
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, sorne thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignmentcan adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be notad. Also, if unauthorized

copyright material had to be removed, a note will indicate the daletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9n black and white

photographie prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Raad, Ann Arbor, MI 48106-1346 USA

800-521-0600

NOTE TO USERS

This reproduction is the best copy available.

•

•

A View-Based System for Eliciting

Software Process Models

Josée Turgeon

School of Computer Science

McGill University, Montreal

Submitted in September 1999

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfillment of the requirements of the degree of Doctor ofPhilosophy.

©Copyright, Josée Turgeon, 1999

1

1+1 National Library
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1A ON4
canada

Your file Votre référBllt:8

Our file Notre référence

The author has granted a non­
exclusive licence allowing the
N ationaI Library ofCanada to
reproduce~ lo~ distribute or sell
copies ofthis thesis in microform,
paper or electronic formats.

Theauiliorrmmnsownernmpoffue
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author~s
permISSion.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-55388-4

Canada

•

•

•

Abstract

We propose an approach, together with specific underlying techniques and a system to

support these, for eliciting models of software development processes. Software process

elicitation involves: gathering process information from the agents involved in a

development process, from documents, and through observation; modeling this

information; and verifying that the model built is consistent and complete.

The elicited models can be used in process assessment and for identifying improvement

opportunities, which could lead to improvement in product quality, delivery and costs.

Process models can also be used for other purposes, snch as measurement of software

products and processes; insertion of software tools in development processes; training

new developers on the overall development tasks; project planning; risk assessment;

software process guidance and automation; etc.

In our approach, process information is gathered from different sources, and the separate

descriptions (called views) are merged - after ensuring their consistency and

completeness -- to form the entire model. Our hypothesis is that models built from

information gathered from multiple views are of higher quality than those built without

consideration for snch views. The techniques underlying our approach include: (1)

planning for elicitation; (2) eliciting the different views; (3) checking for intra-view

consistency; (4) identifying common components across views; (5) merging the views; (6)

checking for the overall model quality; and (7) modifying the model if necessary. The

thesis demonstrates these features through usage scenarios of the system, called V-elicit.

The underlying techniques, together with the supporting V-elicit system, constitute a

novel contribution in the software process field.

The validation of our approach is demonstrated through five case studies and a

comparison with tools described in the literature. These studies show that V-elicit: (i)

helps develop process models ofsuperior quality (in terms of coverage); (li) is more time

2

•

•

consuming for developing models, but this time can be reduced by concurrent view

development (involving multiple elicitors); and (iü) supports more elicitation tasks than

do competitive tools.

3

•

Résumé

Dans cette thèse, nous proposons une approche pour l'extraction de processus de

développement de logiciels, ainsi que des techniques spécifiques et un système supportant

cette approche. L'extraction de processus logiciels inclut la collection d'information sur le

processus, la modélisation de cette information, et la vérification que ce modèle est

consistant et complet. L'information requise est obtenue des agents impliqués dans le

processus, dans la documentation existantes, et par des observations.

Les modèles extraits peuvent être utilisés dans l'évaluation des processus et de leurs

améliorations possibles, pouvant conduire à une amélioration au niVe<lU de la qualité des

logiciels, de leurs coûts, et de leur temps de développement. Les modèles peuvent aussi

être utilisés à d'autres fins, comme par exemple la mesure des processus et des logiciels;

l'insertion d'outils dans le processus de développement; la formation de nouveaux

employés sur les différentes tâches de développement; la planification de projets;

l'évaluation de risque; l'encadrement et l'automatisation du processus; etc.

Dans notre approche, l'information est obtenue de sources différentes, et les différentes

descriptions (appelées vues), après vérification qu'elles sont consistantes et complètes,

sont fusionnées pour former le modèle complet. Notre hypothèse est que les modèles

construits à partir d'information provenant de plusieurs vues sont de plus haute qualité que

ceux construits sans considération de ces différentes vues. Les techniques supportant

notre approche incluent: Cl) la planification du processus d'extraction; (2) l'obtention des

différentes vues; (3) la vérification que l'information dans chaque vue est consistante; (4)

l'identification des composantes communes entre les vues; (5) la fusion des vues; (6) la

vérification de la qualité globale du modèle; et (7) la modification du modèle si

nécessaire. Cette thèse démontre ces techniques à travers des scénarios d'utilisation de

notre système, appelé V-elicit. Ce système et les techniques supportées sont une nouvelle

contribution dans le domaine des processus de développement de logiciels.

4

•

•

La validation de notre approche est démontrée par cinq études de cas et la comparaison

avec les outils décrits dans la littérature. Ces études montrent que V-elicit: Ci) aide à

développer des modèles de qualité supérieure (en terme de couverture); CH) demande plus

de temps pour développer des modèles, mais que ce temps peut être réduit en développant

les vues en parallèle (plusieurs personnes travaillant à cette extraction); et (iii) supporte

un plus grand éventail de tâches reliées à l'extraction de modèles que les autres systèmes

comparables.

5

•

•

Acknowledgments

First of all, l would like to thank my supervisor, Professor Nazim Madhavji, for ms

continuous support and help throughout my Ph.O. studies, especially for the fruitful

discussions, insights, and comments on my work. He also helped me in finding the human

resources necessary for developing the V-elicit system, and validating it through case

studies. But most ofail, he helped me develop the skills necessary to do research.

Special thanks should also go to McGill University and the School of Computer Science,

for providing the resources necessary to complete my Ph.O.

For all other students and research assistants who helped me in the development and

validation ofmy system, thank you very much for your participation and effort. Such large

development effort (and validation) would not have been possible without you.

My colleagues at University of New Brunswick (Saint John campus) also helped me and

supported me during L~e past two years. In particular, Dr. Gupta, a professor in statistics,

has helped me a lot in choosing appropriate data analysis techniques for my case studies.

Many thanks. AIso, l would like to thank the University ofNew Brunswick, for letting me

work there while finishing my Ph.O.

Finally, l would like ta thank my family, and especial1y my boyfriend Michel Tassé, for

their constant moral support throughout my studies. Such support, although not as visible

as direct help, has been very important for me.

This research work has been partIy supported by NSERC, through a 4-year postgraduate

scholarship.

6

•

•

Table of content

Abstract 2

Résumé 4

Acknowledgrn.ents 6

Chapter One - Introduction 16

1.1 Problem definition and research hypothesis 17

1.2 Technical approach and assumptions 19

1.3 Research method 21

1.4 Key results, and originality statement 22

1.5 Organization of thesis 22

Chapter Two - Related work 23

2.1 Background on process models 23

2.2 Related work on software process elicitation 27

2.3 Related work on view modeling 33

2.4 Summary and analysis 34

Chapter Three - System requirements and their rationale 36

Chapter Four - Modeling schema 41

4.1 Schema for process and product models 42

4.2 Aspects and views 47

4.3 Attribute and relationship generators 52

4.3.1 Hierarchical generators 53

4.3.2 Linear generator for relationships 58

4.3.3 Summary 61

4.4 Defining types in the V-elicit system 61

4.5 Alternative data structures rejected for the schema 65

4.6 Summary and analysis of the modeling schema used 67

Chaptcr Five - Elicitation approach and scenario 68

5.1 Overall approach 68

5.2 Scenario for each step 71

7

•

•

5.2.1 Step 1: Plan for elicitation 75

5.2.2 Steps 2 and 3 : Eliciting views 79

5.2.2.1 Step 2: Gather view information 81

5.2.2.2 Step 3: Check for intra-view consistency 87

5.2.3 Steps 4 and 5 : Getting a merged model from the views 94

5.2.3.1 Step 4: Identify common components across views 94

5.2.3.2 Step 5: Merge views 102

5.2.3.2.1 Resolving inconsistencies related to entity decomposition 103

5.2.3.2.2 Resolving other types of inconsistencies 109

5.2.3.2.3 Summary 111

5.2.4 Steps 6 and 7: Check model quality and modify model. 112

5.3 Summary ofthe elicitation approach 113

Chapter Six - Techniques for consistency checking and view rnerging 115

6.1 Constraint verification 115

6.1.1 Constraint language 115

6.1.2 Type of constraints 117

6.1.2.1 Constraints to check internal validity 117

6.1.2.2 Constraints to check external validity 119

6.1.2.3 Summary- and analysis 121

6.1.3 Use ofgenerators 122

6.1.4 Implementation details 123

6.1.5 Summary of the constraint verification feature 124

6.2 Component matching 125

6.2.1 Algorithm and formula for computing similarity scores 125

6.2.2 Use ofgenerators 132

6.2.3 Summary and analysis of the component matching feature 134

6.3 View merging 136

6.3.1 Detecting and resolving inconsistencies related to entity decomposition 136

6.3.1.1 Case # 1: Missing element. 145

6.3.1.2 Case #2: Detail missing 147

8

6.3.1.3• 6.3.1.4

6.3.1.5

6.3.1.6

6.3.1.7

6.3.1.8

6.3.1.9

6.3.1.10

6.3.1.11

6.3.1.12

•

Case #3: Finer decomposition 149

Case #4: Different grouping (with unmatched elements as roots) 150

Case #5: Different decomposition (with matched elements as roots) 152

Case #6: Details taken from outside (leaf) 153

Case #7: Details taken from outside (non-Ieaf) 155

Case #8: Different details 156

Case #9: No inconsistency (leat) 157

Case #10: No inconsistency (non-Ieaf) 158

Algorithmic details 160

Summary and analysis 162

6.3.2 Detecting and resolving inconsistencies related to names and attributes 163

6.3.3 Detecting and resolving inconsistencies related to relationships 164

6.3.4 Related work 165

6.3.5 Summary and analysis ofthe view merging feature 168

6.4 Summary ofour specific elicitation techniques 170

Chapter Seven - Validation 171

7.1 InternaI Validation 171

7.2 External Validation 173

7.2.1 Case study #1: Comparison ofmodel quality 175

7.2.1.1 Context for Case study # 1 175

7.2.1.2 Design ofCase study #1 178

7.2.1.3 Data gathering for Case study #1 185

7.2.1.4 Data analysis and results of Case study #1 186

7.2.2 Case study #2: Comparison of elicitation processes 191

7.2.2.1 Context for Case study #2 191

7.2.2.2 Data gathering for Case study #2 192

7.2.2.3 Data analysis and results of Case study #2 193

7.2.3 Case study #3: Tooi capability in a practical setting 195

7.2.3.1 Context of Case study #3 196

7.2.3.2 Design ofCase study #3 : 197

9

•

•

7.2.3.3 Data analysis and results of Case study #3 199

7.2.4 Case study #4: Parallel view elicitation 202

7.2.4.1 Context ofCase study #4 203

7.2.4.2 Design ofCase study #4 203

7.2.4.3 Data analysis and results of Case study #4 204

7.2.5 Case study #5: External validity constraints 205

7.2.6 Summary- 206

7.3 Literature comparison 207

7.4 Lessons learned 211

Chapter Eight - Summary and conclusion 213

References 215

Appendix A - Views used as example for Section 5.2 229

Appendix B - Final mode! after merging the views in Appendix A 246

Appendix C - Grammar for constraints 250

Appendix D - State-of-the-art process modeling tools and environments 254

Appendix E - External validity constraints specified 260

10

•

•

List of figures

Figure 1 - Functional perspective ofa review process 24

Figure 2 - Behavioral perspective ofa review process 25

Figure 3 - Organizational perspective ofa review process 25

Figure 4 - An instance ofthe entity-relationship schema for process modeling 43

Figure 5 - Example ofan entire model. 44

Figure 6 - Modeling behavioral process information 45

Figure 7 - An instance ofthe entity-relationship schema for product modeling 46

Figure 8 - Example ofan aspect (information-flow aspect) 48

Figure 9 - Example ofa view: the analyst's view 50

Figure 10 - Example ofa view: the reviewer's view 50

Figure Il - Examp1e ofa view: the manager's view 51

Figure 12 - Activity decornposition aspect ofthe analyst's view 51

Figure 13 - Information-flow aspect ofthe analyst's view 52

Figure 14 - Generating the relationship "activity is-performed-hy raIe" 54

Figure 15 - Generating the relationship "activity precedes activity" 54

Figure 16 - Generating information flow relationships 55

Figure 17 - Generating the cast attribute 56

Figure 18 - Generating dependencies from information tlow aspect 58

Figure 19 - List ofentity types defined 62

Figure 20 - Specification ofan entity type 62

Figure 21 - List ofaspect types defined 63

Figure 22 - Definition ofan aspect type (activity decomposition) 64

Figure 23 - Definition oftb.e aspect layout for visualization 65

Figure 24 - Elicitation steps (dataflow) 69

Figure 25 - Bob's partial view 72

Figure 26 - Peter's partial view 72

Figure 27 - William's partial view 73

Figure 28 - Creating or choosing a project for elicitation 74

Il

•

•

Figure 29 - Steps for the elicitation process 74

Figure 30 - Steps for planning the elicitation process 75

Figure 31 - Specifying elicitation goals 76

Figure 32 - Listing the potential sources of information 77

Figure 33 - Specifying the types of information for each source (view type) 78

Figure 34 - Choosing sources from which to elicit 79

Figure 35 - Selecting a view to be eIicited 80

Figure 36 - Steps for eliciting a view 80

Figure 37 - File generated in the "drait" part 82

Figure 38 - Example information entered (unstructured) using the "draft" part 82

Figure 39 - Bob's information tlow aspect (incomplete) as specified in Figure 38 82

Figure 40 - X-elicit tool 84

Figure 41 - X-elicit adapted by our system: an example based on Bob's view 85

Figure 42 - Activity decomposition aspect elicited for Bob's view 87

Figure 43 - Example of constraint specification 88

Figure 44 - Choosing the aspect on which the constraint is evaluated 89

Figure 45 - Result ofthe evaluation ofa constraint that is satisfied 89

Figure 46 - Role assignment aspect ofPeter's view 90

Figure 47 - Result of the evaluation of a constraint that is not satisfied 91

Figure 48 - Result ofa constraint related to the meaning ofthe information 91

Figure 49 - Selecting a constraint from a list 93

Figure 50 - Steps in analyzing and merging views 94

Figure 51 - Selecting the types ofthe entities to be matched, and the

relationships/attributes to be used 96

Figure 52 - Specifying the Ievel of similarity allowed for an attribute 96

Figure 53 - Specifying the minimal value for the similarity score 97

Figure 54 - Result ofmatching the roles between Peter's and William's views 98

Figure 55 - Result of matching the activities between Peter's and William's views 98

Figure 56 - Adding a new match 99

Figure 57 - Report generated by the matching algorithm showing similarity scores 99

12

•

•

Figure 58 - Final matches for the activities between Peter's and William's views 101

Figure 59 - Final matches for the activities between Bob's and Peter's views 101

Figure 60 - Final matches for the activities between Bob's and William's views 101

Figure 61 - Selecting the next entity type (decomposition) to be merged 104

Figure 62 - Resolving the problem with the inconsistent root activity 105

Figure 63 - Resolving when an entity is under different subtrees l06

Figure 64 - Resolving when more details are provided in sorne views 107

Figure 65 - Resolving when an entity is missing in sorne views 107

Figure 66 - Final model after resolving the inconsistencies (activity decomposition only)108

Figure 67 - Resolving an inconsistency related to entity names 109

Figure 68 - Resolving an inconsistency in the attributes 110

Figure 69 - Resolving a missing relationship 111

Figure 70 - Sam's view 125

Figure 71 - Sally's view 126

Figure 72 - Component matching algorithm 127

Figure 73 - Formula for computing similarity scores 128

Figure 74 - Sam's view modified (including generated relationships) 133

Figure 75 - Sally's view (with generated relationships) 133

Figure 76 - Example views used ta illustrate the different types ofinconsistencies 145

Figure 77 - Bob's activity decomposition aspect 230

Figure 78 - Bob's activity ordering aspect 231

Figure 79 - Bob's activity duration aspect. 232

Figure 80 - Bob's information flow aspect 233

Figure 81 - Bob's role assignment aspect 234

Figure 82 - Peter's activity decomposition aspect 235

Figure 83 - Peter's activity ordering aspect 236

Figure 84 - Peter's cost of activity aspect , 237

Figure 85 - Peter's activity duration aspect 238

Figure 86 - Peter's information flow aspect 239

Figure 87 - Peter's role assignment aspect 240

13

•

•

Figure 88 - William's activity decomposition aspect 241

Figure 89 - William's activity ordering aspect 242

Figure 90 - William's activity duration aspect 243

Figure 91 - William's information flow aspect 244

Figure 92 - William's roIe assignment aspect 245

Figure 93 - Activity decomposition aspect ofthe final model. 246

Figure 94 - Activity duration aspect ofthe final model 247

Figure 95 - Information flow aspect of the final model 248

Figure 96 - Role assignment aspect ofthe final model. 249

14

•

•

List of tables

Table 1 - Concepts and tools utilized in the development ofV-elicit 21

Table 2- Example efforts in industry on modeling software processes 27

Table 3 - Research efforts in eliciting process models 29

Table 4 - Techniques / tools associated with each elicitation step 69

Table 5 - First pass scores between Sam's view and Sally's view 130

Table 6 - Final scores between Sam's viewand Sallys view 131

Table 7 - Basic types ofinconsistency, and cases with no inconsistency 137

Table 8 - Summary ofthe reasons to reject some combinations ofcharacteristics 14l

Table 9 - Characteristics for each basic inconsistency type 143

Table 10 - Mapping between system requirements and V-elicit steps 172

Table Il - Case studies and their related goal 174

Table 12 - Tools used for comparison with V-elicit 180

Table 13 - Background of the subjects, and the elicitation tool assigned to them 181

Table 14 - Time spent in different phases ofthe subject's training 183

Table 15 - Data analysis of the case study # 1 187

Table 16 - Information on the elicitation process performed during the case study 193

Table 17 - Size and overlap ofthe views modeled 198

Table 18 - Indication ofhow weIl the matching process performed on the industrial

process 199

Table 19 - Number and types ofthe inconsistencies found across views 201

Table 20 - Quality results, when combining views from different eIicitors 204

Table 21 - Comparison with tools described in the literature 210

15

•

•

Chapter One - Introduction

It is widely recognized that the development of software is often plagued with quality

problems, late delivery and cast over-runs [Gib94]. Kitson and Masters [KiM93] report

that, from the SEI process assessments carried out between 1987 and 1991, 81% of the

organizations assessed were at level 1 on their 5-level Capability Maturity Madel1
, and

12% were assessed at level 2.

In arder ta improve software development capability, one should improve software

development processes [KeH89]. By fixing the defects only in the software systems leads

ta short term product improvements. By fixing the problems in the processes, it can lead

ta defect prevention, and thus to long tenu product quality, timely delivery of systems,

and development within budgets. One of the fust steps in process improvement, however,

is to have visibility ioto the existing processes [KeH89, Mad91, Nej91, OiB92, KTL92,

Hum93, McB93, PSV94, TSK95], sa as ta simplify problem detection and analysis of

changes an organization needs to make for improvement.

One way ta obtain such visibility is ta build a descriptive (or as-is) model of the process

concemed, by eliciting appropriate process information. Such a model forms a blueprint

of the process concemed and is a concrete basis for making process improvements.

A process model is represented explicitly, using formaI descriptions of the tasks

performed, when they are performed, entry/exit criteria, the artifacts produced and

consumed Ce.g., requirements, design, code, etc.), the technical procedures and tools used

1 CMM (PCC93]: It is a model \Vith 5 levels ofmaturity, and is used to assess an organization's capability to
develop software, and to guide it in improving its processes. At level 1, the productivity and quality of
software are low, and the schedules are missed. As the organization matures to upper levels, productivity
and quality increase and schedules are more on target. At level 2, sorne techniques are introduced to help
achieve these goals, for example requirements management, software quality assurance, configuration
management, and project planning and tracking. A key criterion to be at level 3 is to have the software
development processes defined. At level4, projects are managed quantitatively, and at level 5, processes are
improved continuously.

16

•

•

to produce the artifacts, the structure of the artifacts, the agents responsible for each task,

etc. Overall, the elicitation process, through which a process model is buil4 encompasses

the following key activities: planning, gathering data, modeling, analysis, and validation

(MHH94].

Once a process model has been built, it can be used for a number of purposes: process

assessment with respect to software quality, development costs and schedules [McB93,

Nej95]; measurement of software products and processes [MBB92, Pfl93, Vis94, LHR95,

BDT96]; insertion of software tools in development processes [BMH96]; training new

developers on the overall development tasks [HuK89]; project planning [KeI91]; risk

assessment [Br095]; software process guidance and automation [Fer93, BEM94, BGR94,

ScW95, BNF96, BHM97, NWC97, Su097, BeK98, DEA98]; etc. It is therefore

important that the process model is ofhigh quality (consistent, complete, and accurate).

Note that this process-oriented approach, for improving software quality, costs and

deliverability, is complementary to that of building new methods/techniques/tools for

software development, such as object-oriented design methods and CASE tools.

Typically, a deveLopment process uses these methods and tools, and the process model

should show where and how these are used in the process.

1.1 Problem definition and research hypothesis

Many researchers have proposed general approaches for eliciting process models. In sorne

cases ([RHM85, :rvœ:H94, BFL95]), the approach identifies and describes the general

steps ta be performed (e.g., planning the elicitation process, gathering information,

analyzing model, etc.). In other cases ([KeH89, Rom93, McB93]), the dynamics of the

core elicitation steps is provided, typically as an iterative approach: in each cycle,

inconsistencies from the previous cycle are resolved, and further details are added to the

model. Such iterations are performed until a model is satisfactory. Other elicitation

approaches focus on the model to be produced, by providing guidance on the types of

17

•

•

information to be gathered, and the order in which each type should be elicited (e.g., first

elicit product information, then activity information, and finally resource information)

[Kaw92, Gal92, ADH94, BDT96]. While these approaches are a good starting point, they

are intuitive and rely on elicitors ta build quality models. Additional tecbnical support is

required to ensure that the models will be of high quality. In the approaches above, such

support is rather limited.

An important issue for process elicitation is that, often there isn't a single person who

knows the complete process [DeG93, Rom93, Ver96]. A recent case study carried out by

Siddiqui [Sid97] indicates that agents performing a process may not have a common

understanding of a process and, consequently, they lack visibility into the artifacts

produced by the process and the activities carried out, by as much as 50-75%. Other

intuitive observations also support the results ofthis case study [DNR90, SaW94, SKV95,

EsB95J.

In order to elicit a complete process model, it is thus important to obtain information from

multiple sources (such as different agents, project documentation, observations, etc.). The

partial descriptions ofa process obtained from different sources are called views.

While utilizing multiple sources for process information can lead ta quality models, this

approach is not without impediments. In particular, different agents may give inconsistent

or conflicting information about the same process [KeH89, Rom93 , Fra93, SKV95,

Ver96]. For example, the terminology used can be different; sorne process components

might be missing in sorne views; developrnent tasks might not be grouped in the same

way ioto activities at higher levels of abstraction; level ofdetails given might be different;

etc. Process documentation might also give inconsistent and incomplete information

[HMB94, Rom93, Vot93]. Such inconsistencies can affect the quality of the elicited

process model.

18

•

•

Until now, the elicitation approaches proposed in the literature have generally not dealt

with the problem of multiple views and inconsistencies across them, leaving it to the

elicitor to resolve them. One exception to this is the work by Verlage [Ver96], who has

proposed techniques to help detect similarities and inconsistencies between two views,

but the inconsistency resolution and view merging processes are not supported.

Unfortunately, the elicitor may not detect ail the conflicts and inconsistencies (especially

when the same model component is involved in multiple inconsistencies), or may not

analyze appropriately the alternatives for resolving the inconsistencies. Besides, the

manual approach can be prohibitively time consuming and costly.

The goal of this thesis research is thus to develop a coherent set of techniques and

technical support for systematicaily eliciting software process models using multiple

sources of information. Our research hypothesis here is that such a view-based approach

(and its technical support) to eliciting software process models would result in high

quality models, especially in terms of their completeness. Such models would form a

stronger baseline for process analysis and improvement.

1.2 Technical approach and assumptions

The general elicitation approach taken is to fust plan the elicitation process and identify

the sources of information necessary for a proper coverage of the process being elicited.

Then, models are built from each source of information independently, and are

represented internally as entity-relationship diagrams [pen89, Ga192, ADH94]. Such

partial models (or vielvs) are aU checked separately for internaI consistency, using

constraints specified in fust-arder 10gÏc [BeT93].

The full process model is a combination of aU the views. The process of combining them

starts with an identification of similar components across the views (a technique adapted

from the requirement engineering area [LeF91D. Then, discrepancies among them (i.e.,

what is not similar) are found and resolved. Finally, views are merged into one process

19

•

•

model. Such a final model is checked for consistency, validated by different people

involved in the process being elicited, and checked against development policies for

feedback purposes.

We have made our approach flexible by letting the elicitor decide on the type of

information to be modeled, and to speciiY what constitutes an inconsistency in a model or

a view (through the specification ofconstraints in fust-order logic).

This approach and the set of techniques meet our goal of providing support for

systematically eliciting software process models using multiple sources of information.

Tooi support has also been developed for each of these techniques, in a system called

"V-elicit".

Throughout the development of these techniques, we have built upon existing concepts

and tools where possible. Table 1 shows which foreign components have been utilized at

both the conceptual and implementation levels (with appropriate adaptations in the case of

the concepts), for each of the key features in our approach. An empty cell indicates an

entirely new feature.

The technical choices were driven by the following assumptions:

A 1. A process model can be specified using an entity-relationship diagram.

Al. Using entity-relationship diagrams allows the elicitor to define the types of

information a model should contain.

A3. By using a language based on fust-arder logic, one can define what an inconsistency

is (inside a single view or model), and the inconsistency verification can then be

automated.

A4. The identification of similar components across views can be partIy automated

through the computation ofa similarity score across the components.

AS. By a carefu1 identification of types of inconsistencies across views, and their

possible solutions, the view merging process can be automated using the solutions

provided by the elicitor.

20

•

•

A6. By using a language based on fust-order logic, one can formally describe

development policies, and their verification on a given model can be automated.

These assumptions are validated later in this thesis (see Sections 7.2.3 and 7.2.5).

Features of our Utilized at conceptuallevel Utilized at
elicitation approach implementation level
View / model • Model representation using • OBST [CRS92] - an
notation and storage entity-relationship diagrams object-oriented

rPen89, Gal92, ADH941 database
View/model • Structured text-based editing of • X-elicit [Mllli94]
visualization and models [Mllli94] • Dotty [KoN96]
editing, and overall • generating graphical • Motif [HeF94]
user interface representation in Dotty [CDP95]
Constraint checking • First-order logic constraints for

capturing business mies [BeT93]
Identification of • Heuristics for matching rules in
similar components different software requirement

descriptions [LeF91]
Discrepancy detection
/ resolution
View merging

Table 1 - Concepts and taols utilized in the development ofV-elicit

1.3 Research method

Our general research approach has been one of theory and tool building followed by

experimental research for validating the tool and techniques developed. Throughout this

research process, the ideas underlying V-elicit have aIso been discussed with other

researchers and practitioners in the field.

We fust listed the requirements and separated them into the different elicitation phases.

We then developed a user-definable modeling schema (Le., notation to be used in the

models and views). Techniques for each elicitation phase have been developed separately.

For each phase, we fust looked at existing (but small) processes, for understanding the

21

•

•

problems and developing solutions. We also looked for existing concepts or tools that

could be utilized (fully, partly, or with adaptation). The techniques developed this way

were then implemented and tested individually.

