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Abstract

Copy number variation (CNV) affects genomic regions from 50 bp up to entire chro-

mosomes. In addition to being one of the major forms of genomic variation during

recent evolution, CNV is implicated in many genetic disorders, complex traits and

cancers. Whole-genome sequencing (WGS) makes it possible to interrogate the

genome for different types of variation: single nucleotide variants, small insertion-

deletions, copy-number variant and other structural variants. However, technical

bias remains a challenge for CNV detection, especially in repeat-rich regions or to

detect small or somatic variants. The vast majority of CNV detection methods an-

alyze one sample at a time or only aggregate evidence across samples. In this work,

I present a different approach that uses a large set of reference samples to correct

for technical variation. This population-based approach is used on three different

applications. First at the chromosome arm level, I used WGS data across 93 blood

samples to detect somatic CNV in paired kidney cancer samples. The population-

based approach was sensitive enough to detect somatic loss or gain of chromosome

arms despite weak signal in the bulk samples. We further studied tumors from male

patients and found that somatic loss of chromosome Y was frequent and resulted

in down-regulation of important genes such as KDM5D and KDM6C, two tumor

suppressors previously associated with cancer. Next, a method was implemented

to identify CNVs across the genome following a similar population-based strategy.

After an extensive comparison with existing methods and experimental validation,

we found that our method, PopSV, was more sensitive than other methods. Using

PopSV and WGS data for 198 individuals with epilepsy and 301 controls, we studied

the distribution of small CNVs across the genomes of epilepsy patients. In addition

to the known enrichment in large rare exonic CNVs, we found a significant enrich-

ment of rare exonic CNVs smaller than 50 Kbp in epilepsy patients, especially in

genes predicted to be intolerant to loss of function variants. More interestingly we

observed, for the first time, a strong enrichment of non-coding CNVs close to known

epilepsy genes. Finally, we used PopSV to investigate copy number variation in low-
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mappability regions. Thanks to its population-based strategy, PopSV’s performance

was stable across different repeat profiles and we further analyzed the genomes of

640 healthy individuals. In contrast to existing CNV databases, we found a large

amount of CNVs in repeat-rich regions and identified regions with recurrent CNVs

that were absent from existing CNV catalogs, many of which were located within

or near protein-coding genes. Independently from the known enrichment in seg-

mental duplications, we found strong CNV enrichments in low-mappability regions,

DNA satellites, short-tandem repeats and specific families of transposable elements.

Thanks to the ever-reducing cost of sequencing, large-scale WGS datasets are be-

coming more and more common. By using information across several samples, this

work shows that variant detection can be dramatically improved and benefit CNV

studies in cancer, complex disease or in challenging genomic regions.
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Résumé

Les variabilités du nombre de copies (VNCs) sont des variations génomiques af-

fectant 50 nucléotides ou plus. Les VNCs ont fortement contribué à l’évolution

humaine récente mais jouent aussi un rôle important dans de nombreuses mal-

adies génétiques et autres caractères complexes. Le séquençage du génome permet

d’étudier différent types de variations génomiques: les substitutions d’un nucléotide,

les petites insertions/délétions ainsi que les VNCs et autres variants structuraux.

Cependant la présence de biais techniques limite la détection des VNCs, en par-

ticulier dans les régions répétées du génome ou pour détecter les variants les plus

petits ou somatiques. La plupart des méthodes de détection de VNCs analysent

chaque échantillon séparément ou accumulent näıvement le signal dans plusieurs

échantillons. Dans cette étude, je présente une nouvelle approche qui vise à utiliser

un groupe d’échantillons comme référence pour intégrer la variation d’origine tech-

nique. Cette approche est appliquée dans le cadre de trois études génomiques. Dans

un premier temps au niveau chromosomique, j’utilise des données de séquençage de

93 échantillons de sang pour détecter des VNCs somatiques dans des échantillons de

tumeur du rein provenant des mêmes individus. Grâce à l’utilisation d’échantillons

de référence, les pertes ou gains de chromosomes somatiques dont le signal est faible

ont aussi pu être détectées. Dans cette étude, nous nous concentrons ensuite sur la

perte somatique du chromosome Y dans les tumeurs des patients hommes. Entre

autre nous montrons que la perte somatique du chromosome Y est associée à une

diminution de l’expression de ses gènes, dont KDM5D et KDM6C, deux gènes sup-

presseurs de tumeurs. Dans un second temps, j’ai développé une méthode utilisant

une approche similaire pour détecter des VNCs dans le génome. À l’aide de données

de séquencage et de validation expérimentale, nous montrons que notre méthode,

PopSV, est plus sensible que les méthodes existantes. Nous étudions ensuite la dis-

tribution des VNCs dans 198 individus atteints d’épilepsie et 301 contrôles. Nous

retrouvons l’enrichissement connu des VNCs larges, rares et exoniques mais nous

montrons que les VNCs codants plus petits que 50,000 nucléotides sont aussi en-
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richis dans les malades, notamment dans les gènes prédis pour être intolérants aux

variants perte de fonction. Nous observons aussi pour la première fois un enrichisse-

ment de VNCs non-codants proches de gènes associés à l’épilepsie. Dans un troisième

temps, j’utilise PopSV pour étudier la distribution des VNCs dans les régions répétées

du génome de 640 individus sains. Malgré la difficulté inhérente à ces régions, la

performance de notre approche reste stable. Nous trouvons de nombreux VNCs

dans les régions répétées et identifions des régions qui contiennent fréquemment des

VNCs mais absentes des catalogues publics de VNCs, notamment proches de gènes.

De plus, nous décrivons un enrichissement dans les régions de faible mappabilité

et dans certaines familles de satellites, microsatellites et éléments transposables,

indépendemment de l’enrichissement connu dans les duplications segmentales. Ces

résultats démontrent les bénéfices de l’utilisation d’échantillons de référence pour

détecter les VNCs à partir de données de séquencage et pour étudier le profile

génomique de cancers, maladies complexes ou génomes d’individus sains.
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Chapter 1

Introduction

1.1 Structural Variation and Copy-Number Vari-

ation

1.1.1 Types of Structural Variants

Structural variants (SVs) are defined as genetic variation of more than 50 base pairs.

The different canonical forms of SV include deletion, duplication, novel insertion,

inversion and translocation4. Deletions and duplications of a genomic region, which

affect DNA copy number, are collectively known as copy number variants (CNVs).

A duplication can be broadly defined as a gain in copy number of a region, either in

tandem configuration (tandem duplication) or in a distant locus. In contrast, inver-

sion and translocation are considered balanced rearrangements: no DNA sequence

is lost or gain. In reality, small deletion or duplication are often present around their

breakpoints5,6. Transposable elements retrotransposition creates mobile element in-

sertion (MEI). Because these elements are present in the genome, polymorphic MEI

are often considered CNVs. In general, a “novel” insertion involves the insertion of

a DNA sequence absent from the genome, e.g. viral DNA, but the term is also used

in the MEI literature to describe a new insertion of a transposable element.

Complex SVs involve a combination of canonical forms at the variant level7. In a

recent study using high-depth long-insert and linked reads sequencing6, thousands

of SVs were found to be complex. Most of these complex SVs (84.4%) involved
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inversions, consistent with previous studies that had noticed small deletions and

duplications at inversions breakpoints5,6,8. More extreme genomic events can cre-

ate complex SVs that combine dozens of canonical forms and span large regions or

several chromosomes. An example is chromothripsis, also called chromosome shat-

tering, which creates a highly fragmented profile with dozens of segments recombined

in a different order resulting in a patchwork of duplicated/deleted/inverted regions.

While originally though to be rare, recent surveys showed a higher than expected

prevalence of somatic and germline chromothripsis. For example, a pan-cancer study

found chromothripsis in 38.9% of the glioblastomas and in 8.7% of other cancer

types9. In the recent study of 689 individuals with autism spectrum disorder and

other developmental abnormalities, two cases harbored germline chromothripsis6.

While SVs are intuitively defined in relation to the ancestral state of the genome,

it is important to note that in practice the reference genome is used as baseline. As

a result, a variant is a difference in sequence compared to the reference genome but

not necessarily compared to the ancestral genome. For example, a recent mobile

element insertion might be present in the reference genome but when absent, i.e. in

the ancestral state, it is often called a deletion. Similarly, rare deletions of unique

regions in the reference genome would resemble novel insertions.

CNVs and in particular deletions have been widely studied. One reason is tech-

nological as large CNVs have been routinely studied before the advent of high-

throughput sequencing, for example using karyotyping or hybridization approaches

(see section 1.2.1). In addition, CNVs, and in particular deletions, are though to

have a stronger functional impact compared to balanced variants. A deletion dis-

rupts an entire region and potentially several genes while balanced SVs or insertions

might affect only the regions around the variant boundaries or insertion site.

The gain or loss of a full chromosome, also called aneuploidy, is particularly rare

in normal cells due to the large phenotypic effects of a dosage change in hundreds

to thousands of genes. However, aneuploidy is a hallmark of cancer and observed

frequently across cancer types, as described in Section 1.7.2. With whole-genome
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doubling, full or arm-level chromosomal CNVs are at the high end of the variant

size spectrum.

1.1.2 Mechanism of Formation

The mechanisms of SV formation are diverse and result in a heterogeneous distribu-

tion of SV across the genome, both in term of size and location4,10,11. New variants

can occur during DNA repair, recombination, replication or through retrotranspo-

sition.

Non-homologous end joining (NHEJ) is a DNA repair mechanism that often

results in deletions. In the presence of double-strand breaks, the two ends slowly

denature until the arrival of the repair machinery that joins the two ends. Oc-

casionally, misalignment of the overhanging ends lead to small insertions. Larger

sequences can also be incorporated during the repair, leading to large insertions.

Microhomology-mediated end joining (MMEJ) is a type NHEJ which repair the

double-strand DNA breaks using micro-homology (5-25 bp) between the broken

ends. MMEJ often result in deletions of the sequence between the micro-homology

regions but can also create translocation and more complex variants.

Homologous recombination is another repair mechanism that uses a template,

usually another chromatid, to repair double strand breaks. By aligning a template,

homologous recombination can repair accurately a double strand break even if part

of the original nucleotides were lost. Mis-alignment, potentially due to the presence

of repeats, results in repair between non-allelic regions and leads to deletions.

Similarly, non-allelic homologous recombination (NAHR) occurs when sister chro-

matids are not correctly aligned during recombination. Depending on the mis-

alignment configuration, NAHR results in deletion, duplication or inversion. The

chromatid misalignment is often caused by the presence of highly similar sequences.

Genomic repeats like segmental duplications and transposable elements are frequent

templates for NAHR. The majority of NAHR in recent human evolution involved

L1 elements although Alus are enriched around older rearrangements12,13. NAHR
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can also occur during mitosis14.

Fork stalling and template switching (FoSTeS) occurs during DNA replication

when a strand is detached from its current fork and continues replicating in another

strand. Depending on the sequence of switches, FoSTeS can result in a translocation,

deletion, duplication or inversion.

Slippage during DNA replication can lead to small deletions or duplications,

creating and maintaining tandem repeats. Short tandem repeats are particularly

susceptible to shrinkage or expansion using this mechanism. While each slippage

might only affect a few base pairs, sequential events lead to polymorphic alleles that

can differ by hundreds of base pairs between two genomes.

To retrotranspose, a mobile element is first transcribed into a RNA copy which

is then converted back to a DNA. The DNA copy then inserts itself at another

location of the genome. The DNA sequence of autonomous TEs, such as L1s, code

for proteins responsible for the reverse transcription and insertion into the genome.

Other TEs use the machinery from autonomous elements to retrotranspose. A

similar mechanism is responsible for the insertion and retrotransposition of viral

DNA. Once inserted in the host genome, the viral DNA can often copy itself in other

genomic locations or in other cells. Similar to retrotransposons, new insertions can

then be considered as duplication events.

The mechanism of formation is often inferred from the sequence around the

variant boundaries11. Segmental duplication or large repeats flanking a variant

suggest NAHR. Micro-homology at the boundaries is a sign of MMEJ. No homology

points at either NHEJ or FoSTeS.

Aneuploidy arise from problems with the chromosome migration during mitosis.

The main mechanism behind arm-level losses or gains are fusion of chromosomes

after pericentromeric breakage. Breaks near centromeres can happen in fragile sites,

which tend to break under certain conditions, or due to merotelic attachment, an

abnormal attachment of sister chromatids during mitosis15.
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1.1.3 Association with Disease and Functional Impact of

CNV

CNV and disease Individuals suffering from numerous diseases including obe-

sity16, schizophrenia17, autism18, epilepsy19, Crohn’s Disease20, cancer21 and other

inherited diseases22,23, carry SVs with a demonstrated detrimental effect24,25,26.

First, a few Mendelian disorders are exclusively caused by CNV in specific regions.

For example, Williams-Beuren Syndrome which typically presents facial dysmor-

phies and intellectual disability, is caused by deletions at 7q11.23. As another ex-

ample, the deletion of the PMP22 gene is the most common mutation responsible

for hereditary neuropathy with liability to pressure palsies. In the early 1990s, Lup-

ski et al. were surprised to find that a duplication in the same region segregated

perfectly with hereditary neuropathy Charcot-Marie-Tooth type 1A27. The region

had been identified using linkage analysis but the idea of a gene-dosage mechanism

for the disease was so unexpected that both Nature and Science refused to review

the paper.

CNVs resulting in gene-dosage changes have often milder effects but many have

been associated with complex traits or susceptibility to disease. Frequent deletions

in the GSTM1 gene were identified as a risk factor for asthma in independent stud-

ies across different populations28. Another example of common disease-associated

CNV involve the DEFB4 gene. The median copy number of this gene is 4 in healthy

individuals. A lower number of copies has been associated with Crohn disease29 and

higher copy number with psoriasis30. Deletions and duplications of the CCL3L1

gene are also associated with distinct phenotypes. Deletions increase HIV/AIDS

susceptibility31 while duplications increase the risk to develop rheumatoid arthri-

tis32. In the examples above, variation in the copy number of the entire gene is

affecting the gene dosage resulting in gene expression changes. Although genes with

common CNVs are assumed to be tolerant to dosage changes, gene expression tend

to change with the number of gene copies in the genome. For example, Hand-

saker et al. 33 studied multi-copies CNVs and showed that the resulting gene dosage
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changes correlated with gene expression.

CNV and gene expression Quantitative trait loci (QTL) and more precisely

expression QTLs (eQTLs) are genomic variants that are associated with changes in

gene expression. While most of the eQTLs tested and found are single nucleotide

variants (SNVs), WGS has allowed the detection of hundreds of SV-eQTLs. Among

the first to look for SV-eQTLs, Stranger et al. identified dozens of CNVs in four

human populations that were associated with gene expression34. Around half of the

associated CNVs were located outside of the affected gene or only overlapped par-

tially, hinting at an alternative to the gene dosage mechanism. Later, Lower et al.

characterized deletions that affected the expression of a gene located 300 Kbp away,

NMEA, by analyzing gene expression and using conformation capture to demon-

strate physical contact between the two distant regions35. Combining their WGS

data with RNA sequencing across 462 individuals, the most recent SV catalog from

the 1000 Genomes Project identified 54 eQTLs whose lead variant was a SV and

166 additional SVs that were in linkage disequilibrium with SNV-eQTLs5. Most of

these SV-eQTLs overlapped coding sequence but some were located in non-coding

regions upstream of the affected gene. Only 0.56% of the eQTLs were attributed

to SV but this number might be an underestimation because of the higher noise

in SV calling compared to SNV calling. To improve on this, a recent study used

deep WGS to more reliably call SVs and investigated SV-eQTLs in multiple tissues

from the GTEx dataset36. Using state-of-the-art approaches to infer causal vari-

ants, they estimated that 3.5-6.8% of eQTLs could be attributed to SVs. Although

less abundant than SNV-eQTLs, SVs had a larger effect size. The comprehensive

analysis of the location and effect of these causal SV-eQTLs nicely clarified the rela-

tion between SV and gene expression. When overlapping coding regions, SV-eQTLs

affected gene expression following the gene dosage model, that is deletion leading

to down-regulation and duplication to up-regulation. Non-coding SV-eQTLs, which

represented the vast majority of SV-eQTLs (89%), were enriched in or close to regu-

latory regions (e.g. exons, transcription start site, transcription factor binding sites,
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enhancers, gene 3’ end) and all types of SV could lead to both higher or lower gene

expression. Finally, the effect of rare SVs on gene expression was also explored.

Despite the challenge of analyzing rare variants in a cohort of only 147 individuals,

a clear enrichment of rare SVs was found around genes that showed outlier expres-

sions in the cohort. These gene-altering rare SVs included cases from both the gene

dosage and regulatory region disruption model.

Several recent studies elegantly shed light into a mechanism by which non-coding

CNV alter gene expression called enhancer hijacking: that is, a regulatory region

inducing the ectopic expression of a gene it normally doesn’t regulate because of

a CNV-mediated re-positioning. A first example was comprehensively described in

individuals with limb malformation37. Using conformation capture sequencing and

by recreating SVs in mice with CRISPR/Cas genome editing, they elegantly showed

that SVs crossing the boundaries of topologically associating domains (TADs) could

lead to strong phenotypes. TADs are 3D domains (mean size 830 Kbp) that con-

fine regulatory elements with their targets. The deletions, tandem duplications and

inversions resulted in ectopic interactions between a cluster of enhancers and genes

located in the neighboring TAD. Ectopic interactions were responsible for ectopic

expression of these genes during limb development in mice whose genome had been

edited to recreate the SVs. With additional genome editing and conformation cap-

ture experiments, this study concluded that the crossing of the TAD boundary was

the crucial factor rather than simply the distance between enhancers and genes. En-

hancer hijacking might also be important in cancer where a single CNV might lead to

a strong expression of oncogenes. To explore this, Weischenfeldt et al. 38 developed

a method that detects associations between somatic CNV breakpoints overlapping

several TADs and gene over-expression. In their study, Weischenfeldt et al. 38 first

described a known cancer gene, TERT, which had been already found to be upreg-

ulated by such mechanisms. Interestingly, both deletion and duplication resulted in

over-expression. They further described two genes, IRS4 and IGF2, using orthog-

onal experiments to support how the presence of somatic CNVs lead to changes in
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chromatin state and physical contact. For example, somatic deletions downstream

of IRS4 overlapped a TAD boundary and resulted in 25-400 fold over-expression of

the gene in several cancer types. In contrast, the ectopic expression of IGF2 was

due to single tandem duplication of IGF2 and a super-enhancer in the neighboring

TAD that created a novel chromatin domain with both. Additional experiments

showed that the region was active and in contact with the gene promoter in tumor

with the duplication. These enhancer hijacking events are important because the

change of a single copy can lead to large over-expression. In contrast, dosage effect

due to full-gene CNV tend to be as strong as the amplification.

1.2 Whole-Genome Sequencing

1.2.1 SV Detection Before High-Throughput Sequencing

Early cytogenetic techniques were able to detect aneuploidy and extremely large

SVs. Thanks to banding, each chromosome in a karyotype can be uniquely identified

which facilitated the detection of trisomies and their associated disorder, such as

Down syndrome (trisomy 21) and Edwards syndrome (trisomy 18). Furthermore,

the bands can be used to identify translocations and large inversions or CNVs. SVs

need to span several millions of bases, typically more than 10-20 Mbp, to have a

chance to be visible in the karyotype.

Fluorescent in situ hybridization (FISH) was developed in the 1980s. Fluorescent

probes bind to specific genomic regions by hybridization, i.e. through DNA sequence

complementarity. The presence or absence of the DNA sequence was assessed by

inspecting the fluorescence in the cells or tissue samples.

In array comparative genomic hybridization (aCGH) experiments, DNA from

a test sample and reference sample are labeled using different fluorophores and

hybridized to several thousand probes. The probes, which usually tag most of the

known genes and tile non-coding regions of the genome, are printed on a glass slide.

The fluorescence of each probes is used to estimate the amount of DNA sequence in
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the test sample compared to the reference sample. Using this method, CNV down

to approximately 100 Kbp of DNA sequences can be detected. Arrays also can be

designed specifically to target regions of interest, for example with recurrent CNVs.

These custom arrays don’t cover the genome uniformly but can detect smaller CNVs

in the regions with of high probe density. This technology is not able to detect

balanced chromosomal imbalances such as translocations or inversions.

1.2.2 A New Hope

While large SVs have been identified by cytogenetic approaches and array-based

technologies, whole-genome sequencing (WGS) could in theory discover SVs of all

sizes or types39. The vast majority of studies follow a re-sequencing strategy where

short DNA fragments (or reads) are sequenced and aligned (or mapped) to the ref-

erence genome. Furthermore, both ends of a DNA fragment are often sequenced and

this pair information can be used to improve alignment to the reference genome and

variant calling. The reads and their alignment are then used to find single-nucleotide

variants (SNVs), small insertions/deletions (indels) but also small SVs across the

genome. Array-technology required dense representation of the hybridization probes

in a region of interest to be able to detect CNVs smaller than 100 Kbp. With WGS,

the sequencing depth is now the main limiting factor, although even early experi-

ments could detect thousands of small SVs. For example, the most recent survey of

the 1000 Genomes Project used WGS with a sequencing depth of 7x and identified

more than four thousands variants per individual with a median variant size below 40

Kbp for the six different SV types analyzed5. In contrast to aCGH, the sequencing

reads can also be used to detect balanced variants such as inversions, translocations

and novel insertions. Although the detection of such variants is more challenging

than single-nucleotide variant (SNV) calling, WGS is a one-fit-all experiment that

greatly increases the resolution of SV detection.

To detect SVs fromWGS, methods analyze either read-depth (RD) variation40,41,42,

paired-end information43,44, breakpoints detection through split-read approach45 or
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de novo assembly46. Methods are described in more details in section 1.3, with a

particular focus on CNV detection.

Another unique aspect of WGS is the possibility of pooling experiments to in-

crease the detection power of common variants. Instead of analyzing each exper-

iment separately, the sequencing reads can be pooled across several samples. For

example, it is sometimes challenging finding several reads spanning a SV breakpoint

within a single sample. By pooling several experiments, the number of supporting

reads increases if a SV is shared by several samples. This approach was used across

hundreds of samples of the 1000 Genomes Projects and greatly increased the number

of SVs discovered in the population11,47.

1.2.3 The Technical Bias Strikes Back

Although it represents a considerable improvement in term of resolution, WGS is

affected by technical biases that remain an important challenge. Indeed, it has

been shown that various features of sequencing experiments, such as mappability,

GC content or replication timing, have a negative impact on the uniformity of the

coverage48,49,50,51,52. In addition to its effect on read coverage, repeated sequences

lead to confusion in read mapping, creating SV-like patterns and thus false-positives

when calling variants.

GC content is a well-known source of bias although not completely understood.

Reduced efficiency of PCR amplification explains a large fraction of this bias and

more robust protocol were proposed53,54. Still other steps of the sequencing protocols

adds substantial bias and GC bias persists even with optimized protocols53. The

bias patterns tend to be different from a sequencing center to the other50, suggesting

an effect of the library preparation or sequencing machinery. For these reasons, it

has been challenging to correct for this source of bias. With PCR-free libraries, the

effect of GC bias is reduced but still needs to be corrected for when comparing read

coverage across the genome.

DNA replication also affects the distribution of reads across the genome. Al-
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though sequencing of bulk samples, i.e. of many cells, should minimize the effect

of replication patterns, systematic increase might be present in regions that tend to

replicate earlier. For example, Koren et al. estimated replication timing across the

genome using WGS of cells in S and G1 phases55.

Finally, the mappability of the sequence affects how many reads can be confi-

dently mapped to the reference genome. The presence of repeats and other similar

regions lead to multi-mapping, i.e. several positions where a read could have orig-

inated from. Hence, when using reads with unique mapping in the genome, the

coverage in repeat-rich regions drops considerably. The challenges and proposed

solutions associated with mappability are described in more detail in section 1.4.

Unfortunately, the variability in term of read distribution is difficult to model

and correct for because it involves various factors, including some that vary from

an experiment to another and others that are still unknown. This issue particularly

impairs the detection of SV supported by weaker signal, which is inevitable in regions

of low-mappability, for smaller SVs or in cancer samples with stromal contamination

or cell heterogeneity.

1.2.4 The Return of the Long Reads

Sanger sequencing, invented in 197756, was used for the original sequencing of the

human genome57 and is still used today to sequence DNA fragment 500 to 1000 bp

long. The technology that followed in the 2000s is capable of sequencing shorter

reads but much more efficiently resulting in a cost order of magnitudes lower. How-

ever, many of the challenges faced by WGS is a result of the short size of the

sequenced read. Recently, new technologies have been developed to perform WGS

using much longer reads, in the range of 10-100 Kbp. PacBio was the first and has

been successfully applied to several human genomes58,59,60. Nanopore sequencing is

becoming efficient with the first human WGS sample just released publicly61. Al-

though the cost and rate of sequencing errors remains high compared to short-read

sequencing, the benefit for genome assembly or SV detection is clear.
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1.3 Existing CNV Detection Methods

1.3.1 Different Strategies to Detect SV and CNV

The vast majority of SV detection methods rely on evidence from the read mapping

on a reference genome: changes in read depth, B-allele frequency, discordant paired-

end mapping, or split-reads. De novo genome assembly could also be used to identify

SVs but its application using short read sequencing remains challenging.

Read depth Changes in the copy number in a region should lead to changes in

the number of reads mapped to this region in the reference genome. By modeling

read depth, sometimes called read coverage or depth of coverage, one approach is to

identify regions with significantly more reads (duplication) or fewer reads (deletion)

than in the genome or the flanking regions. Only CNV, i.e. imbalanced SVs, can

be detected by these approaches. CNV detection methods that use read depth are

described in more details in the next section.

B-allele frequency The proportion of reads supporting heterozygous SNVs can

help identify CNVs too. The loss of heterozygozity within deletions or the deviation

from the 50% coverage of the alternate allele can complement coverage signal. This

approach was inspired from CNV detection strategies developed for SNP-array, such

as in the ASCAT method62. Here the intensity of the probe and the so-called B-

allele frequency was use in concert to call CNVs. Thanks to sequencing, both the

coverage information and SNVs are more densely represented and lead to a better

resolution. Still, the B-allele information is relevant only for CNVs large enough

to span several heterozygous SNVs. Methods such as ERDS63, Control-FREEC64 or

Sequenza65 integrate the B-allele frequency information to call germline or somatic

CNVs.

Paired-end mapping The distance between the two mapped reads in a pair and

their orientation can also help identify SVs. Because the majority of the reads are
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expected to map correctly, they can be used to estimate the expected distribution

of the distance between paired read. With this distribution, one strategy is to

retrieve pairs that are significantly too close or too far from each other. Read pairs

might map close to each other in the reference genome because of an insertion

in the sequenced DNA somewhere between the reads. More typically, reads that

map far from each other suggest a deletion in the sequenced DNA or potentially a

translocation. Finally, tandem duplications or inversions should lead to some read

pairs mapping in the incorrect orientation relative to each other. All those reads

with discordant paired-end mapping are typically retrieved and clustered together.

Each cluster of reads is then disentangled to predict the most likely variant and the

location of its breakpoints.

Split-reads The strategies described above use either reads within the variant or

around the variant’s boundaries. In contrast, the split-read approach looks for reads

exactly spanning a variant’s breakpoint. Generally, one read is mapped uniquely to

the genome and serves as an anchor while its pair is split in two pieces which are

then aligned separately. This split-mapping can be computationally expensive. To

limit the computational cost, methods analyze only pairs with one unmapped reads

or restrict the range searched for the split-mapping45,66. Split-reads can be searched

specifically to complement candidates variants identified from discordant paired-end

mapping. These additional supporting reads are tallied and used to assess the final

supporting evidence in methods such as LUMPY 67 or DELLY 68.

Assembly Local assembly of reads around candidate variants has been used as

in silico validation and to characterize the breakpoint sequence69,70. Going further,

recent methods have been using local read assembly as their main SV detection

strategy, especially in cancer71,72. If de novo assembly keeps improving, for example

thanks to longer reads, SV could also be called by directly comparing assembled

genomes or to the reference genome. For example, Assemblytics has been recently

developed to align two assembled genomes and to annotate SVs that differentiate
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them73.

1.3.2 CNV Detection Using Read Depth

Single-sample methods The first methods that used read-depth signal to call

CNVs assumed a uniform read coverage across the genome and attempted to segment

it along the chromosomes. The segments produced by these approaches represent

regions with similar copy number. The circular binary segmentation, adapted from

aCGH analysis74, was one of the first and remains a popular segmentation algorithm.

Subsequent methods offered better correction of technical biases and more mod-

ern segmentation techniques. For example, CNVnator41 corrects for the GC bias,

masks repeat-rich content and uses a mean-shift segmentation approach inspired

from the image recognition field. CNVnator has been used extensively in both

germline and somatic CNV surveys5,36. FREEC40 is another popular approach that

can correct for both GC bias and mappability using precomputed tracks. It seg-

ments the corrected read-depth signal with a LASSO-based segmentation approach.

FREEC has been extended to Control-FREEC to include the B-allele frequency in its

CNV detection process.

Methods inspired from aCGH offer to use another sample as control. Although

variants in the control sample might create problems down the line, it is partic-

ularly sensible when studying tumors whose tumoral and normal tissues has been

sequenced. By using the normal sample (usually blood) as control, the CNV de-

tection is naturally reduced to the detection of somatic CNVs, i.e. present in the

tumor but absent from the normal sample. In practice the methodology is similar

to the single-sample approaches described above but using the read-depth ratio of

the tumor versus normal tissues. A few methods have further been implemented

specifically with cancer in mind and estimate the tumor ploidy and/or stromal con-

tamination before or during CNV calling65,75.
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Multi-samples methods To improve the sensitivity of the variant detection and

model the region-specific pattern of read depth, a few methods have been developed

to jointly analyze multiple samples together.

cn.MOPS considers simultaneously several samples and detects copy number vari-

ation using a Poisson model and a Bayesian approach42. By jointly analyzing sam-

ples, cn.MOPS calls variants based on the strength of the read-depth signal across

the samples. Even if the signal-to-noise ratio is small, the presence of a consistent

pattern in several samples provides further evidence that the region contains a CNV

in those samples.

The second version of GenomeSTRiP models the read depth across hundreds of

samples as a mixture of Gaussian distributions33. It is particularly useful to geno-

type multi-copies variants in the genomes, i.e. regions that have more than two

copies in most individuals. Multi-copies variants create different groups of samples

that translate into different RD distributions. By deconvoluting the mixture of dis-

tributions, the relative difference between RD modes help associate each distribution

(and sample) to a copy-number estimate. As it relies on full signal (i.e. around inte-

ger values in the model) and a simple read-depth normalization, it is still limited in

regions with low coverage and for small or rare variants. The power to detect a vari-

ant increases with the frequency of polymorphisms as more individuals populate the

different genotype groups, improving the copy-number estimation. GenomeSTRiP

2.0 was successfully applied to 849 individuals from the 1000 Genomes Project and

unmasked the population variation of hundreds of multi-copies variants.

Both cn.MOPS and GenomeSTRiP use the additional samples to find further

support for a variant, which is particularly efficient at detecting common CNVs.

However, both methods define models with full copy number changes which has

limited power when dealing with CNVs with partial signal (e.g. small variants,

somatic variants, or variants in low-mappability regions). In contrast, the approach

described later in this work uses the multiple samples differently: they are used to

define a baseline for the technical variation, not to aggregate evidence supporting
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a variant. When the coverage diverges enough from this baseline, no matter the

frequency or the strength, a CNV is called. In theory such approach will be able

to better detect rare variants, small variants, somatic variants and variants in low-

mappability regions.

These approaches are also called population-based methods because they jointly

study a population sample of sequencing experiments, i.e. a group of samples repre-

sentative of the technical variation across experiments33. Of note, the term popula-

tion in this context refers to a statistical population rather than human populations.

