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Abstract

The development of formal methods and theories for the construction and analysis of
concurrent systems has been a subject of increased interest, particularly in the last
decade. Amongst the most recognized and studied theories is the w-calculus and its
family of languages. The w-calculus is a language for describing and reasoning about
mobile systems. that is. systems in which the topology of the communications network
is dyvnamic and not fixed a priori. Examples of such systems include mobile phone
networks and the TCP/IP protocol that underlies the Internet. Another paradigm
for concurrency is known as Concurrent Constraint Programming or CCP for short.
This is a particularly attractive model because of its close ties with Logic and its
declarative style. In this thesis a survey of the 7-calculus family and the CCP family
is presented. emphasizing the relations both within each family and between the two

paradigms. In particular we explore the question of whether CCP supports mobility.



Resume

Le développement de méthodes formels et de théories pour la construction et 'analyse
des svstéemes concurrents connait une forte croissance d’intérét pendant la derniere
décennie. Parmi les theories les plus reconnues se trouve le w-calculus et la famille
de langages de sa descendance. Le w-calculus est un langage pour la description
et raisonnement sur les systemes mobiles. ceux ol la topologie du réseau de com-
munication change de facon dynamique. Les réseaux de téléphones mobiles et le
protocole TCP/IP qui sert de base pour I'Internet figurent parmi les exemples de tels
systemes. Un autre paradigme de la concurrence est la Programmation Concurrente
par Restrictions ou CCP. Ses relations profondes relatives a la Logique et son style
declaratif conferent a la CCP un attrait particulier. Cette thése présente une étude
des familles du m-calculus et de CCP en mettant a point les relations entre les deux.

Particulierment nous examinons la question de 'admission de la mobilité en CCP.
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Chapter 1
Introduction

In the world of computation today we find many kinds of complex software and
hardware svstems that include some sort of concurrent processing. Distributed and
parallel computing. multi-threaded languages and operating systems. are just exam-
ples of the general concept of concurrencyv. A concurrent system is a svstem that
has at least two different parts that. to some extent. perform their activities inde-
pendently, and “at the same time.” The idea of simultaneity need not be that of
two activities performed at the same “physical” time. It can be abstracted to refer
to “logical” time. This is the case of languages and operating systems with multiple
threads of control executing in a single physical processor. Since there is only one
processor, only one instruction is executed at a time (ignoring the internal pipeline
of the processor), but conceptually. all the threads are active and running.

There are a number of reasons why concurrency is desirable. Firstly, in the pres-
ence of several physical processors we obtain a speed advantage if we can distribute
the tasks necessary for solving the problem in an appropriate fashion amongst the
processors. Secondly. it gives us an advantage from the design point of view. by serv-
ing as a tool to model realistically the problem domain. since most systems in the
real world are naturally concurrent. Thirdly, the use of concurrency leads to more
modular systems, since the developer decomposes the system in parts that work in-
dependently of non-essential constraints on the sequence of events or activities.

The advantages of concurrency do not come for free. The development and anal-
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vsis of concurrent systems have been long known to be very difficult tasks. In order
to perform a task, the multiple parts that form a concurrent system must interact
and communicate with each other. to exchange, analyze or synthesize the information
involved in solving the problem. The difficulty arises from this interaction.

There are different strategies for communication between processes. These include
shared variables and message passing. In the former. messages can be posted and
read by all processes that have access to a common memory (sometimes called a
blackboard). In the latter. communication is performed through channels that carry
messages so there is a precise control of which agents send or receive information.
In this view. agents perform the basic operations of sending and receiving a message
through a given channel.

Under the message-passing model. a communicating concurrent system can be
seen as a network of processes connected by the channels. In recent vears there has
been an increasing interest in mobile systems, that is, systems in which the topology
of the communication network evolves dynamically. The concept of mobility has
found applications mainly in telecommunications and in the Internet.

[t is desirable to be able to talk about properties of concurrent systems such
as correctness with respect to a specification. liveness. fairness. etc. However. the
change of network structure at runtime considerably complicates this analysis since
the patterns of communication are not fixed. Intuition about how a system behaves
is bound to lead to wrong conclusions (e.g. saving that the system is deadlock-free
when in fact it can deadlock). It is therefore of vital importance to use reliable tools
for defining and reasoning about this kind of system. We need mathematical models
of computation for this.

In Theoretical Computer Science we find some foundational models such as Tur-
ing Machines, and the A-calculus. Although these models have been successful in
the study of concepts such as computational complexity and functional abstraction
and application, they are inappropriate for dealing with interacting and concurrent

systems. Quoting Milner

“In looking for basic notions for a model of concurrency it is therefore
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probably wrong to extrapolate from A-calculus. except to follow its exam-
ple in seeking something small and powerful. (Here is an analogy: Music
is an art form, but it would be wrong to look for an aesthetic theory to

cover all art forms by extrapolation from musical theory.)” [26]

These models are not suitable to deal with concurrent communicating systems be-
cause they are based on the assumption that the system receives some input produces
some output and ends processing. On the other hand, interactive systems intend to
model reactive behaviour, in which input is continuously received and output pro-
duced so processing does not necessarily terminate.

Since Turing Machines and the A-calculus do not appropriately represent the
issues of concurrent computation. several frameworks have been developed to deal
with these. These frameworks usually receive the name of process calculi or process
algebras. One of the most influential developments in this field was Hoare's CSP.
or Commaunicating Sequential Processes ([13]). Closely related was Milner's CCS.
or Calculus of Communicating Systems ([23]). These languages provided a precise
framework for describing and reasoning about concurrency. however. neither of them
deal with mobile computation. Although mobility was first tackled in the Actor
model of Hewitt and Agha ([14], [2]), not until Engberg and Nielsen ({10]) was an
algebraic formulation provided. This work was latter simplified by Milner. Parrow
and Walker [30] with the m-calculus.

The w-calculus serves us as the base point for the study of expressiveness in mobile
process calculi. since it has become the de facto standard against which process calculi
are compared. It can be seen both as a language for describing and for reasoning
about systems: as a programming language as well as a specification language. due
to its declarative nature. Several variants have been defined since its introduction.
Amongst the most well-known are the asynchronous m-calculus. the wl-calculus. and
more recently. the fusion calculus.

A different model of programming concurrent systems is found in the Concurrent
Constraint Programming paradigm ([39], [35], {43]). This approach is based on the

shared memory model of communication. Under this model variables need not have
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fixed values and agents provide partial information in the form of constraints over
variables, all of which integrate a shared constraint store. The basic operations that
processes perform are posting a constraint in the store (£ell) or inquiring the store to
see if a constraint is valid (ask). This model is very attractive, because it is closely
tied to logic ({22]).

The diversity of languages and calculi for concurrency immediately suggests the
question of expressiveness. How can we determine if a language is more powerful or
expressive than another? Strictly speaking. no model of computation can have more
expressive power than Turing Machines or the A-calculus in the sense that these model
every possible computable function. However. Turing machines are onlv a model
of sequential computation. The issue of two separate machines interacting. is not
even addressed by Turing-completeness. A major point about the difference between
sequential and concurrent computation is the ability to handle infinite input/output.

Quoting Panangaden

“In the world of sequential computation if one subprogram produces infi-
nite output this output is "useless’. The subprogram will run forever and
nothing will happen with the rest of the program. If. however, two sub-
programs run cornicurrently then one could be producing infinite output
which the other examines while it is being produced. As simple example
suppose that a Turing Machine produces an infinite sequence of primes
in increasing order. Another Turing Machine can examine this list and
check for the occurrences of a specific number. From the traditional view-
point of sequential computation this is a divergent program! Clearly from
a parallel viewpoint the program is entirely nontrivial and does not de-
serve to be lumped together with a program that just loops without ever

producing output.” [37]
We are interested in two different but related concepts of expressiveness:

e What does it mean to say that a programming language or calculus is more

expressive or powerful than another?
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e What does it mean to say that an agent. system or machine is more powerful

that another?

Before discussing these. let us clarify the terminology. A system. is a collection
of agents. The behaviour of an agent is a process. In the setting of concurrent
computation, a system has at least two agents. A programming language or calculus
is a collection of terms or programs with some semantics specifying what the terms
mean. Systems and agents are represented by terms in a calculus. It is often the
case that systems and agents are represented by the same syntactical category in the
language. in order to allow for the definition of hierarchical systems. i.e. systems
made out of subsystems. Hence we use the words “system”. “agent”. “process” and
“term” interchangeably.

In the context of concurrent systems. the expressiveness of agents depends on
how they communicate. The idea that interaction with external agents. or with the
environment. should be taken into account to differentiate between the agents led
Milner and Park ([23]) to the concept of “bisimulation™ as a behavioural equivalence
between agents. Roughly speaking. this concept is based on the following intuitions.
We consider an agent A to be at least as powerful as an agent B if A can simulate
B. We can say that A is equally powerful, (or behaviourally equivalent) to B if A
and B cannot be distinguished by an external observer, and thus could be used
interchangeably in any system.

What about the expressiveness of a programming language with respect to an-
other? Determining which of two programming languages is more expressive. in the
context of concurrency and interaction. depends on the relative power of the agents
represented by terms in each language. To be able to compare the power of agents
in different calculi, we need to understand the behaviour of such agents. Unless we
can answer the question of whether two agents are equivalent, we cannot really say
that we understand what is the behaviour of an agent, and what is its relative power.
Thus the notion of behavioural equivalence of agents plays a very important role in
comparing the expressiveness of calculi.

How do we relate the expressive power of languages with the power of their agents?
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Consider two languages £, and £,. We expect £ to be at least as expressive than
L, if each term in £, can be simulated by a term in £,. In order to be able to
make such comparison there needs to be a translation from £, to £,;. But it is not
enough to say that there must be a translation. The establishment of the relative
expressive power of the calculi depends on the (syntactic and semantic) properties
that are preserved and/or reflected by the translation. One such properties is the
relative power of agents within a language. We expect that the relative power between
agents be respected by the translation. This is. when two agents are equally powerful
in a language. their corresponding translations will have the same relation. This is
the intuition behind the concept of “full-abstraction™ ([48]). which serves as a natural
criterion to establish the equivalent expressive power of two languages.

Full abstraction is not the only criterion to establish the relative expressiveness of
calculi. Sometimes we might be interested in particular aspects or features of these
calculi. such as the ability to handle certain tasks. or to represent certain kind of
objects. In this sense we would consider a language to be at least as powerful as
another if there is a translation from the latter to the former that preserves and/or
reflects some essential property of the language being translated. Equivalently, we
would consider that there is a gap in expressiveness between two languages if there
is no translation that respects a particular property of interest. It might be the
case that there are translations from one language to another, but we would still be
inclined to say that there is gap when some essential aspect is not respected by any
translation. In the context of concurrency and interaction. the properties that we are
particularly interested in. are the capabilities of a system to simulate mobility.

It is in light of these concepts that we intend to compare the relative power of
the languages within the 7-calculus and CCP families. The object of this thesis to
provide a map of the relations between different process calculi, and an attempt to
establish some vet unknown relations, in particular, we are interested in exploring

the possibility or impossibility of simulating mobility in CCP.
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1.1 Contributions

The more general contributions of this thesis include:

e A uniform presentation of calculi in the two different paradigms for concur-
rency considered. namely mobile processes and concurrent constraints. This
includes a uniform treatment of the semantics. by presenting both labelled and
unlabelled transition systems for each calculi, and proving the equivalence of
such syvstems by standard techniques. Also. the definition of sensible notions of

behavioural equivalence in terms of the standard notion of bisimulation ([23]).
e A "map” of the known relations between the calculi discussed.

The specific contributions are:

e The establishment of a gap in expressiveness between concurrent languages
with support for mobility (w-calculi) and Concurrent Constraint Programming
languages. Specifically the impossibility of encoding internal mobility in CCP

languages under some reasonable assumptions.

e The proof of a correspondence between labelled and unlabelled transition se-

mantics for CCP.



Chapter 2
Background

This section provides the technical background on the basic concepts of calculi. op-
erational semantics, bisimulation. translations and expressiveness. We assume the
reader is familiar with basic set-theoretic concepts. inductive definitions. and the

induction principle.

2.1 Calculi syntax and contexts

To design, build. analyvze, and reason about systems we use languages or calculi. A
language or calculus is a set of terms or erpressions together with some associated
meaning. The expressions or terms of a language represent components. agents or
processes of a system. The syntaz of a language describes the means for combining the
basic terms into more complex terms to represent complex structure or behaviour of
a system. The semantics describes what is the meaning of each term in the language.
e.g. what entity or behaviour in a system is being modeled by a particular expression.

The syntax of a language is often given in an inductive way, defining first what the
basic elements are, and then what the more complex elements are in terms of simpler
expressions. It is common to use Backus-Naur Form (BNF) to describe the syntax of
a language. For instance, assume a language £, whose expressions are strings from

the alphabet ¥ e {a, b, 4,®} UV with V «f {z,z1,22,---}. Suppose that the set
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of terms in £ is defined inductively as follows (ignoring parenthesis):
LY, b} u{capiceV.pe LU {p @p:p.p€ L)

This language will include terms such as b, r<a. (r<b) ® a. etc. The BNF for this

language is given by:
P n= (L I b I rapP l P[ @ P_J

[t will often be necessary to talk about the context of an agent. For a particular
language. we define a context C as a term with a “hole™ or place-holder [-]. If P is
a term in the language. C[P] is the term that results from replacing the [-] in C by
P. These contexts can also be defined inductively by a BNF. For instance the set of

L-contexts for the language £ described above. is given by:
C == [] | zaC | C®P | PBC

For example. some contexts are £ < [-]. (z <[]) ® a. etc.!
The set of “minimal” contexts {x<[-]. [[|@ P. P®[]} is called the set of elementary

contexts.

2.2 Operational semantics

When describing the semantics of a programming language or model of computation,
it is common to do it by means of defining how the agents, processes, or programs
of the language evolve. This approach is known as “operational semantics”. We can
think of the operational semantics as a “state transition system”, in which we specify
for some abstract machine how is it that its state, or configuration. evolves over time
in order to execute programs of the language. This is in contrast with the so called

“denotational semantics” in which the meaning of each term in the language is given

I Note that these are single hole contexts. In this thesis we do not deal with multiple hole contexts.
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by some element in an abstract domain.

\While denotational semantics is more abstract as it is independent of any par-
ticular computational view, in the sense that the denotation of a program does not
depend on how it is executed by a machine, operational semantics is very useful for
that same reason: it gives us a concrete handle on the process of computation itself
allowing us to reason about how the agents compute and interact.

In order to give an operational semantics. we have to define what is a “state” in
the abstract machine. and how it evolves. i.e. given that the system is in a particular
state. which state, or states. will be the next. Suppose that we are dealing with a
language £. We can think of our abstract machine as a “term rewriting system” in
which computation is performed by means of replacing (or rewriting) the program to
be executed with another. preferably simpler. program in £. Thus. we can say that
the states in the abstract machine are the terms themselves. Now. given two agents?
E, and E, in £. we want to formally express the notion that “E| evolves in a single
computational step to become E,”. We do this by defining a “reduction™ relation
—¢ € L x L. so the notion of single computational step is captured by asserting
(E\, E;) €—¢. Normally we write £, — E, for (E\, E;) €—. and we rescind from
the subscript when it is clear from the context the language to which we are referring.

Even though defining the operational semantics in such way is very useful. it is
somewhat restrictive. Sometimes we might be interested in defining how the agent
evolves with respect to some specific context. for instance some environment that
contains variables. If the set of such environments is Env, we would change the
signature of our reduction relation to something like = C £ x Env x £ x Env and
write (E\,0,) — (E,,0,) for (E|.0,, E3,0,) €—. to mean “under the environment
0. the agent E| evolves into E, with environment o5”.

This idea of enriching the reductions. can be thought of as adorning the reduction
relation with some label(s): for instance some people write E| RLALEIN E, instead of
(E\,01) = (Es,04). In general, we can choose some labels from a set A and say that

— C £ x A x L. These labels need not be a pair representing the state before, and

2We use “agents”, “terms”, “programs” and “processes” indistinctively.
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the state after the transition. A frequent use is to consider A to be some set of actions
that the agents can perform. This kind of relation is normally called “transition”,
or “commitment”. Again, we write E, 5 E, for (E|.a, E;) €= to mean that E,
performs the action « evolving into E,.

In our abstract machine view of semantics. we could cousider the labels as condi-
tions on the current configuration. that need to be met for the machine to move to
the next allowed state.

A formalization of the semantics using reduction or transition relations was given

in [23] (although it is 2 much older concept).

Definition 2.1. A structure (L. —) where - C £ x L is called an unlabelled
transition system, or UTS for short. A structure (L. A, =) where - C LxAXL

is called a labelled transition system or LTS for short.

We specify the operational semantics of the language by defining which pairs of
expressions belong to —. in the case of UTS. or triples of expression-action-expression.
in the case of LTS. It is customary to define this relation inductively by inference

rules. An inference rule of the form

A A

-'ln.
RULE-NAME  if <side conditions>

should be read as “if 4, and A, and ... and 4, then B”. An inference rule without
premises is an axiom. The rule can be applied only if the side conditions are met.
For the definition of an operational semantics the 4;’s and the B are assertions of the
form M — M’ (or M = M’ for an LTS) where M and M’ are the different syntactic
forms of the language.

When defining semantics this way, it is also customary to provide another relation
between expressions called “structural congruence”, written = C £ x £. This is an
equivalence relation that is supposed to group together (in equivalence classes) terms
that we don’t want to consider semantically different. It is important to note that
this is a “static” equivalence, this is, it equates terms based solely on their syntax,
and not on their dynamic behaviour. In section 2.3 we will talk about “dynamic”

equivalence relations, when we approach the concept of bisimilarity. This approach of
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defining semantics in terms of a reduction system built upon a structural congruence.
according to [31], was proposed in [27], and inspired on the “Chemical Abstract
Machine” of Berry and Boudol ({3]).

We normally include structural congruence in the signature of the language, be
it labelled or unlabelled, and provide an inference rule for reductions or transitions
that allows us to change freely between structurally congruent terms. Such a rule
generally takes the following form®:

M5

U — CONGR ifM=VNand =YV
VSV

The notions of reduction and transition represent a single computational step. We
extend this notion to a sequence of steps. or computation. We use the symbol = to
stand for —* denoting the transitive and reflexive closure of —. Thus. the assertion
P = Q. representing a computation from P to Q. means that there are terms R;.
Ry. ..., R, suchthat P> R, — R, = ... = R, — Q. or that P = Q. In the setting
of labelled transition systems. a computation is a sequence of transitions P 4 Q.
where & = ap, as.-+ -, a,. is a sequence of actions. meaning that there are R,, R,,
oo Rysuchthat PB3 R B3R, B...°3' R, 3 Q. or P = Q. We often refer to —
and = as “strong” reductions or transitions. and to = and = as “weak” reductions
or transitions.

What kind of semantics is better? This is not easy to answer. LTS semantics
gives us finer grained information. and allows us to reason locally, whereas UTS gives
us a more general view of the semantics, and tends to be more intuitive. Another
aspect in favor of LTS semantics is that given a term, we can represent its possible
evolution paths as a graph in which nodes are terms, and edges are transitions, with
their labels representing actions. An analogous graph for a UTS would not be as
informative because edges would not have labels. It would tell us “where” the system
can go, but not how.

An important justification for defining formally the semantics of a language is

3This is the LTS form of the rule. For an UTS version, we simply do not write the a labels.
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that we can use mathematical tools available to reason about and prove properties
of programs. One useful tool is the principle of induction. In this context the use
of this principle appears in two forms: “structural” induction, and induction on the
derivations (also known as induction on the inference. or induction on the height of
the proof tree). In the first case. we make induction based on the structure of the
programs (according to the svntax). Hence it is generally used for proving static prop-
erties. For dvnamic properties we generally use induction on derivations. In these.
we analvze the possible cases for last inference. assuming the induction hypothesis
for the premises of each rule. and for axioms.

Given the two forms of semantics for a particular language. we expect them to
agree. i.c.. at the appropriate level of abstraction. agents that have some behaviour
according to UTS, must have the same behaviour according to LTS and vice-versa.
This is a property that must be proven. and generally involves induction on deriva-

tions.

2.3 Bisimulation

The notion of equivalence is essential to the semantics of a language. Unless we have
a way of distinguishing terms or agents. we cannot claim that we have a well defined
notion of “meaning” of an agent. or its power. \We need to be able to determine
whether two agents are equivalent in some sense.

We now address this issue of whether two agents should be considered “dynam-
ically” or “behaviourally” equivalent. As pointed out in the introduction, this is a
notion that, in the case of concurrent systems, should depend on the capabilities of
interaction of an agent with its environment. So if we want to consider two processes
as equivalent we have to rely on the idea that they “match” each other’s actions.

This idea of matching is formalized by the notion of sirnuletion'. We will consider

an LTS (£, A, =, —).

iDavid Park and Robin Milner [25] are credited as the inventors of the notions of simulation and
bisimulation.
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Definition 2.2 (Simulation and similarity). 4 binary relation 8 C L x L is
called a simulation iff for any terms P,Q € L. PSQ implies that if for any term
P' € L and any action a € A such that P = P', then there is a term Q' € L such
that @ 5 Q' and P'SQ'.

We say that Q simulates P. or that P and Q are similar, written P<Q, iff
there is a simulation S such that PSQ.

The intuitive idea behind this concept is that @ simulates P in the sense that
every action that P makes is matched by the same action in Q, reaching a similar
state. i.e. a state that itself continues to simulate its counterpart.

We point out a few properties (Milner. [23]):
Proposition 2.3.
(i) < is reflerive and transitive.
(it) < is itself a sirnulation.
(tit) < is the largest simulation.

Proof. (i) Similarity is reflexive because there is a simulation S such that for any
P e L. PSP. Namely that simulation is S = {(P. P)|P € L}. It is easy to show this
set is a simulation, because P can always match its own moves.

For transitivity, assume that P<Q and Q<R. Then there are simulations S, and
S, such that PS1Q and QS;R. Define S def S|S,, i.e. the composition of the given
simulations: § = {(a.b) | 3¢. aSic & ¢S»b}. Clearly it is the case that PSR. It now
suffices to show that § is indeed a simulation. Take any (a, b) € S, and suppose that
a = a'. Then there is a c such that aS;c and ¢S;b. Knowing the first simulation we
obtain that ¢ = ¢ and a'S,c¢. Then. by the second simulation, b = &' and ¢/S)b'.
This implies that (a’,b’) € S, hence S is a simulation. so P<R.

(i) Assume that P<Q. By definition of similarity, there is a simulation & where
PSQ. Hence whenever P % P’ we know that Q > Q' with P'SQ’. Since P’ and Q'
are related by a simulation, they are similar: P'<(Q’. thus satisfving the conditions

of a simulation.
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(iit) To see that similarity is maximal. it is enough to prove that
< = U{ S| S is a simulation }

To see this. note that (a,b) € < if and only iff (a,b) € S for some simulation §;
this means that (a.b) € U{S ! S is a simulation }. This set is maximal because it
contains all simulations.

a

The notions of simulation and similarity are one-directional (although not neces-
sarily antisvmmetric). If we are interested in considering two agents as equivalent.
they need to match each other’s actions. An alternative is to consider “two-way
simulation”. i.e. the agents are equivalent if one simulates the other and vice-versa.
This introduces some problemns, as pointed out by the following example. Consider
two machines P and Q as depicted in figure 2.1. It is easy to see that Q simulates P.
The simulation is §; = {(P. Q). (P2.Q.), (P5,Q3), (P1.Q4)}. The converse is also

true: P simulates Q. and the simulation is

Sz = {(Q1. P1).(Q2, P2) . (Q3, P3). (Qs. P). (@5, P), (@, P3). (Qr. P2). (Qs. Py)}

The problem however is that two-way simulation is not an appropriate notion of
equivalence because we would expect equivalent machines to be able to replace one
another in any context. i.e. they must interact with the environment in the same
way. But the example shows that this is not the case for all states of the machines.
Consider for instance state Q5. In P. state P, simulates Q5. but in reality. no state
in P really corresponds to @s. If the machine @ is initially presented with an action
a and moves to state (5 and then it receives an action c, it cannot respond to it.
Meanwhile, if P is presented with the same sequence of actions ac, it successfully
ends in state P;. Hence the two machines do not react with the same behaviour to
external stimuli.

Given that two-way simulation does not seem to capture completely the notion

of equivalence that we are after, we adopt a different concept: bisimilarity.
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Machine P Machine Q

Figure 2.1: Are these machines equivalent?

Definition 2.4 (Bisimulation and bisimilarity (Milner, [25])). A simulation S

is called a bistmulation iff S~! is also a simulation. This is, PSQ implies that
(i) Whenever P 55 P'. then Q 5 Q' and P'SQ’
(ii) Whenever Q 3 Q. then P 5 P' and P'SQ'

We say that P and Q are bisimilar. written P~Q iff there is a bisirmulation S
such that PSQ.

The fact that this concept is useful to distinguish between agents. is given by

establishing that < is an equivalence relation. The following has been proved by
Milner ([23]).

Proposition 2.5.
(i) ~ is an equivalence relation.
(it) ~ is itself a bisimulation.
(i) ~ is the largest bisirnulation.

Proof. (i) First we establish that ~ is a simulation. The argument is as in item (ii)
in 2.3. Then. since ~ is a simulation, it is reflexive and transitive. Symmetry is easily

established: given P and @ such that P~Q we know that there is a simulation S



CHAPTER 2. BACKGROUND 17

such that S~! is also a simulation and PSQ. This implies that QS~! P, so there is a
simulation R €/ S-! such that QRP and its inverse R™! = S is also a simulation.
Hence Q~P.

