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ABSTRACT

Moore’s Law states that computational power will roughlyidle every 18 months.
To the semiconductor designer, this means the never-ectaltenge of bringing in-
creasingly larger and more complex ICs (Integrated Circtotsharket. It is well known
that the principle bottleneck in circuit design is simudati Uniprocessor simulators may
not be able to keep up with increased demands on them for pettdsand memory.

This thesis has three main contributions.

The first contribution is a distributed Verilog simulatiooveonment which can
be executed on a cluster of workstations using a messag@pdibrary such as MPI
(Message Passing Interface). It employs OOCTW as the synizatmn backend and
takes advantage of the open source code of Icarus Verilagiaion. It is designed to
be flexible for future extension and optimization. To our\kfexige, DVS is the first
distributed Verilog simulator.

The second contribution is event reconstruction, a teclewghich reduces the
overhead caused by event saving. As the name implies, eamstruction reconstructs
input events and anti-events from the differences betwdmtant states, and does not
save input events in the event queue. Memory consumptioeeamltion time of event
reconstruction are compared to the results obtained bymiyneheckpointing revealing
that event reconstruction yields a significant reductiomamory utilization and leads to
a faster simulation.

The third contribution is a multiway design-driven itevatpartitioning algorithm for
Verilog based on module instances. We do this in order toaakantage of the design

hierarchy information contained in the modules and thestances. A Verilog instance
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is represented by one vertex in a circuit hypergraph. Thiexean be flattened into
multiple vertices in the event that an adequate load balsnoet achieved by instance
based partitioning. In this case the algorithm flattens dingdst instance and moves gates
between the partitions in order to improve the load balambe.algorithm produces a 4.5
fold reduction in cutsize compared to the hmetis [6] pamiing algorithm. The reduction
in cut size and the preservation of locality in the desigmdrighy lead to a speedup of

1.91 on four machines compared to the sequential simulation
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ABREGE

La Loi de Moore stipule que la puissance des processeurdedapproximativement
tous les 18 mois. Pour le constructeur de semi-conducteeiessquivauta un constant
probleme d’apporter des Cl (Circuits Inté&g) de plus en plus larges et complexes sur
le marcle. Il est bien connu que le gouletatfanglement dans la conception de circuits
réside dans la simulation. Les simulatearsimple processeur peuvent ne pas suivre
les demandes croissantes pour plus de vitesse eédwire. Cette tbse pesente un
environnement de simulation Verilog avec plusieurs tegpies d’optimization. Verilog
est une langue de conception digitale couramment @éli€)ne simulation distrilae
Verilog peutétre execuge sur un groupe de postes de travail en utilisant une léorari
passant des messages telle que IPM (Interface Passant dsadés).

Nous cecrivons la reconstruction eééeénements, une technique gaduit I'en-&te
cau® par une sauvegardeagénements, et comparons sa consommation &maoire et
son temps d’e&cution avec lesasultats obtenus par checkpointing dynamique. Comme
son nom I'indique, la reconstruction&lenements reconstruit la saisi@®&nements et
d’anti-evenements partir de la difference entre lésats adjacents, et ne sauvegarde pas
la saisie devenements dans la queue @&nements.

Nous proposons un algorythme parti@medondana plusieurs voies et orieat
vers le design pour Verilog basur des instances de modules. Nous faisons cela afin
de profiter de I'information lararchique de conception contenue dans les modules
et leurs instances. Une instance Verilog est@&spnée par un vertex dans un circuit
hypergraphique. Ce vertex peut ebéeag en plusieurs vertexs dans le casume charge

acequate n’est pas produite par une instancé®asir des partitions. Dans ce cas |
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I'algorythmeécrase la plus grosse instance @bldce les portes entre les partitions afin
d’améliorer la charge. Nous psentons nos resultats en utilisant cet algorythme sur un

circuit pos&dant un million de portesédrit sur Verilog.
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CHAPTER 1

Introduction

Moore’s Law states that computational power will roughlyublz every 18
months. To the semiconductor designer, this means a nadangechallenge in
bringing increasingly larger and more complex IC(Integia@rcuit) to market.

The complexity and size of digital systems described byldgrcontinues to grow.
The latest Intel dual-core processor has more than 400omithansistors while the
Intel quad-processor has more than 800 million transistbing introduction of the
system-on-chip(SoC), which is intended for use in embedgstéms and contains
CPUs, memory and analog circuitry on a single chip has onlyeskto exacerbate this
problem.

Post-project analysis shows that design and verificaticowt for the majority of
the chip development costs. According to a survey of 545 A&iGineers conducted
by EETimes (www.eetimes.com), simulation/verificatiokes 51% of the design effort
on average, as shown in figure 1-1.

Sequential Verilog simulators, or even specialized hardveacelerators, cannot
keep up with this pace, and has become a bottleneck of thgrdpsbcess. To

accommodate the growing need for increased memory demandslhas the need



Simulation/design verification 51%

Place & Route [ 32%
RTL design -ﬁ 32%
Post-layout optimization - [ 260
Static Timing analysis - | 16¢0

Synthesis [ 15%

Delay calculation |13%

0% 10% 20% 30% 40% 50% 60%

Figure 1-1: Bottleneck in the design cycle

for decreased simulation time, it is necessary to make uskstrfbuted and parallel
computer systems[7]. Networks of workstations provide st-affective environment
for distributed simulation. Time Warp[8] is an appealingheique for parallel and
distributed logic simulation of VLSI circuitry because #rt potentially uncover higher
degrees of parallelism.

Verilog[9] is a widely used language for digital circuit dgs. This thesis presents
a description of our research to date on a distributed \@msionulation framework and

describes the next steps in our research program.



1.1 Motivation of Distributed Verilog Simulation

The rewards for successfully developing a distributedvgrsimulator are
substantial. Distributed simulation gives us the abildaystmulate much larger circuits
than is now possible on one workstation, and to do so in ae&ffsttive manner if we
make use of a cluster of workstations as a simulation pletfaie will also have the
ability to execute simulations much faster than is possiblpresent, thereby decreasing
the time to design a circuit. Moreover, a distributed Vegikimulation is able to
overcome the memory bottleneck for very large logic simaret. With the advent of
SoCs and the ever increasing number of transistors which egratked on a chip,
distributed simulation can make an important contributiorVLSI design automation.
These contributions include:

e Reduced simulation time
By dividing a large simulation computation into many sub-gomations that can
execute concurrently one can reduce the execution time kg apfactor equal to
the number of processors that are used. This may be impaitapty because
the simulation takes a long time to execute, e.g., the simounlaf millions gates
could take days to finish the simulation in order to verify twegrectness of the
logic design.

e Overcome the physical limit of memory for 32bit computers
As the ASIC design becomes more complex, the memory reqaimefor gate-
level simulation can easily exceeds the 4G bytes limits dfit3@mputers and
make the huge investment on the 32bit computing farms in A&d€ign industry

meaningless. Distributed simulation could take advantdgbese 32bit machines



and divide a whole design simulation into several partgjcgach of which could

be able to run in 4G memory limit.

1.2 Objectives of Distributed Verilog Simulation

We have four major objectives for our research in distridierilog simulation.
1. To construct a flexible platform which can make use of opmiree simulators
and allow the addition of new algorithms for distributed &y simulation.

2. To investigate significant issues in distributed Verigagulation.
3. To develop optimization techniques for optimistic siatidns, e.g. memory
consumption optimization.

4. To develop appropriate partitioning algorithms.

1.3 Overview of the Thesis

In chapter 2, we briefly introduce logic simulation, circsimulation, hardware
design methodologies, hardware design description laggyaad the discrete simulation
algorithm employed in the Verilog language.

The chapter 3 is devoted to the introduction of PDES (PdrBicrete Event
Simulation). The two major categories of synchronizatitqoathm are mentioned,
conservative algorithm and optimistic algorithm, also\wnaas Time Warp, are
described. The state of art of the Time Warp optimizatioroadgm is described at the
end of this chapter.

The chapter 4 contains the description of DVS, the DistatdWerilog Simulator
which we developed in Distributed Simulation Lab of McGilhiversity. The detailed

implementation of DVS is explained in this chapter and theigiinary experiment
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results are also presented. From the preliminary expetimesalt, we locate the
significant issues inside the simulator and proposes oumdgaition techniques in the
next chapters.

The chapter 5 proposes event reconstruction as a memorgti@atechniques for
DVS. Historically, most of the memory reduction techniquagets memory reduction
for the state queue. Our event reconstruction technigget&event queue. This
decision is based on our preliminary experiment result tvhevealed that the event
gueue actually consumes more memory than the state queustributed Verilog
simulation.

The chapter 6 proposes a multi-way design driven iterataréitpning algorithms
for distributed Verilog simulation, which could obtain arsilation speedup of 1.91
on 4 machines by taking advantages of design hierarchynr&ton contained in the
modules and their instances. A Verilog instance is repteselny one vertex in the
circuit hypergraph, which could be flattened into multipkrtices in the event that an
adequate load balance is not achieved. In this case théigrartg algorithm flattens
the largest vertex and move vertices between the partitmmsprove the load balance.

The last chapter 7 is the conclusion of the thesis along vatleral suggestions for

further research.



CHAPTER 2

Background

2.1 A brief history of the semiconductor electronic design
automation

We give a brief introduction of the ASIC design history in tinesis. The readers
should refer to [10] for detail information.

In the infancy of integrated circuit design in the 1960sditianal prototyping and
bread-boarding is dominant while software simulation gedly became accepted by
the designers of integrated circuits.

In the 1970s and 1980s, the ASIC design industry gradualbpisdstandard cells
as the building block of the integrated circuits. This akothie designers to design their
chips in much shorter time periods.

In the 1990s, the logic synthesis tool became the milestdnieecASIC design
history. For the first time, the logic synthesis tool abgsdbe integrated circuits to
higher level and hides the physics of the circuits. Thusgdurces the design time
significantly. The ASIC circuits and its application incsea exponentially in this time.

In the 2000s, the ASIC design challenge is the even incrgasaimplexities

characterized by Moore’s Law: integrated circuits comitye@oubles approximately

6



every 18 months. This imposes difficulty for the verificatminthe ASIC design since

the simulation for the ASIC circuit becomes the bottlenetkhe ASIC design.

2.2 Modern ASIC design flow

Figure 2—1 shows the steps in the modern ASIC design flow.

Requirement Analysis

!

> Logic Design
* y
RTL Simulation Layout
* y
> Synthesis Postlayout gate-level
* simulation
Prelayout gate-level Y

simulation

Tapeout
L

Figure 2—1: ASIC design flowchart

e Requirement analysis
The ASIC design starts with understanding of the requiredtions of the ASIC.
e Logic design
The design engineer constructs a description of an ASICyusihardware
description language such as VHDL[11] or Verilog[9]. Thi®pess is analogous
to writing a computer program in a high-level programminggaage. This is

usually called the RTL (Register transfer level) design.



e RTL simulation
Functional correctness is verified by simulation. The commay to verify
logical correctness is to feed the input vectors to the aligircuit and compare
the simulation result with the expected golden data. If fheukation result failed
to match the golden data, we should know that something isgvrath the
digital circuit design. Golden data is usually generatedhigyemulation program
written in another programming language such as C language.

e Synthesis
A logic synthesis tool, such as Design Compiler[12], synittessthe RTL design
into a netlist of standard cells, such as 2 input NOR gatepRtiNAND gate,
inverters, etc.

e Pre-layout gate-level simulation
The pre-layout gate-level simulation[13] is to the verifetcorrectness of
gate-level netlist generated by the synthesis tool.

e Layout
The gate-level netlist is processed by a placement toolwplaces the standard
cells onto a region representing the final ASIC. It attemptBnit a placement of
the standard cells based on the specified constraints sumfea®f the chip, wire
length between blocks, etc.
The routing tool takes the physical placement of the stahdalls and uses the
netlist to create the electrical connections between them.
The final output of place and routing is a set of photo-maslkbkmg a semicon-

ductor fabrication to produce physical ICs.



Figure 2—-2 shows photograph of Power4 processor by IBM afterepand route,

courtesy of IBM from http://www.research.ibm.com/jourinéi461/warnol.jpg.

POWER4 chip photograph showing the principal functional units
in the microprocessor core and in the memory subsystent,

Figure 2—2: Photograph of Power4 processor by IBM

e Post-layout gate-level simulation



After the layout, the netlist is verified by running simutatiagain to get rid of

the potential interconnection or timing problem introddid®y layout.

2.3 The hardware description language

"In electronics, a hardware description language or HDLng Rnguage from a
class of computer languages for formal description of ebeat circuits. It can describe
the circuit’s operation, its design and organization, asld to verify its operation by
means of simulation.”[14]

Contrary to the software programming language, an HDL iretuslyntax elements
to express time, concurrency and connectivity which areptiv@ary attributes of
hardware.

A simulator is used to simulate the hardware behaviour destiby the hardware
description language. The simulator could employ eithetinoous simulation to
simulate the analog circuit or discrete event simulatiositoulate the digital circuit, as
discussed in the section 2.4.

The two most widely-used hardware description languaged/&DL[11] and
Verilog[9]. Since the thesis is about distributed Verilogslation so we only focus
on the introduction of Verilog language. The interestedieza could read [11] about

VHDL language for detail.

2.3.1 \Verilog

The Verilog Hardware Description Language is standardind&EE standard

#1364-1995. It supports both a behavioral description asttuetural description of a
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[lstructural description
Modul e bi naryToESeg;
wire eSeg, pl, p2, p3, p4;
reg A, B, C D

nand #1
gl(pl, C -D),
gz(pz’ Al H
g3(p3, ~b, ~D),
g4(p4, A C

p4 endnodul e

/I behavi oral description
Modul e bi nar yToESeg;
wire eSeg, pl, p2, p3, p4;
reg A, B, C D

c~-DAB -B~-DAC al ways @A or B or Cor D)
begin
eSeg = 1;
i f(~A&D) eSeg = 0;
if (~A&B&~C) eSeg
if (~B&-C&D) eSeg
end
endnodul e

= 0;
:O,

Figure 2-3: Structural and behavioral description of il

digital system. Figure 2—3 shows an example of how Verilogcdbes an IC design[9].
The figure contains part of a binary to seven segment dispiagrd

The structural description shows the explicit structurehef circuit and contains
all logic gates used and their interconnections. The behalvdescription describes
the input and output behavior of the circuit. Through thedagynthesis tool, both
structural description and behavioral description couladpce the same circuit.
In Figure 2-3, the right top shows the structural descniptidthe binary to seven
segment display driver circuit while the right bottom shaWws behavioral description.

A behavioral description of a flip-flop is shown in figure 2—4.

Verilog describes a digital system as a set of modules. Eawduta has an

interface to other modules (referred to as port(s)) andessts a logical unit in a
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module tff(input t, input clk, output q); SET
always @(posedge clk) S Q

begin
if (t==1'b1) g<=~q;
else g<=q; >
end —

dmodul
endmodule RCLRQ

Figure 2—4: Behavioral description of a flip-flop in Verilog

structural description or in a behavioral description. Tinedules are typically arranged
in a hierarchical manner. The hierarchy can be made use drtitipning in an effort
to minimize inter-processor communication.

Verilog is a concurrent language. A digital system can becemed of as a set
of concurrent processes contained in initial blocks, abvMalpcks and continuous
assignments. Wait and event control statements can be assth¢hronize the
concurrent processes. The existence of concurrent pex@sd/erilog makes it
suitable for distributed simulation[15]. A comprehensdascription of Verilog can be
found in [9].

A Verilog design consists of a hierarchy of modules. Modwes defined with
a set of input, output, and bidirectional ports. Internadiynodule contains a list of
wires and registers. Concurrent and sequential statemefitsedhe behaviour of the
module by defining the relationships between the ports,sy@med registers. Sequential
statements are placed inside a begin/end block and exeicussdjuential order within
the block. But all concurrent statements and all begin/endKsl in the design are
executed in parallel. A module can also contain one or mastites of another

module to define sub-behavior.
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Hierarchy is an important feature of Verilog. With the usedekign hierarchy
information, the partitioning algorithm do not have to geaepento the lowest level
of the circuit if the load balance constraint could be met.rétwer, because of the
encapsulation property of the module, the circuit graphngpsfied so the partitioning
efficiency could be improved. Our multiway design driventp@ning algorithm takes
advantage of the module and hierarchy in Verilog and yieldgyaificant reduction
in cutsize compared to other partitioning algorithms wogkon the pure flat netlist.
Details of the hierarchy feature of Verilog are describedention 6.5.