Finally, the overall approach has been validated and compared with other approaches and

tools through case studies and literature comparison. To this end, we have used weIl

known techniques for experlmental design [FeP97] (including the use of GQM [BaW84]

for identifying the metrics ta be used) and for data analysis (two-way ANGVA followed

by Student-Newman-Keuls range test [Hic93], Friedman test [Dan90]).

1.4 Key results, and originality statement

The key results of our research are both the set of techniques covering all phases of the

multi-view elicitation process, and the tool supporting such techniques. To our

knowledge, none of the existing elicitation approaches and tools provide such a

comprehensive set of techniques for dealing with view-based elicitation. More

specifically, the techniques for identi:fying discrepancies across views, for helping in their

resolution, for merging the views, and for checking a model against development policies,

are new.

1.5 Organization of thesis

The rest of this thesis is organized as follows. Chapter Two discusses related work.

Chapter Three presents the requirements for a view-based elicitation system. Chapter Four

describes a user-definable modeling schema which dictates the content and structure of

process models. Chapter Five describes the elicitation process through an example.

Chapter Six gives algorithmic details for the techniques used to support elicitation.

Chapter Seven describes the validation of our approach through case studies and literature

comparisons. Finally, Chapter Eight concludes this thesis.

22

•

•

Chapter Two - Related work

In this chapter, we fust describe sorne background on software process models. The

second subsection describes severa! efforts on software process elicitation, and the

approaches taken. We then discuss the research advance in the area of views and view­

based modeling. The last section summarizes related work, and puts our work into

context.

2.1 Background on process models

Aprocess is na set ofpartially ordered steps intended to reach a goal" [FeH93]. In the case

of a software development process (or simply software process), the goal is the

development or enhancement of the software products or systems. This process can be

described formally in a software process mode!.

The following types of items are usually represented ID a process model: [FeH93,

CKü92]

• process step: an atomic action ofa process that has no extemally visible substructure.

• process element (or activity): any component of a process (can be a single process step

or a very large part ofthe process containing multiple steps).

• artifact: a product created or modified by the enactment ofa process element.

• agent: an actor (human or machine) who penorms a process element

• raie: a coherent set of process elements to be assigned to an agent as a unit of

functional responsibility.

Sometimes, such information is modeled from different perspectives. For example, the

following three perspectives are provided in the Statemate modeling language [KeH89]:

functional, behavioral, and organizational.

23

•
The fùnctional perspective represents what is done, Le., the set of activities performed,

their decomposition into sub-activities or process steps, and the artifacts produced or used

by these activities. Figure 1 shows the functional perspective of a review process2
, using

the dataflo\v d.iagram notation (with multiple levels of abstraction on the same diagram).

The review activity contains three steps: preparation, meeting, and writing report. It

interacts with the document production activity. The arrows labeled document, notes,

feedhack and report are the artifacts produced at variaus times by the activities.

Information and checklist are provided by the external entities "user" and "SQA"

respectively. The output ofthe entire process is the validated document.

project

r···········1 infor­
L~':_:'jmation

chee
L~.9~J:--~:"':;"""-------~ç~~~~::::~-+-------...,

document
production

Figure l - Functional perspective of a review process

•~

The information related ta when and how the activities are performed is represented in the

behavioral perspective. For example, the ordering of the activities defined in Figure 1 is

shown in Figure 2. The arrows represent the precedence relationship among activities.

Such arrows may have conditions specified on it Ce.g., "need modifications"), indicating

when such path should be taken during process execution.

2 This review process is described in [pre97].

24

•

•

8--1docum~ production I~eedmodifications

...--_....;\1.-_ -------,....--...=.__.__......,
Ipreparation I---i~meeting1 .. l'Miting report 1

.........
donotnee~~

modifications~

Figure 2 - Behavioral perspective of a review process

The way agents are grouped into teams and the communication channels between the

agents are represented in the organizational perspective. An example of this perspective

is given in Figure 3, showing the raIes and teams involved in the process, the verbal

communication among them, and how the artifacts (dashed boxes) are handled: the initial

information ta the analyst is provided verbally; the document is saved in a file ("lOir) and

a hard copy is passed ta the review team ("hand carried"); internal review artifacts

(checklist, notes, and feedback) are on paper ("hand carried"); and the final report is

written ta a file ("10") and sent back ta the analyst bye-mail. Notice that such a graph

does not present any information regarding the sequence of the tasks and communication:

this is provided in the behavioral perspective above (Figure 2).

projectteam

Figure 3 - Organizational perspective ofa review process

25

•

•

A software process model is the union of all these perspectives. Yet, other perspectives

could include actor dependency [YuM94], informational and quantitative (CK092].

There exists many notational paradigms for encoding and representing software process

models. Examples are: algorithmic programming languages (as in APPLIA), state­

transition diagrams (as in Statemate), Petri Nets (as in FUNSOFT Nets), rule-based

languages (as in Marvel), etc. [CK092].

The choice of the modeling language to be used is driven by the intended use of the

mode!. Curtis et.al. have identified the following five primary objectives (or uses) of a

process model [CK092]:

• facilitate human understanding and communication: The software process can be large

and complex, and managers and participants may have difficulties having a grasp on its

entire performance. Having a model of the process helps in understanding the process,

and communicating it to the people involved. It can also help in training new

participants.

• support process improvement: A model can be used for analyzing a software process,

and identifying improvement opportunities. Once potential changes are identified, the

model can aIse be used for assessing the impact of the change. Simulation ofthe model

can be used for this purpose.

• support process management: The plan of the software project can be based on a

process model. The manager can reuse parts of the models from previous projects, for

the new project. This plan can then be used ta control the software project. Check­

points and measurement points can be identified in the process modeL

• automate process guidance: A model can provide guidance ta the process performers

about the tasks to be done next, the tools ta be used, the available documents, etc.

• automate execution support: In an environment, a model can be used to control the

behavior in the development process. The ordering of the different steps can be

enforced by verifying which steps can be performed next, from a given state of the

26

• process. Sorne of the tasks can aIso be automated, such as collecting measurement

data.

As one cao see, the goal ofprocess improvement is only one of the many possible uses of

a process mode!. Thus, our research goal of developing techniques and technical support

for eliciting software process rnodels could have an impact on a number ofdifferent areas

in the software process field.

2.2 Related work on software process elicitatioD

SeveraI efforts have been made in industry on modeling software processes, especially in

those organizations seeking to achieve Level 3 (defined) on the SEI Capability Maturity

Model. Table 2 gÏves some examples of such modeling efforts. The identified authors

describe the benefits of modeling processes, as weIl as sorne lessons Learned.

Author(s) Or2:anization Description Reference
Frailey Texas Instruments building a corporate-wide mode! [Fra91]
Favaro European Space establishing an European Space Software [Fav92]

Agency Development Environment (ESSDE)
Drew Paramax process definition [Dre931
Carr, Dandekar, AT&T process architecture and interfaces [CDP95]
Perry
Tanaka, ONIRON software process improvement (TSK95]
Sakamoto, et.al Corporation

Table 2- Example efforts in industry on modeling software processes

Many researchers have also attempted ta elicit small-scale process models, often as a way

ta validate their rnodeling Languages or approaches. üthers have presented elicitation

approaches. These works are summarized in Table 3, and the ones providing an elicitation

approach are discussed below.

27

• •

N
00

Researcher Organization Elicitation Process modeling Notational paradigm Refer-
(if tried in industry) approach laneuafe / tool used (*) ence

Radiee et.aI. IBM general steps ETVX - systems analysis and design [RHM85]
Kellner and Hansen Ogden Air Logistics Center by iterations on Statemate - systems analysis and design [KeH89]

levels of abstraction - events and triggers
- 8tatc transitions and petri-nets
- data modeling

Gruhn and Jegelka Lion not described FUNSOFT Nets - state transitions and petri-nets fGrJ921
Kawalek British Telecommunications by type of Process Modeling - systems analysis and design [Kaw92]

infonnation Cookbook - state transitions and petri-nets
Galle European Space Agency by type of ERD / dataflow / - systems analysis and design [Oa192]

infonnation PERT charts / text - data modeling
- precedence networks

Rombach NASA's Software by iterations on MVP-L - AI languages and approaches [Rom93]
Engineering Laboratory and views - control flow
TRW - formaI languages

- object modeling
Scacchi and Mi many (over 30) not described Articulator - AI languages and approaches [ScM93]

- object modeling
McGowanand Contel Corporation by iterations on SADT - systems analysis and design [McB93]
Bohner levels of abstraction
Madhavji et.aI. IBM, Transport Canada general steps Elicit and Statemate - data modeling [MIlli94,

Sid97]
Phalp and Shepperd Schlumberger Technologies general steps dataflow diagrams - systems analysis and design [PhS94]
Awnaitre, Dowson, European Space Agency by type of Process Weaver - systems analysis and design [ADH94]
and Harjani infonnation - AI languages and approaches

- state transitions and petri-nets
- data modeling

Barghouti et.al. AT&T not described Marvel - AI languages and approaches [BRB95]
- o~iect modeling

• •

N
\0

Researcher Organization ElicitatioD Process modeliDg Nota'ioDal paradigm Refer~

(if tried iD industry) approach language 1tool used (*) ence
Bandinelli et.aI. Italtel and British Airways by iterations on fmite state machines - events and triggers [BFL95,

levels of abstraction and SLANG - state transitions and petri-nets EBL96]
- data modeling

Yu and Mylopoulos Flight Dynamics Division of not described Actor-Dependency - AI languages and approaches [YuM94]
NASA Goddard Space Model - data modcling
Flight Center (done by
Briand et.aI. rBMS95D

Broecker et.aI. Robert Bosch GmbH by type of MVP-L - AI languages and approaches [BDT96]
information -controlflow

- formai languages
-object modeling

~guyen, VVang,and Nonvegian banking not described EPOS - object modeling (NWC97]
Conradi software house - precedence networks
Sa and Warboys none by iterations on OBM - AI languages and approaches (SaW94]

levels ofabstraction - object modeling
Cook and Wolf none automatic from none specified -- (CoW95]

event data
Sommerville et.aI. none by views none specified --- rSKV95]
Verlage none by gathering and MVP-L - AI languages and approaches [Ver96]

analysis of views - control flow
- fonnallanguages
- object modeling

Turgeon and none by gathering, V-eHcit - systems analysis and design [TuM96]
Madhavji analyzing, and - data modeling

merging views, and
validation against
given constraints

Table 3 - Research efforts in eliciting process models

*Notational paradigm: basis of the notation used, as described in [CKü92] (Table 2)

•

•

Sorne researchers just present the types of information that can be elicited, and their

ordering [Kaw92, Ga192, ADH94, BDT96]. This kind of information can be useful when

gathering process data, especiallyat the front-end ofthe elicitation process.

In an early IBM study on process modeling, Rad.ice et.al. [RHM85] described six phases

for process model elicitation and process improvement. The phases related to elicitation

are: planning, on-site study (interviews), and analysis. After each day of interview, the

elicitation team should analyze the interviews and evaluate the process. Guidelines for

interviewing the process participants were provided.

More recently, Kellner and Hansen [KeH89] have used rounds of interviews, with each

iteration yielding more details in the descriptions. Each iteration formed a basis for

validating the model from the previous iteration and manually reconciling conflicts.

In the context of NASA processes, Rombach [Rom93] fust captured the different views

and modeled them, and then reviewed and modified the rnodels until ail conflicts were

resolved. The consistency analysis across views was carried out rnanually.

In [McB93], McGowan and Bohner present sorne elicitation steps, including preparation,

conducting interviews and constructing models. They fust build a model, and then iterate

between reviewing and refining the model, in order to obtain a model that reflects the

actual process. They also present steps to improve the process using that model. Their

description of the steps ta be performed is abstracto

In a joint process improvement effort between CEFRIEL and !taltel, Bandinelli

et.al.[BFL95] have defined three elicitation phases: knowledge elicitation, formalization,

and model review and assessment. The main idea is to perform those phases in sequence,

backtracking to previous phases when more information in the model is needed.

30

•

•

The above researchers have used specifie notations and tools to represent process models,

but the general paradigm for elicitation is that of iterating until the elicited model is

satisfactory. The base criteria for completeness is often ensuring that the various process

attributes (such as inputs, outputs, resources, entry/exit criteria, etc.) are filled with

appropriate values from the process being modeled.

A detailed elicitation method has been described by Madhavji et.al. [MIffi94]. This

method, called Elicit, has the following steps: understand the organizational environment,

define objectives, plan the elicitation strategy, develop process models, validate process

models, analyze process modeIs, post-analysis, and packaging. They have also developed

a tool to capture and organize textual process information in a hierarchical format. This

organized information is then translated into a graphical model using tools such as

Statemate. This approach helps in the early (more intuitive) phases. The Elicit approach

has been applied to industrial-scale models, although it does not have automated

supported for dealing with multiple sources ofprocess information.

There have also been sorne other proposais for elicitation methods, but as yet they have

not been used (tested) extensively. For example, Sa and Warboys [SaW94] propose a

method where a collection of abstract objects is defined fust, and then each object is

refined to the next level ofabstraction. After the refinement, they check the consistency of

the information with the previous leveL Each newly defined abject can then in tum be

refined. This stepwise refinement is terminated when one reaches a satisfactory level of

detail.

Also, Cook and Wolf [CoW95] have presented an approach and specifie techniques for

automatic generation of descriptive process models from event data collected from a

process. They describe and compare three inference methods: RJ."\fet, Ktail, and Markov.

This can be used for giving a specific execution thread of the process, but not the overall

modeL

31

•

•

Sorne view-based methods have aIso been proposed in the literature. For example,

Verlage [Ver96] has proposed the following steps for eliciting a model from different

views: independent modeling of views, detecting similarities between views, detecting

inconsistencies between views, and merging views. A similarity analysis function, based

on the semantics in the MVP modeling language, helps identifying the common elements

across views. A tentative set of consistency rules can be applied to detect inconsistencies

between two views. The choice of the rules to be applied depends on the relationships

between the two views (Le., how much they overlap). The differences in the abstraction

hierarchies are not resolved: each hierarchy is kept separately. This research is at an early

stage, and full implementation and validation ofthe approach is still pending.

A second view-based approach is proposed by Sommerville et.al. [SKV95]. After

identifying and defining the viewpoints, appropriate questions are generated for eliciting

process information from different viewpoints. Separate models are then built, but they

are not merged. They just propose to manage the interfaces between the viewpoints. In

this approach, the information gathering step is weIl defined, but there is no technique for

subsequent steps.

In [TuM96], Turgeon and Madhavji describe their early work on view-based process

elicitation. This thesis, in fact, builds on the ideas and concepts in the paper, and

represents an operational body of work which has undergone significant test cases and

comparative analysis.

Most of the elicitation methods proposed above, although providing good advice on how

to elicit process models, do not use a systematic approach and rigorous techniques for

such a task. AIso, oruy few of them have dealt with the problem of views. They generaIly

let the elicitor resolve the inconsistencies across views, or propose to keep the views

separate and manage the interface between them only. We believe that for the purpose of

a common understanding of the development process, such inconsistencies need to be

resolved, and that automated support should be provided for such a task.

32

•

•

Notice that other process-based software development environments and executable

process modeling languages could aIso be used for software process elicitation, even

though such a possibility was not indicated in the literature. They permit a user to specify

a model in a given language, which is a goal ofthe elicitation process. Such tools include:

Adele-Tempo [BEM94], APEL [DEA98], JIL and Little-JIL [Su097,WLM98], Merlin

[ScW95], Oz [BeK98], ProcessWise / ProcessWeb [BGR94, GrW96], and others.

2.3 Related work on view modeling

Many researchers have expressed the need for people-related views when visualizing a

process model [pen89, Dei92, JaM94, EsB95, LHR95]. Suggestions include that only the

relevant or localized information should be shown, at the leveI of details that are needed.

For exampIe, a designer may prefer to see the details of hislher work only, but a manager

may need a broader range of information (covering many phases) at a higher level of

abstraction.

Other researchers have pointed out the need to use different views when eliciting a

process model [Rom93, SKV95, Ver96, TuM96]. These are described in the previous

subsection, with their specific elicitation approaches and techniques.

Finkelstein et.al. have proposed a structure for describing views called "Viewpoint"

[FKN92]. Their Viewpoint allows one to describe the work of different people, using

different notations. The core part (specification) is related to the product itseIf: but the

process is also described in a "work plan". Inconsistencies within and across viewpoints

are dealt with, but these inconsistencies are only in the product that is built, not in the

process description. In [FGH93], they have described how to find the inconsistencies, and

handle them. Their algorithm is to fust map different representations into a common

schema, and then use fust-order logic notation to specify what an inconsistency is, and

what to do when one is found.

33

•

•

In [ACF96], Avrilionis, Cunin, and Femstrom have described a view-based approach to

the model evolution, that permits one to analyze and modi:fy a part of a model only

(view). Because views are less complex and smaller in scope than models, this analysis

and modification process becomes easier. A model is fust decomposed into its constituent

views, and the interfaces among them are clearly identified. The views cau then be

modified, and recombined into the entire model using transformation steps specified by

the user. Their mechanism, called "üpsrs", supports process modeling languages based

on Petri-net notation.

2.4 Summary and analysis

To recap, in Section 2.1 we started by describing the expected output of the software

process elicitation task: the process model itself, and the information it contains. We have

also shown the multiple purposes of a software process mode!. The other sections

described the related work on elicitation and on view modeling.

As we have seen in section 2.2, there have been many process model elicitation efforts.

The methodological approaches taken are often deficient in the way they deal with

multiple sources of information. Specifically, none of the elicitation approaches, to our

knowledge, provide a comprehensive set of techniques for dealing with views and

inconsistencies across the views. These inconsistencies are resolved manually and

intuitively. AIso, in sorne cases [RHM85, McB93, ~4, BFL95], while elicitation

steps are described (e.g., planning, information gathering, and modeling), there is not

much technological support available during these steps. Similarly, general steps have

also been presented for view-based elicitation [Rom93, Ver96], but with limited concrete

technological support. Thus, in our research, our goal was to explore view-based methods

further and provide technological support for them.

34

•

•

Where techniques and tools were available for information gathering steps [MHH94,

SKV95, CoW95], we reused these as appropriate, permitting us to focus on the

technically challenging parts ofsynthesizing a model based on multiple views.

In summary then, our research focuses on the problem of eliciting process views from

multiple sources, finding and resolving inconsistencies across a set of views, merging

them into a final model, and checking the quality of that mode!. Specifie technologicai

support is described to solve this problem.

35

•

•

Chapter Three - System requirements and their rationale

The technological support for view-based elicitation entails identification of a core set of

requirements that the supporting system should satisfy. In this chapter, we describe such

core requirements (RI - RIO), together with their rationale. These requirements have

been separated in two categories: the fust one contains requirements related to the

modeling notation and structure, and the second one describes the elicitation tasks the

system should support or automate.

Modeling notation and structure

RI: We should be able to enter process information, obtained from difIerent sources,

separately into the system, and maintain it as separate entities.

rationale: The information from each view should be kept separately because we will

need to know "who said what" when finding and resolving the ineonsistencies

across views. It may be useful to keep the separate pieces of information as

referenees even after the whole model has been elicited so that they can he

revisited in future revisions to the model.

R2: The type ofproeess information to be gathered should be user-definable.

rationale: Different organizations (or even different projects within an organization) may

not use proeess models in the same way. For example, one organization may

want to use a proeess model for guiding a new project, and thus needs

information related to the aetivities to be performed, their inputs and outputs,

.and their ordering. On the other hand, another organization may want to use a

process model to assess the throughput in the process, and thus will need to

capture specifie product and proeess metries at partieular points on the model.

36

•

•

R3: The seope of information (in terms of their types) that ean be provided by each source

of information or view should be user-definable.

rationale: In the same project, all the sources may not be able to provide the same kind of

information. For example, a programmer may not be aware of the cast

associated ta hisiher aetivities. Thus each view needs to be tailored ta suit the

specifie contexte

Elicitation tasks supported or automated

R4: The tool should be able ta verify the individual views separately, for intra-view

eonsisteney.

rationale: Examples of inconsistencies within a view are: inputs to an activity are

missing; an activity depends on the result of another one in the same view, but

starts before the termination of the latter activity; etc. If the information in a

given view is not consistent, the final model is also likely ta be inconsistent.

While it is possible ta check the final model at the end, it is less efficient to do

50 on large models. AIso, trying ta merge inconsistent views cao result in

making bad decisions related ta the resolution of ineonsistencies across views.

R5: The tool should help identify process elements that are common amongst the different

views.

rationale: Due to the fact that some process activities may involve multiple people, such

aetivities would be modeled in aIl the related views. Also, communication does

occur during the development process, and the interfaces among people are

typically represented in aIl the corresponding views. If we do not know wmch

process elements in one view correspond with which ones in the other views,

we would not he able ta merge the views.

37

•

•

R6: The tool should be able to detect inconsistencies in the different views.

rationale: Views, even though self-consistent, may not be consistent with one another.

Thus, in building a common model, it may be problematic to merge such

inconsistent views. In order to resolve such inconsistencies, we fust need to

pinpoint them.

R7: The tool should assist the user in selecting appropriate solutions in order to resolve

the inconsistencies. (Bach view presents one alternative solution to the

inconsistency.)

rationale: Having sorne statistics such as the proportion ofviews having one solution cao

help in choosing the right alternative. The tool cao definitely provide this

information.

The solution selection process is based on the meaning of the ÏIÛormation

entered, so the user should be involved in this process. Resolving these

inconsistencies is necessary in order to build one coherent mode!.

R8: The tool should be able to merge the views into a global model, based on the

ÏIÛormation in the views and the solutions to the inconsistencies.

rationale: The set of views contains complementary information as weIl as overlapping

information. This information, when aIl merged, will form the whole modeL

(assuming that the set of views was selected appropriately such that it covers

the entire process). The tool would have enough information at this stage for

merging the views.

38

•

•

R9: The tool should be able to check for the quality (consistency, completeness, etc.) of

the global mode!.

rationale: We should ensure that the global model represents a connected process, that it

is notjust a set ofunconnected views linked together.

RIO: The tool should be able to verify a mode1 against given development policies

(e.g., that aU documents should be reviewed independently). This implies the

following two aspects ofthe requirement:

RI Da - The elicitor should be able to formally specify deve10pment policies.

RIDb - The to01 should be able to verify a model against a user-defined policy.

rationale: The use of an elicited process model is limited unless some analysis is also

performed on it, for feedback purposes. It is important to do at least an initial

analysis immediately after developing a model, sa as to detennine the status of

the CUITent process. For example, the process may have changed over time, and

verifying it against development policies would make explicit where the

process differs from the policy.

These requirements have been discussed extensively, with severa! researchers from the

software engineering lab at McGill, with several practitioners from industry, and with

numerous visiting researchers, through system demos and presentations. Literature aLso

mentions sorne of these requirements [Ver96, Rom93, NJHH94], although they are not

specified in the specifie terms deseribed above. Thus, as a starting point, these

requirements can be considered valid for developing an elicitation system.

39

•

•

These requirements are associated to the six assumptions (see Section 1.2) as follows:

assumption Al requirement RI
assumption A2 requirements R2 and R3
assumption A3 requirement R4
assumption A4 requirement R5
assumption A5 requirements R6 to R9
assumption A6 requirement RIO

We recognize that these core requirements alone are not sufficient for building a complete

system. Other requirements, such as those dealing with user interface, database, quality

issues, portability issues, etc., are also needed. These are not described in this thesis,

although we deal with these requirements explicitly in system implementation, including

system documentation and validation.

40

•

•

Chapter Four - Modeling schema

In this chapter, we describe the notation and structure used for describing and representing

process models in our system. Since such notation and structure is used throughout the

elicitation process, especially in the major inputs and outputs of our system, their

understanding is necessary before the presentation of the actual elicitation steps in the

following chapters.

In arder to accommodate the specifie needs of each organization using the proposed

eiicitation approach, we require a flexible process model schema in which different types

of process information are user-definabie (requirement R2). Indeed, the information

needed in a process model depends on the purpose for which the organization is going to

use the elicited mode!. For example, for general information on a process, it may suffice

that the process model describes activities, their ordering, and the artifacts produced in the

process. On the other hand, for project planning and management purposes, additional

information such as cost, quality controis, deadlines, duration of activities, and roles will

be important.

In sorne cases, such as when the model is going to be used for specifie process

improvements, we may need to model the product (software) also, in conjunction with the

process. Such information ean be useful in analyzing product-process relationships and in

making specifie improvements. For example, we can model defect profiles during

development, and then examine the related processes to determine the causes of the

problems found. In arder to model the product as weIl as the process, we need a "flexible"

model schema where the product information needed (including metrics) can also be

added.

The process and product information should be structured in such a way that we can

visualize (or work with) a subset of the information. The reason is that the information in

a model can be voluminous, and one needs to be able to foeus on a specifie part of the

41

•

•

model, or a specifie type of information at a time, in order to comprehend the issues of

concerne Two concepts are used for this purpose: (a) the view, that contains the

information related to one agent (or one source of information) (e.g., the sub-process

related to a designer), and (b) the aspect (e.g., functional perspective, as described in

section 2.1), which is a subset of the types of information a model contaÏns.

Sorne process information might be redundant within one model. For example, if a high­

level design process yields a software architecture, then obviously, the entire design

process also yields this architecture. In order to avoid eliciting and keeping redundant

information, we can use algorithms to generate this information. Elicitation time can then

be reduced, and model analysis cau still be performed on the entire set of information

(including the information that can be generated).

The next three sections describes the model schema used in our system (called V-elicit),

the concepts of aspects and views, and the information generators, respectively. In Section

4.4, we show how a user can define his/her own nlodeling schema in V-elicit. In Section

4.5, we discuss the alternatives we had considered for this modeling schema, and the final

choices. Finally, we summarize our modeling schema and compare it to current process

modeling languages in Section 4.6.

4.1 Schema for process and product modeIs

As explained in the previous section, an important requirement for this model schema is

that it should be flexible and user-definable. We have chosen to use an entity-relationship

(ER) structure, where the types of eotities, relatiooships and attributes of the entities can

be defined dynamically.

An example of such an entity-relationship schema is given in Figure 4. It is based 00 the

literature describing the desirable entities and relationships that should be modeled

42

•

•

[BeD92, De092, ArK94]. The boxes represent the entity types Ce.g., activity), and the

edges represent the relationship types (e.g., activit}' produces artifact).

is-compoSed-Of}precedes
ls-concurrent-to ..--.F"--__...-
backtracks-to
is-alterrtative-to
manages

~
evelops

is-responsible-for
manages
stores
validates

Figure 4 - An instance of the entity-relationship schema for process modeling

An entity of a gÏven type can contain attributes, such as: cost, effort, and timing of an

activity; the location of a resource; the identifier (or number) of a document in the

configuration management tool; etc. Many types of attributes are allowed: integer, float,

character, boolean, string, and lime. These types have been chosen because they represent

typical types necessary in process models. The attribute time is actually a 5-tuple

«year,month,day,hour,min», where the value 0 for the rightmost elements means that we

do not need this degree of precision. For example, the specification of a day should

indicate values for the year, month, and day only (e.g., <1997,5,25,0,0». Seconds are not

represented in the type because they are generally not used in software processes.

One of the attributes of an entity can be a user-definable subtype. For example, we can

differentiate between development activities, management activities, and quality

assurance activities. By making this categorization, we will be able to perform better

analyses, focusing on one subtype at a time ifnecessary. For example, one could analyze

the time spent on quality assurance activities, one ofthe major cost driver ofquality.

