates under uncertain circumstances. In the remainder of this
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chapter, the closed-loop force controller is designed using the H∞ optimal control

method, based on the uncertainty analysis performed beforehand. A new closed-loop

configuration for reducing the problem complexity is suggested. The effectiveness of

the controller is evaluated by simulation to ensure that the proposed controller can

satisfy the stability and performance objectives.

• Chapter 4 summarizes the main contributions and achievements of this research.

Furthermore, future research directions are outlined.
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Chapter 2

Feasibility Analysis and Modeling

In this chapter, we present a feasibility analysis of application of solenoid actuators in

transmission system of EVs. We determine the technical specifications required for the

gear shifting task in an EV equipped with AMT and then we show that certain solenoid

actuators are capable of meeting these technical requirements. Moreover, different modeling

approaches are implemented and discussed.

2.1 Feasibility Analysis

Solenoid actuators provide several advantages in comparison to other types of actuators.

This fact makes them an attractive option in the automotive industry. More specifically,

due to the accessibility of electricity in EVs, the use of solenoid actuators for the gear

shifting task in EVs seems reasonable. Therefore, we propose using solenoid actuators in

EVs equipped with AMTs. The AMT studied here is located in the powertrain of an electric

vehicle. Such AMT is made of a clutchless two-speed gearbox equipped with a solenoid

actuator [38,39]. The feasibility of using this type of actuator in terms of providing required
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Figure 2.1 Axial force and angular velocity of the gear during gear shifting
[40]

technical specifications for such application should be investigated. Hence, we need to know

the required force profile for this task.

The principles of gear changing in AMTs are the same as in manual transmission sys-

tems. Therefore, the force requirements for gear shifting in AMTs is the same as in manual

transmission system. In [40], the authors simulated the mechanical behavior of a syn-

chronizer to improve the synchronization mechanism in a vehicle equipped with manual

transmission. In this paper, the gear shifting cycle is divided into eight phases. The axial

force and angular velocity of the gear have been measured and their variations during a

gear shifting cycle are illustrated in Fig. 2.1.

In Fig. 2.1, it can be observed that the maximum required axial force that needs to be

exerted on the synchronizer is around 500 N . This amount of axial force is used mainly in

phase three of the gear shifting cycle. In this phase, the angular velocity of the synchronizer
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sleeve and the gears are being synchronized. Also, it can be observed that the force should

only be generated for a short period of time (less than 0.3 seconds). Hence, the actuator

which is going to be selected to execute the gear shifting, should be capable of delivering

high forces in a short period of time.

Furthermore, since the purpose of this thesis is to do the force control of the actuator

used in the AMT system of an EV, we can assume that the plunger of the actuator is

very close to where it wants to exert the force (i.e. synchronizer). From that point the

actuator’s force is going to be controlled. Hence, there is no limitation with regards to the

stroke of the actuator.

Low profile 1 solenoid actuators provide high forces. Furthermore, they provide linear

actuation and are very compact. Therefore, they will save some space for other components

in the transmission system. The plunger of low profile actuators are built in both flat face

and conical face. In Fig. 2.2, the two types of plungers in energized and de-energized

states are illustrated. Conical face plungers provide longer strokes. However, when the

actuator with this type of plunger is operated in small air gaps, it is more probable that

the actuator will enter the saturation area comparing to the actuators with the flat face

plunger. Saturation of magnetic material can reduce the efficiency of the actuator. Since

the flat face plungers do not enter the saturation area very easily and we do not necessary

need long strokes for our purpose, a low profile actuator with flat face plunger is chosen.

To choose the appropriate actuator among the low profile actuators with flat face

plungers, it is very important to be aware of the performance requirements and opera-

tional limitations which are listed as follows:

• The required generated force is 500 N .

• The actuator should respond very fast to the force generation command.

1. low profile refers to a device that is wide in relation to its height
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Face Plunger Design
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The pole surface area is 
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gap. 
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Figure 2.2 Solenoid actuator with flat and conical face plungers - Energized
and De-energized states [41]

• The maximum time of the gear shifting is less than 1 second (see Fig. 2.1). Then the

actuator should be able to keep generating the force for this time duration.

• The maximum voltage that the available power supply can provide is 33 V .

We select our solenoid actuator from the products of Ledex R© company, which is a

pioneer manufacturer in producing solenoid actuators for various applications. The solenoid

actuator that meets the performance requirements and power supply limitations and is

available for purchase is of class 6SFM. The performance specifications of this class of low

profile actuators are presented in Table (2.1). The maximum voltage allowed to be applied

for different coil turns and duty cycles are presented in Table 2.2.

For selecting the appropriate actuator for our purpose, the two tables should be regarded

at the same time. For example, actuator awg #23 which has 432 turns operating with a

PWM duty cycle of 50% can tolerate a maximum DC voltage of 14.6 V for 87 seconds (see

Table 2.1). On the other hand, when this actuator is operating with a PWM duty cycle of

100%, the supplied voltage should not exceed 10.3 V ; so it can be under operation infinitely.

It can also be seen that the solenoid coil resistance is 3.59 Ω if the working temperature is

20◦C.

The solenoid actuator force versus stroke graph for various duty cycles is illustrated in
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Table 2.1 Solenoid Actuator Performance [41]

Maximum Duty Cycle 100% 50% 25% 10%
Maximum On Time (sec) when pulsed continuously ∞ 87 36 13
Maximum On Time (sec) for single pulse ∞ 140 44 16
Watts (at 20◦ C) 32 64 128 320

Table 2.2 Maximum allowed voltage for the actuator with different coil
data [41]

awg # Resistance (20◦C) Turns # VDC 100% VDC 50% VDC 25% VDC 10%
23 3.59 432 10.3 14.6 21.0 33.0
24 5.24 500 13.0 18.4 26.0 41.0
25 9.51 708 16.7 24.0 33.0 53.0
26 14.44 858 21.0 30.0 42.0 66.0
27 23.69 1110 27.0 38.0 53.0 84.0
28 38.27 14.11 34.0 48.0 68.0 106.0
29 54.62 1638 41.0 59.0 83.0 131.0
30 93.67 2184 53.0 76.0 107.0 168.0
31 143.00 2645 67.0 95.0 134.0 211.0
32 223.00 3328 83.0 118.0 167.0 262.0
33 338.00 4004 105.0 149.0 210.0 331.0

Fig. 2.3. It can be seen that the actuator generates higher forces when it is driven in lower

duty cycles. The reason is that in the lower duty cycles higher voltages can be applied

to the actuator. Therefore, stronger magnetic fields are generated and that will, in turn,

produce higher forces. This figure also shows that if an actuator is operated in smaller

strokes, it will produces higher forces comparing to when the stroke is longer.