(it) Analogous to proposition 2.3.

(i) Analogous to proposition 2.3.

a

Returning to the example of two-way simulation, we could have saidthat P~ Q.
and hence should not be considered equivalent.

Recall from the previous section that it is common to present the operational se-
mantics of a language together with a structural congruence = between agents. and
a CONGR rule that allow us to replace structurally congruent agents and preserve
transitions. It is easy to see that with such a rule. structural congruence is a bisimu-
lation, because if P = Q and P 5 P'. and noting that = is reflexive so that P’ = P'.

then by using a CONGR rule. @ 3 P'. In other words. = C ~.

Congruence relations

If we consider two agents equivalent, we expect them to be mutually replaceable.
If one of them exists within an environment. we should be able to take it out. and
“plug-in” the other so that the overall system or environment behaves in the same
way. In other words. any observer or external client should not be able to distinguish
between the two agents. The interaction between agent and observer must remain
the same.

This idea is formalized by the algebraic notion of congruence®. A congruence is
an equivalence relation that is preserved by the operations in some domain. or in our

context, an equivalence relation that is preserved by the operators of the language.

Definition 2.6. Let L be a calculus, and = C L x L an equivalence relation between

L terms. We say that = is a congruence iff for any P.Q € L, whenever P = Q

5The structural congruence relation mentioned before as a special kind of equivalence between

agents, is defined for each particular calculus in terms of the more general concept of congruence
provided here.
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then for all L-contexts C. C[P] = C[Q).

More succinctly we could have say that = is closed under arbitrary contexts.

The notion of bisimilarity attempts to capture an appropriate notion of be-
havioural equivalence. However. we can only say that this goal is achieved if bisim-
ilarity is a congruence in the language of interest. As we will see. this depends on
the language under consideration. Sometimes it will be necessary to refine the notion
of bisimilarity to accommodate or reflect the idiosyncrasies of the language. in order
to obtain a congruence. Often it turns out that even after adapting the notion of
bisimilarity to the language it still is not a congruence. When this is the case, we can
“force” the equivalence to be a congruence by defining an equivalence relation on top

of it. We say that the new equivalence is induced from the old one.

Definition 2.7 (Induced congruence). Let £ be a calculus, and ~ C L x L an
equivalence relation between L terms. We define a binary relation ~ C £ x L as the
smallest equivalence relation such that for any P.Q € L. P ~ Q if and only if for all
L-contexts C. it holds that C[P] ~ C[Q]. We say that ~ induces the congruence

~,

More succinetly we could have said that the congruence induced by an equivalence
is the closure of the equivalence under all contexts.

Even if obtaining congruence relations is one of the most important objectives of
semantics, sometimes we might find interesting and meaningful equivalence relations
that. while not being congruences, still preserve some, or most of the operators of the
language.

A great deal of research in concurrency and interaction has had these issues as a

central theme.

2.4 Translations and Expressiveness

In this section we examine in more detail the concept of expressiveness. In the
introduction we mentioned several approaches to this concept. but we decided to

concentrate on the understanding of expressive power in terms of the capabilities of
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interaction between agents. In section 2.3 we introduced the notions of simulation
and bisimulation as a means of describing the idea that one agent can interact with
the environment (at least) in the same way as another. We are assuming that agents
are being described within the same language. Note that here we are using the term
“language”. or “calculus” to refer to the set of all agents. not the set of strings of
labels produced by a specific automaton. Qur emphasis is on comparing process
calculi rather than individual agents. To do so. we need to talk about translations

between different calculi.

2.4.1 Full abstraction

Fix. for the moment. two languages £, and £,. A translation. embedding. or encoding
from £, to £, is simply a function ¢t : £, — £,. We say that £, is at least as
expressive as L, if there is a translation t : £; — £, that satisfies certain criteria.
This definition of course leaves a wide margin of freedom to determine what is a
good translation (if it exists) depending on what the criteria are. As we will see, the
results in expressiveness are based on the choice of criteria for translations. There are
a few widely accepted concepts to describe or prove the “correctness™ of a translation.
These concepts, introduced below. are very generic. but their application varies from
one language to another. and one translation to the next.

Usually the criteria for establishing the correctness of a translation is given in
terms of the notions of equivalence. simulation or transitions for the languages. We
expect the translation to “behave well” with respect to such relations, i.e. transitions
in one language correspond to transitions in the other. and equivalent terms are

translated into equivalent terms. This idea is generalized by the following properties.

Definition 2.8. Let [] : £L; — £, be a translation . and consider two binary rela-

tions Ry C Ly x Ly and Ra C L x Ly, we say that:
o [-] is complete w.r.t R\, R, iff for any E.F € L, ER\F implies [E[|R,[F].
o [-] is adequate w.r.t R|, R, iff for any E, F € L,, [EJR.[F] implies ERF.

o [-] is fully-abstract w.r.t R\, R, iff it is complete and adequate.
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We intend to convey the idea that R, and R, are related notions, such as transi-
tions. and (bi)similarity. Obviously such notions are language dependent, hence the
mention of two separate relations R, and R,; but in general we are interested in
comparing transitions in one language with transitions in the other. or similarity in
the source with similarity in the target.

Sometimes it is useful to compare expressiveness in terms of a property that is not
necessarily a binary relation. We could formalize this idea of respecting a property

as follows.

Definition 2.9. Given a translation [-] : £, = L£,, and two properties (predicates)
6,: L, = {T.F} and 0, : L, = {T. F}, we say that:

o [-] preserves 0,.0, iff for any E € L,. 6,(E) implies 6,([E]).
o [-] reflects 8,.6, iff for any E € L\, 62([E]) irnplies 6,(E).
o [-] is 6,.0.-fully-abstract iff it preserves and reflects ,.6,.

Of course. the signature of the 8 predicates could be more complex. depending on
the property that we are interested in comparing for the languages.
Notice that we can see completeness as a preservation property. i.e. ¢t is complete

w.r.t. R;. R, iff t preserves R;. Ra. In the same way. adequacy is a reflection property.

2.4.2 Respecting the semantics

Let us examine the notions of completeness. adequacy. and full abstraction with re-
spect to transitions, simulation, and equivalence. Completeness w.r.t. transitions,
means that transitions are preserved, i.e. actions in the source language of the trans-
lation are matched by actions in the target language. Assume that A; represents
the set of actions in £, and A, is the set of actions in £,. Let -, C £, x A4, x £,
and —2C £ x Az x £, be the transition relations defining the operational semantics
of each language. Furthermore, assume that there is a way to map actions in one

language into actions of the other. i.e. a map a : A; — A;. Then, the notion of
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completeness as preservation of transitions is formally stated as follows:
Forany P.P' € £, a € A, P 3, P implies t(P) 225, ¢(P')

This property means that the translation faithfully captures the dynamics of the
source language. Notice the similarity of this concept with that of a standard simula-
tion. as in definition 2.2. This is not a coincidence. Completeness. or preservation of
transitions. can be seen as a generalization of the notion of simulation to a “cross”-
language domain.

The symmetric notion of adequacy, representing a soundness criterion can also be

expressed in a similar fashion.

Forany P £,.Q € L, J € A,.
if t(P) —J—>-_, Q then there are P' € L.« € A, such that P 5, P’

where Q = t(P') and 3 = a(a)

Adequacy as reflection of transitions, can be understood as stating that the behaviour
of translated terms is meaningful in the source language

Another instance of these concepts corresponds to considering completeness and
adequacy as preservation and reflection (respectively) of similarity and behavioural
equivalence. instead of just transitions.

When we say that a translation is complete w.r.t similarity, we are saying that
if in language £, agent P simulates @ then in £, t(P) simulates £(Q). Recall that
the notion of simulation, allows us to replace one agent with another (although not
necessarily the other way around). If P simulates @), we can use P in place of @ in
any environment. If we replace “simulates™ by “is behaviourally equivalent”. then
both processes are interchangeable. and the environment cannot tell them apart. The
preservation of this property by a translation. means that the the ability to replace is
also preserved. If a translation is not complete w.r.t. equivalence, it means that there
are two agents in the source language that behave in the same way with respect to

their environment, but their translations react differently to the environment. Such
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a translation would not be very good.

A symmetric analysis can be made of adequacy. A translation that is not adequate
w.r.t. behavioural equivalence, is one where there are behaviourally different terms
in the source language mapped to terms that exhibit the same behaviour in the
target language. This implies that the interaction with the environment has not been
preserved. and hence. some expressiveness has been lost. For this. lack of adequacy
is much worse than failure of completeness.

[f a translation is not adequate. or complete, then it is not capturing correctly
the semantics of the source language. If no fully abstract translation is possible. it
means that the target language is unable to capture some essential feature(s) of the

source language. and thus is less expressive.

From respecting transitions to respecting equivalence

We have seen two important instances of completeness and adequacy from the point
of view of transitions and (bi)simulations. But (bi)similarity is defined in terms of
transitions. How are all these notions related then? The following establishes one

such relation. and is the base for proving that a given translation is fully-abstract.

Theorem 2.10. If a translation preserves and reflects transitions then it is fully

abstract with respect to bisimilarity.

Proof. Let £, and L, be two languages, and [-] a translation from £, to £,. Let A,
and A, be the set of actions in each language respectively, and a : 4, = A, a map
between such actions. We use the notation ~|, and ~, for bisimilarity in £, and £,

respectively. Assume that [-] preserves and reflects transitions.

(i) Completeness: We want to prove that for any P, and Q, P ~; @ implies
[P] ~2 [Q]- We can do this in the standard way, by showing a bisimulation in
L, that contains ([P], [Q]) given that P and Q are bisimilar. Specifically we want
to show that § %/ {([P].[Q]) : P~1Q} is a bisimulation. Take any ([P],[Q]) € S.
Suppose that [P] >, R. Then, since [-] reflects transitions, R = [P'] for some

P' € £, 3 = a(a) for some a € A, and P 5 P'. Now, since P ~; Q, we have
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that Q@ = Q' with P’ <, Q'. So, by preservation of transitions. [Q] &) [@']- Hence
(IP'].IQ']) € S. because P' <, Q'.

(it} Adequacy: This is the exact dual of the one above.
a

To our knowledge the converse has not been established, and it could be useful
to prove negative expressiveness results.

The theorem and proof above are rather general, and might not be directly ap-
plicable to the languages being compared, since it depends on the notions of tran-
sitions and (bi)simulation. These may involve additional conditions that must be
checked. c.g. late/carly/weak bisimilarity. For example. when dealing with “weak”
(bi)similarities. we might have several choices for the notion of “preserving” transi-
tions: does it mean that one transition is matched by many, or that a sequence of
transitions is matched by a sequence? All these details depend on the languages.

however the proof above serves as the sketch for proofs of full-abstraction.

Encodings of a language in a sublanguage

\When exploring the expressiveness of some calculus we face the question of which
of its operators are strictly necessary and which are not. In such case, we define a
sub-calculus or sublanguage of the original, as a (proper) subset of the full calculus.
Then. to asses the power of the sub-calculus with respect to the original, we can use
a notion of equivalence, similarity or bisimilarity of the full language. to compare
terins of the sublanguage with terms of the full language. This allows us to prove

full-abstraction with respect to the notion of equivalence used.

Lemma 2.11. Consider L, to be some language, and L, C L, a sublanguage. Let
~ C Ly x L, be an equivalence relation. and [-] : £, — L1 a translation. If for all
Pe Ly, P ~ [P] then [] is fully-abstract w.r.t. ~.

Proof. We first prove completeness. Let P, P, € £, such that P, ~ P,. By hypoth-
esis P, ~ [P,], and P, ~ [P,]. Since ~ is an equivalence, by transitivity we have

[P.] ~ [P2]. Adequacy is obtained with a dual argument. a
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2.4.3 About the types of translations

Besides full-abstraction. we might be interested also in other properties of a transla-
tion. For instance. we would like the translation of a term to be expressed only in
terms of the translation of its sub-terms. Such a translation is called compositional.

This is defined formally in terms of contexcts.

Definition 2.12. Let £, and L, be two languages, and [-] : £, = L, a translation
between them. We say that [-] is compositional if for any term P € L, and any
L, -contert C,. there is an L,-context C such that [C\[P]] = C,{[P]].

Often. we want a specific relation between the contexts of a compositional trans-
lation to emphasise the ties between the languages. For instance. when considering
two concurrent languages. we might prefer a translation that is truly distributed in
the sense that processes which are parallel in the source language. are translated into
processes that are parallel in the target, and no mediator is involved. In other words
we would like the translation to preserve the parallel composition operator from one
language to the other. In general we might want this property for different opera-
tors, i.e. the context C; should be mapped to C; in a “uniform” way. The following

definition formalizes this for binary operators.

Definition 2.13. Let £, and L, be two such languages. and @, and @, be two binary
operators in each language. Then we say that a translation [-] : £, — £ is said to

be uniform w.r.t. ®, and @, if for all P.Q € L, [P 3, Q] = [P] ®2[Q].

More succinctly we could have said that [[-] is an homomorphism between (£,. ®;)
and (£;.®»).

This property however. might be too strong. It might rule out many meaningful
translations. In particular. a translation might require some kind of mediator agent
between two agents in a parallel composition, i.e. the translation might be defined as
[P2.Q] ¥ [P]®:M®,[Q], where M is the mediator introduced by the translation.

Not all operators in a language are binary. We could conceive this notion of
uniformity also for unary operators such as restriction. Usually languages provide

some means of hiding names from the environment so that agents have private or



CHAPTER 2. BACKGROUND 25

local variables, not (directly) accessible to the external world. A common notation
for such an operator. in the context of 7-calculi. is vao.P. where v is the restriction
operator. .« is the name to hide. and P is the body of the agent. In a translation
that is uniform with respect to restriction. hiding is preserved: [v,z.P] = vz .[P].
where v) and v, are the restriction operators for the source and target languages.
As with the parallel composition example, this kind of translation is also restrictive,
because names might require different handling in the languages. Such translations
often introduce “handler” processes, for instance as in [v,x.P] = vor (H{x) ®,[P]).

where H is the handler for z.



Chapter 3
The m-calculus

The m-calculus was proposed by Milner. Parrow and Walker {30] in order to express
explicitly the notion of mobility absent from Milner's previous work in his Calculus
of Communicating Systems or CCS for short ([23]).

The m-calculus contains three basic entities: names. actions, and processes or
agents. A system described by an expression in the m-calculus is a network of processes
which communicate through channels. Names represent channels. and processes are
composed by actions. Names also represent variables and constants. There is no
need. in the theory for considering these separately. Since the object of study of
these foundational models is the interaction between parts of a system. the only
actions considered are communicating actions. specifically, actions for sending and
recetving messages through the channels.

Definition 3.1. Assume an infinite set N; of names u.v.w.r.y.z..... We denote
sequences of names by I or I'. The set of w-calculus terms for processes. ranged over
by P.Q. R. ... and the set of actions ranged over by a are defined by the syntaz shown

in table 3.1. P, denotes the set of process terms (P) and A, denotes the set of actions

(a).

Informal description of the semantics

Informally terms should interpreted as follows: 0 is the process that does nothing. An

agent of the form a.P is a process that performs the action a and then behaves like P.

26
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| (@)

&

[AV]
=

Nil

Prefix

Restriction

Parallel Composition
Summation

Match

Mismatch

Procedural call

Silent action
Input

Output

Table 3.1: The syntax of w-calculus
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The action « is often called the prefir of a.P. The prefix vz. is called the restriction
operator. In an agent of the form vx.P. the name r is local or private so there is
no possible interaction of this agent with the external world through this channel.
A process of the form P | Q represents the parallel composition of the processes P
and Q. that is, the two processes execute concurrently. The agent P + Q. called
summation, represents non-deterministic choice. so it behaves like either P or Q.
[ntuitively. in a summation the first agent that performs an action continues and the
other doesn’t. The match and mismatch operators correspond to a limited form of
conditional that represents testing for name equality and inequality respectively. i.e.
the process [r = y]Q blocks until the condition is satisfied (similarly for [z # y]Q.
Finally. the term A(§) corresponds to the intuitive notion of “calling™ an agent that

has been defined by an equation of the form

d
Az Lo ) P

this is. replacing the occurrence of A{y,. y,..... y.) by the body of A's definition P.
making the appropriate substitution of parameters, i.e. the r’'s in P replaced by the
y's.

The three actions are: 1) input or receive. represented by u(x) in which u is the
name of the channel, and r is a name to be received: 2) output or send is represented
by %(z) in which u is the name of the channel and r is the name sent: and 3) the
silent action 7 which represents an internal communication. For input and output
actions. u is called the subject of the action and r is the object.

Notice that there is no distinction between names. constants. and variables. It
has been shown that this distinction is not necessary. and it would only complicate
the theory behind the calculus. Notice also that there are no data types or means to
construct data structures, and that the calculus is first order, that is. the only thing
that can be passed around are names, but it is not possible to send a process through
a channel. Nonetheless, the 7-calculus is expressive enough to allow the definition
of arbitrary data structures. It is also possible to define a type system for it, and

higher-order variants have been studied. Process calculi in which it is only possible
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to communicate names are called name-passing calcult and the higher order variants
are called agent-passing calculi.

Communication occurs in a synchronous manner. This means that both input and
output are blocking operations. When an agent has as prefix an input action. it is
blocked until some other agent is sending something through the given channel. In the
svnchronous model of communication the sending action is also blocking so an agent
with an output prefix is also blocked until there is an agent ready to receive through
the channel in question. This is usually known as rendezvous and is analogous to
communication through telephone. In asvnchronous communication, on the contrary.
the output operation is non-blocking and is akin of communication by mail. In chapter
4 the asyvnchronous variant of the 7-calculus is discussed.

The input prefix and the restriction operator are binding. In an agent of the form
u(x).P or ve.P we say that the scope of r is P, and every occurrence of r in P is said
to be bound. A variable that is not bound is free. If a name occurs free in an agent.
as the subject of some action. we can say that this name is a port to the external
world. but if it is bound. no interaction with the external world can occur through
this name.

\With this description. let us take a closer look at the role of names. As mentioned
above. names stand for channels. as well as variables and constants. One can view
names as “ports’ through which agents communicate. When considering an agent
of the form z(z).P. we say that the process is located at r. In that sense r is the
“address” of the agent. and thus. the notion of name. corresponds informally to the
traditional notion of pointer. However, this notion is slightly different, since we can
have several processes located at the same name. In such case, any third party can
interact. non-deterministically, with any of the agents sharing the same port. Under
this view of names, the match and mismatch operators correspond to testing for

pointer equality and inequality respectively.

Some abbreviations and terminology

Another important aspect is that the calculus described here is polyadic which means

that it is possible to send/receive several names in a single action. This is opposed to
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Original syntax Abbreviation
u() u

() 7]

vr.u(r) u(x)

Q.. a0 Q..
VI|.VLy. VI, P VI|Ly--I,.P
PP | Py i P

P+ P + -+ P | ¥ P

Table 3.2: Some syntactic abbreviations

monadic communication in which it is possible to send only one name at a time. In
the full 7#-calculus that we are describing now. this is not an important distinction.
since it is possible to encode the polyvadic calculus in the monadic fragment. To obtain
polvadicity with only the monadic fragment of the calculus the only important thing
is to setup a private channel. so that other processes that might be listening through
the original channel don’t get a chance to interfere with the transmission of the

sequence of values. This is shown below.

— def _ - — —
T ) L op () Bl Bl - Bloa)
def

u(ziry---xqa) = u(p).p(ry).p(er2). - .plan)

In the rest of this chapter we restrict ourselves to the monadic 7-calculus. This
does not change the semantics, since. as we have seen, we can simulate the emission
and reception of multiple names with monadic input and output.

There are other common abbreviations summarized in table 3.2.

We say that a summation is guarded if all the P;’s are of the form «;.Q;. We say
that a summation is input-guarded (respectively output-guarded) if all the actions q;
are input actions (output actions respectively). We say that a summation is mized
if it includes both input and output guards. We call the 7-calculus that allows only
input-guarded choice the 7i"P-calculus. Similarly for the w-calculus that allows only
output-guarded choice the 7%“t-calculus, and 7™ for the calculus allowing mixed

choice. A fourth variant is called the m*¢P-calculus, which allows both input and
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output guarded summations, but not mixed choice.

An important aspect of the language is the use of procedural call expressions.
When we admit recursive definitions we obtain the full computational power of Turing
machines. An important derived construct is the replication operator. defined as
follows: ' P p [

The notation @{x/y} represents the agent @ with all free occurrences of y sub-
stituted by r. So given a definition A(x,..r,,....r,) “/ P in which the names
r, appear free in the agent P, a term A(y,.ys.....y,) is equivalent to the term
P{y/xy.y2f/ s, i yn/2u}.

Communication and mobility

Computation proceeds through communication. We express computation with a
reduction relation or a transition relation. We write the fact that an agent P becomes
or evolves into an agent Q@ as P — Q. So the most important element in the reduction

of terms in the w-calculus is the communication interaction:

u(e).Plu(y)Q - PlQ{r/y}

The statement above represents precisely our intended meaning for communication:
the left-hand agent sends a name r through the channel « while the right-hand agent
receives through the same channel u the name . so all free occurrences of y in QQ are
replaced by .

How does the 7-calculus model mobility? Names stand for constants and variables,
but they stand also for channels. Since there is no formal distinction between these,
one can freely pass channel names in a communication. We can see this through an

example. Imagine that we have an agent of the form

vz.(P|2(z).Q) | u(y).R

Furthermore, assume that r appears free in both P and @ and is a channel connecting
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them. Assume also that v occurs free in R. For instance we can have

So a first reduction sends r through u, making the channel x accessible to R:
ve.(P| Q| R{x/y})
Which we can rewrite. according to the definitions. as:
v (ERED | 2@)Q | o).’ {x/y})

Notice that the first action of R has been changed to r(b). Now both the second
and third agents in the composition are “listening” through r. Hence the channel r
“moved”. and it is now connecting not only P and @ but also R, i.e. the topology of
the network evolved.

An interesting phenomenon found in the w-calculus known as scope extrusion is
possible thanks to mobility. The idea is that an agent can pass a private name to
another agent. but even though it is private, the receiving agent gains access to it.

thus the scope of the private name is extended bevond that of its sender:
u(y)-Q | ve.(u(z).P) - vz.(Q{z/y} | P)

Although at first sight one can think that 7-calculus is a model of message-passing
communication. a closer look will show that it can be said to embed both message
passing and shared variables to an extent. In an agent of the form vr.(P | Q) the
name r is effectively shared by both P and Q. This statement will be strengthened in
future chapters when we show how the 7-calculus is able to simulate some paradigms

with shared memory.
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3.1 Semantics

We now define formally the behaviour of processes in terms of a congruence relation

and a reduction relation, but first some preliminary definitions.

3.1.1 Substitution of names

The w-calculus is centered on the notion of names. Theyv represent channels of com-
munication between agents. They can be viewed as constants. and variables. For this
recason one fundamental operation is that of name substitution. It’s role will become

apparent when we present the UTS and LTS for the language.

Definition 3.2. The set of bound names and the set of free names of an action

a. denoted bn(a) and fn(a) respectively. are defined as follows:

bn(r) “f fn(r) =4
bn(u( ) “éf(o fr(a(z)) < {u, z}
bn(u(r { '} fn( “(Jv')) { }

We extend this notion for 7-terms in a straightforward way:

Definition 3.3. The set of bound names and the set of free names of a w-term

P, denoted bn(P) and fn(P) respectively, are defined as follows:

bn(0) = £n(0) =2

bn(vz.P) e (r} ubn(P) fn(vz.P) P\ {}

bn(a.P) = bn(a) U bn(P) fn(e.P) = (frla) U fn(P))\ bn(a)
m(P1Q)  HomP)ubtn(@Q)  fuPIQ ' fr(P)U Q)

(P + Q) HonP)ubtn(@ P + Q) E fa(P)Uf(Q)
ba([z = y|P) “ bn(P) fr(z =ylP) € fn(P)U{z,y}

n([z # y|P) < bn(P) fr(z #ylP) < fn(P)u {z,y}
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The set of all names in a term P is denoted by n(P).

Notice that n(P) = fn(P)Ubn(P) and n(a) = fn(a) U bn(a).

As in the A-calculus we have to be careful about substitution of names. because a
free name might become bound in a substitution. resulting in a term that is not equiv-
alent to the correct one. The definition below takes care of this. defining substitution

in a fashion that avoids capture. This is done in the standard way.

Definition 3.4. 4 substitution is a function o : Ny — N,. We write the substi-
tution o = {(x1,91). (2, ¥2). - (Tn-Yn)} as {n/z1, y2/ 22, ... yn/20}. The term Po
stands for the agent P with all free occurrences of r; replaced by o(x;), changing
bound names in case some name is captured. Substitution over terms is defined as
shown in table 3.3.