43

• Having specified the types of information the model should contain, we can then create

models such as the one in Figure 5, which represents a review process3
• In this graph, the

nodes represent the entities (boxes for activities, and ellipses for artifacts). The tree

structure represents the activity decomposition (relationships of type "activity is­

composed-of aetivity"). For example, the review activity contains three sub-tasks:

preparation, meeting, and writing report. The raIes shawn besides the activities are also

entities, and the relationship of type "aetivity is-performed-by raie" is shown by the fact

that the raIe is besides the activity it is performing. Duration ofthe activities (attribute) is

aIso shawn besides them. The inputs and outputs ta the activities are illustrated via the

arrows between the boxes and the ellipses. This information is shawn at different levels of

abstraction: for example, the relationship between "document" and "preparation" is

represented again at higher level of abstraction in the relationship between "document"

and "review". Sa a persan looking at this model without looking at the details of the

review activity will still see this interface with the other activities.

Legend:

1 1 activity

~ artifact

ana.lyst
reVlewer

Figure 5 - Example of an entire model

text raIe and
duration

activity
d.eçompo­
SInon

artifacts
producedl
consumed
by activities

•
3 This review process is the same as the one described in Section 2.1. As a reminder, it starts when a
document is submitted. The reviewers read it individually, and then discuss the problems in the document
during the meeting. At the end of the meeting, feedback is provided in a report, which is sent back to the
document production activity for making the requested modification (ifnecessary). The output is a validated
document.

44

• ln this example, the behavioral information can be easily derived from the input/output

flows. However, in many cases, such information need ta be clearly stated. As an

example, assuming that additional information describing the "meeting" activity in Figure

5 needs to be modeled, the behavioral information could be modeled such as that in

Figure 64
• In this graph, the ordering of activities is shown through relationships of type

"aetivity precedes aetivity", "activity is-concurrent-to activity", and "activity backtracks-to

activity".

document
presentation

Figure 6 - Modeling behavioral process information

Legend:

11.-__1 activity

r-1--, activity
d.eçompo­
SInon

activity
pre.ct;des
actiVlty

+----+ ?ctivity
ls-concur­
rent-to
activity

- activity
back1:rilcks­
to activity

•

The modeling schema can be modified as needed by the user of the system. For example,

one can add entities and relationships for modeling a product (illustrated in Figure 7) to

the schema illustrated in Figure 4. The entity type liactivity" is the same in both Figure 4

and Figure 7, and it is used to make the connection between the process information and

the product information (through the relationship type "activity produces module").

4 For graph simplification purposes, we did not redraw aU the relationships from Figure 5, but such
information is still assumed as part ofthe entire mode!.

4S

•

•

contains
interacts-wi

Figure 7 - An instance of the entity-relationship schema for product modeling

The different types of entities, attributes, and relationships are formally defined by the

user as follows:

entity type =
(

name,
{list of possible subtypes}

)
e.g., ("activityl', f'production lf

, "management", "qualicy assurance"})

attribute name =
(

name,
type of value (integer/floatlcharacter/boolean/srringltime),
related entity type

)
e.g., (ncast", float, "activicy")

relationship type =
(

name as 3 words: < entitY type> < relationship keyword> < entity type> ,
camplementary type

)
e.g., (nactivity produces module", Ifis-produced-by")

Each type narne is defined by strings. This permits one to make modifications to the

modeling schema, and to have generic algoritbms operating on process models containing

any type of information.

In the case of relationship types, the string contains three words: the tirst one and the last

one are the entity types involved in the relationship, and the middle word describes the

meaning of the relationship. For example, the relationship type "activity produces module"

46

•

•

(see Figure 7) describes a relationship between an entity of type "activity" and another of

type "module". The direction of the relationship is not important here: a complementary

type is added to each relationship type definition~ describing the relationship in the

opposite direction. In the case here, the complementary relationship type of "activity

produces module" is the keyword "is-produced-by", meaning that in the opposite direction~

the relationship is oftype "module is-produced-by activity".

The additional information specified in the entity type (list of subtypes) and the attribute

name (type ofvalue and related entity type) are used for type checking only.

4.2 Aspects and views

A large process model cau have hundreds or thousands of nodes and relationships. In

arder to be able to visualize all this information, we need mechanisms to help focus on the

desired parts of the model at a given time. The two concepts used for this purpose are:

aspects and views.

An aspect comprises a subset of the types of information (entity/relationship/attribute)

contained in a model. This subset is defined in an aspect type, using three lists:

aspect type =
{

{list of entity types},
{list of relationship types},
{list of attribute names}

}

The user cao define his/her own aspects, based on the ER schema s/he has defined. For

example, an information flow aspect~ containing only activities and the artifacts produced

and consumed by these activities (with no attributes), cao be defined as follows:

47

• information f10w =
(

{activity, artifaet},
{activity produces artifaet, artifact is-consumed-by activity},
{}

)

Figure 8 shows the informationflow aspect of the model in Figure 5. Notice here that the

information tlow aspect does not show the conditions upon which to terminate the review

iterations: this would be shown (as an attribute) in an aspect showing the behavioral

perspective of the model, such as a control flow aspect. This does not mean that we have

an infinite loop of reviews.

Legend: see Figure 5

writing
1;'\--41

report

•

Figure 8 - Example of an aspect (information-flow aspect)

Other commonly used aspects are described as follows:

activity decomposition =
(

{activity},
{activity is-composed-of activity},
{}

)
activity cost =

(
{activity },
{},
{cast}

)
control f10w =

(
{activity},
{activity precedes activity, activity is-concurrent-to activity,

activity backtracks-to activity, activicy manages activity},
{pre-condition, post-condition}

)

48

•

•

role assignment =
(

{activity, role},
{actMty is-perforrned-by role},
{}

)
cool usage =

(
{activity, tool},
{activity uses tool},
{tool_use_category5}

)

This notion of aspect is also used in other process modeling languages. For example,

Kellner [KeH89] has used different perspectives for visualizing process models (e.g.,

functional perspective6
, which is similar to our information flow aspect). This way, the

process information that we see is less complex than ifeverything were shawn at the same

time. The difference in our approach is that the aspects are user-definable.

The second concept used for visualizing a part of the modei oruy is the view. As briefed

earlier, a view represents process information related to one agent, a subset of the

roles/responsibilities ofan agent, or a source of information such as a document. 1t has the

same structure as a process model, with the same entity and relatiooship types (or a subset

of them), but it has a reduced scope. For example, it may cover only sorne parts of a

review process, and may oot contain all the details. An example ofa view for the model in

Figure 5 is illustrated in Figure 9. In this analyst's view, we do not have the details of the

review activity. We can assume that the analyst is aware of the fact that s/he should

submit hislher documents for review, but is not aware of how exactly the review is

performed. AIso, notice that sorne types of information might not be provided by one

view: in our case, the role assignment and activity duration information is not provided in

this view.

5 This metric is based on the categories of tooi usage ("very Iow" to "very high") used in COCOMÛ 2.0
[BCH95]. Such categories are based for example on how much is the tooi integrated with others or with the
process. In COCOMO, the tooi usage factor is used as a cast driver ta heip estimate the effort in a project.
6 see Section 2.1.

49

•

•

Legend: see Figure 5

Figure 9 - Example ofa view: the analyst's view

Other agents in the process might have different views. For example, the reviewer could

provide additional details on the specifie tasks performed during the review (see Figure

10), because s/he is involved in that process. On the other hand, a manager would

probably know about the general activities, but not the technical details such as the

information flow. However, such a person would typically have information on costs and

schedules, as weIl as people assigned to each task. Figure Il shows an example of the

manager's view.

1~1
i

Legend: see Figure 5

Figure 10 - Example ofa view: the reviewer's view

50

_ ana!ys!
~ reveewer•

docwnent ana/ys!
production 30 days

Legend: see Figure 5

1 .
1

. 1reveewer
reVlew . 2 days

•

Figure Il - Example ofa view: the manager's view

The type of information a view may contain is user-definable (requirement RJ, Chapter

Three), through the specification of the view type. We define a view type as a subset of

the aspect types it may contain.

view type = {list of aspect types}

The view definitions for our views above are as follows:

technical view type = {activity decomposition, information flow }

(view type used for the analyst's view and the reviewer's view)

managerial view type = { activity decomposition, role assignment, activity cost }

We can also extract different aspects of a view, just like for models. As an example,

Figure 12 and Figure 13 show the activity decomposition aspect and the informationflow

aspect of the analyst's view in Figure 9 respectively.

Legend: see Figure 5

Figure 12 - Activity decomposition aspect ofthe analyst's view

51

•

•

Figure 13 - Information-flow aspect of the analyst's view

Notice that these two concepts (aspect and view) are orthogonal, and that one can take a

view of a given aspect (from an complete model), or an aspect of a given view. For

example, the information flow aspect oÎ the analyst's view in Figure 13 can be seen as an

aspect of the analyst's view shown in Figure 9, or a view of the information f10w aspect

shown in Figure 8.

This combination of aspects and views permits one to visualize parts of a large process

model at any given time, frOID a specific agent's point ofview, and to focus on the desired

kind of information.

4.3 Attribute and relationship generators

Often, desired information can be generated from other information contained in a model

(or a view). For example, if the coding activity (represented by a specific node in a

process model) produces source code, then the entire software process (represented by the

root node of the model) also produces this source code. Yet, another example is that the

cost of an activity is the SUffi ofthe cost ofthe sub-activities.

The above examples are related ta entity decomposition in a process model, but we can

also generate information from other kinds of relationships. For example, we can generate

artifact-to-artifact dependency relationships by exarnining the activities that use sorne

artifacts to produce others. For example, if the coding activity requires a design document

in order ta produce the source code, then a dependency relationship between the design

document and the source code can be generated. Similarly, role-to-artifact or role-ta-role

52

•

•

dependency relationships can be generated based on the information flow aspect

(production and use of artifacts in activities) and the specification of the roles performing

such activities.

It is important to note that the purpose of generating such relationships is to derive

information from a process model to support technical and managerial decisions. The

approach of generating information rather than explicitly representing it in a process

model would save space (at the cost of computation), and reduce considerably human

rime and effort spent on eliciting redundant information.

We have identified two kinds of generators: hierarchical generators (based on the entity

decomposition), and linear generators (for example the dependency relationships

generated), which are described in the following sections.

4.3.1 Hierarchical generators

For the hierarchical generators, both relationships and attributes cau be generated.

Generating relationships

Depending on the type of relationship, the way of generating the information at upper

levels in the entity decomposition is different.

For example, if a designer is involved in the high-Ievel design activity, then s/he is also

involved in the entire design activity, and even in the entire project (see Figure 14). This

type of generation is called "aggregation", because the relationships in one entity are the

union of the relationships ofthe children entities. For completeness with the operations on

sets, we have also defined the "intersectionll type, but up to now we have not found any

case where this type could be applicable.

53

•
requirement
analysis

ana/ys!

high-Ievel
design

designer

low-Ievel
design

esigner

designer

high-Ievel
design

designer

low-Ievel
design

esigner

Legend: see Figure 5
bold characters (in gray area): generated information

Figure 14 - Generating the relationship "activity is-performed-by raIe"

In sorne cases, the entities at upper level should have visibility of only those relationships

to objects that are visible to other entities outside its subtree. For example, in the case of

the ordering of activities, the precedence relationships among sub-activities are not

important at upper levels (see Figure 15). The same happens with the flow of artifacts

among activities. The temporary artifacts created by sub-activities, and used only by other

sub-activities, should not be visible to the parent activity (see Figure 16). This type of

generator is called "extemal", because it generates only those relationships to entities that

are visible outside ofthe subtree.

Iproject 1

high-level low-Ievel
t---II"design design

Iproject 1

high-Ievel low-Ievel
design--Iaoldesign

•
Legend: see Figure 5

clark arrow: generated relationship

Figure 15 - Generating the relationship "activity precedes activity"

54

• lproject 1

Legend: see Figure 5
dark arrow: generated relationship

Iproject 1

•

Figure 16 - Generating information flow relationships

1t might happen that for a specifie type ofrelationship, we do not want to generate it. For

example, there are different levels of management, and the person managing a sub­

activity (e.g., the design phase) is usually not the same as the one responsible for the

whole project. So we cannat generate the relationship "leader manages projectIf frOID the

relationship "leader manages design". In such a case, we use the dummy type of generator

"none".

These different kinds of generators have been identified based on our experience with our

modeling schema and peer reviews. They might still not be complete, but this does not

affect the result of the elicitation process: we always have the choice of capturing all the

relationships instead of generating them.

Generating attributes

As for the relationships, there are many ways ofgenerating attribute values at upper levels

in the entity decomposition. These depend on the type of attribute (number, character,

boolean, string, or time), and also on the meaning of the attribute. Examples are provided

below, with the different types ofgenerators.

55

•

•

For identifying the different types of attribute generators, we need to look at the possible

operations on these attributes, applicable to a set of values (one value per child entity).

These operations should he commutative in arder ta be applicable to a set of values that

are not ordered (the ordering ofchildren for a parent entity is not meaningfùl).

In the case ofnumbers, the standard commutative operations are the "add" and "multiply".

We can aIso use the operations on sets of numbers ("max" and "min") related to the

comparison operations. So this gives us four types of generators: "sum", "product",

"max", and "min".

An example of an attribute that can be generated using the type "sum" is the cost of

activities (see Figure 17). Assuming that the design activity is composed of the high-Ievel

design and the low-Ievel design (and nothing more), and that it costs 4000$ for producing

the high-Ievel design, and 12000$ for the low-level design, then the design activity

composed of these two aetivities costs 16000$.

Idesign 1 Idesign 1

i 1cost=16000$

1 1

=?
1 1

high-Ievel low-Ievel high-Ievel low-Ievel
design design design design

cost=4000$ cost=12000$ cost=4000$ cost=12000$

Legend: see Figure 5
bold characters: generated information

Figure 17 - Generating the cost attribute

The eomparison operators ("max" and "min") eould be used when the number represents a

seaIe (usually for qualitative measures). For example, lets assume that we have an

attribute expressing the level of stability of different parts of a software on a seale [1 ..5]

(1 meaning "very unstable", and 5 meaning "very stable"). If all parts of a software are

stable (4 or 5 on the scale) but only one part is really unstable (Ion the seale), then the

overall software might be considered as very unstable as weIl. So in this case, the attribute

56

•

•

for the overall software would be generated as the minimum of the values related to each

of its parts.

Up to now, we have not identified cases where the "product" type of generator could be

used.

Logical operators should be used for boolean attributes. The onIy two such operators that

can be applied to a set of values at the same time are the "and" and "or" operators. An

example for the "andU operator is the attribute "validated" for artifacts: an artifact is

considered as validated only ifall of its subparts have been validated as weIl. For the U or"

type ofgenerator, an example can be the attribute "risky" for activities: an activity is risky

ifany of its sub-activity is.

For the other types of attributes (i.e., character, string, and time), the only types of

generators allowed are the "min" and "max", except for the string attributes, which cannot

be generated. For example, in the case oftime attributes, a "min" generator should be used

for a start time (an activity starts when the earLiest sub-activity starts), and f1max"

generator can be used for end time (an activity finishes when aIl the sub-activities are

finished).

As for relationship generators, we also allow the use of a "none" type of generator, when

an attribute can not be generated. For example, the duration of an activity is not

necessarily the SUffi of the duration of the sub-activities, because these could be performed

concurrently. Of course, this information could be generated by some more complex

techniques such as PERT/CPM, but the goal here was ta identify generic types of

generators that could be applicable ta many attributes. It is always possible ta avoid

generating the values, and instead capture themaIl in the mode!.

57

• 4.3.2 Linear generator for relationships

Sorne kinds of information can aIso be generated from relationships other than the entity

decomposition as in the previous section. For example, artifact dependency relationships

can be generated frOID the information on the artifacts used by activities for producing

other artifacts (i.e., the relationships "aetivity produces artifact" and "artifaet is~consumed­

by aetivity"). Figure 18 illustrates such generated relationships. This kind of generator is

used for creating new types of relationships based on the existing ones, avoiding the

elicitation and storage ofsuch relationships.

requirement
analysis !coding r+~cec~

•

Legend: see Figure 5___+- artifact is-needed-for artifact (generated relationship)

Figure 18 - Generating dependencies from information flowaspect

Notice that in our example above, the specifications could be further decomposed into

separate requirements, and the design could be decomposed into specifie design modules.

In such case, the artifact dependency relationships generated would actually reflect the

trace between each module and its requirements. Similarly, such traceability could be

obtained for code modules and test cases.

For this kind of generators, we cannot just use types ofgenerators, such as for hierarchicaI

generators, for specifying how the relationships should be generated. The specification

should include the relationship types involved, and the relationship type created. In our

example above (Figure 18), this specification would be:

58

•

•

existing types: artifact is-consumed-by aetivicy

aetivity produces artifaet

new type: artifaet is-needed-for artifaet

This means that ifwe have a relationship of type "artifact is-consumed-by activity" frOID au

artifact Dl to an activity A, and a relationship of type "activity produces artifact" from this

activity A to another artifact D2, then we can generate the relationship of type "artifact is­

needed-for artifact" from artifact DIto artifact D2. As an example, the relationship

"specifications is-needed-for design document" cau be generated from the relationships

"specifications is-consumed-by design" and "design produces design document".

The ordering of the relationship types specified is very important. The following structure

must be used in the specification ofthe generator:

existing types: A < relationship_type> B

B < relationship_type> C

new type: A < relationship_type> C

The cornmon entity in both existing relationships (B above) should always be the second

one in the fust type, and the fust one in the second type. Ifthis causes a problem (i.e., the

relationship types are defined from B to A, from C to B, or from C to A), we cau use the

complementary type of a relationship type. For example, the following generator

definition does not have the proper structure:

existing types: activity is-performed-by role

activity produces artifact

new type: role develops artifact

but we cau use the complementary type of "activity is-performed-by raie" ("role performs

activity") ta fix the problem7
• So the correct generator definition would be:

existing types: role performs activity

activity produces artifaet

new type: raie develops artifaet

7 See Section 4.1 for more details on the relationship types and their complementary type.

59

•

•

This concept of Iinear generators using two existing relationship types can be generalized

to any number of existing types. For example, one may want to generate dependency

relationships among roles: a persan requiring an artifact to do his!her task depends on the

person developing this artifact. Here is the specification of the generator that would he

needed:

existing types: raie performs activity

activity uses artifacr

artifaet is-produced-by activity

aetivity is-performed-by role

new type: role depends-on role

Such multi-types generators can he specified using the regular generators (containing only

two existing types), by specifying intermediate types that are used in the following

generator. For example, the above multi-types generator is specified using the following

three regular generators:

1. existing types: role performs activity

activity uses artifact

new type: role uses artifact

2. existing types: role uses artifact

artifact is-produced-by aetivity

new type: role depends-on aetivity

3. existing types: role depends-on activity

activity is-performed-by role

new type: role depends-on role

Generating the final type is then performed by generating the intermediate types in the

sequence above. The system cao find such sequence of generators based on the available

types and the final type to be generated.

60

•

•

4.3.3 Summary

As we have seen in the previous sections, sorne information cao be generated frOID a

process mode!. We cao use the entity decomposition structure for generating new

relationships and attributes at upper levels of abstraction (hierarchical generators).

Relationships of new types (e.g., Ilartifaet is-needed-for artifact") cao also be generated

using other existing relationships Ce.g., "artifact is-consumed-by aetivÎry" and "activiry

produces artifacr"). These generators save significant human time by not having to elicit

and keep redundant information in a process mode!.

The use ofthese generators in our elicitation system, V-elicit, is shown in Chapter Six.

4.4 Deflning types in the V-elicit system

Each type of information (entity types 1relationship types 1attributes 1aspect types / view

types) to be used in the different views and models should be defined prior to their use in

the elicitation process. It is not possible to specify a model without an underlying

modeling schema. Typically, the schema would be defined prior to the elicitation process,

but modifications can be made dYfiamically during such process when new needs are

discovered.

Sïnce these types are usually similar from one process elicitation effort to another, their

definition is stored in a library oftypes. During a specifie elicitation effort, the elicitor can

select the types required in his!her situation from the list available in the library.

For each concept defined in sections 4.1 Centity, relationship, and attribute) and 4.2

(aspect and view), there is a list of user-defined types in the library, with the possibility to

add more types, or to view/modify the characteristics ofthese types.

61

• For example, in Figure 19, we can see the list of entity types and the subtypes related to

the entity type highlighted. Buttons are provided below for adding new types and

subtypes. Deleting types is not allowed for security purposes (Le., ifa model is still using

that type). By double-clicking on one type or subtype, a window such as in Figure 20

appears, showing the information related to that type. In our case, the information related

to an entity type is its name and a textual description of this type (if necessary). AlI

information can be modified (and saved using the left button), except the name. A similar

window is used for defining a new type.

Figure 20 - Specification ofan
entitytype

•

Figure 19 - List of entity types defined

For relationship types and attribute names, similar windows are used (one with the list of

types, and one showing the information on that type). In the case of relationship types, the

following information should be defined through. the specification window: the type itself

and its complementary type, and the type of generator to be used (for hierarchical

generation ofrelationships). For attribute names, the following information is needed: the

name, the type of the attribute (integer, float, boolean, character, string, or time), the type

of hierarchical generator ta be used, and the entity type that can have such attribute (e.g.,

the related entity type ofthe "cost" attribute can be "activitylt).

62

• Having defined the basic entity, relationship,

and attribute types, we can then use them to

define the set of aspects8 to be used. The fust

window shown just lists the aspect types

(Figure 21), permitting one to add more (or

delete sorne) through the buttons at the bottom

of the window, or visualize/modify aspect types

by double-clicking them.

•

Figure 21 - List ofaspect types defined

The definition of the aspect type in term. of entity types, relationship types, and attribute

names is performed through a window such as that in Figure 22 (which defines the aspect

type activÎty decomposition). The left part contains the available entity/relationship/

attribute types from the library. These can be selected for the aspect type being defined, by

double-clicking them (which moves them to the right part). Double-clicking on the types

in the right part removes a type from the definition of the aspect type. These selection

operations can aise be performed through the buttons in the middle part.

8 As a reminder, an aspect (see Section 4.2) is a subset ofentities, relationships, and attributes types found in
the entire mode!.

63

•

•

Figure 22 - Definition ofan aspect type (activity decomposition)

The button "define layout" at the bottom of the window permits one to define the wayan

aspect will be presented (as a graph) to the elicitor or the users. This is the specification of

the graphical notation to he used for each aspect. 1t is defined within the aspect type, in

order to use a consistent graphical notation across views. For example, in Figure 23, the

graphical notation to he used for the Ifactivity decomposition" aspect is the following: the

activity is represented as a black rectangle, and the relationships of type "aetivity is­

composed-of activity" is represented as a black solid line. This can be changed by selecting

a new shape for an entity type or relationship type, and then clicking on the specific

button "change". When the aspect contains more than one entity type or relationship type,

the style selected on the right is the one related to the type selected on the left.

64

•

•

Figure 23 - Definition of the aspect layout for visualization

For defining view types, similar windows as for the aspect type are used: one containing

the list of view types, and one for selecting the aspect types contained in the view type

being defined. No layout information is needed because it is part of the aspect type

information.

4.5 Alternative data structures rejected for the schema

As we have seen in the previous sections, the modeling schema used in our system is

based on entity-relationship diagrams. This permits one to have a user-definable schema,

that can suit the specifie needs of different organizations or even different processes

within an organization.

Most of the CUITent process modeling languages do not allow such user specification of

the schema to be used: the user is constrained to use the notation provided with the

language, even if it does not provide exactly what they need. For example, one might need

65

•

•

both actor dependency relationships (as in [YuM94]) and control flow information (as in

Statemate [KeH89]) in the same process model. However~ this is usually not possible in

other modeling languages. In the few languages where this is possible~ the cast of such

flexibility is a lack ofautomated analysis ofthe mode!. For example~ the X-elicit tool built

previously at McGilI University [MHH94] permits one ta define the modeling schema~

but no analysis is possible because of its attribute (textual) structure. Also~ few languages

aIlow comprehensive modeling of both process and product information. For this reason~

we rejected the idea ofusing existing languages.

However~ other data structures could have been used instead of the entity-relationship

diagram (ERD) structure. Because of the generally hierarchical structure of the process

information~ we could have structured the entities in a tree structure. The problem with

this structure is that the elicitor is constrained to model a process or a view in a top-down

fashion~ and is not free to model the information in the manner in which it is gathered.

This is not always a natural way of specifying the process for the people providing such

information.

Another solution would be to use an object-oriented structure instead. This structure

seems ta be easier for generating relationships using the "is-a" type of relationship

(through inheritance). However~ having sorne special types of relationships (Uis-a" in this

case) increases the complexity of the most time-consuming aIgorithms by having to deal

with different implementations of the different relationship types. For this reason we have

rejected such a structure.

Entity-relationship diagrams have already been used in software process modeling

[pen89~ Gal92~ ADH94]~ but often for products only~ or for functional descriptions only.

But Feldman and Fitzgerald have shown that we can model behavioral information (facts

and rules) using ERD [FeF85]. Thus~ this structure is suitable for behavioral modeling of

aprocess.

66

•

•

4.6 Summary and analysis of the modeling schema used

In this chapter, we have presented the modeling schema that is used in our software

process elicitation too1, as weil as how the information can be structured (by aspects and

views), and how to generate information from the existing one. Our mode1ing schema is

based on the entity-relationship diagram structure, and is user-definab1e, meeting our

requirements R2 and R3 in Chapter Three.

The property of being user-definable cannot be found in most of the current process

modeling languages. In the cases where it is user-definable, the modeling tool does not

perform automatic analyses on the information modeled.

It is to he noted that for model presentation and editing purposes, the ERD is probably not

the best too1. It lacks formai notation (e.g., to specify a precondition in a mathematical

way), and presentation conciseness. Other higher level existing tools such as the ones

described in Appendix D (e.g., APEL, Statemate, etc.) could overcome these problems.

However, as an internal representation of a model, ERD is flexible, and cau he linked to

other presentation tools. For this purpose, a suitable translator would be necessary. Sïnce

this issue does not affect the elicitation techniques developed, it does not fall within the

scope ofthe work for this thesis.

A limited portion of the ERD features have been used so far into our modelling schema.

In particular, n-ary relationships, cardinality specification, and attrihutes of relationships

have not been implemented yet. Such features have not been required for the types of

information modelled during our research. Since these were not necessary for the

validation ofour research hypothesis, we decided to postpone their implementation.

The models and views built using the described modeling schema are used as inputs and

outputs ofour elicitation process, as described in the next chapter.

67

•

•

Chapter Five - Elicitation approach and scenario

In this chapter, we describe our proposed elicitation approach that meets our requirements

stated in Chapter Three, through a demonstration of our prototype system (called

V-elicit). Subsection 5.1 presents the overall approach, the different steps, and the links

between them. In subsection 5.2, each step is described using an example. Finally, the last

subsection summarizes the approach and techniques used. The details and aIgorithms of

the techniques developed are presented in Chapter Six.

5.1 OveraU approach

The key elicitation steps of our approach are depicted in Figure 249
. In Table 4, each

elicitation step is mapped to a technique developed in our system or to an external tool

used in our approach.

The purpose of step 1 (plan for elicitation) is to understand what should be elicited. We

should know the boundaries of the process to be elicited, the kind of information to be

elicited, the level of details needed by the users of the elicited process model, and

who/what can give us the process information required (e.g., agents, existing process

documentation, etc.) (requirements R2 and R3).

9 Notice that the notation used here for presenting this elicitation process is not an entity-relationship
diagram, although ERD could have been used, showing an information-flow aspect (the steps are activities,
and the text on the arrows are artifacts). As explained in Section 4.6, other notations such as the one used
here can be more concise and easier to understand.