Considering the performance requirements and limitations expressed earlier, the solenoid
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Ledex® Low Profile Size 6SFM — Push or Pull

Performance
Maximum Duty Cycle 100% 50% 25% 10%
Maximum ON Time (sec)  ∞ 87 36 13 
when pulsed continuously1 
Maximum ON Time (sec)  ∞ 140 44 16 
for single pulse2 
Watts (@ 20°C) 32 64 128 320
Ampere Turns (@ 20°C) 1240 1760 2490 3920
  Coil Data
 awg Resistance # VDC VDC VDC VDC 
 (0XX)3 (@20°C) Turns4 (Nom) (Nom) (Nom) (Nom)
 23 3.59 432 10.3 14.6 21.0 33.0 
 24 5.24 500 13.0 18.4 26.0 41.0 
 25 9.51 708 16.7 24.0 33.0 53.0 
 26 14.44 858 21.0 30.0 42.0 66.0 
 27 23.69 1110 27.0 38.0 53.0 84.0 
 28 38.27 1411 34.0 48.0 68.0 106.0 
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 31 143.00 2645 67.0 95.0 134.0 211.0 
 32 223.00 3328 83.0 118.0 167.0 262.0 
 33 338.00 4004 105.0 149.0 210.0 331.0
1 Continuously pulsed at stated watts and duty cycle
2 Single pulse at stated watts (with coil at ambient room 

temperature 20°C)
3 Other coil awg sizes available — please consult factory
4 Reference number of turns

Short Stroke, Flat Face 
Part Number: 282351-0XX

Size 6SFM— Typical Speed @ No Load, 20°CSize 6SFM— Typical Force @ 20°C

How to Order
Add the coil awg number (0XX) to the part number 

(for example: to order a 25% duty cycle unit rated at 53 
VDC, specify 282351-027).

Please see www.ledex.com (click on Stock Products 
tab) for our list of stock products available through our 
distributors.

Specifications
Dielectric Strength 23-31 awg, 1200 VRMS ; 32-33 awg, 

1500 VRMS
Recommended  Maximum watts dissipated by 
Minimum Heat Sink  solenoid are based on an unrestricted 

flow of air at 20°C, with solenoid 
mounted on the equivalent of an 
aluminium plate measuring 314 mm 
square by 3.2 mm thick

Coil Resistance 23-33 awg, ±5%
Weight 510.3 g
Holding Force  391.4 N @ 105°C
Dimensions See page G18
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Figure 2.3 Solenoid actuator force versus stroke for various duty cycles [41]

actuator with awg #23 is selected. It will be operated in 10% duty cycle, and is supplied

by DC voltage of up to 33 V that matches the available power supply. In these operation

conditions, it will be able to produce the required 500 N force for the gear shifting purpose.

2.2 Modeling

The schematic of a solenoid actuator and its parts are shown in Fig. 2.4. As shown in

this figure, a solenoid actuator consists of a coil which is a stationary part and is labeled

number (7) in this figure. The coil is wound around a cylindrical metal rod. This rod or

“plunger” is made of ferromagnetic materials. The plunger can enter or exit the coil without

being in contact with it. In Fig. 2.4, this component is indicated by number (1). Other
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Figure 2.4 Solenoid Actuator Components

components of the actuator are main air gap (2), core (3), shaft (4), secondary air gap

(5), cap (6), air gap spacer (8), and housing (9) and are shown in this figure. Applying an

electrical current to a solenoid coil generates a magnetic flux whose intensity is proportional

to the current. Such magnetic field pulls the plunger to intensify the field concentration

inside the solenoid. Therefore, the EM force is created.

The purpose of this section is to propose a reduced-order model of the actuator. In order

to drive a model which can accurately describe the actuator’s behavior, several modeling

approaches are used.

First, very general equations for simplifying the electric and magnetic interactions in

an electromagnetic actuator are presented. However, these equations are useful to acquire

a broad knowledge of electromagnetic properties in the actuator such as the relationships

between force, voltage, current, and magnetic field, they may not represent the electromag-

netic behavior of the actuator working in different situations. Since some assumptions are
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made to derive these equations, such equations cannot be applied to all actuator operation

conditions, e.g. saturation condition.

When the basic equations for describing the electromagnetic behavior of the actuator

are presented, FEM modeling of the actuator is introduced as a reliable tool to model the

electromagnetic behavior of the actuator. Basically, the electromagnetic behavior of any

electromagnetic device is described by Maxwell’s equations. Maxwell’s equations consist of

a set of complicated equations. These equations represent how the electric and magnetic

fields interact. To find out the electromagnetic behavior of the actuator, the Maxwell’s

equations should be solved. Considering the tedious nature of solving these equations,

FEM analysis is proposed for carrying out the calculations.

On the other hand, the model that the FEM approach suggests is not perfect for some

conditions that may arise during the steady state operation of the actuator. For example,

the variation of parameters in the steady state operation of the actuator is not modeled

within FEM. To assure that the achieved model, which is going to be used for control

purposes, is taking care of all the uncertainties in the systems, experimental results are used

to identify accurate models representing solenoid actuator response in all possible operating

conditions. In this thesis, this approach is called experimental modeling approach.

2.2.1 Simplified Theoretical Approach

Every ferromagnetic material has its own magnetization curve (B-H curve). In the

B-H curve of a specific ferromagnetic material, increasing H up to a certain point (around

the knee of the curve), results in increasing B linearly (linear region). Above the knee point

on the curve, B cannot increase linearly with increases in the H anymore. In this region,

the material is magnetically saturated (saturation region), e.g. Fig. 2.8 [42].

In this section, a generic model for calculation of the force and current of the actuator
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Figure 2.5 Electric equivalent circuit

is presented. In order to be able to develop this model, it is assumed that the actuator

is working in the linear region, otherwise such model would not be obtained. Develop-

ing the electric circuit and equivalent electrical circuit of the magnetic system helps in

understanding the interactions between the electric and magnetic fields.

Since we assumed that the actuator is working in the linear region, an inductance can

be defined for the actuator. From the electrical circuit point of view, the equivalent circuit

of the actuator can be seen at Fig.2.5.

The equivalent circuit is an R− L circuit. A KVL in this circuit will result in:

V = Ri+ L
di

dt
+ i

dL

dt
(2.1)

where L, R, i, and V are the solenoid coil inductance, solenoid coil resistance, current and

input voltage, respectively. As L is a function of the air gap length x (This will be shown in

developing the equivalent electrical circuit of the magnetic system and consequently where
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the inductance formula (2.18) is derived), (2.1) can be rewritten in the form

V = Ri+ L
di

dt
+ i

∂L

∂x

∂x

∂t
(2.2)

Since in this study we are interested in modeling the actuator for force control appli-

cations, we assume that the actuator’s plunger is not expected to move. In other words,

we assume that the plunger has already moved to the desired position and the plunger is

supposed to exert the force. Therefore, the ∂x
∂t

term is negligible. (2.1) can be rewritten as

follows

V = Ri+ L
di

dt
(2.3)

In the Laplace domain, the voltage-current relationship can be written as:

I

V
= 1
R + Ls

(2.4)

In order to develop the electrical equivalent circuit of the magnetic circuit of the actu-

ator, two main assumptions are made.

• The actuator is working in the linear region, and

• There is no flux leakage.

To develop the circuit, we should know how the magnetic flux chooses its path in the

actuator. Basically, the magnetic flux tends to follow the path with the least magnetic re-

luctance. Components made of ferromagnetic materials express much lower reluctances for

the magnetic flux in comparison to the non-ferromagnetic materials. Hence, the magnetic

flux tends to cross through ferromagnetic materials to strengthen the electromagnetic field.
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Figure 2.6 Magnetic circuit

A schematic of the half of the actuator’s cross section is shown in Fig. 2.6.