A subset of statements in the language is synthesizablbe Ifriodules in a design
contain only synthesizable statements, the logic syrgdhesi can be used to synthesize
the design into a netlist that describes the the logic gatdslaeir connections. The

netlist may then be transformed into the photo-mask for thal fiabrication.

2.4 Continuous and discrete event simulation

"Simulation[16] is the representation of operations artdkaites of one system
through the medium of another. The attribute set of the sattarl model at any given
instant is referred to as the simulation state. The simarastate actually consists of all
the states at a particular time.”

There are two main categories of simulation: discrete satmr[17] and continu-
ous simulation[18].

In a continuous simulation[18], the simulation state cleangontinuously with
simulation time. The simulation state is characterized iffer@ntial equations which
describe their behaviour as a function of various parareetesr example, the circuit

described at the transistor, resistor and capacitor lemaldcbe simulated by the
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continuous simulator. The behaviour of all these electr@omponents are governed by
the mathematical formula.

Figure 2-5 shows an example of circuit while figure 2—6 digpldne result
of continuous circuit simulation. The simulation is donebipice circuit analysis

software[19].

TPv1

@

Linear

R1

Figure 2-5: Analog circuit

Unfortunately the mathematical equations employed by dilmoous simulation

could be computationally intensive. Therefore, contirsisimulation may be slow and
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Figure 2—6: Analog simulation of the circuit

is only useful when simulating circuits which are descrila¢ low abstract level such
as analog level simulation[20].

In order to overcome the poor simulation speed of the coatistsimulation, the
discrete simulation is introduced, which is usually fastéile providing a reasonably
accurate approximation of a circuit system’s behaviour.

Discrete simulation is divided into two subtypes, timevdn discrete simulation

and event-driven discrete simulation.
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Time-driven discrete simulation uses uniform time incraiseor ticks to advance
simulation. Smaller time ticks could produce better piiecisvhile slowing down the
simulation at the same time. At each simulation tick, thelattes of the models need
to be evaluated. For example, in simulation of the trajgctira projectile, the position
and velocity are calculated in each tick by using the foragsg upon the projectile.

Discrete event simulation (DVES) [17] describes a simalagystem in which
only events can cause the simulation state to change. Art eaeses a change of the
simulation state. In between events, the state of the stronldoes not change. This
allows a more efficient simulation than a continuous simotafor time-driven discrete
simulation) because the system state is only evaluatedeaes$lt of an event being
executed.

Event scheduling normally uses two data structures. Onleeistate, while the
other is the event queue, which is ordered by the timestarhpgemts. New events are
inserted at the bottom of the event queue. An event schegalgorithm operates by
removing events from the event queue and processing theilrthesimulation finish
time is reached or the event queue is empty. As a consequémrecessing an event,
new events can be scheduled and inserted into the event.qlleed¢imestamp of the
processed event is used to advance the simulation time. iffhdasion algorithm is

shown in figure 2—7.

2.5 Logic Simulation

We start the introduction of Verilog simulation from logicrailation of digital

circuits since Verilog simulation is actually one type ofjilo simulation.
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Initialization

simulation time
limit reached?

End of simulation

Event queue is
empty?

Remove the head of
event queue

!

Process the current
event

!

Update simulation
state and schedule
new events

Y

Advance simulation
time

Figure 2—7: Discrete event simulation algorithm

Logic simulators are in widespread use as tools used to zaahe behavior of
digital circuits. Logic simulators are used in hardwareigiewerification to verify
logical correctness and to perform simple timing analy$ikgic circuits.

Logic simulators are also used for fault analysis[9]. Thawation could dump
the waveform which logs the activity of the related signalghe digital circuits. With
the waveform, the ASIC designers could locate the bug in theadl design from

simulation without any electronic instrument such as @ssilope and logic analyzer.
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value | Purpose Value Encoding
Forcing zero 00

Forcing one 01

Forcing unknown 10

High impedance 11

Table 2-1: The logic state and its purpose

N X~ O

2.5.1 The Logic Simulation Model

The basic components of a logic circuit are predictablydagates -AND, NAND,
NOR and OR gates. The circuit is described by a graph or a bygyen in which
the nodes represent gates and the links represent wiresaddes are modelled by
software processes, referred to as logical processes {bRI$g distributed simulation
literature. Incoming channels of an LP correspond to thénfést of a logic gate while
the outgoing channels correspond to its fanout list.

The logic simulation model uses a finite set of values to igethe type of
signal propagating throughout the circuit. The 4 value$ #ghsignal may have are
presented in table 2—-1.

A signal change is modelled as an update event containingestamp, source
and destination gates, an identification and a value whicresponds to the new
value of the wire. When an LP receives an update event, it telsdal clock to the
the timestamp of the event, evaluates its output and sceedié resulting output

change(s) as update events for its fanout list.

2.5.2 Discrete Event Logic Simulation

Figure 2—8 represents a simple logic circuit comprised #dlgates. The circuit

has three inputs (A, B and C), one output (F) and two interneésv{D and E).
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a. Initial Val ues

F=1

c. Values at tinme 101 d. Values tinme 102

Figure 2—8: Logic simulation of a digital circuit

Assume that each gate has a unit delay, i.e. the simulatieanad time at each gate
is one time unit for each event. Initially, the gates havevaiees shown in Figure
2-8.a. An event occurs on wire B at time 100, changing it froto 0 as shown in
Figure 2—-8.b. At time 100, gate g1 is evaluated to see if th@ehange on its output
D. Since D will change from 1 to 0O, this event is scheduled mfiliture.

At time 101, gate gl's output D will be set to O as indicated iguiFe 2—8.c and

this new value will be propagated to the gates on gl’'s farg®it,Then g3 is evaluated
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to see if there will be an output change on F. As can be seerguré&i2—8.d, F will

change from 1 to O.

2.6 Event-driven Verilog simulation

In Verilog, before simulation begins, the design hierarchfirst elaborated . This
means all the pieces of the Verilog code (modules/prinmstinstances) are put together.
The elaboration is similar to linking of the C language. Thauwation cycle is then
continuously repeated during which events are processgédignals are updated. A
Verilog simulation cycle consists of the steps as shown iaré2—9. The pseudo code
of Verilog simulation comes from the Verilog language refese manual[21]. The
interested readers should refer [21] for the details.

Time in Verilog simulator has two dimensions, the simulatand delta cycle.
Delta cycle is used to distinguish those event with the samestamp.

In Verilog it is possible to assign a delay mechanism to argasgent statement.
Transport delay is characteristic of wires and transmis8i@es. Inertial delay models
the real behavior of logic gates. The timestamp of new sdeddevents for a node is

the current simulation time plus the delay of the node.
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while (there are events) {
if (no active events) {
if (there are inactive events) {
activate all inactive events;

else if (there are nonblocking assign update events) {
activate all nonblocking assign update events;
} else if (there are monitor events) {
activate all monitor events;
} else {
advance T to the next event time;
activate all inactive events for time T,

}
}

E = any active event;

if (E is an update event) {
update the modified object;
add evaluation events for sensitive processes to event queue;

else { /* shall be an evaluation event */
evaluate the process;

add update events to the event queue;
}
}

Figure 2-9: Verilog simulation pseudo code
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CHAPTER 3

Parallel/Distributed logic simulation

3.1 PDES: Parallel/Distributed discrete event simulation

Parallel and distributed simulations are widely used tcedpp large scale
simulation applications. They differ in the computing pdain used. A parallel
simulation runs on multiprocessor machines in which comigation is fast and
the memory is usually shared between processors. On theacgrd distributed
simulation runs on separated computer systems connectbchatiwork in which
the communication overhead is significantly larger thantipndcessor and each
computer has its own memory. In the thesis, our computintigsta is computer
systems connected with Gigabit network so we call our sitrariasystem as distributed
simulation system.

In general, parallel/distributed simulation consist ajit@l processes(LPs) that
represent physical processes of the modelled system. BRdinhulating a portion of
the modelled system generates, sends and receives evemtd foom each other. Thus
each LP handles both events generated locally and evegdgeted by other processes.
An LP has an input queue in which event are stored in incrgasimmestamp order. As

in sequential simulation, events are processed in strictyeasing timestamp order.
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An LP stores its state and maintains the local virtual timéT(Lwhich is the
current simulation time of the LP. The overview of a pardlisitributed system is

depicted in figure 3—1.

Communication
Channel

Communication
Channel

Communication
Channel

Figure 3—1: Overview of the parallel/distributed system

Causality is the central issue of the distributed simulationorder to guarantee
the correctness of the distributed simulation, it is ne@ssto preserve the event
causalities across LPs. Lamport[22] suggested the nofienlagical clock which is a
monotonically increasing counter in order to maintain editis Each logical process

maintains its own logical clock whose value is used to adang@siamp to the events
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sent by the process. Lamport also introduced the happesfedebrelation. It is known
as causal ordering which is based on the following two sinnmigitive points.
e If two events occur in the same process, they should occurarotder in which
the process observes them
e Whenever a message is sent between processes, the evendiofyste message
always occurs before the event of receiving the message
With the concept of the logical clock and the logical timeygibal time can be
abstracted since simulation could be guaranteed correetusality order is maintained.
According to how the causality constraint is dealt with,réhare two major categories
of parallel and distributed simulation protocols, the ecmative and optimistic
approaches. The conservative approaches process oné ¢lkiests that are guaranteed
unable to affect other LPs while optimistic algorithms allepeculation and recover

from any resulting causality violations.

3.2 Conservative Synchronization

The algorithms described in [23] were perhaps the first syorghation for
parallel/distributed simulation. The conservative alions are distinguished by their
blocking behavior when there are no safe events to proceds.esents are those
events such that the simulator is guaranteed not to receisvent with a smaller
timestamp. Conservative LPs can execute safe events iragingetimestamp order but
must block when there is no safe events.

The advantage of this algorithm is that it is easy to implenaad the overhead
is very low. However, the blocking behavior somehow limhie toncurrency of the

parallel/distributed simulation. Another drawback of #dgorithm is that deadlock
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may occur if a collection of LPs are all waiting for a messagleus, conservative
algorithms require a method to either avoid or to detect aedkdeadlock.

The most common approach to avoid deadlock is the use themadsage[23].
Each time an LP sends a message to another, it also sendd angsdage” to all other
LPs with the same timestamp plus "lookahead”.

Lookahead is critical to the performance of the distributgdulation with
conservative synchronization. Fujimoto [24] defines |dead as follows:

"Lookahead characterized the ability of a process to ptddicre messages that
it will send based on knowledge of messages it has alreadyvext In particular, if a
process has received all messages with timestamp t or ledssam predict all future
messages with timestamp t+lh or less, we say the lookahet girocess is |h”

If the lookahead is poor, the event population will be deseglain the simulation
thus the parallelism is reduced since the event processidglayed and few events are
sent out.

The null message is used to notify the receiving LP that it mok receive any
messages earlier than the null message from the source L&d Basthe knowledge of
LVT plus lookahead from every neighboring LPs, the LP coudtiedmine which events
are safe to execute.

Null message can create a huge communication overheadi@bpe a dis-
tributed simulation environment. There have been manyrgate to reduce the number
of null messages. In [25], the approach is to only send nusages upon request.
Whenever an LP is blocking, it sends a request message toigishaoeing LPs and
then waits for a responding null message which will unbldck he authors of [26]

proposed another approach in which the timestamp and leaihtialues are stored
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separately within null messages. The lookahead value isgkat to other LPs in the
piggyback mode. Both normal messages and null message cauldtbe lookahead
value and relay it to the other LPs.

Deadlock detection algorithm[27] deadlock breaking athon[28] makes use of
knot detection. A knot is defined as a subgraph such that exaatg in the subgraph
can be reached from every other node in the subgraph and reoquside the
subgraph is reachable. A knot in the subgraph implies a dekdh distributed
simulation system.

Deadlock breaking algorithm[28] forces the event with thealest timestamp in
all LPs inside the deadlock knot.

In order to overcome the excessive amount of performangeadeang communica-
tion caused by deadlock prevention algorithms[27, 28]] #®posed a protocol that
attempts to balance the need for deadlock prevention sgnation information with
the cost of providing the information. The author [29] clainthat the protocol is not

only more efficient but also can ensure time accuracy.

3.3 Optimistic Synchronization algorithm: Time Warp

The most widely known optimistic algorithm is Time Warp. 3&nto conser-
vative algorithms, the parallel/distributed system mitilg Time Warp consists of LPs
which communicate by messages. Each LP advances its sionutattil it detects a
violation in local causality. LPs detect violations in cality when they receive a mes-
sage with a smaller timestamp than their LVT. The message th@ smaller timestamp
is referred to as a straggler. In Time Warp, LPs perform daak operation in which

the LP reverts its state to the most recent LVT which had aecbrcausality and then
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resumes the simulation from that point. In order to rollb&zla previous state, the
states of the LP need to be saved periodically (one pogsgisliafter each event). This
is referred to as checkpointing.

Time Warp also needs to save all of its output messages. Whelibaak
happens, the LP sends out "anti-messages” corresponditig toutput messages which
were previously sent. The anti-messages are used to atrilfle output messages at
their destination LPs. Due to the overhead of state savidgoartput event queue, Time
Warp requires a good deal of memory.

The following diagram 3-2 illustrates the components ofrausation system with

Time Warp.
Normal outgoing
Normal incoming message
message Processed events E] unprocessed events
h lom | . _> B il
& Input list—» 40 —» 50 ——» 60 —» 70 —»| 80 —»| 90 £

Straggler message

S U swenfl7 /07— i

Anti message 1 1 |
. ] ] ]
) output list %u ‘[ ‘[ Anti message

Y
h 4

LVT =70

Figure 3—2: Components of a logical process with Time Warp

LPs detect violations in causality when receiving a messaggese timestamp is

smaller than their LVT. The message with the smaller tinmaptés referred to as a
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straggler. When an LP receives a straggler, the rollbackegssobegins. The process
could be summarized as the following steps.

1. State restoration: The LP restores its state to an elemehé history event
list which has a smaller timestamp than the straggler. ThehieR frees the memory
occupied by the states which have timestamp larger thaneitered state.

2. Anti-messages: The LP sends out anti-messages for eabl efements in
the output event queue which were sent after the timestantipeafestored state. The
anti-messages are used to annihilate the correspondingagees the destination LP or
behave as a straggler to cause the destination LP to rollback

3. Resume simulation: The LP resumes simulation from thestiamep of the
restored state.

The overhead of rollback is huge in terms of inter-processonmunication traffic
and the computation related to state restoration and aggsages. Furthermore, the
rollback of one LP may cause further rollbacks of other LPa ithained reaction.
This phenomenon is known as cascading rollback[30]. Anaititeresting problem
is called "dog chasing its tail’[31] which can be briefly eapled as an erroneous
computation wave circling among a few logical processesrapal rate. The rollback
and cancellation wave is some distance behind the erroremuputation and is trying
to outrun it. However, if the rollback and cancellation waannot spread faster than
the erroneous computation wave, the erroneous computataynnever be caught so

the simulation will be stuck in the rollback wave
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3.4 State of the art of Time Warp

Due to the memory overhead and rollback explosion assaciaitth Time Warp, a

lot of research[32, 33, 34, 35, 36] has been done to alletettie effects.

3.4.1 Rollback reduction

The authors of [32] proposed lazy cancellation. In lazy edlation, the propa-
gation of anti-messages is delayed until the simulatioressimed after rollback and
reaches the LVT of the earliest message in the output megisagat that point, if the
newly generated messages differs from the messages in thet dist, anti-messages
are sent out. Since only the delta of the anti-messages at®sg lazy cancellation
avoids unnecessary anti-message traffic. The overheack ddizlg cancellation is the

anti-message list.

3.4.2 GVT and fossil collection

Memory consumption for the history states could be huge.rdieioto free the
memory occupied by the history states which have no use amyrobal virtual time
(GVT) was introduced by Jefferson[8] as follows.

"The GVT at real time r is the minimum of (1) all virtual times all virtual
clocks at time r, and (2) the virtual send times of all evehtt have been sent but
have not yet been processed at time r.”

Since no LP would be able to rollback to a time prior to the G¥dch LP could
release all states and events earlier than GVT. Events misstamp less than GVT
is referred to as committed events. The procedure to relmaseory occupied by the

committed states and events is called fossil collection.
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The GVT algorithm is relatively easier in a shared-memoryiremment than
in a distributed-memory environment since there are notsvertransit that have
been sent out by the source process and have not been rebgitiee destination
process. In the shared-memory environment, the minimurheftdcal virtual time
of all logical processes is GVT. However, in a distributedmory environment, the
events in transit makes GVT calculation more difficult. Tteave way of calculating
GVT in distributed-memory environment is to stop the simiola and restart it after the
calculation is done. But this is too expensive so the prefiesmution is to obtain an
estimate of GVT. The estimation of GVT provides a lower bowndthe smallest time
stamp of all events no matter they are in transit or waitingegrocessed.