1.4 Low-Mappability Regions

1.4.1 The Different Classes of Human Repeats

1.53 Gbp of the human genome is annotated as a repeat when considering elements

identified by Repeat Masker76 and segmental duplications. Repeats are classified

based on their size, sequence and mechanism of formation.

Segmental duplications (SDs) are large regions (>1 Kbp) with high similarity

(>90%). Usually the results of NAHR, segmental duplication are known hotspots

of structural variation. SDs can be nested, i.e. duplications within duplications.

These class of repeat is thought to have boosted recent human evolution77. Humans

experienced a high rate of SD creation in recent evolution which contributed to the

expansion of important gene families. Large families of genes involved in immune

response, cell adhesion and brain development cluster within SDs.

Transposable elements (TE) represents approximately 45% of the human genome.

TEs are interspersed in the genome: if we cut the reference genome in consecutive

windows of 500 bp, 70.5% of the windows would overlap transposable elements.

Their wide distribution make them a popular template for NAHR. Some TE fami-

lies tend to cluster in fragile regions of the genome, which are regions that tend to

break under certain stress conditions. A small fraction of TEs of the Alu, L1 and

SVA families are still active in the human genome78. Retrotransposition of these
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elements contributes to novel MEI.

Satellites consist of sequences that are repeated, most of the time in a tandem

configuration, and span large regions. The size and composition of the repeated

sequence, also called unit, define the different classes of satellites. Most of the macro-

satellites are present close to centromeres, the main family being alpha satellites

whose 171 bp long unit is repeated to span on average 5.6 Kbp. The sequence

of the unit varies from chromosome to chromosome. In addition to the tandem

repetition of the unit sequence, higher order structure is present. The sequences can

be duplicated in the same orientation or in an inverted conformation.

Short tandem repeats (STRs), also called micro-satellites, have sequence units

ranging from 1 to 10 bp. In addition to the tandem duplication that they share

with SDs and satellites, short tandem repeats can vary because of slippage during

the replication process. As a result, STRs are one of the most polymorphic class of

variant in the human population, making them particularly useful for forensics and

parentage tests. STRs have been recently linked to gene expression regulation79,80

and potentially to polygenic disorders81.

Low complexity regions are regions with high AT or GC content that, unlike

satellites, have no apparent structure. Very little is known about their mechanism

of formation and variation. Longer stretches of similar sequences might be present by

chance in those regions which might promote homology-based mechanisms of CNV.

Low complexity sequences might also favor secondary DNA structure, promoting

replication slippage.

1.4.2 Impact of Repeats on Mappability

The presence of repeats can confuse read mapping and decrease the number of

uniquely mapped reads in certain regions. These low-mappability regions can con-

tain any class of repeats, e.g. segmental duplication, transposable elements, short

tandem repeats or low-complexity sequences. The effect of repeats on the mapping

of a read is specific to each region: it depends on the density and nature of the
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repeats present. As a result, this technical variation is difficult to model. Existing

methods either remove the signal in these regions or smooth the signal to avoid

spurious variation (see Tackling the Repeat Challenge).

Furthermore, the multi-mapping of reads between similar repeat instances re-

sembles signal supporting certain SVs. For instance, translocation are supported

by pairs of reads mapped far from each other. When one read of the pair spans a

repeat, it is sometimes aligned to another repeat element in the genome, far from its

paired read. To minimize this issue, read aligners could favor configurations where

both pairs map together but forcing read pairs to map together would impair the

detection of real variants. In practice, some aligners output the best alignment as

well as other secondary alignments where the reads could have originated from. This

multi-mapping information or other mapping metrics are used by SV callers to iden-

tify legitimate variants or flag others that could be caused by mapping confusion.

Nonetheless, even with paired-end aware mappers many reads overlapping repeats

show this incorrect mapping and can hinder SV calling. Because a low-mappability

sequence highly resembles another sequence in the genome, a variant or a sequencing

error in the read might lead to a better (although incorrect) mapping in the incor-

rect location. This multi-mapping confusion can also occur locally and incorrectly

support other types of SVs such as deletion and tandem duplications.

To minimize the effect of multi-mapping, algorithms tend to use uniquely mapped

reads only. Fewer reads support the presence of a variant but they are of better qual-

ity. In some cases, repeats flank a unique region and can mask potential CNVs from

paired-end or split-read approaches that use uniquely mapped reads only. Indeed,

because of the repeats, reads around the breakpoints that would support the CNV

don’t map uniquely. If the flanking repeats are long and highly similar, these CNVs

can only be detected by changes in the read coverage.
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1.4.3 Tackling the Repeat Challenge

Because of the mappability and other technical biases, existing approaches suf-

fer from limited specificity and sensitivity11,39, especially in specific regions of the

genome, including regions of low-complexity and low-mappability48,49.

Approaches that use paired-read information and split-read mapping are diffi-

cult to modify to deal with the presence of repeats. Oftentimes, repeated regions

or low-confidence mapping are simply filtered (or flagged) when calling SVs. The

integration of the multi-mapping information could always be improved but the map-

ping patterns are often region-specific and difficult to model. Despite the challenges,

some attempts were made for specific types of variants. For example, Hormozdiari

et al. 82 modeled transposon insertion and He et al. 83 proposed a way to handle the

multi-mapped reads when searching for tandem duplication.

Approaches relying on read coverage are relatively more robust because they use

signal across the whole variant rather than the breakpoint regions. A deletion or

duplication between repeated sequences might be difficult to call confidently using

paired-end or split-read information but the change in RD across a variant is less

affected by repeats around the breakpoints. The presence of repeats along the

entire variant still remains a challenge for RD approaches. To deal with regions

of high repeat content, repeats were originally masked before CNV detection to

avoid problems from multi-mapping of the sequencing reads84,85. Another approach

used bins of variable length designed specifically to provide uniform coverage of

uniquely mapped reads across the genome74. For example, a region with repeats

was extended as much as necessary to contain, on average, a similar read coverage as

in unique regions. While it simplified the methodology of the CNV calling, it was not

ideal. First, repeat-rich regions often remained problematic and were still specifically

filtered out of the output. Indeed, repeat-rich regions are not only less covered

by uniquely-mapped reads but also more variable. The variable-length bin design

adjusted the mean read coverage but the repeat-rich regions remained more variable

and challenging for most segmentation approaches. Second, the contribution of
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the repeat-rich regions in the extended bin becomes minimal because of their low

coverage. The repeats are not masked but they are not represented by the RD of

these regions either. Although it helps mitigate the effect of repeats, it doesn’t help

address variation in repeat-rich regions.

Other methods keeps repeats unmasked and use bins of equal size but transform

the coverage signal to reduce the unwanted effect in repeat-rich regions. For example,

CNAseg86 and CNVnator41 use a smoothing step that reduce the effect of outliers and

smooth the signal using flanking regions. Similar to the variable-length bin strategy,

the signal in the repeat regions is traded off for a easier calling and segmentation.

After smoothing, CNVs in repeat-rich regions but also small CNVs might become

invisible.

In an attempt to tackle the problem at its roots, Alkan et al. developed a read

aligner to better deal with reads mapping to several locations in the genome84. Using

mrFAST they were able to better detect and genotype copy-number variants in some

large and highly similar segmental duplication. They showed that alignment could

be improved for many segmental duplications regions to the point where accurate

CNV detection was possible. However, this effort cannot be replicated for the vast

majority of the repeat-rich regions of the human genome. Alignment algorithms

performance in low-mappability regions are now mainly limited by the size of the

sequencing reads.

1.4.4 Disease-Associated CNV in Repeats

CAG repeat expansion in a coding region of the HTT gene causes Huntington disease

in a dominant and fully penetrant manner87,88. When the short tandem repeat is

large enough, typically larger than 36 units, the mutant protein is responsible for

an increase in the decay rate of neurons. Fragile X syndrome is caused by the

expansion of a CGG repeat in the 5’ untranslated region of the FMR1 gene89. The

length of the repeat varies from 15 to 60bp (20 units) in the healthy population

while repeats larger than 600 bp cause the disease. Repeats with intermediate
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size increase the disease risk for the offsprings. ICF syndrome (Immunodeficiency,

Centromeric instability and Facial anomalies) is characterized by an extension of

pericentromeric satellites. Facioscapulohumeral muscular dystrophy was associated

to the contraction of a satellite DNA in the sub-telomeric region of chromosome 490.

CNVs involving repeats are also widespread in cancers. L1 retrotransposition

is a common phenomenon in some cancer types such as epithelial tumors91,92,93.

The first instance of disruptive insertion was documented in the tumor suppressor

gene APC in colon cancer94. Microsatellite instability is important in some cancers,

such as colorectal and endometrial cancers, and usually coincides with the disrup-

tion of DNA repair mechanisms95. It results in extensive copy number changes in

microsatellites. In colorectal cancers, micro-satellite instability is typical of a spe-

cific sub-group, Lynch syndrome, representing around 15% of cases and associated

with better prognosis96. Fragile sites are also enriched in somatic SVs. Further-

more, fragile sites are often unstable in cancer and are enriched in low-complexity

sequences and satellites97,98. Transposable elements tend to cluster in these regions

as well, sometimes taking advantage of the DNA breaks to insert new copies. Satel-

lite instability and increased retrotransposition suggest that repeated region might

be more fragile or more variable than in normal genomes.

In addition to variation in the repeat sequence, some repeated regions favor the

formation of CNVs. For instance, segmental duplications and TEs provide templates

for NAHR. Alu or L1 elements are the most abundant and most frequent templates.

Alu-mediated deletions in the LDLR gene were among the first to be described

in a patient with familial hypercholesterolemia99. A recombination event between

HERV-I copies has been linked to male infertility by causing a ∼800 Kbp deletions

containing the azoospermia factor gene on chromosome Y100. Cancer genes such

as MLL-1, VHL and BRCA1 seem to be experiencing CNVs resulting from NAHR

between Alu elements101. Alu-mediated recombinations around MSH2 are respon-

sible for germline deletions that have been linked to susceptibility to hereditary

nonpolyposis colon cancer102. CNV can be a byproduct of TE insertion as well.
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For example, the insertion of a L1 lead to a 46 Kbp long pathogenic deletion in the

PDHX gene in an individual suffering from PDHc deficiency103.

1.5 CNV Distribution in Normal Genomes

In healthy individuals, a higher proportion of the genome is estimated to be af-

fected by SVs as compared to single nucleotide polymorphisms (SNPs)104. Several

databases and studies have cataloged CNVs in the human genome and described

their distribution. The CNV enrichment in segmental duplications has been exten-

sively documented.

1.5.1 Public CNV Catalogs

The long-standing database for structural variation in healthy individuals is most

likely the Database of Genomic Variants (DGV). It aggregates findings from more

than 55 studies and annotates more than 200,000 different regions105. Although

it represents the largest aggregation of variants, DGV should be used carefully.

For example, the variant information, such as frequency, breakpoint resolution or

genotype comes from each original study and might not be directly comparable.

Variant frequency is particularly important for disease studies but the frequency in

DGV might not be representative of the population frequencies. Indeed, the different

studies used different technologies, some of which might not have the resolution to

detect a variant of interest. The low sample size of some studies might also inflate

the frequency estimates.

A few studies using aCGH across hundreds of healthy individuals provided a more

representative distribution of large CNVs in the population. Redon et al. found that

a larger than expected fraction of the genome was affected by CNVs, cumulatively

affecting more bases than single nucleotide polymorphisms106. They described CNVs

across four human populations and their overlap with genes, disease loci, functional

elements and segmental duplications. Using arrays with higher density and a larger
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sample size, Conrad et al. described similar patterns for common and rare CNVs in

the human genome24.

Using high-throughput sequencing, large-scale projects were able to catalog un-

balanced types of SVs and CNVs at a better resolution. The 1000 Genomes Project

was the first to produce such a catalog, analyzing 179 individuals across 4 human

populations11. Its most recent catalog33 analyzed 2,504 individuals from 26 pop-

ulations and contains 42,279 deletions, 6,025 duplications, 16,631 mobile element

insertions and hundreds of other SVs types such as inversions and translocations. In

this project, nine different methods were combined in an ensemble approach in order

to detect different types of variants and increase the confidence of each call. Exten-

sive low-throughput validation was used to decide how to combine the output of the

different methods and ensure high quality calls. Such a strategy increases the speci-

ficity of the variant detection but is less sensitive. In order to study a large number

of individuals in a cost-effective manner, the sequencing depth of most experiments

was kept low, around 7x. With these settings, the frequency estimates of the vari-

ants that could be detected are accurate but some types of variants might have

been missed, for example rare variants, small CNVs or variants in low-mappability

regions. In this study, as in many others, repeat-rich regions and other problematic

regions were masked or smoothed at some step of the analysis to produce more

accurate calls. In a follow-up study on the 1000 Genomes Project data, Handsaker

et al. 33 studied the allele distribution of multi-copies CNVs across individuals. They

identified 185 genes which overlapped with CNVs that were present in more than

two copies in most of the individuals. They also describe variants that show spe-

cific distribution patterns in the African population, possibly because of different

evolutionary constraints. A similar ensemble approach was used by the Genome of

Netherlands (GoNL) consortium to analyze 750 individuals sequenced with medium

depth of 13x107. 10 methods were combined and provided a SV and CNV catalog

of the Dutch population.

Recently, long-read sequencing in on haploid cell lines58 and a diploid human
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sample59 provided a better survey of SV across the genome. Challenging repeats

are more often spanned by the long reads and many low-mappability regions could be

analyzed. Due to its higher cost, few genomes have been sequenced yet. Nonetheless,

a large fraction of the SV identified were novel. As expected, most of the novel

variants were located in regions of low-mappability. Although devoid of population

estimates, these catalogs contains hundreds of SV in low-mappability regions.

1.5.2 Enrichment in Segmental Duplication

The enrichment of CNVs in segmental duplication has been described early on in

the first genome-wide array-based surveys108,109. Redon et al. 106 found that 24% of

the 1,447 CNVs identified overlapped with segmental duplications. Wong et al. 110

noted a 5.7-fold enrichment of common CNVs in segmental duplications. Around

50% of the annotated segmental duplications are covered by CNVs in the Database

of Genomic Variants105. Segmental duplications cover only ∼5.8% of the reference

genome and the enrichment of CNVs has been replicated over the years with different

technologies and resolution11,58,84.

Several CNV hotspots are also located within segmental duplications111. These

regions rearranged during recent human evolution and continue to experience copy

number changes. Some of these hotspots, for example 15q13.3, 16p11.2 or 1q21.1,

have been associated with diseases, particularly neurological disorders112.

What creates this enrichment? As mentioned earlier segmental duplications are

often templates for NAHR. Some segmental duplications might not be fixed yet and

remain polymorphic in the population. Segmental duplications might also be more

permeable to variation in general, as suggested by the higher substitution rate113.

These regions might also be more fragile, i.e. more likely to experience DNA breaks

that could then lead to SV.
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1.6 CNV in Neurological Disorders and Epilepsy

1.6.1 CNV and Neurological Disorders

As mentioned previously, segmental duplications tend to sensitize some genomic

regions to deletions and duplications, forming CNV hotspots regions. A subset of

these hotspots have been associated with a number of neurological disorders such

as autism, mental retardation, schizophrenia and epilepsy. In general, the affected

genomic regions is unique, spans 50 Kbp to 10 Mbp and is flanked by long (>10

Kbp) and highly homologous (>95%) segmental duplications. For example, 16p11.2,

1q21.1 and 15q13.3 CNV hotspots have all been associated with autism, mental

retardation and epilepsy112.

An interesting case was described by Koolen et al. and involved an inversion

that “activates” a CNV hotspot114. In an aCGH screen, Koolen et al. 114 identified

recurrent de novo deletions in 17q21.31 in cases with mental retardation but not

in controls. The region was flanked by inverted segmental duplications and an

inversion needed to happen first in order to promote a NAHR-mediated deletion.

The corresponding 900 Kbp inversion is present in around 20% of Europeans and

predispose carrier for the deletion associated with mental retardation.

Rare CNVs, particularly deletions larger than 1 Mbp, have been associated in a

number of neurological disorders. Early on, mental retardation and other develop-

mental delay disorders have been linked to large CNVs which could explain >15%

of the cases112. In schizophrenia, rare genic CNVs larger than 100 Kbp were present

in 15% of cases, 3 times mores than in controls115. de novo CNVs were significantly

associated with autism in a cohort of 118 patients and 196 controls116. 10% of the

patients with sporadic autism had a de novo CNV versus only 1% of the controls.

In a large cohort of 996 individuals with autism spectrum disorder, Pinto et al. 117

observed a higher burden of rare genic CNVs.
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1.6.2 CNV and Epilepsy

Epilepsy is a neurological disease characterized by seizures. It has a prevalence of

1% in the population, and a lifetime incidence up to 3%. The phenotypes of epilepsy

can be complex, and there are several types of epilepsy. In generalized epilepsy, some-

times called idiopathic or primary generalized epilepsy, the seizures affect the whole

brain. Absence epilepsy, a sub-type of generalized epilepsy, is characterized by brief

loss and return of consciousness. In contrast, patients with focal or partial epilepsy

experience partial motor seizures. Focal seizures are more prevalent in children and

teens and occur mostly during sleep. In the case of epileptic encephalopathy, affected

individuals also exhibit severe cognitive and behavioral disturbances.

Both familial and sporadic cases of epilepsy seem to have a genetic component.

The vast majority of the genetic variants associated with epilepsy comes from studies

on one or just a few cases. Aggregating information across 818 studies, Ran et al. 118

compiled a list of genes associated with epilepsy. 154 high-confidence genes were

identified from the recurrence and predicted impact of more than 3931 variants. For

a gene to be included in the list, several losses of function and/or de novo variants

had to be described in the literature.

As in other neurological diseases, the phenotypic heterogeneity remains a chal-

lenge when combining cases into large studies. In addition, incomplete penetrance or

variable expressivity have been observed and complicates the identification of genes

and pathogenic variants. Even in locus that are clearly associated with epilepsy

risk, there are examples of unaffected carrier parents while other times, the same

single-gene mutation can cause a wide range of seizure types119.

Recurrent microdeletions were identified in up to 3% of patients with idiopathic

generalized epilepsies and in 1% of focal epilepsies120. In Heinzen at al., 15q13.3

and 16p13.11 were the CNV hotspots with the most frequent microdeletions121.

These variants were often transmitted from a healthy parent. Another study of 517

individuals with mixed types of epilepsy revealed that 2.9% of the patients had a

deletion in the 15q11.2, 15q33.3 or 16.q13.11 hotspots119. In Mefford et al. 19 , 315
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patients with epileptic encephalopathy were also screened with aCGH, of which 1.6%

had a CNVs in 16p11.2, 22q11 and 15q13.3 hotspots.

In addition to CNVs in hotspot regions, several studies observed a significantly

higher number of rare large CNVs in epilepsy patients. In the discussion, Mefford

et al. 19 mentioned a significant excess of large deletions in their cohort compared

to the controls. 2.2% of the patients had rare CNVs larger than 1 Mbp while only

0.3% of the controls. However, the controls came from two independent studies that

used different arrays. Using epilepsy cases and matched controls, Striano et al. 122

found no difference in term of number of rare CNVs between epilepsy patients and

controls but that CNVs were significantly larger and affected more genes in the

epilepsy patients. Other studies of CNV in epilepsy tend to focus on rare CNVs in

the cases and only use controls to filter variants. Using this approach, up to 10% of

epilepsy patients carry a unique and possibly pathogenic CNV. This numbers varies

depending on the type of epilepsy studied and the additional criteria used to filter

CNVs (Table 1.1). In Mefford et al. 119 , 8.9% of the 517 patients with generalized

and focal epilepsies had one or more rare genic CNVs that was absent from their

2493 controls. A similar study on epileptic encephalopathy found that 7.9% of the

315 patients had a rare genic CNV never seen in 4,519 controls, half of which were

classified as pathogenic or likely pathogenic19. Deletions of known epilepsy genes or

de novo deletions were considered pathogenic while de novo duplications and CNVs

larger than 1 Mbp were considered likely pathogenic. In a more clinical setting,

CNVs detected from aCGH could explain the phenotype of 5% of the 805 epilepsy

patients screened123. The pathogenicity of the variants were assessed by clinicians

based on the size, inheritance, gene, hotspot overlap and concordance between the

clinical symptoms and the ones reported in the relevant literature. Another study

on childhood epilepsies identified a large rare CNV in 71 patients out of 222, 33

of which were considered pathogenic or likely pathogenic based on the inheritance

pattern or overlap with known pathogenic variants120. de novo variant are often of

interest and 11 de novo CNV were identified in this study. All four variants larger
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than 3 Mb were de novo CNVs. More recently, the exome of 349 trios with epileptic

encephalopathy identified 18 de novo CNVs in 17 patients (4.8%), 10 of which were

classified as likely pathogenic124.

Study Epilepsy type rare CNVs
CNVs in Sample

CNV size Filters
hotspots size

Mefford et al. 119 (2010) generalized & focal 8.9% 2.9% 517 1.2 Mbp rare genic
Mefford et al. 19 (2011) epileptic encephalopathy 7.9% 1.6% 315 2.26 Mbp rare genic
Striano et al. 122 (2012) generalized & focal 9.3% 3.4% 265 1.9 Mbp rare
Olson et al. 123 (2014) clinical epilepsy 5% pathogenic 2.9% 805 18 Kbp - 142 Mbp -
Helbig et al. 120 (2014) childhood 31.9% 4.9% 222 102 Kbp - 12.7 Mbp rare genic >100 Kbp
Mefford 124 (2015) epileptic encephalopathy 4.8% de novo - 349 377 Kbp rare
Addis et al. 125 (2016) absence 10.4% 2.8% 144 26 Kbp - 2.8 Mbp rare genic >20 Kbp

Table 1.1: CNV surveys of epilepsy patients. The second and third columns

represent the proportion of cases with a rare CNVs or a CNV in a known hotspot region,

respectively. The Sample size represents the number of epilepsy cases in each study. The

CNV size shows the average size of the CNVs detected (or the size range).

1.7 Somatic CNV in Cancers

1.7.1 Methodological Challenges

Contamination of a sequenced tumor by normal cells reduces the strength of the

signal from somatic variants. For CNV, the copy number changes seem only partial

because only a fraction of the cells share the variant. Cellular heterogeneity further

reduces the strength of the CNV signal for the same reason. Hence, if the purity is

too low or the somatic variant is present in a minor clone, the signal-to-noise ratio is

reduced compared to germline variants. A higher ploidy can also result in a weaker

CNV signal. For example after genome doubling, a one-copy deletion corresponds

to a reduction of one quarter of the average coverage.

One strategy is to estimate the purity and ploidy in the sample before or at the

same time as the CNV calling. Using information about the coverage deviation and

B-allele frequency changes, methods such as Sequenza65 and TITAN75 can predict

the most likely ploidy and purity of the tumor sample and adjust copy number

estimates. TITAN further model cell heterogeneity in the tumor cells by testing the

presence of minor clones with CNV signatures.
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1.7.2 Chromosomal Aberrations and Aneuploidy

Somatic CNVs (sCNVs) are common in tumors from almost all cancer types21,126.

Tumors sometimes harbor whole-genome doubling or, more frequently, chromosome

arm-level gains or losses. Aneuploidy, i.e. chromosome gain or loss, is seen in almost

all cancer types although at varying frequencies126,127,128.

Aggregating aCGH data across 5,918 epithelial tumors, Baudis 127 identified fre-

quent arm-level gains in 8q, 20q, 1q, 3q, 5p, 7q and 17q; and frequent losses in

3p, 4q, 13q, 17p and 18q. The median number of arm-level aberration per sample

ranged from 0 in squamous skin neoplasias to 12 in small cell lung carcinomas127.

To further interrogate the distribution of somatic CNVs in different types of cancer,

Beroukhim et al. 21 analyzed 3,131 cancer genomes from 26 different cancer types.

Although the frequency of sCNV decreases with their size, arm-level aberrations

stood out as recurrent aberrations for both losses and gains and across all 26 can-

cer types studied. Arm-level aberrations were around 30 times more frequent than

expected from the frequency-size relationship of other sCNVs. In this pan-cancer

survey, 25% of a typical cancer genome was affected by arm-level sCNVs. In contrast

to some focal sCNVs, arm-level sCNVs resulted in low-amplitude changes, most of

the time a single copy loss/gain. Interestingly, it appeared that chromosome arms

had either somatic losses or gains, but rarely both. Similar observations were made

in a larger meta-analysis of 8,227 cancer CNV profiles from 107 aCGH studies128.

Chromosome arms preferentially showed losses or gains, with 1q, 5p, 7p, 3q and 20q

most frequently gained and 4q, 6q, 8p, 13q and 17p most frequently lost. Cancer

types were clustered based on their arm-level aberration frequencies and formed

three groups with similar developmental origins. Arm-level aberrations in gene-rich

arms tended to co-occur when concordant (gain-gain, loss-loss)128. Using a single

detection platform across 4,934 cancers and 11 cancer types, The Cancer Genome

Atlas attempted to time the occurrence of different types of sCNVs126. For example,

whole-genome doubling was observed in 37% of the tumors and tended to occur prior

to other types of sCNVs. The rate of both arm-level and focal sCNVs were higher in
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tumor that experienced whole-genome doubling. In term of arm-level aberrations,

Zack et al. 126 found a median of 3 gains and 5 losses per tumor.

Some arm-level aberrations have been linked to worse prognosis129,130. In some

cases, the arm-level is thought to directly affect cancer drivers. For example, the

frequent loss of chromosome 9p is associated with more aggressive tumors and poor

survival through down-regulation of tumor suppressors130. These aberrations can

also be used as markers for prognosis prediction.

The pan-cancer studies described above didn’t include or comment on sex chro-

mosomes in their analysis21,126,127,128.

1.7.3 Gender Imbalance

According to cancer statistics for 2017, the lifetime probability to be diagnosed

with invasive cancer is 40.8% for men and 37.5% for women131. Several cancer types

show the same gender imbalance with different incidences for males and females. For

example, incidence of liver cancer is three times higher in men than in women, and

even more for esophagus, larynx and bladder cancers. In contrast, the incidence is

higher in women for cancers of the thyroid, anus and gallbladder. Of note, differences

in incidence rates do not always translate in differences in death rates. Conversely,

death rates in males and females can be very different despite similar incidence rates.

Although the death rates are comparable, thyroid cancer incidence is three times

higher in women. Some evidence suggests that the overdiagnosis rate is higher in

women resulting in more nonfatal tumors diagnosed in women132. The death rates of

melanoma are more than double in male compared to female but the incidence rate

is only 60% higher131. The sex disparities in survival rates is partly explained by the

younger age at diagnosis for women but is still present when controlling for known

factors133. In general, the earlier diagnosis of cancer in women could contribute to

the lower overall death rates.

Difference in height might contribute, to some extent, to gender disparities in

cancer incidence. Indeed, height has been positively associated with cancer inci-
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dence and death in both men and women134. This suggests that hormonal and

genetics factors associated to height might be involved in cancer development and

progression. A study by Walter et al. tested how much height could explain the

gender differences in cancer risk and found that around a third of the excess risk for

men was explained by height differences135. Prognosis in childhood cancers is also

worse in males than females, suggesting the presence of non-hormonal factors136.

Some imbalances could be explained by mutations in the sex chromosomes. Chro-

mosome X hosts several tumor suppressor genes such as UTX (KDM6A), ZMYM3,

AMER1 (also known as WTX), KDM5C. KDM6A has a homolog gene in chromo-

some Y, KDM6C. Loss of chromosome Y (LOY) was observed in a number of cancers

that are more prevalent in males, such as prostate, bladder or liver cancers137,138,139.

1.7.4 Clear Cell Renal Cell Carcinoma

Each year, more than 330,000 cases of kidney cancer are diagnosed in the world and

over 140,000 deaths are caused by this cancer140. Most of the kidney cancers start in

the cells that line the renal tubules and are called renal cell carcinoma (RCC). 90%

of kidney cancer cases are RCCs, of which 60-80% are clear cell RCCs (ccRCCs).

Cigarette smoking, increased body mass index and hypertension are risk factor for

RCC141. As mentioned previously, kidney cancer incidence is higher for males than

females, with a ratio around 2:1. Although factors such as tobacco smoking and

hypertension might partly explain the gender disparities, the increased incidence in

males is not fully understood.

Recent studies characterized the genomic landscape of ccRCC using exome142

or whole genome sequencing143 and methylation arrays142. The von Hippel–Lindau

tumor suppressor gene (VHL) had been previously identified as an important driver

gene with somatic point mutations or epigenetic changes present in around 80%

of ccRCC144,145. Furthermore, the small arm of chromosome 3, in which VHL is

located, is lost in about 90% of ccRCC tumors146. To a lower extent, PBRM1,

SETD2 and BAP1 genes in chromosome 3 further harbored recurrent somatic point
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mutations147,148,149. Other frequent arm-level aberrations include 7 or 5q gains and

losses of 6q, 8p and 14q127,146,150. Recurrent somatic mutations in the KDM5C gene

result in deregulation of H3K4 methylation which promotes genomic instability in

ccRCC143,151.

The KDM6A gene encodes a histone demethylase and is also recurrently mutated

in ccRCC151. Like the SETD2 gene, the KDM5C and KDM6A genes encode histone

modifiers, highlighting the importance of epigenetic regulation in this type of cancer.

As mentioned before, both these genes are located on chromosome X and might

contribute to the gender disparities in incidence rates.

1.8 Hypothesis and Objectives

Technical variation in whole-genome sequencing data hinders the detection of chal-

lenging genomic variants such as somatic alterations in cancer, small CNVs and

variation in low-mappability regions. These classes of variants are challenging to

detect because the strength of the supporting signal is often comparable to techni-

cal noise. Although some corrections exists in order to minimize the known biases

or mask the effects of repeats, technical bias remains. Moreover, repeat-rich regions

are often discarded by existing methods, explaining their absence from public CNV

databases. Current methods either analyze one genome at a time or pool several

genomes to aggregate evidence rather than to control for technical variation.

We hypothesize that using a set of samples as reference to define and identify

abnormal read coverage could increase the resolution at which CNV can be detected.

We speculate that using large datasets could bypass the need to identify unknown

biases in WGS data and provide a useful baseline for read coverage without mod-

eling complex repeat structures. In addition to the benefits in term of sensitivity,

population-based approaches could also address variation in repeat-rich regions.

The primary objective of this work is to demonstrate the power of population-

based approaches to detect CNV. Thus, the same original idea of using reference
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samples to correct for technical bias was applied to three studies, each addressing

one of the following objectives. The first objective was to show how using refer-

ence samples could help identify somatic arm-level CNVs, even if present in only

a fraction of the tumor cells sequenced. After variant detection, the goal was to

describe the prevalence of somatic loss of chromosome Y in kidney cancer in the

context of other arm-level aberrations. The second objective was to extend this

approach to the detection of CNV in small genomic regions. If the population-based

approach was successful for large somatic CNVs, we aimed at proving that a similar

method could improve the detection of small germline CNVs. Once implemented

and validated, we applied the method to a disease study of 198 epilepsy patients

and 301 controls with the objective of test the importance of small CNVs as genetic

factors of epilepsy. Finally, the last objective was to use this method to investigate

CNV in low-mappability regions. Thanks to its robustness to technical variation,

our population-based method was tested and validated on different repeat profiles

before being used to detect CNVs across 640 genomes of healthy individuals. The

goal here was to produce a genome-wide CNV catalog that was more representative

by including low-mappability regions and to investigate the enrichment of different

repeat families with CNV.
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Chapter 2

Population-Based Detection of
Somatic Loss of Chromosome Y in
Cancer

Preface: Bridging Text between Chapters 1 and 2

In this chapter, we first aimed at detecting somatic arm-level CNVs in kidney cancer.