68

•

•

user's
11- plan for elicitation I~

modifications
needs needed

goals~ sources, and type 01 ~odifications
information to be elicited eeded

process information
~~~ 2- gather viewfrom sources

19ather infor- 19a~er in~or- I...rga~er in~ar- 1infonnation
4--

mation view 1 matIon Vlew 2 matlan VIew N

elicitedl /problems
views found

,Ir ,
!check view 1 \check view 2 1 ... \check view N 1 3- check for

~~
intra-view

~

consistency

consistent views
,

1+ identify common components across views 1

list ofmatches and views

5- merge views 1

merged model,
16- check model qualit;' 1

consistent
problems found modified model merged model

7- modify model 1

Figure 24 - Elicitation steps (dataflow)

elicitation step technique 1 tool
1- plan for elicitation elicitation planning
2- gather view information process information editor

(tool: X-elicit and Dotty)
3- check for intra-view consistency constraint verification
4- identify common components across views component matching
5- merge views view merging
6- check model quality constraint verification
7- modify model process information editor

(tool: X-elicit and Dotty)

Table 4 - Techniques / taols assaciated with each elicitation step

69



•

•

Using this information, in step 2 (gather view information), we can then gather the

information from different sources, using a process information editor (requirement RI).

There is one instance of such an editor for each view. We are using the existing X-elicit

system developed at McGill, and the graph visualization too1 Dotty, for this purpose. In

step 3, we should check for intra-view consistency for each view developed (check for

intra-view consistency), iterating with step 2 as necessary (requirement R4). Again, there is

one instance of the consistency check step for each view. Notice that each view can be

treated separately, and that we do not need to wait until we have a1l the views elicited to

start checking them.

Once ail the views have been modeled and checked, we then need to merge them into a

final mode!. However, we should fust find the common elements in the different views, in

step 4 (identify common components across views) (requirement RS), so that in step 5

(merge view), we cau detect and resolve the inconsistencies across the views, and merge

the views incrementally into a final model (requirements R6, R7, and R8).

In step 6 (check model quality), we check the quality of the final model, and iteratively

make modifications ifnecessary in step 7 (modify model) (requirement R9). The model is

then checked against development policies (requirement RIO), for providing feedhack.

At any rime after the "gather view information" step, the elicitor can return to this step for

modifying the views. Views can also be added or removed at any time, or the type of

information to he elicited can be modified, by hacktracking to the "plan for elicitation"

step. Whenever the views are modified, they should go again through the process of

checking intra-view consistency (step 3), view merging (steps 4 and 5), and model

verification (steps 6 and 7). The techniques used in such cases are not different than the

ones used when these steps are performed for the fust time.

The system deve10ped (V-elicit) is aimed to show ail these elicitation steps and their

ordering. The techniques and too1s used in aIl these steps are described in subsection 5.2,

70



•

•

through an example. It should be noted that each of these steps uses the modeling schema

presented in Chapter Four.

5.2 Scenario for each step

This section describes the techniques and tool support listed in Table 4~ used in the steps

identified in Figure 24. The example used throughout this section to demonstrate the

different techniques presented is a "system analysis process", containing sorne documents

ta be produced and different levels of reviews. Three views are used:

• Bob: an analys4 who knows which documents are ta be produced because he is

involved in the production of those documents, but he has a weak knowledge of the

review process.

• Peter: the manager, who has a broad knowledge of the process, but does not know the

details.

• William: a reviewer in the IT team, who can provide details of the review process

(especially the part where he is involved), but cannat tell about the document

production part or the other levels of review.

Figure 25, Figure 26, and Figure 27 show the information that Bob, Peter, and William

provided respectively during their interview1o. The figures shawn here do not contain the

entire information related ta each view (for simplicity of the graphs). The reader should

refer ta the Appendix A for the complete information.

10 This is the information each of the three persons knows, even before the elicitation process begins. That is
why this information is not presented in the fOnD the elicitor would see it in V-elicit. The step ofputting this
information inta V-elicit is described later in this section.

71



•

Legend:

1 1 activity

c=:::> artifact

r-'--, activity
decomposition

number duration (in days)

-. artifacts
produced/
consumed
by activities

--. activity
precedence
relationships

Figure 25 - Bob's partial vie'\v

•

1system analysis 1

_-------11.---------,
1

Idocument-production 1

Legend: see Figure 25

Figure 26 - Peter's partial view

72



•

•

Legend: see Figure 25

Figure 27 - William's partial view

By exarnining the three views presented above, it becomes readily clear that the process

for rnerging these three views ioto one model is not trivial.

In V-elicit, we should first create a new project to elicit, or select a project being elicited.

This is performed in the left part of the window shown in Figure 28. On the right part, we

can specify sorne global characteristics of this project if necessary. An initial set of

characteristics is provided, but one can add or delete sorne using the buttons at the bottom

of the window. These characteristics do not affect the elicitation process. They can be

used for project categorization and analysis.

73



•

•

Figure 28 - Creating or choosing a project for elicitation

When clicking on the "elicit projeet" button, the steps to be performed are presented in a

window such as that in Figure 29. Each of the steps shown are described in the following

sub-sections. Section 5.3 summarizes our elicitation approach. Notice that the system

presents the ideal ordering of the steps using arrows, but this ordering is not enforced.

Backtracking, as described in Figure 24, can be done by selecting the appropriate step.

AIso, for an expert elicitor, this is more convenient for going back and forth in the

process, or for skipping sorne steps and trying others informally.

Figure 29 - Steps for the elicitation process

74



•

•

5.2.1 Step 1: Plan for elicitation

There are three sub-steps in elicitation planning: defining elicitation goals, list the

potential sources of information, and choose the sources of information to use. These are

shown in a window such as in Figure 30, opened when clicking on the "Plan Elicitation"

button in Figure 29.

Figure 30 - Steps for planning the elicitation process

When defining the elicitation goals, we should select the type of information (aspects)

that we need in the final modeL This is performed in the window shawn in Figure 31,

opened from the fust button in Figure 30. In the top-left corner of the windo\v, there is a

list of aspects that are available for selection. By selecting one or more desired aspects

from this list, theyare moved ta the "selected aspects" list in the top-right corner. This

information will be used in later steps, ta ensure that the view information covers all the

aspects and that these have been considered in merging the variaus views. The system

also guides the elicitor in collecting sorne other useful information such as the scope of

the process ta be elicited, the level ofdetails needed, who is going ta be the user of the

elicited model, etc. (see lower part of Figure 31). The template for entering this kind of

information can be modified to fit the elicitor's needs, through the "add goal" and "remove

goal" buttons at the bottom. Buttons are also provided for saving information, coming

back to the last information saved, and clearing all data entered.

75



•

•

Figure 31 - Specifying elicitation goals

In the second elicitation planning sub-step (see the "list sources" button of Figure 30), the

elicitor should List the potential sources of information, and the roles and responsibilities

in the case ofagents (Figure 32). Three lists are used, and the connection between the lists

is done through the highlighted elements: when an agent is selected (highlighted), his/her

list of roles appears in the middle part of the screen, and when a role is selected, the

associated responsibilities are shown on the right scrolled list. Information is entered in

these lists through the type in boxes and the addldelete buttons below each scrolled list.

Notice that the elicitor may decide not to enter responsibility information if this is not

76



•

•

going to affect the elicitation process (usually when the view related to that agent should

cover all his/her responsibilities). Buttons for saving the information entered or for

coming back to the last information saved are also provided.

William
Peter

. Matbiew
process_doCOlllent

Figure 32 - Listing the potential sources of information

In the case the source of information is not an agent (e.g., "process_document" in Figure

32), it should be entered also in the list of sources of information, but no role or

responsibility information is entered in the second and third liste

The "next step" button in Figure 32 opens the window in Figure 33. This window is used

for specifying the type of information each source can provide. The information frOID the

previous window is displayed, and the elicitor can enter a view type for the role specified

(fust box under the label"viewtype"), or even for each responsibility associated to the raie

(one box per responsibility identified in Figure 32, if any). This view type defines the list

of aspects available frOID this source, as described in Section 4.2. When the view type is

not entered for one of the responsibilities, it is assumed to be the same as the last box

above it containing a view type. In. the case that no responsibility (or even no role) is

77



• specifie<L one box only is shown under the label "viewtype" with no associated

responsibility.

t:m.
Willi..
Peter
Pfathiev
process_docoIIlent

I·
·'~·'~

Figure 33 - Specifying the types of information for each source (view type)

•

The potential list of sources entered in Figure 32 is then used, in the last elicitation

planning sub-step (see the third button in Figure 30), to choose the definite sources from

which to gather the process information (Figure 34). The selection is performed in the

same way, in the top part ofthe window, as for aspect type selection in Figure 31. In order

to help in choosing the views, the information entered in Figure 32 and in Figure 33 is

displayed on the bottom of the window in Figure 34, for the view highlighted in the list.

When selecting a role in the list on the left, the related responsibilities are shown in the

list on the right.

78



•

•

Figure 34 - Choosing sources from which to elicit

Ideally, we would like to obtain information from all the agents, but this is rarely possible.

Sorne agents may not be available, and the labor costs are generally high for those

available. So we should select a representative subset that will coyer the process, at

different levels of details. Ho\vever, sorne redundancy is helpful for validating the

information gathered. This subset of sources is used by the system for managing the

elicitation process, by making sure that each view is elicited and checked for consistency

before we merge aIl the views.

5.2.2 Steps 2 and 3 : Eliciting views

Having defined the list ofviews, and the type of information we can obtain from them, we

can now elicit each view. In this second step, presented in Figure 29, we are defining the

consistent views independently. When opening this step, we fust have to choose the view

79



•

•

on which we want to work (see Figure 35), and then the steps are presented for eliciting

this view (see Figure 36).

Figure 35 - Selecting a view to be elicited

Figure 36 - Steps for eliciting a view

The fust two steps ("enter view" and "visualizen
) are related to Step 2 - Gather view

information (see Figure 24), and they are used for entering or modifying the information

related to this view in the system. This is described in Section 5.2.2.1. We should aIso

check that the views bullt are consistent (Step 3 - check for intra-view consistency, in

Figure 24). This is performed in the last step ("check view"), and is discussed in Section

5.2.2.2 below.

80



•

•

5.2.2.1 Step 2: Gather view information

In this step, a view (e.g., Figure 25) is entered into the system. There are three features

that can be used here: "draft", "Xwelicit", and "graph". The "draft" part is used as a starting

point when the information gathered is not structured at all; it permits the elicitor to enter

the information in a completely unorganized way. In the case that the information is

already structured, or after structuring the information gathered using the "draft" part, the

"Xwelicit" part can be used. This part is actuallya link to the X-elicit tool, built at McGill

[MHH94], which is a textual process-model editor. It helps in structuring the information

by entity decomposition, and in showing the relationships (and attributes) as attributes to

the entities. In both cases ("draft" and "X-elicit"), the information can be visualized

graphicallyas it is edited using the "graph" part. These three parts are detailed in the rest

of this section.

The "draft" part is used to map unstructured information (mainly from interviews) onto

the V-elicit modeling schema. In general, the existing documents used as sources of

information are already structured in a way that shows the decomposition of activities.

But this is not the case when dealing with people: they often start talking about one part of

the process and then jump onto another part, or start by giving details and then provide the

general structure of the process. In this case, a structured editor needing the

decomposition information fust cannot be used until all the information is gathered and

analyzed by the elicitor. A more efficient way would be to enter the information as it is

gathered, and let the system organize the information at a later point in time. That is

precisely what this "draft" part does.

This unstructured editor is simply a text file grouping the relationships of the view by

relationship types. The fust button ("Prepare file" in Figure 36) creates the file and lists the

relationship types to be elicited (from the elicitation planning step). Figure 37 shows such

file for Bob's view. The elicitor can then edit this text file, and enter the relationships by

specifying the two entities involved, under the section related to the appropriate

81



• relationship type (see Figure 38). The file is translated into the V-elicit modeling schema

through the rrLoad file rr button in Figure 36.

R8..TYPE: actlvlty produces ar:tifaet

'REl:.TYPE: rilfact-.i~ :actlYl~~.

RELlYPE: ~tivlty Pt~ aCtlvlty .l .
1 RaTYPE: activity is-perf'ol"llled~ raIe

1 RaTYPE: activit!:f is-lIlè!nas~ raIe

1 END
1

g 1

r~
--" -::;"~.~~:-~:::-=:7~ ..::~~~~~....--;'~~..~~'::'-..~:~:'·--:~ ~_~-.-:.:':_~--- ~~_ .._~~_?_

......:.,t..
...'.' l''}..~,J;..,.. ~r ........ : .",,\:7;' -.;·;0-.'·;..-"".........01_ -.-.'_ .......-_': t" ...,;r .•- ................ •- ..... ~,.~ -" _""' •.• ~...; • .;-..,.;.; ~ ,.

Figure 37 - File generated in the "draft" part

RELTYPE: acti ltyi~ acti....ity

RELTYPE: actl ity.~ artifact

,ii~~f~';~~doc
REL~:··~ufaft.t~.. aetivitY

RELTYPE: activity precedes actlvit!::t
j-

describe_cootext cfescribe_objectives ~.:
descrlbe_obJectives cfescriœ_alternatives ~! !-
R8..lYPE:. activity •is-perforllled-:b!i. raIe _ • f

·~~{·aà~~~ty-:l~.;~~·; .
'END ~
'~-::.-~-,.:.---;n ..~~.0~~:·~~~~~~~~~~:-:-::--:;.-'~.-":~T .. -.- ... '~'_:"'J

--"

Figure 38 - Example information entered

(unstructured) using the "draft" part

•

Once the view is translated to the V-elicit structure, it can be visualized using the "graph"

part. Figure 39 shows an example of such graph. The graph represent only one aspect,

selected by the user (Bob's information flow aspect in our case), for reducing the amount

of information to visualize at once. The graphs are actually displayed in a tool called

"Dotty" [KoN96].

Figure 39 - Bob's information fio'v aspect (incomplete) as specified in Figure 38

82



• Such graphs can help in understanding the information currently entered, and in gathering

more information. For example, the elicitor can ask the agent whether his/her view being

elicited is correct, and inquire additional details. The appropriate changes can be made to

the text file, and then the V-elicit views are updated by clicking the "Load file" button

again.

Notice that the "draft" part cau be used with any user-defined re1ationship types, satisfying

our requirement R2 and R3. Also, different text files are used for each view, permitting

one ta enter separately the information from different views (requirement RI).

These text files are useful in getting started with one view, but they become more and

more difficult ta understand and modify as the size <lf the files increase. A tool that cao

show the information in a structured way is needed i"or this purpose. However, this tool

should also be tailorab1e such that user-defined types can be used. For these reasons, we

have chosen to use the X-elidt too1, adapting its attributes to suit our specific needs. This

link is represented bythe "X-elidt" part in Figure 36.

The button "Open" in Figure 36 opens the X-elicit t<>ol (see Figure 40) for the specified

views, and the button "Translate" (in Figure 36) is for parsing the view information into

the V-elicit system. As for the "draft" part described ~bove, an iterative process of aspect

visualization and view information changes can be used to help in understanding the

information currently entered and getting additional information.

In X-elicit, the information is entered in templates (see Figure 40) containing a list of

attributes to be filled (the attributes define the types of information). There is one such

template for each type of entity (the type is shown on the title bar ofthe window, with the

name of the project being elicited). Each entity is described in such a template, with

specific values for its attributes. For example, the template for an activity has attributes

"Goal", "Purpose", "Artifact-Input", "Artifact-Output", etc.

83



•

•

~~~'~:~,~i'COS "iIœ~

c~~~:~~Z;R}i.,:~ ..:i~.;~~·:~':L ~·~.:;~(~~~l~j;~~~~I:~~~):~:f·;dI.;~·~~~;;i;.~:.:tL·.~·.;:~.~':':' ':,?~ 1

~?i#.~7J\fâJrtè"icf0~7Tt:!~~;·:~~~i:Blij~?,;;::~:t:fH~}"~~17;;~,t::·:;~'22!'::~.~~:\i~;?~:;::;~::r:;?t'~~:··:~:·,. ~

o.Ô~,-.·

Ptrrpo$l!
Artlfaet-Input
Mlt'act-Output
Perfonner
Procedure .
E.ilt~Y:':ÇrItÎ'!Jia
5'\lt.:'::;Crnerrà ;:

:e~~~~~~~:?·: ...
o"Wrier~~~>::;'·; ;;, .", ".~.

M8SsageS..;Selit
M~ges-Recetvea

ReSources-Neeoea
Constra!nt$~eyed .
emc:ess~Ste~s .•.. ': ...,

~.::,'-i- ',.';-

Figure 40 - X-elicit tool

Each attribute has a cardinality: "1 " ifonly one value is allowed~ and "n" if we can have a

list of values. A "d" indicates that we can get more information on this attribute in another

template. For example, the "Process-Steps" attribute represents the decomposition of the

current activity into sub-activities: for each sub-activity, the related set of information

(values of the attributes) can be shown in another template by selecting it and clicking the

"details" button.

Such a template can easily be modified because it is a1I defined in text files. So for each

view, we can specify templates containing onIy the type of information the associated

agent (or source) can provide~ as defined in the elicitation planning step.

84

• 1iI-l8Ii~y~~~~lS{~

AIe"~ Attributes·
~IIUIJM

"

.'

rs"';composed~of .,'. del!Y~rable-product!On 1
---~~------~

~~~:~~~e:'J~n'tl;liii~ii;ti')n~i\1i'~;/J> ... ~
Is-managed~by

Is-performed-by n
precedes n lT_team_review
follows n
consumes n
~roduces ,n document'·

Figure 41 - X-elicit adapted by our system: an example based on Bob's view

Figure 41 shows an example of a template for activities, used for Bob's view (see Figure

25, or Figure 77 to Figure 81 for complete details). It represents the activity "deliverable

production"ll, and shows its attributes (subtype and duration in days), and its relationships

with other entities (e.g., "produces" is the relationship of type "activity produces artifact").

Each relationship is reproduced twice: once for each entity type involved. For example,

the relationship "activity produces artifaetll is in the activity template as X-elicit attribute

"produces", and in the artifact template as X-elicit attribute "is-produced-by" (meaning

"artifact is produced-by activity"). When the information is translated into V-elicit, the

redundant information is checked for consistency. In the case when the relationship is not

specified in one of the redundant attributes (for example, if we have a value in the

"produce" attribute, but not in the "is-produced-by" attribute), the system asks the user

11 The title bar indicates that the entity is an activity. The keyword "is-composed-of' besides the name ofthe
activity ("deliverable-production") indicates that this template has been accessed from another template
where the entity was listed under the "is-composed-of' attribute.

85



•

•

whether the redundant relationship should be generated or not, so the elicitor can avoid

entering twice the information.

In addition, more checks are performed when translating the information entered in

X-elicit into the V-elicit database. We check that the values entered fit the V-elicit

attribute value type expected Ce.g., an integer for the attribute duration in days). We also

check that the values entered as relationships are existing entities (e.g., the value the

X-elicit attribute "produces fl should be an artifact that is already specified).

The X-elicit tool, separately, has already been used successfully for capturing and

organizing process information in several industrial-scale projects [MHH94]. The

limitation with this tool, however, is that it does not have any notion of views. The

information from different sources is entered in the same model, and when there is a

conflict, we are compelled to solve it immediately and modify the information given by

other people. This is not a problem when we have only one source of information, but is

not practical in many circumstances. The V-elicit system creates one model per view in

the X-elicit too1.

As discussed in Section 4.6, our choice of model visualisation and editing tools is not

necessarily the best one. A link to advanced graphical tools, for example, couLd make the

presentation of the models more concise than when using an ERD format (although ERD

is the format used for internai representation). The tools used here (X-elicit and Dotty)

have been chosen for their availability, and because they meet our basic requirements.

Figure 42 shows the graph of the activity decomposition aspect elicited for Bob's view

(the result of this step). The other aspects elicited are shown in Appendix A, Figure 77 to

Figure 81 .

86



•

•

Figure 42 - Activity decomposition aspect elicited for Bob's view

5.2.2.2 Step 3: Check for intra-view consistency

Once a view is elicited, the elicitor needs to check for inconsistencies within the view. For

example, s/he can check that each activity within a view produces sorne artifact. Because

the type of information represented in a view is user-definable, we need to provide a

mechanism ta the user for defining what an inconsistency is in a given view. These

inconsistency definitions are called constraints. Based on such definitions, the V -elicit

system can then check an elicited view against these constraints.

For example, the constraint each activity produces sorne artifact could be specified in

V-elicit as shawn in Figure 43 12 (this window is opened by the "constraints" button in

Figure 36). Using a mathematical notation for the sets and quantifiers, this constraint is

the same as:

'ife E {activity}- 3dE{artifact}-

TherelsRel(e, d, {nactivity produces artifact"})

12 In this window, a new constraint can be typed in the text area, or an existing constraint can be selected
through the "constraints list" bunon. The buttons on top of the window help in writing the constraint: the
"editor" button helps in structuring the constraint based. on the constraint-specification language (see
Appendix C), and the other buttons give lists of keywords to type (to avoid misspelling). The constraint is
checked by clicking on the "execute" bunon.

87



• The meaning of this constraint is that, for all activity e, there is an entity d of type

"artifaet" such that there is a relationship from e to d of type "aetivity produces artifaet"

(i.e., the activity e has at least one artifact as output).

Figure 43 - Example ofconstraint specification

When verifying the elicited view against the specified constraint, the system evaluates the

latter from left ta right. On a ForAII clause, it builds the set of possible values, and loops

on each value. For a Therels clause, a sunHar approach is taken, except that the loop on

each value of the set is terminated as soon as one value making the rest of the constraint

true is found.

The "execute" button in the bottom of Figure 43 starts the verification of the constraint.

Before its evaluation, the elicitor can choose whether to evaluate the constraint on one

aspect only, or on the entire model (Figure 44). The time taken for the evaluation is

obviously better when the verification is performed on one aspect only, but if none of the

aspects contain the entire set of information required ta evaluate the constraint, then it

should be verified on the entire model13
•

13 In typical situations, the eLicitor selects a constraint from a list developed by an expert. Each constraint in
such a list contains a textual description of the constraint, that may also indicate on which aspect such a
constraint can be evaluated. The details of such a List are described later in this section.

88



•

•

Figure 44 - Choosing the aspect on which the constraint is evaluated

The result of constraint evaluation is "True" or "False", together with the set of values

(and associated variable) in the ForAII clause(s) that violates the constraint (i.e., making

the rest of the constraint evaluate to false) in the case of a "FaIse" result. Figure 45 shows

such a result window, for the constraint specified above. The upper part specifies which

constraint has been evaluated, and the Iower part gives the result of the constraint

verification.

Figure 45 - Result of the evaluation ofa constraint that is satisfied

89



•

•

Our constraint was satisfied in this case. But ifwe check that each activity is managed by

someone (a role) on Peter's view, then the result is negative (the "activity is-managed-by

role" relationships are represented using dashed lines in Figure 46). Figure 47 shows this

result, by listing (at the bottom part of the window) the values of the variable fIer, (from

the ForAll clause) for which the constraint is not satisfied14
: "other_teams_review" and

"client_review". The elicitor should then go back to the "elicit view" step ("draft" or

"X-elicit" parts), for making the appropriate modifications (for example, adding a

"other_team_manager" role, and a relationship of type "aetivity is-managed-by role" with

the activity "other_teams_review").

Figure 46 - Role assignment aspect ofPeter's view

Up ta now, the only constraints that we have checked were related ta the structure of the

views (i.e., to the modeling schema used). However, the quality of the model can aIso be

related to the conformance ta mIes defined in the organization. To this end, we can check

constraints related ta the meaning of the entities and relationships modeled, for example

that every document is indeed reviewed. This is not a structural issue but a semantic issue.

Such a check in software development, for example, cao be a central part of a Quality

Assurance plan ta meet product quality requirements. Figure 48 shows the result of

verifying such a constraint on Bob's view. The technique is the same; it is just that the

14 Notice that a constraint may not be satisfied by a combination of values for two or more variables (in
multiple "for all" clauses). In such case, values would be printed within two horizontallines (one per line).
Because of such a case. it is necessary to indicate the variable name together with the value causing 'the non­
confonnance problem.

90



•

•

constraint language is powerful enough to allow such verification. Section 6.1.2 discusses

in more detai! these two kinds ofconstraints.

Figure 47 - Result ofthe evaluation ofa constraint that is not satisfied

Figure 48 - Result ofa constraint related to the meaning of the information

91



•

•

Notice that the variable for a relationship (r2(d2,e2,t2) in Figure 48) contains four

variables: one for the relationship itself (r2 here), two for the entities involved in the

relationship (d2 and e2 here), and one for the type ofrelationship (t2 here).

An important point that the elicitor should keep in mind is that the resuIt of a constraint

verification may not be as expected, for the reason that the constraint itself may not have

been weIl specified or may not be valid in practice. In our example in Figure 48, the result

shows a problem with the "feedback" artifact, but this artifact should not necessarily be

reviewed. Here, the constraint was not specific enough on the kind of artifact (artifact

subtype) to be reviewed. In this case, either the constraint should be refined further or the

interpretation ofthe result should be appropriate.

These constraints can be saved in the database, for later use. The elicitor can then select

the desired constraints from the constraint liste This is done through a window such as that

in Figure 49 (opened by clicking the "constraint list" button in Figure 43). The constraints

are categorized in the following three sets: project-specific, structural, and organizational

constraints (see the upper part ofFigure 49).

Structural constraints are those related to the structure of an aspect. For example, in an

aspect showing the dependencies among the artifacts, the graph should be a DAG

(directed acyclic graph). Thus one constraint could be that no cycles among the

dependencies are allowed. Another constraint could force the graph to have a tree

structure. These kinds of constraints can he applied to many different aspects, and in

general do not contain any information related to the entity types or relationship types

used.

The other types of constraint are related ta the types of information modeled and their

meaning. For example, the constraint that each activity should be performed by someone

(shawn in Figure 49). These constraints can be either project-specific or organizational

constraints, depending on whether they are applicable to a single (or few) project, or to all

92



•

•

projects in the organization. The purpose of organizational constraints is ta avoid the

duplication ofa constraint in every project.

-:',-'c. ,~2"~ ~;:;,._"-~

..:~ document-review-completeness
~~~. activity-management-completeness
~~. tm'A'SiGi"Ii,gii§... ,Jj.it§·U":g.<

>< -
~::' \ --..;..· ...~·;',..'.~-a::-.~~,..,;r'!-'üc"~ .._.~.4IIIil"-.;...œ""_I'~_"'-'Hiü',,,,,,,,,,,,;,,,,,""~~èjIi,,,;·-~":;~r"'~-i"""~:

Figure 49 - Selecting a constraint from a list

When the type of constraints is selected (from the radio buttons on the top of the window

in Figure 49), the list of these constraints is shawn in the fust scrolled list (below

"keyword"). By selecting one of them in the list, its details are shawn in the lower part of

the window: a textual description reminding what this constraint is supposed ta check,

and the formal specification of the constraint. Bath textual description and formai

specification can be modified and saved using the "save" button. The "execute" button is

used ta launch the verification of the selected constraint on the CUITent view (shown on

the title bar). It bas the same effect as the "execute" button in Figure 43.

In this section, we have provided a general understanding of the constraints and their use.

A detailed description of the constraint language, as well as the different kinds of

inconsistency it cau handIe, is provided in Section 6.1 .

93

•

•

5.2.3 Steps 4 and 5 : Getting a merged model from the views

In the previous step, we considered view elicitation and intra-view analysis. Assuming

that such analysis is carried out within each of the views elicited, in this step we need to

do cross-view analysis. Our goal is to identify the overiapping information across the

views (step 4), and to make sure that there are no inconsistencies in these overlaps (step

5). For such analysis, we need to take into account that there may be terminology

differences across the views.