[37, 38] solve the problem of events in transit by acknowiedgach received
event. However, this approach results in large messadeteaifd could degrade the
simulation performance significantly.

Asynchronous token-passing algorithms[39, 40, 41] hawnl@oposed to address
the message traffic problem. A token is passed around thegses and the distributed
GVT calculation is divided into two phases: the start phase the stop phase. In
the start phase, an initiating process PO initiates the Gdputation and sends out
START token. When a process receives the START token, it fafsvd to its successor
in the virtual ring topology and starts keeping track of thealest timestamp of all
messages it is sending. After the START token returns torili@tor, the stop phase
is launched. The initiator sends a STOP token containingntallest timestamp which
is the minimum of the LVT and the timestamps of events in titagiace the START
phase. When a process receives a STOP token, it comparesailegnimestamp

with the timestamp of the STOP token and sends out the STG#h taith the smaller
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timestamp to its successor. When the initiator receives HaelSTOP token, the
timestamp associated with the STOP token is the new GVT,witl be broadcast to
the rest of the processes.

The decentralized GVT algorithm is described by [36], whilbased on the
distributed snapshots which utilizes the following eletsen

e Cut point is an instant separating computation into past atutd

e Cut is a set that consists of a cut point for each LP

e Cut message is a message that crosses a cut from past to future

e Cut value is the minimum among the timestamps of both cut ngessand all
cut points along a cut

Figure 3-3 depicts the relationship between processes\amisewith a cut for
GVT computation. Each horizontal line shows the time of thecpsses. The circle
represents an event and the arrows show the path of causatitieen events. A cutline
divides the events into two disjoint sets, the events oaugipefore the cut line is
defined to be the events in the past while the events occuafieg the cut line events
in the future.

The implementation of a cut in Mattern’s algorithm[36] usles colouring scheme.
Initially all processors are coloured white. A white progsgnds only white events and
a red process sends only red events. Every process coumsitiiteer of white events
it sends and receives. A red process keeps track of the sinaiteestamp of all red
events it sends. The algorithm is described as follows,

e 1. The initiator start GVT computation by sending a cut ewents successor

and change its color to red
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Figure 3-3: A time diagram with a cut

e 2. The receiving process of the cut event will forward it ® successor in the
ring and changes its color to red
e 3. When the initiator receives back the cut event, the tinmgtaf the cut event
is the minimum of the LVT of all processes and the smallesestamp of red
events sent by each process
In order to avoid the possibility of an event causing a rallbafter it reports its
minimum time, at least two cuts are required. The second asittt be placed "far
enough” to the right of the first cut. Mattern[36] accompéstthis through the use
of a vector counter. Every process Pi maintains a vectorteouo keeps track of the

number of white events it has sent to Pj. Every time a whiteneigereceived, the
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process decrements its vector count V[i]. The cut event adgumulate the vector
counters of each process as it goes around the ring of thegses. At the end of the
first round, the accumulated vector counter indicates tmehau of events in transit. If
some white events are still in transit, which means the actaed vector counter is
not zero, the second cut is initiated. In this round, the senewaits at each process
until all white events are due at that process. When the cuttgwveturns again to the
initiator, the GVT is calculated to be the minimum of the skestl LVT of all processes

and the smallest red event timestamp as carried by the caot.eve

3.4.3 Other memory saving techniques

A lot of approaches have been developed in order to reduceonyeconsumption
even more, besides the fossil collection. The details obpéer check pointing [42],
incremental state saving[42], reverse computation[48] rtiback relaxation[44]
will be described in chapter 5. In chapter 5, we also desaibew approach, event
reconstruction to reduce memory consumption.

There are several approaches[8, 32] designed to recovgratiadiel/distributed
simulation system when the system runs out of memory. Alheht are based on the
rollback model and are invoked when an optimistic simulai®either out of memory
or cannot use fossil collection to reclaim memory anymoresshge Sendback(8]
and Gafni's protocol[32] return messages whenever theildiseéd simulation system
runs out of memory. Message sendback[8] returns the unggsedenput messages
back to the sender thus releasing the memory occupied by #élssages. [32] expands
message sendback by taking into consideration recovergrgary from the input

message list, output message list and history state lig.uRprocessed input message
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will be returned to the sender. The output messages are eisoved by sending the
corresponding anti-messages while the history state Vgl be purged.
Cancelback[45] and artificial rollback[45] are similar tofGi&s protocol[32]
in that both of them reclaims memory from input/output ev&itand the history
state list. Instead of sending back input messages, it $atue system to a previous
state which has available memory, even if there is no cdysablation. Artificial
rollback[45] identifies the LPs that are further ahead inwation time and rolls them
back. Cancelback[45] rolls back the simulation indirectyydending messages to

senders indicating that they must reverse certain messages

3.5 Parallel and distributed logic simulators

In his PhD thesis[46], Briner developed a parallel logic datnr based on Time
Warp. He makes use of incremental state saving[34], a baltiohee window[35]
and different synchronization granularities in his sinbotaBriner also points out the
necessity of efficient partitioning algorithms. Briner amlad the speedup of 23 over
sequential simulation on 32 processors of a BBN GP1000 systeming mixed level
simulations.

Matsumoto and Taki describe a parallel gate-level simulid based on Time
Warp, which obtained more speed-up compared to an asyrmmigsaonservative
algorithm and to a synchronous method. As a result, theyeatigat Time Warp
is superior to these methods. An improvement to Time Warp send only one
antimessage to the affected LPs during rollbacks. This agess the one with the
smallest timestamp of all of the antimessages that are Seen wsing aggressive

cancellation.
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Manjikian and Loucks[48] implemented a parallel gate-lesimulator on a
network of workstations. They used a hybrid approach fockyonization of the LPs.
Individual LPs run in an optimistic way but event messagesamly sent to other
LPs when they are safe. According to the authors, an importé@ is played by
partitioning algorithms. They used cone partitioning[#8{h enhancements in order to
incorporate estimated circuit behavior in the partitighalgorithm. Speedups between
2 and 4.2 are achieved on 7 processors from ISCAS89 benchnnauks The highest
speedup of 4.2 was achieved through cone partitioning ighgor

Bauer and Sporrer realized a parallel logic simulator[5@eoaon Time Warp.
They used the sequential event-driven gate-level sinmidtDSIM[51] as a base
for their work. The authors propose incremental state gpiorkeep the memory
overhead low. Luksch implemented a parallel version of L\d®h the Intel iPSC/860
hypercube[52, 53]. The authors indicate that there may bega hmount of state
information that has to be stored during the course of a sitiunl. LDSIM achieved
speedups between 2 and 4 over the sequential simulation pnot2ssors on circuits
with 3,500 to 19,200 gates on ISCAS89 benchmark circuits.

Bagrodia [54] developed a parallel gate-level circuit siaoit in the Maisie simu-
lation language [55] and implemented it on both distribiaed shared memory parallel
architectures. They achieved speedup of about 3 on 8 prarsesta Sparc1000 for
the conservative protocol and about 2 for the optimistidgrol on the four largest
ISCAS85 benchmark circuits with gate numbers of 1193, 1680/2and 2418. The
K-FM[3] partitioning algorithms were used to partition thecuits.

L. Zhu implemented a parallel logic simulator for milliordg VLSI circuits[56].

The authors claimed that they achieved superlinear spefedwp to 17 processors.
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The circuit used is synthesized netlist of the Viterbi demoaind the partitioning
algorithm is hMetis[6] developed at the University of Mirsoga.

Avril's CTW(Clustered Time Warp)[57] is a hybrid algorithm v makes use
of Time Warp between clusters of LPs and a sequential algorivithin the cluster.
The authors claimed that CTW[57] is useful in logic simulatafrdigital circuit where
there are a number of LPs having low computational graryldn the thesis, we
extended CTW into an object-oriented version[1] and integrat with Icarus[58], an
open source Verilog simulator.

Kim [59] developed a parallel logic simulator on MIMD digitited memory
machines. A new patrtitioning algorithm, improved ConcucseRreserving Partitioning
(iICPP) [60] was proposed. Event-lookahead Time Warp (ETWxlwvis the hybrid
integration of event-lookahead conservative protocol #wedTime Warp protocol was
proposed and implemented on an IBM SP2 parallel machine v@tpracessors.

Discovery[61] developed at the Ohio State University isaarfework for parallel
and distributed simulation of digital and analog VLSI sys$e in which the digital
portion is described in VHDL, while the analog portion is dased in SPICE[62].
The simulator made use of optimistic synchronization fgjitdi components and
conservative synchronization for analog components. Aenpartitioning algorithm is
used which allocates an equal number of LPs to each processor

In xtw[63], a new event scheduling mechanism XEQ and a neilback procedure
rb-messages are proposed for use in optimistic logic simonlaXTW groups LPs into
clusters, and makes use of a multi-level queue, XEQ, to sdbexvents in the cluster.
Experimental results over large circuits (5-million-g&de25-million-gate) shows XTW

scales well with both the size of circuits and the number otpssors.
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3.5.1 Parallel and distributed Verilog/VHDL simulators

SAVANT[64] was developed at the University of Cincinnati.clinsists of three
major components, SAVANT, TyVIS and Warped. Warped is arnaigtic parallel
discrete event simulator based on Time Warp. TyVIS is a VHREnkl which provides
the runtime support for the simulation of VHDL designs. leogtes on top of Warped.
SAVANT compiles VHDL source code and generates C++ code, wisicompiled and
linked with TyVIS and the Warped library to obtain the finainsilation executable.

The TyVIS library is also referred to as the TyVIS kernel.dtan extension of
the Warped kernel inheriting all of its attributes and methoThe generated code is
comprised of class instantiations and function calls mtediby the kernel.

Experiments for several partitioning algorithms, inchglia multi-level algorithm[65]
were reported, with the multi-level algorithm resultingtire fastest simulation times.

Meister [66] developed a framework called DVSIM for a paeh#vent-driven
simulator of VLSI designs described in VHDL. Both consematand optimistic syn-
chronization protocols were implemented. The simulataived from the sequential
simulator VSIM developed by Levitan[67]. The experimenergvdone on ISCAS89
benchmark circuits with gates 892, 15709 and 40685. Theoasttointed out that
there was no speedup for the small circuit. But for larger herark circuits, the
speedup was about 4 on 12 processors.

Tun [68] presents a parallel Verilog simulator - PVSim, whis based on
optimistic asynchronous parallel simulation algorithnd &P1 library. A new module-
based simulation component mapping method is proposed.aArefficient module-

based patrtition algorithm combined with pre-simulatiomtiian algorithm is adopted.
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CHAPTER 4

DVS: An object-oriented framework for
distributed Verilog simulation

This chapter describes the architecture and implementafithe distributed

Verilog simulator, DVS. The research described in this thaprst appeared in [1].

4.1 Overview of Icarus Verilog

Icarus Verilog [58] is an open-source EDA (Electronic DesAutomation) Verilog
simulator being developed by Stephen Williams. As showngaré 4-1, Icarus Verilog
includes two independent parts: an IVerilog compiler and\é@Werilog Virtual
Processor) simulator. The bridge connecting these twe N VP assembly code, an
intermediate representation of the original circuit. TRerllog compiler is a translator
that translates the input Verilog source code into VVP asdgrrode. The VVP
simulator is an event-driven simulation engine, whichriptets VVP assembly code
and process the events. We give a brief introduction to &&krilog in the following

sections.
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Figure 4-1: Architecture for Icarus Verilog

4.1.1 IVerilog Compiler

Although the Verilog language enhances modularity and gsdation by the use
of modules in the source file of a circuit, the hierarchicalsiure of modules is not
appropriate for the purpose of simulation. The IVerilog gaer flattens modules in the
original source file in the following five consecutive phases

e Preprocessor
It mainly performs file inclusion for ’include directive amdacro substitution
for 'define directive. For each include directive, the poemssor reads the

include file and places it into the original source file at thealtion of the
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include directive. The preprocessor also substitutesnedros defined by define
directives. Finally, in order to display error messages, greprocessor generates
line directive to print the line number of the source file.

Parser

The preprocessed source file is parsed and its internalseaion is generated
with syntax and semantic checking performed.

Elaboration The root module is located, unresolved refsgsrare resolved, and
all instantiations of modules are expanded. After scopbogtdion and netlist
elaboration, an internal flattened netlist is generatechftloe hierarchically
structured modules.

Optimizer

Some useful transformations can be performed on the idtagtlst in order to
simplify netlist and improve simulation efficiency.

Code generator

All circuit information is now stored in the flattened and iopized internal
netlist. There are five target formats that can be generated the netlist, of

which VVP assembly code is the default one used for simuiatio

4.1.2 VVP Simulator

The VVP simulator is an interpreter for VVP assembly codepdtses VVP

assembly code to generate netlist of structural items aed @xut vectors to drive the

simulation.

The separation of the IVerilog compiler and the VVP simulasosimilar to

the separation of compiler and interpreter in Java. The V§8$&mbly code is the
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counterpart of bytecode in Java. Since large VLSI circugsfihormally take a long
time for compilation, this strategy saves a lot of time. Otiee VVP assembly
code file is generated by the IVerilog compiler, we can use tur partitioner and
distributed simulator.

In the following sections, we explain our effort to desigrdamplement DVS, an

object-oriented framework for distributed Verilog simtiten.

4.2 Architecture of DVS

Figure 4-2 illustrates the architecture of DVS. It takes Va83embly code as
input, which is generated by the I\Verilog compiler for simtidn efficiency. The VVP
parser constructs the functor list and virtual thread Wdtich will be used by the
distributed simulation engine after partitioning.

The 3 layers of DVS are shown in the right side of figure 4—2. bagom layer
is the communication layer which provides a common messageng interface to the
upper layer. Inside this layer, the software communicagiatform can be PVM or
MPI. Users can choose one of them without touching the codeppér layer.

The middle layer is a distributed discrete event simula®®CTW, which is an
object-oriented version of Avri's CTW(Clustered Time Wafpj]. It provides the
following services to the top layer.

e sending and receiving positive messages or anti-messages
e rollback LPs after receiving a straggler or an anti-message
e state saving and restoring

e GVT computation and fossil collection
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The top layer is the distributed simulation engine, whictludes an event process

handler and an interpreter which executes instructionsencbde space of virtual

thread.
Preprocessor
Parser
I====== {}' """ 1
: Partitioner :
?verilog Source File "——'———@ ———————
Elaboration
iverilog Compiler @
V‘ Optimizer
vvp Assembly Code @
Jv Code Generator

Figure 4-2: Architecture of DVS

4.3 VVP parser

The Verilog language provides the ability to model a cirdyitmeans of both
structural descriptions and behavioral descriptionsucdtiral descriptions model the
circuit as a network of interconnecting gates and wires)evbéhavioral descriptions
model the circuit at a higher level abwaysandinitial blocks. They are translated to
functor statement andhreadstatement in the VVP assembly code generated by the

IVerilog compiler. The VVP parser parses VVP assembly caudiastantiates these
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structural and behavioral statements as functors andadbre’hich are described in the

following sections.

4.3.1 Structural item: functor

Structural items are represented by functors in the VVP kitou Each functor
has four input ports and one output port. Gates with more thaninput ports
are divided into smaller gates and cascaded. Functors alsmdssociated delay
values. All functors are stored in a functor list which wik lised for partitioning and
simulation.

During the simulation, when the value in any input port of adior changes,
a new output value is calculated by querying a truth tabléhéfresult is different
from the current value in the output port, the value in thegpatuport is updated, and
a propagation event is scheduled with the associated delag.vAfter this delay time
expires, the propagation event is processed, and the sgyaakigned to corresponding

input ports of all fanout functors.

4.3.2 Behavioral item: vthread

Behavioral items are represented by virtual threads (vthreaethe VVP simulator.
It should be noted that vthreads run in the virtual machinthefVVP simulator
instead of running directly in the operating system. Eadhiedad contains a mechanism
for thread execution, including a program counter, 4 nuoexdex registers and 64k
private bit registers.

All vthreads instantiated by the VVP parser are organized ashread list. In
gate-level logic simulation, vthreads are normally usedrige functors with input

vectors.
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4.4 Partitioner

Partitioning plays an important role in affecting the penfance of the distributed
logic simulation[69]. In order to exploit different parthing algorithms in DVS, we

designed a generic partitioner and integrated it into taenéwork of DVS.