The dashed line is the magnetic flux, crossing through the plunger and the housing. On

its path, it has to cross two air gaps, namely, the main air gap, and the secondary air gap.

We will see that the reluctances of these two air gaps play the most significant role in the

amount of the generated flux.

From Fig. 2.6, we can see that the generated magnetic flux passes through four reluc-

tances. Therefore, the electrical equivalent circuit can be derived as shown in Fig. 2.7.

In this figure, F is the magneto-motive force (MMF).Rc is the reluctance of the housing,

Rx and Rg are the reluctances of the main air gap and the secondary air gap, respectively,

and Rp is the reluctance of the plunger. Φ is the generated magnetic flux in Weber.

Magneto-motive force (MMF) is the equivalent of electro-motive force (EMF) in electric

circuits. This MMF is the cause of magnetic flux generation. MMF is defined as:

F = Ni (2.5)



2 Feasibility Analysis and Modeling 32

+
−F=Ni

Φ
Rc

Rx

Rg

Rp

1

Figure 2.7 Equivalent electrical circuit

where N is the number of turns of the winding and i is the current going through the

winding. The unit for F is Ampere-turns (At). Given the MMF of a magnetic circuit, the

generated flux can be calculated using the following equation

F = RΦ (2.6)

where R is the total reluctance.

When 2.5 and 2.6 are combined with the definition of inductance,

L(x) = NΦ
i

(2.7)

then, the inductance of the actuator can be calculated using the following equation

L(x) = N2

R
(2.8)
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R can be regarded as the summation of reluctances of different components

R = Rc +Rx +Rg +Rp (2.9)

whereRc is the core reluctance,Rx is the reluctance of the main air gap,Rg is the reluctance

of the secondary air gap and Rp is the reluctance of the plunger. The reluctances can be

calculated as follows

Rc = lc
µfµ0Af

(2.10)

Rx = x

µ0Af
(2.11)

Rg = g

µ0Ag
(2.12)

Rp = lp − x
µfµ0Af

(2.13)

where lc is the effective length of the housing that the flux is going through. µf is the relative

permeability of the electromagnetic material used in the actuator. µ0 is the permeability

of the free space. Af is the cross sectional area of the plunger which is perpendicular to the

flux path. x and g are the main air gap and the secondary air gap lengths, respectively.

Ag is the effective area of the secondary air gap where the the flux is crossing. lp is the

effective length of the plunger when the main air gap x is zero.

Having 2.8 and 2.9, the reluctance of the actuator is calculated as

L(x) = N2

Rc +Rx +Rg +Rp

(2.14)

The main air gap and the plunger reluctances are both dependent on the main air gap

length. Therefore, the total inductance of the system is a function of the length of the
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main air gap. Hence, as the plunger moves forward or backward, the main air gap length

changes and consequently the actuator’s inductance varies. We assumed that the actuator

is working in the linear region, therefore we have

B = µfµ0H (2.15)

where B and H are the flux density and the magnetic intensity, respectively. Also, for the

electromagnetic materials we have

µf >> 1. (2.16)

Therefore, Rc and Rp are negligible comparing to Rx and Rg and can be ignored. (2.14)

can be rewritten as

L(x) = N2

Rx +Rg

(2.17)

Substituting (2.11) and (2.12) in (2.8), we will have

L(x) = N2µ0AfAg
Afg + Agx

(2.18)

On the other hand, the electromagnetic force can be calculated as follows [43]

Fe = ∂Wc(i, x)
∂x

(2.19)

where Wc is co-energy which is used to calculate the electromagnetic force produced by

the actuator. Co-energy is a concept which is useful in calculating mechanical forces in
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electromagnetic devices. Assuming there is no energy loss, the input energy would be

stored as electromagnetic energy in the core. Then, based on the co-energy definition, the

stored energy is equal to the co-energy.

Since it is assumed that the actuator is operated in linear region and no energy is

wasted, the co-energy formula can be written as

Wc(i, x) = 1
2L(x)i2 (2.20)

Then, substituting (2.20) in (2.19), the electromagnetic force can be calculated as

Fe(i, x) = 1
2i

2∂L

∂x
(2.21)

Substituting L from 2.18 in 2.21 the electromagnetic force formula will be

Fe(i, x) = −1
2i

2 N2µ0AfA
2
g

(Afg + Agx)2 (2.22)

In calculating the electromagnetic force, some parameters, such as g, play a significant role

in the amount of the electromagnetic force produced. So, the accuracy of force calculations

depend on how accurate those parameters are measured. To ensure that the calculations

are accurate, (2.23) can be used

Fe = −1
2i

2 γ

(α + βx)2 (2.23)

where α, β, and γ are functions of the number of coil turns, magnetic materials properties,

and geometry of the actuator components. By substituting three sets of current, air gap,

and force measurements, α, β and γ can be calculated. Therefore, (2.23) expresses the
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electromagnetic force relationship with the air gap length and current.

As mentioned earlier, this approach is developed under limited actuator operating con-

ditions, which makes the model not to be useful for all operating conditions. In other

words, the operation of the actuator in the linear region is not guaranteed, i.e., there is

a possibility that the actuator operates in the saturation region, which means that (2.3)

and (2.23) are not valid any more. Moreover, there is always some flux leakage, which

in this approach are ignored. This will affect the accuracy of the developed model. To

develop a reliable model for the actuator, alternative approaches are chosen. The two ap-

proaches used here to determine the electromagnetic behavior of the solenoid actuator are

the following

• Finite Element Method (FEM), and

• Experimental approach.

2.2.2 Finite Element Method Approach

FEM is a tool for solving a wide range of research and industry problems including

electric and magnetic fields problems. It is a numerical technique which finds the approxi-

mate solution to the boundary condition problems for partial differential equations [44]. In

this technique, the field equations of a problem are discretized using piecewise polynomial

interpolation.

To investigate the electromagnetic behavior of an electromagnetic device, Maxwell’s

equations should be solved. FEM enables the user to solve these equations using several

optimization methods. This includes solving simultaneous partial differential equations,

under predefined boundary conditions. In this thesis, the finite element analysis is con-

ducted using the FEM software developed by Infolytica called MagNet R© [45]. The general

3D analysis is based on the T − Ω method [46, 47]. In this method, the field intensity
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vector, H and the electric conductors current density vector, Je are expressed in terms of

the unknown total scalar potential, Ω, (2.24), and the current vector potential, T , (2.25),

respectively.

H = −∇Ω (2.24)

Je = ∇×T (2.25)

Basically, the fundamental principle in this technique is to divide the whole model into

a mesh of elements and iteratively solve the Maxwell’s equations for each node of the

corresponding element. The flux density is calculated by solving the following equation

∇× (σ−1 · ∇ ×H) + µ
∂H
∂t

= 0 (2.26)

where σ is the electrical conductivity and µ is the permeability at each node.

The type of materials used in each component of the actuator are known. Also, the

geometry of the actuator is measurable. Therefore, enough information is available to

model the actuator in the FEM environment. Considering the cylindrical shape of the

actuator, the accuracy of the FEM analysis is improved by modeling the system in three

dimensions (3D). Since the actuator is an axisymmetric object, a quarter of the actuator

is modeled along with the surrounding air. This reduces the required computation and the

post-processing time. The specifications for the materials used in the components of the

actuator are listed in Table 2.3.

