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ABSTRACT

We start by generalizing the result of Kaledin and Verbitsky that twistor spaces

of hyperkähler manifolds admit balanced metrics. It is shown that in fact the twistor

space of any compact hypercomplex manifold is balanced. We then study holomor-

phic vector bundles on the twistor space Tw(M) of a simple hyperkähler mani-

fold M and the stability of their restrictions to the fibres of the twistor projection

Tw(M) → CP
1. Extending an argument of Teleman, we show that fibrewise sta-

bility and semi-stability of a bundle on Tw(M) are Zariski open conditions on the

base CP
1. We prove a partial converse to another result of Kaledin and Verbitsky,

namely that a generically fibrewise stable bundle E on the twistor space Tw(M) is

irreducible, in the sense of having no proper subsheaves of lower rank. The converse

is established for the case when the rank of E is 2 or 3, as well as for bundles E of

general rank that are generically fibrewise simple. Finally, we construct an example

of a stable vector bundle E on Tw(M) for M a K3 surface which is nowhere fibrewise

stable.
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ABRÉGÉ

On commence avec la généralisation du résultat de Kaledin et Verbitsky que

les espaces twistoriels des variétés hyperkählériennes admettent des métriques semi-

kählériennes. On démontre qu’en fait l’espace twistoriel d’une variété hypercomplexe

compacte quelconque est semi-kählérien. On étudie ensuite des fibrés vectoriels holo-

morphes sur l’espace twistoriel Tw(M) d’une variété hyperkählérienne simpleM et la

stabilité de leurs restrictions aux fibres de la projection twistorielle Tw(M) → CP
1.

On démontre, en étendant un argument de Teleman, que la stabilité et la semi-

stabilité des restrictions aux fibres d’un fibré sur Tw(M) sont des conditions ouvertes

de Zariski sur la base CP
1. On prouve une réciproque partielle d’un autre résultat

de Kaledin et Verbitsky, soit qu’un fibré E sur l’espace twistoriel Tw(M) dont la

restriction à la fibre générique est stable est irréductible, c’est-à-dire, ne possède pas

de sous-faisceaux propres de rang inférieur. La réciproque est établie pour le cas

où le rang de E est 2 ou 3, ainsi que pour des fibrés E de rang quelconque dont

la restriction à la fibre générique est simple. Finalement, on construit un exemple

d’un fibré vectoriel stable E sur Tw(M) pour M une surface K3 dont la restriction

à chaque fibre est non stable.
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CHAPTER 1
Introduction

Quaternions were introduced by Hamilton in the XIXth century in his quest to

generalize the operations of multiplication and division of complex numbers, viewed

as points in R
2, to higher dimensions. Although Hamilton’s ambitious plan to com-

pletely recast the geometry and physics of his time in terms of quaternions ultimately

fell short, it is fitting that in the XXth century the great advances in geometry natu-

rally led mathematicians to search for suitable quaternionic analogues of the concept

of complex manifold, and it turned out that these in turn lead to a rich theory with

important applications to modern physics. It should be noted that the naive defini-

tion, namely that of a manifold with an atlas of charts taking values in H
n, is too

restrictive: the requirement that differentials of the transition maps H
n → H

n be

H-linear force the transition maps themselves to be H-affine, giving us only affine

manifolds. We follow a different approach that leads us to the definition of hyper-

complex manifolds and their special case hyperkähler manifolds, which are the main

objects studied in this thesis.

Recall that an alternative definition of a complex manifold is that of a smooth

manifold M equipped with an almost complex structure, that is, an endomorphism

of the tangent bundle I ∶ TM → TM satisfying I2 = −1, which is integrable in the

sense of Newlander-Nirenberg [38]. An immediate generalization to the quaternionic

setting is that of a smooth manifold M with a triple of integrable almost complex
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structures I, J,K ∶ TM → TM satisfying the quaternionic relations

I2 = J2 =K2 = −1, IJ = −JI =K.

We call such a manifold hypercomplex. These were first studied by Boyer [6] in

the 1980s, who gave a complete classification of compact hypercomplex manifolds in

quaternionic dimension 1, showing that the only such are complex tori, K3 surfaces

and Hopf surfaces. No such general classification exists for higher dimensions, but

a wealth of examples were subsequently found; in particular, Joyce [26] constructed

a large family of left-invariant hypercomplex structures on compact homogeneous

spaces, rediscovering and generalizing an earlier work by string theorists [45].

Given a hypercomplex manifold (M,I, J,K), suppose we have a Riemannian

metric g on M which is Hermitian with respect to the three complex structures

I, J,K (such g is called hyperhermitian). Letting ωI , ωJ , ωK denote the corresponding

Hermitian forms, we say that the manifold M is hyperkähler if each one of these is

closed. Equivalently, letting

ΩI = ωJ +
√
−1ωK ,

it can be shown that the above condition is equivalent to the form ΩI being closed.

A compact hyperkähler manifold M is called simple if it is simply connected and

satisfies H2,0(M) = C. The study of hyperkähler structures predates that of general

hypercomplex structures: the above definition was first given by Calabi [11] in the

1970s, but hyperkähler manifolds also appeared in the much earlier work of Berger

[4] in the 1950s on the classification of irreducible holonomy groups on Riemannian

manifolds, where they correspond to the holonomy group Sp(n). It’s not hard to
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see that the form ΩI given above is a non-degenerate (2,0)-form with respect to the

complex structure I on M . The condition dΩI = 0 forces it to be a holomorphic

symplectic form. On the other hand, it follows from Yau’s proof of the Calabi con-

jecture [53] that a compact Kähler holomorphic symplectic manifold is hyperkähler,

showing the equivalence of these concepts. Hyperkähler geometry plays an important

role in quantum gravity through its ties with supersymmetry [24] and has a rich and

developed theory, but in stark contrast to the general hypercomplex case, there is

a dearth of examples of hyperkähler manifolds. Two families of simple hyperkähler

manifolds in each quaternionic dimension, namely Hilbert schemes of points on a K3

surface and generalized Kummer manifolds, were constructed by Beauville [3], while

two sporadic examples in complex dimensions 6 and 10 (quaternionic dimensions 3

and 5, respectively) were given by O’Grady [39, 40]. It is currently unknown whether

there exist examples that are not deformationally equivalent to these.

An important tool for studying both hypercomplex and hyperkähler manifolds is

the twistor formalism. Twistor theory was introduced by Penrose [43] in the context

of theoretical physics in the 1960s and has since played an important role in both

physics and mathematics. In the hypercomplex setting, it takes the following form.

Given a hypercomplex manifold (M,I, J,K), it’s not hard to see that there is a whole

2-sphere of integrable almost complex structures on M :

S2 = {x1I + x2J + x3K ∶ x2
1 + x2

2 + x2
3 = 1} ,

called induced complex structures. The product M × S2 parametrizes the induced

complex structures at points of M , and identifying S2 with CP
1 in the usual way,
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we call Tw(M) =M ×S2 ≅M ×CP1 the twistor space of the hypercomplex manifold

M . It turns out that there is a natural complex structure on Tw(M) making the

projection π ∶ Tw(M) → CP
1 holomorphic; in case there is also a hyperkähler metric

g on M , it gives rise to a natural Hermitian metric on Tw(M). The usefulness of

the twistor space Tw(M) comes from the fact that its complex structure completely

encodes the quaternionic structure of the hypercomplex manifold M . For example,

M can be recovered from Tw(M). More generally and more importantly, there is

a notion of twistor correspondence, which takes many forms and associates to an

object on M somehow compatible with the quaternionic structure a corresponding

holomorphic object on Tw(M), in a one-to-one fashion. For the case of hyperkähler

M , this correspondence can be roughly described as associating to a vector bundle

on M which is simultaneously holomorphic with respect to all the induced complex

structures a holomorphic bundle on Tw(M) satisfying certain restriction conditions

(Theorem 2.2.7, originally from [28]). This leads to an identification of the corre-

sponding moduli spaces, and in this way the geometry of the twistor space Tw(M)

helps in our understanding of the geometry of the original manifold M .

Recall that to have a meaningful structure on the moduli space of vector bundles

we need to look at stable vector bundles. The notion of stability was first introduced

by Mumford in a purely algebro-geometric setting in [36] for projective varieties and

then generalized to Kähler manifolds and then to general Hermitian manifolds. In

the early 1980s, it was independently conjectured by Kobayashi and Hitchin that

moduli spaces of stable vector bundles are essentially one and the same as moduli

spaces of Hermitian-Einstein vector bundles, a purely differential-geometric notion
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introduced by Kobayashi in [29]. While this was known to be true for curves from

the earlier work of Narasimhan and Seshadri [37], generalizing this result took a

considerable amount of time and effort from many mathematicians. Known today as

the Kobayashi-Hitchin correspondence, it was gradually proved in increasing gener-

ality: Donaldson gave a new differential-geometric proof for curves [13], then settled

the case of algebraic surfaces [14] and manifolds [15], Uhlenbeck and Yau proved

it for Kähler manifolds [48, 49], Buchdahl gave the proof for general surfaces [10],

and finally Li and Yau settled the case of general Hermitian manifolds [31]. The

Kobayashi-Hitchin correspondence, among its many other applications, leads to a

better understanding of the geometry of moduli spaces of stable bundles. While there

is a rich theory of stability of vector bundles in the algebraic context (see for example

[25]), the non-Kähler case is more difficult. Historically, the first explicit determina-

tion of a moduli space of stable bundles on a non-Kähler manifold is due to Braam

and Hurtubise [7]. They described the moduli space of stable SL(2,C)-bundles on

primary elliptic Hopf surfaces, which by the Kobayashi-Hitchin correspondence can

be identified with SU(2)-instantons. Since then, there has been a lot of interest in

the subject of moduli spaces of stable bundles over non-Kähler manifolds, but while

there were some results in this direction (see [9, 8]), much remains unknown.

One of the reasons why the non-Kähler case remains elusive is that, although the

Kobayashi-Hitchin correspondence holds for arbitrary Hermitian manifolds as noted

above, the absence of a Kähler metric in general indicates a loss of structure on the

moduli spaces since the concept of stability becomes harder to work with. Without

going into too much detail at this point, we note that the crucial ingredient in the
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definition of stability is the notion of degree, which for a holomorphic vector bundle

E on a compact Kähler manifold of dimension n takes the form

deg(E) ∶= ∫ c1(E) ∧ ωn−1.

Here, c1(E) is the first Chern class viewed as an element of the second de Rham

cohomology group, while ω is the Kähler form. To see that this definition does not

depend on the choice of representative of c1(E), note that for any 1-form η, we have

∫ dη ∧ ωn−1 = ∫ d (η ∧ ωn−1) + ∫ η ∧ d (ωn−1) = 0. (1.1)

The first term on the right is zero by Stokes’ theorem, while the second term is zero

by the Kähler condition dω = 0. It follows from this that deg(E) is a topological

invariant of E, since c1(E) is. In case ω is a general Hermitian form that is not closed,

the degree as given above is not well-defined. In this case, one needs to adjust the

above definition of deg(E), as will be explained in Section 2.3; it should be noted

that for general Hermitian manifolds deg(E) is no longer a topological invariant of

E but only a holomorphic one, which makes the theory more complicated and the

corresponding moduli spaces less tractable. However, if the Hermitian form ω satisfies

the condition d (ωn−1) = 0, one can see easily that the equality (1.1) still holds, and

the definition of deg(E) as above goes through. A metric whose Hermitian form

ω satisfies d (ωn−1) = 0 is called balanced; balanced metrics were first studied by

Michelsohn [34]. They form a strictly larger class than Kähler metrics for manifolds

of dimension ≥ 3, and in view of what was said above, one can argue that the class of
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balanced metrics is the largest one for which one can generally hope to have a nice

structure on the moduli space of stable vector bundles.

1.1 Overview of results

The article [28] of Kaledin and Verbitsky studies autodual connections on com-

plex vector bundles E over a hyperkähler manifold M . These are connections ∇ with

curvature invariant under the natural action of SU(2) on the bundle Λ∗M of differ-

ential forms of the hyperkähler M . They prove that the moduli space of autodual

connections on E is locally a complexification of the moduli space of Hermitian-

Einstein structures on E. They then work with the twistor space Tw(M) =M ×CP1

and its natural projections

Tw(M)
π

��

σ

��
M CP

1

and establish a twistor correspondence for autodual connections, which takes (E,∇)

to the holomorphic vector bundle (σ∗E, (σ∗∇)0,1) on the twistor space Tw(M). They

explicitly describe which holomorphic bundles on Tw(M) can be obtained in this way

and show that the correspondence is bijective (Theorem 2.2.7). Furthermore, they

show that the image of an autodual connection via this map is semi-stable on Tw(M),

thus exhibiting the twistor transform as an injective map of the corresponding moduli

spaces. Finally, given a complex vector bundle E on M with first two Chern classes

c1(E), c2(E) SU(2)-invariant, they study holomorphic structures on the complex

bundle σ∗E on Tw(M) whose restrictions to all the fibres of the holomorphic twistor

projection π ∶ Tw(M) → CP
1 are stable; these are called fibrewise stable bundles.
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They prove that the moduli space of fibrewise stable bundles on Tw(M) is isomorphic

to the space of sections of the twistor projection π̂ ∶ Tw(M̂) → CP
1 (called twistor

lines), where M̂ is the space of deformations of E, which carries a natural hyperkähler

metric and thus also has a twistor space Tw(M̂); M̂ is called the Mukai dual of M ,

after the work of Mukai [35] on duality on K3 surfaces. In view of the twistor

correspondence described above, one obtains an identification of the moduli space of

autodual connections on E inducing stable holomorphic structures for every I ∈ CP1

with a space of lines in the twistor space Tw(M̂) of the Mukai dual M̂ .

This thesis is concerned with extending two results from [28]. One of these is

generalized, while for the other a partial converse is proven. We presently give a

brief description of these results.

To work with the moduli space of holomorphic bundles on the twistor space, and

in particular to construct the twistor transform as an inclusion of moduli spaces, one

needs a good notion of stability on Tw(M). As mentioned before, the twistor space

Tw(M) of a hyperkähler manifold M comes equipped with a natural Hermitian met-

ric. However, this metric need not be Kähler, and in fact when M is compact, it

never is (Corollary 3.2.4). In Section 4.4 of [28], the authors show that the natural

Hermitian metric on the twistor space Tw(M) of a hyperkähler M is balanced (The-

orem 3.1.1), which, considering the discussion above, is the next best case scenario;

this balancedness result is crucial in their discussion of maps of moduli spaces arising

from the twistor transform and the Mukai dual correspondence. In this thesis we

generalize this result and show that the twistor space Tw(M) of a general compact

hypercomplex manifold M also admits balanced metrics (Theorem 3.2.3); in other
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words, the balancedness condition holds on Tw(M) without any metric assumptions

on the base manifold M whatsoever. In the absence of a hyperkähler metric on M ,

the balanced metric on Tw(M) is constructed implicitly. The key result in the proof

is that on a general complex manifold of complex dimension n, for every strictly

positive (n−1, n−1)-form η there always exists a strictly positive (1,1)-form ω such

that ωn−1 = η; thus, the existence of a closed strictly positive (n − 1, n − 1)-form η

guarantees that the corresponding (1,1)-form ω is the Hermitian form of a balanced

metric (Lemma 3.2.1). One then proceeds to construct such a form η on Tw(M)

as a certain linear combination of forms obtained from an arbitrary hyperhermitian

metric on M . This work was previously published in the article [47] by the author

of the present thesis.

When working with fibrewise stable bundles on the twistor space Tw(M) of a

hyperkähler M , Kaledin and Verbitsky prove a short technical lemma (Lemma 7.3

in [28]) that shows that such bundles are stable as holomorphic bundles on Tw(M);

this is then used to establish the Mukai dual correspondence as an identification of

moduli spaces. In fact, their result is stronger: they show that a holomorphic vector

bundle E on Tw(M) that stably restricts to a generic fibre of the twistor projection

π ∶ Tw(M) → CP
1 (we call such E generically fibrewise stable) is irreducible, in the

sense that it has no proper subsheaves of lower rank. Here, genericity is understood

in the sense of Zariski topology on CP
1. In this thesis, we prove a partial converse to

this result (Theorem 4.2.1): we show that an irreducible holomorphic bundle E on

the twistor space Tw(M) of a simple hyperkähler manifold M is generically fibrewise

stable with respect to the twistor projection π ∶ Tw(M) → CP
1 in case the rank of
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E is 2 or 3, as well as in the general case, provided that E is generically fibrewise

simple, i.e. the restriction EI of E to the fibre π−1(I) for generic I ∈ CP1 is simple,

in the sense that Hom(EI ,EI) = C. The first ingredient in the proof is the fact that

fibrewise stability of E with respect to π ∶ Tw(M) → CP
1 is a Zariski open condition

on CP
1 (Theorem 4.1.1). This is proved using a generalization of an argument of

Teleman from [46], where the Zariski openness of stability is shown for families of

type X × Y → Y , where X,Y are complex manifolds satisfying certain conditions.

Using this fact, we argue by contradiction: if E is not generically fibrewise stable,

then there are destabilizing subsheaves of some rank s for EI for every I ∈ CP1.

Using the one-to-one correspondence between subsheaves of EI of rank s and line

subsheaves of Λs(EI), one can show that there exists a line bundle L on Tw(M)

such that for every I ∈ CP1 there are nontrivial morphisms

LI = L∣π−1(I) �→ Cs(EI) ⊆ Λs(EI)

where Cs(EI) denotes the cone of exterior monomials, a closed analytic subset of

Λs(EI). The fact that these can be “glued” into a proper subsheaf F ⊆ E of rank

s (which contradicts the irreducibility of E) is equivalent to the purely algebraic

condition that there exists a section of

Y

��

� � �� P(π∗(L∗ ⊗ΛsE))

��
CP

1

where Y ⊆ P(π∗(L∗ ⊗ ΛsE)) is the closed analytic subset parametrizing morphisms

LI → Λs(EI) with image in Cs(EI). If the rank of E is 2 or 3, such sections
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always exist, since in this case Cs(EI) = Λs(EI). Otherwise, one can construct a

multisection, i.e. a section of Y over a branched covering f ∶ X → CP
1 (Lemma

4.2.2). The strategy then consists of taking the fibred product

Z
ϕ ��

ρ

��

Tw(M)
π
��

X
f

�� CP1

and using the multisection to construct a proper subsheaf F ⊆ ϕ∗(E) on Z. One

can then show that if E is generically fibrewise simple, this condition together with

the irreducibility E imply that the pullback bundle ϕ∗(E) on the fibred product

Z is irreducible as well, giving a contradiction, and thus proving our result. We

also construct an example of a stable vector bundle on Tw(M) for M = K3 surface

which is nowhere fibrewise stable, showing that mere stability doesn’t imply fibrewise

stability on the twistor space of a hyperkähler manifold.

These results are both interesting in themselves and have potential to be gener-

alized and built upon. As concerns balanced metrics, these present a well-behaved

generalization of the Kähler condition with many interesting properties, and thus ex-

amples of balanced manifolds are of interest in their own right. While it was known

from the work of Kaledin and Verbitsky that twistor spaces Tw(M) of hyperkähler

manifolds M are balanced, there are not many explicit examples of hyperkähler man-

ifolds themselves, as mentioned above. On the other hand, the corresponding result

for hypercomplex manifolds gives us a lot of new balanced manifolds Tw(M) since

hypercomplex M are plentiful. Furthermore, the existence of a balanced metric on

the twistor space Tw(M) of a hypercomplex manifold M naturally leads one to a
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discussion of stable bundles on Tw(M), and it would be interesting to see if any

of the results of Kaledin and Verbitsky in [28] relating various moduli spaces would

generalize to the case that M is hypercomplex. As concerns fibrewise stability of

bundles on Tw(M) for hyperkähler M , a natural direction of research would be to

try to prove the full converse of Theorem 4.2.1, i.e. that an arbitrary irreducible

bundle on Tw(M) is generically fibrewise stable. It should be noted that irreducible

bundles only appear in the non-algebraic setting. For algebraic manifolds, irreducible

bundles don’t exist and one always has recourse to various filtrations, but the lack of

such techniques for irreducible bundles on non-algebraic manifolds make their study

challenging. Thus, in case the full converse to Theorem 4.2.1 is true, it would give

a very nice description of irreducible bundles on Tw(M), especially in view of the

Mukai dual correspondence in [28].

We now give a concise description of the contents of each chapter of this thesis.

• Chapter 1 is the present introduction in which the results of the thesis are

briefly outlined.

• Chapter 2 gives an overview of balanced manifolds, hypercomplex and hy-

perkähler geometry and stability of vector bundles. It consists mostly of def-

initions and statements of results that are needed in the next two chapters.

None of the results are original, and the corresponding references are given at

the beginning of the chapter and throughout the text. Most of the content in

Section 2.1 appeared in the article [47] of the author and is reproduced here

with only minor additions.
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• Chapter 3 starts with the proof in Section 3.1 of the fact that for a hyperkähler

manifold M , the twistor space Tw(M) is balanced. The argument is due to

Kaledin and Verbitsky and appeared in [28]; we reproduce it here for conve-

nience and because ideas from the proof are needed in the next section. In

Section 3.2, it is shown that the twistor space Tw(M) of a compact hyperher-

mitian manifold M is balanced, which also establishes the result for arbitrary

compact hypercomplex M , since these always admit hyperhermitian metrics.

The material in this chapter is reproduced from the article [47] with only minor

adjustments.

• Chapter 4 is concerned with irreducibility and fibrewise stability of bundles on

the twistor space Tw(M) of a simple hyperkähler manifold M . In Section 4.1 it

is proven that fibrewise stability and semi-stability are Zariski open conditions

on the base of the twistor projection π ∶ Tw(M) → CP
1. The proof is basically

a verification that the argument of Teleman from [46] works in the case of

the twistor projection π ∶ Tw(M) → CP
1. In Section 4.2 it is proved that

a generically fibrewise stable bundle E on Tw(M) is irreducible; the proof

is due to Kaledin and Verbitsky [28]. A partial converse to this statement is

proved, which covers the cases rkE = 2,3 and the general case for E generically

fibrewise simple. In Section 4.3 an example of a stable but nowhere fibrewise

stable bundle on Tw(M) for M = K3 surface is costructed.

