
Optimization techniques for distributed
Verilog simulation

Lijun Li

Doctor of Philosophy

School of Computer Science

McGill University

Montreal,Quebec

March 2008

A thesis submitted to McGill University
in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

Copyrightc©2008 Lijun Li

DEDICATION

To my parents, my dear wife and my lovely daughter.

ii

ACKNOWLEDGEMENTS

I’d like to thank my parents first. My father never forgets to mention my PhD

progress whenever he has chance to talk with me over the phone. My mum, who almost

spoils me, would punish me if I skipped the school. I still remembered how she dragged

me to the school when I tried to avoid an exam in a blizzard since I cannot walk in the

snow deep as my knee. But my mum said deep snow cannot be an excuse for absence

from the school. My father has been working in the elementaryschool for over 30 years.

He thinks of high education over anything else. In the early 1990s, the money spent on

my high school and my university education ate up all of our family savings. I could

never pay back the debt I own to my parents.

I need to give my sincere thanks to my supervisor, Carl Tropper. Without his

financial support and emotional encouragement, I could never finish my PhD thesis. He

even allows me to continue my PhD study part-time after I got ajob in AMD. Carl will

become my role model in his academic seriousness and creative research methodologies.

I’d like to thank to the members of my PhD committee, who steermy research

direction and monitor my research progress. Their constructive feed-back made my PhD

dream come true.

Thanks to my friends, David Xu, Jun Wang and Hai Huang. It’s really nice to work

with them in the distributed simulation lab. The laughter after solving the problems in the

lab will become a lifetime happy memory. A special thanks need to give to Hai Huang.

He developed a nice partitioning framework, based on which life was much easier for my

partitioning algorithm research.

iii

I would like to thank our system staff. Ron always gave me prompt support when

I had problem with the machines and Myrinet in lab 107 and the Linux software tools,

eg, latex. Diti Anastasopoulos, Lucy St-James and Lise Minogue gave me full support

for my PhD study such as organizing my comprehensive exam, proposal and progress

report. Lise Minogue even agreed to be my daughter’s guarantor when she applied for her

Canadian passport.

Thanks to Steve Williams, who developed the Icarus Verilog simulator and made it

public as open source code. Thanks to Lijuan Zhu and his supervisor from Rensselaer

Polytechnic Institute, who generously lend us Verilog source code with 1 million gates to

facilitate our partitioning experiments.

I am so happy that my daughter (Xinyi Li) came into our life during my PhD study.

She slowed down my PhD study but she also brought much happiness to my family. She

constantly shifted my attention from my computer to her smiling or crying face. Thanks,

my little angel. You keep your dad rejuvenated.

The last but not the least, my wife (Xin Ji), deserves my sincere thanks. She endured

the poor but busy life of a PhD student without any complains.

iv

Contribution of Authors

The results in Chapter 4 have been published in Parallel and Distributed Simula-

tion(PADS), 2003[1]. The extended result has been published in International Journal of

Simulation, Systems, Science & Technology, 2003[2]. My coauthors are Hai Huang and

Carl Tropper. Hai Huang designed and implemented a frameworkfor the partitioning of

DVS, distributed Verilog simulator. He also implemented the classical FM[3] algorithm

and the CLIP[4] algorithm. We are grateful to Carl Tropper for suggesting distributed

simulation for Verilog language. The experiment result on ISPD98 benchmark circuit did

not appear in the thesis since it was done by Hai Huang.

The results in Chapter 5 has been published in Parallel and Distributed Simulation

(PADS) 2004. My coauthor is my supervisor, Carl Tropper.

The results in Chapter 6 has been submitted to SCS SIMULATION journal. The

preliminary results has been published in Parallel and Distributed Simulation (PADS)

2007[5]. My coauthor is Carl Tropper. All portions of this thesis that have been published

were originally written by myself and carefully corrected and reviewed by coauthors. All

algorithms mentioned in the thesis are designed on my own andcomplemented through

discussion with Carl Tropper.

v

ABSTRACT

Moore’s Law states that computational power will roughly double every 18 months.

To the semiconductor designer, this means the never-endingchallenge of bringing in-

creasingly larger and more complex ICs (Integrated Circuits)to market. It is well known

that the principle bottleneck in circuit design is simulation. Uniprocessor simulators may

not be able to keep up with increased demands on them for both speed and memory.

This thesis has three main contributions.

The first contribution is a distributed Verilog simulation environment which can

be executed on a cluster of workstations using a message-passing library such as MPI

(Message Passing Interface). It employs OOCTW as the synchronization backend and

takes advantage of the open source code of Icarus Verilog simulator. It is designed to

be flexible for future extension and optimization. To our knowledge, DVS is the first

distributed Verilog simulator.

The second contribution is event reconstruction, a technique which reduces the

overhead caused by event saving. As the name implies, event reconstruction reconstructs

input events and anti-events from the differences between adjacent states, and does not

save input events in the event queue. Memory consumption andexecution time of event

reconstruction are compared to the results obtained by dynamic checkpointing revealing

that event reconstruction yields a significant reduction inmemory utilization and leads to

a faster simulation.

The third contribution is a multiway design-driven iterative partitioning algorithm for

Verilog based on module instances. We do this in order to takeadvantage of the design

hierarchy information contained in the modules and their instances. A Verilog instance

vi

is represented by one vertex in a circuit hypergraph. The vertex can be flattened into

multiple vertices in the event that an adequate load balanceis not achieved by instance

based partitioning. In this case the algorithm flattens the largest instance and moves gates

between the partitions in order to improve the load balance.The algorithm produces a 4.5

fold reduction in cutsize compared to the hmetis [6] partitioning algorithm. The reduction

in cut size and the preservation of locality in the design hierarchy lead to a speedup of

1.91 on four machines compared to the sequential simulation.

vii

ABRÉGÉ

La Loi de Moore stipule que la puissance des processeurs double approximativement

tous les 18 mois. Pour le constructeur de semi-conducteurs,celaéquivautà un constant

probl̀eme d’apporter des CI (Circuits Integrés) de plus en plus larges et complexes sur

le march́e. Il est bien connu que le goulet d’étranglement dans la conception de circuits

réside dans la simulation. Les simulateursà simple processeur peuvent ne pas suivre

les demandes croissantes pour plus de vitesse et de mémoire. Cette th̀ese pŕesente un

environnement de simulation Verilog avec plusieurs techniques d’optimization. Verilog

est une langue de conception digitale couramment utilisée. Une simulation distribuée

Verilog peutêtre ex́ecut́ee sur un groupe de postes de travail en utilisant une librarie

passant des messages telle que IPM (Interface Passant des Messages).

Nous d́ecrivons la reconstruction d’événements, une technique qui réduit l’en-t̂ete

cauśe par une sauvegarde d’événements, et comparons sa consommation de mémoire et

son temps d’ex́ecution avec les résultats obtenus par checkpointing dynamique. Comme

son nom l’indique, la reconstruction d’événements reconstruit la saisie d’événements et

d’anti-événements̀a partir de la difference entre lesétats adjacents, et ne sauvegarde pas

la saisie d’́evénements dans la queue desévénements.

Nous proposons un algorythme partionné redondant̀a plusieurs voies et orienté

vers le design pour Verilog basé sur des instances de modules. Nous faisons cela afin

de profiter de l’information híerarchique de conception contenue dans les modules

et leurs instances. Une instance Verilog est représent́ee par un vertex dans un circuit

hypergraphique. Ce vertex peut etreécraśe en plusieurs vertexs dans le cas où une charge

ad́equate n’est pas produite par une instance basée sur des partitions. Dans ce cas là

viii

l’algorythmeécrase la plus grosse instance et déplace les portes entre les partitions afin

d’améliorer la charge. Nous présentons nos resultats en utilisant cet algorythme sur un

circuit posśedant un million de portes décrit sur Verilog.

ix

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

Contribution of Authors .. . v

ABSTRACT . vi

ABRÉGÉ . viii

LIST OF TABLES . xv

LIST OF FIGURES . xvii

1 Introduction 1

1.1 Motivation of Distributed Verilog Simulation 3

1.2 Objectives of Distributed Verilog Simulation 4

1.3 Overview of the Thesis . 4

2 Background 6

2.1 A brief history of the semiconductor electronic design automation . . . 6

x

2.2 Modern ASIC design flow . 7

2.3 The hardware description language 10

2.3.1 Verilog . 10

2.4 Continuous and discrete event simulation 13

2.5 Logic Simulation . 16

2.5.1 The Logic Simulation Model 18

2.5.2 Discrete Event Logic Simulation 18

2.6 Event-driven Verilog simulation 20

3 Parallel/Distributed logic simulation 22

3.1 PDES: Parallel/Distributed discrete event simulation. 22

3.2 Conservative Synchronization .. 24

3.3 Optimistic Synchronization algorithm: Time Warp 26

3.4 State of the art of Time Warp . 29

3.4.1 Rollback reduction . 29

3.4.2 GVT and fossil collection . 29

3.4.3 Other memory saving techniques 33

3.5 Parallel and distributed logic simulators 34

3.5.1 Parallel and distributed Verilog/VHDL simulators 37

4 DVS: An object-oriented framework for distributed Verilo g simulation 38

4.1 Overview of Icarus Verilog . 38

4.1.1 IVerilog Compiler . 39

4.1.2 VVP Simulator . 40

4.2 Architecture of DVS . 41

xi

4.3 VVP parser . 42

4.3.1 Structural item: functor . 43

4.3.2 Behavioral item: vthread . 43

4.4 Partitioner . 44

4.4.1 Design of Partitioner . 44

4.4.2 Partitioning functors and vthreads 45

4.5 OOCTW(Object-oriented CTW) . 46

4.5.1 Motivation . 46

4.5.2 Class hierarchy of OOCTW . 47

4.6 Distributed Simulation Engine .. 49

4.7 Optimization to distributed Verilog simulation engine. 50

4.8 Preliminary Experiments . 51

5 Event Reconstruction in Time Warp 55

5.1 Introduction . 55

5.2 Related work . 57

5.3 Logic simulation and its characteristics 58

5.3.1 Characteristics of logic simulation 58

5.4 Implementation of Event Reconstruction 60

5.4.1 Data structure . 60

5.4.2 Event annihilation . 61

5.4.3 Port flag . 62

5.4.4 Event builder . 62

5.4.5 Event processing loop . 66

5.5 Experiments . 67

xii

5.5.1 Memory Usage . 68

5.5.2 Simulation Time . 71

6 A multiway design-driven partitioning algorithm for dist ributed Verilog simu-

lation 74

6.1 Introduction . 74

6.2 Metrics of partitioning quality .. . 76

6.2.1 Communication . 76

6.2.2 load balancing . 77

6.2.3 Concurrency . 77

6.3 Related work . 78

6.3.1 Non-iterative partitioning algorithm 78

6.3.2 Iterative partitioning algorithm 79

6.3.3 Iterative partitioning algorithm utilizing design hierarchy 82

6.4 Motivation and objective . 85

6.5 Hierarchy in Verilog . 86

6.6 Implementation . 88

6.6.1 hypergraph . 88

6.6.2 data structure . 90

6.6.3 Verilog parser and hypergraph builder 91

6.6.4 Cutsize and gain from the movement 92

6.6.5 Load balancing constraint . 93

6.6.6 Initial partitioning . 94

6.6.7 Iterative moving . 94

6.6.8 Flattening . 98

xiii

6.6.9 Tie breaking . 99

6.6.10 Pairwise multiway partitioning algorithm 100

6.6.11 Apply pre-simulation to find the optimum partitioning 103

6.6.12 Putting it all together . 104

6.7 Experiments . 105

6.7.1 Cutsize for Viterbi decoder . 106

6.7.2 Cutsize for ISCAS benchmark circuit 107

6.7.3 Presimulation . 109

6.7.4 Simulation time . 110

6.7.5 Messages and Rollback . 113

6.8 Conclusion . 114

7 Conclusions and future directions 115

7.1 Thesis Contribution . 115

7.2 Future Directions for Work . 117

Bibliography 121

REFERENCES . 121

xiv

LIST OF TABLES

Table page

2–1 The logic state and its purpose 18

4–1 Events in distributed Verilog simulation engine 49

4–2 Cost of operations in DVS . 53

5–1 The memory usage ratio . 69

6–1 Logic values and their purposes 89

6–2 cutsize with design-driven partitioning algorithm 107

6–3 cutsize with hmetis partitioning algorithm 108

6–4 cutsize on ISCAS benchmark circuit s39592 109

6–5 cutsize on ISCAS benchmark circuit s38584 110

6–6 Pre-Simulation time with design-driven partitioning algorithm 111

xv

6–7 Best partition produced by design-driven partitioning algorithm 111

6–8 Simulation time with design-driven partitioning algorithm 111

xvi

LIST OF FIGURES

Figure page

1–1 Bottleneck in the design cycle .. . 2

2–1 ASIC design flowchart . 7

2–2 Photograph of Power4 processor by IBM 9

2–3 Structural and behavioral description of Verilog 11

2–4 Behavioral description of a flip-flop in Verilog 12

2–5 Analog circuit . 14

2–6 Analog simulation of the circuit 15

2–7 Discrete event simulation algorithm 17

2–8 Logic simulation of a digital circuit 19

2–9 Verilog simulation pseudo code 21

3–1 Overview of the parallel/distributed system 23

xvii

3–2 Components of a logical process with Time Warp 27

3–3 A time diagram with a cut . 32

4–1 Architecture for Icarus Verilog 39

4–2 Architecture of DVS . 42

4–3 UML description of partitioner 44

4–4 UML description of OOCTW . 48

4–5 Simulation time in seconds vs. number of machines 53

4–6 Number of events processed by every machine(Upper part)and number of

messages sent and received(Lower part) by every machine vs.number

of machines. Note: The two figures use different scale. 54

5–1 The size of the state and the event 59

5–2 Cluster structure . 61

5–3 Event reconstruction .. 63

5–4 Input event reconstruction algorithm 64

5–5 Anti event reconstruction algorithm 66

xviii

5–6 Optimistic LP simulation algorithm 67

5–7 Memory consumption breakdown .. 69

5–8 Memory consumption for 16 bits multiplier 70

5–9 Memory consumption for S38584 .. 71

5–10 Simulation Time for 16 bits multiplier 72

5–11 Simulation Time for S38584 .. 73

6–1 Verilog module/instances and interconnection 87

6–2 Hypergraph represented by Verilog 89

6–3 Data structure of the partitioning algorithm 91

6–4 Bucket data structure for vertex movement 92

6–5 Pseudo code of the initial partitioning algorithm 95

6–6 Initial partitioning result 96

6–7 The iterative moving of vertices 97

6–8 Flattening of the circuit hypergraph 98

6–9 Recursive multiway partitioning algorithm 101

xix

6–10 Pairwise multiway partitioning algorithm 102

6–11 Flowchart of the design-driven partitioning algorithm 105

6–12 Simulation time . 112

6–13 message number during the pre-simulation 113

6–14 rollback number during the pre-simulation 113

7–1 Replicated logic in the partitioning 118

xx

CHAPTER 1

Introduction

Moore’s Law states that computational power will roughly double every 18

months. To the semiconductor designer, this means a never-ending challenge in

bringing increasingly larger and more complex IC(Integrated Circuit) to market.

The complexity and size of digital systems described by Verilog continues to grow.

The latest Intel dual-core processor has more than 400 million transistors while the

Intel quad-processor has more than 800 million transistors. The introduction of the

system-on-chip(SoC), which is intended for use in embedded systems and contains

CPUs, memory and analog circuitry on a single chip has only served to exacerbate this

problem.

Post-project analysis shows that design and verification account for the majority of

the chip development costs. According to a survey of 545 ASICengineers conducted

by EETimes (www.eetimes.com), simulation/verification takes 51% of the design effort

on average, as shown in figure 1–1.

Sequential Verilog simulators, or even specialized hardware accelerators, cannot

keep up with this pace, and has become a bottleneck of the design process. To

accommodate the growing need for increased memory demands as well as the need

1

13%

15%

16%

26%

32%

32%

51%

0% 10% 20% 30% 40% 50% 60%

Delay calculation

Synthesis

Static Timing analysis

Post-layout optimization

RTL design

Place & Route

Simulation/design verification

Figure 1–1: Bottleneck in the design cycle

for decreased simulation time, it is necessary to make use ofdistributed and parallel

computer systems[7]. Networks of workstations provide a cost-effective environment

for distributed simulation. Time Warp[8] is an appealing technique for parallel and

distributed logic simulation of VLSI circuitry because it can potentially uncover higher

degrees of parallelism.

Verilog[9] is a widely used language for digital circuit design. This thesis presents

a description of our research to date on a distributed Verilog simulation framework and

describes the next steps in our research program.

2

1.1 Motivation of Distributed Verilog Simulation

The rewards for successfully developing a distributed Verilog simulator are

substantial. Distributed simulation gives us the ability to simulate much larger circuits

than is now possible on one workstation, and to do so in a cost-effective manner if we

make use of a cluster of workstations as a simulation platform. We will also have the

ability to execute simulations much faster than is possibleat present, thereby decreasing

the time to design a circuit. Moreover, a distributed Verilog simulation is able to

overcome the memory bottleneck for very large logic simulations. With the advent of

SoCs and the ever increasing number of transistors which can be packed on a chip,

distributed simulation can make an important contributionto VLSI design automation.

These contributions include:

• Reduced simulation time

By dividing a large simulation computation into many sub-computations that can

execute concurrently one can reduce the execution time by upto a factor equal to

the number of processors that are used. This may be importantsimply because

the simulation takes a long time to execute, e.g., the simulation of millions gates

could take days to finish the simulation in order to verify thecorrectness of the

logic design.

• Overcome the physical limit of memory for 32bit computers

As the ASIC design becomes more complex, the memory requirement for gate-

level simulation can easily exceeds the 4G bytes limits of 32bit computers and

make the huge investment on the 32bit computing farms in ASICdesign industry

meaningless. Distributed simulation could take advantageof these 32bit machines

3

and divide a whole design simulation into several partitions, each of which could

be able to run in 4G memory limit.

1.2 Objectives of Distributed Verilog Simulation

We have four major objectives for our research in distributed Verilog simulation.

1. To construct a flexible platform which can make use of open source simulators

and allow the addition of new algorithms for distributed Verilog simulation.

2. To investigate significant issues in distributed Verilogsimulation.

3. To develop optimization techniques for optimistic simulations, e.g. memory

consumption optimization.

4. To develop appropriate partitioning algorithms.

1.3 Overview of the Thesis

In chapter 2, we briefly introduce logic simulation, circuitsimulation, hardware

design methodologies, hardware design description language and the discrete simulation

algorithm employed in the Verilog language.

The chapter 3 is devoted to the introduction of PDES (Parallel Discrete Event

Simulation). The two major categories of synchronization algorithm are mentioned,

conservative algorithm and optimistic algorithm, also known as Time Warp, are

described. The state of art of the Time Warp optimization algorithm is described at the

end of this chapter.

The chapter 4 contains the description of DVS, the Distributed Verilog Simulator

which we developed in Distributed Simulation Lab of McGill University. The detailed

implementation of DVS is explained in this chapter and the preliminary experiment

4

results are also presented. From the preliminary experiment result, we locate the

significant issues inside the simulator and proposes our optimization techniques in the

next chapters.

The chapter 5 proposes event reconstruction as a memory reduction techniques for

DVS. Historically, most of the memory reduction techniquestargets memory reduction

for the state queue. Our event reconstruction technique targets event queue. This

decision is based on our preliminary experiment result which revealed that the event

queue actually consumes more memory than the state queue in distributed Verilog

simulation.

The chapter 6 proposes a multi-way design driven iterative partitioning algorithms

for distributed Verilog simulation, which could obtain a simulation speedup of 1.91

on 4 machines by taking advantages of design hierarchy information contained in the

modules and their instances. A Verilog instance is represented by one vertex in the

circuit hypergraph, which could be flattened into multiple vertices in the event that an

adequate load balance is not achieved. In this case the partitioning algorithm flattens

the largest vertex and move vertices between the partitionsto improve the load balance.

The last chapter 7 is the conclusion of the thesis along with several suggestions for

further research.

5

CHAPTER 2

Background

2.1 A brief history of the semiconductor electronic design
automation

We give a brief introduction of the ASIC design history in thethesis. The readers

should refer to [10] for detail information.