4.4.1 Design of Partitioner

ParBase

4

+doPartition()

ParDFS

ParBFS

ParRandom

ParCake ParFMRB

Graph

—+buildGraph()
1 |+savePartition()
+loadPartition()

Vertex

#partition_id

Figure 4—-3: UML description of partitioner

The design goal of our partitioner is to provide a flexiblerastructure for testing
different partitioning algorithms applied to differentauiit implementations. As shown

in figure 4-3, the partitioner has two major parts: the partihg algorithm and the

circuit graph being partitioned.

The circuit graph is represented by Vertex and Edge objectisa abstract Graph

class. The Graph class also provides interfaces to paitijoalgorithms for retrieving
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information for vertices and edges in a graph. Designersftdgrdnt simulators can
subclass it and implement the buildGraph method to fill irtiges and edges using
application-specific information. In DVS, we use Functa@r to build the graph using
the functor list.

The base class for partitioning algorithms, ParBase, is atsabstract class. All
partitioning algorithms should be derived from ParBase amdiges an algorithm-
specific implementation for the doPartition method. In DM partitioner will
automatically select the corresponding algorithm at roretbased on the partitioning

argument in the command line.

4.4.2 Partitioning functors and vthreads

Since circuit information is available in both the IVerilagmpiler and the VVP
simulator, we can perform partitioning on either side. Aftevestigating the internal
data structures on both sides, and also considering thatfoottors and vthreads
are LPs in DVS, we decide to use the functor list and vthrestdri our partitioning
algorithm.

The structure of the functor list is similar to an adjacensy, Which is convenient
for partitioning. Furthermore, since every computer in siraulation has the same
copy of functor list, it can be readily used for message rmutwvhen the destination
functor resides on remote computer. If dynamic load batane performed during the
simulation, the re-partitioning can be done on the funagir &nd the re-mapping of
functors is as simple as modifying the partition-id of cepending functors.

The treatment of vthreads is different from functors. Weenbs that when

functors and vthreads are placed in the same partition, modliacks tend to occur.
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OOCTW uses clustered rollback, i.e., a straggler at one LBe=aall LPs in the

same cluster to rollback. Vthreads tends to advance mudtérféen functors in LVT
because behavioral simulation is more efficient than logiwkation. Thus a fast
vthread is likely to cause all of the slow functors in the sastuster to rollback more
frequently. Therefore, we put all of the vthreads on one aaterp Since the total
number of vthreads is small in gate-level logic simulatithg lost concurrency can be
compensated for by fewer rollbacks. The large number ofthurscre partitioned and

assigned to the rest of the computers in the simulation.

4.5 OOCTW(ODbject-oriented CTW)

45.1 Motivation

Clustered Time Warp(CTW)[57] was developed with logic simolain mind.
LPs (representing gates) are grouped into clusters. Easteclhas an input and an
output queue associated with it. Events were executed sagllye within the cluster.
Several rollback and checkpoint algorithms were develdpedise with CTW.

CTW is a good starting point for the implementation of objegented Time
Warp. A cluster bundles gates together in order to overcdradihe event granularity
of VLSI simulation. Furthermore, a cluster provides a veopd basis for load
balancing. We can also move an entire cluster between weseasstead of just
moving gates. However, CTW is not object-oriented. It is reyeto integrate it
directly with the sequential simulator. Therefore, we uaadbject-oriented paradigm
to transform CTW into OOCTW, which (we hope) will be an open awedilile

synchronization backend.
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The main design goal of OOCTW is to integrate it with the oragiNerilog
simulator. The motivation for the design is to limit the chas made to the sequential
simulator because we hope to take advantage of its new werte other design
goal is to make the Time Warp library more reusable, readaiteunderstandable so
new members in the laboratory can concentrate on the ogtiifoiz algorithms instead
of falling into the black hole of Time Warp. Finally, the TinrWarp library must be
flexible and open so it can be a test bed for new optimizatigorahms.

To date we have only implemented one of the rollback algorittieveloped for
CTW, clustered rollback, in OOCTW. In clustered rollback, wteestraggler or an
antimessage arrives at the cluster, all of the LPs with lalyd@'s than the straggler or
the antimessage are rolled back. Other modifications of CTé\theckpointing when

the LVT of an LP advances and the use of Mattern’'s GVT algorj86].

4.5.2 Class hierarchy of OOCTW

The diagram above the dashed rectangle in figure 4—4 is a UMtrigtion
of OOCTW. The Cluster is the container and scheduler of all OP& scheduling
algorithm we employed is LTSF(Lowest Timestamp First). An is scheduled for
execution when it has an event with the lowest timestampencthster. The cluster
manages a future event list and an output event list. The Gdfiipatation is also
processed in the cluster. Each time the cluster receivesva3\éT, it invokes fossil
collection. Statistics are also collected in the Clustehsag simulation time, rollback
number, communication cost, etc.

As shown in figure 4—4, class LP executes rollback and previdual methods

for state saving and state restoration. The derived classaside the virtual methods
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to have application-specific implementations of statergpand restoration. An LP
maintains a processed event list but doesn’t maintain gpubatvent list. When an LP
sends out an event which crosses the cluster boundarieseitts a copy of the event

into the output event list of the cluster.

Cluster

§
[ l

CommManager Statistics

LogicalProcess GVTManager

State 49 T T Q— Event
ZL gvt_event

__________ Tl [Py s PRy
: Functor VThread |
| VerilogEvent |
I I
;| FunctorState 0 Q I
| VThreadState |
I I

Figure 4—4: UML description of OOCTW

The members of the event class include the sender and recéitlee events,
the sending and receiving time, the sign of the event and@hef lthe events. The
event class provides operators such<as> and == to compare the timestamp of two
events. The procedures to decide whether an event is a veegaent are also provided
in the class. Class gwvent inherits from event class. It is used to compute the GVT

via Mattern’s algorithm[36].
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Type Usage

THREAD | Schedule a virtual thread

EVAL Evaluate the functor

PROP Propagate the value change after gate delay
INQUIRY | Inquiry value of a remote functor

RESPOND| Respond inquiry of functor value

FINISH Finish of the simulation

Table 4-1: Events in distributed Verilog simulation engine

The base class for state is an abstract base class. It psoaidmterface for the
application specific state. In DVS, there are two differentk of LPs with their own

state, which will be explained in detail in the following sea.

4.6 Distributed Simulation Engine

The original sequential VVP simulator is turned into a diitted simulation
engine via its integration with OOCTW. The classes in therithsted simulation
engine are shown in the dashed rectangle of figure Budctor defines structural items
in Verilog while Vthreaddefines behavioral blocks. They both inherit from class LP
and override the abstract member methods so they are abdeecstate, rollback and
restore stateFunctorStateand VthreadStatemplement the interface dftate which is
used to log the state of the functors and vthreads.

VerilogEventinherits from clas®vent Several types of events in the distributed
simulation engine are shown in table 4-1.

THREADevent is used to awake the blocked virtual thread which igimgafor
an event to happen, such as a value change of a redist&l. and PROPare used to

propagate value changes among the network of functors.
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INQUIRY event is used to detect the value of a functor located in a teimost.
For example, the variable 'a’ in statemeftisplay@ime,,a)may be located in a
remote processor. Therefore, the virtual thread will semtNQUIRY message to get
the value of the remote functor. The remote processor willdeack the response as
soon as it processes the event.

After partitioning, the simulator schedules tiieIREADevent to invoke the
virtual threads whose partition ID matches the host id ofldoal machine. These
virtual threads will feeds input vectors to the network ofidtors. The simulator keeps
processing events until it gets FINISH event broadcastethaghine 0.

Each simulator in different machines keeps the topologylladfathe functors in
order to route messages. However, only those functors Wwelsame ID as the local
host are active. The passive functors are only used to roassages. No evaluation
happens on passive functors.

The $display and $monitor in Verilog are used to print valagsariables or logic
gates. However, the state of an LP is not stable until its LyEmaller than GVT.
Therefore, 1/0 can’'t be committed immediately after theringtion is issued. Hence,
we created a delayed 1/O instruction list to save all I/Orungions and the time at
which they are issued. Each time a new GVT is generated, thelaior will check the
delayed I/O list. If the timestamp of the 1/O instruction maler than GVT, it will be

committed.

4.7 Optimization to distributed Verilog simulation engine

e Direct execution of zero delay event
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When the simulator generates a zero delay event which hasthe smestamp
as the current LVT, it executes the event directly withougtfinserting it into
the event queue then popping it out and executing it. Thieduces some
in-determinism but doesn't affect the final simulation festlihe direct execution
reduces memory operations and speeds up the simulatioactntiiere are a lot
of simultaneous events in the Verilog simulation. A funotoll propagate its
value change to all of its fanout functors. All propagatedleation events are
simultaneous events which have the same timestamp as trentlUVT because
we assume zero wire delay. If the fanout functors residesiersame cluster, the
Verilog simulator can execute the corresponding evalaagients directly.

e on-the-fly fossil collection
In order to improve the efficiency of the simulator, Icarusgiator maintains
a free event list in order to minimize the invocation of thetsyn calls such as
malloc/free and new/delete. Each time the simulator sdeedunew event, it
first checks the free list. If it is not empty, the new event daectly use the
memory space occupied by the head of the free list. When thelation finishes
processing the event, it puts the event pointer into the lfsténstead of deleting
the memory space.
The free list is inherited in the distributed simulator. Mover, we created the

free state list for state saving of LPs.

4.8 Preliminary Experiments

All of our experiments were conducted on a network of 8 coraygjteach of

which has dual Pentiumlll processors and 256M RAM. They ater@onnected by a
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Myrinet(www.myri.com), a high speed network with link cajitst of 1Gbit per second.
All machines run the FreeBSD operating system. LAM MPI is uggdnessage
passing between different processors.

The Verilog source file used in the simulation describes atIfbltiplier. It
includes 2416 gates and one virtual thread which feed 50orangectors to the circuit.
We assume the unit gate delay and zero transmission deladyeowite. Only the
simulation results with BFS patrtitioning is presented beeawe have compared the
performance of BFS, DFS and random patrtitioning algorithmmh found BFS to have
the best performance. BFS patrtitioning algorithm can redwweremunication, which
is the most expensive operation in distributed environmEath data point collected
in the experiments is an average of five consecutive sinamatins. The number of
machines in the figure doesn’t include machine 0 which onhytaios vthreads. The
simulation time for 1 machine is the running time of the DVS3heut partitioning.

The simulation time vs. the number of machines is shown inrdigi+-5. It should
be noticed that the simulation time is longer when 2 macharesused. This is
caused by the load imbalance and communication cost. Fremghper part in figure
4-6, we know that the partitioning algorithm only reduces tbtal number of event
processed on machine 1 by a small amount when 2 machinesede ldewever, the
communication cost increases by a large amount. The totahamication cost can
be computed by multiplying the number messages shown inotlerlpart of figure
4—-6 with average sending/receiving cost, which is listethlsle 4-2. The reduction in
workload is not large enough to compensate the communicatst. Therefore, the

total simulation time for 2 machines is longer than the tirme I machine.
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Figure 4-5: Simulation time in seconds vs. number of maghine

Operation Time

Processing an event 1.83us
Saving a state 2.08us
Saving an event 2.56us

Sending a message(Blocking) 31.9us

Receiving a message(BlockingB2.2us

Message latency 10us
Table 4-2: Cost of operations in DVS

Using more machines reduces the number of events processedaghine a great
deal, thus the time used to process events is reduced by thenanvhich is large
enough to compensate the communication cost involved idigtabuted simulation.
The simulation times keep decreasing when the number of imeslincreases from 3

to 5. We get a speedup of 1.4 when 5 machines are used.
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Unfortunately, so far DVS still runs slower than the oridit@arus Verilog simu-
lator. We attribute this to the fine granularity of VLSI simtibn, large communication
cost, load imbalance and the small circuit size of our Vgrdource file. From table
4-2, we know that overhead for VLSI simulation is more tham®s the cost of
processing an event.

By increasing the event granularity, reducing communicatiosts and achieving
load balance, we look forward to outperforming the origisiahulator in further
experiments(in which we simulate larger circuits) and desti@ting the scalability of

DVS as well. The following chapters will detail our effort tm so.

54



CHAPTER 5

Event Reconstruction in Time Warp

The research described in this chapter first appeared in [70]

5.1 Introduction

Time Warp is known for its relaxed synchronization so thatauorder processing
is possible with the help of a rollback mechanism. In thebaxtk, the LP restores the
previous state and sends out anti-messages to cancel gem@sated as a consequence
of the causality errors. The advantages of Time Warp arethigat Ps never have
to block in order to guarantee only safe events could be pemukso that causality
errors cannot occur. However, the disadvantages are aaaitcosts associate with the
rollback mechanism.

State saving mechanism is an essential part of a Time Watprsydt is necessary
for the distributed simulation system to save enough stdtgmation in order to guar-
antee that any state that is possible to restore in caselb&ctl could be reconstructed.
The naive implementation of state saving could be to save &ba each event pro-
cessed. This approach is usually referred to as copy staitegé@SsS). However, this

could be too costly in terms of both memory consumption antukition performance.
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In a successful distributed simulation environment, thenber of events rolled
back are usually much less than the total number of eventepsed. Hence, it is
often wasteful to save a complete copy of each state for eaafit since most states
will never be used for rollback purposes. Based on this assamseveral methods
have been proposed to reduce the state saving overhead metisods could be
roughly classified into two categories: sparse state sé8Bg) and incremental state
saving(ISS) detailed as below.

e Sparse State Saving(SSS) [71, 72]
Sparse state saving is also referred to as infrequent asdierstate saving. The
state is not saved each time an event is processed. In caskbafck, the state
is restored by retrieving the last state checkpointed leetioe rollback point.
Then all the intermediate events between restored stateadlbeck point will
be executed in order to restore the state at the rollback.pdire reexecution
of events is also referred to coast forward. During the ct@stard phase, no
anti-messages will be sent out since coast forward onlyeselw restore the
state. The checkpointing interval could be static or dymarSiatic checkpointing
interval is to save state every'revents processed while dynamic checkpointing
interval is calculated on the fly during the simulation.

e Incremental State Saving(ISS)[33]
In many distributed simulation environment, such as lamy@munication system
or battlefield simulations, the state size could be hugeenrily a small portion
of the state is updated after one event is processed. In ssichboted simulation
systems, it is often to use incremental state saving sinceuld be too expensive

or even impossible to save the complete state of the system.
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The idea of incremental state saving is to only log the changehe state in the
backtrail. Prior to the state change, its old value and addaee logged. During
state restoration in the rollback, the backtrail is tragdrs) the reverse order,
from the most recent event to the rolled-back event, by mgithe old values
back into the associated addresses.

The incremental state saving schemes depict a trade-affeleet execution
efficiency and programming transparency. A major drawbadkcremental state
saving(ISS) is the need for programmer awareness. Stagiipgalls need to be

explicitly inserted in the distributed simulation model.

5.2 Related work

A number of algorithms have been proposed to reduce the nyeoverhead
caused by state saving, including incremental saving[@3ckpointing[71, 72], reverse
computation[43] and rollback relaxation[44].

P.A. Wilsey[42] presents a comparative analysis of fourragphes to dynamically
adjusting the checkpoint interval and proposes an algaritbr dynamic checkpointing.
The algorithm tries to balance the time spent saving statgugethe time spent coasting
forward. The goal of the algorithm is to minimize the time &ate saving and
coasting forward and to adjust the checkpoint interval ediogly. In our experimental
section5.5, we compare the performance of event recotistnuand this heuristic
algorithm.

Checkpointing results in a lower memory consumption and gsrored execution
time. However, it is difficult to achieve the optimal frequsrof checkpointing.

Dynamic checkpointing can be used to alleviate this problelowever, it faces the
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problems of choosing tuning parameters, including theaingheckpointing frequency,
the average cost of event processing and the average cosasting forward.

Reverse computation[43] computes state variables by liegetise operation
sequence applied on the variables. It uses compiler-basbaiues to generate
the reverse computation code automatically. As a resslimplementation is more
complex, although it is able to provide a significant perfante improvement over
checkpointing.

In rollback relaxation[44] all LPs are classified into twaegories, memoryless
and LPs and LPs with memory. A memoryless LPs’ output is datexd by the
values of its inputs. Therefore, no state is saved for melessyL Ps. Instead, the
LP reconstructs any required input state from the eventieiriput queue. The
rollback relaxation mechanism is able to reduce the stat@gaverhead by a
considerable amount in logic simulations because mostANB( OR, XOR gates) in

such simulation are memoryless.

5.3 Logic simulation and its characteristics
5.3.1 Characteristics of logic simulation

In this section we discuss the characteristics of logic fatmn which inspired
our work on event reconstruction. The detail explanatiothefdiscrete event logic
simulation could be found in chapter 2.

