
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly trom the original or copy submitted. Thus. sorne thesis and

dissertation copies are in typewriter face, whUe others may be from any type of

computer printer.

The quallty of thi. reproduction la dependent upon the quallty of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original. beginning at the upper left-hand corner and continuing

trom left to right in equal sections with smail overlaps.

ProQuest Information and Leaming
300 North Zeeb Raad, Ann Arbor, MI 48106-1346 USA

80Q-S21-Q600

•

•

•

Expressiveness in Nlobile Process Calculi

Ernesto Posse

School of Computer Science, rvlcGill University

Nlontreal, Quebec, Canada

A. thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfilment of the requirements of the degree of

rvlaster of Science in Computer Science

Copyright @Ernesto Posse, 2001

rvIarch, 2001

1+1 National Library
of Canada

~uenationale
du Canada

Acquisitions and Acquilitionl et
Bibliographie Services services bibliographiques

385 WeIIngIan SIr" 3IS. rue 'NeIIiI'QIDn
oaa- ON K1A 0N4 0IIfta ON K1A 0N4
c.n.- c..da

The aothor bas gnmted a non
exclusive licence alloWÏDg the
NatioDal Library ofCanada to
reproduce, loan, distnbute or sen
copies oftbis thesis in microfol1ll,
paper or electronic formats.

The aothor retains ownersbip ofthe
copyright in tbis thesis. Neither the
thesis nor substantial extracts from it
may he printed or otherwise
reproduced without the author' s
permission.

0-612·70488·2

Canadl

L'autem a accordé une ücence Don
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur Connat
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de ceUe-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

•

•

•

Abstract

The development of formaI methods and theories for the construction and analysis of

concurrent systems has been a subject of increased interest~ particularly in the last

clecade. .-\nlongst the nlost recognized and studied theories is the ii'-calculus and its

family of languages. The lT-ca1culus is a language for describing and reasoning about

mobile systems. that is. systems in which the topology of the communications network

is dynanlic and not fixed a priori. Examples of such systenlS incillde mobile phone

networks and the TCP/IP protocol that underlies the Internet. Anotller paradignl

for concurrency is known as Conc'urrent Con:;tl'uint Pl'ogranLlning or CCP for short.

This is a particularly attractive rnodel becallse of its close ties \Vith Logic and its

declarativc style. In this thcsis a survey of the rr-ca1cullls fanlily and the CCP family

is presented. emphasizing the relations both within each famity and between the t\VO

paradignls. [n particular wc explore the question of whether CCP supports mobility.

•

•

•

ii

Rèsume

Le développement de méthodes formels et de théories pour la construction ct l'analyse

des systèlnes concurrents connait une forte croissance d'intérêt pendant la dernière

décennie. Parmi les theories les plus reconnues se trouve le 7r-calculus et la famille

de langages de sa descendance. Le 1r-calculus est un langage pour la description

et raisonnetnent sur les systèmes mobiles. ceux où la topologie du réseau de com

munication change de façon dynanlique. Les réseaux de téléphones mobiles et le

protocole TCPIIP qui sert de base pour l'Internet figurent parmi les exemples de tels

systèmes. t;n autre paradigme de la concurrence est la Program·rna.t'i6n Concurrente

par Restrictions ou CCP. Ses relations profondes relatives à la Logique et son style

declaratif contèrent à la CCP un attrait particulier. Cette thèse présente une étude

des fanlilles du rr-calculus et de CCP en niettant à point les relations entre les deux.

Particuliêrnlent nous examinons la question de l'admission de la mobilité en CCP.

•

•

•

iii

Acknowledgments

l would like to thank my advisor Prakash Panangaden for his help and guidance

through the developrnent of this thesis. l would also like to thank the School of

COlnputer Science for providing an enriching environment in which to work. Catuscia

Palamidessi provided invaluable help and comments that gave us insight inta the

relations between iT-calculi. ces and CCp. Bjorn Victor also helped by clarifying the

relation between the Fusion ca1culus and iT-ca1culus. :\rIy friends here at ~'[cGill also

deserve thanks. both for support and for our debates on subjects sometimes marginal

and sometinles dil'ectly related to this work. Particlliarly l would like to thank \Vill

Renner..Jacob Eliosoff. and Alexander (Sasha) \Vait. \Vill also patently proofread this

tl!esis. and sllggested many impro\'crnents. Special thanks to my fa n1ily. in particular

my nlother Pilal' Posada. for her constant encouragenlent and support.

•

•

•

Contents

1 Introduction

1.1 Contributions

2 Background

2.1 Calculi syntax and contexts

2.2 Operational scnlantics

2.3 Bisirnulation .

2.-1 Translations and Expressivcness

2.-l.1 Full abstraction

2.-1.2 Respecting the senlantics .

2.4.3 .\bout the types of translations

3 The ii-calculus

3.1 Semantics .

3.1.1 Substitution of names

3.1.2 Process congruence . .

3.1.3 Structural congruence

3.1.-1 Cnlabelled Transition Semantics: Reduction

3.1.5 Labelled Transition Semantics

3.1.6 Equivalence of semantics

3.2 Bisimilarity for rr-processes. . .

3.2.1 Strong bisimilarity: ground. late~ early and open variants .

3.2.2 \Veak bisimilarity .

iv

1

8

8

9

13

18

19

20

2-1

26

33

33

3-1

37

38

-10

-12

-1-1

4-1

51

•

•

•

CO~VTE~VTS

3.2.3 Barbed bisimilarity .

3.3 Expressh'eness: Encoding the \-calculus in 'if •

3.3.1 The lazy ...\-calculus

3.3.2 The translation . .

3.3.3 Correctness of the translation

3.4 Sunlnlary .

4 Asynchronous communication

4.1 Semantics

4.1.1 Reductions

4.1.2 Transitions

4.1.3 Bisinlilarity

4.2 Expressiveness: Synchrony versus .-\synchrony

4.2.1 \Vhen is asynchrony enough?

4.2.2 \Vhen is asynchrony not enough'?

5 InternaI mobility

5.1 Semantics . .

5.1.1 Reductions

5.1.2 Transitions

5.1.3 Bisinlilarity

Expressiveness

5.2.1 Encoding the ...\-calculus in ÎÏ [

5.2.2 Encoding external mobility with internaI mobility

6 Channel fusions

6.1 Semantics

6.1.1 Reductions

6.1.2 Transitions

6.1.3 Bisimilarity

6.2 Sorne variants of Fusion

6.2.1 Asynchronous fusion

v

53

55

56

57

59

61

64

65

65

65

67

68

70

80

81

81

82

82

85

85

88

90

93

94

94

94

96

96

• 6.2.2 Solos ..

6.3 Expressiveness.

6.3.1 Fronl Fusion to Solos ta .-\.synch-Fusion and back

6.3.2 From ii ta Fusion and back.

vi

97

97

97

99

1 Concurrent Constraint Programming

7.1 Semantics .

•
-.)4._

7.1.1 The constraint system

7.1.2 Structural congruence

7.1.3 Reductions

7.1...1 Transitions

7.1.5 Correspondence between the semantics

7.1.6 Bisimilarity

Expressiveness . . .

7.2.1 From CCP to ii

7.2.2 FraIn ii to CCP

7.2.3 CCP and fusions

7.2...1 The ''(and p calculi

102

LO-1

10-1

106

IDS

109

L11

L12

11-1

115

119

125

126

•

8 Conclusions

8.1 Sumlnary .

8.2 Recent developnlents and related work

S.3 Future work ..

8...1 Final remarks

127

127

132

133

13-1

•

•

•

Chapter 1

Introduction

In the warld af CaIJlputatian today we find nlany kinds of cornplex software and

hardware systenls tha.t include sonle sort of concurrent processing. Distributed and

parallel conlputing. multi-threaded languages and operating systenls. are just exam

pIes of the general concept of concurrency. .-\ concurrent system is a systern that

has at least twa different parts that. to some extent. perfornl their activities inde

pendently. and "at the sanIe time." The idea of simultaneity need not be that of

t\Vo activities perforrned at the sanle ··physical" time. It can be abstracted to refer

to ,ologicar' time. This is the case of languages and operating systems \Vith multiple

threads of control executing in a single physical processor. Since there is only one

processor, only one instruction is executed at a time (ignoring the internaI pipeline

of the processor), but conceptually~ aH the threads are active and running.

There are a nunlber of reasons whr concurrency is desirable. Firstly. in the pres

ence of several physical processors we obtain a speed advantage if wc can distribute

the tasks necessary for solving the problem in an appropriate fashion anlongst the

processors. Secondly. it gives us an advantage l'rom the design point of vie\\'. by serv

ing as a tool to model realistically the problem domain. since most systenls in the

real worId are naturally concurrent. Thirdly, the use of concurrency leads to more

modular systems, since the developer decomposes the system in parts that work in

dependently of non-essential constraints on the sequence of events or activities.

The advantages of concurrency do Dot come for free. The development and anal-

1

• CHAPTER 1. I1'lTRODUCTION 2

•

•

ysis of concurrent systems have been long known to be very difficult tasks. In order

to perform a task, the multiple parts that form a concurrent system must interact

and communicate \Vith each other. to exchange, analyze or synthesize the information

involved in solving the problenl. The difficulty arises from this interaction.

There are different strategies for conlmunicëltion between processes. These include

~hared variables and message passing. In the fornler. messages can be postcd and

read by ail processes that have acccss to a conHllon menlory (somctimes calicel a

blackboœrd). In the latter. cornmunication is perfornleel through channels tha.t carry

rnessages so there is a precise control of which agents send or receive infornlation.

In this vie\\'. agents perform the basic operations of sending and receiving a nlCssage

through a given channel.

L'nder the message-passing nlodcl. a communicating concurrent systenl can be

secn as a network of processes connected by the channels. In recent years there has

been an increasing interest in rnobile systerns. that is. systenls in which the topology

of the comnlunication network evolves dynanlically. The concept of mobility has

found applications rnainly in telecorumunications and in the Internet.

It is desirable to be able to talk about properties of concurrent systenls such

as correctness with respect to a specification. liveness. fairness. etc. Howevcr. the

change of network structure at runtime considerably complicates this analysis since

the patterns of conlnlunication are not fixed. Intuition about how a system beha\'es

is bound to lead to wrong conclusions (e.g. saying that the system is deadlock-free

when in fact it can deadlock). It is therefore of vital importance to use reliable tools

for defining and reasoning about this kind of system. \Ve need nlathematical models

of computation for this.

In Theoretical Computer Science we find sorne foundational models such as Tur

ing ~[achines. and the À-calculus. Although these models have been successful in

the study of concepts such as computational complexity and functional abstraction

and application, they are inappropriate for dealing with interacting and concurrent

systems. Quoting :\[ilner

"In looking for basic notions for a model of concurrency it is therefore

• CHA.PTER 1. /1VTRODUCTI01V

probably wrong ta extrapolate l'roln .I\-calcllius. except ta follow its exam

pie in seeking sonlething smaH and powerful. (Here is an analogy: ~[usic

is an art l'orm, but it wOllld be wrong to look for an aesthetic theory ta

cover aH art forms by extrapolation fronl musical theory.r [26]

3

•

•

These ulodels are not suitable to deal with concurrent comulunicating systems be

cause they are based on the assumption that the systeul receives SOUle input produces

sorne output and ends processing. On the other hand, interactive systems intend ta

nlodel reactive behaviour, in which input is continuously received and output pro

duced sa processing does not neccssarily terminate.

Since Turing :\'[achines and the .I\-calculus do not appropriatcly represent the

issues of concurrent cornputation. several frameworks have been developed to deal

with these. These franleworks llsually rccci \'c the na.llH" of process calcul-i or proces.c.;

algebra.'3. One of the rnost inftuential developments in this field was Hoare's esp.
or Co'mrnunicating Sequential Processe.'3 ([15]). Closely related \Vas).[ilner·s ces.
or Calculas of Cornm'Unicat'irLg Systc'rns ([25]). These languages provided a precise

l'ranlework for describing and reasoning about concurrency. however. neither of them

deal with mobile conlputation. .-\lthollgh mobility was first tackled in the Actor

nlodei of Hewitt and Agha ([1-1], [2]), not until Engberg and Nielsen ([101) was an

algebraic formulation provided. This work was latter simplified by)'Iilner. Parrow

and \Valker [30] with the 7r-calculus.

The 7i-calculus serves us as the base point for the study of expressiveness in nlobile

process calcllli. since it has become the de facto standard against which process calcllii

are compared. 1t can be seen both as a language for describing and for reasoning

about systems: as a programnling language as weIl as a specification language. due

ta its declarative nature. Several variants have been defined since its introduction.

Amongst the most well-known are the asynchronous rr-calculus. the 1iI-calculus. and

more recently. the fusion calculus.

A different model of programming concurrent systems is found in the Concurrent

Constra'int Programming paradigm ([39L [35}, [43]). This approach is based on the

shared mernory model of communication. Under this model variables need not have

•

•

•

CH.-\PTER 1. 11VTRODUCTI01V

fixed values and agents provide partial information in the form of constraints over

variables, ail of which integrate a shared constraint store. The basic operations that

processes perform are posting a constraint in the store (tell) or inquiring the store to

see if a constraint is valid (ask). This model is very attractive. because it is closely

tied to logic ([221).

The diversity of languages and calculi for concurrency immediately suggests the

question of expressiveness. How can we determille if a language is more powerful or

expressive than another'? Strictly speaking. no ruodel of corllputation l'an have nlon"!

expressive power than Turing :\lachines or the ,,\-calculus in the sense that these model

eve'ry possible computable function. However. Turing machines are only a model

of sequential computation. The issue of t\Vo separate rnachines interacting. is not

e\'en addressed by Turing-completeness. A nlajor point about the difference between

sequential and concurrent computation is the ability to handle infinite input/output.

Quot ing Panangaden

"In the world of sequential cornputation if one subprogranl produces infi

nite output this output is ·useless·. The subprogram will l'un forever and

nothing will happen with the l'est of the progranl. If. however. two sub

progranls l'un CO'Ttc-U1Tently then one could be producing infinite output

which the other exanlÎnes white it is being pToduced. As sirnple example

suppose that a Turing :\lachine prodllces an infinite sequence of primes

in increasing order. .\notfler Turing ~[achine can exanline this list and

check for the occurrences of a specifie Humber. From the traditional vie\\'

point of sequential cOlnputation this is a divergent program! Clearly from

a parallel viewpoint the prograul is entirely nontrivial and does not de

serve to be luulped together with a program that just loops without ever

producing output.~~ [37]

\Ve are interested in t\Vo different but related concepts of expressiveness:

• \Vhat does it mean to say that a programming language or calculus is more

expressive or powerful than another'?

• Cff.-\PTER 1. I1VTRODUCTI01V 5

•

•

• \Vhat does it mean ta say that an agent. system or machine is more powerful

that another'?

Before discussing these. let us clarify the terminology. .-\ system. is a collection

of agents. The behaviour of an agent is a process. In the setting of concurrent

computation~ a system has at least t\\'o agents. :\ progra-Tnrning language or calC'ulus

is a collection of te'roLs or programs with sorne sernantics specifying what the terms

rnean. Systems and agents are represented by terrns in a calculus. It is often the

case that systenlS and agents are represented by the saIne syntactical category in the

language. in arder to allow for the definition of hierarchical systems. Le. systenls

made out of subsystenls. Hence we use the words ·'systern·'. ·'agenC. "process'~ and

..terrn·~ interchangeably.

In the context of concurrent systenls. the expressiveness of agents depends on

ho\\' they conlnlllnicate. The idea that interaction with external agents. or \\'ith the

en\·ironment. shollid be taken iuto accollnt ta differentiate between the agents led

~[ilner and Park ([25]) to the concept of "bisirIlulation" as a behavio'Ural equ'tvalence

between agents. Roughly speaking. this concept is based on the following intuitions.

\Ve consider an agent :\ ta be at least as powerful as an agent 8 if .-\ can simlliate

B. \Ve can say that :\ is equally powerful. (or behaviourally equi\'alent) to B if :\

and 8 cannat be distinguished by an external observer, and thus could be used

interchangeably in any system.

\Vhat about the expressiveness of a programming language \Vith respect to an

other? DeternlÏning which of two programming languages is more expressive. in the

context of concurrency and interaction. depends on the relative power of the agents

represented by terms in each language. To be able to compare the power of agents

in different calculi~ we need to understand the behaviour of such agents. Unless we

can anS\\'er the question of whether t\Vo agents are equivalent, wc cannat really say

that we understand what is the behaviour of an agent, and \Vhat is its relative power.

Thus the notion of behavioural equivalence of agents plays a very important l'ole in

comparing the expressiveness of calculi.

How do we relate the expressive power of languages with the power of their agents?

• CHAPTER 1. nVTRODUCTIOI\l 6

•

•

Consider two languages [,1 and [,2' \Ve expect [,L to be at least as expressive than

[,2 if each term in [,2 can be siniulated by a term in [,L. In order to be able ta

make sllch comparison there needs ta be a translation froni [,2 ta [,1. But it is not

enough to say that there rnust be a translation. The establishment of the relative

expressive power of the calculi depends on the (syntactic and semantic) properties

that are preserved and/or reftected by the translation. One such properties is the

relative power of agents within a language. \Ve expect that the relative power between

agents he respected by the translation. This is. when two agents are equally powerful

in a language. their corresponding translations will ha\'e the same relation. This is

the intuition behind the concept of "fllll-abstraction~' ([-l8]). which serves as a Ilatural

criterion to establish the equivalent expressive power of two languages.

Full abstraction is not the only criterion to establish the relative expressiveness of

calculi. Soruetimes we might be interested in particular aspects or features of these

caleuli. such as the ability ta handle certain tasks. or ta represent certain kind of

abjects. In this sense we would consider a language to be at least as powerful as

another if there is a translation from the latter to the fornler that preserves and/or

reflects sorne essential property of the language being translated. Equivalently! we

would consider that there is a gap in expressiveness between t\Vo languages if there

is no translation that respects a particular property of interest. It might be the

case that there are translations from one language to another! but we \vould still be

inclined to say that there is gap when sorne essential aspect is not respected by any

translation. In the context of concurrency and interaction. the properties that we are

particularly interested in. are the capabilities of a system to simulate mobility.

It is in light of these concepts that we intend to compare the relative power of

the languages within the ir-calculus and CCP families. The abject of this thesis ta

provide a map of the relations bet\Veen different process calculi! and an attempt to

establish sorne yet unknown relations! in particular! we are interested in exploring

the possibility or impossibility of simulating mobility in CCP.

• CH.-\PTER l, I1VTRODUCTI01V

1.1 Contributions

The more general contributions of this thesis include:

7

•

•

• .-\ unifornl presentation of calculi in the two different paradigms for concur

rency eonsidered. namely nlobile processes and concurrent constraints. This

includes a uniform treatnlent of the senlantics. by presenting both labelled and

unlabelled transition systems for each ealculL and proving the equivalence of

snch systems by standard techniques. Also. the definition of sensible notions of

behavioural equivalence in terms of the standard notion of bisirnulation ([25]).

• :\ "rnap!' of the known relations between the calculi discussed.

The specifie contributions are:

• The establishnlcnt of a gap in expressi\'eness between concurrent languages

with support for nlObility (rr-calculi) and Concurrent Constraint Programnling

languages. Specifical1y the irnpossibility of encoding internai mobility in CCP

languages under sorne reasonable assumptions.

• The proof of a eorrespondenee between labelled and unlabelled transition se

mantics for CCP.

•

•

•

Chapter 2

Background

This section pro\'ides the technical background on the basic concepts of calculi. op

erational senHl.ntics~ bisirnulation. translations and expressi\'elless. \\"e assurne the

reader is familial' with basic set-theoretic concepts. inductive definitions. and the

induction principle.

2.1 Calculi syntax and contexts

To design. build. analyzc~ and reason about systerns we use languages or calc·uli. :\

language or calc-ulus is a set of terms or expressions together \Vith sorne associated

meaning. The expressions or terms of a language represent conlponents. agents or

processes of a system. The .syntax of a language describes the means for combining the

basic ternIS ioto nlore complex terms to represent coniplex structure or behaviour of

a system. The sernantics describes what is the meaning of each term in the language.

e.g. what entity or behaviour in a system is being rnodeled by a particular expression.

The syntax of a language is often given in an inductive \Vay, defining first what the

basic clements are, and then what the nlore complex elements are in terms of simpler

expressions. It is common to use Backus-Naur Form (BNF) ta describe the syntax of

a language. For instance, assume a language 1:" whose expressions are strings from

h I de! { } . de! { }t e a phabet E = u, b, <1, ® U V \Vlth V = X, xr, X2, •••. Suppose that the set

8

• CHAPTER2. BACKGROUND

of terms in [, is defined inducti\'ely as follows (ignoring parenthesis):

! d~ {a, b} U {x <Jp: xE V.p E .c} u {PL 12) P2: PL,P2 E !}

9

This language will include terms sllch as b. 1.' <l a. (x <] b) 0 a. etc. The B:\F for this

language is given by:

It will often be necessary ta talk about the context of an agent. For a particular

language. we define a context C as a term with Cl ,ohole" or place-holder [.J. If P is

a ternI in the language, C[PJ is the ternI that results fronl replacing the (.J in C by

P. These contexts can also be defined inductively by a BNF. For instance the set of

[,-contexts for the language [, described above. is given by:

• c

P

[.]

(L b 1.' <J P

P®C

•

For exanlple. sonle contexts are x <J [.J. (.r <J [.]) 13 a. ete. t

The set of '"nlininlal" contexts {.r'<J[.J. [·]®P. PI2)[.]} is ealled the set of elernentar'Y

contexts.

2.2 Operational semantics

\Vhen describing the semantics of a progralnming language or rnodel of computation,

it is comrnon to do it by means of defining ho\\" the agents, processes, or programs

of the language evoh·e. This approaeh is known as "operational semantics". 'Ve can

think of the operational senlantics as a "state transition system" ! in which we specify

for sorne abstract machine ho\\" is it that its state, or configuration. evolves over time

in arder ta execute programs of the language. This is in contrast with the sa called

"denotational semantics" in which the meaning of each term in the language is given

l :Sate that these are single hale contexts. In this thesis we do not deal with multiple hale contexts.

• CR{PTER2. BACKGROU~D 10

•

•

by sonle element in an abstract domain.

\Vhile denotational sernantics is nlore abstract as it is independent of any par

ticular computational vie\\', in the sense that the denotation of a program cloes not

clepend on ho\\' it is executed by a nlachine, operational senlantics is very useful for

that same reason: it gives us a concrete hanclle on the process of COITlputation itself

allowing us to l'eason about how the agents compute and interact.

In arder ta give an operational semantics, we have to define what is a ··state" in

the abstract machine. and ho\\' it evol\'es. Le. given that the systern is in a particulal'

state. which state, or states. will be the next. Suppose that we are dealing with a

language 1:,. \Ve can think of our abstract rnachine as a ..term rewriting systenl" in

which COITlputation is pcrfornlcd by means of replacing (or rewriting) the progranl ta

he executed with another. preferably simpler. pragranl in 1:,. Thus. we can say that

the states in the abstract [nachine arc the terms thcrnsclves. :\ow. givcn t\Va agents:.!

EL and E·!. in C. we want to fornlally express the notion that "ELe\'olves in a single

conlputational step to becorne E'2'" \Ve do this br defining a "redllction" relation

-tc ç 1:, x C. 50 the notion of single conlputational step is captured by asserting

(EL, E2) E-+c· Xonnally we write EL ~ E2 for (EL, E2) E-+. and we rescind from

the subscript when it is clear fronl the context the language to which we are referring.

Even though defining the operational semantics in such way is \'cry useful. it is

sonlewhat restrictive. Sornetinles we rnight be interested in defining how the agent

evolves with respect to sonle specifie context, for instance sorne environrnent that

contains va.riables. If the set of such environments is Env, we would change the

signature of our reduction relation to something like ~ ç 1:, x Env x 1:, x Env and

write (EL!fJd ~ (E2,a2) for (EL,at,E2,a2) E-+. to mean '·under the environment

aL, the agent EL evolves into E2 with environment a./~.

This idea of enriching the redllctions. call be thought of as adorning the reduction

relation with sorne label(s): for instance sorne people write EL (l7
l
.0'2\ E2 insteacl of

(EL, ad ~ (E2 , (2)' In general, we can choose sorne labels from a set A and say that

~ ç 1:, x A x C, These labels neecl not be a pair representing the state before, and

1 \Ve use Magents", "tenns" T "programs" and "processes" indistinctively.

the state after the transition. :\. frequent use is to consider A to be sorne set of actions

that the agents can perform. This kind of relation is normally callcd 'transition:':

or '·conlmitmenf~. :\.gain~ we write EL ~ E2 for (EL: a, E2) E-t to mean that El

perfornls the action Q evolving into E2 .

[n our abstract machine view of semantics. we couId consider the labels as condi

tions on the current configuration. tha.t need to be nlCt for the machine ta rnovc ta

the next allowed state.

:\. fornlalization of the senlantics using reduction or transition relations was given

in [25} (although it is 3. much older concept).

Definition 2.1. A structure (~. -+) where -+ C ~ x ~ is called an unlabel'ed

transition system. or UTS for short. A structure (~. A, -t) whe7'e -+ ç ~ x A x ~

is called a labelled transition system or LTS for short.

• CHAPTER2. BACKGROUND Il

•

•

\Ve specify the operational scnlantics of the language by defining which pairs of

expressions belong to -+. in the case of CTS. or triples of expression-action-expression.

in the case of LTS. It is customary to define this relation inductively by inference

T'Ules. .-\n inference rule of the form

.-\ L .-\'2 .-1'1
------- RCLE-X:\.~[E if <side conditions>

B

should be read as "if .-i Land .-\2 and ... and A'l then B" . .-\n inference rule without

premises is an axiom. The rule can be applied only if the side conditions are met.

For the definition of an operational semantics the Ai ~s and the B are assertions of the

fornl .\1 -t JI' (or Al ~ JI' for an LTS) where Al and JI' are the different syntactic

forms of the language.

\Vhen defining semantics this way: it is also customary ta provide another relation

between expressions called ··structural congruence~!~ written =ç ~ x 1:,. This is an

equivalence relation that is supposed to group together (in equivalence classes) terms

that we don!t want to consider semantically different. It is important to note that

this is a "static" equivalence, this is, it equates terms based solely on their syntax!

and not on their dynamic behaviour. In section 2.3 we will talk about "dynamic"

equivalence relations, when we approach the concept of bisimilarity. This approach of

defining semantics in terrns of a recluction system built upon a structural congruence.

according to [31), was proposed in [27), and inspired on the ;;Chemical .\bstract

~lachine!1 of Berry and Boudol ([5]).

\Ve nornlally include structural congruence in the signature of the language! be

it labelled or unlabelled, and provide an inference rule for reductions or transitions

that allows us to change freely between structurally congruent ternIS. Such a ruie

generally takes the following fonn3 :

• CHAPTER2. BACKGROLWD 12

•

•

J[~ JI'
Q CO~GR if J[= ~V and JI' == ~V'

.V ~ .V'

The notions of reduction and transition represent a single conlputational step. \Ve

extend this notion to a sequence of steps. or computation. \Ve use the synIbol ~ to

stand for ~. denoting the transitive and reflexi\'e closure of~. Thus. the assertion

p ~ (). representing Cl coruputation fronl P to Q. nIeans that there are terrns RI,

R'}. , Rn such that P ~ R L -10 R2 ~ ... -+ RTL ~ Q. or that P =Q. [n the setting

of labelled transition systerus. a cornputation is a sequence of transitions P ~ Q.

where à = QL, n'l," . ,Qn' is a sequence of actions. nleaning that there are Rh R'}.,

.... Rn such that P ~ RI ~ R2 ~ ••• O~l Rn ~ Q! or P =Q. \Ve often refer to ~

and ~ as "strong!' reductions or transitions. and to => and ~ as ··weak" reductions

or transitions.

\Vhat kind of senlantics is better'? This is not easy to answer. LTS semantics

gives us finer grained information. and allows us to reason 10caHy, whereas UTS gives

us a more general vie\\' of the senlantics, and tends to be more intuitive. Another

aspect in favor of LTS semantics is that given a term. we can represent its possible

evolution paths as a graph in which nodes are ternlS~ and edges are transitions. with

their labels representing actions. An analogous graph for a liTS would not be as

informative because edges would Dot have labels. It would tell us ;·where'· the system

can go, but oot how.

An important justification for defining formally the semantics of a language is

3This is the LTS form of the mIe. For an UTS version, we simply do not write the Cl labels.

2.3 Bisimulation

that we can use mathematical tools available to reason about and prove properties

of programs. One useful tool is the principle of induction. In this context the use

of this principle appears in t\Vo forms: ;'structuraP' induction, and induction on the

derivations (also known as induction on the inference. or induction on the height of

the proof tree). In the first case. we nlake induction based on the structure of the

progranls (according to the syntax). Hence it is generally used for proving statie prop

erties. For dynamic properties we generally use induction on derivations. In these.

wc analyze the possible cases for last inference. assunlÎng the induction hypothesis

for the prclniscs of each rule. and for axioms.

Given the two forms of senlantÎCs for a particuJar language. we expect thenl to

agree. i.e .. at the appropriate level of abstraction. agents that have sOlne behaviour

according ta L"TS, must have the saIne behaviour according to LTS and vice-versa.

This is a property that nlust be proven. and generally involves induction on deriva

tians .

•

•

CHAP TER 2. BACKGROUND 13

•

The notion of equivalence is essential to the semantics of a language. Cnless we have

a way of distinguishing terms or agents. we cannot clain1 that we have a weIl defined

notion of "meaning" of an agent. or its power. \Ve need to be able to deternlÎne

whether two agents are equivalent in sonle sense.

\Ve now address this issue of whether two agents should be considered "dynam

icalIy" or "beha\'iourally" equivalent. As pointed out in the introduction, this is a

notion that, in the case of concurrent systems, should depend on the capabilities of

interaction of an agent \Vith its environnlent. So if we want ta consider t\Vo processes

as equivalent we have ta rely on the idea that they "match" each other's actions.

This idea of matching is formalized by the notion of simulation4
• \Ve will consider

an LTS (.c, A, =, ~) .

.. David Park and Robin Milner [251 are credited as the inventors of the notions of simulation and
bisimulation.

Definition 2.2 (Simulation and similarity). A binary relation S ç C x {, is

called a simulation iff for any terms P. Q E c. PSQ implies that if for any term

P' E C and any action Q: E A such that P ~ P'. then the,,.e is a term Q' E C such

that Q ~ Q' and P'SQ' .

~Ve say that Q simulates P.o,,. that P and Q are similar, written P ~Q! iff

there is a simulation S S'uch that PSQ.

• CHAPTER2. BACKGROUND 14

•

•

The intuitive idea behind this concept is that Q sinlulates P in the sense that

every action that P nlakes is matched by the same action in Q. reaching a similar

state. Le. astate that itself continues to simulate its counterpart.

\Ve point out a few properties (~lilner. [25]):

Proposition 2.3.

(i) -..< 'Ïs reflexive and tran8'itive.

(ii) -..< 'Ï8 it.5elf a s'Ï'rnulation.

(iii) ~ i8 the la;,.gest sirnulation.

Proo/. (i) Similarity is refiexive bccê:\use there is a simulation S such that for any

P E C. PSP. ~amely that simulation is S = {(P, P)IP E C}. It is easy to show this

set is a simulation, because P can always match its own moves.

For transitivity. assume that P~Q and Q~R. Then there are simulations SL and

8 2 such that PS1Q and QS2R. Define S de! SlS2, i.e. the composition of the given

sinlulations: S = {(a.b) l:le. aS1c& cS2b}. Clearly it is the case that PSR. It now

suffices to show that S is indeed a simulation. Take any (a, b) E S, and suppose that

a ~ a'. Then there is a c such that aSl c and CS2b. Knowing the first simulation we

obtain that C ~ c' and a'Slc'. Then. br the second simulation. b ~ b' and c'S2b'.

This implies that (a', b') E S. hence S is a simulation. so P~R.

(ii) Assume that P~Q. By definition of similarity, there is a simulation S where

PSQ. Hence whenever P ~ P' we know that Q ~ Q' \Vith P'SQ'. Since P' and Q'

are related by a simulation, they are similar: P' ~Q', thus satisfying the conditions

of a simulation.

• CH.-\PTER 2. B.-\Cl(GROU1VD

(iii) To see that similarity is ula.xima1. it is enough to prove that

--< U{ SIS is a simulation}

15

•

•

To see this, note that (u, b) E --< if and only iff (u, b) E S for sorne simulation S:

this nleans that (a. b) E U{SIS is a siInulation }. This set is rnaxinlal because it

contains ail simulations.

o

The notions of sinlUlation and siruilarity are one-directional (althollgh not neces

sarily antisymnletric). If we are interested in considering t\Vo agents as eqllivalent,

they need to rnatch each other's actions. .-\n alternative is to consider ..two-way

simulation!', i.e. the agents are equivalent if one simulates the other and vice-versa.

This introduces sorne problerns, as pointed out by the following exarnple. Consider

two nlachines P and Q as depicted in figure 2.1. It is easy to see that Q sinlulates P .