We assume that the general substitution P{y\/x,.ya/xa..... yn/2,} can be read
as P{y\/c1}{y2/x2}..-{yn/Ln}. The process of renaming bound names of a term is

called a-conversion. and we say P =, (0 to mean that Q can be obtained from P by

a-conversion. Formally. if &' ¢ n(P) and & ¢ bn(P).

ve.P =, ve' .P{'/1}
u(z).P =, u(c').P{z'/ 1}

3.1.2 Process congruence

Since we are interested in considering processes as equivalent if they have the same
behaviour with respect to the environment, we need to define a notion of w-contexts

for representing the environment in which the agent lives.
Definition 3.5. The set of process contexts, ranged over by C.Cqy.C,.--- is defined

by the following syntaz:

C u= [] | aC | [z=ylC | [z#y)C | vz€ | P|C | C|P
| P+C | C+ P
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(P + Q){y/s} ¥ Ply/r} + Q{u/r}

o{y/x} < 0
(P1Q){y/z} < P{y/z} | Q{y/x}

(ve.P){y/z} Y yrp
(vy.P){z/z} < vy.P{z/1}

(vy.PYy/x} Y vy P{y Jy}{y/ 1)

(@(x).P){y/u} ¥ Glz).P{y/u}
(@(x).P){y/r} < a(y).P{y/z}
(u(x).P){y/u} ¥ y(x).P{y/u}
(u(z).P){y/z} < u(x).P
(u(y)-P){z/x} € u(y).P{z/z}
)-P){=/z} E u(y).P{y'/y}{z/x})
(lx =

yIP){z/2} € [z = y|P{z/x}
)

r=y|P){z/y} < [r = :|P{z/y}

(

[
{
[z # ylP){z/x} E [z # y)P{=/x)
(lz # ylP){z/y} € [x # =|P{z/y}
[«

= y|P){z/u} ¥ [z = y|P{z/u}

([ # yIP){z/u} ¥ [z # y|P{z/u}

if (r#yand y#z)orré fn(P)

ifr #yand r € fn(P)
where y' € fn(P). y #cand iy #y

if(r#yand y# z)orzr ¢ fn(P)

ifr#yandz € fn(P)
where y' € fn(P), y'#rand y' #y

ifu#zand u#y

ifu#zand u#y

Table 3.3: Substitution of free names in a term
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where r, o, and P are names, actions and processes according to definition 3.1. If Q)
is a term. C[Q] is the term that results from replacing the placeholder [-] in C by Q.
The contests o.[-].[x = y|[-]. (¢ # yl{]-ve . P [].[]| P.P + [].and[-] + P are
called elementary contexts.

Our first notion of equivalence. albeit a static one. is that of process congruence. It
represents a substitution property, this is. equivalent agents under process congruence
can be freely substituted for each other in any process context without changing the

behaviour of the entire syvstem.

Definition 3.6 (7 process congruence ([29])). A process congruence= C P.x
P is an equivalence relation among agents such that for all P,P' € P, if P =
then:
(i) For any action a, a.P = . P'.
(it) For any names c.y.
o vr.P=vyr P
o [r=ylP=[z=y|P
o [z #yYlP =[x #ylP
(iit) For any agent Q,
e PIQR=FIQ
«QIP=Q|P
o P +Q=P + (@Q
e Q + P=Q + P

The following proposition simpiy formalizes the intuition behind process congru-

ence as satisfving the substitution property in contexts.

Proposition 3.7 (([29])). An equivalence relation = is a process congruence if and
only if for any pair of terms P,Q € P, and for any contert C, P = @Q implies
C[P] =ClQ].
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Proof. (<) Assume that for any P, Q. and any context C, if P = @Q then C[P] = C[Q).
Fix A, B such that 4 = B. Then by our assumption, for any context C[4] = C[B]. In
particular this holds for the elementary contexts: a.A = a.B, [r = y]|d = [r = y]B,
[ #yld=[r #y|B.ve.A=ve.B. P| A= P| B, etc. This means that = is indeed
a process congruence.

(=) By induction on the structure of the context. Assume that = is a process

congruence, and fix A, B such that A = B,
Case 1: C = []. Hence C[d] = A = B =(C[B].

Case 2: C = a.C'. Then C[4] = a.C'[4] and C[B] = a.C’[B]. By induction hypothe-
sis, C'[A] = C'[B]. Hence a.C'{4] = o.C'[B] because = is a process congruence.
Therefore C[A] = C{B].

Case 3: C = P |('. Then C[4] = P | C'[4A] and C[B] = P | C'{B]. By induction hy-
pothesis. C'[A] = C'[B]. Again. since = is assumed to be a process congruence.
P | C'[A] = P | C'[B]. which means that C[A] = C[B].

The rest of the cases are similar.

3.1.3 Structural congruence

Built upon the notion of process congruence is the structural congruence for 7-terms.
This is also a static notion of equivalence, and its intention is to extend the previ-
ous concept to capture other “primitive” aspects of what we expect in a reasonable

equivalence of agents. This is also found in [30], [26], and [29].

Definition 3.8 (7 structural congruence). The structural congruence = C Pp X

P. is the process congruence that satisfies the following arioms:

(i) P=Q ifP=.Q

(it) (Pz. |, 0) is an Abelian {commutative) monoid:
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e P|O=P
e PIQ=Q|P
e (PIQ)IR=P[(Q|R)

(iit) e P +Q=Q + P

(P+ Q)+ R=P + (Q + R)

(tv) ve.0 =0

(v) vewy.P = vyvz.P

(vi) Plve.Q =ve(P|Q) ifx & fn(P)
(vii) [x = ylvz.P = vz.[x = y|P if = is ¢ name other then r and y.
(viit) [z # ylvz=.P = vz.[x # y|P if = is a name other than xr and y.

The (vi) axiom is called “scope extrusion”. or “Frobenius reciprocity”. and is
essential to the modelling of mobility.
The equivalence classes induced by this definition. have “representative” terms.

This is the role of “standard forms™. also known as “prenex forms”.

Definition 3.9. A term of the form vi.(P, | Py | -+ | P,) where each P, is a

summation is said to be in standard form.
Proposition 3.10. Every term is structurally congruent to a standard form.

Proof. By applying scope extrusion, and alpha-conversion when necessary, we can
extract the restriction operators that are not within a summation to the outermost

level of the expression. O

3.1.4 Unlabelled Transition Semantics: Reduction

The UTS (P,.=.—) is given as follows. The set P, of terms was given in definition

3.1. and = is the structural congruence.
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— TAU
T P> P

COMM
(u(z).P + R) | (u(y).Q + S) - P{y/z}|Q

P— P P F

PAR SUM
PIlQ—-P1Q P+Q-PF
P—- P P{j/i} > P’ de
2P ppstR D2 P aw e
ve.P — vz.P' Ag) - P
P— P P— P
MTCH MISMTCH if r # y
[t =2]P — P (£ # y|P > P
P-qQ
———CONGR ifP=P and Q=
Pl — QI

Table 3.4: w-calculus reduction rules

Definition 3.11. The reduction relation — C P. x P, is the smallest relation over

processes satisfying the rules in table 3.4.

The COMM axiom specifies how agents communicate. The RESTR rule defines
the behaviour of the restriction operator. The PAR rule says that if one agent can
perform an action, then the parallel composition of the agent with others can perform
the action. Similarly. the SUM rule expresses the non-deterministic choice of course
of action which follows an agent with the sum operator. The final rule states that
agents that are structurally congruent have the same behaviour.

If the reader is concerned about the apparent lack of symmetric rules for PAR

and SUM. notice that these are recovered easily by the use of CONGR as follows:

Q-
PAR
QIP—-Q|P QIlP=P|Q Q|P=P|Q
PIRQ-P|Q

CONGR

For the SUM rule we can reconstruct the symmetric one in an analogous way. From
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u(r)

’ z(y) '
———PREF, P —F Q —Q
“r = P1Q5 Py/2} | Q@

COMM,

P3P PSP
—— SUM, — PAR, if bn(a) N fn(Q) =0
P+Q-=>PF P|Q@->P|Q
PSP P{j/z} = P' def
REST, if r ¢ n(c i ID. if A(z) = P
ve.P S vr P t # nla) A(g) > P ‘
P3P P3P _
a—; M[TCH —— MISMTCH if = # y
[t=z]P > P [z # y]P > P
P3Q

——— CONG fP=P and Q =Q’
PaQ ‘ @=qQ

Table 3.5: 7-calculus transition rules

now on, we won't show the use of CONGR explicitly, since it would only add clutter

to the proofs.

3.1.5 Labelled Transition Semantics

Now we provide an LTS (P.. A..=. ) for the language. We keep the same notion

of congruence from definition 3.8. The reference is [30].

Definition 3.12. The transition relation = C P, x A, x P, over agents in P, and

actions in A, is the least relation satisfying the rules in table 3.5

With these rules, the role of the 7 action becomes apparent. As said before, it
represents a silent action. By this we mean that it is the action that corresponds to
internal communication. As shown in the rule COMMI,, the effect of interaction is
the T action.

This definition represents the evaluation scheme known as late instantiation since

‘ the substitution is performed at the time where an internal communication takes
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place. An alternative definition is early instantiation in which variables are instanti-
ated when the input transition is inferred. The scheme results by replacing PREF,
with TAU,, OUT, and INP,, and COMNMI, with COMMES. defined as follows:

RE— T:\Ug
P> P
- OUT, INP,ify ¢ fn(vz.P)
a(r).Pp 22 p u(z).P 2% P{y/x}
pa poQ
T COMM
PIlQ->P|Q

Note that the input rule has the side condition "y € fn(vr.P)". which means
that y is a fresh name. so it won't produce any conflicts as to safely replace r. This
definition is not very symmetric. but we can recover the symmetry by an alternative
presentation which can be achieved just by changing COMNMI, to COMNMI} as above.
and keeping PREF. To see how this is so. notice that both TAU, and OUT, are

instances of PREF. and we can recover INP, by means of alpha conversion as follows:

PREF
u(y).PLy/z} <2 P{y/x) u(x).P = u(y).P{y/x}

u(z).P 2% p{y/z}

a—conv if y € fn(vz.P)
CONGR

From an informal perspective, the late-instantiation scheme seems more natural, since
it matches our intuition that substitution must be performed at the time of commu-
nication rather that at the time of applyving the INP, rule (or PREF, in the simplified
presentation). This early-instantiation scheme is akin to considering an isolated agent
as capable of somehow guessing the “right” name to substitute in advance of the ac-
tual communication. However, from a formal perspective. both presentations allow
us to prove the same reductions, in the sense of the UTS.

The following property is very useful, and can be proved by induction on the

derivation of P 5 P’
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Lemma 3.13. If P 5 P', then for any substitution 0. Poc 3 P'c.

3.1.6 Equivalence of semantics

An important question is whether these two different presentations of the semantics
(LTS and UTS) are actually equivalent or not. The intuition is that they should be.
but this is a fact that has to be proven formally. However the concept of an action
performed by an individual agent is not present in the UTS. This implies that the
agreement must occur at some higher level of abstraction. As mentioned before, the
silent action represents internal activity of an agent, and thus the agent is viewed as
a whole. This is the same approach of the UTS. so the agreement is at this level:
reductions correspond to silent actions and vice-versa. Here we provide the proof for

the late instantiation scheme '. These have been established by Milner [29].
Lemma 3.14. If P — P’ then P 5 P'.

Proof. This is proved by induction on the inference of P — P’. This is. for the last

step of the derivation of P — P' we construct a proof (derivation tree) of P 5 P’

Case 1: The last inference is an instance of the TAU axiom. i.e. it was 7.P — P.

This is matched in the LTS by the TAU, axiom.

Case 2: The last inference is an instance of the COMM axiom. P = (u(z).P, +
Q1) | (w(y).P» + Q2) and P' = P{y/r} | P». This is matched in the LTS by

constructing the following proof:

—— PREF, ——— PREF,
u(xz). P, —li‘f—) P ul(y).Ps —u-i) Pg
SR L w7 — st
u(x). P, + =P u(y).Py + -u—y>P-2
(z).PL + Q: 1 (Jz Q@2 COMA,

(u(z).Py + Q1) | (u(y).P» + Q2) = P {y/z} | P

Case 3: The last inference was an application of the PAR rule, so P = Q | R

and P = Q' | R, with @ — @’ by a shorter inference. Hence, by induction

!The proof for early instantiation is very close to the given one.
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hypothesis we have that Q 5 @Q'. Now we easily construct the matching LTS

proof:

Q5 Q
QIR-Q|R

PAR,

The remaining cases, for SUM. RESTR. ID, and CONGR mimic the last case. O

To prove the converse we need an additional technical lemma. This represents the
idea that when a process performs some action a, it is because the agent contained

a subexpression of the form a.Q.

Nnr

Lemma 3.15. If P 5 P’ where a # 7 then there are £.Q.Q'. and R such that
P=vi((a.Q + Q)| R) and P' =vZ.(Q| R) where n(a) 0.

. . . . i} . .
Proof. By induction on the derivation of P = P’. The only important thing to
notice is that we are assuming that the action is not 7. hence it is not an internal

communication. so we can ignore the case of the rule COMMI,. a
Theorem 3.16. P — P’ if and only if P 5 P'.

Proof. The left-to-right direction has been established by lemma 3.14. For the right

to left direction we do it by induction on the inference of P 5 P'.
Case 1: The last inference is an instance of TAU,. Hence P=1.P' —» P'.
Case 2: The last inference is an instance of COMM,. Hence P = Q | R, and

P =Q | R{z/y} with Q ) @ and R ““Y R'. Then by lemma 3.15 we have:

(w(x).Q: + Q1) | Qs) and Q' = v .(Q) ] Qs)

Q = U‘lL-’.[.(
R= l/lL-'.g((U.(y)Rl + Rg_) | Rg) and R = I/'UTQ.(R[ i R3)

where {u,z.y} N, & = 0. Hence we can build the proof for P — P’ by using
CONGR.

The rest of the cases are analogous to the proof of lemma 3.14 O
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This result points out that reductions correspond to 7 transitions. This is. the
semantics are equivalent at the level of abstraction of internal communication. The
UTS does not model the (potential) behaviour of agents individually. It rather rep-
resents the view of the entire system. The LTS on the other hand gives us an explicit

handle of the capabilities of the agents. viewed isolated from the rest of the system.

3.2 Bisimilarity for m-processes

3.2.1 Strong bisimilarity: ground, late, early and open vari-

ants

At first it looks like the definitions of simulation, similarity, bisimulation and bisimi-
larity given in section 2.3 could be directly used for our notion of behavioral equiv-
alence for 7 processes. However we have to adapt this notion to the new setting, in
particular we need to take care of bound objects and input actions. Consider the
terms A < u(x).D and B =4 vb.u(y).D. Certainly we would like to consider these
two as equivalent when they are both receiving a name p different from b. because
they would react in the same way with an action o = u(p). Under the traditional

notion of bisimilarity we would not have this.

Definition 3.17 (Strong ground bisimilarity). A binary relation S C P x P,
is called a ground-simulation iff for any terms P,Q € P,, PSQ implies that

o Whenever P =5 P' and bn(a) N fr(Q) = 0. there is a Q' such that Q 5 Q' and
P'SQ’.
If 87! is also a ground-simulation then S is called a ground-bisimulation.
We say that Q simulates P, or that P and Q are ground similar, written
P<9Q, iff there is a ground-simulation S such that PSQ.

We say that P and ) are ground bisimilar, written P~9Q), iff there is a ground-
bisimulation S such that PSQ.

This definition, however does not capture the intended notion of equivalence.

Ground bisimilarity, turns out not to be a process congruence. The problem is that
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it does not preserve parallel composition. To see this. consider the agents A =
u(z).[r = ala(a). and B e u(xr).0. It is easy to see that A and B are bisimilar.
since both of them can perform an action u(x) and the resulting terms [r = a]ad(a)
and 0 are bisimilar. since r # a (i.e. the two names are different). However. when
we put {a) in parallel with 4 and B. we obtain different results: @a) | A 5 [a =
al@{a) Y 0. but @(a) | B > 0 4. so the second transition cannot be matched. Hence
u(a) | A+ ula) | B.

The problem seems to be rooted at the kind of instantiations or substitutions are

possible, when an input action is performed. This suggests the following redefinition.

Definition 3.18 (Strong late bisimilarity). A relation S C Pr x P is called a

strong late simulation iff PSQ implies:

(i) Whenever P 5 P' where o is not an input action. then for some Q'. Q — Q'
and P'SQ’.

(i) Whenever P"S' P! and 1 ¢ n(P)Un(Q) then there is a Q' such that Q “S ¢
and for all names b, P'{b/x} S Q'{b/r}.

If 87! is also a strong late simulation. then S is called u strong late bisimulation.
We say that P<'Q if there is a strong late simulation S such that PSQ. <" is called
strong late similarity. We say that P~'Q if there is a strong late bisimulation S

such that PSQ. ~! is called strong late bisimilarity.

The basic properties of strong late (bi)simulation are summarized in the following

proposition ([30]).
Proposition 3.19.

(i) =

(ii) ~' is an equivalence relation.
(ii) <' is a strong late simulation.

(iv) <' is the largest strong late simulation.



CHAPTER 3. THE m-CALCULUS 16
(v) ~'is a strong late bisimulation.
(vi) ~'is the largest strong late bisimulation.

Proof. The first item just follows from the definition of the CONGR rule. The rest

of the proof follows the same lines as in propositions 2.3 and 2.5. a

Another variant of this concept is known as earfy-(bi)simulation. which results

from replacing the second condition in the definition, with:

(¢i)” Whenever P “5 P and x ¢ n(P)un(Q) then for all names b. there is a Q' such
that Q "3’ Q' and P'{b/r} S Q'{b/r}.

This seems like a harmless modification. but it results in a weaker equivalence in
the sense that more terms are grouped in the same equivalence classes. As Milner.
Parrow and Walker explain in [30]. it is because in late bisimilarity we require that
the matching transition works for all possible instantiations of the object received by
the input action. whereas in early bisimilarity for each possible instantiation there
must be a matching transition. but for different instantiations the matching transition
can be different. This way. we can think of the early variant as considering that the
input action happens before the transition. while in the late vartant it happens after
the transition. Hence the immediate consequence is that all processes that are late-
bisimilar are also early-bisimilar, and there are processes that are early-bisimilar but

not late-bisimilar ({30]).

Corollary 3.20. <! C <¢

Proof. First we prove that <! C K¢ By definition. if P and Q are late bisimilar.
then each transition that P makes is matched by Q. resulting in states P’ and @'
respectively. such that for each possible instantiation. P’ and Q' are themselves late
bisimilar, and vice-versa. This implies that for any instantiation, @ can match P.
and vice-versa. But this is precisely the definition of early bisimilarity.

Now we show that the two bisimilarities disagree. Consider the following terms:
pY u(z).0 + u(z).R and Q “p 4+ u(z).[z = y|R. We have that PA¢Q, because

for each possible instantiation, both P and @ match each other transitions. It is
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clear that Q can always match P’s moves. To see how P matches Q's moves. we

consider each possible instantiation b of r. If b = y and if Q ECIN [r = y|R then

P 2% R and ([ = y|R){y/x} ~¢ R{y/x}. If b is any other name. then P RGN
and ([ = y|R){b/} ~* 0 = 0{b/c}.
On the other hand. P£!Q because P cannot match the transition Q =, [ =

y]R. O

The properties described in proposition 3.19 also hold for the early variant.

A fundamental question remains: are any of these notions the “right” notion of
behavioural equivalence that we are after? In other words are they process congru-
ences? The answer is no. These notions. like ground bisimilarity. also fail to preserve
all operators. but now the input prefix is the problematic operator. To see this con-
sider the agents P oz | ¥y and Q = Z.y + y.I. We have that P~Q because
there is a bisimulation that contains (P, Q), namely S = {(P, Q). (T.T)}. (y.y).(0.0)}.
This captures the idea that concurrent processes can be reordered in time as we
please. However there is a context in which they don’t behave in the same way:

C[] =4 u{xr) | u(y).[-]- In this context we have that
CIP| = Wx) |u(y).P 5 Pl{r/y} =T|r 5 0

while

ClQ)] = wxr) | u(y).Q = Q{z/y} = Tz + z.T

The result of C[Q] does not have a T action to match the second one of C[P], thus
C[P])£C[Q]. The problem, as for ground bisimilarity. is that there is a substitution
o = {z/y} such that Po£Qo. even if it was the case that P~Q. Semantically,

substitution is linked to input, and the following lemma pinpoints the problem.
Lemma 3.21. For any processes P and Q, and any names r, y, and u,
o P{x/y} ~ Q{x/y} if and only if u(y).P ~' u(y).Q, and also

o P{z/y}~* Q{z/y} if and only if u(y).P ~* u(y).Q
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Proof. Follows directly from the definitions of bisimilarity and the LTS. We prove
only the left-to-right direction of the late case. to show how these proofs are done
in general. The rest is similar. It suffices to find a bisimulation that contains all
pairs (u(y).P.u(y).Q) given that for all names r. P{r/y}~'Q{x/y}. Let S =
{(u(y).P. u(y).Q)|Vr. P{z/y}~'Q{x/y}} U <!, We show that S is such a bisimu-
lation. Assume that (u(y).P.u(y).Q) € §. The agent u(y).P can make a move
u(y).P RCIN P{r/y} for any r. The other agent can match this move: u(y).Q SN
Q{x/y}. and by our hypothesis P{x/y}~'Q{x/y}. Thus S is a simulation and by a

dual argument we determine that it is a bisimulation. a

From this lemma it follows that since substitution does not preserve bisimilarity
as the counterexample showed. then it does not preserve input prefixes and hence it
is not a process congruence.

In order to cope with this problem we have to refine the notion of simmulation. One
approach, which can be applied to many different notions of bisimilarity. is to “force”
it to be a congruence. This is. we can refine bisimilarity simply by requiring that
it behaves well under substitutions. In this sense we say that bisimilarity induces a

corresponding congruence.

Definition 3.22. A relation S C P, x P, is closed under substitution if for

every substitution o. PSQ implies PcSQo.

In the following definition. r stands for g (ground), / (late), e (early), or any other

notion of bisimilarity that we define.

Definition 3.23 (Bisimilarity congruence). Let ~* be a bisimilarity relation. such
as ground. late. early. etc. We say that P and Q are (strongly) r-congruent. written

P ~* Q if ~* is closed under substitution.

We now check formally that such a relation is indeed a process congruence, thus

justifying the name. This is done very much along the lines of lemma 3.21.
Lemma 3.24. ~% is a process congruence, where x stands for | (late) or e (early).

Proof. We prove that ~! is preserved by all operators. Assume P; ~! P;.
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Input prefix: By definition, ~/!

is preserved by arbitrary substitutions, so for any
r.y. Pi{y/r} ~' Py{y/r}, and by lemma 3.21, u(z).P, ~' u(r).P; as

required.

Output prefix and tau: Let a be either an output action. or a 7 action. Define
S Y {(a.P,.c.Py) : P, ~' P,}. We show that S is a (ground) bisimulation.
Let (a.P)S(a.P,), and a.P, = P,. This move is matched by «.Py 5 P». and
since P, ~' P, then S is a simulation. By a dual argument we have that it is a
bisimulation. Hence a.P, ~' a.Ps.

Parallel composition: Let S = (P | R.P,| R): P ~!' P,}. We show that S is

a (ground) bisimulation. Take (P, | R)S(P; | R). Suppose that P | R 3 ).

There are three possible cases depending on where the action originated:

L. It originated from R. i.e. M = P/ | R with R & R' and P/ = P,.
Then by PAR,. » | R = P, | R'. and since P, ~! P, we have that
(P, | R)S(P, | R') as required.

o

It originated from P, ie. M = P! | R’ with P, S P! and R’ = R. Then.
since P, ~! Py. P, 5 Py with P} ~' Pj. Soby PAR,. | RS P} | R.
Hence (P] | R)S(P; | R) as required.

3. It originated from an interaction between P, and R.so a = 7. 1e. M =
P/{y/x} | R with P, "3 P! and R™Y R'. Since P, ~' P,. we have that
P, "3 P with P/ ~' P.. By applying COMMI,. we obtain that P, | R 5
Pi{y/c} | R'. and since ~' is closed under substitution. P{{y/r} ~!
Py{y/z}. Therefore MSP;{y/z} | R' as required.

The rest of the cases are similar. d

The good thing about this definition of bisimilarity-congruence is that we obtain
a process congruence out of a bisimilarity relation, by forcing it. This, however, has
its down-side in that proving equivalence between terms becomes more difficult in

the sense that such proofs require a heavier case analysis.
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Notice that a bisimilarity congruence is a finer relation (more discriminating)
than the corresponding “naked” bisimilarity. i.e. the bisimilarity relation not closed
under substitution. If two processes are bisimilar-congruent, then they certainly are

bisimilar. but. as the previous examples showed. the converse is not true.
Lemma 3.25. ~* C < where x stands for | (late) or e (early).

An alternative to taking the closure under substitution of bisimilarity to obtain a

process congruence, has been proposed by Sangiorgi in [40], called open-bisimilarity.

Definition 3.26 (Open bisimilarity). A relation S C P, x P, is called a strong

open sitmulation iff PSQ implies. for every substitution o:
o Whenever Po 5 P' then for some Q. Qo = Q' and P'SQ'.

If S7! is also a strong open simulation. then S is called « strong open bisimu-
lation. We say that P<°Q if there is a strong open simulation S such that PSQ.
<? is called strong open similarity. We say that P<°Q if there is a strong open

bisimulation § such that PSQ. ~° is called strong open bisimilarity.
Proposition 3.27 (Sangiorgi [40]).
(i) ~° is an equivalence relation.

(it) ~° is the largest open bisimulation.

(iit) ~° = ~°, ie. ~°is a process congruence.

Proof. The first two items are proved in a very similar fashion to the corresponding
proofs for ground bisimilarity. The interesting one is the third. It is enough to

prove that <°

is closed under substitution. so by lemma 3.24 we obtain that it is a
congruence. We can see that it is closed under substitution from its definition. We
can show this explicitly as follows. Suppose that P ~° Q. Consider any substitution
o. and the set S o {(Po.Qo) : P ~° Q}. We show that this is an open bisimulation.
Let (Po,Qo) € S and Po = P'. Then, since P ~° Q. we have that Qo = Q' and
P' L° . Hence. (P'0,Q'c) € S. Thus it is an open bisimulation, so Po ~° Qo as
required. W



CHAPTER 3. THE n-CALCULUS 31

The previous theorem justifies writing open bisimilarity using the notation ~°.
without the dot. to emphasise that it is a congruence.
Open bisimilarity. is a finer behavioural equivalence than late and early congru-

ences.