The suh-steps to he used for such cross-view analysis are presented in a window such as

that in Figure 50. The fust step ("match entities") refers to our Step 4 here, described in

Section 5.2.3.1 , and the other steps are parts of the Step 5 described in Section 5.2.3.2

below.

Figure 50 - Steps in analyzing and mergÏng views

5.2.3.1 Step 4: Ideotify common components across views

Component matching is a mechanism for detecting common process elements (overlaps)

across different views. For example, we need to know that "modify deliverable" in Bob's

view (Figure 25), and "modifications" in Peter's view (Figure 26) refer to the same activity,

and that William's view (Figure 27) does not contain this activity. This task is not so

94

•

•

obvions due ta terminology differences. Thus, we need to examine the descriptions ofthe

entities (i.e., their relationships and attributes) in order to match them.

Our technique is ta compute a similarity score ([0.. 1]) for each pair ofentities in each pair

of views, and find the most probable matches based on the highest scores. The general

idea of this simiIarity score is to compute the percentage of similar items (entity name,

relationships, and attributes) between two entities. The precise formula used is presented

in Section 6.2.

The fust step is to ask the elicitor which entities (types) should be matched, and in which

arder. The elicitor should also specify the relationship types and attributes that should be

used in verifying the similarity of the entities: this selection permits him/her ta avoid

using information with a high probability of being inconsistent, in the entity matching

process. A window such as that in Figure 51 is used: the left part contains the

entity/relationship/attribute types available in this project, and the elicitor can move them

ta the list on the right for selection.

For each attribute, the system then asks the degree of similarity expected. For example,

Bob's "review_by_other_teams" activity has a duration of 5 days (Figure 25), but Peter's

"other_teams_review" lasts 6 days (Figure 26). This difference could make the similarity

score between the two activities ta decrease, but the elicitor may think that this difference

is not significant enough, and that this similarity in the attribute should increase the

similarity score between the two activities. The elicitor can enter the percentage of

difference allowed for each attribute ta be used (number and time attributes only). Figure

52 shows how this information is specified.

95

•

•

Figure 51 - Selecting the types of the entities to be matched,

and the relationships/attributes to be used

Figure 52 - Specifying the level ofsimilarity allowed for an attribute

96

•

•

In order to prevent the identification of matches between entities that are not similar

enough, the elicitor then has to specify the minimal value for the similarity scores. This is

performed in a window such as that in Figure 53. Section 6.2.1 describes how such

minimal value is used in the matching algorithm. For our example, we have used a

minimal value of0.215
•

Figure 53 - Specifying the minimal value for the similarity score

The V-elicit system then computes the similarity scores, one entity type at a time, finding

the matches corresponding to the highest scores. The results are shown in a window such

as that in Figure 54, for each pair of views (showing the roles identified as matched

between Peter's and William's views).

The results of matching roles and artifacts for each pair of views are not shown here

because these are trivial in our example: the entities with the same name are matchedI6
•

However, the activities are not as trivial to match because ofthe use of different names to

denote similar activities. Figure 55 shows the matches identified by V-elicit between

Peter's view and William's view.

As one can see, one of the matches seems incorrect: Peter's "IT_team_QA" activity is

probably related to William's "IT team review" activity. This can be modified by the

IS The threshold vaIue of 0.2 has been used based on our experience in modeling processes using our too!.
AdditionaI research and experiments are required for identifying the best value to be used (which would
probably be different depending on the type ofthe process elicited or the elicitation settings).
16 Note that our system also works when roles and artifacts have different names across views.

97

•

•

buttons at the bottom ofthe window. Deleting a match is done by selecting the match and

pressing the "delete" button. When adding a match, a window such as that in Figure 56

appears, permitting the elicitor to specify which entities should be matched. In order to

help in choosing the matches, the elicitor cao have a look at the similarity scores stored in

the file indicated in the window ("system_ana[ysis_aetivity_scores" in our case; see Figure

57 for an example of such a file). Note that the system checks for conflicts with other

matches before making the requested changes.

reviewer c:---> reviewer
analy:st < > êlIIIal.yst

Ji:

~ ':1:

~~~~3fr.~;~~~i~~~f~
~~~~~~~~~~~"'tJ..M?:.:~~.:1

Figure 54 - Result ofmatching the roles between Peters and William's views

Figure 55 - Result ofmatcbing the activities between Peter's and William's views

98

•

•

Figure 56 - Adding a new match

non~zel"'o scol"'eswi~ view : Wil1iam/l"'eviewer

systeRLanalysis :
documen~roduction :
writin9-first-vers;on :

walkthl"'ough (0.166667)
modif1cai:;ons :

wal kthrough (0.166667)
rev;ew :

review (0.682639)
IT_te~~review CO.t66667)
engineerin9-review (Q.100000)
de11veI"'Y_l"'eview(0.083333)
user_review (0.083333)

l
IT_teaJlLQA :

1o~r~~~§~~~i~~i~!~~8~__.__ ----.--.--.-..--- --1
:.'Ç.:tt.:......:.i-7,;'::::~j'j..-.:;:~'.~ .._"'t~~~'"'E:i'::.:~'r--~··h:C\Jl..tr.lt.i.-·~~.;:r~~-~:~;H:;-;:;~~~~~;:::~~:-d..~~q~~·7'~,..J~·....!.~n.p;=-"1!"·l~~~'"<"o-_..::T;-..Y"_.:.:~:?.:;.:.:_:.~ ...;,..:::::?~~-:,""!:!.:.':t~'~~;-~

Figure 57 - Report generated by the matching algorithm showing similarity scores17

It is necessary to allow changes by the user because we cannot be absolutely sure that the

system is giving the right matches. For example, in the cases where we do not have much

17 This file is organized by pair of views (e.g., Peter's and William's views in our example). The entities
from the first view (peter) are listed, and for each entity. the entities from the second are listed (indented)
with the similarity score between the two entities. Entities from the second view that have a similarity score
ofzero are not listed.

99

•

•

information about the entities, the system lacks information needed for comparing

entities, and it may not be able to find the matches18
• In. our example (Figure 55), Peter's

"IT_team_QA" activity has not been matched properly because the descriptions of

William's "walkthrough" and tilT_team_review" activities are very close, when considering

ooly the related elements that are found in both views.

From our experience, we have found that in actual cases from the software industry, the

matches are not always found, but the similarity scores of the expected matches are high

enough to identify them easily by looking at only a few scores. For example, in Figure 57,

Peter's "IT_team_QA" activity is best matched with William's "walkthrough" activity

Csimilarity score of 0.5), but the activities "IT_team_review" and "engineering_review"

could also be a reasonable match with similarity scores of 0.366 and 0.339 respectively.

The activities "delivery_review" and "user_review" however have a tao low score (both

0.167), compared ta the best one found, to be considered for a match with Peter's

"IT_team_QA" activity.

Figure 58, Figure 59, and Figure 60 show our final matches for activities Cafter

modifications) for each pair of views. These are used in the next step, when checking for

inconsistencies across views.

18 Our assumption is that for each entity type, there is at least one related element that can be compared and
matched. For example, we can start by matching the agents using the person's name, which is probably the
same across the views. Title of documents or file names can aIso be used as starting point. We can then use
relationships ta these entities for matching the other types of entities. We aIso assume that the relationships
do not link MOst of the entities of one type to most of the entities of the second type, otherwise the scores
cannat identify the similar components, because the comparison elements are the same for Most of the
entities.

100

•

•

cl.ic:nt_revi.ev (-----) user_reviev
reri.ev (> reviev"·'·'M,alt. '-'M.,I-;S';

Figure 58 - Final matches for the activities between Peter's and William's views

deliverable..[Jrodw:tian <----> doCUllent..[Jrodoct:ion
J:eViev_by_other_te_ < > other_teaas_rev.iev

.. modi:fy_deliverable < > JIIOdific.atiCDIS
IT_t:eaD_revi.ew < > lT_teaD_QA

; syl't:ea_analysis < > systeluma3.yris
: IB!!.sag'·O'M,mm;S",F +'%-'4

Figure 59 - Final matches for the activities between Bob's and Peter's views

Figure 60 - Final matches for the activities between Bob's and William's views

101

•

•

5.2.3.2 Step 5: Merge views

Now that we know where the overlap is in the views (Le., which entities are similar, as

shown in Figure 58, Figure 59, and Figure 60), we can detect the inconsistencies across

views, and resolve them. View merging is a mechanism for solving this problem, and for

building a merged model concurrentlyas the inconsistencies are resolved.

In our approach, inconsistencies are categorized into four types:

Ci) those related to the decomposition of entities such as different grouping of

entities (e.g., "modify_deliverable" activity in Bob's viewas part of the review

process, but part of the document production process in Peter's view), or details

missing (e.g., "describe_context" activity in Bob's view but not in Peter's view

and William's view);

Cü) those related ta the name of common entities (e.g., Peter's "client review"

activity, and William's "user_review" activity);

(iü) those related ta the relationships between process entities such as missing

input/output in one or more views Ce.g., the "contract" artifact used in one of the

substeps of the "IT_team_review" activity in William's view, but not used in

Bob's view and Peter's view for such activity); and

(iv) those related ta the attributes ofthe common entities Ce.g., different duration for

the "IT team review" activity across the views: 0.3, 3, and 3 days for Bob's view,- -
Peter's view, and William's view respectively).

There is one button for each ofthese types ofinconsistencies in Figure 50.

This categorization is based on the elements of an ERD structure: entities, entity names,

relationships, and attributes. Entity types are not considered here because we are not going

to compare entities ofdifferent types.

The fust type ofinconsistency ta resolve is the one related to the entity decomposition CCi)

above), because it cao affect the resolution of the other types of inconsistencies, through

102

•

•

the choice ofthe entities to be kept in the final model and their meaning. It is described in

Section 5.2.3.2.1 below. The three other types (Cii), (iii), and (iv) above) are independent

of each other, and they can thus be resolved in any sequence. Section 5.2.3.2.2 gives an

overview ofthese types of inconsistency and their resolution.

Notice that the intent here is to illustrate how the merging process is performed, and the

kind of interaction between the system and the elicitor. For complete information about

the different types of inconsistencies handIed, as weIl as the algorithm used for detecting

and resolving them, the reader should refer to Section 6.3.

5.2.3.2.1 Resolving inconsistencies related to entity decomposition

The kinds of inconsistencies we are 100king at in the entity decomposition are whether or

not sorne entities are missing, or whether or not the entities are grouped in different ways

in the decomposition hierarchy. In our system analysis example (see Figure 25, Figure 26,

Figure 27, and Appendix A for complete information), we see rnany ofthese consistency

problems. In the case of the roles and the artifacts, the only kind of inconsistency one can

find in this example is the missing entities. For example the "contract" artifact is missing

in Bob's view. In the activity decomposition, one can see a variety of kinds of

inconsistencies:

(a) "system_analysis" missing in William's view (the root activity is not the same),

Ch) "modifications" not under the same subtree in Bob's view and in Peter's view,

(c) "IT_team_review" decornposed in William's view but not in the other views,

(d) "deliverable_production" and "modifications" missing in William's view,

(e) "describe_context", "describe_objectives", and "describe_alternatives" specified in

Bob's view only,

(t) "writing_first_version" specified in Peter's view only

(g) "other_teams_review" missing in William's view

(h) "client review" missing in Bob's view

103

•

•

The V-elicit system takes each of these problems in tum. for resolution, one entity type at

a time. The elicitor is actually controlling the ordering of the entity types resolved, by

selecting which type is next through a window such as that in Figure 61.

Figure 61 - Selecting the next entity type (decomposition) ta be merged

Within one entity type, the ordering of the problems resolved is top-down, from the root

ta the leaves, in a recursive way. As the inconsistencies are resolved, the final model is

built concurrently.

The recursion to he perfonned should start at the root level, but sometimes there is no

single root entity Ce.g., the roles and artifacts in our example), or the root entities are not

the same (e.g., the activities in our example). In order to start the recursive merging

algorithm with the same conditions each time, we are adding a temporary root to aIl

views, and to the final model being built. This temporary root entity is removed when the

views are all merged into the final mode!.

Once this temporary root is added, we then recursively solve the problems related to each

node, starting at the root. For each inconsistency, the user should decide on the solution to

be adopted, and then the views and the final model are modified accordingly. Before

recursively checking the children of anode, we have to make sure that in each view, we

have the same children for this node, and that the subtrees under these children contain

the same matched entities.

104

•

•

As an example, let us work on the activity decomposition ofour system analysis example.

Starting at the temporary root level, V-elicit checks that the children (the actual roots of

each view) are the same in each view: they are not (inconsistency (a) above), so the

system asIes the elicitor whether ta keep the "system_analysis lf root or nota This is

performed in a window such as that in Figure 62. It is actually shown as a grouping

problem, where the elicitor should decide whether to have ooly one entity

("system_analysislf
) grouping all activities in the project or not.

Figure 62 - Resolving the problem with the inconsistent root activity

The layout of each window for resolving an inconsistency is the same: the top part

explains the type of inconsistency and which entity is affected, then the middle part shows

which views have which solution (showing who and how many views gave one solution),

and the lower part has buttons for taking the decision. The "quit" button stops the merging

process. When double-clicking on one of the views, two graphs are opened: one showing

the view before starting the merging process (containing the real information gathered

from the source associated to this view), and one showing the view with the modifications

made since the merging process began.

The purpose of having such decision window is to help focus on a simple inconsistency at

a time (with two possible solutions only, involving only few entities). The access to the

105

•

•

view information through the graphs is very useful in understanding the inconsistency,

and deciding which solution should be adopted. It is also very useful to see at a glance if

one solution was adopted in many views or not (if more views have one solutions, then

the chances ofbeing the right solution are higher).

For our example, we decide to keep this global activity. It is then added to William's view

and to the final modeL Then no other nodes cao be found at that level, so we are going to

the next level.

The fust problem found at the second level is the "modify_deliverable" activity not

grouped with the same activities: in Bob's case, it is under the "deliverable_validation"

activity, but in Peters case it is under the "document_production" activity (inconsistency

(b) above). This probLem is presented in Figure 63.

Figure 63 - Resolving when an entity is under different subtrees

Again, the elicitor can choose whether to group the entities as specified or not. Notice that

William's view does not appear in the lists: since it does not contain the entities involved

in this grouping problem, it does not contain any ofthe solutions presented.

106

•

•

The merging process goes on this way, resolving one inconsistency at a time. In our

example, two other kinds of inconsistencies were found: when an entity is further

decomposed in one of the views Cinconsistency (c) above), and when an entity is missing

in at least one of the views (inconsistencies (d) to Cg) above). Figure 64 and Figure 65

show the windows used for these two kinds of inconsistencies respectively.

Figure 64 - Resolving when more details are provided in sorne views

Figure 65 - Resolving when an entity is missing in sorne views

107

•

•

The final result is an entire activity decomposition for the final (merged) model, satisfying

the decisions taken by the elicitor through the merging process. Figure 66 shows one final

(merged) activity decomposition aspect we could get with our example.

Figure 66 - Final model after resolving the inconsistencies (activity decomposition orny)

Inconsistencies are categorized ioto basic inconsistency types, such as the "missing details"

and "missing element" cases above. A set of boolean characteristics is used for

characterizing these categories. They are evaluated on one entity, with respect to another

view. For example, in the case ofa missing element, the characteristics are:

• the element is not matched (e.g., "client_review" activity in Peter's view has no

sunilar entity in Bob's view)

• none of its descendants are matched

• at least one ofthe siblings or descendants ofsiblings is matched

The detection of inconsistencies is performed by evaluating the set of characteristics on

each children in each view, with respect to each other view. When a problem is found, the

layout of the resolution window presented is dependent on the basic type of inconsistency

found.

The description of each type, with their characteristics, is given in Section 6.3 .1 .

108

•

•

5.2.3.2.2 Reselving ether types of inconsistencies

For the three other types of inconsistency ((ii) related to entity names~ (iü) relationships~

and (iv) attributes~ introduced earlier)~ a similar approach is taken. The difference is in the

complexity ofthe basic types. In the case ofthe entity names, there are only two cases: the

names are either the same or they are different. Similarly, we have only two cases for

inconsistencies related to relationships: the relationship is either in all the views or not in

sorne of the views. The same apply for inconsistencies related ta attributes.

Figure 67 - Resolving an inconsistency related to entity names

The window used for resolving an inconsistency related to the name is shawn in Figure

67. An important information ta take into account in this resolution is the number of

modifications made ta the initial view during the entity decomposition resolution. For

example, Bob's "deliverable_validation" activity is matched ta Peter's "review" activity, and

they do not have the same name. But they were not containing the same set of activities

originally: the "modify_deliverable" activity was under the "review" part in Bob's view but

not in Peter's view. This could be a reason for the name difference. Sïnce we have decided

ta put the "modify_deliverable" activity under the "document_production" part (see Figure

66), the name used to express the review activity without the modification (i.e.~ the name

used in Peter's view) has higher chances of being the right one. This information on how

much the entity has been modified is given as the tuple " (< number of added

109

•

•

subentities/subtrees> , <number of deleted subentitieslsubtrees»n after each name in

Figure 67.

Resolution of attributes is similar to the name resolution, showing the different values

from which to choose instead of entity names in the resolution window. Figure 68 shows

snch a window for resolving the different duration for the "other_teams_review" activity.

Notice that the name used for the activity in each view is specified, such that when

looking at the graph information, the entity having the problem can be identified. Notice

also that when a view does not even contain the entity, it is not listed in the resolution

window (this is the case with William's view here).

Figure 68 - Resolving an inconsistency in the attributes

The resolution window of inconsistencies related ta relationships just needs to ask

whether the elicitor wants this relationship or not (Figure 69). In order to help him/her

choosing whether or not to keep one relationship, the system shows which views contain

the relationship and which views do not, in a way similar to that for entity decomposition

inconsistencies. In the case that one view does not have the relationship, but that its

original view (before the modifications in the entity decomposition resolution step) does

not contain one ofthe entity involved in the relationship (i.e., this source couldn't give this

relationship), the view is not shown in the resolution window. In our example, William's

view is not shown because it does not contain the "review_by_other_teams" activity.

110

•

•

Figure 69 - Resolving a missing relationship

The result of merging the three views is shown in Appendix B, where each aspect of the

final model is presented, as one can visualize it in the V-elicit system. Notice that the final

result could be different if the elicitor decided to resolve the inconsistencies in a different

way.

5.2.3.2.3 Summary

In this section, we have shown the general idea of how the inconsistencies across views

are detected and resolved, through an example. We have seen how the V-elicit system can

help the elicitor in performing his/her knowledge-intensive task, and keeping track of the

rationale for resolving the inconsistencies in one way or another. However, we did not

discuss aIl the possible types of inconsistencies, for example when we get two completely

different (unrelated) decomposition of an entity from the different views. These are

discussed in detail in Section 6.3.

111

•

•

5.2.4 Steps 6 and 7: Check model quality and modify model

Once the views are all merged into one model, we have ta check again the quality of the

model (step 6), as we did for each view in step 3. We are using the same technique

(constraint verification) as in step 3. Typical1y, this step would also involve validating the

merged model with the persons who provided the information in the initial views.

The problem here is that an entity in the final model may contain more information than

any of the similar (matched) entities in the different views. This combination of

information may bring new inconsistencies, that couldn't be detected in the separate

views.

New constraints can also he checked now, using the new superset of

entity/relationship/attrihute types. For example, if no view had the information flow

aspect together with the artifact dependency aspect, we couldn't check earlier for

consistency between these two types of information. In the merged model, we can add this

verification.

When a problem is found, we have to make the appropriate modifications to the merged

process model (step 7). The X-elicit tool is used again in this step, as for step 2. The

difference is that only one X-elicit model is created, not one per view, but the mapping

between the V-elicit data structure and the X-elicit templates is done in the same way. The

set of entity/relationship/attribute types presented in X-elicit Ïs the union of the types in

each view.

The final model cau then be checked against development policies, using external validity

constraints. For example, the elicitor can check that each document has been reviewed

independently. Again, the same technique as in step 3 is used (constraint verification).

Such validation, although it does not detect prohlems in the model quality, does constitute

an important feedhack for process analysis and improvement.

112

•

•

5.3 Summary of the elicitation approach

ln this chapter, we have described our approach for eliciting software process models

using different VÏews. The following steps were described: planning for elicitation,

eliciting each view, checking each view for intra-view consistency, identifying common

components across views, merging views (including detecting and resolving

inconsistencies across views), checking the quality of the merged model, and modifying

this model ifnecessary.

In the planning step, the scope of the model ta be elicited is defined, with the kind of

information ta be elicited. The different sources of information are then analyzed, and a

subset ofthese sources (views) are chosen for elicitation purposes.

Each of the views are then elicited. The information is entered using the X-elicit tool or

unstructured (draft) text files, and the information can be visualized in graphs. Constraints

are used for checking the consistency and quality ofthe views.

Before merging ail the views, the common components across the views are identified

using the matching algorithme A similarity score is computed for each pair of entities of

the same type, based on the related information such as the entity name, relationships with

other entities, and attributes. The highest scores define the matches between the entities,

which can then be modified by the elicitor.

Having identified the common components, the inconsistencies across views are then

detected, and subsequently resolved with the help of the elicitor. The final model is built

accordingly, and checked against development policies using extemal validity constraints.

Overall, these steps define a systematic approach, with tool support, for view-based

elicitation. They satisfy the set of requirements specified in Chapter Three. Our approach,

113

•

•

together with the set of techniques presented, helps in eliciting process models of high

quality (as shown later on in Chapter Seven, on validating our approach and system).

114

•

•

Chapter Six - Techniques for consistency checking and view merging

In working on the view-based elicitation problem, we have focused on developing new

techniques for checking inconsistencies within and across the views, and merging these

views. Such a complete set oftecbniques does not exist in other process elicitation tools.

The next sections describe the details of the specifie techniques developed: constraint

verification, component matching, and view merging. These techniques were used in

steps 3, 4, and 5 of the elicitation method, respectively. Constraint verification was also

used in step 6.

6.1 Constraint verification

As we have seen in Sections 5.2.2.2 and 5.2.4, constraints are used for checking

inconsistencies within a view or a model. These constraints can be defined by the elicitor,

using the user-defined types of information and a language similar ta fust-order logic.

In this section, we describe the constraint language in detail (6.1.1), we discuss the

different types of constraints (6.1.2), we expIain how the attribute and relationship

generators can be used to simplify the specification of the constraint (6.1.3), and we give

implementation detaiIs of our algorithm (6.1.4). The last section summarizes our

constraint verification technique.

6.1.1 Constraint language

This section describes the language developed for specifying constraints. The formaI

notation in Extended Backus-Naur Form (EBNF) is given in Appendix C.

115

•

•

Constraints are composed of ForAll and ThereIs clauses that define the variables ta be

used, followed by a condition to be verified using the defined variables. The meaning of

these clauses is that for aIl values (ForAl!) or at least one value (ThereIs) of the variable

defined, the rest ofthe constraint (including folIowing ForA!! and ThereIs clauses) should

be true.

The variables in the clauses are defined in the format "variable is element of a specified

set". Variables cao be either entities or relationships. A relationship variable is ofthe form

r(el ,e2,t) where r is the variable name, el and e2 are variables to be used for accessing

the entities involved in the relationship, and t is the variable containing the type of the

relationship. The set on which the variable is defined cao be either a predefined set (E for

the set of all entities, and R for the set of al1 relationships), a set derived from other sets

using the union and intersection operations on sets, or a user defined set where the

elements are a subset of another set based on some condition on the elements (i.e., a set

defined using the construct {a E Al...}). In the case of user defined sets where the

condition is the type of entity or relationship, a shorthand cao be used (TypedEntSet or

TypedRelSet respectively).

For the condition in the constraint (or in the specification of a user defined set), we cao

use the attributes of the entities, and operate on them through usual mathematical

notation. In sorne cases, we have defined specific functions for such operations, such as

Getlnterval between two time attributes or values. We have aIso added functions for

testing that entities are connected tbrough relationships of specified types (e.g.,

TherelsRel, TherelsPath, etc.). The condition cao be an aggregated one, using the standard

boolean operators: "not", "and", "or", and "implies".

This constraint notation developed is based on standard mathematical notations, and

should thus be complete. The functions we have added are either based on the specifics of

the ERD modeling notation (e.g., functions to verify if a relationship or an attribute

exists), or they are shorthand for more complex functions used very often (e.g., the

116

•

•

function "SameEnt" that verifies if two variables point to the same entity, which is just a

shorthand ofverifYingthatthe two entities have the same name and the same type).

6.1.2 Type of constraints

In Section 5.2.2.2, we have seen examples oftwo kinds ofconstraints: one reIated to the

structure of the views (Figure 47), and one related to the meaning of the entities and

relationships modeled (Figure 48). In generai terms, a view or a modeI can be inconsistent

due to two reasons: (a) internaI invalidity, that is related to the structure of the view or

incompleteness ofthe information elicited; and (b) external invalidity, that is related to the

fitness of the view with respect to organizational or project policy. This is analogous to

the syntactic and static-semantic errors (internal invalidity), and deep-semantic errors

(external invalidity) in computer programs.

Below, we give examples ofthe two types ofconstraints.

6.1.2.1 Constraints to check internaI validity

We describe four example constraints: cycles in dependency graphs, production of

artifacts across the levels of abstraction, consistency between activity dependency and

inputs/outputs, and consistency ofcost between levels of abstraction. Graphs are provided

to help the reader understand the constraints written, but such graphs are not provided in

our system.

Ca) the artifact dependency graph should not contain cycles: for ail relationship r of type

Ilartifact depends-on artifaet" between artifact dl and artifact d2, there is no path of

(one or more) relationships of type "artifaet depends-on artifaet" from d2 to dl. In the

example graph below, we have such path passing through d3, but more entities could

be involved, or we couid have a direct link. from d2 to dl.

117

•

•

'V (r(d l ,d2,type) eTypedRelSet(artifaa depends-on artifaet» •

-,TherelsPath(d2,d l,artifact depends-on artifaet)

@ depen~

depends~»<:C@~ depends-on

(b) consistency of the relationships of type "activity produces artifaa" across different

levels of abstraction: for all relationship rI of type "activity produces artifact" between

activity a 1 and artifact d~ and for all relationship r2 of type "artifaet is-consumed-by

activicy" between artifact d and activity a2~ if the parent of activity al is not the parent

of activity a2~ then there should be a relationship of type "activity produces artifact"

between the parent ofa t ta d.

'V(rt (a l,d,type) eTypedRelSet(activity produces artifaet».

'V(r2(d,a2,type2) eTypedRelSet(artifact is-consumed-by activity»e

(TherelsRel(a3,a l, activity is-composed-of activity) A

--,TherelsPath(a3,a2,aetivity is-composed-of activity))

~ TherelsRel(a3,d,activity produces artifact)

(c) consistency between the input/output relationships and dependency relationships: for

all relationship rI of type "activity produces artifact" between activity a 1 and artifact d,

and for all relationship r2 of type "artifact is-consumed-by activity" between artifact d

and activity a2, there is a path of (one or more) relationships of type "activity depends­

on activity" frOID a2 to al.

'V(rl (a l,d,type) eTypedRelSet(activity produces artifaet»e

'V'(r2(d,a2,type2) eTypedRelSet(artifact is-consumed-by activity»e

ThereisDirectedPath{a2,a t,activity depends-on activity)

118

•
(d) consistency of cast across levels of abstraction: for aU activity e, the cast of the

activity is greater than or equal ta the sum of its children's costs.