• Chapter 5 is the conclusion which presents a number of possible generalizations

of the results above and potential avenues of research to build upon these

results.
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CHAPTER 2
Preliminaries

In this chapter, we introduce the main notions with which we will be working,

giving the definitions and stating important results that will be useful to us in the

subsequent chapters, mostly without proof. The main references are the article [34]

and the book [30] for Section 2.1, the papers [50, 51, 27, 28, 52] for Section 2.2, and

the books [30, 32, 41] for Section 2.3.

2.1 Balanced manifolds

Our first goal is to give the definition of balanced metrics on manifolds. We start

with some preliminaries from differential geometry. In what follows, let M denote a

(real) C∞ manifold and E →M a (real) C∞ vector bundle over M . In what follows,

we will denote by Γ(E) the space of C∞ sections of E.

Definition 2.1.1. A connection on E is an R-linear operator ∇ ∶ Γ(E) → Γ(Λ1M⊗E)

satisfying the Leibniz rule:

∇(fs) = df ⊗ s + f∇s ∀f ∈ C∞M,s ∈ Γ(E).

Given a vector field X ∈ Γ(TM), we denote by ∇Xs ∈ Γ(E) the usual pairing of

X with ∇s ∈ Γ (Λ1M ⊗E). Associated to a connection ∇ is its curvature R∇ ∶

Λ2(TM) → End(E) defined by

R∇(X,Y ) ∶= ∇X∇Y −∇Y∇X −∇[X,Y ] ∀X,Y ∈ Γ (TM) .
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In the special case of E = TM being the tangent bundle, we can also define the

torsion T∇ ∶ Λ2(TM) → TM of the connection by

T∇(X,Y ) ∶= ∇XY −∇YX − [X,Y ] ∀X,Y ∈ Γ (TM) .

In fact, it’s easy to verify that both R∇ and T∇ are C∞ linear operators, hence

we can think of them as tensors: R∇ ∈ Γ(Λ2M ⊗ End(E)), T∇ ∈ Γ(Λ2M ⊗ TM). If

R∇ = 0, the connection is said to be flat, while if T∇ = 0, it is called torsion-free.

Observe that a connection ∇ ∶ Γ(E) → Γ(Λ1M ⊗ E) on E induces a canonical

connection on the dual bundle E∗ = HomR(E,R), also denoted by ∇, and defined by

⟨∇η, s⟩ + ⟨η,∇s⟩ = d (⟨η, s⟩) ∀η ∈ Γ(E∗), s ∈ Γ(E),

where we denote by ⟨ , ⟩ the pairing of E∗ with E. Given connections ∇E,∇F on vector

bundles E,F , we can consider the induced connections ∇E⊕F , ∇E⊗F on E⊕F , E⊗F

defined by

∇E⊕F (s⊕ t) ∶= (∇Es) ⊕ (∇F t) ∀s ∈ Γ(E), t ∈ Γ(F ),

∇E⊗F (s⊗ t) ∶= (∇Es) ⊗ t + s⊗ (∇F t) ∀s ∈ Γ(E), t ∈ Γ(F ).

Thus, starting with a single connection ∇ on E, we can form induced connections on

all tensor products (E∗)⊗r ⊗E⊗q. Moreover, it’s not hard to see that the subspaces

of symmetric and antisymmetric tensors are invariant under these connections. In

what follows, all these induced connections on tensor powers of E will be denoted

by the same symbol ∇, and when ∇s = 0 for some tensor s, we will say that the

connection preserves s, or that s is parallel with respect to ∇.
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We now specialize to the case when M is a complex manifold and E →M is a

complex vector bundle. Since E is in particular a real vector bundle, we can have

connections on E defined as above, but this time we can single out those that are

C-linear as operators Γ(E) → Γ(Λ1M⊗E); these are precisely the connections which

preserve the operator I ∶ E → E, I2 = −1, of multiplication by the imaginary unit

in E viewed as a complex vector bundle. In addition to the induced connections

described in the previous paragraph, a C-linear connection ∇ on E induces C-linear

connections on the complex dual E∗ = HomC(E,C) and the conjugate bundle Ē. For

the special case that E = TM is the tangent bundle, the operator I ∶ TM → TM

above is called the almost complex structure of M . It is a well-known result that the

condition of (M,I) being a complex manifold is equivalent to the integrability of I,

i.e. the existence of a torsion-free connection ∇ that preserves I [38].

There is a canonical eigenvalue decomposition of the operator I on the complex-

ified tangent bundle TCM = TM ⊗R C = T 1,0M ⊕ T 0,1M , where

T 1,0M = {v ∈ TCM ∶ Iv =
√
−1v} = {X −

√
−1IX ∶X ∈ TM} ,

T 0,1M = {v ∈ TCM ∶ Iv = −
√
−1v} = {X +

√
−1IX ∶X ∈ TM} .

Observe that TM ≅ T 1,0M as complex bundles, while T 0,1M is the dual of T 1,0M .

We can also define the induced operator I ∶ T ∗M → T ∗M on the cotangent bundle

by putting IΩ(X) ∶= −Ω(IX), and more generally on ΛnM by I (Ω1 ∧ . . . ∧Ωn) =

(IΩ1)∧. . .∧(IΩn). There is a similar decomposition T ∗CM = T ∗M⊗RC = (T ∗)
1,0

M⊕
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(T ∗)0,1M , where

(T ∗)1,0M = {ω ∈ T ∗
C
M ∶ ω(v) = 0 ∀v ∈ T 0,1M} = {Ω +

√
−1IΩ ∶ Ω ∈ T ∗M} ,

(T ∗)0,1M = {ω ∈ T ∗
C
M ∶ ω(v) = 0 ∀v ∈ T 1,0M} = {Ω −

√
−1IΩ ∶ Ω ∈ T ∗M} .

The higher differential forms on M can then be decomposed as

Λk
C
M = ΛkM ⊗R C = Λk,0M ⊕Λk−1,1M ⊕ . . .Λ1,k−1M ⊕Λ0,kM,

where

Λp,qM ≅ Λp ((T ∗)1,0M) ⊗Λq ((T ∗)0,1M) .

The (real) exterior derivative operator d ∶ Γ(ΛkM) → Γ(Λk+1M) can be extended by

C-linearity to Λk
CM , and on the spaces Λp,qM as above, it decomposes as d = ∂ + ∂̄,

where

∂ ∶ Γ(Λp,qM) �→ Γ(Λp+1,qM), ∂̄ ∶ Γ(Λp,qM) �→ Γ(Λp,q+1M).

We also introduce the differential operator dc =
√
−1 (∂̄ − ∂) for convenience. Observe

that dc is a real operator like d, i.e. it takes real forms to real forms.

We now turn our attention to Hermitian structures on complex vector bundles

E →M over a complex manifold M .

Definition 2.1.2. A Hermitian metric h on E is a section of E∗ ⊗ Ē∗ which is an

inner product over every point in M . In other words, for any x ∈M , viewing h as a

sesquilinear form on Ex, we have:

h(u, v) = h(v, u) ∀u, v ∈ Ex, h(u, u) > 0 ∀u ≠ 0 ∈ Ex.
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Given a holomorphic vector bundle E with a Hermitian metric h, it can be

shown (see [30], Proposition I.4.9) that there exists a unique C-linear connection

∇h on E that preserves h and such that for every local holomorphic section s of E,

∇hs is of degree (1,0), in the sense that ∇hs lies in Λ1,0M ⊗ E ⊆ Λ1
CM ⊗ E. This

connection is called the Chern connection of the Hermitian vector bundle (E,h). It

can be shown that the curvature Rh of the Chern connection is of degree (1,1), i.e.

taking values in Λ1,1M ⊗End(E) ⊆ Λ2
CM ⊗End(E).

For the special case that E = TM is the tangent bundle, a Hermitian metric on

the complex manifold M is a Riemannian metric g on TM satisfying

g(IX, IY ) = g(X,Y ) ∀X,Y ∈ Γ(TM),

where I is the almost complex structure. To see that this is equivalent to the above,

observe that given such g, h(X,Y ) ∶= g(X,Y ) −
√
−1g(IX,Y ) is a Hermitian metric

on TM in the sense of Definition 2.1.2. Conversely, given a Hermitian metric h

on TM viewed as a complex vector bundle, g ∶= Re(h) clearly satisfies the above

condition, showing the equivalence of the two definitions. Hermitian metrics always

exist, in fact, starting with an arbitrary Riemannian metric g0 on TM , we can define

g(X,Y ) ∶= g0(X,Y ) + g0(IX, IY ) ∀X,Y ∈ Γ(TM),

and this is clearly Hermitian. Observe that, as a Riemannian metric, g induces a

(real) bundle isomorphism TM ≅ Λ1M . On the other hand, identifying TM ≅ T 1,0M

as complex bundles, h as constructed above induces an isomorphism of complex

vector bundles T 1,0M ≅ Λ0,1M .
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Given an arbitrary Hermitian manifold (M,I, g), there are two canonical con-

nections on its tangent bundle TM :

1. The Levi-Civita connection ∇LC is the unique R-linear connection which pre-

serves the metric tensor g and whose torsion is zero.

2. The Chern connection ∇Ch is the unique C-linear connection which preserves

g and whose torsion tensor lies in Λ2,0M ⊗C T 1,0M ⊆ (Λ2M ⊗R C) ⊗C T 1,0M ≅

Λ2M ⊗R TM , where T 1,0M and (TM, I) are identified as complex vector bun-

dles. It can be shown (see Proposition I.7.6 in [30]) that this coincides with

our previous definition of Chern connection for the Hermitian metric h on TM

constructed from g as above.

Associated to each Hermitian metric g on M is its Hermitian form ω ∈ Λ2M given

by

ω(X,Y ) ∶= g(IX,Y ) ∀X,Y ∈ Γ(TM).

It’s easy to verify that ω is a non-degenerate real (1,1)-form which satisfies the strict

positivity property:

ω(X, IX) > 0 ∀X ≠ 0 ∈ TM.

We are now ready to go ahead with the definition of Kähler and balanced metrics.

Definition 2.1.3. Let (M,I, g) be a Hermitian manifold of complex dimension n.

It is called a Kähler manifold if its Hermitian form ω is closed; it is called a balanced

manifold if the weaker condition d(ωn−1) = 0 is satisfied.

It can be shown that the Kähler condition is equivalent to ∇LCI = 0, and also to

the vanishing of the torsion tensor TCh of the Chern connection ∇Ch. On the other
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hand, observe that TCh lies in

Λ2,0M ⊗C T 1,0M ⊆ Λ1,0M ⊗C (Λ1,0M ⊗C T 1,0M) ≅ Λ1,0M ⊗C EndC(T 1,0M),

and it can be shown (see Theorem 1.6 in [34]) that the vanishing of the (1,0)-form

obtained by taking the complex trace pairing on EndC(T 1,0M) of the tensor TCh is

equivalent to the balancedness condition on the metric.

Observe that in dimension dimCM = 2, the balancedness condition is equivalent

to the Kähler condition, since in this special case ωn−1 = ω. In general dimension,

however, the condition of being Kähler is stronger than that of being balanced.

Examples of balanced non-Kähler manifolds are twistor spaces Tw(M) of certain

self-dual Riemannian 4-manifolds M . These are 3-dimensional complex manifolds

which encode the conformal structure of M . They are always balanced (see [34],

Section 6), but, as shown by Hitchin in [23], the twistor space Tw(M) is Kähler only

if M = S4 or CP
2. In Chapter 3, we will extend the balancedness result to twistor

spaces of hyperkähler manifolds (following [28]) and general compact hypercomplex

manifolds.

2.2 Hypercomplex and hyperkähler geometry

We now introduce hypercomplex and hyperkähler manifolds and their twistor

spaces and state some results in hyperkähler geometry that we will need later on.

Definition 2.2.1. A C∞ manifold M is called hypercomplex if it admits a triple of

almost complex structures I, J,K that are integrable and satisfy the quaternionic

relations

I2 = J2 =K2 = −1, IJ = −JI =K.
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A hyperhermitian metric on a hypercomplex manifold M is a Riemannian metric g

on TM which is Hermitian with respect to the three complex structures I, J,K. In

case the Levi-Civita connection ∇LC of g satisfies ∇LCI = ∇LCJ = ∇LCK = 0, we call

g a hyperkähler metric.

Similarly to Hermitian metrics, hyperhermitian metrics always exist: for an

arbitrary Riemannian metric g0 on a hypercomplex manifold M , define ∀X,Y ∈

Γ(TM),

g(X,Y ) ∶= g0(X,Y ) + g0(IX, IY ) + g0(JX,JY ) + g0(KX,KY ).

It’s straightforward to verify that this is hyperhermitian. Hyperkähler metrics, on

the other hand, are rare, and their existence puts rigid restrictions on the geometry

of M . For the condition ∇LCI = ∇LCJ = ∇LCK = 0 defining a hyperkähler metric, it’s

not hard to see that in fact one needs to check that only two of I, J,K are parallel:

for example, if ∇LCJ = ∇LCK = 0, then ∇LCI = ∇LCJK = (∇LCJ)K +J (∇LCK) = 0.

Letting ωI , ωJ , ωK denote the corresponding Kähler forms, since

dωJ = 0 ⇐⇒ ∇LCJ = 0, dωK = 0 ⇐⇒ ∇LCK = 0,

we see that the hyperkähler condition on g is equivalent to the condition that the

form

ΩI = ωJ +
√
−1ωK .

is closed on M . It is straightforward to check that this 2-form is nondegenerate and

of type (2,0) with respect to the complex structure I. This shows that a hyperkähler

M is a holomorphic symplectic manifold. Conversely, the Calabi-Yau theorem [53]
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implies that every compact Kähler holomorphic symplectic manifold admits a hy-

perkähler structure. We say that a compact hyperkähler manifold M is simple if it

is simply connected and satisfies H2,0(M) = C.

For a hypercomplex manifold (M,I, J,K), note that the complex structures

I, J,K induce an action of the quaternion algebra H on the tangent bundle TM ,

making each tangent space TmM into a quaternionic vector space; in case M is

hyperkähler, this action is moreover parallel with respect to the Levi-Civita con-

nection ∇LC , since I, J and K are. A straightforward verification shows that any

combination

A = x1I + x2J + x3K, x1, x2, x3 ∈ R, x2
1 + x2

2 + x2
3 = 1,

satisfies the relation A2 = −1, and is thus an almost complex structure on M . In fact,

it is integrable, since I, J and K are. We call such A the induced complex structures

of the hypercomplex manifold M . A hyperhermitian metric g on M is easily seen to

be Hermitian with respect to each A as above; we let

ωA(X,Y ) ∶= g(AX,Y ) ∀X,Y ∈ Γ(TM)

denote the corresponding Hermitian form. The hyperkähler condition on g is easily

seen to be equivalent to the condition that all such ωA are closed. Topologically, the

set of induced complex structures on a hypercomplex manifold M forms a 2-sphere:

S2 = {A = x1I + x2J + x3K ∶ x2
1 + x2

2 + x2
3 = 1} = {A ∈ H ∶ A2 = −1} ⊆ ImH.
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We would now like to assemble the induced complex structures at each point of M

into a single geometrical object.

Definition 2.2.2. Let (M,I, J,K) be a hypercomplex manifold. The product man-

ifold Tw(M) =M × S2 is called the twistor space of M .

In this definition, we think of S2 as the set of induced complex structures of

M , as above. Identifying the 2-sphere S2 with the complex projective line CP
1, we

can give Tw(M) ≅ M × CP1 a natural complex structure. If I
CP

1 ∶ TCP1 → TCP1

denotes the complex structure on CP
1, then for any point (m,A) ∈M×CP1 we define

I ∶ T(m,A)Tw(M) → T(m,A)Tw(M) as follows:

I ∶ TmM ⊕ TACP
1 �→ TmM ⊕ TACP

1.

(X,V ) �→ (AX, I
CP

1V )

It’s clear that this defines an almost complex structure on Tw(M), which is in fact

integrable [27], thus making Tw(M) into a complex manifold of complex dimension

n + 1, where dimCM = n. There are canonical projections

Tw(M)
π

��

σ

��
M CP

1,

the second of which is a holomorphic map. The fibres of π are copies of M with the

corresponding induced complex structures, and it will be useful to think of Tw(M)

as the collection of complex manifolds (M,A) lying above the points A ∈ CP1 via the

map π. Following this analogy, in the canonical decomposition of the tangent space

T(m,A)Tw(M) ≅ TmM ⊕ TACP
1, we will call vectors in TmM vertical and vectors in
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TACP
1 horizontal, and similarly for 1-forms. Sections of the map π will be called

twistor lines, while constant sections

sm ∶ CP
1 �→ Tw(M)

A �→ (m,A)

form ∈M will be called horizontal twistor lines. There is a canonical antiholomorphic

involution on the twistor space Tw(M) =M ×CP1, given by

ι′ ∶ id × ι ∶M ×CP1 �→M ×CP1,

where ι ∶ CP1 → CP
1 is the antipodal map on CP

1 ≅ S2; clearly, we have ι ○π = π ○ ι′.

The hypercomplex structure on M can in fact be recovered from the horizontal

twistor lines in Tw(M), which can be completely characterized as sections of the

holomorphic projection π ∶ Tw(M) → CP
1 that commute with the antiholomorphic

involutions ι, ι′ and whose normal bundle is isomorphic to O
CP

1(1)⊕n (see [42] for

details).

In case M has a hyperhermitian metric (in particular, if it has a hyperkähler

metric), there is a natural Hermitian metric defined on the twistor space Tw(M).

Letting gM denote the hyperhermitian metric on M and g
CP

1 the usual Fubini-Study

metric on CP
1,

g ∶= σ∗(gM) + π∗ (gCP1)

is easily verified to be a Hermitian metric on Tw(M); simplifying notation, we will

write g = gM + gCP1 . At a point (m,A) ∈ Tw(M), the corresponding Hermitian form
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ω decomposes as

ω ((X,V ), (X ′, V ′)) = ωM(X,X ′) + ω
CP

1(V,V ′) = gM(AX,X ′) + g
CP

1(I
CP

1V,V ′),

where (X,V ), (X ′, V ′) ∈ TmM ⊕ TACP
1 = T(m,A)Tw(M).

When considering the totality of the induced complex structures on a hyper-

complex manifold M , sometimes the particular structures I, J,K no longer play any

vital role, in which case we will denote an arbitrary induced complex structure in CP
1

by I. On the other hand, in case the original complex structures I, J,K are impor-

tant in our discussion, we will use A ∈ CP1 to denote an arbitrary induced complex

structure. It will be clear from the context which is the case; generally speaking, in

Chapter 3 the complex structures I, J,K will appear throughout our calculations, so

we’ll use the latter notation, while in Chapter 4 we’ll use the former. For the rest of

this section, we will assume that M is a compact hyperkähler manifold and we will

denote an arbitrary induced complex structure on M by I, while the corresponding

Kähler manifold (M,I) will be denoted by MI .

Recall that a hyperkähler manifold M is equipped with a parallel action of the

quaternion algebra H on its tangent bundle. Restricting to the group of unitary

quaternions in H, we get an action of SU(2) on TM , hence on all of its tensor

bundles, and in particular on the bundle of differential forms Λ∗M . Since the action

is parallel, it commutes with the Laplace operator, and thus preserves harmonic

forms. Applying Hodge theory, we get a natural action of SU(2) on the cohomology

H∗(M,C).
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Lemma 2.2.3. A differential form η over a hyperkähler manifold M is SU(2)-

invariant if and only if it is of Hodge type (p, p) with respect to all induced complex

structures MI .

Proof. Proposition 1.2 in [51].

Definition 2.2.4. Let M be hyperkähler and I an induced complex structure. We

say that I is generic with respect to the hyperkähler structure on M if all elements

in

⊕
p
Hp,p(MI) ∩H2p(M,Z) ⊆H∗(M,C)

are SU(2)-invariant.

This terminology is justified: most induced complex structures are generic, in a

sense made precise in the following proposition.

Proposition 2.2.5. Let M be a hyperkähler manifold. The set S0 ⊆ S2 of generic

induced complex structures is dense in S2 and its complement is countable.

Proof. Proposition 2.2 in [50].

As we will see, the genericity of the complex structure I puts rigid conditions

on the geometric structure of the manifold MI . For instance, all line bundles on

MI have only zero or nowhere vanishing sections (see the proof of Corollary 2.3.14),

hence MI can never be algebraic since it has no effective divisors.

We would now like to give a notion of a vector bundle on M which is simul-

taneously holomorphic with respect to all the complex structures induced by the

hyperkähler structure on M .
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Definition 2.2.6. Let M be hyperkähler and let E be a (smooth) complex vector

bundle on M . If E admits a connection ∇ whose curvature R∇ ∈ Γ(Λ2M ⊗End(E))

is SU(2)-invariant, the bundle with connection (E,∇) is called autodual. In case ∇

can be chosen so as to also preserve a Hermitian metric h on E, the bundle (E,h)

is called hyperholomorphic.

By Lemma 2.2.3, the SU(2)-invariance is equivalent to R∇ being a section of

Λ1,1MI ⊗ E, for any induced complex structure I. By a version of the Newlander-

Nirenberg theorem (see [30], Proposition I.3.7), the (0,1)-part ∇0,1
I of such a con-

nection with respect to I induces a holomorphic structure on E over MI . In this

way, an autodual connection ∇ gives a family of holomorphic vector bundles EI over

the Kähler manifolds MI , and in case of a hyperholomorphic structure, ∇ is simulta-

neously the Chern connection for all Hermitian bundles (EI , h). To assemble these

bundles into one object, we use the twistor formalism.