Lemma 3.28 (Sangiorgi [40]). ~° C ~! C ~*

3.2.2 Weak bisimilarity

One of the problems of the definitions above is that they are too strong. The re-
quirement that we must match all 7 actions in the same way as we match input and
output actions is too stringent. Since the goal is to equate agents that interact in the
same way with the environment, we should be able to ignore their internal actions.
In this framework. the silent action 7 represents internal activity that does not affect
directly the environment. In other words. if an agent 4 makes one action a. an agent
B can be considered as matching that behavior if it performs several 7 actions before
and/or after actually doing the action «. since the environment only observes the
a actions and not the silent actions. Thus we must relax our notion of behavioral
equivalence. This is done by introducing a “weak” version of simulation ([23]. [30].
120]).

First some notation: we write P = Q for P(5)* 5 (3)*Q. i.e. either P 5 Q
directly. or therc are P, Py.--- .P,suchthat PS5 P S5 P, 5 ... S PSP, 5
S P 5 Q.

Definition 3.29. A relation S C P, x P is called « weak late simulation iff
PSQ implies:

(i) Whenever P = P' where a is not an input action, then for some Q'. Q = Q'
and P'SQ’ .

(ii) Whenever P “3 P’ then there is a Q' such that Q g Q' and for all names b,
P'{b/x} S Q{b/z}.
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[SV]

If 87! is also a weak late simulation. then S is culled a weak late bisimulation.
U . .
The largest weak late simulation. written X s called weak late similarity. and the

largest weak late bisimulation written &' is called weak late bisimilarity.

As done previously, we can define the corresponding “weak early” and “weak
open” variants by replacing the strong transitions with weak transitions.

Notice that P = Q is equivalent to P(5)*Q which includes the possibility of no
transition at all, i.e. Q = P. This means that T actions can be matched by "not

moving”. We now summarize the properties of this equivalence.
Proposition 3.30.
(i) A strong late simulation is also a weaek late simnulation.
(i) For any agents P.Q. if P<'Q then P;SIQ.
(iii) For any agents P.Q. if P~'Q then PZ'Q.
(iv) &' is an equivalence relation.
(v) :51 is a weak late simulation.
(vi) ,‘5[ is the largest weak late simulation.
(vii) &' is a weak late bisimulation.
(viii) %' is the largest weak late bisimulation.
(i) For any process P, P&'rT.P.

We omit the proofs as they follow directly from the definitions and are analogous
to the corresponding for strong bisimilarity. The corresponding properties also hold

for the weak early variants.
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3.2.3 Barbed bisimilarity

As pointed out carlier, the LTS gives us a handle on the potential interactions of an
agent isolated from the rest of the system, and as such, we were allowed to define the
notions of bisimulation and bisimilarity. It is however possible to define such notions
in the context of a UTS. provided that we can define how can an agent “match”
another’'s behaviour without making explicit use of action labels. The answer to
this is that we could consider the processes equivalent provided that they agree on
the “observations” that the environment can make from them. We therefore need
to establish clearly what are these observations of interest. Several ideas have been
proposed ([26], (7]). The definition provided here. captures the idea that a process is

observable at the ports in which it is ready to interact with the external world.

Definition 3.31. We say that an agent P is observable at a name r, written P | r
iff there is an unguarded and unrestricted action o in P with r as subject. In other

words. the predicate | C Py x N is defined inductively as follows:
(i) T(y).P L x
(ii) r(y).P | r
(iti) vy.P Lz ifr#yand P | x
() (PIQ)Lrif PlrorQlu
() (P+ Q) lrifPlrorQluz

We denote | for —*|, i.e. P | r if there is a P’ such that P —* P and P' | r. We
say that P immediately converges, written P | if there is an r such that P | r.

Analogously, we say that P converges, written P || if there is an r such that P | .

Based on this nction of observability as capability of immediate interaction, we
can conceive a notion of bisimilarity in which agents with the same observables are

considered equivalent. This definition was developed by Sangiorgi and Milner ([31].

(26]).
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Definition 3.32. A relation S C P, x P, is called a strong barbed simulation
ff PSQ implies:

(i) Whenever P — P’ then for some Q'. Q@ — Q' and P'SQ’.
(it) For any neme x, whenever P | r then Q | r.

If 87! is also a strong barbed simulation. then S is called a strong barbed bisimu-
lation. We say that P<°Q if there is a strong barbed simulation S such that PSQ.
< s called strong barbed similarity. We say that PbQ if there is a strong

barbed bisimulation S such that PSQ. <° is called strong barbed bisimilarity.

Note that even though P | Q and P + Q observe the same variables, theyv are not
barbed bisimilar. because they might not necessarily match each other’s reductions.
Consider for instance R, = a(r).P | a(y).Q and R, «f a(x).P + a(y).Q. Certainly
we have R, | a and R, | a. but we have that R, — P{y/r} | Q. while R, cannot
match this move unless it is in a special context.

In {30] and [31] the following result was proven. showing that the process con-
gruence induced by this concept (~%) agrees with the process congruence induced by

strong early congruence (~¢}.
Theorem 3.33 (Milner, Sangiorgi [31]). ~% = ~¢

There is also a weak variant of barbed simulation. We replace the conditions with

the following:
(i) Whenever P — P’ then for some @, Q@ —* @' and P'SQ’.

(ii) For any name z, whenever P | r then there is a Q' such that @ —* Q' and
Q' | . (Abbreviated Q —*| x)

Where —* is as usual the transitive closure of —. For the weak variants of similarity

and bisimilarity we use the notation < and &°.
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3.3 Expressiveness: Encoding the A-calculus in 7

As our first concrete study of expressiveness in process calculi, we present here the
encoding, given by Milner ([26]. [27]. [29]). of the lazy \-calculus into the 7-calculus.
For this, we brieflv recall the notions of the A-calculus.?

The A-calculus is the core of functional programming languages. It views compu-
tation in terms of functions and the main operation is function application (evaluating
a function providing it with some arguments as to produce some output). This is in
contrast with the 7 calculus. which focuses on processes and the core of computation
is interaction. In the lambda calculus. every computable function is expressible. This
implies that if a programming language is to have full computational power (from

this functional point of view) it must be able to simulate the A-calculus.

3.3.1 The lazy A-calculus

We assume a set of names N,, with r, y, z, ... ranging over this set. The set of

lambda-terms Py, ranged over by M. V. M'. N|, Vy, etc.. is inductively defined by:
M o= x| Az My, | MAL

The semantics for the (lazy)A-calculus is given by an UTS as follows:

a — CONV 3 - RED
Az M =, Ay M{y/z} (A M)N - M{N/z}
M =\ M=, M M-oSN N=, VN
—— v —APP CONGR
MN - W'N M= N

The behavioural equivalence for lambda terms, denoted =, is the smallest equivalence
relation between terms, that includes reduction, i.e. if one term reduces to another.

then they are behaviourally equivalent: in particular (Ax.M)N =, M{N/z}.

*Here we present a rather succinct description of the A-calculus, in particular, we omit the
definition of substitution for lambda-terms. The reader is referred to the vast literature on A-
calculus for this, see for instance [4], [38].
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3.3.2 The translation

The essence of this translation is to express the higher-order substitution operation
found in the A-calculus (i.e. substitution of arbitrary terms for names) in terms of the
simpler first-order substitution of the w-calculus. This is done in a fashion that re-
sembles the implementation in real programming languages of functional application
and procedure calls. That is. application is not performed by physically replacing
the name by the actual argument. but by executing the body of the function in an
environment in which the formal argument is bound to the actual argument. This
binding is created at the time of the function call.

Formally, the translation is given by a function that associates each lambda-term

M together with a name u to a m-agent that expects its arguments through the port

i,

Definition 3.34 (A to 7). The translation [-] : Py = (Nx — P:) is given by the

following equations:

[e]e ¥ T(u)
[Nz M]u = u(e).[M]e with v fresh
[MN]u e ve ([M]e | ve (T(ru).cell(z.V))) with v.r fresh

where cell(z..V) _'.L(UJ ).[V]w.

As can be seen, the argument of an application is “stored” in a “cell”. This cell
is a (replicated) process with port x. The x could be understood as the “address” of
the cell. So when a name is accessed it simply sends a message to the cell, informing
it where the rest of the arguments (if any) are located. A lambda abstraction, is
represented by a process waiting for its argument (and any further arguments) in
port u. When the application is performed, we create a process for computing the
body of the function called. we create a binding (cell) for its argument, and we
establish a link between the body and the cell, i.e. we inform the body what is the

address or port where the argument is.
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3.3.3 Correctness of the translation

Now we establish that the m-calculus has the full expressive power of the A-calculus.
Recalling that notion, we expect that the translation preserves and reflects some
relation between terms, preferably a behavioural equivalence relation. Hence what we
want to prove if that for any lambda terms M and NV, if M =, N then [M] =, [V].
i.e. [] is complete w.r.t. =,,%,. We use weak bisimilarity rather than strong.
because one beta reduction is simulated by several interactions in the w-translation.
In particular. we want to show that beta-reduction. the computationally meaningful

rule on the A-calculus semantics. is faithfully respected by the translation.

Theorem 3.35 (Correctness of \ to = translation - Milner {27]).

[(Ax. M)N] =, [M{.V/r}]

Proof. First, we have that

(AL M)N] = ve.(v(zw).[M]w | v=.(T(zu).cell(z..V))) by definition of ]
2 va ([M){z/2))u | celi(z.N)) by COMM and CONGR

Thus [(Ax.M)N] =, vz.(([M]{z/x})u | cell(z..V)). Then we only need to show
that vz (([M[{z/x})u | cell(z,NV)) =, [M{N/z}]. We do this by induction on the
structure of M. Notice that the arbitrary term substitution has been replaced by a
simpler name substitution of the m-calculus. In the rest of this proof, we assume that
[M]{z/z} = [M]. to make it more readable.

Case 1 M =, z. Then

va([M]u | celi(z.V)) = v=.(3(u) | cell(z,.V))
xr [NV]u]cel(z.N)
~, [NV]u
= [M{N/z}u
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Case 2 M =, y # z. Hence we have
va.([M]Ju | cell(z,V)) =, Fu) =, [M{NV/z}]
Case 3 [ =, \y.My. so [M]u = u(yv).[Mo]v. Hence

v ([M]u | cel(=.N)) ~x u(ye)wz([Mo]e | cell(z.V))
r u(yv).[Me{:V/2}u by induction
= D (Mo{V/))]u
= [M{N/z}u

Case 4 M =, M, M,. This case requires some properties of the replication operator
that we have not studied here, so we will provide only an outline. and the
reader is referred to [29] for a more detailed account. We have that [M]u =
ve ([M\]e | vy.T(yu).cell(y.A],)). One of the properties not proved here. but
intuitively correct is that the cell ! z(y).[.V]y can be distributed over parallel

composition {making it available to both sub-terms) as follows:

v ([M]u | cell(=.V)) =~
ve.(vz.([M]u | cell(z,.V})) |
vy.(T{yu) | vz.(cell(y,\ ;) | cell(z,.V))})

We can simplify this by using the following:

vz.(cell(y, M) | cell(z.N)) =, ! y(w).vz([M]w | cell(z,V))
= cell(y,[M2{N/z}]) by induction hypothesis and definition of cell
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So putting all this together, we have

vz ([M]u | cell(z.V))
~r ve.([M{N/zHe | vy.(Tlyu) | cell(y [ M2{V/=}])))
= [(MAL){N/:}u

a

This theorem states that the translation is complete, because transitions and
equivalence are preserved by it. This is enough to assert that the 7-calculus is able
to simulate any A-term. and thus. has its full expressive power. This expressiveness
represents not only the power to compute as functions. but also that despite being
restricted to first-order processes. i.e. messages are just names without any structure.
the m-calculus is able to express (a form of) higher-orderness®. This suggests an

intrinsic expressive power of parallel composition and interaction.

3.4 Summary

In this chapter we described the basic 7-calculus. as a language specially geared to-
wards mobility. describing its semantics both in terms of a UTS and two forms of LTS.
We showed how these presentations are equivalent at the level of internal communica-
tion. We also introduced, as notions required for the UTS and LTS of the 7-calculus.
the ideas of process congruence and structural congruence. Process congruence for-
malizes the “ideal” equivalence. in the sense that agents that are process-congruent
are indistinguishable from the point of view of the environment in which they might
live. Then we presented the concept of bisimilarity in the context of the w-calculus.
and showed why this introduces several problems. making it hard to reach the goal
of being a process congruence. This translates in the formulation of several different

notions of bisimilarity.

3Sangiorgi studied in [41] a higher-order variant of 7-calculus, in which messages can be processes,
not just names. He proved that allowing such higher-order processes does not increase expressive
power, since they can be encoded in the first-order 7-calculus.
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Research in this field has focused on looking for behavioral process congruences
in the sense of definition 3.6. All the definitions of bisimilarity shown here induce

a corresponding definition of a behavioral congruence. This is summarized in the

following table:

Bisimilarity relation | Induced congruence | Description
~9 ~9 Strong ground
A ~ Strong late
€ ~ Strong early
~ ~¢ Strong open
b ~P Strong barbed
=Y 9 Weak ground
[ ~! Weak late
¢ ¢ Weak early
° ¢ \Weak open
Ab o Weak barbed

An alternative to the introduction of new notions of bisimilarity with hopes that
they are process congruences is to modify the original calculus. We will describe
the main variants of the 7-calculus that have been proposed in this respect in the
following chapters.

We also showed the expressive power of the m-calculus by giving a complete em-

bedding of the (lazy)lambda calculus into 7.



Chapter 4

Asynchronous communication: the

mqa-calculus

Much in the same way as the A-calculus is a canonical calculus for functional com-
putation. the w-calculus aims to be a canonical calculus for concurrency. However.
noting the complexities that arise when trying to define a suitable notion of be-
havioural equivalence it appears that the 7-calculus theory does not provide such a
canonical basis. CCS, the predecessor of the w-calculus. had a much simpler theory
in which strong bisimilarity is a process congruence, but it lacked the ability to de-
scribe mobile systems. In order to obtain this holy grail of a behavioral equivalence
that is also a congruence for mobile process calculi. two paths have been followed:
1) Refine the notion of (bi)simulation. and 2) Change the language. In section 3.2
some alternative notions of (bi)simulation were presented. The second approach
has been followed by simplifving somehow the w-calculus. Following this approach.
Honda and Tokoro ([17]). and independently Boudol {[7]) introduced the so-called
“asvnchronous” w-calculus.

One of the aspects of the m-calculus, as presented in chapter 2. is that communi-
cation occurs in a synchronous fashion: both the sender of a message and the receiver
block until the interaction can occur. Sometimes, however, it might be desirable for
the sender to continue processing without waiting for a receiver to take the message.

This is asynchronous communication.

61
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One way of achieving asynchronous communication, in a synchronous setting, is
to use buffers. The idea is that the sender of a message does not put the message into
a channel directly connected to the receiver, but passes it to a buffer process which
holds the message and sends it to its destination when the receiver is able to interact.
Since the buffer is modeled by a process in parallel with both the sender and the re-
ceiver. the sender can continue processing without waiting for acknowledgement from
the receiver. just from the buffer. However the calculus will still allow synchronous
communication.

A different approach is to simplify the calculus. The so-called “asynchronous”
7 calculus. or m, for short. models asynchronous communication by disallowing a
continuation after an output action. i.e. there are no terms of the form @({r).P in
me. Output actions can only occur in parallel with other processes. If we want to
model the action of sending a message asynchronously and executing a process P. we

simply write the term
w(r) | P

In such a term, the output action is non-blocking because it can interact with an
agent listening through u independently of P, while P can execute without waiting
for the interaction to occur.

The set P, of 7, terms is defined as the subset of P, terms where output is always
followed by 0. In its most basic form. what we call the core 7,, the syntax does not
include the summation operator. nor the match/mismatch operators. Alternatively.

we forbid explicitly continuations to output actions by defining P,, as follows:

Definition 4.1 (Core 7, terms). Let N, be an infinite set of names, ranged over
by u.v.w.z.y,.... As usual, T stands for a sequence of names zr,r,...z,. The set P;,

of T, terms is defined inductively as:

P = 0 | @@ | u@Q | v2.Q | QIR | A

These constructs have the same interpretation as those of . Notice that by
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including procedural definitions and calls (A(F)) and allowing recursion, we can define
the replication operator as we did in 7: ! P “p | ! P.

The core w,-calculus is a simplification of the 7-calculus in the sense that the
7, calculus is a sub-calculus of 7, and thus, evervthing that can be done in 7,, can
be done in w. The question that arises immediately is whether 7, has the same
expressive power of 7. Honda, Tokoro, and Boudol ([7]), proved that asyvnchronous
interaction is enough to simulate synchronous communication. We present this result
in section 4.2.1. Nonetheless, Palamidessi ([36]) proved that the core 7,. deprived of

non-deterministic choice. an essential ingredient for concurrency. is not as powerful

Even with its limitations. 7, is quite an expressive calculus. As an example of its
power. let us consider Honda and Yoshida's notions of forwarder and equator ([18]).
A forwarder from a channel ¢ to a channel b. written ¢ — b. is a process that acts
like a one-cell buffer:

{e -
a— b a(r).b(r)
When a and b are linked through a forwarder process. any message sent through a
can be caught by any process listening through b.

An equator between a and b. written a ~-- b, is a process that makes ¢ and

b equivalent in the sense that processes communicating through any of them can

interact between them. This can be defined in terms of two forwarder processes as

follows:
an—»bdéfa—-blb—»a

Since the listening capabilities of two channels are identified by an equator. it achieves
the same effects as substitution with respect to the possible patterns of interaction

of an agent. It turns out that the following algebraic law holds:

P{a/b} =, vb(a~b]|P)
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where =, is (weak)bisimilarity congruence of 7, processes. Notice that this law is
only valid in the asvnchronous setting, because the forwarder from a to b implies an
asynchronous communication between an agent sending a message through a. and
another message listening through b.

Another example of its inherent expressiveness is the support of #, for functional

programming. The basic interaction in 7, is given by the reduction
w(z).P|a(y) | R— P{y/c} | R

We can think of the action @(y) as “calling”™ a procedure u with actual argument
y. where the procedure is given by the receptor u(r).P. whose formal argument is
r. Although in such an interaction. the procedure is consumed by the reaction. we
can simply use the replication operator to make the procedure available for all other

processes as in a client-server model.
"u(z).P{a(y) | R ="' u(x).P| P{y/z} | R

This idea of conceiving 7, interaction as functional application only covers “first-
order” functions because only names can be transmitted through channels. However.
we can actually simulate higher-order functions with an encoding of the lambda cal-
culus. This encoding turns out to be almost identical to the one for the full 7-calculus.
as shown in section 3.3. The only difference is in the translation of functional appli-

cation. where we replace the blocking output action with the non-blocking version:

[MN]u o ve.([M]e | ve.(T(xu) | cell(x, V)))with v,z fresh

4.1 Semantics

We now present the formal semantics for 7,, by providing, as we did for the w-calculus,
unlabelled and labelled transition systems. We assume the same notion of structural

congruence from definition 3.8.
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4.1.1 Reductions

The UTS for the core 7,. is a tuple (P,,.=. —,,), where —, . the reduction relation
is the least relation satisfving the rules for w-reduction as in table 3.4. with the

exception of the COMNMI rule. which is replaced by!

COMIM®

u(x).P|uly) - P{y/z}
In the case of 7, with summation the COMNMI rule is stated as:

COMIM®

(u(x).P + Q)| u(y) = Ply/r}

4.1.2 Transitions

. o d

The LTS is defined similarly. as a tuple (P, . A, =. S, ). where A, = A;. and
=5 ... the transition relation is the least relation satisfving the rules for 7-transition
as in table 3.5, with the exception of the PREF, rule. which is replaced. for the late

semantics. by

— oUTy and INP¢
a(r) RSN ‘ u(r).P 2 p

The change for the early semantics is analogous to the one for w-calculus.

4.1.3 Bisimilarity

Since 7, is a sub-calculus of 7, the notion of open bisimilarity is also a congruence.
as well as the early and late congruences. However, in this asynchronous setting.
the input actions of an agent cannot be directly observed by an external agent.
In order to emphasise this aspect of asynchronous interaction, an alternative to the
previous bisimilarities was proposed by Honda and Tokoro ([16]). Here we present one
possible characterization for this relation. This was proposed by Amadio, Castellani
and Sangiorgi in [3], along with three other characterizations which they proved

equivalent to the original proposed by Honda and Tokoro.

! As usual, we will omit the 7, subscript while it is clear which calculus we are discussing.
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We first define a relation called an “or”-bisimulation, that represents the insen-
sitivity to input actions, meaning that only output (o) actions and silent actions (7)

are matched by or-bisimilar processes.

Definition 4.2 ([3]). A binary relation S C Py, x Py, is called an ot -simulation
iff for any terms P,Q € P,,, PSQ implies that if P = P' where o is not an input
action and bn(a) N fn(Q) = 0. then Q@ = Q' and P'SQ'.

If 87t is also an or-simulation. then we call S an or-bisimulation.

We denote ~°7 the largest or-bisimnulation. and =°7 its weak variant.

Now. to define the appropriate notion of equivalence. we close this relation under

composition with arbitrary output actions.

Definition 4.3 (Asynchronous bisimilarity ([3])). A relation § C P, x P, is
an asynchronous bisimulation if it is an oT-bisimnulation and for any P.Q € P;,.
PSQ implies that for any output action u(x). (a(r) | P)S((r) | Q).

We denote ~ ., the largest asynchronous bisimulation. and ~, the induced asyn-
chronous congruence. Also, the corresponding definition of weak asynchronous bisim-
ulation ts obtained, as usual. by replacing strong transitions by weak transitions. and
we denote =, the largest weak asynchronous bisirnulation, and =, the induced weak

asyn chronous congruence.

This is actually an appropriate notion of behavioural equivalence. since it preserves

all of 7,’s operators.
Proposition 4.4 ([3]).
(i) ~z,. and =, are equivalence relations.
(it) ~z, = ~gq,. and =, == : this is, ~; and =, are process congruences.

Proof. Item (i) is easy to check. We will show only transitivity. Suppose that P~ Q
and Q~; R. Hence, there are asynchronous bisimulations S, and S; with PS,Q@ and
@S, R, which implies PS;S; R. Since S; and S, are or-bisimulations, then S| S, is also

an or-bisimulation (using the same argument of transitivity of ground bisimulation).
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Hence we only need to check the condition of closure under composition with arbitrary
outputs. Since S; and &; are asynchronous bisimulations, we know that for any
output u(z), (u{z) | P)Si(u(z) | Q) and (u(z) | Q)S.(u(z) | R) respectively. Hence
we obtain that (a(z) | P)§:Sa(u(x) | R). so (u(z) | P) ~, (@(x) | R). as required.
For item (ii). it is proven that = is closed under substitution. so that by an argument
similar to lemma 3.24. we have that it is a congruence. The proof is rather long. but
the technical details are not very difficult. We refer the reader to [3] for a detailed

account. 4

Asynchronous bisimilarity is a coarser equivalence relation than the corresponding
notion for the synchronous calculus. Intuitively, given that in the asvnchronous
calculus we can rearrange output actions in any way. more terms are considered
equivalent than in the synchronous calculus.

The notion of barbed congruence is useful in the 7, setting, since it was proven

in [3] that it coincides with asynchronous congruence.
Proposition 4.5 (Amadio, Castellani, Sangiorgi [3]). ~! =~

Ta Ta

With the notion of bisimilarity congruence established in the asvnchronous set-
ting. we can prove the following properties of equators. that make them so attractive.
inducing a kind of equivalence relation amongst names.

Proposition 4.6 (Equator properties ([18])).
(1) a ~—a ~; vb(a~=b) ~; 0
(it) a~—b ~;, be—a

(iit) ve(a = clcwnb) ~7, a~b

(iv) P{a/b} =, vb.(a ~—b|P)

4.2 Expressiveness: Synchrony versus Asynchrony

As mentioned above, it is easy to simulate asynchrony in terms of synchronous inter-

action, either by using buffers, or by simplifving the calcuius. Is the converse true?
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The answer depends on the available operators of the calculi that we are comparing.

4.2.1 When is asynchrony enough?

Boudol, and independently Honda and Tokoro showed how to simulate the core 7-
calculus, i.e. the m-calculus without summation or matching operators. with 7,. This
is based on a simple acknowledgement protocol. The idea is to establish a private
link between sender and receiver along which the actual message will be transmitted.
to avoid interference from the environment.

The sender works as follows: it first creates a private channel which passes to
the receiver. and concurrently waits for an acknowledgement from the receiver. With
this acknowledgement comes the private link created by the receiver along which the
actual message is to be transmitted. Once the sender has received this private link.
it is able to transmit the message asynchronously.

The receiver protocol is the following: once it gets the acknowledgement channel
from the sender, it creates the new private link which sends back through the ac-
knowledgement channel. Concurrently it blocks, waiting for the actual input in the

private link.

Definition 4.7 (Core (synchronous) = to 7, translation ([7])).