The sinlulation is SI = {(Pl!Qd! (P2,Q2), (Pl,Q3), (PI,Q.d}. The converse is also

true: P sinlUlates Q. and the sinlulation is

The problem however is that two-way simulation is not an appropriate notion of

equh-alence because we would expect equh'alent nlachines to be able to replace one

another in any context. i.e. they must interact with the environnlCnt in the same

way. But the example shows that this is not the case for ail states of the nli:l.chines.

Consider for instance state Qs. In P. state P2 sirnulates Qs, but in reality. no state

in P really corresponds ta Qs. If the machine Q is initially presented \Vith an action

a and moves to state Q5 and then it receives an action c, it cannot respond to it.

~Ieanwhile! if P is presented with the same sequence of actions ac, it successfully

ends in state Pol' Hence the two machines do not react with the same behaviour to

external stimuli.

Given that two-way sinlulation does Dot seem to capture completely the notion

of equivalence that we are after, we adopt a different concept: bisimilarity.

• CHAPTER2. BACKGROUND 16

Machine P Machine Q

•

•

Figure 2.1: Are these machines equivalent?

Definition 2.4 (Bisimulation and bisimilarity (Milner, [25]». A sim'ulation S

is called a bisimulation iff S-1 is a/so a sàT1'Ulation. This iS 1 PSQ implies that

(i) lVhenever P ~ P'. theu Q ~ Q' and P'SQ'

(i'i) ~Vheneve"'Q ~ Q'. then P -4 P' and P'SQ'

~Ve .>;ay tltat P and Q are bisimilar. written P":"'(J iff there is a bisùnulation S

S'uch that P SQ.

The fact that this concept is useful to distinguish between agents. is given by

establishing that ~ is an equivalence relation. The following has been proved by

~[ilner ([25}).

Proposition 2.5.

(i) ~ is an Equivalence relation.

(ii) ~ is itself a bisim'Ulation.

(iii) ~ is the largest bisùn'Ulation.

Proof. (i) First we establish that "" is a simulation. The argument is as in item (ii)

in 2.3. Then~ since ~ is a simulation, it is refiexive and transitive. Symmetry is easily

established: given P and Q such that P~Q we know that there is a simulation S

sueh that S-L is also a simulation and PSQ. This implies that QS-L P. so there is a

simulation 'R d!lJ S- L sueh that Q'RP and its inverse R -1 = S is also a simulation.

Henee Q~P.

(ii) .-\nalogous to proposition 2.3.

(iù) .-\nalogous to proposition 2.3.

• CHA.PTER 2. BA.C[{GROU1VD 17

•

•

o

Returning ta the example of two-way simulation. we could have saidthat P1Q.

and henee shauld not be considered equivalent.

Recall l'rom the previous section that it is cornrllon to present the operational se

rnantics of il language together with a structural congruence == between agents. and

a COXGR rule that alla\\' us to replace structurally congruent agents and preserve

transitions. lt is cas)' ta see that with such a rule. structural congruence is a bisimu

lation, because if P =Q and P ~ P'. and noting that == is refiexive so that P' =P'.

then br using a CO;\,GR rule. Q ~ P'. In other words. =ç "'"

Congruence relations

If wc consider twa agents equivalent, we expect theni to be nlutually replaceable.

If one of theni exists within an environrrlent. we ShOllld be able to take it out. and

"plug-in" the other 50 that the overall system or environnIent behaves in the same

way. In other words. any observer or external client should not be able to distinguish

between the t'Vo agents. The interaction between agent and observer must remain

the same.

This idea is formalized by the algebraic notion of congru.enceS. .-\ congruence is

an equivalence relation that is preserved br the operations in sorne domain. or in our

context, an equivalence relation that is preserved by the operators of the language.

Definition 2.6. Let J:, be a calculus, and "'" ç J:, x J:, an equivalence relation between

L, te'rms. ~Ve say that :: is a congruence iff for any P, Q E J:,~ whenever P "'" Q

5The structural congruence relation mentioned before as a special kind of equivalence between
agents, is defined for each particular calculus in terms of the more general concept of congruence
provided here.

• CHAPTER2. BACKGROUND

then for all L,-contexts C. C[P] ~ C[Q].

18

•

•

:\[ore succinctly we could have say that '" is closed under arbitrary contexts.

The notion of bisimilarity attempts to capture an appropriate notion of be

havioural equivalence. However. we can only say that this goal is achic\'ed if bisim

ilarity is a congruence in the language of interest. As we will see. this depends on

the language under consideration. Sometinles it will be necessary to refine the notion

of bisimilarity ta acconlffiodate or reflect the idiosyncrasies of the language. in order

ta obtain a. congruence. Often it turns out that even after adapting the notion of

bisimilarity ta the language it still is not a congruence. \Vhen this is the case. we can

"forcc" the equivalence ta be a congruence by defining an equivalence relation on top

of it. \''/e say that the new equivalence is induced from the old one.

Definition 2.1 (Induced congruence). Let L, be a calculu.s, and", ç L, x C an

Equivalence relation between L, terms. ~Ve define a binanJ relat'ion ,...,. ç L, x L, as the

srrLallest equivalence relation S'uch that for any P. Q E C. P '" Q if and only if for aU

.C,-context.s C. it haids that C[P] ~ C[Q]. ~Ve say that '" induces the congruence

:\[ore succinctly wc could have said that the congruence induced by an equivalence

is the closure of the equivalence under all contexts.

Even if obtaining congruence relations is one of the Inost inlportant objectives of

senlantîcs. sometimes we might find interesting and rneaningful equivalence relations

that. while not being congruences, still preserve sorne, or most of the operators of the

language.

:\. great deal of research in concurrenc)" and interaction has had these issues as a

central thenle.

2.4 Translations and Expressiveness

In this section we examine in more detail the concept of expressiveness. In the

introduction we mentioned several approaches to this concept. but we decided to

concentrate on the understanding of expressive power in terms of the capabilities of

interaction between agents. In section 2.3 we introduced the notions of simulation

and bisimulation as a means of describing the idea that one agent can interact with

the environment (at least) in the saIne way as another. \Ve are assuming that agents

are being described within the same language. ~ote that here we are using the terrn

"language!', or ··calculus·' to refer to the set of all agents. not the set of strings of

labels produced by a specific autornaton. Our enlphasis is on comparing process

calculi rather than individual agents. To do 50. we need ta talk about translations

between different calculi.

• CHAPTER2. BACKGROUND 19

•

•

2.4.1 Full abstraction

Fix. for the moment. two languages {,I and {,'2' .\ tran~lation. e'Tnbedding. or encoding

from {,I ta {,2 is sinlply a function t : (,1 -+ (,'l' \Ve say that C"2. is at least as

expressive as Cl if there is a translation t : {,I --f C2 that satisfies certain criteria.

This definition of course lcaves a wide margin of freedonl ta deternline what is a

good translation (if it exists) depending on what the criteria are..\s we will sec. the

results in expressiveness are based on the choice of criteria for translations. There are

a Cew widely accepted concepts to describe or prove the ··correctness" of a translation.

These concepts, introduced below. are very generic. but their application varies fronl

one language to another. and one translation ta the next.

Lsually the criteria for establishing the correctness of a translation is given in

terms of the notions of equivalence. sirnulation or transitions for the languages. \Ve

expect the translation to ··behave welr' \Vith respect to such relations, i.e. transitions

in one language correspond to transitions in the otller, and equivalent terms are

translated into equivalent terms. This idea is generalized by the following properties.

Definition 2.8. Let [. ~ : I:,L -» {,'l be a translation . and conS'ide7' two binanJ rela

tion~ 'RI ç Cl X (,1 and 'R2 ç 1:,2 X {,2! we say that:

• [.~ is complete w.r.t 'Rb 'R2 il! for any E. FE Cl, E'RIF 'implies [E]'R2 [F].

• [.~ is adequate w.r.t 'Rl , 'R2 il! for any E, F E Cl, [Ell'R2 [F] implies E'RIF.

• [.] is fully-abstract 'W.r.t 'R t , 'R2 iff it is complete and adequate.

\Ve intend to eonvey the idea that n L and 'R2 are related notions~ such as transi

tions. and (hi)similarity. Ohviously such notions are language dependent~ hence the

nlention of two separate relations 'R L and n2 ; but in general we are interested in

comparing transitions in one language with transitions in the other. or sinlilarity in

the source with sÎlnilarity in the target.

Sometimes it is useful to cornpare expressiveness in ternlS of a property that is not

necessarily a binary relation. \Ve eould fonnalize this idea of respecting a property

as follows.

• CHAPTER2. BACKGROUND 20

•

•

Definition 2.9. Given a translation [.~ : L,l ~ C2 , and two properties (predicates)

BI : L,l ~ {T. F} and fJ2 : (,2 ~ {T. F}, we say that:

• [.~ preserves BL,B,! iff fO'f uny E E CL. fJl(E) i'mplies B2([E~).

• [.~ reftects (}l,(}2 iff for any E E (,L. (}2([E~) irnplies Ol(E).

• [.~ is BL, B2 -fully-abstract iff it preserves and reflects (}L~ B2 .

Of course. the signature of the fJ predicates could be more cornplex. depending on

the property that we are interested in conlparing for the languages.

~otice that we can see cOInpleteness as a presen'ation property. i.e. t is conlplete

w.r.t. 'R L• R'2 iff t presen'es nl. n 2 • In the saIne way. adequacy is a reflection property.

2.4.2 Respecting the semantics

Let us examine the notions of completeness. adeqllacy~ and full abstraction with re

spect to transitions, simulation, and equivalence. Completeness w.r.t. transitions.

means that transitions are preserved, Le. actions in the source language of the trans

lation are matched by actions in the target language. Assume that Al represents

the set of actions in Cl, and A2 is the set of actions in L,2. Let ~I ç Cl X Al X Cl

and ~2Ç C2 x A 2 X C2 he the transition relations defining the operational semantics

of each language. Furthermore. assume that there is a \Vay to map actions in one

language into actions of the other. Le. a map a : Al -; A2 • Then, the notion of

.1 CH.-\PTER 2. B.-\C/{GROU.VD

cOlnpleteness as preservation of transitions is formally stated as follows:

21

•

•

This property Ineans that the translation faithfuUy captures the dynanlÎcs of the

source language. Notice the similarity of this concept with that of a standard simula

tion. as in definition 2.2. This is not a coincidence. Conlpleteness. or preservation of

transitions. can be seen as a generalization of the notion of simulation to a "cross~'

language donlain.

The syrnmetric notion of adequacy, representing a so'Undness criterion can alsa be

expressed in il sinlilar fashion.

For any P E CI' Q E C2 J E A'2'

if t(P} ~'2 Q then thcre arc P' E Cl' Ct' E Al such that P ~I P'

where Q = t(P') and 3 = a(n)

Adequacy as reflection of tra.nsitions. can he understood as stating that the behaviaur

of translated ternlS is rneaningful in the source language

Another instance of these concepts corresponds to considering completeness and

adequacy as preservation and reflection (respectively) of similarity and behavioural

equivalence. instead of just transitions.

\V'hen we say that a translation is conlplete w.r.t similarity, we are saying that

if in language Cl, agent P simulates Q then in L,,!, t(P) simulates t(Q). Recall that

the notion of simulation. allows us to replace one agent ,vith another (although not

necessarily the other way around). If P simulates Q. we can use P in place of Q in

any environment. If we replace '''simulates'' by "is behaviourally equi\·alenf'. then

both processes are interchangeable. and the en\'ironment cannot tell them apart. The

preservation of this property by a translation. means that the the ability to replace is

also preserved. If a translation is not complete \V.r.t. equivalence. it means that there

are two agents in the source language that behave in the same \Vay with respect to

their environment, but their translations react differently to the environment. Such

• CHAP TER 2. BACKGROUND 22

•

•

a translation would not be very good.

A syrnnletric analysis can be made of adequacy. A translation that is not adequate

w.r.t. behavioural equivalence~ is one where there are behaviourally different terrns

in the source language nlapped to ternlS that exhibit the same behaviour in the

target language. This implies that the interaction with the environnlent has not been

preserved. and hence. sorne expressiveness has been lost. For this. lack of adeqnacy

is rnnch \\"orse than failnre of completencss.

If a translation is not adequate. or corllplete~ then it is not capturing correctly

the semantics of the source language. If no fully abstract translation is possible. it

means that the target language is unable ta capture sOlue essential fcature(s) of the

source language. and thns is less expressive.

From respecting transitions to respecting equivalence

\Ve have secn two inlportant instances of cornpleteness and adequacy from the point

of "iew of transitions and (bi)sinlll1ations. But (bi)~irnilarity is defined in terms of

transitions. Ho\\" are aU these notions related then'? The following establishes one

such relation. and is the base for proving that a given translation is fully-abstract.

Theorem 2.10. If a translat'ion preserves and reflects transition.<; then il is fully

abstract with respect to bisimilarity.

Proo/. Let [,L and [,2 he two languages. and [.~ a translation from [,L to [,2. Let ..4 L

and A2 be the set of actions in each language respectively. and a : Al --1' A2 a map

between such actions. \Ve use the notation "':"'L. and "':"'2 for bisimilarity in [,L and [,2

respectively. Assume that [.~ preserves and refiects transitions.

(i) Completeness: \Ve \Vant to proye that for any P, and Q, P "':"'1 Q implies

[P~ "':"'2 [Qn· \Ve cao do this in the standard \Vay, by showing a bisimulation in

[,2 that contains ([PD, [QD) given that P and Q are bisimilar. Specifically \Ve \Vant

to show that S de! {([PD, [QD) : P"':"'lQ} is a bisimulation. Take any ([P~, [Q~) E S.

Suppose that [PD -:;'2 R. Then, since [·n reflects transitions, R = [Plll for sorne

P' E Lb ,8 = a(a) for sorne a E AL and P ~ P'. Now, since P "':"'1 Q, \Ve have

that Q ~ Q' with P' ~L Q'. So: by preservation of transitions. [Q~ a~) [Q'~. Hence

([Pl], [Q'll) E S. because P' "':'-L Q'.

• CHAPTER2. BACKGROUND 23

•

•

(ii) Adequacy: This is the exact dual of the one above.

o

To our knowledge the converse has not been establishccL and it could be useful

to prove negative expressivelless results.

The theorem and proof above are rather general~ and Inight not be directly ap

plicable to the languages being conlpared~ since it depends on the notions of tran

sitions and (bi)simulation. Thesc may involve additional conditions that nlust be

checked. c.g. late/carly/weak bisinlilarity. For exanlple. when dealing with "weak"

(bi)siruilarities. we ruight have several choices for the notion of "preserving:~ transi

tions: does it nlCan that one transition is matched by nlany. or that a sequence of

transitions is matched by Cl. sequence? Ail these details depend on the languages.

howevcr the proof above sen'es as the sketch for proofs of full-abstraction.

Encodings of a language in a sublanguage

\Vhen exploring the expressiveness of sorne ca1culus we face the question of which

of its operators are strictly necessary and which are Ilot. In such case~ we define a

sub-calculus or sublanguage of the originaL as a (proper) subset of the full calculus.

Then. to asses the power of the suh-calculus with respect to the original, we can use

a notion of equivalence. similarity or bisimilarity of the full language. to compare

terms of the sublanguage with terms of the full language. This al10ws us to prove

full-abstraction with respect to the notion of equivalence used.

Lemma 2.11. Conside'r CL to be .so·me language. and C2 ç Cl a sublanguage. Let

"'-' ç L,L X L,L be an eq'uivalence relation. and [.~ : CL ~ C2 a translation. If for ail

P E L,L! P "'-' [PD then [.~ is fully-abstract W.T.t. "'-'.

Proof· \Ve first prove completeness. Let PL, P2 E CL such that PL "'-' P2 • By hypoth

esis PL "'-' [Plll, and P2 "'-' [Pln. Since "'-' is an equivalence, by transitivity we have

[Pl~ "'-' [P2 l Adequacy is obtained \Vith a dual argument. 0

• CHAPTER2. BACKGROUND

2.4.3 About the types of translations

24

•

•

Besides full-abstraction. we might be interested also in other properties of a transla

tion. For instance. we would like the translation of a term to he expressed only in

tenns of the translation of its sub-terms. Such a translation is called compos-itional.

This is defined formally in tenns of contexts.

Definition 2.12. Let CL and C'2 be two languages. and [.~ : CL -+ (,'2 a translation

between thern. ~Ve .say t!Lat [.~ is compositional if for any terrn P E (,L and (lny

LL -context Cl' t!Lere i.., an C'!.-conte:J:t C,! s'Ucft tltat [cdP]~ = C'2[[P~].

Oftell. we \\!ant a specifie relation between the contexts of a. conlpositional trans

lation to crnphasise the ties between the languages. For instance. when considering

t\Va concurrent languages. we rnight prefer a translation that is truly distributed in

the sense that processes which are parallel in the source language. are translated ioto

processes that are parallel in the target, and no mediator is involved. In other words

we woulel like the translation ta preserve the parailel contposition operator fronl one

language ta the other. In general we might want this property for differeot opera

tors. i.e. the context Cl should be lnapped to C'2 in a "uniforrll" way. The following

definition fornlalizes this for binary operators.

Definition 2.13. Let c'L and c'2 be two such languages. and ®L and 02 be two binary

operators in each language. Then we say that a translat'ion [. ~ : CL -+ c'2 is said to

be unilorm w.r.t. 0l and 02 if fOT ail P. Q E LL~ [P I~L Q~ = [P~ 02 [Q~.

~[ore succinctly we could have said that [.~ is an hornomorphisrn between (Llo 0d

and ((,'oh 02)'

This property however. might be tao strong. It might rule out many meaningful

translations. In particular. a translation might require sorne kind of mediator agent

bet\Veen two agents in a parallel composition! i.e. the translation might be defined as

[P®l QU deI [PD 1812 ~\l 1812 [Qll, where JI is the mediator introduced by the translation.

Not an operators in a language are binary. \Ve could conceive this notion of

uniformity also for unary operators such as restriction. Usually languages provide

sorne rneans of hiding names Crom the environment 50 that agents have private or

• CH.-\PTER 2. BACI(GROU1VD ,)-
-;:)

•

•

local variables~ not (directly) accessible to the external world..\ common notation

for such an operator. in the cOlltext of ir-calculi. is VJ:.P. where v is the restriction

operator. .L' is the nanle to hide. and P is the body of the agent. In a translation

that is uniform with respect to restriction. hidillg is preserved: [V1L·.PD = l/:,!x.[Pll.

where V1 and 1/2 are the restriction operators for the source and target languages.

As with the parallei composition exanlple~ this kind of translation is also restrictive,

because names rnight require different handling in the languages, Such translations

oftell introduce "hancHer!' processes~ for instance as in [vlJ.·.Pll d~ v2x.(H(x) 02 [P~).

where H is the handler for x,

•

•

•

Chapter 3

The 7r-calculus

The ii-calcuills was proposed by .\lilner. Parrow and \"alker [301 in order to express

explicitly the notion of nlobility absent fronl '\lilner's previous work in his Calculus

of Commllnkating Systclns or CCS for short ([25]).

The ïr-CalCllllls contains three basic entities: nanles. actions~ and processes or

agents..-\ systeIn described by an expression in the ïr-Calcllius is a network of processes

which communicate through channels. ~anles represent channels. and processes are

composed by actions. :\'anles also represent variables and constants. There is no

neecl. in the thcory for considering these separately. Since the object of stlldy of

these foundational nlodels is the interaction between parts of a system~ the only

actions considered are cOlunlunicating actions. specifically~ actions for sending and

receiving nlessages through the channels.

Definition 3.1. Ass"u'me an infinite set .N.T of na'mes LL. c. W • .L. y.::. ~Ve denote

seq'uence:.; of na'Tne.s by i or Ï. The .set of rr-calcutus te'17ns for proce.sses. ranged over

by P~ Q~ R and the set of actions ranged over by a are defined by the syntax shawn

in table 3.1. P rr denotes the set of process terms (P) and A 1r denotes the set of actions

(a).

InformaI description of the semantics

Infornlally terms shoulcl interpreted as follows: 0 is the process that does nothing. An

agent of the form o:.P is a process that performs the action Q and then behaves like P.

26

• CH.-\PTER 3. THE 1r-C.-\LCULUS

p .. - 0 Nil

o..Q Prefix

vi.Q Restriction

QIR Parallel Conlposit ion

Q+ R Sunlnultion

• [x = y]Q ~Iatch

[x =1= y]Q ~lisnlatch

.-\(1) Procedural caU

Q .. - T

u(i)

u(i)

Silent action

Input

Output

•

Table 3.1: The syntax of iT-calculus

• CHAPTER 3. THE 7f-CALCULUS 28

•

•

The action fi is often called the prefix of n.P. The prefix V~·. is called the restriction

operator. In an agent of the farm v~·.P. the name x is local or private so there is

no possible interaction of this agent with the external world through this channel.

.-\ process of the fornl P 1 Q represents the parallel composition of the processes P

and Q. that is. the two processes execute concurrently. The agent P + Q~ called

su-mmation, represents non-deterministic choice. 50 it behaves like either P or Q.

Intuitively. in a sumnlation the first agent that perfornls an action continues and the

other doesn·t. The nUltch and misnlatch operators correspond to a linlited fonn of

conditional that represents testing for name equality and inequality respectively. i.e.

the process [x = y](} blocks until the condition is satisfied (sinlilarly for [x :1= y]Q.

Finally. the tenn .-\(ü) corresponds to the intuitive notion of ';calling!' an agent that

has been definecl by an equation of the fonn

d~f

A(~'L' .L''.! • X Tl) = P

this is. replacing the occurrence of .-\{Ylo Y'l' y,J by the body of ...l's definition P.

making the appropria te substitution of parameters. i.e. the x!s in P replaced by the

y·s.

The three actions are: 1) input or receive. represented by u(x) in which u is the

nanle of the channel. and .L' is a né.lnle to be received: 2) output or send is represented

by u(x) in which u is the name of the channel and x is the name sent: and 3) the

silent action T which represents an internai communication. For input and output

actions. u is called the subject of the action and .r is the abject.

Notice that there is no distinction between narnes. constants. and variables. It

has been shown that this distinction is not necessary. and it would only complicate

the theory behind the calculus. Xotice also that there are no data types or means to

construct data structures. and that the calculus is first order! that is. the only thing

that can be passed around are names! but it is not possible to send a process through

a channel. ~onetheless~ the 7r-calculus is expressive enough to allow the definition

of arbitrary data structures. It is aiso possible to define a type system for it, and

higher-order variants have been studied. Process calculi in which it is only possible

• CHAPTER 3. THE rr-C:\LCULUS 29

•

•

to communicate names are calleel name-passing calculi and the higher order variants

are calleel agent-passing calculi.

Conlnlunication occurs in a synchronous manner. This nleans that both input and

output are blocking operations. \Vhen an agent has as prefix an input action. it is

blocked until SOIlle ather agent is sending sonlething through the givcn channel. In the

synchronous rnodel of COlnnlunication the sending action is aiso blocking sa an agent

with an output prefix is aiso blacked until there is an agent rcady to receive through

the channel in question. This is usually known as rendez-vous and is analogous to

comrnunication through telephonc. In asynchronolls conlInlinication~on the contrary.

the output operation is non-blocking and is akin of cornnlullÏcation by mail. In chapter

-l the asynchronous variant of the ii-calculus is discllssecl.

The input prefix and the restriction operator are bincling. In an agent of the fornl

u(J:).P or VI.P we say that the scope of x is P. and every occurrence of x in P is said

ta be bo'und. .-\ \'i:lriable that is not bound is free. If a name occurs free in an agent .

as the subject of sonle action. we can say that this nanle is a port to the external

warld. but if it is bound. no interaction with the external world can occur through

this name.

\Vith this description. let us take a closer look at the l'ole of names. :\s nlentioned

above. naInes stand for channels. as well as variables and constants. One can view

nanles as "ports'~ through which agents communicate. \Vhen considering an agent

of the fornl x(:;).P. we say that the process is located at x. In that sense .r is the

"address~~ of the agent. and thus. the notion of nanle~ corresponds infornlally to the

traditional notion of pointer. HoweveL this notion is slightly different~ since we can

have several processes located at the saIne name. In such case~ any third party can

interact~ non-deterministically~\Vith any of the agents sharing the same port. Cnder

this view of names~ the match and mismatch operators correspond to testing for

pointer equality and inequality respectively.

Sorne abbreviations and terrninology

Another important aspect is that the calculus described here is polyadic which means

that it is possible to sendjreceive several names in a single action. This is opposed to

• CHAPTER 3. THE ii-CALCUL US

Original synta..x .-\bbreviation
uO u

uO li
II~Lu(;r) u(x)
0L·02···· on'O Ol· Q 2.... On

IIXl·IIX2' ... Il.1· n .P IIXlX2" ·In.P
PLI P 2 1

...
1 P n ni~lPi

Pl + P 2 + ... + Pn ~~~lPi

Table 3.2: Sonte syntactic abbreviations

30

•

•

monadic conlnlunication in which it is possible to sencl only one nanle at a time. In

the full 7i-calculus that we are clescribing now. this is not an irnportant distinction.

since it is possible to encode the polyadic calculus in the rnonadic fraglnent. To obtain

polyadicity with ollly the rnonadic fragrnent of the calculus the only irnportant thing

is to setup a private channel. so that other processes that rllight be listening through

the original channel don ~t get a chance to interfere with the transrnission of the

sequence of \·alues. This is shown below.

U(Il.l·2· .. Xn) (LE Vp.Ü(P).P(Xl).P(X.}.) ... · .p(Xn)

deI
U(XlX2" . Xn) = U(p).p(xtl·p(.l·'2)···· .p(Xn)

In the rest of this chapter we restrict ourselves to the monadic rr-calculus. This

does not change the semantics. since. as we have seen, we can simulate the emission

and reception of multiple nanles with monadic input and output.

There are other corumon abbreviations summarized in table 3.2.

\Ve say that a sumrnation is guarded if aH the Pj's are of the forro Oi.Qi' \Ve say

that a summation is input-guarded (respectively output-g'uarded) if aU the actions Qi

are input actions (output actions respectively). \Ye say that a summation ismixed

if it includes both input and output guards. \Ve calI the tr-calculus that aHows only

input-guarded choice the rrinp-calculus. Similarly for the 7i-calculus that allows only

output-guarded choice the 1rout-calculus~ and 1rmix for the calculus allowing mixed

choice. A fourth variant is called the 1r
sep-calculus, which allows both input and

• CHAPTER 3. THE 7r-CA.LCULUS 31

•

•

output guarded summations~ but not nüxed choice.

.\n important aspect of the language is the use of procedural call expressions.

\Vhen we admit recursive definitions we obtain the full computational power of Turing

nlachines. .\n important derived construct is the replication operator. defined as

fo11ows: ! P d;j Pl! P.

The notation Q{x/y} represents the agent Q with all frec occurrences of y sub

stituted by .r. So given a definition .-1(1:1' .L''1, .•.• .L· ll) d;j P in which the narnes

.r l appear free in the agent P. a ternI .-\(Yl' .112 !J,J is equivalent to the ternI

P {!Il / Xl, !J'2 / .r '2, ... , !Jn / x n } .

Communication and mobility

Conlputation proceeds through communication. \Ve express conlputation \Vith a

red'uct'ion relation or a tranS'it'ion relation. \Ve \\'rite the faet that an agent P beconles

or evolves into an agent Q as P ~ Q. SO the most important elenlCnt in the reduction

of terrns in the iT-calculus is the conlmunication interaction:

u(.L').P 1 u(y).Q ~ PI Q{x/y}

The statement above represents precisely our intended meaning for communication:

the left-hand agent sends a name .L' through the channel Li while the right-hand agent

receivcs through the sanIe channel Li the naIne 1:. 50 ail free occurrences of.li in Q are

replaced br 1.'.

Ho\\' cloes the ii-calculus model nlobility'? ~ames stand for constants and variables,

but they stand also for channels. Since there is no formai distinction between these,

one can freely pass channel names in a communication. \Ve can see this through an

example. Imagine that we have an agent of the form

vx.(P 1 u(x).Q) l'u(y).R

Furthermore! assume that x appears free in both P and Q and is a channel connecting

• CHAPTER 3. THE 1r-C.-\LCULUS

theni. .-\ssunle also that y accurs free in R. For instance wc can have

P d:} x(k).x(l)

Q d!U x(a).Q'

R deI y(b).R'

So a first rcduction sends .r through u~ ulaking the channel x accessible to R:

v:r.(P 1 Q 1 R{x/y})

\Vhich we can rewrite. according to the definitians. as:

32

:\'otice that the first action of R has bcen changed to .r(b). ~ow both the second

and thinl agents in the composition are ,olistening" through .L'. Hence the channel l

,omo\'ecr' . and it is now connecting not only P and Q but also R, i.e. the topology of

the network evolved.

.-\n interesting phenornenon round in the ïi-calculus known as scope ext7~usion is

possible thanks to nlobility. The idea is that an agent can pass a private Ilanle to

another agent. but e\'en though it is private. the receiving agent gains access ta it.

thus the scope of the private name is extended beyond that of its sender:

•
VJ:.(x(k).x(l) x(a).Q' x(b) .R' {.r/ y})

•

u(y).Q 1 vx.(u(x).P) ~ vx.(Q{x/V} 1 P)

.-\lthough at first sight one can think that ii-calculus is a model of message-passing

COffiInunication. a doser look will show that it can be said to embed both message

passing and shared variables to an extent. In an agent of the form vx.(P 1 Q) the

name x is effectively shared by both P and Q. This staternent will be strengthened in

future chapters when we show how the 1r-calculus is able to simulate sorne paradigms

with shared memory.

• CHAPTER 3. THE 1r-C.-\LCULUS

3.1 Semantics

33

\Ve no\\' define formally the behaviour of processes in terms of a congruence relation

and a reduction relation, but first sorne preliminary definitions.

3.1.1 Substitution of Dames

The ii-calculus is centered on the notion of narnes. They represent channels of corll

rllunication between agents. They can be viewed as constants. and \·ariables. For this

reason one fundarncntal operation is that of nante substitution. lt 's role will becolne

apparent when we present the CTS and LTS for the language.

Definition 3.2. The set of bound names and the set of/ree names 0/ an action

o. denoted bn(o:) and fn(a) respectively. are defined as follows:

•
bn(T) de! 0

bn(TI:(x)) d;} 0

de! { }bn(u(J;)) = X

Jn(r) de! 0

Jn (TI:(x)) d!:! {LL,.r}

de! }Jn(u(x)) = {U

\Ve extend this notion for ii·terrns in a straightforward \Vay:

Definition 3.3. The set of bound names and the set of free names 0/ a rr-term

P, denoted bn(P) and Jn(P) respectively~ are defined as follows:

bn(O) de! 0 In(O) d;} 0

bn(vx.P) de! { } Jn(vx.P) d;! Jn(P) \ {x}= X U bn(P)

bn(a..P) de!
Jn(o:.P) ~!) \= bn(o:) U bn(P) = (In(a.) U fn(P) bn(o:)

bn(P 1 Q)
de!

Jn(P 1 Q)
de!= bn(P) U bn(Q) = Jn(P) U fn(Q)

bn(P + Q) de! bn(P) U bn(Q) fn(P + Q) de! Jn(P) U fn(Q)

bn([x = y]P) dei bn(P) Jn([x = y]P) de! {}= Jn(P) U x,y

• bn([x =1= yIP) de! bn(P) fn([x =1= y]P) de! Jn(P) U {X, y}

• CH.-\PTER 3. THE ii-C.-\LCUL US

The set of aU names in a tenn P is denoted by n(P).

34

•

Notice that n(P) = In(P) U bn(P) and n(a) = frz(a) U bn(a).

:\s in the ...\-calculus we have to be careful about substitution of nanles. because a

free naIne might become bound in a substitution. resulting in a term that is not equiv

aIent to the correct one. The definition below takes care of this. defining substitution

in a fashion that avoids capture. This is done in the standard \Vay.

Definition 3.4. .4 substitution is a function (j : JV7r -t N rr • ~Ve W'rite the substi

tution a = {(Xt,Yl).(X2,Y2) (2· n.Yn)} as {Yl!XL,Y2!X2, ... ,Yrt!xrt }. The term, Pa

stands fo.,. the agent P wüh aU fl'ee occurrences of Xi replaced by a(xd. changing

b01Lnd na'mes in cw;e sonte na'me t.o; captured. Substitution D'Uer terms i.'î defined U8

shown in table J. ,'J.

\Ve assunle that the general substitution P{Yt!Xl.Y2!J:2 Yn/xn} can be rcad

as P{YL!xd{y:dx:,d ...ÜJn!xn}. The process of renaIning bonnd narlles of a term is

calleel a-conversion. and we say P =n Q to rnean that Q cau be obtained from P by

a-conversion. Formally. if .1" t;. n(P) and x ~ bn(P).

vx.P =0 vx'.P{x'!x}

u(x).P =0 u(x').P{x'!x}

3.1.2 Process congruence

Since we are interested in considering processes as equivalent if they have the same

behaviour with respect to the environment, we need to define a notion of îT-contexts

for representing the environment in which t he agent lives.