Recall that the twistor space Tw(M) comes equipped with a (non-holomorphic)

projection σ ∶ Tw(M) → M . Given an autodual bundle (E,∇) on M , we take the

pullback bundle and connection (σ∗E,σ∗∇) on Tw(M). By the considerations in the

previous paragraph and the structure of Tw(M), the curvature of the connection

σ∗∇ is of type (1,1), hence the (0,1)-part (σ∗∇)0,1 of the connection defines a

holomorphic structure on the bundle σ∗E over Tw(M), which we denote by Tw(E).

The correspondence

σ∗ ∶ (E,∇) �→ Tw(E) ∶= (σ∗E, (σ∗∇)0,1)
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defines a functor from the category of autodual bundles over M to the category of

holomorphic bundles over Tw(M), called the twistor transform. It turns out that

this functor is invertible and its image can be described explicitly.

Theorem 2.2.7. The twistor transform (E,∇) ↦ Tw(E) defines an equivalence

between the categories of autodual bundles on M and holomorphic vector bundles on

Tw(M), whose restrictions to all horizontal twistor lines are trivial.

Proof. Theorem 5.12 in [28].

We end this section by stating one further technical result, which computes the

higher direct images of the twistor transform Tw(E) of a hyperholomorphic bundle

with respect to the holomorphic twistor projection π ∶ Tw(M) → CP
1.

Proposition 2.2.8. Let M be a hyperkähler manifold with holomorphic twistor pro-

jection π ∶ Tw(M) → CP
1, I an induced complex structure and E a hyperholomorphic

bundle on M with the corresponding holomorphic bundle Tw(E) on Tw(M). Then

for any i ≥ 0,

Riπ∗Tw(E) ≅ OCP
1(i) ⊗C H i(MI ,EI),

where H i(MI ,EI) is the i-th holomorphic sheaf cohomology of EI on MI .

Proof. Proposition 6.3 in [52].

Note that for a hyperholomorphic E, the cohomology groups H i(MI ,EI) are

isomorphic for different I ∈ CP1, albeit non-canonically (see Corollary 8.1 in [51]).

2.3 Stability

Let (M,I, g) be a compact Hermitian manifold of complex dimension n and

ω its Hermitian form. We will denote by O the sheaf of holomorphic functions on
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M . Our goal in this section is to define the notion of stability for (holomorphic)

vector bundles E over M , Hermitian-Einstein metrics and the Kobayashi-Hitchin

correspondence.

For a coherent sheaf F over M , we have the dual sheaf F∗ = Hom (F ,O), as

well as a natural morphism into the double dual σ ∶ F �→ F∗∗. It can be shown that

the kernel of σ is the torsion subsheaf of F :

kerσx = {a ∈ Fx ∶ fa = 0 for some f ≠ 0 in Ox} ∀x ∈M.

Definition 2.3.1. A coherent sheaf F over M is called torsion-free if ∀x ∈M , the

stalk Fx is a torsion-free Ox-module, or equivalently, if the natural morphism of

sheaves

σ ∶ F �→ F∗∗

is injective. If it is an isomorphism, we say that F is reflexive. We call the sheaf F

normal if for every open set U ⊆M and every analytic subset A ⊆ U of codimension

at least 2, the restriction map

F(U) �→ F(U ∖A)

is an isomorphism.

Clearly, a vector bundle E, viewed as a locally free sheaf, is reflexive (and hence

torsion-free). On the other hand, for an arbitrary coherent sheaf F , let

S(F) = {x ∈M ∶ Fx is not free over Ox}
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denote the singularity set of F . It can be shown (see Section §1 of Chapter 2 in

[41]) that for an arbitrary coherent sheaf this is a closed analytic subset of M of

codimension ≥ 1 (≥ 2 for a torsion-free sheaf, ≥ 3 for a reflexive sheaf), so that F

restricted to M ∖ S(F) is locally free. This justifies the following definition.

Definition 2.3.2. The rank rkF of a coherent sheaf F over M is the rank of the

locally free sheaf

F∣M∖S(F) over M ∖ S(F).

For an arbitrary coherent sheaf F and any integer s ≥ 0, we can define the

exterior power sheaf ΛsF . If s is the rank of F , then ΛsF has rank 1, and the

determinant of F

detF ∶= (ΛsF)∗∗

is actually a line bundle on M , as the following two results show.

Lemma 2.3.3. The dual of an arbitrary coherent sheaf is reflexive.

Proof. Proposition V.5.18 in [30].

Lemma 2.3.4. A reflexive sheaf of rank 1 is a line bundle.

Proof. Lemma 1.1.15 in Chapter 2 of [41].

To proceed with the definition of degree of a coherent sheaf on M , we need to

impose a certain differential condition on the metic g.

Definition 2.3.5. The metric g is called Gauduchon if it satisfies the condition

∂∂̄ (ωn−1) = 0.
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Definition 2.3.6. Let g be Gauduchon. The degree of a coherent sheaf F on M

with respect to g is given by

degg(F) = ∫
M
c1(detF , h) ∧ ωn−1,

where h is an arbitrary Hermitian metric on the line bundle detF , and

c1(detF , h) ∶=
√
−1
2π

Rh,

where Rh ∈ Γ(Λ1,1M) is the curvature form of the Chern connection on (detF , h).

We will write deg(F) when the metric will be clear from the context.

The Gauduchon condition on g ensures that degg(F) is well-defined and does

not depend on the metric h (see Lemma 1.1.18 in [32]). If the metric g satisfies the

balancedness condition d (ωn−1) = 0 (in particular, if it is Kähler), then it is clearly

Gauduchon, and in fact the degree only depends on the first Chern class c1(detF),

making it a topological invariant of detF ; for an arbitrary Gauduchon metric it

is only a holomorphic invariant of detF . Note that, for an arbitrary Hermitian

metric g on M , the definition of degree does not make sense, however, as shown

in the following theorem proved in [19], the conformal class of g always contains a

Gauduchon metric, which is essentially unique.

Theorem 2.3.7. If M is compact, then for every Hermitian metric g on M there

exists a positive function ϕ ∈ C∞(M,R>0) such that

g′ ∶= ϕ ⋅ g
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is Gauduchon. If M is connected and n ≥ 2, then g′ is unique up to a positive

constant.

We are now ready to define stability of torsion-free coherent sheaves on M .

Definition 2.3.8. Let g be a Gauduchon metric on M , and let F be a nontrivial

torsion-free coherent sheaf. The g-slope of F is given by

μg(F) ∶=
degg(F)
rk(F) ,

denoted simply by μ(F) when the metric is clear from the context. The sheaf F

is called g-stable (resp. g-semi-stable) if for every subsheaf G ⊆ F with 0 < rk(G) <

rk(F) we have

μg(G) < μg(F) (resp. μg(G) ≤ μg(F)) .

F is called g-polystable if it is a direct sum of g-stable bundles of the same slope. It

is called irreducible if it has no proper subsheaves of lower rank.

It’s clear that an irreducible F is stable with respect to any metric on M . It’s

also clear that for a reflexive sheaf, F is irreducible if and only F∗ is irreducible.

We would now like to give the definition of Hermitian-Einstein structures on a

holomorphic vector bundle E over a Hermitian manifold (M,I, g), a concept which

is intimately related to the notion of stability, in a sense that will be made precise

later. Recall that the Hermitian structure on M defines a linear operator on the

bundle of differential forms of M given by exterior multiplication with the Hermitian

form ω of g:

Lg ∶ Λp,qM �→ Λp+1,q+1M

α �→ α ∧ ω
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We will denote the g-adjoint operator of Lg by Λg ∶ Λp,qM → Λp−1,q−1M . It can be

shown that for a (1,1)-form α, Λg(α) satisfies the following identity:

α ∧ ωn−1 = 1

n
Λg(α)ωn.

Definition 2.3.9. A Hermitian metric h on a holomorphic vector bundle E on M is

called g-Hermitian-Einstein if the curvature Rh ∈ Γ(Λ1,1M ⊗ End(E)) of its Chern

connection satisfies the equation

√
−1ΛgR

h = γ ⋅ idE,

or equivalently

(
√
−1Rh) ∧ ωn−1 = γ

n
ωn ⋅ idE,

where γ is a real constant, called the Einstein constant of h.

In case the metric g is Gauduchon, the Einstein constant is proportional to the

degree of the vector bundle E, as the following proposition shows.

Proposition 2.3.10. If g is Gauduchon and h a Hermitian-Einstein metric on E

with Einstein constant γ, then

γ = 2π

(n − 1)! ⋅Volg(M)
⋅ μg(E),

where

Volg(M) = ∫
M

1

n!
⋅ ωn

is the volume of M with respect to the metric g.

Proof. Lemma 2.1.8 in [32].
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The following theorem is known as the Kobayashi vanishing theorem.

Theorem 2.3.11. Let (E,h) be a g-Hermitian-Einstein vector bundle with Einstein

constant γ. If γ is negative, then E has no nontrivial global holomorphic sections. If

γ = 0, then every global holomorphic section of E is parallel with respect to the Chern

connection of (E,h).

Proof. Theorem 2.2.1 in [32].

A consequence of the Kobayashi vanishing theorem is that Hermitian-Einstein

metrics are essentially unique. Recall that a simple holomorphic vector bundle E is

one whose only endomorphisms are homotheties, in other words, Hom(E,E) = C.

Proposition 2.3.12. If E is simple, then a g-Hermitian-Einstein metric on E (if

it exists) is unique up to a positive scalar.

Proof. Proposition 2.2.2 in [32].

For examples of Hermitan-Einstein vector bundles, let M be a hyperkähler man-

ifold. As in the previous section, we denote by g the hyperkähler metric on M and

by S0 ⊆ S2 ≅ CP1 the set of generic complex structures of M . We have the following

lemma.

Lemma 2.3.13. An SU(2)-invariant 2-form β on a hyperkähler manifold M satis-

fies

ΛIβ = 0

for any induced complex structure I, where by ΛI we mean the operator Λg on the

manifold MI .

Proof. Lemma 2.1 in [51].

34



It follows immediately from this lemma that any hyperholomorphic bundle E on

a hyperkähler manifold M is Hermitian-Einstein with Einstein constant 0, since its

hyperholomorphic connection has SU(2)-invariant curvature. Another consequence

of the lemma is the following.

Corollary 2.3.14. Let M be a compact hyperkähler manifold and Tw(M) its twistor

space. The twistor projection π ∶ Tw(M) → CP
1 establishes a one-to-one correspon-

dence between divisors on CP
1 and those on Tw(M).

Proof. It suffices to show that the only (irreducible) hypersurfaces on Tw(M) are

the fibres of the twistor projection π ∶ Tw(M) → CP
1. Suppose this is not so, and

V ⊆ Tw(M) is an irreducible hypersurface which is not a fibre of π. Using Remmert’s

proper mapping theorem (see [21], p. 34), we can conclude that π(V ) = CP1, so that

V intersects every fibre of π. We can choose a generic structure I ∈ S0 so that the

restriction V ∩ π−1(I) = V ∩MI is a divisor on MI . Letting L be the line bundle

corresponding to this divisor, the first Chern class c1(L) ∈ H1,1(MI) ∩H2(M,Z) is

SU(2)-invariant by genericity of I. Letting η denote the harmonic form representing

c1(L), it’s clear that η is SU(2)-invariant as a differential form. By Proposition

II.2.23 in [30], there is a Hermitian metric h on L such that c1(L,h) = η; in other

words, √
−1
2π

Rh = η,

where Rh is the curvature of ∇h. Since Rh is SU(2)-invariant, (L,h) is hyperholo-

morphic, and it follows from Lemma 2.3.13 that (L,h) is Hermitian-Einstein with

Einstein constant 0. But then by the Kobayashi vanishing theorem (Theorem 2.3.11)

all global sections of L are parallel with respect to the Chern connection of h, which
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implies that they are either globally zero or globally non-vanishing which contradicts

the construction of L as the line bundle of an effective divisor on MI . In fact, the

argument shows that MI has no effective divisors and thus cannot be algebraic. In

particular, V ⊆ Tw(M) as chosen above cannot exist.

There is an intimate relationship between Hermitian-Einstein structures and

stability. The following fundamental theorem, whose proof is the subject of the book

[32], shows that the two notions are essentially equivalent.

Theorem 2.3.15. If g is a Gauduchon metric and E is a holomorphic vector bundle

on M , then E admits a Hermitian-Einstein metric if and only if it is polystable. In

case the bundle is stable, this metric is unique up to a positive constant.

This result is called the Kobayashi-Hitchin correspondence, after the people who

conjectured it, and was proved in increasing generality by various mathematicians,

among whom the greatest contributions were by Donaldson [13, 14, 15], Uhlenbeck

and Yau [48, 49], Buchdahl [10] and Li and Yau [31].

As a first application of this theorem, we see that a holomorphic line bundle

L on M , which is clearly stable in any metric, always admits a Hermitian-Einstein

metric h, unique up to constant rescaling. Since the Chern connection stays the same

when the metric is multiplied by a constant, we see that for an arbitrary Hermitian

metric g on M , we can define the Einstein constant of L with respect to g by

γg(L) ∶=
√
−1ΛgR

h,

where Rh is the curvature of the Chern connection of (L,h). We then have the

following result.
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Proposition 2.3.16. Let g′ be a Gauduchon metric in the conformal class of g.

Then there exists a positive constant c, depending only on g and g′, such that

degg′(L) = c ⋅ γg(L)

for all holomorphic line bundles L on M .

Proof. Let g′ = ϕ ⋅ g, where ϕ ∈ C∞(M,R>0). Then ω′ = ϕ ⋅ ω for the corresponding

Hermitian forms. Let h be a g-Hermitian-Einstein metric on L, and let Rh denote

the curvature of the Chern connection of (L,h). We have

degg′(L) = ∫
M
c1(L,h) ∧ (ω′)n−1 =

1

2π ∫M
√
−1Rh ∧ (ϕ ⋅ ω)n−1 =

= 1

2πn ∫M ϕn−1(
√
−1ΛgRh)ωn = 1

2πn
(∫

M
ϕn−1ωn) ⋅ γg(L).

We close this section with one further notion of stability which is defined for

a hyperkähler manifold M . Recall that M comes equipped with a twistor space

Tw(M) and a holomorphic projection π ∶ Tw(M) → CP
1, whose fibres parametrize

the totality of the induced Kähler structures MI on M .

Definition 2.3.17. A holomorphic vector bundle E on Tw(M) is called fibrewise

stable if its restriction EI to MI is stable in the induced Kähler metric for each

I ∈ CP1. E is called generically fibrewise stable if EI is stable for all I in a nonempty

Zariski open subset of CP1. Similarly, E is called fibrewise simple if all the restrictions

EI are simple, in the sense that Hom(EI ,EI) = C, and generically fibrewise simple

if EI is simple for all I in a nonempty Zariski open subset of CP1.
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CHAPTER 3
Balanced metrics on twistor spaces

Recall that the twistor space Tw(M) of a hyperkähler manifold M comes

equipped with a natural Hermitian metric induced from the hyperkähler metric on

M and the Fubini-Study metric on CP
1. One would like to hope that this metric

on Tw(M) is Kähler, but this need not be so (Corollary 3.2.4). However, as shown

by Kaledin and Verbitsky [28], the metric on Tw(M) satisfies the weaker condition

of being balanced. Thus, in a certain sense, there is a loss of metric structure when

passing from M to Tw(M). In view of this, one would not think that for general

hypercomplex M without any ambient metric, Tw(M) should enjoy any interesting

metric properties. The surprising result presented in this chapter is that in fact

Tw(M) is balanced for a general compact hypercomplex manifold M , showing that

no metric assumptions on M are needed for the balancedness of Tw(M).

In Section 3.1, we present the argument of Kaledin and Verbitsky (perhaps in

a bit more detail than in their original article [28]) that for a hyperkähler M , the

induced metric on the twistor space Tw(M) is balanced. In Section 3.2, we show that

the twistor space Tw(M) of a general compact hypercomplex manifold M admits a

balanced metric. In this case, the construction of the metric is implicit: it is obtained

by taking the “nth root” of a certain closed strictly positive (n,n)-form on the twistor

space Tw(M), where n = dimCM . The content of this chapter is largely identical to

the material in the article [47] by the author of the present thesis.
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3.1 The hyperkähler case

Recall that for a hypercomplex manifold (M,I, J,K), the twistor space Tw(M)

comes equipped with the natural projections

Tw(M)
π

��

σ

��
M CP

1,

and at a point (m,A) ∈ Tw(M), the tangent space decomposes as a direct sum

T(m,A)Tw(M) = TmM ⊕ TACP
1; we call vectors in TmM vertical and vectors in

TACP
1 horizontal, and similarly for the cotangent bundle. If gM is a hyperkähler

metric on M , then

g ∶= σ∗ (gM) + π∗ (gCP1)

is a Hermitian metric on Tw(M), where g
CP

1 is the Fubini-Study metric on CP
1;

we write simply g = gM + gCP1 . Similarly the Hermitian form ω of g on Tw(M)

decomposes as

ω = ωM + ωCP
1 ,

where ωM ∈ Λ2
mM and ω

CP
1 ∈ Λ2

ACP
1 at the point (m,A) ∈ Tw(M); there is no

component in Λ1
mM ⊗ Λ1

ACP
1. Note that ω

CP
1 is just the pullback of the Fubini-

Study form on CP
1 via the map π, while ωM is not the pullback of any single form

from M but rather it is assembled from all the Kähler forms ωA of gM on M for the

various induced complex structures A ∈ CP1. More explicitly, for (X,V ), (X ′, V ′) ∈

TmM ⊕ TACP
1 = T(m,A)Tw(M), we have:

ω ((X,V ), (X ′, V ′)) = ωM(X,X ′) + ω
CP

1(V,V ′) = gM(AX,X ′) + g
CP

1(I
CP

1V,V ′).
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Theorem 3.1.1. (Kaledin-Verbitsky) Let (M,I, J,K, gM) be a hyperkähler manifold

of complex dimension n. Then its twistor space Tw(M) with the Hermitian metric

induced from the hyperkähler structure is balanced.

Proof. We closely follow the argument laid out in Section 4.4 of [28]. In the notation

used above, we need to show that d (ωn) = 0. This is clearly equivalent to showing

ωn−1 ∧ dω = 0.

Observe that we have a decomposition of the differential operator d = dM + dCP1

according to the direct sum T Tw(M) = TM ⊕ TCP1. Since ω = ωM + ωCP
1 , we have

dω = dMωM + dCP1ωM + dMω
CP

1 + d
CP

1ω
CP

1 .

The first term is zero by the hyperkähler condition on M , while the last two terms

are zero because ω
CP

1 is a pullback of a closed form on CP
1 to Tw(M). We need

to investigate the second term. To simplify our argument, we will work over a fixed

horizontal twistor line {m} ×CP1 ⊆ Tw(M).

Let

W ∶= ImH = {aI + bJ + cK} ≅ R3,

and let W = CP1 ×W be the corresponding trivial bundle. When we view CP
1 as a

parametrization of the complex structures on M , it’s just the unit sphere S2 ⊆ W ,

hence we can view W as the restrictionW = TW ∣S2 . There is a canonical embedding
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of W into the (trivial) bundle of vertical 2-forms over the horizontal line {m}×CP1:

W = CP1 ×W �→ {m} ×CP1 ×Λ2
mM

(A,aI + bJ + cK) �→ (m,A,aωI + bωJ + cωK) .

Given an element V = aI +bJ +cK of W , we denote by ωV = aωI +bωJ +cωK its image

under this mapping. In this way, we can think of W as a bundle of vertical 2-forms

over {m} ×CP1 with global frame {ωI , ωJ , ωK}. Since d
CP

1ωI = dCP1ωJ = dCP1ωK = 0,

we can think of the operator d
CP

1 on W as a flat connection

d
CP

1 = ∇ ∶ Γ (W) �→ Γ (Λ1CP
1 ⊗W)

f1ωI + f2ωJ + f3ωK �→ df1 ⊗ ωI + df2 ⊗ ωJ + df3 ⊗ ωK .

Of course, this is just the usual Euclidean connection on R
3 ≅ ImH restricted to

S2 ≅ CP
1. Note that W = TW ∣S2 ≅ TR3∣S2 = N ⊕ TS2, where N is the normal

bundle of the embedding S2 ⊆ R
3 and TS2 is the tangent bundle. At the point

A = (a1, a2, a3) ∈ S2 ≅ CP1, we have

NA = {λa1ωI + λa2ωJ + λa3ωK ∶ λ ∈ R} ,

TAS
2 = {v1 ωI + v2 ωJ + v3 ωK ∶ a1v1 + a2v2 + a3v3 = 0} .

Thus, N is a trivial bundle with a global trivialization given by ωM = x1ωI + x2ωJ +

x3ωK , while the almost complex structure I
CP

1 ∶ TCP1 → TCP1 at the point A ∈ CP1

is given by the quaternion multiplication V ↦ AV , where we once again think of

A ∈ NA, V ∈ TAS
2 as elements of W . We want to compute

d
CP

1ωM = ∇(x1ωI + x2ωJ + x3ωK) = dx1 ⊗ ωI + dx2 ⊗ ωJ + dx3 ⊗ ωK .
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Fix a point A = (a1, a2, a3) in {m} × CP1 and look at the decomposition d
CP

1ωM =

∂
CP

1ωM + ∂̄CP1ωM . We claim that ∂̄
CP

1ωM ∈ Γ (Λ0,1
CP

1 ⊗Λ2,0
m M), where the complex

structure on TmM is understood to be A. To verify this, we use the description of d
CP

1

as the connection ∇ and plug in an arbitrary vector V +
√
−1I

CP
1V = V +

√
−1AV ∈

T 0,1
A CP

1, where V = (v1, v2, v3) ∈ TACP
1 is real.

∇V +√−1AV ωM = v1ωI + v2ωJ + v3ωK+

+
√
−1(a2v3 − a3v2)ωI +

√
−1(a3v1 − a1v3)ωJ +

√
−1(a1v2 − a2v1)ωK =

= ωV +
√
−1ωAV .