Cold rolling, in Table 2.3, is referring to the process of rolling a material below its

recrystallization temperature. This process increases the strength and hardness of the
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Table 2.3 Solenoid Actuator Components Material

Component Material
Plunger 12L14 Cold Rolled Steel

Core 12L14 Cold Rolled Steel
Housing 12L14 Cold Rolled Steel

Shaft 303 Stainless Steel
Cap 400 Series Stainless Steel

Air gap spacer 300 Series Stainless Steel

material and decreases its flexibility. Moreover cold rolling helps in producing the plate or

sheets with the desired physical dimensions.

Cold rolled steel 12L14 is essentially a type of lead-added carbon steel which is re-

sulfurized and re-phosphorized. The impact of adding lead along with the high levels of

sulfur and phosphorous is to create a lubricating effect. This will result in a low friction,

smooth and machined surface which would prolong its life time. Furthermore, this material

is accounted as a ferromagnetic material which plays a significant role in intensifying the

magnetic field. As mentioned earlier in Section 2.2.1, the components made of such a

material provide the path with the least reluctance. Therefore, the flux goes mostly through

the ferromagnetic components. The B-H curve of 12L14 Cold Rolled Steel is shown in Fig.

2.8.

Fig. 2.9 illustrates the geometry of the actuator. It can be seen that the actuator is

indeed compact as we expect from a low profile flat faced actuator. In addition to occupying

a small space, the compact design will reduce the gear shifting system weight, as well.

The MagNet R© FEM solver uses the Newton-Raphson method to linearize the B − H

curve around the operating point and to iteratively update the permeability in the elements

of the model. In this analysis, Newton tolerance, conjugate gradient tolerance, maximum
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Figure 2.8 12L14 Cold Rolled Steel B-H curve

number of iterations, time step, and polynomial order are selected to be 1%, 0.01%, 20,

0.003 s, and 2, respectively.

In this analysis, the model is divided into a mesh of four-nodes tetrahedral elements.

The accuracy of the solution depends upon two main factors: the nature of the field and the

size of the mesh elements. In regions where the direction or the magnitude of the magnetic

field is changing rapidly, high accuracy requires smaller elements. In order to create a mesh

with high density in some areas, one should assign maximum element size to that area.

There is always some trade-off between the accuracy and the computation time. As the

meshing gets finer, the time spent for each iteration increases and this will significantly

affect the solution time. We decreased the meshing size to the point that decreasing it

more did not improve the accuracy of the results.

In this analysis, we assign a small maximum element size mostly to the magnetic com-

ponents whose magnetic fields change significantly. Maximum element size of the coil and
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Figure 2.9 Solenoid actuator geometry

the air box is selected to be 5 mm, while the maximum element size of all other components

is considered to be 1.75 mm. The mesh diagram of a quarter of the actuator is shown in

Fig. 2.10.

As can be seen in Fig. 2.10, the meshing is finer at plunger, housing and core. Since

these components are made of ferromagnetic material, the magnetic field density is higher

in them. Therefore, we require finer meshing. On the other hand, it can be seen that

meshing in the surrounding air box and the coil is coarser.

In terms of the supplied voltage, it is assumed that the actuator is supplied by 26.7 V
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Figure 2.10 Mesh diagram of one quarter of the solenoid actuator

voltage. This is because the available driver can supply up to 26.7 V . As was mentioned

earlier, by exploiting the axisymmetric feature of the actuator, only one quarter of the

actuator is modeled in the FEM. Therefore, when doing simulations, the model is supplied

by only one fourth of the total voltage, which is 6.675 V . The main air gap length is

changed from 0.5 mm to 1.5 mm in 0.5 mm increments.

Fig. 2.11 shows the current provided by the power supply for different air gap lengths.

This figure confirms that due to variations in the main air gap length, the current graphs

are not identical in terms of the response time. The graph associated with longer lengths of

the air gap have shorter response times. Despite the fact that the response time is sensitive

to the air gap length variations, it can be seen that the steady state values of the current
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Figure 2.11 Current graphs for various main air gap lengths - FEM results

is the same. Since the resistance of the coil is the key factor in steady state value of the

current and it was fixed under different operating conditions, then the steady state value

of the current is not affected.

Fig. 2.12 shows the flux linkage in the actuator for different air gap lengths. It can

be seen that as the air gap becomes shorter, the flux linkage, λ, increases. This means

that as the air gap length decreases, the total reluctance of the actuator decreases and

consequently, a stronger magnetic field is generated in the actuator. Since the flux linkage

is proportional to the magnetic field density, decrease in the length of the air gap will result

in higher flux linkages. Moreover, we can see from Fig. 2.12 that unlike the electric current,

the steady state values of flux linkages are not the same.

Fig. 2.13 shows the electromagnetic force developed by the actuator for various air

gap lengths. It can be seen from the figure that there is a direct relationship between the

flux linkage and the electromagnetic force produced. Also, as mentioned earlier there is
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Figure 2.12 Flux linkage graphs for various main air gap lengths - FEM
results

an inverse relationship between the main air gap length and the flux linkage. We can see

from this figure that the same relationship holds for the developed force. In other words,

as the air gap becomes smaller, the magnetic field becomes stronger and greater forces are

produced in response to the high intensity of the magnetic field.

Fig. 2.14 shows the plot of the smoothed absolute values of the flux density (|B|) for

various lengths of the main air gap. It can be seen that as the plunger moves closer to

the core, i.e. as the air gap length decreases, the flux density increases. Also, we can see

from the B−H curve of the magnetic material, shown in Fig. 2.8, that when the magnetic

flux density, |B|, increases to more than 1.5 T, the ferromagnetic material is operated in

the saturation region. Looking at the color bar and smoothed |B| shaded plot of Fig. 2.14

confirms that, for smaller main air gaps, the flux density of some regions of the actuator’s

ferromagnetic components are greater than 1.5 T (orange areas), and thus they are indeed
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Figure 2.13 Developed force for various main air gap lengths - FEM results

working in the saturation region.
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In the theoretical approach proposed in Section 2.2.1, it was assumed that no saturation

would happen. On the other hand, from the FEM analysis we can see that saturation is

inevitable, especially when the actuator is working under high currents and short air gap

lengths. These findings corroborate the decision to consider other approaches rather than

a pure theoretical approach.

2.2.2.1 FEM Result System Identification

As discussed before, FEM is a reliable tool in comparison to the simplified theoretical

approach. It is able to analyze the behavior of the solenoid actuator operating in saturation

region. Although the numerical results of the FEM method are useful, they do not provide

a suitable model for the purpose of controller design. Thus, based on the results of this

method, system identification is performed in order to obtain an accurate model of the

system.

Several approaches are available for the purpose of system identification, such as instru-

ment variable, state variable filters, generalized Poisson moment functions and subspace

state-space estimation. In this study, instrument variable approach [48] is used to estimate

a transfer function. From the electrical behavior point of view, it was seen that the actu-

ator’s behavior resembles a simple first order system, i.e. one pole without any zero, see

Fig. 2.11. Then, such a system is fitted to the results from the FEM analysis, when the

air gap is 1 mm. The estimated first order system is as follows

I

V
= 7.629
s+ 35.31 (2.27)

The magnitude bode diagram of the transfer function estimated from the current re-

sulting from a step input of voltage is shown in Fig. 2.15. The blue region surrounding the
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Figure 2.15 Magnitude bode plot of the estimated transfer function along
with the confidence region

magnitude bode diagram of the system is the estimated region for the identified solution.