Definition 3.5. The set of process contezts. ranged o'Uer by C. Co, CL' ... is defi:ned

by the follo'W'ing syntax:

•
C [·1 Q.C [x = y]C

P+C C+P

[x i= y]C vx.C PIC CIP

•

•

•

CH.-\PTER 3. THE 1r-C.-\LCUL US

O{y/x} d!f 0

(P 1 Q){y/x} def P{y/X} 1 Q{y/X}

(P + Q){y/X} 'I;j P{y/X} + Q{y/X}

(v:r.P) {y/.1:} d~ VX.P

(vy.?) {.:/~.} d~f vy.P{ zj.r}

if (x # y and li # z) or x rt fn(P)

(vy.PHy /~.} d%! vy' .P{y'/ y} {y /.r}

if ~. # y and .t0 E fn(P)

where y' tt fn(P). y' # .f and y' # y

(u(x) .P) {ylu} de! y(x).P {y / u.}

(ü(.r) .P) {y / x} de! Ti(y).P {y j.r}

(u(x).P){y/u} ,~ y(x).P{y/u}

{
def

(U(X).P) Y/X} = u(:r).P

(u (y) .P) { .:/ X} def il (!J) .P { .: /:1.' }

if (x # y and y # z) or x rt fn(P)

(u(y).P){.:/x} d~ U(y').P{y'/y}{.:/X}

if x # li and x E fn(P)

where y' ri. fn(P)~ y' # x and y' # y

([X = y] P) { .:/ X} d~ [.: = y] P { .:/ X}

([X = y] P) { z/ y} de! [X = z1P { z/ li }

([X # y]P){':/X} d:! [.: # y]P{::/.t0}

([X # y]P) {Z/y} de! [X # .:]P{z/y}

([X = y]P) {zlu} de! [X = y]P{ zlu}

if u =1= x and u # !J

([X # y]P) {zlu} de! [x # y]P{ z/ u}

ifu =1= x and u ::j:. y

Table 3.3: Substitution of free names in a term

35

where x. n~ and P are na.,nes~ actions and pT'oeesses aeeord'ing to definition 3.1. If Q

lS a term. C[Q] 'lS the te'f7n that results frorn replacing the plaeeholder [.] in C by Q.

The contexts n.[·]. [~. = .'1][.]. [x # .'1][.].V:L·.[.]. P 1 [.]. [.] 1 P. P + [.]. and[·] + Pare

called elementary contezts.

• CH.-\PTER 3. THE rr-C.-\LCUL US 36

•

•

Our first notion of equivalence. alhcit a static one. is that of process congruence. lt

represents a substitution property, this is. equivalent agents under process congruence

can he freely substituted for each other in any process context without changing the

behaviour of the entire systenl.

Definition 3.6 (rr process congruence ([29]» ..4 process congruence ~ ç P;r x

P;r is an equivalence relation arrwng agents such that for all P, P' E P;r if P ~ P'

then:

(i) For any action a, n.P ~ a.P'.

(li) For any naTTLes .r. .'1 .

• v:r.P ~ VI.P'

• [J.' = .'11 P ~ [x = .'J] P'

• [.r i= .'1]P ~ [x "# .'1]P'

(iü) For any agent Q,

• P 1 Q f"'w P' 1 Q

• QIPf"'wQ\P'

.P+Q==P'+Q

.Q+P"'Q+P'

The following proposition simply formalizes the intuition behind process congru

ence as satisfying the substitution property in contexts.

Proposition 3.7 « [29])). An Equivalence relation f"'w is a process congruence if and

onlyif for any pa'ir of terms P, Q E P 1r and for any context C. P '" Q impfies

C(P] '" C(Q).

Proof. (<=:) Assume that for any P,Q, and any context C, if P ~ Q then C[P] ~C[Q].

Fix A, B such that .-l ~ B. Then by our assurnption, for any context C[.-\] ~C[B]. [n

particular this holds for the elementary contexts: a.A ~ o.B, [x = y].-l ~ [x = y]B,

[1-' i= u].-\ ~ [x i= y]B. vx.A s= vx.B. P 1 .-\ ~ P 1 B, etc. This means that ?: is indeed

• CHA.PTER 3. THE 1r-C..\LCULUS 37

•

•

a process congruence.

(=» By induction on the structure of the context. .-\ssurne that ~ is a process

congruence. and fix A, B such that A s= B.

Case 1: C = [.]. Hence C[A] = A ?: B =C[B].

Case 2: C = n.C' . Then C[.-l] = a.C/[A] and C[B] = a.C/[B]. By induction hypothe

sis, C'rAI ~C/[B]. Hence a.C'[A] 2;; n.C/[B] because ~ is a process congruence.

Therefore C[A] ~ C[B].

Case 3: C = P 1 C'. Then C[.-\] = P 1 C/[A] and C[B] = P 1 C'(B]. By induction hy

pothesis. C'rA] ~ C/[B] . .-\gain. since == is assunled to be a process congruence.

P 1 C'[.-\] ~ P 1 C/[B]. which means that C[A] == C(B].

The rest of the cases are similar.

o

3.1.3 Structural congruence

Built upon the notion of proccss congruence is the structural congruence for 7i-tcrms.

This is also a statie notion of equivalence, and its intention is to extend the previ

ous concept to capture other '~prin1Ïti\'e" aspects of what wc expect in a reasonable

equivalence of agents. This is also found in [30], [26], and [29].

Definition 3.8 (rr structural congruence). The structural congruence = ç P rr X

P rr 'is the process congruence that satisfies the following axio'ms:

(i) P =Q if P =0 Q

(ii) (1'rr, l, 0) is an AbeLian (commutative) monoid:

• CH.-\PTER 3. THE 1r-C.~LCULUS

• PIO=P

• PIQ=QIP

• (P 1 Q) 1 R =P 1 (Q 1 R)

(iii) • P + Q == Q + P

• (P + Q) + R == P + (Q + R)

(iv) vx.O = 0

(v) vx.vy.P =vy.vx.P

(v'i) P 1 vx.Q == Vl:.(P 1 Q) if x ri. fn(P)

(v'ii) [x = y}v.:.P == v.:.[x = y]P if .: is a na'me other than x and y.

38

•

•

(viii) [x =1 ylv.:.P == v.:.[x =1 y]P if.: is a na'me other than x and y.

The (vi) a.xion1 is called "scope extrusion·~. or "Frobenius reciprocity:!. and is

essential to the nl0delling of n10bility.

The equi"alence classes induced by this definition. have "representatÏ\'e" terms.

This is the l'ole of "standard forn1s:·. also known as "prenex forn15" .

Definition 3.9. .4 te'mL of the form v,i,(Pl 1 P2 1 ... 1 Pn) where each P, LS a

.5u1TL'mation is said ta be in standard Jarm.

Proposition 3.10. Even) term is structurally congruent to a standard form.

Proof. By applying scope extrusion~ and alpha-conversion when necessary~ we can

extract the restriction operators that are not within a summation to the outermost

level of the expression. 0

3.1.4 Unlabelled Transition Semantics: Reduction

The l~TS (P-rr. =! ~) is given as follows. The set P-rr of terms was given in definition

3.1. and = is the structural congruence.

• CH.-\PTER 3. THE 1r-C.-\LCUL US

---TAC
T.P -+ P

--------------- CO~,I~[
(u(x).P + R) 1 (Ti(y).Q + S) -+ P{y/x} 1 Q

39

P -+ P'
-----PAR
PIQ-+P'IQ

P -+ P'
-----s(j~[

P+Q-+P'

P -+ P' P {!Ï / i} -+ P'
_____ RESTR ID if .-l(i) 1L;j P
V.l·.P -+ VI.P' .-lCQ) -+ P'

P -+ P'
-----~ITCH
[x = xlP ~ p'

P -+ P'
----- ~IIS~ITCH if .r =1= 1)
[J: =1= yI P -+ P' .

•

•

P-+Q
--- CO~GR if P = P' and Q =Q'
P' -+ Q'

Table 3...l: rr-calculus reduction l'ules

Definition 3.11. The reduction relation -+ ç P;r x P;r is the srnailest relation over

processes satisfyiny the ndes in table .'3.4.

The CO~I~I axionl specifies how agents conlnlunicate. The RESTR l'ule defines

the behaviour of the restriction operator. The PAR rule says that if one agent can

perfornl an action, then the parallel composition of the agent with others can perform

the action. Sinli1arly. the SÜ~1 l'ule expresses the non-deterministic choice of course

of action which follows an agent \Vith the sum operator. The final l'ule states that

agents that are structurally congruent have the sanle behaviour.

If the reader is concerned about the apparent lack of symmetric rules for PAR

and SC~l. notice that these are l'ecovered easiIy by the use of CO;\"GR as fo11ows:

Q -+ Q' PAR

QIP-+Q'IP QIP=PIQ Q'IP-PIQ'
------------------CONGR

PIQ-+PIQ'

For the SU~'I rule we can reconstruct the symmetric one in an analogous \Vay. From

• CH.-\PTER 3. THE 7r-C.-\LCULU5 40

P -4 P'
a REST t if .r tI- n{o:)

lIX.P ~ lIX.P'

--o--PREF t
Q.P~P

p~ P'
----o--SF~(t
P + Q~P'

P~ P'
----0-- ~[TCH
[x = .r]P -f P'

P~ P' Q ü(Y); Q'
T CO:\(~(t

P 1 Q ~ P'{yf.r} 1 Q'

P~ P'
a PARt if bn(o:) n fn(Q) = (/)

PIQ~P'IQ

P{ -;-} Cc p'
y.r -'f lOt if ._\(i') (~ P

A(Ü) -4 P'

p~ p'
----0--' ~lIS:\(TCH if .r =1= y
[x:l yJ? ~?

Table 3.5: ;r-calculus transition rules

now on. we \Von't show the use of CO:\'GR explicîtly, since it would only add cIutter

to the proofs.
•

P~Q
o CONGt

p' ~Q'
if P =P' and Q =Q'

•

3.1.5 Labelled Transition Semantics

~ow we provide an LTS (Prr • Ar.. =. ~) for the language. \Ve keep the same notion

of congruence l'rom definition 3.8. The reference is [30].

Definition 3.12. The transition relation ~ ç P;r X Arr x P" o'Uer agents in P7l' and

actions in A7l' is the least relation satisfying the rules in table 3.5

\-Vith these rules. the role of the T action becomes apparent. :\.S said before. it

represents a silent action. By this we mean that it is the action that corresponds to

internaI communication. :\.s shown in the rule CO;\D.[t, the effect of interaction is

the T action.

This definition represents the evaluation scheme known as late instantiation since

the substitution is performed at the time where an internai communication takes

• CH.-\PTER 3. THE rr-C.-\LC'UL US -lI

place. :\n alternative definition is early instantiation in which variables are instanti

ated when the input transition is inferred. The schenle results by replacing PREF t

\Vith TACt, OeT t and INP t , and CO~I~It with CO~I~I~. defined as fo11ows:

--r-- TAC t
I.P -+ P

-----OCTt
_() p ïi(.z:) p
U .1.:. -----t

------- INP, if Y tt fn(vx.P)
u(x).P u(y\ P{y/x}

•

•

p u(.z:) P' Q ü(.z:» Q'
r CO~I~I~

PIQ-+P'IQ'

;\ote that the input rule has the sicle condition "y tt fn(vI.P)"'. which rncans

tha.t y is a frcsh name. 50 it \Van't produce any confticts as to safely replace 1.'. This

dcfinition is not very syrnnletric. but we can recaver the syuunetry by an alternative

presentation which can be achieved just by changing CO:\I~It to CO~(:\(~ as abovp.

and keeping PREF. To sec ho\\' t~lÏs is 50. notice that both TACt and OCTt are

instances of PREF. and we can rcco"cr I~Pt br nlcans of alpha conversion as f01l0ws:

------u-(y-)--- PREF fi - conv if y ~ fn(vx.P)
u(y).P{y/x} -----t P{y/x} u(x).P =u(y).P{Y/x} CONGR

uCr).P !l(Y) P{y/x}

From an informaI perspective. the late-instantiation scheme seems more natural~ since

it matches our intuition that substitution must be performed at the time of conlmu

nication rather that at the time of applying the IXP t rule (or PREFt in the siluplified

presentation). This early-instantiation scheme is akin to considering an isolated agent

as capable of somehow guessing the "righf~ nanle to substitute in advance of the ac

tuaI communication. Hawever. fronl a formaI perspective. bath presentations allow

us to prove the same reductions, in the sense of the CTS.

The fo1l0wing property is very useful, and can be proved by induction on the

derivation of P ~ P':

• CHA.PTER 3. THE rr-C.-\LCULUS

Lemma 3.13. If P ~ P/~ then for any substitution a. Pa ~ p'(J'.

3.1.6 Equivalence of semantics

42

------ PREF t
__ ü(y)
u(Y)'Pl ~ P2

-------- S{;).!t

•

•

An important question is whether these two different presentations of the semantics

(LTS and L'TS) are actually equivalellt or not. The intuition is that they should be.

but this is a fact that has ta be proven fonnally. However the concept of an action

perfornled by an indi\'idual agent is Ilot present in the l'TS. This irnplies that the

agreement nlUst occur at sanIe higher level of abstraction. As rl1entioned before. the

silent action represents internaI activity of an agenL and thus the agent is viewed as

a whole. This is the sanIe approach of the L'TS. sa the agreenlent is at this level:

reductions correspond to silent actions and vice-versa. Hcre wc provide the proof for

the late instantiation scheme 1. Thcsc have been established by ~[ilner [29J.

Lemma 3.14. If P ~ P' then P -4 P' .

Proof. This is proved by induction on the inference of P ~ P'. This is. for the last

step of the derivation of P ~ P' wc construct a proof (derivation tree) of P ~ P'.

Case 1: The last inference is an instance of the TAl- axionl. Le. it \Vas T.P ~ P.

This is nlatched in the LTS by the T.-\.C t a.xiorn.

Case 2: The la..,;;t inference is an instance of the CO~[~[axiom. P =(u(x) 'PI +

Qd 1(Ti(y).P'2 + Q2) and P' =Pl {yix} 1P'2' This is matched in the LTS by

constructing the following proof:

------ PREF t
u(x)

u(x).PI ---+ Pl
-------- SU~lt

u(x) _ ü(y)
u(x)'PI + Qi~ Pl u(Y)'P2 + Q2~ P2

_ CO~I~[t

(u(x)'PI + Qd 1(u(Y)'P2 + Q2) ~ PI{yjx} 1P2

Case 3: The last inference was an application of the PAR rule, so P =Q 1 R

and P' =Q' 1 R, with Q ~ Q' by a shorter inference. Hence, by induction

lThe proof for early instantiation is very close to the gÏ\-en one.

hypothesis we have that Q 2t Q'. ~ow we easily cotlstruct the matching LTS

proof:
• CHAPTER 3. THE rr-C.-\LCULUS 43

Q~Q'
------ PARt
QIR2tQ'IR

The remaining cases. for SU~l. RESTR. ID. and CONGR min1Ïc the last case. 0

To prove the converse wc need an additional technicallenlma. This represents the

idea that when a process perfornls SOlne action a, it is because the agent contained

a subexpression of the form Ct.Q.

Lemma 3.15. If P ~ P' where Ct f:. T then there are x. Q. Q'. and R s'Uch tltat

P == vx.((a.Q + Q') 1 R) and P' == vx.(Q 1 R) w/tere n(Ct) n:i = /J.

Proof. By induction on the derivi:l.tion of P ~ P'. The only inlportant thing to

notice is that we are assllluing that the action is not T. hence it is not an internai• COllUllunica.tion. so wc can ignore the case of the rule CO~[\It.

Theorem 3.16. P ~ P' if and only if P ~ P'.

o

Proof. The left-to-right direction has been established by lemma 3.14. For the right

to left direction we do it by induction on the inference of P 2; P'.

Case 1: The last inference is an instance of T.-\Üt. Hence P =T.P' ~ P'.

Case 2: The last inference is an instance of CO~I~lt. Hence P == Q 1 R, and
• u(x) u(y) _

P' == Q' 1 R'{x/y} wlth Q ~ Q' and R ~ R'. Then by lemnla 3.1tJ we have:

Q =V'Wl.((Ti(X).Ql + Q2) 1 Q3)

R =v'lL"S.((u(y).R l + R:d 1 R3)

and

and

Q' == Vull.(Ql 1 Q;l}

R' =v'lL'2.(R t 1 R3)

where {u, I. y} n 'lnt ~ Œ''2 = 0. Hence we can build the proof for P ~ P' by using

CONGR.

• The rest of the cases are analogous to the proof of lemma 3.14 o

• CH.-\PTER 3. THE 'Ir-C.-\LCUL US 44

•

•

This result points out that reductions correspond to T transitions. This is. the

semantics are equivalent at the level of abstraction of internaI communication. The

CTS does not model the (potential) behaviour of agents individually. It rather rep

resents the vie\\' of the cntire system. The LTS on the other hand gives us an explicit

halldle of the capabilities of the agents. viewed isolated from the l'est of the system.

3.2 Bisimilarity for 1r-processes

3.2.1 Strong bisimilarity: ground, late, early and open vari

ants

At first it looks like the definitions of sirnulation. sinülarity. bisirnulation and bisimi

larity givcn in section 2.3 could be directly used for our notion of behavioral equi\'

alence for 'Ir proeesscs. Ho\Vever we have to adapt this notion to the new setting~ in

particular we need to take care of bound abjects and input actions. Consider the

ternlS A d~ u(x).D and B deI lIb.u(y).D. Certainly WC would like ta cansider these

t\Vo as equivalent whcn they are bath reeeiving a name p different frorIl b. beeause

they would reaet in the sarue \Vay \Vith an action Ct = u(p). Vndcr the traditional

notion of bisin1ilarity we would not have this.

Definition 3.17 (Strong ground bisimilarity). A binary relation S ç P:r X P:r

is called a ground-simulation iff for any terrns P, Q E P1r~ PSQ irrtplies that

• ~Vhenever P ~ P' and bn(o.) n fn(Q) == 0. t!tere is a Q' 8'Uch that Q ~ Q' and

P'SQ'.

If S-1 is alsa a gro'Und-sirn'Ulation then S is called a ground-bisimulation.

~Ve say that Q simulates P ~ or that P and Q are ground similar~ wntten

P~9Q1 iff there is a ground-simulation S such that PSQ.

~Ve say that P and Q are ground bisimilar, written P":""9Q, iff there is a ground

bisim'Ulation S such that P SQ.

This definition, however does not capture the intended notion of equivalence.

Ground bisimilarity, turns out not to be a process congruence. The problem is that

it does not preserve parallei composition. Ta see this. consider the agents .-l de!

U(X).[X = ala(a)~ and B de! a(x).O. It is easy to see that .-l and B are bisimilar.

since both of them can perfornl an action u(;r) and the resulting ternlS [.r = a]a(a)

and 0 are bisimilar. since .r :j:. a (i.e. the two names are different). However. when

we put u(a) in parallel with .-l and B. we obtain different results: u(a) 1 .-l 2; [a =

a]a(a) ~ O~ but u(a) 1 B ~ 0 fi. so the second transition cannat be rnatched. Hence

u(a) 1 .-\1 u(a) 1 B.

• CHAPTER 3. THE 1r-C.-\.LCULUS 45

•

•

The problenl seerlls to be rooted at the kind of instantiations or substitutions arc

possible. when an input action is perfornled. This suggests the following redefinition.

Definition 3.18 (Strong late bisimilarity). A relation S ç P rr X Ptt is called a

strong late simulation iff PSQ ànplies:

(i) ~Vhenever P ~ P' where 0: is not an input action. then for so'me Q'. q ~ Q'

and P'SQ' .

(il) ~Vhenever P '~) P' and .r ~ n(P) U n(Q) then t!Lere i.., a Q' ""ach that Q ~) Q'

and for aU na'mes b. P'{b/x} 8 Q'{b(r}.

If 8- 1 is also a stl'ong late s'irnulation. then 8 is called a strong lote bisimulation.

~Ve say that p~lQ if there is a strong late si'ffl'ulal'ion S sach that P8Q. ~l is called

strong late similarity. ~Ve say that p,.:.)Q if there is a strong late bisi"~'Ulation S

such that P SQ. ,..:...l is called strong lote bisimilarity.

The basic properties of strong late (bi)simulation are summarized in the following

proposition ([30]).

Proposition 3.19.

(i) = ç ,.:..,1

(ii) ,.:..,l is an equivalence relation.

(iii) ~l is a strong late. simulation.

(i'V) ~l is the large.st strong late simulation.

• CHAPTER 3. THE 1r-CALCULUS

(u) ,:.) is a strong late b'isim-ulation.

(vi) ,:,.,l is the largest strong late bisim'ulation.

-l6

•

•

Proof. The first item just follows from the definition of the CONGR rule. The rest

of the proof fo11ows the same lines as in propositions 2.3 and 2.5. 0

.-\nother variant of this concept is known as early-(bi)simulation. which results

from replacing the second condition in the definition, with:

(ii)' \Vhenever P ~) P' and J: rt. n{P) U n(Q) then for aH naInes b~ there is a Q' such
u(x)

that Q ~ Q' and P'{bj.r} S Q'{bj.r}.

This seems Iike il harnlless modification. but it results in a weaker equinllence in

the sense that nlore terrns are grouped in the sanIe equivalence classes. :\s ~[ilner.

Parrow and \Valker explain in [3üL it is because in late bisirllilarity we require that

the nlatching transition works for aIl possible instantiations of the abject reccived by

the input action. \vhereas in early bisinlilarity for each possible instantiation there

must be a nlatching transition. but for different instantiations the matching transition

can be different. This way. we can think of the early variant as considering that the

input action happens before the transition. while in the late variant it happens after

the transition. Hence the inunediate consequence is that aH processes that are latc

bisinlilar are aiso early-bisimilar. and there are processes that are early-bisinlilar but

not late-bisinlilar ([30]).

Corollary 3.20. ~l C ~e

Proo/. First we prove that ~l ç ~e. By definition. if P and Q are late bisimilar.

then each transition that P nlakes is matched by Q. resulting in states P' and Q'

respectiveIy. such that for each possible instantiation. P' and Q' are themselves late

bisimilar~ and vice-versa. This implies that for any instantiation. Q can match P.

and vice-versa. But this is precisely the definition of early bisimilarity.

Now we show that the t\\"o bisimilarities disagree. Consider the following terms:
de! (de! [] .p = u X).O +u(x).R and Q = P + u(x). x = y R. \Ve have that P"JeQ, because

for each possible instantiation, bath P and Q match each other transitions. It is

• CHAPTER 3. THE rr-C.-\LCUL US 47

clear that Q can always match P~s moves. To see how P matches Q's moves. we

consider each possible instantiation b of I. If b = Y and if Q u{x\ [x = y]R then
u(x) •. u(x}

P --10 R and ([x = y]R){y/x} ~e R{y/x}. If b IS any other name, then P -t 0

and ([1-' = y]R){b/1-'} ~e 0 =O{bf;r}.

On the other hand. PflQ because P cannot match the transition Q~ [x =
y]R. o

•

•

The properties described in proposition 3.19 also hold for the early variant.

:\. fundaulental question reruains: are any of these notions the "righC notion of

behavioural equivalence that we are after? In other words are they process congru

ences'? The answer is no. These notions. like ground bisinlilarity. also fail to preserve

aH operators. but now the input prefix is the problernatic operator. To sec this con

sicler the agents P d;j X 1 !J and Q d;j x.y + y.x. \Ve have that P~Q because

there is a bisinlulation that contains (P~ QL namely S = {(P, Q)~ (x. x). (fJdJ). (O,O)}.

This captures the idea that concurrent processes can be reordered in tiule as we

plcase. Howe\'er there is a context in which they don't behave in the same \Vay:

C[·] I~ u(.r) lu(y).[,], In this contcxt we ha\'c that

C[P] = ü(x) lu(y).P ~ P{J)y} = E I.L' ...:.,. 0

while

C[Q] = u(x) lu(y).Q ~ Q{x/y} = X.x + x.X

The result of C[Q] does not have a r action to match the second one of C[P]. thus

C(P11C[Q]. The problem~ as for ground bisimilarity~ is that there is a substitution

a = {xly} such that Pa1Qa. even if it was the case that P~Q. SemanticaHy~

substitution is linked to input. and the following lemma pinpoints the problem.

Lemma 3.21. FOf' any processes P and Q, and any na'mes x, y, and 'U •

• P{x/y} ~l Q{x/y} if and only if u(y).P ~l u(y).Q, and also

• P{x/y} ~e Q{x/y} if and on/y if u(y).P ~e u(y).Q

Praof. Follows directly from the definitions of bisinüladty and the LTS. \Ve praye

only the left-tû-right direction of the late case. ta show how these proofs are done

in general. The l'est is similar. It suffices ta find a bisimulation that contains aIl

pairs (u(y).P! u(y).Q) given that for aIl names x. P{x/y}~)Q{x/y}. Let S de!

{(U(y).P. u(y).Q)I'v':r. P{X/y}":)Q{X/Y}} U ~l. \Ve show that S is such a bisinlu

lation. .-\ssume that (u(y).P. u(y).Q) E S. The agent u(y).P can nlake a move
u(x) • u(x)

u(y).P ----t P{r/y} for any x. The other agent can nlatch tlus move: u(y).Q~

Q{xfy}. and by our hypothesis P{x/y}~lQ{X/y}. Thus S is a simulation and by Cl

dual argurnent we deterrnine that it is a bisinlulation. 0

• CHAPTER 3. THE i1-CA.LCULUS -l8

•

•

Fronl this lemrna it follows that since substitution does not preserve bisimilarity

as the cot!nterexarnple showed. then it does not preserve input prefixes and hence it

is not a. process congruence.

In arder ta cape with this problern we ha\'(~ to refine the notion of sirnulation. One

approach. which can he applied ta many different notions of bisinülarity. is ta ';force"

it to be a congruence. This is. we can retine bisirllilarity simply by requiring that

it behaves weil under substitutions. In this sense we say that bisinülarity induces a

corresponding congruence.

Definition 3.22..4 relation S ç P rr X P rr is closed under substitution if for

every substitution (j. PSQ irnpl'ies PaSQa.

In the following definition! x stands for 9 (ground), l (late), e (earlyL or any other

notion of bisimilarity that we define.

Definition 3.23 (Bisimilarity congruence). Let~.r be a bisimilarity relation. such

as gro'Und. late. early. etc. ~Ve say that P and Q are (.'itrongly) x-congruent. written

P ",I Q if ~I is clo.sed under substitution.

\Ve no\\' check formally that such a relation is indeed a process congruence. thus

justifying the name. This is done very much along the lines of lemma 3.21.

Lemma 3.24. ",x is a process cong'ruence, where x stands for l (late) or e (early) .

PToof. \Ve prove that ",l is preserved by aIl operators. Assume Pl ",l P2.

Input prefix: By definition,) is preserved by arbitrary substitutions, so for any

x, y. PL {y/x} l P:!{y/x}, and by lemma 3.21, u(x)'PL l U(X).P2 as

required.

• CHA.PTER 3. THE 7r-CALCULUS 49

•

Output prefix and tau: Let Cl: be either an output action. or a ï action. Define

S de! {(o.PL.n.Pl) : PL l P:,!}. \Ve show that S is a (ground) bisimulation.

Let (n.PdS (Cl:. P:!). and 0:.. PL ~ PL' This nlove is nw.tched by o.. P2 ~ P"2' and

since PL l P:,! then S is a silllulation. By a dual argunlCnt we have that it is a

bisinlulation. Hence o.'PI l o.P:!.

Parallel composition: Let S d:! {(PL 1 R. Pl 1 R) : PL [P2}. \Ve show that S is

a (ground) bisirnulation. Take (PL 1 R)S(P2 1 R). Suppose that P 1 R ~ JI.

There are three possible cases depending on where the action originated:

1. It originated from R. i.e. .\1 == P: 1 R' with R ~ R' and P: =PL'

Then by PARt. P'2 1 R ~ P:! R'. and since PL l P2 we have that

(Pli R')S(?l 1 R') as required.

2. It originated rrOnl PL' i.e. JI = P: 1 R' with PL ~ P: and R' = R. Then.

since Pl l P:!. P:! ~ p~ with P[....... l P~. So by PARt. P2 1 R ~ P~ 1 R.

Hence (P: 1 R)S(P~ 1 R) as rcquired.

3. It originated from an interaction between Pt and R. so Q = ï. i.e. .\1 =
P{ {y/x} 1 R' with Pt 'i+) P[and R ~) R'. Since Pl [P'l, we have that

P'2 u~) P~ with P: l P~. By applying CO:\[\[t, we obtain that P2 1 R ~

P~{ylx} 1 R', and since) is closed under substitution. P:{y/x})

P~{ylx}. Therefore .\ISP~{y/x} 1 R' as required.

The rest of the cases are sinlilar. o

•
The good thing about this definition of bisimilarity-congruence is that we obtain

a process congruence out of a bisimilarity relation, by forcing iL This, however, has

its down-side in that proving equivalence between terms becomes more difficult in

the sense that such proofs require a heavier case analysis.

• CH.-\PTER 3. THE rr-C.-\LCUL US 50

•

•

Xotice that a bisinlilarity congruence is a flner relation (more discriminating)

than the corresponding ,onaked" bisinlilarity. i.e. the bisinlilarity relation not closed

under substitution. If two processes are bisimilar-congruent~then they certainly are

bisiInilar. but. as the previous examples showed. the con\'erse is not true.

Lemma 3.25. f"',JI C ~I r where x stands fol' l (late) 0'" e (early).

An alternative to taking the closure under substitution of bisinlilarity to obtain a

process congruence~ has been proposed by Sangiorgi in [40], called open-bisirnilarity.

Definition 3.26 (Open bisimilarity). A relation S ç P Ir X P Ir is called a strong

open simulation -iff PSCJ implies. for ever?J s'ubstitution a:

• ~Vhene'Ue1' Pa ~ P' then for .SD'me Q'. Qa ~ Q' and P'SQ' .

If 5- 1 is al..w a strong open simulation. then S is called a strong open bisimu

lation. ~Ve say that P~oQ if there is a .strong open ..,ùnulation S such that PSQ.

~o -i.s called strong open similarity. ~Ve say lhal P-:""'°Q if t/tere i.s a strong open

bù;inmlalion S :Juch that PSQ. -:""'0 is called strong open bisimilarity.

Proposition 3.27 (Sangiorgi [40]).

(i) ,..:",,0 is an equivalence relation.

(ii) ,..:",,0 is the la'rgest open bisirrLulat'ion.

(ii'i) "':""0 = f"',J0? i.e. "':""0 'is a process cong'ruence.

Proof. The first two items are proved in a very similar fashion to the corresponding

proofs for ground bisimilarity. The interesting one is the third. It is enough to

prove that "':""0 is closed under substitution~ so br lemlna 3.2-1 we obtain that it is a

congruence. \Ve can see that it is closed under substitution fronl its definition. \Ve

can show this explicitly as follows. Suppose that P "':""0 Q. Consider any substitution

a~ and the set S de! {(PO'. Qa) : P "':""0 Q}. \Ve show that this is an open bisimulation.

Let (Pa~ Qa) E S and Pa ~ P'. Theil, since P ':"0 Q. we have that Qa ~ Q' and

P' ":"0 Q'. Hence~ (Pla, Q'a) E S. Thus it is an open bisimulation~ so Pa "':""0 Qa as

required. 0

• CHAPTER 3. THE 1r-C.-\LCULUS 51

•

•

The previous theorem justifies writing open bisimilarity using the notation ,.....0.

without the dot. to emphasise that it is a congruence.

Open bisinlilarity. is a tiner behavioural equivalence than late and early congru-

ences.

Lemma 3.28 (Sangiorgi [40]). ",0 C ",l C ",e

3.2.2 Weak bisimilarity

One of the problerns of the definitions abo\'e is that they are tao strong. The re

quirelnent that wc 111ust ruatch ail T actions in the saIne \Vay as wc match input and

output actions is tao stringent. Since the goal is ta equate agcnts that interact in the

same \vay with the environmenL we should be able ta ignore their internaI actions.

In this fraulework. the silent action T represents internai activity that does not affect

directly the en\·ironnlcnt. In other words. if an agent A nlakes one action o. an agent

B can be considered as matching that behavior if it perfornls several T actions before

and/or after actually doing the action o. since the environment only observes the

0: actions and not the silent actions. Thus we nlust relax our notion of behavioral

equivalencc. This is donc by introducing a "weak!' version of Sin1tllation ([25]! [30].

[29]).

First sonle notation: wc write P ~ Q for P(~)- ~ (..::.) -Q. i.e. either P ~ Q

directly. or there are Pl~ P",!.··· . Prl such that P ~ PL ~ P'2 ~ ... ~ Pi ~ PHi ~

'" ~ Pn ~Q.

Definition 3.29. :t relation S C Prr X P:r is called a weak late simulation iff

PSQ implies:

(i) ~Vhenever P ~ P' where Q is not an input action, then for sorne Q' ~ Q ~ Q'

and P'SQ'.

(ii) ~Vhenever P u~} P' then there is a Q' such that Q ug) Q' and fo'r ail names b,

P'{b/ x} S Q'{b/ x} .

•

•

•

CH.-\PTER 3. THE ïr-C.-\LCULUS

If S-l is also a weak late si'mulation. then S is called a weak late bisimulation.
. l

The largest weak late sim'ulation. written ~ is called weak late similarity, and the

la'rgest weak late bisl'm'ulation W'ritten ~l is called weak late bisimilarity.

As done previously~ we can clefine the corresponding "weak early~~ and ",veak

open!' variants by replacing the strong transitions with weak transitions.