Although arm-level CNVs are more straightforward to detect than small CNVs, the

difficulty lies in the somatic nature of the variants. Indeed, somatic CNVs are often

present in only a minority of the cancer cells that were sequenced. We also had a

special interest in chromosome Y which is particularly rich in repeated sequences. To

robustly detect somatic arm-level CNV, we propose a population-based approach to

analyze 93 pairs of ccRCC tumors and peripheral blood. By using the read coverage

in the 93 normal blood samples, we show that we can detect somatic CNVs in WGS

even if shared by a small fraction of the tumor cells. We further investigate the

functional impact of somatic loss of chromosome Y in tumors from male patients.

This study was published as an Article in Scientific Reports1. Appendix B

contains supplementary tables and figures from this publication.
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Prague, Studničkova 7, Praha 2, 128 00 Prague, Czech Republic
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2.1 Abstract

Recent genomic studies of sporadic clear cell renal cell carcinoma (ccRCC) have

uncovered novel driver genes and pathways. Given the unequal incidence rates

among men and women (male:female incidence ratio approaches 2:1), we compared

the genome-wide distribution of the chromosomal abnormalities in both sexes. We

observed a higher frequency for the somatic recurrent chromosomal copy number

variations (CNVs) of autosomes in male subjects, whereas somatic loss of chromo-

some X was detected exclusively in female patients (17.1%). Furthermore, somatic

loss of chromosome Y (LOY) was detected in about 40% of male subjects, while mo-

saic LOY was detected in DNA isolated from peripheral blood in 9.6% of them, and

was the only recurrent CNV in constitutional DNA samples. LOY in constitutional

DNA, but not in tumor DNA was associated with older age. Amongst Y-linked genes

that were downregulated due to LOY, KDM5D and KDM6C epigenetic modifiers

have functionally-similar X-linked homologs whose deficiency is involved in ccRCC

progression. Our findings establish somatic LOY as a highly recurrent genetic defect

in ccRCC that leads to downregulation of hitherto unsuspected epigenetic factors,

and suggest that different mechanisms may underlie the somatic and mosaic LOY

observed in tumors and peripheral blood, respectively.

2.2 Introduction

Chromosomal aneuploidy is a common phenomenon in many cancers, and the anal-

ysis of copy number variations (CNVs) across multiple samples has helped identify

relevant driver genes for human cancers. For example, several oncogenes including

MYC, EGFR, ERBB2 and CCND1 are recurrently amplified through chromosomal

or focal gains, while multiple tumor suppressors such as ATM, PTEN and CDKN2A

are commonly deleted in different cancers126.

Clear cell renal cell carcinoma (ccRCC), which accounts for 75–80% of all renal

cell carcinomas, is characterized by loss of chromosome 3p in about 90% of the
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sporadic cases146. Remarkably, 3p harbors the four most commonly mutated genes in

ccRCC whose cancer-driving activities have been established in the disease; VHL144,

PBRM1147, SETD2148, and BAP1149, which are mutated in 80%, 40%, 19% and 12%

of cases, respectively151,152,153. Inactivation of VHL leads to constitutive stabilization

of the hypoxia inducible transcription factors (HIF), and abnormal activation of their

downstream genes, which contribute to cancer development154. The remaining three

genes encode proteins involved in chromatin remodeling and histone modifications,

highlighting the important role of epigenome aberration in the disease146. While

the incidence of ccRCC is increasing worldwide, the male-to-female incidence ratios

are typically within the range of 1.5-2:1.0155, arguing for a sex-specific analysis of

the genomic abnormalities. Here, we set out to investigate the occurrence and the

extent of germline and somatic CNVs in sporadic ccRCC in male and female patients

separately, and to further characterize those affecting sex chromosomes.

2.3 Results and Discussion

Loss of chromosome Y is common in ccRCC Using whole-genome sequencing

(WGS) data of ccRCC and matched constitutional DNA sample pairs, which we

have reported recently143, we interrogated CNVs in DNA from 52 male and 41

female patients (discovery set; Supplementary Table S2.1) by analyzing coverage of

sequencing reads mapped to each chromosome (see Methods). In line with previous

literature, the most frequent somatic CNV was the loss of 3p detected in 91% of

samples, followed by recurrent gains of chromosomes 5q (32%), 7 (23.6%), 12 (13%),

and losses of chromosomes 14q (30%), 8p (29%) and 9 (16%). Overall, tumors from

male patients exhibited higher prevalence for the recurrent chromosomal aberrations,

in particular for gain of 7q (28% in males vs. 17% in females) and deletion of 9p

(25% in males vs. 10% in females) (Fig. 2.1a). In contrast, we observed that loss

of chromosome X (LOX) exclusively happens in female patients (17.1% of female

cases). Given that several X-linked genes escape X-inactivation, and have therefore

two functional copies in females but one in males, this observation suggests that
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presence of a copy of chromosome X may potentially be essential for the survival

of cancer cells. Curiously, whereas no tumors from male patients displayed LOX,

loss of chromosome Y (LOY) was the second most frequent somatic chromosome

aneuploidy in these tumors (36.5% of male subjects, N=19; Fig. 2.1a). The fraction

of cells estimated to be affected by somatic LOY in these patients ranged from

11% to 75%, and in 14 patients somatic LOY was detected in at least 20% of the

cells (Fig. 2.1b). Next, we examined the presence of CNVs in constitutional DNA

isolated from peripheral samples collected from the same patients. Of significance,

LOY was the only recurrent aneuploidy in constitutional DNA of our samples that

was detected in 5 male patients (9.6%; Fig. S2.1), of which 4 showed the deletion

in more than 20% of cells (Fig. 2.1b). Corroborating previous studies156,157, the

observed LOY was associated with older age in patients (P=0.04); the average age

of patients with LOY in the peripheral blood was 68.9 year in comparison to 58.8

year in those without this abnormality. Notably, we did not observe any association

between age of patients and extent of somatic LOY in tumors of the affected patients.

LOY is a whole-chromosome event Given the high prevalence of LOY in tu-

mors and peripheral DNA of male patients, we further analyzed LOY in our sample

series, particularly whether the observed LOY spans the whole chromosome or is

focal. Analysis of sequencing read coverage along chromosome Y showed that the

loss is observed throughout the chromosome in samples affected by LOY (Fig. 2.2a),

suggesting that the deletion affects the whole chromosome. Based on availability of

DNA, we subjected samples from seven of the patients affected with somatic LOY

to verification by an orthogonal Y-Chromosome deletion detection assay surveying

the presence of twenty specific regions of the Y chromosome by polymerase chain re-

action (PCR) (see Methods). Somatic LOY at the chromosomal level was confirmed

in all examined tumors, evident from an attenuated amplification of Y-chromosome-

specific loci in DNA isolated from tumor samples compared to that of the matched

constitutional DNA. This pattern was not observed in samples of other male pa-

tients who had not been identified as being affected by somatic LOY based on the
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analysis of their WGS data (Fig. 2.2b).

To confirm these findings, we screened tumor and matched control DNA sample

pairs of an additional 48 male ccRCC patients (validation set) for LOY using the

above PCR-based assay. This analysis revealed somatic LOY in 20 (42.7%) of the

validation sample set, demonstrating that this is a common genomic aberration in

ccRCC, detected in 39.6% overall (discovery and validation sets; n=100) of male

ccRCC patients (Fig. S2.2). Analysis of association between somatic LOY and

clinical annotations including tumor stage or grade did not show any significant

relationships.

LOY results in downregulation of epigenetic modifier genes We further

examined the possible effect of somatic LOY at the RNA level by interrogating a

RNA-Seq dataset on gene expression in normal and tumor samples from male pa-

tients within the discovery set143. We found that 11 genes had significantly different

patterns of expression in tumors of the patients with and without somatic LOY

(false-discovery rate (FDR)<0.01; Supplementary Table S2.2). These 11 genes were

located on chromosome Y, and while expressed in normal kidney tissue, exhibited

lower expression in tumors of patients harboring somatic LOY, indicating that this

aberration may have functional consequences through deregulation of the affected

genes. Moreover, the level of expression of each gene was found to be inversely cor-

related to the proportion of cells affected by LOY (Fig. 2.3). This observation was

confirmed using gene expression data generated by microarrays, which was available

for 29 tumors of the validation set158 (Fig. S2.3). We surveyed the list of genes af-

fected for potential functionally-relevant candidates. Among these genes, TMSB4Y

has recently been identified as a tumor suppressor gene downregulated in male breast

cancers159, but not connected to ccRCC. Likewise, deletion of KDM5D has been de-

tected in 52% of prostate cancers160. KDM5D encodes a lysine-specific histone H3

demethylase, which plays an important role in epigenetic regulation161. Further-

more, it has been shown that knockdown of KDM5D through RNA-interference

(RNAi) increases cell proliferation and reduces apoptosis in prostate cancer162, sug-
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gesting a tumor suppressor function for this gene. Intriguingly, KDM5C, the X-

linked homologue of KDM5D is recurrently mutated in ccRCC143,151,153, and its

inactivation leads to genomic instability in ccRCC through deregulation of H3K4

methylation163. KDM5D shows 85% sequence identity to KDM5C and the products

of these two genes possess a similar function in demethylating tri-methyl H3K4161,163.

Given this functional similarity, we surveyed the mutational status of KDM5C in

our discovery set, and investigated possible relationships between mutational status

of KDM5C and KDM5D in tumors of male patients. In female patients, KDM5C

was deleted in tumors of 7 cases through somatic LOX, and was affected by fo-

cal somatic deletions in two additional patients. Furthermore, somatic mutations

of KDM5C were present in tumors of 3 patients who were also affected with LOX

(P=0.003, Fisher’s exact test, Fig. S2.4). Overall, KDM5C was affected with so-

matic genomic aberrations in 9 out of 41 (22%) female cases. As KDM5C escapes

the X-inactivation164, the concomitant mutations of KDM5C and LOX in the same

tumors may suggest that this gene is a classical tumor suppressor affected with

bi-allelic inactivation in ccRCC. In male cases, we identified KDM5C mutations in

tumors of 3 patients (5.8%), of which one was also affected by somatic LOY (Fig.

S2.4). We did not detect any mutation or a focal CNV affecting KDM5D in tumors

of the male patients who did not exhibit LOY.

Our list of LOY-associated down-regulated genes (Supplementary Table S2.2)

includes another epigenome modifier with an X-linked homologue that is also recur-

rently mutated in ccRCC; UTY/KDM6C. KDM6C demethylates H3K27, a function

similar to that of KDM6A165. These genes also share over 83% in sequence sim-

ilarity, resulting in highly conserved active sites in their products. Mutations of

KDM6A leading to its inactivation have been recurrently observed in ccRCC151,166,

highlighting this gene as a potential key tumor suppressor in renal cancer. In ad-

dition to being affected by somatic LOX in 7 female patients, KDM6A was also

affected by focal deletion in a female patient in our cohort.

42







CHAPTER 2. DETECTION OF SOMATIC LOSS OF CHROMOSOME Y

of KDM5D and KDM6C, through somatic LOY, may contribute to ccRCC devel-

opment or progression. Our in vitro data shows that over expression of KDM5D in

cancer cells that are affected by LOY reduces cell viability. These findings indicate

that down-regulation of KDM5D through LOY may contribute to the pathogenesis

of renal cancer. However, further detailed analysis through future functional studies

is warranted to understand the exact function and pathway context of KDM5D in

renal cancer.

2.5 Methods

Patient samples and DNA isolation Clinical information for patients included

in this study is presented in Supplementary Table S2.1. Patients undergoing nephrec-

tomy for suspected renal cancer during the period December 2008 to March 2011

at St James’s University Hospital in Leeds, UK; University Hospital Motol, Prague,

Czech Republic; Masaryk Memorial Cancer Institute, Brno, Czech Republic; Th.

Burghele Hospital, Bucharest, Romania; and N. N. Blokhin Cancer Research Centre,

Moscow, Russia, were recruited to the study after informed consent was obtained.

Recruitment in Central and Eastern Europe was coordinated by the International

Agency for Research on Cancer (IARC). All experiments and methods were per-

formed in accordance to the ethics guidelines from the International Cancer Genome

Consortium (ICGC) and to the relevant national regulations and with sampling and

clinical data collection being undertaken according to predefined standard oper-

ating procedures (SOPs) based on guidelines from ICGC. Ethical approvals were

obtained from the Leeds (East) Local Research Ethics Committee, the IARC Ethics

Committee, as well as from local ethics committee for recruiting centers in Czech

Republic, Romania, and Russia. DNA from fresh-frozen tumor tissue samples and

buffy coat was isolated using Autopure (Qiagen) as described previously143, and

were quantified by Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, ON, CAN).
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Inference of LOY from WGS data WGS data of tumor and blood DNA sam-

ples studied here were reported previously143. To detect aneuploidy and LOY from

WGS data, we first measured read coverage across the genome in 5 Kbp bins. In

each sample, the coverage was normalized by the median coverage across the au-

tosomes. We then estimated, for each sample, the median normalized coverage in

each chromosome arm. The only exception was chromosome Y which was consid-

ered as a whole. In order to avoid noise due to mappability issues, we used only the

top 1000 bins with the lowest median divergence from the expected baseline in the

normal samples. We used this normalized median coverage per chromosome arm to

test aneuploidy in each sample. For each chromosome arm (or chromosome Y), a

mixture of two Gaussian distributions was fitted to the empirical distribution of the

median normalized coverage across samples. The main Gaussian was used as the

null distribution (Fig. S2.5) to derive P-values. A chromosome arm was flagged as

aneuploid if the Bonferonni-adjusted P-value was smaller than 0.01 and at least 10%

of cells were affected. The proportion of cell with aneuploidy was estimated as the

proportion of missing/excess coverage. For LOY, we expect a normalized coverage

of 0.5 and the proportion of cells with LOY was (0.5-coverage)/0.5.

We used a logistic regression to test the association of LOY with age. Finally,

the CNVs used for KDM5C or KDM6A deletion investigation were detected by

PopSV173 using the normal samples as reference and 5 Kbp bins.

PCR-based detection of LOY To examine the status of LOY in DNA of tumor

and blood samples, Y Chromosome Deletion Detection System assay, Version 2

(Promega, WI, USA) was used as instructed by the manufacturer. Briefly, 20 specific

regions of the Y chromosome were amplified by PCR using 5 multiplex master

mixes, and PCR products were loaded on a QIAxcel instrument (Qiagen, ON, CAN).

Densities of PCR products were estimated by BioCalculator software (v.3.2) and a

normalization was performed by the control primer pair included in each multiplex

master mix to control the amplification efficacy. We also included samples from three

male subjects without LOY and one female sample to control the performance of the
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assay. Similar to the analysis on WGS data, the probes were first normalized by the

median probe amplification value across the normal samples. Then the median of the

normalized amplification was computed for each sample. It summarized the overall

amplification of chromosome Y in each sample. These values were used to produce

Fig. S2.2 and to identify LOY. Following the same analysis as for the WGS data,

the mixture of Gaussian distributions was fitted on the normalized amplification

of the normal samples. Samples which deviated significantly (P<0.01) from the

expected amplification and with an estimated proportion of affected of cells >10%

were flagged as being affected by LOY.

Gene expression analysis Transcriptome profiles of the tumor samples included

in this study (previously reported in our earlier publication143), were used to exam-

ine differential gene expression between male subjects affected with somatic LOY

and those without this abnormality. RNA-seq data was available for tumors of 34

patients, of which 21 had RNA-seq for matched normal kidney samples. Differen-

tially expressed genes between tumors affected with somatic LOY and those without

this abnormality were identified using Student’s T-Test on log2-transformed RPKM

data, and the Benjamini-Hochberg method was used to correct multiple testing.

Genes with a FDR< 0.01 were considered differentially expressed. A linear regres-

sion was used to test the association between the proportion of cells with somatic

LOY and gene expression (RPKM).

Gene expression microarray data for 29 tumors of validation samples had previ-

ously been reported158, and were used to confirm the anti-correlation between the

proportion of cells with somatic LOY and gene expression levels (log2 intensity).

Cell viability assay Renal cancer cell lines 786-O, A704, Caki-2, ACHN were

obtained from ATCC (Rockville, USA) and cultured in RPMI, EMEM and McCoy

medium supplemented with 10% (v/v) fetal bovine serum (FBS), 100 U/ml penicillin

and 100 lg/ml streptomycin. Cells were incubated at 37C and 5% (v/v) CO2. For

viability assays, 5000 cells were transfected with 100 ng of either KDM5D cDNA-
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expressing (courtesy of Dr. Stephane Richard) or control empty vector (Sigma,

Oakville, Canada) in 96-well plates using Lipofectamine 3000 (Invitrogen) according

to the manufacturer’s instructions. CellTiter-Glo assay (Promega, WI, USA) was

used to assess cell viability after 72 hours post-transfection.

Quantitative real-time PCR (qRT-PCR) Total RNA was extracted from cells

using miRNeasy kit (Qiagen, Toronto, Canada) according to the supplier proto-

cols. 1 µg RNA was reverse transcribed into complementary DNA (cDNA) using

Transcriptor First Strand cDNA Synthesis Kit (Roche, Laval, Canada) following

instructions provided by the manufacturer. Real-time PCR reactions were pre-

pared using LightCycler 480 SYBR green I master kit (Roche), and were run

on a LightCycler 480 instrument (Roche) according to the manufacturer’s rec-

ommendations. Triplicate PCR reactions were performed for each sample to en-

sure reliability. Expression of KDM5D mRNA was normalized to the expression

of the housekeeping gene GAPDH, and was reported as 2−∆Ct. All the primers

were purchased from IDT (Coralville, IA, US). The sequences of primers were

CGTGGAAGGACTCATGACCA (GAPDH forward), GCCATCACGCCACAGTTTC (GAPDH re-

verse), CGCAGCTTTGAAGAGCTAAG (KDM5D forward) and CAGCTGTGGAGTGTCCATCC (KDM5D

reverse).
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Chapter 3

Population-Based Detection of
CNVs in Epilepsy Patients

Preface: Bridging Text between Chapters 2 and 3

In this chapter, the population-based approach used to detect arm-level CNV was

extended to the detection of small CNV across the genome. Instead of testing one

chromosomal arm at a time, the genome is tiled and each region is tested for CNV

using the same strategy: a set of reference samples is used to deal with technical

variation. By better integrating technical variation, our goal is to improve the

robustness and sensitivity of the CNV detection. Notably, this chapter introduces

PopSV, the CNV detection method implemented in the context of this thesis, and

its application to a disease study. PopSV is later used in chapter 4 to investigate

CNVs in low-mappability regions.

In this Research Article published in PLoS Genetics2, we first introduce the

rationale for the method: the presence of visible technical bias in WGS coverage

data. After an overview of the method, we show that it is more sensitive than

other methods and avoids systematic calls. Finally, we apply PopSV to WGS data

from 198 epilepsy patients and 301 controls and show CNV enrichments in exons

and non-coding regions that potentially explain an important fraction of patients.

Appendix C contains supplementary tables, figures and information.
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Global characterization of copy number
variants in epilepsy patients from whole

genome sequencing
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3 Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi,
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3.1 Abstract

Epilepsy will affect nearly 3% of people at some point during their lifetime. Previous

copy number variants (CNVs) studies of epilepsy have used array-based technology

and were restricted to the detection of large or exonic events. In contrast, whole-

genome sequencing (WGS) has the potential to more comprehensively profile CNVs

but existing analytic methods suffer from limited accuracy. We show that this is

in part due to the non-uniformity of read coverage, even after intra-sample normal-

ization. To improve on this, we developed PopSV, an algorithm that uses multiple

samples to control for technical variation and enables the robust detection of CNVs.

Using WGS and PopSV, we performed a comprehensive characterization of CNVs

in 198 individuals affected with epilepsy and 301 controls. For both large and small
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variants, we found an enrichment of rare exonic events in epilepsy patients, especially

in genes with predicted loss-of-function intolerance. Notably, this genome-wide sur-

vey also revealed an enrichment of rare non-coding CNVs near previously known

epilepsy genes. This enrichment was strongest for non-coding CNVs located within

100 Kbp of an epilepsy gene and in regions associated with changes in the gene

expression, such as expression QTLs or DNase I hypersensitive sites. Finally, we re-

port on 21 potentially damaging events that could be associated with known or new

candidate epilepsy genes. Our results suggest that comprehensive sequence-based

profiling of CNVs could help explain a larger fraction of epilepsy cases.

3.2 Author Summary

Epilepsy is a common neurological disorder affecting around 3% of the population.

In some cases, epilepsy is caused by brain trauma or other brain anomalies but there

are often no clear causes. Genetic factors have been associated with epilepsy in the

past such as rare genetic variations found by linkage studies as well as common

genetic variations found by genome-wide association studies and large copy-number

variants. We sequenced the genome of ∼200 epilepsy patients and ∼300 healthy

controls and compared the distribution of deletion (loss of a copy) and duplication

(additional copy) of genomic regions. Thanks to the sequencing technology and a

new method that takes advantage of the large sample size, we could compare the

distribution of small copy-number variants between epilepsy patients and controls.

Overall, we found that small variants are also associated with epilepsy. Indeed,

the genome of epilepsy patients had more exonic copy-number variants, especially

when rare or affecting genes with predicted loss-of-function intolerance. Focusing

on regions around genes that have been previously associated with epilepsy, we also

found more non-coding variants in epilepsy patients, especially deletions or variants

in regulatory regions. Finally, we provide a list of 21 regions in which we found

likely pathogenic variants.

51



CHAPTER 3. DETECTION OF CNVS IN EPILEPSY PATIENTS

3.3 Introduction

Structural variants (SVs) are defined as genetic mutations affecting more than 50

base pairs and encompass several types of rearrangements: deletion, duplication,

novel insertion, inversion and translocation. Deletions and duplications, which af-

fect DNA copy number, are collectively known as copy number variants (CNVs).

SVs arise from a broad range of mechanisms and show a heterogeneous distribu-

tion of location and size across the genome4,10,11. Numerous diseases are caused

by SVs with a demonstrated detrimental effect24,26. While cytogenetic approaches

and array-based technologies have been used to identify large SVs, whole-genome

sequencing (WGS) has the potential to uncover the full range of SVs both in terms

of type and size174,175. SV detection methods that use read-pair and split read infor-

mation67 can detect deletions and duplications but most CNV-focused approaches

look for an increased or decreased read coverage, the expected consequence of a du-

plication or a deletion. Coverage-based methods exist to analyze single samples41,

pairs of samples40 or multiple samples33,42,176 but the presence of technical bias in

WGS remains an important challenge. Indeed, various features of sequencing exper-

iments, such as mappability48,49, GC content50, replication timing51, DNA quality

and library preparation177, have a negative impact on the uniformity of the read

coverage52.

Epilepsy is a common neurological disorder characterized by recurrent and un-

provoked seizures. It is estimated that up to 3% of the population will suffer from a

form of epilepsy at some point during their lifetime. Although the disease presents a

strong genetic component that can be as high as 95%, typical “monogenic” epilepsy

is rare, accounting for only a fraction of cases178,179. Genetic factors have been as-

sociated with epilepsy in the past such as rare genetic variations found by linkage

studies as well as common genetic variations found by genome-wide association stud-

ies180,181 For example, a meta-analysis combining multiple epilepsy cohorts found

positive associations with the disease182, the strongest in SCN1A, a gene already

associated with the genetic mechanism of the disease via linkage studies and subse-
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quent sequencing183 or more recently as harboring de novo variants184. Thanks to

array-based technologies, surveys of large CNVs (>50 Kbp) first associated CNVs

in genomic hotspots such as 15q11.2 and 16p13.11 with generalized epilepsy185,186.

Other studies have further shown the importance of large and de novo CNVs as

well as identified a few associations with specific genes119,120,124,125,187,188. Rare

genic CNVs were typically found in around 10% of epilepsy patients19,119,125 and

CNVs larger than 1 Mbp were significantly enriched in patients compared to con-

trols19,121,122,188. Unfortunately, small CNVs and other types of SVs could not be

efficiently or consistently detected using these technologies, hence much remains to

be done.

To more comprehensively characterize the role of CNVs in epilepsy, we performed

whole-genome sequencing of epileptic patients from the Canadian Epilepsy Network

(CENet), the largest WGS study on epilepsy to date. In the present study, we as-

sessed the frequency of CNVs in epileptic individuals using 198 unrelated patients

and 301 healthy individuals. Using this data, we showed that technical variation in

WGS remains problematic for CNV detection despite state-of-the-art intra-sample

normalization. To correct for this and to maximize the potential of the CENet co-

horts, we developed a population-based CNV detection algorithm called PopSV. Our

method uses information across samples to avoid systematic biases and to more pre-

cisely detect regions with abnormal coverage. Using two public WGS datasets143,189,

and additional orthogonal validation, we showed that PopSV outperforms other an-

alytical methods both in terms of specificity and sensitivity, especially for small

CNVs. Using this tool, we built a comprehensive catalog of CNVs in the CENet

epilepsy patients and studied the properties of these potentially damaging structural

events across the genome.
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3.4 Results

Technical bias in read coverage

We sequenced the genomes of 198 unrelated individuals affected with epilepsy and

301 unrelated healthy controls. Because CNV detection relies on read coverage we

first investigated the presence of technical bias and the value of standard corrections

and filters (e.g. GC correction, mappability filtering). The genome was fragmented

in 5 Kb bins and we counted the number of uniquely mapped reads in each bin.

In contrast to simulated datasets, we found that the inter-sample mean coverage in

each bin varied between genomic regions even after stringent corrections and filters

(Fig. 3.1a). Supporting this observation, the bin coverage variance across samples

was also lower than expected and varied between regions (Fig. S3.1a). We also

observed experiment-specific biases. In particular, some samples consistently had

the highest, or the lowest, coverage across large portions of the genome (Fig. S3.1b).

These observations were not unique to our data and could also be observed in two

public WGS datasets, and persisted even after correcting the GC bias and mappa-

bility using the more elaborate model from the QDNAseq pipeline190 (Fig. S3.2).

Our results across multiple samples suggest that existing GC bias and mappability

corrections190 cannot correct completely the technical variation in read coverage.

This fluctuation of coverage has implications for CNV detection approaches that

assume a uniform distribution40,41,191 after standard bias correction and will lead to

false positives.

CNV detection with PopSV

To better control for technical bias, we developed PopSV, a new SV detection

method. PopSV uses read depth across the samples to normalize coverage and detect

change in DNA copy number (Fig. 3.1b). The normalization step here is critical

since most approaches will fail to give acceptable normalized coverage scores (Fig.

S3.1b). Moreover, with global median/variance adjustment or quantile normaliza-
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samples (60% of the calls found in >95% of the samples, Fig. S3.4). PopSV’s calls

were better distributed across the frequency spectrum, hence more informative as

we expect the relative frequency of disease-related variants to be rare. In addition,

the pedigree structure was more accurately recovered when the CNVs were used to

cluster the individuals in the Twins dataset (Fig. S3.5). The agreement with the

pedigree was computed by the Rand index after clustering the individuals with three

hierarchical clustering approaches (see Supplementary Information). Looking at the

replication between 10 pairs of monozygotic twins, PopSV detected more replicated

CNVs compared to other methods, while maintaining similar replication rates (Fig.

3.1c). The CNV calls were further filtered with gradually more stringent significance

thresholds and PopSV remained superior in term of number of replicated calls (Fig.

S3.6). When investigating the overlap of calls between different methods, we noticed

that PopSV was better recovering calls from CNVnator41, FREEC40, cn.MOPS42 or

LUMPY67, especially if found by two or more methods (Fig. S3.7). For example,

around 92% of the CNVs called by other methods were also found by PopSV when

focusing on calls found in at least two methods. Similar results were also obtained in

a cancer dataset where we looked for replicated germline CNVs in the paired tumor

(Fig. S3.8). Finally, we repeated the twin analysis using 500 bp bins and observed

high consistency with the 5 Kbp calls (Fig. S3.9). These results suggest that PopSV

can accurately detect around 75% of events that are as large as half the bin size

used (see Supplementary Information).

CNVs in the CENet cohorts and experimental validation

Having demonstrated the quality of the PopSV calls, we applied our tool to the

epilepsy and control cohorts. The epilepsy cohort comprises 198 individuals diag-

nosed with either generalized (n=160), focal (n=32) or unclassified (n=6) epilepsy.

CNVs ranged from 5 Kbp to 3.2 Mbp with an average size of 9.98 Kbp. We observed

an average of 870 CNVs per individual accounting for 8.7 Mb of variant calls (Fig.

3.2a). This is around 9 times more variants and considerably smaller than in typical
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array-based studies106,111, such as the previous epilepsy surveys19,119,120,125, although

a similar size distribution was previously obtained using denser arrays24 but were

never applied to epilepsy (Fig. S3.10). Next, we annotated each variant using four

public SV databases5,33,107,192 as well as an internal database of the germline calls

from PopSV in the two public datasets used earlier (see Supplementary Information).

For each CNV, we derived the maximum frequency across these databases and de-

fined as rare any region consistently annotated in less than 1% of the individuals (Fig.

3.2b). In total, we identified 12,480 regions with rare CNVs in the epilepsy cohort

including: 8,022 (64.3%) with heterozygous deletions, 21 (0.2%) with homozygous

deletions and 4,850 (38.9%) with duplications. Although the overall amount of rare

CNVs was not higher in epilepsy patients, the proportion of deletion was signifi-

cantly higher compared to controls (χ2 test: P-value 10−7). Next, we selected 151

CNVs and further validated them using a Taqman CNV assay and Real-Time PCR.

To explore PopSV’s performance across different CNV profiles, we selected variants

of different types, sizes and frequencies. We found that the calls were concordant in

90.7% of the cases (Table 3.1 and S3.1). As expected, the estimated false positive

rate was slightly higher for rare or smaller variants (12.1% for rare CNVs; 15.1% for

CNV <20 Kbp). Furthermore, we noted that calls supported by both PopSV and

LUMPY (when available) had a similar validation rate as calls found by PopSV only

(86.2% and 87.5% respectively).

CNV enrichment in exonic regions

To assess the role of CNVs in the pathogenic mechanism of epilepsy, we evaluated the

prevalence of exonic CNVs in our epileptic cohort compared with healthy controls.

First, focusing on CNVs larger than 50 Kbp, we found no difference between epileptic

patients and controls (Fig. 3.2c). As expected, we observed fewer CNVs overlapping

exonic sequence than expected by chance but similar levels for both groups. The

number of CNVs overlapping exonic sequences of genes intolerant to loss-of-function

mutations193 was even lower. Interestingly, the coding regions of those genes were
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Table 3.1: Real-Time PCR validation rates of PopSV calls.

Region Validation rate
Total 151 0.907
CNV type
Deletion 102 0.902
Duplication 49 0.918

Frequency in databases
0 26 0.923
(0, 0.01] 24 0.833
(0.01, 1] 101 0.921

Carrier in CENet cohorts
1 21 0.857
2 19 0.947
> 2 111 0.910

Size (Kbp)
< 20 73 0.849
(20, 100] 38 0.974
> 100 40 0.950

Number and proportion of regions validated for CNVs of different types, sizes and
frequencies.

and all genes. The exonic enrichment was significant for genes with predicted loss-

of-function intolerance and for rare variants (permutation P-value<0.001, Figs 3.2c

and S3.11). In both cohorts, most of the rare exonic CNVs were private, i.e. present

in only one individual. However, we observed that rare exonic CNVs were less likely

private in the epileptic patients (permutation P-value<0.001, Fig. S3.12a). We

replicated this result using only individuals with a similar population background

(French-Canadians, Fig. S3.12b). Overall we concluded that rare CNVs were not

only enriched in exons but also affected exons more recurrently in the epilepsy cohort

as compared to controls.