Plugging into this form an arbitrary vector X ∈ TmM and a (0,1)-vector Y ∈ T 0,1
m M

(with respect to the complex structure A), we get

ωV (X,Y ) +
√
−1ωAV (X,Y ) = g(V X,Y ) +

√
−1g(AVX,Y ) =

= g(V X,Y ) +
√
−1g(A(AV )X,AY ) = g(V X,Y ) +

√
−1g(−V X,−

√
−1Y ) = 0.

Hence ∂̄
CP

1ωM ∈ Γ (Λ0,1
CP

1 ⊗Λ2,0
m M) and ∂

CP
1ωM ∈ Γ (Λ1,0

CP
1 ⊗Λ0,2

m M), since ωM

is real and ∂̄
CP

1ωM is the conjugate of ∂
CP

1ωM .

We now examine the form ωn−1 ∧ dω. We have

ωn−1 ∧ dω = (ωM + ωCP
1)n−1 ∧ d

CP
1ωM = ωn−1

M ∧ ∂CP1ωM + ωn−1
M ∧ ∂̄CP1ωM+

+(n − 1)ωn−2
M ∧ ωCP

1 ∧ ∂
CP

1ωM + (n − 1)ωn−2
M ∧ ωCP

1 ∧ ∂̄
CP

1ωM .

Since ωn−1
M ∈ Λn−1,n−1

m M , the vertical bidegree of the first two terms is (n − 1, n + 1),

(n+ 1, n− 1), respectively, making them zero, since dimCM = n. On the other hand,
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the degree of the horizontal part of the last two terms is 3 > 2 = dimR CP
1, making

them zero as well.

3.2 The hypercomplex case

We now would like to prove a generalization of Theorem 3.1.1 for compact

hyperhermitian (and hence general hypercomplex) manifolds M . In contrast to the

hyperkähler case, the product metric on Tw(M) = M ×CP1 need not be balanced,

so we need to approach the problem differently. We start with two lemmas of an

essentially linear-algebraic nature. Recall from Section 2.1 that a real (1,1)-form η

on a complex manifold (M,I) of complex dimension n is strictly positive if it satisfies

the condition η(X, IX) > 0 for all nonzero X ∈ TM . Similarly, we say that a real

(n − 1, n − 1)-form η is strictly positive if for any nonzero α ∈ Λ1M we have that

η ∧ α ∧ Iα is a strictly positive multiple of (any) volume form on M compatible

with the orientation determined by the complex structure. There is an intimate

relationship between closed strictly positive (n − 1, n − 1)-forms on M and balanced

metrics.

Lemma 3.2.1. Let (M,I, g) be a Hermitian manifold of dimCM = n. The existence

of a closed strictly positive (n− 1, n− 1)-form on M is equivalent to the balancedness

of M , not necessarily with respect to the given metric.

Proof. (Cf. [34], pp. 279-280) Let η ∈ Γ(Λn−1,n−1M) be a closed strictly positive

form. The Riemannian volume form Ω ∈ Γ(Λ2nM) induces an isomorphism of bundles

Λn−1,n−1M ≅ Λ1,1TM ≅ T 1,0M ⊗ T 0,1M , whereas the metric g gives an isomorphism

Λ1,1TM ≅ Λ1,1M . Under these identifications, η can be thought of as a strictly
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positive (1,1)-form on M . By basic linear algebra, there exists a local orthonormal

frame {e1, Ie1, . . . , en, Ien} of TM , such that η ∈ Γ(Λ1,1M) can be expressed as

η =
n

∑
i=1

ai ei ∧ Iei,

where we think of ei as sections of Λ1M ≅ TM and all ai > 0. Since Ω = e1 ∧ Ie1 ∧

. . . ∧ en ∧ Ien, we have that, as a section of Λn−1,n−1M , η can be expressed in terms

of this frame as

η =
n

∑
i=1

ai e1 ∧ Ie1 ∧ . . . ∧ êi ∧ Iei ∧ . . . ∧ en ∧ Ien.

We are now looking for a strictly positive form ω ∈ Γ(Λ1,1M) such that ωn−1 = η. If

we can establish the existence of such a form, our proof will be finished, since the

condition d (ωn−1) = 0 will imply that the Hermitian metric on M induced by ω is

balanced. If we write

ω =
n

∑
i=1

bi ei ∧ Iei,

we then have

ωn−1 =
n

∑
i=1
(n − 1)! b1 . . . b̂i . . . bn e1 ∧ Ie1 ∧ . . . ∧ êi ∧ Iei ∧ . . . ∧ en ∧ Ien.

If ωn−1 = η, observe that

ai
aj
= (n − 1)! b1 . . . b̂i . . . bn
(n − 1)! b1 . . . b̂j . . . bn

= bj
bi
.

Writing

a1 = (n − 1)! b2 . . . bn = (n − 1)!
b2
b1

. . .
bn
b1
⋅ bn−11 = (n − 1)!

a1
a2

. . .
a1
an

bn−11 ,
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we can solve for b1 uniquely, since we know that b1 > 0 and all the ai > 0. Knowing

b1 clearly gives us all the other bi. This shows that ω exists locally, while its global

existence is a consequence of its uniqueness.

Lemma 3.2.2. Let (M,I) be a compact complex manifold and suppose that its tan-

gent space TM decomposes into a direct sum TM = E ⊕ F of complex subbundles

E and F . If ω,ω′ are real (1,1)-forms on M such that ω is strictly positive when

restricted to E, while ω′ is strictly positive on F and E ⊆ kerω′, there exists a number

T > 0 such that ω + Tω′ is strictly positive on M .

Proof. The problem is local in nature by compactness of M , since if {Ui} is a cover

of M such that ω + Tiω′ is strictly positive on Ui, then taking a finite subcover and

letting T be the maximum of the corresponding Ti’s, we get a strictly positive form

ω + Tω′ on the whole M .

Let ω = ω1 + ω2 + ω3 be the decomposition of ω according to the direct sum

Λ2 (E∗ ⊕ F ∗) = Λ2(E∗) ⊕ (E∗ ⊗ F ∗) ⊕Λ2(F ∗),

and observe that ω′ lies entirely in the third summand. By assumption of strict posi-

tivity, ω1 is a Hermitian form on E, hence comes from a Hermitian metric. Choosing

a local orthonormal frame {e1, Ie1, . . . , ek, Iek} for this metric, we can express ω1 as

ω1 =
k

∑
i=1

ei ∧ Iei,

where we regard the ei as sections of E
∗ ≅ E. Similarly, ω′ is a Hermitian form on

F induced by some Hermitian metric. By simple linear algebra, there exists a local
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orthonormal frame {f1, If1, . . . , fl, Ifl} of F in which the two forms decompose as

ω3 =
l

∑
j=1

aj fj ∧ Ifj, ω′ =
l

∑
j=1

fj ∧ Ifj,

where again we regard fj as sections of F ∗ ≅ F . Clearly, we can choose T > 0 such

that on some neighborhood, ω3 + Tω′ is strictly positive on F . This makes ω + Tω′

locally strictly positive when restricted to both E and F , so we only need to take

care of the ω2 term. For this, it is enough to show that we can choose T such that

ω1 + ω2 + Tω′ is locally strictly positive. Let

X =
k

∑
i=1
(X2i−1ei +X2iIei) , Y =

l

∑
j=1
(Y2j−1fj + Y2jIfj)

be arbitrary nonvanishing sections of E, F written in the above bases and let t > 0.

We want to show that plugging in (X + tY, I(X + tY )) into the above form always

gives a strictly positive number:

ω1(X, IX) + ω2(X, tIY ) + ω2(tY, IX) + Tω′(tY, tIY ) > 0,

ω1(X, IX) + 2t ω2(X, IY ) + t2 Tω′(Y, IY ) > 0.

Thinking of this as a quadratic equation in t, its strict positivity is equivalent to the

discriminant being negative:

4ω2(X, IY )2 − 4T ω1(X, IX)ω′(Y, IY ) < 0,

ω2(X, IY )2 < T ω1(X, IX)ω′(Y, IY ).
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Writing out the right hand side in the bases {ei, Iei}, {fj, Ifj}, we get

T (
2k

∑
i=1

X2
i )(

2l

∑
j=1

Y 2
j ) ,

whereas

ω2(X, IY ) = ∑
i,j

cijXiYj,

for some coefficients cij. Applying the Cauchy-Schwarz inequality to ω2(X, IY )2, we

get

(∑
i,j

cijXiYj)
2

≤ ∑
i,j

(cij)2∑
i,j

X2
i Y

2
j = ∑

i,j

(cij)2 (
2k

∑
i=1

X2
i )(

2l

∑
j=1

Y 2
j ) .

The sum ∑i,j (cij)
2
is clearly locally bounded by some T > 0, which gives the required

inequality.

Now let (M,I, J,K, gM) be a hyperhermitian manifold, let n be the complex

dimension of M , and let g denote the induced Hermitian metric on the twistor space

Tw(M) with Hermitian form ω, following the notation in the previous section. If

gM is hyperkähler, the argument in the proof that Tw(M) is balanced in Theorem

3.1.1 consisted in showing that the (n,n)-form

ωn = (ωM + ωCP
1)n = ωn

M + nωn−1
M ∧ ωCP

1

on Tw(M) is closed. For a general hyperhermitian gM we will instead use Lemma

3.2.2 to show that a certain linear combination of forms

αωn
M + β ddc (ωn−1

M )

47



is a closed strictly positive (n,n)-form on Tw(M), and then use Lemma 3.2.1 to

conclude that Tw(M) is balanced. We will need compactness of M in order to apply

Lemma 3.2.2.

Theorem 3.2.3. Let (M,I, J,K, gM) be a compact hyperhermitian manifold of com-

plex dimension n. Then its twistor space Tw(M) is balanced.

Proof. The volume form on Tw(M) =M ×CP1 with respect to the product metric

is given by

ΩTw(M) =
ωn+1

(n + 1)! =
(ωM + ωCP

1)n+1

(n + 1)! = (n + 1)ω
n
M ∧ ωCP

1

(n + 1)! = ΩM ∧ ωCP
1 ,

where ΩM denotes the pullback of the volume form on M via the projection σ ∶

Tw(M) → M . Note that ωn
M = n!ΩM and ddc (ωn−1

M ) are closed (n,n)-forms on

Tw(M) and we can think of them as elements of Λ1,1T Tw(M) via the isomorphism

induced by the volume form ΩTw(M). Because the metric on Tw(M) induces an

isomorphism T Tw(M) ≅ Λ1Tw(M), we will be able to apply Lemma 3.2.2 if we

can show that ωn
M is strictly positive on horizontal forms and vertical forms lie

in its kernel, while ±ddc (ωn−1
M ) (the sign will depend on the dimension of M) is

strictly positive when restricted to vertical forms in Λ1M . The first statement is

easy, since ωn
M is a constant multiple of the vertical volume form ΩM , and we know

that ΩTw(M) = ΩM ∧ωCP
1 . For the second statement, since we only need to establish

strict positivity on vertical forms, it’s enough to restrict to a horizontal twistor line

{m} ×CP1 and consider the form

d
CP

1dc
CP

1 (ωn−1
M ) = 2

√
−1(n − 1) (∂

CP
1 ∂̄

CP
1ωM) ∧ ωn−2

M +

48



+2
√
−1(n − 1)(n − 2) (∂

CP
1ωM) ∧ (∂̄CP1ωM) ∧ ωn−3

M .

Note that if n = 2, the second term vanishes. We will now use our description of the

d
CP

1 operator as a connection from the proof of Theorem 3.1.1 to show that both of

these terms are multiples of ω
CP

1 ∧ ωn−1
M , which is strictly positive since products of

positive forms are positive (see [12], Section III.1).

∂
CP

1 ∂̄
CP

1ωM = ∇1,0∇0,1ωM = ∂∂̄x1 ⊗ ωI + ∂∂̄x2 ⊗ ωJ + ∂∂̄x3 ⊗ ωK .

∂
CP

1ωM = ∇1,0ωM = ∂x1 ⊗ ωI + ∂x2 ⊗ ωJ + ∂x3 ⊗ ωK .

∂̄
CP

1ωM = ∇0,1ωM = ∂̄x1 ⊗ ωI + ∂̄x2 ⊗ ωJ + ∂̄x3 ⊗ ωK .

We will work in the local holomorphic coordinates coming from the stereographic

projections on CP
1 ≅ S2. Recall that the sphere S2 = {x2

1 + x2
2 + x2

3 = 1} has holomor-

phic charts

PN ∶ S2 ∖ {(0,0,1)} ←→ C

(x1, x2, x3) �→ x1−
√−1x2

1−x3

( z+z̄
1+∣z∣2 ,

√−1(z−z̄)
1+∣z∣2 , −1+∣z∣

2

1+∣z∣2 ) ←�� z

PS ∶ S2 ∖ {(0,0,−1)} ←→ C

(x1, x2, x3) �→ x1+
√−1x2

1+x3

( w+w̄
1+∣w∣2 ,

√−1(w̄−w)
1+∣w∣2 , 1−∣w∣

2

1+∣w∣2) ←�� w

We will make the computation in the holomorphic coordinate z = x +
√
−1y coming

from the stereographic projection PN from the point (1,0,0). The computation in

the other chart is completely analogous, and we will omit it. The Fubini-Study

metric ω
CP

1 takes the form

ω
CP

1 =
√
−1∂∂̄ log (1 + ∣z∣2) =

√
−1∂ ( z dz̄

1 + ∣z∣2) =
√
−1dz ∧ dz̄
(1 + ∣z∣2)2

.
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Calculating the various partial derivatives of x1, x2, x3, we get

∂x1 = ∂ ( z+z̄
1+∣z∣2) =

1−z̄2
(1+∣z∣2)2 dz, ∂̄x1 = ∂̄ ( z+z̄

1+∣z∣2) =
1−z2
(1+∣z∣2)2 dz̄,

∂x2 = ∂ (
√−1(z−z̄)

1+∣z∣2 ) =
√−1(1+z̄2)
(1+∣z∣2)2 dz, ∂̄x2 = ∂̄ (

√−1(z−z̄)
1+∣z∣2 ) =

−√−1(1+z2)
(1+∣z∣2)2 dz̄,

∂x3 = ∂ (−1+∣z∣
2

1+∣z∣2 ) =
2z̄

(1+∣z∣2)2 dz, ∂̄x3 = ∂̄ (−1+∣z∣
2

1+∣z∣2 ) =
2z

(1+∣z∣2)2 dz̄,

∂∂̄x1 =
−2(z + z̄)dz ∧ dz̄
(1 + ∣z∣2)3

,

∂∂̄x2 =
−2
√
−1(z − z̄)dz ∧ dz̄
(1 + ∣z∣2)3

,

∂∂̄x3 =
−2 (−1 + ∣z∣2) dz ∧ dz̄
(1 + ∣z∣2)3

.

Thus,

√
−1∂

CP
1 ∂̄

CP
1ωM = −2(

√
−1dz ∧ dz̄
(1 + ∣z∣2)2

) ⊗ ( z + z̄
1 + ∣z∣2 ωI +

√
−1(z − z̄)
1 + ∣z∣2 ωJ +

−1 + ∣z∣2
1 + ∣z∣2 ωK) =

= −2ω
CP

1 ∧ ωM ,

from which we conclude that

2
√
−1(n − 1) (∂

CP
1 ∂̄

CP
1ωM) ∧ ωn−2

M = −4(n − 1)ωCP
1 ∧ ωn−1

M .

If n = 2, then, as we noted above, this is equal to d
CP

1dc
CP

1 (ωn−1
M ), so taking the

negative of ddc (ωn−1
M ) gives a form that is strictly positive on vertical 1-forms, and

we can apply Lemma 3.2.2 to conclude that ∃T > 0 such that

T ωn
M − ddc (ωn−1

M )
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is strictly positive. For the case n > 2, we also need to examine the other term. We

know that at any point A ∈ CP1, for any V ∈ TACP
1,

∂
CP

1ωM(V −
√
−1AV ) = ωV −

√
−1ωAV ,

∂̄
CP

1ωM(V +
√
−1AV ) = ωV +

√
−1ωAV .

If we take V = 1
2

∂
∂x , then V −

√
−1AV = ∂

∂z , V +
√
−1AV = ∂

∂z̄ , and we conclude from

the above that

∂
CP

1ωM = dz ∧ ω ∂
∂z
= dz ∧ (ωV −

√
−1ωAV ) ,

∂̄
CP

1ωM = dz̄ ∧ ω ∂
∂z̄
= dz̄ ∧ (ωV +

√
−1ωAV ) .

Hence
√
−1 (∂

CP
1ωM) ∧ (∂̄CP1ωM) =

√
−1dz ∧ ω ∂

∂z
∧ dz̄ ∧ ω ∂

∂z̄
=

=
√
−1dz ∧ dz̄
(1 + ∣z∣2)2

∧ (1 + ∣z∣2)ω ∂
∂z
∧ (1 + ∣z∣2)ω ∂

∂z
= ω

CP
1 ∧Ψ ∧ Ψ̄.

We now compute the expression Ψ ∧ Ψ̄ ∧ ωn−3
M . To simplify things we only do the

computation at the point z = 1, which corresponds to I ∈ CP1, where it takes the

form

(ωK +
√
−1ωJ) ∧ (ωK −

√
−1ωJ) ∧ ωn−3

I = (ωJ +
√
−1ωK) ∧ (ωJ −

√
−1ωK) ∧ ωn−3

I ,

while at a general point A ∈ CP1 corresponding to z ∈ C, an entirely analogous

argument applies, except that (I, J,K) need to be replaced by (A, 1+∣z∣
2

2
∂
∂x ,

1+∣z∣2
2

∂
∂y),

which form a quaternionic triple in the space W = NA ⊕ TACP
1.

The vertical tangent space TmM to the point (m,I) ∈M ×CP1 is a quaternionic

vector space with respect to the triple (I, J,K), so we can identify it with H
k, where
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k = dimHM = 1
2 dimCM = n

2 . The metric g restricted to TmM is quaternionic-

hermitian, hence we can find a quaternionic orthonormal basis {e1, . . . , ek} of TmM ;

let {e∗1, . . . , e∗k} denote the dual basis of Λ1
mM . We define the following complex-

valued 1-forms ∀1 ≤ i ≤ k, which constitute a complex basis of Λ1
mM ⊗C = Λ1,0

m M ⊕

Λ0,1
m M , where the decomposition is relative to the complex structure I.

dζ ∶= e∗i +
√
−1Ie∗i dξ = Je∗i +

√
−1Ke∗i

dζ̄ ∶= e∗i −
√
−1Ie∗i dξ̄ = Je∗i −

√
−1Ke∗i

With respect to this basis, it’s not hard to see that the forms ωI , ωJ , ωK decompose

as follows:

ωI =
k

∑
i=1
(
√
−1
2

dζi ∧ dζ̄i +
√
−1
2

dξi ∧ dξ̄i) ,

ωJ =
k

∑
i=1
(1
2
dζi ∧ dξi +

1

2
dζ̄i ∧ dξ̄i) ,

ωK =
k

∑
i=1
(−
√
−1
2

dζi ∧ dξi +
√
−1
2

dζ̄i ∧ dξ̄i) .

Further computing,

ωJ +
√
−1ωK =

k

∑
i=1

dζi ∧ dξi,

hence

(ωJ +
√
−1ωK) ∧ (ωJ −

√
−1ωK) ∧ ωn−3

I =

= (
k

∑
i=1

dζi ∧ dξi,) ∧ (
k

∑
i=1

dζ̄i ∧ dξ̄i,) ∧ {
k

∑
i=1
(
√
−1
2

dζi ∧ dζ̄i +
√
−1
2

dξi ∧ dξ̄i)}
n−3
=

= −(
√
−1
2
)
n−3
(n − 1)(n − 3)!

k

∑
i=1
(

k

⋀
j=1

dζj ∧ dζ̄j) ∧ (⋀
j≠i

dξj ∧ dξ̄j)−

−(
√
−1
2
)
n−3
(n − 1)(n − 3)!

k

∑
i=1
(⋀
j≠i

dζj ∧ dζ̄j) ∧ (
k

⋀
j=1

dξj ∧ dξ̄j) .
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On the other hand,

ωn−1
I = {

k

∑
i=1
(
√
−1
2

dζi ∧ dζ̄i +
√
−1
2

dξi ∧ dξ̄i)}
n−1
=

= (
√
−1
2
)
n−1
(n − 1)!

k

∑
i=1
(

k

⋀
j=1

dζj ∧ dζ̄j) ∧ (⋀
j≠i

dξj ∧ dξ̄j)+

+(
√
−1
2
)
n−1
(n − 1)!

k

∑
i=1
(⋀
j≠i

dζj ∧ dζ̄j) ∧ (
k

⋀
j=1

dξj ∧ dξ̄j) .

We conclude that

(ωJ +
√
−1ωK) ∧ (ωJ −

√
−1ωK) ∧ ωn−3

I =
4

n − 2ω
n−1
I

at the point z = 1, and generally, Ψ ∧ Ψ̄ ∧ ωn−3
m = 4

n−2ω
n−1
M . We thus have

2
√
−1(n − 1)(n − 2) (∂

CP
1ωM) ∧ (∂̄CP1ωM) ∧ ωn−3

M =

= 2(n − 1)(n − 2)ω
CP

1 ∧Ψ ∧ Ψ̄ ∧ ωn−3
M =

= 8(n − 1)ω
CP

1 ∧ ωn−1
M ,

and so if n > 2,

d
CP

1dc
CP

1 (ωn−1
M ) = 4(n − 1)ωCP

1 ∧ ωn−1
M ,

which is strictly positive on vertical forms, hence applying Lemma 2, we get a T > 0

such that

T ωn
M + ddc (ωn−1

M )

is strictly positive.
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Thus both in case n = 2 and n > 2, we are assured of the existence of a closed

strictly positive (n,n)-form on Tw(M), which immediately implies that Tw(M) is

balanced by Lemma 3.2.1. We are finished.

We conclude with a short corollary demonstrating that the Kähler condition is

too strong for twistor spaces, as opposed to balancedness.