~otice that P ~ Q is eqllivalent to P(~)*Q which incllldes the possibility of no

transition at all~ i.e. Q == P. This nleans that T actions can be nlatched by "not

nloving~'. \Ve no\\' sunlmarize the properties of this equivalence.

Proposition 3.30.

(i) A .'itrong late si'mulation is (llso a weak late sirnulat'lon.

(ii) For any agents P. Q! if p.:.c..lQ then p::.lQ.

(iù) For any agents P. Q. if p~lQ the'l7, p~lQ.

(iv) -:::::.l is an equivalence relation.

• l
(u) ~ is CL weak late sànulation.

. l
(vi) ~ is the largest weak late si'mulation.

(vi'i) ~l is a weak late bisirnulation.

(v'iü) ~l is the largest weak late bis'inLulation.

(ix) Fo',. any process P~ p~lT.P.

\Ve omit the proofs as they follow directly from the definitions and are analogous

to the corresponding for strong bisimilarity. The corresponding properties also hoId

for the weak early variants.

• CHA.PTER 3. THE ir-CA.LCULUS

3.2.3 Barbed bisimilarity

53

•

•

.-\s pointed out carlier, the LTS gives us a handle on the potential interactions of an

agent isolated from the rest of the systern! and as such, we were allowed to define the

notions of bisimulation and bisirnilarity. It is however possible to define such notions

in the context of a UTS, provided that we can define ho\\" can an agent "match'!

another's behaviour without !naking explicit use of action labels. The answer to

this is that we could consider the processes equivalent provided that they agree on

the "observations!! that the cnvironnlent call rnake froni then1- \Ve thereforc need

to establish clearly what are these observations of interest. Several ideas have been

proposed ([26], [7]). The definition provided here, captures the idea that Cl process is

observable at the ports in which it is ready to interact \Vith the external world.

Definition 3.31. ~Ve say that an agent P is observable at a narne x! written P -!- .f

iff t!Lere tS an unguarded andunrestricted action ct in P wüh x as S'ubject. ln other

lUords. the predicate -!- ç Pli' X N1I' is defined indudively as follows:

(i) x(y).P t.r

(ii) x(y).P t .r

(iù) vy.P -!- x if .r f:. y and P t x

(iv) (P 1 Q) -!-.r if P -!-.r or Q -!- .r

(v) (P + Q)t.r ifPt.r orQt.L·

~Ve denote .Ij. for ~. t! i.e, P.ij..r if there is a P' S'uch that P ~. P' and P' t x. ~Ve

say that P immediately converges! written P -!- if there is an .r S'uch that P t x.

AnalogO'usly, we say that P converges 1 written P .ij. if there is an x such that P JJ. x.

Based on this notion of observability as capability of immediate interaction~ we

can conceive a notion of bisimilarity in which agents \Vith the same observables are

considered equivalent. This definition was developed by Sangiorgi and ~Hlner ([31].

[26}).

Definition 3.32. .4 relation S ç P rr X P rr is called a strong barbed simulation

iff P SQ i'fflplies:
• CH.-\PTER 3. THE 1r-C..-\.LCULUS 54

•

•

(i) ~VheneveT P -+ P' then for so-me Cl. Q -+ Q' and P'SQ' .

(ii) For any name x~ whenever P.l,.:1" then Q.l,. :r.

If S-l -is also a strong barbed si'mulation. then S is called a strong barbed bisimu

lation. Ule say that p~bQ if the're is a strong barbed sim'ulation S suclt that PSQ.

~b is called strong barbed similarity. We say that p,.:..,bQ 'if theTe is a strong

barbed bisi'mulation S such that PSQ. ~b is called strong barbed bisimilarity.

~ote that even though P 1 Q and P + Q observe the same variables~ they are not

barbed bisimilar~ because they might not necessarily match each other~s reductions.

Consider for instance RI d;! a(x).P 1 a(y).Q and R'l d!!.! a(x).P + ü(y).Q. Certainly

we have RI .j.. a and R'2 J.. a. but we lUl\'c that RI ~ P{y/x} 1 Q. while R2 cannat

nli:1tch this mo\'c unless it is in a special context.

ln [30] and [31] the following result was proven. showing that the process con

gruence induced by this concept ("",b) agrees with the process congruence induced by

strong early congruence ("",e).

Theorem 3.33 (Milner, Sangiorgi [31]). "",b = "",e

There is alsa a weak variant of barbed simulation. \Ve replace the conditions with

the following:

(i) \Vhenever P -+ P' then for some Q', Q ~" Q' and P'SQ'.

(ii) For any name x, whenever P t x then there is a Q' such that Q ~" Q' and

Q' .j.. x. (Abbreviated Q ~".j.. x)

\Vhere ~" is as usual the transitive closure of~. For the weak variants of similarity

and bisimilarity we use the notation ~b and ~b•

•

•

CHA.PTER 3. THE 1r-CA.LCULUS

3.3 Expressiveness: Encoding the À-calculus in 1r

.-\s our first concrete study of expressiveness in process calculi. we present here the

encoding! given by ~Hlner ([26]. [27]. [29]). of the lazy ,,\-calculus into the 1r-calculus.

For this. we briefly recaU the notions of the ...\-calculus.2

The ...\-calculus is the core of functional programming languages. lt views conlpu

tation in terms of fUIlctions and the main operation is function application (evaluating

a function providing it with sorne argurnents as to produce sonle output). This is in

contrast with the 1r calculus. which focuses on processes and the core of computation

is interaction. In the lanlbda calculus. ('\'ery cornputable function is expressible. This

implies that if il prograrnnling language is to ha\'e full cornplltational power (l'rom

this functional point of vie\\') it must he able ta sirnlliate the ...\-calculus.

3.3.1 The lazy À..calculus

\Ve aSSlllne a set of narnes N\! \Vith .r. Y. =. ... ranging over this set. The set of

lambda-ternis p,\. ranged aver by JI . .V. JI'. ~VL ••V2 • etc .. is inductively defined by:

JI x ...\x.J/o

The semantics for the (lazy)A-calculus is given by an UTS as follows:

-------- fi - CONV
,,\:1;.JI =0 ,,\y.JI{y rI:}

-------- 3 - RED
(...\.r.Jl)~V ~ JI {~V/x}

JI -;. JI'
----- v - .-\pp
JI ~V -f .\l'.v

JI =n JI' J/ ~.V .V =0 ~V'
---------- COi'iGR

JI' -;. .VI

•

The behavioural equivalence for lanlbda terms! denoted =..\ is the smallest equivalence

relation between terms! that includes reduction, Le. if one term reduces to another.

then they are behaviourally equivalent: in particular (Ax.J/)J.V =..\ Jl{.V/x}.

2Here we present a rather succinct description of the À-calculus, in particular, we omit the
definition of substitution for lambda-terms. The reader is referred ta the vast literature on À

calculus for this, see for instance [4]t [38] .

• CHAPTER 3. THE ïr-CA.LCULUS

3.3.2 The translation

56

•

The essence of this translation is to express the higher-order substitution operation

round in the ,,\-calculus (Le. substitution of arbitrary tenns for names) in terms of the

simpler first-order substitution of the ïr-calculus. This is done in a fashion that re

sernbles the irnplernentation in real progranllning languages of functional application

and procedure caUs. That is. applkation is Ilot perfornwd by physically replacing

the name by the actual argument. but by executing the body of the function in an

environment in which the formaI argument is bound ta the actual argunlCnt. This

binding is created at the tirne of the function calI.

Formally, the translation is given by a function that associates each lanlbda-ternl

.\1 together with a name u to a ir-agent that expects its arguments through the port

ll.

Definition 3.34 (À to ir). The tran.slation ['TI : P>. -f (Nrr -f P:r) lS given by the

following Equations:

[~rll u de! E(u)

[,\X ..\lllU de! u(.rL'}.[.\/~L'

[J/~VllU de! VU.([.\/llu j VX.(V(ru).cell(x ..V)}}

where cel! (x ,~V) de! ! J:(W}. [,Vll w.

with u fresh

with V • .r fre ..;h

•

.-\.s can be seen, the argument of an application is '"stored" in a "celI" . This cell

is a (replicated) process with port x. The x could be understood as the ""address" of

the celi. 50 when a name is accessed it simply sends a message to the celI, informing

it where the rest of the arguments (if any) are located. A lambda abstraction, is

represented br a process waiting for its argument (and any further arguments) in

port u. \Vhen the application is performed, we create a process for conlputing the

body of the function called. we create a binding (celI) for its argument, and we

establish a link between the body and the celI, Le. we inform the body what is the

address or port where the argument is.

• CHA.PTER 3. THE ir-CA.LCULUS

3.3.3 Correctness of the translation

57

•

•

~ow we establish that the 7r-cakulus has the full expressive power of the ...\-cakulus.

Recalling that notion! we expect that the translation preserves and reflects sorne

relation between terms, preferably a behavioural equivalence relation. Hencc what we

want to prove ifthat for any lambda terms JI and :.V. if .\1 =-\ ~V then [J/~ ~1T [~V~.

i.e. [.~ is complete W.r.t. =.\! ~7T' \Ve use weak bisinlilarity rather than strong.

because one beta reduction is sinullated by several interactions in the ir-translation.

In particular. wc want to show that beta-rcduction. the conlputationally meaningful

rule on the ...\-calculus semantics. is faithfully respected by the translation.

Theorem 3.35 (Correctness of ...\ ta ir translation - Milner [27]).

[(...\J~.Jl).Vll ~1T [JI{.Vj.rH

Proof. FirsL we ha\'c that

[(...\.L·.J/)~Vll == vu.(v(x'lL').[J/~w 1 vz.(v(.:u).cell(.:~.:V))) by definition of [.~

~ vz.(([J/ll{zjx})u 1 cell(z~1V)) by CO:\I~[and CO:\GR

Thus [(...\x.Jl).:Vll ~1T vz.(([:.\/~{.:j.L'})u 1 cell(z.•V)). Then we ouly need to show

that vz.(([J/~{zlr})u 1 cell(z.:.V)) ~1T [J/{.:Vjx}ll. \Ve do this by induction on the

structure of JI. Xotice that the arbitrary term substitution has been replaced by a

simpler name substitution of the ir-calculus. In the l'est of this proof, we assunle that

[1\ITI {.: jx} = [J/l to rnake it more readable.

Case 1 JI =0 z. Then

vz.([J/llu 1 cell(z~_V)) =vz·C:(u) 1 cell(=!~V))

~'f" [.iV~'U 1 cell(.::~~V)

~1T [.LV~'U

=[AI{lVjzlllu

• CH.-\PTER 3. THE 1r-C.-\LCUL US

Case 2 .JI =0 Y ::f= :;. Hence we have

Case 3 JI =0 /\y.JIo. 50 [.\I~u = LL(yv).[.\Io~v. Hence

v:.([JIllu 1 cell(:; ..V)) ~;r ll(yv).v:.([.\[ollu 1 cell(z ..V))

~;r u(Yl')·[JIo{.:V/:HL' by induction

- [/\y.(JIo{.V/z})~u

_ [JI{lV/:;}~'U

58

•

•

Case 4 JI =0 .llLJ[2' This case requires sorne properties of the replication operator

that we have not stlldied here. so we will provide oIlly an outline. and the

rcader is referred to [29] for a more detailed account. \Ve have that [JIllu =
vv.([.\ILllc 1 vy.v{yu).cell(y.JI2)). One of the properties not proved here. but

intuitively correct is that the cell ! z(y).[S·~y can be distributed ovcr parallel

composition (rnaking it available to both sub-ternls) as follows:

vz.([.\Illu 1 cell(z ..:V)) ~7f

vv.(v:.([.\ILllu 1 cell(z ..V)) 1

vy.(TJ{y'u) 1 vz.(cell(Y,.\/2) 1 cell(z,~V))))

\Ve can simplify this by using the following:

vz.(cell(y,A/2) i cell(z.~V)) ~;r ! y(w).vz.([.lI2 llw 1 cell(z,~V))

=cell(y,[..:lI2 { .:V/z lll) by induction hypothesis and definition of cell

• CHAPTER 3. THE rr-C.-tLCULUS

50 putting aIl this together. we have

v.::.([JI~u 1 cell(.:.~V))

~1r V'L' .([Jld~v1.: HL' 1 vy.(V(Yll) 1 cell(y.[JI2 {.V1.:: H)))

= [(JILJh){~V/.:}~u

59

o

•

•

This theorem states that the translation is cOInpiete, because transitions and

equivalence are preserved by it. This is cllough to assert that the iT-calculus is able

to sinlulate any ,\-tcrnl. and thus. has its full expressive power. This expressiveness

represents not only the power ta conlpute as funetions. but also that despite being

restricted ta first-order processes. i.e. messages arc just munes withollt any structure.

the iï-calculllS is able to express (a for01 of) highcr-orderness:s. This suggests an

intrinsic expressive power of parallel conlposition and interaction .

3.4 Summary

In this chapter we described the basic iT-calculus. as a language specially geared to

wards mobility. describing its senlantÎcs bath in tenns of a CTS and two forols of LTS.

\Ve showed how these presentations are equivalent at the level of internai communica

tion. \Ve also introduced, as notions required for the UTS and LTS of the iT-calculus,

the ideas of process congruence and structural congruence. Process congruence for

rnalizes the ,oideal" equivalence. in the sense that agents that are process-congruent

are indistinguishable fronl the point of view of the environment in which they might

live. Then we presented the concept of bisimilarity in the context of the iT-calculus.

and showed why this introduces several problems. rnaking it hard to reach the goal

of being a process congruence. This translates in the formulation of several different

notions of bisirnilarity.

3Sangiorgi studied in [..U] a higher-order variant of ïr-calculus, in which messages can he processes,
not just names. He proved that allowing such higher-order processes does not increase expressive
power, since they cao he encoded in the first-order ïr-calculus.

Research in this field has focused on looking for behavioral process congruences

in the sense of definition 3.6. AU the definitions of bisimilarity shown here induce

a corresponding definition of a behavioral congruence. This is summarized in the

following table:

•

•

CH.-\PTER 3. THE rr-C.-\LCUL US

Bisinlilarity relation Induced congruence Description

~9 '"V9 Strong ground

• l '"Vl Strong late"-

• e ,-.,.,e Strong early"-

·0
'"V° Strong open"""w

· b '"V b Strong barbed"""w

i:::,!J ~9 \Veak ground

i:::,l,l \Veak late......,

...:...e -.,e \Veak early""'w -.,

"':"'0 -.,tJ \Veak open""'w -.,

i:::,b,b \Veak barbed......,

60

•

.-\11 alternative to the introduction of new notions of bisimilarity with hopes that

they are process congruences is to modify the original calculus. \Ve will describe

the main variants of the ïï-calculus that have becn proposed in this respect in the

following chapters.

\Ve also showed the expressive power of the ïï-calculus br giving a complete em

bedding of the (lazy)lambda calculus into ïï .

•

•

•

Chapter 4

Asynchronous communication: the

1ra-calculus

~[uch in the sanle way as the ,.\-calculus is a canonical calculus for functional conl

putation. the iï-calculus ainlS to be a canonical calculus for concurrency. Howe\·er.

noting the cornplexities that arise when trying to ddine a suitable notion of be

ha\'ioural equivalence it appears that the iï-calculus thcory cloes not provide such a

canonical basis. ces. the predecessor of the iï-calcllius. had a nlllch simpler theory

in which strong bisimilarity is a process congruence, but it lacked the ability to de

scribe nlobile systems. In order to obtain this holy grail of a behavioral equivalence

that is also a congruence for mobile process calculi. two paths ha\'e been follo\ved:

1) Retine the notion of (bi)simulation. and 2) Change the language, In section 3.2

SaIne alternative notions of (bi)simulation were presented. The second approach

has been followed by simplifying sornchow the ii-calculus. Following this approach.

Honda and Tokoro ([li]). and independently Boudai ([7]) introduced the so-called

"asynchronous~' IT-calculus.

One of the aspects of the IT-cakulus, as presented in chapter 2. is that communi

cation occurs in a synchrono'us fashion: both the sender of a message and the receiver

block until the interaction can occur. Sometimes, however, it might be desirable for

the sender to continue processing without waiting for a receiver to take the message.

This is asynchronous communication.

61

• CHAPTER 4. A.Sl"NCHROiVOUS CO~\Jl\IUiVIC.4.TIOiV 62

•

One way of achieving asynchronous communication, in a synchronous setting, is

to use b·uffers. The idea is that the sender of a message does not put the message into

a channel directly connected to the receiver, but passes it to a buffer process which

holds the message and sends it to its destination when the receiver is able to interact.

Since the buffer is nlodeled br a process in parallel with both the sender and the re

ceiyer. the sender can continue processing without waiting for acknowledgement frotn

the receiver. just from the buffer. Howe\'er the calculus will still alla\\' synchronolls

communication.

A clifferent approach is to sirnplify the calculus. The so-called "asynchronous"

n calculus. or 7ra for short. rnodels asynchronous communication by clisallowing a

continuation al'ter an output action. i.e. there are no terms of the fornl u(.r).P in

nu. Output actions can only occur in parallel with other processes. If we \Vant to

model the action of sending a Inessage asynchronollsly and executing a process P. we

sirnply write the term

u(x) 1 P

In such a ternL the output action is non-blocking because it can interact with an

agent listening through u independently of P. while P can execute without waiting

for the interaction to occur.

The set P"u of;ra ternlS is defined as the sllbset of Prr terms where output is always

followed by O. In its nlost basic l'orm. \Vhat wc cali the core Ïia , the synta.x does not

include the summation operator, nor the match/nlisnultch operators..\lternatively.

we l'orbiel explicitly continuations to output actions by defining P rru as l'ollo\\'s:

Definition 4.1 (Core 7ra terms). Let }Irra be an infin'ite set of names, ranged D'Uer

by 'U. L'~ w! x~ y, As 'US'ual 1 i stands for a sequence of names XLX2 ...Xn' The set P;r<J.

of ira terrILs is defined inductively as:

These constructs have the same interpretation as those of n. Notice that by•
P o u(x) u(y).Q IIx.Q QIR .-l(i)

• CH.-\PTER 4. .-\Sl"NCHR01VOUS C01\L\/U1VIC.-\TIOi'l 63

•

•

including procedural definitions and calls (.-\(x)) and allowing recursion. we can clefine

the replication operator as we did in 1i: ~ P ri!:.! PI! P.

The core iia-calculus is a simplification of the ii-calcuills in the sense that the

ira calculus is a sllb-calculus of /T. and thus, everything that can be done in Îla ! can

be done in /T. The question that arises immediately is whether /Ta has the same

expressive power of Il. Honda. Tokoro, and Boudol ([ï]L proved that asynchronolls

interaction is enough to sinllliate synchronous comnlunication. \Ve present this result

in section -1.2.1. ~onetheless! Palanlidessi ([36]) proved that the core Tia • deprived of

non-deterministic choice. an essential ingredient for concurrency! is not as powerful

as the full ii-ca1culus. result which we present in section -1.2.2.

Even with its linlitations. iia is quite an expressive calculus. .-\S an example of its

power. let us consider Honda and 'Yoshida's notions of forwa-rder and equatoT ([18]) .

.-\ forwarder from a channel lL to a channel b. \Vritten Cl - b. is a process that acts

like a one-cclI buffer:

de! -
Cl - b = ! a(.r) .b(.c:)

\Vhen a and b are linked through a forwarder process. any message sent through a

can be caught by any process Iistening through b.

An equator between a and b. written a ~ b. is a process that makes a and

b equivalent in the sense that processes communicating through any of them can

interact between them. This can be defined in terms of t\Vo forwarder processes as

follo\\'s:

de!
a-b=a-blb~a

Since the listening capabilities of t\\'o channels are identified by an equator. it aclüe\'es

the same effects as substitution \Vith respect to the possible patterns of interaction

of an agent. It turns out that the following algebraic law holds:

P{a/b} ~1ra vb.(a ~ b 1 P)

• 64

•

•

where ~iTù is (weak)bisimilarity congruence of 1ra processes. Notice that this law is

only valid in the asynchronous setting, because the forwarder from a to b inlplies an

asynchronous communication between an agent sending a message through a. and

another nlessage Iistening through b.

.-\nother exarnple of its inherent expressiveness is the support of ira for functional

programnüng. The basic interaction in ira is given by the reduction

u(x).P 1 Ti(y) 1 R ~ P{y/.r} 1 R

\Ve can think of the action u(y) as "cillling~' il procedure li with actual argunlent

!J. wherc the procedure is given by the receptor ll(.r).P. whose l'onnal argunlent is

.r..-\lthough in such an interaction. the procedure is consurned by the reaction. we

can sinlply use the replication operator to make the procedure available for all other

processes as in a client-sen'er [nodel.

! u(.r).P 1 u(y) 1 R -;.! u(x).P 1 P{y/x} 1 R

This idea of conceiving iia interaction as functional application only covers ufirst

arder" functions because only nanles can be transnlitted through channels. However.

we can actually sinlulate higher-order funetions \Vith an encoding of the lanlbda cal

culus. This encoding turns out to he almost identieal to the one for the full ii-ealculus.

as shown in section 3.3. The only difference is in the translation of functional appli

cation. where we replace the blocking output action \Vith the non-blocking version:

[JI~Vnu de! VV.([~\lllL' 1 Vl.·.(iJ(XU) 1 cel1(x~ .V)))with v. X fresh

4.1 Semantics

\Ve now present the formaI semantics for 1ra • by providing, as we did for the ii-ealeulus!

unlabelled and labelled transition systems. \Ve assume the same notion of structural

congruence from definition 3.8.

• CH.-\PTER 4. A.SY~VCHR01'lOUS CO~\J1IUl'iICA.TI01V

4.1.1 Reductions

65

•

The L'TS for the core 7r11' is a tuple (P"u' =. ~"J, where ~1f'l' the reduction relation

is the least relation satisfying the rules for rr-reduction as in table :3.-1. with the

exception of the CO.\[.\[rule. which is replaced byL

-------- CO.\[.\[a
u(x).P 1 Ti(y) ~ P{yj.r}

In the case of iia with sunlnultion the CO.\[.\[rule is stated as:

---------- CO.\[.\[I!
(uer).P + Q) 1 u(y) ~ P{y/x}

4.1.2 Transitions

The LTS is defined similarly. as a tuple (P"<l' A1l"u ~ =. ~1f.J. where A;r'l d;j A;r. and

~;r'l' the transition relation is the Icast relation satisfying the rules for ii-transition

as in table :3.5. with the exception of the PREF t rule. which is replaccd. for the late

senlantics. by

----OCTal
-() IT(.r) 0ur ~

and
------ [\p~!

() P u(.c) P
lI.1', ~

•

The change for the early sernantics is analogous to the one for 7ï-calculus.

4.1.3 Bisimilarity

Since 7rIL is a sub-calculus of ïr, the notion of open bisimilarity is also a congruence.

as weIl as the carly and late congruences. However. in this asynchronous setting.

the input actions of an agent cannot be directly observed by an external agent.

In order to enlphasise this aspect of asynchronous interaction. an alternative to the

pre\'ious bisimilaritics was proposed by Honda and Tokoro ([16J). Here wc present one

possible characterization for this relation. This \Vas proposed by :\madio~ Castellani

and Sangiorgi in [3], along with three other characterizations which they proved

equivalent to the original proposed by Honda and Tokoro.

lAs llsuaL we will omit the jTa subscript while it is cIearhich calculus we are discussing.

'Ne first define a relation called an "OT~' -bisimulation. that represents the insen

sitidty to input actions, meaning that only output (0) actions and silent actions (r)

are matched by oT-bisimilar processes.

• CH.-\PTER 4. .-\S~fNCHR01'lOUS COAIJIU~VIC.-\ TI01'l 66

•

•

Definition 4.2 ([3]). A binary relation S ç P1r,~ X P Tru is called an DT-simulation

iff for any term", P, Q E PTru~ PSQ implies that if P ~ P' where Q is not an input

action and bn(o) n frz(Q) = 0. tILen Q ~ Q' and P'SQ'.

If S-l is also an or-simulation. then we cali S an oT-bisimulation.

~Ve denote ';""DT the largest oT-bisirnulation. and ~OT 'ils weak variant.

~ow. to define the a.ppropriate notion of equi\'alencc. wc close this relation undcr

cOlnposition with arbitrary output actions.

Definition 4.3 (Asynchronous bisimilarity ([3]»). A relation S ç P rr., X Prr" i:;

an asynchronou8 bisimulation if it ù; an oT-bisànulation and for any P. Q E Prr.
1

•

PSQ irnplies that for any o'utput action ü(x). (u(x) 1 P)S(Ii(.r) 1 Q) .

l'Ve denote ,;"" the laryest asynchronous bisirrt'ulatioTl and'" the induced a.S1l'fL-7rtJ. ·:ru .1

chrono'us congruence..4lso, the corresponding definition of weak asynchronous bisùn-

ulation i.s obtained, as usual. by replacing strong t'ransitions hy weak transitions. and

we denote ~ the la'~gest weak as-ynchrono'us b'isi'Tnulat'ion and ~ the 'induced ·weak1r'l • 1T'•.&

asynchronous congruence.

This is actually an appropriate notion of beha"ioural equivalence. since it preserves

ail of 1ra's operators.

Proposition 4.4 ([3]).

ri) ';"":'l"u' and ~tr., are eq'u'lvalence relations.

(li)';""- = "'V and ~ =:::::: . this is:...... and ~ are process congruences
l'aJ. 1ru : rra 1riC.l Y ' •• fi 7rLI •

Proof. Item (i) is easy to check. \Ve will show only transitivity. Suppose that P":"'Tr.~Q

and Q"'-1ra R. Hence, there are asynchronous bisimulations SI and S2 \Vith PSI Q and

QS2R, which implies PStS2R. Since SI and S2 are or-bisimulations, then SI~ is also

an oT-bisimulation (using the same argument of transitivity of ground bisimulation).

Hence \Ve only neecl to check the condition of closure under composition \Vith arbitrary

outputs. Since SL and S2 are asynchronous bisimulations~ we kno\V that for any

output ü(x)~ (u(x) 1 P)Sl CIT(x) 1 Q) and (u(x) 1 Q)S2CiI(x) 1 R) respectively. Hence

we obtain that (u(r) 1 P)SLS,!(U(X) 1 R). 50 (u(x) 1 P) ~7r.~Cü(x) 1 R). as required.

For itern (ii). it is proven that ~rr11 is closed under substitution. so that by an argunlent

sinIilar to lernnHl 3.2-1. \Ve have that it is a congruence. The proof is rather long. but

the technical details are not very difficult. \Ve refer the reculer to [31 for a detailed

account. 0

Asynchronous bisinlilarity is a coarser equivalence relation than the corresponding

notion for the synchronous calculus. Intlliti\'ely~ given that in the asynchronous

calculus we can rearrange output actions in any \Vay. more terrns are consiclered

equivalent than in the synchronous calculus.

The notion of barbed congruence is useful in the rra setting~ since it \Vas proven

in [3] that it coincides \Vith asynchronous congruence.

•

•

CH.-\PTER 4. .-\Sl·~VCHR01'lOUS C01\L\JUNIC.-\TI01V

Proposition 4.5 (Amadio, Castellani, Sangiorgi [3]). ""wb = ""w
1r1! iT•.1

67

•

\Vith the notion of bisimilarity congruence established in the asynchronolls set

ting. we can prove the following properties of equators. that nlake them 50 attractive.

inducing a kind of equivalence relation amongst naInes.

Proposition 4.6 (Equator properties ([18]».

(i) a -- a ""w;r11 vb.(a ~ b) "'rro: 0

(i'ii) vc.(a *-' cie *-' b) ""w;ro: a *-' b

(iv) P{alb} ~rr<1 vb.(a -- b 1 P}

4.2 Expressiveness: Synchrony versus Asynchrony

:\s mentioned above, it is easy to simulate asynchrony in terms of synchronous inter

action~ either by using buffers, or by simplifying the calcuius. Is the converse true?

• CH.-\PTER .1. ASY.VCHR01VOUS COAL\Jl.hVICATI01V 68

•

The answer depends on the available operators of the caleuli that we are comparing.

4.2.1 When is asynchrony enough?

Boudol, and independently Honda and Tokoro showed how ta simulate the core ïr

calculus. Le. the rr-caleulus without summation or matching operators. \Vith ifU' This

is based on a sirnple acknowledgement protocol. The idea is to establish a private

link between sender and receiver along which the actual message will be transmitted.

to avoid interferencc fronl the environnlent.

The sendcr works as follows: it first crcates a private channel which passes to

the receiver. and concllrrently waits for an acknowledgenlent fronl the rcceiver. \Vith

this acknowlcdgemcnt cornes the pri\'ate link crcated by the rcceiver along which the

actllal message is to be translnitted. Once the sender has rcceived this pri\ïlte link.

it is able to transnlÎt the Illessage asynchronously.

The receiver protocol is the following: once it gets the acknowledgement channel

fronl the sender, it cl'eates the new private link which scnds back through the ac

knowledgement channel. Concurrently it blocks, waiting for the actual input in the

private link.

Definition 4.7 (Core (synchronous) 7i to 7iu translation ([7]».

The translation [.~ : P rr -+ PrroJ. is given by the following equations:

[O~ def 0

[P 1 Q~ d~ [PD 1 [Qll

[VI.Pli d;! vx.[Pll

[U(x).Pll (~ va.(u(a) i a(l).(l(x) 1 [Pll))

[u(y) .Pll cl:! u(a) .vl.(a(l) Il(y).[P~)

where a.l ~ fn(P)

where a.l ~ fn(P}

•
The correctness of the translation is specified by the adequacy \Vith respect to

the so-called ··testing preorder~'2. This preorder is based on a notion similar to ob-

:2 According to Boudol, the translation is also complete \vith respect to structural congruence.

• 69

•

•

servability fronl definition 3.31. Here. however, we will write P ..1- x when P is

irnnlediately ready to perform an input on x. This is in contrast with definition 3.3L

that represented the capability of inlmediate interaction, both input and output.

The abbreviations P ..1-. P .lJ. x and P .lJ. are defined as before (recall that P ..1- means

3:r.P ..1-.c. P .lJ. .1' means 3P'.P -t- P' 1\ P' ..1- x. P.lJ. means 3P'.P ---t' P' 1\ P' -!,.). This

preorder is defined for both core-ir and ÎÏu as fol1o\\'s:

Definition 4.8 (Testing preorder). The testiug preorder ç for! l8 defined by:

P Çc Q if and only if for ail !-contexts C. C[P] lJ.c i'rnplies C[Q] .lJ.c.

Boudol's correctness criteria is established by saying that the translation faithfully

reflects how processes are ordered in tcrnlS of their receptiveness. or capability of

reeeiving Inessages.

Theorem 4.9 (Boudol ([7]». The tr'unslation [·n is adequate w. r. t. ç .. and Ç"'l'

this is. for ail ternl8 P, Q, if [P~ Ç1Tu [QD then P Ç1T Q.

Proof. \Ve provide only a proof sketch and the reader is referred to [il for a complete

account. First it is prow~n that the translation preserves and reflects observability.

this is. for any P. P JJ. .. if and only if [PD .lJ.1l'a' Each direction is done by induction

on the length of the reductions of the ternI considered. For instance. in the left to

right direction. the base case is when P t iL' for sorne Ir. Then it is easy to see. by

the definition of the translation. that [PD.!. lL'. \Vhen P ~. P' and P' t LL'. for sorne

P' and iL', we know that sorne interactions have takcn place. \Ve can use this. and

the faet that the translation is compositional to show by induction on the length of

the reduetion P ~- P' that there is a Q such that [P~ ~. Q and Q t lL'.

Once the preservation and reflection of observability has been established, we

can proceed as follo\\"s. Suppose that [PD ç1ru [Q~. That is. for aU lTa-contexts Ca'

Ca[[PllllJ.1l'a implies Ca[[Q~] JJ.1r
U

" \Ve want to prove that P C.,. Q, i.e. for any 1r-context

Cs~ Cs[P] lJ.1l' implies Cs[Q] .!J.1r' Let Cs be any 1r-context such that Cs[P] .lJ..,.. Then

sinee observability is preserved by the translation, [Cs[P]ll .lJ."'a' Since the translation

is compositional, there is a 7r11-eontext Ca snch that [Cs[P]ll = Ca[[PllL so Ca[[Plll .JJ.1ra.

No\V~ recaUing that [PD ç1ru [Qll we have that Ca[[Qll] -U-1ra ' Noting that [Cs[QlD =

Cu [[Qm by compositionality. we have that [Cs [QlTI .JJ. ..~. Finally. since the translation

reflects observability we obtain Cs[Q] .JJ.1f~ as required. 0

• CH.-\PTER -1. •4.S'{NCHR01VOUS COAI~'IU~VIC.-\TIOiV 70

•

•

4.2.2 When is asynchrODY Dot eDough?

The previous result showed ho\\'. in generaL asynchronous communication can sinlu

late synchrollous comnlunication. Yet, to sonle extent, it seems like synchrony is more

powcrful. Synchronous conllnunication supposes sonle form of conlmon agreement.

Howevcr. in an asynchronous setting, one can imagine that if the partics always be

have in exactly the same way. there nüght never be an agreement. This intuition. led

Palanlidcssi ([36]) ta show that it is not always the case that asynchronous interaction

ca.n silllulate synchronous interaction.