¢ Relatively small state size
In the implementation of a logic simulator, such as DVS [hE @ signal values
are encoded with two bits as shown in table 2—1. Every gateipds four

inputs and one output. Therefore, the state of a gate in &i§ul includes ival
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State

+ival : byte
+oval : byte oval
+hi story LVT: unsigned

Event
+type: byte
+source: byte (o 1112 "13
+destination: byte ) ) ) _
+sendTi me: unsi gned _ 0-1 2-3 4-5 6-7
+recvTi me: unsi gned ival=[ 1o ]11f12[13]
+sign: byte
+gat el D. unsi gned
+val ue: byte

Figure 5-1: The size of the state and the event

and oval, each of which are one byte in length. The bits 0-luaesl to store
the value of 10, bits 2 and 3 for 11, 4 and 5 for 12 and bits 6 anai7I8, as
shown in Figure 5-1. For example, if ival is equal to 00001004 know that 10
is equal to logical value 0O, 11 logical value 0, 12 logical wal’x’ and I3 logical
value 1. This compact storage helps to save memory. The Eile atate is only
16 bytes in DVS[1]. However, checkpointing has its greateaste when the size
of the state is large.

Large event size

Figure 5-1 shows the structure of an event. The size of an evé&6 bytes,
almost four times of the size of a state. Therefore, everingasauses at least
3.5(56/16) times more memory to be used than state savirtgté saving is

done for every event processed. In order to underscore thms, ghe amount of
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memory consumed in the simulation of a 16 bit multiplier isg@nted in our
experimental section.

e Large event population
The event population is large because of the large numbeatesgeach of
which is mapped to an LP. For example, the event populati@)1i29,815 for
s$38584(about 20K gates) when the clock is 500kHz and the auwfrandom
input vectors is 100. If every event has to be saved, the eéedanemory
consumption will be very large.

e Fine event granularity
Logic simulation is known for its fine event granularity. Hdhe performance of
distributed logic simulation is especially sensitive te ttverhead caused by state
saving and event saving. Reducing this overhead would obrtae useful for
performance improvement.

With these characteristics of logic simulation in mind, weeidied to reduce the
memory occupied by events instead of reducing the memorgwnoad by states. The

following section describes our approach to event recoostm.

5.4 Implementation of Event Reconstruction

In this section, we explain the implementation of event nstauction in detail.

The data structures and algorithms which comprise thiscgmbr are described below.

5.4.1 Data structure

The data structure for event reconstruction is shown in &d#2. In DVS, the

Cluster is the container and scheduler of all of the LPs. An ldhmins a state list.
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State List { State List State List

Cluster Input Queue

Figure 5-2: Cluster structure

In event reconstruction it is necessary to store all of thgestat an LP. Since we build
the input events and anti-events from the state list in opr@xrh,we don’t need the
input event list and output event list for every LP. The umgssed events for all of
the LPs in the same cluster are stored in a single priorityeuiata structure. The

LP scheduling strategy is smallest timestamp first. We nofgaissing that the GVT

computation also benefits from the single queue data steuctu

5.4.2 Event annihilation

Time Warp uses a tuple (LPID, timestamp, eventlD) to matcsitpe events and
their corresponding anti-events. The LPID is globally wagindicating which LP
will receive the event. The eventID is unique in the clusterd is increased by one
automatically whenever a new event is generated. The Hyastused, along with the
timestamp to distinguish between simultaneous eventsortinfately, the eventID is
lost because we don't save input events in our approacteddsive use the signal
value on the wire to compensate for the lost eventID infoiromatThe new tuple for

event annihilation is (LPID, timestamp, signalValue). dth the timestamp and the
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signalValue are the same for two events, they are considerbd identical events. If
there exists more than one identical event in the event qubaenti-event will pick

the first one in the queue to annihilate. This approach iniced some indeterminism.
However, Verilog[9] is a concurrent language, in which ghare sources of non-
deterministic behavior such as arbitrary execution ordezerro time and arbitrary
interleaving of behavior statements. Therefore, the st results are not guaranteed
to be deterministic. In fact, simultaneous events are drecin arbitrary order in the

Verilog simulator.

5.4.3 Portflag

We use a different rollback strategy for LPs inside the eusind for LPs outside
of the cluster. Inside the cluster, we roll back those LPscivlasire descendants of the
LP which receives the straggler or anti-message. Anti-agss are sent to LPs outside
of the cluster.

In order to implement the two rollback algorithms, a port flagised for each
LP port in order to indicate whether it is an internal port arexternal port. The
port flag is set at run time. Initially, every port flag is sett® an internal flag. When
the LP receives an external message, it sets the corresypftag to external. The
implementation of the rollback algorithms making use ofsthélags will be explained

in the following section.

5.4.4 Event builder

Only those events which change the input signals at a gat toelee recon-

structed, as it is only these events which cause a change istdite of a gate.
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Let s’ be the state before the execution of event e and let bdstate after
the event is executed. If s is equal to s’, event e is considevd and need not be
reconstructed. However, if s is different from s’, event e ba rebuilt according to
Formula 5.1. The signal value is the value on the wire, as showable 2-1.

e.timestamp =  s.timestamp

(5.1)
e.signalValue = s.signalValue

For example, state s’ is shown in Figure 5-3.a and state sgur&i5-3.b. It is
worthwhile noting that signal values on all ports are packed a one byte state. By
comparing the value on port 11 of states s and s’, the eventiwlhappened at time 200
is reconstructed with the value on port 11 of state s, whicangfed from '00’ in state

s’ to '01’ in state s.

oval oval
’A‘ e@00=(1 1: 00- >01)

10111213 10111213
st at e@ 00=00000101 st at e@00=00010101
a. Initial state b. State at tine 200

Figure 5-3: Event reconstruction

Input event builder

In Time Warp an LP saves events after processing them bedatlrsel P
rolls back, previously processed events will have to beasgssed. Through event
reconstruction, these previously processed events wilbnger have to be saved.

Instead, they are reconstructed by the input event buittspicted in Figure 5-4.
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i nput _event _bui | der (event* rb_event)

{
reverse_iterator iter=state_list.rbegin();
//main | oop for the event reconstruction
while((*iter)->LVT >= rb_event->recv_tine)

state* s1 = (*iter);
state* s2 = (*iter++);
/1only reconstruct the external event
/lignore the reconstruction of internal events
[/ Event reconstruction on port 0O
if (sl1->ival & != s2->ival &3)
if (sl->LVT == rb_event->recv_tine || external _port_flag[O0])
{
/lreconstruct the event
e->recv_time = s1->LVT
e->val = sl1->ival &3;
if e->s_anti_event(rb_event)
anni hilate(e, rb_event);
el se
schedul e(e);
}
// Event reconstruction on port 1
if ((sl->ival>>2)&3 ! = (s2->ival >>2)&3)
if (sl->LVT == rb_event->recv_tine || external port_flag[1])
{
/Ireconstruct the event
e->recv_time = s1->LVT
e->ival = (sl->ival >>2)&3;
if e->s_anti_event(rb_event)
anni hilate(e, rb_event);
el se
schedul e(e);

}

[/ Event construction on port 2 & port 3
/I conmpar e((sl->i val >>4) &3, (s2->ival >>4) &3)
/| conpar e((sl1->i val >>6) &3, (s2->ival >>6) &3)
}
}

Figure 5—4: Input event reconstruction algorithm

The algorithm loops through the state queue until the LVThef $tate is less
than the receive time of the event which causes the rollbkigkicks a state s1 and its

predecessor s2 from the state queue. If the input valuesat#f si and s2 are different,
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an event e is reconstructed according to Formula 5.1. Thet wgdues are bound into
one byte. Therefore, the comparison is executed four timese for each input port of
the LP, as shown in the Figure 5-4. Moreover, due to the eéifferollback strategies
for the internal events and external messages, we set a agroflindicate the source
of the events. For the external port, we reconstruct eveepnte\However, we only
reconstruct the events which have LVT equal to the LVT of tinaggler event for the
internal port. The reason for this is that the internal evevitich have a larger LVT
than the straggler will be regenerated because of the cludtback strategy[57] used
in DVS[1], which will rollback all LPs in the cluster. Themafe, the internal events
will not be reconstructed because they will be regenerayethéir source LP in the
same cluster. The port flag is used to avoid unnecessarystuaotion of internal
events. In fact, the algorithm of event reconstruction dogsdepend on the cluster
rollback strategy. We are continuing to improve the rollbatrategy and the event
reconstruction algorithm. Further effort will focus ondreollback instead of the cluster
rollback. The tree rollback strategy only rolls back tho$eslwhich reside in a tree

whose root is the LP which receives the straggler event.
Anti-event builder

The anti-event builder works in the same way as the inputtdweitder, as shown
in figure 5-5. The anti-event is reconstructed by compaiiegautput values of two
adjacent states, s1 and s2. After reconstruction, theeastit is sent to those LPs
which are in the fanout list of the current LP but not in the sastuster. For a cluster

rollback, we don’'t have to use anti-events to cause a rdillim¢he same cluster.
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anti_event _buil der(event* rb_event)

{
reverse_iterator iter=state_list.rbegin();
while((*iter)->LVT >= rb_event->recv_tine)

state* si
state* s2

(*iter);
(*iter++);

I f (sl->oval &3 != s2->oval &3)
{

//reconstruct the anti event
e->recv_tinme = sl->LVT,

e->i val = sl->oval &3;
e->flag = ANTI;

for each external LP in fanout |i st
send e to LP

Figure 5-5: Anti event reconstruction algorithm

5.4.5 Event processing loop

The basic algorithm for an optimistic LP is sketched in Feg6+6. The LP
removes the head event from the event queue and checks witatha normal event
or a straggler or an anti- event. If it is a normal event, thefitft logs its state and
processes the event. State is saved after every event. ldgvpeocessed events will
not be saved.

When the LP receives an anti-event or a straggler, it roll« laacin "normal”
Time Warp. However, the LP reconstructs the input eventsaaput events from
the state queue. This introduces a processing overheadh wgh&gmilar to the cost for

coasting forward in dynamic checkpointing.
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whi | e(GVT < FI NI SH TI ME)
{
recei ve external events:;
pop an event from event queue;
updat e LVT;
if (event is straggler or antinessage)
{
i nput _event bui l der ();
anti _event buil der();
send_anti _events();

}
el se
| og_state();
event _processing();
}

Figure 5—-6: Optimistic LP simulation algorithm

5.5 Experiments

All of our experiments were conducted on a network of 8 coraygjteach of
which has dual Pentiumlll processors and 256M RAM. They ater@onnected by a
Myrinet, a high speed network with link capacity of 1Gbit percond. All machines
run the FreeBSD operating system while MPICH-GM is used forsags passing
between different processors.

The Verilog source file used in the simulation describes &@AS 89 benchmark
circuit, S38584. It includes 19253 gates, 1426 D-type figpdl and one virtual thread
which feed 20 random vectors to the circuit. The clock frempyeof S38584 is 1MHz.
The other Verilog source file describes a 16bit multiplieéintludes 2416 gates and

one virtual thread which feeds 200 random vectors into theuiti
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We assume a unit gate delay and zero transmission delay omitbheEach data
point collected in the experiments is an average of five satiert runs. The number of
machines in the figure doesn't include machine 0, which oolytains vthreads[1]. The
vthreads generate the events for the simulation. The stronléme for 1 machine is
the running time of the DVS without partitioning.

In the experiments, we compare the performance of DVS withadyic check-
pointing and with event reconstruction to that of "pure” BriWarp. The partitioning
algorithm which we use is CAKE[73]. The dynamic checkpoigtalgorithm is ini-
tiated every 1000 events. Our event reconstruction algoritequires that the state is

saved after each event is processed.

5.5.1 Memory Usage

Memory consumption breakdown

The memory consumed by Time Warp is composed of the memorsucoed by
state saving and by event saving. Figure 5—7 presents theomdmeakdown for the
machine which has the maximum memory consumption. The dataliected for a 16
bit multiplier and for S38584 using Time Warp. The top of Fig&—7 is the memory
breakdown for the 16 bit multiplier with 200 random vectorile the bottom is the
memory breakdown for S38584 with 30 random vectors.

We see from both of these that event saving consumes more meham state
saving. We define thenemory usage ratio to be the ratio of the memory consumed by
event saving to the memory consumed by state saving andhdisetratios in table 5-1

for the 16 bit multiplier and for S38584. We see that eventrgaeonsumes 4.73 times
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circuit 2 3 4 5 6
16 bits multiplier 4.49 450 4.78 4.68 4.73
S38584 3.60 3.68 3.54 353 3.55
Table 5-1: The memory usage ratio

the memory used by state saving when 6 machines are used.e@vahageevent

saving consumes almost four times the memory consumed tgy s®ing.
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Figure 5—-7: Memory consumption breakdown

Peak memory consumption

We define thgpeak memory usage to be the maximum of all of the machines’
maximal memory usages. Figure 5-8 shows the peak memorpersiumber of
machines for the 16 bit multiplier. The memory used by onehiracis only 0.45M

because memory overhead is unnecessary. When two machenasedt, event

69



reconstruction uses 1.79 times less memory than dynamuakpbeting and 2.34
times less than pure Time Warp. The ratio between event stemiion and dynamic
checkpointing decreases when more machines are used. d$enréor this decrease is
that the average number of events processed decreases whemachines are used,
and consequently the memory occupied by event saving daxsesVhen 6 machines
are used, event reconstruction uses 1.29 times less mehamyig used by dynamic
checkpointing.

Memory consumption for 16 bits multiplier
70 T T T

T

—-©— Pure TW
—¥— TW with ER
—— TW with DC

60 b

50 b

30 N

Peak Memory Usage(M)

20 E

1 2 3 4 5 6

Number of machines

Figure 5-8: Memory consumption for 16 bits multiplier

Figure 5-9 presents the peak memory vs. the number of macfon&38584.
Time Warp uses 119.06M when 2 machines are used. This leadsriwry swapping
and bad performance, as shown in Figure 5-11. Event recatistn uses 54.21M

when two machines are used, versus 99.18M by dynamic chedkpp
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Figure 5-9: Memory consumption for S38584

5.5.2 Simulation Time

The simulation time vs. the number of machines for the 16 hiltiplier is
presented in figure 5-10.

We observe from figure 5-10 that event reconstruction regula 10% execution
time improvement over dynamic checkpointing and a 40% iwvgmeent over Time
Warp when 2 machines are used. The speedup decreases whemamhines are used
for the same reason that the improvement in memory consamgiminishes when
more machines are used. The speedup obtained using evenstection is 3% better
than dynamic checkpointing and 35% better than Time Warpnéhenachines are

used.
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Simulation time for 16 bits multiplier
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Figure 5-10: Simulation Time for 16 bits multiplier

Figure 5-11 presents the simulation time vs. the number ahmas for S38584.
The simulation time of pure Time Warp is 25.55 because of mgrawvapping. Both
dynamic checkpointing and event reconstruction elimimaggnory swapping. However,

event reconstruction is 11% faster than dynamic checkimgint
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CHAPTER 6

A multiway design-driven partitioning
algorithm for distributed Verilog
simulation

The research described in this chapter first appeared in [5].

6.1 Introduction

Modern VLSI systems are becoming increasingly complexingpa never-ending
challenge to sequential simulation. In order to accommetia growing need for
increased memory as well as the need for decreased sinmutatie, it is becoming
increasingly necessary to make use of distributed sinaulfpdj.

Time Warp[8] is an appealing technique for the distributegid simulation of
VLSI circuitry because it can potentially uncover a high ides of parallelism in the
VLSI system being simulated.

However, getting satisfactory simulation performance gisdributed environment
is challenging since we need to overcome the huge cost afpnéEessor communica-

tion which is exacerbated in a distributed environment byiste comprised of millions
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of gates. It is widely known that partitioning is an NP-coetpl problem, the result of
which is that partitioning algorithms provide heuristidig®mns and can be trapped in
local minima.

Most of the partitioning algorithms [49, 3, 74, 75, 76, 60,74, 78] for dis-
tributed/parallel VLSI simulation directly partition gatevel netlists. These algorithms
are typically used for floorplanning and placement, not forudation. They can
produce a big cutsize which is intolerable in a distributddsYsimulation environ-
ment because of the communication costs which are a consegjwé a large cutsize.
Moreover, few partitioning algorithms take load balancintp account.

The ASIC design community has a well-established hieraetldesign methodol-
ogy. Every design is partitioned into blocks by functiohaliThe design hierarchy is
reflected in modules and their instances in Verilog. In tldpgy we take advantage of
the design hierarchy information present in Verilog and bom it with a move-based
partitioning algorithm. In our algorithm, the module/iaste is the basic partitioning
element instead of the gate.