CNV enrichment in and near epilepsy genes

We then sought to evaluate if there was an excess of CNVs disrupting epilepsy-

related genes or nearby functional regions. We first retrieved genes whose exons

were hit by rare deletions or duplications and evaluated how many were known

epilepsy genes based on a list of 154 genes previously associated with epilepsy118

(Fig. 3.3a). Because epilepsy genes tend to be large, we controlled for the gene size

when testing for enrichment (Fig. S3.13a). In the epilepsy cohort only, we noted a
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clear enrichment for epilepsy genes hit by rare deletions (Fig. S3.13b). Moreover,

the enrichment became stronger for rare CNVs. For instance, the exons of 921 genes

were disrupted in the epilepsy cohort when considering deletions completely absent

from the public and internal databases, 17 of which were epilepsy genes (P-value

0.015, Fig. 3.3b). In addition, we observed significantly more epilepsy patients with

a rare non-coding CNV close to an epilepsy gene compared to control individuals

(Fig. S3.14a). Interestingly, this enrichment was stronger for non-coding deletions

(Fig. S3.14b). We further explored the distribution of rare non-coding deletions

by testing each epilepsy gene for a difference in mutation load between patients

and controls. The GABRD gene had the strongest and only nominally significant

association with four non-coding deletions among the 198 epileptic patients and none

in the 301 controls. GABRD encodes the delta subunit of the gamma-aminobutyric

acid A receptor and has been associated with juvenile myoclonic epilepsy194. In our

cohort, two of the four patients with a rare non-coding deletion close to GABRD had

been diagnosed with this syndrome, including one patient with a 2.7 Kbp deletion

located only 3 Kbp upstream of GABRD’s transcription start site (Fig. S3.15a).

Although none survived multiple testing correction, we noted that the strongest

associations were all in the direction of a higher mutation load in the epilepsy cohort

rather than in the control cohort.

To get a better idea of the functional regions close to epilepsy genes, we re-

trieved their associated eQTLs in the GTEx database195 and the DNase hypersen-

sitivity sites associated with their promoter regions196. Notably, focusing on rare

non-coding CNVs overlapping these functional regions, the enrichment in epilep-

tic patients was greatly strengthened and clearly present up to 100 Kbp from an

epilepsy gene (Kolmogorov-Smirnov test: P-value 9 × 10−5, Fig. 3.3c). Comparing

epilepsy patients and controls, the odds ratio of having such a CNV at a distance

of 100 Kbp or less from an exon was 1.33 and gradually increased the closer to the

exon (2.9 for CNVs at 5 Kbp or less, Fig. S3.16). These non-coding CNVs were

rare even in the epileptic cohort, but collectively represented an important frac-
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believe these CNVs to be of high-interest for the identification of disease causing

genes. Among these CNVs of high-interest, a duplication of a regulatory region 5

Kbp downstream of CSNK1E was detected and validated in two different patients

but absent from our controls and the public and internal databases (Fig. S3.15b).

Another example is a short deletion of an extremely conserved region downstream of

FAM63B, detected in one patient and overlapping expression QTLs for this epilepsy

gene (Fig. S3.15c).

Putatively pathogenic CNVs

Next, we used an array of criteria to select the rare CNVs (less than 1% in 301 con-

trols) with the highest disruptive potential in the epilepsy cohort. Priority was given

to exonic CNVs in genes already known to be associated with epilepsy. For CNVs

in other genes, we also prioritize recurrent variants and deletions in genes highly

intolerant to loss-of-function mutations. In total, we identified 21 such putative

pathogenic CNVs (Tables 3.2-3.3 and Table S3.2). Out of these, 8 directly affected

a gene previously associated with epilepsy118 (Table 3.2). In particular, we identified

a deletion resulting in the loss of more than half of the DEPDC5 gene in a patient

affected with partial epilepsy. A number of point mutations have previously been

reported in this gene for the same condition197,198. We also identified two deletions

and one duplication in CHD2 gene (see Fig. 3.4). The first deletion is large and af-

fects a major portion of the gene while the second is a small 4.6 Kbp deletion of exon

13, the last exon of CHD2’s second isoform (Fig. S3.17). No exon-disruptive CNVs

were reported in any individuals from the control cohort. This gene was previously

associated with patients suffering from photosensitive epilepsy199. Interestingly, all

three patients carrying the CNVs in CHD2 have been diagnosed with eyelid my-

oclonia epilepsy with absence, the same diagnosis that was largely enriched in the

Galizia et al. study. Other known epilepsy genes affected by deletions include LGI1

and the 15q13.3 region.

Four of the 21 putative pathogenic CNVs were found in more than one individual
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to a genomic hotspot whose deletions were previously associated with epilepsy119

and other neurological disorders. Finally, the remaining putative pathogenic CNVs

were also associated with a number of genes (see Table S3.2). However, as we lack

additional evidence for those specific CNV regions, we propose that these genes

should be assessed in independent epilepsy cohorts. Of note, one patient had a rare

170 Kbp deletion encompassing three exons of the PTPRD gene which is predicted

to be highly intolerant to loss-of-function mutations (pLI=1)193. Rare deletions in

this gene were previously found in four independent individuals with attention-deficit

hyperactivity disorder200 and associated with intellectual disability201. In addition,

de novo deletions were found in an individual with autism117 and more recently in

a patient with epileptic encephalopathy124. A common intronic variant in PTPRD

was also associated with remission of seizures after treatment in a clinical cohort of

epilepsy patients202.

Table 3.3: Recurrent CNVs with a pathogenic profile.

Patient Epilepsy type Syndrome
Copy

Chr. CNV start CNV end
Gene with

Taqman probe
Discovery Replication

number exon disrupted Patients Controls Patients Controls
CNET0184 Generalized Lennox-Gastaut syn-

drome
3

2 32625001 33335000 TTC27;LTBP1;BIRC6 Hs03387774 cn 2 DUP 0 2 DUP 0

CNET0097 Generalized Eyelid myoclonia
epilepsy with absence

3

CNET0020 Generalized Juvenile myoclonic
epilepsy

1
12 7995001 8125000 SLC2A3;SLC2A14 Hs04406005 cn 2 DEL 2 DEL 2 DEL 2 DEL

CNET0198 Focal Frontal lobe epilepsy 1
CNET0012 Generalized Idiopathic generalized

epilepsy
3

15 90845001 90955000 ZNF774;IQGAP1 Hs03895490 cn 2 DUP 0 (1 DEL) 0

CNET0167 Generalized Childhood absence
epilepsy

3

CNET0063 Generalized Idiopathic generalized
epilepsies

3
16 15460001 16290000

KIAA0430;MPV17L;
NPIPA5;C16orf45;
ABCC6;NDE1;
FOPNL;ABCC1;MYH11

Hs05396556 cn 1 DUP + 1 DEL 0 1 DEL 1 DUP

CNET0037 Generalized Idiopathic generalized
epilepsies

1

The 198 epileptic patients and 301 controls represent the discovery set. The
replication set contains 325 epileptic patients and 380 controls.

3.5 Discussion

Although several tools exist for the detection of CNVs using WGS data, we found

that none of them could efficiently account for technical biases, thus resulting in

limited sensitivity. To improve on this, we developed a new tool, PopSV, which we

demonstrated was able to accurately detect CNVs, including rare and small events.

A key aspect of our approach is the use of a set of reference samples to identify
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abnormal read coverage. In this context, the choice and number of reference samples

will have an effect on the analysis. Results from running PopSV using different

reference cohort sizes suggest that CNV calls are consistent across runs but that a

higher number of reference samples increases the sensitivity and robustness of the

CNV detection (Fig. S3.18). Based on these results, we recommend PopSV when 20

samples or more can be used as reference. In a given study, all samples can be used as

a reference, or a subset of a few hundreds if the total sample size is extremely large.

Although variants with frequency around 50% might not be detected, PopSV excels

at detecting less frequent variants, smaller variants or variants in challenging regions

such as repeat-rich regions. In a case/control design, the control samples could be

used as reference in order to maximize the detection of case-specific variants. In the

current study we used both epilepsy patients and controls as reference in order to

be able to directly compare the observed CNV distributions. Finally, in a cancer

project with paired normal and tumor samples, only normal samples should be used

as reference such that PopSV can detect somatic CNVs of any frequency.

To maximize performance, the same library preparation, sequencing and data

pre-processing should be employed on all the samples. To identify potential batch

effects, a principal component analysis of read coverage was implemented as part of

the PopSV package and is recommended to assess the homogeneity of the reference

samples. The read length and aligner can lead to drastic changes in the read coverage

and should be consistent across the cohort when analyzed with PopSV. This is

particularly important in repeat-rich regions. Although the different datasets were

produced by different sequencing and pre-processing protocols and showed varying

degrees of technical bias (Fig. 3.1a, S3.1 and S3.2), the performance of PopSV

was comparable when benchmarking the methods in the two public datasets and

experimentally validating calls in the CENet cohort.

PopSV’s approach does not require a uniform read coverage and integrate the

coverage variation separately in each studied region. For these reasons, it would

be straightforward to analyze targeted sequencing data, such as exome-sequencing.
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PopSV could also be extended for the detection of other types of SVs such as balanced

SVs. To do this, instead of counting properly mapped reads, the method could be

modified to test for an excess of discordant reads. Finally, additional modules could

be added to PopSV to help characterize the detected variants. For instance, instead

of computing a copy-number estimate from the average coverage in the reference,

a HMM approach including all samples could provide a better genotyping strategy.

Similar to other approaches41,50, an additional step in the pipeline could explore the

effect of the bin size on the variation in read coverage across the population and

suggest an optimal bin size.

As in previous array-based studies19,121,122, we observed an enrichment of large

rare exonic CNVs in patients compared to controls. However, thanks to the resolu-

tion of WGS and PopSV, we found that the global distribution of small CNVs (<50

Kbp) in 198 unrelated epilepsy patients was also skewed towards rare exonic CNVs.

In addition, genes disrupted by rare deletions in patients were enriched for previously

known epilepsy genes. These observations support the association of small CNVs

with epilepsy and could not have been detected in previous array-based studies.

We also observed a clear enrichment of non-coding CNVs in the neighborhood

of previously implicated genes. When focusing on CNVs seen only in the epilepsy

cohort and around epilepsy genes, 10.1% of epilepsy patients have an exonic CNVs

and our results shows that up to 28.8% of patients harbor non-coding CNVs of high-

interest in the proximity of epilepsy genes. These non-coding variants are present

in the epilepsy cohort only and located in annotated regulatory regions associated

to known epilepsy genes. Although it is challenging to directly test their functional

impact, their frequency and location suggest a putative importance in the genetic

mechanism of epilepsy and should be further investigated in the future.

Finally, to better understand the impact of these findings on an individual scale,

we selected CNVs with the highest pathogenic potential within our patients. These

CNVs highlighted known but also potentially new epilepsy genes. Using a second

epilepsy cohort, we were also able to identify two chromosomal regions that were
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recurrently disrupted by CNVs. These findings highlight the benefits of having a

comprehensive survey of CNVs when trying to understand the genetic causes of a

disease.

3.6 Materials and Methods

Ethics Statement

This study was approved by the Research Ethics Board at the Sick Kids Hospital

(REB number 1000033784) and the ethics committee at the Centre Hospitalier

Universitaire de Montréal (project number 2003-1394,ND02.058-BSP(CA)). Before

their inclusion in this study, patients or parents (when needed) had to give written

informed consents.

Epilepsy patients and sequencing

Patients were recruited through two main recruitment sites at the Centre Hospitalier

Universitaire de Montréal (CHUM) and the Sick Kids Hospital in Toronto as part

of the Canadian Epilepsy Network (CENet). The main cohort of this study was

constituted of 198 unrelated patients with various types of epilepsy; 85 males and

113 females. The mean age at onset of the disease for our cohort was 9.2 (±6.7)

years. Table S3.3 presents a detailed description of the clinical features for the

various individuals recruited in this study. 301 unrelated healthy parents of other

probands from CENet were also included in this study and used as a control cohort.

DNA was exclusively extracted from blood DNA.

Libraries were generated using the TruSeq DNA PCR-Free Library Preparation

Kit (Illumina) and paired-end reads of size 125 bp were sequenced on a HiSeq 2500 to

an average coverage of 37.6x ± 5.6x. Reads were aligned to reference Homo sapiens

b37 with BWA203. Finally, Picard was used to merge, realign and mark duplicate

reads. Raw sequence data has been deposited in the European Genome-phenome

Archive, under the accession code EGAS00001002825. For more details, see Supple-

67

https://www.ebi.ac.uk/ega/studies/EGAS00001002825


CHAPTER 3. DETECTION OF CNVS IN EPILEPSY PATIENTS

mentary Information.

Public WGS datasets

Two high-coverage public datasets were used to benchmark PopSV against existing

methods.

A Twin study provided WGS sequencing data for 45 individuals, including 10

monozygotic twin quartets from the Quebec Study of Newborn Twins189. All pa-

tients gave informed consent in written form to participate in the Quebec Study of

Newborn Twins. Ethic boards from the Centre de Recherche du CHUM, from the

Université Laval and from the Montreal Neurological Institute approved this study.

DNA was extracted from blood and sequencing was done on an Illumina HiSeq 2500

(paired-end mode, fragment length 300 bp). The reads were aligned using a modified

version of the Burrows-Wheeler Aligner203 (bwa version 0.6.2-r126-tpx with thread-

ing enabled). The options were ’bwa aln -t 12 -q 5’ and ’bwa sampe -t 12’.

Aligned reads are available on the European Nucleotide Archive under ENA PR-

JEB8308. The 45 samples had an average sequencing depth of 40x (minimum 34x

/ maximum 57x).

A cancer dataset from a study of renal cell carcinoma143 was also used. 95 pairs

of normal/tumor tissues were sequenced using GAIIx and HiSeq2000 instruments.

Paired-end reads of size 100 bp totaled an average sequencing depth of 54x (minimum

26x / maximum 164x). Reads were trimmed with FASTX-Toolkit and mapped per

lane with BWA203 backtrack to the GRCh37 reference genome. Picard was used to

adjust pairs coordinates, flag duplicates and merge lanes. Finally, realignment was

done with GATK. Raw sequence data has been deposited in the European Genome-

phenome Archive, under the accession code EGAS00001000083. More details can

be found in Scelo et al.143.
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Testing for technical biases in WGS

To investigate the bias in read depth (RD), we fragmented the genome in non-

overlapping bins of 5 Kbp and counted the number of properly mapped reads. In

each sample, we corrected for GC bias and removed bins with extremely low or high

coverage (see Supplementary Information). Then, read counts across all samples

were combined and quantile-normalized. Using simulations and permutations, we

constructed two control RD datasets with no region-specific or sample-specific bias.

We computed the mean and standard deviation of the coverage in each bin across

samples. Next, to investigate experiment-specific bias, we retrieved which sample

had the highest coverage in each bin. Then we computed, for each sample, the

proportion of the genome where it had the highest coverage. The same analysis was

performed monitoring the lowest coverage. This analysis was performed separately

on the CENet dataset, the Twin dataset and the normal samples from the cancer

dataset. On the Twin dataset, the same analysis was also run after correcting the

read coverage following the QDNAseq pipeline190 (see Supplementary Information).

PopSV

The main idea behind PopSV is to assess whether the coverage observed in a given

location of the genome diverges significantly from the coverage observed in a set of

reference samples. PopSV was implemented in an R package (see Data and code

availability). The genome is first segmented into bins and the number of reads

with proper mapping in each bin is counted for each sample. In a typical design,

the genome is segmented in non-overlapping consecutive windows of equal size, but

custom designs could also be used. With PopSV, we propose a new normalization

procedure which we call targeted normalization that retrieves, for each bin, other

genomic regions with similar profile across the reference samples and uses these bins

to normalize read coverage (see Supplementary Information). Our targeted normal-

ization was compared to global approaches that adjust for the median coverage,

or quantile-based approaches. After normalization, the value observed in each bin
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is compared with the profiles observed in the reference samples and a Z-score is

calculated (Fig. 3.1b). False Discovery Rate (FDR) is estimated based on these

Z-score distributions and a bin is marked as abnormal based on a user-defined FDR

threshold. Consecutive abnormal bins are merged and considered as one variant.

In PopSV’s R package, circular binary segmentation204 can also be used to merge

bins into variant regions. Copy number was estimated by dividing the coverage in

a region by the average coverage across the reference samples, multiplied by 2 (see

Supplementary Information).

Validation and benchmark of PopSV

We compared PopSV to CNVnator41, FREEC40 and cn.MOPS42, three popular RD

methods that can be applied to WGS datasets. We also ran LUMPY67 which uses

an orthogonal mapping signal: the insert size, orientation and split mapping of

paired reads. For LUMPY, all the CNVs (deletions and duplications) and intra-

chromosomal translocations (labeled as ’BND’ in Lumpy’s output) larger than 300

bp were kept for the upcoming analysis. These methods were run on the two publicly

available datasets, using 5 Kbp bins for the RD methods.

First, we compared the frequency at which a region is affected by a CNV using

the calls from the different methods. To investigate the presence of systematic calls

in each method, we compute how many of the calls in a typical sample are called

at different frequencies in the dataset. For example, on average, how many calls in

one sample are called in more than 90% of the samples. In the Twin dataset, the

samples were clustered using the CNV calls from each method. Different linkage

criteria were used for the hierarchical clustering (see Supplementary Information).

The Rand index estimated the concordance between the clustering and the known

pedigree (family-level). Next, we measured the number of CNVs identified in each

twin that were also found in their monozygotic twin. We removed calls present in

more than 50% of the samples to ensure that systematic errors were not biasing our

replication estimates. Hence, a replicated call is most likely true as it is present in
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a minority of samples but consistently in the twin pair. For CNVnator, LUMPY and

PopSV, the eval1/eval2 columns, number of supporting reads and adjusted P-values

(respectively) were used to gradually filter low-quality calls and explore their effect

on the replication metrics. In addition to their replication, we annotated the calls

when their region overlapped a call found by other methods in the same sample.

For calls found by at least two methods, we computed the proportion of calls from

a method found by each of the other methods.

The approach described previously comparing pairs of twins was also applied in

the cancer dataset, on pairs of normal/tumor samples. In this case, a replicated call

is found in the normal sample and in the paired tumor sample. Finally, we compared

calls using small bins (500 bp) and calls using larger bins (5 Kbp). This comparison

explores the quality of the calls, the size of detectable events and the resolution for

different bin sizes. First, we counted how many small bin calls supported any large

bin call. We then looked at the proportion of small bin calls of different sizes that

were also found in the large bin calls.

CNV detection in the CENet cohorts

CNVs were called using PopSV using 5 Kbp bins and all the samples from both the

epilepsy and control cohorts as reference. We annotated the frequency of the CNVs

using germline CNV calls from the Twin and cancer datasets (internal database) as

well as four public CNV databases from the 1000 Genomes Project5,33, the Genome

of Netherlands107 and the Simons Genome Diversity Project192. CNVs were anno-

tated with the maximum frequency in the databases. Hence, a rare CNV is defined

as present in less than 1% of the samples in each of the five CNV databases.

To test for a difference in deletion/duplication ratio among rare CNVs, we com-

pared the numbers of rare deletions and duplications in the epilepsy patients and

controls using a χ2 test. The same test was performed after downsampling the

controls to the sample size of the epilepsy cohort.
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Validation by Taqman RT-PCR

We first selected CNV calls in epilepsy patients that spanned at least 2 consecutive

bins. We kept exonic CNVs of different sizes and overlapping a Taqman probe. A

second batch of CNVs, containing small non-coding CNVs, was also sent for vali-

dation. Here, hundreds of non-coding CNVs spanning only one bin were randomly

selected. When possible the breakpoints were manually fine-tuned from manual

inspection of a base-pair level coverage representation or using IGV205; the break-

points remained unchanged when they could not be refined. Finally, we kept regions

overlapping a Taqman probe.

Probes were selected using the assay search tool on the Thermofisher website. All

probes were tested for patients and controls that were called in PopSV as well as an

additional 10 control individuals to ensure the validity of the probe. For each CNV,

one assay was chosen in the middle of the genomic region of interest and located

in an exon when possible. All reactions with TaqMan Copy Number Assays were

performed in duplex using the FAM dye label based assay for the target of interest

(Taqman copy number assay, Made to order, #4400291, Applied Biosystems by Life

Technologies) and the VIC dye label based TaqMan Copy Number Reference Assay

for RNase P (4403326, Life technologies). Amplification reactions (10µL), which

were performed in quadruplicate, consisted of: 10 ng gDNA, 1X TaqMan Copy

Number Assay, 1X TaqMan Copy Number Reference Assay, RNase P, 1X TaqMan

Genotyping Master Mix (4371355, Life Technologies) or 1X SensiFAST Probe Lo-

ROX Kit (BIO-84020, Froggabio). PCR was performed with an Applied Biosystems

QuantStudio7 flex Real-Time PCR system using the standard curve settings and the

default universal cycling conditions: 95 ◦C 10 minutes followed by 40 cycles: 95 ◦C

15 seconds, 60 ◦C 60 seconds. Data was analyzed with QuantStudio Real-Time PCR

system software v1.2 (Applied Biosystems by Life Technologies) using autobaseline

and manual Ct threshold of 0.2. Results export files were opened in CopyCallerTM

Software v2.0 for sample copy number analysis by the relative quantitation method.

The median ∆Ct was used as the calibrator sample in the analysis settings.
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CNV enrichment in exonic regions

For each cohort (epilepsy and control), we retrieved the CNV catalog by merging

CNV that are recurrent in multiple samples. Hence, the CNV catalog represents all

the different CNVs found in each cohort. Because the epilepsy and control cohorts

have different sample sizes, the CNV catalogs for each cohort were built using 150

randomly selected samples. For each sub-sampling and each cohort, control regions

were selected to fit the size distribution of the CNV catalog and the overlap with

centromeres, telomeres and assembly gaps (see Supplementary Information). The

fold-enrichment represents how much more/less of the CNVs overlap an exon com-

pared to the control regions. To robustly compare the two cohorts, we computed

the median difference in fold-enrichment between the CNV catalogs from patients

and controls across 100 sub-sampled catalogs. The cohort labels of the CNV cat-

alogs were then permuted 10,000 times and the analysis repeated to derive a null

distribution for the median difference in fold enrichment. A permuted P-value was

computed from the observed difference and the null distribution.

Small (<50Kbp) and large (>50 Kbp) CNVs were analyzed separately. Ex-

ons from genes predicted to be loss-of-function intolerant193 (probability of loss-of-

function intolerance > 0.9) were also analyzed separately. The same analysis was

repeated using only rare CNVs, i.e. being present in less than 1% of PopSV calls in

the Twins and renal cancer datasets, and in four public datasets (see Supplementary

Information).

In each cohort, we then retrieved the CNV catalog of rare exonic CNVs. We

evaluated the proportion of the CNVs in the catalog that are private (i.e. seen in

only one sample). The control cohort was down-sampled a thousand times to the

same sample size as the epilepsy cohort to provide a confidence interval and empirical

P-value (see Supplementary Information). We also visualize the proportion of CNVs

in the catalog seen in 2 samples or more, 3 samples or more, etc (Fig. S3.12a). We

performed the same analysis after removing the top 20 samples with the highest

number of non-private rare exonic CNVs. The analysis was also repeated using

73



CHAPTER 3. DETECTION OF CNVS IN EPILEPSY PATIENTS

French-Canadian individuals only.

CNV enrichment in and near epilepsy genes

We used the list of genes associated with epilepsy from the EpilepsyGene resource118

which consists of 154 genes strongly associated with epilepsy. We tested different

sets of CNVs: deletion or duplications in the epilepsy cohort, control individuals and

samples from the twin study, and using different threshold of maximum frequency.

For each set of CNVs, we counted how many of the genes hit were known epilepsy

genes. To control for the size of epilepsy genes and CNV-hit genes, we randomly

selected genes with sizes similar to the genes hit by CNVs and evaluated how many

were epilepsy genes. After sampling 10,000 gene sets, we computed an empirical

P-value (see Supplementary Information).

To investigate rare non-coding CNVs close to known epilepsy genes, we counted

how many patients have such a CNV at different thresholds of distance to the

nearest exon. We compared this cumulative distribution to the control cohort, after

down-sampling it to the sample size as the epilepsy cohort. We performed the same

analysis using deletions only. Each epilepsy gene was also tested for an excess of

rare non-coding deletions in patients versus controls using a Fisher test. Next, we

restricted our analysis to rare non-coding CNVs that overlap an eQTL associated

with the epilepsy genes195 or a DNase I hypersensitive site associated with the

promoter of epilepsy genes196. A Kolmogorov-Smirnov test was used to test the

difference in distribution. Finally, using different values for the maximum distance

to the nearest epilepsy gene, we computed the odds ratio of having such a CNV

between epilepsy patients and controls.

Putatively pathogenic CNVs

Exonic CNVs larger than 10 Kbp and found in less than 1% of the 301 controls were

first selected. We further retained either CNVs overlapping the exon of a known

epilepsy-associated gene118 or deletions overlapping the exon of a loss-of-function
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intolerant gene193, or CNVs present in two or more of our epilepsy patients. All the

putatively pathogenic CNVs were validated by Taqman RT-PCR.

Data and code availability

The PopSV R package and its documentation are available at http://jmonlong.

github.io/PopSV/. Scripts are provided to run the pipeline on different high per-

formance computing systems. The code used for the analysis and to produce fig-

ures and numbers is documented at http://github.com/jmonlong/epipopsv and

archived in https://doi.org/10.5281/zenodo.1172181. Necessary data, includ-

ing the CNV calls, was deposited at https://figshare.com/s/20dfdedcc4718e465185.

Raw sequence data has been deposited in the European Genome-phenome Archive,

under the accession code EGAS00001002825.
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Chapter 4

Population-Based Detection of
CNVs in Low-Mappability Regions

Preface: Bridging Text between Chapters 3 and 4

The method implemented in the previous chapter was used to study CNVs in low-

mappability region. The main challenge with low-mappability regions is the com-

plex coverage profiles. Because of the repeated sequences, the number of uniquely

mapped reads is reduced and fluctuates depending on which repeats are present in

each region. Instead of attempting to model this complex sequence contexts, we use

the population-based approach implemented in chapter 3, PopSV, to robustly call

CNVs in these challenging regions. Indeed, the complex coverage profiles in low-

mappability regions are consistent across samples from the same sequencing project.

Hence, if the read coverage in a sample is different enough from the reference sam-

ples, it is likely due to a CNV.

This manuscript was published in Nucleic Acids Research3. First, we showed

that PopSV performance was preserved in low-mappability regions by consistently

showing a high sensitivity and a stable false positive rate across different repeat

profiles. Using CNVs across 640 normal genomes we also showed that CNVs are

enriched in low-mappability regions independently from the known enrichment in

segmental duplication. Thanks to the population-based approach, we provided a

catalog of germline CNV that includes repeat-rich regions, including thousands of

regions with recurrent variants that were missing from existing CNV databases.
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Appendix D contains supplementary tables, graphs and information.
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Human copy number variants are
enriched in regions of low mappability
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4.1 Abstract

Copy number variants (CNVs) are known to affect a large portion of the human

genome and have been implicated in many diseases. Although whole-genome se-

quencing (WGS) can help identify CNVs, most analytical methods suffer from lim-

ited sensitivity and specificity, especially in regions of low mappability. To address

this, we use PopSV, a CNV caller that relies on multiple samples to control for

technical variation. We demonstrate that our calls are stable across different types

of repeat-rich regions and validate the accuracy of our predictions using orthogonal

approaches. Applying PopSV to 640 human genomes, we find that low-mappability

regions are approximately 5 times more likely to harbor germline CNVs, in stark

contrast to the nearly uniform distribution observed for somatic CNVs in 95 can-

cer genomes. In addition to known enrichments in segmental duplication and near

centromeres and telomeres, we also report that CNVs are enriched in specific types

of satellite and in some of the most recent families of transposable elements. Fi-

nally, using this comprehensive approach, we identify 3,455 regions with recurrent

CNVs that were missing from existing catalogs. In particular, we identify 347 genes

with a novel exonic CNV in low-mappability regions, including 29 genes previously

associated with disease.
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4.2 Introduction

Genomic variation of 50 base pairs or more are collectively known as structural

variants (SVs) and can take several forms including deletions, duplications, novel

insertions, translocations and inversions4. Copy number variants (CNVs) are unbal-

anced SVs, i.e. affecting DNA copy number, and include deletions and any type of

duplications (tandem duplications, triplications and other amplifications). A wide

range of mechanisms can produce SVs and is responsible for the diverse SV distri-

bution across the genome, both in term of location and size4,10,11. In healthy indi-

viduals, SVs are estimated to cumulatively affect a higher proportion of the genome

as compared to single nucleotide polymorphisms (SNPs)104. SVs have been associ-

ated with numerous diseases including Crohn’s Disease20, schizophrenia17, obesity16,

epilepsy19, autism18, cancer21 and other inherited diseases22,23, and many SVs have

a demonstrated detrimental effect.

While large SVs have been first studied using cytogenetic approaches and array-

based technologies, whole-genome sequencing (WGS) is in theory capable of de-

tecting SVs of any type and size39. Numerous methods have been implemented

to detect SVs from WGS data using either paired-end information43,44, read-depth

(RD) variation40,41,42, breakpoints detection through split-read approach45 or de

novo assembly46. CNVs, potentially the most impactful SVs, can be detected by

any of these strategies but are often resolved with a RD approach as it directly looks

for signs of copy number changes. However, several features of WGS experiments

result in technical bias and continue to be a major challenge. For example, GC

content50, mappability48,49, replication timing51, DNA quality and library prepara-

tion177 have a detrimental impact on the uniformity of the RD52. Unfortunately,

this variability is difficult to fully correct for as it involves different factors, some

of which are unknown, that vary from one experiment to another. This issue par-

ticularly impairs the detection of CNV with weaker signal, which is inevitable in

regions of low-mappability that represent around 10% of the human genome206, for

smaller CNVs or in cancer samples with cell heterogeneity or stromal contamination.
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As a result, existing approaches suffer from limited sensitivity and specificity11,39,

especially in regions of low-complexity and low-mappability48,49. Even when prob-

lematic regions were masked and state-of-the-art bias correction50,190 were applied,

we showed that technical variation in RD could still be found across three WGS

datasets studied2.

To control for technical variation, we recently developed a CNV detection method,

PopSV, which uses a set of reference samples to detect abnormal RD2. In each

genome tested, the RD in a region is compared to the same region in the reference

samples. PopSV differs from most previous RD methods, such as RDXplorer207 or

CNVnator41, that scan the genome horizontally and look for regions that diverge

from the expected global average. Even when approaches rely on a ratio between an

aberrant sample and a control, such as FREEC40 or BIC-seq191, we showed that they

do not sufficiently control for experiment-specific noise as compared to PopSV2.

Glusman et al.176 does go further and normalize the RD with pre-computed RD

profiles that fit the GC-fingerprint of a sample but this approach excludes regions

with extreme RD and does not integrate the variance observed in individual regions.

PopSV is also different from approaches such as cn.MOPS42 and Genome STRiP33

that scan simultaneously the genome of several samples and fit a Bayesian or Gaus-

sian mixture model in each region. Those methods have more power to detect CNVs

present in several samples but may miss sample-specific events. Moreover, their ba-

sic normalization of the RD and fully parametric models forces them to conceal

a sizable portion of the genome and variants with weaker signal. Finally, another

strategy to improve the accuracy of CNV detection has been to use an ensemble ap-

proach that combines information from different methods relying on different types

of reads. Large re-sequencing projects such as the 1000 Genome Project5,11 and the

Genomes of Netherlands (GoNL) project107,208 have adopted this strategy and have

successfully identified many CNVs using an extensive panel of detection methods

combined with low-throughput validation. Such a strategy increases the specificity

of the calls at the cost of sensitivity.
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Notably, with most of the tools and approaches described above, repeat-rich re-

gions and other problematic regions of the genome are often removed or smoothed

at some step of the analysis, to improve the accuracy of the calls. Although some

methods82,83 try to model ambiguous mapping and repeat structure, only particular

situations are addressed and, as a consequence, low-mappability regions are just

scarcely covered in the most recent CNV catalogs5. This is unfortunate given that

CNVs in such regions have already been associated with various diseases23,87,90,209,210

and that these regions are also more likely variable. Indeed, different types of ge-

nomic repeats are likely to contribute to CNV formation. For example, CNVs are

known to be enriched in segmental duplications10 and short and long tandem re-

peats are also known to be highly polymorphic211,212. Moreover, repeat templates,

like segmental duplications or transposable elements, can facilitate the formation of

CNV through non-allelic homologous recombination and other mechanisms213.