This region is called confidence region. In this system identification process, the estimated

transfer function is obtained after 2 iterations and is %85.57 fitted to the estimation data.

Also, final prediction error (FPE) was 0.0615.

2.2.3 Experimental Approach

Despite the fact that FEM is a powerful tool in analyzing the electromagnetic behavior

of the solenoid actuator, there are some downsides to this analysis method. For instance,

there is always some measurement errors, especially in the actuator dimensions. Due to the
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Figure 2.16 Experimental approach flow chart

sensitivity of the electromagnetic fields and consequently the sensitivity of the FEM results

to the accurate measurement of dimensions of the components, the results from the FEM

analysis could include some uncertainty. Also, there are some parameter variations such as

temperature changes which could affect the operation of the solenoid actuator. Although

FEM neglects the effects of the aforementioned uncertainty sources in the modeling of the

actuator, the obtained results will still be used for controller design purpose.

Considering uncertainty sources involved in the modeling of the actuator, experimental

approach is selected to compensate all the effects due to parameter uncertainties. Moreover,

this approach will be used to verify the models from the preceding approaches. In this

section, the experimental tests are conducted to investigate these variations and to achieve

a reliable model for the solenoid actuator.

In order to perform the experimental tests, essential components such as power supply,

real time computer, driver, and sensor are needed. The flowchart in Fig. 2.16 shows the

interactions between the different components in the experimental testbed.
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Figure 2.17 Experimental setup

The real time computer is a CompactRio R© from National Instruments. The user de-

termines what input voltage should be supplied to the actuator. The real time computer

task is to receive the desired voltage from the user and to generate the equivalent DC

command. The actuator is controlled via a Pulse Width Modulation (PWM) driver. The

driver is supplied by the DC power supply and receives DC commands from the real time

computer. Based on the command it receives, 25 kHz pulses with a specified duty cycle are

produced. The actuator is supplied by the pulses from the driver and its force is measured

using a force sensor with 1 N resolution. Fig. 2.17 shows the actual experimental setup.

As mentioned earlier, the main reason for developing this approach is that the FEM

analysis is not able to consider the effects of the parameter changes. For example, coil

resistance is influenced by variations in temperature that the actuator is operating at. The
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resistance is a linear function of the temperature variation as shown in the following

R = R0(1 + α(T − T0)) (2.28)

where α is the temperature coefficient of the resistance, R0 is the initial value of the coil

resistance at temperature T0, and R is the coil resistance at the new temperature T .

When the actuator is in operation, there are some losses which are the main reason

for temperature increase in the actuator and consequently in the coil. The losses are

composed of the copper loss, calculated by (2.29), and the iron loss which are decomposed

into hysteresis and anomalous loss and eddy current loss and are calculated by (2.30).

Pcopper = Ri2 (2.29)

Pcore = Khf
αBpk

β +Ke(sfBpk)2 (2.30)

where Kh and Ke are the hysteresis and eddy current coefficients, respectively. α is the

frequency exponent, β is the flux density exponent, s is the lamination thickness ratio, and

Bpk is the peak AC flux density. Since there is an interaction between the thermal and

magnetic behavior of the actuator, the rise in the actuator’s temperature would itself affect

the electromagnetic behavior of the actuator. This interaction is not taken into account in

the FEM approach.

To prove that the actuator’s temperature is influenced when it is under operation, the

current graph obtained in the experimental test is presented in Fig. 2.18.

In this graph, the air gap length is set to be 0.5 mm and the supplied voltage is 26.7

V . It can be seen that the actuator has been under operation around four seconds, and
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Figure 2.18 Temperature rise effects on the actuator current

the current is affected by the temperature rise in the actuator. During this short amount

of time, the current is decreased by 10%. During the same period of time, we observed an

average coil resistance increase of 12%. Given that the initial resistance of the coils before

the experiment was 3.7 Ω and that the temperature coefficient of copper is 0.0039 K−1,

using (2.28), we can calculate that the temperature rise of the coils is about 31◦C.

The experimental tests are performed for three main purposes,

1. Air gap spacer impact investigation

2. Dynamic modeling of the actuator

3. Static modeling of the actuator
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2.2.3.1 Impact of Air Gap Spacer

As it can be seen in Fig. 2.4, there is an air gap spacer in the actuator which is mainly

responsible for setting a gap between the ferromagnetic plunger and the ferromagnetic core.

As can be seen in Table 2.3, the air gap spacer is made of 300 series stainless steel and is

non-magnetic. Several experiments are performed to investigate if using this spacer would

have impacts on the amount of electromagnetic force generated. The tests are carried out

for the air gap lengths of 0.5 mm to 3.5 mm with increments of 1 mm. The supplied

voltage has been set to be 10, 20, and 26.7 V . In each experiment, the current and force

are measured with and without the air gap spacer. The current and force graphs are plotted

for each air gap length. Figs. 2.19–2.22 show the source current for each air gap length.

Similarly, Figs. 2.23–2.26 show the force measurements for each air gap length.

Examining the current graphs shows that the steady state values of the current is not
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Figure 2.19 Measured current of the actuator with and without the air gap
spacer - Air gap length 0.5 mm
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Figure 2.20 Measured current of the actuator with and without the air gap
spacer - Air gap length 1.5 mm
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Figure 2.21 Measured current of the actuator with and without the air gap
spacer - Air gap length 2.5 mm
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Figure 2.22 Measured current of the actuator with and without the air gap
spacer - Air gap length 3.5 mm
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Figure 2.23 Measured force of the actuator with and without the air gap
spacer - Air gap length 0.5 mm
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Figure 2.24 Measured force of the actuator with and without the air gap
spacer - Air gap length 1.5 mm
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Figure 2.25 Measured force of the actuator with and without the air gap
spacer - Air gap length 2.5 mm
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Figure 2.26 Measured force of the actuator with and without the air gap
spacer - Air gap length 3.5 mm

significantly affected by presence or lack of the spacer. The small amount of mismatch in

some cases is due to the measurement errors. These results are expected as in the steady

state the inductance of the actuator acts as a short circuit and the resistance of the coil is

the only factor in determining the current.

By examining the force graphs, we can see that the generated force is reduced when the

spacer is removed. Therefore, the force is more sensitive to the presence of the stainless

steel spacer. This is mainly because the total length of the air gap is shorter when the air

gap spacer is used and the total reluctance is reduced. Therefore, the presence of the air

gap spacer has increased the electromagnetic force in addition to creating a gap between

the two ferromagnetic material components.
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Figure 2.27 Measured output current for input Voltage of 26.7 Volts and 1
mm length of the main air gap

2.2.3.2 Solenoid Actuator Dynamic Modeling

The second main purpose of the experimental tests is analyzing the dynamic behavior

of the actuator. The experiments are designed for dynamic system identification of the

solenoid actuator. Since the step input covers a wide range of frequencies, the step response

will be analyzed for the system identification purpose [49]. Fig. 2.27 shows the measurement

noise and PWM effects on the current measurements. In this experiment, a step voltage of

26.7 V at time 0.02 s is applied to the actuator while the main air gap length is 1 mm.

In order to perform the dynamic modeling of the actuator different step voltages (10,

20, and 26.7 Volts) are produced to be applied to the system. To do this, the corresponding

DC commands (1.83, 3.64, and 5) are generated by the real time computer and given to the

driver. Then, the driver output would be the PWM voltage signals. To find the impact of

the main air gap length variations on the dynamics of the system, this test is performed for
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different lengths of the main air gap (from 0.5 mm to 1.5 mm in increments of 0.5 mm).