'if(e e TypedEntSet(aetivity»-

e.cost ~ Sum(cost,{eieTypedEntSet(activity) 1

TherelsRel(e,ei,activity is~composed-of actïvicy) })

Wrong!
Cost should
be ~ 115.

6.1.2.2 Constraints to check extemal validity

In this section, we show four examples of known software development principles (two

process-related and two product-related), written in the constraint format, such that they

can be checked by V-elicit: independent validation, development-phase ordering, side­

effects, and interface complexity.

Ca) independent validation (aIl software artifacts should he validated by people (reviewers)

other than those who have developed them) (see [pre97], section 17.1.2): for all

relationships of type "role validates artifaet" from el ta e2, there is no relationship of

type "artifact is-developed-by role" frOID e2 ta el.

Veree l,e2,type) e TypedRelSet(role validates artifaet»e

-,TherelsRel(e2,e l ,artifaet is-developed-by raie)

artifact·

·act ~
El-__----::::~~---_~

-byrole

•
119

• (b) a module should he fully designed before coding it (see [pre97]~ sections 2.1.2 and

13.1): for each module artifact produced in the design. phase and consumed bya coding

activity, the design activity should be cornp1eted before the coding activity begins.

V'(r(e 1,e2,type) E {r2(e3,e4,tl)eTypedRelSet(activity produces artifaet)1

(subcype(e4) = module} /\. (e3.phase=design) })e

'if(r3(eS,e6,type2) e {r4(e7,e8,t2} e

TypedRelSet(artifaet Îs-consumed-by activicy} 1

(e7=e2) /\. (e8.phase=coding) } }-

el .end-lime :s e6.start-time

Idesign el 1 -(Qiodule êD -fcoding e6 1

end-time=97/01l25.)(• start-time=97/01l10

remark: "phase", "start-lime" and "end-time" are attributes defined for activities.

Cc) side effects (data coupling) (see [pre97], section 13.5.4): if a function reads sorne

data, then it should be passed through the parameters or the function and data should

be defined in the same module (or class).

V'(r(el ,e2, t) e TypedRelSet(function uses data})e

3(e3 E {e4 E TypedEntSet(module) 1

TherelsRel(e4,e l,module contains function) })e

TherelsRel(e 1,e2,function has-parameter data) v

TherelsRel(e3,e2,module contains data)

ifi.mction el 1

~iE-~arameter
,data e2 1

OR

•
(d) interface complexity (coupling) (see [pre97], section 13.6): each fimction should have

at most 7 parameters (note: this standard can be specified in an organization, as a way

to avoid interface complexity, but the number can vary from one organization ta

another).

120

•

•

't{e E TypedEntSet(funetion»e

{ei E TypedEntSet(data) r

TherelsRel(e,ei,functïon has-parameter data) }

~7

where '#' means cardinality ofthe set

maximum. 7

6.1.2.3 Summary and analysis

Both internaI validity constraints and external validity constraints can be checked, as

shown in Section 5.2.2.2. The kinds of inconsistencies found using internaI validity

constraints are similar to the kinds of checking done in other modeling languages such as

Statemate [KeH89], FUNSOFT Nets [GrS92] , and OBM [SaW94]. The advantage in

V-elicit is that it cau be done on any user-defined type of information. External validity

constraints, to our knowledge, are not checked in any other process modeling too1. Sorne

are described in [DNR90, NeR91], but They are specified informally.

It is important to note that if an elicited view Cor model) violates an external validity

constraint, it could be for three reasons, which (ideally) should be investigated and an

appropriate course of action should be taken: Ci) the process view is incorrectly elicited;

(ii) the process itself is defective; and (m) the constraint itself is not valid.

The nurnber of constraints to be specified for a comprehensive coverage of the

organizationaI policies can he huge, and in such an environment these constraints would

have to managed approprlately. Also, the issue of designing a comprehensive set of

policies, and ensuring that the constraints specified do not have conflicts, is not trivial.

121

•

•

Such issues are out of the scope of this thesis, and they will probably be dealt with in

future work.

Finally, simulation is often used for dynamic analysïs ofa process model [KeH89, GrS92,

ADH94]. The problems detected in this manner include deadlocks, reachability problems,

race conditions, etc. This kind of analysis is complementary to our constraint verification.

In fact, one approach ta quality process modeling and analysis is that tools such as

V-elicit could be used to build rigorous descriptive models prior ta spending resources to

carry out dYnamic analysis.

6.1.3 Use ofgenerators

In order to simplify the specification of a constraint using multiple relationships, we can

use generated types. For example, if we want ta check for independent validation (as

described in part Ca) of Section 6.1.2.2), but that we have only the fol1owing types

available:

activity is-performed-by role

activity produces artifact

activity validates artifact

the constraint would have to be specified as:

V'(rl (al/dl,tl)eTypedReISet(aetivity produces artifact}).

V'(r2(a2/d2,t2) e{r21 (e l ,e2,t21) eTypedRelSet(activity validates artifaet)

1 SameEnt(d l,e2) }).

V'(rJ(aJ,rl ,tJ) e {rJI (eJ,e4,tJI)eTypedRelSet(aetivity is-performed-by role)

1 SameEnt(a2,eJ) })e

-,TherelsRel(a l,rI ,aetivity is-performed-by role)

lhis complex specification can be reduced ta the following constraint:

V'(r(rl ,dl ,type)eTypedReISet(role validates artifact».

-,TherelsRel(rl ,d l ,role develops artifact)

122

•

•

with the following two specifications for the linear generator for relationships19:

1. existing types: role performs aetivity

activity validates artifact

new type: role validates artifaet

2. existing types: role performs aetivity

activity produces artifaet

new type: role develops artifact

By using generated types in the constraint specification~ the understanding of the

constraint is greatly improved, and 50 is the efficiency of the constraint checking

algorithme

6.1.4 Implementation details

The constraints are built using one abject per element of the language defined in

Appendix C. In the case of non-terminating symbols, the object contains pointers ta the

possible elements ofthe derivation used, and this derivation is kept in a type variable.

A set offunctions (one per language element, including punctuation symbols) is used for

reading a constraint in a string format and creating a constraint abject. The sYntax of the

constraint definition is verified at this point.

Each of the objects in the constraint has two major functions: "verlfy" for checking the

correctness of the constraint defined (e.g., no use of undefined variables, no type

mismatch between a variable and the set frOID which it is defined, etc.), and "evaluate" for

verifying if the constraint is satisfied in the model or view specified. In the case of the

"ForAII" and "ThereIs" parts, there are also functions for building the set of values for the

variable specified. The set is built during the evaluation of a constraint on a model or a

19 Refer to Section 4.3.2 for information on how to descnoe such relationship generator.

123

•

•

view. Notice that in the case where the set is not related to the fust quantifier of the

constraint, it will have ta be rebuilt for each value of the variable related to the fust

quantifier.

As the constraint is evaluated on a model or a view, the values of the variables making the

constraint evaluate ta false are kept in a list, and they are printed only when the constraint

evaluation is finished.

6.1.5 Summary of the constraint verification feature

In this section, we have presented the details about the use and implementation of the

constraints. We have seen that two types of constraints can be defined: internal validation

constraints and external validation constraints. We have also discussed how the generators

can be used to help in the constraint definition. Details on the language and its

implementation have also been provided.

Constraint verification is a mechanism that permits the verification of models and views

modeled using a user-defined language. A constraint defines what an inconsistency is,

based on the type of information used in the mode!. The traditional ways of checking for

inconsistencies do not permit one to work on arbitrary type of information, and they do

not allow one to define inconsistencies, so the semantics of the model cannot be verified

(as with the external validity constraints).

Our work on constraint definition has been influenced by the work of Behm and Teorey

[BeT93], who have used relative constraints as a way of capturing business rules in fust­

order logic Ce.g., a project's budget cannot exceed its department's budget). These

constraints were not formally defined and no tool was available for verifying the

constraints, but they had the idea of using fust-arder logic ta let the user define his/her

own constraints.

124

•

•

6.2 Component matching

The second technique developed for V-elicit is component matching. It is the tirst step in

merging the elicited views into one model. Its goal is to find the entities in different views

that represent the same process element (e.g., same activity, artifact, role, etc.).

In Section 5.2.3.1, we have gÏven an example on how this was used by the elicitor,

focusing on the user interaction and the results presented to the user. In this section, we

describe the internai algorithm used for computing the simiIarity score and choosing the

matched entities (6.2.1), and we explain how the relationship generators can be used ta

help compare entities (6.2.2). The last section summarizes our component matching

technique.

6.2.1 Algorithm and formula for computing similarity scores

This section describes how the system computes the similarity score used for matching

the entities across views (Le., identify which ones are the same). The algorithm is actually

performed for each pair of views, independently of the other views. Throughout this

section, we uses the two views in Figure 70 and Figure 71. These views contain few

entities and relationships, making it easier for the reader to understand the algorithme The

same algorithm can he applied to the views in Section 5.2 as weIl.

Legend: see Figure 25

Figure 70 ~ Sam's view

125

•

•

Legend: see Figure 25

Figure 71 - Sally's view

The general idea in computing the similarity score between two entities is to compare the

elements related to these entities (name/relationship/attribute). For example, if we look at

Sam's "review meeting" activity, there are five related elements: the name of the entity,

and the relationships "deliverable is-consumed-by titis entityr', "titis entity produces

Feedback", "this entity precedes producing_report" and "review is-composed-of this entity".

When comparing this activity to Sally's "review meeting" activity for example, we check

to see ifthe latter activity aIso contains these five related elements.

1t is easy to compare entity names and related attributes, but not relationships because

theyare related to other entities not necessarily matched yet. For example, how can we

know that Sam's "review_meeting precedes producing_report" relationship is the same as

Sally's "review_meeting precedes writing_report" relationship, ifwe have not compared yet

the "producing_report" activity and the "writing_report" activity?

The approach taken, as described by the algorithm in Figure 72, is to match the entities

one type at a time (line #3), and to use the results ofthe previous iterations for comparing

the related components of the entities (managed in lines #2 and #19). In our example, we

can decide to match the artifacts fust, and then the activities. This choice is made by the

elicitor (line #1, perfonned in a window such as that in Figure 51).

126

•

•

Algorithm

1. determine ordering of entity types ta match
2. types_matched ~ empty set
3. for each entity type et
4. reis_tirst_pass ~ set of relationship types between et and

et2 E tYpes_matched
5. reis second pass <f- set of relationship types from et ta et
6. for each pair of views
7. for each pair of entities (one in tirst view and one in second view)
8. compute tirst pass score
9. for each pair of entities-(one in tirst view and one in second view)
10. compute second pass score
1 1. for each entity in tirst view
12. determine its best match (entitY with highest similaritY score)
13. for each entity el in second view
14. detennine its best match (entity e2, with highest similarity score)
15. if e2's best match is el
16. if the score of the best match is higher than a minimum score
17. then el and e2 are matched
18. show result [0 user and let him make changes ta matches
19. add et ta the set types_matched

Figure 72 - Component matching algorithm

When matching the artifacts, we compare only the names and attributes of the artifacts.

We cannat use the relationships with the activities because at this point, we do not know

which activities are the same across the views. We could use these relationships only if

the activities were matched fust. The result of this iteration, for our example, is that each

pair ofartifacts having the same name are matched (there is no attribute to consider in this

example).

With this result, we cao then compare the activities, using the names, attributes, and

relationships with the artifacts (reCfirst_pass in line #4 ofFigure 72). The score computed

using this information is called the first pass score (see Figure 73)20. For example, in Sam's

Ureview meeting" activity, we have three related elements that can be compared: the entity

name, and the relationships "deliverable is-consumed-by this entity" and "this entity

20 This is computed in lines #7-8 in Figure 72.

127

•

•

produces feedback". Ifwe compare this activity with Sally's "preparation" activity, we see

that there is onlyone similar related element (the relationship "deliverable is-consumed-by

this entity"), so the tirst pass score is 0.33:

FirstPassScore = NameSim + NbAttMatch + NbRelMatch = 0 + 0 + 1 = ~ = 0.33
I+NbAtt+NbRel 1+0+2 3

First pass score from entity A in fust view to entity B in second view

F
" p cr NameSim + NbAttMatch + NRelMatch
lrst asslJcore =--------------

1+ NbAtt + NbRel

NameSim:
- split AIS name and BIs name into words, keeping only their stem and removing

unwanted words such as "the" (the list ofunwanted words in user-definable)
- NameSim = (# words ofAIs name that is aIso in BIs name) / (# words ofAIS name)
NbAttMatch:
- For each attribute ofA (that should be considered),

add 1 in NbAttMatch ifattribute value is matched to BIs attribute value.
NbAtt:

NbAtt = Number ofattributes ofA
(that should be considered in matching algorithm)

NbReIMatch and NbReL:
- For each relationship ofA (oftype that should be considered)

Add 1 to NbRel
Let AI be the second entity ofthe relationship considered (rel. oftype t)
Ifthere is a relationship oftype t between B and BI in view 2,

and that BI has been matched to A', then add 1 to NbReIMatch

Second pass score from entity A in fust view to entity B in second view

S
(NameSim + NbAttMatch + NbRelMatch) + IntRelScore

core ="""'""""-------------------'------
(1 + NbAtt + NbRel) + NblntRel

Let MS (Mean Score) between entity A and B be the mean ofFirstPassScore from A
to B and FirstPassScore from B to A.

For each relationship with entity A (oftype that should be considered)
Let A' be the second entity ofthe relationship considered (rel. oftype t)
Find BI such that we have a relationship of type t between B and B', and MS

between AI and BI is the maximum one.
If the MS found is higher than MinScore, then add MS to IntRelScore.
Add 1 to NbIntRel ifMS has been added to IntRelScore

Figure 73 - Formula for computing similarity scores

128

•

•

Now, ifwe compare Sarn's "review_meeting" activity to Sally's "review_meeting" activity,

all the related elements are found, and the score is 1.00:

v- p cr NameSim + NbAttMatch + NbRe!Match 1+ 0 + 2 3 1 00
r zrst assDcore = = = - = .

1+ NbAtt + NbRe! 1+0+2 3

Remark: the same fonnula (tirst pass score) was also used when matching the artifacts,

with the following variables set ta 0: NbAttMatch, NbAtt, NbRelMatch, and NbRel.

Notice that if the starting point of the comparison is Sally's view, the score is different.

For example, Sally's "review meeting" activity contains four related elements (oot three as

in Sarn's view): the entity name, and the relationships "deliverable is-consumed-by this

entity", "review_notes is-consumed-by this entity" and "this entity produces feedback ll
• Ifwe

compare this activity to Sarn's "review meeting" activity, we can see that there are only

three similar related elements, for a first pass score of 0.75:

r::'- p cr NameSim + NbAttMatch + NbRelMatch 1+ 0 + 2 3 0 75
r lrst aSSDcore = = = - = .

1+ NbAtt+ NbRel 1 +0 +3 4

Both scores should be computed, the mean being used in the next step wheo computing

the similarity score.

The NameSim part in our exarnple returned a 1 in case the two names were the sarne, and

oifnote The computation of such value is actually more complex than that, and can retum.

any value between 0 and 1. For example, having to compare the names "documentation

review" and "formaI review of documents", the system would fust separate the words,

keeping only the stems and removing unwanted words such as the "of' in the second

name. This gives the following words for each name:

"documentation reviewll
: document, review

"fonnal review ofdocuments": formai, review, document

129

•

•

The computation of the name similarity then gives 1.0 (2/2) for the first name, and 0_67

(2/3) for the second one. These values are obtained by dividing the number of words in

the name that are also in the other name, by the total number of words in the name. For

simplicity ofour example, we have not included such case in Sam's and Sally's views.

AlI first pass scores between Sam's view and Sally's view are shown in Table 5. Each cell

contains two numbers (not in parenthesis): the fust one is the score computed from Sam's

view to Sally's view (Le., the variables NbAtt and NbRel are set to the number of related

elements in Sam's view), and the second one is from Sally's view ta Sam's view. The

number in parenthesis is the related fractional number, that will be used (numerator and

denominator separately) in the second pass.

Sally

review preparation review meeting writing report

Sam

review 1.00 1.00 0.00 0.00 1.00 0.13 0.00 0.00
(111) (1/1) (0/1) (0/3) (111) (0.5/4) (0/1) (0/3)

review meeting 0.17 0.50 0.33 0.33 1.00 0.75 0.00 0.00
(0.5/3) (0.5/1) (113) (113) (3/3) (3/4) (0/3) (0/3)

producing report 0.00 0.00 0.00 0.00 0.00 0.00 0.75 0.50
(0/2) (0/1) (0/2) (0/3) (0/2) (0/4) (1.5/2) (1.5/3)

Table 5 - First pass scores between Sam's view and Sally's view

The relationships between the activities (i.e., relationships of type "activity is-composed-of

activity" and "activity precedes activity" in our example) can aIso be used for determining

the matches between activities. After computing the first pass score for each pair of

activities between two views, we can use this information to assess the similarity between

two activities. This means we can now have an idea about the similarity between the

relationship "review_meeting precedes producing_report" in Sam's view and the

relationship "review_meeting precedes writing_report" in Sally's view, by checking the first

pass score between "producing_report" and "writing_report".

130

•

•

The final score (or nSecond pass score" in Figure 73) is the tirst pass score, improved using

the relationships between entities of the same type (reis_second_pass in line #5 of Figure

72l l
• As an exarnple, using the mean first pass score between Sarn's "producing report"

activity and SalIy's nwriting report" activity (0.625)22, and the mean tirst pass score

between Sarn's "review" activity and Sallys "review" activity (1.00), we can compute the

final score this way:

S
(NameSim + NbAttMatch + NbRelMatch) + IntRelScore

core =
(1 + NbAtt + NbRel) + NblntRel

= (3) + IntRelScore = (3) + (0.625 + 1) = 4.625 =0.925
(3) + NblntRel (3) + (2) 5

The final scores for each pair of entities between Sarn's view and Sallys Vlew are

presented in Table 6. The highest scores for each entity are highlighted23
•

Sally

review preparation review meeting writing report

Sam

review 0.833 0.708 0.000 0.000 0.333 0.071 0.000 0.000

review meeting 0.100 0.125 0.400 0.400 0.925 0.661 0.200 0.200

producing 0.000 0.000 0.250 0.200 0.333 0.190 0.844 0.675
report

Table 6 - Final scores between Sam's viewand Sally's view

When aIl the scores are computed, the system can determine the best matches, using the

highest scores24
• For example, for Sarn's "review meetingJl activity, the scores with Sally' s

activities are 0.1, 0.4, 0.925, and 0.2, the 0.925 being with Sally's "review meeting"

activity. For Sally's "review meeting" activity, the scores with Sarn's activities are 0.071,

!I This is computed in lines #9-10 in Figure 72.
22 Using the information in Table 5 (row 3, column 4), we compute the mean between the two numbers:

(0.75 + 0.50) / 2 = 0.625.
23 This is checked in lines # Il to 14 in Figure 72.
24 This is done in lines # 15 to 17 in Figure 72.

131

•

•

0.661, and 0.19, the 0.661 being with Sam's "review meeting" activity. The highest scores

in bath cases are between the same entities, sa the two activities are said ta be matched.

We can see that an activity in one view bas no match at all in the other view when these

highest scores do not coïncide. For example, the scores for Sally's "preparation" activity

are 0, 0.4, and 0.2, the highest being with Sam's "review meeting" activity, but this activity

bas its highest score with Sally's "review meeting" activity.

The match can aIso be rejected in the case where the similarity score is Lo~5. This Lower

bound on similarity score is given by the elicitor or the agent.

As discussed in Section 5.2.3.1, the elicitor should aIso check the matches found after the

matches for one entity type are detected, and make the appropriate modifications if

necessary. These modifications should he made before continuing the algorithm with the

next entity type, in order ta use the appropriate matches in the other iterations.

6.2.2 Use ofgenerators

Hierarchical generators are ohviously needed for this aIgorithm. Relationships and

attrihutes are often specified for entities at lower levels only in the decomposition

hierarchy. Such information is necessary for entities at upper Levels in order ta match

them.

In the case of the linear relationship generators, they permit the elicitor to add other

relationships that can he used in computing the similarity scores. These additional

relationships are typically generated from relationships that cannot be used yet hecause

the entities involved are not matched. For example, the relationship "artifact is-needed-for

artifaet" (generated frOID the produces/consumes relationships with activities) can be used

2S This is checked in line # 16 in Figure 72.

132

•

•

to replace the relationships rraetivity produces artifaa" and "artifaa is·consumed·by

aetivityrr, that cannot be used when the activities are not matched.

In the example presented in the previous section (Sam and Sally), such mechanism is not

necessary because the artifacts can all be matched just by their name. However, in real

situations, artifact names are often different across views, making it impossible to match

them without using additional information.

In arder to illustrate such situation, lets modify Sam's view from previous section (the

modified view is shown in Figure 74), keeping Sally's view the same (Figure 75).

Generated relationships across artifacts are alSO shawn in these two figures.

Legend: see Figure 25
___)~ artifact is-needed-for artifact (generated)

Figure 74 - Sam's view modified (including generated relationships)

Legend: se. Fi) 25
artifact is-needed-for artifact (generated)

Figure 75 - Sal1y's view (with generated relationships)

133

•

•

As one can see, the artifacts "feedback" and "comments" are actually the same artifact~ and

they should be matched. However~ because they do not have the same name, they are not

matched (the simiIarity score is 0).

By using the generated relationships "artifaet is-needed-for artifact" in the second pass of

the rnatching heuristic, the similarity score between "feedback" and "comments" becornes

0.58, and these two entities are then matched (the similarity score between "commentsn

and "review notes" is only 0.5).

Linear relationship generators are very useful with the entity types that are rnatched fust,

because there is not much information we can use, and the generators increase the chances

of finding the right matches.

6.2.3 Summary and analysis of the component matching feature

In this section, we have provided details on how the component matching algorithm finds

similar entities across views. We have presented the formula used for assessing the

similarity between two entities from two different views ("similarity score"). From this

information, the entities that are sunHar are detected, or at Ieast easily identified using the

similarity score. We have aIso discussed the parameters that the user cao modify ta help

obtain a better matching result: the ordering of the entity types and the use of generators.

Once we know which entities are similar, we can then see the differences (or

inconsistencies) across the views. This is the topic ofthe next section.

Our algorithm is based on Leite and Freeman's heuristics [LeF91] for matching rules in

different software requirement descriptions (or idea behind the heuristics). They have

applied their heuristics to facts and rules: similarity scores for facts are derived by

comparing each word of the facts (as in our "NameSim"), and a combined score for mIes

is then computed using scores on facts and weights. Our similarity scores are computed in

a similar way, but they are applied ta ERD instead of rules and facts. AIso, we have

134

•

•

developed the two-pass formula in order to be able to use additional information (i.e.,

relationships between entities ofthe same type), which is critical when there is not much

information that cao be used.

The time complexity ofour matching algorithm is as follows26
:

t (nbviews, nbents, nbrefs) E O(nbviews2 * (nbents2 + nbrels2))

where: nbviews = number ofviews

nbents = number ofentities

nbrels = number of relationships

t = the computing time ofthe algorithm, as a function ofthe number of

views, entities, and relationships

Indeed, the algorithm. has to run on each pair of views (nbviews2
), and for each pair, the

entities and relationships of one view are compared to each entity and relationship of the

other view (nbents2 + nbrels2).

As one can see, this algorithm is polynomial, so it is considered as "efficient" (i.e., it can

handle quite large models) [BrB96]. However, it might still take a lot of time on large­

scale models. In such cases, it would probably be best to separate the process into more

manageable pieces, for example by modeling each software development phases (e.g.,

requirement analysis, design, coding, etc.) separately. This would reduce the number of

entities to be dealt with at the same time when merging views, reducing the time required

to perform such a task. However, one should be careful here in the re-composition of the

entire process model from the separated development phases. Further work is necessary

here, for investigating ioto approaches for handling large models, containing thousands of

entities.

26 The time complexity, specified using an asymptotic notation ("Big-Oh"), means that the actual running
time of the algoritbm is b01.mded by the function indicated, multiplied by a constant. The constant is related
to the actual number ofinstructions performed, and the speed ofthe computer used. [BrB96]

135

•

•

6.3 View merging

The third technique developed for V-elicit is view merging.

In this sectio~ we describe the different types of inconsistencies across views, how each

are detected and resolved, and how the final model is bullt (Section 6.3.1 to Section

6.3.3). We then present how other researchers deal with the problem of inconsistencies

across views, even in other domains such as requirement elicitation and knowledge

engineering (Section 6.3.4). The last section summarizes our view merging technique.

6.3.1 Detecting and resolving inconsistencies related to entity decomposition

When resolving the entity-decomposition kind of inconsistency, we are interested in

entities that are missing, as weil as in the different grouping of entities in different views.

Examples of such inconsistencies are the "system_analysis" activity missing in William's

view (the root activity is not the same), and the "IT_team_review" activity decomposed in

William's view but not in the other views (see Figure 25 to Figure 27).

As we have seen in Section 5.2.3.2.1, the inconsistencies found across views are

categorized into basic inconsistency types. They are identified using a set of boolean

cbaracteristics, evaluated on one entity in one view with respect to another view. We bave

identified eight sucb basic inconsistency types, and two cases where there is no

inconsistency (see Table 7). Each ofthese cases is described later in Sections 6.3.1.1 ta

6.3.1.10.

136

•

•

Inconsistency type Description
Case #1 Missing element An. entity is in one view but not in the other.
Case #2 Detail missing An. entity is further decomposed in one view,

but not in the other.
Case #3 Finer decomposition In one view, a set ofentities is shawn under a

single parent entity, whereas in the second
view, more sub-groupings are used.

Case #4 Different grouping Sorne entities (matched in the two views) are
not grouped in the same way under their
parent entity (which are not matched).

Case #5 Different decomposition Sorne entities are not under the same parent
entity in the two views (the parent entities are
rnatched)

Case #6 Details taken from AlI the matched entities under one parent
outside (leai) entity (in one view) are not under the same

entity (a leat) in the other view.
Case #7 Details taken from AlI the matched entities under one parent

outside (non-leaf) entity (in one view) are not under the same
entity (not a leaf) in the other view.

Case #8 Different details Two matched entities (in the two views) are
both further decomposed, but the entities
involved in both decomposition are
completely different.

Case #9 No inconsistency (leaf) Two matched entities (in the two views) are
both Ieaves (not :further decomposed).

Case #10 No inconsistency (oon- Two matched entities (in the two views) are
leaf) bath further decomposed, and they bath have

the same set ofmatched entities under them.

Table 7 - Basic types ofinconsistency, and cases with no inconsistency

In order to identify these basic types of inconsistencies, we use the following set of

boolean characteristics: (please refer to Figure 25 and Figure 26 for the examples

provided)

Cl - element is matched:

The element has been matched to one of the entities in the second view.

This entity in the second view is referred to as "matched element".

E.g.: ifwe analyze Bob's "system analysis" activity with respect to Peter's

view, Clis true, and the matched element is Peter's "system

137

•

•

analysis" activity. On the other hand, if we analyze the same

activity with respect to William's view~ Cl is false.

C2 - descendant matched:

At least one of the descendants of the element has been matched to one

entity in the second view.

E.g.: This characteristic is true for Bob's "deliverable validation" activity

with respect ta Peter's view (the descendant "IT_team review" is

matched). This is not the case with Bob's "deliverable production"

activity (none ofthe descendants are matched in Peter's view).

C3 - outside subtree entity matched:

At least one of the siblings ofthe element~ or descendant of siblings, has

been matched to one entity in the second view.

E.g.: In the case of Bob's "deliverable production" activity, there is at

least one sibling ("deliverable validationIl) that is matched in Peter's

view, so this characteristic is true. But for any of the descendants

of this "deliverable production" activity, C3 is false, because none

ofthem is matched in Peter's view.