This nlight appea.r in contradiction \Vith the prc\'ious resllit. howcver. in that

section. we \Vere considcring the core IT-calcuills. i.e. the calcuills without non

detenninistic choicc. In this section wc will show ho\\' non-deternlinisnl Inakes a

difference between the t\Vo calculi.

Palanüdessi's proof is based, as the intuition suggested. on the idca that asyn

chronous systelns cannat be guaranteed to break certain synunetries. Particularly. II(L

cannat solve the problenl. in general, of electing a leader anlangst a synlmetric net

work of processes. Here we present her praof, but beforc wc nced sanIe preliminaries.

Process networks and hypergraphs

.-\ process netwo'rk is simply a term in standard form Al =VI. (Pl 1 P2 1 ... 1 Pn). In

the l'est of this section, we will rescind from the restriction at the top level. to keep

notation simple. \Ye can represent a network of processes as a hype'rg'raph. Infornlally~

a hypergraph is a graph in which one arc can connect Inore than two nodes.

Definition 4.10. A hypergraph H is a structure (.V. A. tL where ;.V and A are

finite sets, and t : A ~ PCV). IVe caU the elements of ~V and .-\ nodes and arcs

respecti'Uely~ and t is called the type function.

A hypergraph can represent a network by associating each process \Vith a node~

and each free channel \Vith an arc. If a name x is free in P, Q, and R, then it

• CH.-\PTER 4. .-\Sl~lVCHRO:.'lOUS COlIl\JU1VIC.-\TIOlV 71

•

•

represents an arc between those processes. \Ve usually denote H (Al) the hypergraph

associated with the process network JI. Forma11y, given 1.\1 =Pl 1 P2 1 ... 1 Pu,

H(J/) = (~V.A,t) is a hypergraph where ~V def {1.2 n}, A def fn(J/) \ {a} and

t(.r) deI {i E ~V : .r E fn(Pd}. Here. 0 is special name through which JI might send

output to the external world.

\\'e can aiso represent the concept of "renaming" Cl process network in terms of

hypergraph nU:lps. The renanling of a process consists of challging aU the names

i:llTOrding to sonle functioll. :\ "wel!" -behaved renan1Ïng preserves the structure of

the cOlumunications network. This is based on the notion of uuto'T1w1phLsrTL in a

hypergraph. Infonna11y. an autolliorphism a is a map fronl the hypergraph ta itself

that preserves the structure.

Definition 4.11. Let H = (iV. .-\. t) be a hyperg'raph. An automorphism on H i8

a pair a = (aN. a ..tl where aN : .'1 ~ ;.V und a ..\ : A ~ .-\ S1lch that for every x E .-\.

if t(x) = {il, i2 • ... , i rn } then t(a..t(.r)) = {aN(id. aN(i2) ~ aN(im)} .

The conlposition of autonlorphisms is defined as a 0 a' clef (aN a a~v, a ..\ a a~.\). This

cOluposition is also an autonlorphisnl. The identity autoluorphisnl is id t~ (id;v. id..d,
wherc for any i E .'1. id.v(i) d~ i and for any x E .-l. id.-t(x) de! x. The k-iteration of

h· ,. 1 1 .. k' f k deIan autornorp lsm a IS slnlp y t le conlposltlOn ~ Unies 0 a: a = a a a 0 .•• 0 a,

Given anode i in a hypergraph. and an autonlorphism a. the set resulting from

iterating a starting in i, 0 17 (0 deI {i.a(i).a 2 (i),aJ (i) ah-l(i)} where ah(i) = i. is

callecl the o'rbit of i generated by a. If the orbit of a is unique. then for any node. the

orbit coincides with the set of aIl nodes in the hypergraph: i.e., for each i. Ot7(i) = .V

where H = (~V, .··t t).

In the context of iT-calculi, we fornmlly define the "well" -behaved renaming of a

process in terms of an autornorphism a of its associated hypergraph as fo11ows.

Definition 4.12. Let AI =Pl 1 P2 [... 1 Pn be a process net'Work~ with an associated

hypergraph H (Al), and a and automorphism on H (JI). A weil behaved renaming

of a term Pi in .:.lI is a funetion ap : P tr ~ P tr defined inductively on the structure of

• CH.-\PTER -J. .-\Sl"NCHR01'lOUS COAIAJUNIC.-\TI01V

Pi as follo'Ws:

o"p(O) d:j 0

o"p(vx.P) d~ vx'.ap(P{x'/x})

Gp(P 1 Q) d!.f ap(P) 1 ap(Q)
def

ap(P + Q) = ap(P) + ap(Q)
def--

Gp(U(X) .P) = a.-\ (u) (a..\ (x)) .ap(P)

ap{-u{x) .P) d~ a..\ (u)(.r').ap(P{ Xf j.r})

where .r' is fresh and a._\ (x') = x'

where x' is fresh and a._\ (x') = x'

•

~Ve caU the structure (aN. a:\. ap) a well-behaved automorphism. Aiso. for the

speC'iai channel o. we define a._, (0) d;j O.

In the definition above. ail bound nanIeS are replaced by fresh nanles. Q-conversion

is perforrned on the terrn and the automorphisrn is extended on the new fresh names

as the identity function .

:\"otice that since the iTll calculus is a sub-calculus of iT. the clcfinition provided

also applies for iia ternlS. by restricting the function to the subset of ira tenns.

\Ve expect that such well-behaved autotIlorphisms respect the senlantics.

Lemma 4.13. For any te17rtS P. Q and action o. if P ~ Q then ap(P)~ ap(Q).

Proof. By induction on the derivation of P ~ Q.

Computation and projection

o

•

Given a process network JI =PL 1 P2 1 ... 1 PTll a computation C' : JI ~ Jlm. is

a sequence of transitions where jl = lLolLlJl2 ...Pm-L is a sequence of actions.)'Iore

explicitly. we have:

Pl 1 P2 1 ... 1 Pn ~ PlL 1 P~ 1 1 P~

~ P~ 1 Pi 1 1 P;

If C is (w)-infinite we write JI k.. \Ve say that a computation C' extends C. written

C « C' if there is a computation C" such that C' = CC". \Ve write C'\C for Cil.

The '~evolution" that a particular agent Pi makes in the computation C of JI is called

the projection of C over Pi. and is written Proj(C, Pd. This is the sequence

• CHA.PTER -1. .-\SYlVCHR01VOUS COAIAJU1VIC.-\TIOiV 73

•

•

D GQ pl llt p2 0" °m-l pm-l
r l ~ i -'" i -1-... ~ i

If the il + l transition in C was an application of the PAR rule. involving pr. then

Piu ~ P
l

U + l is the pl'emise of that l'ule. If the transition was an application of the

CO:\I:\I l'ule. PLU ~ P1U~1 is one of the t\\'o prerllises. If the agent was Bot involved in

that transition, Pt+ l = PLU. Le. the pl'ocess is idle.

Symmetric networks and electoral systems

\Ve want to define what do we Ulean when we say that a system or netwol'k is

synlnlctric. Informally, wc could say that in a synunetric network each process Pi

has a corresponding process Pl' which is a well-behaved renaruing of Pl' up-to alpha

conversion.

Definition 4.14. Consider a process netwo'rk JI == Pl 1 P2 1 ... 1 Pn with hy-

pc'rg'raph H(JI) = (1V. A. tL and a well-bchavcd autorTlorphism a = (as. l7..l. ap) on

H(~\l). IVe say that JI is a symmetric network with respect to l7 if for each

i E .V. pcrs(i) =0 l7p(Pd. ~Ve say that .\1 is sy'm'TTLetric if it is syrnntetric w.r.t. aU

a'uto'mo'rp!t-isrns of H (.\/) .

Xow we define what is a system that can select a ··leader~'. Informally. an electoral

systern is a process network JI with a special output channel 0 (a free name), in which

the agents will agree, sooner or later, which of them is the leader, and will announce

it to the environment through o.

Definition 4.15. A process network Al = Pl 1 P2 1 ... 1 Pn is an electoral system

if for aU computations C of Al, there exists C' such that C « C' and there is an

l E {l, 2...., n} calied the leader, such that for ail agents P;. in Al, Proj(C', Pd

contains the act'ion o(l}. and there is no C" such that C « C" that contains the

action o(l'} wûh l' =1= 1.

• CHA.PTER 4. AS1'-NCHROIVOUS COJllIUNIC.-\TI01\J 7-1

•

•

Symmetric electoral systems in full-7i

ln the full 'li calculus it is possible ta construct a synuuetric electoral systenl. Le. a

systenl that has synunetric structure and is capable of always choosing a. leader. An

example is the process network .\/ d!:.l PL 1 P2 where

PL d;J vx.u(X).O(ll) + u(y).O(l2)

P2 d!:.l vJ.:.V(X).O(l2) + u(y).O(lL)

This system is symnlctric w.r.t. a = (aN~a ..l~ap) where aN deI {(L2). (2~ l)} and

a ..\ d:! {(u, LI). (v. il), (lI, l2)' (l.2. 1L)}' Ta see that it is also an electoral systelIl. notice

that an agreenlCnt is always reachecl in the first transition. Le.•\/ has t\\'o possibilities

of interaction. namely: PL 1 P'l ~ O(lL) 1 O(lL) or Pl 1 P'2 2, 0(l2) 1 0(l2)'

Confluence in 1ia

The core ira -ca1culus does not have non-deterrninistic choice, which means that if a

process can perfornl more than t\Vo actions. they have to be perfonned by parallel

subprocesses. Since the actions IT1USt be in parallel, the actual arder in which they

are executed is irrelevanL so it is always possible to reach a common state no matter

what the execution path \Vas. This is a ··confluence" property.

Formally~ this property is established by the following lemnla ([36]).

• CH.4.PTER -1. .-\Sl-~VCHR01VOUS COAI1\IUNICA.TI01V ï5

•

•

ü(x) u(y)
Lemma 4.16. Let P E P1'(Q' If P ----+ Q and P ----+ Q' ~ for so'rne Q~ Q' E P1'(<J and

. u(y) ü(x)
u~ u. x. y E N."T

Q
' then therelS an R E P1r

Q
such that Q ----+ R and Q' ----+ R.

Proof. \Ve know that if both actions are possible~ starting From P~ then they must

accur in parallei within p! i.e. P == Co (Cdu(x)] 1 C2 (u(y).S]] for sorne contexts Co, Cl
. • Ü(.r) U(Y)

and C2 • and sorne term S. The transitions P ----+ Q and P ----+ Q' must have been

obtained by applying the PARt ruie (with other rules as weil). where the actions \Vere

introduced by the ül"Tt axiOlll u(:r) ü(.r\ 0 and the I~Pt axionl v(.:).S~ S{y/.:}.

Hcnce Q == Co [Cd011 CJv(.:).S]] and Q' =Co[Cdü(.r)] t C2 [S{y/.:}]]. Therefore. if wc

apply PARt again (and the other ruies of the previous transition). wc can construct
l'(Y) U(.r)

a proof of Q --t Co [01 1 C:![S{y/.:}]] and Q' ----+ Co [0] 1C2 (S{Y/':}]]. Define R to be

Co [0] 1 C:.dS {y/.:}]l. 0

Perennial symmetry

The gap in expressivcness betwcen the full1i-calculus and the core 1ia-calculus is that

in the fonner. wc can construct a synlnl(~tric systeni that eventually will break the

symnlctry and elect a leader. as shown in the pre\-ious example~ while in the latter.

it is possible that the syrnmetry never gets broken. and therefore no leader is elected.

This is formalized br the following theoreni. If we start with a synlmetric network.

we can always construct a computation! using the confluence lemnul.. such that the

network remains syrnmetric. and hence leaderless.

Theorem 4.17 (Palamidessi ([36]). Let JI =Pl 1 P'2 1 '" 1 Pn he a sy'm'met

ric network 'W.r.t. a, whe're a "1 id Ls a well-hehaved auto'rnorphis"~ on H(~\l), the

hypergraph of JI ~ such that a has only one orb'it. Then JI is not an electoral .5ystem.

Proof. 3 \Ve prove this by contradiction. .\ssunle that JI is an electoral system.

\Ve ~tart with an ernpty computation Co! and successi\'ely extend iL resulting in an

infinite sequence Co « Cl « C1. « ... « Ch « Ch+ l « \Ve proceed by

induction in h, Le. in the base case Co is the empty conlputation, and we construct

Ch+ i given Ch as follows.

3In this proof, which fol1ows very closely the original, to simplify notation, we will omit the
subscripts N! ..\, and P from the component functions of u.

Let Ch be JI ~ JIh . \ve define Ch de! CC' where C' is the extension Jlh ~~t

JIh + 1
• \Ve now construct C'. Since JI is electoral. an extension of Ch nlUst contain

the action o(l) for sorne l E {1. 2..... Tl}. Let J.l be the first action in C' ~ and pr is the

agent perfornling that action.

Suppose that J.L = o(l). Given that the systenl is synlnwtric w.r.t. a. P~l(i) ==

a(pr). Hence P:(,) contains an action o(a(l)). Therefore sorne extension of Ch has

this action. and since JI is electoral. a(l) = l. This contradicts the condition that

a :1 id because (J generates a unique orbit. Hence o(L) cannat be the first action in

C', 50 /-l is either another action, or T.

Consider the case that Jl =1= T. \\"e now define .\/h+1. Let p,h+1 such that

• CH.-\PTER -1. AS"{NCHR01VOUS COAL\JUi'lICA.TI01V ï6

•

•

By lernrna --1.13 and syrnmetry this transition irnplies

Given that there is a unique orbit JIll =pr 1 P!:(i) 1 p~lZ(i) 1 ... 1 p~ln._t(l)' Let

JI h+ 1 = pr+ 1
1 P;\:)l 1 P;/(i\ 1 ... 1 p;:_lt (i)' and the computation C' is JIll ~ JIh+ 1

where [J. de! ILO'(J.t)a2(JL) ...a'l-1(J.l) is the composition of the transitions above. \Ve

have that JIh+l is still symrnetric \"'.r.t. a.

~ow, consider the case IL = T. If this action was the result of an internai action

of only one of the components Pi. then we construct JI h+ 1 as in the previous case.

Otherwise~ the T was the result of an interaction between two components pih and

p j
h with i :1 j. and the transitions pr ~ Qi and pjh .4 R j where /-li and Ilj are an

input and an output actions respectively (or vice-versa). Since there is a unique orbit

for a we have that for sorne r E {L 2, ... , n}, j = O'r(i). Let () = ar, so pj
h = P;(i) and

Rj = RO(i)' Then~ PJ(i) ~ RO(i} which together \Vith Ptt ~ Qi inlplies by CO~I~(

the transition

• CHA.PTER 4. .-\S\·~'!CHR01'!OUSCOAIAIUiVIC.-\TIG.'! 77

•

The transition ?zh ~ Qi also inlplies P/)(i) O(Jla \ O(Qd by synlnletry and lenlma ·t 13.

This transition, and P;(i) !2, RO(i) inlply by confluence, that there is an R' such that

R . OUz,} R'· cl O(Q-) Jl) R' D~fi ph+L de! R'O(z)~ an z -.:;..; , c nc O(i) - ,

Bv s\'nlmetrv on ph 4 R . we ha\'e ph. O(Jl) \ O(R). Since J' = O(i). O(J') =
~ ~ -]] 0(;)]

O"2(iL so P!P(i) o(sz)\ O(Rj). :\otice that (}(R]) =RO'.!(i) by symnletry also. The

actions O(jl;} and (}(J.l]) arc cotnplementary. so wc can conlbine RO(l) ~ p~t(~/ and
h O(Jl.))

PO'.!(I)~ RO'.!(i) inta an interaction

.-\.pplying this argunlCnt repeatedly, wc obtain

and Ph+ L
on-I(i)

From the transition O(Q·) ~ ph-+:L wc obtain on(Q_) On-I(JlJ\ on-L(ph+L) bv lemnla
l O(z) z O(z) _

-1.13. :'\ow. (}n-L(p;(t
l

) = P!/n1i\ by symmetry, and. since on = id. this transition is

the same as Qi on-I(Jl)\ p:t+L. 50 we can deduce the following interaction:

R 1 Q T ph+ 1 1 ph+ L
on-l(i) - i -t 8n-l(i) i

Final1y, the composition of aIl tbese 1" transitions gives us the computation C'

• f
=> P h+ 1 1 ph+l 1 ph+l 1 1 ph+l

i Oeil 02(i)' •• 1 on-l(i)

This is~ JIh is the left-hand-side~ and JIh+ L the right-hand-side of this computation .

.-\gain~ .\Ih+L is synlmetric \V.r.t. a.

ln any case. we can always extend the computation 50 that the resulting network

is still synlmetric. Thus we cau construct an infinitely long computation. so JI cannot

be electoral. 0

• CHAPTER 4. ASll'NCHR01VOUS COAIAIU1VICA.TI01V 78

•

•

Non-encodability

In ordcr to say that two languages have the sanle expressÎ\'c power. wc require that

any translation [.~ rrOnl one language to the other preserves and reRccts the semantics.

Palamidessi c1efined as ';'reasonablc~! a semantics which

.....distinguishcs twa processes P and Q whenever in same cornputation

of P the actions on certain intended chaunels are different Cronl those of

any cOluputation of Q.!' [36]

If wc restrict oursclves to trulr distributecl systeuls, we also require that the

translation preserves parallel eornpasition [P 1 Q~ = [Pli 1 [Ql .-\Iso. we nlight

\Vant the translations to respect renaming! i.e. [a(P)ll = a([Pll). Palanlidessi calls il

translation satisfying these t\Va criteria il uniform translation.

Theorem 4.18 (Palamidessi ([36]». There is no u'rJ:iform tran..,lation front the

full ii-calcutusinto the core ira -calc-ul'Us that p-reserues a "reasonable'~ sernant'Ïcs.

Proof. By contradiction. Suppose that ['li : P rr -;, P rrl1, is such translation. Let JI E

P rr be a symmetric and electoral system! and JI' E P rr a sYlnmetric but non-electoral

system. Then~ assuming that we have a reasonable selnantics for iT! JI and JI' are

different in such semantics. Since uniform translations preserve symmetry. [JI~ and

[JI'TI are also symmetric~ but br theorem 4.17, neither is electoral, hence we cannot

distinguish them, contradicting that [.~ preserves the "reasonable~! semantics. 0

Interpretation

This result seenlS in contradiction with Boudol's encoding of synchrony in terms of the

asynchronous sub-calculus. Notice however that Boudors encoding does not consider

•

•

•

ï9

the sunlmation operator. Recall from section 3 that the irinp-calculus allows only

input guarded choice~ the rrout-calculus allows only output guarded choice~ the ri rnix

allows mixed choice~ and the rrsep-calculus allows both input and output guarded

sununations. but not mixed choice. One way of interpreting Palamidessrs result

is that mixed choice is not possible to encode in the asynchronous/separate choice

fraglnent of the rr-calculus. The example of a symmetric electoral systern in rr made

use of the mixed guarded choice operator. On the other hand~ the construction of

theorem -l,1 ï relied on the confluence lemma~ but this lernnla does not hold in the

presence of mixed-choice!

Hence this nlsuIt is not just about the relation between synchrony and asyn

chrony. but about how (rnixed)non-determinisnl increnlcnts the expressive power of

a synchronaus calcllius with respect to its asynchronotls. choice-free fragnlent.

\\"e also have ta point out that this result ilnposes strong requirements on tl'ans

huions. Particularly. requiring unifonnity \\',r.t. parallel cornposition. l'nies out non

distributed translations (which introdllce rnediatol' pracesses), \Vhcn relaxing these

constraints. a translation fronl full-7i to the core ria is possible. as :':estnlann shows

in [32] .

•

•

Chapter 5

InternaI mobility: the 1r[-calculus

Following the sanIe thenw of looking for a canonical calculus of mobility. based on

sinlplifying the original ii-calculus. Sangiorgi defined the so-calleel "internar' -ii, or

iïf-calculus [41J as an intennediate step bet",een ces and the ii-calculus.

The ruechanisms of iil are simpler than those of ii, and yet they proved ta be

responsible for rIlost of the expressive power of mobility while having a sinlpler theory.

doser to that of ces. The idea was to differentiate between two types of nl0bility:

internal and exte1ïLul. In internaI mobility. the output action can only send pri\'ate

(i.e. bound) naDles. whereas in external rnobility it can send public (i.e. free) names.

In iï both types of nlobility are possible. In Tif only internaI mobility is possible.

The ÎÏf-calculus is a suh-calculus of TI. so it inherits its syntax with the exception

of the free output action. It also inherits the structural congruence and most of the

sernantÎCs.

Definition S.l (Core 1r1 terms). Let N.orl be an infinite set of names ranged D'Uer

by u. v. w, x. y, z, As 'usual, i stands for a sequence of names 1,'LX2"'Xn' ~Ve define

the set of actions Anor, ranged D'Uer by a. 3. "'(, ... , and the set of fusion processes P:rI

ranged D'Uer by P, Q, R, ." as follo'Ws:

•
Cl

P

T

o
u(i)

a.Q

1 u(i)

1 vi.Q

80

QIR .4(i)

• CH.-\PTER 5. Il'lTERlV.-\L AIOBILIT)" 81

.-\s in ÎÏ and 'ira. br including procedural definitions and calls (.4(1)) and allowing

recllrsion~ we can define also the replication operator as: ! P ~ PI! P .

.-\s the syntax shows. input and output are symnletric actions but this synlnletry

is not only syntactic but also semantic as will be shown later. This synlmetry is

akin to that round in ces. where for each name .1' there is a cOluplenlentary name

x. \Ve can express this idea in tenns of the labels of iiI! Le. the actions~ as follows:

if Q = u(x) then Q = u(x); if Q = u(x) then Q = u(x); if Q = T then Q = T. This

operation can be extended ta arbitrary terms! Le. we write P for P replacing every

prefix in P br its dual. This can be inductively defined as fallows:

--de!
v;J:.P = vx.P

•

•

5.1 Semantics

\Ve pravide the l~TS and the LTS based on the salne notion of structural congruence

frolll IT-calcllius (definition 3.8).

5.1.1 Reductions

Civen that free output is not allowed. the only change in the L'TS is the CO:\I~I rule.

The following rule is adopted instead:

------------------- CO~I~I;r(
(-u(x).P + R) 1 (u(y).Q + S) -; vy.(P{y/x} 1 Q)

This rule expresses the idea that communication always creates a bound link between

just the two processes conlmunicating. If the scope of the link is to be enlarged to a

third process this must he expressed explicitly. so it is not possible to rely on linking

free (global) nanles .

• CH.-\PTER 5. I1VTER1V.4.L JIOBILIT1~

5.1.2 Transitions

82

•

•

For the LTS the change is also restricted to the CO~lNI rule. The new ruie. nIaking

use of the concept of complementary actions is:

P~P' QOQ'
-----"-~--.- CO~I~It if Q i= T and bn(o:) = {~.}
p 1 Q ~ VI.(P' 1 Q') 1r1

The l'est of the rules are the saIne as those of 7i-calculus. The input. output and

silent actions are unifornlly handied br the PREFt rule.

Sorne basic properties are shawn in the following proposition. that point out the

syrnnletry of the scnlantics of actions.

Proposition 5.2.

(i) P = P

(ii) P ~ Q -if and only if P ~ Q

Proof. (i) Structural induction.

(ü) Induction on the derivation. \Ve show only the case for CO~I~,1. the rest are

routine. Assunle that P ~ Q where the last infcrence \Vas an instance of the CO:\I~I

l'nIe. Hence P == Pl 1 P"2~ and Q == P; 1 P~ where Pl ~ P; and P"2 ~ P~. Hence

by induction hypothesis Pl ~ P; and P'2 ~ P~. 50. br applying CO:\[:\1. wc obtain

Pl 1 P'2 ~ P: 1 p~: i.e. P ~ Q.

o

5.1.3 Bisimilarity

The great advantage of simplifying the language is that the associated notion of

ground bisimilarity is simplified. In fact~ it is very close ta that of ground bisimilarity.

Definition 5.3 (trI bisimilarity). A binary relation S ç P1r1 X P 1r1 is caLLed a

1r1-ground-simulation iff for any terms P, Q E P'!rl, PSQ implies that

• ~Vhenever P ~ P' and bn(a) n fn(Q) = 0, there is a Q' such that Q ~ Q' and

P'SQ'.

If 8- 1 'lS also a ir{-ground-simulation then 8 is called a ir[..ground..bisimulation.

~Ve say that Q simulates P.o',. that P and Q are similar.W'ritten p~;r[Q. iff

there is a ÎÏ[-g,,.o-und-si'rnulation 8 s'Uch that P8Q.

~lt·e say that P and Q are bisimilar.llJ'ritten P~;rIQ. iff there is a ii[-gro'und

bisirnulation S such that P8Q.

• CHAPTER 5. 11VTERiV.-\L .\IOBILIT'l 83

•

•

:\'ote that this definition is the sanle as ground bisimilarity in the full ii-calculus.

but restricted ta ir[processes. Compared ta late and early variants existent in ii. this

notion is symmetric~ and does not require a separate clause for input actions.

This notion cao also be extended to its weak variant in the sanIe way as done in

section 3.2.

Is this equivalence a process congruence'? Yeso That is the ad\'antage of putting

a linlitation on the language. Before pro\'ing this! let us go back to the exaruple in

. 3) R Il 1 P clef - 1 1 Q clef - - TI b"'l'section ..:... eca t lat =.r y ane =.L'.Y + y ..E. ley are ISlnll al' lU ir[as

well. In ii. undcr the context C(·] cl%! u(y) wc have C[P]j7l'C(Q]. The problerIl there

arose l'ranI the fact that wc replaced the y by .1.' ",hen wc send a nlCssagc ï1(x). The

ii notion of bisinlilarity (bath early and late) requires that. after an input action. the

continuation states be thernselves bisimilar under aU possible s-ub..,titu.tions. On the

other hand, in ir[bisimilarity we do not n1é:"lke such astringent requirement. The input

action is nlatched regardless of the instantiation. In the exanlple~ this nleans that in

Ji[we have C[P]~1I"IC[Q] hecause the action u(y) in C[P] can always be matched by

C[Q]. It is still the case that the equivalence does not preserve arbitrary substitutions.

but even 50. the equivalence is preserved if we are careful not to substitute for a nanle

that is free. Compare the following ta lemula 3.21 in section 3.2.

Lemma 5.4 (Sangiorgi[41]). If y rt fn(P) U fn(Q) then for any x~ P "";rI Q

implies P{y/x} "'11"1 Q{y/x}.

The fact that irl bisimilarity does not force us to match moves for aH substitutions.

and the previous lemma~ paves the way ta process congruence. However~ we do not

neecl to talk about an ··induced~~ congruence that is preserved under ail substitutions

in the sense of definition 3.23. It it enough to preserve the operators. 50 for the

• CHAPTER 5. n\iTER1'l.-\L il/0BILITl' 84

•

•

process congruence we will use the notation rv~I' In the rest of this section we will

omit the subscript Ir1 from bisimilarity and bisinlilarity congruence.

Proposition 5.5 (Sangiorgi[41]). "'~I is preseïved by ail ope'rators. Hence ":"'rrl -

Proo!. To prove that P":"'Q irnplies C[P}":"'C[Q] we analyze each possible case for the

elementary contexts.

(i) To pro\'e Ct.P ,.:... o..Q wc jllst neecl to pro\'e that S = {(a.P. n.Q) : P":"'Q} is il

bisirnlliation. This is so. bccausc the transition ('cP ~ P is matched by a.Q ~ Q

with P":"'Q. This is so for aH actions 0:. including input. because Ollr definition of

bisilnilarity does not require instantiation of the object of the action.

(li) Ta prove vx.P '" v:l'.Q we jllst need to prove that S = {(vx.P. VI.Q) : P":"'Q} is a

bisinllliation. Suppose that (v~·.P. lIX.Q) E S. The possible move for the first clement

of the pair is VL·.P ~ vx.P' where x ri. n(a) and P -4 P'. Since P":"'Q. Q -4 Q' \Vith

P''':'''Q'. Hence. since the sicle condition is the samc 1 we call apply RESTR t and thus

lI~·.Q ~ VX.Q'. 50 (VI.P'. VI.Q') E S as required.

(iii) To prove P 1 R '" Q 1 R wc just Ileed to provc that S = {(p 1 R 1 Q 1 R) :

P"'Q} U ,.:... is a bisinlulation. Take a pair (P 1 R1 Q 1 R) E S. Suppose that

P 1 R ~ JI. There are three possible cases depending on where the action originated:

l.It originated froln R~ i.e. JI = P' 1 R' with R ~ R' and P' = P. Then by

PARt. Q 1 R -4 Q 1 R'. and since P":"'Q we have that (P 1 R'. Q 1 R') E S as

required.

2.It originated from P. I.e. JI == P' 1 R' with P ~ P' and R' == R. Then.

since P":"'Q, Q ~ Q' with pt":"'Q'. So by PARt1 Q 1 R ~ Q' 1 R. Hence

(P' 1 R 1 Q' 1 R) E S as required.

3.It originated fronl an interaction between P and R~ 50 Q = r ~ i.e. JI =
vx.(P' 1 R') with P -4 P' and R ~ R' for sorne action 8 whose object is

x. Since P":"'Q~ we have that Q ~ Q' \Vith P'~Q'. By applying CO~I~I1rI~

we obtain that Q 1 R ~ vx.(Q' 1 R'), and by item (ii) (bisimilarity preserves

restriction), 1"[~ vx. (Q' 1 R') as required.

• CHAPTER 5. nVTER.N.-tL AJOBILIT1'"

5.2 Expressiveness

85

o

•

•

So far wc have seen that the ii[theory is sirnplcr than that of 11. By simplifying

the laIlguage~ the notion of bisimilarity was also simplified and it turned out ta he

a congruence. The natural question that arises is whether this was for free. Oid we

give up on somcthing for obtaining the henefits'? \Ve restricted the calculus to only

being able to send private nanles. \Vhat does this mean in terms of expressiveness"?

Certainly we cannot express now. at least directly, the action of exporting nan1eS

that are not private. But how nluch has been lost by this? Apparently not too nlllch.

according to Sangiorgi. One way to see this is by looking at the kinds of things

that can be done in eithcr language. [n particular we turn now our attention ta the

...\-calculus. The ability to simulate the ...\-calculus is regarded very highly, since it

represents Turing-completeness of a language. It tUrIIS out that 11[. as ir itself. is

powerful enough to encode the (lazy)lambda calculus.

5.2.1 Encoding the À-calculus in trI

Recall from chapter 2...l the encoding of the ...\-calculus into ir. One of the features of

this translation is the use of the free output construct. precisely the one that is not

available in ii[. The challenge is how to overcome this. \Vhat follows is Sangiorgi's

encoding in 7r[.

The translation

Definition 5.6 (,,\ to ii). The translation [.~ : P>. ~ (JVrr [~ Ptrd is given by the

foLLowing equations:

[X~'U d~ x(r).r e....t u

[...xx.A/llu d!J u(w).w(xv).[A/llv with w. u fresh

[AI1Vllu d;j lIv.([~\/llv 1 u(w).w(xy).(y e....t u 1 cell(x~1V)))

• CH.-\PTER 5. I1VTER1VA.L ~\IOBILITY

de! - de! [TIwhe,,.e a y b = a(x).b(y).y y x and cell(x .•V) = ! x(w). ~V 'W.

86

•

•

The new derived opel'atol' can be called '''l'elay link". A process a y b establishes

a link between a and b in the sense that if a pl'ocess sends sonlething on a! a process

listening on b will get a name linked to the name sent through a. This is a powerful

derived constl'uct. sioce it allows us to express a kind of buffel', and thus, an asyn

chronous fornl of conlnluoication. It does not represent a buffer strictly speaking,

since the ndue sent through b cannot be the sarne as the one received through a.

but it cao pass a link to that value. In this sense. the encoding presents a \Vay of

delaying the interaction with particular ports as long as possible. This tunlS out to

he enough to rninlic the original encoding of\ into 1i. and thus suggests a possible

direct encoding of 7i into 7i(.

The l'est of the encoding is very sinlilar to ~[i1ner's. but the polarity of some

interactions has been in\·erted. The ideiL is that when a function tries to access a

naIne (first ruleL the corresponding ÎÏ(process sends the ccII with that name a Iink to

the port u that has the l'est of the argulnents. rather than the sending the location u

directly. \Vhen a lambda abstraction is constl'ucted (second rule), the process informs

the ovel'all expression of the location where it will l'eceive its argurnents. \Vhen a

function is applied! the process obtains the location of the lambda abstraction. and

then sends it the location of the cell containing the argunlent and a link to the l'est

of the arguments.

Correctness

The essence of the correctness proof is found in the properties of the relay operatol'.

which basically express that linked channels respect the beha\'iour of agents in the

sense that linked naInes act as if they \Vere the same channel. These properties are

surnnlarized in the following lemma. It is worth noting the similal'ities \Vith the

properties of equatol's introduced in the context of tra •

Lemma 5.7 (Sangiorgi [41]). Let JI he a À term.

(i) If x, y, and z are different names, then vy.(x y y 1 y y z) ';:::;-rr(X y Z

•

•

•

CH.-\PTER 5. I1VTER1VAL !\IOBILIT}~

(i'i) Jfu! J.' and y a-re different name.s and y ~ fn(J/L then

vx.{:r y y 1 [.\/llu) ~1r[[J/{y/x}llu

(iii) If u and v are difJerent narnes. then v·u.(u y v 1 [J/Du) ~rr[[-'/ilv

Praof. (i) By constructing a (weak)bisimulation.