The output currents are measured for various input voltages and main air gap lengths. The

obtained results for the air gap lengths of 0.5 and 1.5 mm are identical to the results in

Figs. 2.19–2.20 when the spacer is retained. For the air gap lengths of 1 mm the current

figure is illustrated in Fig. 2.28.
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Figure 2.28 Measured current of the actuator - Air gap length 1 mm

2.2.3.3 Experimental Result System Identification

As mentioned earlier in Section 2.2.2, a first order low pass system can describe the

electric behavior of the actuator. Using the output current measurement results for each

step voltage and main air gap length, a first order system in the Laplace domain is estimated

for each case as follows in (2.31).

I

V
= k

s+ p
(2.31)
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The data from experimental results are divided into two sets; one set for the rising of the

current after the step voltage is applied and one set for the falling current when the step

voltage is going to zero. Three different step voltages are applied to the actuator for three

different positions of the plunger and the current is measured in both rising and falling

states. Therefore, we have 18 sets of data and system identification process is performed

on these sets of data. System identification results are presented in Table 2.4. In this Table

the values of k and p are coming from (2.31) where k = 6.69 ±%31 and p = 28.5 ±%40.

In the system identification of each set of data, instrument variable approach is used. The

associated number of iterations, fitting percentage, and final prediction error (FPE) for

each set of data is calculated and shown in the table.

The bode magnitude plot of each estimated system is shown in Fig. 2.29. The gray

region around the magnitude bode plot is the confidence region. This region indicates that

the bode plot of the estimated transfer function will fall within this region. The changes

in the magnitude bode plot of estimated systems shows that the temperature rise and

plunger displacements were the most significant factors in affecting the electric behavior of

the actuator.
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Table 2.4 Results of system identification on experimental data

Air gap (mm) Rising/Falling Voltage (V) Iter. # Syst. Fitting (%) FPE
0.5 Rising 10 1 4.93

s+20.58 92.36 0.0078
0.5 Falling 10 6 5.482

s+22.19 90.79 0.0074
0.5 Rising 20 1 6.517

s+27.09 89.01 0.051
0.5 Falling 20 4 7.29

s+30.68 90.66 0.045
0.5 Rising 26.7 1 6.749

s+28.68 91.83 0.056
0.5 Falling 26.7 4 7.25

s+31.68 94.4 0.028
1 Rising 10 1 5.81

s+25.35 92.51 0.0067
1 Falling 10 6 6.771

s+29.61 94.07 0.0044
1 Rising 20 1 5.826

s+25.28 92.07 0.031
1 Falling 20 5 7.237

s+31.92 94.21 0.015
1 Rising 26.7 1 7.685

s+34.03 93.63 0.033
1 Falling 26.7 5 8.755

s+39.89 96.54 0.01
1.5 Rising 10 1 6.034

s+24.9 91.97 0.008
1.5 Falling 10 5 6.395

s+26.41 92.36 0.008
1.5 Rising 20 1 6.952

s+28.65 92.32 0.028
1.5 Falling 20 4 6.738

s+28.044 90.96 0.032
1.5 Rising 26.7 1 6.799

s+28.48 92.53 0.047
1.5 Falling 26.7 4 7.197

s+29.61 94.94 0.024
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Figure 2.30 Experimental result

2.2.3.4 Solenoid Actuator Static Modeling

In the previous section, current-voltage transfer functions were estimated for different

operating conditions. In this section, the purpose of the experimental tests is to find the

algebraic relationship between the actuator’s main air gap, the input current to the solenoid,

and the resulting force. By having this relationship along with the current-voltage transfer

function, a reliable model for the actuator can be achieved.

The experimental tests in this section are carried out by applying a ramp voltage from

zero to the maximum (26.7 V ) to the solenoid actuator. The resulting current and force

are measured for different lengths of the main air gap (from 0.5 mm to 4 mm with steps

of 0.5 mm). Fig. 2.30 shows the results in the frame of a 3D graph of force vs. the air gap

length and current.

It can be seen from Fig. 2.30 that this actuator can generate significantly high forces
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when operated in the small enough air gaps. Also, it can be seen that in small air gaps, when

the current increases, the actuator refuses to generate the force with the same quadratic

order. This happens when the actuator is magnetically saturated and increasing current

does not lead to an increase in the amount of force with the same trend as before saturation.

As mentioned in Section 2.2.1, (2.23) is valid when the actuator is operated in the linear

region and the saturation effects are ignored. In that equation, the electromagnetic force is

proportional to the square of the current. In reality, as observed in Fig. 2.30, the actuator

may work in the saturation region especially when the current increases. Thus, in order to

have a more accurate model, we augment (2.23) by adding an i3 term to the numerator to

compensate for the saturation effects. Considering this, the resulting force vs. current and

air gap relationship would be in the form of (2.32).

Fe(x, i) = a

(b+ cx)2 (di2 + ei3) (2.32)

A three-dimensional shaded surface in the form of (2.32) is fitted to the experimental

results. The fitted 3D surface along with the experimental results (dotted lines) for various

main air gap lengths can be found in Fig. 2.31.

Table 2.5 Coefficients of the Fitted Equation

a b c d e

39.54 -3.998 -2.565 39.63 -3.858
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The coefficients of (2.32) for fitting the 3D surface seen in Fig. 2.31 are listed in Table 2.5

for the force expressed in Newtons, the current in Amperes, and the air gap in millimeters.

According to the above table, the coefficient d is much greater than e. It confirms that the

term di2 is the dominant term and ei3 can be taken into considerations when the input

current increases. Also, the negative sign of e constrains the quadratic current increase

and therefore models the impact of magnetic field saturation. The term ei3 reduces the

effective current of the solenoid especially in high currents, which represents the saturation

effects in the magnetic field.
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Chapter 3

Analysis and Control

As mentioned in the preceding chapters, it is necessary to control the actuator per-

formance to improve the quality of gear shifting in the transmission system of an EV.

This chapter is mainly concerned with analyzing the feasibility and design of a closed-loop

system to satisfy the stability and performance objectives.

In Chapter 2, the solenoid actuator has been modeled for different operating conditions.

We saw that the developed force model as a function of air gap length and current is

accurate. However, as Table 2.4 shows, the current-voltage model changes for different

values of the excitation voltage and the plunger position.

In this chapter, we first introduce a representative model of uncertainties involved in the

modeling of the actuator. This model is essential to control the performance of the actuator.

Later, using the model of uncertainties, we will be able to design a robust controller. After

implementation of the robust controller, the controller should be able to guarantee the

stability and the desired performance of the closed-loop system under realization of any of

the uncertainties in their pre-defined range. When the robust controller is designed, the

robust performance and stability of the closed-loop system for all the uncertain plants are
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verified and the results are presented.