The translation [-] : Py — Py, is given by the following equations:

[o] < o
[P1QI< [P]IQ]
[vx.P] ef vz.[P]
[a(z).Pl € va.(la) | a(t).(z) | [P]) where a.l ¢ fn(P)
[u(y).P] ¥ u(a).vt.@) | 1(y).[P]) where a.l ¢ fn(P)

The correctness of the translation is specified by the adequacy with respect to

the so-called “testing preorder”2. This preorder is based on a notion similar to ob-

?According to Boudol, the translation is also complete with respect to structural congruence.
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servability from definition 3.31. Here. however, we will write P | £ when P is
immediately ready to perform an input on r. This is in contrast with definition 3.31,
that represented the capability of immediate interaction. both input and output.
The abbreviations P |. P | r and P | are defined as before (recall that P | means
Jr.Plx. Pl rmeans 3P .P =" P AP | x. P means 3P'.P —-* P'AP' |). This

preorder is defined for both core-7 and =, as follows:

Definition 4.8 (Testing preorder). The testing preorder T for L is defined by:
P C. Q if and only if for all L-contexts C, C[P] ¢ implies C[Q] Y.

Boudol's correctness criteria is established by saying that the translation faithfully
reflects how processes are ordered in terms of their receptiveness. or capability of

receiving messages.

Theorem 4.9 (Boudol ([7])). The translation [-] is adequate w.r.t. T, and C,.
this is. for all terms P, Q, if [P] C,, [Q] then P C, Q.

Proof. We provide only a proof sketch and the reader is referred to [7] for a complete
account. First it is proven that the translation preserves and reflects observability.
this is. for any P. P |, if and only if [P] {-,. Each direction is done by induction
on the length of the reductions of the term considered. For instance. in the left to
right direction. the base case is when P | w for some w. Then it is easy to see. by
the definition of the translation. that [P] { w. When P —* P’ and P' | w. for some
P'" and w. we know that some interactions have taken place. We can use this. and
the fact that the translation is compositional to show by induction on the length of
the reduction P —* P’ that there is a Q such that [P] -° Q and Q | w.

Once the preservation and reflection of observability has been established, we
can proceed as follows. Suppose that [P] C,, [@]. That is. for all 7,-contexts C,.
Co[[P]] U=, implies C,[[Q]] 4r,- We want to prove that P C, Q, i.e. for any m-context
C,. C[P] |- implies C,[Q] §-. Let C, be any m-context such that C,[P] .. Then
since observability is preserved by the translation, [C4[P]] {,. Since the translation
is compositional, there is a m,-context C, such that [C,[P]] = C,[[P]], so Ca[[P]] ¥ .-
Now. recalling that [P] C,, [Q] we have that C,[[Q]] .. Noting that [C,[Q]] =
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C.[[Q]] by compositionality. we have that [C,[Q]] |-, Finally. since the translation

reflects observability we obtain C;[Q] {-. as required. O

4.2.2 When is asynchrony not enough?

The previous result showed how, in general, asynchronous communication can simu-
late synchronous communication. Yet, to some extent, it seems like synchrony is more
powerful. Synchronous communication supposes some form of common agreement.
However. in an asynchronous setting, one can imagine that if the parties always be-
have in exactly the same way. there might never be an agreement. This intuition. led
Palamidessi ([36]) to show that it is not always the case that asynchronous interaction
can simulate svnchronous interaction.

This might appear in contradiction with the previous result. however. in that
section. we were considering the core m-calculus, i.e. the calculus without non-
deterministic choice. In this section we will show how non-determinism makes a
difference between the two calculi.

Palamidessi's proof is based, as the intuition suggested. on the idea that asyn-
chronous systems cannot be guaranteed to break certain symmetries. Particularly. 7,
cannot solve the problem. in general, of electing a leader amongst a symmetric net-

work of processes. Here we present her proof, but before we need some preliminaries.

Process networks and hypergraphs

A process network is simply a term in standard form M =vi.(P, | P | --- | P,). In
the rest of this section, we will rescind from the restriction at the top level, to keep
notation simple. We can represent a network of processes as a hypergraph. Informally,

a hypergraph is a graph in which one arc can connect more than two nodes.

Definition 4.10. 4 hypergraph H is a structure (N.A.t), where N and A are
finite sets. and t : A — P(N). We call the elements of N and A nodes and arcs
respectively, and t is called the type function.

A hypergraph can represent a network by associating each process with a node,

and each free channel with an arc. If a name z is free in P, @, and R, then it
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represents an arc between those processes. We usually denote H (M) the hypergraph
associated with the process network M. Formally, given M = P, | P» | --- | P,.
H(M) = (N. A,t) is a hypergraph where ¥ & {1.2....n}, 4 ¥ fr(A)\ {0} and
t(r) &/ {i€ N :r € fn(P;)}. Here. o is special name through which .M/ might send
output to the external world.

We can also represent the concept of “renaming” a process network in terms of
hyvpergraph maps. The renaming of a process consists of changing all the names
according to some function. A “well"-behaved renaming preserves the structure of
the communications network. This is based on the notion of cutomorphism in a
hypergraph. Informally, an automorphism o is a map from the hypergraph to itself

that preserves the structure.

Definition 4.11. Let H = (N, A.t) be o hypergraph. An automorphism on H is
a pair 0 = (ox.0,) whereoy : N = N and o, : A — A such that for every r € A.

if t(x) = {i1.iae oo i} then t{o4(x)) = {on(i1). ox(i2). ... on(im) }-

.. . . . e .
The composition of automorphisms is defined as oo o’ def (oxoo’y,0400). This
.. . . . . . . ., def .. .
composition is also an automorphism. The identity automorphism is id = (idy. id,).

de f

where for any i € V. idy (i) %/ i and for any r € A, idy(r) = x. The k-iteration of

K def

. . . o . . {4
an automorphism o is simply the composition & times of 0: 0" = dogo---00.

Given a node i in a hypergraph. and an automorphism o. the set resulting from
iterating o starting in i, 0,(i) < {i.0(i). a2(i). 0*(i). e 0P} where o®(i) =i, is
called the orbit of i generated by o. If the orbit of o is unique. then for any node. the
orbit coincides with the set of all nodes in the hypergraph: i.e.. for each i. Oy (i) = .V
where H = (V, A, t).

In the context of w-calculi, we formaily define the “well”-behaved renaming of a

process in terms of an automorphism o of its associated hypergraph as follows.

Definition 4.12. Let M = P, | P> | -+ | P, be a process network, with an associated
hypergraph H(AM), and ¢ and automorphism on H(M). A well behaved renaming

of a term P; in M is a function op : Py — P, defined inductively on the structure of
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P; as follows:

op(0) < 0
op(ve.P) Y v op(P{L' /1)) where &' is fresh and o 4(2") = 1’
or(P | Q)Y op(P) | op(Q)
(P+Q)é p(P) + op(Q)
op(@(z).P) € Ta(u)(oa(x)).00(P)
op(u(z).P) e o4(u)(2).op(P{c'/r})  where 2’ is fresh and o.(2') = 2’

We call the structure (ox.04.0p) a well-behaved automorphism. Also, for the

. de
special channel o, we define o,(0) = o.

-

In the definition above. all bound names are replaced by fresh names. a-conversion
is performed on the term and the automorphism is extended on the new fresh names
as the identity function.

Notice that since the 7, calculus is a sub-calculus of 7. the definition provided
also applies for 7, terms, by restricting the function to the subset of 7, terms.

We expect that such well-behaved automorphisms respect the semantics.

ap(a)

Lemma 4.13. For any terms P.Q and action a. if P = Q then op(P) — 0p(Q).

Proof. By induction on the derivation of P 5 Q. a

Computation and projection

Given a process network M = P, | P, | --- | P,, a computation C : M & M™, is
a sequence of transitions where i = pop pta...pn— is a sequence of actions. More

explicitly. we have:

P P| - [P, P P}| - | P
BpEP| - | P2

PR PR ] | P
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If C is (w)-infinite we write M £. We say that a computation C’ eztends C. written
C < C' if there is a computation C” such that C' = CC". We write C'\C for C".
The ~“evolution” that a particular agent P; makes in the computation C of M is called
the projection of C over P;, and is written Proj(C, P;). This is the sequence
a 1 @ 2 Ql aQm-1 -1
P2 pl 3 p2e ... om5t pm
If the « + 1 transition in C was an application of the PAR rule. involving P?. then
P* =3 P**!is the premise of that rule. If the transition was an application of the
COMNM rule. P* 2% P! is one of the two premises. If the agent was not involved in

that transition, P*7' = P*, i.e. the process is idle.

t

Symmetric networks and electoral systems

We want to define what do we mean when we say that a system or network is
svmmetric. Informally, we could say that in a symmetric network each process P,
has a corresponding process P,. which is a well-behaved renaming of P,. up-to alpha-

conversion.

Definition 4.14. Consider a process network M = P, | P, | -+ | Pn with hy-
pergraph H(M) = (N, A.t), and a well-behaved automorphism o = (ox.0.4.0p) on
H(M). We say that M is a symmetric network with respect to o if for each
i€ N. Pyyy =a op(P). We say that M is symmetric if it is symmetric w.r.t. all

automorphisms of H(M).

Now we define what is a system that can select a “leader”. Informally. an electoral
system is a process network A/ with a special output channel o (a free name), in which
the agents will agree, sooner or later, which of them is the leader, and will announce

it to the environment through o.

Definition 4.15. A process network M = P, | P, | --- | P, ts an electoral system
if for all computations C of M, there exists C' such that C < C' and there is an
[ € {1,2....,n} called the leader, such that for all agents P; in M, Proj(C', P)
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contains the action o(l). and there is no C" such that C <« C" that contains the
action o{l"y with ' # 1.

Symmetric electoral systems in full-»

In the full = calculus it is possible to construct a symmetric electoral system. i.e. a
system that has symmetric structure and is capable of always choosing a leader. An

. d
example is the process network .\/ ef P, | P, where

P e a(e).sll) + uly).o(l)

Py v o) o) + uly)ady)

. . . {
This system is symmetric w.r.t. ¢ = (oy,04,0p) where oy def {(1.2).(2,1)} and

d o .
o. e/ {(u,v). (vou), (L d2). (Lo 1)) }. To see that it is also an electoral system. notice
that an agreement is always reached in the first transition. i.e. M has two possibilities

of interaction. namely: P, | Py 5 a(l,) | 6{l,) or P, | Py = 3{l,) | 8(L,).

Confluence in 7,

The core 7,-calculus does not have non-deterministic choice, which means that if a
process can perform more than two actions. they have to be performed by parallel
subprocesses. Since the actions must be in parallel, the actual order in which they
are executed is irrelevant, so it is always possible to reach a common state no matter

what the execution path was. This is a “confluence” property.

P
>\
Q Q
Mﬁn

R

Formally, this property is established by the following lemma ([36]).
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\l

(S]]

u(r)

Lemma 4.16. Let P € P,.. If P 224 Q and P 25 @, for some Q. Q' € PT(, and
u,v.r.y € Ny,, then there is an R € P, such that Q 29 R and Q — w)

Proof. We know that if both actions are possible, starting from P, then they must
occur in parallel within P, i.e. P = Co[Cl[u(r)] | C)[v ).S]] for some contexts Cy, C,
and C,. and some term S. The transitions P — Q and P 2%, Q@' must have been
obtained by applying the PAR, rule (with other rules as well). where the actions were
introduced by the OUT, axiom u(x) Z2) 0 and the INP, axiom v(z) L), — S{y/z}.
Hence Q = Cy[Cy[0] | Ca[r(2).S]] and Q' = Cy[C\[u(x)] | C-,;[S{y/:}]]. Therefore. if we
apply PAR, again (and the other rules of the previous transition). we can construct
v(y) i(x)

a proof of @ — Co[0] | Ca[S{y/=}]] and Q' —— Cy[0] | C2(S{y/=}]]. Define R to be
Co[0] | C2S{y/=}]- O

Perennial symmetry

The gap in expressiveness between the full 7-calculus and the core 7 -calculus is that
in the former. we can construct a svmmetric system that eventually will break the
symmetry and elect a leader. as shown in the previous example, while in the latter.
it is possible that the symmetry never gets broken. and therefore no leader is elected.
This is formalized by the following theorem. If we start with a symmetric network.
we can always construct a computation, using the confluence lemma. such that the

network remains symmetric. and hence leaderless.

Theorem 4.17 (Palamidessi ([36])). Let M = P, | P, | --- | P, be a symmet-
ric network w.r.t. o, where o # id is a well-behaved automorphism on H(A), the

hypergraph of M, such that ¢ has only one orbit. Then M is not an electoral system.

Proof. 3 We prove this by contradiction. Assume that )/ is an electoral system.
We start with an empty computation Cy, and successively extend it. resulting in an
infinite sequence Cy « €, €K €, K -+ K Cp K Chy1 <K ---. We proceed by
induction in h, i.e. in the base case Cj is the empty computation, and we construct

Ch+1 given C}, as follows.

3In this proof, which follows very closely the original, to simplify notation, we will omit the
subscripts N, A, and P from the component functions of o.
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Let C), be M £y M*, we define Ch I CC" where C' is the extension M" ﬁgl
M1 We now construct C’. Since M is electoral. an extension of Cj, must contain
the action (!) for some [ € {1.2.....n}. Let u be the first action in C’, and P! is the
agent performing that action.

Suppose that ¢ = 8(l). Given that the syvstem is symmetric w.r.t. o. P;‘m =
o(P"). Hence P! (i) contains an action o{(o(()). Therefore some extension of Cy has
this action. and since M is electoral. o(l) = [. This contradicts the condition that
o # id because o generates a unique orbit. Hence 9(l) cannot be the first action in
C". so pu is either another action, or 7

Consider the case that u # 7. We now define \*+!. Let P"*! such that
h K h+1
Ph 2P
By lemma 4.13 and symmetry this transition implies

Ph a(p) PIH-l

a(i) a(i)

h “) h+1
PU:(l' Prr 2(4)

"~ l(u)

Pan l Pa"L’:r'll
Given that there is a unique orbit M" = P! | P". | Ph, a | | | vy Let
Mt = PP PRS-+ | P, and the computation C7 is M" 5 \I"“

where [ o po(p)o? (p)...a’""l(/,t) is the composition of the transitions above. We
have that M"*! is still symmetric w.r.t. o.

Now, consider the case p« = 7. If this action was the result of an internal action
of only one of the components P;, then we construct M”**! as in the previous case.
Otherwise, the 7 was the result of an interaction between two components P! and
P} with i # j. and the transitions P! =5 Q; and P! 2 R, where g; and p, are an
input and an output actions respectively {or vice-versa). Since there is a unique orbit

for o we have that for some r € {1.2,....,n}, j = 0"(i). Let # = 0", so P Po(z) and
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R; = Ry(;). Then, Pa(;) LN Rg(;y which together with Pt Ay Q; implies by COMM

the transition

Ph | P, o(;) - Qi | R

(I‘l

The transition P* £, Q; also implies Pg( y — 8(Q;) by symmetry and lemma 1.13.

This transition, and Pt;l(i) 2 Ry, imply by confluence, that there is an R’ such that

Ryy — 2 R and 8(Q;) = R'. Define Py = “ R
By symmetry on P} 2 R,. we have Pl % 8(R,). Since j = 6(i). 9()) =
B2(4). so Py — . 0(R;). Notice that 6(R;) = Rp by symmetry also. The

. . () -
actions #(y,) and 6(y;) are complementary. so we can combine Ry,y — PJ‘“‘)I and

Opy) . . .
PJ‘(X —5 Rg:m 1nto an interaction

4 h+
Ry | Piiy = Pyl | Rz
Applying this argument repeatedly, we obtain

) T
Ro':(,) l Pglﬁ(i) - | Rad(,)

0 (l)

h T
R0n—2(“) I PD""‘“) — P,‘_, 2(i) | Ron-x(‘)

0"~ ()

. he L
dlld Ran—l(,) Pg';, [(‘)
.. . =1
From the transition 6(Q;) —% Pji! we obtain 6"(Q;) 7 ), gn- '(P;3') by lemma

14.13. Now. 6"~ l(P(;'(f‘) = Py} by symmetry. and. since 8 = id. this transition is

Huy) . . .
the same as Q; ), P"*'_ So we can deduce the following interaction:

Ron-t(y | Qi & Pph ) | PP

@ |

Finally, the composition of all these 7 transitions gives us the computation C'

h h h h (A h+1 h+1 | ph+l Pphtl
P Py | Poagy | -+ | Pnory = B | Py | Py |-+ | Bpla
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This is. M" is the left-hand-side, and M"**! the right-hand-side of this computation.
Again, M"*! is symmetric w.r.t. .

In any case. we can always extend the computation so that the resulting network
is still symmetric. Thus we can construct an infinitely long computation. so .M/ cannot

be electoral. a

Non-encodability

In order to say that two languages have the same expressive power. we require that
any translation [-] from one language to the other preserves and reflects the semantics.

Palamidessi defined as “reasonable” a semantics which

~...distinguishes two processes P and @ whenever in some computation
of P the actions on certain intended channels are different from those of

any computation of Q."[36]

[f we restrict ourselves to truly distributed systems, we also require that the
translation preserves parallel composition [P | Q] = [P] | [Q]. Also. we might
want the translations to respect renaming, i.e. [o(P)] = o([P]). Palamidessi calls a

translation satisfving these two criteria a uniform translation.

Theorem 4.18 (Palamidessi ([36])). There is no uniform translation from the

Sfull w-calculus into the core w,-calculus that preserves a “reasonable” semantics.

Proof. By contradiction. Suppose that [-] : P — Px, is such translation. Let M €
P. be a symmetric and electoral system, and M’ € P, a symmetric but non-electoral
system. Then, assuming that we have a reasonable semantics for =, M and M’ are
different in such semantics. Since uniform translations preserve symmetry. [M] and
[A'] are also symmetric, but by theorem 4.17, neither is electoral, hence we cannot

distinguish them, contradicting that [-] preserves the “reasonable” semantics. a

Interpretation

This result seems in contradiction with Boudol’s encoding of synchrony in terms of the

asynchronous sub-calculus. Notice however that Boudol's encoding does not consider
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the summation operator. Recall from section 3 that the #*"P-calculus allows only
input guarded choice, the 7°“-calculus allows only output guarded choice, the ™=
allows mixed choice. and the w*¢P-calculus allows both input and output guarded
summations, but not mixed choice. One way of interpreting Palamidessi’s result
is that mixed choice is not possible to encode in the asynchronous/separate choice
fragment of the m-calculus. The example of a symmetric electoral system in 7 made
use of the mixed guarded choice operator. On the other hand, the construction of
theorem 4.17 relied on the confluence lemma, but this lemma does not hold in the
presence of mixed-choice!

Hence this result is not just about the relation between svnchrony and asvn-
chrony. but about how (imixed)non-determinism increments the expressive power of
a svnchronous calculus with respect to its asynchronous. choice-free fragment.

We also have to point out that this result imposes strong requirements on trans-
lations. Particularly. requiring uniformity w.r.t. parallel composition. rules out non-
distributed translations (which introduce mediator processes). When relaxing these
constraints, a translation from full-7 to the core 7, is possible, as Nestmann shows
in [32].



Chapter 5

Internal mobility: the m;-calculus

Following the same theme of looking for a canonical calculus of mobility. based on
simplifving the original =-calculus. Sangiorgi defined the so-called “internal”-m. or
m-calculus [41] as an intermediate step between CCS and the 7-calculus.

The mechanisms of 7; are simpler than those of 7, and vet they proved to be
responsible for most of the expressive power of mobility while having a simpler theory.
closer to that of CCS. The idea was to differentiate between two types of mobility:
internal and external. In internal mobility. the output action can only send private
(i.c. bound) names. whereas in external mobility it can send public (i.e. free) names.
In 7 both types of mobility are possible. In 7; only internal mobility is possible.

The 7;-calculus is a sub-calculus of 7. so it inherits its syntax with the exception

of the free output action. It also inherits the structural congruence and most of the

semantics.

Definition 5.1 (Core 7; terms). Let N, be an infinite set of names ranged over
by u.v.w.x.y, =, .... As usual, T stands for a sequence of names r,Z>...x,. We define
the set of actions Ay, ranged over by a. 3.7, ..., and the set of fusion processes Pz

ranged over by P.Q, R, ... as follows:

a == 71 | ux) | u(x)

= 0] aQ | v2Q | QIR | A@

80
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As in 7 and 7,. by including procedural definitions and calls (A(Z)) and allowing
recursion, we can define also the replication operator as: ! P “p | ' P.

As the syntax shows. input and output are symmetric actions but this symmetry
is not only syntactic but also semantic as will be shown later. This symmetry is
akin to that found in CCS. where for each name r there is a complementary name
T. We can express this idea in terms of the labels of 7/, i.e. the actions, as follows:
if @ = u(x) then @ = @(z); if @ = u(x) then @ = u(z); if @ = 7 then @ = 7. This
operation can be extended to arbitrary terms, i.e. we write P for P replacing every

prefix in P by its dual. This can be inductively defined as follows:

“o PYap ve P e P

.
PIQYPIQ P+QYP+Q

=]

5.1 Semantics

\We provide the UTS and the LTS based on the same notion of structural congruence

from m-calculus (definition 3.8).

5.1.1 Reductions

Given that free output is not allowed, the only change in the UTS is the COMM rule.

The following rule is adopted instead:

(u(z).P + R)|(u(y).Q + S) - vy.(P{y/z}| Q
This rule expresses the idea that communication always creates a bound link between
just the two processes communicating. If the scope of the link is to be enlarged to a
third process this must be expressed explicitly. so it is not possible to rely on linking

free (global) names.
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5.1.2 Transitions

For the LTS the change is also restricted to the COMM rule. The new rule. making
use of the concept of complementary actions is:
PHP Q5S¢
P|QSvr(P|Q)

COMM, ifa# 7 and bn(a) = {z}

The rest of the rules are the same as those of 7-calculus. The input. output and
silent actions are uniformly handled by the PREF, rule.
Some basic properties are shown in the following proposition. that point out the
symmetry of the semantics of actions.
Proposition 5.2.
(i) P=P
(it) P> Q if and only if P > Q
Proof. (i) Structural induction.
(¢} Induction on the derivation. We show only the case for COMMI. the rest are
routine. Assume that P 5 Q where the last inference was an instance of the COMMI
rule. Hence P = P, | P», and Q = P! | P where P, = P! and P, > Pj. Hence
by induction hypothesis P, = P/ and P, = Pj. So. by applying COM)M. we obtain
P |P5P|P:ie P5Q.
c

5.1.3 Bisimilarity
The great advantage of simplifving the language is that the associated notion of
ground bisimilarity is simplified. In fact, it is very close to that of ground bisimilarity.

Definition 5.3 (7; bisimilarity). A binary relation S C Pr; x Py is called a
7r-ground-simulation iff for any terms P,Q € Py, PSQ implies that

o Whenever P 5 P’ and bn(a) N fn(Q) =0, there is a Q' such that Q = @' and
P'SQ'.
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If 87! is also a m;-ground-simulation then S is called a 7 -ground-bisimulation.
We say that Q stmulates P. or that P and Q are similar. written P<;,Q. iff
there is a wy-ground-simulation S such that PSQ.
We say that P and Q are bisimilar. written P~.;Q. iff there is a 7;-ground-
bisirnulation S such that PSQ.

Note that this definition is the same as ground bisimilarity in the full 7-calculus.
but restricted to 7; processes. Compared to late and early variants existent in 7. this
notion is symmetric, and does not require a separate clause for input actions.

This notion can also be extended to its weak variant in the same way as done in
section 3.2.

Is this equivalence a process congruence? Yes. That is the advantage of putting
a limitation on the language. Before proving this, let us go back to the example in
section 3.2. Recall that P T |y and Q ¢ .y + y.7. They are bisimilar in 7, as
well. In 7. under the context C[] “ u(y) we have C{P]+#:C[Q]. The problem there
arose from the fact that we replaced the y by r when we send a message u(r). The
7 notion of bisimilarity (both early and late) requires that. after an input action. the
continuation states be themselves bisimilar under all possible substitutions. On the
other hand, in 7; bisimilarity we do not make such a stringent requirement. The input
action is matched regardless of the instantiation. In the example. this means that in
71 we have C[P]~./C[Q] because the action u(y) in C[P] can always be matched by
C[Q]. It is still the case that the equivalence does not preserve arbitrary substitutions.
but even so. the equivalence is preserved if we are careful not to substitute for a name

that is free. Compare the following to lemma 3.21 in section 3.2.

Lemma 5.4 (Sangiorgi[41]). If y ¢ fn(P)U fn(Q) then for any x. P ~7 Q
implies P{y/x} ~z Q{y/z}.

The fact that 7; bisimilarity does not force us to match moves for all substitutions.
and the previous lemma, paves the way to process congruence. However, we do not
need to talk about an “induced” congruence that is preserved under all substitutions

in the sense of definition 3.23. It it enough to preserve the operators. So for the
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process congruence we will use the notation ~;. In the rest of this section we will

omit the subscript 7/ from bisimilarity and bisimilarity congruence.

Proposition 5.5 (Sangiorgi[41]). ~:; is preserved by all operators. Hence ~;; =

~xl

Proof. To prove that P<Q implies C[P]~C[Q] we analyze each possible case for the

elementary contexts.

(i) To prove a.P ~ a.QQ we just need to prove that & = {(a.P.a.Q) : PAQ} is a
bisitmulation. This is so. because the transition a.P = P is matched by .Q 5 Q
with PXQ. This is so for all actions «. including input. because our definition of
bisimilarity does not require instantiation of the object of the action.