In the infancy of integrated circuit design in the 1960s, traditional prototyping and

bread-boarding is dominant while software simulation gradually became accepted by

the designers of integrated circuits.

In the 1970s and 1980s, the ASIC design industry gradually adopts standard cells

as the building block of the integrated circuits. This allows the designers to design their

chips in much shorter time periods.

In the 1990s, the logic synthesis tool became the milestone of the ASIC design

history. For the first time, the logic synthesis tool abstracts the integrated circuits to

higher level and hides the physics of the circuits. Thus, it reduces the design time

significantly. The ASIC circuits and its application increases exponentially in this time.

In the 2000s, the ASIC design challenge is the even increasing complexities

characterized by Moore’s Law: integrated circuits complexity doubles approximately

6

every 18 months. This imposes difficulty for the verificationof the ASIC design since

the simulation for the ASIC circuit becomes the bottleneck of the ASIC design.

2.2 Modern ASIC design flow

Figure 2–1 shows the steps in the modern ASIC design flow.

Requirement Analysis

Logic Design

RTL Simulation

Synthesis

Prelayout gate-level
simulation

Layout

Postlayout gate-level
simulation

Tapeout

Figure 2–1: ASIC design flowchart

• Requirement analysis

The ASIC design starts with understanding of the required functions of the ASIC.

• Logic design

The design engineer constructs a description of an ASIC using a hardware

description language such as VHDL[11] or Verilog[9]. This process is analogous

to writing a computer program in a high-level programming language. This is

usually called the RTL (Register transfer level) design.

7

• RTL simulation

Functional correctness is verified by simulation. The common way to verify

logical correctness is to feed the input vectors to the digital circuit and compare

the simulation result with the expected golden data. If the simulation result failed

to match the golden data, we should know that something is wrong with the

digital circuit design. Golden data is usually generated bythe emulation program

written in another programming language such as C language.

• Synthesis

A logic synthesis tool, such as Design Compiler[12], synthesizes the RTL design

into a netlist of standard cells, such as 2 input NOR gate, 2 input NAND gate,

inverters, etc.

• Pre-layout gate-level simulation

The pre-layout gate-level simulation[13] is to the verify the correctness of

gate-level netlist generated by the synthesis tool.

• Layout

The gate-level netlist is processed by a placement tool which places the standard

cells onto a region representing the final ASIC. It attempts tofind a placement of

the standard cells based on the specified constraints such asarea of the chip, wire

length between blocks, etc.

The routing tool takes the physical placement of the standard cells and uses the

netlist to create the electrical connections between them.

The final output of place and routing is a set of photo-masks enabling a semicon-

ductor fabrication to produce physical ICs.

8

Figure 2–2 shows photograph of Power4 processor by IBM after place and route,

courtesy of IBM from http://www.research.ibm.com/journal/rd/461/warno1.jpg.

Figure 2–2: Photograph of Power4 processor by IBM

• Post-layout gate-level simulation

9

After the layout, the netlist is verified by running simulation again to get rid of

the potential interconnection or timing problem introduced by layout.

2.3 The hardware description language

”In electronics, a hardware description language or HDL is any language from a

class of computer languages for formal description of electronic circuits. It can describe

the circuit’s operation, its design and organization, and tests to verify its operation by

means of simulation.”[14]

Contrary to the software programming language, an HDL includes syntax elements

to express time, concurrency and connectivity which are theprimary attributes of

hardware.

A simulator is used to simulate the hardware behaviour described by the hardware

description language. The simulator could employ either continuous simulation to

simulate the analog circuit or discrete event simulation tosimulate the digital circuit, as

discussed in the section 2.4.

The two most widely-used hardware description languages are VHDL[11] and

Verilog[9]. Since the thesis is about distributed Verilog simulation so we only focus

on the introduction of Verilog language. The interested readers could read [11] about

VHDL language for detail.

2.3.1 Verilog

The Verilog Hardware Description Language is standardizedin IEEE standard

#1364-1995. It supports both a behavioral description and astructural description of a

10

p1
p2 p3

p4

C ~D A B ~B ~D A C

g1 g2 g3 g4

g5

eSeg

//structural description
Module binaryToESeg;
 wire eSeg, p1, p2, p3, p4;
 reg A, B, C, D;

 nand #1
 g1(p1, C, ~D),
 g2(p2, A, B),
 g3(p3, ~b, ~D),
 g4(p4, A, C),
 g5(eSeg, p1, p2, p3, p4);
endmodule

//behavioral description
Module binaryToESeg;
 wire eSeg, p1, p2, p3, p4;
 reg A, B, C, D;

 always @(A or B or C or D)
 begin
 eSeg = 1;
 if(~A&D) eSeg = 0;
 if (~A&B&~C) eSeg = 0;
 if (~B&~C&D) eSeg = 0;
 end
endmodule

Figure 2–3: Structural and behavioral description of Verilog

digital system. Figure 2–3 shows an example of how Verilog describes an IC design[9].

The figure contains part of a binary to seven segment display driver.

The structural description shows the explicit structure ofthe circuit and contains

all logic gates used and their interconnections. The behavioral description describes

the input and output behavior of the circuit. Through the logic synthesis tool, both

structural description and behavioral description could produce the same circuit.

In Figure 2–3, the right top shows the structural description of the binary to seven

segment display driver circuit while the right bottom showsthe behavioral description.

A behavioral description of a flip-flop is shown in figure 2–4.

Verilog describes a digital system as a set of modules. Each module has an

interface to other modules (referred to as port(s)) and represents a logical unit in a

11

Q

Q
SET

CLR

S

R

module tff(input t, input clk, output q);
 always @(posedge clk)
 begin
 if (t==1'b1) q<=~q;
 else q<=q;
 end
endmodule

Figure 2–4: Behavioral description of a flip-flop in Verilog

structural description or in a behavioral description. Themodules are typically arranged

in a hierarchical manner. The hierarchy can be made use of in partitioning in an effort

to minimize inter-processor communication.

Verilog is a concurrent language. A digital system can be conceived of as a set

of concurrent processes contained in initial blocks, always blocks and continuous

assignments. Wait and event control statements can be used to synchronize the

concurrent processes. The existence of concurrent processes in Verilog makes it

suitable for distributed simulation[15]. A comprehensivedescription of Verilog can be

found in [9].

A Verilog design consists of a hierarchy of modules. Modulesare defined with

a set of input, output, and bidirectional ports. Internally, a module contains a list of

wires and registers. Concurrent and sequential statements define the behaviour of the

module by defining the relationships between the ports, wires, and registers. Sequential

statements are placed inside a begin/end block and executedin sequential order within

the block. But all concurrent statements and all begin/end blocks in the design are

executed in parallel. A module can also contain one or more instances of another

module to define sub-behavior.

12

Hierarchy is an important feature of Verilog. With the use ofdesign hierarchy

information, the partitioning algorithm do not have to go deep into the lowest level

of the circuit if the load balance constraint could be met. Moreover, because of the

encapsulation property of the module, the circuit graph is simplified so the partitioning

efficiency could be improved. Our multiway design driven partitioning algorithm takes

advantage of the module and hierarchy in Verilog and yields asignificant reduction

in cutsize compared to other partitioning algorithms working on the pure flat netlist.

Details of the hierarchy feature of Verilog are described insection 6.5.

A subset of statements in the language is synthesizable. If the modules in a design

contain only synthesizable statements, the logic synthesis tool can be used to synthesize

the design into a netlist that describes the the logic gates and their connections. The

netlist may then be transformed into the photo-mask for the final fabrication.

2.4 Continuous and discrete event simulation

”Simulation[16] is the representation of operations and attributes of one system

through the medium of another. The attribute set of the simulation model at any given

instant is referred to as the simulation state. The simulation state actually consists of all

the states at a particular time.”

There are two main categories of simulation: discrete simulation[17] and continu-

ous simulation[18].

In a continuous simulation[18], the simulation state changes continuously with

simulation time. The simulation state is characterized by differential equations which

describe their behaviour as a function of various parameters. For example, the circuit

described at the transistor, resistor and capacitor level could be simulated by the

13

continuous simulator. The behaviour of all these electronic components are governed by

the mathematical formula.

Figure 2–5 shows an example of circuit while figure 2–6 displays the result

of continuous circuit simulation. The simulation is done in5Spice circuit analysis

software[19].

Linear

R1

R2

TPv1

Vs1

Figure 2–5: Analog circuit

Unfortunately the mathematical equations employed by a continuous simulation

could be computationally intensive. Therefore, continuous simulation may be slow and

14

Figure 2–6: Analog simulation of the circuit

is only useful when simulating circuits which are describedat a low abstract level such

as analog level simulation[20].

In order to overcome the poor simulation speed of the continuous simulation, the

discrete simulation is introduced, which is usually fasterwhile providing a reasonably

accurate approximation of a circuit system’s behaviour.

Discrete simulation is divided into two subtypes, time-driven discrete simulation

and event-driven discrete simulation.

15

Time-driven discrete simulation uses uniform time increments or ticks to advance

simulation. Smaller time ticks could produce better precision while slowing down the

simulation at the same time. At each simulation tick, the attributes of the models need

to be evaluated. For example, in simulation of the trajectory of a projectile, the position

and velocity are calculated in each tick by using the forces acting upon the projectile.

Discrete event simulation (DVES) [17] describes a simulation system in which

only events can cause the simulation state to change. An event causes a change of the

simulation state. In between events, the state of the simulation does not change. This

allows a more efficient simulation than a continuous simulation (or time-driven discrete

simulation) because the system state is only evaluated as the result of an event being

executed.

Event scheduling normally uses two data structures. One is the state, while the

other is the event queue, which is ordered by the timestamps of events. New events are

inserted at the bottom of the event queue. An event scheduling algorithm operates by

removing events from the event queue and processing them until the simulation finish

time is reached or the event queue is empty. As a consequence of processing an event,

new events can be scheduled and inserted into the event queue. The timestamp of the

processed event is used to advance the simulation time. The simulation algorithm is

shown in figure 2–7.

2.5 Logic Simulation

We start the introduction of Verilog simulation from logic simulation of digital

circuits since Verilog simulation is actually one type of logic simulation.

16

Initialization

simulation time
limit reached?

End of simulation

Yes

Event queue is
empty?

Yes

No

No

Remove the head of
event queue

Process the current
event

Update simulation
state and schedule

new events

Advance simulation
time

Figure 2–7: Discrete event simulation algorithm

Logic simulators are in widespread use as tools used to analyze the behavior of

digital circuits. Logic simulators are used in hardware design verification to verify

logical correctness and to perform simple timing analysis of logic circuits.

Logic simulators are also used for fault analysis[9]. The simulation could dump

the waveform which logs the activity of the related signals in the digital circuits. With

the waveform, the ASIC designers could locate the bug in the digital design from

simulation without any electronic instrument such as oscilloscope and logic analyzer.

17

value Purpose Value Encoding
0 Forcing zero 00
1 Forcing one 01
X Forcing unknown 10
Z High impedance 11

Table 2–1: The logic state and its purpose

2.5.1 The Logic Simulation Model

The basic components of a logic circuit are predictably logic gates -AND, NAND,

NOR and OR gates. The circuit is described by a graph or a hypergraph in which

the nodes represent gates and the links represent wires. Thenodes are modelled by

software processes, referred to as logical processes (LPs)in the distributed simulation

literature. Incoming channels of an LP correspond to the fanin list of a logic gate while

the outgoing channels correspond to its fanout list.

The logic simulation model uses a finite set of values to represent the type of

signal propagating throughout the circuit. The 4 values that a signal may have are

presented in table 2–1.

A signal change is modelled as an update event containing a timestamp, source

and destination gates, an identification and a value which corresponds to the new

value of the wire. When an LP receives an update event, it sets its local clock to the

the timestamp of the event, evaluates its output and schedules the resulting output

change(s) as update events for its fanout list.

2.5.2 Discrete Event Logic Simulation

Figure 2–8 represents a simple logic circuit comprised of three gates. The circuit

has three inputs (A, B and C), one output (F) and two internal wires (D and E).

18

A=0 B=1

C=0

D=1
E=1

F=1

a. Initial Values

A=0 B=0

C=0

D=1
E=1

F=1

b. Values at time 100

A=0 B=0

C=0

D=0
E=1

F=1

c. Values at time 101

A=0 B=0
C=0

D=0
E=1

F=0

d. Values time 102

g3

g1

g2

g1

g3

g2

g3

g1

g2

g1

g2

g3

Figure 2–8: Logic simulation of a digital circuit

Assume that each gate has a unit delay, i.e. the simulation advance time at each gate

is one time unit for each event. Initially, the gates have thevalues shown in Figure

2–8.a. An event occurs on wire B at time 100, changing it from 1to 0 as shown in

Figure 2–8.b. At time 100, gate g1 is evaluated to see if there’s a change on its output

D. Since D will change from 1 to 0, this event is scheduled in the future.

At time 101, gate g1’s output D will be set to 0 as indicated in Figure 2–8.c and

this new value will be propagated to the gates on g1’s fanout,g3. Then g3 is evaluated

19

to see if there will be an output change on F. As can be seen in Figure 2–8.d, F will

change from 1 to 0.

2.6 Event-driven Verilog simulation

In Verilog, before simulation begins, the design hierarchyis first elaborated . This

means all the pieces of the Verilog code (modules/primitives/instances) are put together.

The elaboration is similar to linking of the C language. The simulation cycle is then

continuously repeated during which events are processed and signals are updated. A

Verilog simulation cycle consists of the steps as shown in figure 2–9. The pseudo code

of Verilog simulation comes from the Verilog language reference manual[21]. The

interested readers should refer [21] for the details.

Time in Verilog simulator has two dimensions, the simulation and delta cycle.

Delta cycle is used to distinguish those event with the same timestamp.

In Verilog it is possible to assign a delay mechanism to an assignment statement.

Transport delay is characteristic of wires and transmission lines. Inertial delay models

the real behavior of logic gates. The timestamp of new scheduled events for a node is

the current simulation time plus the delay of the node.

20

while (there are events) {
 if (no active events) {
 if (there are inactive events) {
 activate all inactive events;
 }
 else if (there are nonblocking assign update events) {
 activate all nonblocking assign update events;
 } else if (there are monitor events) {
 activate all monitor events;
 } else {
 advance T to the next event time;
 activate all inactive events for time T;
 }
 }

 E = any active event;

 if (E is an update event) {
 update the modified object;
 add evaluation events for sensitive processes to event queue;
 }
 else { /* shall be an evaluation event */
 evaluate the process;
 add update events to the event queue;
 }
}

Figure 2–9: Verilog simulation pseudo code

21

CHAPTER 3

Parallel/Distributed logic simulation

3.1 PDES: Parallel/Distributed discrete event simulation

Parallel and distributed simulations are widely used to speedup large scale

simulation applications. They differ in the computing platform used. A parallel

simulation runs on multiprocessor machines in which communication is fast and

the memory is usually shared between processors. On the contrary, a distributed

simulation runs on separated computer systems connected with network in which

the communication overhead is significantly larger than multiprocessor and each

computer has its own memory. In the thesis, our computing platform is computer

systems connected with Gigabit network so we call our simulation system as distributed

simulation system.

In general, parallel/distributed simulation consist of logical processes(LPs) that

represent physical processes of the modelled system. Each LP simulating a portion of

the modelled system generates, sends and receives events toand from each other. Thus

each LP handles both events generated locally and events triggered by other processes.

An LP has an input queue in which event are stored in increasing timestamp order. As

in sequential simulation, events are processed in strictlyincreasing timestamp order.

22

An LP stores its state and maintains the local virtual time (LVT) which is the

current simulation time of the LP. The overview of a parallel/distributed system is

depicted in figure 3–1.

LVT

Event
Queue

State
queue

LP1

LVT

Event
Queue

State
queue

LP4

LVT

Event
Queue

State
queue

LP3

LVT

Event
Queue

State
queue

LP2

Communication
Channel

Communication
Channel

Communication
Channel

Figure 3–1: Overview of the parallel/distributed system

Causality is the central issue of the distributed simulation. In order to guarantee

the correctness of the distributed simulation, it is necessary to preserve the event

causalities across LPs. Lamport[22] suggested the notion of a logical clock which is a

monotonically increasing counter in order to maintain causality. Each logical process

maintains its own logical clock whose value is used to add a timestamp to the events

23

sent by the process. Lamport also introduced the happened-before relation. It is known

as causal ordering which is based on the following two simpleintuitive points.

• If two events occur in the same process, they should occur in the order in which

the process observes them

• Whenever a message is sent between processes, the event of sending the message

always occurs before the event of receiving the message

With the concept of the logical clock and the logical time, physical time can be

abstracted since simulation could be guaranteed correct ifcausality order is maintained.

According to how the causality constraint is dealt with, there are two major categories

of parallel and distributed simulation protocols, the conservative and optimistic

approaches. The conservative approaches process only those events that are guaranteed

unable to affect other LPs while optimistic algorithms allow speculation and recover

from any resulting causality violations.

3.2 Conservative Synchronization

The algorithms described in [23] were perhaps the first synchronization for

parallel/distributed simulation. The conservative algorithms are distinguished by their

blocking behavior when there are no safe events to process. Safe events are those

events such that the simulator is guaranteed not to receive an event with a smaller

timestamp. Conservative LPs can execute safe events in increasing timestamp order but

must block when there is no safe events.

The advantage of this algorithm is that it is easy to implement and the overhead

is very low. However, the blocking behavior somehow limits the concurrency of the

parallel/distributed simulation. Another drawback of thealgorithm is that deadlock

24

may occur if a collection of LPs are all waiting for a message.Thus, conservative

algorithms require a method to either avoid or to detect and break deadlock.

The most common approach to avoid deadlock is the use the nullmessage[23].

Each time an LP sends a message to another, it also sends a ”null message” to all other

LPs with the same timestamp plus ”lookahead”.

Lookahead is critical to the performance of the distributedsimulation with

conservative synchronization. Fujimoto [24] defines lookahead as follows:

”Lookahead characterized the ability of a process to predict future messages that

it will send based on knowledge of messages it has already received. In particular, if a

process has received all messages with timestamp t or less, and can predict all future

messages with timestamp t+lh or less, we say the lookahead ofthe process is lh”

If the lookahead is poor, the event population will be decreased in the simulation

thus the parallelism is reduced since the event processing is delayed and few events are

sent out.

The null message is used to notify the receiving LP that it will not receive any

messages earlier than the null message from the source LP. Based on the knowledge of

LVT plus lookahead from every neighboring LPs, the LP could determine which events

are safe to execute.

Null message can create a huge communication overhead, especially in a dis-

tributed simulation environment. There have been many attempts to reduce the number

of null messages. In [25], the approach is to only send null messages upon request.

Whenever an LP is blocking, it sends a request message to its neighboring LPs and

then waits for a responding null message which will unblock it. The authors of [26]

proposed another approach in which the timestamp and lookahead values are stored

25

separately within null messages. The lookahead value is then sent to other LPs in the

piggyback mode. Both normal messages and null message could carry the lookahead

value and relay it to the other LPs.

Deadlock detection algorithm[27] deadlock breaking algorithm[28] makes use of

knot detection. A knot is defined as a subgraph such that everynode in the subgraph

can be reached from every other node in the subgraph and no node outside the

subgraph is reachable. A knot in the subgraph implies a deadlock in distributed

simulation system.

Deadlock breaking algorithm[28] forces the event with the smallest timestamp in

all LPs inside the deadlock knot.

In order to overcome the excessive amount of performance-degrading communica-

tion caused by deadlock prevention algorithms[27, 28], [29] proposed a protocol that

attempts to balance the need for deadlock prevention synchronization information with

the cost of providing the information. The author [29] claimed that the protocol is not

only more efficient but also can ensure time accuracy.

3.3 Optimistic Synchronization algorithm: Time Warp

The most widely known optimistic algorithm is Time Warp. Similar to conser-

vative algorithms, the parallel/distributed system utilizing Time Warp consists of LPs

which communicate by messages. Each LP advances its simulation until it detects a

violation in local causality. LPs detect violations in causality when they receive a mes-

sage with a smaller timestamp than their LVT. The message with the smaller timestamp

is referred to as a straggler. In Time Warp, LPs perform a rollback operation in which

the LP reverts its state to the most recent LVT which had a correct causality and then

26

resumes the simulation from that point. In order to rollbackto a previous state, the

states of the LP need to be saved periodically (one possibility is after each event). This

is referred to as checkpointing.