The rest of this chapter is organized as follows. Sectiondevoted to related
research. In section 6.5, we introduce hierarchy in Verilogr distributed simulation
environment DVS[1] could be found in chapter 4. In sectiod, Gve present the details
of our design-driven partitioning algorithm. A comparisohthe cutsize and of the
execution time of our design-driven partitioning algomittand htmis partitioning based
on netlists is presented in section 6.7. The last sectiotagmour conclusions and

thoughts about future work.
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6.2 Metrics of partitioning quality

Partitioning plays an important role in performance of pak@istributed logic
simulation [79, 80]. Since graph partitioning problem is-Biftnplete, most partitioning
algorithms are heuristic algorithm. [65, 76, 60] shows ¢hneetrics determining the
quality of partitioning, which are communication, load &rate and concurrency. The
goal of the partitioning algorithm is to minimize commurtioa while achieving
best load balance and maximum concurrency. Unfortunabehttiree metrics are
sometimes contradictory. Therefore, the optimal partitig algorithm tries to find the

best tradeoff among these three factors.

6.2.1 Communication

Since our distributed simulation is executed on a networwarfkstations,
communication is the most critical factor for the performarf the simulation.
Furthermore, because of the known fine granularity of theprgation in logic
simulation, communication cost needs to be reduced as naiplossible.

The amount of communication is typically estimated by thtsize of the
partitioning. The smaller the cutsize, the fewer messagesransferred between
different partitions. In the experiment section of this ptes, the readers will see
clearly that the cutsize strongly affects the simulatiorfgrenance.

However, the traffic between different machines is not abvasoportional to
the cutsize of the partitioning. In the actual simulatioomne cut edges may be
heavily loaded with communication traffic while other cuged seldom carry any
messages. Unfortunately most of the partitioning algoritire static, which means

the partitioning is done before the simulation. In order bbain the dynamic traffic
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information, it is necessary to use pre-simulation[81]jclhwill be discussed later in

this chapter.

6.2.2 load balancing

The performance of the distributed simulation is limiteditsyslowest machine.
Therefore, in order to obtain the best simulation perforoeaithe best strategy is to
distribute the computing load evenly onto all computing maes and make them
finish the computing task at the same timeframe.

In distributed Verilog simulation, we define the load of an toPbe the total
number of events executed on the LP. However, since paitigois done before
simulation and it is not easy to obtain the number of evenesheve to define load as
a static metric. Usually we choose the number of gates inlgat simulation since it
is the rough estimate of the events in the LP. This simplificais based on assumption
that all gates of the circuit are equally active during thrawdation. As was the case
for the communication, this is not always true in the actimlutation. Experimental
results have shown that there are hot spots that are moxe dlgéin others during the
simulation. Again, pre-simulation is needed to evaluateltiad balance.

Currently we assume our distributed simulation will be thdidated users of
the computing workstations. However, there could be esldoads on the computing
nodes. External load is not in the scope of our research abswibuted Verilog

simulation.

6.2.3 Concurrency

Concurrency is a metric which is easily confused with the ephof load balance,

although there is major difference between these two nsetric
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Load balance is dynamic measurement metric, although isuslly approached by
static metrics such as the number of gates.

However, concurrency could be a good static metric. Theckeggn level
concurrency in a circuit. It means two subblocks could beutated in parallel with
little synchronization or even without synchronizatiorheldesign concurrency is the
basis of parallel/distributed discrete event simulation\fLSI circuit simulation.

In [60] Kim defined a metric to measure concurrency. Two egigs of exploiting
concurrency from a VLSI circuit are the following.

e Make use of the primary input or primary output. The primargut is a node
with zero fan-in and primary output is a node with zero fan-@&tring[46, 82]
and cone patrtitioning[83] are such kind of partitioningalthm. Its partition is
generated by the fanout along with the primary input or outgithe circuit.

e Make use of level sorting. All of the vertices at the same llewe assigned to

different partitions.

6.3 Related work

6.3.1 Non-iterative partitioning algorithm

A common approach to circuit partitioning consists of dimglthe circuit into
two or more blocks such that the number of connections betwle blocks of the
partition is minimized. The partitioning problem is NP-cplete and commonly and, as
a consequence, heuristic methods are used to achieve esolih excellent survey

on the state of the art in VLSI circuit partitioning may be fouin [84].
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Random partitioning is the simplest method of partitioniAg.the name implies,
it assigns gates to processors randomly. It is a simple diuileet algorithm. However,
it cannot produce the optimal cutsize.

String partitioning [46, 82] first distributes the primaryputs randomly onto the
available processors because they are the first elementateanew events during the
simulation. The algorithm then continues in a depth-firshnea by following one
of several fanout branches until either an external outptite circuit or an already
assigned unit is encountered. If there remain unassignis, eme of them is randomly
chosen, placed into the partition with the least number ¢éggand the depth-first
search is repeated until all gates belong to a partition.

Cone partitioning[49] is well suited for circuits that havenpary inputs. Starting
with the primary inputs of a circuit, all of the gates that dreven by the primary
input are added to the output cone of that primary input. phhaxedure is repeated

recursively for the added gates until a primary output ixhed.

6.3.2 lIterative partitioning algorithm

In 1970, Kernighan and Lin(KL)[85] proposed a well-knowruhistic for the
two-way graph partitioning algorithm which has become thsi® for most of the
subsequent partitioning algorithms in this area. The d#lgoris called an iterative
improvement algorithm because it is based on the cell mavasprove the solution
iteratively until a local minimum is obtained.

The KL algorithm[85] starts with an initial two-way partin. Then it performs
a series of passes until a local minimum of cutsize is achieRepass consists of

a number of pairwise cell swapping between the two parstid®dchweikert and
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Kernighan [86] proposed a more practical model referredsttha hypergraph model
for the circuit partitioning problem.

Fiduccia and Mattheyses [3] presented a modified versiorngofrighm KL[85]
in order to speed up the search. They introduced a new daizste (bucket list of
cell gains) to achieve linear run time per search. Moreavey proposed a cell move
strategy instead of swapping a pair of cells in one move, whitows more flexibility
in selecting candidate cell to move.

Krishnamurthy [87] suggested that the lack of an intelliggerbreaking scheme
among many possible cell moves with the same gain could dheseM algorithm to
make bad choices. He enhanced the FM algorithm[3] with a-blodad scheme that
looks ahead up to'r level of cell gains to choose a cell move.

Sanchis [88] extended FM algorithm[3] with Krishnamurthjook-ahead
scheme[87] to multi-way partitioning. Sanchis’s algamitlis also the first hyper-
graph multi-way partitioning algorithm since all the prews algorithm described are
two-way partitioning algorithm. Sanchis’s algorithm istexsively used as a benchmark
in performance comparison for different multiway hypemraartitioning algorithms.

All the FM-based[3] partitioning algorithms, such as KL[8BR[87] and
SA[88] algorithm are generally intuitive, flexible in aday to different optimization
objectives, easy to implement and relatively fast.

Park and Park[89] pointed out that the cell move operatidargely influenced
by the balancing constraint. Therefore, they proposed tfaastion that comprises
both the cutsize and the balance degree that is the sum afeltlgferences between
different partitions. The balance degree is associateld avpositive weighting factor.

They proved that a minimum cost multiway partitioning ob&d by their algorithm
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corresponds to a balanced minimum cutsize as defined in Skitlion[88] if the
weighting factor is larger than the number of cells in a dirclihe SA algorithm[88] is
then used to solve the multi-way partition problem undeirtbbjective function.

Dutt and Deng[4] observed that the FM-based algorithmscconly remove
small clusters from the cutset while it may lock bigger adustin the cutset. They
divided the cell gain into initial gain calculated beforeel enovement and the update
gain generated from the cell movement afterwards. By foguemthe update gain
when choosing cells to move, they reported very successfuilts for bipartitioning
experiments.

Harypis [6] introduces a coarsening phase in a multilev@lengraph partitioning
algorithm hMetis. During the coarsening phase, a sequehsacaessively smaller
hypergraphs is constructed. The purpose of coarseningdsetie a smaller hypergraph
while preserving the partitioning quality obtained frone thriginal hypergraph.

The authors claim that hmetis produces partitions that ansistently better than
other widely used algorithms and is one to two orders of ntageifaster than other
algorithms.

Dasdan and Aykanat[90] developed two multiway partitignaigorithms using
a relaxed locking mechanism. The first one (PLM) uses theimgcknechanism in
a relaxed manner. It allows multiple moves for each cell iraaspby introducing
the phase concept so that each pass may contain more thamase gnd each cell
has a chance to be moved only once in each phase. The seconithatg(PFM)
does not use the locking mechanism at all. A cell can be mosedany times as
possible per pass based on its mobility value. The perfoceanh the two algorithms

was compared with the Simulated Annealing algorithm[91d &anchis’s algorithm
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[88] on some benchmark circuits. The results of the algor#loutperform Sanchis’s
algorithm significantly on multiway partitioning. The perfnance of the algorithms are
comparable to Simulated Annealing algorithm[91] while #igorithm is much more
efficient.

Cong and Lim[92] proposed a multiway partitioning algorithwith pairwise
cell movements. It starts with an initial multiway partiti@and then applies the
bipartitioning heuristic (FM algorithm[3]) to pairs of ks concurrently to improve
the quality of the overall multiway partitioning solution.

Yang and Wong[93] presented a network flow based partitgpaigorithm to solve
bipartitioning problem and they claimed that multiway garhing can be accomplished

by recursively applying the network flow based algorithm.

6.3.3 lIterative partitioning algorithm utilizing design hierarchy

It is worthwhile noting that the CLIP[4] and hMetis[6] algtirin tries to detect
and restore the cluster destroyed by the iterative pantitgpalgorithm based on the
flattened netlist.

[4] and [6] try to reduce the size of the hypergraph from thé&dro up, i.e.
they extract clusters from the flattened netlist without seming the quality of the
partitioning of the original netlist. Our algorithm worksom top-to-bottom-it flattens
the design hierarchy step by step and compromises betwednati balancing
constraint and the minimum cutsize.

Iterative algorithms generally work on any hypergraph wtalr algorithm
specifically targets distributed Verilog simulation. Thaimpurpose of our algorithm

is to try to keep the Verilog instance (actually the desigerdnichy) intact from
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the beginning. It is much easier than restoring it from thierigeproduced by first
flattening the netlist. Moreover, the quality of the resgtipartition should be better
than the cluster restoration and hypergraph coarsening.

Algorithms which try to take advantage of the informatiocluded in the design
hierarchy include the following.

Chau-Shen [94] proposes an architecture driven partitgpaigorithm for netlists
with multiterminal nets. The target architecture was a ifeld-programmable gate
array (FPGA). The goals of the algorithm are to minimize thenber of FPGA chips
used and to maximize routability.

Tun [68] uses a module-based simulation mapping methodhoAgh the details
of the algorithm are not described in the paper, the auttatesthat it reduces the
communication cost and achieves a better load balancing.

K.H. Chang[95] uses the module tree as the data structureaithsif the circuit
hypergraph. Modules are not moved by the algorithm. Nor dioese an iterative
improvement technique. The author does not mention thézeugéshieved by the algo-
rithm and concludes that the algorithm achieves bettelopadnce than a sequential
simulation and is efficient.

Jong-Sheng [96] proposes a module migration based partigaalgorithm which
tends to keep the cluster intact in order to reduce the nesizat The algorithm
implicitly promotes the move of clusters of modules during module migration
process by paying more attention to the neighbours of movedulas, relaxing the
size constraints temporarily during the migration processl controlling the module

migration direction. Load balancing was not considerechia algorithm.
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Iterative algorithms start from an initial partitioningdiry to improve it.

The well-known iterative algorithms for circuit partitiomg are CLIP/CDIP[4],
Metis/hMetis[6] and F-M[3]. It is worthwhile noting that ¢hCLIP[4] algorithm
tries to detect and restore the cluster destroyed by thatiterpartitioning algorithm
based on the flattened netlist.

Harypis[6] introduces a coarsening phase in a multilevgengraph partitioning
algorithm. During the coarsening phase, a sequence of ssicety smaller hyper-
graphs is constructed. The purpose of coarsening is toeceeaimaller hypergraph
while preserving the partitioning quality obtained frone thriginal hypergraph. The au-
thors claim that hmetis produces partitions that are cterdly better than other widely
used algorithms and is one to two orders of magnitude falsger dther algorithms.

Dutt and Deng [4] and [6] try to reduce the size of the hypesbgrom the
bottom up, i.e. they extract clusters from the flattenedistetlithout worsening the
quality of the partitioning of the original netlist. Our aigthm works from top-to-
bottom-it flattens the design hierarchy step by step and comiges between the load
balancing constraint and the minimum cutsize.

Iterative algorithms generally work on any hypergraph wtalr algorithm
specifically targets distributed Verilog simulation. Thaimpurpose of our algorithm
is to try to keep the Verilog instance (actually the desigerdnichy) intact from
the beginning. It is much easier than restoring it from thrigdeproduced by first
flattening the netlist. Moreover, the quality of the resgtipartition should be better

than the cluster restoration and hypergraph coarsening.
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6.4 Motivation and objective

The existing partitioning algorithms are usually perfochen the flat netlist of the
circuit. The purpose of the partitioning algorithms are docuit layout. Currently there
is no partitioning algorithm specifically designed for distited Verilog simulation
while Verilog simulation has its own characteristics innterof partitioning quality.

First of all, netlist described by Verilog contains desidgararchy that has multiple
Verilog instances. The Verilog instances are the best patesandidate for the initial
partition since the Verilog instances are representatfidhe design blocks that are
supposed to be coupled loosely. The existing partitioniggrdhm needs to restore
clusters in the flat netlist through computation of the sgreonnected component in
the circuit hypergraph.

Second, the partition quality of the existing partitionialgorithms are poor. The
performance of distributed Verilog simulation will be werthan the sequential Verilog
simulation.

Third, the efficiency of the existing partitioning algomthis relatively low.

There are some efforts to reduce the number of the hypergragés. However, the
partitioning of the circuit with millions of gates still tak long time.

In order to enhance the solution quality for the iterativetipaning algorithm, we
need to take advantage of the design hierarchy in netlistritbesl by Verilog in order
to overcome the above disadvantages of the existing [pauitiy algorithm. This is the
motive for developing our new algorithm.

The primary objectives of our partitioning algorithms arefallows.

1. The partitioning algorithm should produce the minimatoounication and make

workload among different computers as balanced as possible
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2. The partitioning algorithm should preserve the desigmmeichy by the hardware
design engineers

3. The partitioning algorithm should be able to choose théara number of
computing nodes

4. The partitioning algorithm should take advantage of thmary input such as

flip-flop or registers to exploit the concurrency in the dasig

6.5 Hierarchy in Verilog

The module is the basic unit of code in the Verilog languagehBehavioral and
structural code can be contained within a module. The emndajgen property of the
module gives designers the ability to reuse the module in &I\design. Moreover,
the module provides an interface to the program while hidivegcomplexity inside of
it. Therefore the module and its instance are natural cameldfor partitioning. We
introduce the concept of a super-gate in this paper in omeescribe the module
instance in a circuit hypergraph.

Modules can reference lower level modules and describentieeconnections
between them as part of the hierarchy. Each module instanae independent,
concurrently active copy of a module. It contains the namheforiginal module, an
instance name that is unique to that instance (within theeatimodule) and a port
connection list.

Usually Verilog module instances communicate with othstances through ports.
The encapsulation property of Verilog modules helps to@aehia smaller cutsize when
we patrtition the circuit. Although Verilog supports crossdule reference, standard

design practice discourages such usage.
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Figure 6—1 shows a design hierarchy described by Verilog [&ft side of the
figure is the Verilog source code while the right side displ&ye design hierarchy
and its interconnection. Coupling is usually loose betweenl®y instances and is
tight inside a Verilog instance (at least for a good VLSI de3i Therefore, if the
circuit is cut at instance boundaries, the cutsize will baltn and inter-processor

communication will be reduced.

Module m1(pl, p2, p3);
m2 m2a(......);
m3 m3a(......);
endmodule

ml

m3a

Module m2(p1, p2, p3);

endmodule

A
A

Yvy

mda

Module m3(p1, p2, p3);
m4 méa(......); m2a
m5 m5a(......);

endmodule

AAA A

mba

A 4

Y

module m4(p1, p2, p3)

endmodule

module m5(p1, p2, p3);

endmodule

Figure 6-1: Verilog module/instances and interconnection

We should note that not only does RTL Verilog source codeainrdesign
hierarchy information, but the synthesized gate levelgtesiso contains exactly the
same design information. The design information is lostradélaboration, a process to
flatten the design hierarchy. However, if partitioning isxddefore elaboration we are

able to take advantage of the design information.
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6.6 Implementation
In this section, we will explain the implementation of ougalithm in detail.