Corollary 3.2.4. Let (M,I, J,K, gM) be a compact hyperkähler manifold of complex

dimension n. Then its twistor space Tw(M) is never Kähler.

Proof. In the notations of the previous proof, we have dMωM = dcMωM = 0 by the

hyperkähler condition on M , hence

ddcωM =
√
−1∂

CP
1 ∂̄

CP
1ωM = −2ωCP

1 ∧ ωM ,

hence if ωTw(M) is any Kähler form on Tw(M),

−ddcωM ∧ (ωTw(M))
n−1

is an exact strictly positive (n + 1, n + 1)-form on Tw(M), in the sense that it is a

strict positive multiple of the volume form ΩTw(M). But this is impossible, since then

−∫
Tw(M)

d (dcωM ∧ (ωTw(M))
n−1) = −∫

Tw(M)
ddcωM ∧ (ωTw(M))

n−1 > 0

by compactness, whereas the first integral is zero by Stokes’ theorem.
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CHAPTER 4
Fibrewise stable bundles on twistor spaces of hyperkähler manifolds

In this chapter, we work with compact simple hyperkähler manifolds M and

their twistor spaces Tw(M). Our main topic of study is the relationship between ir-

reducible and fibrewise stable bundles on Tw(M). The main result is Theorem 4.2.1,

whose forward implication that a generically fibrewise stable bundle on Tw(M) is

irreducible is due to Kaledin and Verbitsky [28]. It is the partial converse, namely

the result that an irreducible vector bundlle E on Tw(M) is generically fibrewise

stable provided it is of rank 2, 3, or generically fibrewise simple, which is the most

difficult part. In contrast to the previous chapter, where the exposition is more

differential-geometric in nature, many algebro-geometric and complex-analytic theo-

rems and techniques are used here. The main references for these are the books [20],

[21], [22] and [41]; other sources are referenced throughout the text.

In Section 4.1 we show that for a vector bundle E on Tw(M), viewed as a family

of bundles on the fibres of the twistor projection π ∶ Tw(M) → CP
1, fibrewise stability

and semi-stability are Zariski open conditions on the base CP
1. The argument is

basically that of Teleman from [46], where the result is established for families of

bundles on the fibres of X × Y → Y , where X,Y are complex manifolds satisfying

some conditions. Section 4.2 contains the main result described above. In Section 4.3

we explicitly construct an example of a stable but nowhere fibrewise stable bundle

on Tw(M) for M a K3 surface.
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4.1 Zariski openness of fibrewise stability

It is a general fact, which can be made precise, that given a morphism of spaces

f ∶ X → S and a vector bundle E on X, thought of as a family of vector bundles

{Es ∶ s ∈ S} on the fibres {f−1(s) ∶ s ∈ S}, the set

Sst ∶= {s ∈ S ∶ Es is stable}

is open in S under some assumptions on the morphism f ∶ X → S. This holds true

in the projective algebraic setting (see Proposition 2.3.1 in [25]), where the topology

on S is understood to be the Zariski topology, as well as in the complex hermitian

setting (see [32], Theorem 5.1.1), where the topology on S is the usual Euclidean

manifold topology. We would like to study families of vector bundles on the fibres of

the twistor projection π ∶ Tw(M) → CP
1 for a hyperkähler manifold M , and while it

is natural to work in the Zariski topology on CP
1, the twistor space Tw(M) is never

projective (not even Kähler, see Corollary 3.2.4). We could apply the result of [32]

and conclude that the stability condition is open in CP
1 in the classical topology,

but for our purposes we would like to have the stronger result of Zariski openness.

In the paper [46], Teleman proves, among other results, the following theorem.

Theorem 4.1.1. Let Y be a compact connected Gauduchon manifold, S an arbitrary

complex manifold, and E a holomorphic vector bundle on Y ×S, thought of as a family

of vector bundles on Y parametrized by the projection Y × S → S. Then the sets

Sst = {s ∈ S ∶ Es is stable} , Ssst = {s ∈ S ∶ Es is semi-stable}

are Zariski open provided the parameter manifold S is compact.
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Although the twistor space Tw(M) is topologically a product M ×S2, we cannot

apply this theorem directly since it is not a complex-analytic product of M and

CP
1. We would thus like to extend Teleman’s result in the slightly more general

setting of the complex structure MI varying on the fibres of the twistor projection

π ∶ Tw(M) → CP
1.

Theorem 4.1.2. Let M be a compact simple hyperkähler manifold with hyperkähler

metric g and twistor space Tw(M), and E a holomorphic vector bundle on Tw(M)

of rank r. Then the sets

(CP1)st = {I ∈ CP1 ∶ EI is stable} , (CP1)sst = {I ∈ CP1 ∶ EI is semi-stable}

are Zariski open in CP
1.

Our notation will follow that of [46] and our proof will essentially be a verification

that Teleman’s argument in [46] works for the twistor projection π ∶ Tw(M) → CP
1.

We will start by defining the relative Picard group of the twistor projection π ∶

Tw(M) → CP
1, which will be an object Pic

CP
1 Tw(M) parametrizing the Picard

groups {PicMI ∶ I ∈ CP1} of the fibres of π.

Fix an induced complex structure I ∈ CP1 onM . The exponential sheaf sequence

0�→ Z�→ OI
exp�→ O∗I �→ 0

gives rise to a long exact sequence in cohomology, a portion of which looks like

0�→H1(M,Z) �→H1(MI ,OI) �→ PicMI
c1�→H2(M,Z)
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Since M is simply connected, H1(M,Z) = 0 and H2(M,Z) has no torsion. By Hodge

theory, H1(MI ,OI) = 0, and by the Lefschetz theorem on (1,1)-classes, the image of

PicMI
c1→ H2(M,Z) is equal to H1,1(MI) ∩H2(M,Z). It follows from all this that

PicMI is isomorphic to the Néron-Severi group NS(MI), and we can identify it with

a subgroup of H2(M,Z):

PicMI =H1,1(MI) ∩H2(M,Z) ⊆H2(M,Z).

We now assemble the groups PicMI into one object, and define

Pic
CP

1 Tw(M) ∶= {(I, [η]) ∶ [η] = c1(LI) for LI ∈ PicMI} ⊆ CP1 ×H2(M,Z).

To see that this is a closed analytic subset of CP1 × H2(M,Z) (viewed as a dis-

joint union of copies of CP1, parametrized by H2(M,Z)), observe that its connected

components are either of the form CP
1 × {[η]}, where

[η] ∈ ⋂
I∈CP1

H1,1(MI) ∩H2(M,Z)

(by Lemma 2.2.3, this is equivalent to [η] being SU(2)-invariant), or singletons

{(I, [η])} for non-generic I. For such [η], the proof of Proposition 2.2 in [51] shows

that the intersection

Pic
CP

1 Tw(M) ∩ ({CP1 × [η]})

is finite, hence Zariski closed in CP
1 × {[η]}, from which we can conclude that

Pic
CP

1 Tw(M) is a Zariski closed subset of CP1 ×H2(M,Z). It is clear from con-

struction that the fibre of the natural projection Pic
CP

1 Tw(M) → CP
1 over I ∈ CP1

is just the Picard group PicMI .
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Recall that stability of a vector bundle E is defined as a condition on its sub-

sheaves F ⊆ E. Equivalently, it can be defined as a condition on its quotient sheaves

E ↠ Q (see Theorem 1.2.2 of Chapter 2 in [41]). Given a vector bundle E on the

twistor space Tw(M), we will think of it as a family {EI} of vector bundles over

the manifolds {MI} parametrized by CP
1. In order to study stability of bundles EI ,

we would like to assemble all of their possible quotient sheaves into one geometric

object. This is accomplished with the relative Douady Quot space construction [44],

which we now introduce.

We will work in the category Comp of complex-analytic spaces and their mor-

phisms. A complex space is a locally ringed space (X,OX), where X is Hausdorff

and OX is a sheaf of local C-algebras, locally modeled on (V,OV ), where V ⊆ D is

a complex analytic subset of some domain D ⊆ Cn with an ideal sheaf I ⊆ OD and

OV = (OD/I )∣V is the structure sheaf of V ; for an introduction to complex spaces

and their properties, see, for instance, Chapter 1 in [20]. We will fix a proper mor-

phism of complex spaces X → S, which we will think of as an object in the category

Comp(S) of complex S-spaces, and a vector bundle E on X. To ease notation,

given any other object T → S of Comp(S), we will denote by XT the fibred product

of X and T over S, while ET will denote the pullback of E via the map XT → X.

We define a contravariant functor

QuotS(E) ∶Comp(S)op �→ Set.

as follows. Recall that for a morphism ϕ ∶X → Y , a sheaf of OX-modules F is called

flat at x ∈X if Fx is flat as an Oϕ(x)-module, and simply flat if it is flat at every point
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x ∈ X; we say that X is flat over Y if OX is. Given an object T → S in Comp(S),

we define

QuotS(E)(T ) ∶= {quotient sheaves ET → Q→ 0 on XT ∶ Q is flat over T} ,

whereas for a morphism of S-spaces f ∶ T ′ → T , the corresponding map

QuotS(E)(f) ∶ QuotS(E)(T ) �→ QuotS(E)(T ′)

is just taking the pullback along the map of fibred products Xf ∶ XT ′ → XT , where

we use the fact that base change preserves flatness (Proposition III.9.2b in [22]). The

following theorem is proved in [44]:

Theorem 4.1.3. QuotS(E) is representable. In other words, there is an object

QuotS(E) in Comp(S) together with a quotient sheaf

EQuotS(E) �→RS(E) �→ 0

on the fibred product space XQuotS(E) = X ×S QuotS(E) that satisfies the following

universal property:

(i) RS(E) is flat over QuotS(E);

(ii) given an object T in Comp(S), and a quotient sheaf

ET �→ Q�→ 0

on the fibred product space XT =X ×S T such that Q is flat over T , there exists

a unique S-morphism f ∶ T → QuotS(E) such that (Xf)∗(RS(E)) = Q, where
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Xf is as in the diagram

XT

��

Xf �� XQuotS(E)

��

�� X

��
T

f �� QuotS(E) �� S

The space QuotS(E) is called the relative Quot space of E with respect to S.

Set-theoretically, we have

QuotS(E) = {(s,ψs) ∶ s ∈ S, ψs ∶ Es → Qs → 0 quotient sheaf over Xs} ,

and the universal family RS(E) represents these Qs as a family of sheaves on the

spaces Xs. Note that, because the universal family RS(E) is flat over QuotS(E),

the rank of Qs is constant on connected components of QuotS(E), and also the

set of points (s,ψs) of QuotS(E) where ψs ∶ Es → Qs → 0 has locally free kernel

is open. We denote by Quot1lf,S(E) the set of elements (s,ψs) of QuotS(E) where

ψs ∶ Es → Qs → 0 has invertible kernel; by the above, Quot1lf,S(E) is an open subspace

of QuotS(E). In the particular case E = OX , we denote Quot1lf,S(E) by DouS(X)

and call it the relative Douady space of X with respect to S. Set-theoretically, it is

just the collection of effective divisors D of the spaces Xs. The following properness

result mentioned in [46] is a consequence of Bishop’s compactness theorem [5].

Theorem 4.1.4. Let h be a Hermitian metric on a complex manifold X, and let

X → S be a proper map onto a complex manifold S. Then ∀ε > 0 the topological

subspaces

DouS(X)≤ε ∶= {D ∈ DouS(X) ∶ Volh(D) ≤ ε} ⊆ DouS(X)
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are proper over S. Here, for an element D ⊆ Xs, s ∈ S, Volh(D) is the volume of D

with respect to the restriction of the metric h.

We now come back to the special case of a vector bundle E over the twistor

space Tw(M), thought of as an object of Comp(CP1) via the twistor projection

π ∶ Tw(M) → CP
1. We will identify the relative Quot space Quot1

lf,CP1(E) with the

set of equivalence classes of sheaf monomorphisms ϕI ∶ LI ↪ EI , where I ∈ CP1 and

LI is a line bundle over MI . We can define a map

p ∶ Quot1
lf,CP1(E) �→ Pic

CP
1 Tw(M)

[ϕI ∶ LI ↪ EI] �→ (I, c1(LI)) ,

where we think of Pic
CP

1 Tw(M) as a subspace of CP1 ×H2(M,Z), identifying LI ∈

PicMI with its image c1(LI) ∈ H2(M,Z) under the homomorphism c1 ∶ PicMI →

H2(M,Z), whose injectivity follows from the fact that M is simply connected, as

discussed previously. To see that this map is analytic, note that the flatness of the

universal family R
CP

1(E) over Tw(M)×
CP

1Quot1
lf,CP1(E) ensures that the first Chern

class of Ker(ϕI ∶ EI ↠ QI) is locally constant on Quot1
lf,CP1(E). It’s not hard to see

that, given an element LI ∈ PicMI , the set-theoretical fibre of p over LI is simply

p−1(LI) = P (H0(MI , L
∗
I ⊗EI)) .

Now let Z = P(E∗) be the projectivization of the dual bundle of E over Tw(M),

thought of as a family of projectivizations ZI = P(E∗I) parametrized by I ∈ CP1, and

let Dou
CP

1(Z) be the relative Douady space of Z. As a first step in the proof of Theo-

rem 4.1.2, we will identify Quot1
lf,CP1(E) with a certain subspace of Dou

CP
1(Z). Just

62



like for Tw(M), we can define the relative Picard group of Z with the natural pro-

jection Pic
CP

1 Z → CP
1, with the fibre over I ∈ CP1 being PicZI = PicP(E∗I). Since

PicP(E∗I) is canonically isomorphic to PicMI × Z, with the Z summand generated

by the line bundle OZI
(1), we conclude that

Pic
CP

1 Z ≅ Pic
CP

1 Tw(M) ×Z.

There is a natural map

nZ ∶ Dou
CP

1(Z) �→ Pic
CP

1 Z

DI ⊆MI �→ (I, [ODI
]) ,

which is analytic for the same reason as p is. Given an element NI ∈ PicZI , the

set-theoretic fibre of nZ over NI is just

n−1Z (NI) = P (H0(ZI ,NI)) .

Let q ∶ Z → Tw(M) denote the natural projection, and let qI ∶ ZI →MI be the

obvious restrictions. Given a line bundle LI on MI such that H0(MI , L∗I ⊗EI) ≠ 0,

we use the projection formula ([41], p. 6) and the fact that q∗(OZ(1)) = E, to obtain

the following identifications:

H0(MI , L
∗
I ⊗EI) ≅H0(MI , qI∗(q∗I (L∗I) ⊗OZI

(1))) ≅H0(ZI , q
∗
I (L∗I) ⊗OZI

(1)).

Taking into consideration the set-theoretic identifications in the previous paragraphs,

we have defined a bijection

Φ ∶ p−1(LI) ←→ n−1Z (q∗I (L∗I) ⊗OZI
(1)).
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If we now let a ∶ Pic
CP

1 Tw(M) → Pic
CP

1 Z be the embedding

[LI] �→ [q∗I (L∗I) ⊗OZI
(1)] ,

the mappings Φ between fibres of p and nZ defined above assemble into a set-theoretic

embedding Φ ∶ Quot1
lf,CP1(E) → Dou

CP
1(Z) that makes the diagram

Quot1
lf,CP1(E)
p

��

Φ �� Dou
CP

1(Z)
nZ

��
Pic

CP
1 Tw(M) a

�� Pic
CP

1 Z

commute. We would like to verify that Φ is actually analytic.

Proposition 4.1.5. The map

Φ ∶ Quot1
lf,CP1(E) ∼→ n−1Z (a(PicCP1 Tw(M))) ⊆ Dou

CP
1(Z)

is a complex-analytic isomorphism.

Proof. The proof closely follows the argument of Teleman in Proposition 2.3 of [46].

We will exhibit Φ as a morphism between the corresponding functors on the category

Comp(CP1). Recall that the object Quot1
lf,CP1(E) represents the functor

Quot1
lf,CP1(E) ∶Comp(CP1)op �→ Set,

which takes an object T → CP
1 in Comp(CP1) to

Quot1
lf,CP1(E)(T ) ∶= {quotients ET → Q→ 0 on Tw(M)T = Tw(M) ×CP1 T ∶

Q is flat over T and ET → Q has invertible kernel} ,
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where ET denotes the pullback of E via the projection Tw(M)T = Tw(M) ×CP1 T →

Tw(M). On the other hand, the subspace n−1Z (a(PicCP1 Tw(M))) ⊆ Dou
CP

1(Z)

represents the functor

D ∶Comp(CP1)op �→ Set,

which takes an object g ∶ T → CP
1 in Comp(CP1) to

D(T ) ∶= {divisors D ⊆ ZT = Z ×CP1 T ∶

OD is flat over T and ∀t ∈ T,O(Dt) ∈ a(PicMg(t))} ,

where we identify PicMI as a subset of Pic
CP

1 Tw(M).

Now fix g ∶ T → CP
1. We want to construct a bijection

ΦT ∶ Quot1lf,CP1(E)(T ) ←→ D(T ).

This will be essentially a generalization of our previous construction of the maps

Φ ∶ p−1(LI) ←→ n−1Z (q∗(L∗I) ⊗ OZI
(1)). Indeed, identify Quot1

lf,CP1(E)(T ) with the

set of equivalence classes of sheaf monomorphisms L ↪ ET on Tw(M)T , where L is

a line bundle on Tw(M)T . There is a canonical map

pT ∶ Quot1lf,CP1(E)(T ) �→ PicTw(M)T

[L↪ ET ] �→ [L] .

Note that, if L ∈ PicTw(M)T , the fibre of pT over L looks like

p−1T (L) = {[φ] ∈ P (Hom(L,ET )) ∶ φ ∶ L→ ET is a sheaf monomorphism

and the quotient Q is flat over T} .
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Now let qT ∶ ZT ≅ P(E∗T ) → Tw(M)T be the natural projection, and let nZT
be the

map

nZT
∶ D(T ) �→ PicZT

D ⊆ ZT �→ [O(D)] .

Similarly to the above, if N ∈ PicZT , then

n−1ZT
(N) = {[ψ] ∈ P (Hom(OZT

,N)) ∶ ψ ∶ OZT
→ N is a sheaf monomorphism,

the quotient Q′ is flat over T and ∀t ∈ T,Nt ∈ a(PicMg(t))} .

Now, given L ∈ PicTw(M)T , using the projection formula and (qT )∗(OZT
(1)) = ET ,

we have

Hom(L,ET ) =H0(Tw(M)T , L∗⊗ET ) ≅H0(ZT , q
∗
T (L∗)(1)) = Hom(OZT

, q∗T (L∗)(1)).

In order to conclude that this defines a bijection

ΦT ∶ p−1T (L) ←→ n−1ZT
(q∗T (L∗)(1)),

we need to verify two things. First, we have to check that sheaf monomorphisms in

Hom(L,ET ) correspond to sheaf monomorphisms in Hom(OZT
, q∗T (L∗)(1)). Since

this is a local statement on Tw(M)T , we can restrict our attention to a neighbour-

hood U of a point x ∈ Tw(M)T where L∣U ≅ OU and ET has a local frame s1, . . . , sr ∈

O(ET )(U). Then, with our identification, both elements of Hom(L∣U , ET ∣U) ≅

Hom(OU , ET ∣U) and Hom(Oq−1T (U), q
∗
T (L

∗)(1)∣
q−1T (U)) ≅ Hom(Oq−1T (U),Oq−1T (U)(1)) cor-

respond to sections

a1s1 + . . . arsr,
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where a1, . . . , ar ∈ OTw(M)T (U). It’s not hard to see that in either case we have a

sheaf monomorphism at x ∈ Tw(M)T ⇐⇒ Ann((a1)x) ∩ . . . ∩Ann((ar)x) = {0} in

Ox.

The second verification we have to make is that the flatness conditions for

p−1T (L) and n−1ZT
(q∗T (L

∗)(1)) are equivalent. So let Q be the quotient of a monomor-

phism L → ET , and let Q′ be the quotient of the corresponding monomorphism

OZT
→ q∗T (L

∗)(1). Choosing a point x = (m, t) ∈ Tw(M)T = Tw(M) ×CP1 T , by the

local flatness criterion (see [16], Theorem 6.8), Q is T -flat at (m, t) if and only if

TorOt
1 (Ct,Q(m,t)) = 0. Since πT ∶ Tw(M)T → T is a flat morphism (a consequence of

the fact that π ∶ Tw(M) → CP
1 is flat, and that base change preserves flatness), we

have

TorOt
1 (Ct,Q(m,t)) = Tor

O(m,t)

1 (Ct ⊗Ot O(m,t),Q(m,t)),

and the latter is just the stalk at (m, t) of the sheaf

T or1(OM
π−1
T
(t)
,Q) = T or1(OMg(t)

,Q),

where the fibre π−1T (t) ⊆ Tw(M)T is identified with Mg(t) via the diagram

Mg(t)
� � ��

��

Tw(M)T
g′ ��

πT

��

Tw(M)
π
��

{t} � � �� T g
�� CP1

So the flatness of Q is equivalent to the vanishing of the sheaves T or1(OMg(t)
,Q) for

every t ∈ T , which in turn is equivalent to the injectivity of the sheaf morphism

Lt ∶= L∣π−1T (t) �→ (ET )∣π−1T (t) ≅ Eg(t)
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for all t. By an entirely analogous argument, Q′ is flat if and only if the induced

sheaf morphism

OZT
∣π−1T (t) ≅ OZg(t)

�→ q∗T (L∗t )(1)

is injective for all t. The equivalence of the two conditions is shown exactly as the

corresponding statement for Hom(L,ET ) and Hom(OZT
, q∗T (L

∗)(1)).

Finally, if we let aT ∶ PicTw(M)T → PicZT be the map L↦ q∗T (L
∗)(1), and put

the bijections p−1T (L) ←→ n−1ZT
(q∗T (L

∗)(1)) together, we get a bijective map ΦT that

makes the diagram

Quot1
lf,CP1(E)(T )
pT

��

ΦT �� D(T )
nZT

��
PicTw(M)T aT

�� PicZT

commute.