(ii) To prove vz.P <~ vx.Q we just need to prove that S = {(vz.P.vr.Q) : PAQ}isa
bisimulation. Suppose that (vz.P.vr.QQ) € S. The possible move for the first element
of the pair is vr.P 5 vr.P' where x ¢ n(a) and P 5 P'. Since PLQ. Q 3 Q' with
P'~Q@Q'. Hence. since the side condition is the same, we can apply RESTR, and thus
ve.Q S vr.Q'. So (vr.P'.vr.Q') € S as required.

(iiz) To prove P | R ~ Q | R we just need to prove that S = {(P | R.Q | R) :
PAQ} U ~ is a bisimulation. Take a pair (P | R,Q | R) € S. Suppose that

P | R 5 M. There are three possible cases depending on where the action originated:

L.It originated from R, ie. M = P' | R with R = R and P' = P. Then by
PAR,. Q | R 5 Q| R'. and since PXQ we have that (P | R".Q | R') € S as
required.

2.It originated from P.ie. M = P' | R with P 5 P' and R" = R. Then.
since PAQ, @ = Q' with P'XQ'. So by PAR,. Q | R 5 @ | R. Hence
(P'| R,Q' | R) € § as required.

3.1t originated from an interaction between P and R, so a = 7, i.e. M =
vr.(P' | R') with P 2 P and R 3 R' for some action 3 whose object is
z. Since P~(Q, we have that Q 3 Q' with P'~@Q'. By applying COMM,,,
we obtain that Q | R 5 vx.(Q' | R'), and by item (ii) (bisimilarity preserves

restriction), M ~ vz.(Q' | R') as required.
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5.2 Expressiveness

So far we have seen that the 7; theory is simpler than that of #. By simplifving
the language, the notion of bisimilarity was also simplified and it turned out to be
a congruence. The natural question that arises is whether this was for free. Did we
give up on something for obtaining the benefits? We restricted the calculus to only
being able to send private names. What does this mean in terms of expressiveness?
Certainly we cannot express now. at least directly, the action of exporting names
that are not private. But how much has been lost by this? Apparently not too much.
according to Sangiorgi. One way to see this is by looking at the kinds of things
that can be done in either language. [n particular we turn now our attention to the
A-calculus. The ability to simulate the A-calculus is regarded very highly, since it
represents Turing-completeness of a language. It turns out that 7;. as 7 itself. is

powerful enough to encode the (lazy}lambda calculus.

5.2.1 Encoding the A-calculus in 7,

Recall from chapter 2.4 the encoding of the A-calculus into 7. One of the features of
this translation is the use of the free output construct. precisely the one that is not
available in 7;. The challenge is how to overcome this. What follows is Sangiorgi’s

encoding in 7.

The translation

Definition 5.6 (\ to 7). The translation [-] : Px = (Nzr = Prr) is given by the

following equations:

[z]u e I(r).r —u

[Az.M]u E u(w).w(zv).[M]v with w. v fresh

[MNJu % vo.([M]v | o(w).T(zy).(y — u | cell(z.N)))
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def - def
where a = b = a(z).b(y).y = r and cell(z..N) = ! r(w).[N]w.

The new derived operator can be called “relay link”. A process a — b establishes
a link between a and b in the sense that if a process sends something on a. a process
listening on b will get a name linked to the name sent through a. This is a powerful
derived construct. since it allows us to express a kind of buffer, and thus, an asyn-
chronous form of communication. It does not represent a buffer strictly speaking,
since the value sent through b cannot be the same as the one received through a.
but it can pass a link to that value. In this sense. the encoding presents a way of
delayving the interaction with particular ports as long as possible. This turns out to
be enough to mimic the original encoding of A into 7. and thus suggests a possible
direct encoding of 7 into 7.

The rest of the encoding is very similar to Milner's. but the polarity of some
interactions has been inverted. The idea. is that when a function tries to access a
name (first rule). the corresponding 7, process sends the cell with that name a link to
the port u that has the rest of the arguments. rather than the sending the location u
directly. When a lambda abstraction is constructed (second rule), the process informs
the overall expression of the location where it will receive its arguments. When a
function is applied, the process obtains the location of the lambda abstraction. and
then sends it the location of the cell containing the argument and a link to the rest

of the arguments.

Correctness

The essence of the correctness proof is found in the properties of the relay operator.
which basically express that linked channels respect the behaviour of agents in the
sense that linked names act as if they were the same channel. These properties are
summarized in the following lemma. It is worth noting the similarities with the

properties of equators introduced in the context of «,.
Lemma 5.7 (Sangiorgi [41]). Let M be a A term.

(i) If z, y, and z are different names, then vy.(z = y|y — z) =p Tz
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(it) If u, xr and y are different names and y ¢ fn(\M), then
ve(r =y | [M]u) = [M{y/z}u
(iti) If u and v are different names. then vu.(u < v | [M]u) =, [M]z
Proof. (i) By constructing a (weak)bisimulation.
(it) By induction on the structure of M.

(i#i) By induction on the structure of M.

As with the m-calculus. we prove that [-] is complete w.r.t. =,. 2.

Theorem 5.8 (Correctness of \ to 7, translation - Sangiorgi [41]).

[(\c M)N] = [M{N/z}]
Proof.

[(Az.M)N] = ve (A M]e | e(w).@(zy).(y = u | cell(z,.V)))

by definition of [-]

= ve.(T(w))ow (zvy) [M]e | v(w).@(xy).(y = u | cell(z,..V)))
by definition of [-]

S ovw(wi(zv). M | Trey).(y = u ) cell(x,,.N)))
by COMM

5 vag (M) /2Dy |y = u | cell(z,,N))
by COMM

= vr (([M]{z./2})u | cell(z,..V))

by lemma 3.7 (iii)

Finally we can prove

vz (([M{z./z})u | cell(z,N)) = [M{N/z}]
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much in the same way as in the corresponding result for 7-calculus (theorem 3.33). O

5.2.2 Encoding external mobility with internal mobility

The previous section showed that 7; can simulate the \-calculus much in the same
way that 7 does. This suggests that internal mobility has the same power as external
mobility. so it is natural to ask whether we can find a fully abstract translation from
7 to m;. The answer to this question is positive. Two such encodings have been
provided. One by Boreale in [6]. and more recently one by Merro in [24]. Both
encodings have been provided for the asvnchronous setting.

Boreale’s encoding is adequate w.r.t. barbed bisimilarity, and uses an intermediate
language. called the local 7 calculus. in which only the output capabilities of names
may be transmitted. i.e. a name r received in u(r).P. cannot be the subject of an
input action in the body P!. This encoding is heavily based on the concept of relay
link introduced in the encoding of the A-calculus in the previous section.

Merro's encoding is simpler. does not use an intermediate language. and is fully-
abstract w.r.t. barbed-congruence. In this section. we present Merro's embedding.

Since this embedding is in the asynchronous setting we have to clarify what is
the asynchronous m;-calculus or 7, for short. At first allowing only bound output
seems to be incompatible with 7,’s approach to asynchrony in which we drop output
prefixing from the svntax. because that would mean that names sent would not have
any scope at all. We recover this in the internal mobility setting, by restricting the

syntax of 7,: a non-blocking output u(r)P is the term
ve.(a(r) | P)

This means that in 7, the term a(y).(Z(b) | P) is not allowed. and neither is the

term a(y).(Z(b).P). but the term a(y).vb.(Z(b) | P) is legal.

!Sangiorgi has also introduced a variant of 7; based on this idea of locality, but with a symmetric
treatment, i.e. when a name r is sent in u(z).P, then it cannot appear in output subject position
in P. This variant is called 7, .[42]
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Definition 5.9 (7, to 7/, translation (Merro [24))). The translation[-] : P,, —
P-,. is an homomorphism on all m, operators except free output, which is translated

according to:
[a(z)] € vz.(T(z) | equia(z.z))

where equia(a.b) ‘=1 a(r).[B(x)] | ! b(x).[alz)]

The agents equia(a.b) are closely related to equators from chapter 4. The following
holds for all a,b: [a «— b] = equia(a.b). Furthermore the properties described in
proposition 4.6 also hold for these processes.

The correctness is established by the following. Here we denote =% for weak
barbed congruence of 7, processes. and zfm for weak barbed congruence of 7, pro-

cesses.

Theorem 5.10 (Merro [24]). The translation [-] from definition 5.9 is fully ab-

stract w.r.t. weak barbed congruence, i.e. for all P.Q € P, it holds:

P =;, Q ifandonlyif [P] =, [Q]

The proof of this theorem is based on a new notion of bisimilarity. called synony-
mous bisimilarity. We omit the description and proof. which are found in [24]. but
we simply mention that equators play the role of substitutions.

From this embedding we can conclude that internal mobility can faithfully express

external mobility.



Chapter 6

Channel fusions: Fusion and

x-calculi

In the search for the “canonical calculus for concurrency”. the central theme has been
to look for the “right” notion of behavioural equivalence. In the previous chapters we
have studied variants of the w-calculus that follow the philosophy of restricting the
full calculus in one way or another so that a simple definition of bisimilarity in these
sub-languages can be used as behavioural equivalence. A different approach was taken
by the Fusion calculus introduced by Victor and Parrow ([43]), and independently
by Fu ([11]) with the so-called y-calculus. In this “fusion” approach the language
is simplified but not restricted. This means that the 7-calculus is a sub-calculus of
Fusion, and thus Fusion inherits all of 7's expressive power. Closely related is the
work of Gardner and Wischik in 7. fusion systems, and symmetric action calculi
((12], [49]).

As the m;-calculus, the Fusion calculus simplifies 7 by making the input and
output actions symmetric. However it takes the opposite approach. In 7. input
is binding, but not output. In 7. both input and output are binding operators. In
Fusion neither is binding. This might appear strange, particularly in the case of input.
but one should not think of input and output in the same way, since the concept of
communication changes. In an interaction, the “sent” and “received” names become

identified through what it’s called a fusion.

90
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In the w-calculus, the effect of communication is local to the receiver of informa-

tion. Consider for instance the following reduction in 7.

ve,y.(@(y).P | u(z).Q | R) = ve,y.(P | Q{y/x} | R)

[n this reduction. only @ is affected by the interaction. In the Fusion calculus. this
interaction produces a “fusion”™ between the names r and y. which means that they

become identified in their entire scope. thus affecting every agent in that scope:

vey(@(y).Plu(x). Q| R) = vr.y(P Q| R){y/r}

These global effects make it appropriate for representing shared state, and in partic-
ular for encoding concurrent constraints.

Under this new notion of communication as fusion, it doesn’'t make sense to make
the input operator binding because that would mean that the value sent only affects
the receiver. In Fusion. the only binding operator is restriction. \We emphasize the
symmetry between input and output by adopting a new syntax, dropping the brackets

from both of them.

Definition 6.1 (Fusion terms). Let Ny be an infinite set of names ranged over by
w. v w. L, Y, 2. ... As usual, I stands for a sequence of names xr\.ry...r,. Let © range
over equivalence relations with domain Ng. We define the set of actions Ap. ranged
over by a. 3.v...., and the set of fusion processes Pr ranged over by P.Q.R. ... as

follows:

a == WE) | uw@ | ¢
= 0 | aQ | viQ | QIR | Q+ R
| [z=ylQ@ | [z#y]lQ | A@)

The action i is an explicit fusion {Z = §}. The 7 action of m-calculus corresponds

to the identity fusion, i.e. {# = £} and is written 1.

[t is often convenient to specify a fusion ¢ explicitly, but it is not strictly necessary
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to include it in the syntax. The term denoted {x = y}.P is simply syntactic sugar
for vu.(@(r) | u(y).P). A fusion can cover several names at the same time, i.e. {I =
g} = {z1 = y1.L2 = Ya.....2n = yn} where I = |, 12, ... 2, and § = y1. Y. .... Yn-
The size of a sequence of names I is denoted |z|.

As in the previous variants. by including procedural definitions and calls (A(T))
and allowing recursion. we can define also the replication operator as: ! P “p | ! P.

It is easy to see that the w-calculus, as well as 7; and 7, are sub-calculi of Fusion.
If binding is “forced” on an input or output action, c-conversion and scope extrusion
guarantee that the fusion is realized. but the result will be that of restricting the

effect of the interaction. thus. simulating both 7 and 7; i.e.

w(y).Plvr.u(r).Q

it

w(y).P | ve'.u().Q{z'/r}  where ' ¢ n(P)
v’ (W) P | w(a’).Q{e'/x})

S (P QU D u/e)

P|ve’.Q{r'[r}{y/2}

P|ve.Q{y/r}

i

n

i

The original presentation of the Fusion calculus. called the Update calculus was
monadic. i.e. only one name at a time could be communicated. The full Fusion
calculus is polyadic. and this permits the identification of two names received or sent

through a channel. for example:

u(z2).P | uwlzy).Q — (Pl Q){z/x}{=/y}

Agents of the form u(zz). which input the same name twice, are called catalyst agents.

Another interesting example of the power of fusions is the delayed input operator.
written u(z)P. Delayed input corresponds to non-blocking receive. The process
that issues an input action is allowed to continue; if there is an output action on
r in P, P blocks until the input action u(r) meets a corresponding output on u
that instantiates r; then the substitution is performed. In the Fusion calculus this

can be achieved simply by placing an input action in parallel with the process, i.e.
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vz.(u{z) | P)!, so the fusion performs the substitution. Thus, delayed input can be
seen as “asynchronous receive”. This cannot be encoded directly in = because the
binding of the name received extends into the process performing the input action.
i.e. in fusion the binding of r in u{x) | P extends to P. but not so in 7.

The fact that 7 is a subset of Fusion and the examples shown here suggest that
the Fusion calculus has greater expressive power than 7. However. it turns out that

the Fusion calculus can be encoded in #. This will be shown in section 6.3.2.

6.1 Semantics

Fusion inherits the same basic concept of structural congruence from =. but the
reduction relation and the labelled transition relation are different. In order to provide
the semantics of fusions, we need to determine the exact meaning of the effects of

fusions as substitution. In the following, ¢ ranges over name substitutions.

Definition 6.2. A substitution o agrees with a fusion ¢ if for any r.y € Ng. oy
if and only if o(x) = o(y). A substitution o is said to be a substitutive effect of a

fusion  if o agrees with ¢ and for any r.y € N. o(r) = y implies r¢y.

For example. the substitutive effects of the fusion {a = b} are {a/b}. and {b/a}.
The identity fusion 1 has only one substitutive effect. namely, the identity substitution
{z/z}, for any r.

For notational convenience we define -\ x as the equivalence relation that results
from taking out ail references of r from . except for the identity. Formally -\ r -
#N((NF = {z}) x (Nr —{z}))U{(x. 2)}. For example {z = y,y =:}\y = {z = z}.
Also, we consider the domain and range of a substitution as dom(o) = {z : o(z) # z}
and ran(o) = {o(z) : o(x) # z}.

!Note the similarity of this construct with the non-blocking output of 7/, as in vr.(G@(x) | P)
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6.1.1 Reductions

For the reduction semantics. it is enough to replace COMM with the following axiom:

COMM £

v

((@(@).P+ P) [ {(u(p) Q@+ Q) |R) = (P|Q| R)o

if |Z| = |g|, o agrees with {f = j}, dom(o) = Z, and ran(o) N 2

(¥

0

The rest of the rules are the same as those of m-calculus.

6.1.2 Transitions

For the labelled transition semantics the transitions will be annotated not only by

input or output actions, but by fusions as well. We have to replace COMM with:

— COMM:. if || = |3
PIQ—=P|Q

As in 7. The input. output and silent actions are uniformly handled by the PREF,

rule.

Finally we also add an additional rule for dealing with the scope of variables in a

fusion.

P3P

SCOPE% ifrpyandz #y

ve.P 25 P'{y/«}
This requires a little explanation. The label v must be a fusion. The SCOPE rule
states that if P can evolve into P’ by performing the fusion ¢ in which two different
names r and y are identified, then vz.P can evolve into P’ replacing = by y. in a
fusion that hides z. This rule expresses the visible effect of fusions.

The rest of the rules are the same as those of w-calculus.

6.1.3 Bisimilarity

The Fusion calculus also enjoys a simple notion of bisimulation.



CHAPTER 6. CHANNEL FUSIONS 95

Definition 6.3 (Fusion bisimilarity). A relation S C PgxPr is called a strong
Jusion simulation iff PSQ implies:

e Whenever P > P’ and bn(v) N fn(Q) = 0 then for some Q'. Q = Q' and
P'cSQ'c for some substitutive effect o of ~.

If 87! is also a strong fusion simulation, then S is called a strong open bisimu-
lation. We say that P<gQ if there is a strong fusion simulation S such that PSQ.
<r is called strong fusion similarity. We say that P~pQ if there is a strong

fusion bistinulation S such that PSQ. ~p is called strong fusion bisimilarity.

As usual. we obtain the corresponding weak bisimilarity =g by replacing the
strong transitions with weak transitions.

This definition of bisimilarity coincides with ground-bisimilarity in the treatment
of input and output actions, but special care has to be given to fusions. If the action
v was a fusion, we compare the continuations only after the substitution has taken
place.

Unfortunately. fusion bisimulation is not a congruence. for reasons similar to
ground bisimilarity not being a congruence in the full-7-calculus. Hence. equivalence

is defined as follows:

Definition 6.4 (Hyperequivalence). 4 hyperbisimulation is a fusion bisimu-
lation closed under substitution. We say that two processes P and Q are hyper-
equivalent. written P ~p Q if there is a hyperbisimulation S such that PSQ.

We define similarly weak hyperequivalence (=f).

When considering the language without mismatch. the following has been estab-
lished?:
Theorem 6.5 (Victor ([45])). Hyperequivalence is a congruence.

There is a close relationship between equators as described in chapter 4, and
fusions. With the notion of hyperequivalence established, it is easy to prove the

following properties, analogous to proposition 4.6:

*Fu and Yang show in [11] the problems introduced by the mismatch operator. and propose some
variants to the definition of bisimulation.



CHAPTER 6. CHANNEL FUSIONS 96
Proposition 6.6 (Fusion properties).

(i) {a=a} ~¢ vh(fa=b}) ~r O

(i) {a =b} ~r {b=a}
(iii) ve.{a = c} | {c = b}) =r {a=10}

(tv) P{a/b} =~¢ vb.({a =b}| P)

6.2 Some variants of Fusion

In this section we introduce two simplifications of the Fusion calculus that turn out
to have some important significance from the expressiveness point of view: the usyn-

chronous fusion calculus ([23]) and the fusion calculus of solos ([19]).

6.2.1 Asynchronous fusion

This variation of Fusion treats the sending action as non-blocking in the style of 7,.
As in 7, this is achieved by dropping the continuations of output actions. By analogy

with 7, we also get rid of the choice operator. The svntax is

P = 0| ¢ | «®Q | W) | viQ | QIR | A(d)

The change in the reduction relation is simple; we replace the COMNMI rule by:

— COMMp,
vi(u() | u(@.Q|R)— (Q|R)o

if || = |j]. o agrees with {Z = j}, domo) = %, and ran(0) N =@

For the labelled transitions we keep the same rules of Fusion, including COMM,

but replace PREF% with INP and OUT as was done in 7, i.e.

— OUT%, — INP%,
w7 =2 o w(@).p X2 p
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6.2.2 Solos

The asynchronous Fusion calculus simplifies Fusion, but breaks the original symmetry
of input and output. [t is possible however to recover the symmetry by dropping
continuations from input actions as well, i.e. all input actions are delaved, or non-
blocking “receive” operations. We call the resulting calculus “Solos” [19]. The syntax

is
P u= 0| 5 | wd | @2 | viQ | QIR | A@)

The change in the reduction relation is simple: we replace the COMM rule by:

COM\Ig,
vi.(a(®) | u(g) | R) — Ro

if |Z] = |j|. o agrees with {& = j}. dom(o) = 2, and ran{oc) N =0

For the labelled transitions we keep the same rules of Fusion. including COMNMI.
but replace PREF% with

PREFY,,

a
a—0

Surprisingly. this simplification does not limit the expressive power: Fusion can

be encoded in Solos.

6.3 Expressiveness

In this section we explore the expressiveness relations of Fusion. both between the

Fusion variants alone. and between Fusion and w-calculi.

6.3.1 From Fusion to Solos to Asynch-Fusion and back

It should be clear that Asynchronous Fusion is a subset of Fusion, and Solos is a

subset of Asynchronous Fusion. Laneve and Victor have proved in [19] that the
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Fusion can be encoded in Solos (and therefore in Asynch-Fusion).

Laneve and Victor provide two encodings of Fusion in Solos, both fully-abstract
with respect to barbed bisimulation. The first encoding is compositional. but makes
use of the match operator. The second encoding does not use match. but is not
compositional, or uniform in the sense of Palamidessi’'s definition (section 4.2.2). In
both encodings. catalyst agents (e.g. u(zz)) play a central role.

We present now the first encoding.

Definition 6.7 (Fusion to Solos translation ([19])). The translation [-] from Fu-
ston processes to Solos processes is an homomorphism on all operators ecrcept input

and output which are handled by the following:

[u(2).P] < vuz. (uzzww) | [z = w][P])
[@(z).P] = (@(Ewwsz) | [z = w][P])

This encoding enjovs a pleasing svmmetry in the translation of the complemen-
tary actions. The correctness of this translation is established with respect to barbed
bisimulation for fusion. The notion of barbed bisimulation is analogous to the one de-
scribed in definition 3.32, where observability is defined as in definition 3 31 changing
the case of binding input with Fusion's free input. We denote <& and %% respectively
the largest strong and weak barbed bisimulation for Fusion processes. and ~% and

2 strong barbed congruence and weak barbed congruence.

Theorem 6.8 (Laneve, Victor ([19])). The translation [-] of definition 6.7 is fully

abstract with respect to strong barbed bisimulation.

We omit the complete proof, since it is rather simple, following the lines of theorem
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2.10. but we show the interesting part. i.e. how a basic interaction is simulated:

[vr.(@(y).P | u(z).Q)]

Yoz (e (@ywws) | [z = w][P]) | vaw.(w(zzww) | [z = w][Q]))

= vrwwan . (@ywiwi ) | [0 = wi[P] | w(zzwaws) | (22 = w][Q])
= vz [z = wl][P] | [z2 = w2l[@QD{y/x, 21/ wi. 21/ wa. 21/ 22}

= ([P]1[@D{y/x}

= [(P|Q){y/+}]

The encoding of this section can be extended to handle separate-guarded choice

by using the mismatch operator as follows:

[Eru(£).P] «f vzl [w # zJ(u (fzew) | [w = z][P])
. [Srm(E). Pl vez e # 2)(@(Fwws) | [w = 2|[P])

This extension can be applied to translate single prefixes a.P. by treating them

as a special case of a summation with only one summand.

6.3.2 From 7 to Fusion and back

We have seen that the Fusion calculus simplifies the 7 calculus, and yet it extends it.
The embedding of the m-calculus in Fusion is very simple: the input operator of 7 is

mapped to input with explicit binding of the object of the input action. and the rest

of the operators are the same:
u(r).P —» vz.u(x).P

An immediate corollary is that we can encode easily the \ calculus in Fusion.

‘ Several aspects of Fusion, such as the catalyst operators, and delayed input sug-
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gest that the expressiveness of Fusion is greater than that of 7, since none of those
operations are directly encodable in m. However, it turns out that this is not the case.
Fusion is encodable in 7.

Recall from the previous section that any Fusion term can be encoded in terms
of Solos. and this is automatically a term in Asynchronous-Fusion. [n [23] Merro
provides a fully-abstract encoding of Asvnch-Fusion in 7.

Note that since the full-m calculus is encodable in Fusion. this encodability of
Fusion in 7, appears to be in contradiction with Palamidessi’s theorem on the impos-
sibility of encoding the full w-calculus into 7,. However Palamidessi's impossibility
result restricted the types of translation to be “uniform” and “reasonable”. but as
Nestmann showed in [32], when relaxing those constraints on the translations, it is
actually possible to go from full-m to 7,. Merro's encoding. as well as Victor and
Laneve’s are not uniform. and therefore there is no contradiction with Palamidessi’s
result. Furthermore. these encodings cover only separate-guarded choice. and not
mixed-choice.

In this section we present Merro's encoding of Asynch-Fusion into 7,. In this
translation we extend the notion of equator to a polyvadic setting by defining @ ~— b

to denote a, "—"[)1 l(l.-g "»—"b'_) I Ian "-"bn.

Definition 6.9 (Asynchronous-Fusion to core 7, translation ([23])). The trans-
lation [-] from core 7, processes to Asynchronous Fusion processes is an homomor-

phism on all operators except input which is handled by the following:
- de - -~ -
[u(z).P] = u(2).(3—I|[P]) where = ¢ fn(P)

This encoding highlights the close relation between fusions and equators. The
correctness is established with respect to closed barbed congruence, which is barbed
congruence as described above, but instead of being closed under arbitrary contexts.
it is closed under contexts whose free names appear only in output subject position

(analogous to local ).

Theorem 6.10 (Merro ([23])). The translation of definition 6.9 is fully-abstract

with respect to closed barbed congruence.
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Again. we omit the complete proof of correctness, referring the reader to [23], but
we show how the basic fusion interaction takes place. Of particular interest is how

the global effects of fusions are simulated through equators.

[vr.(u(y) | u(z).Q | R)]

v (@) | uz).(z 2 | [Q]) | [R]) by def 6.9

- vr.(y—z | [Q] ] [R]) by COMMI,

Y vr(y—r|[Q]|R] by def 6.9

~.. [Q| RI{y/z} by proposition 4.6(iv)
= [(Q| B){y/x}] as required

Note that the substitution property of equators (proposition 4.6{iv)) holds only in
the asvnchronous 7 calculus and not in the synchronous 7. However. we can encode
the synchronous Fusion calculus in 7, by first translating a synchronous Fusion term
into Solos. as was shown in the previous section. and then we apply this encoding,.

since Solos is a subset of Asynchronous Fusion.