Time Warp also needs to save all of its output messages. When a rollback

happens, the LP sends out ”anti-messages” corresponding tothe output messages which

were previously sent. The anti-messages are used to annihilate the output messages at

their destination LPs. Due to the overhead of state saving and output event queue, Time

Warp requires a good deal of memory.

The following diagram 3–2 illustrates the components of a simulation system with

Time Warp.

Anti message

Straggler message

Normal incoming
message

40 50 60 70 80 90

Anti message

Normal outgoing
message

Input list

Processed events unprocessed events

State list

output list

LVT = 70

Figure 3–2: Components of a logical process with Time Warp

LPs detect violations in causality when receiving a messagewhose timestamp is

smaller than their LVT. The message with the smaller timestamp is referred to as a

27

straggler. When an LP receives a straggler, the rollback process begins. The process

could be summarized as the following steps.

1. State restoration: The LP restores its state to an elementin the history event

list which has a smaller timestamp than the straggler. The LPthen frees the memory

occupied by the states which have timestamp larger than the restored state.

2. Anti-messages: The LP sends out anti-messages for each ofthe elements in

the output event queue which were sent after the timestamp ofthe restored state. The

anti-messages are used to annihilate the corresponding message in the destination LP or

behave as a straggler to cause the destination LP to rollback.

3. Resume simulation: The LP resumes simulation from the timestamp of the

restored state.

The overhead of rollback is huge in terms of inter-processorcommunication traffic

and the computation related to state restoration and anti-messages. Furthermore, the

rollback of one LP may cause further rollbacks of other LPs ina chained reaction.

This phenomenon is known as cascading rollback[30]. Another interesting problem

is called ”dog chasing its tail”[31] which can be briefly explained as an erroneous

computation wave circling among a few logical processes at arapid rate. The rollback

and cancellation wave is some distance behind the erroneouscomputation and is trying

to outrun it. However, if the rollback and cancellation wavecannot spread faster than

the erroneous computation wave, the erroneous computationmay never be caught so

the simulation will be stuck in the rollback wave

28

3.4 State of the art of Time Warp

Due to the memory overhead and rollback explosion associated with Time Warp, a

lot of research[32, 33, 34, 35, 36] has been done to alleviatetheir effects.

3.4.1 Rollback reduction

The authors of [32] proposed lazy cancellation. In lazy cancellation, the propa-

gation of anti-messages is delayed until the simulation is resumed after rollback and

reaches the LVT of the earliest message in the output messagelist. At that point, if the

newly generated messages differs from the messages in the output list, anti-messages

are sent out. Since only the delta of the anti-messages are sent out, lazy cancellation

avoids unnecessary anti-message traffic. The overhead of the lazy cancellation is the

anti-message list.

3.4.2 GVT and fossil collection

Memory consumption for the history states could be huge. In order to free the

memory occupied by the history states which have no use anymore, Global virtual time

(GVT) was introduced by Jefferson[8] as follows.

”The GVT at real time r is the minimum of (1) all virtual times in all virtual

clocks at time r, and (2) the virtual send times of all events that have been sent but

have not yet been processed at time r.”

Since no LP would be able to rollback to a time prior to the GVT,each LP could

release all states and events earlier than GVT. Events with timestamp less than GVT

is referred to as committed events. The procedure to releasememory occupied by the

committed states and events is called fossil collection.

29

The GVT algorithm is relatively easier in a shared-memory environment than

in a distributed-memory environment since there are no events in transit that have

been sent out by the source process and have not been receivedby the destination

process. In the shared-memory environment, the minimum of the local virtual time

of all logical processes is GVT. However, in a distributed-memory environment, the

events in transit makes GVT calculation more difficult. The naive way of calculating

GVT in distributed-memory environment is to stop the simulation and restart it after the

calculation is done. But this is too expensive so the preferred solution is to obtain an

estimate of GVT. The estimation of GVT provides a lower boundon the smallest time

stamp of all events no matter they are in transit or waiting tobe processed.

[37, 38] solve the problem of events in transit by acknowledging each received

event. However, this approach results in large message traffic and could degrade the

simulation performance significantly.

Asynchronous token-passing algorithms[39, 40, 41] have been proposed to address

the message traffic problem. A token is passed around the processes and the distributed

GVT calculation is divided into two phases: the start phase and the stop phase. In

the start phase, an initiating process P0 initiates the GVT computation and sends out

START token. When a process receives the START token, it forwards it to its successor

in the virtual ring topology and starts keeping track of the smallest timestamp of all

messages it is sending. After the START token returns to the initiator, the stop phase

is launched. The initiator sends a STOP token containing itssmallest timestamp which

is the minimum of the LVT and the timestamps of events in transit since the START

phase. When a process receives a STOP token, it compares its smallest timestamp

with the timestamp of the STOP token and sends out the STOP token with the smaller

30

timestamp to its successor. When the initiator receives backthe STOP token, the

timestamp associated with the STOP token is the new GVT, which will be broadcast to

the rest of the processes.

The decentralized GVT algorithm is described by [36], whichis based on the

distributed snapshots which utilizes the following elements:

• Cut point is an instant separating computation into past and future

• Cut is a set that consists of a cut point for each LP

• Cut message is a message that crosses a cut from past to future

• Cut value is the minimum among the timestamps of both cut messages and all

cut points along a cut

Figure 3–3 depicts the relationship between processes and events with a cut for

GVT computation. Each horizontal line shows the time of the processes. The circle

represents an event and the arrows show the path of causalitybetween events. A cutline

divides the events into two disjoint sets, the events occurring before the cut line is

defined to be the events in the past while the events occurringafter the cut line events

in the future.

The implementation of a cut in Mattern’s algorithm[36] usesthe colouring scheme.

Initially all processors are coloured white. A white process sends only white events and

a red process sends only red events. Every process counts thenumber of white events

it sends and receives. A red process keeps track of the smallest timestamp of all red

events it sends. The algorithm is described as follows,

• 1. The initiator start GVT computation by sending a cut eventto its successor

and change its color to red

31

P1

P2

P3

P4

cut

Figure 3–3: A time diagram with a cut

• 2. The receiving process of the cut event will forward it to its successor in the

ring and changes its color to red

• 3. When the initiator receives back the cut event, the timestamp of the cut event

is the minimum of the LVT of all processes and the smallest timestamp of red

events sent by each process

In order to avoid the possibility of an event causing a rollback after it reports its

minimum time, at least two cuts are required. The second cut has to be placed ”far

enough” to the right of the first cut. Mattern[36] accomplishes this through the use

of a vector counter. Every process Pi maintains a vector counter to keeps track of the

number of white events it has sent to Pj. Every time a white event is received, the

32

process decrements its vector count V[i]. The cut event willaccumulate the vector

counters of each process as it goes around the ring of the processes. At the end of the

first round, the accumulated vector counter indicates the number of events in transit. If

some white events are still in transit, which means the accumulated vector counter is

not zero, the second cut is initiated. In this round, the cut event waits at each process

until all white events are due at that process. When the cut events returns again to the

initiator, the GVT is calculated to be the minimum of the smallest LVT of all processes

and the smallest red event timestamp as carried by the cut event.

3.4.3 Other memory saving techniques

A lot of approaches have been developed in order to reduce memory consumption

even more, besides the fossil collection. The details of periodic check pointing [42],

incremental state saving[42], reverse computation[43] and rollback relaxation[44]

will be described in chapter 5. In chapter 5, we also describea new approach, event

reconstruction to reduce memory consumption.

There are several approaches[8, 32] designed to recover theparallel/distributed

simulation system when the system runs out of memory. All of them are based on the

rollback model and are invoked when an optimistic simulation is either out of memory

or cannot use fossil collection to reclaim memory anymore. Message Sendback[8]

and Gafni’s protocol[32] return messages whenever the distributed simulation system

runs out of memory. Message sendback[8] returns the unprocessed input messages

back to the sender thus releasing the memory occupied by the messages. [32] expands

message sendback by taking into consideration recovering memory from the input

message list, output message list and history state list. The unprocessed input message

33

will be returned to the sender. The output messages are also removed by sending the

corresponding anti-messages while the history state will also be purged.

Cancelback[45] and artificial rollback[45] are similar to Gafni’s protocol[32]

in that both of them reclaims memory from input/output eventlist and the history

state list. Instead of sending back input messages, it forces the system to a previous

state which has available memory, even if there is no causality violation. Artificial

rollback[45] identifies the LPs that are further ahead in simulation time and rolls them

back. Cancelback[45] rolls back the simulation indirectly by sending messages to

senders indicating that they must reverse certain messages.

3.5 Parallel and distributed logic simulators

In his PhD thesis[46], Briner developed a parallel logic simulator based on Time

Warp. He makes use of incremental state saving[34], a bounded time window[35]

and different synchronization granularities in his simulator. Briner also points out the

necessity of efficient partitioning algorithms. Briner achieved the speedup of 23 over

sequential simulation on 32 processors of a BBN GP1000 system,running mixed level

simulations.

Matsumoto and Taki describe a parallel gate-level simulator[47] based on Time

Warp, which obtained more speed-up compared to an asynchronous conservative

algorithm and to a synchronous method. As a result, they argue that Time Warp

is superior to these methods. An improvement to Time Warp is to send only one

antimessage to the affected LPs during rollbacks. This message is the one with the

smallest timestamp of all of the antimessages that are sent when using aggressive

cancellation.

34

Manjikian and Loucks[48] implemented a parallel gate-level simulator on a

network of workstations. They used a hybrid approach for synchronization of the LPs.

Individual LPs run in an optimistic way but event messages are only sent to other

LPs when they are safe. According to the authors, an important role is played by

partitioning algorithms. They used cone partitioning[49]with enhancements in order to

incorporate estimated circuit behavior in the partitioning algorithm. Speedups between

2 and 4.2 are achieved on 7 processors from ISCAS89 benchmark circuits. The highest

speedup of 4.2 was achieved through cone partitioning algorithm.

Bauer and Sporrer realized a parallel logic simulator[50] based on Time Warp.

They used the sequential event-driven gate-level simulation LDSIM[51] as a base

for their work. The authors propose incremental state saving to keep the memory

overhead low. Luksch implemented a parallel version of LDSIM on the Intel iPSC/860

hypercube[52, 53]. The authors indicate that there may be a huge amount of state

information that has to be stored during the course of a simulation. LDSIM achieved

speedups between 2 and 4 over the sequential simulation on 12processors on circuits

with 3,500 to 19,200 gates on ISCAS89 benchmark circuits.

Bagrodia [54] developed a parallel gate-level circuit simulator in the Maisie simu-

lation language [55] and implemented it on both distributedand shared memory parallel

architectures. They achieved speedup of about 3 on 8 processors of a Sparc1000 for

the conservative protocol and about 2 for the optimistic protocol on the four largest

ISCAS85 benchmark circuits with gate numbers of 1193, 1667, 2307 and 2418. The

K-FM[3] partitioning algorithms were used to partition thecircuits.

L. Zhu implemented a parallel logic simulator for million-gate VLSI circuits[56].

The authors claimed that they achieved superlinear speedupfor up to 17 processors.

35

The circuit used is synthesized netlist of the Viterbi decoder and the partitioning

algorithm is hMetis[6] developed at the University of Minnesota.

Avril’s CTW(Clustered Time Warp)[57] is a hybrid algorithm which makes use

of Time Warp between clusters of LPs and a sequential algorithm within the cluster.

The authors claimed that CTW[57] is useful in logic simulationof digital circuit where

there are a number of LPs having low computational granularity. In the thesis, we

extended CTW into an object-oriented version[1] and integrated it with Icarus[58], an

open source Verilog simulator.

Kim [59] developed a parallel logic simulator on MIMD distributed memory

machines. A new partitioning algorithm, improved Concurrency Preserving Partitioning

(iCPP) [60] was proposed. Event-lookahead Time Warp (ETW) which is the hybrid

integration of event-lookahead conservative protocol andthe Time Warp protocol was

proposed and implemented on an IBM SP2 parallel machine with 10 processors.

Discovery[61] developed at the Ohio State University is a framework for parallel

and distributed simulation of digital and analog VLSI systems, in which the digital

portion is described in VHDL, while the analog portion is described in SPICE[62].

The simulator made use of optimistic synchronization for digital components and

conservative synchronization for analog components. A naive partitioning algorithm is

used which allocates an equal number of LPs to each processor.

In xtw[63], a new event scheduling mechanism XEQ and a new rollback procedure

rb-messages are proposed for use in optimistic logic simulation. XTW groups LPs into

clusters, and makes use of a multi-level queue, XEQ, to schedule events in the cluster.

Experimental results over large circuits (5-million-gateto 25-million-gate) shows XTW

scales well with both the size of circuits and the number of processors.

36

3.5.1 Parallel and distributed Verilog/VHDL simulators

SAVANT[64] was developed at the University of Cincinnati. Itconsists of three

major components, SAVANT, TyVIS and Warped. Warped is an optimistic parallel

discrete event simulator based on Time Warp. TyVIS is a VHDL kernel which provides

the runtime support for the simulation of VHDL designs. It operates on top of Warped.

SAVANT compiles VHDL source code and generates C++ code, which is compiled and

linked with TyVIS and the Warped library to obtain the final simulation executable.

The TyVIS library is also referred to as the TyVIS kernel. It is an extension of

the Warped kernel inheriting all of its attributes and methods. The generated code is

comprised of class instantiations and function calls provided by the kernel.

Experiments for several partitioning algorithms, including a multi-level algorithm[65]

were reported, with the multi-level algorithm resulting inthe fastest simulation times.

Meister [66] developed a framework called DVSIM for a parallel event-driven

simulator of VLSI designs described in VHDL. Both conservative and optimistic syn-

chronization protocols were implemented. The simulator evolved from the sequential

simulator VSIM developed by Levitan[67]. The experiments were done on ISCAS89

benchmark circuits with gates 892, 15709 and 40685. The authors pointed out that

there was no speedup for the small circuit. But for larger benchmark circuits, the

speedup was about 4 on 12 processors.

Tun [68] presents a parallel Verilog simulator - PVSim, which is based on

optimistic asynchronous parallel simulation algorithm and MPI library. A new module-

based simulation component mapping method is proposed. Andan efficient module-

based partition algorithm combined with pre-simulation partition algorithm is adopted.

37

CHAPTER 4

DVS: An object-oriented framework for
distributed Verilog simulation

This chapter describes the architecture and implementation of the distributed

Verilog simulator, DVS. The research described in this chapter first appeared in [1].

4.1 Overview of Icarus Verilog

Icarus Verilog [58] is an open-source EDA (Electronic Design Automation) Verilog

simulator being developed by Stephen Williams. As shown in figure 4–1, Icarus Verilog

includes two independent parts: an IVerilog compiler and a VVP(Verilog Virtual

Processor) simulator. The bridge connecting these two parts is VVP assembly code, an

intermediate representation of the original circuit. The IVerilog compiler is a translator

that translates the input Verilog source code into VVP assembly code. The VVP

simulator is an event-driven simulation engine, which interprets VVP assembly code

and process the events. We give a brief introduction to Icarus Verilog in the following

sections.

38

Preprocessed Source

Parser

Internal pform

Elaboration

Internal netlist

Optimizer

Optimized netlist

Code Generator

Preprocessor

iverilog Compiler

vvp Simulator

verilog Source File

Simulation Results

vvp Assembly Code

Figure 4–1: Architecture for Icarus Verilog

4.1.1 IVerilog Compiler

Although the Verilog language enhances modularity and encapsulation by the use

of modules in the source file of a circuit, the hierarchical structure of modules is not

appropriate for the purpose of simulation. The IVerilog compiler flattens modules in the

original source file in the following five consecutive phases:

• Preprocessor

It mainly performs file inclusion for ’include directive andmacro substitution

for ’define directive. For each include directive, the preprocessor reads the

include file and places it into the original source file at the location of the

39

include directive. The preprocessor also substitutes textmacros defined by define

directives. Finally, in order to display error messages, the preprocessor generates

line directive to print the line number of the source file.

• Parser

The preprocessed source file is parsed and its internal representation is generated

with syntax and semantic checking performed.

• Elaboration The root module is located, unresolved references are resolved, and

all instantiations of modules are expanded. After scope elaboration and netlist

elaboration, an internal flattened netlist is generated from the hierarchically

structured modules.

• Optimizer

Some useful transformations can be performed on the internal netlist in order to

simplify netlist and improve simulation efficiency.

• Code generator

All circuit information is now stored in the flattened and optimized internal

netlist. There are five target formats that can be generated from the netlist, of

which VVP assembly code is the default one used for simulation.

4.1.2 VVP Simulator

The VVP simulator is an interpreter for VVP assembly code. Itparses VVP

assembly code to generate netlist of structural items and exert input vectors to drive the

simulation.

The separation of the IVerilog compiler and the VVP simulator is similar to

the separation of compiler and interpreter in Java. The VVP assembly code is the

40

counterpart of bytecode in Java. Since large VLSI circuit files normally take a long

time for compilation, this strategy saves a lot of time. Oncethe VVP assembly

code file is generated by the IVerilog compiler, we can use it in our partitioner and

distributed simulator.

In the following sections, we explain our effort to design and implement DVS, an

object-oriented framework for distributed Verilog simulation.

4.2 Architecture of DVS

Figure 4–2 illustrates the architecture of DVS. It takes VVPassembly code as

input, which is generated by the IVerilog compiler for simulation efficiency. The VVP

parser constructs the functor list and virtual thread list,which will be used by the

distributed simulation engine after partitioning.

The 3 layers of DVS are shown in the right side of figure 4–2. Thebottom layer

is the communication layer which provides a common message parsing interface to the

upper layer. Inside this layer, the software communicationplatform can be PVM or

MPI. Users can choose one of them without touching the code ofupper layer.

The middle layer is a distributed discrete event simulator,OOCTW, which is an

object-oriented version of Avril’s CTW(Clustered Time Warp)[57]. It provides the

following services to the top layer.

• sending and receiving positive messages or anti-messages

• rollback LPs after receiving a straggler or an anti-message

• state saving and restoring

• GVT computation and fossil collection

41

The top layer is the distributed simulation engine, which includes an event process

handler and an interpreter which executes instructions in the code space of virtual

thread.

Parser

Elaboration

Optimizer

Code Generator

Preprocessor

iverilog Compiler

vvp Simulator

verilog Source File

vvp Assembly Code

Partitioner

OOCTW

MPI

Figure 4–2: Architecture of DVS

4.3 VVP parser

The Verilog language provides the ability to model a circuitby means of both

structural descriptions and behavioral descriptions. Structural descriptions model the

circuit as a network of interconnecting gates and wires, while behavioral descriptions

model the circuit at a higher level asalwaysand initial blocks. They are translated to

.functorstatement and.threadstatement in the VVP assembly code generated by the

IVerilog compiler. The VVP parser parses VVP assembly code and instantiates these

42

structural and behavioral statements as functors and vthreads which are described in the

following sections.

4.3.1 Structural item: functor

Structural items are represented by functors in the VVP simulator. Each functor

has four input ports and one output port. Gates with more thanfour input ports

are divided into smaller gates and cascaded. Functors also have associated delay

values. All functors are stored in a functor list which will be used for partitioning and

simulation.

During the simulation, when the value in any input port of a functor changes,

a new output value is calculated by querying a truth table. Ifthe result is different

from the current value in the output port, the value in the output port is updated, and

a propagation event is scheduled with the associated delay value. After this delay time

expires, the propagation event is processed, and the signalis assigned to corresponding

input ports of all fanout functors.

4.3.2 Behavioral item: vthread

Behavioral items are represented by virtual threads (vthread) in the VVP simulator.

It should be noted that vthreads run in the virtual machine ofthe VVP simulator

instead of running directly in the operating system. Each vthread contains a mechanism

for thread execution, including a program counter, 4 numeric index registers and 64k

private bit registers.

All vthreads instantiated by the VVP parser are organized asa vthread list. In

gate-level logic simulation, vthreads are normally used todrive functors with input

vectors.

43

4.4 Partitioner

Partitioning plays an important role in affecting the performance of the distributed

logic simulation[69]. In order to exploit different partitioning algorithms in DVS, we

designed a generic partitioner and integrated it into the framework of DVS.