We would now like to apply Proposition 4.1.5 to translate Theorem 4.1.4 from a

statement about properness of subsets of Dou
CP

1(Z) into a statement about proper-

ness of subsets of Quot1
lf,CP1(E).

Proposition 4.1.6. Let g denote the hyperkähler metric on M . For any d ∈ R, the

subspaces

Quot1
lf,CP1(E)≥d, Quot1

lf,CP1(E)>d ⊆ Quot1
lf,CP1(E),

defined by the inequalities degg(LI) ≥ d, resp. degg(LI) > d, are complex-analytic

and proper over CP
1.
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Proof. Recall that we have maps

Quot1
lf,CP1(E)

p�→ Pic
CP

1 Tw(M)
degg�→ R

[ϕ ∶ LI → EI] �→ (I, c1(LI)) �→ degg(LI)

By construction of Pic
CP

1 Tw(M) and Lemma 2.3.13, we can easily see that the

map degg is locally constant on Pic
CP

1 Tw(M), hence it is also locally constant on

Quot1
lf,CP1(E). It follows at once that both Quot1

lf,CP1(E)≥d and Quot1
lf,CP1(E)>d are

unions of connected components of Quot1
lf,CP1(E), hence they are analytic. It remains

to show that they are compact.

The rest of the proof closely follows the argument of Teleman on page 9 of

[46]. Let r denote the rank of E and n the complex dimension of M . Recall that the

hyperkähler metric g induces a natural metric on the twistor space Tw(M), which we

will also denote by g, abusing the notation slightly. Choose an arbitrary Hermitian

metric h on E. The Chern connection of (E,h) induces an Ehresmann connection

on the projective bundle q ∶ Z = P(E∗) → Tw(M), that is, a subbundle HZ ⊆ TZ

such that there is a direct sum decomposition

TZ =HZ ⊕ V Z,

where V Z is the vertical tangent bundle of q ∶ Z → Tw(M). With this decompostion,

one can think of HZ as the horizontal tangent bundle with respect to q. Note that,

because the Chern connection of (E,h) is compatible with the holomorphic structure

of E, the distribution HZ ⊆ TZ is preserved by the almost-complex structure of Z.

On the other hand, note that the metric h on E induces a natural Hermitian metric

on the vertical tangent bundle V Z on Z; this is just the Fubini-Study metric on the
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fibres q−1(x) = P(E∗x) ≅ Pr−1 of the projection q ∶ P(E∗) → Tw(M) induced by the

metric h. We will denote by ωFS the corresponding Hermitian form, thought of as a

real vertical (1,1)-form on Z. It is now easy to see that if ω denotes the Hermitian

form of g on Tw(M),

Ω ∶= q∗(ω) + ωFS

is a real positive (1,1)-form on Z such that TZ =HZ ⊕ V Z becomes an orthogonal

direct sum in the corresponding metric G on Z. Letting I ∈ CP1, the restriction of

G to the submanifold ZI ⊆ Z, as in the diagram

ZI = P(E∗I) �
� ��

qI

��

Z = P(E∗)
q

��
MI

� � �� Tw(M),

will be denoted by GI ; the corresponding Hermitian form is

ΩI ∶= q∗I (ωI) + ωFS

with ωI the Kähler form on MI .

Now fix I ∈ CP1 and let LI be a holomoprhic line bundle on MI . We want to

relate the degree of LI with respect to g to the degree of q∗I (LI) with respect to a

Gauduchon metric in the conformal class of GI . By Theorem 2.3.15, there exists a

g-Hermitian-Einstein metric γ on LI , and by Proposition 2.3.10, the curvature Rγ of

the Chern connection on (LI , γ) satisfies the equation

(
√
−1
2π

Rγ) ∧ ωn−1
I =

degg(LI)
n!Volg(M)

ωn
I .
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We now verify that the metric q∗I (γ) on q∗I (LI) is GI-Hermitian-Einstein, and its

Einstein constant is proportional to degg(LI). We will use the fact that ωk
FS = 0 for

k ≥ r on ZI .

(
√
−1
2π

q∗I (Rγ)) ∧Ωn+r−2
I = q∗I (

√
−1
2π

Rγ) ∧ (n + r − 2
r − 1 )(q

∗
I (ωI))n−1 ∧ ωr−1

FS =

= (n + r − 2)!(r − 1)!(n − 1)! q
∗
I (
√
−1
2π

Rγ ∧ ωn−1
I ) ∧ ωr−1

FS =

= (n + r − 2)!(r − 1)!(n − 1)!
degg(LI)
n!Volg(M)

q∗I (ωn
I ) ∧ ωr−1

FS =

= 1

n + r − 1 (
degg(LI)

(n − 1)!Volg(M)
)Ωn+r−1

I ,

where we have used the fact that

Ωn+r−1
I = (n + r − 1

r − 1 ) q
∗
I (ωn

I ) ∧ ωr−1
FS .

We have thus shown that the GI-Einstein constant of the line bundle q∗I (LI) on ZI

is proportional to degg(LI) (and in fact the constant of proportionality does not

depend on the complex structure I). If G′I is a Gauduchon metric in the conformal

class of GI , it follows from Proposition 2.3.16 that

degG′I(q
∗
I (LI)) = C ⋅ degg(LI)

for some positive constant C > 0. If we now let I ∈ CP1 vary, then since GI depends

smoothly on I ∈ CP1, we can choose a family of Gauduchon metrics {G′I} on {ZI}

such that G′I is in the conformal class of GI and G′I depends smoothly on I ∈ CP1;

furthermore, using Proposition 1.3.5 of [32], we can choose the G′I in such a way that
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for any nontrivial line bundle NI ∈ PicZI , and any nonzero section s ∈ H0(ZI ,NI),

we have

degG′I NI = VolG′I {s = 0} ,

where VolG′I {s = 0} is the volume of the analytic subset {s = 0} ⊆ ZI with respect to

the restriction of the metric G′I . It follows from this that there exists a continuous

function C1 ∶ CP1 → R
>0 such that for any I ∈ CP1 and LI ∈ PicMI ,

degG′I(q
∗
I (LI)) = C1(I) ⋅ degg(LI).

Recall that we have a map

Φ ∶ Quot1
lf,CP1(E) �→ Dou

CP
1(Z),

which is a complex-analytic isomorphism of Quot1
lf,CP1(E) with a union of connected

components in Dou
CP

1(Z). We have, for an element [ϕI ∶ LI → EI] of Quot1
lf,CP1(E),

VolG′I Φ([ϕI]) = degG′I(OZI
(1) ⊗ q∗I (L∗I)) = degG′I(OZI

(1)) −C1(I) ⋅ degg(LI).

Using the continuity of the family {G′I}, we have that the function C2 on CP
1 defined

by

C2(I) ∶= degG′I(OZI
(1))

is continuous. In other words, we have that

VolG′I Φ([ϕI]) = C2(I) −C1(I) ⋅ degg(LI),
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where C1 ∶ CP1 → R
>0, C2 ∶ CP1 → R are continuous. Letting ε > 0, we know by

Theorem 4.1.4 that the subset

Dou
CP

1(Z)≤ε = {D ⊆ ZI ∶ VolG′I(D) ≤ ε} ⊆ DouCP
1(Z)

is proper over CP
1, hence in particular compact. Accordingly, its preimage under

the map Φ,

Φ−1 (Dou
CP

1(Z)≤ε) = {[ϕ ∶ LI → EI] ∶ degg(LI) ≥
C2(I) − ε
C1(I)

} ⊆ Quot1
lf,CP1(E)

is also compact. Since CP
1 is compact and C1 > 0, we can choose ε≫ 0 such that

C2(I) − ε
C1(I)

≤ d for all I ∈ CP1.

Then both Quot1
lf,CP1(E)≥d and Quot1

lf,CP1(E)>d are subsets of Φ−1 (Dou
CP

1(Z)≤ε),

hence both are compact. We are done.

To go ahead with the proof of Theorem 4.1.2, we need one more technical result,

whose proof is given in [46]. Recall that if V is an r-dimensional complex vector space,

for any 1 ≤ s ≤ r − 1, the Grassmanian Gr(s, V ) of s-dimensional complex subspaces

of V can be embedded via the Plücker map

Gr(s, V ) �→ P (ΛsV )

⟨v1, . . . , vs⟩ �→ [v1 ∧ . . . ∧ vn]

as a Zariski-closed subset of P (ΛsV ). We denote by Cs(V ) the cone in ΛsV over the

image of Gr(S,V ) in P(ΛsV ). Similarly, if E is a complex rank r vector bundle over

a manifold Y , we denote by Cs(E) the fibre subbundle of ΛsE consisting of exterior
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monomials in the fibres of ΛsE. It turns out that to test E for stability we only have

to consider line subsheaves of the various bundles ΛsE with values in the closed cone

subbundle Cs(E) ⊆ ΛsE.

Proposition 4.1.7. Let Y be a complex manifold with a Gauduchon metric g, and

let E be a holomorphic rank r vector bundle over Y . The following conditions are

equivalent:

(i) E is g-stable (g-semi-stable).

(ii) For every 1 ≤ s ≤ r − 1, and any non-trivial morphism ϕ ∶ L→ ΛsE, where L is

a line bundle and Im(ϕ) ⊆ Cs(E), one has

degg L < s ⋅ μg(E) (resp. degg L ≤ s ⋅ μg(E)).

Proof. Proposition 2.15 in [46].

Proof of Theorem 4.1.2. Recall that we denote by S0 ⊆ S2 the set of generic complex

structures on M . Note that if I ∈ S0, μg(EI) = 0 by Lemma 2.3.13. Since S0 is dense

in S2 (Proposition 2.2.5), by continuity, we have μg(EI) = 0 for all I ∈ CP1. By

Proposition 4.1.6, the subpaces

Quot1
lf,CP1(E)≥d, Quot1

lf,CP1(E)>d ⊆ Quot1
lf,CP1(E)

are analytic and proper over CP1, hence their projections in CP
1

CP
1
≥d = {I ∶ ∃LI ∈ PicMI and ϕI ∶ LI ↪ EI such that degg LI ≥ d} ,

CP
1
>d = {I ∶ ∃LI ∈ PicMI and ϕI ∶ LI ↪ EI such that degg LI > d}
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are Zariski closed. For any 1 ≤ s ≤ r−1, let Quot1
lf,CP1(E)s denote the closed analytic

subspace of Quot1
lf,CP1(ΛsE) consisting of equivalence classes of sheaf monomorphisms

[ϕI ∶ LI → ΛsEI] with Im(ϕI) ⊆ Cs(EI). Then the intersections of Quot1
lf,CP1(ΛsE)≥d

and Quot1
lf,CP1(ΛsE)>d with Quot1

lf,CP1(E)s are again analytic and proper over CP1,

hence their projections

(CP1
≥d)

s = {I ∶ ∃ϕI ∶ LI ↪ ΛsEI with Im(ϕI) ⊆ Cs(EI) and such that degg LI ≥ d} ,

(CP1
>d)

s = {I ∶ ∃ϕI ∶ LI ↪ ΛsEI with Im(ϕI) ⊆ Cs(EI) and such that degg LI > d}

are again Zariski closed. It only remains to observe that, by Proposition 4.1.7,

(CP1)st = CP1 ∖ ⋃
1≤s≤r−1

(CP1
≥0)

s
, (CP1)sst = CP1 ∖ ⋃

1≤s≤r−1
(CP1

>0)
s
.

4.2 Irreducible bundles and fibrewise stability

Recall that an irreducible vector bundle is one that does not have proper sub-

sheaves of lower rank, while a generically fibrewise stable bundle E on the twistor

space Tw(M) of a hyperkähler manifold M is one that stably restricts to all the

fibres of the twistor projection π ∶ Tw(M) → CP
1, except perhaps finitely many.

For an arbitrary induced complex structure I ∈ CP1, we denote by MI the complex

manifold (M,I) and by EI the restriction of E to the fibre π−1(I) =MI . The main

result of this chapter follows.

Theorem 4.2.1. Let M be a compact simple hyperkähler manifold and let E be a

holomorphic vector bundle on the twistor space Tw(M). If E is generically fibrewise
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stable, then it is irreducible. The converse is true for vector bundles of rank 2 and

3, as well as for bundles E of general rank that are generically fibrewise simple.

Proof of forward implication and converse for the cases rkE = 2,3. The forward im-

plication is due to Kaledin and Verbitsky ([28], Lemma 7.3). Suppose E is generically

fibrewise stable. Since the set of generic induced complex structures S0 is dense in

CP
1 by Proposition 2.2.5, we can always choose a complex structure I ∈ S0 such that

EI is stable. In fact, by Lemma 2.3.13, it is irreducible, since any proper subsheaf of

EI of lower rank would destabilize EI , both having slope 0. Given a subsheaf F ⊆ E

on Tw(M), observe that F is torsion-free, being a subsheaf of the torsion-free E,

hence its singularity set has codimension ≥ 2, so in particular its restriction to MI is

a subsheaf FI ⊆ EI of the same rank as F . It follows that either rk(F) = 0, in which

case F = 0 since it’s torsion-free, or rk(F) = rk(E). Thus E is irreducible. Observe

that in our proof we have only used that EI is stable for a single generic complex

structure I ∈ S0 ⊆ CP1, which is consistent with the results of the previous section.

We now prove the converse for the cases rkE = 2 and 3. Let E be an irreducible

rank 2 bundle on Tw(M), and suppose E is not generically fibrewise stable, i.e. there

are infinitely many I ∈ CP1 such that EI has a destabilising line subsheaf. Then, by

Theorem 4.1.2, it actually follows that EI is non-stable for all I ∈ CP1, i.e. the map

Quot1
lf,CP1(E)≥0 �→ CP

1

is surjective. Since this map is analytic and proper, we conclude that there is a con-

nected component in Quot1
lf,CP1(E)≥0 which projects onto CP

1. By the set-theoretic
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description of Quot1
lf,CP1(E) in the previous section, this means that there is a com-

plex line bundle L on M with SU(2)-invariant first Chern class c1(L) (which guaran-

tees the existence of a unique hyperholomorphic structure on L, see proof of Corollary

2.3.14), such that ∀I ∈ CP1, if LI denotes the induced holomorphic structure on L

over MI ,

dimHomMI
(LI ,EI) = dimH0(MI , L

∗
I ⊗EI) ≥ 1.

Let Tw(L) be the twistor transform of the hyperholomorphic bundle L. We will

examine global sections of the vector bundle Tw(L∗) ⊗E on Tw(M). Applying the

semicontinuity theorem ([41], p. 5, see also Theorem III.12.8 in [22] for the algebraic

version) to the twistor projection π ∶ Tw(M) → CP
1, we see that there exists an

integer m ≥ 1 such that dimH0(MI , L
∗
I ⊗ EI) = m on a non-empty Zariski open

subset of CP1. Since the pushforward sheaf π∗(Tw(L∗) ⊗ E) is torsion-free, and

torsion-free sheaves on CP
1 are locally free, we conclude that π∗(Tw(L∗) ⊗E) is a

vector bundle of rank m on CP
1. By the Birkhoff-Grothendieck theorem (Theorem

2.1.1 in Chapter 1 of [41]), π∗(Tw(L∗) ⊗ E) splits as a direct sum of line bundles.

It’s clear that the evaluation map

π∗ (π∗(Tw(L∗) ⊗E)) �→ Tw(L∗) ⊗E

is nonzero, hence for a suitable d ∈ Z we can find a line subbundle

0�→ O
CP

1(d) �→ π∗(Tw(L∗) ⊗E)
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such that, when taking the pullback along π, we get a nonzero composition of mor-

phisms

OTw(M)(d) ∶= π∗ (OCP
1(d)) �→ π∗ (π∗(Tw(L∗) ⊗E)) �→ Tw(L∗) ⊗E.

But tensoring with Tw(L), we get a sheaf monomorphism Tw(L)(d) ↪ E. This

contradicts the irreduciblility of E. It follows that E has to be generically fibrewise

stable.

Now let E be an irreducible rank 3 bundle on Tw(M), and suppose E is not

generically fibrewise stable. Again, by Theorem 4.1.2, EI admits a destabilizing

subsheaf ∀I ∈ CP1. In the notation of the proof of Theorem 4.1.2, we have

CP
1 = (CP1

≥0)
1 ∪ (CP1

≥0)
2
,

and since these subsets are Zariski closed, it follows that one of them is equal to the

whole CP
1. If (CP1

≥0)
1 = CP1, then a repeat of the argument for the case rkE = 2

gives a line subsheaf of E. In case

(CP1
≥0)

2 = {I ∶ ∃LI ∈ PicMI with degLI ≥ 0 and LI ↪ C2(EI) ⊆ Λ2EI} = CP1,

observing that the cone subbundle of exterior monomials C2(E) ⊆ Λ2E is equal to the

whole Λ2E for a rank 3 vector bundle, we repeat the same argument as above with

E replaced by Λ2E to conclude the existence of a hyperholomorphic line bundle L

and an integer d ∈ Z such that there exists a sheaf monomorphism Tw(L)(d) ↪ Λ2E

on Tw(M). Since the image of this morphism clearly lies in C2(E) = Λ2E, we

can use it to construct a rank 2 subsheaf of E (see proof of Proposition 2.15 in
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[46]), contradicting irreducibility. We thus conclude that E is generically fibrewise

stable.

Before proving the converse for the case that E is generically fibrewise simple,

let us try to see if our proof for the case rkE = 3 would generalize to irreducible

bundles of a general rank r. Arguing by contradiction and assuming E is not gener-

ically fibrewise stable, we can again deduce from Theorem 4.1.2 that all EI admit

destabilizing subsheaves over MI , from which it follows that

CP
1 = (CP1

≥0)
1 ∪ (CP1

≥0)
2 ∪ . . . ∪ (CP1

≥0)
r−1

.

Since this is a union of Zariski closed subsets of CP1, we must have

CP
1 = (CP1

≥0)
s = {I ∶ ∃LI ∈ PicMI with degLI ≥ 0 and LI ↪ Cs(EI) ⊆ ΛsEI}

for some 1 ≤ s ≤ r − 1, and so a connected component of the intersection of analytic

spaces Quot1
lf,CP1(E)s ∩ Quot1

lf,CP1(ΛsE)≥0 projects onto CP
1. Just as above, this

connected component is associated to a hyperholomorphic line bundle L on M and

we can conclude that π∗(Tw(L∗)⊗ΛsE) is a nonzero vector bundle on CP
1. In fact,

by Grauert’s theorem (Theorem 10.5.5 in [20]), outside a finite set in CP
1, the fibre

of π∗(Tw(L∗) ⊗ΛsE) at I ∈ CP1 has the form

π∗(Tw(L∗) ⊗ΛsE)I ≅H0(MI , L
∗
I ⊗ΛsEI) = HomMI

(LI ,Λ
sEI).
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However, unless s = 1 or r − 1, it’s no longer true that Cs(EI) = ΛsEI , so that taking

an arbitrary line subbundle

0�→ O
CP

1(d) �→ π∗(Tw(L∗) ⊗ΛsE),

on CP
1 no longer guarantees that the corresponding sheaf monomorphism

0�→ Tw(L)(d) �→ ΛsE

on Tw(M) will take values in Cs(E), so it will not in general give a rank s subsheaf

of E. So while for every I ∈ CP1 there exist sheaf monomorphisms ϕ ∶ LI → ΛsEI

over MI taking values in Cs(EI), it’s not apparent that they can be “glued” into a

global monomorphism over Tw(M). Thus, in case s ≠ 1, r−1, a direct generalization

of the argument for the case rkE = 3 fails, and we need to make further efforts to

arrive at a contradiction.

To describe this problem slightly differently, take the projectivization of the vec-

tor bundle N = π∗(Tw(L∗)⊗ΛsE) on CP
1, and note that there is a 1-to-1 correspon-

dence between line subbundles of N and sections of the projection v ∶ P(N) → CP
1.

By Grauert’s theorem, the generic fibre of v looks like

v−1(I) = P(HomMI
(LI ,Λ

sEI)),

and since for an element ϕ ∈ HomMI
(LI ,Λ

sEI) taking values in Cs(EI), every mul-

tiple aϕ for a ∈ C clearly also takes values in Cs(EI), we get a well-defined closed
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analytic subset

Y = {(I, [ϕ]) ∣ ϕ ∶ LI ↪ ΛsEI takes values in Cs(EI)} �
� ��

u

��

P(N)
v
��

CP
1,

where the map u is surjective. The problem then reduces to finding a section of the

map u ∶ Y → CP
1, which would give a line subbundle O

CP
1(d) ↪ π∗(Tw(L∗)⊗ΛsE),

from which one can construct a rank s subsheaf of E on Tw(M), as described in the

previous paragraph. Note that at this point it becomes a purely algebraic problem,

since P(N) is projective algebraic, being the projectivization of a vector bundle on

CP
1, and thus so is Y , by Chow’s theorem ([21], p. 167). Unfortunately, we don’t

have any information about the structure of Y , so we cannot assume the existence

of a section of u. However, we have the following algebraic result.

Lemma 4.2.2. Let u ∶ Y → C be a surjective morphism of complex projective vari-

eties, where C is a smooth curve. There always exists a multisection of u, in other

words, an algebraic curve X, which we can assume to be smooth and projective, to-

gether with a branched cover f ∶ X → C, and a morphism s ∶ X → Y , making the

diagram

Y

u
��

X

s

��

f
�� C

commute.