Given these facts and the growing realization of the importance of repetitive

regions in the genome81,214, we wanted to investigate the performance of PopSV in

low-mappability regions and explore the comprehensive CNV distribution across a

large cohort of healthy individuals. After showing that population-based RD mea-

sures are better than existing mappability estimates to correct for variable coverage,

we apply PopSV to 640 WGS individuals from three human cohorts. We compare

the performance of PopSV on these datasets with existing CNV detection methods

in regions of low-mappability and validate the quality of the predictions across dif-

ferent repeat profiles using PCR validation. Additionally, using publicly available

long-read sequencing data and assemblies, we show that PopSV is able to detect

some highly ambiguous CNVs. Next, having demonstrated the quality of the PopSV

calls, we characterize the patterns of CNVs across the human genome and produce

a CNV catalog where variants of different types are better represented compared to

existing catalogs. We further find that CNVs are significantly enriched in regions of

low-mappability and in different classes of repeats. Finally, we identify novel CNV

regions in low-mappability regions that were absent from previous CNV catalogs
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and describe their impact on protein-coding genes.

4.3 Material and Methods

Data Three publicly available WGS datasets were used. The first is a twin

study189 with an average depth of 40x across 45 French-Canadian individuals, in-

cluding 10 families of parents and monozygotic twins. The second is a renal cell

carcinoma dataset143 (CageKid) with 95 tumor/normal pairs from four European

countries and an average depth of 54x. The third contains 500 unrelated Dutch

individuals from the GoNL107 dataset with an average depth of 14x. In each study,

the sequenced reads had been aligned using bwa203. See Supplementary Information

for more details on access and read processing.

Read count across the genome The genome was fragmented in non-overlapping

bins of fixed size. As a RD measure we used the number of properly mapped reads,

defined as read pairs with correct orientation and insert size, and a mapping quality

of 30 (Phred score) or more. In each sample, GC bias was corrected by fitting a

LOESS model between the bin’s RD and the bin’s GC content. We used a bin size

of 5 Kbp for most of the analysis. When specified, we used smaller bin sizes of 500

bp or 2 Kbp.

RD and mappability estimates To compare RD and mappability estimates in

the Twin study, we first removed bins with extremely high RD if deviating from

the median RD by more than 5 standard deviation. The RD across the different

samples were then combined and quantile normalized. For each bin, we computed

the average RD and standard deviation across the samples. We downloaded the

mappability track for hg19206 and computed the average mappability in each bin.

We compared the RD in one randomly selected sample with the mappability esti-

mates and with the inter-sample RD average. To correct for the variation explained

by the mappability estimates we fitted a generalized additive model using a cubic
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regression spline between the mappability estimates and RD in the sample (see Sup-

plementary Information). With these estimations and the global standard deviation

we computed a Z-score for each bin. A similar set of Z-scores was computed us-

ing the inter-sample average and standard deviation. The normality of these two

Z-score distributions were compared in term of excess kurtosis and skewness. The

Z-score distributions were also compared in different mappability intervals. Finally,

45 samples of each cohort were combined and their RD quantile normalized. The

inter-sample RD mean and standard deviation were then computed separately in

each cohort and compared with the mappability estimates and RD in the selected

sample.

PopSV approach for CNV detection PopSV was first described and applied

in a CNV analysis of epilepsy patients2. Briefly, a set of samples are chosen as

reference and used to guide the normalization of each bin. After normalization the

average RD and standard deviation in each bin are saved and used to transform

the RD in all samples into Z-scores. CNVs are called in each sample when the RD

is significantly higher or lower than in the reference samples. The Z-scores can be

segmented using the circular binary segmentation204 or after statistical testing at

the bin level. As recommended, PopSV was run separately on each dataset to avoid

false positives due to potential variation in sequencing protocols. More details are

available in the original publication2 and in the Supplementary Information. With

PopSV there is no filtering, masking, smoothing or altering of repeat-rich regions:

all the regions with properly mapped reads are analyzed.

Coverage track and low-mappability regions The average RD in the refer-

ence samples, a feature used during CNV calling, was used as a coverage track.

Bins with a RD lower than 4 standard deviation from the median were classified as

low-mappability (or low coverage). To highlight the most challenging region, we also

defined extremely low coverage regions if the average RD was lower than 100 reads.

We overlapped these regions with protein-coding genes and segmental duplications
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(see Supplementary Information), and computed the distance to the nearest cen-

tromere, telomere or assembly gap. We also counted the number of protein-coding

genes overlapping at least one low-coverage region.

CNV detection using other methods FREEC40 and CNVnator41 were run on

each sample separately starting from the BAM files and using the same bin size

as for PopSV (5 Kbp). cn.MOPS42 was run on the same GC-corrected bin counts

than for PopSV and samples from the same dataset were jointly analyzed. After

retrieving split reads using YAHA66, LUMPY67 was run and we kept all the deletions

and duplications larger than 300 bp. BND variants with both ends more than 300 bp

apart in the same chromosome were also included as they could be CNVs lacking

support to characterize their type properly. See Supplementary Information for

more details.

Clustering samples using the CNV calls The similarity between two samples

is defined by the amount of sequence called in both divided by the average amount

of sequence called (see Supplementary Information). This distance is used for hier-

archical clustering of the samples in the Twin study using different linkage criteria

(average, complete and Ward). The clustering was performed using calls in regions

with extremely low coverage (≤100 reads on average in the reference samples) only.

The Rand index estimated the concordance between the clustering and the known

pedigree, grouping the samples per family (see Supplementary Information).

Replication in twins For each twin and each method, a CNV call was defined

as replicated if also found in the other monozygotic twin but in less than 50% of the

population to remove systematic errors. The frequency was computed by counting

samples with any overlapping CNVs. In order to avoid missing calls with borderline

significance, we used slightly less confident calls for the second twin (see Supple-

mentary Information). For each method, we computed the number and proportion

of replicated calls per sample. We computed these metrics using all the calls, calls
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in low-mappability regions only, calls in segmental duplications, calls overlapping

annotated repeats and calls overlapping annotated satellites, all using a minimum

overlap of 90% of the call’s sequence. Finally, we computed the replication estimates

for calls located at 1 Mbp or less from a centromere, telomere or assembly gap.

Replication between paired normal and tumor samples The same approach

was applied in the renal cancer dataset. Here, replicated calls were found in a normal

sample and its paired tumor but in less than 50% of the normal samples.

Replication estimates and reliable regions Using CNV calls found in less

than 50% of the population, we defined as reliable a 10 Kbp region where more

than 90% of the overlapping calls were replicated calls. We then compared the

number and proportion of reliable regions for each method and in different types

of region. As before, we compared regions overlapping low-mappability regions,

segmental duplications, annotated repeats, satellites, or located at less than 1Mbp

from a centromere, telomere or assembly gap.

Experimental validation A subset of variants in the Twin study were experi-

mentally validated. First, we randomly selected one-copy and two-copy deletions,

among small (∼ 700 bp) and large (∼ 4 Kbp) variants among the calls produced

with 500 bp and 5 Kbp bins. The calls were visually inspected to design PCR

primers (see Supplementary Information). We randomly selected 20 regions from

those with available PCR primers. Next, we randomly selected deletions overlap-

ping low-mappability regions and called in 6 samples or fewer. Because RD could

not be used efficiently to fine-tune the breakpoints’ location, we retrieved the reads

(and their pairs) mapping to the region and assembled them (see Supplementary

Information). We randomly selected 17 regions from those with PCR primers. In

addition to gel electrophoresis, the amplified DNA of some regions was sequenced

by Sanger sequencing.
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Analysis of CEPH12878 High coverage PCR-free Illumina WGS data for 30

samples, including CEPH12878, was downloaded from the 1000 Genomes Project

(1000GP)5 (see Supplementary Information). PopSV was run using 5 Kbp bins

and all the samples as reference. Using the same coverage track as before we se-

lected all deletions in CEPH12878 overlapping low-mappability regions (at least

90% of the call). We first looked for support in CEPH12878 assemblies that used

Illumina short-read sequencing, BioNano Genomics genome maps and either sin-

gle molecule sequencing from the Pacific Biosciences (PacBio) platform59 or 10X

Genomics linked-read sequencing215. For each selected deletion from PopSV, we

aligned the flanking reference sequences to the assemblies using BLAST216 (see Sup-

plementary Information). When both flanks could be mapped to a contig, we visu-

ally inspected MUMmer plots217 which either supported the deletion, the reference

genome sequence or were too noisy to assess. We further annotated the selected

calls if they overlapped with the deletions identified in Pendleton et al.59 over a

minimum of 1 Kbp. Finally, we downloaded the corrected PacBio reads and built

a local assembly and consensus around each selected PopSV deletion (see Supple-

mentary Information). We visually inspected MUMmer plots of the assembled and

consensus sequences to confirm the presence of the deletion.

CNV catalog We called CNVs separately in each cohort with PopSV using as

reference samples the 45 samples in the Twin study, the normal samples in the

cancer dataset and 200 samples in the GoNL dataset. For the Twin study and the

renal cancer dataset, PopSV was run using 500 bp bins and 5 Kbp bins. Because of

the lower sequencing depth, PopSV was run using 2 Kbp bins and 5 Kbp bins for

the GoNL dataset. For each sample, calls from the 2 different runs were merged

when consistent (see Supplementary Information). To compute the total number of

calls, we collapsed calls with a reciprocal overlap higher than 50%. The amount of

sequence affected in a genome is computed by merging all the variants in the cohort

and counting the affected bases in the reference genome.
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Comparison with public CNV catalogs We retrieved autosomal deletions,

duplications and CNVs from four public CNV catalogs derived from large-scale WGS

surveys: the 1000GP SV catalog5, Genome STRiP’s catalog from 847 individuals33,

Genome STRiP calls in 148 high-depth WGS genomes36, and the GoNL SV catalog107

(see Supplementary Information). To compare the amount of CNV with PopSV,

we removed deletions smaller than 300 bp as well as variants with high frequency

(> 80%). We compared CNV frequency between the 620 unrelated samples and

a down-sampled set of 620 randomly selected individuals from the 1000GP CNV

catalog. The frequency was derived for all the nucleotide that overlaps at least one

CNV as the proportion of individuals with a CNV in this locus. The frequency

distribution was computed separately for the different CNV types.

Comparison with CNV catalogs from long-read studies The SV catalog

from Chaisson et al.58 was downloaded and overlapped with the CNV catalogs from

1000GP and PopSV results on our 640 genomes. Here, the 1000GP catalog contained

deletions, duplications and CNVs of any size and frequency. Using control regions

and logistic regression we tested for an enrichment of variants in the SV catalog from

Chaisson et al.58 (see Supplementary Information). The analysis was performed

separately on deletions, duplications, low-mappability regions and extremely low-

mappability regions. The same analysis was performed using the SV catalog from

Pendleton et al.59.

Novel CNV regions Using the 620 unrelated individuals across the three cohorts,

we selected CNVs present in more than 1% of the population (7 individuals or

more) and not overlapping any CNV in the 1000GP catalog5. We used deletions,

duplications and CNVs of any size and frequency from the 1000GP. Novel CNVs

were collapsed into novel CNV regions, i.e. contiguous regions in which each base

is overlapped by at least one novel CNV. The novel CNV regions were annotated

using the low-mappability and extremely low-mappability tracks. We also compared

CNVs from the three other public CNV catalogs to the novel CNV regions.
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Distance to centromere, telomere and assembly gaps The centromeres,

telomeres and assembly gaps (CTGs) were retrieved from the gap track in UCSC218.

In chromosomes with missing telomere annotation, we defined the telomere as the

10 Kbp region at the ends of chromosome. The distance from each variant to the

nearest CTG was computed and represented as a cumulative proportion. Because

this distribution changes with the size of the variants, we sampled random regions

in the genome with similar sizes and computed the same distance distribution (see

Supplementary Information). Thanks to this null distribution we were able to see if

variants were located closer/further to CTG than expected by chance.

Enrichment in genomic features We tested for CNV enrichment in different

genomic features: genes, exons, low-mappability regions, segmental duplications,

satellites, simple repeats and transposable elements. The different satellite families,

frequent simple repeat motives, transposable element families and sub-families were

also tested. For each sample, we computed a fold-enrichment as the fold change in

proportion of regions overlapping a feature between CNV and control regions (see

Supplementary Information). The significance was assessed using logistic regression

on the CNV and control regions. To control for the enrichment in segmental du-

plications we used control regions with similar overlap profile (see Supplementary

Information). We also added a variable representing the overlap with segmental du-

plications as a co-factor in the logistic regression model. When numerous tests were

performed, e.g. satellite families, simple repeat motives, transposable element fami-

lies or sub-families, the P-values were corrected for multiple testing using Benjamini-

Hochberg procedure. Finally, for each CNV and control region, we computed the

proportion of the region overlapped by satellites, simple repeats and transposable

elements.

Overlap with gene annotation Exons of protein-coding genes and promoter

regions (10 Kbp upstream of the transcription start site) were extracted from the

Gencode annotation v19. We counted how many genes overlapped a CNV in the
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population when considering exons only, exons and promoter region, or gene body

and promoter region. In addition, we computed these numbers using only genes

associated with a disease or phenotype in the OMIMMorbid Map (Online Mendelian

Inheritance in Man; http://omim.org/). These numbers were also computed for

CNVs that overlapped more than 90% of various classes of repeats. For example,

Satellite-CNVs are CNVs with more than 90% of their region annotated as satellites.

4.4 Results

Modeling RD using population-based measures instead of

mappability scores

When counting uniquely mapped reads, the mappability of a region is a major pre-

dictor of the observed RD. Theoretical mappability estimates206 strongly correlated

with the RD in a sample but many regions with intermediate mappability diverged

from the predicted levels of RD (Fig. S4.1a). By computing the average RD across

the 45 samples from the Twin study in each 5 Kbp bin we found that this divergence

is consistent across samples and not simply due to a high RD variance (Fig. 4.1a).

These mappability estimates only approximate RD variation and cannot explain

the RD profile in numerous regions. In contrast, population-based metrics more

directly estimate the expected RD level (Fig. S4.1b). Similarly to what was done

in Monlong et al. in high-mappability regions2, we hypothesized that population-

based estimates of RD mean and standard deviation could be used directly and help

analyze regions with reduced RD. To test this hypothesis, Z-scores corrected by

the mappability-based estimates were compared to Z-scores derived from both the

inter-sample mean and standard deviation. The population-based Z-scores better

followed a Normal distribution with an excess kurtosis of 0.2 and skewness of 0.004

compared to 29.4 and -2.284 respectively for mappability-adjusted Z-scores (Fig.

4.1b). The distribution of the population-based Z-scores was also more stable across

the mappability spectrum (Fig. 4.1c). When comparing samples from the three dif-
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Figure 4.1: Mappability and population-based RD estimates. a) Inter-sample

mean RD and average mappability in 5 Kbp bins. Regions with the same mappability es-

timate can have different RD levels. b) Z-score distribution. In mappability, Z-scores were

computed from the mappability-predicted RD and global standard deviation; In popula-

tion estimates from the inter-sample mean and standard deviation. c) Z-score distribution

across the mappability spectrum. d) Average RD in the Twin study. The right-tail of the

histogram was winsorized using the IQR and the different coverage classes are shown with

colors.
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ferent datasets, we noticed cohort-specific profiles in term of RD level and variance

even though RD had been quantile normalized (Fig. S4.1c and S4.1d), suggesting

that population-based estimates will be better at capturing subtle cohort-specific

variation.

These results suggest that a population-based strategy such as PopSV2 could

be extended to investigate CNVs in regions of low-mappability. To define low-

mappability regions in the population, we used the average RD in the reference

samples track produced by PopSV. In the Twin study for example, 12.6% of the

covered 5 Kbp bins were labeled as low-coverage (Fig. 4.1d), more than half of which

were regions with extremely low coverage (lower than 100 reads on average). Slightly

fewer regions were labeled as low-coverage in the other cohorts (Fig. S4.2). As

expected, low-coverage regions were depleted in gene content with only 15.3% of the

5 Kbp bins in these regions overlapping a protein-coding gene versus 48.8% for other

regions. Nonetheless, 4,044 protein-coding genes overlapped a low-coverage region.

Finally, 23.2% of the low-mappability regions overlapped segmental duplications and

69.1% were located at less than 1 Mbp from a centromere, telomere or assembly gap,

versus respectively 2.9% and 8.8% for other regions.

Replication rates in regions of low-mappability

We previously demonstrated that CNV detection with PopSV was overall more sen-

sitive than FREEC40, CNVnator41, cn.MOPS42 and LUMPY67 methods2. In the fol-

lowing, we focused on the performance of PopSV in low-mappability regions. We

first investigated the general concordance of the CNV calls with the pedigree in the

Twin study. Using calls in extremely low-mappability regions (average RD below

100 reads) only, we clustered the individuals and compared the result to the known

pedigree. We found that PopSV showed better concordance, as assessed by the Rand

index (Fig. S4.3), compared to the other methods. Indeed, the clustering dendogram

from PopSV calls, even in these challenging regions, captured almost perfectly the

family relationships (Fig. 4.2a). We then investigated if the call replication rate was
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stable across different mappability profiles. Using calls present in less than 50% of

the population to avoid systematic bias, the overall replication rate in the other twin

was found to be 89.7%. Focusing on calls in low-coverage regions, we found a com-

parable replication rate of 92.5%. The replication rate remained constant in regions

with different repeat profiles (Fig. 4.2b) such as regions overlapping segmental du-

plication, annotated repeats, or close to centromeres, telomeres and assembly gaps.

In contrast, the other methods showed a reduced replication and higher variance

in repeat-rich regions. The superior replication rate was complemented by a larger

number of calls: PopSV called between 2.7 and 9.9 times more replicated CNVs per

sample in low-coverage regions compared to the other methods. We observed the

same results in the cancer dataset when comparing the agreement between germline

events in normal/tumor pairs. PopSV had between 1.8 and 17.8 times more calls

in low-mappability regions compared to the other methods and a stable replication

rate across repeat profiles (Fig. S4.4). We next wanted to assess the performance

in each region of the genome, rather than overall rates per sample, and used the

replication in twins to identify regions with reliable calls. Again we observed that

PopSV was as reliable overall as in regions with different repeat profiles (Fig. 4.2c).

This analysis also showed that PopSV provides reliable calls in a larger fraction

of the genome compared to other methods. The strongest gain was observed for

regions overlapping satellites or overlapping almost completely annotated repeats,

with around twice as many regions reliably called by PopSV. cn.MOPS showed the

second best performance, especially in regions overlapping segmental duplications

or close to centromeres, telomeres and assembly gap.

Validation of CNVs in regions of low-mappability

Using Real-Time PCR validation across 151 regions, we previously demonstrated

that the replication estimates from the Twin dataset are consistent with experimen-

tal validation2. We had tested variants of different types, sizes and frequencies and

validated 90.7% of the calls, similar to our twin-based replication estimates. Here
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we tested additional deletions in individuals from the Twin study using PCR vali-

dation. We first validated randomly selected deletions and found a validation rate

close to the overall replication rate, with 18 out of 20 deletions (90%) successfully

validated (Table S4.1). In a second validation batch, we focused on rare deletions

in low-mappability regions, of which 11 out of the 17 (65%) were successfully val-

idated (Table S4.2). We noticed that the majority of the non-validated deletions

were predicted to be smaller than 100 bp and most likely due to a problem during

the breakpoint fine-tuning. If we consider only deletions larger than 100 bp, the

validation rate in regions of low-mappability increased to 83% (10/12) once again

close to PopSV’s replication rates in the Twin dataset.

Regions with extreme repeat content remained difficult to target and validate

using PCR approaches. To further interrogate the performance of PopSV in those

regions, we turned to whole-genome data from long-read sequencing technology.

Publicly available assemblies for CEPH12878 samples confirmed several deletions

called by PopSV in low-mappability regions. Out of the 14 homozygous deletions

that could be assessed, 13 were confirmed in a contig, 12 of which were observed in

both assemblies59,215. Only one region seemed to be a false positive, an assembled

contig supporting the reference sequence in one assembly. Eleven regions could not

be assessed because the flanks in the reference genome didn’t map to any assem-

bled contigs or their MUMmer plots neither supported a deletion nor the reference

sequence. In summary, we confirmed 92.8% of the homozygous deletions in low-

mappability regions that could be compared with the assemblies. Deletions can be

confirmed by direct comparison of the variant region and, if homozygous, should be

present in the assembly. In contrast, heterozygous deletions could be missing from

an assembly if only the reference allele was assembled. We confirmed 27 out of the

44 heterozygous deletions in low-mappability regions that could be assessed (Table

S4.3). As expected, only one allele was supported for many regions: 16 regions with

only the deleted allele observed and 17 regions with only the reference allele ob-

served. Both deleted and reference alleles were observed for 11 variants. Although
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only 61.3% of the heterozygous deletion were confirmed, many variants might have

been missed because of assembly preference to one allele, as suggested by the sim-

ilar number of regions with only one supported allele. Using variants identified by

Pendleton et al.59 and by assembling raw PacBio reads, we found support for 3

additional homozygous deletions and 15 heterozygous deletions that had remained

inconclusive in the assembly comparison. Most of the regions that couldn’t be con-

firmed were located close to assembly gaps in the reference genome (Fig. S4.5).

This observation highlighted that even with long-read sequencing data, it is not

straightforward to clearly assess some genomic regions close to assembly gaps.

Global patterns of CNVs across the human genome

Having demonstrated the robustness of PopSV in low-mappability regions, we wanted

to characterize the global patterns of CNVs across the human genome. We were es-

pecially interested in looking at calls in regions of low-mappability which represents

between 9-12% of the human genome (Fig. 4.1d and S4.2). We started with an anal-

ysis of the twins and the normal samples in the renal cancer dataset, both of which

have an average sequencing depth around 40X. PopSV was used to call CNV using

500 bp and 5 Kbp bins, which were then merged to create a final set of variants. On

average per genome, 7.4 Mbp of the reference genome had abnormal read coverage,

4 Mbp showing an excess of reads indicating duplications and 3.4 Mbp showing a

lack of reads indicating deletions (Table 4.1). In both datasets, the average variant

size was around 3.7 Kbp and 70% of the variants found were smaller than 3 Kbp.

We compared our numbers to equivalent CNVs detected in the most recent human

SV catalog from the 1000 Genomes Project (1000GP), where 6.1 Mbp was found

to be copy-number variable on average in each genome (Table S4.4). In those calls,

we notice that no variants except for a few deletions were identified in regions of

extremely low-mappability regions. Similarly, small duplications (< 3 Kbp) were

absent from that catalog. In contrast, the set of variants identified by PopSV in-

cluded variants in extremely low-mappability regions as well as small deletions and
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duplications (Table 4.1), explaining in part the ∼ 20% increase in affected genome.

While the study from the 1000GP5 explored a wider range of SVs, our catalog is

likely more representative of the distribution of CNVs in a normal genome since a

larger portion of the genome could be analyzed. Small duplications and events in

low-mappability regions were also under-represented in more recent CNV surveys

that used higher sequencing depth or joint-calling of CNVs33,36,107 (Table S4.4),

confirming the uniqueness of the PopSV catalog.

Next, we applied PopSV to the 500 unrelated samples from the GoNL cohort

(Table 4.1). Due to a lower sequencing depth (∼13X), we used bins of size 2 Kbp and

5Kbp, explaining the lower number of variants found in these samples. Nevertheless,

a large sample size helps better characterize the frequency patterns and provides a

more comprehensive map of rare CNVs. In total, across these three cohorts, 325.6

Mbp were found to be affected by a CNV with more duplications (50,856) detected

than deletions (44,110). This contrasts with the CNVs reported by the 1000GP5 that

were heavily skewed towards deletions (Table S4.4), likely due to the conservative

ensemble approached used to detect CNVs. The frequency distribution of deletions

and duplications found using PopSV were also much more balanced compared with

the ones from the 1000GP5 (Fig. 4.3a).

We also compared our CNV catalog with an orthogonal set of calls from Chaisson

et al.58 that were obtained using long-read sequencing. Although these calls came

from a different genome, we expect both catalogs to share a number of common vari-

ants. We found a significant overlap between the two catalogs, overall and separately

for deletions, duplications, low-mappability regions and extremely low-mappability

regions (Fig 4.3b). In all categories, the overlap was stronger for PopSV’s cata-

log compared to the 1000GP CNV catalog. We noted that the enrichment for the

1000GP catalog disappeared for duplications and low-mappability regions but was

even stronger for PopSV’s catalog. Like PopSV, the long-read sequencing study58

also found a better balance between deletions and duplications. Similar observations

were made using another set of calls from long-read sequencing of the CEPH12878
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After correcting for the distance to CTGs, we also observed a 4.7 fold-enrichment

of variants in regions of low mappability (Fig. 4.4a). Segmental duplications (SD),
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Figure 4.4: CNVs in normal genomes. a) Enrichment of CNVs in different ge-

nomic classes (x-axis) across different cohorts (colors) and controlling for the distance to

centromere/telomere/gap. Bars show the median fold enrichment compared to control

regions. The error bar represents 90% of the samples in the cohort. b) Enrichment of

CNVs in repeat families (x-axis) controlling for the overlap with segmental duplication

and distance to centromere/telomere/gap. The error bars were winsorized at 7 for clarity.

STR: Short Tandem Repeat; TE: Transposable Element.

DNA satellites and Short Tandem Repeats (STRs) were also significantly enriched

with fold-enrichment of 3.6, 2.6 and 1.2, respectively. The over-representation of

CNVs in SDs has been described before10 and in a recent study192, half of the

CNV base pairs were shown to overlap a SD. To investigate the contribution of

low-mappability regions beyond SDs, we used matched control regions and included

segmental duplication overlap in the logistic regression model. Even after controlling

for this known enrichment, we found that CNVs overlapped low-coverage regions

more than twice as much as expected (Fig. S4.8a). This two-fold enrichment is

independent of the SD association and consistently observed in the 3 cohorts of
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normal genomes. In contrast to germline CNVs, sCNVs were once again found to

be more uniformly distributed (Fig. 4.4a and S4.8a). These results suggest that

the enrichments of germline CNVs near CTGs and in regions of low-mappability are

unlikely to be the result of a methodological artifact.

Various repeat families are more prone to harbor CNVs

We wanted to further characterize the distribution of germline CNVs in relation

to different repeat classes and families. By comparing CNVs to the same control

regions with matched overlap with SD and distance to CTGs we can look for pat-

terns that are specific to repeat sub-families without the risk of being biased by the

global enrichments (Fig. 4.4b). Using this approach, we found that CNVs were

still significantly enriched in satellites repeats and in short tandem repeats (P-value

< 10−4, Fig. S4.8a), with fold-enrichments of 2.3 and 1.2 respectively.

Although it is known that DNA satellites and simple repeats are more unsta-

ble220, the extent to which CNVs are found in these regions in humans had, to our

knowledge, not been systematically explored. Satellite repeats are grouped into dis-

tinct families depending on their repeated unit and we found that not all satellite

repeats were equally likely to overlap a CNV (Fig. S4.8b). In particular, Alpha

satellites have the highest and most significant enrichment (P-value < 10−5), with

more than 3 times more CNVs than in the control regions (Fig. 4.4b). We noted

that satellites tend to span completely CNVs (Fig. S4.9), suggesting that satellites

are likely directly involved in the CNV formation. Short and long tandem repeats

can be highly polymorphic211,212. Constrained by read length, recent studies221,222

focused on variation of STRs smaller than 100 bp. In our analysis we found that

CNVs were significantly enriched in the largest annotated STRs (>100 bp or >400

bp, Fig. 4.4b). STR can be grouped by motif and we further tested the largest and

most frequent families (Fig. S4.8c). Except for the weak enrichment in AT (TA) re-

peats, the STR enrichment appeared mostly independent of the repeat motif. Here

the repeats tend to overlap just a fraction of the variant, but a clear subset of the
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variants are fully covered by these tandem repeats (Fig. S4.9). Finally, although

transposable elements (TEs) as a whole did not show enrichment (Fig. 4.4a), the

“Other” repeat class, which contains SVA repeats, was found to be significantly

enriched in the two higher depth datasets (Fig. 4.4b). Moreover, looking at TEs at

the level of individual repeat families, we found a number of them to be significantly

enriched including SVA F or L1Hs. Notably, HERV-H, an older ERV sub-family,

was also in the list of enriched TEs. This sub-family has been shown to be expressed

and important in human embryonic stem cells223,224. Alu elements contributed to

the formation of human segmental duplications225 and are often found around SV

breakpoints226 but this TE family was not enriched in CNVs in our data. On the

other hand, several families of L1 repeats older than the still active L1HS family

were also enriched (e.g. L1PA2 to L1PA4) and often implicated in what appears to

be non-allelic homologous recombination (see examples in Fig. S4.10). Reassuringly,

the somatic CNVs once again did not show any of these enrichments (Fig. 4.4b).

Impact of CNVs in regions of low-mappability

Compared to the latest 1000GP catalog5, we identified 3,455 novel regions with

CNVs in more than 1% of the population. 81.3% of these regions were located in

low-mappability regions while 18.4% were located in extremely low-mappability re-

gions. These novel CNV regions were missing from the 1000GP catalog and also

mostly absent in other recent CNV surveys; only 7.9-15.1% of the novel regions over-

lapped with a CNV in three recent CNV catalogs33,36,107 (Fig. S4.11). Among the

regions with a CNV in the CEPH12878 sample, we identified a deletion in the second

intron of the TRIM16 gene that was found by both Pendleton et al.59 and PopSV.

Across the 640 individuals analyzed by PopSV, 12% carried the variant. Thanks to

the long-read data, the exact breakpoints had been pinpointed in Pendleton et al.59

and it was in fact a SVA-F transposable element located within the 6 Kbp intron

in the reference genome but absent from the assembled sequence. SVA-F is one of

the youngest repeat family in the human genome and their high similarity remains
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a challenge for CNV analysis. Furthermore, the variant is located within a segmen-

tal duplication with 98.5% similarity and absent from public catalogs such as the

1000GP or GoNL. Another deletion supported by both public assemblies and local

reassembly of the PacBio read was located 12 Kbp downstream of TMPRSS11E.

6.6% of the individuals carried the variant in the PopSV catalog. The assembled

sequence helped pinpoint the breakpoints to an annotated L1PA2 in the reference

genome. The variant was also located in a segmental duplication and absent from

public catalogs such as the 1000GP or GoNL. Finally, a deletion affecting 8 dif-

ferent exons from the CR1 gene was found by both Pendleton et al.59 and PopSV

in CEPH12878. CR1 has been associated with Alzheimer disease227 and is located

within embedded segmental duplications with high similarity. The deletion was

present in 3% of the population analyzed with PopSV but is absent from public

CNV catalogs.