(ii) By induction on the structure of .\f.

(iii) By induction on the structure of JI.

.\s \Vith the iT-calculus. we prove that [,n is cOlnplete \V,r.t. =,\. ~rr['

Theorem 5.8 (Correctness of ...\ to 1i[translation - Sangiorgi [41]).

Proof.

[(...\x..\/).Vn =vv.([...\.r ..\/llv 1 V(W).LV(J.·IY)·(Y y u 1 cell(xl"V)))

by definition of [. TI

= vu.(u(u.'d·lL:I(.L'rd·[.\/llVt 1 u(w).W(.l·lY)·(Y y. u 1 cell(xl.'V)))

by clefinition of [. n

-4. VWt.(u.J[(xvd.[.\/llvL 1 Wï(XIY)'(Y ~ u 1 cell(xty':V)))

by CO~I~I

~ VXt!J·(([~\/n{Xl/X})Y 1 y y U 1 cell(xL!1V))

by CO~[~[

~ vXl.(([J/ll{Xl/X})U 1 cell(xIY'V))

by lemma 5.7(iii)

Finally we cao prove

87

o

• CHA.PTER 5. L.'lTER~'\j.-\L .\JOBILIT)· 88

•

•

nluch in the same \Vay as in the corresponding result for n-calculus (theorem 3.35). 0

5.2.2 Encoding externat mobility with internaI mobility

The previous section showed that ir{ can simulate the ,,\-calculus much in the saIne

\Vay that ir does. This suggests that internai rnobitity has the same power as external

mobility~ so it is naturai ta ask whether we can find a f"ully abstract translation from

TI" ta ir/. The answer ta this question is positive. Two such encodings have been

provided. One by Boreale in [6L and more recently one by ~[erro in [24]. 80th

encodings lun'c been provided for the asynchronous setting.

Boreale~sencoding is adequate w.r.t. barbed bisinlilarity. and uses an intermediate

language. called the local iT calcuills. in which only the output capabilities of nailles

may be tlë:lnslllitted. Le. a HaIne .r received in a(.r).P. cannot he the subject of an

input action in the body Pl. This encoding is heavily based on the concept of relay

liIlk illtrociuced in the encoding of the ,\-calculus in the previous section.

~[erro's encoding is simpler. does Ilot use an interrnediatc language. and is fully

abstract w.r.t. barbed-congruence. In this section. we present ~Ierro!s emoedding.

Since this embedding is in the asynchronous setting we have to clariCy what is

the a5ynchrono'Us 1it-calculus or 1ita for short..-\t first allowing only bound output

seems to be inconlpatible with iTa's approach to asynchrony in which we drop output

prefixing Cronl the SYIltax. because that would Incan that names sent would not have

any scope at ail. \Ve recover this in the internai mobility setting, by restricting the

syntax of 1ia : a non-blocking output u(.r)P is the term

I1X .(u(.r) 1 P)

This means that in nia the tenn a(y).(z(b) 1 P) is not allowed. and neither is the

term a(y).(z(b) .P)~ but the term a(y) .I1b.(z(b) 1 P) is legal.

l Sangiorgi has also introduced a variant of 1r/ based on this idea of locality! but with a symmetric
treatment, Le. when a name x is sent in u(x).P, then it cannot appear in output subject position
in P. This variant is called 1r/- .[-12]

•

•

•

89

Definition 5.9 ('Tra to ii/a translation (Merro [24]». The translation [.~ : P rtu -f

P rr1a is an homomorphism on all1ra operators e="Ccept free output1 which is translated

according t~:

[U(;L')~ d;j v::.(u(::) 1 equia(x.::))

whel'e equia(a.b) d;J! a(;L·).[b(.r)ll 1 ! b(x).[a(x)~

The agents equia(a.b) are closely re1ated to equators fronl chapter ..t The following

hoIds for aU a! b: [a,.;. b~ = equia(a.b). Furthernlore the properties described in

proposition ~.6 also hold for thesc proccsses.

The corrcctness is established by the following. Hcre wc dcnote ~~/d for weak

barbed congruence of ii/ct proccsses. and ~~<1 for weak barbed congruence of iia pro

cesses.

Theorem 5.10 (Merro [24]). The translation [. ~ frout definition 5.9 is Jully ab

struct w.r.t. weak barbed congruence! i.e. for aU P. Q E P rr•• il hoids:

p ~~.. Q if and only if [P~ ~~/f. [Qn

The proof of this theorerll is based on a new notion of bisinlilarity. called synony

rno'us bisimilarity. \Ve onlit the description and proof. which arc found in [2-1]. but

we sinlply mention that equators play the l'ole of substitutions.

From this embedding we can conclude that internaI mobility can faithfully express

externat mobility.

•

•

•

Chapter 6

Channel fusions: Fusion and

x-calculi

In the search for the "canollical calculus for cOllcurrency" . the central theme has been

to look for the "righf~ notion of behavioural cquivalence. In the previous chaptcrs wc

have studied variants of the ii-calculus that folio\\' the philosophy of restricting the

full calculus in one \Vay or anothcr sa that il simple dcfinition of bisinlilarity in these

sub-Ianguages can be used as behavioural equivalence. A different approach was taken

by the Fusion calculus introduced by Victor and Parrow ([45]), and independently

br Fu ([11]) \Vith the so-called\-calculus. In this "fusion" approach the language

is simplified but not restricted. This means that the ii-calculus is a sub-calculus of

Fusion~ and thus Fusion inherits aU of ii'S expressi\-c power. Closely related is the

work of Gardner and \Vischik in iiF. fusion systems, and symnletric action calculi

([12], [-t9]).

As the iT[-calculus, the Fusion calculus simplifies iT by ruaking the input and

output actions synlmetric. However it takes the opposite approach. In iT. input

is binding, but not output. In ilf. both input and output are binding operators. In

Fusion neither is binding. This might appear strange, particularly in the case of input.

but one should not think of input and output in the saIne way, since the concept of

communication changes. In an interaction, the "sent" and '"received" names become

identified through \Vhat it's called a fusion.

90

• CHA.PTER 6. CHA.1V1VEL FUSI01VS 91

•

In the ïr-calculus, the effect of communication is local to the receiver of informa

tion. Consider for instance the following reduction in ÎÏ.

l/X,y.(ü(y).P lu(x).Q 1 R) --t l/J;,y.(P 1 Q{y/x} 1 R)

[n this reduction. only Q is affected by the interaction. In the Fusion calculus. this

interaction produces a "fusion" between the nanles .1.' and y. which means that they

becolne identified in their entire scope. thus affecting e\'ery agent in that scope:

l/X.y.(ü(y).P 1 u(.r·).Q 1 R) --t l/.L,Y(P 1 Q 1 R){y/.r}

These global effects make it appropriate for representing shared ste:lte, and in partic

ular for encoding concurrent constraints.

(Juder this new notion of cOllullunication as fusion, it doesn't make sense to make

the input operator binding because that would mean that the value sent only affects

the receiver. In Fusion, the only binding operator is restriction. \Ve enlphasize the

sYIl1rnetry between input and output by adopting a new synta..x, dropping the brackets

fronl both of thern.

Definition 6.1 (Fusion terms). Let .."IF be an infinite set of na'mes ranged over by

u. v. w, J:, y. z As 'Usual. i stands for a seq'Uence of names XlXZr,t. Let:.p range

over equivalence relations with do'main NF, ~Ve define the set of actions A F • ranged

D'Ver by a.:3. :' and the set of fusion processes P F ranged over by P. Q. R.... as

follo'Ws:

Q ..- u(i)

P .. - 0

u(i) .;

Q.Q 1 l/i.Q 1

[x = y].Q [x i= y].Q

QIR

1 .-l(i)

Q+R

•
The action 'P is an explicit fusion {i: = fi}. The T action of ïr-calculus corresponds

to the identity fusion, Le. {i = i} and is written 1.

It is often convenient to specify a fusion 'P explicitly, but it is not strictly necessary

to include it in the syntax. The term denoted {x = y}.P is sinlply syntactic sugar

for vu.(Tl(x) 1 u(y).P) . .-\ fusion can CO\'er several Hantes at the same time~ i.e. {i =

fi} = {XL = YL~I2 = Y2,···,1.·n = Yn} where i' = ~·L,.z:2, I n and il = YL·y2 .. ···Yn·

The size of a sequence of names i is denoted Iii .
.-\s in the previous variants. by including procedural definitions and calls (.-\(Ï))

and allowing recursion. we can define also the replication operator as: ! P d;1 PI! P.

It is easy to see that the iT-calculus, as weil as iiJ and iTa are sub-calculi of Fusion.

If binding is '~forced" on an input or output action, a-conversion and scope extrusion

guarantee that the fusion is realized. but the result will be that of restricting the

effect of the interaction. thus. sinllliating both iT and iTJ: Le.

• CHAPTER 6. CH.·tN!VEL FUSI01VS 92

•
ü(y).P 1 vx.u(x).Q ü(y).P 1 vx'.u(.r').Q{x'j.r}

vx'.(IT(y).P 1 u(1..').Q{x' j.r})

vx'. (P 1 Q{x' / x}){ y / 1."}

PI vx'.Q{x'/x}{U/x'}

P 1 V:L·.Q{y/ x}

where

•

The original presentation of the Fusion calculus. called the Update calculus was

monadic. i.e. only one name at a time could be conlnlllnicated. The full Fusion

calculus is polyadic. and this permits the identification of t\Vo names received or sent

through a channeL for example:

Tl(::::) .Plu(xy) .Q ~ (P 1 Q) {:: / x } { ::/ y }

Agents of the l'orm u(::::). which input the same naIne twice, are called catalY.5t agents.

Another interesting example of the power of fusions is the delayed input operator.

written u(x)P. Delayed input corresponds ta non-blocking receive. The process

that issues an input action is allowed to continue; if there is an output action on

x in P. P blocks until the input action u(x) meets a corresponding output on u

that instantiates x; then the substitution is performed. In the Fusion calculus this

can be achieved simply by placing an input action in parallel \Vith the process, i.e.

• CH.-\PTER 6, CHA1V1VEL Fl..iSI01VS 93

•

•

vx.(u(x) 1 P) l, 50 the fusion performs the substitution. Thus, delayed input can be

seen as "asynchronous receive~'. This cannot be encoded directly in 'li bccause the

binding of the name received extends into the process performing the input action.

Le. in fusion the binding of .1' in u(x) 1 P extends ta P. but not 50 in 'li.

The fact that 'li is a subset of Fusion and the examples shawn here suggest that

the Fusion calcuills has greater expressive power than n. However. it turus out that

the Fusion calculus can be encoded in 1i. This will be shown in section 6.3.2.

6.1 Semantics

Fusion inherits the saIne basic concept of structural congruence fronl 1i. but the

reduction relation and the labelled transition relation are diffcrent. In order to provide

the senlantics of fusions, wc need to determine the exact Ineaning of the effects of

fusions as substitution. In the following, a ranges over name substitutions.

Definition 6.2. A substitution a agrees with a fusion ..p if for any x. !J E NF, .L'Y!}

if and onlyif a(x) = a(y) . .4 s'ubstitution a is sa'id to !Je a substitutive effect of a

fusion y; if a agrees with..; and for any x. y E NF. a(x) = y implies x:.;y.

For example. the substituti\'e effects of the fusion {a = b} are {ulb}. and {bla}.

The identity fusion l has only one substitutive effect. namely, the identity substitution

{x/~'}, for any I.

For notational convenience we define ...; \~. as the equivalence relation that results

from taking out ail references of x from ..p. except for the identity. Formally..,: \ .r d!:l

.;n((NF-{x}) x (NF-{x}))u{(x!x)}. Forexanlple {.r = y,y = :}\y = {x = z}.

Also! we consider the domain and range ofa substitution as dom(a) = {x : a(x) :j:. x}

and ran(a) = {a(x) : a(x) :j:. x}.

l ~ote the similarity of this construct \Vith the non-blocking output of ;rI, as in IIx.(ü(x) 1 P}

• CHAPTER 6. CH.-\l\llVEL FUSI01VS

6.1.1 Reductions

94

•

•

For the reduction semantics. it is enough to replace CO~L\I with the following axiom:

------------------- CO~I~IF
liZ.((u(i') .P + Pl) 1 (u (fj) .Q + Q') 1 R) -l> (P 1 Q 1 R) a

if]il = IDI, (j agrees \Vith {i' = DL dom(a) = z! and ran(a) n: = 0

The l'est of the rules are the saIne as those of ii-calculus.

6.1.2 Transitions

For the labelled transition seluantÏCs the transitions ,vill be annotated not only by

input or output actions, but by fusions as weIl. \Ve ha.\'c to replace CO:\I~l with:

p u(i\ P' Q ü(!i) Q'
_ _ CO~I~I~ if Iii = IYI

p 1 Q {x=y}) P' 1 Q'

As in 1ï[. The input. output and silent actions are uniformly handled by the PREF t

rule.

Finally we also add an additiollal rule for dealing with the scope of variables in a

fusion.

P~P'
------- SCOPE~ if L'PY and x i= y

.,,\x
IIX,P~ P'{y/x}

This requires a little explanation. The label :p must be a fusion. The SCOPE rule

states that if P can evoh'e into P' by perfornling the fusion 9 in which two different

names x and y are identified~ then vx.P cao evo1\'e into P' replacing x by y. in a

fusion that hides x. This rule expresses the visible effect of fusions.

The l'est of the rules are the same as those of ii-calculus.

6.1.3 Bisimilarity

The Fusion calculus also enjoys a simple notion of bisimulation.

Definition 6.3 (Fusion bisimilarity). A relation S C P F X P F is called a strong

fusion simulation iff PSQ implies:

• CHAPTER 6. CH+-\:.\j~'\jEL FUSIO!VS 95

•

•

1 ;
• ~Vhene'Uer P ~ P' and bnC"y) n fn(Q) = 0 then for so"~e Q'. Q ~ Qf and

P'aSQ'a for sorne substitutive effect a of "r'.

If S- L is also a strong fusion simulation. then S is called a strong open bisimu

lation. ~Ve say that P~FQ if t!tere is a strong fusion sim'ulation S such that PSQ.

~F i,,; called strong fusion similarity. ~Ve say that p":",, FQ if t!Lere is a strong

fu.sion bisànulation S such that PSQ. ,--:.., F is called strong fusion bisimilarity.

.-\s usual. wc obtain the corresponding weak bisirnilarity ::::: F hy replacing the

strong transitions with weak transitions.

This definition of bisinlilarity coincides with ground-bisinlilarity in the treatrrlent

of input and output actions. but special care has to be given ta fusions. [1' the action

Î' was a fusion. we conlpare the continuations only aftcr the substitution has taken

place.

Unfortunately. fusion bisimulation is not a congruence. for reasons sirrlilar to

ground bisimilarity not being a congruence in the full-ii-calculus. Heuce. equivalence

is defined as follows:

Definition 6.4 (Hyperequivalence). il hyperbisimulation is a fusion bisimu

tation closed under' sub8t'itution. IVe say that two processes P and Q a're hyper

equivalent. w,itten P ""'F Q if t!Lere i8 a hyperbisi"~'Utation S 8uch that PSQ.

\Ve define similarly weak hyperequivalence (::::: F).

\Vhen considering the language without nlÎsnlatch. the following has been estab

lished2
:

Theorem 6.5 (Victor ([45]). Hypereq'uivalence is a congruence.

There is a close relationship between equators as described in chapter 4, and

fusions. \Vith the notion of hyperequivalence established, it is easy to prove the

following properties. analogous to proposition 4.6:

2Fu and Yang show in [Il] the problems introduced by the rnismatch operator. and propose sorne
variants to the definition of bisimulation.

• CH.-\PTER 6. CH.-\l'llVEL FUSI01VS

Proposition 6.6 (Fusion properties).

(i) {a = a} "" F vb. ({a = b}) '" F 0

(ii) {a = b} "'F {b = a}

(iii) vc. ({a = c} 1 {c = b}) ~F {CL = b}

(iv) P{a/b} ~F vb.({a = b} 1 P)

6.2 Sorne variants of Fusion

96

•

In this section we introduce t\Vo sinlplifications of the Fusion calculus that turn out

to have sorne inlportant significance from the exprcssiveness point of view: the asyn

chl'onous fusion calculus ([23]) and the fusion calculus of solos ([19]) .

6.2.1 Asynchronous fusion

This variation of Fusion treats the sending action as non-blocking in the style of ÎÏu •

As in 1r1! this is achieved by dropping the continuations of output actions. By analogy

with 'Tru we also get rid of the choice operator. The syntax is

p o 1 .; 1 u(i).Q 1 ü(i') 1 v1:.Q 1 Q 1 R 1 .-\(i)

The change in the reduction relation is simple; wc replace the CO~I~I rule by:

------------ CO~l~IFu
vz.(ü(i) 1 u(Y)·Q 1 R) --t (Q 1 R)C7

if Iii = IYI, C7 agrees \Vith {i = y}, dO~(C7) = z, and ran(a) n z = 0

For the labelled transitions we keep the sanle rules of Fusion, including CO~I:\I,

but replace PREF~ \Vith INP and üGT as \Vas done in 'Tra , Le.

• ----OUT t

ü(i) ü(.r\ 0 Fa
-----INP~a

u(x).P u(i\ p

• CH.-\PTER 6. CH.-\lV1VEL FUSI01VS

6.2.2 Solos

9ï

The asynchronous Fusion calculus simplifies Fusion! but breaks the original syrnmetry

of input and output. It is possible however to recover the symmetry by dropping

continuations from input actions as weiL i.e. a11 input actions are delayed! or non

blocking "receive!' operations. \Ve cali the resulting calculus "Solos" [19}. The synta,,<

is

p o u(i) 1 ü(i) vi.Q QIR .4(i:)

•

•

The change in the reduction relation is sinlple: wc replace the CO~[~(rule by:

--------- CO~[~[Fs
vz.(ü(i·) 1 u(fj) 1 R) -+ Ra

if IiI = IYI. a agrees \vith {i' = y}. dorll(a) = z. and ran(a) n z= f/J

For the labelled transitions we keep the same rules of Fusion. iucluding CO~I~1.

but replace PREF~ with

Cl PREF~s
Q~O

Surprisingly. this simplification does not Iimit the expressive power: Fusion can

be encoded in Solos.

6.3 Expressiveness

In this section we explore the expressiveness relations of Fusion! both between the

Fusion variants alone. and between Fusion and ir-ca1culi.

6.3.1 From Fusion to Solos to Asynch-Fusion and back

It should be clear that Asynchronous Fusion is a subset of Fusion, and Solos is a

subset of Asynchronous Fusion. Laneve and Victor have proved in [19] that the

• CHA.PTER 6. CH..L'I1'lEL FUSIONS 98

•

•

Fusion can be encoded in Solos (and therefore in Asynch-Fusion).

Laneve and Victor provide t\Vo encodings of Fusion in Solos~ both fully-abstract

with respect to barbed bisimulation. The first encoding is compositional. but makes

use of the match operator. The second encoding does not use match. but is not

conlpositionaL or unifornl in the sense of Palanlidessîs definition (section -1.2.2). In

both encodings. catalyst agents (e.g. u(:.:)) play a central l'ole.

\Ve present now the first encoding.

Definition 6.7 (Fusion ta Solos translation ([19]). The translation [. ~ fro1n Fu

sion processes ta Solos processes is an horno"morphisrn on aU operators except input

and output which are handled by the following:

[u(i).P~ de! vw.:.(Ll(i.:u.'w) 1 [z = W][P~)

[u(i).P~ de! VW::.(U(i:WW:) 1 [z = W][Pll)

This encoding enjoys a pleasing symmetry in the translation of the conlplemen

tary actions. The correctness of this translation is established with respect to barbed

bisimulation for fusion. The notion of barbed bisimulation is analogous to the one de

scribcd in definition 3.32~ where observability is defined as in definition 3.31 changing

the case of binding input with Fusion's free input. \Ve denote "'~ and ~~ respectively

the largest strong and weak barbed bisinlulation for Fusion processes. and ,..",,~ and

~} strong barbed congruence and weak barbed congruence.

Theorem 6.8 (Laneve, Victor ([191». The translation [·n of definition 6.7 is Jully

abstract with respect to strong barbed bisimulation.

\\Te omit the complete proof~ since it is rather simple~ following the lines of theorem

• 99

•

•

2.10. but we show the interesting part. i.e. ho\\" a basic interaction is sirnulated:

[V:r.(u(y).P 1 u(x)·QH

~ vx.(vzw.(u(ywwz) 1 [: = w][P~) 1 vzw.(u(.rzww) 1 [z = w][Q~))

=VXWILL'2Z1Z2·Cii(YWLlL'1:1) 1 [ZL = wd[P~ 1 U(XZ2lL'2W 2) 1 [Z2 = W2][Q~)

~ VZL,([Zl = wd[P~ 1 [:2 = W2][Q~){Y/x, ZL/WL. ZL/W21 Zl/Z2}

- ([P~ 1 [Qll){y/x}

- [(P 1 Q){y/xH

The encoding of this section can he extended to hanclle separate-guarded choice

by llsing the misnlatch operator as follows:

[~(Ul(.iI).Pi~ dei L/'lCz.ndW =1 Z](lll(i':IZWW) 1 [iL' = ZI[PI~)

[~rlli(.ii).Pi~ dei VIL'Z.nd1L' =1 Z](U;(.illL'WZ) 1 [w = z][Pill)

This extension can be applied to translate single prefixes Cr.P. by treating them

as a special case of a sunlmation with only one summand.

6.3.2 From 1r to Fusion and back

\Ve have seen that the Fusion calculus simplifies the 'iT calculus, and yet it extends it.

The enlbedding of the rr-calculus in Fusion is very simple: the input operator of ii is

mapped to input with explicit binding of the object of the input action. and the rest

of the operators are the same:

u(X).P r---f vx.u(x).P

An immediate corollary is that we can encode easily the À calculus in Fusion.

Several aspects of Fusion, snch as the catalyst operators, and delayed input sug-

• CH.-\PTER 6. CHA1'li'lEL FUSI01'lS 100

•

gest that the expressiveness of Fusion is greater than that of iT, since none of those

operations are directly encodable in ir. However, it turns out that this is not the case.

Fusion is encodable in if,

Recall from the previous section that any Fusion ternI can be encoded in ternlS

of Solos. and this is automatically a ternl in Asynchronous.Fusion. [n [23] ~Ierra

pro\'ides a fully·abstract encoding of Asynch- Fusion in "liCl'

~ote that since the full-iT calculus is encodable in Fusion. this encodability of

Fusion in iiu appears to be in contradiction with Palanlidessi 's theorCIIl on the irnpos

sibility of encoding the full ii·calculus iuta "lia' However Palalnidessïs ilupossibility

result restricted the types of translation to be "uuifornl" and "reasonable·'. but as

Xestmann showed in [32], when rcla.xing thase constraints on the translations. it is

actllally possible to go fronl full-iT to iru. :\Ierro's encoding. as well as Victor and

Laneve's are not llnifornl. and therefore there is no contradiction with Palanlidessi's

result. Furtherrnore. thesc encodings caver only separate-guarded choice. and not

mixed-choicc.

[n this section we present ~Ierro's encoding of Asynch-Fusion into iTu • In this

tra.nslation wc extend the notion of eql1ator to a polyadic setting br defining à - b
to denote al - bl 1 U2 ~ b'l 1 ... 1 Un -- b'l'

Definition 6.9 (Asynchronous-Fusion ta core ÎÏa translation ([23]»). The tran.-;

talion [. ~ f7'o'm core ÎT(l processes to A.5!Jnchl'ono'us Fwrion processes is an ho'mo'mor

p/risTn on all operato'T's except input which is hanclled by the following:

[u(i:).P~ de! U(Z).(Z - i 1 [PTI) where : ~ fn(P)

•

This encoding highlights the close relation between fusions and equators. The

correctness is established with respect to closed barbed congruence, which is barbed

congruence as described above. but instead of being closed under arbitrary contexts~

it is closed under contexts whose free names appear only in output subject position

(analogous to local 1i).

Theorem 6.10 (Merro ([23]». The translation of definition 6.9 is fully-abstract

wüh respect to closed barbed congruence.

Again. we onüt the complete praof of correctness. referring the reader to [23], but

we show how the basic fusion interaction takes place. Of particular interest is ho\\'

the global effects of fusions are simulated through equators.

• CHAPTER 6. CH.·LV~VEL FUSIOiVS

[v~L'.(U(y) 1 u(x).Q 1 RH
d~ vx.(u(y) 1 u(.:).(.: - x 1 [Q~) 1 [RD)

-» vx.(y -- x 1 [Q~ 1 [R~)

d;J vx.(y - x 1 [Q 1 RD)

~1f'l [Q 1 R~{y/x}

=[(Q 1 R){Y/~'H

by def 6.9

by CO~I~Ia

by def 6.9

by proposition -l.6(iv)

as required

101

•

•

~ote that the substitution property of ('quators (proposition -l.6{iv)) holds only in

the asynchronous if calculus and Ilot in the synchronous n. Howevcr. we can encode

the synchronous Fusion calculus in iia by first translating a synchronous Fusion term

into Solos. as was shown in the pre\'iolls section. and then wc apply this encoding.

since Solos is a subset of :\synchronous Fusion.

•

•

•

Chapter 7

Concurrent Constraint

Programming

50 far we have focused on ca1culi specially geared towards nlobility. :\'OW wc look

at a paradigm \Vith a different focus. The fanlily of Concun'ent Constra'int Pro

graTTL'm'ing languages ([~3]. [39], [35]L or CCP for shore is a paradigm based on the

shared nwnlory model of conlmunication. In the basic model. a systern consists of

a shared constraint store. and a collection of agents or processes that perform t\Vo

basic operations: teUing a constraint. Le. adding a constraint to the store. and asking

if a constraint is entailed by the store. The ask operator is blocking~ so the agent

performing an ask will continue processing only when the constraint is satisfied by

the store. The tell operation on the other hand is non-blocking, thus making this

an asynchronous nlodel. In the basic model. the constraint store is nlonotone in the

sense that one can only add constraints, but cannot removc thenl. l

The syntax of CCP is dcfined as follows:

Definition 7.1 (CCP Terms). Assume a set of names NeCI a set of assertions or

constraints A cc , ranged over by (7, riJ, cp, etc. The set of CC-terms, denoted Pcc,

ranged over by P, Q, R, etc, is defined inductively by the syntax shown in table 7.1.

LThis assumption is dropped in a variant of CCP called "Linear CCP" .

102

• CH.-\PTER ï. C'OlVGURRE1VT C01VSTR.-\LVT PROGR.-\AIAJllVG

p .. - T ~il

tell(a) Tell

ask(a) -of Q :\sk

3x.Q Restriction

QJ\R Parallei composition

Q+R Sunlmation

.-\(i) Procedural calI

Table 7.1: The syntax of CCP

103

•

•

The :'iil. RestrictioIl. Parallel cOinposition. Summation and Identifier operators

play the same l'oies as their rr-calculi counterparts. Tell. posts a constraint in the

global store. :\sk. queries the store to sec if its condition is entailed. If so. it continues

processing. If not. the agent asking. blocks ulail its condition is satisfied br the store.

Since a systenl is specified by stating constraillts o"er variables. a nuiable does

not necessarily have a specifie value..-\ "ariable can have a partially dcfined value. in

the sense that a constraint is a restriction on the variable. determining the subset in

which its value lies, but not fixing the variable to one particular point.2 Computation

proceeds by reducing constraints as nluch as possible, thus narrowing or refining the

possible values of variables.

The declarative nature of CCP suggests a close relationship with Logic. This

turned out to be a tight connection. ~Iendler, Panangaden, Scott and Seely [22]

established a precise link. in categorical terms. between CCP and (a subset of) In

tuitionistic Logic. This is a link in the sense that they are bath instances of a more

general (category theoretical) concept called a ··hyperdoctrine". This means that one

can read CCP programs as sentences: telling a constraint corresponds to simply as

serting the formula of the constraint; asking if a constraint is true, and then executing

a process corresponds to (a limited form of) logical implication; parallel composition

21n the context of Logic Programming, such variables are usually called '"logical variables".

• CHAPTER 7. C01VCURRE1VT C01'fSTRA.llVT PROGR.-\Al1\IIlVG 104

•

•

corresponds to logical conjunction; and the restriction operator corresponds ta ex

istential quantification. This correspondence is not merely syntactic. but semantic.

Computation in CCP can be interpreted as logical inference. The redllction of a ternI

is a proof. In a similar fashion. Linear CCP is linked to Girard's Linear Logic[13].

This relation of CCP with logic is very significant. however, in this chapter wc will

emphasisc the operational view of CCP rather than the logical perspective.

CCP is not one particular prograrnnling language. It i5 a fanlily of languages.

It is paranletrizecl by a COrL8tnt'int sY8te'm (CS for short) which specifies what kind

of constraints the store handles. .-\ CS is a language for talking about the entitics

that the programs cleal with. togcther with an "entailrnent" relation that pro\'ides

the nlechanisnl for answering queries. The store can be secn then. as a formula

represcnting the conlbination of the constraillts.

An exanlple of a typical CS has variables and nurnbers as terms, and constraints

are cquations and inequations betwecn thenl. For instance, .\" ~ 8, Li = .\". }' ~ U are

clements in this kind of CS. EntailnlCnt is assumed to be compatible with arithmetic.

e.g. the formulas given above cntail Li :5 8. U :5 }', }' ~ .\", etc.

Another useful CS is the Herbrand constraint system. In this system. the basic

entities are nanles representing \'ariables or constant symbols, and terms are function

or predicate symbols with names and terms as argunlents. For example. a Herbrand

CS ITlay have elenlents such as the formulas R(.\". k). R(a. g(~\L bL f(g(bL)") =
J(.\". k(.\")). etc.. where a. b, k are constant symbols, .\"!}" are variables. R! = are

predicate symbols! and f. g. h are function symbols. Entailment is based on the

notion of unification between terms related by the special equality predicate (=). For

instance. the fonnula f(g(bL }.) = f(.\"~h(~\)) entails.\" = g(b). Y = h(g(b)). etc.

7 .1 Semantics

7.1.1 The constraint system

The semantics of CCP is built upon the notion of constraint system. This notion

abstracts away the inner workings of the query-answer mechanism. In the following

• CH.olPTER 7. CONCURRE1VT C01'lSTR.-\Il'lT PROGR.-\AIAJING 105

•

•

definition ([39]) we use the notation P/(.ol) for the set of finite subsets of .-\! and

A Çf B ta Inean that .-1 is a finite subset of B.

Definition 7.2 (Constraint Systems) . .4 structure (A.I-) is caLled a constraint

system. if

• A is a non-empty, countable set of assertions 01' (prirnitive)constraints (ac

cording ta so'me syntax) .

• 1- ç P/(.A) x P/CA}, called an entailment relation. satisfies the following, for

any a,lj), 9 E PI(A):

(i) If lj) ç a then (j r- 11)

(ù) If al-:,; and 'P 1- lj.,,' then a 1- l;.,'

~Ve abb'reviate a 1- {p} as a 1- [J • .4 store o'r element of (A. 1-) is a set of assertions

CT •.;'Uch that if a ç P/(A) and if for any p E A and a' Çf a .'flLCh that a' r- p then

p E a. The set of ail ele'Tnents of (A. 1-) 'i,-; denoted IAcel. Two .stores are Equivalent.

written a Hil' iif a 1- l.J and v r- a.

This definition is extended to handle the concept of hiding private names from

the store. by the notion of cyl'indric constraint systems ([39]). The idea is to model

hiding of a variable x with a function 3x that takes a store as argument and returns

the store without any references of x. \Ve also extend the notion constraint system

to handle name equations, nlodeled by the so-called diagonal elernents.

Definition 7.3. A structure (A, 1-. Var, 11.) is called a cylindric constraint sys

tem if:

(i) (A, 1-) is a constraint system.

(ii) Var is an infin'ite set of variables.

(iü) 11. = {3 x : P(A) -; P(A) 1 ~. E Var} S'uch tkat for each x, y E \/~ar, a,tj; E P(A):

• CHAPTER ï. COiVCURRE1YT CO~VSTR.-\IJ.VT PROGRAJIAlll'lG

• if a r 1/; then 3x O' 1- 3x iP

• 3x (a U 3x w) H 3x O" U 3x iL'

106

•

•

(iv) For e'very x ~ y E Var the're is a dxy E A~ called a diagonal element such that:

• if.r =f. y then {dxy } H 3;: {dxy • dl);:}

• {dxy } U 3x (a U {dxy }) r a

Since a store is a set cOlltaining assertions. we can think of it as the logical

conjllllctioll of these assertions. The crnpty store corresponds to true. an inconsistent

store cOlTesponds to false. the function 3x • corresponds. as the notation suggests. to

existential quantification. and a diagonal elenlCnt dxy represents the fonnula .L' = y.

:1

\Ve extend the syntax of CCP so that the argument of tell and the argument of ask

are elenlents in IAcel. not just prinlitive constraints in Acc . The notation tell(al U(2)'

also written teLl(al Â a2L should be interpreted as adding the logical conjunction of

al and a2 to the global store.

In the l'est of this section we assume that we have fixed a cylindric constraint

system (Ace.r.Ncc, H.).

7.1.2 Structural congruence

:\s \Vith ir-ca1culi. we define a notion of structural congruence in terniS of the concept

of process congruence, which has to be adapted to the context of CCP.