Chapter 7

Concurrent Constraint

Programming

So far we have focused on calculi specially geared towards mobility. Now we look
at a paradigm with a different focus. The family of Concurrent Constraint Pro-
gramming languages ([43]. [39], [33]). or CCP for short, is a paradigm based on the
shared memory model of communication. In the basic model. a system consists of
a shared constraint store. and a collection of agents or processes that perform two
basic operations: telling a constraint. i.e. adding a constraint to the store. and asking
if a constraint is entailed by the store. The ask operator is blocking. so the agent
performing an ask will continue processing only when the constraint is satisfied by
the store. The tell operation on the other hand is non-blocking, thus making this
an asynchronous model. In the basic model. the constraint store is monotone in the
sense that one can only add constraints, but cannot remove them.!
The syntax of CCP is defined as follows:

Definition 7.1 (CCP Terms). Assume a set of names N, a set of assertions or
constraints A.., ranged over by o. ¥, o, etc. The set of CC-terms, denoted P,.,

ranged over by P, Q, R, etc, is defined inductively by the syntaz shown in table 7.1.

!This assumption is dropped in a variant of CCP called “Linear CCP".

102
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P == T Nil
| tell(o) Tell
| ask(oc) - Q Ask
| Fx.Q Restriction
| QAR Parallel composition
| Q@ + R Summation
|  A(L) Procedural call

Table 7.1: The syntax of CCP

The Nil. Restriction. Parallel composition. Summation and Identifier operators
play the same roles as their w-calculi counterparts. Tell. posts a constraint in the
global store. Ask. queries the store to see if its condition is entailed. If so. it continues

. processing. If not. the agent asking. blocks until its condition is satisfied by the store.

Since a system is specified by stating constraints over variables. a variable does
not necessarily have a specific value. A variable can have a partially defined value. in
the sense that a constraint is a restriction on the variable. determining the subset in
which its value lies, but not fixing the variable to one particular point.? Computation
proceeds by reducing constraints as much as possible, thus narrowing or refining the
possible values of variables.

The declarative nature of CCP suggests a close relationship with Logic. This
turned out to be a tight connection. Mendler, Panangaden, Scott and Seely [22
established a precise link, in categorical terms. between CCP and (a subset of) In-
tuitionistic Logic. This is a link in the sense that they are both instances of a more
general (category theoretical) concept called a “hyperdoctrine”. This means that one
can read CCP programs as sentences: telling a constraint corresponds to simply as-
serting the formula of the constraint; asking if a constraint is true, and then executing

a process corresponds to (a limited form of) logical implication; parallel composition

. *In the context of Logic Programming, such variables are usually called “logical variables”.
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corresponds to logical conjunction; and the restriction operator corresponds to ex-
istential quantification. This correspondence is not merely syntactic. but semantic.
Computation in CCP can be interpreted as logical inference. The reduction of a term
is a proof. In a similar fashion, Linear CCP is linked to Girard’s Linear Logic[13].
This relation of CCP with logic is very significant. however, in this chapter we will
emphasise the operational view of CCP rather than the logical perspective.

CCP is not one particular programming language. It is a family of languages.
[t is parametrized by a constraint system (CS for short) which specifies what kind
of constraints the store handles. A CS is a language for talking about the entities
that the programs deal with. together with an “entailment™ relation that provides
the mechanism for answering queries. The store can be seen then. as a formula
representing the combination of the constraints.

An example of a typical CS has variables and numbers as terms, and constraints
are equations and inequations between them. For instance, ' <8, U = XY > U are
elements in this kind of CS. Entailment is assumed to be compatible with arithmetic.
e.g. the formulas given above entail ' < 8. U <Y, Y > .\, etc.

Another useful CS is the Herbrand constraint system. In this system. the basic
entities are names representing variables or constant symbols, and terms are function
or predicate symbols with names and terms as arguments. For example. a Herbrand
CS may have elements such as the formulas R(.X, k). R(a.g(X).b). f(g(b).Y) =
fIX.h(X)). etc.. where a.b, & are constant symbols, .\, Y are variables. R, = are
predicate symbols. and f.g.h are function symbols. Entailment is based on the
notion of unification between terms related by the special equality predicate (=). For

instance. the formula f(g(b).Y") = f(X.h(X)) entails X = g(b). ¥ = h(g(b)). etc.

7.1 Semantics

7.1.1 The constraint system

The semantics of CCP is built upon the notion of constraint system. This notion

abstracts away the inner workings of the query-answer mechanism. In the following
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definition ([39]) we use the notation Py(A) for the set of finite subsets of 4. and
A C; B to mean that A is a finite subset of B.

Definition 7.2 (Constraint Systems). A structure (A.+) is called o« constraint

system. if
o A is a non-empty, countable set of assertions or (primitive)constraints (ac-
cording to some syntar).
o = C Pr(A) xPs(A), called an entailment relation. satisfies the following, for
any o, v, 9 € Pr(A):
(i) If v Co thenok w
(it) If o= ¢ and o v then ot ©
We abbreviate o - {p} as o+ p. A store or element of (A.F) is a set of assertions
o such that if o C Pr(A) and if for any p € A and o' Ty 0 such that o' = p then

p € 0. The set of all elements of (A.F) is denoted | A..|. Two stores are equivalent.

written o ¢ iff o v and v F o.

This definition is extended to handle the concept of hiding private names from
the store. by the notion of cylindric constraint systems ([39]). The idea is to model
hiding of a variable x with a function 3, that takes a store as argument and returns
the store without any references of r. We also extend the notion constraint system

to handle name equations, modeled by the so-called diagonal elements.

Definition 7.3. A structure (A,F.Var, H) is called a cylindric constraint sys-

tem if:
(i) (A,F) is a constraint system.
(i) Var is an infinite set of variables.
(iti) H = {3, : P(A) — P(A) | z € Var} such that for each r,y € Var, o,y € P(A):

° ai-éra
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o if o ¢ then 3,_.0' - élw
° Sz(au 3;{3") 3,0 U 3,

° :;itéiycr H élygxa
(iv) For every xr.y € Var there is a d;, € A, called a diagonal element. such that:

e VFd,,
o ifr#y then {dy,} H 3.{d.,.d,.}

o {d;,} U l(o Ufd,})Fo

Since a store is a set containing assertions. we can think of it as the logical
conjunction of these assertions. The empty store corresponds to true. an inconsistent
store corresponds to false. the function 3;. corresponds. as the notation suggests. to
existential quantification. and a diagonal element d,, represents the formula r = y.
3

. \We extend the syntax of CCP so that the argument of tell and the argument of ask
are elements in |A.|. not just primitive constraints in A... The notation tell(c,Uad,).
also written tell(o; A 03}, should be interpreted as adding the logical conjunction of
o, and o3 to the global store.

In the rest of this section we assume that we have fixed a cylindric constraint
syvstem (Acc. . Nee, H).

7.1.2 Structural congruence

As with 7-calculi. we defire a notion of structural congruence in terms of the concept

of process congruence, which has to be adapted to the context of CCP.

Definition 7.4 (CC-process congruence). 4 CC-process congruence =, C

P.c X P is an equivalence relation among agents such that for all P,P' € P, if
P =.. P’ then:

3Notice that in a set ¢ containing only diagonal elements, 3, coincides with ¢ \ r as defined in
. the context of the Fusion calculus in section 6.1.
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(i) For any o,0' € |A.| such that o H o',

o tell(o) = tell(d’)
e ask(c) = P = ask(d’) » P’

(ii) For any name r. 3x.P =, 3. P’

(i1z) For any agent Q.
e PAQRQ=L.P NQ
e QAP= QNP
o P+ Q=P +Q
e Q +P=.Q+ F

Now we can define the structural congruence in the same way we did for m-calculi.
We omit the formal definitions for substitution and alpha-conversion. They are the

. standard rules to avoid name capturing. as in the lambda calculus or in the 7-calculus.

Definition 7.5 (CC-structural congruence). The CC-structural congruence =..

C P. x P is the CC-process congruence that satisfies :
(i) P=Q f P=,0Q

(1) (Peeo A. T) is an Abelian (commutative) monoid:

e PANT=P
e PANQ=QAP
e (PAQ AR=PA{(QAR)

(iti) e P + Q@=Q + P
e (P+Q) + R=P + (Q@ + R)

(iv) 3. T =T

. (v) 3x.3y.P = 3y.3z.P
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(vi) P A 32.Q =3z.(P AN Q) if £ ¢ fn(P)
(vit) tell(o,) A tell(oa) = tell(v) if oy Uoa H©

The axioms for structural congruence are the same as the corresponding axioms in
w-calculi from definition 3.8. interpreting 0 as T, vr as Jz. | as A, + as + . taking
out the axioms for match and mismatch. and adding the last axiom for combining
constraints. Notice that if the elements of the constraint system are only diagonal
elements, i.e. name equations. we could also have an axiom analogous to the match

axiom. corresponding to ask as in:
ask(r = y) = 3z.P = 3z.ask(x =y) = P if = is a different name of r and y.

Since we are considering any constraint system. and not restricting ourselves to name
equations. we do not use this axiom in this presentation of CCP. but we will be able

to show that these terms are bisimilar.

7.1.3 Reductions

We now introduce the reduction semantics of CCP.' The UTS (P...CS. =cc. —cc). 1S
parametrized by the cvlindric constraint system CS = (A...F. N.. H). As usual. we
omit the subscript cc from the congruence relation and from the reduction relation

when it is clear that we are talking about CC terms.

Definition 7.6 (CC reduction). The reduction relation - C P, x P, is the

smallest relation over CC-processes satisfying the rules in table 7.2.

Notice that the difference with the UTS for m-calculi is in the interaction rule
(ask) and the tell rule. which assume the existence of a constraint system. In this

presentation of the semantics. we can view the store as just another process or set

1The definition provided here is based on the semantics for the p-calculus ([34]), which extends
the standard CCP model with first-order functional abstraction. Here we present only the part of
the semantics considered to be “pure CCP”, i.e., according to the model introduced in this chapter,
without reference to functional abstraction.
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TELL ifU1U0’2H{./J
tell(ay) A tell(ay) — tell(v)

ASK ifotk e
(ask(v) = P) A tell(oc) = P A tell(o)
PP PP
PAR SUM
PAQ—=P AQ P+Q-P
PP P{j/i} > P .
Z RESTR /%) —ID fA@) L P
3r.P - 3r.P Alg) - P
P—>Q
——_CONGR fP=P and Q=0Q'
P -Q

Table 7.2: CCP reduction rules

of processes in parallel with the rest of the system. The store is transparently dis-
tributed. and not centralized. These rules also make explicit the permanent nature of
constraints: the effect of telling a constraint is equivalent to having a process peren-
nially asserting the constraint. so it remains active even after an interaction with an

ask. ®

7.1.4 Transitions

There are several approaches for presenting the LTS of CCP. In the first form. labels
are actions o! and o?, representing tell and ask respectively. A second presentation.
contrasting with the UTS. makes an explicit separation between the store and the
processes. Labels in this presentation are actually pairs of stores, that represent the
state of the store before and after the transition takes place. We write this in two
ways: P Lod), pr or equivalently, (P,o0) — (P’,o'). This presentation, based on
pairs of stores as labels. is the one given here.

The LTS (P..,CS, =cc. =), is parametrized by the cylindric constraint system

CS = (A, F- Neey H).

5In Linear CCP, the constraint would disappear after such interaction.
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TELL[ :\S[(g ifo (0]
tell(¢) ‘2222 T ask(o) = P 2% p
p (o.0") ' P (av0’) P
- SUM, , PAR,
P+l p PAQYIL prAQ
P (éxa.o) P,
- RESTR;}
(o,0U3L0) "
Jx.P Jz.(tell(o) A P')
P (oUZra.0') P

_ RESTR?
(g.0u3 ")
—>

dr.(tell(0) N P) 3r.(tell(o") A P)

(a.0”)

P{y/t} — P’ )
/zh , ID, if A(F) Y P
._{(!}) (a0 ) P’
(a.0")
P—Q s
; CONG, ifP=PandQ=Q
PI (a.0') Q,

Table 7.3: CCP transition rules

Definition 7.7. The transition relation (3 C P x| Aee| X Pee X | Ace| over agents

in P, and stores in |A.| is the least relation satisfying the rules in table 7.3

The rules are straight-forward. The only rules that require some explanation are
the restriction rules. In RESTR;. when an agent 3z.P is evaluated, all constraints in
o about r are hidden from the agent since the z in P is local, and thus. different from
that in 0. Also. any information produced by P about the local r has to be hidden
from the global store, thus, the information added to the global store is 3;0. where ¢
can be seen as a local store for P’. The result is an agent of the form Jz.(tell(®) A P').

The rule RESTR? is analogous, taking care of the case when an agent has a local

store.
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We write P w—“) P’ for the transitive closure of the transition relation, i.e. there

is a finite transition sequence from (P, o) to (P',d’).

7.1.5 Correspondence between the semantics

The correspondence between the semantics lies on the idea that the constraint store
can be thought of as another process. just like any agent. We show how the UTS

captures the LTS.

Proposition 7.8. For any P.P' € P, and 0.0’ € |A.|, P Lo, pr only if P A
tell(a) = P' A tell(o') where o' HH o U v for some v € |A.|.

Proof. We use induction on the derivation of P 27, pr,

Case 1: The last inference is an instance of TELL,: P = tell(o). P/ = T. and
o' H o U o. This is matched by the TELL axiom: P A tell(og) = tell(o) A
tell(o) — tell(a') = T A tell(a') = P' A tell(d').

Case 2: The last inference is an instance of ASK,: P = ask(o) - P'. o' HH oo
and o F o. This is matched by the ASK axiom P A tell(c) = (ask(o) —
P') A tell(c) — P' A tell(a).

Case 3: The last inference is an instance of PAR;: P=Q A R. and P = Q' A R.
So by a shorter inference. Q w—”) @’. By induction hypothesis we have Q@ A
tell(c) = Q' Atell(c'). Then by PAR and CONGR we obtain QA R A tell(o) —

Q' A R A tell(o')} as required.

Case 4: The last inference is an instance of RESTR}: P = 3z.Q. P_’ = dx.(tell(®) A
Q'). and o' H o U 3,0. Hence, by a shorter inference Q Leao), Q. So by
induction hypothesis Q A tell(3.0) — Q' A tell(p). By RESTR. we have
32.(Q A tell(3;0)) — 3z.(Q' A tell(¢)). The LHS is congruent to 3z.Q A
tell (310) by scope extrusion. On the other hand, since ¢ M o U 3,.0. we know
that tell(¢) = tell(¢) A tell(3;¢), so the RHS is congruent to 3z.(Q’ A tell(¢) A

tel!(E'It(D)) which by scope extrusion is congruent to 3z.(Q’ A tell(o)) A tell(§x¢).
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So we have that 32.Q A tell(3;0) — 3r.(Q' A tell(d)) A tell(3;0), and by
applying PAR we have: 3r.Q A tell(3,0) A tell(o) — 3x.(Q' A tell(®)) A
tell(3,¢) A tell(c). Now. noticing that 3,0 Uo H o. we apply CONGR and
obtain 3z.Q A tell(c) — 3r.(Q' A tell(6)) A tell(3,6 U o) as required.

The case of RESTR? is similar to case 4. The remaining cases. for SUM. ID. and
CONGR mimic the case for PAR. c

7.1.6 Bisimilarity

The definition of bisimilarity for CCP ([22]) is essentially standard but takes into
account the role of the stores. The labels of transitions (pairs of stores) need not be
literally the same for matching moves: we can relax this to allow labels to match each

other when the stores in the labels are logically equivalent.

Definition 7.9. A binary relation 8 C  (Pee X |Ace]) X (Pee X |Aeel) is called a
(weak )bisimulation iff for any terms P.Q € P, and o.v € |A.f. (P.o)S(Q.v)

implies that

I I')

(i) Whenever P Y, ptoand o oo U o where © has only global variables. then

Q(—H)> Q.vHvUuo. v'Ho'. "t o" and (P'.o")S(Q. ")
(it) vice-versa

We say that (P.o) and (Q. ) are bisimilar, written (P.o)=..(Q. ) iff there is
a bisimulation S such that (P.o)S(Q, v). We write P=.Q for (P.true)=~.(Q, true).

Notice that by unwinding the definition for the process bisimilarity P =, Q as
(P. true)»;cc(Q true) we have that if P 29, pt where ¢ has only global variables.
then Q —— il ) Q. v" 0" and (P'.0")S(Q'. v"). Since this is defined for any o that
has only global variables. we obtain a notion in which P and @ match each other’s
moves. not only in the empty store, but in any store ¢ with only global variables.
However the continuations (P’ and Q') need not match each other in all such stores,
but in the resulting stores ¢” and v".

This notion of bisimilarity preserves all operators, and thus is an appropriate

notion of process equivalence.
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Proposition 7.10. = is a CC-process congruence.

Proof. Assume that ¢ € |A.| is a (possibly empty) formula involving only global

variables.

Tell: Define S < {((tell(i2y). o). (tell(24), ©)) @ ¢ H @2 and o H v}, We show
that & is a bisimulation. The only move a tell can do is tell(,) SN
where o’ HH oUo. By definition of TELL,, ¢” = ¢’ U,. This move is matched

Ask:

(v'.") : :
by tell(os) —— T, where ¢’/ H ¢ U d. Since ¢ H v we have o' H ¢,

and since 2, H o we have ¢” H . Having established this. it is clear that

((tell(y). true). (tell(yy). true)) € S. so tell(1) & tell(2y).

Let S Y {((ask()) = P.o). (ask(2) = Q.v) : 21 H oo PReQ and
o H v}, We show that S is a bisimulation. Suppose that the first element
of the pair makes the move ask{(y,) — P 27 p where o'+ o U d. and
o' F £,. Since o H v, o' H ¢’ where ¢’ HH v U o. Hence. since o) H 2. we
have that ' F ¢4, so the transition can be matched by ask(yz2) = Q M) Q
with P=..Q. So § is a bisimulation. Clearly ({(ask(y2;) — P, true). (ask(p2) —
Q.true)) € S. s0 ask(py) = P %= ask(sa) = Q.

Restriction: Let S < {((3u.(tell(z1) A P). o), (3r.(tell(22) A Q). v)) :  (P.y U

3,0) X (Q, c,:;.Ué!,w), 21 H o, and o H v}, We first show that S is a bisim-

ulation. Suppose that the left element of the pair inakes the move 3x.(tell()) A
P) (c.v',zr'L.E;g,:v’I

ence we know that P

) Jz.(tell(£}) A P') where as usual o' = o0U@. By a shorter infer-
Since (P. plugxa) Zee (Q. v2U3 ). this
Q' where (P'. o)z (Q'. £5) with &) H &)
and therefore 3,',:’1 H gzp’g. Then. by RESTR? we have that 3z.(tell(yz2) A
Q) LT, 3y (tell () A Q). Notice that since (P, o) (Q', ) we also
have (P, o) U 310")écc(Q’, o U .:Lw”) for any o” and ¢" such that ¢” H ¢".
Therefore we have that ((3z.(tell(o)) A P'),a"), (3z.(tell(h) A Q'),¢")) € S
as required. It is easy to check that ((3z.(tell(¢y) A P),true), (3z.(tell{p2) A
Q).true)) € S when ¢; H ,, and (P, ¢1) = (@, ¢2), which implies that if
(P, true) =, (Q,true) then (3z.P, true) =, (3z.Q, true) as required.

(w1U3eo’.5) p'
_ s P

(‘;'_VUE;O"‘;!_.)

move is matched by Q
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Parallel: Let S {((P A R.0).(Q A R)) : o H vand (P.o) &, (Q.&)}.
Suppose that PA R (o—al)r P’ A R' where o’ HH ocUo. There are two possibilities

depending on which agent performed the transition:

(d'.d”] (u,l'wll)

Case 1: R" = R and P —5 P'. Since (P.o) =, (Q.v) then Q ——— @'
where (P',0") %, (@', "), v' H ¢ U ¢. and ¢”" H ¢v”. By PAR, we have
OARYYL0'AR s0 (P A RG").(Q A R.¢") €S as required.

(o’.a')

Case 2: P= Pand R —5 R'. Since ¢"” H ocUoUT, where 7 was introduced
by R. and since (P.o) %, (Q. ) then (P.o") =.. (Q. ") where " H o".
Therefore ((P A R'.0"),(Q N R'.v")) € S as required.

The rest of the cases are similar. a

Bisimilarity satisfies some interesting properties. In particular. we like to stress the
close relation between diagonal elements in the constraint system. with substitution.

equators and fusions. This is stated by the following:

Proposition 7.11 (([22])). For any names a.b.c the following hold:
(i) tell{a = a) = Fb(tellla=0b)) =, T
(i) Fe.(tell(a = ¢) A tell(c = b)) = tell(a = b)

(iii) P{a/b} = 3b.(tell(a =b) A P)

7.2 Expressiveness

CCP is a powerful paradigm. however, it presents a very different perspective to
that of mobile process calculi. It is natural to ask what is the relationship between
these two paradigms for concurrent computation. In particular we would like to
know whether mobile process calculi can capture the expressive power of CCP, and

conversely whether CCP is apt for modelling mobile processes. The first question was
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answered positively by Victor and Parrow in [46], where they provided an encoding of
an extension of CCP known as the y-calculus([44]). into the 7-calculus. The converse
however has remained an open issue. Some people have argued that CCP is powerful
enough to simulate mobility (see [21] for example), but these approaches are all based
on extensions of CCP, not on the core language. We are interested to know if the
core language is enough. The main contribution of this thesis is that this is not the

case: the core CCP is not mobile.

7.2.1 From CCP to «

We will now consider a particular CC language in which the constraint system consists
of name equations. We call this language CCP(x=yv). We provide an encoding of this
language into the m-calculus. which is a simplification of the encoding given by Victor
and Parrow in [46]. We do not present the full encoding since theirs is a translation
from the #~-calculus, which is an extension of the basic CCP model. and at this

moment we are not concerned with the extended language but just with the core.

The translation

The key of the embedding is that CCP names are encoded not as wm-names but as
agents, called handlers. It is useful to think of these handlers as objects (in the OOP
sense) which have three operations on them: 1) returning its value. i.e. its own port
of access. a m-name: 2) updating its value to point to a new handler: and 3) checking
for equality with another handler. The idea then is that when we tell the constraint
r = y this is simulated by updating the handler of r to “point™ to the handler of
y. When we ask if an equation is entailed, roughly speaking, we “call” the checking
method of one of the names with the other as parameter.

There are two kinds of handler, denoted V'(z) and R(z, y). A variable z that has
been updated to a reference y, is handled by a relay handler R(z, y); otherwise it is
handled by V'(z). A relay handler, will simply relay the message it receives through
z, to y. When a variable handled by V'(z) is queried for its value, it returns its port

z. When it is updated to y, then it changes its state and becomes handled by R(z, y).



CHAPTER 7. CONCURRENT CONSTRAINT PROGRAMMING 116

When queried for equality with z. it will check if the references are identical; if they
are it answers ves: if thev are not it will do a busy-wait loop until it receives the same
reference (its own port). while still accepting other requests.

Notice that in a relay agent R(z, z). the reference z can itself point to another
relay agent. say R(z.w). This means that the set of handlers forms a forest. and
variables that are equal are handled by agents in the same tree. \We call such trees
equivalence trees.

For each CCP name & we introduce the handler interface r which is defined as
LI = I, Iy Lypd:Leg- Lhese can be thought of as the pointer to the handler. and its

method names in OOP terminologyv. These are explained as follows:

e The plain r is the main reference to the handler for the name. This is the

reference checked by equality.

e The name r,; is the port where the handler receives queries for its value.
Through this channel the handler receives two names s and r. which are the
identity of the source of the query (s) and the channel through which the answer

will sent (r).

e The name r,pq4 is the port where the handler receives a request for updating.

Through this channel the new reference :z is received by the handler.

e The name z4 is the port where the handler is queried for equality with another
variable. [t receives the reference to the other variable u, and a channel y. If

the two variables are in the same equivalence tree, a signal is sent through y. ®

We now define the encoding itself. Recall that we are considering only name
equations, so the assertions in the constraint system are of the form u = v. We call

P the subset of CC terms with only name equations as constraints. The following

Notice that the negative case is not handled. The original encoding did handle it. because there
was an explicit separation between names and variables, so it was possible to decide when two names
were different. Here, since we do not make such separation, such a query is not handled. If the
variables are different, then equality is not entailed so the agent asking for equality will be blocked
waiting for a signal in channel y.
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V) Y ralrs)F@) V(o)
+ Lypa(w)-
([ = u]V(z)
+ [r # uraa(r.z).r(w).([z = w]V(z) + [z # «]R(z, w)))
+ Leg(t, y)-
(V) Lyraga(r.o).r(w).([r = w]y + [z # w|Teq(w. v)))
R(z.u) = !'roa(r.s)((u=sr(s) + [u# s]wa(r.s))
| ! Lupa(w).tupa(w)

| ! req(w. y) . Teq(u. y)
Table 7.4: Variable handlers

translation is compositional i.e. the translation of a term depends only on the trans-
lation of its sub-terms. It is also untform since the parallel composition of CC terms
is simulated by the parallel composition of the respective translations. This means

that the translation is truly distributed.

Definition 7.12 (CCP to 7 translation).

The translation [-] : PZ — P is given by the following equations:

[T1< 0
[P AQIE(P]Q]
[P+ Q¥ [P] + [Q]
Bz.P] € vz.(v(2) | [P])
[tell(u = v)] o Uupa (L)

lesk(u =v) — PJ o vy.(Teq(y, y) | y-[P])

where \'(z) and R(z,u) are defined in table 7.4.