Overall, 7,206 protein-coding genes were found to have an exon overlapping

a variant in at least one of the 640 normal genomes studied (Table 4.2). If we

included the promoter regions (10 Kbp upstream of the transcription start site), at

least 11,341 protein-coding genes were potentially affected by at least one CNV in

the population. Focusing on regions of low-mappability, we found 4,285 different

CNVs that were completely included in regions annotated as STR. These STR-

CNVs overlapped the coding sequence of 45 protein-coding genes, and 286 genes

when including the promoter region (Table 4.2). In contrast, for CNVs included

in satellite regions, only 21 genes had an exon or the promoter region overlapping

one of the 1,822 Satellite-CNVs. Finally, we focused on CNVs that were novel

compared to the 1000GP5 and in low-mappability regions. Even there, 347 genes

were found to have an exon overlapping such CNVs and this number increased to 560

when including the promoter regions. Out of these 347 genes, 29 were previously

associated to a mendelian disorder or phenotype in the OMIM database (Online

Mendelian Inheritance in Man; http://omim.org/, Table S4.5).
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Set CNVs
Genes with CNVs OMIM genes with CNVs

Exon + Promoter + Intron Exon + Promoter + Intron
All CNVs

All 91,735 7,206 11,341 13,259 1,241 1,857 2,196
Low coverage 32,707 848 1,491 2,648 95 160 371
Extremely low coverage 9,348 304 401 442 11 14 25
TE 20,491 164 1,747 3,998 29 233 664
STR 4,285 45 286 748 5 39 129
Satellite 1,822 2 21 33 0 0 0

Novel CNVs
All 17,046 418 680 1,102 38 59 135
Low coverage 15,263 347 560 894 29 47 111
Extremely low coverage 6,591 189 263 285 5 6 8
TE 3,896 17 192 504 1 12 66
STR 1,806 14 81 230 0 9 41
Satellite 890 1 4 5 0 0 0

Table 4.2: Impact of CNVs on protein-coding genes. The CNVs number repre-

sents the number of different CNVs, after collapsing CNVs with more than 50% reciprocal

overlap. Repeat CNV: more than 90% of the CNV is annotated as repeat. Genes are

protein-coding genes and the promoter region is defined as the 10 Kbp region upstream

of the transcription start site. Novel CNVs are located within regions annotated as novel

compared to the 1000 Genome Project catalog.

4.5 Discussion

Despite the strong interest in CNVs because of their role in diseases, detecting them

accurately has remained a challenge, especially in regions of low-mappability. This is

mostly due to technical variation in RD that cannot be fully modeled by mappability

estimates. Using a recently developed CNV-calling approach that relies on a set

of reference samples to estimate the expected RD2, we show that it is possible

to accurately detect CNVs across the genome, even in repeat-rich regions. Indeed,

using monozygotic twins and normal/tumor pairs, we were able to demonstrate that

the performance of PopSV was stable and in most cases superior to other methods

across different types of low-mappability regions. Although experimental validation

can be challenging in these regions, we were able to confirm a number of deletions

using PCR validation as well as variants in some of the most difficult regions by

taking advantage of public datasets from long-read sequencing studies.

Notably, using PopSV on 140 normal genomes with high sequencing depth (∼40X)

and 500 additional samples with medium coverage (∼13X), we found that regions

of low mappability, which only represent ∼10% of the genome, were around 5 times

more likely to harbor CNVs. The fact that this enrichment was observed for germline
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events and not somatic events was both reassuring and interesting because of the

implications on the selection forces at play. In particular, we were able for the first

time to quantify the extent to which some regions in the genome are more prone to

harbor such structural rearrangements. For instance, beyond the known enrichment

in segmental duplications, we found genome-wide enrichments for different fami-

lies of DNA satellites, simple repeats and TE, such as SVA, L1Hs and HERV-H.

Moreover, although PopSV doesn’t fully characterize STR variation, it was able to

detect CNVs in large annotated STRs. These CNVs could complement the output

of STR detection methods that look for STR variation within sequencing reads and

for this reason cannot test STRs longer than ∼100 bp. Here, we found a strong

CNV enrichment in STRs larger than 400 bp suggesting that large STRs should be

included in genome-wide STR variation screens. Overall, having a more complete

CNV catalog enabled an unbiased characterization of the CNV patterns across the

genome and could potentially increase the power for trait-association studies.

Fine-tuning the location of breakpoints is often possible by reanalyzing the local

read coverage or using orthogonal methods such as split-read or local assembly. In

repeat-rich regions however, these methods generally do not perform well. Long

read sequencing is currently the only experimental method that actually results in

unambiguous SV calls with nearly quasi-base-pair resolution in low-mappability re-

gions. Indeed, recent studies using long-read sequencing58,59 found many novel SVs

and highlighted variation involving complex repetitive DNA. The increased resolu-

tion and ability to span repeated regions expanded existing SV catalogs but only

a handful of genomes have been sequenced in this way so far due to the higher

cost of this technology. Although breakpoint and allele characterization is lim-

ited with short reads, we were able to detect the presence of such CNVs across a

large population of normal genomes. Compared to previous studies, our CNV cat-

alog strongly overlaps with the variants found by long-read sequencing studies in

low-mappability regions. With hundreds of genomes at our disposal we identified

frequent CNVs in repeat-rich regions that had escaped previous population-scale
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surveys. In the CEPH12878 sample, we independently identified low-mappability

variants and showed that some novel deletions were recurrent in our cohort. For

example, an exonic deletion in the CR1 gene absent from public CNV catalogs was

identified by the long-read sequencing and found in ∼3% of the samples tested by

PopSV. CR1 has been associated with Alzheimer Disease227 thus this exonic dele-

tion in a low-mappability region might be relevant for association studies. Using our

full CNV catalog, we identified 3,455 novel regions that were not present in 1000G

public SV database5 but found in more than 1% of our 640 genomes. These regions

overlapped exons of 418 protein-coding genes, 38 of which were associated with a

disease phenotype in the OMIM database. The amount of genes hit by CNVs in

novel or low-mappability regions and the enrichment of CNVs in repeat-rich regions

suggest that they be included in genome-wide surveys. As other types of variant are

likely enriched in repeat-rich regions, we anticipate that population-based methods,

such as PopSV, will facilitate the identification not only of CNVs but also of other

types of SVs in both normal and cancer genomes.

One of the most promising future development of PopSV to further characterize

low-mappability regions is its extension to detect balanced SV such as inversions

or translocations. Indeed, instead of modeling the coverage of properly mapped

reads, the same population-based strategy could test for an excess of discordant

reads. By counting the number of reads in incorrect orientation or joining dis-

tant regions, one could recognize an excess of SV-supporting reads from discordant

mapping caused by repeats. Such an approach could detect inversions and translo-

cations that contains repeats around their breakpoints or complement SV calls from

orthogonal approaches by providing a robust confidence score based on abnormal

read coverage.

4.6 Data and Code Availability

The PopSV R package and documentation are available at http://jmonlong.github.

io/PopSV/. The scripts and instructions to reproduce the graphs and numbers in
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this study have been deposited at http://github.com/jmonlong/reppopsv/ and

archived in https://doi.org/10.5281/zenodo.1241137.

4.7 Accessions numbers

The CNV catalog and annotations were deposited at https://figshare.com/s/

8fd3007ebb0fbad09b6d. The raw sequences of the different datasets had already

been deposited by their respective consortium (see Supplementary Information).
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Chapter 5

Discussion of Results and

Implications

Population-based approaches and whole-genome se-

quencing

The three chapters highlighted the usefulness of population-based approach to de-

tect genomic variation. The superior sensitivity made it possible to detect somatic

variants in tumor samples, small and non-coding variants in epilepsy patients and

variants in low-mappability regions in healthy individuals. The main results and im-

plications concerning ccRCC, epilepsy and repeat-rich regions have been described

in their respective chapters. However, all these results relied on a first step of variant

detection that used the same strategy: analyzing a genome in the context of many to

minimize the effect of technical noise. This population-based approach can benefit

variant calling as long as the genomes in the population are sequenced with similar

protocol and machine, and the raw data is pre-processed with the same pipeline. If

this is the case, other factors that don’t affect technical variation, for example gen-

der or ethnicity, should not affect the variant calling. The main result of this work,

at least in term of methodology, is the demonstrated power of population-based

approach across multiple applications.
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All three chapters used WGS data across dozens or hundreds of genomes. At the

beginning of this work, WGS data across that many samples was not widespread.

Large-scale sequencing projects used to be rare and international efforts involving

numerous centers57,228. Yet, the cost of sequencing has been steadily decreasing

and new machines currently advertise sub-1000$ costs for whole-genome sequenc-

ing. As a result, sequencing projects involving hundreds of genomes are more and

more common. Motivated by the future opportunities for personalized medicine,

hundreds of genomes are being sequenced to characterize the population in different

countries107,229,230. For disease studies as well, whole genome sequencing of hun-

dreds of participants has been performed or is currently under way. Large-scale

project that focus on single disease include the MSSNG collaboration∗ that aims at

sequencing 10,000 families affected by autism and whose first results were published

recently231 and the Alzheimer’s Disease Sequencing Project232 which is sequencing

more than a thousand patients with Alzheimer disease. WGS is also at the core of

multi-disease projects that are currently in progress. The Genomics England ini-

tiative† will sequence 100,000 genomes from patients with rare diseases and cancers

while the TOPMed consortium‡ plans on sequencing the genome of 120,000 individ-

uals to study the contribution of genetics to heart, lung, blood and sleep disorders.

Often, this data is first processed at the individual level and later pooled to derive

population information or association metrics. Our data highlights the benefit of

pooling individuals earlier in the analysis workflow. Instead of pooling results after

variant calling, we found that variant calling could be significantly improved thanks

to population information. I believe that population-based approaches similar to

PopSV could have a large impact on the variant discovery across these large-scale

projects. It is regrettable to have information across hundreds of other experiments

and to keep it aside for variant calling. Of note, promising avenues are currently be-

ing explored to reverse this trend, for example by integrating population information

∗https://www.mss.ng
†https://www.genomicsengland.co.uk
‡https://www.nhlbiwgs.org/
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even before variant calling. The new field of genome graphs aims at constructing

a reference genome that includes known variation in order to directly improve read

mapping, variant calling and population representation.

In addition to the population-based approach, our results also contribute to

the case for whole-genome sequencing when designing a large scale genomic study.

Although more costly than genotyping arrays or exome sequencing, WGS can detect

a larger range of variants: rare and frequent, coding and non-coding, SNVs and

CNVs or other SVs. WGS data produced with a primary objective in mind can

often be re-used to study different aspects of genomic variation. For example, the

data used in Chapter 2 was originally produced to describe somatic SNVs and broad

CNV patterns in ccRCC143. In Chapter 2, we re-analyzed this dataset to further

investigate the arm-level aberrations across the cohort and more precisely estimate

the amount of somatic LOY in tumors from male patients. These results were

replicated with a PCR-based approach in a different cohort of tumors and represent

the foundation of the functional importance of somatic LOY advocated in our study.

In chapter 3 and 4, the combination of WGS and PopSV was also instrumental

in discovering novel scientific results. Novel coding variants in epilepsy or low-

mappability regions were identified. A CNV profile that had never been associated

with epilepsy, rare non-coding CNVs, was for the first time seen to be strongly

enriched close to known epilepsy genes. Thousands of low-mappability regions that

frequently experience CNV were identified, including some located near or within

protein-coding genes.

Somatic loss of Y and gender imbalance in cancer

The gender imbalance in the renal cancer incidence is not completely understood.

Our results suggest that somatic LOY occurs frequently in male tumors and have

a functional impact. Hence, loss of chromosome Y could explain part of the higher

incidence in males. Other cancers, such as liver and bladder cancers, show gender

imbalance toward males and might also be partly explained by LOY131. Several
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studies have found that more than 30% of tumors from these cancers experienced

LOY138,139. Our study and others suggest that LOY could be a driver mecha-

nism of tumor progression by disregulating tumor suppressors, such as KDM5D and

KDM6C. Of note, KDM5D and KDM6C are both expressed in the liver and the

bladder. Because of the multiple similarities with our study of ccRCC, it is sensi-

ble to speculate that the same mechanism, that is downregulation of KDM5D and

KDM6C through LOY, is involved in the tumor progression of cancers of the liver

and bladder. A population-based approach such as the one we used might identify

more subtle LOY in sequencing datasets which could help estimate the rate and

impact of this type of variation.

Although incidental, we detected LOY in the blood samples as well, both in

the WGS and the PCR-based replication. As described in the literature, somatic

LOY in blood was associated with older age in our cohort. Two studies suggest

that the presence of LOY in blood samples can be associated with higher incidence

rate of non-hematological cancers or Alzheimer disease168,233. Unfortunately, due

to the absence of matched healthy controls we couldn’t directly test the association

with ccRCC. We found no significant associations between LOY in blood and the

tumor stage or grade. Further investigations in the future will require more samples,

including matched controls and balanced numbers of different tumor grades.

Small and non-coding CNVs in epilepsy and neu-

rological disorders

Our results suggest that WGS will be necessary to fully characterize the genetic

factors associated with epilepsy. First, WGS is more suitable for CNV detection

compared to other sequencing approaches (e.g. exome sequencing). Despite its

successes in detecting rare SNVs associated with genetic disorders, exome sequencing

is less suited for CNV and SV detection. Indeed, the step that captures the regions

of interest adds another layer of technical bias. Not only is the read coverage affected

110



CHAPTER 5. DISCUSSION OF RESULTS AND IMPLICATIONS

by the capture efficiency in each region, the fragmented representation of the genome

also hinders the sensitive detection of CNVs. Considering the importance of CNVs

in epilepsy as shown by our study and others, WGS will be key to efficiently detect

even exonic variants associated with the disease. Second, we show for the first time

an association between non-coding CNVs and epilepsy. Thanks to WGS, we were

able to interrogate the presence of both small and non-coding variants. In contrast,

previous array-based study were limited to large CNVs which tended to overlap

exonic regions. We found a clear enrichment of rare non-coding CNVs in patients

close to genes that were previously associated with epilepsy. Even more convincing,

the enrichment increased the closer to the exon and was boosted for deletions and

variants overlapping regulatory regions. Similar results were found in individuals

with autism where non-coding de novo CNVs and SNVs were enriched up to 100

Kbp from autism-associated genes234.

These conclusions are relevant for epilepsy but also for other neurological disor-

ders. Large CNVs have also been associated with autism117, mental retardation112

and schizophrenia115,235. In each disease, the same pattern emerged: probands tend

to have rare large CNVs and/or in hotspot regions flanked by segmental duplica-

tions. Often, the same CNV hotspot regions have been associated with several

neurological disorders as is the case for 1q21.1, 15q13.3 and 16p11.2112. Based on

these commonalities and our results, I expect that small and non-coding CNVs play

a role in other neurological disorders as well. In general, the study of the genetics

of neurological disorder could greatly benefit from WGS approaches similar to the

one we used in chapter 3.

The enhanced resolution of WGS and our population-based approach suggest

that some types of variants had been missed before. The inclusion of such genomic

variants might help characterize the exact syndrome or grouping patients with sim-

ilar etiology. Drug resistance is an important problem in idiopathic epilepsy and

much remains to be done to understand its causes. The study presented in chapter

3 contributes to the identification of genes that might be associated with epilepsy
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and advocates for the inclusion of small and non-coding CNVs in the genomic profile

of epilepsy patients. It is my hope that either these candidate genes or the inclusion

of those variants will one day help to devise new drugs or to assist clinician when

choosing a treatment.

Including low-mappability regions in genome-wide

studies

More and more evidence supports the importance of repeated regions in disease

and human phenotypes. After being considered junk DNA for a long period, the

role of many types of repeats is becoming clear. From the highly variable STRs

and their association with gene expression changes79, to the contribution of TEs in

regulation networks12 or the satellite instability in cancer95, repeats are gathering

more attention. Still, repeats are under-studied because of the technical challenges

and reluctant mentality shift. Our results show that WGS and a population-based

approach is sufficient to detect CNV in many repeat-rich regions. Moreover, we

found that these regions are more likely to harbor CNVs compared to the rest of

the genome. Many low-mappability regions are also located close to protein-coding

genes, some of which have been linked to Mendelian diseases before. By masking

repeats, genome-wide association studies have discarded a small part of the genome

but a large fraction of the genomic variation. I believe that approaches similar to

the one presented in this work, as well as future technologies that will make repeat

integration easier, could lead to a better genomic characterization of diseases and

human phenotypes.
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Chapter 6

Conclusions and Future Directions

The population-based approaches presented here have been successful at detecting

somatic and challenging germline changes in copy number but more remains to be

done. Although we were able to detect the presence of variation, more effort will

be necessary to fully characterize the alternate alleles. The methods could also be

extended to other sequencing technologies, particularly targeted sequencing such as

whole-exome sequencing. Similar approaches could also be extended to other types

of SVs, for example translocations and inversions. Finally, recent technological

advances shine a promising light on the future of SV characterization. Genome

editing might help investigate the functional impact of non-coding CNVs while new

sequencing technologies will likely be used in concert to integrate SVs and low-

mappability in genomics studies.

From variant detection to base-pair resolution

The population-based approach presented in this work is powerful to detect variation

but cannot fully characterize the variants. Deriving the exact sequence of the mu-

tated allele or breakpoints remains challenging in repeat-rich regions or for complex

SVs. Indeed, large sample sizes and population-oriented analysis are mostly able to

flag the presence of an abnormal signal in these regions. To unlock a base-pair level

resolution for the breakpoints or the variant sequence in general, a different type
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of data will be necessary rather than more of the same data. In WGS early years,

genomes were sequenced at low depth and pooling individuals helped increase read

support necessary to estimate the variant sequences. A typical WGS genome is now

often 30x deep or more and pooling reads across different individuals will have only

marginal benefit on the base-pair resolution of the SVs. At this depth, the problem-

atic variants are either in repeat-rich regions or more complex than the canonical SV

types. More of the same short reads wouldn’t bring much new information and the

ambiguity would likely remain. In the end, the short read size is the main limitation.

Hence, long read sequencing will likely have a large impact on characterizing many

of the SVs that remain challenging. Several studies already showed the power of

long reads for SV detection58,59. Unfortunately the higher cost of these technologies

limits their use. The cost and usage might change but it is unlikely that a very

large number of genome will be sequenced with these technologies. Still, this tech-

nology could be used to validate and confirm SVs identified in large scale short-read

projects. By carefully choosing a few genomes to sequence, the catalog of complex

and repeat-rich SVs could be greatly improved. For example, sequencing genomes

carrying candidate pathogenic variants could validate and provide more insights into

the variant impact or potential mechanism of action. Selecting a few genomes with

different complex SVs and low-mappability variants could also maximize the gain

from each long-read sequencing experiment. In summary, long-read sequencing of a

few carefully selected genomes would nicely complement deep short-read sequencing

across large cohorts. Of note, a more cost effective approach would be to capture

the regions containing the SVs detected from the large-scale short-read surveys. The

challenge here is to efficiently and accurately capture large and potentially repeat-

rich regions. If this type of capture is possible, Sanger sequencing could also be

used to characterize the variants at the base-pair level. Having a validated set of

variants at the base-pair level and covering low-mappability regions will also provide

an extremely useful gold-standard to assess the sensitivity and specificity of CNV

methods. In the absence of such a gold-standard, we had to rely on indirect assess-
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ment, such as the replication in twins or the comparison with just a few long-read

assemblies.

Extension to targeted sequencing

Targeted sequencing involve a step of capture in which the desired genomic regions

are selectively amplified. Thanks to the capture, only a set of regions, for example

coding regions, are sequenced. However, the capture efficiency varies depending on

the design and regions, introducing additional technical variation in the read cov-

erage. CNV detection from the read coverage is challenging as a result. Existing

methods turned to population-based approach, similar to our WGS method PopSV,

in order to normalize read coverage using other experiments that used similar cap-

ture236,237. PopSV could be easily extended to such application as it doesn’t rely

on coverage uniformity but rather considers each region separately in the context of

reference samples. We actually ran PopSV successfully on several whole-exome se-

quencing projects with minimal changes. Briefly, one additional step in the pipeline

was necessary: the removal of regions that were not covered by the sequencing ex-

periment. Of note, the quality control step was even more important here in order

to ensure that the reference and tested samples originated from the same sequenc-

ing protocol. Indeed, capture protocols are continuously evolving with new exome

capture kits available every year. Although we believe that the normalization used

by PopSV is superior to several of existing methods, the regions with abnormal

coverage are merged using a simplistic approach. For WGS, it is natural to merge

consecutive regions that share a CNV signal as they are located one next to the

other. In targeted sequencing, there are often stretches of non-covered regions that

separate captured regions. By integrating this information a better segmentation

can be performed as shown by several methods238,239. In the context of an extension

to targeted sequencing, we could improve PopSV’s segmentation step with such al-

gorithms in order to have both a more advanced normalization and an appropriate

segmentation.
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Extension to balanced structural variation

PopSV could also be extended to other types of SVs, as the name originally intended.

Currently, abnormal coverage of properly mapped reads identifies regions with a

change in copy number. In the future, PopSV could operate on the coverage of reads

with discordant paired-end mapping. For example, reads whose pair couldn’t be

aligned or aligned at an abnormal distance or orientation. An abnormal excess of

discordant reads would be a sign of SV. With PopSV’s population-based approach,

discordant mapping due to repeats will be corrected for and only regions with a

real excess of discordant mapping should be called. This type of test could be run

across genomic regions, as for the CNV analysis, or between pairs genomic regions.

The objective of the paired-regions approach is to increase the signal-to-noise ratio

between the SV-caused discordant reads and the background level. Indeed, the

background level of discordant reads in a region might be high enough to drown the

signal from the additional reads created by the SV. When focusing on discordant read

pairs with one read mapped to a region and the other in another distant region, the

amount of background discordant mapping is much lower. The excess of discordant

read pair linking the boundaries of a translocation or an inversion might be more

easily detected. Both of these approaches are currently being tested. The original

scan, i.e. testing one region at a time, seems to be under-powered and return much

fewer calls than the CNV scan. Alternatively, this extension of PopSV would also be

useful to annotate calls from other methods, for example those that identify clusters

of discordant or split reads. These methods tend to suffer from a high false-positive

rate most likely due to repeat confusion.

Investigating the functional impact of non-coding

CNVs

We identified dozens of rare non-coding CNVs located close to known epilepsy genes

and absent from our controls and public CNV databases. The most promising
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candidates are located in regions that were previously associated with changes in the

gene expression and are predicted to host regulatory regions. While the frequency

and location of these non-coding CNVs are encouraging, it is not clear which variant

really has an impact on the gene and eventually the disease phenotype. Indeed, we

observed a clear enrichment which means that some CNVs are associated with the

disease. In order to narrow down the list of candidate regions we could either increase

the sample size or experimentally test the variant’s impact. Both strategies have

their own set of challenges.

To achieve a higher sample size, more patients are necessary and might require

national or international collaboration. Because epilepsy is a diverse disease, the new

patients should be matched as much as possible with our cohort in order to maximize

the chances of observing recurrent variants. Finally, the number of probands that

need to be sequenced to identify single genes or non-coding regions might be unre-

alistically high, again because of the diverse phenotype and complex gene network

involved in the disease mechanism.

Investigating deeper our current candidates might be more feasible thanks to

recent advances in cell reprogramming and DNA editing. It is not feasible to study

live human brains and unpractical to collect post-mortem brains in correct condi-

tions for functional assays. Cell reprogramming provides a better alternative. By

reprogramming cells from a carrier into relevant cell types, e.g. neurons, the effect

of a variant on the gene function could be tested in the laboratory. If patients’

samples are unavailable or to better control for the genetic background, DNA edit-

ing like CRISPR-Cas9 could recreate the non-coding deletion in cells. DNA editing

before cell differentiation would provide a culture of cells that could then be dif-

ferentiated into different cell types to extensively study the effect of the variants.

While a true “epilepsy” phenotype is almost impossible to test in a cell culture, we

could investigate the effect of the variants on gene expression or other molecular

phenotypes. Although this approach requires time, resources and expertise, it is

more geared toward validating our non-coding candidates and more likely to give
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conclusive results.

SV and WGS in the near future

Thanks to better sequencing technologies and methods, systematic de novo assembly

of genomes might eventually supplant the re-sequencing approach that is dominant

today. The optimal output would be phased sequence for each genome that is

sequenced and assembled. SV detection would then come down to comparing the

assembled genomes. Recent advances in long-read, linked-read, or conformation cap-

ture sequencing greatly improve the quality of the de novo assemblies and contains

long-range information useful for phasing. However, for SV detection, long-read

sequencing will be necessary to reach a base-pair resolution across the full genome,

as mentioned above. Because of its cost, only a limited number of genomes will be

sequenced with long-read sequencing in the near future. Furthermore, hundreds of

thousands of genomes have been sequenced or are being sequenced with short-read

technology. Until affordable and comprehensive de novo assembly is available, the

field will likely move to hybrid strategies for SV analysis. But how could we inte-

grate SV information from different approaches and across hundreds to thousands

of genomes? The recent development of genome graphs provides a promising solu-

tion240. Genome graphs represent the genome and genomic variation in a population

using a graph structure. One of its current form corresponds to the current refer-

ence genome augmented with SNVs and indels from the 1000 Genomes Project241.

Genome graphs are by nature flexible so that we could imagine further improving

their breadth with high-quality de novo assemblies or SV catalogs from long-read

sequencing datasets. Using a genome graph populated with the high-resolution

variants, SV could be more efficiently genotyped in short-reads datasets across large

populations. Genome graphs also provide an ideal structure to represent complex

haplotypes, such as those involving SVs. As for other types of variants, haplotype

information will be invaluable to assist variant calling and to predict the functional

impact of SVs. Short-read datasets could benefit from the long-range information
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present in the high-resolution datasets by integrating complex haplotype information

in the genome graphs. With coordination and data sharing, and with genome graphs

as a new reference system, there is hope that we can rapidly reach the point where

phased high-resolution SVs can be genotyped accurately from short-read datasets

spanning hundreds of thousands of genomes.
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D. V. Albert, S. Venkateswaran, T. Ware, D. Jones, Y.-C. Liu, S. S. Mo-
hammad, P. Bizargity, C. A. Bacino, V. Leuzzi, S. Martinelli, B. Dallapic-
cola, M. Tartaglia, L. Blumkin, K. J. Wierenga, G. Purcarin, J. J. O’Byrne,
S. Stockler, A. Lehman, B. Keren, M.-C. Nougues, C. Mignot, S. Auvin,
C. Nava, S. M. Hiatt, M. Bebin, Y. Shao, F. Scaglia, S. R. Lalani, R. E.
Frye, I. T. Jarjour, S. Jacques, R.-M. Boucher, E. Riou, M. Srour, L. Car-
mant, A. Lortie, P. Major, P. Diadori, F. Dubeau, G. D’Anjou, G. Bourque,
S. F. Berkovic, L. G. Sadleir, P. M. Campeau, Z. Kibar, R. G. Lafrenière,
S. L. Girard, S. Mercimek-Mahmutoglu, C. Boelman, G. A. Rouleau, I. E.
Scheffer, H. C. Mefford, D. M. Andrade, E. Rossignol, B. A. Minassian, and
J. L. Michaud. High Rate of Recurrent De Novo Mutations in Developmental
and Epileptic Encephalopathies. The American Journal of Human Genetics,
101(5):664–685, nov 2017. doi:10.1016/j.ajhg.2017.09.008.

Contributions to projects not directly relevant for the thesis topic:

• M.Mele, P. G. Ferreira, F. Reverter, D. S. DeLuca, J. Monlong, M. Sammeth,
T. R. Young, J. M. Goldmann, D. D. Pervouchine, T. J. Sullivan, R. John-
son, A. V. Segre, S. Djebali, A. Niarchou, GTEx Consortium, F. A. Wright,
T. Lappalainen, M. Calvo, G. Getz, E. T. Dermitzakis, K. G. Ardlie, and
R. Guigo. The human transcriptome across tissues and individuals. Science,
348(6235):660–665, may 2015. doi:10.1126/science.aaa0355.

141

http://dx.doi.org/10.1016/j.ajhg.2017.09.008
http://dx.doi.org/10.1126/science.aaa0355


APPENDICES

• D. D. Pervouchine, S. Djebali, A. Breschi, C. A. Davis, P. P. Barja, A. Dobin,
A. Tanzer, J. Lagarde, C. Zaleski, L.-H. See, M. Fastuca, J. Drenkow, H. Wang,
G. Bussotti, B. Pei, S. Balasubramanian, J. Monlong, A. Harmanci, M. Ger-
stein, M. A. Beer, C. Notredame, R. Guigó, and T. R. Gingeras. En-
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Appendix B

Supplementary material for chapter 2 and its corresponding manuscript: Loss of
chromosome Y leads to down regulation of KDM5D and KDM6C epigenetic
modifiers in clear cell renal cell carcinoma.

Supplementary Tables

Table S2.1: Characteristics of patients included in the study.

Gene Chromosome Fold-change
(Differential expression)

KDM5D Y -1.3
USP9Y Y -1.4
ZFY Y -1.1
UTY/KDM6C Y -1.2
NLGN4Y Y -0.8
DDX3Y Y -1.8
EIF1AY Y -1.8
TMSB4Y Y -0.9
RPS4Y1 Y -2.6

Table S2.2: Genes differentially expressed between tumors with and with-
out somatic LOY. Fold-change of differential expression between the two tumor sets.
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Figure S2.2: Validation using PCR amplification. Status of chromosome Y in

tumors and patient-matched normal samples is shown for individual male subjects of the

validation set. The PCR amplification values are normalized and summarized by their

median in each sample. Individuals affected by somatic LOY are shown in blue

Figure S2.3: Somatic LOY Y-linked genes down-regulation from array-
based expression experiments. The proportion of cells with Y loss was estimated

by the PCR amplification values.
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Appendix C

Supplementary material for chapter 3 and its corresponding manuscript: Global
characterization of copy number variants in epilepsy patients from whole
genome sequencing.

Supplementary Tables

Table S3.1: PopSV calls validated by RT-PCR. The Excel file contains the location
of each region, the CNV type, the number of carriers in the CENet cohorts, the maximum

proportion of carriers in the CNV databases, Taqman probe ID and validation status.

https://doi.org/10.1371/journal.pgen.1007285.s003

.

Patient Epilepsy type Syndrome Copy Chr. CNV start CNV end Exon disrupted Taqman probe
number

CNET0188 Focal Mesial temporal lobe
sclerosis

1 2 141335001 141365000 LRP1B Hs02078420 cn

CNET0084 Focal Temporal lobe 1 4 120205001 120280000 USP53;FABP2;C4orf3 Hs04813260 cn
CNET0143 Generalized Childhood absence

epilepsy
1 5 65055001 65465000 NLN;ERBB2IP;SREK1 Hs03552554 cn

CNET0151 Generalized Eyelid myoclonia
epilepsy with absence

1 9 8600001 8770000 PTPRD Hs06875003 cn

CNET0041 Generalized Idiopathic generalized
epilepsies

1 11 62625001 62645000 SLC3A2 Hs03777991 cn

CNET0066 Generalized Idiopathic generalized
epilepsies

1 13 67325001 67575000 PCDH9 Hs06378870 cn

CNET0025 Generalized Early onset absence
epilepsy (onset ¡4, ab-
sence with or without
GTCs)

1 15 60735001 60805000 RORA;NARG2 Hs05369880 cn

CNET0195 Focal Occipital lobe epilepsy 1 22 34095001 34200000 LARGE Hs05575584 cn
CNET0005 Generalized febrile sz, child onset

GTCs
1 22 41960001 42050000 PMM1;DESI1;CSDC2;XRCC6 Hs05580065 cn

Table S3.2: Other pathogenic profiles.