Proof. We use the language of schemes (see [22], Chapter II). Let K(C) denote

the function field of C, and let K(C) be its algebraic closure. We take the fibred
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product of u ∶ Y → C with the composition of canonical morphisms SpecK(C) →

SpecK(C) → C:

Y ×C K(C) ��

��

Y

u

��
SpecK(C) �� C

By the scheme-theoretic version of the Nullstellensatz (see Proposition 1.8.3 and the

discussion following it in [33]), there exists a K(C)-rational point of Y ×C K(C),

i.e. a morphism SpecK(C) → Y ×C K(C) over K(C). From the diagram above, it’s

clear that such K(C)-rational points are in a 1-to-1 correspondence with morphisms

SpecK(C) → Y making

Y

u

��
SpecK(C)

		

�� C

commute. We fix such a morphism SpecK(C) → Y , and choose open affine sub-

schemes V = SpecB ⊆ Y , U = SpecA ⊆ C such that SpecK(C) maps into V and

u(V ) ⊆ U :

V = SpecB
u

��
SpecK(C)





�� U = SpecA

B

��

K(C) A� ���
��
ũ



 (4.1)

Now observe that the subfield L ⊆K(C) generated by the image of B containsK(C),

and in fact K(C) ↪ L is a finite field extension, since B is a finitely-generated

A-algebra. By the correspondence between smooth projective curves and finitely-

generated extension fields of C of transcendence degree 1 (see Corollary I.6.12 in [22]),
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there exists a unique smooth projective curve X such that K(X) = L and a unique

dominant morphism f ∶ X → C that induces our field extension K(C) ↪ K(X) = L

on the level of function fields. Let W = SpecR ⊆X be any open subscheme such that

f(W ) ⊆ U , so that we have commutative diagrams

W = SpecR
f

�� U = SpecA

SpecL ��





SpecK(C)



 R
��

��

A� �
f̃

��
��

��
L K(C)� ���

(4.2)

By shrinking W if necessary, we can make sure that the homomorphism B → L ⊆

K(C) in the diagram (4.1) can be written as the composition

B
s̃→ R ↪ L↪K(C),

where the homomorphism s̃ ∶ B → R induces a morphism of affine schemes s ∶ W =

SpecR → V = SpecB. Combining the diagrams (4.1) and (4.2), we get

V = SpecB
u

��
SpecK(C) ��

��

W = SpecR
f

��

s




U = SpecA

SpecL ��





SpecK(C)





B
s̃

��
K(C) R� ���

��

��

A� �
f̃

��
��

��

��
ũ





L
� �

��

K(C)� ���

We have f̃ = s̃ ○ ũ in the diagram on the right (and hence f = u ○ s in the diagram on

the left) since the upper and lower paths from A to K(C) are the same by virtue of

(4.1), the lower triangle and square are commutative, and R ↪K(C) is injective. It

83



only remains to observe that the commutative diagram

Y

u
��

W

s

��

f
�� C

can be completed to

Y

u
��

X

s

��

f
�� C

since X is smooth and Y is projective (see Proposition I.6.8 in [22]).

Going back to the map u ∶ Y → CP
1 we have constructed previously and applying

this lemma, we get a multisection of u over some branched cover f ∶ X → CP
1. We

proceed as follows to arrive at a contradiction.

1. We take the fibred product Z of π ∶ Tw(M) → CP
1 and f ∶ X → CP

1 as in the

diagram

Z
ϕ ��

ρ

��

Tw(M)
π
��

X
f

�� CP1

and use the multisection obtained above to construct a subsheaf F ⊆ ϕ∗E of

rank s on Z.

2. We take the pushforward of F and ϕ∗E along ϕ to obtain a rank s subsheaf

ϕ∗(F) ⊆ ϕ∗(ϕ∗E) over Tw(M). We show that ϕ∗(ϕ∗E) is a direct sum of

copies of E twisted by some divisors on Tw(M):

ϕ∗(ϕ∗E) ≅ E(D1) ⊕ . . .⊕E(Dd).

3. In view of the above direct sum decomposition of ϕ∗(ϕ∗E) and the irreducibility

of E, we show that the subsheaf ϕ∗(F) ⊆ E(D1) ⊕ . . . ⊕ E(Dd) is essentially
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isomorphic (in a sense to be made precise) to a direct sum of some of the

E(D1), . . . ,E(Dd), say E(D1) ⊕ . . .⊕E(Dt) with t < d.

4. Identifying ϕ∗(ϕ∗E) with E(D1)⊕ . . .⊕E(Dd) and ϕ∗(F) with E(D1)⊕ . . .⊕

E(Dt), we now use the generic fibrewise simplicity assumption on E to deduce

that the sheaf monomorphism from E(D1)⊕. . .⊕E(Dt) to E(D1)⊕. . .⊕E(Dd)

has a particularly simple form, namely that of a d × t matrix of meromorphic

functions on CP
1. From this we can get a contradiction to the fact that F is a

proper subsheaf of ϕ∗E of lower rank on Z.

To sum up the above in one sentence, the irreducibility of E and the fact that

is is generically fibrewise simple put rigid conditions on subsheaves of direct sums of

copies of E on Tw(M), from which one concludes that the pullback bundle ϕ∗E on Z

is irreducible as well, and this gives a contradiction to the fact that the multisection

constructed in Lemma 4.2.2 can be used to obtain a proper subsheaf of ϕ∗E of lower

rank. We now proceed with the rest of the proof of the theorem.

Proof of converse of Theorem 4.2.1 for the case E generically fibrewise simple. Let

E be a vector bundle of rank r on Tw(M) which is irreducible and generically

fibrewise simple. Assume EI is non-stable for infinitely many I ∈ CP1. By Theorem

4.1.2, E is non-stable for all I ∈ CP1, and by the proof of Theorem 4.1.2, there exists

a number 1 ≤ s ≤ r − 1 and a hyperholomorphic line bundle L on M such that for all

I ∈ CP1 there are non-trivial morphisms

LI �→ Cs(EI) ⊆ ΛsEI
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over MI , where as usual Cs(EI) denotes the cone subbundle of exterior monomials

in ΛsEI . If s = 1 or r − 1, Cs(EI) = ΛsEI , and an argument entirely analogous to the

case rkE = 3 shows that these morphisms can be assembled into a line subsheaf of

ΛsE on Tw(M) taking values in Cs(E), which in turn contradicts the irreducibility

of E, proving that E is generically fibrewise stable. Assume 1 < s < r − 1.

By a previous discussion, π∗(Tw(L∗) ⊗ΛsE is a nonzero vector bundle on CP
1

whose generic fibre is isomorphic to HomMI
(LI ,Λ

sEI). Taking the corresponding

projective bundle P (π∗(Tw(L∗) ⊗ΛsE), we have the closed algebraic subvariety

Y = {(I, [ϕ]) ∣ ϕ ∶ LI ↪ Cs(EI) ⊆ ΛsEI} �
� ��

u
��

P (π∗(Tw(L∗) ⊗ΛsE) ,

v

��
CP

1

where u is surjective. Applying Lemma 4.2.2, there exists a multisection

Y

u
��

X

s

��

f
�� CP1

where f ∶X → CP
1 is branched cover of degree d. Taking the fibred product

Y ×
CP

1 X ⊆ P(f∗(π∗(Tw(L∗) ⊗ΛsE))),

our multisection s ∶ X → Y gives a section of the morphism Y ×
CP

1 X → X, so we

obtain a line subbundle

0�→ OX(D̃) �→ f∗(π∗(Tw(L∗) ⊗ΛsE))
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on X, where D̃ is some divisor. By construction, over a generic point P ∈ X, this

subbundle is taking values in f∗(L∗f(P )⊗Cs(Ef(P ))). Let Z denote the fibred product

of f ∶X → CP
1 and the twistor projection π ∶ Tw(M) → CP

1, as in the diagram

Z
ϕ ��

ρ

��

Tw(M)
π
��

X
f

�� CP1

(4.3)

On X, there is a canonical morphism,

f∗(π∗(Tw(L∗) ⊗ΛsE)) �→ ρ∗(ϕ∗(Tw(L∗) ⊗ΛsE)),

which over a generic point of X is an isomorphism, since f is biholomorphic in a

neighborhood of every P ∈ X except at branch points, of which there are finitely

many. Composing this with the morphism OX(D̃) → f∗(π∗(Tw(L∗) ⊗ ΛsE)) con-

structed above, we get a line subsheaf

0�→ OX(D̃) �→ ρ∗(ϕ∗(Tw(L∗) ⊗ΛsE)) = ρ∗(ϕ∗(Tw(L))∗ ⊗ϕ∗(ΛsE)),

and pulling back along ρ to Z, we take the composition

OZ(D̃) ∶= ρ∗(OX(D̃)) → ρ∗(ρ∗(ϕ∗(Tw(L))∗⊗ϕ∗(ΛsE))) → ϕ∗(Tw(L))∗⊗ϕ∗(ΛsE),

which is a monomorphism since it is nonzero, and which takes values in ϕ∗(Tw(L))∗⊗

ϕ∗(Cs(E)) by construction. Tensoring with ϕ∗(Tw(L)), we get

0�→ ϕ∗(Tw(L))(D̃) �→ ϕ∗(ΛsE),
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which takes values in ϕ∗(Cs(E)) = Cs(ϕ∗E). The line subsheaf ϕ∗(Tw(L))(D̃) ⊆

ϕ∗(ΛsE) gives rise to a rank s subsheaf F ⊆ ϕ∗E on Z; replacing F by a normal

extension in ϕ∗E if needed (see [41], p. 80), we can assume that F is a normal

subsheaf of ϕ∗E over Z.

Taking the pushforward of the sheaf monomorphism F ↪ ϕ∗E along the map

ϕ, we obtain by the left-exactness of ϕ∗ a sheaf monomorphism ϕ∗(F) ↪ ϕ∗(ϕ∗E)

on Tw(M), which we will denote by γ. Since we assumed that F was normal over

Z, it’s not hard to see that ϕ∗(F) is normal on Tw(M) as well. As for ϕ∗(ϕ∗E), it

happens to be a vector bundle whose structure can be described nicely in terms of

the original bundle E. In the diagram (4.3) we have an isomorphism

ϕ∗(ρ∗(OX)) ≅ π∗(f∗(OX))

(see Theorem III.3.10 and Theorem III.3.4 in [1]). Using the Birkhoff-Grothendieck

theorem, we can write

ϕ∗(OZ) = ϕ∗(ρ∗(OX)) ≅ π∗(f∗(OX)) ≅ π∗ (
d

⊕
l=1
O

CP
1(Dl)) =

d

⊕
l=1
OTw(M)(Dl),

where D1, . . . ,Dd are some divisors on CP
1; we use the same notation for the corre-

sponding divisors on Tw(M), which should cause no confusion in view of Corollary

2.3.14. Using this decomposition and the projection formula ([41], p. 6), we have

ϕ∗(ϕ∗E) = ϕ∗(ϕ∗E ⊗OZ) ≅ E ⊗ϕ∗(OZ) ≅ E(D1) ⊕ . . .⊕E(Dd).
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We thus have a sheaf monomorphism γ ∶ ϕ∗(F) ↪ E(D1) ⊕ . . .⊕E(Dd) on Tw(M).

For any subset {i1, i2, . . . , it} ⊆ {1,2, . . . , d}, we have the usual projection

E(D1) ⊕ . . .⊕E(Dd) �→ E(Di1) ⊕ . . .⊕E(Dit).

We would now like to show that there exists a choice of such a subset {i1, i2, . . . , it}

so that the composition

ϕ∗(F)
γ�→ E(D1) ⊕ . . .⊕E(Dd) �→ E(Di1) ⊕ . . .⊕E(Dit)

is a monomorphism of sheaves with quotient being a torsion sheaf; this last condition

is equivalent to the condition rkϕ∗(F) = rkE(Di1) ⊕ . . .⊕E(Dit). Let 1 ≤ j ≤ d and

look at the composition

ϕ∗(F)
γ�→ E(D1) ⊕ . . .⊕E(Dd) �→⊕

l≠j
E(Dl) = E(D1) ⊕ . . .⊕E(̂Dj) ⊕ . . .⊕E(Dd).

Let Kj denote the kernel of this composition. We have the following diagram with

exact rows

0 �� Kj
��

��

ϕ∗(F) ��
� �

γ

��

⊕l≠j E(Dl)

0 �� E(Dj) �� E(D1) ⊕ . . .⊕E(Dd) ��⊕l≠j E(Dl) �� 0

It follows from the irreducibility of E(Dj) that the induced morphism Kj → E(Dj)

is either zero or rkKj = rkE(Dj). If the latter is true for every j from 1 to d, it’s

not hard to see that rkϕ∗(F) = rkE(D1)⊕ . . .⊕E(Dd), but this cannot be as ϕ∗(F)

is a subsheaf of ϕ∗(ϕ∗E) of lower rank. Thus for some j = j1, Kj1 = 0, and so the
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composition

ϕ∗(F)
γ�→ E(D1) ⊕ . . .⊕E(Dd) �→⊕

l≠j1
E(Dl)

must be a monomorphism. If rkϕ∗(F) = rk⊕l≠j1 E(Dl), we stop here. If not, we

repeat the argument above with {1, . . . , d} replaced by{1, . . . , ĵ1, . . . , d} to conclude

the existence of an index j2 ∈ {1, . . . , ĵ1, . . . , d} so that the composition

ϕ∗(F) �→⊕
l≠j1

E(Dl) �→ ⊕
l≠j1,j2

E(Dl)

is still a monomorphism. Continuing in this manner, we eventually arrive at a

monomorphism ϕ∗(F) ↪ E(Di1) ⊕ . . . ⊕ E(Dit) with rkϕ∗(F) = rkE(Di1) ⊕ . . . ⊕

E(Dit). We cannot have t = 0 as this would imply ϕ∗(F) = 0, contrary to the

construction of F . Rearranging indices if necessary, we can assume that E(Di1) ⊕

. . .⊕E(Dit) = E(D1)⊕. . .⊕E(Dt). We denote the morphism that we just constructed

by

μ ∶ ϕ∗(F) �→ E(D1) ⊕ . . .⊕E(Dt),

and taking its quotient, we get the short exact sequence

0�→ ϕ∗(F)
μ�→ E(D1) ⊕ . . .⊕E(Dt) �→ T �→ 0, (4.4)

where T is a torsion sheaf because of rank considerations. Thus, the morphism

μ ∶ ϕ∗(F) → E(D1) ⊕ . . .⊕E(Dt) has an inverse on the open set Tw(M) ∖ Supp(T )

with a complement of positive codimension, and we would like to extend this inverse

to the whole Tw(M) in some way.

We start by observing that Supp(T ) has pure codimension 1 in Tw(M), in

other words, it lies on a divisor. Indeed, let x ∈ Tw(M), and suppose Tx contains a
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nonzero element ζ, defined over a neighborhood U ∋ x. Suppose A = Supp(ζ) ⊆ U has

codimension ≥ 2 in U . Shrinking U if necessary, we can assume that ζ ∈ T (U) comes

from an element ξ ∈ (E(D1) ⊕ . . .⊕E(Dt)) (U). We have the following diagram with

exact rows:

0 �� ϕ∗(F)(U)
μ(U) ��

≅
��

(E(D1) ⊕ . . .⊕E(Dt)) (U) ��

≅
��

T (U)

��
0 �� ϕ∗(F)(U ∖A)

μ(U∖A)�� (E(D1) ⊕ . . .⊕E(Dt)) (U ∖A) �� T (U ∖A)

The first and second vertical arrows are isomorphisms because the corresponding

sheaves are normal. As the restriction of ζ to U∖A is zero, it follows by the exactness

of the second row that the restriction of ξ to U ∖A comes from ϕ∗(F)(U ∖A). But

then the same must hold over U , so by the exactness of the first row, ζ must be zero

over U , which is a contradiction. It follows from this that Supp(ζ) ⊆ U cannot have

components of codimension ≥ 2. Globally, it means that Supp(T ) must have pure

codimension 1.

In order to construct an inverse to the morphism μ ∶ ϕ∗(F) → E(D1)⊕. . .⊕E(Dt)

on Tw(M), we first need to pass to a different category. LetM denote the sheaf of

meromorphic functions on CP
1, and let π∗M be its pullback to Tw(M). As π∗M

is a sheaf of rings on Tw(M) (in fact, a sheaf of OTw(M)-algebras), it gives rise to

the corresponding abelian category π∗M-Mod. Tensoring μ with π∗M, we get a

morphism in this category, which we will denote by the same letter:

μ ∶ ϕ∗(F) ⊗ π∗M�→ [E(D1) ⊕ . . .⊕E(Dt)] ⊗ π∗M.
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Moreover, by tensoring the short exact sequence (4.4) with π∗M, we get the sequence

0�→ ϕ∗(F) ⊗ π∗M
μ�→ [E(D1) ⊕ . . .⊕E(Dt)] ⊗ π∗M�→ T ⊗ π∗M�→ 0 (4.5)

in π∗M-Mod, which is also exact. To see this, note that the sheafM is flat over CP1.

Indeed, since the stalk of O
CP

1 over any point in CP
1 is a PID, the flatness condition

ofM is equivalent to its stalks being torsion-free, which they certainly are. It then

easily follows that π∗M is flat over Tw(M). In the above short exact sequence, we

have T ⊗π∗M= 0. Indeed, for any x ∈ Tw(M) with Tx ≠ 0, we know that the support

of every element ζ ∈ Tx lies on the hypersurface V = π−1(π(x)). Choosing a local

coordinate z about π(x) ∈ CP1, the fact that Tx is a finitely-generated Ox-module

guarantees that a sufficiently high power of the local coordinate zk annihilates Tx.

Then for any element ζ ⊗ f ∈ Tx ⊗ (π∗M)x, we have

ζ ⊗ f = ζ ⋅ zk ⊗ z−kf = 0.

Thus, T ⊗ π∗M = 0, and so μ ∶ ϕ∗(F) ⊗ π∗M → [E(D1) ⊕ . . .⊕E(Dt)] ⊗ π∗M is

an isomorphism of π∗M-modules. So it has an inverse in the category π∗M-Mod,

which we denote by

η ∶ [E(D1) ⊕ . . .⊕E(Dt)] ⊗ π∗M�→ ϕ∗(F) ⊗ π∗M.

The OTw(M)-algebra structure on π∗M gives rise to the natural functor

−⊗ π∗M ∶ OTw(M)-Mod �→ π∗M-Mod,

G �→ G ⊗ π∗M
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which, as we have seen above, is exact. On the other hand, there is a natural forgetful

functor in the other direction,

(−)OTw(M)
∶ π∗M-Mod �→ OTw(M)-Mod,

H �→ HOTw(M)

where by HOTw(M)
we simply mean the sheaf of π∗M-modules H viewed as a sheaf of

OTw(M)-modules; if the context is clear, we will usually denote HOTw(M)
by H as well.

Just like for ring extensions, the tensor product functor and the forgetful functor

described above are adjoint to each other; namely, for an arbitrary OTw(M)-module

G and an arbitrary π∗M-module H we have a one-to-one correspondence

Homπ∗M (G ⊗ π∗M,H) ∼←→ HomOTw(M)
(G,HOTw(M)

) ,

G ⊗ π∗M�→H �→ G �→ G ⊗ π∗M�→H

G ⊗ π∗M�→H ←�� G �→ H

where the natural morphism G → G ⊗ π∗M is obtained by tensoring the inclusion

OTw(M) ↪ π∗M with G. Taking G = E(D1) ⊕ . . .⊕E(Dt), H = ϕ∗(F) ⊗ π∗M in the

above correspondence, the isomorphism of π∗M-modules η ∶ [E(D1) ⊕ . . .⊕E(Dt)]⊗

π∗M�→ ϕ∗(F)⊗π∗M that was constructed in the previous paragraph gets mapped

to the composition

E(D1) ⊕ . . .⊕E(Dt) �→ [E(D1) ⊕ . . .⊕E(Dt)] ⊗ π∗M�→ ϕ∗(F) ⊗ π∗M,

which we will denote by η as well. We would now like to show the existence of a divisor

D on CP
1 and a morphism of OTw(M)-modules E(D1) ⊕ . . . ⊕ E(Dt) → ϕ∗(F)(D)
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that completes the diagram

ϕ∗(F) ⊗ π∗M

E(D1) ⊕ . . .⊕E(Dt)

η
��

�� ϕ∗(F)(D),





where the vertical map is the natural morphism ϕ∗(F)(D) → ϕ∗(F)(D) ⊗ π∗M =

ϕ∗(F) ⊗OTw(M)(D) ⊗ π∗M≅ ϕ∗(F) ⊗ π∗M.

Our first goal is to show that for any divisor D the natural map ϕ∗(F)(D) →

ϕ∗(F)⊗ π∗M is a monomorphism. We can combine the short exact sequences (4.4)

and (4.5) into the following commutative diagram with exact rows:

0 �� ϕ∗(F)

��

�� E(D1) ⊕ . . .⊕E(Dt)

��

�� T

��

�� 0

0 �� ϕ∗(F) ⊗ π∗M ≅ �� [E(D1) ⊕ . . .⊕E(Dt)] ⊗ π∗M �� 0

The second vertical arrow is a monomorphism since it is obtained by tensoring the

inclusion OTw(M) ↪ π∗M with E(D1) ⊕ . . . ⊕ E(Dt) which locally is just a direct

sum of copies of OTw(M). Then by commutativity and exactness it follows that the

first vertical arrow ϕ∗(F) → ϕ∗(F) ⊗ π∗M is a monomorphism. Given any divisor

D, twisting the above diagram by D and repeating the same argument shows that

ϕ∗(F)(D) → ϕ∗(F) ⊗ π∗M is a monomorphism as well. In this way, the collec-

tion {ϕ∗(F)(D) ∶D is a divisor on Tw(M)} constitutes a hierarchy of subsheaves

of ϕ∗(F) ⊗ π∗M, in the sense that for divisors D ≤ D′ we have the commutative
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diagram

ϕ∗(F)(D) �
� ��

� 	

��

ϕ∗(F)(D′)

�

��
ϕ∗(F) ⊗ π∗M

In fact, it’s not hard to see that ϕ∗(F) ⊗ π∗M is the direct limit of the system

{ϕ∗(F)(D)}.