4.4.1 Design of Partitioner

ParFMRB

1

#partition_id
Vertex

Edge1
*

1 *

+buildGraph()
+savePartition()
+loadPartition()

Graph

LogicalProcess

Functor VThread
FunctorGraph NetlistGraph

+doPartition()

ParBase
1

ParDFS ParBFS ParRandom ParCake

Figure 4–3: UML description of partitioner

The design goal of our partitioner is to provide a flexible infrastructure for testing

different partitioning algorithms applied to different circuit implementations. As shown

in figure 4–3, the partitioner has two major parts: the partitioning algorithm and the

circuit graph being partitioned.

The circuit graph is represented by Vertex and Edge objects in the abstract Graph

class. The Graph class also provides interfaces to partitioning algorithms for retrieving

44

information for vertices and edges in a graph. Designers of different simulators can

subclass it and implement the buildGraph method to fill in vertices and edges using

application-specific information. In DVS, we use FunctorGraph to build the graph using

the functor list.

The base class for partitioning algorithms, ParBase, is alsoan abstract class. All

partitioning algorithms should be derived from ParBase and provides an algorithm-

specific implementation for the doPartition method. In DVS,the partitioner will

automatically select the corresponding algorithm at run time based on the partitioning

argument in the command line.

4.4.2 Partitioning functors and vthreads

Since circuit information is available in both the IVerilogcompiler and the VVP

simulator, we can perform partitioning on either side. After investigating the internal

data structures on both sides, and also considering that both functors and vthreads

are LPs in DVS, we decide to use the functor list and vthread list in our partitioning

algorithm.

The structure of the functor list is similar to an adjacency list, which is convenient

for partitioning. Furthermore, since every computer in thesimulation has the same

copy of functor list, it can be readily used for message routing when the destination

functor resides on remote computer. If dynamic load balancing is performed during the

simulation, the re-partitioning can be done on the functor list, and the re-mapping of

functors is as simple as modifying the partition-id of corresponding functors.

The treatment of vthreads is different from functors. We observe that when

functors and vthreads are placed in the same partition, morerollbacks tend to occur.

45

OOCTW uses clustered rollback, i.e., a straggler at one LP causes all LPs in the

same cluster to rollback. Vthreads tends to advance much faster than functors in LVT

because behavioral simulation is more efficient than logic simulation. Thus a fast

vthread is likely to cause all of the slow functors in the samecluster to rollback more

frequently. Therefore, we put all of the vthreads on one computer. Since the total

number of vthreads is small in gate-level logic simulation,the lost concurrency can be

compensated for by fewer rollbacks. The large number of functors are partitioned and

assigned to the rest of the computers in the simulation.

4.5 OOCTW(Object-oriented CTW)

4.5.1 Motivation

Clustered Time Warp(CTW)[57] was developed with logic simulation in mind.

LPs (representing gates) are grouped into clusters. Each cluster has an input and an

output queue associated with it. Events were executed sequentially within the cluster.

Several rollback and checkpoint algorithms were developedfor use with CTW.

CTW is a good starting point for the implementation of object-oriented Time

Warp. A cluster bundles gates together in order to overcome the fine event granularity

of VLSI simulation. Furthermore, a cluster provides a very good basis for load

balancing. We can also move an entire cluster between processes instead of just

moving gates. However, CTW is not object-oriented. It is not easy to integrate it

directly with the sequential simulator. Therefore, we usedan object-oriented paradigm

to transform CTW into OOCTW, which (we hope) will be an open and flexible

synchronization backend.

46

The main design goal of OOCTW is to integrate it with the original Verilog

simulator. The motivation for the design is to limit the changes made to the sequential

simulator because we hope to take advantage of its new version. The other design

goal is to make the Time Warp library more reusable, readableand understandable so

new members in the laboratory can concentrate on the optimization algorithms instead

of falling into the black hole of Time Warp. Finally, the TimeWarp library must be

flexible and open so it can be a test bed for new optimization algorithms.

To date we have only implemented one of the rollback algorithms developed for

CTW, clustered rollback, in OOCTW. In clustered rollback, when a straggler or an

antimessage arrives at the cluster, all of the LPs with larger LVTs than the straggler or

the antimessage are rolled back. Other modifications of CTW are checkpointing when

the LVT of an LP advances and the use of Mattern’s GVT algorithm[36].

4.5.2 Class hierarchy of OOCTW

The diagram above the dashed rectangle in figure 4–4 is a UML description

of OOCTW. The Cluster is the container and scheduler of all LPs.The scheduling

algorithm we employed is LTSF(Lowest Timestamp First). An LP is scheduled for

execution when it has an event with the lowest timestamp in the cluster. The cluster

manages a future event list and an output event list. The GVT computation is also

processed in the cluster. Each time the cluster receives a new GVT, it invokes fossil

collection. Statistics are also collected in the Cluster such as simulation time, rollback

number, communication cost, etc.

As shown in figure 4–4, class LP executes rollback and provides virtual methods

for state saving and state restoration. The derived classesoverride the virtual methods

47

to have application-specific implementations of state saving and restoration. An LP

maintains a processed event list but doesn’t maintain an output event list. When an LP

sends out an event which crosses the cluster boundaries, it inserts a copy of the event

into the output event list of the cluster.

LogicalProcess

EventState

gvt_event

GVTManager

Cluster

FunctorState
VThreadState

Functor VThread

CommManager Statistics

VerilogEvent

Figure 4–4: UML description of OOCTW

The members of the event class include the sender and receiver of the events,

the sending and receiving time, the sign of the event and the ID of the events. The

event class provides operators such as≪, ≫ and == to compare the timestamp of two

events. The procedures to decide whether an event is a negative event are also provided

in the class. Class gvtevent inherits from event class. It is used to compute the GVT

via Mattern’s algorithm[36].

48

Type Usage
THREAD Schedule a virtual thread
EVAL Evaluate the functor
PROP Propagate the value change after gate delay
INQUIRY Inquiry value of a remote functor
RESPOND Respond inquiry of functor value
FINISH Finish of the simulation
Table 4–1: Events in distributed Verilog simulation engine

The base class for state is an abstract base class. It provides an interface for the

application specific state. In DVS, there are two different kinds of LPs with their own

state, which will be explained in detail in the following section.

4.6 Distributed Simulation Engine

The original sequential VVP simulator is turned into a distributed simulation

engine via its integration with OOCTW. The classes in the distributed simulation

engine are shown in the dashed rectangle of figure 4–4.Functor defines structural items

in Verilog while Vthreaddefines behavioral blocks. They both inherit from class LP

and override the abstract member methods so they are able to save state, rollback and

restore state.FunctorStateandVthreadStateimplement the interface ofstate, which is

used to log the state of the functors and vthreads.

VerilogEventinherits from classevent. Several types of events in the distributed

simulation engine are shown in table 4–1.

THREADevent is used to awake the blocked virtual thread which is waiting for

an event to happen, such as a value change of a register.EVAL andPROPare used to

propagate value changes among the network of functors.

49

INQUIRYevent is used to detect the value of a functor located in a remote host.

For example, the variable ’a’ in statement$display($time,,a)may be located in a

remote processor. Therefore, the virtual thread will send an INQUIRYmessage to get

the value of the remote functor. The remote processor will send back the response as

soon as it processes the event.

After partitioning, the simulator schedules theTHREADevent to invoke the

virtual threads whose partition ID matches the host id of thelocal machine. These

virtual threads will feeds input vectors to the network of functors. The simulator keeps

processing events until it gets FINISH event broadcasted bymachine 0.

Each simulator in different machines keeps the topology of all of the functors in

order to route messages. However, only those functors with the same ID as the local

host are active. The passive functors are only used to route messages. No evaluation

happens on passive functors.

The $display and $monitor in Verilog are used to print valuesof variables or logic

gates. However, the state of an LP is not stable until its LVT is smaller than GVT.

Therefore, I/O can’t be committed immediately after the instruction is issued. Hence,

we created a delayed I/O instruction list to save all I/O instructions and the time at

which they are issued. Each time a new GVT is generated, the simulator will check the

delayed I/O list. If the timestamp of the I/O instruction is smaller than GVT, it will be

committed.

4.7 Optimization to distributed Verilog simulation engine

• Direct execution of zero delay event

50

When the simulator generates a zero delay event which has the same timestamp

as the current LVT, it executes the event directly without first inserting it into

the event queue then popping it out and executing it. This introduces some

in-determinism but doesn’t affect the final simulation result. The direct execution

reduces memory operations and speeds up the simulation. In fact, there are a lot

of simultaneous events in the Verilog simulation. A functorwill propagate its

value change to all of its fanout functors. All propagated evaluation events are

simultaneous events which have the same timestamp as the current LVT because

we assume zero wire delay. If the fanout functors resides on the same cluster, the

Verilog simulator can execute the corresponding evaluation events directly.

• on-the-fly fossil collection

In order to improve the efficiency of the simulator, Icarus simulator maintains

a free event list in order to minimize the invocation of the system calls such as

malloc/free and new/delete. Each time the simulator schedules a new event, it

first checks the free list. If it is not empty, the new event candirectly use the

memory space occupied by the head of the free list. When the simulator finishes

processing the event, it puts the event pointer into the freelist instead of deleting

the memory space.

The free list is inherited in the distributed simulator. Moreover, we created the

free state list for state saving of LPs.

4.8 Preliminary Experiments

All of our experiments were conducted on a network of 8 computers, each of

which has dual PentiumIII processors and 256M RAM. They are interconnected by a

51

Myrinet(www.myri.com), a high speed network with link capacity of 1Gbit per second.

All machines run the FreeBSD operating system. LAM MPI is usedfor message

passing between different processors.

The Verilog source file used in the simulation describes a 16bit multiplier. It

includes 2416 gates and one virtual thread which feed 50 random vectors to the circuit.

We assume the unit gate delay and zero transmission delay on the wire. Only the

simulation results with BFS partitioning is presented because we have compared the

performance of BFS, DFS and random partitioning algorithm and found BFS to have

the best performance. BFS partitioning algorithm can reducecommunication, which

is the most expensive operation in distributed environment. Each data point collected

in the experiments is an average of five consecutive simulation runs. The number of

machines in the figure doesn’t include machine 0 which only contains vthreads. The

simulation time for 1 machine is the running time of the DVS without partitioning.

The simulation time vs. the number of machines is shown in figure 4–5. It should

be noticed that the simulation time is longer when 2 machinesare used. This is

caused by the load imbalance and communication cost. From the upper part in figure

4–6, we know that the partitioning algorithm only reduces the total number of event

processed on machine 1 by a small amount when 2 machines are used. However, the

communication cost increases by a large amount. The total communication cost can

be computed by multiplying the number messages shown in the lower part of figure

4–6 with average sending/receiving cost, which is listed intable 4–2. The reduction in

workload is not large enough to compensate the communication cost. Therefore, the

total simulation time for 2 machines is longer than the time for 1 machine.

52

1 2 3 4 5
14

15

16

17

18

19

20

21

22

Number of machines

S
im

ul
at

io
n

tim
e(

se
co

nd
s)

Figure 4–5: Simulation time in seconds vs. number of machines

Operation Time
Processing an event 1.83us
Saving a state 2.08us
Saving an event 2.56us
Sending a message(Blocking) 31.9us
Receiving a message(Blocking)32.2us
Message latency 10us

Table 4–2: Cost of operations in DVS

Using more machines reduces the number of events processed per machine a great

deal, thus the time used to process events is reduced by the amount which is large

enough to compensate the communication cost involved in thedistributed simulation.

The simulation times keep decreasing when the number of machines increases from 3

to 5. We get a speedup of 1.4 when 5 machines are used.

53

1 2 3 4 5
0

2

4

6

8

10
x 10

5

Number of machines

N
um

be
r

of
 e

ve
nt

s
pr

oc
es

se
d

1 2 3 4 5
0

1

2

3

4

5
x 10

4

Number of machines

N
um

be
r

of
 m

es
sa

ge
s

se
nt

 a
nd

 r
ec

ei
ve

d

Figure 4–6: Number of events processed by every machine(Upper part) and number of
messages sent and received(Lower part) by every machine vs.number of machines. Note:
The two figures use different scale.

Unfortunately, so far DVS still runs slower than the original Icarus Verilog simu-

lator. We attribute this to the fine granularity of VLSI simulation, large communication

cost, load imbalance and the small circuit size of our Verilog source file. From table

4–2, we know that overhead for VLSI simulation is more than 2 times the cost of

processing an event.

By increasing the event granularity, reducing communication costs and achieving

load balance, we look forward to outperforming the originalsimulator in further

experiments(in which we simulate larger circuits) and demonstrating the scalability of

DVS as well. The following chapters will detail our effort todo so.

54

CHAPTER 5

Event Reconstruction in Time Warp

The research described in this chapter first appeared in [70].

5.1 Introduction

Time Warp is known for its relaxed synchronization so that out-of-order processing

is possible with the help of a rollback mechanism. In the rollback, the LP restores the

previous state and sends out anti-messages to cancel eventsgenerated as a consequence

of the causality errors. The advantages of Time Warp are thatthe LPs never have

to block in order to guarantee only safe events could be processed so that causality

errors cannot occur. However, the disadvantages are additional costs associate with the

rollback mechanism.

State saving mechanism is an essential part of a Time Warp system. It is necessary

for the distributed simulation system to save enough state information in order to guar-

antee that any state that is possible to restore in case of rollback could be reconstructed.

The naive implementation of state saving could be to save state for each event pro-

cessed. This approach is usually referred to as copy state saving(CSS). However, this

could be too costly in terms of both memory consumption and simulation performance.

55

In a successful distributed simulation environment, the number of events rolled

back are usually much less than the total number of events processed. Hence, it is

often wasteful to save a complete copy of each state for each event since most states

will never be used for rollback purposes. Based on this assumption, several methods

have been proposed to reduce the state saving overhead. These methods could be

roughly classified into two categories: sparse state saving(SSS) and incremental state

saving(ISS) detailed as below.

• Sparse State Saving(SSS) [71, 72]

Sparse state saving is also referred to as infrequent or periodic state saving. The

state is not saved each time an event is processed. In case of rollback, the state

is restored by retrieving the last state checkpointed before the rollback point.

Then all the intermediate events between restored state androllback point will

be executed in order to restore the state at the rollback point. The reexecution

of events is also referred to coast forward. During the coastforward phase, no

anti-messages will be sent out since coast forward only serves to restore the

state. The checkpointing interval could be static or dynamic. Static checkpointing

interval is to save state every nth events processed while dynamic checkpointing

interval is calculated on the fly during the simulation.

• Incremental State Saving(ISS)[33]

In many distributed simulation environment, such as large communication system

or battlefield simulations, the state size could be huge while only a small portion

of the state is updated after one event is processed. In such distributed simulation

systems, it is often to use incremental state saving since itcould be too expensive

or even impossible to save the complete state of the system.

56

The idea of incremental state saving is to only log the changes to the state in the

backtrail. Prior to the state change, its old value and address are logged. During

state restoration in the rollback, the backtrail is traversed in the reverse order,

from the most recent event to the rolled-back event, by writing the old values

back into the associated addresses.

The incremental state saving schemes depict a trade-off between execution

efficiency and programming transparency. A major drawback to incremental state

saving(ISS) is the need for programmer awareness. State logging calls need to be

explicitly inserted in the distributed simulation model.

5.2 Related work

A number of algorithms have been proposed to reduce the memory overhead

caused by state saving, including incremental saving[33],checkpointing[71, 72], reverse

computation[43] and rollback relaxation[44].

P.A. Wilsey[42] presents a comparative analysis of four approaches to dynamically

adjusting the checkpoint interval and proposes an algorithm for dynamic checkpointing.

The algorithm tries to balance the time spent saving state versus the time spent coasting

forward. The goal of the algorithm is to minimize the time forstate saving and

coasting forward and to adjust the checkpoint interval accordingly. In our experimental

section5.5, we compare the performance of event reconstruction and this heuristic

algorithm.

Checkpointing results in a lower memory consumption and an improved execution

time. However, it is difficult to achieve the optimal frequency of checkpointing.

Dynamic checkpointing can be used to alleviate this problem. However, it faces the

57

problems of choosing tuning parameters, including the initial checkpointing frequency,

the average cost of event processing and the average cost of coasting forward.

Reverse computation[43] computes state variables by reversing the operation

sequence applied on the variables. It uses compiler-based techniques to generate

the reverse computation code automatically. As a result, its implementation is more

complex, although it is able to provide a significant performance improvement over

checkpointing.

In rollback relaxation[44] all LPs are classified into two categories, memoryless

and LPs and LPs with memory. A memoryless LPs’ output is determined by the

values of its inputs. Therefore, no state is saved for memoryless LPs. Instead, the

LP reconstructs any required input state from the events of the input queue. The

rollback relaxation mechanism is able to reduce the state saving overhead by a

considerable amount in logic simulations because most LPs(AND, OR, XOR gates) in

such simulation are memoryless.

5.3 Logic simulation and its characteristics

5.3.1 Characteristics of logic simulation

In this section we discuss the characteristics of logic simulation which inspired

our work on event reconstruction. The detail explanation ofthe discrete event logic

simulation could be found in chapter 2.

• Relatively small state size

In the implementation of a logic simulator, such as DVS [1], the 4 signal values

are encoded with two bits as shown in table 2–1. Every gate hasup to four

inputs and one output. Therefore, the state of a gate in Figure 5–1 includes ival

58

State
+ival: byte
+oval: byte
+history_LVT: unsigned

Event
+type: byte
+source: byte
+destination: byte
+sendTime: unsigned
+recvTime: unsigned
+sign: byte
+gateID: unsigned
+value: byte

oval

ival=

0-1 2-3 4-5 6-7

I0

I0 I1I2 I3

I1 I2 I3

Figure 5–1: The size of the state and the event

and oval, each of which are one byte in length. The bits 0-1 areused to store

the value of I0, bits 2 and 3 for I1, 4 and 5 for I2 and bits 6 and 7 for I3, as

shown in Figure 5–1. For example, if ival is equal to 00001001, we know that I0

is equal to logical value 0, I1 logical value 0, I2 logical value ’x’ and I3 logical

value 1. This compact storage helps to save memory. The size of the state is only

16 bytes in DVS[1]. However, checkpointing has its greatestvalue when the size

of the state is large.

• Large event size

Figure 5–1 shows the structure of an event. The size of an event is 56 bytes,

almost four times of the size of a state. Therefore, event saving causes at least

3.5(56/16) times more memory to be used than state saving if state saving is

done for every event processed. In order to underscore this point, the amount of

59

memory consumed in the simulation of a 16 bit multiplier is presented in our

experimental section.

• Large event population

The event population is large because of the large number of gates, each of

which is mapped to an LP. For example, the event population is8,129,815 for

s38584(about 20K gates) when the clock is 500kHz and the number of random

input vectors is 100. If every event has to be saved, the associated memory

consumption will be very large.

• Fine event granularity

Logic simulation is known for its fine event granularity. Thus, the performance of

distributed logic simulation is especially sensitive to the overhead caused by state

saving and event saving. Reducing this overhead would certainly be useful for

performance improvement.

With these characteristics of logic simulation in mind, we decided to reduce the

memory occupied by events instead of reducing the memory consumed by states. The

following section describes our approach to event reconstruction.

5.4 Implementation of Event Reconstruction

In this section, we explain the implementation of event reconstruction in detail.

The data structures and algorithms which comprise this approach are described below.

5.4.1 Data structure

The data structure for event reconstruction is shown in figure 5–2. In DVS, the

Cluster is the container and scheduler of all of the LPs. An LP maintains a state list.

60

LP1

State List

LP2

State List

Cluster Input Queue

LP3

State List

Figure 5–2: Cluster structure

In event reconstruction it is necessary to store all of the states at an LP. Since we build

the input events and anti-events from the state list in our approach,we don’t need the

input event list and output event list for every LP. The unprocessed events for all of

the LPs in the same cluster are stored in a single priority queue data structure. The

LP scheduling strategy is smallest timestamp first. We note in passing that the GVT

computation also benefits from the single queue data structure.

5.4.2 Event annihilation

Time Warp uses a tuple (LPID, timestamp, eventID) to match positive events and

their corresponding anti-events. The LPID is globally unique, indicating which LP

will receive the event. The eventID is unique in the cluster,and is increased by one

automatically whenever a new event is generated. The EventID is used, along with the

timestamp to distinguish between simultaneous events. Unfortunately, the eventID is

lost because we don’t save input events in our approach. Instead, we use the signal

value on the wire to compensate for the lost eventID information. The new tuple for

event annihilation is (LPID, timestamp, signalValue). If both the timestamp and the

61

signalValue are the same for two events, they are consideredto be identical events. If

there exists more than one identical event in the event queue, the anti-event will pick

the first one in the queue to annihilate. This approach introduces some indeterminism.