C4 - element is leaf:

The element does not have any descendant.

E.g.: Bob's IIdescribe contextll activity is a leaf: but not the "deliverable

production". Notice that this characteristic is independent of the

view with respect ta which we analyze the entity.

CS - matched element is leaf:

The entity in second view that is matched to the element we are looking

at does not have any descendants.

E.g.: This is the case for Bob's "IT team review" activity (matched ta

Peter's "IT team QAII activity), but not for "deliverable validation"

activity (matched to Peter's "review" activity)

138

•

•

C6 - group = union

Groups are sets of entities under a subtree with. a match to an entity in

the second view. For a given level of decomposition, there is one group

per entity on that level. For example, in Bob's view (with respect to

Peter's view), ifwe look at the second level of decomposition, we have

the following two groups:

1. ["deliverable production"] (one element only because the descendants

are not matched)

2. ["deliverable validation", "IT team review", "modify deliverable",

"review by other teams"] (alI four elements because they are all

matched)

In. the same way, we can build the groups in Peter's view, with respect to

Bob's view:

1. ["document production", "modifications"] (notice that "writing first

version" is not matched in Bob's view)

2. ["review", "IT team QA", "other teams review"] ("client review" is not

matched in Bob's view)

For this characteristic to be true, the group for the element (e.g. the fust

group for Bob's "deliverable production" activity) should be a union of

zero or more groups in the other view (groups in Peter's view here). This

is not the case in our example above. This characteristic would be true

for Bob's "system analysis" activity because its group contains aIl the

matches in that view (with respect to Peter's view), and that the group

for Peter's "system analysis" activity is the same (with respect to Bob's

view).

C7 - descendant ofmatched element is matched:

At least one of the descendants of the matched element has been

matched to one entity in the fust view.

E.g.: This characteristic is true for Bob's "deliverable validation" activity,

because its matched entity in Peter's view ("review") has sorne

139

•

•

descendants that are matched in Bob's view ("IT_team QA" and

"other teams review"). This is not the case with Bob's "modify

deliverable" activity because its matched entity in Peter's view

("modifications") has no descendants.

CS - group ofelement = group ofmatched element:

For this characteristic, the groups are formed like in C6, but only for a

specific element and its matched element (not for ail subtrees), even if

the matched element is at a different level in the hierarchy. For example,

the group for Bob's "IT team review" activity and its matched activity in

Peter's view ("IT team QA") are these activities themselves (matched

together) because they are leaves, sa this characteristic is true for Bob's

"IT team review" activity with respect to Peter's view. This is not the

case for Bob's "deliverable validation" activity, because its group

contains the "modify deliverable" activity, but the group of Peter's

"review" activity does not contain it.

Each characteristic above can be true or false. The 8-tuple built out ofthat will be used for

determining if there is an inconsistency, and if so the basic type of this inconsistency. An

example of such an 8-tuple is (T,F,T,F,F,F,T,F)27 for Bob's "deliverable production"

activity with respect to Peter's view.

For an 8-tuple ofboolean values, there can be 256 (28
) possibilities. But in our case, sorne

combinations are impossible. Here are the possible reasons to reject a combination (these

are summarized using a formai notation in Table S) :

RI - If the element is not matched (C1=F), there is no matched element, so the

characteristics related to the matched element should be faIse (C5=F & C7=F

& CS=F).

27 There is one boolean value for each ofthe characteristics defined above.

140

•

•

Reason to Related constraint on combination (tuple)
reject

RI (Cl = Fa/se) ~ (CS = Fa/se) A(C7 = Fa/se) 1\ (CS = Fa/se)

R2 (C2 = True) ~ (C4 = Fa/se)
(C7 = True) ~ (CS = Fa/se)

R3 (Cl = Fa/se) A(C2 = Fa/se) ~ (C6 = True)

R4 (C3 = Fa/se) ~ (C6 = True)

R5 (C2 = Fa/se) 1\ (CS = True) ~ (C8 = True)
(C2 = True) A(CS = True) ~ (CS = Fa/se)

R6 (Cl = True) 1\ (C4 = True) A (C7 = Fa/se) ~ (C8 = True)
(Cl = True) I\(C4 = True) A(C7 = True) ~ (C8 = Fa/se)

R7 (Cl = True) A(C2 = Fa/se) A(C7 = Fa/se) ~ (CS = True)
(Cl = True) A(C2 = True) A(C7 = Fa/se) ~ (C8 = Fa/se)
(Cl = True) A(C2 = Fa/se) A(C7 = True) ~ (CS = Fa/se)

R8 (C4 = True) 1\ (CS = True) ~ (CS = True)

R9 (C2 = Fa/se) I\(C3 = Fa/se) ~ (C6 = True) 1\ CC? = True) A (CS = True)

RIO (C2 = Fa/se) A(C7 = True) => (C6 = Fa/se) A(C8 = Fa/se)

Table 8 - Summary of the reasons to reject sorne cornbinations ofcharacteristics

R2 - If the element has descendants matched (C2=T), it cannat be a leaf (C4=F).

The same applies ta the matched element if there is one. If the matched

element has descendants matched (C7=T), it cannot be a leaf (C5=F).

R3 - If the element is not matched (C1=F) and none of its descendants are matched

(C2=F), then its group is empty, so it is a union of zero or more groups of the

other view (C6=T).

R4 - If none of the siblings or descendants of siblings are matched (C3=F), the

group for the element contains all remaining matches, so the group should he

the union ofthe groups in the other view (C6=T).

R5 - In the case the matched element is a leaf (CS=T), the group for the matched

element is the element itself only. SA if the element has descendants matched

(C2=T), its group will contain more than the element itself, sa it will not be

the same as the matched element's group (C8=F). But if the element does not

have descendants matched (C2=F), its group will contain only the element

itsel:f, like the matched element's group (C8=T).

141

•

•

R6 - The same reasoning as in R5 apply in the case the element is matched (C1=1),

and that it is a leaf (C4=T). If the matched element has descendants matched

(C7=T), its group will be different than the element's group (C8=F). But if the

matched element does not have descendants matched (C7=F), its group is the

same as the element's group (C8=T).

R7 - In the case the element is matched (C I=T), if neither the element nor the

matched element has descendants matched (C2=F & C7=F), then both groups

are the element itself only, so the groups are the same (C8=T). If the element

has descendants matched (C2=T) but not the matched element (C7=F), or vice

versa (i.e. C2=F & C7=T), the groups cannot be the same (C8=F).

R8 - In the case both element and matched element are leaves (C4=T & C5=T),

their groups are the same (C8=T) because the groups are the element only.

R9 - If the element have neither descendants matched (C2=F) nor siblings or

descendants of siblings matched (C3=F), than the only possible non-empty

group is the element itself...if it is matched. If it is not matched, aIl groups are

empty. In this situation, the group (empty or containing only one element)

shouid be a union of the groups in the other view (C6=T) because this other

vie\v has only empty groups or one group with one element only. There are no

other matches. In the case the element is matched (sa there is only one

element in all groups), this element should be the matched element, it cannot

be its descendants (C7=F). The group of the matched element also contains

only itself because there are no other matched elements, so the groups are the

same (C8=T).

RIO - If the element does not have descendants matched (C2=F), but the matched

element has sorne descendants matched (C7=T), then their respective groups

is not the same (C8=F). Also, the group ofthe matched element (in the second

view) contains the initial element with others, so it is not possible ta isolate

the element in groups, and the element's group cannot be a union of the other

view's groups.

142

•

•

This set of reasons for rejecting combinations shrinks the number possible tuples ta 33.

For each of these 33 possible combinations, it is possible ta come up with an example

having these characteristics, sa our set ofreasons for rejecting a combination (RI ta RIO

above) is complete. Table 9 shows the conditions necessary for each basic inconsistency

type (refer ta Sections 6.3.1.1 to 6.3.1.10 for additional information). Ali_" indicates that

the value for such characteristic is irrelevant in the identification of the type of

inconsistency.

Cl C2 C3 C4 C5 C6 C7 CS
Case #1 - missing element F F T - -- - -- -
Case #2 - details missing T - - T F - F -

or T F -- F T - - --
Case #3 - finer decomposition F T -- -- - T -- -
Case #4 - different grouping F T - - -- F -- --
Case #5 - different decomposition T T - - - -- T F
Case #6 - details taken from T T - - T - - -
outside (lea!) or T - - T -- - T -
Case #7 - details taken from T T -- - F -- F --
outside (non-Iea!) or T F -- F -- -- T --
Case #S - different details F F F -- -- -- - --
Case #9 - no inconsistency (leat) T -- -- T T -- -- --
Case #10 - no inconsistecy (non-Iea!) T - - F F -- -- T

Table 9 - Characteristics for each basic inconsistency type

When figuring out which case applies ta the CUITent element, it is not necessary to

evaluate each characteristic. Sorne of them can he avoided in sorne cases. This is

particularly useful for those that are complex (and time consuming) ta evaluate, such as

characteristics C6 and C8. The following is an algorithm showing the ordering of

characteristic evaluation: (notice that it has been verified for each of the 33 possible

combinations)

143

•

•

ifel
ifC4

ifCS -> case 9
else

ifC7 -> case 6b
else -> case 2a

else
ifC5

ifC2 -> case 6a
else -> case 2b

else
ifC8 -> case 10
else

ifC2
ifC7 -> case S
else --> case 7a

else -> case 7b
else

ifC2
ifC6 -> case 3
else -> case 4

else
if C3 -> case 1
else --> case 8

In Section 6.3.1.1 to Section 6.3.1.8 below, we describe each of the basic inconsistency

types (using a generic entity decomposition as an example), how they are detected using

the characteristics above, how they are resolved, and how the final model is modified after

these cases are resolved. Sections 6.3.1.9 and 6.3.1.10 describe the cases where there is no

inconsistency, and show what is done on the final model in these cases. A realistic

example is used to illustrate each of these cases; it is shown in the three views in Figure

76. Section 6.3.1.11 provides more details on the algorithms used and on the ordering of

the resolution of the different types of inconsistencies. Finally, Section 6.3.1.12

summarizes this section and shows the completeness of the set of basic inconsistency

types.

144

1. design
1.1 understand requirements
1.2 production

1.2.1 map DFD ta
architecture

1.2.2 add other modules
1.2.3 design main

structures
1.2.4 design local

structures
1.2.5 do algorithms
1.2.6 plan control

1.3 validation

1. design
1.1 production

1.1.1 architectural design
1.1.1.1 map DFD to

architecture
1.1.1.2 add other modules

1.1.2 data design
1.1.2.1 design main

structures
1.1.2.2 design local

structures
1.1.3 procedural design

1.1.3.1 do algorithms
1.1.3.2 plan control

1.2 validation
1.2.1 team validation
1.2.2 global validation
1.2.3 interface validation

1.3 modifications

View#l:
1. design

1.1 production
I.I.IHLD

1.1.1.1 map DFD to
architecture

1.1.1.2 design main
structure

I.L2LLD
1.1.2.1 add other modules
1.1.2.2 design local

structures
1.1.2.3 do algorithms
1.1.2.4 plan control

1.1.3 modifications
1.2 validation

1.2.1 preparation
1.2.2 meeting
1.2.3 produce report

Activity decomposition aspect for three views:
Ir---------------,

View #2: View #3:•

Remark: indentation and numbering has been used here to show the decomposition ofactivities

Figure 76 - Example views used to illustrate the different types ofinconsistencies

6.3.1.1 Case #1: Missing element

Generic example:

A

A
B C
~

B C D

Entity from which the discrepancy is found: D

•

In this type of discrepancy, the parent elernent (A) is matched, and it does not overlap

with other parts. Under A, there are sorne children which can be matched or not (but at

least one is matched, or one descendant is rnatched). These children can all be further

decomposed. The elernent D and its descendants (if any) are not matched.

145

•

•

Characteristics:

• element CD) is not matched (Cl=F)

• none of its descendants are matched (C2=F)

• at least one ofthe siblings or descendants of siblings is matched (C3=T)

Examplesfrom our three views (Figure 76):

The "understand requirements" activity is in view #3 but not in view #1 and view #2, and

the "modifications" activity is in view #1 and view #2, but not in vie\v #3.

Possible situations leading to such a case:

This case can happen when someone is not aware ofdetails. This omission can aIso occur

if there is a step that was not performed during that particular instance of the process, but

is performed in ather circumstances. For example, some type of validation might not be

necessary, but the persan sending the document for validation may think that all types of

validation will be performed.

This case can aIso occur with other types of entities. For exarnple, a user's guide (an

artifact) might not contain sorne parts like introduction or conclusion; a team (role

composition) might not contain one of its roles; etc.

Possible solutions presented in the resolution window28
:

• missing element is added

• missing element is not added

The resolution window can show the list of views containing the element, and the list of

views not containing it. The elicitor can theu choose if the entity should be kept or not. If

the decision is to keep it, it is added with aU its decomposition to the global model being

built. If the decision is not to keep it, it is removed from the global model (if it was there)

and from the views containing it, including the whole decomposition.

28 For an example of such resolution window, see Figure 65.

146

• Remark: when the system finels a missing element, the whole subtree is treated at once,

and it does not recursively find discrepancies under that element, except if it was there in

a third view.

6.3.1.2 Case #2: Detail missing

Generic example:

A

A
B C

A

AAC
D E

•

Entity from which the discrepancy is found: B

In this type of discrepancy, the parent element (A) is matched, and it does not overlap

with other parts. Under A, there are sorne children which may or may not be matched.

These children can all be further decomposed (except B in fust view). Element B should

be matched, and one ofthe views should decompose it, but not the other. The information

given in the decomposition should not overlap with other information under the ather

children (Le., not matched).

Characteristics:

The characteristics are different depending on which element (i.e., B from which view)

has been used for evaluating the type of inconsistency.

a) Characteristics for leaf element (B in the tirst view):

• element (B) is matched CC1=T)

• element is leaf (C4=T)

• matched element is not a leaf(C5=F)

• none of the descendants ofthe matched element are matched (C7=f)

147

•

•

b) Characteristics for the non-Ieafelement (B in the second view):

• element (B) is matched (Cl=n

• none ofthe descendants are matched (C2=F)

• element is not a leaf (C4=F)

• matched element is a leaf(C5=n

Examplefrom our three views (Figure 76):

The "validation rr activity is decomposed in view # 1 and view #2, but not in view #3.

Possible situation leading to such a case:

This case can happen when someone knows that the element exists, but does not have any

details about it. This is usually the case when many people are working on one project: no

one may know exactly what the others in the project are doing, but they rnay have a

general idea ofthe others' tasks.

Possible solutions presented in the resolution window:

• this decomposition is kept (usual case)

• this decomposition is not kept (if those details are not necessary for the users of the

final model)

For resolving this case, the system presents to the elicitor the list of views 1hat further

decompose the entity (even if the details are different), and the list of views that do not

decompose it. The elicitor can then decide whether or not to keep the decomposition. If

the decision is to keep it, the tirst level ofthe decomposition is added in the global model.

Otherwise, the whole decomposition is deleted in the global modeI (ifnecessary).

148

• 6.3.1.3 Case #3: Finer decomposition

Generic example:

A

/\.AC
D E

~
D E C

•

Entity from which the discrepancy is found: B

In this type of discrepancy, the parent element (A) is matched, and it does not overlap

with other parts. Under A, there are sorne children which can be rnatched or not. These

children can all be further decomposed. Element B (not matched in the second view) is

made of children in the second view, and may have additional elements, which are

missing in the second view. Those missing elements will he analyzed only when children

ofB will be checked (when B's level will an be resolved).

Characteristics:

• elernent (B) is not matched (Cl=F)

• at least one descendant is matched (C2=T)

• group=union (C6=T)

Examplesfrom our three views (Figure 76):

The "HLD" activity in view #1 is composed offew activities under the same "production"

activity in view #3. The same happens with the following activities: "LLD" in view #1,

and "architectural design", "data design", and "procedural design" in view #2.

Possible situation leading to such a case:

This case can happen when someone has a hierarchical structure in mind, and another

person has a flat structure in mind.

149

• Possible solutions presented in the resolution window:

• add this level ofdecomposition

• do not add this level ofdecomposition

For resolving this case, the system can present to the elicitor the list ofviews containing

the entity (with the same grouping), and the list of views not containing it, but containing

sorne of the descendants. The elicitor can then choose if the entity should be kept or note

If the decision is ta keep it, it is added to the global model, and the children are moved

under the new entity. Notice that the child may not be matched, but one or more of its

descendants may be matched and should go under the new entity. Ifthe decision is not ta

keep the entity, it is rernoved from the global model, and the children are moved directly

under the entity's parent.

6.3.1.4 Case #4: Different grouping (with unmatched elements as roots)

Generie example:

A
~Â

D E F G H

A
J K
~/\

D E F G H

•

Entities from which the discrepancy is found: B, C, J, and K

In this type of discrepancy, the parent element CA) is matched, and it does not overlap

with other parts. Dnder A, there are sorne children which can be matched or note These

children can all be further decomposed. For the entities from which the discrepancy is

found, they are not matched, but they have descendants matched. The discrepancy is that

the entities under these subtrees are not grouped in the same way, and this different

grouping is not just a finer decomposition.

150

•

•

Characteristics:

• element (B, C, J, or K) is not matched (Cl=F)

• element has descendants which are matched (C2=T)

• group =/- union (C6=F)

Examplefrom our three views (Figure 76):

The following activities provide different grouping of the subtasks between view #1 and

view #2: "HLD", "LLD", "architectural design", "data design", and "procedural design".

Possible situations leading to such a case:

This case happens when the criteria for grouping the entities is different from one view to

another. It can happen also in the case ofoverlapping entities (that were not matched), for

example in the case that one persan says that modification of a document falls in the

production task, and another person says it falls in the review task (and that the

production tasks and/or review tasks have not been matched together because their

descriptions were tao different).

Possible solutions presented in the resolution window:

• one ofthe decomposition presented in the views

• any other way of grouping the entities

The resolution of this case overlaps with the techniques used in other cases. The elicitor

should fust select which entities should be used for the grouping of elements (in our

generic example above, the elicitor would have to select a subset from {B, C, J, K}. This

selection is performed like the one in case #1. The elicitor should then decide where the

sub-entities should go (Le., under which parent). This is the same as resolving case #5.

Remark: this case is more general than the case #5 below, where the foots are rnatched.

So in the case that the roots are matched for sorne subtrees across sorne views,

but that they are not matched in other cases, then case #4 is applied fust.

151

• 6.3.1.5 Case #5: Different decomposition (with matched elements as roots)

Generic example:

A
B C
~

D E F

~J\ F C

D E

•

Entity from which the discrepancy is found: B

In this type of discrepancy, the parent element (A) is rnatched, and it does not overlap

with other parts. Under A, there are sorne children which cau be matched or note These

children can all be further decomposed. The entity from which the discrepancy is found is

matched, as weIl as sorne of its descendants, but the set of matched descendants is

different in each view.

Characteristics:

• element (B) is matched (C1=D

• elernent has descendants which are matched (C2=T)

• matched element has descendants which are matched (C7=T)

• group =/= matched element's group (C8=F)

Examplefrom our three views (Figure 76):

The "production" activity in view #1 contains the "modifications" activity, but this is not

the case in view #2.

Possible situation leading to such a case:

This case cau happen when someone does not consider one subtask to be part of one task.

A situation like the one described in the basic type #4 above can also bring this type of

inconsistency. The difference here is that in this case, the descriptions ofthe main task (B)

are very similar, so they have been considered the same (i.e., matched).

152

A

B~E

•

•

Possible solutions presented in the resolution window:

For each matched entity that is under B in one view, but not in the other view:

• keep this entity under B

• do not keep this entity under B

For resolving this case, the elicitor has ta decide, for each entity under B in every view, if

it is kept under B or not. Of course, the entities always under B in every view are not

going through that process. For this decision, the system can present ta the elicitor the list

of views having the entity under the subtree of B, and the list of views having the entity

elsewhere. Ifa view does not contain the entity, it does not appear in the lists.

Each time the elicitor decides ifan entity should go under B or not, the model is modified.

If the decision is to keep the entity under B, the entity is moved as a child of B in the

model. Ifthe decision is not to put the entity under B, the entity is moved as a sibling ofB

in the model.

6.3.1.6 Case #6: Details taken from outside Oeat)

Generic example:

A

AAC
D E

Entity from which the discrepancy is found: B

In this type of discrepancy, the parent element CA) is matched, and it does not overlap

with other parts. Dnder A, there are sorne children which can be matched or not. These

children can all be further decomposed (except B in the second view). Element B should

be matched, and it should have matched descendants in the view where it is not a leaf.

153

•

•

Remark: this case is improbable because it means that, for example, an activity IS

performed completely (through B) and then it is performed again through its sub-activities

(D andE).

Characteristics:

The characteristics are different depending on which element (i.e., B from which view)

has been used for evaluating the type of inconsistency.

a) Characteristics for the non-Ieaf element (B in the fust view):

• element (B) is matched (Cl=T)

• element has descendants which are matched (C2=T)

• matched element is a leaf (C5=T)

b) Characteristics for the leaf element (B in the second view):

• element (B) is matched (C1=T)

• element is a leaf (C4=T)

• matched element has descendants which are matched (C7=T)

Example:

Examples are not provided here because this case is improbable. ft is theoretically

possible to have such a case, so we are dealing with it, but we have not identified

situations where this can happen.

Possible solutions presented in the resolution window:

For each matched entity that is under B in the view where B is not a leaf

• keep the entity under B

• do not keep the entity under B

Remark: the resolution ofthis basic type is the same as for the basic type #5

154

• 6.3.1..7 Case #7: Details taken from outside (non-Jeaf)

Generic exarnple:

A
/\.AC

D E

•

Entity from wmch the discrepancy is found: B

In this type of discrepancy, the parent element (A) is matched, and it does not overlap

with other parts. Under A, there are sorne children which can be matched or not. These

children can all be further decomposed. Element B should be matched, and it should be

decomposed in bath views, but it should have matched descendants in only one of the

views.

Characteristics:

The characteristics are different depending on which element (i.e., B from which view)

has been used for evaluating the type of inconsistency.

a) Characteristics ofthe element containing matched descendants (B in the fust view):

• element (B) is matched (Cl=T)

• element has descendants which are matched (C2=T)

• matched element is not a leaf (C5=F)

• none ofthe descendants ofthe matched element are matched (C7=F)

b) Characteristics of the element not containing matched descendants (B in the second

view):

• element (B) is matched (Cl=T)

• none of its descendants are matched (C2=F)

• element is not a leaf (C4=f)

• matched element has descendants which are matched (C7=T)

155

• Remark: this case is very similar to the basic type #6 above, except that other information

were specified in the second view, instead of leaving the element B as a leaf This case is

also improbable, for the same reason. Its possible solutions and resolution strategy are

exactly the same as for case #6 above (please refer to that section for the complete

information).

6.3.1.8 Case #8: Different details

Generic example:

A

A
B C
~

D E F

•

Entities from which the discrepancy is found: B, C, D, E, and F

In this type of discrepancy, the parent element (A) is matched, and it does not overlap

with other parts. Dnder A, there are sorne children which are not matched at aIl. These

children can all be further decomposed, but none ofthe descendants are matched.

Characteristics:

• element (B, C, D, E, or F) is not matched (Cl=F)

• none of its descendants are matched (C2=F)

• none ofthe siblings or descendants ofsiblings are matched (C3=f)

Examplesfrom our three views (Figure 76):

The following activities in vie\v #1 and view #2 (with respect to the other view, not with

view #3) represents alternatives in decomposing the "validation" activity: "preparation",

"meeting", and "produce report" in view #1; "team validation", "global validation", and

"interface validation" in view #2.

156

• Possible situation leading to such a case:

This case can happen at lower levels of details, where two people do not describe their

specific subtasks in the same way. Typica1ly, documents flowing between them are

temporary, and the same roles are involved in all ofthe suhtasks.

Possible solutions presented in the resolution windows:

• keep one of the decomposition

• keep any suhset of the entities (including empty subset, if the level of details is too

low)

For resolving this case, the system can fust ask the elicitor which view to keep as a

solution, or ifs/he wants ta select a subset ofentities. In the case that one view is kept, the

model is modified such that it contains the new set of selected entities. If the elicitor

wants to select his/her own subset of entities, the system can then ask hitn/her, for each

entity, if s/he wants to keep it or not. This is performed in the same way as for resolving

inconsistencies of basic type # 1.

6.3.1.9 Case #9: No inconsistency Oeat)

Generic example:

~
B li ...

•

element=B

In this case (which is not a discrepancy), the parent element (A) is matched, and it does

not overlap with other parts. Under A, there are sorne children which can be matched or

not (B should he matched). These children can all be further decomposed (except B).

Element B does not have any discrepancy in this case because it is a leaf in bath views,

and it has been matched.

157

•

•

Characteristics:

• element (B) is matched (Cl=T)

• element is a leaf (C4=T)

• matched element is a leaf(C5=T)

Examples from our three views (Figure 76).-

AlI the leaf activities (matched) that are not further decomposed in any of the views are in

such case (e.g., the "map DFD to architecture" and "modifications" activities).

Possible situation leading ta such a case:

This case is the one when, for example, two people say that one activity (or artifact, raIe,

etc.) exists, and bath do not further decompose it.

Resolution:

There is no resolution to be made, but the system should add the entity to the global

model if it is not already there.

6.3.1.10 Case #10: No inconsistency (non-Ieat)

Generic example:

element=B

In this case (which is not a discrepancy), the parent element (A) is matched, and it does

not overlap with other parts. Under A, there are sorne children which cao be matched or

not. These children can all be further decomposed. Element B is matched, it is further

decomposed in bath views, and the descendants matched are in bath subtrees of B. Notice

158

•

•

that there might he other discrepancies at lower levels under B~ but these are resolved

later.

Characteristics:

• element (B) is matched CC 1=T)

• element is not a Leaf (C4=F)

• matched element is not a leaf(C5=F)

• group = matched element's group (C8=T)

Examplesfrom our three views (Figure 76):

There are three such cases in our example:

• the "design" activity in all views

• the "production'· activity between view #3 and view #1, or between view #3 and view

#2

• the "validation" activity between view #1 and view #2

Possible situation leading to such a case:

This is the case wh.ere bath persans agree on the existence of the entity (activity, artifact,

raIe, etc.)~ and also agree on the sub-entities that should go under this entity.

Notice that if there are no matched descendants~ we get into the discrepancy described in

case #8 above when going further down (next step of recursion). This is the case in our

third example above (the "validation" activity between view #1 and view #2).

Resolution:

There is no resolution ta he made, but the system should add the entity to the global

model if it is not already there.

159

•

•

6.3.1.11 Algorithmie details

When detecting the inconsistencies across views, we need to use previous decisions in

arder to avoid detecting inconsistencies that are not there anymore. In arder ta keep track

of the previous decisions and how they affect the different views, we are actually making

the same changes to the views as for the final modee9
, when resolving each inconsistency.

For example, if the elicitor decides ta keep the "modifications" task under the "production"

activity as in view #1 (see Figure 76), then the "modifications" activity is moved

accordingly in view #2.

However, when showing to the elicitor the list of views having one solution, and the list

of views baving another solution (in the resolution windows), we sbould use the origffial

infonnation provided by these views. For example, ifan activity bas been added to one of

the views (arbitrarily under one of the other activities), we should not use this view when

analyzing how this activity is grouped with other activities (i.e., the view with the added

activity should not appear in the lists ofviews having one grouping solution or another).

In order to meet those two needs, we need to keep two versions of each view: the original

one, and the one that is modified after each resolution ofan inconsistency.