6.6.1 hypergraph

Partitioning algorithms operate on hypergraphs which rhadsrcuit. The gates
and wires of the circuit are mapped to the vertices and edbtsediypergraph. In a
hypergraph edges may connect two or more vertices and astgucvides a more
realistic model of a circuit.

In the circuit hypergraph, we make use of two kinds of vedid®ne is an
ordinary gate, such as AND, OR, NAND, XOR, etc. The other kindexttex is a
Verilog instance. Actually we can treat it as a super-gat wiore complex logic than
ordinary gates. We associate the number of gates with eatéxva the hypergraph
in order to get an even load distribution. The introductidrsaper-gates reduces the
number of vertices thereby making the algorithm more efiicid his load metric
does not work for behavioral Verilog code since we cannotsueathe complexity
of the behavioral code. This algorithm targets Verilog catléhe gate level, i.e. after
synthesizing the RTL code.

Figure 6—-2 contains a hypergraph which is composed of twdskaf vertices,
gates and super-gates (Verilog instances).

In figure 6-2, there are two Verilog instances, ul and u2 whiehrepresented
by two vertices in the hypergraph. However, in the zoom-alipse we see that both
ul and u2 have their own sub-graphs, each of which includéipteigates or Verilog

instances.
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Figure 6-2: Hypergraph represented by Verilog

Kind visibility primitive example
A Yes Yes Gate outside Vlog instance
B Yes No Top level Vlog instance
C No Yes Gate inside Vlog instance
D No No Sub-level Vlog instance

Table 6-1: Logic values and their purposes

Before we introduce the data structure used in the algorithendefine two

properties of a vertex. We say that a vertex is not visible i§ inside of a Verilog

instance , otherwise it is visible. We say that a vertex impive if it cannot be

decomposed into multiple vertices, otherwise it is not tii@. Consequently there are

four kinds of vertices, as shown in table 6-1.

For example, in figure 6-2, all of the nodes inside the zoonetlijtse are of kind

C, while the node zoomed out is of kind B. The properties of titexecan change

during the partitioning process. For example, the verteidm of a Verilog instance
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will become visible after flattening. Any invisible vertexlishave the same partition id
as its parent. Therefore, only visible vertices will appmathe hypergraph.

The complexity of any partitioning algorithm is proportadrto the number of
vertices. A reduction in the number of vertices in a hypgrgreesults in simpler

hypergraph and a more efficient partitioning algorithm.

6.6.2 data structure

Figure 6—3 shows the data structure used in the partitioalggrithm. The
hypergraph is represented as a vertex vector and an edg®.Véath vertex contains
the load, a pointer to its parent, the partition id, the nkea@lring vertices list, the
Behring edges list and the input ports list. The input pogsdontains all of the input
ports of the vertex and the internal vertices connectedeartput ports while the
output ports list contains all of the vertices to which it nents. The ports can be used
to flatten a vertex. All of the invisible vertices are expamhdao visible vertices when
a vertex is flattened. Details of flattening are explaineduipsgction 6.6.8.

The bucket is the data structure used to arrange verticdsiorder of their gain
values. It was first used in [3] in order to improve the runtipggformance of the
FM[3] algorithm. The bucket data structure is inspired by bBucket sorting algorithm.
It has the following two advantages.

e Locating a vertex with the highest gain in the bucket is camistime
e After gain updating, the re-insertion of a vertex into thelet is accomplished
in constant time

As shown in figure 6—4, the bucket is actually a two-dimenaidist. All of the

vertices on the same row have the same gain value while eiffeows are ordered by
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Vertex

-gain : int Edge -
_locked : bool -locked_num[2] : int
-partition_id : int -unlocked_num([2] : int

-neighbor_vector : obje

—
~

-neighbor_vector : objeq
-neighbor_edge : object]

[]:B_' Neighboring
ports 4 vertices of ports
Vertex vector I
| - | Neighboring
vertices of vertex

Figure 6-3: Data structure of the partitioning algorithm

the gain value. All vertices on the same row form a doubleddhkst by pointing to
the previous and the next vertex. The advantage of doulkeditist over single linked
list is that the remove operation on the double linked listagstant time while the
remove operation on single linked list is linear time. It Wbmake a huge difference
when the circuit hypergraph has millions of vertices. Oypezxments[73] show that
the runtime performance of FM[3] based on single linkeddwstild be 300 times

slower than the algorithm based on double linked list.

6.6.3 Verilog parser and hypergraph builder

The Verilog parser reads in the Verilog source code and &uiid hypergraph.
In the hypergraph, the Verilog instances are treated ag-ggtes and are therefore
represented as one vertex. The Verilog parser is extendedtfie original Verilog

parser of Icarus[58] Verilog simulator.
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Figure 6—4: Bucket data structure for vertex movement

6.6.4 Cutsize and gain from the movement

A circuit netlist is modelled by a hypergraph &=V, E > where V is the set of
vertices while E is the set of nets or wires in the circuit. Buge is not cut if all the
vertices of the edge reside in the same partitioning. Otiserthe edge is cut. The cost
of the cut is defined to be r-1 while r is the number of the partig in which the cut

resides. The cutset of the circuit consists of all the edgaisiware cut.
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The cutsize of the circuit is defined to be the sum of cost o€ttt in the cutset
as shown in formula 6.1. In the formula, stands for the,;, cut in the circuit while n
stands for the number of cuts in the circuit.

cutsize =Y _ cost(c;) (6.1)

=1

Gain of the vertex movement is defined to be the immediatectemuin cutsize
as shown in formula 6.2. In the formula, m is the number of etitsr the vertex
movement while n is the number of cuts before the vertex mevem; stands for the

iy, CUt in the circuit. The negative gain means there is no réglueh the cutsize.

gain = i cost(c;) — zn: cost(c;) (6.2)

=1

The goal of the iterative movement in the partitioning aitjon is to minimize

cutsize through positive gain of the vertex movement.

6.6.5 Load balancing constraint

A successful partitioning of a distributed Verilog simidat depends on three
factors- communication, load and concurrency. Since ibispossible to optimize
each of these factors in isolation from one another, a com{@® must be sought. We
attempt to minimize the communication between the processbile balancing their
computational load.

We define the load on a processor as the number of gates in tti@opaassigned
to the processor. We make use of a load balancing factor bhwaliows us to measure

the percentage difference in the load on different progesso
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load * (1/k — b/100) <= load[i] <= load % (1/k + b/100) (6.3)

In the formula 6.3, load[i] is the number of gates in partitiowhile load is the
number of gates in the circuit. k represents the number afga®ors involved in the
simulation. This load balancing constraint guaranteesttiedifference in the load
assigned to two different processors is less than 2*b peafethe total load of the
simulation.

We have experimented with different values of k and b, andraptthe effect of

different choices of b in 6.7.

6.6.6 Initial partitioning

Our initial partitioning algorithm is an improved depthstisearch partitioning
algorithm whose pseudo is shown in figure 6-5. The algorittaverses the hypergraph
from the primary inputs and adds vertices into a partitione Tnitial partitioning
terminates when all of the primary input ports are visited.

The partitioning algorithm could preserve concurrencyha tircuit since it

distributes the primary inputs into different partitiors shown in figure 6—6.

6.6.7 Iterative moving

The iterative moving of hypergraph nodes is the same as ifritheccia-
Mattheyses (FM) [3] algorithm. It modifies the initial paidn by a sequence of
moves which are organized into passes. At the beginning efsg,all of the vertices
are free to move (they are unlocked), and each possible nsoabdelled with the

immediate change in the total cost which it would cause; ithalled the gain of
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initial_partitioning(G, PI, k)
/*
G is the circuit graph, Pl is the set of primary input and k is the number of
desired partitions
L[] is the array of lists for the graph traversal. Both insertion and removal
operation are done at the head of the list
VISITED is the array to indicate whether the vertex is visited or not. The
initial value of the array is ‘false’.
*/
/[distribute primary input evenly to all partitions
for all verticesv in the set of PI
{
p = (index ofv in PI) * k / (sizeof(PI)); //p is the partition number for vertex
insert(L[p], v);
}

/Ipartition the circuit graph into disjoint sub-graphs
for (i=0;i<k;i++)
{
while (L[i] is not empty)
{
v = remove(L[i]);
assign v to partitioni;
VISITED|v] = true;

for all vertices w adjacent to v such that w is not visited
{

insert(L[i], w);
}

}
}

Figure 6-5: Pseudo code of the initial partitioning aldarit

the move (positive gains reduce solution cost, while negajains increase the cost).
The move with the highest gain is executed, and the move@westthen locked, i.e.
it is not allowed to move again during that pass. Since moangrtex can change
the gains of adjacent vertices, after a move is executed #fleogains of adjacent
vertices are updated. The selection and execution of aga@stmove, followed by

a gain update, are repeated until every vertex is lockedn,Tite best solution seen

during the pass is adopted as the starting solution for tkepess. Iterative moving
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Primary input

Cone 1 Cone 2

Figure 6—6: Initial partitioning result

terminates when a pass fails to improve the quality of thatsmi. The whole process
of the iterative moving is shown in figure 6—7. The detail exg@ltion of the iterative
moving steps follows.
e Step 1: Calculate initial gains for all vertices
e Step 2: Insert vertices into buckets of both partitions
After the initial gain calculation of all vertices is finistheall vertices will be

inserted into the double linked list at the appropriate letid&cation.

Step 3: Locate base vertex from either bucket

Step 4: Move the selected base vertex

Step 5: Update gains of the neighboring vertices of the basex
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Calculate the initial gain of
each vertex in the partition

!

Insert all of the vertices into
their corresponding buckets

!

Look for base vertex among all
of the unlocked vertices

Yes Move the base vertex from
the source partition to the
destination partition

Base vertex
available?

Calculate the maximum partial
accumulated sum of the gains of Insert the base vertex into
the vertices in the free_list. Return the free_list and lock the
the index of the corresponding base vertex

location in the free_list

4 Y

Reverse the vertices in the free_list, For each edge connected
starting from the location indicated to the base vertex, update
by the previous step the gain values of their
neighboring vertices

Y

Reset the vertices, edges and
buckets. Clear the gain value of

each vertex to 0, unlock all the
vertices and empty both buckets

Figure 6—7: The iterative moving of vertices

e Step 6: Calculate the maximum partial accumulated sum ofsgainthe current
pass

e Step 7: Reverse selected vertices
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6.6.8 Flattening

As it turns out, the result obtained using first level supateg is not always
satisfying. For example, if the super-gate is too large,ilit destroy the load balance
constraint. At this time we need to flatten the super-gaterdeoto break it into
more gates and smaller super-gates. The new hypergrapbevjenerated after
this flattening and the algorithm will continue the iteratimoving based on the new
hypergraph. The worse case of the algorithm is when all osthper-gates are broken
into gates and the hypergraph is exactly same as the hypérgfahe gate-level
netlist.

Figure 6—8 shows the original hypergraph and the result efltttening.

f(x,...%,)

33 w f(x..x)
1

ul ul
Figure 6-8: Flattening of the circuit hypergraph
Currently we choose the super-gate with the maximum gate aumithe
partitioning. After the flattening, we need to distributersof the visible nodes from

the flattened modules in order to achieve a load balance.

There are two approaches to re-distribute the load afteflaktening.
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The first is to restart the algorithm from the beginning. Atiee flattening, a
new hypergraph is generated. The algorithm will do theahjpiartitioning on the new
hypergraph, then begin the iterative movement of the hypptgnodes. It is obvious
that this approach will take longer time to finish the paotitng. Hopefully it will
generate an improved cutsize and load balanced partition.

We use the second approach to reduce the partitioning tirfter partitioning,
the lightly loaded partition will pull some nodes from theakidy loaded partition.
The pulled nodes are in the cones along the hyperedge betivedwo partitions.

All nodes in the cone are pulled from the heavily loaded partito the light load
partition. The hyperedge which defines the cone is chosemtgom. We call this
approach as the incremental flattening.

We observe that cutsize will increase if we try to achieve aenmalanced
partition. However, we need to compromise between the zmitsnd load balancing
in order to achieve a better simulation speedup. The minirautsize with a load
imbalance will trigger a rollback explosion. Details areggnted in section 6.7.

When the iterative moving terminates and the partitionirguhtesatisfies the load

balance constraint the partitioning algorithm terminates

6.6.9 Tie breaking

Tie-breaking strategies plan an important role in circaittpioning since different
tie-breaking scheme could lead to different local minimdh& cutsize. Our algorithm
uses affinity to break tie between different vertex candisiab move. The affinity is

defined to describe how close a vertex is bound to its paratitipa. At the beginning
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of the algorithm, the affinity of the vertex is its level fromet root of the hypergraph.
It means the leaf vertices have the smallest affinity withpasent partition.

The idea of affinity extends from the tie-breaking strateggdiby CLIP[4],
which is to give high priority to those neighbors of the mayicells in the next round
of moving based on the locality principle. CLIP[4] algoritiakes this approach in
order to remove large cluster from the cutset. The authofGLdP observed that large
cluster of vertices are still trapped in the cutset despise the small cluster of vertices
could be extracted out of the cutset. Sub-clusters whiclpareof the larger cluster
are able to move between the cutline. However, while onectugier moves in one
direction, another may move in the opposite direction latéis movement will finally
be stabilized and stopped with the sub-clusters residingadh sides of the cutline.

The basic idea of CLIP[4] is that all the neighboring vertiocéshe moved vertex
should be given higher priority to be moved. The rationalla approach is that if one
vertex of a large cluster is moved out of the cutset, all ofdtieer vertices of the same
cluster should be moved in the same direction in order to nlegavhole cluster out of

the cutset eventually.

6.6.10 Pairwise multiway partitioning algorithm

The existing multiway partitioning algorithm can be cldigsl into two primary
approaches: recursive and direct.

The recursive approach applies bipartitioning recurgiwitil the desired number
of partitions is obtained while the direct approach pamtisi the circuit directly. Among
all the previous algorithm mentioned in the related workiise¢ Relaxed locking[90]

and pairwise partitioning[92] belongs to direct multiwagrfitioning algorithms. Figure
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6—9 shows the recursive partitioning algorithm while figérelO shows the pairwise

partitioning algorithm.

Figure 6—9: Recursive multiway partitioning algorithm

Pairwise partitioning is a direct multiway partitioninggarithm. In pairwise
multiway partitioning, the initial partitioning partities the circuit into k partitions
instead of just 2 partitions as in the recursive partitignahgorithm. In the next
step, the algorithm chooses two partitions based on sortexiari Then swapping
of circuit elements is executed recursively between theedgpartitions in order to
further minimize the cut-size of the pair. The pairing and thcursive moving is done
iteratively until the cut-size is minimized and the loaddraling constraint is achieved.

Figure 6—10 shows the principle of the pairwise partitignalgorithm. In

the initial partitioning, we can see that the circuit is gamed into 8 partitions
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Figure 6-10: Pairwise multiway partitioning algorithm

directly. Then in the next step, POO0 and P100 are pairedhegéor iterative cut-size
improvement as indicated by the dotted line. Later POO1 &idl Rre paired together.
There are a number of criteria which can be used to chose ih& gigartitions.
e Random
The pairing of partitions is random. It is simple and effi¢jdosut the pairing
quality is not good
e Exhaustive
The pairing of partitions will be every combination of therfitgons. It is
computationally complex but produces better results bezaus able to climb
out of local minima.

e Cut-based
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The pairing is done between the two partitions between wttiehcut-size is
maximum.

e Gain-based
The pairing is done between the two partitions between wthehcut-size
reduction is maximum.

The recursive algorithm is computationally simple and.fakiwever, it suffers
from several limitations. If the number of partitions are agpower of 2, the desired
number of multiway partition cannot be achieved. Furtheemas the algorithm
proceeds, it becomes harder to reduce the cut-size singeattiBoning is performed
on finer and finer hypergraphs. This observation, combined the assertion in [92]
that their k-way pairwise partitioning algorithm produagsod results efficiently led us

to chose the direct algorithm

6.6.11 Apply pre-simulation to find the optimum partitioning

From the previous description of three metrics for meagupartitioning quality
in section 6.2, we mentioned both communication and loadrza are dependent on
presimulation[81].

Pre-simulation[81] is an efficient approach for evaluating quality of a partition.
[81] provides evidence that the simulation statistics imiaté during the first 10% of the
simulation run will not change a great deal during the remairof the simulation.

We use pre-simulation to evaluate the trade-off betweed bedance and the
communication cost in order to find the best compromise. Therion used to

evaluate a circuit partitioning is speedup during the pnegation. The partition
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which produces the the best speedup for some choice of k asdised in the circuit
simulation.
We used brute force pre-simulation strategy which runs@ithlginations of

parameters k and b.