However, Verilog[9] is a concurrent language, in which there are sources of non-

deterministic behavior such as arbitrary execution order in zero time and arbitrary

interleaving of behavior statements. Therefore, the simulation results are not guaranteed

to be deterministic. In fact, simultaneous events are executed in arbitrary order in the

Verilog simulator.

5.4.3 Port flag

We use a different rollback strategy for LPs inside the cluster and for LPs outside

of the cluster. Inside the cluster, we roll back those LPs which are descendants of the

LP which receives the straggler or anti-message. Anti-messages are sent to LPs outside

of the cluster.

In order to implement the two rollback algorithms, a port flagis used for each

LP port in order to indicate whether it is an internal port or an external port. The

port flag is set at run time. Initially, every port flag is set tobe an internal flag. When

the LP receives an external message, it sets the corresponding flag to external. The

implementation of the rollback algorithms making use of these flags will be explained

in the following section.

5.4.4 Event builder

Only those events which change the input signals at a gate need to be recon-

structed, as it is only these events which cause a change in the state of a gate.

62

Let s’ be the state before the execution of event e and let s be the state after

the event is executed. If s is equal to s’, event e is considered null and need not be

reconstructed. However, if s is different from s’, event e can be rebuilt according to

Formula 5.1. The signal value is the value on the wire, as shown in Table 2–1.

e.timestamp = s.timestamp

e.signalV alue = s.signalV alue
(5.1)

For example, state s’ is shown in Figure 5–3.a and state s in Figure 5–3.b. It is

worthwhile noting that signal values on all ports are packedinto a one byte state. By

comparing the value on port I1 of states s and s’, the event which happened at time 200

is reconstructed with the value on port I1 of state s, which changed from ’00’ in state

s’ to ’01’ in state s.

state@100=00000101

a. Initial state

oval

I0 I1I2 I3

state@200=00010101

b. State at time 200

e@200=(I1:00->01)

oval

I0 I1I2 I3

g1 g1

Figure 5–3: Event reconstruction

Input event builder

In Time Warp an LP saves events after processing them becauseif the LP

rolls back, previously processed events will have to be reprocessed. Through event

reconstruction, these previously processed events will nolonger have to be saved.

Instead, they are reconstructed by the input event builder,depicted in Figure 5–4.

63

input_event_builder(event* rb_event)
{
 reverse_iterator iter=state_list.rbegin();
 //main loop for the event reconstruction
 while((*iter)->LVT >= rb_event->recv_time)
 {
 state* s1 = (*iter);
 state* s2 = (*iter++);
 //only reconstruct the external event
 //ignore the reconstruction of internal events
 //Event reconstruction on port 0
 if (s1->ival&3 != s2->ival&3)
 if (s1->LVT == rb_event->recv_time || external_port_flag[0])
 {
 //reconstruct the event
 e->recv_time = s1->LVT;
 e->ival = s1->ival&3;
 if e->is_anti_event(rb_event)
 annihilate(e, rb_event);
 else
 schedule(e);
 }
 //Event reconstruction on port 1
 if ((s1->ival>>2)&3 != (s2->ival>>2)&3)
 if (s1->LVT == rb_event->recv_time || external_port_flag[1])
 {
 //reconstruct the event
 e->recv_time = s1->LVT;
 e->ival = (s1->ival>>2)&3;
 if e->is_anti_event(rb_event)
 annihilate(e, rb_event);
 else
 schedule(e);
 }

 //Event construction on port 2 & port 3
 //compare((s1->ival>>4)&3, (s2->ival>>4)&3)
 //compare((s1->ival>>6)&3, (s2->ival>>6)&3)
 }
}

Figure 5–4: Input event reconstruction algorithm

The algorithm loops through the state queue until the LVT of the state is less

than the receive time of the event which causes the rollback.It picks a state s1 and its

predecessor s2 from the state queue. If the input values of state s1 and s2 are different,

64

an event e is reconstructed according to Formula 5.1. The input values are bound into

one byte. Therefore, the comparison is executed four times,once for each input port of

the LP, as shown in the Figure 5–4. Moreover, due to the different rollback strategies

for the internal events and external messages, we set a port flag to indicate the source

of the events. For the external port, we reconstruct every event. However, we only

reconstruct the events which have LVT equal to the LVT of the straggler event for the

internal port. The reason for this is that the internal events which have a larger LVT

than the straggler will be regenerated because of the cluster rollback strategy[57] used

in DVS[1], which will rollback all LPs in the cluster. Therefore, the internal events

will not be reconstructed because they will be regenerated by their source LP in the

same cluster. The port flag is used to avoid unnecessary reconstruction of internal

events. In fact, the algorithm of event reconstruction doesnot depend on the cluster

rollback strategy. We are continuing to improve the rollback strategy and the event

reconstruction algorithm. Further effort will focus on tree rollback instead of the cluster

rollback. The tree rollback strategy only rolls back those LPs which reside in a tree

whose root is the LP which receives the straggler event.

Anti-event builder

The anti-event builder works in the same way as the input event builder, as shown

in figure 5–5. The anti-event is reconstructed by comparing the output values of two

adjacent states, s1 and s2. After reconstruction, the anti-event is sent to those LPs

which are in the fanout list of the current LP but not in the same cluster. For a cluster

rollback, we don’t have to use anti-events to cause a rollback in the same cluster.

65

anti_event_builder(event* rb_event)
{
 reverse_iterator iter=state_list.rbegin();

 while((*iter)->LVT >= rb_event->recv_time)
 {
 state* s1 = (*iter);
 state* s2 = (*iter++);

 if (s1->oval&3 != s2->oval&3)
 {
 //reconstruct the anti event
 e->recv_time = s1->LVT;
 e->ival = s1->oval&3;
 e->flag = ANTI;

 for each external LP in fanout list
 send e to LP
 }
 }
}

Figure 5–5: Anti event reconstruction algorithm

5.4.5 Event processing loop

The basic algorithm for an optimistic LP is sketched in Figure 5–6. The LP

removes the head event from the event queue and checks whether it is a normal event

or a straggler or an anti- event. If it is a normal event, the LPfirst logs its state and

processes the event. State is saved after every event. However, processed events will

not be saved.

When the LP receives an anti-event or a straggler, it rolls back as in ”normal”

Time Warp. However, the LP reconstructs the input events andoutput events from

the state queue. This introduces a processing overhead which is similar to the cost for

coasting forward in dynamic checkpointing.

66

while(GVT < FINISH_TIME)
{
 receive external events;
 pop an event from event queue;
 update LVT;
 if (event is straggler or antimessage)
 {
 input_event_builder();
 anti_event_builder();
 send_anti_events();
 }
 else
 {
 log_state();
 event_processing();
 }
}

Figure 5–6: Optimistic LP simulation algorithm

5.5 Experiments

All of our experiments were conducted on a network of 8 computers, each of

which has dual PentiumIII processors and 256M RAM. They are interconnected by a

Myrinet, a high speed network with link capacity of 1Gbit persecond. All machines

run the FreeBSD operating system while MPICH-GM is used for message passing

between different processors.

The Verilog source file used in the simulation describes an ISCAS’89 benchmark

circuit, S38584. It includes 19253 gates, 1426 D-type flip-flops and one virtual thread

which feed 20 random vectors to the circuit. The clock frequency of S38584 is 1MHz.

The other Verilog source file describes a 16bit multiplier. It includes 2416 gates and

one virtual thread which feeds 200 random vectors into the circuit.

67

We assume a unit gate delay and zero transmission delay on thewire. Each data

point collected in the experiments is an average of five simulation runs. The number of

machines in the figure doesn’t include machine 0, which only contains vthreads[1]. The

vthreads generate the events for the simulation. The simulation time for 1 machine is

the running time of the DVS without partitioning.

In the experiments, we compare the performance of DVS with dynamic check-

pointing and with event reconstruction to that of ”pure” Time Warp. The partitioning

algorithm which we use is CAKE[73]. The dynamic checkpointing algorithm is ini-

tiated every 1000 events. Our event reconstruction algorithm requires that the state is

saved after each event is processed.

5.5.1 Memory Usage

Memory consumption breakdown

The memory consumed by Time Warp is composed of the memory consumed by

state saving and by event saving. Figure 5–7 presents the memory breakdown for the

machine which has the maximum memory consumption. The data is collected for a 16

bit multiplier and for S38584 using Time Warp. The top of Figure 5–7 is the memory

breakdown for the 16 bit multiplier with 200 random vectors while the bottom is the

memory breakdown for S38584 with 30 random vectors.

We see from both of these that event saving consumes more memory than state

saving. We define thememory usage ratio to be the ratio of the memory consumed by

event saving to the memory consumed by state saving and list these ratios in table 5–1

for the 16 bit multiplier and for S38584. We see that event saving consumes 4.73 times

68

circuit 2 3 4 5 6
16 bits multiplier 4.49 4.50 4.78 4.68 4.73

S38584 3.60 3.68 3.54 3.53 3.55
Table 5–1: The memory usage ratio

the memory used by state saving when 6 machines are used. On the average,event

saving consumes almost four times the memory consumed by state saving.

1 2 3 4 5 6
0

10

20

30

40

50

60

M
em

or
y

co
ns

um
pt

io
n(

M
)

Memory consumption breakdown for 16 bits Multiplier

state saving
event saving

1 2 3 4 5 6
0

20

40

60

80

100

Number of machines

M
em

or
y

co
ns

um
pt

io
n(

M
)

Memory consumption breakdown for S38584

state saving
event saving

Figure 5–7: Memory consumption breakdown

Peak memory consumption

We define thepeak memory usage to be the maximum of all of the machines’

maximal memory usages. Figure 5–8 shows the peak memory vs. the number of

machines for the 16 bit multiplier. The memory used by one machine is only 0.45M

because memory overhead is unnecessary. When two machines are used, event

69

reconstruction uses 1.79 times less memory than dynamic checkpointing and 2.34

times less than pure Time Warp. The ratio between event reconstruction and dynamic

checkpointing decreases when more machines are used. The reason for this decrease is

that the average number of events processed decreases when more machines are used,

and consequently the memory occupied by event saving decreases. When 6 machines

are used, event reconstruction uses 1.29 times less memory than is used by dynamic

checkpointing.

1 2 3 4 5 6
0

10

20

30

40

50

60

70

Number of machines

P
ea

k
M

em
or

y
U

sa
ge

(M
)

Memory consumption for 16 bits multiplier

Pure TW
TW with ER
TW with DC

Figure 5–8: Memory consumption for 16 bits multiplier

Figure 5–9 presents the peak memory vs. the number of machines for S38584.

Time Warp uses 119.06M when 2 machines are used. This leads tomemory swapping

and bad performance, as shown in Figure 5–11. Event reconstruction uses 54.21M

when two machines are used, versus 99.18M by dynamic checkpointing.

70

1 2 3 4 5 6
0

20

40

60

80

100

120

Number of machines

P
ea

k
M

em
or

y
U

sa
ge

(M
)

TW with ER
TW with DC
pure TW

Figure 5–9: Memory consumption for S38584

5.5.2 Simulation Time

The simulation time vs. the number of machines for the 16 bit multiplier is

presented in figure 5–10.

We observe from figure 5–10 that event reconstruction results in a 10% execution

time improvement over dynamic checkpointing and a 40% improvement over Time

Warp when 2 machines are used. The speedup decreases when more machines are used

for the same reason that the improvement in memory consumption diminishes when

more machines are used. The speedup obtained using event reconstruction is 3% better

than dynamic checkpointing and 35% better than Time Warp when 6 machines are

used.

71

1 2 3 4 5 6
5

10

15

20

25

30

35

40

Number of machines

S
im

ul
at

io
n

T
im

e(
S

ec
on

ds
)

Simulation time for 16 bits multiplier

Pure TW
TW with ER
TW with DC

Figure 5–10: Simulation Time for 16 bits multiplier

Figure 5–11 presents the simulation time vs. the number of machines for S38584.

The simulation time of pure Time Warp is 25.55 because of memory swapping. Both

dynamic checkpointing and event reconstruction eliminatememory swapping. However,

event reconstruction is 11% faster than dynamic checkpointing.

72

1 2 3 4 5 6
12

14

16

18

20

22

24

26

Number of machines

S
im

ul
at

io
n

tim
e(

se
co

nd
s)

TW with ER
TW with DC
pure TW

Figure 5–11: Simulation Time for S38584

73

CHAPTER 6

A multiway design-driven partitioning
algorithm for distributed Verilog
simulation

The research described in this chapter first appeared in [5].

6.1 Introduction

Modern VLSI systems are becoming increasingly complex, posing a never-ending

challenge to sequential simulation. In order to accommodate the growing need for

increased memory as well as the need for decreased simulation time, it is becoming

increasingly necessary to make use of distributed simulation[7].

Time Warp[8] is an appealing technique for the distributed logic simulation of

VLSI circuitry because it can potentially uncover a high degrees of parallelism in the

VLSI system being simulated.

However, getting satisfactory simulation performance in adistributed environment

is challenging since we need to overcome the huge cost of inter-processor communica-

tion which is exacerbated in a distributed environment by netlists comprised of millions

74

of gates. It is widely known that partitioning is an NP-complete problem, the result of

which is that partitioning algorithms provide heuristic solutions and can be trapped in

local minima.

Most of the partitioning algorithms [49, 3, 74, 75, 76, 60, 4,77, 78] for dis-

tributed/parallel VLSI simulation directly partition gate level netlists. These algorithms

are typically used for floorplanning and placement, not for simulation. They can

produce a big cutsize which is intolerable in a distributed VLSI simulation environ-

ment because of the communication costs which are a consequence of a large cutsize.

Moreover, few partitioning algorithms take load balancinginto account.

The ASIC design community has a well-established hierarchical design methodol-

ogy. Every design is partitioned into blocks by functionality. The design hierarchy is

reflected in modules and their instances in Verilog. In this paper we take advantage of

the design hierarchy information present in Verilog and combine it with a move-based

partitioning algorithm. In our algorithm, the module/instance is the basic partitioning

element instead of the gate.

The rest of this chapter is organized as follows. Section 6.3is devoted to related

research. In section 6.5, we introduce hierarchy in Verilog. Our distributed simulation

environment DVS[1] could be found in chapter 4. In section 6.6, we present the details

of our design-driven partitioning algorithm. A comparisonof the cutsize and of the

execution time of our design-driven partitioning algorithm and htmis partitioning based

on netlists is presented in section 6.7. The last section contains our conclusions and

thoughts about future work.

75

6.2 Metrics of partitioning quality

Partitioning plays an important role in performance of parallel/distributed logic

simulation [79, 80]. Since graph partitioning problem is NP-complete, most partitioning

algorithms are heuristic algorithm. [65, 76, 60] shows three metrics determining the

quality of partitioning, which are communication, load balance and concurrency. The

goal of the partitioning algorithm is to minimize communication while achieving

best load balance and maximum concurrency. Unfortunately the three metrics are

sometimes contradictory. Therefore, the optimal partitioning algorithm tries to find the

best tradeoff among these three factors.

6.2.1 Communication

Since our distributed simulation is executed on a network ofworkstations,

communication is the most critical factor for the performance of the simulation.

Furthermore, because of the known fine granularity of the computation in logic

simulation, communication cost needs to be reduced as much as possible.

The amount of communication is typically estimated by the cutsize of the

partitioning. The smaller the cutsize, the fewer messages are transferred between

different partitions. In the experiment section of this chapter, the readers will see

clearly that the cutsize strongly affects the simulation performance.

However, the traffic between different machines is not always proportional to

the cutsize of the partitioning. In the actual simulation, some cut edges may be

heavily loaded with communication traffic while other cut edges seldom carry any

messages. Unfortunately most of the partitioning algorithm are static, which means

the partitioning is done before the simulation. In order to obtain the dynamic traffic

76

information, it is necessary to use pre-simulation[81], which will be discussed later in

this chapter.

6.2.2 load balancing

The performance of the distributed simulation is limited byits slowest machine.

Therefore, in order to obtain the best simulation performance, the best strategy is to

distribute the computing load evenly onto all computing machines and make them

finish the computing task at the same timeframe.

In distributed Verilog simulation, we define the load of an LPto be the total

number of events executed on the LP. However, since partitioning is done before

simulation and it is not easy to obtain the number of events, we have to define load as

a static metric. Usually we choose the number of gates in gate-level simulation since it

is the rough estimate of the events in the LP. This simplification is based on assumption

that all gates of the circuit are equally active during the simulation. As was the case

for the communication, this is not always true in the actual simulation. Experimental

results have shown that there are hot spots that are more active than others during the

simulation. Again, pre-simulation is needed to evaluate the load balance.

Currently we assume our distributed simulation will be the dedicated users of

the computing workstations. However, there could be external loads on the computing

nodes. External load is not in the scope of our research aboutdistributed Verilog

simulation.

6.2.3 Concurrency

Concurrency is a metric which is easily confused with the concept of load balance,

although there is major difference between these two metrics.

77

Load balance is dynamic measurement metric, although it is usually approached by

static metrics such as the number of gates.

However, concurrency could be a good static metric. There isdesign level

concurrency in a circuit. It means two subblocks could be simulated in parallel with

little synchronization or even without synchronization. The design concurrency is the

basis of parallel/distributed discrete event simulation for VLSI circuit simulation.

In [60] Kim defined a metric to measure concurrency. Two strategies of exploiting

concurrency from a VLSI circuit are the following.

• Make use of the primary input or primary output. The primary input is a node

with zero fan-in and primary output is a node with zero fan-out. String[46, 82]

and cone partitioning[83] are such kind of partitioning algorithm. Its partition is

generated by the fanout along with the primary input or output of the circuit.

• Make use of level sorting. All of the vertices at the same level are assigned to

different partitions.

6.3 Related work

6.3.1 Non-iterative partitioning algorithm

A common approach to circuit partitioning consists of dividing the circuit into

two or more blocks such that the number of connections between the blocks of the

partition is minimized. The partitioning problem is NP-complete and commonly and, as

a consequence, heuristic methods are used to achieve a solution. An excellent survey

on the state of the art in VLSI circuit partitioning may be found in [84].

78

Random partitioning is the simplest method of partitioning.As the name implies,

it assigns gates to processors randomly. It is a simple and efficient algorithm. However,

it cannot produce the optimal cutsize.

String partitioning [46, 82] first distributes the primary inputs randomly onto the

available processors because they are the first element to create new events during the

simulation. The algorithm then continues in a depth-first manner by following one

of several fanout branches until either an external output of the circuit or an already

assigned unit is encountered. If there remain unassigned units, one of them is randomly

chosen, placed into the partition with the least number of gates and the depth-first

search is repeated until all gates belong to a partition.

Cone partitioning[49] is well suited for circuits that have primary inputs. Starting

with the primary inputs of a circuit, all of the gates that aredriven by the primary

input are added to the output cone of that primary input. Thisprocedure is repeated

recursively for the added gates until a primary output is reached.

6.3.2 Iterative partitioning algorithm

In 1970, Kernighan and Lin(KL)[85] proposed a well-known heuristic for the

two-way graph partitioning algorithm which has become the basis for most of the

subsequent partitioning algorithms in this area. The algorithm is called an iterative

improvement algorithm because it is based on the cell moves to improve the solution

iteratively until a local minimum is obtained.

The KL algorithm[85] starts with an initial two-way partition. Then it performs

a series of passes until a local minimum of cutsize is achieved. A pass consists of

a number of pairwise cell swapping between the two partitions. Schweikert and

79

Kernighan [86] proposed a more practical model referred to as the hypergraph model

for the circuit partitioning problem.

Fiduccia and Mattheyses [3] presented a modified version of algorithm KL[85]

in order to speed up the search. They introduced a new data structure (bucket list of

cell gains) to achieve linear run time per search. Moreover,they proposed a cell move

strategy instead of swapping a pair of cells in one move, which allows more flexibility

in selecting candidate cell to move.

Krishnamurthy [87] suggested that the lack of an intelligent tie-breaking scheme

among many possible cell moves with the same gain could causethe FM algorithm to

make bad choices. He enhanced the FM algorithm[3] with a look-ahead scheme that

looks ahead up to rth level of cell gains to choose a cell move.