Definition 7.4 (CC-process congruence)..4 CC-process congruence "'cc ç
Pee X Pcc is an equivalence relation among agents such that for ail p~ pt E Pcc if

P ::::cc pt then:

3Notice that in a set "P containing only diagonal elements, 3x 'P coincides with 'P \ x as defined in
the context of the Fusion calculus in section 6.1.

• CH.-\PTER ï. COl\lCURRE1'lT C01'lSTR.-\Il'lT PROGRA.AIAlll'iG

(i) For any a, a' E IAcel such that a H a',

• tell(a) ~cc tell(a')

• ask(a) -+ P ~cc ask(a') -t P'

(ü) For any na'me .r. 3x.P ~cc 3x.P'

(ùi) Fo'r any agent Q.

• P 1\ Q ~cc P' 1\ Q

• Q 1\ P ~cc Q 1\ P'

• P + Q ~cc P' + Q

• Q + P ~cc Q + P'

lOT

•

•

~o\\' wc cao define the structural congruence in the same \Vay we did for 7r-calculi.

\Ve omit the formai definitions for substitution and alpha-conversion. They are the

standard rules ta avoid nante capturing. as in the lambda calculus or in the ir-calcul us.

Definition 7.5 (CC-structural congruence). The CC-structural congruence =cc

ç Pcc x Pcc is the CC-p'T'Ocess congruence that satisfies :

(i) P =Q if P =0 Q

(ii) (Pcc, 1\. T) is an Abelian (co'rnmutative) nwnoùl:

.PI\T=P

.PI\Q=QI\P

• (P 1\ Q) 1\ R = P 1\ (Q 1\ R)

(ii'i) • P + Q =Q + P

• CP + Q) + R = P + (Q + R)

(iv) 3x.T = T

(v) 3x.3y.P =3y.3x.P

• Cff.-\PTER ï. C01VCURRE;.VT CO~VSTRA.INT PROGR..L\L.\IING

(v't) P Â 3x.Q =3x.(P Â Q) if x rt fn(P)

108

•

•

The axiorllS for structural congruence are the same as the corresponding axionls in

ii-calculi from definition 3.8. interpreting 0 as T! VI as 3x! 1 as A! + as +. taking

out the a.xionlS for match and mismatch. and adding the last a.xionl for combining

constraints. ~otice that if the elements of the constraint system are only diagonal

elelnents. i.e. name equations. wc could also have an a.xiorll analogolls to the match

ëLXioIU. corresponding to ask as in:

ask(x = y) ~ 3::.P == 3.:.ask(x = y) ~ P if.: is a different naIne of .r and y.

Since wc are considering any constraint system. and not rcstricting oursel\'es to naine

equations. wc do not use this axioln in this presentation of CCP. but wc will be able

to show that these ternIS are bisirnilar .

7.1.3 Reductions

\Ve now introduce the recluction semantics of CCP." The CTS (PCC! CS. =CC! ~ccL is

paranletrized by the cylindric constraint systenl CS = (Ace! 'r.Nec.1i). :\s usual. we

omit the subscript cc from the congruence relation and from the reduction relation

when it is clear that we are talking about CC tenns.

Definition 7.6 (CC reduction). The red'Uction relation ~ ç Pcc x Pcc 'lS the

smallest relation o'Uer CC-processes satisfying the f'Ules in table 7.2.

~otice that the difference \Vith the CTS for ii-calculi is in the interaction rule

(ask) and the tell rule. which assurne the existence of a constraint system. In this

presentation of the semantics. we can view the store as just another process or set

"The definition provided here is based on the semantics for the p-ca1culus ([3-1]) 1 which extends
the standard CCP model with first-order functional abstraction. Here we present only the part of
the semantics considered to be "pure CCP" , i.e., according to the model introduced in this chapter l

without reference to functional abstraction.

• CHAPTER ï. C01VCURRE1VT C01'/5TRAI1'lT PROGR.-\AIAII1VG

----------- TELL if 0'1 U 0'2 H l/J
tell (O'd /\ tell (0'2) -; tell (lp)

--------------- ASK if 0' ~ 1;)

(ask(~~) -7 P) /\ tell(O') -7 P /\ tell(C1)

109

P -7 P'
------PAR
P /\ Q -7 P' /\ Q

P -7 P'
-----RESTR
3.r.P -7 j.r.P'

P -7 P'
-----SL~[
P+Q-7P'

P{jj/i} -7 P'
----- ID if A(i) d;j P

.-l (jj) -7 P'

•

•

P-7Q
---CO~GR if P == P' and Q =Q'
p' -7 Q'

Table 7.2: CCP redllction rules

of processes in parallel with the rest of the systerll. The store is transparently clis

tribllted. and not centralized. These rules also nlake explicit the pernlanent nature of

constraints: the effect of teHing a constraint is cquivalent to having a process peren

nially asserting the constraint. so it retnains active even after an interaction with an

ask. 5

7.1.4 Transitions

There are several approaches for presenting the LTS of CCP. In the first form. labels

are actions O'! and a?! representing tell and ask respectively..-\ second presentation.

contrasting \Vith the UTS. makes an explicit separation bet\Veen the store and the

processes. Labels in this presentation are actually pairs of stores, that represent the

state of the store before and after the transition takes place. \Ve write this in t\Vo

ways: P (tT,tT')~ P' or equivalently~ (P, a) -; (P'~ a'). This presentation~ based on

pairs of stores as labels. is the one given here.

The LTS (Pcc, CS, =CC! -7cc L is parametrized by the cylindric constraint system

CS = (Ace, ~~Nce' 1l) .

Sin Linear ccp, the constraint would disappear after such interaction.

• CH.-\PTER 7. COIVCURRE~VT CO~VSTR.-\nVT PROGR.-\~\IJII~VG 110

------ TELL t
tell (f/J) (O',O'Ue,'))) T

P (0',0")) P'
------ St:'~It

P + Q (0',0") P'

-------- :\SK t if a f- 0
. (0',0')

ask(a» -). P -t P

P (0',0")) p'
-------- PARt
P 1\ Q (0',0")) P' 1\ Q

•

•

P (3.r0'.1!»)) P'

. RESTR}
3x.P (O',O'

U3
.r<;») 3x.(tell(q» 1\ P')

----------------- RESTRt
3x.(tell((D) 1\ P) (0'.O'u3.r~') 3x.(tell(rj') 1\ P')

P{ -/ -} (0'.0") P'
y.r --) lOt if A(1) (J;j P

A (il) (tf.O") P'

P~Q .
---- CO:\G t if P == P' and Q =Q'
P' (0'.0" \ Q'

Table 7.3: CCP transition rules

Definition 7.7. The transition relation (4') ç Pcc x IAcel x Pec X IAcel over agents

in Pcc and stores in IAcel is the least relation satislying themles in table 7.3

The rules are straight-forward. The on1y rules that require sorne explanation are

the restriction rules. In RESTR} ~ when an agent 3x.P is evaluated, aIl constraints in

a about x are hidden fronl the agent since the x in P is locaL and thus. different fronl

that in a. :\lso. any information produced by P about the local x has to be hidden

from the global store~ thus, the information added to the global store is 3x o. where 0

can be seen as a local store for P'. The result is an agent of the form 3x.(tell(d» 1\ P').

The rule RESTR; is analogous, taking care of the case \Vhen an agent has a local

store.

\Ve write P (0',0'/). P' for the transitive closure of the transition relation, i.e. there

is a finite transition sequence fronl (P, a) to (P', a').

• CHA.PTER ï. COiVCURRE1VT CONSTR.4.I1VT PROGR.-\i\IAlllVG 111

•

•

7.1.5 Correspondence between the semantics

The correspondence between the semantics lies on the idea that the constraint stor~

can be thought of as another process. just like any agent. \Ve show ho\\' the CTS

captures the LTS.

Proposition 7.8. For any P. P' E Pcc, and a. a' E IAcel, P ~ P' only if P 1\

tell(a) -1' P' 1\ teLL(a') where a' H aU 1;..' for SOTne Il: E IAccl.

Proof. \Ve use induction on the derivation of P~ P'.

Case 1: The last inference is an instance of TELLt : P =tell(cp). P' = T. and

a' H a u~. This is matched by the TELL axionl: P 1\ teLL(a) == tell(o) 1\

tell(a) -1' tell(a') == T 1\ tell(a') = P' 1\ tell(a').

Case 2: The last inference is an instance of .-\SKt : P = ask(cp) ~ P'. a' H a

and a f- ([J. This is rnatched by the ASI(axiom P 1\ tell(a) =(ask(ej) -1

Pl) 1\ tell(a) ~ P' 1\ tell(a).

Case 3: The last inference is an instance of PARt: P == Q 1\ R. and P' =Q' 1\ R.

50 by a shorter inference. Q~ Q'. By induction hypothesis we have Q 1\

tell(a) ~ Q' 1\ teLL(a'). Then by P.-\R and CONGR we obtain Q 1\ R 1\ tell(a) -1

Q' 1\ R 1\ tell(a') as required.

Case 4: The last inference is an instance of RESTR:: P = 3x.Q. P' = 3~·.(tell(1J) 1\

Q'). and a' H a U 3x (/)' Hence, by a shorter inference Q (3~0',o) Q'. 50 by

induction hypothesis Q 1\ tell (3x a) -1 Q' 1\ tell (cp). By RESTR! we have

3x.(Q 1\ tell(3;z;a)) -1' 3x.(Q' 1\ tell(4))). The LUS is congruent to 3x.Q 1\

tell(3x a) by scope extrusion. On the other hand, since cP H 4> U 3x tP! we know

that tell(4)) = tell(4)) 1\ tell(3x l/»! 50 the RHS is congruent to 3x.(Q' /\ teU(l/» 1\

teU(3x dJ)) which by scope extrusion is congruent to 3x.(Q' 1\ telle4») 1\ tell (3x f/J).

Sa we have that 3x.Q 1\ tell(3.ra) ~ 3x.(Q' 1\ tell(ljJ)) 1\ tell(3.roL and by

applying PAR we have: 3.r.Q 1\ tell(3.ra) 1\ tell(a) ~ 3~I:.(Q' 1\ tell(dJ)) 1\

tell(3.r9) 1\ tell(a). ~ow. noticing that 3x a U a H a. wc apply CO:\GR and

obtain 3~r.Q 1\ tell(a) ~ 3x.(Q' 1\ tell(cP)) 1\ tell(3x 6 u a) as required.

• CH.-\PTER ï. COIVCURRE;'lT CO~VSTR.-\INT PROGR-\JL\II1'lG 112

•

•

The case of RESTRi is sinlilar ta case -1. The rernaining cases. for SC~I. ID. and

CO~GR ruimic the case for P.-\.R. 0

7.1.6 Bisimilarity

The definition of bisinlilarity for CCP ((22J) is essentially standard but takes into

account the role of the stores. The labels of transitions (pairs of stores) nced not be

literally the sarne for Iuatching rnoves: we can rela..x this to allow labels to nlê:ltch each

other when the stores in the labels are logically equivalent.

Definition 7.9. A binary relation S ç (Pcc x IAccl) x (Pcc x IAcel) is called a

(weak)bisimulation iff for any term.., P. Q E Pcc and a. c E IAcel. (P. a)S(Q. ç)

irnplie8 that

(O" 0''')
(i) ~Vhenever P .) P' and a' H a U 0 whe1'e (J) !tas only global variables. then

(.;/ w") •Q .) Q'. 1.:/ H lj) U o. l;." H a', ~.II H a" and (P', a")S(Q', 11/')

(ii) vice-ve'rsa

~Ve say that (P, (j) and (Q, f/;) are bisimilar~ written (P. a) i:::ec (Q. t;)) iff there is

a bisirnuLation S such that (P. a)S(Q, t;,.). ~Ve write Pi:::ccQ for (P, true)i:::cc(Q, true).

~otice that by unwinding the definition for the process bisimilarity P i:::cc Q as

(P. true)~cc(Q, true) we have that if P (rP,O''')) P' where fjJ has only global variables.
(1")·

then Q ~.!P) Q'. liJ" H a" and (P', a")S(Q'~I!J"). Since this is defined for any 0 that

has only global variables. we obtain a notion in which P and Q match each other's

mo\'es. not only in the empty store, but in any store (J) \Vith only global variables.

However the continuations (P' and Q') need not match each other in ail such stores,

but in the resulting stores ail and '/i;".

This notion of bisimilarity preserves ail operators. and thus is an appropriate

notion of process equivalence.

• CHAPTER ï. C01VCURRE1'lT COIVSTRAINT PROGRA.l\Il\rfI1'lG

Proposition 7.10. ~cc is a CC-process congruence.

113

•

•

Proof. Assume that ci E IAccl is a (possibly empty) formula involving only global

\·ariables.

Tell: Define S d~ {((teLl(-;r).(1). (tell(cp'2L t')) : ';L H Y2 and (1 H ~,}. \Ve show

that S is a bisirnulatioll. The only move a tell can do is tell(..pd (17' ,a
Jt

\ T.

where a' H aU o. Br definition of TELLt , (1" H (1'U YI' This 010\"e is matched
("'/ .1.:/') . .

by teLl(c.p'2)) T. where l" H l.:.' U Q. Smce (1 H /:,.,' wc have a' H Ij)'.

and since ';1 H ;';'2 we have a" Hu". Having established this. it is clear that

((tell(.;d. true). (tefl(ç,:'l)' true)) ES. sa tell(.;d ~cc tell(.p'},).

Ask: Let S (~ {((a.skC;d ~ P. 0'). (a.'jk(-,;''2) ~ (},I1:)) : -Pl H -,;''2. P~ccQ and

a H t,~}. \Ve show that S is a bisirnulation. Suppose that the first clement

of the pair makes the rnove ask(9L) -» P~ P where a' H a U 6. and

a' 1- c.pl. Since (1 H if). a' H ii)' where tj)' H lJ) U O, Hence. since -,;'L H ;'2' we
(w' ,.:')

ha\"e that 11/ 1-;'2, so the transition can be nlatched by askC;2) -» Q .) Q

with P~ccQ. So Sis a bisimulation. Clearly ((ask('.,;d -» P,true).(ask('P'2)-»

Q. true)) E S. so ask('Pd -+ P ~cc a.sk(';2) -+ Q.

Restriction: Let S d!U {((3:r.(tell(çd /\ P). (1). (3x.(teLL(1,.?2) /\ Q). w)) (P. 'PL U

3.ra) ~cc (Q, 'P2u3xt.:i), -PL H r.,:;2~ and a H ~'}. \Ve first show that S is a bisim

ulation. Suppose that the left elenlent of the pair rnakes the rnove 3;.r.(tell(iPr) 1\
(CT' .a'u3.c<;'d .

P)) 3~·. (tell (-;'1) /\ P') where as uSllal 0" H a U cP. By a shorter Infer-

ence we kno\\" that P (-rt
U3

.c
a

' ..,;'t\ P'. Since (P';1U~Xa) ~cc (Q.;;2u3xl.u). this

move is matched br Q (";2
u3

.c
a
' ..,;;\ Q' where (P";'I)~cc(Q'.;~)with -;'1 H;~

and therefore 3X 'r"1 H 3x'P~. Then. by RESTR~ we have that 3x.(tell(c.;,!) 1\

Q) (a"IT'u.3.c"'~)) 3x.(tell(c;~) /\ Q'). Notice that since (P'~ iP'L)~cC(Q'~iP~) we also

have (P', ~'1 U 3xa")~cc(Q' ~ I,.?~ U 3xt,b") for any a" andtj;" such that 0''' H l/J".

Therefore we have that ((3x.(tell(i;?'d /\ P'), a"), (3x.(tell(<p~) /\ Q'),iP")) E S

as required. It is easy to check that ((3x.(tell(r.,:;d /\ P), true), (3x.(tell(Y2) /\

Q), true)) E S when 'Pl H ';P2, and (P, <.pd ~CC (Q, CP2), which implies that if

(P, true) ~cc (Q, true) then (3x.P, true) ~cc (3x.Q, true) as required.

Parallel: Let S de! {((P 1\ R~ al (Q 1\ R)) a H lb and (P. a) ~cc (Q. lb)}.
(, ")

Suppose that P 1\ R rr ,(1 ~ P' 1\ R' where a' H aUfb. There are t\Vo possibilities

depending on which agent perfornled the transition:

• CH.-\PTER i. C01VCURRE1VT C01VSTR.-\[jVT PROGR.-\AJAII1'lG 114

((1' rr") (1/ I:.,IJ)
Case 1: R' =Rand P .) P'. Since (P. a) ~cc (Q. ~,) then Q .) Q'

where (P' ~ a") ~cc (Q', li/'l, Ij)' H 0 U cp. and a" H lJ)". By PARt wc have
('P' 'Pli)

Q 1\ R .) Q' 1\ R. so ((P' 1\ R~ a"). (Q' 1\ R. rj/')) E S as required.

(' ")
Case 2: P' =P and R rr.rr) R'. Since a" H aU<pUT, where T was introduced

by R~ and since (P. a) :::::cc (Q. I.U) then (P. a") ~cc (Q, ~/') where l}/' Ha".

Therefore ((P 1\ R', a"), (Q 1\ R'. /j/')) E S as required.

The l'est of the cases are sirnilal'. o

•

•

Bisimilarity satisfies sonle interestillg properties. In particular. wc like to stress the

close relation between diagonal clements in the constl'aint systenl. with substitution.

equators and fusions. This is statccl by the following:

Proposition 7.11 «[221». For any narnes Cl. b. c the following hold:

(i) tell(a = a) ~cc 3b.(tell(a = b)) ~cc T

(ü) 3c.(tell(a = c) 1\ tell(c = b)) ~cc tell(a = b)

(iii) P{afb} ~cc 3b.(tell(a = b) 1\ P)

7.2 Expressiveness

CCP is a powerful paradigm~ howe\'er~ it presents a very different perspective to

that of mobile process calculi. It is natural to ask what is the relationship between

these t\Vo paradigms for concurrent computation. In particular we would like to

know whether mobile process calculi can capture the expressive power of CCP. and

conversely whether CCP is apt for modelling mobile processes. The first question was

• CHAPTER ï. C02VCURRE1'lT CONSTRAllVT PROGRAAIAIIJ.VG 115

•

•

answered positively by Victor and Parrow in [46), where they provided an encoding of

an extension of CCP known as the '"'(-calculus([44]L into the lI-calculus. The converse

however has rernained an open issue. Sorne people have argued that CCP is powerful

enough ta sirnulate mobility (see [21] for example), but these approaches are aH based

on extensions of CCP. not on the core language. \Ve are interested to kllow if the

core language is enough. The main contribution of this thesis is that this is not the

case: the core CCP is Ilot mobile.

7.2.1 From CCP to 1r

\Yc will no\\' consider a particular CC language in which the constraint systern consists

of nanle equations. \Ve call this language CCP(x=y). \\·e prodde an encoding of this

language into the ii-calculus. which is a sirnplification of the encoding given by \ïctor

and Parrow in [46]. \Ve do not present the full encoding since theirs is a translation

froni the "y-calculus, which is an extension of the basic CCP mode!. and at this

monlent we are not concerned with the extended language but just with the core.

The translation

The key of the cmbedding is that CCP nantes are encaded not as 1r-narnes but as

agents, called handlers. It is useful to think of these handlers as abjects (in the OOP

sense) which have three operations on them: 1) returning its value. i.e. its own port

of access. a lI-name: 2) updating its value to point to a new hancHer: and 3) checking

for equality with another handler. The idea then is that when we tell the constraint

x = y this is simulated by updating the handler of .r ta "point" ta the handler of

y. \Vhen we ask if an equation is entailed, roughly speaking, we "call" the checking

method of one of the nanies with the other as parameter.

There are two kinds of handler, denoted \;·(;r:) and R(J;., ~). :\ variable x that has

been updated ta a reference y, is handled by a relay handler R(J;., ~); otherwise it is

handled by V(~). :\ relay handler, will simply relay the message it receives through

J;., to ~. \Vhen a variable handled by F(~) is queried for its value, it returns its port

x. \Vhen it is updated to y, then it changes its state and becomes handled by R(~, !L)'

\Vhen queried for equality with .:. it will check if the references are identical; if they

are it answers yes: if they are not it will do Cl busy-wait loop until it receives the same

reference (its own port). while still accepting ather requests.

~otice that in a relay agent R(;r,;J. the reference .: can itself point to anothcr

relay agent. say R(;., w). This nleé:lIlS that the set of handlers fonns Cl forest. and

variables that are equal are handled by agents in the salue tree. \Ve cali such trees

equivalence tTees.

For each CCP name x we introduce the handler interface ;r which is defined as

:f. d;j .1:, .l'yal, .rupd, .l'eq. These can be thought of as the pointer to the handler. and its

method names in 00P terminology. These are explained as fo11o\\'s:

• CH.-\PTER 7. COIVCURRE.NT COIVSTR.-\flVT PROGR-\JIJlllVG 116

•

•

• The plain .c is the main reference to the handler for the nanle. This is the

reference checked by equality.

• The Danle .rYal is the port where the hancHer receives queries for its value.

Through this channel the hancHer recei"es two nantes sand r. which are the

identity of the source of the query (s) and the channel through which the answer

will sent (r).

• The nanle .L·upd is the port where the handler receives a request for updating.

Through this channel the ne\\' reference ;. is received by the hancHer.

• The name ;l'eq is the port where the handler is queried for equality with another

variable. It receives the reference to the other variable Q, and a channel y. lf

the t\Vo variables are in the sanle equivalence tree. a signal is sent through y. 6

\Ve now define the encoding itself. Recall that we are considering only name

equations~ so the assertions in the constraint system are of the fonnu = v. \'le caU

Pc=; the subset of CC terms with only name equations as constraints. The following

ti:'oIotice that the negative case is not handled. The original encoding did handle it. because there
was an explicit separation between names and variables. so it was possible to decide when two names
were different. Here, since we do not make such separation, such a query is not handled. If the
variables are different. then equality is not entailed so the agent asking for equality will be blocked
waiting for a signal in channel y.

• CHA.PTER ï. CON'CURRE!'lT C01'lSTRAIiVT PROGR.:L\IAII1VG

T ~(=r.) d:! () () T '()" .Eva1 r,S.r f..t f.

+ Xupd(yJ.

([x = u]\~(f.)

+ [x f. u]vr.Uval(1\x).r(w).([x = w]\-"(=r) + [.2' i= w]R(f.: w)))

+ .L'eq Cg, y).

(l '(f.) 1 Vr'Uval('\ .r).r(Yl.).([:r = w]y + [x f. W]Xeq(W, y)))

R(f., yJ de! ! Ival(r, .s).([u = slr(~) + [u f. S]UV31(r. s))

! .L·upd (IL'). Uupd (LV)

1 ! Xeq(W. y).Lleq(W: y)

Table 7.-1: Variable handlers

117

•

•

translation is cornposÜioual Le. the translation of a terru depends only on the trans

lation of its sllb-ternls. It is also uniform since the parallel conlposition of CC ternlS

is sinlulated by the parallel composition of the respective translations. This means

that the translation is truly distributed.

Definition 7.12 (CCP ta ii translation).

The translation [. ~ : Pc~ --1> P 11" is given by the foLLowing equations:

[T~ d:! 0

[P 1\ Q~ d~ [P~ 1 [Q~

[P + Q~ de! [P~ + [Qn

[3x.P~ de! v~.(l·(f.) 1 [P~)

[nde!_(tell(u = V)ll = Uupd 11.)
de!

[ask(u = r) --1> P~ = vy.(Ueq(Q, y) 1 y.[Pll)

where \ .(~) and R(;r, yJ are defined in table 7·4·

It should he clear how this translation works. The relay handler for x, R(;r, yJ, as

explained before, simply relays the messages it receives to the handler foru. \Vhen a

•

•

•

118

variable handler is asked to be updated it first checks if the new reference is already

itself. in which case it continues in the same state \'·Cr). Otherwise. it obtains the

value of the new reference. checks again in case the other variable has been updated

in the nleantinle. and if they are still dift'erent. it creates the relay agent. \Vhen

testing for equality it creates a cop!" of itself to keep accepting requests. while asking

the other nuiable for its value and cornparing references.

Correctness

This translation is correct in the sense that it is fully abstract \Vith respect to weak

barbed congruence. Recall from section 3.2 that the notion of barbed bisimulation

was defined for the UTS of ii calculus \Vith an additional "observation!! predicate. \Ve

can define such a predicate in the context of CCP(x=yL and thus inducing a notion

of weak barbed bisimilarity and weak barbed congruence for CCP.

Definition 7.13 (Observability in CCP(x=y) ([46]». The predicate ~ ç Pc~ x

~tVcc l,r; defined inductively as follow:;:

(i) 3y.P ~.r if .r ;/; .'J and P ~ .r

(li) (P /\ Q) ~ xif P ~ .r or Q ~ .r

(iii) (P + Q) ~ .r 'if P ~.r or Q ~ ~.

~lle say tILat an agent P is observable at a na'me .r if P ~ .1'.

This notion induces the definition of weak barbed bisimilarity (~~c) and weak

barbed congruence (::::~c) in the same way as was done in section 3.2. As in 1r calculL

processes P /\ Q and P + Q observe the same nanles! but they are not barbed bisim

Hal' since they do not necessarily match each other!s reductions. Take for instance
., ~f •

Ri = tell(r.p) 1\ ask(cp) ~ p! and R2 = tell(cp) + ask(r.p) ~ P. They are certainly

not barbed bisimilar because Ri ~ P while R2 cannot match this move unless it is

in a particular context.

The correctness of the translation is established by the following theorem.

Theorem 7.14 (Victor and Parrow [46]).

The translation [. ~ of definition 7.12 is fully-abstract with respect to weak barbed

congruence, Le. for any terms P, Q E P/;,

• CH.-\PTER ï. COLVCURREiVT COi\;STRAllVT PROGRA:.\L\JtVG 119

•

•

p ~~c Q if and only if [P~ ~~ [Q~

P1·OOf. \Ve anly provide a praof sketch. and the reader is referred to [-161 for a Ulore

detailed account. The strategy for the proof fo11ows the sarne Hne as was shawn in

thearern 2.10. That proof \Vas in relation ta an LTS. In this case wc arc dealing

\Vith a L'TS and an obseryability predicate. The strategy in this case is the following:

first show that the translation presen'es and reflccts both (unlabelled) reductions and

observations: and second. show that preservation and reflection of these t\Vo relations

inlplics full-abstraction. 0

7.2.2 From tr to CCP

Here we provide the main result of this work. \Ye prove that the ir-calculus is nlore

powerful than the core CCP. Our argument is based on the inlpossibility in CCP to

establish pri \'ate-shared channels between processes, This is, if t\Vo processes want

to create a cornnlon link, it will necessarily be accessible to every other agent. and

hence it \'lill not be private. In other words. internaI nlobility cannot be simulated in

CCP. [n the rest of this section, we will show this gap between CCP and 'if[, which

as we have seen, is a sub-calculus of 'if,

The main effect of communication in 7r-calculi is substitution of nanles. In CCP.

the only way to sirnulate substitution is through diagonal elements. i.e. name equa

tions. \Ve argue that these equations will force the "domain of influence" of the

names involved to grow l'rom their statÎC. syntactic scope to the global scope. becom

ing accessible to any process listening.

Observability

\Ve start by defining when are names accessible to a process.

• CH.-\PTER 7. C01VCURREIVT C01VSTR.-\/1'lT PROGR.-\1\Jl\1I1VG 120

•

•

Definition 7.15 (Observability in CC). ~Ve say that a CC term P observes the

name x under the con8traint store a, written (P, a) .L.cc x if! there is a y E fn(P)

s'uch that (j r x = y.

\Vith this definition it holds that a process observes its own free names under any

stor~. .-\lso, that in the enlpty store P observes x if and only if .r is free in P .

.-\n analogons definition can he made in if{. This dcfinition of obsen'ability is

weaker than the previolls definitions disclissed in the context of barbed bisiIllulation

for ii-calculi. \Ye only require for il naIne to be free in a process in order to observe

it. That is. an accessible. or observable name is one through which the process could

potentially interact with the environnlent. but this interaction Illight not be inlmedi

ately possible. as required in the definitions of ii-observability considered before.

Definition 7.16 (Observability in ii/). ~Ve say that a ii te'17TL P ob8erue8 the narne

.L' wl~itten P -i1r/ .L' if! x E fn(P) .

.-\5 usual. we will ignore subscripts whenever it is clear from the context to which

concept we are referring.

Domain of influence

The following property represents the notion that a naIne is either accessible by only

one process in a system. or accessible by aIl the processes of the system.

Definition 7.17. Given a CC tenn JI =~ü.(P 1\ Q 1\ R). a store (j~ and a name

u Eü we say that 'U has 1-3 domain of influence in JI -under a if 'it is observable

by either exactly one or exactly three of P ~ Q and R under the ston~ a.

In the following exaulples of names x has 1-3 doulain of influence in JI under (j

where AI and (j are:

1. (1 =true~ P =tell(x ~ IL Q =tell(x :::; 5), R =tell(x ~ 2)

2. (j =true! P =tell(x ~ 1), Q =tell(x :::; 5), R =tell(x = u) 1\ tell(u ~ 2)

3. a =x = y! P =tell(x ~ IL Q =tell(x :::; 5), R =tell(y ~ 2)

• CH.-\PTER ï. C01VCURRE1VT C01V5TR.-\flVT PROGRAJll\II1VG

.-\n exarnple of a term and store not satisfying the property is:

a =true. P =tell(x 2: IL Q =tell(.L· ~ 5). R =tell(y 2: 2)

121

•

•

The corresponding notion in '!il is analogous. noting that there is no reference ta

a constraint store.

Definition 7.18. Given a 7rl terrn JI =vü.(P 1 Q 1 R) and a name LL E ü we say

lhat u !Las 1-3 domain of influence in JI if il is observable by either exactly one

or exactly three of P ~ Q and R.

Eavesdropping

The lIlost significant notion of iT-calculi is rnobility. and this allows for the dynanlÎc

evolution of the scope or dornain of influence of narnes. The 1-3 donuün of influence

property abo\'e. is a static property, i.e. it considers a "snapshot'· of the system.

\Ve are interested in finding out whcther CCP allows nlobility. This is of course.

related to how the dornain of influence of nanles evoh'c. and thcreforc wc must focus

our attention in sorne dynamic property. In particular we are interested in \Vhat

happens when a process cornmunicates a private nanlC to another process, If we try

to model internai mobility, we need to establish a securc, private channel between t\Vo

processes. so that no third party is able to listen or ;'eavesdrop" trough that channcl.

\Ve now formalize what do we mean by "eavesdropping" \Vith the following property,

which states that narnes in a system that are accessible by only one agent, will either

rernain private or become accessible by ail. i.e. the 1-3 domain of influence property

is invariant,

Definition 7.19 (Eavesdropping in CC). CoTtsider a system .\1 =3ü.(P 1\ Q 1\

R) in standard forrn. and a store (j. We say tltat Al satisfies the ';CC-eavesdropping~'

property 'Unde'r a if wheneve'r the follow'ing are satisfied

(i) Ail names in ü have 1-3 domain of influence in JI under (j,

(ii) (Al, a) -.. (Al', a'), and

• CHAPTER ï. C01'lCURREiVT C01'lSTR.-\L'lT PROGR.-\1\IAII1'lG

(iü) No namesinl1 disappea-r front any of P yQy and R

then aU names inü have 1-3 domain of influence in JI' 'un der a'

122

•

•

~ow the gap in expressiveness between CCP and "l becomes apparent. The

following theorem states that it is not possible to create one private channel between

t\\'o of the processes. while keeping aH other names public or restricted to one process.

Theorem 7.20. AU CC te'17ns satisfy the eavesdropping property llnder any store.

Proof. Assunle that the conditions are satisfied but there is a nanle .1' E û snch that

it does not have 1-3 donulin of influence in -lI' under a'. i.e. it becornes observable

by only two of the processes in JI'. :\ssunlC. without loss of generality that P' and

Q' are the processes observing x under a'. Given that .r has 1-3 donHlÎn of influence

in JI under a. wc have t\\'o cases:

1. (P. a) ~ x. (Q! a) -!. .1'. and (R. a) .l,. x. or

2. (P! a) .l,. x. (Q. a) J. I. and (R! a) J. x

In case L given that nanles do not disappear. then we have that x is observable by

P'. Q' and R' under a'. sa we obtain a contradiction.

[n case 2, since (Q'. (J') .l,. x, thcn there is a y E fn(Q') (and also y E fn(Q))

such that a' 1- .r = y. However this is only possible if there is a ,: E f n(Q) such

that a' 1- .r = :; /\ :; = y. because Q could not observe x. Hence there is an action

tell(x = .:) in P. because it was the only agent observing x. 50 bath P and Q

observe::. Since:: has 1-3 domain of influence in JI under a (by hypothesis) then

R also observes :: under a. Therefore R' observes :; under a' because names do not

disappear ~ and since a' 1- x = :;! we have that R' aiso observes x under a'. again

yielding a contradiction. 0

The eavesdropping property can be stated for trI terms.