It should be clear how this translation works. The relay handler for z, R(z, u), as

explained before, simply relays the messages it receives to the handler for u. When a



CHAPTER 7. CONCURRENT CONSTRAINT PROGRAMMING 118

variable handler is asked to be updated it first checks if the new reference is already
itself. in which case it continues in the same state V'(z). Otherwise. it obtains the
value of the new reference. checks again in case the other variable has been updated
in the meantime, and if they are still different, it creates the relay agent. \When
testing for equality it creates a copy of itself to keep accepting requests. while asking

the other variable for its value and comparing references.

Correctness

This translation is correct in the sense that it is fully abstract with respect to weak
barbed congruence. Recall from section 3.2 that the notion of barbed bisimulation
was defined for the UTS of 7 calculus with an additional “observation” predicate. We
can define such a predicate in the context of CCP(x=y), and thus inducing a notion

of weak barbed bisimilarity and weak barbed congruence for CCP.

Definition 7.13 (Observability in CCP(x=y) ([46])). The predicate | C PZ x
N, is defined inductively as follows:

(i) yPlrifr#yand Pl
(i) (PANQ)lxifPlrorQlz
(i) (P + Q)lrifPlrorQlcr
We say that an agent P is observable at o name r if P ) x.

This notion induces the definition of weak barbed bisimilarity (£7.) and weak
barbed congruence (=%,) in the same way as was done in section 3.2. As in 7 calculi,
processes P A @ and P + Q@ observe the same names, but they are not barbed bisim-
ilar since thev do not necessarily match each other’s reductions. Take for instance
R, = tell(p) A ask(y) = P, and R, el tell(¢) + ask(p) — P. They are certainly
not barbed bisimilar because R; — P while R; cannot match this move unless it is
in a particular context.

The correctness of the translation is established by the following theorem.
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Theorem 7.14 (Victor and Parrow [46]).
The translation [-] of definition 7.12 is fully-abstract with respect to weak barbed

congruence, i.e. for any terms P,Q € PZ,

P =5 Q if and only if [P] =% [Q]

Proof. We only provide a proof sketch. and the reader is referred to {16] for a more
detailed account. The strategy for the proof follows the same line as was shown in
theorem 2.10. That proof was in relation to an LTS. In this case we are dealing
with a UTS and an observability predicate. The strategy in this case is the following:
first show that the translation preserves and reflects both (unlabelled) reductions and
observations: and second. show that preservation and reflection of these two relations

implies full-abstraction. O

7.2.2 From = to CCP

Here we provide the main result of this work. We prove that the 7-calculus is more
powerful than the core CCP. Our argument is based on the impossibility in CCP to
establish private-shared channels between processes. This is, if two processes want
to create a common link, it will necessarily be accessible to every other agent. and
hence it will not be private. In other words. internal mobility cannot be simulated in
CCP. In the rest of this section, we will show this gap between CCP and 7, which
as we have seen, is a sub-calculus of «.

The main effect of communication in 7-calculi is substitution of names. In CCP.
the only way to simulate substitution is through diagonal elements. i.e. name equa-
tions. We argue that these equations will force the “domain of influence” of the
names involved to grow from their static. svntactic scope to the global scope. becom-

ing accessible to any process listening,.

Observability

We start by defining when are names accessible to a process.
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Definition 7.15 (Observability in CC). We say that « CC term P observes the
name r under the constraint store o, written (P,0) lc. z iff there is a y € fn(P)

such that o+ = y.

With this definition it holds that a process observes its own free names under any
store. Also, that in the empty store P observes z if and only if r is free in P.

An analogous definition can be made in 7;. This definition of observability is
weaker than the previous definitions discussed in the context of barbed bisimulation
for m-calculi. We only require for a name to be free in a process in order to observe
it. That is. an accessible. or observable name is one through which the process could
potentially interact with the environment. but this interaction might not be immedi-

ately possible. as required in the definitions of 7-observability considered before.

Definition 7.16 (Observability in 7;). We say that a 7@ term P obseruves the name
r written P Ly x iff £ € fn(P).

As usual. we will ignore subscripts whenever it is clear from the context to which
concept we are referring.
Domain of influence

The following property represents the notion that a name is either accessible by only

one process in a system. or accessible by all the processes of the system.

Definition 7.17. Given ¢ CC term M = 3d.(P A Q A R). a store o, and a name
u € U we say that u has 1-3 domain of influence in M under o if it is observable

by either exactly one or eractly three of P, Q and R under the store o.

In the following examples of names = has 1-3 domain of influence in M under o

where M and o are:

1. o =true, P =tell(z > 1), Q = tell(z < 3), R = tell(z > 2)

3]

. o =true, P =tell(x > 1), @ =tell(x <5), R=tell(x = u) A tell(u > 2)

ooz=zz=y. P=tell(z >1),Q=tell(z <5), R=tell(y > 2)
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An example of a term and store not satisfying the property is:
o=true, P=tell(x > 1), Q@ =tell(x <3). R=tell(y > 2)

The corresponding notion in 7, is analogous. noting that there is no reference to

a constraint store.

Definition 7.18. Given a 7 term M = va.(P | Q | R) and a name v € i we say
that u has 1-3 domain of influence in M if it is observable by either exactly one
or ezactly three of P, Q and R.

Eavesdropping

The most significant notion of m-calculi is mobility, and this allows for the dyvnamic
evolution of the scope or domain of influence of names. The 1-3 domain of influence
property above. is a static property, i.e. it considers a “snapshot”™ of the system.
. We are interested in finding out whether CCP allows mobility. This is of course.
related to how the domain of influence of names evolve. and therefore we must focus
our attention in some dyvnamic property. In particular we are interested in what
happens when a process communicates a private name to another process. If we try
to model internal mobility, we need to establish a secure, private channel between two
processes. so that no third party is able to listen or “eavesdrop” trough that channel.
We now formalize what do we mean by “eavesdropping” with the following property,
which states that names in a system that are accessible by only one agent. will either
remain private or become accessible by all. i.e. the 1-3 domain of influence property

is invariant.

Definition 7.19 (Eavesdropping in CC). Consider a system M = 3d.(P A Q A
R) in standard form. and a store c. We say that M satisfies the “CC-eavesdropping”

property under o if whenever the following are satisfied
(1) All names in & have 1-3 domain of influence in M under o,

. (ii) (M,0) = (M',d"), and
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[\]

(iit) No names in @ disappear from any of P, Q, and R
then all names in @ have 1-3 domain of influence in M' under o’

Now the gap in expressiveness between CCP and #; becomes apparent. The
following theorem states that it is not possible to create one private channel between

two of the processes. while keeping all other names public or restricted to one process.
Theorem 7.20. All CC terms satisfy the eavesdropping property under any store.

Proof. Assume that the conditions are satisfied but there is a name »r € & such that
it does not have 1-3 domain of influence in M’ under o’. i.e. it becomes observable
by only two of the processes in M'. Assume. without loss of generality that P’ and
Q' are the processes observing & under ¢’. Given that & has 1-3 domain of influence

in M under o. we have two cases:
1. (P.o)}z.(Q.0)lxr. and (R.o) | r. or
2. (Po)lz.(Qo)fur.and (R.o) Yz

In case 1, given that names do not disappear. then we have that r is observable by
P’. Q' and R’ under ¢’. so we obtain a contradiction.

In case 2, since (Q'.0’) | r, then there is a y € fn(Q') (and also y € fn(Q))
such that ¢’ + r = y. However this is only possible if there is a = € fn(Q) such
that ¢’ F r = z A z = y. because @ could not observe r. Hence there is an action
tell(r = z) in P. because it was the only agent observing r. So both P and Q
observe . Since : has 1-3 domain of influence in M under o (by hypothesis) then
R also observes z under o. Therefore R’ observes : under ¢’ because names do not
disappear, and since ¢’ - r = z, we have that R' also observes r under ¢’. again

vielding a contradiction. O
The eavesdropping property can be stated for 7, terms.

Definition 7.21. (Eavesdropping in 7;) Consider a 7y system M = vi.(P | Q | R)
in standard form. We say that M satisfies the “m-eavesdropping” property if when-

ever the following are satisfied
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1. All names in @ have 1-3 domain of influence in M.
M-\, and
3. No names in i disappear from any of P. Q. and R
then all names in @ have 1-3 domain of influence in M’

Clearly there are 7, terms that do not satisfy this property, and that is precisely

the gap in expressiveness. Consider the following term:

My=vu(P|Q|R)  where
P

Q=u(y
R = u(

Such that « € fr{P') N fn(@Q'). This term is equivalent, by alpha conversion and

scope extrusion to:

M=vur.(P|Q|R) where

P = u(z).P’
Q=u(y).Q
R=71u(:).R

Where z ¢ fn(Q') U frn(R')". So both x and u have 1-3 domain of influence in M.

i.e. they are not shared exclusively by two processes. This term reduces to M' where
M =vux.(P'| Q' {z/y} | R) where r ¢ fn(R)

Clearly My does not satisfy the eavesdropping property. To see this note that: 1) u is

free in the three agents. thus having 1-3 domain of influence in M': 2) z is observable

"Strictly speaking these are not m; terms since they involve free output, vet, since they where
obtained by alpha conversion and scope extrusion, their semantics remnains the same, i.e. M ~, Mp
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only by P in the initial state; 3) in the final state x is observable by both P' and
Q'{x/y} but it is still not observable by R.

Non-encodability
The dual notion of eavesdropping is security.

Definition 7.22 (CC security). Let M = Ji.(P A Q A R) be in standard form.
and a store o. We say that M is 2-3 secure under o if it does not satisfy the

CC-eavesdropping property under o.

By theorem 7.20 we have that there is no CC term that is 2-3 secure.

The equivalent notion for 7; terms is as follows:

Definition 7.23 (7, security). Let M = va.(P | Q | R) be in standard form. We
say that M is 2-3 secure if it does not satisfy the 7 -eavesdropping property.

The following definition allow us to link the eaves-dropping property for CC terms

and 7; terms.

Definition 7.24 (Security preservation). Let [-] be a translation from =; to CC.
We say that [[-] preserves security iff for all m; terms M, if M is 2-3 secure then

[M] is 2-3 secure under the empty store.
From this definition and theorem 7.20 we obtain the following result:
Corollary 7.25. There is no translation from =; to CC that preserves security.

Proof. Suppose that there is a translation -] that preserves security. Consider the
term 1, from the example. it is easy to see that My is 2-3 secure. On the other
hand we have that [A/] is also 2-3 secure under the empty store because [-] preserves
security, but this is a contradiction, since by theorem 7.20 we know that all CC terms

satisfy the CC-eavesdropping property. and therefore no CC term is 2-3 secure for

any store. a
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7.2.3 CCP and fusions

Since our previous result showed that CCP cannot model internal mobility. the imme-
diate corollary is that any calculus that includes 7; as sub-calculus is more expressive
than CCP. This includes the Fusion and vy calculi. However there seems to be some
close relation between those calculi and CCP(x=y). since in both. name equations
play a central role. In both. they have as main effect, the substitution of equivalent
names, and in both, this effect is global. The gap in expressiveness relies on the
fact that in Fusion it is possible to restrict such effects through the hiding operator.
whereas in CCP, hiding is unable to “contain” the effect of an equation.

[t is easy to see that CCP(x=y) can be encoded in Fusion. Victor and Parrow
provide such embedding in {47]. The original encoding considered ~ calculus with
explicit separation of constants and variables. Here we provide a simplification of

such translation.

Theorem 7.26 (CCP(x=y) to Fusion translation). The translation [-] from
CCP(z=y) to Fusion is defined inductively as follows:

[m<o
P AQIE[P]I[C]
P + QI € [P] + [Q]
[32.P] ¥ vr.[P]
[tell(u = v)] o {u=v}

[ask(u = v) » P} € [u = v][P]

Note in particular that diagonal elements are translated into fusions, and the ask

operator is mapped to the match operator. We omit the proof. but we show how the
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basic interaction is simulated.

[3y.(tell(x = y) A ask(z =y) = P)]

Y vy ({z =y} | [x = yllPD) by def 7.26
> [z = 2([PHz/y)) by COMM;
— [P]{z/y} by MATCHg
= [P{z/y}] as required

With this simple translation it becomes apparent the expressivity of Fusion. which

casily embeds both 7 and CCP(x=yv) in a simple. svmmetric framework.

7.2.4 The v and p calculi

For completeness we end this chapter with a brief mention of two variants of CCP.
known as the v-calculus and the p calculus.

’ The ~ calculus, developed by Smolka ([44]) is essentially an extension of CCP(x=y)
with first-order functional abstraction (i.e. only names can be passed as arguments)
and explicit cells. Two presentations have been provided, one that distinguishes
between variables and constants and another that doesn’t.

The ~-calculus was generalised by Niehren. Smolka and Miiller to handle any
constraint system, not just name equations. This extension is called the p calculus
([34]). The ~ calculus coincides with the p(z = y)-calculus. The p-calculus without
constraints, written p() is a subset of the asyvnchronous w-calculus with the match
operator. The full p calculus is written p(CS). to emphasise that it is parametrized
by a constraint system CS, and it contains CCP as a sub-calculus. It is illuminating
to see that what in p(0) corresponds to 7,’s match operator. in p(x = y) it plays the

role of an ask operator for testing existence of diagonal elements.
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Conclusions

8.1 Summary

Let us summarize the relationships studied in this thesis. Table 8.1 summarizes the
variants of calculi discussed.

Figure 8.2 shows the main relations between variants on the w-calculi. with respect
to non-deterministic choice and asynchrony, where the arrow types are shown in figure

8.1. The references for these are given as follows. in historical order:

1. Honda and Tokoro’s encoding. found in [17]. developed independently by Boudol

in [7]. We describe Boudol's encoding in section 4.2.1.

~N

Nestmann and Pierce’s encoding, found in [33] and [32].

3. Palamidessi’s impossibility result. The reference is [36]. We describe this result

in section 4.2.2.
4. Nestmann’s encoding from [32].

Figure 8.3 shows the main relations with respect to internal mobility and locality.

The references are:

1. Boreale’s fully abstract encoding of external mobility in the internal fragment.

used the local (asynchronous) 7 calculus, 7., as an intermediate language. The
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Calculus name

Other names

Description

Core

P
!

ts

[t includes the following operators:
input and free output prefix.
restriction, parallel composition.

Asyvnchronous = Ta, AT Output is not a prefix; Does not
include choice.

Internal 7 mp, Im Output prefix is binding.

Local = 7r, L7 Object names of input prefix cannot
appear as subject of an input action
in the body.

winp - Only allows input-guarded choice

out - Only allows output-guarded choice

i - Only allows separated guarded choice

Full = T [ncludes match and mismatch. and
mixed-guarded choice

Fusion X. 7r. Fx, CUP | [nput is not binding. Interaction
“fuses” names.

Update - Monadic Fusion.

Asyvnchronous Fusion | \q, 7pe. AF7® [nput is not binding, and output
is not prefix.

Solos - Input is not binding. Neither input nor
output are prefix operators.

CcCp CCP(CS) Includes tell, ask, restriction, parallel
composition. choice. It is parametrized by a
constraint system CS.

p p(CS) CCP plus first-order functional abstraction.

~ plr =y) It is p restricted to name equations.

Table 8.1: Calculi for mobility and calculi for concurrent constraints
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(]

4.

7, is a variant of m; with “symmetric” locality. The reference for this encodings
is [6].

. Merro's fully abstract encoding was given in [24]. and is described here in section

. This is Palamidessi’s result shown in the previous figure.

This is the composition of Nestmann's encodings.

In figure 8.4 the main expressiveness relatious from the point of view of fusion

calculi are shown. In this diagram we denote Fusion®* as the subset of Fusion that

allows separate-guarded choice. but not mixed-choice.

1.

[S™)

-1

The gap between monadic Fusion or Update calculus and the polyadic calculus

is shown in [43].

. This is Victor and Parrow’s encoding of v-calculus into 7. The reference is [46],

and is described here in section 7.2.1.

Victor and Parrow’s encoding of + in Fusion is found in [47]. and described in

section 7.2.3.
Merro's encoding is found in [23]. and described in section 6.3.2.
. Laneve and Victor's encoding is found in [19] and described in section 6.3.1.

. Boreale and Merro's encodings. described in the previous figure.

Similarly in figure 8.5 for CCP languages in relation to w-calculi.

1

o
.

. Victor and Parrow’s encoding of % in Fusion.

This is the composition of Laneve and Victor’s encoding of Fusion in Solos, and

Merro’s encoding of Asynchronous Fusion in m,.

. Victor and Parrow’s encoding of y-calculus into .
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Identity embedding

— Uniform & reasonable
-—~-—=--F Deadlock free & livelock free
—H#—= No uniform & reasonable translation exists

Figure 8.1: Main types of translations between calculi

No + Limited + Full +
1
I
3
2 .
- n
Asynchronous 7 Ta =my'P
calculi .
i 1
! inp
1\ ¢ / \ Se
Synchronous . core m p;:tﬁ full
calculi ) \ /

Figure 8.2: Expressiveness relations of asynchrony and choice within = calculi

Internal mobility Local mobility External mobility

2

n

- > Tt
Asynchronous la =
calculi D T *""‘T/ }

1.2

4
L0}

S

pes

- o
n TEL

Synchronous
calculi ¢ / 0;

_ fulln

Figure 8.3: Expressiveness relations of internal mobility and locality within 7 calculi
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"Pure” 1 calculi Fusion calculi CC calculi

full £t —— Fusion *

<, A

T Fusignfep
Y
Ty Update Solos

\ /
Asynch—Fusion

Figure 8.4: Expressiveness relations between Fusion and 7 calculi

"Pure” 1t calculi "Hybrid" calculi "Pure" CC calculi

.7 Linear CCP

core Ty PCS)'= CCP(CS) \
_ Fusion ,f‘
3.2 L R
"y “
fullAn -« p(x=y) < CCP(x=y)
+ 8

s p(0)

Figure 8.5: Expressiveness relations between CCP and 7 calculi
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8.2 Recent developments and related work

Given the limitations of scope. time and space we have not dealt in this thesis with
several relevant aspects to concurrency theory. such as axiomatisations of the differ-
ent notions of bisimilarity, other variants proposed on the different calculi presented.
category theoretic approaches, modal logics for mobile process algebra, truly concur-
rent semantics or the relations between concurrent calculi and linear logic. We will
try now to provide a very brief summary of recent work in expressiveness for process
algebras.

Saraswat et al. have studied several variants of CCP. One with particular interest
from our point of view is the Higher Order-Linear CCP ([21]). This variant has
been proven to support mobility. In particular it is the “linear” fragment the one
responsible for it. In this variant. based on linear logic. the ask operator corresponds
to linear implication. i.e. the condition is consumed once it is satisfied. This means
that the store is not monotone and allows for updates. This gives the power necessary
to sitnulate mobility. as well as the notion of state in general.

Some hybrid variants that mix CCP-like languages with 7-like languages have
been proposed, with the objective of modelling multi-agent systems with some global
common knowledge. An example can be found in [9].

Many other variants of CCP have been studied to bring in different concepts.
Some of these include: 1) Default CCP. which relates CCP to default logic rather
that intuitionistic logic. 2) Timed CCP, which includes an explicit notion of time
in the systems modelled. 3) Hybrid CCP, which combines discrete and continuous
states. 4) Probabilistic CCP, in which names stand for random variables for which it
is possible to specify a domain and a distribution.

On the front of 7-calculi. several ideas have been followed such as the Spi-calculus
of Abadi and Gordon ([1]). for describing security protocols. Another interesting
development inspired on w-calculi. though not directly based on it. is the calculi for
mobile ambients of Cardelli and Gordon ([8]) concerning larger domains of processes.
and their boundaries. These calculi deal with named collections of processes that

have an explicit boundary. Interaction between processes can occur only within the
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boundary, but there are basic operations for moving ambients into, or from, other
ambients, and for merging them. In the so-called sefe ambients, these movements
can occur only with mutual agreement from the parties involved.

Recently Zimmer provided, in [50], an encoding of the m-calculus in the pure safe
ambients. thus showing the expressive power of the ambient moving primitives. The
immediate corollary of this. together with Victor and Parrow’s result on the encoding
of CCP into 7, is that CCP can be translated into ambients. To our knowledge.
there has been no concrete result on whether the w-calculus can simulate ambients
or not. We speculate that CCP cannot simulate ambients because. as our result
showed. the problem of CCP is a problem of security, given its inability to establish
private channels. By contrast. the essence of ambient calculi lies in establishing
boundaries between collections of processes, and thus. the establishment of private
links is fundamental.

All these have been concentrated on the extension of w-calculus, or the devel-
opment of languages inspired by it. A different line of research has been pursued
by Milner and his collaborators by giving w-calculi and other forms of languages for
modelling interaction a more general framework. This is the subject of the so called
Action calculi. It is presented in category theory, thus allowing reasoning about in-
teraction at a more abstract level. Also, in the same way that m-calculi have been
generalized to action calculi. fusion calculi (Fusion, Solos, 7f, ) have been general-
ized by Gardner and Wischik to symmetric action calculi and more recently fusion
systemns ([12]. [49]).

A particularly interesting and recent result. related to the semantics of concur-
rency and the search for appropriate notions of behavioural equivalence. is that of
Leifer and Milner [20], in which they provide a method for transforming a UTS into an

LTS so that the induced notion of bisimilarity turns out to be a process congruence.

8.3 Future work

The main result of this thesis, the expressiveness gap between pure CCP and -

calculi, in terms of mobility, serves as justification for several extensions that have
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been proposed for CC languages. such as the p-calculus. or Linear CCP. However. all
these extensions take the CCP model away from its close relation with Intuitionistic
Logic. On the other hand. Linear CCP has an analogous relation with Linear Logic.
The encodings of mobility in Linear CCP and Higher Order Linear CCP ([21]) make
use of universal quantification as an operator in the language. We speculate that it is
not necessary to completely transform the model from the core CCP to Linear CCP
in order to obtain the full expressive power of mobility. We suspect that adding just
universal quantification to the core CCP, is enough to simulate mobility. while at
the same time making the relation with Intuitionistic Logic tighter. This encoding,
and the categorical interpretation of core CCP plus universal quantification should
be investigated.

Another issue concerning the relation between CCP and logic that requires further
exploration is the generalization of the ask operator. We know that ask correspounds to
a limited form of implication. in which the condition is not an arbitrary formula, but
a formula without quantifiers or implications. The generalization of ask. to receive as
condition an arbitrary process should be investigated in terms of its computational
content.

The modelling of more complex constraint systetns in 7 and fusion calculi is also
a topic that deserves attention. as well as the role of tyvpe systems in CCP. and the
relation between such type systems and the so-called sorting disciplines found in
m-calculi.

Finally, Milner's Action Calculi, as mentioned above, is a general framework for
the study of interaction. and has been successfully applied to the study of models
as diverse as Petri Nets, A-calculi and 7-calculi. Studyving CCP from this framework

might lead to a new perspective on constraints as interaction.

8.4 Final remarks

Throughout this thesis we emphasised the close relation between the concepts of
substitution, equator, diagonal elements and fusions. We saw how equators play

the role of name equations by simulating substitution, and a similar remark can be
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made about fusions. We also saw how fusions where implemented in 7 in terms of
cquators. Also, we described how putting a diagonal element in a constraint store
can be simulated by a fusion. and how asking whether an equation holds is simulated
by the match operator.

One particularly interesting relation amongst the calculi studied is that between
CCP and Solos. Recall that in Solos there are no continuations to input and output
actions, so in some sense, it is a calculus of pure fusions. and vet it can encode the full
Fusion calculus. which in turn means that has a greater expressive power than the core
CCP. Since pure fusions seem to correspond to diagonal elements in CCP, it seems
strange to regard Solos as having more expressive power than CCP. However. as our
result pointed out. in CCP one cannot “contain™ the effect of equations. The fact that
in Solos a fusion might result from separate input and output actions. which might
be in parallel agents. and that the media of communication is not global. means that
the restriction operator has a more powerful grip. a finer control. over the influence
of names. and therefore, of name equations. In CCP an equation is always issued
by one agent. In Solos. separate, parallel agents might cause the equation. In other
words, the treatment of name equations as atomic actions in CCP, in contrast with
name equations in Solos. which are the result of more primitive actions. limits the
control over the domains of influence of names.

This thesis has been a study of concurrency. One of the main objectives of the-
ories for concurrency is to show the inherent power of parallel composition taken as
a primitive notion. There is an incredible diversity of paradigms that include con-
currency as a basic operation. We have concentrated on those spanning from mobile
processes to concurrent constraints. Mobile process calculi have proven to be very
a powerful and flexible paradigm. where a wide variety of programming idioms are
easily expressible. On the other hand. Concurrent Constraint Programming takes a
higher level view of programming to the concurrency world. In its most basic form.
this higher level of abstraction is attained at the cost of loosing some expressiveness.

According to Milner ([28]), the goal of process calculi is to distill the essence
of concurrency. In this respect, the aim is to find some canonical theory which is

general enough to express and reason about all kinds of concurrent systems. We
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do not know if this goal is indeed achievable, given the diversity of approaches to
the treatment of concurrency. For this reason, understanding the relations between
different approaches is a fundamental issue. This thesis has been an attempt to give a
verv broad view of these relations. but in virtue of the richness found in concurrency.
we didn’t cover many relevant issues. The intention of this work has been to highlight
what are some of the fundamental gaps between different theories. This hopefully

will shed some light into the essence of concurrency.
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