Recall that we have the morphism η ∶ E(D1)⊕. . .⊕E(Dt) → ϕ∗(F)⊗π∗M, which

was obtained from the inverse to the morphism μ ∶ ϕ∗(F) → E(D1) ⊕ . . . ⊕ E(Dt)

in the category π∗M-Mod. We would like to show that there exists a divisor D

on Tw(M) such that the image of η ∶ E(D1) ⊕ . . . ⊕ E(Dt) → ϕ∗(F) ⊗ π∗M lies

inside the subsheaf ϕ∗(F)(D) ⊆ ϕ∗(F) ⊗ π∗M. Going back to the short exact

sequence (4.4), it’s clear that μ is an isomorphism outside Supp(T ), so on the open

set Tw(M) ∖ Supp(T ), η takes values in the subsheaf ϕ∗(F) ⊆ ϕ∗(F) ⊗ π∗M. On

the other hand, let x ∈ Supp(T ). We have previously shown that Supp(T ) is a

union of fibres of π; letting V = π−1(π(x)), we can choose a local coordinate z about

π(x) ∈ CP1 and a neighborhood U ∋ x in Tw(M) such that U ∩ Supp(T ) ⊆ V , and

such that the vector bundle E(D1) ⊕ . . . ⊕ E(Dt) trivializes on U with generating

sections {s1, s2, . . . , sN}. The restriction of η to U is completely defined by its action

on these generating sections, and shrinking U if necessary, we can write

η(U) ∶ [E(D1) ⊕ . . .⊕E(Dt)] (U) �→ [ϕ∗(F) ⊗ π∗M](U)

si �→ ui ⊗ zki
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for 1 ≤ i ≤ N , where ui ∈ ϕ∗(F)(U) and zki is some power of the local coordinate.

Taking

k = − min
1≤i≤N ki,

it’s not hard to see that η∣U takes values in the subsheaf ϕ∗(F)(kV )∣U ⊆ ϕ∗(F) ⊗

π∗M∣U . Repeating the above argument for every point in V besides x, and invoking

the compactness of V , we can conclude the existence of an integer kV ∈ Z such that

for an open neighborhood W ⊇ V satisfying W ∩ Supp(T ) ⊆ V , we have

Im(η∣W ) ⊆ ϕ∗(F)(kV V )∣W ⊆ ϕ∗(F) ⊗ π∗M∣W .

Writing Supp(T ) = V1 ∪ . . . Vn as a union of fibres of π, and repeating the above for

every hypersurface V1, . . . , Vn, we can conclude that there exist integers k1, . . . , kn ∈ Z

such that, globally,

Im(η) ⊆ ϕ∗(F)(k1V1 + . . . + knVn) ⊆ ϕ∗(F) ⊗ π∗M.

In other words, letting D = k1V1+ . . .+knVn, the morphism η ∶ E(D1)⊕ . . .⊕E(Dt) →

ϕ∗(F) ⊗ π∗M factors through the subsheaf ϕ∗(F)(D) ⊆ ϕ∗(F) ⊗ π∗M, giving us a

morphism which we will denote by the same letter:

η ∶ E(D1) ⊕ . . .⊕E(Dt) �→ ϕ∗(F)(D)
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This morphism η is a partial inverse to the morphism μ ∶ ϕ∗(F) → E(D1)⊕. . .⊕E(Dt)

in the category OTw(M)-Mod, in the sense of the following commutative diagram:

ϕ∗(F)
μ ��

� �

��

E(D1) ⊕ . . .⊕E(Dt)
� �

��
η

��
ϕ∗(F)(D)

μ(D)
�� [E(D1) ⊕ . . .⊕E(Dt)] (D)

(4.6)

Note that outside Supp(D), μ and η are bona fide inverses of each other. Our next

goal is to use the identification of ϕ∗(F) with E(D1) ⊕ . . . ⊕ E(Dt) via the above

diagram to describe the sheaf monomorphism

γ ∶ ϕ∗(F) �→ ϕ∗(ϕ∗E) = E(D1) ⊕ . . .⊕E(Dd)

in a particularly simple form.

Let 1 ≤ j ≤ t, t + 1 ≤ i ≤ d, and look at the composition

E(Dj−D) ↪ E(D1−D)⊕. . .⊕E(Dt−D)
η(−D)�→ ϕ∗(F)

γ→ E(D1)⊕. . .⊕E(Dd) ↠ E(Di),

where the first and last arrow are the usual direct sum inclusion and projection,

respectively. To describe the structure of this morphism, we look at

Hom (E(Dj −D),E(Di)) =H0(Tw(M),E∗(−Dj +D) ⊗E(Di)) =

=H0(Tw(M),End(E)(−Dj +D +Di)) =H0(CP1, π∗ [End(E)(−Dj +D +Di)]) =

H0(CP1, π∗(EndE)(−Dj +D +Di)),

where we have used the projection formula in the last line. At this point we examine

the pushforward sheaf π∗(EndE) on CP
1. It is locally free since it is torsion-free, so

97



it splits as a direct sum of line bundles by the Birkhoff-Grothendieck theorem. Since

the vector bundle E on Tw(M) is irreducible, it is stable, hence it is simple (see [32],

Proposition 1.4.5), so we have

Hom(E,E) =H0(Tw(M),EndE) =H0(CP1, π∗(EndE)) = C.

Consequently, using the Bott formula (see [41], p. 4), we can conclude that in the

Birkhoff-Grothendieck direct sum decomposition of π∗(EndE), there is exactly one

summand of the form O
CP

1 , while all other summands (if any) are negative line

bundles. On the other hand, by Grauert’s theorem, the rank of π∗(EndE) is equal

to dimH0(MI ,EndEI) = dimHom(EI ,EI) for a generic point I ∈ CP1. But since we

assume E to be generically fibrewise simple, this is equal to 1, so

π∗(EndE) = OCP
1 .

With this in mind, we have

Hom (E(Dj −D),E(Di)) =H0(CP1,O
CP

1(−Dj +D +Di)).

In other words, the composition

E(Dj−D) ↪ E(D1−D)⊕. . .⊕E(Dt−D)
η(−D)�→ ϕ∗(F)

γ→ E(D1)⊕. . .⊕E(Dd) ↠ E(Di)

is simply the pullback of a meromorphic function on CP
1 to Tw(M). Let us denote

this function by ai,j. It now follows that the composition

E(D1 −D) ⊕ . . .⊕E(Dt −D)
η(−D)�→ ϕ∗(F)

γ�→ E(D1) ⊕ . . .⊕E(Dd)
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takes the form of a d × t matrix of meromorphic functions from CP
1:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 ⋯ 0

0 1 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 1

at+1,1 at+1,2 ⋯ at+1,t

at+2,1 at+2,2 ⋯ at+2,t

⋮ ⋮ ⋱ ⋮

ad,1 ad,2 ⋯ ad,t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Here, the upper t × t submatrix is the identity matrix by the commutativity of the

diagram (4.6). From now on, we restrict our attention to the open set Tw(M) ∖

Supp(D). We know that on this set η(−D) is an isomorphism while the bundle

E(D1−D)⊕ . . .⊕E(Dt−D) is naturally identified with E(D1)⊕ . . .⊕E(Dt), so that

the above composition takes the form

E(D1) ⊕ . . .⊕E(Dt)
≅�→ ϕ∗(F)

γ�→ E(D1) ⊕ . . .⊕E(Dd)

In what follows, we will identify ϕ∗(F) with E(D1)⊕. . .⊕E(Dt) on the set Tw(M)∖

Supp(D).

We will now complete our argument by showing that the above description of

the morphism γ ∶ ϕ∗(F) → ϕ∗(ϕ∗E) is incompatible with the fact that F is a proper

subsheaf of ϕ∗E of lower rank on Z. Recall that in the diagram (4.3) f and ϕ are

branched coverings of degree d. We can choose a point x ∈ Tw(M) and an open

neighborhood x ∋ U such that
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(i) x lies outside the ramification locus of ϕ (equivalently, π(x) lies outside the

ramification locus of f) and the neighborhood U is evenly covered by ϕ, that

is, ϕ−1(U) ⊆ Z is a disjoint union of open neighborhoods U1, . . . , Ud such that

∀1 ≤ i ≤ d, ϕ restricted to Ui is an isomorphism

ϕ∣Ui
∶ Ui

≅�→ U.

∀1 ≤ i ≤ d, let xi ∈ Ui denote the point mapped to x by ϕ.

(ii) U does not intersect Supp(D) ∪ Supp(D1) ∪ . . . ∪ Supp(Dd) in Tw(M).

(iii) ϕ−1(U) ⊆ Z does not intersect the singularity set S(F) of F . In other words,

the restriction of F to ϕ−1(U) is locally free.

We first look at the sheaf ϕ∗(OZ) on Tw(M). Since by choice of U the covering

ϕ trivializes over this set, we have the natural trivialization

α ∶ ϕ∗(OZ)∣U
≅�→ O⊕dU ,

over U , where the i-th direct summand on the right corresponds to the sheet Ui over

U . On the other hand, we have the decomposition

ϕ∗(OZ) ≅ OTw(M)(D1) ⊕ . . .⊕OTw(M)(Dd).

Since U was chosen to lie outside Supp(D1) ∪ . . . ∪ Supp(Dd), for each 1 ≤ j ≤ d the

restriction of the direct summand OTw(M)(Dj) to U is naturally isomorphic to the

structure sheaf OU , giving us another trivialization

β ∶ ϕ∗(OZ)∣U
≅�→ O⊕dU .

100



The transition function α ○ β−1 ∶ O⊕dU → O⊕dU takes the form of a d × d matrix B of

holomorphic functions on U , everywhere non-singular. In particular, at the point

x ∈ U , the matrix B(x) represents the transition

Ox(D1) ⊕ . . .⊕Ox(Dd) �→ Ox1 ⊕ . . .⊕Oxd

between the two descriptions of the stalk ϕ∗(OZ)x.

We now look at the restriction of the sheaf monomorphism γ ∶ ϕ∗(F) → ϕ∗(ϕ∗E)

to U , in particular at the corresponding morphism of stalks at x ∈ U :

γx ∶ ϕ∗(F)x �→ ϕ∗(ϕ∗E)x.

γx can be described in two different ways. Firstly, as U is evenly covered by U1, . . . , Ud

with x1, . . . , xd the corresponding preimages of x, we have

ϕ∗(F)x ≅ Fx1 ⊕ . . .⊕Fxd
, ϕ∗(ϕ∗E)x ≅ (ϕ∗E)x1 ⊕ . . .⊕ (ϕ∗E)xd

,

and γx is simply the direct sum of the monomorphisms Fxi
↪ (ϕ∗E)xi

defining F as

a subsheaf of ϕ∗E on Z:

γx ∶ Fx1 ⊕ . . .⊕Fxd
�→ (ϕ∗E)x1 ⊕ . . .⊕ (ϕ∗E)xd

.

In particular, since F was constructed as a proper subsheaf of ϕ∗E of lower rank

(and by choice of U , F is locally free in a neighborhood of each of x1, . . . , xd), for

any 1 ≤ i ≤ d the composition

ϕ∗(F)x = Fx1 ⊕ . . .⊕Fxd

γx�→ ϕ∗(ϕ∗E)x = (ϕ∗E)x1 ⊕ . . .⊕ (ϕ∗E)xd
�→ (ϕ∗E)xi
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of γx with the usual projection cannot be surjective. On the other hand, with the

isomorphism ϕ∗(ϕ∗E) ≅ E⊗ϕ∗(OZ) ≅ E(D1)⊕ . . .⊕E(Dd) and the identification of

ϕ∗(F) with E(D1) ⊕ . . .⊕E(Dt) on Tw(M) ∖ Supp(D) (and hence on U), we have

ϕ∗(F)x ≅ Ex(D1) ⊕ . . .⊕Ex(Dt), ϕ∗(ϕ∗E)x ≅ Ex(D1) ⊕ . . .⊕Ex(Dd),

and γx can be described by the matrix A(x) constructed previously:

γx ∶ Ex(D1) ⊕ . . .⊕Ex(Dt)
A(x)�→ Ex(D1) ⊕ . . .⊕Ex(Dd)

By the discussion in the previous paragraph, the transition between the two descrip-

tions of the stalk ϕ∗(ϕ∗E)x

Ex(D1) ⊕ . . .⊕Ex(Dd)
B(x)�→ (ϕ∗E)x1 ⊕ . . .⊕ (ϕ∗E)xd

is given by the matrix B(x). Taking the composition of the above two morphisms,

since the matrix B(x)A(x) has rank t > 0, at least one of its entries, say (i, j), is

nonzero. This means that the composition

Ex(Dj) ↪ Ex(D1) ⊕ . . .⊕Ex(Dt)
B(x)A(x)�→ (ϕ∗E)x1 ⊕ . . .⊕ (ϕ∗E)xd

↠ (ϕ∗E)xi

is an isomorphism, and in particular the composition

ϕ∗(F)x = Ex(D1)⊕. . .⊕Ex(Dt)
γx�→ ϕ∗(ϕ∗E)x = (ϕ∗E)x1⊕. . .⊕(ϕ∗E)xd

�→ (ϕ∗E)xi

is surjective, contradicting our earlier statement. We conclude that our original

assumption that E is not generically fibrewise stable is wrong, finishing the proof of

the theorem.
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4.3 A counterexample: stable but nowhere fibrewise stable bundle on
Tw(M)

A K3 surface is a compact simply-connected complex surface M with trivial

canonical bundle Λ2,0M (see, for example, [21], pp. 590-594 for basic properties

of K3 surfaces). A nonzero section of the canonical bundle Λ2,0M is a holomorphic

symplectic form onM ; as a consequence of the Calabi-Yau theorem [53], a K3 surface

is hyperkähler. It is a simple hyperkähler manifold as h2,0(M) = dimCH
2,0M = 1.

Its Picard group is discrete; the Picard number ρ(M) of a K3 surface is the rank of

PicM , a number between 0 and 20 = h1,1(M).

Let M be a K3 surface of Picard number ρ(M) ≥ 2. Then the degree map

deg ∶ Pic(M) → Z has a nontrivial kernel, and any L ∈ Pic(M) of degree zero is

actually hyperholomorphic (see Theorem 2.4 in [51]). We claim that such L can be

chosen to satisfy h1(M,L∗) ≠ 0. Indeed, the Riemann-Roch formula (see [21], p.

472) for a line bundle L on a K3 surface reads

h0(M,L) − h1(M,L) + h2(M,L) = c1(L)
2

2
+ 2.

If L is a nontrivial line bundle of degree zero, then h0(M,L) = 0, since the fact that

L is hyperholomorphic guarantees that the Einstein constant of L is zero, and then

by the Kobayashi vanishing theorem (Theorem 2.3.11), any nonzero global section

of L must be parallel, hence nonvanishing. Similarly, h2(M,L) = h0(M,L∗) = 0, so

for such line bundle L,

h1(M,L) = −c1(L)
2

2
− 2.
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By the Hodge-Riemann bilinear relations (see [21], p. 123), c1(L)2 < 0, since c1(L) is

primitive with respect to any induced Kähler form on M (see the proof of Theorem

2.4 in [51]), hence replacing L by its multiple if necessary, we get h1(M,L) ≠ 0, and

similarly h1(M,L∗) ≠ 0.

So let L be a nontrivial degree zero line bundle on M with h1(M,L∗) ≠ 0. Since

L is hyperholomorphic, we can take the corresponding twistor transform Tw(L) and

look at extensions

0�→ OTw(M)(−1) �→ E �→ Tw(L) �→ 0

on the twistor space Tw(M). These are parametrized by Ext1(Tw(L),OTw(M)(−1)).

We have

Ext1(Tw(L),OTw(M)(−1)) ≅H1(Tw(L∗) ⊗OTw(M)(−1)) =H1(Tw(L∗)(−1)).

Recall that we have the twistor projection π ∶ Tw(M) → CP
1. Using the projection

formula and Proposition 2.2.8, we have

R1π∗(Tw(L∗)(−1)) ≅ R1π∗(Tw(L∗)) ⊗O
CP1
O

CP
1(−1) ≅ O

CP
1 ⊗C H1(M,L∗).

Thus,

H1(M,L∗) = Γ (CP1,R1π∗(Tw(L∗)(−1))) =H1(Tw(L∗)(−1)) =

= Ext1(Tw(L),OTw(M)(−1)).
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By the choice of L, this space is nonzero, hence we can choose a nontrivial extension

0�→ OTw(M)(−1) �→ E �→ Tw(L) �→ 0 (4.7)

E is actually a vector bundle: given any coherent sheaf G on Tw(M), taking the

long exact sequence of the above with respect to the functor H om(−,G), since

E xtp(OTw(M)(−1),G) = E xtp(Tw(L),G) = 0

for any p > 0, it follows that likewise E xtp(E,G) = 0, hence E is locally free.

We now show that the vector bundle E is stable on Tw(M). Firstly, note that

degE = degOTw(M)(−1) + degTw(L) = −1 + 0 = −1 \⇒ μ(E) = −1
2
.

Given any horizontal twistor line {x}×CP1 ⊆ Tw(M), the short exact sequence (4.7)

restricts to

0�→ O
CP

1(−1) �→ E∣{x}×CP1 �→ OCP
1 �→ 0

Since Ext1(O
CP

1 ,O
CP

1(−1)) = H1(O
CP

1(−1)) = 0, E∣{x}×CP1 ≅ OCP
1 ⊕ O

CP
1(−1). It

follows that the only possibility for the degree of a destabilizing line subsheaf of E

is zero. Suppose we have such a subsheaf, which by Theorem 2.2.7 must necessarily

have the form Tw(L̃) ↪ E, where L̃ is an autodual line bundle on M . We look at

the composition θ of Tw(L̃) ↪ E with the map E → Tw(L), as in the diagram

Tw(L̃)

��

θ

��
0 �� OTw(M)(−1) �� E �� Tw(L) �� 0
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If θ = 0, then by the exactness of the sequence Tw(L̃) ↪ E lifts to a sheaf monomor-

phism Tw(L̃) ↪ OTw(M)(−1). This, however, is impossible, because, restricting to

any horizontal twistor line, the only possible morphism O
CP

1 → O
CP

1(−1) is zero.

Thus, θ represents a nonzero section in

Hom(Tw(L̃),Tw(L)) ≅H0(Tw(L̃)∗ ⊗Tw(L)) ≅H0(Tw(L̃∗ ⊗L)),

but since Tw(L̃∗⊗L) has degree zero, by the Kobayashi vanishing theorem (Theorem

2.3.11), this section is parallel, hence in particular nonvanishing. It follows that

θ ∶ Tw(L̃) → Tw(L) is an isomorphism, so from the above diagram we see that there

is a splitting E ≅ Tw(L) ⊕OTw(M)(−1), contrary to the choice of E. It follows that

E must be stable.

Finally, we notice that restricting the short exact sequence (4.7) to any fibre

π−1(I) =MI ⊆ Tw(M), we get

0�→ OMI
�→ EI �→ LI �→ 0,

where both OMI
and LI have degree zero, hence EI also has degree and slope zero.

It follows from this that EI is not stable for any I ∈ CP1.
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CHAPTER 5
Conclusion

The results presented in this thesis can be generalized and investigated further in

many ways. Just as the result of Theorem 3.1.1 is used in [28] to establish correspon-

dences between certain moduli spaces on a hyperkähler manifold M and its twistor

space Tw(M), a natural question to ask would be whether the result of Theorem 3.2.3

could help one to establish similar correspondences in the case of a hypercomplex M .

While one cannot hope for the overall picture to be as nice for general hypercom-

plex manifolds as it is for hyperkähler manifolds as too much structure is lost in the

absence of a metric on M , one can still try to establish a twistor correspondence for

hypercomplex manifolds in one way or another. Perhaps the right procedure would

be to investigate the case of HKT-manifolds. These are hyperhermitian manifolds

that satisfy the property ∂IΩI = 0, where ΩI = ωJ +
√
−1ωK (see Section 2.2). Being

a generalization of hyperkähler manifolds, they retain enough structure and have a

rich and developing theory (see [2] for a survey of HKT-geometry). One can ask

whether in the case of existence of an HKT-structure on M Theorem 3.2.3 can be

proved in a simpler way, perhaps giving the balanced metric explicitly. While the

canonical Hermitian metric on Tw(M) obtained from the HKT-structure fails to be

balanced, it could perhaps be altered to produce a balanced metric.

Another question to investigate is whether the twistor space Tw(M) of a com-

pact hypercomplex manifold M admits other types of non-Kähler metrics in addition
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to a balanced one. For example, an astheno-Kähler metric on a complex manifold is a

Hermitian metric such that its Hermitian form ω satisfies the condition ∂∂ (ωn−2) = 0,

where n is the dimension of the manifold. It was shown in [18] that for a compact

hyperkähler M the twistor space Tw(M) doesn’t admit astheno-Kähler metrics. In

fact, balanced and astheno-Kähler metrics are somewhat adverse to each other: a

longstanding opinion (referred to as “folklore conjecture” in [17]) stated that a com-

plex manifold cannot admit both a balanced and an astheno-Kähler metric unless it

is Kähler. Although this was proven wrong in [18], it would still be interesting to

see whether or not the twistor space Tw(M) of a compact hypercomplex manifold

M admits an astheno-Kähler metric.

For the results of Chapter 4, it is strongly suspected that the full converse to

Theorem 4.2.1 in fact holds for bundles E of arbitrary rank, without any further

conditions. One way of approaching this is apparent: knowing that the converse

is true for generically fibrewise simple E, we can try to show that this condition is

always satisfied for any irreducible bundle E on Tw(M). An idea for the proof is

to argue by contradiction and assume the existence of a morphism F ∶ E → E(D)

for some divisor D, which doesn’t come from a meromorphic function on CP
1, and

look at the eigenvalues of this morphism. Clearly, no such eigenvalues exist over CP1

(else, their eigenspaces would contradict the irreducibility of E), but one can take a

branched covering f ∶ X → CP
1 over which they do exist, and try to argue similarly

as in the proof of Theorem 4.2.1 by taking the fibred product of f ∶ X → CP
1 and

π ∶ Tw(M) → CP
1, and using the eigendecomposition of the pullback of E to this

fibred product to arrive at a contradiction to the irreducibility of E.
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