Definition 7.21. (Eavesdropping in trI)Consider a '!rI system AI =vü.(P 1 Q 1 R)

in standard form. ~Ve say that AI satisfies the '"'!rr-eavesdroppingn property if when

ever the following are satisfied

• CH.-4PTER i. C01.VCURREt\jT C01VSTR.-4LVT PROGR.-\.\IAJnVG

1. A.li naTTLes in il have 1-3 dornain of influence in .\1.

2. JI --+ JI'. and

:1. No na'mes in II dis appear front any of P. Q ~ and R

then ail na'mes in il have 1-3 domain of influence. in JI'

123

Clearly there are 7r f terms that do not satisfy this property, and that is precisely

the gap in expressiveness. Consider the following term:

Snch that u E fn(P') n frz(Q'). This terni is equinllenL by alpha conversion and• scope extrusion t~:

.\10 =V'll.(P 1 Q 1 R)

P =u(x).P'

Q =u(y).Q'

R =Ti(=).R'

JI =vux.(P 1 Q 1 R)

P =ü(x).P'

Q = u(y).Q'

R =u(=).R'

where

where

\Vhere x f/. fn(Q') U fn(R')i. So both x and u have 1-3 donlain of influence in JI.

i.e. they are not shared exclusively by two processes. This term reduces to JI' where

JI' = v'ux.(P' 1 Q' {x/y} 1 R) where x ~ fn(R)

•
Clearly J/o does not satisfy the eavesdropping property. To see this note that: 1) u is

free in the three agents. thus having 1-3 domain of influence in JI': 2) x is observable

7Strictly speaking these are not TrI terms since they involve free output, yet. since they where
obtained by alpha conversion and scope extrusion, their semantics remains the same, Le. JI -If Jlo

• CHA,PTER 7. C01VCURRE1VT C01VSTRAli'lT PROGR.-L\JAJliVG 124

•

only by P in the initial state; 3) in the final state x is observable by bath P' and

Q'{x/y} but il. is still not observable by R.

N on-encodability

The dual notion of eavesdropping is security.

Definition 7.22 (CC security). Let J[=3'l1.(P 1\ Q 1\ R) be in standard jonTL.

and a store a. ~Ve say that ~\[is 2-3 secure unde'r a if it doe.,; not satis/1j the

CC-eavesdropping property under a.

By theorem 7.20 wc have that there is no CC ternl that is 2-:3 secure.

The equivalent notion for ii[ternlS is as follows:

Definition 7.23 (il[security). Let J[=In7. (P 1 Q 1 R) be in standard form. ~Ve

..,ay that J[is 2-3 secure if it does 'Ilot satisfy the iT[-eavesdropping property.

The following definition allow us to link the eaves-dropping property for CC ternlS

and ii (terms.

Definition 7.24 (Security preservation). Let [·n be a translation fro'm ÎÏ{ to CC.

~Ve say that [·n preserves security iff for aUrr(te'rrns J[, if .1.\1 is 2-3 secure then

[JI~ is 2-3 sec'Ure under the c'mpty store.

FraIn this definition and theorenl 7.20 we abtain the following result:

Corollary 7.25. There is no translation. front ir(to CC that preserves security.

Proof. Suppose that there is a translation [·n that preserves security. Consider the

ternl .\[0 from the examplc. it is casy ta see that Jlo is 2-3 secure. On the other

hand we have that [AITI is also 2-3 secure under the empty store because ['TI preserves

security, but this is a contradiction, since br theorem 7.20 we know that aIl CC terms

satisfy the CC-eavesdropping property, and therefore no CC term is 2-3 secure for

•
an)" store. o

• CHAPTER ï. C01'lCURRE1'lT C01'l5TRo\INT PROGRA.AJAJllVG

7.2.3 CCP and fusions

Since our previous result showed that CCP cannot rnodel internai ulobility. the imme

diate corollary is that any calculus that includes iii as sub-calculus is more expressive

than CCP. This includes the Fusion and X calculi. Hawever there seenlS to he Saille

close relation between those calculi and CCP(x=y). since in bath. Ilame equations

play a central l'ole. In bath. they have as Inain effect, the substitution of equivalent

names. and in bath. this effect is global. The gap in expressivcness relies on the

faet that in Fusion it is possible to restrict such effects through the hiding operator.

whereas in CCP. hiding is unable to "contain~' the effect of an equation.

It is easy to see that CCP(x=y) cau he encodcd in Fusion. Victor and Parrow

provide such enlbedding in [-l7]. The original encoding considered ! calculus with

explicit separation of constants and variables. Here we provide a sirIlplification of

such translation.

• Theorem 1.26 (CCP(x=y) to Fusion translation) .

CCP(x=y) to Fusion lS defined ind'Uctively as follo'W.s:

[T~ cief 0

[P !\ Q~ cief [P~ 1 [Q~

[P + Q~ cief [P~ + [Q~

def
[3x.P~ = lIx.[P~

[tell(u = uH cief {u = u}

[ask(u = u) -+ P~ def [u = v][P~

The t'ran.slation [.~ front

•

~ote in particular that diagonal elements are translated into fusions. and the ask

operator is mapped to the match operator. \Ve omit the proof. but we show how the

• CH.-\PTER 7. CONCURRE1VT CO~VSTR.-\IlVTPROGR.-\AIAII1'fG

basic interaction is simulated.

126

[3y.(tell(x = y) 1\ ask(x = y) -f PH
d!U vy.({x = y} 1 [;1' = y][P~)

-f [x = x]([Pll{x/y})

-f [P~{x/y}

== [P{x/yH

by def 7.26

by CO~I).,IF

by ~[:\TCHF

as required

•

•

\\ïth this sinlple translation it becomes apparent the expressivity of Fusion. which

easily erubeds bath if and CCP(x=y) in a simple. synlnletric franlCn'ork.

7.2.4 The Î and p calculi

For corllpleteness we end this chapter with a brief mention of two variants of CCP.

known as the ,-calculus and the p calculus.

The "'i calculus. developed by Snlolka ((-!4]) is essentially an extension of CCP(x=y)

\Vith first-order functional abstraction (Le. only names can be passed as arguments)

and explicit ceUs. Two presentations have been provided, one that distinguishes

between variables and constants and another that doesn~t.

The ,-calculus was generalised by ~iehren. Smolka and).,(üller to handle any

constraint system, not just name equations. This extension is called the p calculus

([34]). The "'y calculus coincides with the p(x = y)-calculus. The p-calculus without

constraints. written p(0) is a subset of the asynchranous 7r-calculus \Vith the match

operator. The full p calculus is written p(CS), to emphasise that it is parametrized

by a constraint system CS~ and it contains CCP as a sub-calculus. It is illuminating

to see that what in p(0) corresponds ta ifa ~s match operator. in p(x = y) it plays the

role of an ask operator for testing existence of diagonal clements.

•

•

•

Chapter 8

Conclusions

8.1 Summary

Let us sunlmarize the relationships studied in this thesis. Table 8.1 sunlnlarizes the

variants of calculi discussed.

Figure 8.2 shows the main relations between variants on the rr-calculi. with respect

to non-deternlinistic choicc and asynchrony. where the arro\\" types are shawn in figure

8.1. The references for these are gi\"en as follo\\'s. in historical arder:

1. Honda and Tokoro~s encoding. round in [1 il. devcloped independently by Boudol

in [il. \Ve describe Boudors encoding in section -1.2.1.

2. :'Iestmann and Pierce!s encoding, found in [33] and [32].

3. Palamidessrs impossibility result. The reference is [36]. \Ve describe this result

in section -1.2.2.

4. Nestmann~s encoding from [32].

Figure 8.3 shows the main relations \Vith respect to internai mobility and locality.

The references are:

1. Boreale's fully abstract encoding of external mobility in the internaI fragment .

used the local (asynchronous) tr calculus, trLa as an intermediate language. The

127

• CH.-\PTER 8. C01VCLUSI01VS 128

•

•

1 Calculus name Other names Description
Core 7r Î1s It includes the following operators:

input and free output prefix.
restriction, parallel composition.

.-\synchronous ir 1ia' .-\ii Output is not a prefix; Does not
include choice.

InternaI ii 1r/~ Iii Output prefix is binding.
Local Ji iiL, Lii Object nanles of input prefix cannat

appear as subject of an input action
in the body.

ii lnP - Only allows input-guarded choice
_out - Only allows output-guarded choiceJI

ii·~ep - Gnly allows separatecl guarded choicc
Full ii iT 11lU• lncludes match and nlisrnatch. and

mixed-guarded choice
Fusion \. ÎÏF, Fr., CCP Input is not binding. Interaction

"fllses~' nanles.
Cpdate - ~Ionadic Fusion.
Asynchronous Fusion Xa, ÎÏFù~ .-lFii Input is not binding, and output

is not prefix.
Solos - Input is not binding. N'either input nor

output are prefix operators.
CCP CCP(CS) Includes tell, ask, restriction, parallel

conlposition. choice. It is parametrized by a
constraint system CS.

p p(CS) CCP plus first-order functional abstraction.
"y p(x = y) It is p restricted ta name equations.

Table 8.1: Calculi for mobility and calculi for concurrent constraints

ilr is a variant of 'TrI with ;·symmetric·' locality. The reference for this encodings

is [6].
• CH.-\PTER 8. COIVCLUSIOIVS 129

•

•

2. ~Ierro's fully abstract encoding was given in [24L and is described here in section

5.2.2.

3. This is Palanlidessi's re!:mlt shown in the preyious figure.

4. This is the composition of ~estmann's encodings.

[n figure 8A the nlain expressivenf-~ss relations fronl the point of vie\\' of fusion

calculi are shown. In this diagranl we denote Fusionsep as the subset of Fusion that

allows separate-guarded choice. but not mixed-choice.

1. The gap between nl0nadic Fusion or Cpdate calculus and the polyadic calculus

is shown in [45].

2. This is Victor and Parrow's encoding of '"'(-calcul us into ir. The reference is [46L

and is described here in section 7.2.1.

3. Victor and Parrow's encoding of'y in Fusion is found in [47]. and described in

section 7.2.3.

4. ~[erro's encoding is round in [23]. and described in section 6.3.2.

,3. Laneye and \ïctor's encoding is round in [19] and described in section 6.3.1.

6. Boreale and ~Ierro's encodings. described in the previous figure.

1. This is the irnpossibility result described in section 7.2.2.

Sinlilarly in figure 8.5 for CCP languages in relation to iT-calculi.

1. Victor and Parrow's encoding of '"'(in Fusion.

2. This is the impossibility result described in section 7.2.2.

3. This is the composition of Laneve and Victor's encoding of Fusion in Solos, and

~[erro's encoding of Asynchronous Fusion in iTa'

4. Victor and Parrow's encading of '''f-calculus inta iT.

• CHAPTER 8. COlVCL USIOlVS

--_c> Identity embedding

----t~~ Uniform & reasonable

_ ... _ ... _ ..._J> Deadlock free & Iivelock free

Il .. No uniform & reasonable translation exists

Figure 8.1: :\Iain types of translations bctween calculi

130

No+ Limited + Full +

3

•

Asynchronous
calculi

Synchronous
calculi

2
1t ~~~===::::::;> 1t inp4 a C> a

..'
1

1,
,
1

: 1t
inp

" ~ ~ sep" 3'1
\ core Tt~ Tt ~ .. _... _..._.~ full1t
\ ./! ~

\ 1t0~~ I!
.. 4 ,.'....... ..,.-.....-..- _...-.... _... _.._..._.... - ..-..

Figure 8.2: Exprcssiveness relations of asynchrony and choice within ÎÏ calculi

Internai mobility Local mobility External mobility

•

2

Asynchronous
calculi

Synchronous
calculi

Figure 8.3: Expressiveness relations of internai mobility and locality within if calculi

• CHAPTER 8. C01VCLUSI01VS 131

"Pure" ft calculi Fusion calculi CC calculi

ft 1- - - - - - - - - - - - - - - - - - -H]- - - - - - - - - - - - - _, ..

6

\

\

\,

Figure 8A: Expressiveness relations between Fusion and ii calculi

.,
~-~----------------~=---------------• "Pure" 1t calculi "Hybrid" calculi "Pure" CC calculi

Figure 8.5: Expressiveness relations between CCP and 1r calculi

, , ,
\

\
\

\,
1

1,
1

f,,

Linear CCP ----

/ ~
P(CS) <l CCP(CS)

,,,,,
1

1

, Fusionr ~ ~-
fulllt -"-"-"-"-'-:i'-"-"-"-'-"-"-"-P<fYl <)<)-------CCP(x=y)

<>-------p(,)

core 1t1

•

• CH.-\PTER 8. C01VCL USI01VS

8.2 Recent developments and related work

132

•

•

Given the limitations of scope. time and space we have not dealt in this thesis \Vith

several relevant aspects ta concurrenc!' theory. such as éLxionlatisations of the differ

ent notions of bisimilarity! other variants proposed on the different calculi presented.

category theoretie approaches! modal logies for mobile process algebra, truly concur

rent senlantics or the relations between concurrent calculi and linear logic. \Ve will

try now ta provide a very brief sunlmary of rccent work in expressiveness for process

algebras.

Saraswat et al. have studied several variants of CCP. One with particular interest

fronl our point of view is the Higher Order-Linear CCP ([21]). This variant has

been proven ta support nlobility. In particular it is the "linear" fragrnent the one

responsible for it. In this \"Cuiant. based on linear logic. the ask operator corresponds

ta linear implication. Le. the condition is consumed once it is satisfied. This mcans

that the store is not monotone and allows for updates. This gives the power necessary

to silnulatc nlobility. as weil as the notion of state in generaL

Saille hybrid variants that rnix CCP·like languages with IT-like languages have

been proposed, with the objective of modelling multi-agent systenls \vith sorne global

cammon knowledge. .-\n example can be found in [9].

~'[any other variants of CCP have been studied to bring in different concepts.

SanIe of these include: 1) Default CCP. which relates CCP ta default logic rather

that intuitionistic logic. 2) Timed CCP, which includes an explicit notion of time

in the systems modelled. 3) Hybrid CCP, which combines diserete and continuous

states. -1) Probabilistic CCP. in which nanles stand for random variables for which it

is possible ta specify a domain and a distribution.

On the front of lT-calculL several ideas have been followed such as the Spi-calculus

of Abadi and Gordon ([I]L for describing security protoeols. Another interesting

development inspired on 1i-calculi. though not directly based on it. is the calculi for

rnobile ambients of Cardelli and Gordon ([8]) concerning larger domains of processes.

and their boundaries. These calculi deal with named collections of processes that

have an explicit boundary. Interaction between processes can oceur only within the

• CHAPTER 8. C01VCL USI01'lS 133

•

•

boundary, but there are basic operations for moving ambients into, or from. other

ambients, and for merging them. In the so-called safe ambients, these movenlents

can occur only \Vith mutual agreement from the parties involved.

Recently Zimlner provided, in [50], an encoding of the ïr-calculus in the pure safe

anlbients. thus showing the expressive power of the anlbient moving primitives. The

inunediate corollary of this. together with Victor and Parrow's result on the encoding

of CCP into ïr, is that CCP can be translated illto alnbients. To our knowledge.

there has been no concrete result on whether the ii-calculus can sirllulate anlbients

or not. \Ve speculate that CCP cannat siIllulate ambients because. as our result

showed. the problem of CCP is a problenl of security. given its inability ta establish

private channels. By contrast. the essence of alubient calculi lies in establishing

boundaries between collections of pracesses. and thus. the establishnlent of private

links is fundanlental.

Ail these have been concentrated on the extension of ii-calculus, or the devel

opment of languages inspired by it. .-\ different line of rescarch has been pursued

by ~lilner and his collaborators by giving ii-calculi and other fornls of languages for

modelling interaction a more general framework. This is the subject of the so called

Action calc-uLi. It is presented in category theory, thus allowing reasoning about in

teraction at a nlore abstract level. .-\Iso, in the sanle way that ii-calculi have been

generalized ta action calculi. fusion calculi (Fusion. Solos, 1rF, X) have been general

ized by Gardner and \Vischik ta symrnetric action caLculi and more recently fusion

systerns ([12], [49]) .

.-\ particularly interesting and recent result. related to the senlantics of coneur

l'eney and the search for appropriute notions of behu\'ioural equi\'alence. is that of

Leifer and ~[ilner (20), in which they provide a method for transfol'ming a 17TS into an

LTS 50 that the induced notion of bisimilarity turns out to be a process congruence.

8.3 Future work

The main result of this thesis, the expressiveness gap between pure CCP and 1[

calculi, in terms of mobility, serves as justification for several extensions that have

• CHA.PTER 8. C01VCLUSIOiVS 134

•

•

been proposed for CC languages. such as the p-calculus. or Linear CCP. However. aH

these extensions take the CCP model away from its close relation with Intuitionistic

Logic. On the other hand. Linear CCP has an analogous relation with Linear Logic.

The encodings of mobility in Linear CCP and Higher Orcier Linear CCP ([21]) make

llse of universal quantification as an operator in the language. \Ve speculate that it is

not necessary to completely transfornl the nlodel from the core CCP to Linear CCP

in order to obtain the full expressive power of mobility. \Ve suspect that adding just

universal quantification to the core CCP. is enough to simulate nlobility~ while at

the same tinle nlaking the relation with Intuitionistic Logic tighter. This encoding.

and the categorical interpretation of core CCP plus universal quantification should

be investigated.

.-\nother issue concerning the relation between CCP and lagie that requires further

exploration is the generalization of the ask operator. \Ve know that ask corresponds to

a limited form of implication. in which the condition is not an arbitrary formula. but

a fornlula without quantifiers or irllplications. The generalization of ask. ta recei\'e as

condition an arbitrary process should be investigated in tCrIns of its computational

content.

The nlodelling of nlore cornplex constraint systems in iT and fusion calculi is also

a topie that deserves attention. as weil as the l'ole of type systems in CCP. and the

relation between such type systems and the so-called sorting disciplines found in

iT-calculi.

Finally~ ~Iilner~s Action Calculi~ as mentioned abo\'e~ is a general framework for

the study of interaction~ and has been successfully applied to the study of nlOdels

as diverse as Petri Nets, /\-ca1culi and tr-calculi. Studying CCP from this framework

might lead to a new perspective on constraints as interaction.

8.4 Final remarks

Throughout this thesis we emphasised the close relation between the concepts of

substitution, equator~ diagonal elements and fusions. \Ve saw how equators play

the l'ole of name equations by simulating substitution, and a sinlilar remark can be

made about fusions. \Ve aiso saw how fusions where inlplenlented in 1r in terms of

cquators. :\Iso, we described how putting a diagonal clement in a constraint store

can be sinlulated by a fusion. and how asking whether an equation hoids is simulated

by the match operator.

One particularly interesting relation arnongst the calculi studied is that between

CCP and Solos. Recall that in Solos there are no continuations to input and output

actions. so in sorne sense. it is a calculus of pure fusions. and yet it can encode the full

Fusion calculus. which in turn mealls that has a greater expressive power than the core

CCP. Since pure fusions seenl to correspond ta diagonal elements in CCP. it seems

strangc ta regard Solos as having more expressive power than CCP. However. as our

result pointed out. in CCP one cannat ucontain" the effect of equations. The fact that

in Solos a fusion nlÏght rcsult frorn separate input and output actions. which might

be in parallel agents. and that the media of conununication is not global. means that

the restriction operator has a more powerful grip. a tiner control. over the influence

of names. and therefore. of name equations. In CCP an equation is always issued

by one agent. In Solos. separate, parallel agents nlight cause the equation. In other

words, the treatment of nanle eqllations as atomic actions in CCP. in contrast \Vith

narne equations in Solos, which are the result of more primitive actions. linlÎts the

control over the domains of influence of names.

This thesis has been a stlldy of concurrency. One of the main objectives of the

ories for concurrency is to show the inherent power of parallel composition taken as

a primitive notion. There is an incredible diversity of paradigms that include con

currency as a basic operation. \Ve have concentrated on those spanning from mobile

processes to concurrent constraints. ~Iobile process calculi have proven to be very

a powerful and flexible paradigm. where a wide variety of programnlÎng idioms are

easHy expressible. On the other hand, Concurrent Constraint Programming takes a

higher level view of programming to the concurrency world. In its most basic form.

this higher level of abstraction is attained at the cost of loosing sorne expressiveness.

According to ~Iilner ([28]), the goal of process calculi is to distill the essence

of concurrency. In this respect, the aim is to find sorne canonical theory which is

general enough ta express and reason about aH kinds of concurrent systems. \Ve

•

•

•

CH.-\PTER 8. C01VCLUSIOJ.VS 135

• CH.-\PTER 8. C01VCL USI01VS 136

•

•

do not know if this goal is indeed achievable, given the diversity of approaches to

the treatnlent of concurrency. For this reason, understanding the relations between

different approaches is a fundamental issue. This thesis has been an attempt to give a

very broad view of these relations, but in virtue of the richness found in concurrency.

\\Te didn 't cover Ini:lny relevant issues. The intention of this work has been to highlight

what are sorne of the func1amental gaps between clifferent theories. This hopefully

will shed sorne light into the essence of concurrency.

•

•

•

Bibliography

[1] ~l. Abadi and A. D. Gordon..\ calculus for cryptographie protocols: The spi cal

culus. In Fourtlt .4 CAl Conference on Co'rnp'uter and CornlTL'Unications Sec'U'rity.

pages 36---17. AC~I Press. 1997.

[2] Gui A. Agha. .4ctors--A A/odel of Conc'Urrent CouqJ'utation for Distribu.ted

Systerns. ~IIT Press. 1986.

[:3] Roberto ~1. Amadio. Haria Castellani. and Davide Sangiorgi. On bisinlulations

for the asynchronous ii-calcuills. Theoretical C01np'llte'" Science. 195(2):291-32--1.

1998. An extended abstract appeared in Proceedings of C01VCUR '96. L~CS

1119: 1--17-162.

[-1] H. P. Barendregt. The Larnbda Calculus. ~llnlber 103 in Studies in Logic and

the Foundations of ~Iathenlatics. Xorth-Holland. .-\.msterdarn. revised edition.

1991.

[5] Gérard Berry and Gérard Boudoi. The chemical abstract machine. Theoretical

Cornp'ute'r Science. 96:217-2--18~ 1992.

[6] ~lichele Boreale. On the expressiveness of internai mobility in nanle-passing cal

euH. Theoretical Co'mputer Science. 195(2):205-226. 1998..-\n extended abstract

appeared in Proceedings of C01VCUR '96~ L~CS 1119: 163-178.

[7] Gérard Boudoi. Asynchrony and the ïr-calculus (note). Rapport de Recherche

1702, INRIA Sophia-Antipolis, ~Iay 1992.

137

[8] Luca Cardelli and Andrew D. Gordon. :\lobile ambients. In ~laurice Nivat. ed

itor! Proceedings of the F'irst Inte'mational Conference on Foundations of Soft

ware Science and Computation Structures (FoSSaCS '98), Held as Part of the

Joint European Conferences on Theo'ry and Practice of Software (ETAPS'98).

(Lisbon. Portugal. ~larch/ApriL 1998). volunie 1378 of LNCS. pages 140-155.

Sprillger. 1998.

• BIBLIOGRAPH'(138

•

•

[9] Frank S. de Boer! Rogier ~I. van Eijk. \Viebe ntn der Hoek. and John-Jules Ch.

~[eyer. Failure senlantics for the exchange of information in nlulti-agent systenls.

ln C. Palamidessi. editor. Proceed'ings of the Il th International Conference on

Conc'Urrency TheonJ (CONCUR 2000r volunie 1877 of LiVCS. pages 214-228.

Springer-Verlag! 2000.

[10) Uffe Engberg and :\'logens ~ielsen. A calculus of conlnlunicating systems with

label-passing. Report D.-\I~n PB-2ü8. Computer Science Departnlent. Cniversity

of Aarhus. Denmark. 1986.

[11] Yuxi Fu and Zhenrong Yang. The ground congruence for chi calculus. In Sanjiv

Kapoor and Sanjiva Prasad. editors. 20th Confe'rence on FO'undations of Soft

wa're TechnoLogyand Theoretical Computer Science (lVew Delhi. India. Decernber

2000). "olunle 1974 of LNCS. pages 385-396. Springer. December 2000.

[12} Philippa Gardner. From process calculi to process frameworks. In Catuscia

Palanlidessi. editor! CONCUR 2000: Concu'fTency Theory (lUh fntenwt'ional

Conference. University Park. PA. USA)! \·olume 1877 of LiVCS. pages 69-88.

Springer, August 2000.

[13] Jean Yves Girard. Linear logic: ies synta.'C and semantics.

[1--1] Carl Hewitt. A universal modular ACTOR formalism for AI. In Proceedings of

the Third International Joint Conference on .4rtificial Intelligence (IJCAI.73),

pages 235-245, 1973.

[15) C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International

Series in Computer Science, 1985.

[16] Kohei Honda and ~Iario Tokoro. An object calculus for asynchronolls commu

nication. Lecture IVotes in Computer Science. 512:133-'?'?~ 1991.
• BIBLIOGR.-\PH'z P 139

•

•

[17] Kohei Honda and ~[ario Tokoro. On asynchronous communication semantics.

In ~I(ario] Tokoro. O[scar] Nierstrasz. and P[eter] \Vegner~ editors, Ohject-Based

Concurrent Co'mputing 199L volunle 612 of LNCS. pages 21-51. Springer. 1992.

[18] Kohei Honda and Nobuko Yoshida. On reduction-based process semantics. The

oret'ieai Co'mputer Science. 152(2):-137--186. 1995. An extract appeared in Pro

ceedings of FSTTCS ~9.1. LNCS 761.

[19] Cosimo Lanevc and Bjôrn Victor. Solos in concert. In .Jift \Viedennan. Peter

van Elude Boas. and ~[ogens ~ielsen. editors. 26th Colioquiu'fn on Auto'ffwta.

Languag~s and ProgHLTnming (ECALP) (Prague. Czech Repubtic). volume 16-1-1

of LiVCS, pages 513-523. Springer. July 1999.

[20] Janles Leifer and Robin ~[ilner. Deriving bisirnulation congruences for reactivc

systerlls. In Proeeedings of the 11 th International Conference of ConC"urrency

Theory, CONCUR 2000. volume 1877 of LiVeS. Springer-Verlag. 2000.

[21] Patrick Lincoln and Vijay Saraswat. Highcr-order. linear. concurrent constraint

progranlming. ~[anuscript. January 1993.

[22] Na" P. ~[endler. Prakash Panangaden, Phillip J. Scott, and R. A. G. Seel)'..\

logical view of concurrent constraint progranlming. Nordic Journal of Comp'ut

ing, 1995.

[23] ~Iassimo ~Ierro. On the expressiveness of chi, update, and fusion calculi. In

Catuscia Palamidessi and Baria Castellani. editors. EXPRESS ~98: Express'ive

ness in Concurreney (iVice. France. September 7, 1998), volunle 16.2 of ENTCS.

Elsevier Science Publishers, 1998.

[2-1] ~Iassimo ~Ierro. On equators in asynchronous name-passing calculi without

matching. [n Ilaria Castellani and Bjorn Victor, editors, E.tPRESS ~99: Ex

pressiveness in ConcuTTeney (Eindhoven, The Netherlands, August 23. 1999),

volume 27 of ENTeS. Elsevier Science Publishers, 1999.

• BIBLIOGR4-\PHY

(25) Robin ~Iilner. Communication and Concurrency. Prentice HalL 1989.

140

•

•

[26) Robin),'[ilner. The polyadic 7r-calculus: A tutorial. Technical Report ECS

LFCS-91-180, LFCS, University of Edinburgh. 1991.

(27) Robin ~lilner. Functions as processes. Jou'rnal of ,Uathernatical Structures

in Computer Science. 2(2): 119-1-1 L 1992. Previolls version as Rapport de

Recherche 115-1. INRIA Sophia-.-\ntipolis. 1990. and in Proceedings of ICA LP

'91. L~CS -1-13.

[281 Robin),[ilner. Elenlents of interaction. Co·mnLu.nication.-; of the A C.i\;/. 36(1) :78

89. 1993. Turing .-\ward Lecture.

(29) Robin ~lilner. Corn'Tfmnicating and "wbile .systerns: the 7r-calculus. Canlbridge

L"niversity Press. 1999.

[3D) Robin Z\Iilner, Joachim Parrow, and David \Valker. .-\ calculus of mobile pro

cesses. part i/ii. Technical Report ECS-LFCS-89-85 and -86. LFCS. Cniversity

of Edinburgh, 1989.

[31) Robin ~lilIler and Davide Sangiorgi. Barbed bisinlulation. In \V. Kuich, edi

tor. Nineteenth Colloquiu'm on .4utonLata. Language.,; and Progra'm'm'ing (ICALP)

(~VieTL. Austria), volume 623 of LiVCS. pages 685-695. Springer. 1992.

[32] LOwe ~estmann. \rhat is a good encoding of guarded choice'? Technical Report

RS-97-45, BRICS. 1997.

[33] Cwe :':estmann and 8enjanlÎIl C. Pierce. Decoding choice encodings. In Ugo

~[ontanari and Vladimiro Sassone. editors, CONCUR '96: Concurrency Theory

(7th International Con!erence~ Pisa, Italy, August 1996, Proceedings). volume

1119 of LNCS, pages 179-194. Springer, 1996. Latest full version as report

BRICS-RS-99-42~Universities of Aalborg and Arhus, Denmark, 1999. To appear

in Journal of Information and Computation.

[3-11 Joachim ~iehren and ~Iartin ~lüller. Constraints for free in concurrent com

putation. In Proceedings of the ..tsian CO'rnputer Science Conference .4CSC~95.

volurne 1023 of LNCS. 1995.

• BIBLIOGRA.PH\P 141

•

•

[35] Catuscia Palamidessi. Concurrent constraint progranlnling. Lect'ure IVotes in

Computer Science. 850: 1-?'?, 199-1.

[36] Catuscia Palamidessi. Cornparing the expressive power of the synchronous and

the asynchronous iT-calculus. In Proceedings of POPL '97, 1997.

[37] P. Panangaden. The expressive power of indeternlinate prirniti\'es in asyn

chronous computation. Lecture Notes in Co'mp'Uter Science. 1026:12-1-'?'? 1995.

(38] Prakash Panangaden. ~otes on the lambda calculus. COURSE ~OTES. 1997.

(391 Prakash Panangadcn. Vijay A. Saraswat. and)'·Iartin Rinard. The semantic

foundations of concurrent constraint progranuning. In AC).,l, editor. POPL '91 .

Proceeding8 of the eighteenth annual ..t CAl synL/losiu'fTL on Principle,o; of p',-ogram

ming languages. January 21 -2;J, 1991, Orlando, FL. pages :333-352. ~ew York.

~·Y. USA. 1991. AC).I Press.

[-10] Davide Sangiorgi. A theory of bisimulation for the 1i-caleulus. Technical Report

ECS-LFCS-93-2ïO, LFCS, Cniversity of Edinburgh. 1993,

[-11] Davide Sangiorgi. rr-calculus, internai nlobility, and agent-passing calenli. Tech

nical Report 2539, INRIA. 1995.

[-12] Davide Sangiorgi. The iT-calculus and its family: interaction and equivalences.,

April 2000.

[-13] \ïjay Saraswat. Conc'U'TTent Constra'int p.rogram·ming Languages. Phd thesis.

Carnegie-~[ellon university, Pittsburgh, Pennsylvania. ~[ay 1988.

[-14] Gert Smolka. A foundation for higher-order concurrent constraint progranlming.

In Jean-Pierre Jouannaud. editor. lst International Conference on Constraints

in CO'mputational Logics, Lecture Notes in Computer Science, vol. 845. pages

50-72, ~lünchen, Germany, 7-9 September 1994. Springer-Verlag.

[45] Bjorn Victor. The Fusion Calculus: Expressiveness and Sym'metry ln i\;/obile

Processes. PhD thesis. Uppsala University~ 1998.
• BIBLIOGRAPHY 142

•

•

[46] Bjorn Victor and .Joachim Parrow. Constraints as processes. In lJgo ~Iontanari

and \ladimiro Sassone~ editors~ COIVCUR '96: ConcuTTency TheonJ (7th ln

te'rnational Conference. Pisa. ltaly~ .4 ug'ust 1996, Proceeding.s) ~ voluule 1119 of

LiVCS. pages 389-405. Springer. 1996.

[4i] Bjorn Victor and Joachirn Parrow. Concurrent constraints in the fusion ca1cu

lus (extended abstract). In K. G. Larsen. S. Skyum. and G. \\ïnskel. editors.

Proceeding.'j of lCALP '98. volume 1443 of LiVCS. Sprillger-Verlag. 1998.

[48] Glynn \\ïnskel. The F01ïnal Sernuntics of ProgranLTning Lang'uages. ~IIT Press.

Cambridge~ ~Iassachusetts. 1994.

[49] Lucian \Vischik and Philippa Gardner. Synlnletric action calculi (abstract) .

ln Baria Castellani and Bjorn Victor. editors~ EJ;PRESS '99: Exp'ressiveness

in Conc'UTTency (Eindhoven, The iVetherlands, August 23~ 1999). \'olunle 2; of

ENTCS. Elsevier Science Publishers. 1999.

[501 Pascal Zimmer. On the expressiveness of pure mobile ambients. In Luca Aceto

and Bjorn Victor, editors. E4~PRESS ~OO: Prelirninary Proceedings of the 7th

International ~VoTkshop on ExpresS'iveness in Concurrency (State College. USA.

August 21. 2000J. volunle :\S-00-2 of BRICS IVotes Series. pages 81-104. 2000.