Sanchis [88] extended FM algorithm[3] with Krishnamurthy’s look-ahead

scheme[87] to multi-way partitioning. Sanchis’s algorithm is also the first hyper-

graph multi-way partitioning algorithm since all the previous algorithm described are

two-way partitioning algorithm. Sanchis’s algorithm is extensively used as a benchmark

in performance comparison for different multiway hypergraph partitioning algorithms.

All the FM-based[3] partitioning algorithms, such as KL[85], KR[87] and

SA[88] algorithm are generally intuitive, flexible in adapting to different optimization

objectives, easy to implement and relatively fast.

Park and Park[89] pointed out that the cell move operation islargely influenced

by the balancing constraint. Therefore, they proposed a cost function that comprises

both the cutsize and the balance degree that is the sum of all size differences between

different partitions. The balance degree is associated with a positive weighting factor.

They proved that a minimum cost multiway partitioning obtained by their algorithm

80

corresponds to a balanced minimum cutsize as defined in SA algorithm[88] if the

weighting factor is larger than the number of cells in a circuit. The SA algorithm[88] is

then used to solve the multi-way partition problem under their objective function.

Dutt and Deng[4] observed that the FM-based algorithms could only remove

small clusters from the cutset while it may lock bigger clusters in the cutset. They

divided the cell gain into initial gain calculated before a cell movement and the update

gain generated from the cell movement afterwards. By focusing on the update gain

when choosing cells to move, they reported very successful results for bipartitioning

experiments.

Harypis [6] introduces a coarsening phase in a multilevel hypergraph partitioning

algorithm hMetis. During the coarsening phase, a sequence of successively smaller

hypergraphs is constructed. The purpose of coarsening is tocreate a smaller hypergraph

while preserving the partitioning quality obtained from the original hypergraph.

The authors claim that hmetis produces partitions that are consistently better than

other widely used algorithms and is one to two orders of magnitude faster than other

algorithms.

Dasdan and Aykanat[90] developed two multiway partitioning algorithms using

a relaxed locking mechanism. The first one (PLM) uses the locking mechanism in

a relaxed manner. It allows multiple moves for each cell in a pass by introducing

the phase concept so that each pass may contain more than one phase and each cell

has a chance to be moved only once in each phase. The second algorithm (PFM)

does not use the locking mechanism at all. A cell can be moved as many times as

possible per pass based on its mobility value. The performance of the two algorithms

was compared with the Simulated Annealing algorithm[91] and Sanchis’s algorithm

81

[88] on some benchmark circuits. The results of the algorithms outperform Sanchis’s

algorithm significantly on multiway partitioning. The performance of the algorithms are

comparable to Simulated Annealing algorithm[91] while thealgorithm is much more

efficient.

Cong and Lim[92] proposed a multiway partitioning algorithmwith pairwise

cell movements. It starts with an initial multiway partition and then applies the

bipartitioning heuristic (FM algorithm[3]) to pairs of blocks concurrently to improve

the quality of the overall multiway partitioning solution.

Yang and Wong[93] presented a network flow based partitioning algorithm to solve

bipartitioning problem and they claimed that multiway partitioning can be accomplished

by recursively applying the network flow based algorithm.

6.3.3 Iterative partitioning algorithm utilizing design hierarchy

It is worthwhile noting that the CLIP[4] and hMetis[6] algorithm tries to detect

and restore the cluster destroyed by the iterative partitioning algorithm based on the

flattened netlist.

[4] and [6] try to reduce the size of the hypergraph from the bottom up, i.e.

they extract clusters from the flattened netlist without worsening the quality of the

partitioning of the original netlist. Our algorithm works from top-to-bottom-it flattens

the design hierarchy step by step and compromises between the load balancing

constraint and the minimum cutsize.

Iterative algorithms generally work on any hypergraph while our algorithm

specifically targets distributed Verilog simulation. The main purpose of our algorithm

is to try to keep the Verilog instance (actually the design hierarchy) intact from

82

the beginning. It is much easier than restoring it from the debris produced by first

flattening the netlist. Moreover, the quality of the resulting partition should be better

than the cluster restoration and hypergraph coarsening.

Algorithms which try to take advantage of the information included in the design

hierarchy include the following.

Chau-Shen [94] proposes an architecture driven partitioning algorithm for netlists

with multiterminal nets. The target architecture was a multifield-programmable gate

array (FPGA). The goals of the algorithm are to minimize the number of FPGA chips

used and to maximize routability.

Tun [68] uses a module-based simulation mapping method. Although the details

of the algorithm are not described in the paper, the author states that it reduces the

communication cost and achieves a better load balancing.

K.H. Chang[95] uses the module tree as the data structure instead of the circuit

hypergraph. Modules are not moved by the algorithm. Nor doesit use an iterative

improvement technique. The author does not mention the cutsize achieved by the algo-

rithm and concludes that the algorithm achieves better performance than a sequential

simulation and is efficient.

Jong-Sheng [96] proposes a module migration based partitioning algorithm which

tends to keep the cluster intact in order to reduce the net cutsize. The algorithm

implicitly promotes the move of clusters of modules during the module migration

process by paying more attention to the neighbours of moved modules, relaxing the

size constraints temporarily during the migration process, and controlling the module

migration direction. Load balancing was not considered in this algorithm.

83

Iterative algorithms start from an initial partitioning and try to improve it.

The well-known iterative algorithms for circuit partitioning are CLIP/CDIP[4],

Metis/hMetis[6] and F-M[3]. It is worthwhile noting that the CLIP[4] algorithm

tries to detect and restore the cluster destroyed by the iterative partitioning algorithm

based on the flattened netlist.

Harypis[6] introduces a coarsening phase in a multilevel hypergraph partitioning

algorithm. During the coarsening phase, a sequence of successively smaller hyper-

graphs is constructed. The purpose of coarsening is to create a smaller hypergraph

while preserving the partitioning quality obtained from the original hypergraph. The au-

thors claim that hmetis produces partitions that are consistently better than other widely

used algorithms and is one to two orders of magnitude faster than other algorithms.

Dutt and Deng [4] and [6] try to reduce the size of the hypergraph from the

bottom up, i.e. they extract clusters from the flattened netlist without worsening the

quality of the partitioning of the original netlist. Our algorithm works from top-to-

bottom-it flattens the design hierarchy step by step and compromises between the load

balancing constraint and the minimum cutsize.

Iterative algorithms generally work on any hypergraph while our algorithm

specifically targets distributed Verilog simulation. The main purpose of our algorithm

is to try to keep the Verilog instance (actually the design hierarchy) intact from

the beginning. It is much easier than restoring it from the debris produced by first

flattening the netlist. Moreover, the quality of the resulting partition should be better

than the cluster restoration and hypergraph coarsening.

84

6.4 Motivation and objective

The existing partitioning algorithms are usually performed on the flat netlist of the

circuit. The purpose of the partitioning algorithms are forcircuit layout. Currently there

is no partitioning algorithm specifically designed for distributed Verilog simulation

while Verilog simulation has its own characteristics in terms of partitioning quality.

First of all, netlist described by Verilog contains design hierarchy that has multiple

Verilog instances. The Verilog instances are the best potential candidate for the initial

partition since the Verilog instances are representation of the design blocks that are

supposed to be coupled loosely. The existing partitioning algorithm needs to restore

clusters in the flat netlist through computation of the strong connected component in

the circuit hypergraph.

Second, the partition quality of the existing partitioningalgorithms are poor. The

performance of distributed Verilog simulation will be worse than the sequential Verilog

simulation.

Third, the efficiency of the existing partitioning algorithm is relatively low.

There are some efforts to reduce the number of the hypergraphnodes. However, the

partitioning of the circuit with millions of gates still takes long time.

In order to enhance the solution quality for the iterative partitioning algorithm, we

need to take advantage of the design hierarchy in netlist described by Verilog in order

to overcome the above disadvantages of the existing partitioning algorithm. This is the

motive for developing our new algorithm.

The primary objectives of our partitioning algorithms are as follows.

1. The partitioning algorithm should produce the minimal communication and make

workload among different computers as balanced as possible.

85

2. The partitioning algorithm should preserve the design hierarchy by the hardware

design engineers

3. The partitioning algorithm should be able to choose the optimal number of

computing nodes

4. The partitioning algorithm should take advantage of the primary input such as

flip-flop or registers to exploit the concurrency in the design.

6.5 Hierarchy in Verilog

The module is the basic unit of code in the Verilog language. Both behavioral and

structural code can be contained within a module. The encapsulation property of the

module gives designers the ability to reuse the module in a VLSI design. Moreover,

the module provides an interface to the program while hidingthe complexity inside of

it. Therefore the module and its instance are natural candidates for partitioning. We

introduce the concept of a super-gate in this paper in order to describe the module

instance in a circuit hypergraph.

Modules can reference lower level modules and describe the interconnections

between them as part of the hierarchy. Each module instance is an independent,

concurrently active copy of a module. It contains the name ofthe original module, an

instance name that is unique to that instance (within the current module) and a port

connection list.

Usually Verilog module instances communicate with other instances through ports.

The encapsulation property of Verilog modules helps to achieve a smaller cutsize when

we partition the circuit. Although Verilog supports cross module reference, standard

design practice discourages such usage.

86

Figure 6–1 shows a design hierarchy described by Verilog. The left side of the

figure is the Verilog source code while the right side displays the design hierarchy

and its interconnection. Coupling is usually loose between Verilog instances and is

tight inside a Verilog instance (at least for a good VLSI design). Therefore, if the

circuit is cut at instance boundaries, the cutsize will be smaller and inter-processor

communication will be reduced.

Module m1(p1, p2, p3);
 m2 m2a(…...);
 m3 m3a(…...);
endmodule

Module m2(p1, p2, p3);
 …...
endmodule

Module m3(p1, p2, p3);
 m4 m4a(…...);
 m5 m5a(…...);
endmodule

module m4(p1, p2, p3)
 …...
endmodule

module m5(p1, p2, p3);
 …...
endmodule

m2a

m4a

m5a

m1

m3a

Figure 6–1: Verilog module/instances and interconnection

We should note that not only does RTL Verilog source code contain design

hierarchy information, but the synthesized gate level design also contains exactly the

same design information. The design information is lost after elaboration, a process to

flatten the design hierarchy. However, if partitioning is done before elaboration we are

able to take advantage of the design information.

87

6.6 Implementation

In this section, we will explain the implementation of our algorithm in detail.

6.6.1 hypergraph

Partitioning algorithms operate on hypergraphs which model a circuit. The gates

and wires of the circuit are mapped to the vertices and edges of the hypergraph. In a

hypergraph edges may connect two or more vertices and as suchit provides a more

realistic model of a circuit.

In the circuit hypergraph, we make use of two kinds of vertices. One is an

ordinary gate, such as AND, OR, NAND, XOR, etc. The other kind ofvertex is a

Verilog instance. Actually we can treat it as a super-gate with more complex logic than

ordinary gates. We associate the number of gates with each vertex in the hypergraph

in order to get an even load distribution. The introduction of super-gates reduces the

number of vertices thereby making the algorithm more efficient. This load metric

does not work for behavioral Verilog code since we cannot measure the complexity

of the behavioral code. This algorithm targets Verilog codeat the gate level, i.e. after

synthesizing the RTL code.

Figure 6–2 contains a hypergraph which is composed of two kinds of vertices,

gates and super-gates (Verilog instances).

In figure 6–2, there are two Verilog instances, u1 and u2 whichare represented

by two vertices in the hypergraph. However, in the zoom-out eclipse we see that both

u1 and u2 have their own sub-graphs, each of which include multiple gates or Verilog

instances.

88

u
1

x2

x1

f(x1...xn)33 MHz

u1

x2

x
1

f(x
1
...x

n
)

&0

0

0

&0

0

0

Figure 6–2: Hypergraph represented by Verilog

Kind visibility primitive example
A Yes Yes Gate outside Vlog instance
B Yes No Top level Vlog instance
C No Yes Gate inside Vlog instance
D No No Sub-level Vlog instance

Table 6–1: Logic values and their purposes

Before we introduce the data structure used in the algorithm,we define two

properties of a vertex. We say that a vertex is not visible if it is inside of a Verilog

instance , otherwise it is visible. We say that a vertex is primitive if it cannot be

decomposed into multiple vertices, otherwise it is not primitive. Consequently there are

four kinds of vertices, as shown in table 6–1.

For example, in figure 6–2, all of the nodes inside the zoomoutellipse are of kind

C, while the node zoomed out is of kind B. The properties of the vertex can change

during the partitioning process. For example, the vertex inside of a Verilog instance

89

will become visible after flattening. Any invisible vertex will have the same partition id

as its parent. Therefore, only visible vertices will appearin the hypergraph.

The complexity of any partitioning algorithm is proportional to the number of

vertices. A reduction in the number of vertices in a hypergraph results in simpler

hypergraph and a more efficient partitioning algorithm.

6.6.2 data structure

Figure 6–3 shows the data structure used in the partitioningalgorithm. The

hypergraph is represented as a vertex vector and an edge vector. Each vertex contains

the load, a pointer to its parent, the partition id, the neighbouring vertices list, the

Behring edges list and the input ports list. The input ports list contains all of the input

ports of the vertex and the internal vertices connected to the input ports while the

output ports list contains all of the vertices to which it connects. The ports can be used

to flatten a vertex. All of the invisible vertices are expanded into visible vertices when

a vertex is flattened. Details of flattening are explained in subsection 6.6.8.

The bucket is the data structure used to arrange vertices in the order of their gain

values. It was first used in [3] in order to improve the runtimeperformance of the

FM[3] algorithm. The bucket data structure is inspired by the bucket sorting algorithm.

It has the following two advantages.

• Locating a vertex with the highest gain in the bucket is constant time

• After gain updating, the re-insertion of a vertex into the bucket is accomplished

in constant time

As shown in figure 6–4, the bucket is actually a two-dimensional list. All of the

vertices on the same row have the same gain value while different rows are ordered by

90

-gain : int
-locked : bool
-partition_id : int
-neighbor_vector : object
-neighbor_edge : object

Vertex

-locked_num[2] : int
-unlocked_num[2] : int
-neighbor_vector : object

Edge

Neighboring
vertices of vertex

ports
Neighboring

vertices of ports

Vertex vector

Figure 6–3: Data structure of the partitioning algorithm

the gain value. All vertices on the same row form a double linked list by pointing to

the previous and the next vertex. The advantage of double linked list over single linked

list is that the remove operation on the double linked list isconstant time while the

remove operation on single linked list is linear time. It could make a huge difference

when the circuit hypergraph has millions of vertices. Our experiments[73] show that

the runtime performance of FM[3] based on single linked listcould be 300 times

slower than the algorithm based on double linked list.

6.6.3 Verilog parser and hypergraph builder

The Verilog parser reads in the Verilog source code and builds the hypergraph.

In the hypergraph, the Verilog instances are treated as super-gates and are therefore

represented as one vertex. The Verilog parser is extended from the original Verilog

parser of Icarus[58] Verilog simulator.

91

+Max degree of
the graph

-Max degree of
the graph

+n

-n

-1

+1

0

All vertices with the same
gain are linked in the

same row of the bucket

Figure 6–4: Bucket data structure for vertex movement

6.6.4 Cutsize and gain from the movement

A circuit netlist is modelled by a hypergraph G=< V,E > where V is the set of

vertices while E is the set of nets or wires in the circuit. Theedge is not cut if all the

vertices of the edge reside in the same partitioning. Otherwise the edge is cut. The cost

of the cut is defined to be r-1 while r is the number of the partitions in which the cut

resides. The cutset of the circuit consists of all the edges which are cut.

92

The cutsize of the circuit is defined to be the sum of cost of allcuts in the cutset

as shown in formula 6.1. In the formula,ci stands for theith cut in the circuit while n

stands for the number of cuts in the circuit.

cutsize =
n∑

i=1

cost(ci) (6.1)

Gain of the vertex movement is defined to be the immediate reduction in cutsize

as shown in formula 6.2. In the formula, m is the number of cutsafter the vertex

movement while n is the number of cuts before the vertex movement. ci stands for the

ith cut in the circuit. The negative gain means there is no reduction in the cutsize.

gain =
m∑

i=1

cost(ci) −
n∑

i=1

cost(ci) (6.2)

The goal of the iterative movement in the partitioning algorithm is to minimize

cutsize through positive gain of the vertex movement.

6.6.5 Load balancing constraint

A successful partitioning of a distributed Verilog simulation depends on three

factors- communication, load and concurrency. Since it is not possible to optimize

each of these factors in isolation from one another, a compromise must be sought. We

attempt to minimize the communication between the processors while balancing their

computational load.

We define the load on a processor as the number of gates in the partition assigned

to the processor. We make use of a load balancing factor b which allows us to measure

the percentage difference in the load on different processors.

93

load ∗ (1/k − b/100) <= load[i] <= load ∗ (1/k + b/100) (6.3)

In the formula 6.3, load[i] is the number of gates in partition i while load is the

number of gates in the circuit. k represents the number of processors involved in the

simulation. This load balancing constraint guarantees that the difference in the load

assigned to two different processors is less than 2*b percent of the total load of the

simulation.

We have experimented with different values of k and b, and portray the effect of

different choices of b in 6.7.

6.6.6 Initial partitioning

Our initial partitioning algorithm is an improved depth-first-search partitioning

algorithm whose pseudo is shown in figure 6–5. The algorithm traverses the hypergraph

from the primary inputs and adds vertices into a partition. The initial partitioning

terminates when all of the primary input ports are visited.

The partitioning algorithm could preserve concurrency in the circuit since it

distributes the primary inputs into different partitions,as shown in figure 6–6.

6.6.7 Iterative moving

The iterative moving of hypergraph nodes is the same as in theFiduccia-

Mattheyses (FM) [3] algorithm. It modifies the initial partition by a sequence of

moves which are organized into passes. At the beginning of a pass, all of the vertices

are free to move (they are unlocked), and each possible move is labelled with the

immediate change in the total cost which it would cause; thisis called the gain of

94

initial_partitioning(G, PI, k)
 /*
 G is the circuit graph, PI is the set of primary input and k is the number of
desired partitions
 L[] is the array of lists for the graph traversal. Both insertion and removal
operation are done at the head of the list
 VISITED is the array to indicate whether the vertex is visited or not. The
initial value of the array is ‘false’.
 */
 //distribute primary input evenly to all partitions
 for all vertices v in the set of PI
 {
 p = (index of v in PI) * k / (sizeof(PI)); //p is the partition number for vertex v
 insert(L[p], v);
 }

 //partition the circuit graph into disjoint sub-graphs
 for (i=0;i<k;i++)
 {
 while (L[i] is not empty)
 {
 v = remove(L[i]);
 assign v to partition i;
 VISITED[v] = true;

 for all vertices w adjacent to v such that w is not visited
 {
 insert(L[i], w);
 }
 }
 }

Figure 6–5: Pseudo code of the initial partitioning algorithm

the move (positive gains reduce solution cost, while negative gains increase the cost).

The move with the highest gain is executed, and the moved vertex is then locked, i.e.

it is not allowed to move again during that pass. Since movinga vertex can change

the gains of adjacent vertices, after a move is executed all of the gains of adjacent

vertices are updated. The selection and execution of a best-gain move, followed by

a gain update, are repeated until every vertex is locked. Then, the best solution seen

during the pass is adopted as the starting solution for the next pass. Iterative moving

95

Primary input

Cone 1 Cone 2 Cone 3

Figure 6–6: Initial partitioning result

terminates when a pass fails to improve the quality of the solution. The whole process

of the iterative moving is shown in figure 6–7. The detail explanation of the iterative

moving steps follows.

• Step 1: Calculate initial gains for all vertices

• Step 2: Insert vertices into buckets of both partitions

After the initial gain calculation of all vertices is finished, all vertices will be

inserted into the double linked list at the appropriate bucket location.

• Step 3: Locate base vertex from either bucket

• Step 4: Move the selected base vertex

• Step 5: Update gains of the neighboring vertices of the base vertex

96

Calculate the initial gain of
each vertex in the partition

Insert all of the vertices into
their corresponding buckets

Look for base vertex among all
of the unlocked vertices

Move the base vertex from
the source partition to the

destination partition

Insert the base vertex into
the free_list and lock the

base vertex

For each edge connected
to the base vertex, update

the gain values of their
neighboring vertices

Base vertex
available?