6.6.12 Putting it all together

Figure 6—-11 contains a flowchart of the algorithm. After thiéial cone partition-
ing, the pairing process is executed in order to pick cardgléor iterative movement.
Then the algorithm moves free vertices between the twotpansi picked by the pair-
ing iteratively until there is no free vertex left or no gain outsize could be obtained.
The algorithm then checks whether the load meets the loahbialg constraint. If
the load balancing constraint is not met, the algorithm wadlhtinue to do incremental
flattening as discussed in section 6.6.8. The pairing,titeranovement and flattening
process are repeated until there is no pairing configuragi@vailable. At the end
of the partitioning algorithm, the minimum cutsize is acieié and load balancing
constraint is met as well.

The termination criteria of pairwise run is based on gainuwtize between all
possible combination of pairing to ensure the convergeftbeopartitioning algorithm.
If all pairing configurations cannot achieve the cutsizengad improve the patrtition,

the partitioner stops.

104



Setup partition
number k and load
balancing facotr b

e

Initial
partitioning

Partition 1

Partition 2

Y

Pairing
configuration
iavailable?

No

Pre-simulation

vood

A,

(o]
Pairing Best partition

A,

Y Terminate
Iterative
moving

Y

No

o free verte:
or no gain?

Yes
Y

Yes Meets load
balancing
constraint

No

¥
Flattening and
load
redistribution

Figure 6-11: Flowchart of the design-driven partitionithgoaithm

6.7 EXxperiments

All of our experiments were conducted on a network of 4 corapgjteach of
which has AMD Athlon (CPU 1G) processors and 512M RAM. They atercon-
nected by a 1Gbit Ethernet network. All of the machines runltinux operating
system while MPICH-GM is used for message passing betweésrdlitt processors.
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We used the synthesized netlist of a Viterbi decoder, what 388 modules
and about 1.2M gates. A million random vectors are fed intodincuit for the full
simulation while 10,000 random vectors are used for praskition. We also used
ISCAS’89 benchmark circuit suite to prove our design-driypamtitioning algorithm
could also work well in the pure flat netlist without the aiady design hierarchy
information.

We assume a unit gate delay and zero transmission delay omire® Each data
point collected in the experiments is an average of five satiark runs. The simulation
time for 1 machine is the running time of the DVS without pastiing.

In the experiments, we compare the performance of DVS wighdisign-driven

partitioning algorithm with that of DVS using htmis[6] asetipartitioner.

6.7.1 Cutsize for Viterbi decoder

We use different values of k and b to generate different zetsi The hyperedge
cutsize is defined as the number of hyperedges that sparphaytartitions. Table
6—2 shows the hyperedge cutsize produced by our desigmdtemative partitioning
algorithm while table 63 lists the cutsize produced by thetis partitioning algo-
rithm. The parameter b is the load balancing factor definddrmula 6.3 while k is
the number of partitions.

Table 6-2 and table 6-3 reveal that our algorithm resulteal significantly
smaller cutsize than the one produced by hMetis. But from #perment result we
also know one of the drawbacks of our algorithm. Our algamiie more sensitive to
the load balancing factor. When the load balancing constisistrict, the algorithm

could produce almost the same cutsize as hMetis partigoaigorithm. We attribute
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k b Hyperedge cut
2 25 2428
2 5 1827
2 75 905
2 10 633
2 125 598
2 15 513
3 25 2930
3 5 2227
3 75 1230
3 10 894
3 125 863
3 15 790
4 25 3230
4 5 2326
4 7.5 1433
4 10 979
4 125 935
4 15 887

Table 6-2: cutsize with design-driven partitioning al¢fom

the sensitivity of load balancing to the load imbalance &f design hierarchy. Since
there is more Verilog instance flattened, it means the dlyarwill downgrade more to

the hMetis partitioning algorithm.

6.7.2 Cutsize for ISCAS benchmark circuit

In order to prove that our multiway design-driven iteratpagtitioning algo-
rithm also works in the flattened netlist, we conduct experita on the ISCAS’89
benchmark circuit. The experiments show that our desigredriterative partitioning
algorithm is downgraded to a normal FM patrtitioning aldamt on the flattened netlist

without any auxiliary design hierarchy information.

107



k b Hyperedge cut
2 25 2675
2 5 2673
2 75 2673
2 10 2669
2 125 2668
2 15 2665
3 25 2932
3 5 2932
3 75 2931
3 10 2935
3 125 2931
3 15 2927
4 25 3195
4 5 3195
4 7.5 3191
4 10 3191
4 125 3191
4 15 3191

Table 6-3: cutsize with hmetis partitioning algorithm

The table 6—4 and 6-5 shows the cutsize generated by theneldrdign partition-
ing algorithm and FM partitioning algorithm on ISCAS’85 béntark circuit, s35932
and s38584 that are described in Verilog. The s35932 has4lg2@s, 3861 inverters
and 1728 D-type flip-flops. The s38584 has 11448 gates, 78@stans and 1452
D-type flip-flops. Please note DDP as the abbreviation of #sgh-driven partitioning
algorithm.

When the algorithm works on the flattened netlist, we found the sensitivity to
the load balancing factor is much less compared to the heilie design hierarchy.
But unfortunately the cutsize produced by the design-drpanitioning algorithm is

exactly same as the FM partitioning algorithm. Howevers tkiwhat we expect when
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b DDP FM
25 47 47
5 47 47
7.5 47 47
10 46 46
125 46 46
15 46 46
25 181 181
5 181 181

75 181 181
10 181 181
125 181 181
15 181 181
25 239 239
5 239 239
75 239 239
10 231 231
125 231 231
4 15 231 231

Table 6—4: cutsize on ISCAS benchmark circuit s39592

A DD OWOWWWWWNDNDNDNDNDNX

we design the algorithm. When there is no design hierarchoramdition available, the

algorithm will downgrade to the normal FM partitioning atgbm.

6.7.3 Presimulation

We used 10,000 random vectors in our pre-simulation in oralgick the best
partition for different combinations of partition numberakd load balance factor b.
The sequential simulation time of the circuit with 10,00@dam vectors is 38.93
seconds.

Table 6-6 shows the simulation time and speedup with thesibioations. We
list the best partitions as determined by the largest speadtable 6-7. Please note

that all of the partitions produced by hMetis are slower th@nsequential simulation.
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k b cutsize by DDP cutsize by FM
2 25 53 53
2 5 53 53
2 75 53 53
2 10 53 53
2 125 52 52
2 15 52 52
3 25 167 167
3 5 167 167
3 7.5 167 167
3 10 167 167
3 125 167 167
3 15 165 165
4 25 211 211
4 5 211 211
4 7.5 211 211
4 10 211 211
4 125 211 211
4 15 211 211

Table 6-5: cutsize on ISCAS benchmark circuit s38584

We attribute this to the huge communication cost. The comaation cost leads to
enormous rollbacks and slow GVT computation. Both of thediacteads to huge
memory consumption. Since memory swapping happens soendigguwe cannot

expect any speedup over the sequential Verilog simulation.

6.7.4 Simulation time

Table 6-8 and figure 6—12 shows the simulation times and spsedith different
combinations of the load balancing factor and cutsize. Huuential simulation time
of the circuit is 3639.70.

From table 6-8, we know that the minimum cutsize does notydwasult in

the best performance since the performance is also depeoddoad balancing.
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k b Cutsize Simulationtime (Seconds) Speedup
2 25 2428 61.79 0.62
2 5 1827 41.86 0.93
2 75 905 30.65 1.27
2 10 633 25.78 1.51
2 125 598 23.59 1.65
2 15 513 29.72 1.31
3 25 2930 56.42 0.69
3 5 2227 39.72 0.98
3 75 1230 28.87 1.35
3 10 894 21.50 1.81
3 125 863 22.37 1.74
3 15 790 25.44 1.53
4 25 3230 88.47 0.44
4 5 2326 42.78 0.91
4 75 1433 19.86 1.96
4 10 979 24.80 1.57
4 125 935 21.04 1.85
4 15 887 24.18 1.61

Table 6—6: Pre-Simulation time with design-driven pasttng algorithm

k b Cutsize Simulationtime (Seconds) Speedup
2 125 598 23.59 1.65
3 10 894 21.50 1.81
4 75 1463 19.86 1.96

Table 6-7: Best partition produced by design-driven partitig algorithm

We got the best performance with the combination of a cutsiZ&98 and a static
load balancing factor of 0.25 on two machines. From the datable 6-8, we also

observed that the load balancing becomes more and moretanpas the number of

k b Cutsize Simulationtime (Seconds) Speedup

2 125 598 2201.98 1.65
3 10 894 2033.35 1.79
4 75 1463 1905.60 1.91

Table 6-8: Simulation time with design-driven partitiogialgorithm
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Figure 6-12: Simulation time

machines increases from 2 to 4. Because of increasing cuteezdidn’t see much
reduction of the simulation time as the number of machinesemmses from 2 to 4. This
is a consequence of the size of the design. As the number diinggcincreases, the
circuit is divided more finely and more design hierarchy istodgyed. In short, the
communication cost offsets the gain from the load distrdyut

We also notice that the speedups of the full simulation withillion random
vectors are slightly less than the speedups achieved frersiprulation with 10,000
random vectors. We attribute this to the cost of Time Warpthessimulation runs
longer, the overhead costs of Time Warp (fossil collectiod &VT calculation)
increase significantly.

Without a good partitioning algorithm, the distributed siation is slower than the

sequential simulation, as shown in the first two rows in ta48.
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Figure 6—14: rollback number during the pre-simulation

6.7.5 Messages and Rollback

Figures 6—13 and 6—14 confirm the relationship between ladahbe and
communication. Relaxing the load balancing constraint (hereasing b) results

in fewer messages and rollbacks. With an increase in the auofomachines,
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communication increases and both of these quantitiesasereThese results underscore

the importance of pre-simulation in picking the final paotit

6.8 Conclusion

A partitioning algorithm plays an important role in disuiled VLSI simulation.
Unfortunately, most partitioning algorithms are very ¢pstnd do not always yield a
good cut size because they operate on a flattened netlistd€3ign-driven partitioning
algorithm yields a significant reduction in cutsize complai@ such algorithms by
taking advantage of hierarchical design information. Mweee, it preserves the locality
expressed in Verilog modules and instances. The algorittodyzes a 4.5 fold
reduction in cutsize compared to the hmetis [6] partitignatgorithm. The reduction
in cut size and the preservation of locality lead to a speedup91 on four machines

than the sequential simulation.
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CHAPTER 7

Conclusions and future directions

The value of the distributed Verilog simulator mostly deggimn how well it can
achieve simulation speedup, eliminate the memory linutetiposed by the simulation
on a uniprocessor and minimize the overhead inherent intakdited simulation.
Simulation speedup in a distributed Verilog simulator isgible only if the inherent
parallelism in the simulated circuit can be extracted whilke synchronization overhead
is kept minimal. Without our optimistic techniques appliedthe distributed Verilog
simulation, the distributed Verilog simulation could beweér than the sequential

Verilog simulation, as described in the preliminary expemt in chapter 4.

7.1 Thesis Contribution

The main contributions of this thesis are the following:
e Construction of an object-oriented framework for distréditverilog simulation.
This framework provides us with a vehicle to experiment wita synchroniza-
tion and partitioning techniques which lie at the heart atributed Verilog

simulation
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DVS has proved to be a good experiment environment in theildiséd simula-
tion lab. Besides being used for the experiments mentionékisrthesis, it has
been utilized by other students[97] in distributed simolatab for optimization
of Time Warp with learning automata.

Event reconstruction was developed as an optimizatiomtgak used to reduce
memory consumption in Time Warp

State saving and restoration and event saving add conBlgeoathe synchro-
nization cost. Due to the fine event granularity of Verilogmgiation and and
the extremely large number of events, the cost for evenhgasould be even
larger than the state saving. If the memory consumptionlprolis not handled
properly in distributed Verilog simulation, the simulationay not even finish.
A design-driven iterative partitioning algorithm whichkes advantage of the
Verilog design hierarchy. The algorithm attains a compsmbetween minimal
cutsize and load balance resulting in a good speedup.

In our experiments, we found that excessive communicatiuses more
rollbacks and delays GVT computation. Thus, the enormoussage traffic
consumes the memory so fast that it eventually kills the Etan. In order to
minimize the message traffic between different partitidghs, cutsize needs to be
minimized while load balance between partitions is well mained.

A Verilog design has hierarchies which can be utilized tolexircuit paral-
lelism and minimize cutsize. However, existing partitimgpialgorithms for logic

simulation usually work on a flattened netlist. A partitiogialgorithm without
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the design information as the guide lead to huge cutsizehwmakes the dis-
tributed Verilog meaningless because it is even slower tharsequential Verilog

simulation.

7.2 Future Directions for Work

e Replicated logic to minimize cutsize
In a real industrial level design, there are always some lib@ok components
which are not easy to break into any partition. For examyple,register block is
supposed to provide setup value and parameters to all obxeksh The fanout
from the register block to all other blocks is huge. Moreptiee communication
from the register block to other blocks are enormous if tiggster read and write
are frequent. Figure 7—1 shows such a circuit. BlockO is linteeall of the other
blocks, Blockl, Block2, Block3 and Block4.
Fortunately the logic in the register block is normally sin@herefore, we could
be able to replicate it in both partition 1 and partition 2,saswn in figure
7-1. In this way, the communication will be reduced signifita This kind of
technique is already employed in FPGA partitioning. Howet@ date it has not
been used in the distributed Verilog simulation.
A difficulty in implementing replicated logic lies in idefing it. The block
which can be replicated needs to be small in terms of the gatetdut its
interconnection with other blocks is significant. Currertig replicated logic
in an FPGA patrtition is done by the engineers manually. It gl interesting
to automate the partitioning with the replicated logic istdbuted Verilog

simulation.
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Figure 7-1: Replicated logic in the partitioning

e Rollback reduction techniques
Smart rollback filter could be applied to reduce rollbacke Hasic idea of the
smart rollback filter is to take advantage of the propertiethe logic gates. For
example, if one input of an AND gate is 0, the output of the AN&egwill be 0

no matter what the values of other input are. If the rollbaafggens in one of the
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input ports of the AND gates and the value of the other input pamains 0, the
rollback will be ignored since it will not affect the final quit of the AND gate.
Faster GVT computation algorithm

In the experiment, we noticed excessive memory consumjpdiopartitions gen-
erated by DFS, BFS and random partitioning algorithm. Duthregsimulation,
the memory consumption keeps growing until the system ruthiobmemory and
the simulation process crashes.

After debugging and analyzing the simulator behavior, wentbthat the
excessive memory consumption is caused by slow GVT comipatawvhich uses
Mattern’s GVT algorithm[36] to computer GVT in OOCTW. The figmance
degrading of this algorithm is caused by too many messagesba the
simulation processes. After the first cut is initialized e tMattern’s GVT
computation, all the machines need to collect all white ragss to construct
the second consistent cut. However, for the simulation wiHition generated
by DFS, BFS and random patrtitioning, too many white messaged to

be collected, thus making the GVT computation very slow.rEwerse, the
simulation is still running at the full speed, generatingesmormous number of
new events, which will be inserted into the event queue. &fossil collection

is not executed efficiently because of the slow GVT compotatihne memory
consumed by the event queue and history state queue wiltialgnconsume all
memory in the system and kills the simulation.

In the future, we need to put some research effort on the f&dt Gmputation
algorithm so the efficient fossil collection could be execlin order to attack the

memory consumption problem.
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e Heuristic pre-simulation algorithm
Currently we use brute force pre-simulation which runs athbmations of
parameters k and b. In order to reduce the time devoted tgiprelation, we are
trying to develop heuristic pre-simulation algorithm winionly runs a limited
set of the k and b combinations. Basically the algorithm useari search or
other heuristic search algorithm to speedup the searchedbeist balance point
between communication and load balance.
The disadvantage of the heuristic algorithm is that it cdagdrapped in the local
minimum so it is not able to locate the best balance point. Westudy further
how to reduce the presimulation time without sacrificing plagtitioning quality.

e Port DVS to shared memory machine or computer with dual/oquoad
As we know, the message passing in the distributed envirohieghe bottleneck
for the distributed Verilog simulation. This is also the mation for us to try to
find out a better partitioning algorithm. However, on theestkide, we could also
take advantage of the shared memory machine in order to eetiecoverhead of
message passing. Moreover, as the machines with dual/qued become more
and more popular and cost attractive, they could become ar@ssarch platform

with the simulation processes running as threads in the oterp
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