Table S3.3: Clinical features of epileptic patients. The Excel file contains the type

of epilepsy, age of onset, sex, family history, pharmaco-resistance and potential intellectual

disabilities. https://doi.org/10.1371/journal.pgen.1007285.s002
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Supplementary Figures
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Figure S3.1: Variation and bias in whole-genome sequencing experiments
in the epilepsy cohort. a) Distribution of the bin inter-sample standard deviation

coverage (red) and null distribution (blue: bins shuffled, green: simulated normal distri-

bution). b) Proportion of the genome in which a given sample (x-axis) has the highest

(red) or lowest (blue) RD. In the absence of bias all samples should be the most extreme

at the same frequency (dotted horizontal line).
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Figure S3.2: Variation and bias in whole-genome sequencing experiments
in the normals from CageKid (a,d,g), the twin dataset (b,e,h) and the
twin dataset after using QDNAseq190 correction (c,f,i). a-c) Distribution of the

bin inter-sample standard deviation coverage (red) and null distribution (blue: bins shuf-

fled, green: simulated normal distribution). d-f) Same for the bin inter-sample standard

deviation coverage. g-i) Proportion of the genome in which a given sample (x-axis) has

the highest (red) or lowest (blue) RD. In the absence of bias all samples should be the

most extreme at the same frequency (dotted horizontal line).
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Figure S3.8: Benchmark across paired normal/tumor in CageKid. Number

(a) and proportion (b) of germline calls replicated in the paired tumor in CageKid. c)

Number and proportion of replicated calls when filtering calls at different significance

levels. d) Focusing on calls found by at least two methods, the color shows the proportion

of calls from one method (x-axis) that were also found by another (y-axis) on average per

sample.
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Figure S3.9: Comparison of PopSV results using different bin sizes. a) 5 Kbp

calls of different sizes (x-axis) are split according to the proportion of the call supported

by 500 bp calls. The Z-score of 500 bp bins in 5 Kbp calls is consistent with the call

for deletion b) and duplication c) signal. 5 Kbp calls with lower significance (e.g. single-

bin calls) are less supported by 500 bp calls (a) but their Z-scores are in the consistent

direction (b,c) although not always significant enough to be called. d) Proportion of 500

bp calls of different sizes (x-axis) overlapping a 5 Kbp call.
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Figure S3.10: CNV size in our cohort and four array-based studies. The

bars show the average number of CNVs called in a sample in the different cohorts. Redon

2006106 and Itsara 2009111 are population studies using technology similar to previous

epilepsy studies. Addis 2016125 is a recent study of large CNVs in absence epilepsy.

Conrad 201024 is a population study that used multiple arrays to increase its resolution.
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Supplementary Information

Epilepsy patients and sequencing

Ethics and patients recruitment CENet is a Genome Canada and Genome
Québec funded initiative that aims to bring personalized medicine in the treatment
of epilepsy. Patients were recruited through two main recruitment sites at the Cen-
tre Hospitalier Universitaire de Montréal (CHUM) and the Sick Kids Hospital in
Toronto. This study was approved by the Research Ethics Board at the Sick Kids
Hospital (REB number 1000033784) and the ethics committee at the Centre Hospi-
talier Universitaire de Montréal (project number 2003-1394,ND02.058-BSP(CA)).
Before their inclusion in this study, patients had to give written informed consents.
The main cohort of this study was constituted of 198 unrelated patients with var-
ious types of epilepsy; 85 males and 113 females. The mean age at onset of the
disease for our cohort was 9.2 (±6.7). Supplementary Table S3.3 presents a detailed
description of the clinical features for the various individuals recruited in this study.
DNA was extracted from blood DNA exclusively. 301 unrelated healthy parents of
other probands from CENet were also included in this study and used as controls.

Libraries preparation and sequencing gDNA was cleaned up using ZR-96
DNA Clean & ConcentratorTM-5 Kit (Zymo) prior to being quantified using the
Quant-iTTM PicoGreen R© dsDNA Assay Kit (Life Technologies) and its integrity
assessed on agarose gels. Libraries were generated using the TruSeq DNA PCR-Free
Library Preparation Kit (Illumina) according to the manufacturer’s recommenda-
tions. Libraries were quantified using the Quant-iTTM PicoGreen R© dsDNA Assay
Kit (Life Technologies) and the Kapa Illumina GA with Revised Primers-SYBR
Fast Universal kit (Kapa Biosystems). Average size fragment was determined using
a LabChip GX (PerkinElmer) instrument.

The libraries were first denatured in 0.05N NaOH and then were diluted to 8pM
using HT1 buffer. The clustering was done on a Illumina cBot and the flowcell was
run on a HiSeq 2500 for 2x125 cycles (paired-end mode) using v4 chemistry and
following the manufacturer’s instructions. A phiX library was used as a control and
mixed with libraries at 1% level. The Illumina control software was HCS 2.2.58, the
real-time analysis program was RTA v. 1.18.64. Program bcl2fastq v1.8.4 was then
used to demultiplex samples and generate fastq reads. The average coverage was
37.6x ± 5.6x. The filtered reads were aligned to reference Homo sapiens assembly
b37. Each readset was aligned using BWA203 which creates a Binary Alignment
Map file (.bam). Then, all readset BAM files from the same sample are merged
into a single global BAM file using Picard. Insertion and deletion realignment was
performed on regions where multiple base mismatches were preferred over INDELs
by the aligner since it appears to be less costly for the algorithm. Such regions were
found to introduce false positive variant calls which may be filtered out by realigning
those regions properly. Once local regions were realigned, the read mate coordinates
of the aligned reads needed to be recalculated since the reads are realigned at po-
sitions that differ from their original alignment. Fixing the read mate positions is
performed using Picard. Aligned reads were marked as duplicates if they have the
same 5’ alignment positions (for both mates in the case of paired-end reads). All
but the best pair (based on alignment score) were marked as a duplicate in the .bam
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file. Duplicates reads were excluded in the subsequent analysis. Marking duplicates
was performed using Picard.

Testing for technical bias in WGS

To investigate the bias in read depth (RD), we first fragmented the genome in non-
overlapping bins of 5 Kbp. The number of properly mapped reads was used as RD
measure, defined as read pairs with correct orientation and insert size, and a map-
ping quality of 30 (Phred score) or more. In each sample, GC bias was corrected by
fitting a Loess model between the bin’s RD and the bin’s GC content. Using this
model, the correction factor for each bin was estimated from its GC content. Bins
with extreme coverage were identified when deviating from the median coverage by
more than 3 standard deviation. After these conventional intra-sample corrections,
RD across the different samples were combined and quantile normalized. At that
point the different samples had the same global RD distribution and no bins with
extreme coverage or GC bias. Two control RD datasets were constructed to repre-
sent our expectation when no bias is present. One was derived from the original RD
by shuffling the bins’ RD in each sample. In the second, RD was simulated from a
Normal distribution with mean and variance fitted to the real distribution. Simula-
tion or shuffling ensures that no region-specific or sample-specific bias remains. To
investigate region-specific bias, we computed the mean and standard deviation of the
RD in each bin across the different samples. The same was performed in the control
datasets. If there is no bias, the distribution of these estimators should be similar
in the original, shuffled and simulated RD. Next, to investigate experiment-specific
bias, we retrieved which sample had the highest coverage in each bin. Then we
computed, for each sample, the proportion of the genome where it had the highest
coverage. If no bias was present, e.g. in the shuffled and simulated datasets, each
sample should have the highest coverage in 100/N % of the genome (with N the
number of samples). If an experiment was more affected by technical bias, it would
be more often extreme. The same analysis was performed monitoring the lowest
coverage.

The same analysis was ran after correcting the coverage in the Twin dataset
using the QDNAseq pipeline190. The reads were counted in 5 Kbp bins using the
function binReadCounts. GC bias and mappability were corrected using the fol-
lowing functions (with default parameters): applyFilters, estimateCorrection,
correctBins, normalizeBins, smoothOutlierBins.

PopSV

Binning and coverage measure The genome is fragmented in non-overlapping
consecutive bins of fixed size (5 Kbp). In each bin and each sample the number of
reads that overlap the bin and are properly mapped are counted to get a measure of
coverage. Read pairs with correct orientation and insert size, and a mapping quality
of 30 (Phred score) or more are considered properly mapped. The bin counts were
then corrected for GC bias. In each sample, a LOESS model was fitted between the
bin’s count and bin’s GC content. A normalization factor was then defined for each
bin from its GC content.
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Constructing the set of reference samples In the epilepsy study and the
Twins dataset we used all the samples as reference. In the renal cancer dataset we
used the normal samples as reference. For each dataset, a Principal Component
Analysis (PCA) was performed across samples on the counts normalized globally
(median/variance adjusted). The resulting first two principal components are used
to verify the homogeneity of the reference samples. In the presence of extreme
outliers or clear sub-groups, a more cautious analysis would be recommended. For
example, outliers can remain in the set of reference samples but flagged as they
might potentially harbor more false calls later. Independent analysis in each of
the identified sub-group is also a solution, especially when the same samples are
to be used as reference. Although our three datasets showed different levels of
homogeneity, we did not need to exclude samples or split the analysis. The effect of
weak outlier samples was either corrected by the normalization step or integrated
in the population-view. Moreover, the principal components were used to select one
control sample from the final set of reference samples. This sample is used in the
normalization step as a baseline to normalize other samples against. We picked the
sample closest to the centroid of the reference samples in the Principal Component
space.

Normalization Although uniformity of the coverage across the genome is not
required for our approach, RD values must be comparable across samples. When
a particular region of the genome is tested, sample specific variation of technical
origin must be minimized. This is done through a normalization step. Naive global
normalization approaches like the Trimmed-Mean M(TMM) or quantile normaliza-
tion have been first implemented and tested. The TMM normalization robustly
aligns the mean RD value in the samples. Quantile normalization forces the RD
distribution to be exactly the same in each sample. After witnessing the presence
of uncharacterized sample-specific variation, we implemented a more suited normal-
ization. Targeted normalization uses information across the set of reference samples
to identify similar bins across the genome and normalize their counts separately
(Fig. S3.19). For each bin, the top 1000 bins with similar coverage patterns across
the reference samples are used to normalize the coverage of the bin. TMM nor-
malization is used on these top 1000 bins to derive the correct normalization factor
for the bin to normalize. Similarity between two bins is measured using Pearson
correlation between the counts across the reference samples. Hence, the top 1000
bins are most similar in term of relative coverage across the samples to the coverage
in the bin to normalize. If some bias is present in some samples, the top 1000 bins
should also harbor this bias. Hence, other regions with similar bias patterns are
used to correct for it. In this targeted approach, each genomic region is normalized
independently. The 1000 supporting bins are saved and used to normalized new
samples (e.g. case sample). Although computationally expensive, it ensures that
all bins are normalized with the same effort. In contrast, global normalization or
even PCA-based approaches corrects for the most common or spread bias, but a
subset of regions with specific bias might not be corrected. In order to compare the
performance of the different normalization approaches we computed a set of quality
metrics. The normalized RD will need to be suited for testing abnormal pattern
across samples: under the null hypothesis, i.e. for normal bins, the RD should be
relatively normally distributed and the samples rank should vary randomly from
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one bin to the other. The first metric is the proportion of bins with non-normal RD
across the samples. Shapiro test was performed on each bin and a P-value lower
than 0.01 defined non-normal RD. Then, the randomness of the sample ranks was
tested by comparing the RD of each sample a region with the median across all
samples. In regions of 100 consecutive bins, we counted how many times the RD
in a sample was higher than the median across sample. If the ranks are random,
this value should be around 0.5. The probability under the Binomial distribution
is computed for each sample and corrected for multiple testing using Bonferroni
correction. If any sample has an adjusted P-value lower than 0.05, we consider that
the region has non-random ranks. The resulting QC metric is simply the propor-
tion of regions with non-random sample ranks. This QC is specifically testing how
much sample-specific bias remains. The remaining QC metrics look at the Z-score
distribution in each sample. The proportion of non-normal Z-scores is computed by
comparing the density curves of the Z-scores and simulated Normal Z-scores. We
compute the proportion of the area under the density curve that does not overlap
the Normal density curve. This estimate of the proportion of non-normal Z-scores
is computed in each sample. The final metrics are the average and maximum across
the samples.

Abnormal RD test and Z-score computation The test is based on Z-scores
computed for each bin, corrected afterward for multiple testing. The Z-score repre-
sents how different the read count in the tested sample is from the reference samples.

It is simply: z =
BCb

t−mean(BCb
ref

)

sd(BCb
ref

)
where BCb

t is the bin count, i.e. the number of

reads, in bin b and sample t. Inevitably some samples are hosting common CNVs.
We observed that just a couple of samples hosting a CNVs could be enough to bias
the standard deviation used in the score computation and mask these CNVs in the
coming tests. In many cases the RD signal was clearly showing several groups of
samples with proportional read counts. To improve the Z-score computation in those
regions, a simple approach was used: the samples were stringently clustered using
their RD and the group with higher number of samples was chosen as reference and
used to compute the mean and standard deviation for the Z-score computation. In
practice, this clustering affects only bins with clear clusters but would remove just
a few or no samples in most situations. Furthermore, a median-based estimator was
used for the standard deviation as it is less sensitive to outlier removal. A trimmed
mean was also preferred over normal mean for its robustness to outliers.

Significance and multiple testing correction The Z-scores for all the bins of
a sample are pooled and significance is estimated. Under the null hypothesis of nor-
mally distributed read counts, the Z-scores should also follow a normal distribution.
For multiple testing correction, the Z-score empirical distribution is used to fit a
normal and estimate the P-value and Q-value of each test. This step is performed
using fdrtool R package. By default, the null distribution fitting for P-value com-
putation assumes that only a low proportion of bins violates the null hypothesis.
In aberrant genomes, e.g. in tumor samples, it is often an unrealistic assumption.
We devised a new strategy to set the proportion of the empirical distribution, later
used to estimate the null distribution variance. Here the null Z-score distribution is
assumed to be centered on 0 and its variance is estimated by trimming the tails of
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the empirical distribution. To find a correct trimming factor, an iterative approach
started from a low trimming factor and increased its value until reaching a plateau
for the variance estimator. Indeed, once the plateau is reached, additional trimming
does not change the estimated variance because there is no more abnormal Z-scores,
only the central part of the null distribution. Samples with an important proportion
of abnormal genome, e.g. tumor samples, showed more appropriate fit. Of note, the
P-values for positive Z-scores (duplication) and negative Z-scores (deletion) are es-
timated separately. Thus, imbalance in the deletion to duplication ratio, or large
aberration that lead to asymmetrical Z-score distribution does not affect the P-value
estimation. Multiple testing correction is performed after pooling all the P-values.

Segmentation, copy number estimation and other metrics Following the
significance estimation, consecutive bins with abnormal coverage are merged into a
call. Consecutive or nearby abnormal bins (e.g. one bin size apart) are merged into
one variant if in the same direction (deletion or duplication). In PopSV’s R package,
the P-values can also be segmented using circular binary segmentation204.

In addition to the Z-score, P-value, Q-value and number of bins of each call,
PopSV retrieves the average coverage in the reference samples and the fold change
in the sample tested. The copy number is estimated by dividing the coverage in
a region by the average coverage across the reference samples, multiplied by 2 (as
diploidy is expected). In our bin setting, the estimation is correct if the bin spans
completely the variant. For this reason we trust the copy number estimate for calls
spanning 3 or more consecutive bins, as it is computed using the middle bin(s) which
completely span the variant. In other cases we expect the copy number estimate
to be under-estimated. All this additional information can be used to order or
retrieve high confidence calls. For examples, several consecutive bins or a copy
number estimate around an integer value increases our confidence in a call. In our
benchmark, we used the entire set of calls.

Validation and benchmark of PopSV

We compared PopSV to FREEC40, CNVnator41 and cn.MOPS42, three popular RD
methods that can be applied to WGS datasets to identify CNVs. FREEC segments
the RD values of a sample using a LASSO-based algorithm while CNVnator uses a
mean-shift technique inspired from image processing. cn.MOPS considers simulta-
neously several samples and detects copy number variation using a Poisson model
and a Bayesian approach. We also ran LUMPY67 which uses an orthogonal mapping
signal: the insert size, orientation and split mapping of paired reads.

FREEC and CNVnator were run on each sample separately, starting from the
BAM file. FREEC internally corrects the RD for GC and mappability bias. In order
to compare its performance across the entire genome, the minimum telocentromeric
distance was set to 0. The remaining parameters were set to default. Of note
an additional run with slightly looser parameter (’breakPointThreshold=0.6’) was
performed to get a larger set of calls used in some parts of the in silico validation
analysis to deal with borderline significant calls. CNVnator also corrects internally
for GC bias. We used default parameters. For the analysis using higher confidence
calls, we used calls with either ’eval1’ or ’eval2’ lower than 10-5 (instead of the default
0.05). cn.MOPS was run on the same GC-corrected bin counts used for PopSV. All
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the samples are analyzed jointly. Of note an additional run with slightly looser
parameter (’upperThreshold=0.32’ and ’lowerThreshold=-0.42’) was performed to
get a larger set of calls used in some parts of the in silico validation analysis to deal
with borderline significant calls. For LUMPY, the discordant reads were extracted
from the BAMs using the recommended commands. Split-reads were obtained by
running YAHA66 with default parameters. All the CNVs (deletions and duplications)
larger than 300 bp were kept for the upcoming analysis. Calls with 5 or more
supporting reads were considered high-confidence.

First, we compared the frequency at which a region is affected by a CNV using
the calls from the different methods. In order to investigate how many systematic
calls are present in a typical run, we compare the frequency distributions on average
per sample. In figure S3.4, the bars represents the average proportion of a sample’s
calls in each frequency range.

Then, the samples were clustered using the CNV calls. The distance between
two samples A and B is defined as : 1 − 2 |V AB|

(|V A|+|V B|)
where VA represents the

variants found in sample A, VAB the variants found in both A and B, and —V—
the cumulative size of the variants. Hence, the similarity between two samples is
represented by the amount of sequence called in both divided by the average amount
of sequence called. This distance is used for hierarchical clustering of the samples.
Different linkage criteria (“average”, “complete” and “Ward”) were used for the
exploration. In our dendograms we used the “average” linkage criterion. The same
clustering was performed using only calls in regions with extremely low coverage
(reference average ¡10 reads).

To assess the performance of each method, we measured the number of CNVs
identified in each twin that were also found in the matching twin. In order to avoid
missing calls with borderline significance, we used slightly less confident calls for the
second twin. We removed calls present in more than 50% of the samples to ensure
that systematic errors were not biasing our replication estimates. Hence, a replicated
call is most likely true as it is present in a minority of samples but consistently in the
twin pair. Even if we removed systematic calls, the most frequent calls in the cohort
are more likely to look replicated by chance, compared to rare calls. To normalize
for this effect, we use the frequency distribution to compute the number of replicated
calls expected by chance. In practice the null concordance for each call is simulated
by a Bernoulli distribution of parameter the frequency of the call. This number of
replicated calls by chance is subtracted to the original number of replicated calls to
give an adjusted measure of sensitivity. Although we do not know the true number
of variant, this number of replicated calls is used to compare the different methods.
When possible, the low-quality calls were also gradually filtered to explore the effect
on the replication metrics. For CNVnator, we used the minimum of the eval1 and
eval2 columns, with lower values corresponding to higher quality calls. For LUMPY,
the number of supporting reads was used. For PopSV, we filtered calls based on
adjusted P-values.

In addition to their replication, we compared which regions were called by several
methods. For each of the calls found in less than 50% of the samples, we overlapped
the region with calls from other methods in the same sample. If calls from another
method overlapped we considered the call shared and saved which methods shared
the call. To focus on on high quality calls we considered calls found by at least two
methods and computed the proportion of calls from one method found by each of the
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other methods. This metric captures how much each method recovers high-quality
calls from a second method.

Concordance between different bin sizes We compared calls using small bins
(500 bp) and calls using larger bins (5 Kbp). In theory, calls from the 5 Kbp analysis
should be supported by many 500 bp calls. We also expect large stretches of 500
bp calls to be detected in the 5 Kbp analysis. This comparison is informative as it
explores the quality of the calls, the size of detectable events and the resolution for
different bin sizes. First we counted how many small bin calls supported any large
bin call. These metrics were separated according to the size of the large bin call.
Overall, we find that 5 Kbp calls are well supported by 500 bp calls, with only 14%
of the 5 Kbp bins not supported by any 500 bp bin (Fig. S3.9a). To investigate
large bin calls with no supporting small bin call, we display the average Z-scores
in the small bins overlapping large bin calls to test if the lack of support is due to
lower confidence or real discordancy between the different runs. If the Z-scores in the
small bins deviates from 0 in the correct direction, we conclude that they support the
large bin call. Even for these unsupported 5 Kbp calls, we find that the 500 bp bins
RD was consistently enriched (or depleted) although not enough to be called with
confidence (Fig. S3.9b and S3.9c). This is expected given the higher background
noise in the 500 bp analysis that will reduce the power to call these variants. Next,
we looked at the proportion of 500 bp calls, grouped by size, that were found in the
5 Kbp calls. More specifically, we grouped them by size to verify that large enough
small bin calls are present in the large bin calls. This analysis is used to both test
the sensitivity of PopSV with a particular bin size, and its resolution to variants
smaller than the bin size. Indeed, this framework allow us to ask questions such as:
how much of the variants spanning only half a bin are detected? We find that the
concordance gradually increases until the 500 bp calls reach 5 Kbp in size where the
concordance rises to nearly 100% (Fig. S3.9d). This suggests that PopSV is able to
detect approximately 75% of the events as large as half its bin size, and almost all
events larger than its bin size. As expected, only a small proportion of the small 500
bp calls overlap 5 Kbp calls and they likely corresponds to fragmented larger calls.
Considering the trade-off between bin size and noise, this suggests running PopSV

with a few bin sizes to better capture variants of different sizes.

CNV detection in the CENet cohorts

CNVs were called using PopSV using 5 Kbp bins and all the samples from both the
epilepsy and control cohorts as reference. We annotated the frequency of the CNVs
using germline CNV calls from the Twin and cancer datasets (internal database) as
well as four public CNV databases:

• CNVs from Phase 1 of the 1000 Genomes Project as identified by GenomeSTRiP33.

• SV from the 1000 Genomes Project phase 35.

• Genome of Netherlands107.

• CNVs from the Simons Genome Diversity Project192.
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CNVs were annotated with the maximum frequency in the databases. For each
CNV to annotate, any overlapping CNV in the CNV databases were considered.
This is a stringent criterion that ensures that the entire regions of a rare CNV, for
example, is never affected by common CNVs in the databases. Hence, a rare CNV is
defined as present in less than 1% of the samples in each of the five CNV databases.

To test for a difference in deletion/duplication ratio among rare CNVs, we com-
pared the numbers of rare deletions and duplications in the epilepsy patients and
controls using a χ2 test. The same test was performed after downsampling the
controls to the sample size of the epilepsy cohort.

CNV enrichment in exonic region and around epilepsy genes

Enrichment in exons For each cohort, we retrieved the CNV catalog by merging
CNV that are recurrent in multiple samples. Hence, the CNV catalog represents
all the different CNVs found in each cohort. To control for the population size, we
sub-sampled 150 samples in each cohort a hundred times. For each sub-sampling
and each cohort, control regions are selected to fit the size distribution of the CNV
catalog and the overlap with centromere, telomeres and assembly gaps (details in
the next section).

Then, we computed the proportion of CNV and control regions that overlap
an exon. The fold-enrichment is the ratio of these proportions and represents how
much more/less of the CNVs overlap an exon compared to the control regions. The
boxplot in Fig. 3.2c shows the distribution of the 100 sub-sampling in each cohort.

To test if the difference observed between the cohort is significant, the cohort
labels were permuted 10,000 times and the difference in median across the 100
sub-sampling was saved. The resulting P-value was computed as 1+d

1+N
where d is

the number of times the permuted difference was greater or equal to the observed
difference, and N is the number of permutations.

The same analysis was repeated for exons from genes with a probability of loss-
of-function intolerance193 higher than 0.9. These genes were called LoF intolerant
genes in Fig. 3.2c. Small (¡ 50Kbp) and large (¿50 Kbp) CNVs were analyzed
separately. The analysis was repeated using rare CNVs only.

Selecting control regions The control regions must have the same size distribu-
tion as the regions they are derived from (e.g. CNVs in a CNV catalog). We also
controlled for the overlap with centromere, telomeres and assembly gaps (CTGs)
to avoid selecting control regions in assembly gaps where no CNV or annotation is
available. To select control regions, thousands of bases were first randomly chosen
in the genome. The distance between each base and the nearest CTG was then
computed. At this point, selecting a region of a specific size and with specific over-
lap profile can be done by randomly choosing as center one of the bases that fit the
profile:

{

b, OCTG(d
b
CTG −

Sr

2
) < 0

}

(6.1)

with OCTG equals 1 if the original region overlaps with a CTG, -1 if not; dbCTG is
the distance between base b and the nearest CTG; and Sr is the size of the original
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region. For each input region, a control region was selected and had by construction
the exact same size and overlap profile.

Recurrence of rare exonic CNVs In each cohort, we retrieved the CNV catalog
of rare (¡1% in all 5 public datasets) exonic CNVs. We annotated each CNV with
its recurrence in the cohort. We then evaluated the proportion of the CNVs in the
catalog that are private (i.e. seen in only one sample), or seen in X samples or more.
This cumulative proportion of CNVs is shown in Fig. S3.12a. The control cohort
was down-sampled a thousand times to the same sample size as the epilepsy cohort.
These down-sampling provided a confidence interval (ribbon in Fig. S3.12a) and an
empirical P-value.

We performed the same analysis after removing the top 20 samples with the
most non-private rare exonic CNVs (Fig. S3.12b). With this analysis, we tried to
remove the potential effect of a few extreme samples.

We also repeated the analysis using only French-Canadians individuals, to ensure
that the observed differences are not caused by rare population-specific variants (Fig.
S3.12b).

CNVs and epilepsy genes We used the list of genes associated with epilepsy
from the EpilepsyGene resource118 which consists of 154 genes strongly associated
with epilepsy. For a particular set of CNV we count how many of the genes hit
are known epilepsy genes. We noticed that the epilepsy genes tend to be large, and
genes hit by CNVs also (Fig. S3.13a). This could lead to a spurious association so
we also performed a permutation approach that controls for the size of the genes. To
control for the gene size of epilepsy genes and CNV-hit genes, we randomly selected
genes with sizes similar to the genes hit by CNVs and evaluated how many of these
were epilepsy genes. After ten thousand samplings, we computed an empirical P-
value. The permutation P-value was computed as 1+d

1+N
where d is the number of

times the number of epilepsy genes in the random set of genes was greater or equal
to the one in genes hit by CNVs, and N is the number of permutations. Using
this sampling approach we tested different sets of CNVs: deletion or duplications
of different frequencies in the epilepsy cohort, control individuals and samples from
the twin study.

To investigate rare non-coding CNV close to known epilepsy genes, we counted
how many patients have such a CNV at different distance thresholds. For example,
how many patients had a rare non-coding CNV at 10 Kbp of an epilepsy gene’s
exon or closer. We compared this cumulative distribution to the control cohort,
after down-sampling it to the sample size of the epilepsy cohort. Down-sampling
was also used to produce a confidence interval, represented by the ribbon in Fig.
3.3c). This analysis was repeated using deletions only. Each epilepsy gene was also
tested for an excess of rare non-coding deletions in patients versus controls using a
Fisher test.

In order to retrieve non-coding CNV that might have a functional impact, we
downloaded eQTLs associated with the epilepsy genes, as well as DNase 1 hypersen-
sitive sites associated with the promoter of epilepsy genes. The eQTLs are provided
by the GTEx project195. Pairs of associated DNase 1 hypersensitive sites and as-
sociated genes196 were downloaded at http://www.uwencode.org/proj/Science_
Maurano_Humbert_et_al/data/genomewideCorrs_above0.7_promoterPlusMinus500kb_
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withGeneNames_35celltypeCategories.bed8.gz.
A Kolmogorov-Smirnov test was used to compare the distance distributions in

epilepsy patients versus controls. We also computed the odds ratio of having such
a CNV for different distance thresholds between epilepsy patients and controls. For
a distance d, we computed:

OR =
SCNV
patient

SCNV
control

/
SnoCNV
patient

SnoCNV
control

where SCNV
patient is the number of patients with a rare non-coding CNV overlapping

a functional region and located at d bp or less from the exon of a known epilepsy
gene.
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Appendix D

Supplementary material for chapter 4 and its corresponding manuscript: Human
copy number variants are enriched in regions of low mappability.

Supplementary Tables

Validated Chr. Start End Class Left PCR primer Right PCR primer
V 3 6649794 6654897 large CN 0 CCTTAGTATTTCAGTGGTTTCTGTAGGTAT ATAAATATCAGTGCTCAACTTGGACTT
V 5 127407030 127411341 large CN 0 TATTCATATTAACCTATCCTCACAGAAAGA TTTTTAAGAGATTTGAACTAAAATTCCAC
V 3 5535139 5539535 large CN 0 TACTTTTTGAATTTGTAAATTTCCTTTGTA GAAATCAGAAAATCAAGATCATACTGAAG
V 1 116229111 116233162 large CN 0 GTGTTACAGAATTAGTTTTACTGAGTGGTC ATCTATAAAGAACTTTTTCCAAATAAACCA
V 1 158961082 158966958 large CN 1 GTAGAATGAGCTGTGTTATGAGATGGT ATGACTTTCTATTGTTTGAAATGTAGTGAC
V 15 26748887 26752614 large CN 1 CAATTTATCTATCAAGTTATTTCACGGTAG AGTGAGATTTCATTTTAAGCTTGTCTTC
V 6 33937344 33942846 large CN 1 ACATTGTAGCCTGATGACCTTGTTC TGTGTTCTGAGGTTTACTTTATAATCTAGG
V 12 82095501 82099389 large CN 1 ACCTATAACTAAGTGTAGCTGCTGTAACTG TCAGTAAAAATGATTACTACAGTGGAAAAT
V 5 8255604 8260914 large CN 1 TGAACATACATTCATACACACATAATACAA TACATCACTGAACAAACCTCTATAGTCATA
V 20 7398397 7403743 large CN 1 AATAAACATTCTCTATAAACCCTAAAATGG CTTTGTACCATATTTCATAAACGTAGAGTC
V 18 40053822 40057873 large CN 1 TAACTTTCTTTTCTAAAGCTTTTGGAGTAT GTGAATTAAGATTCAATGTCTCTGCTAATA
V 16 48904951 48906510 small CN 0 TCTTATTTATTTTGACAGTCCTTTACTCTG AGATAATCAACTCTTTGTTTATTCTTTCAG
V 2 241086647 241087801 small CN 0 ATCAACATTTAGCCAGTGTTGTCTTAG GTCTCTTGTGCTCTATCTTTGGCTT
V 13 110221621 110222631 small CN 0 ACCTCAGGAGAACTACTTCATACATTTCTA GTATGAAAAACACTCATGGATATCATTTCT
V 11 60571017 60572170 small CN 0 AATGTTGAAGTGTGTCTTTCTGTAATATCT GTGTTTTGTGTCGCTATTTGTTTAGTA
V 5 166402295 166404219 small CN 0 TCACTTTATTCATAACATTTCAGTGTAGAG GATCATATGCTTAAAATGCTAATGAGG
N 3 160126422 160127288 small CN 1 TAAGATACAAGAAATAGAGATAACACTGGG TCTGAACACTTATTTTAAGAAAATGAAAAA
N 17 10612674 10613775 small CN 1 AATTTAGCAGTCTCTTACATTTCTTCTACC TCTCTTCTATAAAAATAAATGGCTAAAAGC
V 10 70253713 70255155 small CN 1 AATAAAATCAAAGGTGATATTACTGACAGA ATATACTCTTTTAACTTTTGACCATTTTGG
V 8 53700635 53702050 small CN 1 TAAGGAAAATTTAGTATAGTCTGGACCTGT ATGGAAATATATCTCTGATGGGTGAC

Table S4.1: Experimental validation results. Location of the validated (V) and

non-validated (N) CNVs for different classes. The last two columns show the primer

sequences used for PCR amplification.