Yes

No

Calculate the maximum partial
accumulated sum of the gains of

the vertices in the free_list. Return
the index of the corresponding

location in the free_list

Reverse the vertices in the free_list,
starting from the location indicated

by the previous step

Reset the vertices, edges and
buckets. Clear the gain value of
each vertex to 0, unlock all the

vertices and empty both buckets

Figure 6–7: The iterative moving of vertices

• Step 6: Calculate the maximum partial accumulated sum of gains for the current

pass

• Step 7: Reverse selected vertices

97

6.6.8 Flattening

As it turns out, the result obtained using first level super-gates is not always

satisfying. For example, if the super-gate is too large, it will destroy the load balance

constraint. At this time we need to flatten the super-gate in order to break it into

more gates and smaller super-gates. The new hypergraph willbe generated after

this flattening and the algorithm will continue the iterative moving based on the new

hypergraph. The worse case of the algorithm is when all of thesuper-gates are broken

into gates and the hypergraph is exactly same as the hypergraph of the gate-level

netlist.

Figure 6–8 shows the original hypergraph and the result of the flattening.

u1

u1

x2

x
1

f(x
1
...x

n
)33 MHz

u2

u
1

x2

x
1

f(x
1
...x

n
)

&0

0

0

u1

u1

x
2

x1

f(x
1
...x

n
)33 MHz

Figure 6–8: Flattening of the circuit hypergraph

Currently we choose the super-gate with the maximum gate number in the

partitioning. After the flattening, we need to distribute some of the visible nodes from

the flattened modules in order to achieve a load balance.

There are two approaches to re-distribute the load after theflattening.

98

The first is to restart the algorithm from the beginning. After the flattening, a

new hypergraph is generated. The algorithm will do the initial partitioning on the new

hypergraph, then begin the iterative movement of the hypergraph nodes. It is obvious

that this approach will take longer time to finish the partitioning. Hopefully it will

generate an improved cutsize and load balanced partition.

We use the second approach to reduce the partitioning time. After partitioning,

the lightly loaded partition will pull some nodes from the heavily loaded partition.

The pulled nodes are in the cones along the hyperedge betweenthe two partitions.

All nodes in the cone are pulled from the heavily loaded partition to the light load

partition. The hyperedge which defines the cone is chosen by random. We call this

approach as the incremental flattening.

We observe that cutsize will increase if we try to achieve a more balanced

partition. However, we need to compromise between the cutsize and load balancing

in order to achieve a better simulation speedup. The minimumcutsize with a load

imbalance will trigger a rollback explosion. Details are presented in section 6.7.

When the iterative moving terminates and the partitioning result satisfies the load

balance constraint the partitioning algorithm terminates.

6.6.9 Tie breaking

Tie-breaking strategies plan an important role in circuit partitioning since different

tie-breaking scheme could lead to different local minima ofthe cutsize. Our algorithm

uses affinity to break tie between different vertex candidates to move. The affinity is

defined to describe how close a vertex is bound to its parent partition. At the beginning

99

of the algorithm, the affinity of the vertex is its level from the root of the hypergraph.

It means the leaf vertices have the smallest affinity with itsparent partition.

The idea of affinity extends from the tie-breaking strategy used by CLIP[4],

which is to give high priority to those neighbors of the moving cells in the next round

of moving based on the locality principle. CLIP[4] algorithmtakes this approach in

order to remove large cluster from the cutset. The authors ofCLIP observed that large

cluster of vertices are still trapped in the cutset despite that the small cluster of vertices

could be extracted out of the cutset. Sub-clusters which arepart of the larger cluster

are able to move between the cutline. However, while one sub-cluster moves in one

direction, another may move in the opposite direction later. This movement will finally

be stabilized and stopped with the sub-clusters residing onboth sides of the cutline.

The basic idea of CLIP[4] is that all the neighboring verticesof the moved vertex

should be given higher priority to be moved. The rational of the approach is that if one

vertex of a large cluster is moved out of the cutset, all of theother vertices of the same

cluster should be moved in the same direction in order to movethe whole cluster out of

the cutset eventually.

6.6.10 Pairwise multiway partitioning algorithm

The existing multiway partitioning algorithm can be classified into two primary

approaches: recursive and direct.

The recursive approach applies bipartitioning recursively until the desired number

of partitions is obtained while the direct approach partitions the circuit directly. Among

all the previous algorithm mentioned in the related work section, Relaxed locking[90]

and pairwise partitioning[92] belongs to direct multiway partitioning algorithms. Figure

100

6–9 shows the recursive partitioning algorithm while figure6–10 shows the pairwise

partitioning algorithm.

P

P0 P1

P
00

P
01

P011

P
10

P000 P001 P010 P111P100 P101 P110

P
11

Figure 6–9: Recursive multiway partitioning algorithm

Pairwise partitioning is a direct multiway partitioning algorithm. In pairwise

multiway partitioning, the initial partitioning partitions the circuit into k partitions

instead of just 2 partitions as in the recursive partitioning algorithm. In the next

step, the algorithm chooses two partitions based on some criteria. Then swapping

of circuit elements is executed recursively between the paired partitions in order to

further minimize the cut-size of the pair. The pairing and the recursive moving is done

iteratively until the cut-size is minimized and the load balancing constraint is achieved.

Figure 6–10 shows the principle of the pairwise partitioning algorithm. In

the initial partitioning, we can see that the circuit is partitioned into 8 partitions

101

P

P011P000 P001 P010 P111P100 P101 P110

P011P000 P001 P010 P111P100 P101 P110

P011P000 P001 P010 P111P100 P101 P110

Figure 6–10: Pairwise multiway partitioning algorithm

directly. Then in the next step, P000 and P100 are paired together for iterative cut-size

improvement as indicated by the dotted line. Later P001 and P011 are paired together.

There are a number of criteria which can be used to chose the pairs of partitions.

• Random

The pairing of partitions is random. It is simple and efficient, but the pairing

quality is not good

• Exhaustive

The pairing of partitions will be every combination of the partitions. It is

computationally complex but produces better results because it is able to climb

out of local minima.

• Cut-based

102

The pairing is done between the two partitions between whichthe cut-size is

maximum.

• Gain-based

The pairing is done between the two partitions between whichthe cut-size

reduction is maximum.

The recursive algorithm is computationally simple and fast. However, it suffers

from several limitations. If the number of partitions are not a power of 2, the desired

number of multiway partition cannot be achieved. Furthermore, as the algorithm

proceeds, it becomes harder to reduce the cut-size since thepartitioning is performed

on finer and finer hypergraphs. This observation, combined with the assertion in [92]

that their k-way pairwise partitioning algorithm producesgood results efficiently led us

to chose the direct algorithm

6.6.11 Apply pre-simulation to find the optimum partitioning

From the previous description of three metrics for measuring partitioning quality

in section 6.2, we mentioned both communication and load balance are dependent on

presimulation[81].

Pre-simulation[81] is an efficient approach for evaluatingthe quality of a partition.

[81] provides evidence that the simulation statistics obtained during the first 10% of the

simulation run will not change a great deal during the remainder of the simulation.

We use pre-simulation to evaluate the trade-off between load balance and the

communication cost in order to find the best compromise. The criterion used to

evaluate a circuit partitioning is speedup during the presimulation. The partition

103

which produces the the best speedup for some choice of k and b is used in the circuit

simulation.

We used brute force pre-simulation strategy which runs all combinations of

parameters k and b.

6.6.12 Putting it all together

Figure 6–11 contains a flowchart of the algorithm. After the initial cone partition-

ing, the pairing process is executed in order to pick candidates for iterative movement.

Then the algorithm moves free vertices between the two partitions picked by the pair-

ing iteratively until there is no free vertex left or no gain on cutsize could be obtained.

The algorithm then checks whether the load meets the load balancing constraint. If

the load balancing constraint is not met, the algorithm willcontinue to do incremental

flattening as discussed in section 6.6.8. The pairing, iterative movement and flattening

process are repeated until there is no pairing configurationis available. At the end

of the partitioning algorithm, the minimum cutsize is achieved and load balancing

constraint is met as well.

The termination criteria of pairwise run is based on gain of cutsize between all

possible combination of pairing to ensure the convergence of the partitioning algorithm.

If all pairing configurations cannot achieve the cutsize gain and improve the partition,

the partitioner stops.

104

Initial

partitioning

Iterative

moving

No free vertex

or no gain?

Meets load

balancing

constraint

Terminate

Yes

No

Flattening and

load

redistribution

Yes

No

Partition 1

Partition 2

Partition n

Pre-simulation

Pairing
Best partition

Setup partition

number k and load

balancing facotr b

Pairing

configuration

iavailable?

Yes

No

Figure 6–11: Flowchart of the design-driven partitioning algorithm

6.7 Experiments

All of our experiments were conducted on a network of 4 computers, each of

which has AMD Athlon (CPU 1G) processors and 512M RAM. They are intercon-

nected by a 1Gbit Ethernet network. All of the machines run the Linux operating

system while MPICH-GM is used for message passing between different processors.

105

We used the synthesized netlist of a Viterbi decoder, which has 388 modules

and about 1.2M gates. A million random vectors are fed into the circuit for the full

simulation while 10,000 random vectors are used for pre-simulation. We also used

ISCAS’89 benchmark circuit suite to prove our design-drivenpartitioning algorithm

could also work well in the pure flat netlist without the auxiliary design hierarchy

information.

We assume a unit gate delay and zero transmission delay on thewires. Each data

point collected in the experiments is an average of five simulation runs. The simulation

time for 1 machine is the running time of the DVS without partitioning.

In the experiments, we compare the performance of DVS with the design-driven

partitioning algorithm with that of DVS using htmis[6] as the partitioner.

6.7.1 Cutsize for Viterbi decoder

We use different values of k and b to generate different cutsizes. The hyperedge

cutsize is defined as the number of hyperedges that span multiple partitions. Table

6–2 shows the hyperedge cutsize produced by our design driven iterative partitioning

algorithm while table 6–3 lists the cutsize produced by the hMetis partitioning algo-

rithm. The parameter b is the load balancing factor defined informula 6.3 while k is

the number of partitions.

Table 6–2 and table 6–3 reveal that our algorithm resulted ina significantly

smaller cutsize than the one produced by hMetis. But from the experiment result we

also know one of the drawbacks of our algorithm. Our algorithm is more sensitive to

the load balancing factor. When the load balancing constraint is strict, the algorithm

could produce almost the same cutsize as hMetis partitioning algorithm. We attribute

106

k b Hyperedge cut
2 2.5 2428
2 5 1827
2 7.5 905
2 10 633
2 12.5 598
2 15 513
3 2.5 2930
3 5 2227
3 7.5 1230
3 10 894
3 12.5 863
3 15 790
4 2.5 3230
4 5 2326
4 7.5 1433
4 10 979
4 12.5 935
4 15 887

Table 6–2: cutsize with design-driven partitioning algorithm

the sensitivity of load balancing to the load imbalance of the design hierarchy. Since

there is more Verilog instance flattened, it means the algorithm will downgrade more to

the hMetis partitioning algorithm.

6.7.2 Cutsize for ISCAS benchmark circuit

In order to prove that our multiway design-driven iterativepartitioning algo-

rithm also works in the flattened netlist, we conduct experiments on the ISCAS’89

benchmark circuit. The experiments show that our design-driven iterative partitioning

algorithm is downgraded to a normal FM partitioning algorithm on the flattened netlist

without any auxiliary design hierarchy information.

107

k b Hyperedge cut
2 2.5 2675
2 5 2673
2 7.5 2673
2 10 2669
2 12.5 2668
2 15 2665
3 2.5 2932
3 5 2932
3 7.5 2931
3 10 2935
3 12.5 2931
3 15 2927
4 2.5 3195
4 5 3195
4 7.5 3191
4 10 3191
4 12.5 3191
4 15 3191

Table 6–3: cutsize with hmetis partitioning algorithm

The table 6–4 and 6–5 shows the cutsize generated by the design-driven partition-

ing algorithm and FM partitioning algorithm on ISCAS’85 benchmark circuit, s35932

and s38584 that are described in Verilog. The s35932 has 12204 gates, 3861 inverters

and 1728 D-type flip-flops. The s38584 has 11448 gates, 7805 inverters and 1452

D-type flip-flops. Please note DDP as the abbreviation of the design-driven partitioning

algorithm.

When the algorithm works on the flattened netlist, we found that the sensitivity to

the load balancing factor is much less compared to the netlist with design hierarchy.

But unfortunately the cutsize produced by the design-drivenpartitioning algorithm is

exactly same as the FM partitioning algorithm. However, this is what we expect when

108

k b DDP FM
2 2.5 47 47
2 5 47 47
2 7.5 47 47
2 10 46 46
2 12.5 46 46
2 15 46 46
3 2.5 181 181
3 5 181 181
3 7.5 181 181
3 10 181 181
3 12.5 181 181
3 15 181 181
4 2.5 239 239
4 5 239 239
4 7.5 239 239
4 10 231 231
4 12.5 231 231
4 15 231 231

Table 6–4: cutsize on ISCAS benchmark circuit s39592

we design the algorithm. When there is no design hierarchy information available, the

algorithm will downgrade to the normal FM partitioning algorithm.

6.7.3 Presimulation

We used 10,000 random vectors in our pre-simulation in orderto pick the best

partition for different combinations of partition number kand load balance factor b.

The sequential simulation time of the circuit with 10,000 random vectors is 38.93

seconds.

Table 6–6 shows the simulation time and speedup with these combinations. We

list the best partitions as determined by the largest speedup in table 6–7. Please note

that all of the partitions produced by hMetis are slower thanthe sequential simulation.

109

k b cutsize by DDP cutsize by FM
2 2.5 53 53
2 5 53 53
2 7.5 53 53
2 10 53 53
2 12.5 52 52
2 15 52 52
3 2.5 167 167
3 5 167 167
3 7.5 167 167
3 10 167 167
3 12.5 167 167
3 15 165 165
4 2.5 211 211
4 5 211 211
4 7.5 211 211
4 10 211 211
4 12.5 211 211
4 15 211 211

Table 6–5: cutsize on ISCAS benchmark circuit s38584

We attribute this to the huge communication cost. The communication cost leads to

enormous rollbacks and slow GVT computation. Both of the factors leads to huge

memory consumption. Since memory swapping happens so frequently, we cannot

expect any speedup over the sequential Verilog simulation.

6.7.4 Simulation time

Table 6–8 and figure 6–12 shows the simulation times and speedups with different

combinations of the load balancing factor and cutsize. The sequential simulation time

of the circuit is 3639.70.

From table 6–8, we know that the minimum cutsize does not always result in

the best performance since the performance is also dependent on load balancing.

110

k b Cutsize Simulation time (Seconds) Speedup
2 2.5 2428 61.79 0.62
2 5 1827 41.86 0.93
2 7.5 905 30.65 1.27
2 10 633 25.78 1.51
2 12.5 598 23.59 1.65
2 15 513 29.72 1.31
3 2.5 2930 56.42 0.69
3 5 2227 39.72 0.98
3 7.5 1230 28.87 1.35
3 10 894 21.50 1.81
3 12.5 863 22.37 1.74
3 15 790 25.44 1.53
4 2.5 3230 88.47 0.44
4 5 2326 42.78 0.91
4 7.5 1433 19.86 1.96
4 10 979 24.80 1.57
4 12.5 935 21.04 1.85
4 15 887 24.18 1.61

Table 6–6: Pre-Simulation time with design-driven partitioning algorithm

k b Cutsize Simulation time (Seconds) Speedup
2 12.5 598 23.59 1.65
3 10 894 21.50 1.81
4 7.5 1463 19.86 1.96

Table 6–7: Best partition produced by design-driven partitioning algorithm

We got the best performance with the combination of a cutsizeof 598 and a static

load balancing factor of 0.25 on two machines. From the data in table 6–8, we also

observed that the load balancing becomes more and more important as the number of

k b Cutsize Simulation time (Seconds) Speedup
2 12.5 598 2201.98 1.65
3 10 894 2033.35 1.79
4 7.5 1463 1905.60 1.91

Table 6–8: Simulation time with design-driven partitioning algorithm

111

1 2 3 4
1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

Number of machines

S
im

ul
at

io
n

tim
e

Figure 6–12: Simulation time

machines increases from 2 to 4. Because of increasing cutsize, we didn’t see much

reduction of the simulation time as the number of machines increases from 2 to 4. This

is a consequence of the size of the design. As the number of machines increases, the

circuit is divided more finely and more design hierarchy is destroyed. In short, the

communication cost offsets the gain from the load distribution.

We also notice that the speedups of the full simulation with 1million random

vectors are slightly less than the speedups achieved from pre-simulation with 10,000

random vectors. We attribute this to the cost of Time Warp. Asthe simulation runs

longer, the overhead costs of Time Warp (fossil collection and GVT calculation)

increase significantly.

Without a good partitioning algorithm, the distributed simulation is slower than the

sequential simulation, as shown in the first two rows in table6–8.

112

2 3 4
0

1

2

3

4

5

6

7

8
x 10

5

Machine number

M
es

sa
ge

 n
um

be
r

b=2.5
b=5
b=7.5
b=10
b=12.5
b=15

Figure 6–13: message number during the pre-simulation

2 3 4
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Machine number

R
ol

lb
ac

k
nu

m
be

r

b=2.5
b=5
b=7.5
b=10
b=12.5
b=15

Figure 6–14: rollback number during the pre-simulation

6.7.5 Messages and Rollback

Figures 6–13 and 6–14 confirm the relationship between load balance and

communication. Relaxing the load balancing constraint (i.e. increasing b) results

in fewer messages and rollbacks. With an increase in the number of machines,

113

communication increases and both of these quantities increase. These results underscore

the importance of pre-simulation in picking the final partition.

6.8 Conclusion

A partitioning algorithm plays an important role in distributed VLSI simulation.

Unfortunately, most partitioning algorithms are very costly and do not always yield a

good cut size because they operate on a flattened netlist. Ourdesign-driven partitioning

algorithm yields a significant reduction in cutsize compared to such algorithms by

taking advantage of hierarchical design information. Moreover, it preserves the locality

expressed in Verilog modules and instances. The algorithm produces a 4.5 fold

reduction in cutsize compared to the hmetis [6] partitioning algorithm. The reduction

in cut size and the preservation of locality lead to a speedupof 1.91 on four machines

than the sequential simulation.

114

CHAPTER 7

Conclusions and future directions

The value of the distributed Verilog simulator mostly depends on how well it can

achieve simulation speedup, eliminate the memory limitations posed by the simulation

on a uniprocessor and minimize the overhead inherent in a distributed simulation.

Simulation speedup in a distributed Verilog simulator is possible only if the inherent

parallelism in the simulated circuit can be extracted whilethe synchronization overhead

is kept minimal. Without our optimistic techniques appliedto the distributed Verilog

simulation, the distributed Verilog simulation could be slower than the sequential

Verilog simulation, as described in the preliminary experiment in chapter 4.

7.1 Thesis Contribution

The main contributions of this thesis are the following:

• Construction of an object-oriented framework for distributed Verilog simulation.

This framework provides us with a vehicle to experiment withthe synchroniza-

tion and partitioning techniques which lie at the heart of distributed Verilog

simulation

115

DVS has proved to be a good experiment environment in the distributed simula-

tion lab. Besides being used for the experiments mentioned inthis thesis, it has

been utilized by other students[97] in distributed simulation lab for optimization

of Time Warp with learning automata.

• Event reconstruction was developed as an optimization technique used to reduce

memory consumption in Time Warp

State saving and restoration and event saving add considerably to the synchro-

nization cost. Due to the fine event granularity of Verilog simulation and and

the extremely large number of events, the cost for event saving could be even

larger than the state saving. If the memory consumption problem is not handled

properly in distributed Verilog simulation, the simulation may not even finish.

• A design-driven iterative partitioning algorithm which takes advantage of the

Verilog design hierarchy. The algorithm attains a compromise between minimal

cutsize and load balance resulting in a good speedup.

In our experiments, we found that excessive communication causes more

rollbacks and delays GVT computation. Thus, the enormous message traffic

consumes the memory so fast that it eventually kills the simulation. In order to

minimize the message traffic between different partitions,the cutsize needs to be

minimized while load balance between partitions is well maintained.

A Verilog design has hierarchies which can be utilized to exploit circuit paral-

lelism and minimize cutsize. However, existing partitioning algorithms for logic

simulation usually work on a flattened netlist. A partitioning algorithm without

116

the design information as the guide lead to huge cutsize which makes the dis-

tributed Verilog meaningless because it is even slower thanthe sequential Verilog

simulation.