3.1 Uncertainty Analysis

In this section, the uncertainty of the parameters which directly influence the system

dynamics are taken into account. In Chapter 2, we saw that the main parameters affecting

the performance of the actuator were the resistance of the coil and the main air gap length.

Resistance of the coil is sensitive to the temperature rise. Also, the errors involved in

measuring this parameter, would influence on its uncertainty level. The coil temperature

and consequently the coil resistance are affected by the actuator’s steady state operation

[50, 51]. As observed in Chapter 2, the resistor’s temperature rise was 31◦C when the

supplied voltage was 26.7 V and the actuator was under operation for about four seconds.

Assuming the initial temperature was at 25◦C, the coil temperature had reached to 56
◦C. Accordingly, the coil resistance has varied as much as 12% around its nominal value.

The nominal value of the resistance is R = 3.7 Ω which is the coil resistance at the room

temperature.

The air gap length is affected by the measurement errors, as well. Furthermore, it is

subject to change as a result of the ambient vibrations. Also, the elastic deformation of the

fixture elements would be another reason for the plunger’s position uncertainty. Since we

require the plunger to produce high forces for a better gear shifting, the nominal air gap

length should be selected accordingly. The maximum force corresponds to the maximum

driving voltage at the shortest air gap between the plunger and the core (see Fig. 2.4 and

Fig. 2.30). Considering this, the nominal air gap length is selected to be 1 mm. Also, the

main air gap length is considered to be uncertain as much as 50%.

In addition to the above mentioned uncertainty sources, there are some uncertainties
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associated with the deviation of each perturbed plant from its estimated transfer function

which are caused by the system identification process. In other words, as a result of system

identification of any data, no transfer function can absolutely be fitted for a set of data.

Fig. 2.15 and Fig. 2.29 shows that there is a confidence region around each bode plot

which guarantees that the transfer function of the data would certainly fall in that region.

Such uncertainties could influence the robustness of the controller as well.

The uncertainty model of the solenoid actuator can be obtained by considering the

parametric uncertainty involved in the dynamics of the system. Owing to the similar

behavior of the perturbed systems (uncertain systems) shown in Fig. 2.29, the uncertainty

is represented by considering the additive uncertainty model as expressed in (3.1).

Gp = G+Wa∆, ‖∆‖∞ < 1 (3.1)

where G and Gp are the nominal and perturbed systems, respectively. ∆ represents a

perturbation in the set of all norm-bounded stable additive uncertainties. Wa is the additive

uncertainty weighting function which represents the uncertainty model of present system.

The weighting function Wa must be selected in a way to cover all the perturbations from

the nominal plant, i.e. Gp −G, in the frequency domain.

In this study, the uncertain systems which include the parametric uncertainty, are the

ones derived from experimental tests. The nominal system, with no parametric uncertainty,

is derived from the FEM results. The obtained Wa in the Laplace domain is as follows

Wa = 3.518s+ 25.58
s2 + 56.22s+ 755.1 (3.2)
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Figure 3.1 Magnitude bode plot of additive weighting function (dashed line)
and perturbations of the nominal plant

The magnitude bode plot of perturbations of the uncertain systems from the nominal

system, (Gp − G), along with the additive weighting function Wa, the dashed line, are

illustrated in Fig. 3.1. As the figure shows, the weighting function, Wa, properly covers all

the perturbations. Moreover, Wa is selected conservatively by assuming a confidence gap

between the perturbations and the weighting function.

The achieved weighting function, Wa, representing all the possible uncertainties enables

us to proceed to design a closed-loop system capable of taking care of all perturbed plants.
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3.2 Controller Design

Designing a robust controller would provide not only the closed-loop robustness against

the uncertainties, but also a desirable performance for the closed-loop system.

3.2.1 Closed-loop system configuration

As was discussed in Section 2.2, the models representing the actuator’s behavior are de-

veloped using various approaches. According to (2.27) and (2.31), the relationship between

current and excitation voltage is a linear dynamic relationship which is represented by a

first order transfer function. Nevertheless, the relationship between the electromagnetic

force and the current is a nonlinear algebraic relationship and there is no dynamic between

the two signals, see equation 2.32. Considering the algebraic relationship between the force

and the current of the actuator, a new closed-loop control strategy is selected in this thesis

which is based on decomposing the actuator’s model into a nonlinear algebraic part and a

linear dynamic part. Such decomposition leads to the following subsystems

1. Nonlinear force to current algebraic subsystem: this subsystem is basically the inverse

of the relationship between force and current presented in (2.32). Such nonlinear

inverse relationship can be represented by a lookup table to provide the required

current for the desired known force and air gap. In other words, the force and

air gap are the inputs to the aforementioned lookup table where the output is the

corresponding current that can generate such a force.

2. Linear dynamic current to voltage subsystem: this subsystem is essentially using the

models derived from equations (2.27) and (2.31). The dynamic behavior of this part

of the system is the result of parameter p in (2.31), discussed in Chapter 2. The

purpose of the present closed-loop robust control approach is controlling the current
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Figure 3.2 Closed-loop system block diagram

of the actuator in a closed-loop configuration to satisfy the desired robustness and

performance objectives.

The above mentioned decomposition strategy transforms the closed-loop control prob-

lem from the nonlinear force control problem into a linear current control problem. Re-

moving the non-linearity from the control loop substantially reduces the complexity of the

closed-loop control system.

3.2.2 H∞ optimal control

Block diagram of the closed-loop system is shown in Fig. 3.2. The desired closed-loop

system output id (the corresponding current of the desired force Fd from the first sub-

system) is fed to the closed-loop system and the system’s outputs are F and i (controlled

force and current). The controller’s output is the required input voltage, u.

The performance objectives are defined by We and Wu where the performance weight-

ing function We is the weighting function on the error signal (e) to limit the error at

low frequencies. Wu is the weighting function on the control signal (u) constraining the

controller’s output. The closed-loop performance of the system is also measured by the
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Figure 3.3 Standard LFT diagram for H∞ optimal control design

normalized parameters ũ and ẽ. In Fig. 3.2, the actuator’s uncertainty is ∆a where

∆a = Wa∆, ‖∆‖∞ < 1 (3.3)

The robust controller is designed by solving an optimization problem using the H∞

optimal control method. This type of optimal control method is concerned with designing

a controller which can attenuate the disturbance and meet the desired performance. So,

H∞ control tries to decrease the sensitivity of a system to the disturbance [52]. To do so,

the closed-loop system is recast as a linear fractional transformation (LFT), as can be seen

in Fig. 3.3. In this figure, P is the generalized plant. Inspection of Fig. 3.2 and Fig. 3.3

shows that



z

ũ

ẽ

e


=



0 0 Wa

0 0 Wu

−We We −GWe

−1 1 −G




w

yd

u

 (3.4)

Once the closed-loop system is rearranged in the standard LFT form, the optimization
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problem is to find an appropriate stabilizing controller K,

min
Kstabilizing

‖Tzw‖∞ (3.5)

where Tzw is the closed-loop transfer matrix from the uncertainty output w to the uncer-

tainty input z (see Fig. 3.3). If P is written in the partitioned form

P =

P11,(3×2) P12,(3×1)

P21,(1×2) P22,(1×1)

 (3.6)

Then,

Tzw = P11 + P12K(I − P22K)−1P21 (3.7)

Using the small gain theorem [53], for all ∆ ∈ RH∞ and ‖∆‖∞ < 1, the closed-loop

system is well-posed and internally stable if and only if ‖Tzw‖∞ < 1. Hence, the controller

K should be found such that ‖Tzw‖∞ remains less than one.