Chr. Start End CN PCR product size PCR product size when deletion Validated Gel Sanger Sequencing
14 40098378 40100213 0 2586 751 Yes Different bands Yes: confirmed
5 85559864 85564846 1.05 5690 708 Yes Different bands Yes: confirmed
6 14299746 14299801 0.79 755 700 Yes Double bands No
7 153000055 153000246 1.76 1137 946 Yes Double bands Yes: confirmed
4 96401034 96401460 1.13 745 319 Yes Double bands No
16 34230052 34230512 1 1139 679 Yes Double bands No
16 8688137 8689592 1.02 2121 666 Yes Double bands Yes: confirmed
2 12018994 12022932 1.02 4291 353 Yes Double bands Yes: confirmed
3 121051576 121060845 1.14 9485 216 Yes Double bands No
3 54433855 54433912 0 952 895 Yes One band Yes: insertion
2 151031059 151038246 1.11 7485 298 Yes Small band only No
9 45462450 45462522 1.1 530 458 No One band No
7 63233184 63233261 1.33 390 313 No One band Yes: nothing
9 106371251 106371330 1.28 484 405 No One band No
16 20466400 20466487 1.27 393 306 No One band No
5 85559864 85564842 0.78 5690 712 No One band No
10 65703860 65708900 1.64 5430 390 No One band No
7 159117395 159122761 1.09 5909 543 No One band No
2 83066824 83068234 0.57 2097 687 NA No amplification No
13 35996202 35996254 1.13 546 494 NA Non-specific No
4 159799983 159801372 1.03 2313 924 NA Non-specific Yes: not clear
7 52963172 52964911 1.48 2316 577 NA Non-specific No
10 69323932 69326507 1.62 2795 220 NA Non-specific Yes: not clear
6 58618198 58624080 1.04 6518 636 NA Non-specific No

Table S4.2: Experimental validation in low-coverage regions. The result of

the PCR validation was either concordant with PopSV call (Yes), discordant (No) or

inconclusive (NA). In some cases, Sanger sequencing was performed. The CN column is

the estimated copy-number of the deleted allele.
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Homozygous deletion
deletion support reference support number of calls

0 0 11
0 1 1
1 0 1
2 0 12

Heterozygous deletion
deletion support reference support number of calls

0 0 18
0 1 10
0 2 7
1 0 6
1 1 4
1 2 4
2 0 10
2 1 3

Table S4.3: Investigating low-mappability deletion calls with two
CEPH12878 assemblies. The first two columns represent the number of assemblies

(0, 1 or 2) supporting the deleted allele or the reference allele. The third column shows

the number of PopSV calls in each category.

CNV catalog Samples
Variants

Avg Size (Kbp)
Proportion Affected genome (Mbp)

Total Per sample <3 Kbp Total Per sample
WG ELC

1000GP 2,504 41,979 1,024.44 2.22 6.00 0.68 580.03 6.14
deletion 36,102 975.32 2.21 4.67 0.72 342.97 4.56
duplication 8,503 48.26 0.00 32.54 0.00 331.48 1.57

GoNL 750 9,592 1,048.14 0.63 2.93 0.81 65.30 3.07
deletion 9,009 1,013.35 0.63 2.36 0.82 34.79 2.39
duplication 528 21.11 0.00 29.19 0.15 30.63 0.62

Handsaker 2015 (Genome STRiP) 847 8,657 212.03 1.88 27.80 0.00 196.57 5.89
deletion 5,961 145.78 0.56 21.64 0.00 108.03 3.15
duplication 3,469 66.26 1.32 41.35 0.00 118.28 2.74

Chiang 2017 (Genome STRiP) 148 7,932 828.49 9.23 6.35 0.42 73.20 5.26

Table S4.4: Properties of events in public CNV catalogs. Deletions, duplica-

tions and CNVs from four public catalogs. Variants with high frequency (> 80%), variants

on the chromosome X, and variants smaller than 300 bp were removed in order to compare

with PopSV’s numbers (Table 4.1). WG: whole genome; ELC: extremely low-coverage re-

gions. The Total number of variants is the total number after collapsing recurrent variants.

Affected genome represents the amount of the reference genome that overlaps at least one

CNV.
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Novel region OMIM gene Novel region OMIM gene
1:25730001-25736000 RHCE 9:136418001-136420000 ADAMTSL2
1:161640001-161645000 FCGR2B 10:64130001-64135000 ZNF365
1:207705001-207715000 CR1 10:101595001-101600000 ABCC2
1:207725001-207745000 CR1 10:135380001-135383500 SYCE1
5:68845001-68886000 OCLN 11:320001-325000 IFITM3
5:69360001-69365000 SMN2 12:52683001-52685000 KRT81
5:69373001-69374000 SMN2 12:52696001-52696500 KRT86
5:70165001-70222000 SMN1 15:32454001-32460000 CHRNA7
5:70242001-70242500 SMN1 15:32464001-32464500 CHRNA7
5:70246501-70258000 SMN1 15:43902501-43903000 STRC
6:29905001-29910000 HLA-A 15:43910001-43910500 STRC
6:31960001-31975000 C4A 16:21760001-21765000 OTOA
6:31995001-31995500 C4B 17:34504001-34545000 CCL3L3
6:32522001-32560000 HLA-DRB1 19:11535001-11540000 CCDC151
6:32590001-32602000 HLA-DQA1 19:41340001-41350000 CYP2A6
6:32628501-32629000 HLA-DQB1 22:18660001-18765000 USP18
6:32630001-32634000 HLA-DQB1 22:18904501-18905500 PRODH
7:39052001-39055500 POU6F2 22:18909001-18909500 PRODH
7:74195001-74200000 NCF1

Table S4.5: OMIM genes overlapping novel CNV regions of low-
mappability Novel CNV regions are polymorphic in more than 1% of the individuals

across the three cohorts but absent from the 1000GP SV catalog5. OMIM genes are genes

associated with a disease or phenotype in the OMIM Morbid Map (Online Mendelian

Inheritance in Man; http://omim.org/).
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Supplementary Figures
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Figure S4.1: Coverage, mappability and population-based measures. a-b)

Read coverage in a sample (y-axis) versus mappability (a) or the inter-sample average

coverage (b). c-d) Inter-sample mean (c) and standard deviation (d) were fitted against

the mappability in each cohort separately. The tiles represent all cohorts pooled together.
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Supplementary Information

Data

Twin study All patients gave informed consent in written form to participate in
the Quebec Study of Newborn Twins189. Ethic boards from the Centre de Recherche
du CHUM, from the Université Laval and from the Montreal Neurological Institute
approved this study. Sequencing was done on an Illumina HiSeq 2500 (paired-end
mode, fragment length 300 bp). The reads were aligned using a modified version of
the Burrows-Wheeler Aligner (bwa version 0.6.2-r126-tpx with threading enabled).
The options were ’bwa aln -t 12 -q 5’ and ’bwa sampe -t 12’. The aligned
reads are available on the European Nucleotide Archive under ENA PRJEB8308.
The 45 samples had an average sequencing depth of 40x (minimum 34x / maximum
57x).

Renal cell carcinoma WGS data from renal cell carcinoma is presented in de-
tails in the CageKid paper143. In short, 95 pairs of normal/tumor tissues were
sequenced using GAIIx and HiSeq2000 instruments. Paired-end reads of size 100
bp totaled an average sequencing depth of 54x (minimum 26x / maximum 164x).
Reads were trimmed with FASTX-Toolkit and mapped per lane with BWA backtrack
to the GRCh37 reference genome. Picard was used to adjust pairs coordinates, flag
duplicates and merged lane. Finally, realignment was done with GATK. Raw se-
quence data have been deposited in the European Genome-phenome Archive, under
the accession code EGAS00001000083.

Genome of the Netherlands WGS data from the GoNL project is described
in details in Francioli et al. 107 . This data have been derived from different sample
collections:

• The LifeLines Cohort Study (http://www.lifelines.nl/), supported by the
Netherlands Organization of Scientific Research (NWO, grant 175.010.2007.006),
the Dutch government’s Economic Structure Enhancing Fund (FES), the Min-
istry of Economic Affairs, the Ministry of Education, Culture and Science, the
Ministry for Health, Welfare and Sports, the Northern Netherlands Collabo-
ration of Provinces (SNN), the Province of Groningen, the University Medical
Center Groningen, the University of Groningen, the Dutch Kidney Foundation
and Dutch Diabetes Research Foundation.

• The EMC Ergo Study (http://www.ergo-onderzoek.nl/wp/).

• The LUMC Longevity Study, supported by the Innovation-Oriented Research
Program on Genomics (SenterNovem IGE01014 and IGE05007), the Centre
for Medical Systems Biology and the National Institute for Healthy Ageing
(Grant 05040202 and 05060810).

• VU Netherlands Twin Register (http://www.tweelingenregister.org/).

In short, samples were sequenced on an Illumina HiSeq 2000 instrument (91-bp
paired-end reads, 500-bp insert size). We downloaded the aligned read sequences
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(BAM) for the 500 parents in the data set. We further performed indel realign-
ment using GATK 3.2.2, adjusted pairs coordinates with Samtools 0.1.19, marked
duplicates with Picard 1.118, and performed base recalibration (GATK 3.2.2). The
average sequencing depth was 14x (minimum 9x / maximum 59x).

Genomic annotations Gencode annotation (V19) was directly downloaded from
the consortium FTP server at ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_

human/release_19/gencode.v19.annotation.gtf.gz. Other genomic annotations
were downloaded from the UCSC database218 server at http://hgdownload.soe.
ucsc.edu/goldenPath/hg19/database. The file names of the corresponding anno-
tations are

Mappability wgEncodeCrgMapabilityAlign100mer.bw

Cytogenetic bands cytoBandIdeo.txt.gz

Centromere, telomere, assembly gap gap.txt.gz

Segmental duplication genomicSuperDups.txt.gz

Simple repeat / Short Tandem Repeats simpleRepeat.txt.gz

RepeatMasker rmsk.txt.gz

Read count across the genome

The genome was fragmented in non-overlapping bins of fixed size. The number of
properly mapped reads was used as a coverage measure, defined as read pairs with
correct orientation and insert size, and a mapping quality of 30 (Phred score) or
more. In each sample, GC bias was corrected by fitting a LOESS model between
the bin’s coverage and the bin’s GC content. For each bin, the correction factor was
computed as the mean coverage across all the bins divided by the predicted coverage
from the LOESS model and the GC content of the bin. We used a bin size of 5 Kbp
for most of the analysis. When specified, we used a smaller bin size of 500 bp.

RD and mappability estimates

To investigate the bias in RD we used the read counts in 5 Kbp bins. Bins with ex-
tremely high coverage were identified and removed when deviating from the median
coverage by more than 5 standard deviation. First the coverage of the 45 samples
from the Twin study were combined and quantile normalized. At that point the dif-
ferent samples had the same global coverage distribution and no bins with extreme
coverage or GC bias.

The mappability track206 was downloaded from UCSC218

(wgEncodeCrgMapabilityAlign100mer.bw) and the average mappability was com-
puted for each bin. One sample was randomly selected and we compared its coverage
with the mappability estimates. We then computed the mean and standard devia-
tion of the coverage in each bin across the other samples and compared it with the
sample coverage. We also compared the inter-sample average with the mappability
estimates.

To compute Z-scores that integrates the observed coverage variation we used two
approaches. The first modeled the coverage metrics (average or standard deviation)
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using the mappability estimates and computed a Z-score from the predicted cover-
age and global standard deviation. A generalized additive model was fitted using a
cubic regression spline on the mappability estimates (mgcv R package). In the sec-
ond approach, Z-scores were computed using the inter-sample average and standard
deviation. The normality of these two Z-score distributions were compared in term
of excess kurtosis and skewness. For the kurtosis and skewness computation, we
removed outlier Z-scores with an absolute value greater than 10. These bins could
be regions of CNV and would bias the estimates. The Z-score distributions were
also compared in bins from 10 different mappability intervals.

We repeated this analysis pooling 45 samples from each of the three datasets.
After quantile normalization, the inter-sample coverage mean and standard devia-
tion were computed separately in each cohort and compared with the mappability
estimates.

CNV detection with PopSV

Binning the genome We ran two separate analysis on the three datasets. Bin
sizes of 5 Kbp and 500 bp were used on the Twin study and renal cell carcinoma.
Because of its lower sequencing depth, the 500 bp run on GoNL gave only partial
results. More precisely, we observed a truncated distribution of the copy-number
estimates, with most of the 1 and 3 copy number variants missing. It means that at
this resolution many one-copy variation cannot be differentiated from background
noise. For this reason we ran GoNL analysis using 2 Kbp and 5 Kbp bins.

Constructing the set of reference samples In each dataset we choose the ref-
erence samples as follows: in the renal cancer dataset from the normal samples, in
the Twin study from all the samples, in GoNL from a subset of 200 samples (see
below). For each dataset, a Principal Component Analysis (PCA) was performed
across samples on the counts normalized globally (median/variance adjusted). The
resulting first two principal components are used to verify the homogeneity of the
reference samples. Although our three datasets showed different levels of homo-
geneity, we didn’t need to exclude samples or split the analysis. The effect of weak
outlier samples was either corrected by the normalization step or integrated in the
population-view.

In GoNL, we decided to use only 200 of the 500 samples as reference. They were
selected to span a maximum of the space defined by the principal components. In
contrast to random selection, this ensures that weak outliers are included in the final
set of reference samples, hence maximizing the technical variation integrated in the
population-view.

Moreover, the principal components were used to select one control sample from
the final set of reference samples. This sample is used in the normalization step as
a baseline to normalize other samples against. We picked the sample closest to the
centroid of the reference samples in the Principal Component space.

CNV calling After targeted normalization the coverage in each sample is com-
pared to the coverage in the reference samples. A Z-score is computed and translated
into a P-value that is then corrected for multiple testing. Consecutive bins with sig-
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nificant excess or lack of reads are merged and returned as potential duplication
or deletion. Copy number estimates are derived from the coverage across the bin
and the average coverage across the reference samples. However, it is important
to note that the definition of a variant is different from other methods. Here a
variant is defined by the major allele in the population rather than the reference
genome state. Most of the genome is in a diploid state compared to the reference
genome and sufficiently covered by sequencing reads that the copy number state
can be correctly estimated by PopSV’s population-based approach. However, highly
polymorphic variants are called relative to the major allele in the population and ad-
ditional efforts are required to assess the copy number state. Variants in extremely
low-mappability regions are also difficult to fully characterize and might be caused
by rare insertion in the reference genome or complex alleles. Nonetheless, PopSV can
efficiently detect the presence of CNV in any situation. More details are available
in the method paper2.

Coverage tracks For each run, we constructed coverage tracks based on the av-
erage coverage in the reference samples. Bins where the reference samples had, on
average, the expected coverage were classified as expected coverage. Bins with a
coverage lower than 4 standard deviation from the median were classified as low-
mappability(or low coverage). To ensure robustness, the standard deviation was
derived from the Median Absolute Deviation. We use regions with low coverage to
define low-mappability regions, as the low coverage is a result of the lower mappa-
bility of a region. Because the standard deviation is used, the number of regions
classified as low-mappability is lower in datasets with more RD variance.

Eventually, we also defined extremely low coverage region which have an average
coverage below 100. This sub-class of low coverage region was used in a few analyses
to highlight the most challenging regions.

Regions were annotated with the overlap with protein-coding genes and seg-
mental duplications (see Genomic annotations), and the distance to the nearest
centromere, telomere or assembly gap. Finally, we computed the number of protein-
coding genes overlapping at least one low-coverage region.

Validation and benchmark

Running FREEC, CNVnator, cn.MOPS and LUMPY FREEC40 segments the RD
values of a sample using a LASSO-based algorithm. It was run on each sample
separately, starting from the BAM file, using the same bin sizes as for PopSV. FREEC
internally corrects the RD for GC and mappability bias. In order to compare its
performance in low-mappability region, the minimum “telocentromeric” distance
was set to 0. The remaining parameters were set to default. Of note an additional
run with slightly looser parameter (breakPointThreshold=0.6) was performed to
get a larger set of calls used in some parts of the in silico validation analysis to deal
with borderline significant calls.

CNVnator41 uses a mean-shift technique inspired from image processing. It was
run on each sample separately, starting from the BAM file, using the same bin sizes
as for PopSV. CNVnator also corrects internally for GC bias and we used default
parameters. For the analysis using higher confidence calls, we used calls with either
’eval1’ or ’eval2’ lower than 10−5 (instead of the default 0.05).
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cn.MOPS42 considers simultaneously several samples and detects copy number
variation using a Poisson model and a Bayesian approach. It was run on the same
GC-corrected bin counts used for PopSV. All the samples are analyzed jointly. Of
note an additional run with slightly looser parameter (upperThreshold=0.32 and
lowerThreshold=-0.42) was performed to get a larger set of calls used in some
parts of the in silico validation analysis to deal with borderline significant calls.

LUMPY67 which uses an orthogonal mapping signal: the insert size, orientation
and split mapping of paired reads. The discordant reads were extracted from the
BAMs using the recommended commands. Split-reads were obtained by running
YAHA66 with default parameters. All the CNVs (deletions and duplications) larger
than 300 bp were kept for the upcoming analysis. BND variants with both ends more
than 300 bp apart in the same chromosome were also included as they could be
CNVs lacking support to characterize their type properly. Calls with 5 or more
supporting reads were considered high-confidence.

Clustering samples from the Twin study A distance between two samples
A and B was defined as : 1 − 2 |RA∩RB |

|RA|+|RB |
where RA represents the regions called in

sample A, RA ∩ RB the regions called in both A and B, and |R| the cumulative
size of the regions. Hence, the similarity between two samples is represented by
the amount of sequence found in both divided by the average amount of sequence
called. This distance is used for hierarchical clustering of the samples in the Twin
dataset. The clustering was performed using only calls in regions with extremely
low coverage (reference average ≤100 reads). Different linkage criteria (average,
complete and Ward) were used for the exploration. In our dendograms we used the
average linkage criterion. The concordance between the clustering and the pedigree
was estimated by the Rand index, grouping the samples per family. For each method
and linkage criteria, the Rand index was computed for every possible dendogram
cut (x-axis in Figure S4.3).

Experimental validation

Experimental validation was performed on samples from the Twin study. In a first
validation batch, variants were randomly selected among both one-copy and two-
copy deletions. We selected both small (∼ 700 bp) and large (∼ 4 Kbp) variants
in each class. The coverage at base pair resolution was visually inspected for each
deletion and, when possible, the breakpoints were fine-tuned. PCR primers were
designed to target the whole deleted region. We randomly selected 20 variants out of
the variants for which we managed to design PCR primers. We then performed long-
range PCR followed by gel electrophoresis. PCR was performed using 50 ng of DNA
and the Phusion High-Fidelity DNA Polymerase from Thermo Fisher Scientific: 95
◦C 5 minutes followed by 35 cycles (95 ◦C 30 seconds, 64 ◦C 30 seconds, 72 ◦C 45
seconds) and 72 ◦C 10 minutes. Either a 1% or 1.8% aragose gel was used, depending
on the expected size of the amplified fragments. We used a 1 Kb Plus DNA Ladder
from Thermo Fisher Scientific.

The presence of a deletion was tested by comparing the size of the amplified
fragment in affected and control samples. If the affected sample showed a lower band
than a control with a predicted 2 copies, the deletion was considered validated. On
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the other hand if affected sample and controls had one similar band, the deletion
was considered non-validated. Of note, the validation rate might be under-estimated
because visual prediction of the breakpoint is not always accurate.

We then randomly selected deletions overlapping low-mappability regions and
detected in 6 samples or fewer. We chose to test rare variants because they are
likely enriched in false-positives. Hence, this batch of validation represents the most
challenging regions to call and validate, and enriched in false-positives. Here we
couldn’t use the base-pair coverage to fine-tune the breakpoints because the low-
mappability blurs any clear signal. Instead, we retrieved the reads (and their pairs)
mapping to the region and assembled them. With this approach we could sometimes
get a better breakpoint resolution and design PCR primers that would amplify the
deleted region. In addition to gel electrophoresis, the amplified DNA of some regions
was sequenced using Sanger sequencing. We randomly selected 17 variants out of
the variants for which we managed to design PCR primers.

Analysis of CEPH12878

Whole-Genome Sequencing data High coverage PCR-free Illumina WGS data
for 30 samples, including CEPH12878, was downloaded from the 1000 Genomes
Project5. The ENA accession number is PRJNA260854. The files are also available
on the FTP server at http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/

20130502/supporting/high_coverage_alignments/20141118_high_coverage.alignment.

index. Although the sequencing depth is similar to the other datasets (average
∼53X), the reads are 250 bp long so the average number of reads per region is
lower. Because of the lower read coverage and sample size the CNV calls will be
of slightly lower quality. Nonetheless, PopSV was run using 5 Kbp bins and all the
samples as reference. Using the same coverage track as before we then selected all
deletions in CEPH12878 and overlapping low-mappability regions (at least 90% of
the call). We then looked for support in public assemblies, SV catalogs and reads
from long-read sequencing technologies.

Comparison with assemblies We downloaded the genome assembly produced
from short reads, Pacbio and BioNano reads59 from ftp://ftp.ncbi.nlm.nih.gov/

genomes/all/GCA/001/013/985/GCA_001013985.1_ASM101398v1/GCA_001013985.

1_ASM101398v1_genomic.fna.gz. We also downloaded a second assembly that
was used 10X Genomics linked reads instead of the Pacbio reads215. It is avail-
able at http://kwoklab.ucsf.edu/resources/nmeth_201604_NA12878_hybrid_

assembly.fasta.gz

For each selected variant, we retrieved the two 50 Kbp flanking sequences in the
reference genome and aligned them against the public assemblies with BLAST216.
The output was parsed to identify regions with two flanks aligning in at least 1 Kbp
of a contig. MUMmer plots217 between the reference sequence and the contigs were
visually inspected. The assembly supported PopSV calls when a deletion was visible
in the expected region (between the flanks). The assembly supported the reference
genome sequence when a contig crosses the variant without clear structural variant.
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SV calls from a long-read sequencing study We downloaded the SV calls from
the Pacbio reads and assembled contigs in Pendleton et al. 59 . The VCF file is pub-
licly available at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/
NA12878_PacBio_MtSinai/NA12878.sorted.vcf.gz. We overlapped PopSV calls
with deletions from this SV catalogs. Because we used 5 Kbp bins for PopSV, at
least 1 Kbp of a PopSV calls needed to overlap a deletion from Pendleton et al. 59 to
be considered as sufficient support. Of note, the distribution of the overlap tended
to be either null or higher than 1 Kbp supporting this choice.

Local assembly of Pacbio reads Corrected Pacbio reads from citetPendle-
ton2015 were downloaded from ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/

data/NA12878/NA12878_PacBio_MtSinai/corrected_reads_gt4kb.fasta. Each
read was split in 200 bp fragments and mapped to the human reference genome
(version hg19). From this mapping information we selected full Pacbio reads with
at least one 200 bp mapping within a region of interest (with 30 Kbp flanks). For
each region, the reads were mapped to the reference sequence with exonerate and
we kept reads with partial mapping as they may support a SV. These reads were
then assembled using Canu242. A consensus sequence was also derived for reads
clustered by alignment breakpoint and the clustalo243 software. The assembled con-
tigs and consensus were mapped to the reference genome to identify a potential
breakpoint. The two regions flanking the alignment breakpoint and the sequence
spanning the breakpoint were mapped to the entire genome. We used the results of
this genome-wide mapping to select the best candidates: assembled sequence whose
flanks align uniquely to the region of interest and with reduced alignment quality for
the “middle” sequence that spanned the breakpoint. Candidate contig/consensus
were further visualized with MUMmer plots217. The assembly supported PopSV

calls when a deletion was visible in the expected region (between the flanks).

Genomic patterns of CNVs

Merging calls from two different bin sizes Small bins gives better resolution
for smaller variants. Large bins gives better sensitivity. For this reason we merged
the calls from the 500 bp bin and 5 Kbp bin runs. Variant supported by both sets
of calls were merged into one. To decide which set to use for the breakpoints and
other information (e.g. copy number estimate), the proportion of overlap was used.
If call(s) using small bins overlapped more than a third of a call from the large bin
run, it was considered fully recovered by the small bin call which was then used to
define breakpoints and other information. If not, the large bin run was considered
more appropriate to define the final breakpoints and additional information. Calls
unique to each run were simply added to the final set of calls. For the Twin dataset
and the renal cancer dataset, calls from the 500 bp and 5Kbp runs were merged.
For the GoNL dataset, calls from the 2 Kbp and 5Kbp runs were merged.

Computing global estimates of copy number variation In Table 4.1, a call
in extremely low coverage region is overlapped at more than 90% by the extremely
low coverage track. To compute the total number of calls, we collapsed calls with
an overlap higher than 50%. The amount of sequence affected in a genome was
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computed by merging all the variants in the cohort and counting the number of
affected bases in this reference genome. After the merging step, each base of the
genome either overlapped a merged variant or not. Each affected base was counted
only once, even if it overlapped CNVs in several samples or with large copy number
differences.

Comparison with public CNV catalogs The SV catalog from Sudmant et al. 5

was downloaded from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_

sv_map/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz. The CNV cat-
alog from Handsaker et al. 33 was downloaded from http://www.broadinstitute.

org/%7Ehandsake/mcnv_data/bulk/1000G_phase1_cnv_genotypes_phased_25Jul2014.

genotypes.vcf.gz For the CNV catalog from Chiang et al. 36 , we downloaded
GTEx_Analysis_2016-10-24_WholeGenomeSeq_147Indiv_SV_sites.vcf.gz from the
GTEx Data Portal at https://www.gtexportal.org/home/datasets (data release
v6). The CNV catalog from Francioli et al. 107 was downloaded from https://

molgenis26.target.rug.nl/downloads/gonl_public/variants/release6.1/20161013_

GoNL_AF_genotyped_SVs.vcf.gz. We retrieved the set of autosomal deletion, du-
plication and CNVs. When comparing the global estimates of CNV with PopSV,
we removed deletions smaller than 300 bp as well as variants with high frequency
(> 80%). This remaining SVs represent CNVs that could in theory be detected by
PopSV’s approach. Using this sub-set, we derived the number of variants, number of
variants smaller than 3 Kbp, number of variants in extremely low coverage regions,
and amount of genome affected. These number are computed exactly as the one
presented in Table 4.1 for PopSV’s results.

CNV frequency comparison The frequency at which a region is affected by a
CNV is computed using calls from the 620 unrelated samples. The copy-number
change is not taken into account in the computation and the frequency is derived
for all the nucleotide that overlaps at least one CNV. Using each catalog we com-
puted, for each base in the genome, the proportion of individuals with a CNV. This
frequency measure facilitates the comparison of catalogs with different methods and
resolution. We represented the distribution as a cumulative proportion distribution
in Figure 4.3a. The graphs read as “how much of the total affected genome is called
in at more than X% of the population”. The frequency distribution was computed
separately for deletions and duplications (and CNV in the 1000 Genomes Project
catalog). Of note, the 1000 Genomes Project was down-sampled to 640 random
individuals in order to give comparable frequency curves.

Comparison with CNV catalogs from long-read studies First, the SV cat-
alog from Chaisson et al. 58 was downloaded from
http://eichlerlab.gs.washington.edu/publications/chm1-structural-variation/.
Recurrent calls were collapsed in both PopSV and the 1000 Genomes Project cat-
alogs. PopSV’s catalog corresponded to all germline calls in the Twin study, renal
cancer dataset and GoNL. The 1000 Genomes Project catalog contained all the dele-
tions, duplications and CNVs, no matter the size or frequency. The analysis was
also performed separately on deletions, duplications, low-mappability regions and
extremely low-mappability regions. For each comparison, we randomly selected con-
trol regions with sizes and overlap with assembly gaps similar to the SVs in Chaisson
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et al. 58 (see Selecting control regions). A logistic regression tested the enrichment
of CNVs in the Chaisson catalog versus the control regions. The regression was per-
formed on 50 different sampling of the control regions for each comparison. The 50
samplings are represented by the boxplot in Figure 4.3b. We compared the estimates
from the logistic regression. They represent the log odds ratio of a CNV overlapping
the catalog from Chaisson. The same analysis was performed using the SV catalog
from Pendleton et al. 59 downloaded from ftp://ftp-trace.ncbi.nlm.nih.gov/

giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/NA12878.sorted.vcf.gz.

Distance to centromere, telomere and assembly gaps The centromeres,
telomeres and assembly gaps (CTGs) are annotated in the gap track from UCSC218.
However, some chromosomes were missing telomere annotations. We defined them
as the 10 Kbp region at the ends of chromosomes derived from the cytogenetic bands
track.

The distance from each variant to the nearest CTG was computed and rep-
resented as a cumulative proportion, i.e. the proportion of variants located at a
distance d or closer to a CTG.

Because this distribution changes with the size of the variants, we sampled ran-
dom regions in the genome with similar sizes and computed the same distance dis-
tribution (see Selecting control regions). Thanks to this null distribution we were
able to see if variants were located closer/further to CTG than expected by chance.

Selecting control regions In several analyses we compared the CNVs with con-
trol regions. The control regions have the same size distribution as the regions they
are derived from (e.g. CNV, annotation). In some analysis we further controlled for
the overlap with specific genomic features. For example, we controlled for the over-
lap with CTGs to avoid selecting control regions in assembly gaps where no CNV
or annotation is available. Controlling for the overlap with regions flanking CTGs,
we could simply control for the distance to CTGs. We also used this approach to
control for the overlap with segmental duplications and investigate patterns inde-
pendent from this repeat class.

To select control regions, thousands of bases were first randomly chosen in the
genome. The distance between each base and the genomic features was then com-
puted. At this point, simulating a region of a specific size and with specific overlap
profile can be done by randomly choosing as center one of the bases that fit the
profile :

{

b, ∀ feature f,Of (d
b
f −

Sr

2
) < 0

}

(6.2)

with Of equals 1 if the original region overlaps with feature f , -1 if not; dbf is the
distance between base b and feature f ; and Sr is the size of the original region.

For each input region, a control region was selected as described and had by
construction the exact same size and overlap profile.

Enrichment in genomic features We tested different genomic features, start-
ing with: genes, exons, low-mappability regions, segmental duplications, satellites,
simple repeats and transposable elements. The different satellite families, frequent
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simple repeat motives, transposable element families were also tested. We over-
lapped each genomic feature with CNVs and control regions. We then computed
the fold change in proportion of regions overlapping a feature, in CNV versus control
regions. A pseudo count was added when computing this ratio:

Fold enrichment =
|CNV ∩Feature|+1

N+1
|Control∩Feature|+1

N+1

=
|CNV ∩ Feature|+ 1

|Control ∩ Feature|+ 1
(6.3)

where N is the number of CNVs (and control regions).
The fold enrichments were computed separately for each sample using control

regions that fitted perfectly the profile of the variants in the sample. To assess the
significance of the enrichment, a logistic regression was performed using CNV and
control regions. The model to test one feature in one sample was:

log

(

P (feature overlap)

P (no overlap)

)

= β0 + βCNV · CNV (6.4)

with CNV =

{

0 if control region
1 if CNV

To control for the enrichment in segmental duplication we used control regions
with similar overlap profile (see Selecting control regions). We also added a variable
representing the overlap with segmental duplication in the model:

log

(

P (feature overlap)

P (no overlap)

)

= β0 + βCNV · CNV + βSD · SD (6.5)

with SD =

{

0 if no SD overlap
1 if SD overlap

For each feature and cohort we computed the median P-value. When numerous
tests were performed (e.g. satellite families, simple repeat motives, transposable
element families or sub-families), the P-values were first corrected for multiple testing
using Benjamini-Hochberg procedure.

Finally, we computed the proportion of the region overlapped by the different
features (satellites, simple repeats and transposable elements). We compared CNV
regions and control regions.

Somatic variant definition Somatic variants were defined as variant in a tumor
samples with low overlap with variant in the paired normal sample. In CageKid
data, overlapping tumor variant with the ones from the paired normal showed almost
only two peaks, at 0 and 100% overlap. A tumor variant was defined as somatic if
it overlapped less than 10% of any variant in the paired normal.
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