7.2 Future Directions for Work

• Replicated logic to minimize cutsize

In a real industrial level design, there are always some backbone components

which are not easy to break into any partition. For example, the register block is

supposed to provide setup value and parameters to all other blocks. The fanout

from the register block to all other blocks is huge. Moreover, the communication

from the register block to other blocks are enormous if the register read and write

are frequent. Figure 7–1 shows such a circuit. Block0 is linked to all of the other

blocks, Block1, Block2, Block3 and Block4.

Fortunately the logic in the register block is normally small. Therefore, we could

be able to replicate it in both partition 1 and partition 2, asshown in figure

7–1. In this way, the communication will be reduced significantly. This kind of

technique is already employed in FPGA partitioning. However, to date it has not

been used in the distributed Verilog simulation.

A difficulty in implementing replicated logic lies in identifying it. The block

which can be replicated needs to be small in terms of the gate count but its

interconnection with other blocks is significant. Currentlythe replicated logic

in an FPGA partition is done by the engineers manually. It will be interesting

to automate the partitioning with the replicated logic in distributed Verilog

simulation.

117

Block0

Block3

Block5

Block4

Block2Block1

Partition
1

Partition
2

Figure 7–1: Replicated logic in the partitioning

• Rollback reduction techniques

Smart rollback filter could be applied to reduce rollback. The basic idea of the

smart rollback filter is to take advantage of the properties of the logic gates. For

example, if one input of an AND gate is 0, the output of the AND gate will be 0

no matter what the values of other input are. If the rollback happens in one of the

118

input ports of the AND gates and the value of the other input port remains 0, the

rollback will be ignored since it will not affect the final output of the AND gate.

• Faster GVT computation algorithm

In the experiment, we noticed excessive memory consumptionfor partitions gen-

erated by DFS, BFS and random partitioning algorithm. Duringthe simulation,

the memory consumption keeps growing until the system runs out of memory and

the simulation process crashes.

After debugging and analyzing the simulator behavior, we found that the

excessive memory consumption is caused by slow GVT computation, which uses

Mattern’s GVT algorithm[36] to computer GVT in OOCTW. The performance

degrading of this algorithm is caused by too many messages between the

simulation processes. After the first cut is initialized in the Mattern’s GVT

computation, all the machines need to collect all white messages to construct

the second consistent cut. However, for the simulation withpartition generated

by DFS, BFS and random partitioning, too many white messages need to

be collected, thus making the GVT computation very slow. Even worse, the

simulation is still running at the full speed, generating anenormous number of

new events, which will be inserted into the event queue. Since fossil collection

is not executed efficiently because of the slow GVT computation, the memory

consumed by the event queue and history state queue will eventually consume all

memory in the system and kills the simulation.

In the future, we need to put some research effort on the fast GVT computation

algorithm so the efficient fossil collection could be executed in order to attack the

memory consumption problem.

119

• Heuristic pre-simulation algorithm

Currently we use brute force pre-simulation which runs all combinations of

parameters k and b. In order to reduce the time devoted to pre-simulation, we are

trying to develop heuristic pre-simulation algorithm which only runs a limited

set of the k and b combinations. Basically the algorithm uses binary search or

other heuristic search algorithm to speedup the search of the best balance point

between communication and load balance.

The disadvantage of the heuristic algorithm is that it couldbe trapped in the local

minimum so it is not able to locate the best balance point. We will study further

how to reduce the presimulation time without sacrificing thepartitioning quality.

• Port DVS to shared memory machine or computer with dual/quadcore

As we know, the message passing in the distributed environment is the bottleneck

for the distributed Verilog simulation. This is also the motivation for us to try to

find out a better partitioning algorithm. However, on the other side, we could also

take advantage of the shared memory machine in order to reduce the overhead of

message passing. Moreover, as the machines with dual/quad cores become more

and more popular and cost attractive, they could become a newresearch platform

with the simulation processes running as threads in the computers.

120

REFERENCES

[1] Lijun Li, Hai Huang, and Carl Tropper. Dvs: an object-oriented framework for
distributed verilog simulation. InParallel and Distributed Simulation, 2003. (PADS
2003), pages 173–180, June 2003.

[2] Lijun Li, Hai Huang, and Carl Tropper. Towards distributed verilog simulation.
International Journal of Simulation, Systems, Science & Technology, 4(3-4):44–54,
September 2003.

[3] C. Fiduccia and R. Matheyses. A linear-time heuristic for improving network
partitions.ACM/IEEE Design Automation Conference, pages 175–181, 1982.

[4] Wenyong Deng Shantanu Dutt. Cluster-aware iterative improvement techniques
for partitioning large vlsi circuits.ACM Transactions on Design Automation of
Electronic Systems(TODAES), 7(1):91–121, Jan 2002.

[5] Lijun Li and Carl Tropper. A design-driven iterative partitioning algorithm for
distributed verilog simulation. In21st International Workshop on Principles of
Advanced and Distributed Simulation (PADS 2007), pages 173–180, June 2007.

[6] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel
hypergraph partitioning: Applications in vlsi domain.IEEE Transactions on VLSI
Systems, 7(1):69–79, 1999.

[7] Carl Tropper. Parallel Discrete-Event Simulation Applications.Journal of Parallel
and Distributed Computing, 62:327–335, 2002.

[8] D. Jefferson. Virtual time.ACM Transactions on Programming Lauguages and
Systems, 7(3):405–425, 1985.

[9] Donald E. Thomas and Philip R. Moorby.The Verilog Hardware Description
Language Fourth Edition. KLUWER Academic Publisher, 1992.

[10] Michael John Sebastian Smith, editor.Application-Specific Integrated Circuits (The
VLSI Systems Series). Addison-Wesley Professional, 1997.

[11] IEEE. 1076.1-1999 IEEE Standard VHDL Analog and Mixed-Signal Extensions.
1999.

121

122[12] Synopsys Inc. Design Compiler.
http://www.synopsys.com/products/logic/designcompiler.html.

[13] Manuel A. d’Abreu. Gate-level simulation.IEEE Design & Test, 2(6):63–71,
December 1985.

[14] the free encyclopedia WIKIPEDIA.Hardware description language.
http://en.wikipedia.org/wiki/Hardwaredescriptionlanguage.

[15] Prithviraj Banerjee.Parallel Algorithms for VLSI Computer Aided Design. Prentice
Hall, Inc., 1994.

[16] Michael Pidd. An introduction to computer simulation.In Proceedings of the 26th
conferences on winter simulation, December 1994.

[17] Bernard P. Zeigler, editor.Multifacetted Modelling and Discrete Event Simulation.
Academic Press, London, 1984.

[18] Franois E. Cellier, editor.Continuous System Modeling. Springer-Verlag, New York,
1991.

[19] 5Spice analysis software. http://www.5spice.com.

[20] A. E. Ruehli, editor.Circuit Analysis, Simulation and Design. Elsevier Science
Publishing Company, Inc., Amsterdam, North-Holland, 1986.

[21] IEEE, editor.IEEE Standard Hardware Description Language Based on the Verilog
Hardware Description Language. The Institute of Electrical and Electronics
Engineers, Inc., 1999.

[22] L. Lamport. Time, clocks, and the ordering of events in adistributed system.
Communications of the ACM, 21:558–565, 1978.

[23] K.M. Chandy and J. Misra. Asynchronous distributed simulation via a sequence of
parallel computattions.Communications of the ACM, 24(11):198–206, November
1981.

[24] R. M. Fujimoto. Performance measurement of distributedsimulation strategies.
Transactions of the Society for Computer Simulation, 6:89–132, 1989.

[25] J. Misra. Distributed discrete event simulation.ACM Computing Survey, 18(1):39–
65, November 1986.

123[26] W. Cai and S. J. Tuner. An algorithm for distributed discrete-event simulation- the
carrier null message approach. InProc. 1990 SCS Multiconference on Distributed
Simulation, pages 3–8, San Diego, California, 1990.

[27] A. Boukerch and C Tropper, editors.Parallel Simulation on the Hypercube
Multiprocessor, volume 8. Springer-Verlag.

[28] Bojan Groselj. Fault-tolerant distributed simulation. In Proceedings of the 23rd
conference on Winter simulation, 1991.

[29] David M. Nicol and Paul F. Reynolds Jr. Problem oriented protocol design. In
Winter Simulation Conference, pages 471–474, 1984.

[30] Seng Chuan Tay, Yong Meng Teo, and Rassul Ayani. Performance analysis of time
warp simulation with cascadingrollbacks. InParallel and Distributed Simulation,
1998. (PADS 1998), pages 30–37, May 1998.

[31] Richard M. Fujimoto. Parallel discrete event simulation. Communications of the
ACM, 33(10):30–53, 1990.

[32] A. Gafni. Rollback mechanisms for optimistic distributed simulation systems. In
Proc. Of the SCS Multiconference on Distributed Simulation, pages 61–67, February
1998.

[33] H. Bauer and Sporrer C. Reducing rollback overhead in time-warp based distributed
simulation with optimized incremental state saving. InProc. of the 26th Annual
Simulation Symposium, pages 12–20. Socity for Computer Simulation, April 1993.

[34] D. West and K. Panesar. Automatic incremental state saving. In Parallel and
Distributed Simulation, 1996. (PADS 1996), pages 78–85, May 1996.

[35] M.Q.Xu S.J.Turner. Performance evaluation of the bounded time warp algorithm. In
Parallel and Distributed Simulation, 1992. (PADS 1992), pages 117–126, 1992.

[36] F. Mattern. Efficient algorithms for distributed snapshots and global virtual time
approximation.Journal of Parallel and Distributed Computing, 18(4):423–434,
1993.

[37] B. Samadi.Distributed Simulation algorithms and performance analysis. PhD
thesis, University of California, Los Angelos, 1985.

[38] D. Jefferson and H. Sowizral. Fast concurrent simulation using the time warp
mechanism, part ii: Global control. Technical report, Rand Corporation, 1983.

124[39] S. Bellnot. Global virtual time algorithms. InProceedings of the Multiconference on
Distributed Simulation, pages 122–127, 1990.

[40] A. I. Conception and S. G. Kelly. Computing global virtualtime using the multi-
level token passing algorithm. In5th Workshop on parallel and distributed
simulation(PADS’91), pages 63–68, 1991.

[41] B. R. Preiss. The yaddes distributed discrete event simulation specification language
and environment. InProc. Of the SCS Multiconf. On Distributed Simulation, pages
139–144, 1989.

[42] P.A. Wilsey J. Fleischmann. Comparative analysis of periodic state saving tech-
niques in time warp simulators. InNinth Workshop on Parallel and Distributed
Simulation (PADS’95), pages 50–58, June 1995.

[43] Christopher D. Carothers, Kalyan S. Perumalla, and Richard Fujimoto. Efficient
optimistic parallel simulations using reverse computation. In Workshop on Parallel
and Distributed Simulation, pages 126–135, 1999.

[44] P. Wilsey and A. Palaniswamy. Rollback relaxation: A technique for reducing
rollback costs in an optimistically synchronized simulation. In International
Conference on Simulation and Hardware Description Languages, Society for
Computer Simulation, pages 143–148, January 1994.

[45] Y.-B. Lin and B. R. Preiss. Optional memory management for time warp parallel
simulation. ACM Transactions on Modeling and Computer Simulation, 1(4):283–
307, 1991.

[46] Jr. J. Briner.Parallel Mixed-Level Simulation of Digital Circuits Using Virtual Time.
PhD thesis, Duke University, 1990.

[47] Y. Matsumoto and K. Taki. Parallel logic simulation on adistributed memory
machine. InProc. European Conference on Design Automation, pages 76–80, 1992.

[48] N. Manjikian and W. Loucks. High performance parallel logic simulation on
a network of workstations. InProc. 7th Workshop on Parallel and Distributed
Simulation, volume 23, pages 76–84.

[49] S. Smith, M. Mercer, and B. Underwood. An analysis of several approaches
to circuit partitioning for parallel logic simulation. InProc. Int. Conference on
Computer Design, IEEE, pages 664–667, 1987.

125[50] H. Bauer, C. Sporrer, and T.H. Krodel. On distributed simulation using timewarp.
Technical report, Technical University of Munich, 1992.

[51] T. Krodel and K. Antreick. An accurate model for ambiguity delay simulation. In
Proc. EDAC, pages 122–127, 1990.

[52] P. Luksch. Evaluation of three approaches to parallel logic simulation on a
distributed memory multiprocessors. InProc. 26th Annual Simulation Symposium,
Arlington, pages 2–11, 1993.

[53] P. Luksch and H Weitlich. Timewarp parallel logic simulation on a distributed
memory multiprocessor. InProc. SCS European Simulation Conference, Lyon,
pages 585–589, 1993.

[54] R. Bagrodia, Y. an Chen, V. Jha, and N. Sonpar. Parallel gate-level circuit simulation
on shared memory architectures. InComputer Aided Design of High Performance
Network Wireless Networked Systems, pages 170–174, 1995.

[55] R. L. Bagrodia and W.-T. Liao. Maisie: A language for the design of efficient
discrete-event simulations. 20:225–238, 1994.

[56] L. Zhu et.al. Parallel logic simulation of million-gate vlsi circuits. In13th IEEE
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS’05), 2005.

[57] Herve Avril and Carl Tropper. Scalable clustered time warp and logic simulation.
VLSI design, 00:1–23, 1998.

[58] Stephen Williams.Icarus Verilog. http://icarus.com/eda/verilog.

[59] H. K. Kim. Parallel Logic Simulation of Digital Circuits. PhD thesis, Wright State
University, 1998.

[60] H. K. Kim and J. Jean. Concurrency preserving partitioning(cpp) for parallel logic
simulation. In10th Workshop on parallel and distributed simulation(PADS’95),
pages 98–105, May 1996.

[61] Dragos Lungeanu.Discovery: Distributed simulation of digital and analog VLSI
systems. PhD thesis, University of Iowa, July 2000.

[62] L.W. Nagel.SPICE2: A computer program to simulate semiconductor circuits. PhD
thesis, U.C. Berkeley, Electronics Research Laboratory Rep. No. ERL-M520, May
1975.

126[63] Qing Xu and Carl Tropper. Xtw, a parallel and distributedlogic simulator. Pro-
ceedings of the 2005 conference on Asia South Pacific design automation, pages
1064–1069, 2005.

[64] P. A. Wilsey, D. E. Martin, and K. Subramani. Savant/tyvis/warped: Components
for the analysis and simulation of vhdl. InVHDL Users’ Group Spring 1998
Conference, pages 195–201, 1998.

[65] S. Subramaninian et al. Study of a multilevel approach to partitioning for parallel
logic simulation. InIPDS00, May 2000.

[66] G. Meister. Evaluation of parallel logic simulation using dvsim. InHICSS (1), pages
397–406, 1996.

[67] S. Levitan.Vcomp and Vsim Reference Manual. University of Pittsburgh.

[68] Tun Li, Yang Guo, and Si-Kun Li. Design and implementation of a parallel verilog
simulator: Pvsim. InProceedings of the 17th International Conference on VLSI
Design (VLSID’04), pages 173–180, 2004.

[69] M. L. Briner Bailey and Chamberlain. Parallel logic simulation of vlsi systems. In
ACM Computing Surveys, volume 26, pages 255–294, Sept 1994.

[70] Lijun Li and Carl Tropper. Event reconstruction in timewarp. InParallel and
Distributed Simulation(PADS), pages 37–44, 2004.

[71] Yi-Bing Lin, Bruno R. Preiss, Wayne M. Loucks, and Edward D.Lazowska.
Selecting the checkpoint interval in time warp parallel simulation. InProc. 1993
Workshop on Parallel and Distributed Simulation, pages 3–10. Institute of Electrical
and Electronics Engineers, May 1993.

[72] S. Bellenot. State skipping performance with the time warp operating system.
In 6th Workshop on Parallel and Distributed Simulation, pages 53–61. Socity for
Computer Simulation, January 1992.

[73] Hai Huang. A partitioning framework for distributed verilog simulation. Master’s
thesis, School of Computer Science, McGill University, 2003.

[74] A. B. Kahng A. E. Caldwell and I. L. Markov. Design and implementation of the
fiduccia-mattheyses heuristic for vlsi netlist partitioning. InProc. Workshop on
Algorithm Engineering and Experimentation (ALENEX), Baltimore, pages 177–193,
Jan. 1999.

127[75] R.Chamberlain and C.Henderson. Evaluating the use of pre-simulation in vlsi circuit
partitioning. InPADS94, pages 139–146, 1994.

[76] Swaminathan Subramanian, Dhananjai M. Rao, and Philip A. Wilsey. Applying
multilevel partitioning to parallel logic simulation. InParallel and Distributed
Computing Practices, volume 4, pages 37–59, March 2001.

[77] Vipin Kumar George Karypis, Rajat Aggarwal and Shashi Shekhar. Multilevel
hypergraph partitioning: Applications in vlsi domain. InACM/IEEE Design
Automation Conference, pages 526–529, 1997.

[78] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. Technical Report TR 95-035,Department of Computer
Science, University of Minnesota, Minneapolis, MN, 1995.

[79] M. Bailey, J. Briner, and R. Chamberlain. Parallel logic simulation of vlsi systems.
ACM Computing Surveys, 26(03):255–295, Sept. 1994.

[80] Naraig Manjikian and Wayne M. Loucks. High performanceparallel logic
simulations on a network of workstations. InProceedings of the seventh workshop
on Parallel and distributed simulation, pages 76–84, May 1993.

[81] Chamberlain R. D. and Henderson C. Evaluating the use of presimulation in vlsi
circuit partitioning. InProc. 1994 Workshop on Parallel and Distributed Simulation,
pages 139–146, 1994.

[82] L. Soule. Parallel Logic Simulation: An Evaluation of Centralized-Time and
Distributed-Time Algorithms. PhD thesis, Standford University, 1992.

[83] G. Saucier, D. Brasen, and J.P. Hiol. Partitioning with cone structures.IEEE/ACM
International Conference on CAD, pages 236–239, 1993.

[84] C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: A survey.
Integr. VLSI Journal, 19(1-2):1–81, Aug 1995.

[85] B. W. Kernighan and S. Lin. An efficient heiristic procedure for partitioning graphs.
Bell System Tech. Journal, 49:291–307, 1970.

[86] D. G. Schweikert and B. W. Kernighan. A proper model for the partitioning of
electrical circuits. InProceedings of the 9th Design Automation Workshop, pages
57–62, 1972.

[87] B. Krishnamurthy. An improved min-cut algorithm for partitioning vlsi networks.
IEEE Trans. on Computers, 33(5):438–446, 1984.

128[88] L. A. Sanchis. Multiple-way network partitioning.IEEE Trans. on Computers,
38(1):61–81, 1989.

[89] C.I. Park and Y.B. Park. An efficient algorithm for vlsi network partitioning problem
using a cost function with balancing factor.IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, 12(11):1686–1694, 1993.

[90] A. Dasdan and C. Aykanat. Two novel multiway partitioning algorithms using
relaxed locking.IEEE Trans. on Computer-Aided Design, 16(2):169–178, 1997.

[91] David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and Catherine Schevon.
Optimization by simulated annealing: an experimental evaluation. part i, graph
partitioning. 37(6):865–892, 1989.

[92] J. Cong and S. Lim. multiway partitioning with pairwise movement. InProceedings
of the IEEE/ACM ICCAD, pages 512–516, 1998.

[93] H. H. Yang and D. F. Wong. Efficient network flow based min-cut balanced
partitioning. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 15(12):1533–1539, 1996.

[94] Chau-Shen Chen, Ting Ting Hwang, and C. L. Liu. Architecture driven circuit
partitioning. InIEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION
(VLSI) SYSTEMS, volume 9, pages 383–389, April 2001.

[95] K.-H. Chang, H.-W. Wang, Y.-J. Yeh, and S.-Y. Kuo. Automatic partitioner for
distributed parallel logic simulation. InModelling, Simulation, and Optimization,
volume 429, Aug 2004.

[96] Jong-Sheng Cherng, Sao-Jie Chen, Chia-Chun Tsai, and Jan-Ming Ho. An efficient
two-level partitioning algorithm for vlsi circuits. InAsia and South Pacific Design
Automation Conference 1999 (ASP-DAC’99), pages 69–72, 1999.

[97] Jun Wang and Carl Tropper. Optimizing the time warp protocol with learning
automata.European Simulation and Modelling Conference, 2007.