Appropriate weighting functions We and Wu are chosen as follows

We = 250
5s+ 1 (3.8)

Wu = 0.0167(0.1s+ 1)
0.01s+ 1 (3.9)

Applying the H∞ optimal control method to our closed-loop system results in a con-

troller which provides the desirable performance as well as the robustness. For the selected

weighting functions, the following fifth order H∞ optimal controller is obtained, i.e. the
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controller that can achieve ‖Tzw‖∞ < 1.

K = 2.549× 104s4 + 4.76× 106s3 + 2.842× 108s2 + 6.891× 109s+ 5.881× 1010

s5 + 6030s4 + 7.374× 105s3 + 2.797× 107s2 + 3.327× 108s+ 6.543× 107 (3.10)

The corresponding ‖Tzw‖∞ is 0.3273 . To ensure that stability and performance ob-

jectives are met for all the nominal and perturbed plants, the magnitude bode plot of

sensitivity of all the plants along with the inverse of the error weighting function (W−1
e ) is

illustrated in Fig. 3.4.
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It can be observed that the bode plot of all the nominal and perturbed plants’ sensitiv-

ities are below the bode plot of W−1
e . This confirms that robust stability and performance

criteria are achieved. To further visualize whether the robust performance is satisfied, the

closed-loop system simulation results are presented in the next section.

3.3 Simulation results

In order to validate the performance of the controller in the closed-loop configuration,

time domain simulations are performed. The performance objectives are selected as follows:

• Settling time should be less than 0.1 seconds.

• The supply voltage should not exceed 33 Volts. The risk of damaging the actuator

will increase as the voltage crosses the 33 Volts limit.

• The output force should be 500 N . This force is sufficient for the gear shifting process.

To verify that the H∞ optimal controller provides desirable performance, the closed-loop

control system is simulated using the nominal system (from FEM approach) as well as the

perturbed systems (from the experimental approach). The desired input is a step function

with the final value of 500 N and the step time of 0.1 s. The simulation results are shown

in Figs. 3.5–3.7. It can be seen that for all system uncertainties, the closed-loop system

remains stable, which indicates the robust stability. Moreover, the voltage and force figures

confirm that the desirable performance objectives have been met which indicates the robust

performance.
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Figure 3.6 Closed-loop system voltage of nominal and perturbed systems



3 Analysis and Control 77

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

Time (s)

C
u
rr
en
t
(A

)

Figure 3.7 Closed-loop system current of nominal and perturbed systems
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Chapter 4

Conclusion and Future Work

4.1 Summary

Air pollution as an environmental concern has received a lot of attention in the recent

decades. ICEVs are one of the main contributors to the emission of green house gases to

the atmosphere. EVs are considered as an alternative to the conventional ICEVs. Various

types of transmission systems can modulate the flow of energy from the electric motor to the

wheels. The transmission systems have their own advantages and disadvantages. AMT is a

type of transmission system which is designed to benefit from the advantages of both manual

and automatic transmission systems. Gear shifting in this type of transmission is executed

using an actuator. Several types of actuators have been deployed so far to perform gear

shifting. Solenoid actuator is considered as an alternative to the conventional hydraulic

and electrohydraulic actuators currently being employed in industry. The feasibility of

replacing other type of actuators with solenoid actuators in AMTs has been analyzed in

this dissertation.

Due to the electromagnetic nature of solenoid actuators, it is not straight forward to
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develop a model which describes the behavior of this type of actuator. Maxwell’s equations

which can describe the electric and magnetic interactions in an electromagnetic device are

hard to solve. To have a reliable model of the actuator, several approaches have been

introduced in this study. Assuming that the ferromagnetic materials in the actuator do

not saturate, a simplified theoretical approach is described. The developed model is not

accurate since saturation effects are not considered. The second approach to the model-

ing of the actuator is based on finite element analysis. FEM is able to take into account

the saturation effects. However, there are some parameter variations that FEM does not

consider in its calculations. The complementary approach to the modeling is the experi-

mental approach using an experimental setup built to display parameter variation impacts

on the actuator’s electromagnetic behavior. Using the experimental data collected during

the tests, several models of the actuator under various operating conditions are obtained.

To improve the gear shifting quality in an AMT and achieve a smooth shifting experi-

ence, the force of the actuator should be controlled in a closed-loop system. Considering

the parameter variations in the modeling of the actuator, a robust optimal controller is de-

signed for this type of actuator. The modeling results obtained from FEM and experimental

approaches were applied for control purposes. The performance of the robust controller is

validated by simulating the closed-loop control of the obtained models from the modeling

results. The results show that the controller has achieved the desired performance and

robustness.

4.2 Conclusion

The following points are concluded from the results of this work:

a) Due to high density force, low cost, and compact design that solenoid actuators offer,
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they are a reasonable option to replace the hydraulic and electro-hydraulic actuators in

vehicles equipped with AMT.

b) Since a high amount of force during a short time is desired for the gear shifting in AMT

systems, solenoid actuators are a suitable choice when operated in shorter duty cycles.

Otherwise, it would damage the actuator’s windings.

c) Simplified theoretical equations are derived assuming that the actuator is working in

the linear region. Therefore, this approach is not suitable for modeling the actuators

working in the saturation region.

d) FEM is a powerful tool in considering not only the geometric and material non-linearities,

but also the magnetic field saturation effects. FEM is an alternative to the theoretical

approach.

e) FEM is not capable of analyzing the impacts of changes in the key parameters. The

solenoid actuator model is found to be sensitive to the variations of parameters such as

the temperature and the plunger’s position. Experimental approach is the complemen-

tary approach selected for modeling.

f) Existence of the air gap spacer had no significant impact on the amount of current in

the steady state operation, even though the force of the actuator was affected by the

removal of the spacer. That was mainly due to the increase in the air gap length with

the spacer removal.

g) Due to the sources of uncertainties involved in the modeling of the actuator, a robust

optimal controller is the best option for controlling the actuator.

h) Transferring the force control problem to the current control problem has removed the

nonlinearities from the closed loop system. This is accomplished by a look-up table

finding the corresponding current for a desired force at a specified air gap length.
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4.3 Future work

The work presented in this thesis can be further expanded as follows:

a) In this study, the usefulness of the closed-loop force control of the actuator in obtaining

the desired stability and performance is investigated using simulation. Experimental

closed-loop control would be a valuable future work. This will assure the automotive

industry that the application of solenoid actuator in the gear shifting of the AMT is

indeed beneficial in comparison to the other actuators.

b) In order to improve the gear shifting quality and to have smoother gear shifting ex-

perience, the simultaneous control of force and speed would be beneficial in terms of

improving the gear shifting quality. The safe seating control will increase the life time

of the actuator and will enhance the comfort of the passengers.

c) In order to include the temperature variations in the FEM modeling of the actuator,

solving the electromagnetic and thermal fields simultaneously is recommended. This

will provide us with a precise FEM model of the actuator.
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