Keeping two copies ofeach view can take a lot ofmemory. In arder to reduce the memory

used, we can use tags for the entities ("original", "added", or "deleted") instead ofcopying

them. For the relationships, we Can use two different relationship types to keep track of

the original relationships and the modified ones ("entity was-composed-of entity" and

"entity is-composed-of entity" respectively).

Another use of the modified views is that they permit the elicitor to stop the resolution

process at any time, and return later for continuing the resolution process. This is very

29 See the sections above on how the final model is built as each inconsistency is found.

160

•

useful in the case where the elicitor has no idea of the solution, and has to go back to

some sources to find out the right solution.

The ordering of resolution (of the inconsistencies) is top-down, from the roots to the

leaves in the entity decomposition tree. AIl views are used at the same time. We fust list

all the inconsistencies (with their type) within one level on decomposition, across all

views, and then we resolve these inconsistencies one at a time.

We start by resolving the inconsistencies that may affect the other types of inconsistencies

(Le., the ones related to the grouping of entities in the decomposition). The case #3 is

checked fust because in the case the elicitor decides not to keep the level of

decomposition, then the inconsistencies related to the next level of decomposition appear

at the current level when moving up the entities. We then check the other cases that may

modify the decomposition structure: case #4 and case #5 (cases #6 and #7 are considered

within case #5 because their resolution is performed in the same way).

After resolving these cases, we have to redû the list of inconsistencies within the CUITent

level in the tree, because the kind of modifications made to the views when resolving

these cases may affect other types of inconsistencies, and even show new ones that were

not apparent at fust. Two situations can occur here: either entities involved in sorne

inconsistencies have been moved down in the hierarchy, or that entities have been moved

up in the hierarchy to the level currently worked for inconsistency resolution. In the fust

case, the inconsistencies related to these entities are no longer visible at that level, and

their resolution is postponed to a later iteration. In the second case, the entities moved are

DOW visible, and they cao then be involved in sorne inconsistencies (either existing ones

nowapparent, or new ones). Since the inconsistencies "created" after the resolution of the

cases #4 to #7 are only related to the entities moved up, we are sure that the cycles of

resolution of these cases always terminate (there is a limited number of entities in the

model, that can be moved up). Notice that the entities moved down in the hierarchy when

resolving an inconsistency cannot be moved up again.

161

•

•

We then resolve the remaining cases that do not have much effect on the other types of

inconsistencies, because they are just adding or removing entities (cases #1, #2, and #8).

Once these remaining cases are resolved, we can go to the next level of details in the

hierarchy, by recursively calling the resolution function. The process stops at the leaf

level~ or when an entire subtree representing the details ofan entity is added (from case #1

or #2).

6.3.1.12 Summary and analysis

In this section, we have presented the different types of inconsistencies handled (related to

the entity decomposition), how the system detects them, how the elicitor can resolve

them, and how the system is then building the final model reflecting the choices of the

elicitor for the solution ofthe inconsistencies.

We have seen that the inconsistencies were detected through a set of 8 characteristics.

This set is complete because it maps each ofthe combinations ofcharacteristic values (the

33 possible 8-tuples) to oruy one of the ten cases identified (types of inconsistencies or

cases with no inconsistency). In the case that two combinations are mapped to the same

type, the characteristic that is different in the two combinations has no effect on the

resolution of such type of inconsistency. For example, in an inconsistency of case #1, the

fact that the entity is a leaf or not does not change the way of resolving this type of

inconsistency. The elicitor has to choose whether to keep the entity or not, and this is

independent of the fact that the entity is further decomposed or note

Having such a system that detects the inconsistencies, helps in choosing the solution, and

builds the merged model frOID the information gathered, is of great help in merging the

views. By experience, we know that these inconsistencies related to the entity

decomposition are the most difficult ones to resolve. The complexity comes mainly from

162

•

•

the fact that many entities may be involved at the same time when the problem is the

grouping of the entities. The automatic identification of inconsistencies with their type,

and the automatic merging ofthe views into one model, helps the elicitor in focusing only

on the decisions to be made for resolving the inconsistencies, leaving the tedious details

to the system.

6.3.2 Detecting and resolving inconsistencies related to names and attributes

In these kinds of inconsistency, the detection and the resolution is much simpler than for

inconsistencies related to the entity decomposition, because the number of cases is

reduced to two: the names or attribute values are either the same or not. For example, in

the views used in Section 5.2 (see Appendix A for entire information on them), we had

cases where the names used were the same across the views (e.g., "system analysis"

activity), and others where the names were different (e.g., "modify deliverable" in Bob's

view but "modifications" in Peter's view). Similarly with the attributes, we had cases

where the values were the same across views Ce.g., the duration of the "client review" in

Peter's view and the "user review" in William's view), and others where differences were

identified Ce.g., the duration of the "IT team review" in Bob's and William's views, and the

niT team QA" in Peter's view).

The algorithm for detecting and resolving these inconsistencies is very simple: we just go

through all the entities, comparing the name or attributes of the matched entities in each

view. When an inconsistency is found, the user is asked for the right value (for the name

or attribute). The final model is then modified accordingly.

In order to help the elicitor in choosing the right value, the resolution window also

presents the degree of difference between the entity in the final model and the entities in

the views (as described in Section 5.2.3.2.2). For example, in Figure 67, we see the

number of items added and deleted in the subtree related to the entities having

inconsistent names. This information helps the elicitor in choosing the right solution.

163

•

•

Such feature gives a major advantage over the manual approaches for resolving

inconsistencies of such types.

6.3.3 Detecting and resolving inconsistencies related to relationships

Detecting inconsistencies related to the relationships is also quite simple, because we just

have to chec~ for each relationship, if it is in aU the views, and add it to the final model.

In the case the relationship is mïssing in sorne views, the elicitor should just tell whether

the relationship should be there or note

The definition of a missing relationship is actually not as trivial as one may think. For

example, the relationship "modifications produces document" in Peter's view (Figure 26) is

not considered as missing in William's view (Figure 27) because one of the entities

("modifications") is not in the view. In such case, how could William talk about such

relationship if he was not even aware of one of the entities involved? The same apply

when one view describe one of the task in more details than in the other views. These

other views cannot specify the dynamics of the subtasks if the detailed subtasks are not

specified.

In other cases, one relationship may seem to be missing, but it might just be specified at

higher levels of abstraction. For example, in Bob's view (Figure 25), we cau see the

relationship "IT_team_review produces feedback", which is not in William's view (Figure

27), even if both entities were defined. Actually, the relationship was specified in

William's view at a lower level ofdetails, through the relationships "walkthrough produces

feedback" and "engineering_review produces feedback". For dealing with this problem, we

can use the hierarchical relationship generator fust, and then look at the missing

relationships.

Linear relationship generators can also he useful in the case the type of information is not

the same across the views. For example, if one view has no indication of the activity

164

•

•'

ordering, but that it bas information on the input/output of the activities, we can use the

linear relationship generator to find the dependencies across activities, and then compare

them with the activity ordering information in the other views. This way, we cau identify

early the inconsistencies related to the mix of types of information across views. If such

opportunity is not taken at this point, then we can still find such problems when analyzing

the final model using constraints as described in Section 5.2.4, but in this case it is more

difficult to see the reason(s) for an inconsistency. The additional information provided in

the resolution windows (to help making decision) is not provided during constraint

verification. 80, whenever it is possible, we should use the linear relationship generators

to provide similar i11formation to be compared across all views.

6.3.4 Related work

Other researchers have worked on the problem of merging information from different

sources (or views). In Section 2.2, we have identified sorne notable efforts in the context

of software process modeling and elicitation [KeH89, Rom93, Ver96]. In all cases, a

manual approach was used for resolving inconsistencies across views.

We have also examined other fields in which similar problems could be found, for

example, Requirements Engineering and Knowledge Engineering. Our idea was to use

their approach if one was appropriate, or at least utilize some concepts if they were

applicable to our elicitation problem.

The Requirements Engineering area also faces the problem of gathering information

(requirements) from multiple sources. A software system to be built is rarely for a single

user, and different users may not have the same requirements. They also have to model

the end-user processes where the new system would be integrated, in order ta see how it

would fit in these processes. We can thus envisage using sorne of the requirement

merging techniques for software process elicitation.

165

•

•

Easterbrook bas presented an approach for resolving conflicts in specifications given by

different persons in [Eas91]. For each conflict, issues are elicited and criteria is

established by which to judge possible resolution. A list of options is then generate~

where each option is related to an issue. The participants can give their level oÎ

satisfaction with the criteria attached to the issues, and a global satisfaction score is

cornputed, belping in the choice ofthe solution.

In Easterbrook's approach, specific techniques and tool support are aImost nonexistent­

Most of the work is done rnanually. Support is given for entering information about

conflicts in templates (in all phases), and for calculating satisfaction scores for each

option once individual scores have been entered. The overall idea of categorizing

conflicts, providing a list of options, and using sorne criteria for evaluating a solution, is

the only aspect that could be utilized in our process elicitation approach.

Leite and Freernan [LeF91] bave presented a technique for identifying discrepancies

between two different viewpoints (describing requirements), and classi:fying these. They

propose a strategy for requirement elicitation: each participant enters information from..

different perspectives, wmch are then analyzed for feedback on data entered, and

integrated into views (one for each participant). Views are analyzed for finding

discrepancies (missing or wrong facts), which are then discussed with participants for

integration of views. They use a rule-based language for viewpoint representation. Their

algorithm for finding discrepancies fust finds matching rules, and then finds differences.

in mIes. Unmatched mies are classified as missing information. Sorne heuristics are

presented for finding rnatching rules.

Sorne of the ideas in Leite and Freeman's technique for finding the rnatching elements in

the different descriptions have been used in our component rnatching algorithm, with

sorne changes to fit the needs of our process model schema (see Section 6.2.3). However,

their approach for resolving the discrepancies is manual.

166

• The second domain that we studied is Knowledge Engineering. Elicitation of a software

process model can be seen as a knowledge acquisition process where the experts are the

software developers from whom software process information (knowledge) is gathered.

We could thus hypothesize using sorne knowledge acquisition techniques for software

process elicitation.

Different methods have been proposed for dealing with multiple experts, and handling

conflicts amongst them. The solutions proposed range from no conflict resolution at all to

specifie techniques with some tool support in specifie domains.

Leclair [Lec89] has proposed to keep the information from each expert separate (in sub­

systems), and let the user choose between solutions proposed by each sub-system,

depending on the specifie situation. This solution can't be used in eliciting a common,

software process model, which requires an agreement on what the actual software process

is amongst multiple agents [KeH89].

Another approach is that of Wolf [W0189], which relies on discussions between experts

for conflict resolution before entering the knowledge in the system. Some other methods

based on communication (e.g., brainstorming, Delphi method, ...) are surveyed in [TuT93].

However, they lack technological support.

A more formal method has been presented by Gaines and Shaw [03S93]. They have

proposed tools for entering information separately from different experts, and for finding

consensus, conflicts, correspondences, and contrasts30 across these different sets of

information entered. The descriptions are sets of entities, and a scale ([1 .. 10]) on each

attribute for each entity. They have also described a method for eliciting information from

multiple experts [ShG89]. The main steps are to fust discuss and come to an agreement

•
30 Definitions used: Consensus: using the same term for the same concept

Conflict: using the same term. for different concepts
Correspondence: using a different terms for different concepts
Contrast: using different terms for the same concept

167

•

•

over a set of entities, then each expert enters his attributes and scales. The attributes are

matched between the experts by comparing the scales entered for each entity. Finally the

sets of attributes are given to other experts for entering their scales, and these attributes

and scales are compared in order to find the consensus, conflicts, correspondences, and

contrasts among the descriptions.

This technique cannot be used as-is for software process elicitation because entities in the

process can be described by other ways than scales on attributes. Information such as

relationships with other entities can be valuable in identifying common components. For

example, two activities having the same inputs and outputs are probably more similar than

those with different inputs and outputs, but this information cannot be expressed as a

scale on an attribute. So we need a method for identifying components that uses all other

useful information (relationships and non-numerical attributes), notjust scale attributes.

To our knowledge, no other solutions exist to the problem of merging information frOID

different sources.

6.3.5 Summary and analysis of the view merging feature

In this section, we have presented the different types of inconsistencies (related to the

entity decomposition, the entity names, the attributes, and the relationships), how they are

detected and resolved, and how the final model is built at the same time.

The inconsistencies related to the entity decomposition are the most complex to resolve,

covering many different cases (10). A thorough discussion of these cases has been

provided, showing how each ofthese cases are handled.

The last section on related work has shown that no other comparable view merging

technique with their tool support exists currently, even in other domains having similar

problems (Requirement Engineering and Knowledge Acquisition).

168

•

••

For a given inconsistency (related to entity decomposition - the most complex ones), the

time complexity for identifying it (Le., computing the set of characteristics for a given

entity, with respect to a given view) and making the appropriate modifications ta the

merged model and ail views, is as follows:

t (nbviews, nbents) E 0 (nbviews + nbents

where: nbviews = number ofviews

nbenrs = number ofentities

t = the computing time ofthe algorithm, as a function ofthe number of

views and entities

When identifying an inconsistency, a subset ofthe eight characteristics are computed. The

most complex ones are C6 and CS, requiring to traverse the two views involved twice (so

in O(nbenrs)). The process of modifying the views involves only operations that are

performed in constant time, but this is done on each view and on the merged model (so in

O(nbviews)). Notice that such computation is performed for each inconsistency.

ft should be noted that even if there are no inconsistencies, each entity in each view has to

be checked against each other view. In such a case (the best case), the total time

complexity is as follows:

t (nbviews, nbents) E O(nbviews2 * nbents2

As for the matching algorithm (see Section 6.2.3), although this is an efficient algorithm

(polynomial time), it might take a lot of time on large models containing thousands of

entities. A tirst approach to this problem would be to focus on parts of the model at a time

orny (e.g., by software development phases). The management of such an approach, or the

investigation into approaches and techniques dealing with this problem, however, requires

further research work.

169

•

•

6.4 Summary of our specifie elieitation techniques

The purpose of this chapter was to provide an insight into the new techniques developed

for our view-based elicitation problem: constraint verification, component matching, and

view merging. These techniques are the core parts of our process elicitation system

V-elicit, as shown in Chapter Five.

The novelty of the techniques presented bas been discussed in the specifie sections. In

sorne cases, we could use as a basis sorne other work and modify it to fit our needs.

However, the modifications done were quite important, and in the case of the view

merging techniques, no other method could be used.

We now bave to show that the techniques developed are working and that they are

relevant to our problem. Such analysis is provided in the next chapter.

170

•

•

Chapter Seven - Validation

The purpose of this chapter is to show that our system is working as intended (properly

implemented), and to compare it with other existing systems (both state-of-the-art and

state-of-the-practice).

We have validated our approach and system in three ways: internal validation, external

validation, and literature comparison. Internal validation is aimed to show that the V-elicit

system functions are correctly implemented and that it has been properly documented

Ce.g., no known logical bugs; all code results from documented design and it is complete;

all test cases are success:ful; etc.). However, internal validation does not show the

relevance of the V-elicit system; this is done through extemal validation, where the

system is put to test against realistic situations involving industrial-scale software

processes. During extemal validation, the V-elicit system is also compared against

existing (commercially available) modeling too1s. The comparison with state-of-the-art

(research) modeling tools is performed in the literature comparison section. Finally,

lessons learned are presented in the last section.

7.1 InternaI Validation

For internaI validation, the following specific issues were verified:

• requirements RI to RIO stated in Chapter Three have been met (these

.requirements are summarized in the fust column ofTable 10)

• the V-elicit system and its techniques are working correctly (Le., that the too1 can

detect various inconsistencies and build a merged model)

• the system requirements and design are documented

In section 5.1, when defining the different steps of our elicitation approach, the associated

requirements for each step were shown. These steps (see the right-hand side of Tahle 10)

171

•

•

have all been implemented satisfactorily, and therefore the requirements have all been

met.

We have used these steps in many example test cases. In particular, we have shown one of

these examples in Section 5.2, with the final result shown in Appendix B. Each type of

inconsistency bas also been tested successfully, mainly through. the examples presented in

Chapter Six. From these tests, we can assert that, for all instances and purposes, the

V-elicit system and its techniques are working correctly.

System requirements V-elicit steps
RI : elicit views separately step 2 : elicit views
R2 : user-definable types of information for the step 1 : plan elicitation
modeling schema
R3 : user-definable types of information for views step 1 : plan elicitation
R4 : verification of intra-view consistency step 3 : check views
R5 : idenlliyiu~ common elements across views step 4 : component matching
R6 : detecting inconsistencies across views step 5 : view merging
R7 : helping in solving inconsistencies across views step 5 : view merging
R8 : merging views into final modeI step 5 : view merging
R9 : verifying the final model step 6 : check model, and

step 7 : modify model
RIO: checking model against development poIicies step 6 : check model

Table 10 - Mapping between system requirements and V-elicit steps

The system bas been implemented by the author and nurnerous programmers (students

and research assistants) through many specifie projects. The projects focused mainly on

one step or feature at a time, gÏving adequate project management control. The final

integration of the project into the entire system was made by the author, after conducting

independent testing. In eaeh project, documentation was also carried out. We have linked

all these separate documents into an hypertext document, containing also an overall

architecture diagram showing the dependencies across the different projects, features, or

libraries. Here also, the integration of the documentation into the system documentation

was performed by the author after verification ofthe completeness ofthe documents.

172

•

•

7.2 External Validation

While internal validation bas shown that the V-elicit system is functioning properly, we

are also concemed about the relevance of this work in a practical setting, and the

advantages ofV-elicit overthe existing approaches and tools. For snch verification of our

theory and system, a demo is not sufficient: an empirical study is important [Tic98]. This

section describes the case studies performed in order to do such verification.

Our external validation goals are:

G1 - Process model quality: to compare the quality of a model developed using

V-elicit to those developed using other elicitation approaches and tools. The

quality ofthe models developed is clearly important, as many further technical

and business decisions are based on the resultant models.

G2 - Elicitation process quality: to compare the process of eliciting a model using

V-elicit to those using other elicitation approacbes and tools. The rapidity

with which the models are developed and the amount of buman or other

resources used during the elicitation process are clearly important, as slow

development or excessive resource consumption renders the tool unusable in a

practical setting. AIso, the amount of support provided in the elicitation

process may affect the process model quality.

G3 - Tool capability in a practical setting: to verify that V-elicit can handle large­

scale industrial processes. More specifically, we want ta verify that constraints

can be used ta detect intra-view inconsistencies, that the simiIarity scores do

identify most of the common components, and that the types of

inconsistencies bandled in V-elicit do actually occur in real situations. If the

elicitor bas to manually do a major part of the matching process, or if the

types of inconsistencies managed by the tool do not generally occur in practice

then this dismisses the practicality of the tool.

173

•

•

G4 - Merging capability: to verify that the system is indeed able to merge views

developed by different elicitors (permitting parallel view elicitation). Such

characteristic would allow us ta elicit a large process model in a relatively

short time frame.

G5 - External validity constraint capability: to verify that it is possible to define

development policies in our constraint language, and validate a model against

them.

Each ofthese goals are discussed in the following subsections. The following case studies

are presented for meeting these goals:

Case study Related ~oal

Case study # 1: Comparison of model quality Gl
Case study #2: Comparison ofelicitation processes G2
Case study #3: Tooi capability in a practical setting G3
Case study #4: Parallel view elicitation G4
Case study #5: Extemal validity constraints G5

Table Il - Case studies and their related goal

Each goal is fust refined into specific questions and metrics31
, that are then used for

designing the case studies32 needed to answer the derived questions. Information on how

the case studies were executed and how data were gathered is also explained. The results

of the case studies determine whether or not the validation goals have been met. These

results are presented in specifie sections below.

The last section summarizes our findings.

31 This refinement method (called GoallQuestion/Metric or GQM) for planning the metrics to be used in a
case study and then for interpreting the results is presented in (BaW84].
32 The method used here for designing case studies is presented in (FeP97].

174

•

•

7.2.1 Case study #1: Comparison of model quality

The goal here is ta compare the quality of a process model produced by V-elicit ta those

produced by other elicitation approaches and tools (G1 above). Our research hypothesis

(see Section 1.1) is that when multiple sources of information are considered in process

elicitation, the model quality from V -elicit would be higher than that from other

approaches. By "quality", we mean specifically completeness, consistency, and accuracy

ofthe mode!.

For this case study, we asked six subjects to model three processes each, using either

V-elicit or another process modeling tool (3 tools have been compared with V-elicit). We

then compared the quality ofthe model produced across the different tools used.

The following section provides more in-depth information on the measures used for

verifying our goals. Section 7.2.1.2 then presents the design of the experiment performed,

and Section 7.2.1.3 describes how data was gathered. Finally, the analysis and results are

discussed in Section 7.2.104.

7.2.1.1 Context for Case study #1

Using the GoallQuestionIMetric (GQM) approach [BaW84], we refine our validation

goals into measurable factors, which are then used in the case studies performed to verify

our research hypothesis. Here are the questions derived from our specifie goal (G1):

QI - Compared ta the process models produced by other elicitation approaches and

tools, are the models produced by V-elicit:

Q 1.1 - more complete?

Q 1.2 - more consistent (intemally)?

Ql.3 - more accurate (reflecting reality better)?

175

•

•

Note that these quality factors are considered important and are discussed in the literature

[DNR90, Mad91, CKü92, FeH93].

The following metrics are used for answering the questions above in a quantitative way_

Ml - Proportion ofthe solution model present in the subject's model (QI.I)

M2 - Proportion ofthe subject's model containing inconsistencies (an

inconsistency being a conflicting information inside the model) (QI .2)

M3 - Density ofaccuracy errors in the subject's model (i.e., entities or

relationships representing the process incorrectly) (QI.3)

These metrics are indirect ones. That is, they are 0 btained through calculations using

other metrics directly available from the models. Such direct metrics used are listed

below.

M4 - Number ofelements (entities/relationships) in the subject's model

M4.1 - Number ofentities

M4.2 - Number ofrelationships

M5 - Number ofelements (entities/relationships) in the solution model

(remark: depending on the tool used, these numbers may change)

M5.1 - Number ofentities

M5.2 - Number ofrelationships within the scope modeled by the

subject (i.e., relationships with. entities that have not been

modeled by the subject are not considered here)

M6 - Number of inconsistencies in the subject's model (remark: these are

always related ta a single entity)

M6.1 - Number of inconsistencies related ta the model structure (e.g.,

entities not linked in the model, activities without input or

output, improper use ofnotation element, etc.)

M6.2 - Number ofinconsistencies related ta activity decomposition

(i.e., relationships shawn at one level ofdecomposition but not

176

•

•

shown in the sub-activities, or not shown at upper level when it

should be)

M7 - Number ofelements (entities/relationships) in the actual process that are

missing in the subject's mode!.

M7.l - Number ofenbties in this case

M7.2 - Number ofrelationships in this case (not related to the entities

involved in M7.1)

M8 - Number ofelements (entities/relationships) not present in the actual

process that were added to the model

M8.l - Number ofentities in this case

M8.2 - Number ofrelationships in this case (not related to the entities

involved in MS.1)

M9 - Number ofelements (entities/relationships) in both the actual process

and the model, but that has not been modeled correctly (This is

sometimes due to misunderstanding ofthe process.)

M9.1 Number ofentities in this case

M9.2 Number ofrelationships in this case (not related to the entities

involved in M9.1)

The core, indirect, metrics (Ml to M3) aIe related to the direct metrics (M4 to M9) in the

following ways:

• Ml = proportion ofsolution model present in the subject's model

= (proportion ofthe soluti()n's entities modeled) *
(proportion of the solution's relationships modeled within the scope of the

entities modeled)

= (1- M7.l) *(1- M7.2)
M5.l M5.2

• M2 = proportion ofsubject's model (entities only) containing inconsistencies

M6.1+ M6.2
=-----

M4.l

177

=• • M3 = density ofaccuracy errors in the subject's model

M8.! + M82 + M9.! + M92

M4.1+M42

•

The validity of our metrics lies in the fact that they have been derived from specifie

questions and related goals (using the GQM approach), and that they have been generated

from the descriptions provided in papers discussing such quality factors (in [DNR90,

Mad91, CKü92, FeH93]).

The measures defined above (Ml to M9) have been gathered during our case study, and

the core ones (Ml to M3) have been analyzed. The following section describes the details

ofthis study.

7.2.1.2 Design of Case study #1

Our general goal is to compare the quality of the models produced, as defined in the

metrics Ml to M3 (dependent variables), when using different elicitation tools

(independent variable). In order to do that, we asked different people (subjects) to model a

set ofthree processes (objects) using one ofthe tools.

We have used a randomized complete block design [Hic93] in which the factor tool used

is analyzed, blocked by process modeled. Our focus is on comparing models that are

produced using V-elicit against the ones produced by other tools. However, significant

differences can be noted across the models developed using other tools, and across the

processes modeled. These effects had to be separated. We are not expecting any effect (or

interaction) between the tools used and processes modeled (Le., we do not expect that

sorne processes may affect differently the results from each tool).

In this section, we describe the details of the case study, providing the characteristics of

the tools, elicitors, and models to be elicited.

178

•

•

Hypotheses

For each metric (M) from Ml to M3, our hypotheses to he tested are:

Null hypothesis (Ho): There is no significant difference between the values of the metric

M obtained frOID the subjects using V-elicit and the ones obtained

from the subjects using other elicitation tools.

Alternative hypothesis (Hl): The values ofthe metric M obtained from the subjects using

V-elicit are significantly larger (for Ml) or smaller (for M2

and M3) than the ones obtained from the subjects using

other elicitation tools. Larger values of the completeness

metric, and smaller values ofthe inconsistency and accuracy

metrics, mean that the models are ofhigher quality.

Modeling tools

The choice of the elicitation tools to be used (other than V-elicit) was based on the

following criteria:

• notational paradigm. (e.g., functional modeling, state-based modeling, etc.): each tool

used supported a unique notational paradigm or combination of paradigms, in order to

be able to generalize our results. We also had to make sure that these notational

paradigms were representative ofthe ones used in other available tools.

• robustness: the tools should be commercially available, implying that they have been

tested and/or used for non-trivial modeling.

Table 12 provides a summary of the tools chosen.

These tools were not running in the same environment as that for V-elicit. They are

available on Windows platform only while V-elicit has been developed on a

UNIXIX-Windows platform. However, we believe that this did not affect the results

because both environments (and computers used) are fast enough to support these tools,

179

•

•

and that the subjects have been trained properly on the tool (within these environments)

prior to the case study.

Toois Tooi l:Process 98 Tooi 2: iThink TooI3:AlO
(IDEFO notation)

Company Scitor Corporation High Performance Knowledge Based
Systems Inc. System Inc.

Notational system analysis and state transition system analysis and
paradigm. design, combined design, combined
(as described in with control flow with triggers
rCK0921 (Table 2))
Aspects covered activity decomposi- activity ordering, activity decomposi-

tion, information flow information flow tion, information
and activity ordering flow, and activity
(except activity controe3

control33
)

Table 12 - Tools used for comparison with V-elicit

Subjects

Six graduate students participated in the case study: a fust group of three students

modeled the processes using V-elicit, and a second group of three students used one of the

three other modeling toois. These students had different backgrounds, as shown in Table

1334
. However, they a1l had prior exposure to process modeling concepts through a

graduate course and/or readings on that topic. When assigning randomly a tool to each of

the students, we made sure that each group of students was composed of people with

different background.

33 n Activity control" refers ta the relationship "activity manages activity", as defined in the modeling schema
used in V-elicit (see Section 4.1).
34 The data on the subjectst background has been gathered through interviews with the subjects prior ta the
case study.

180

•

•

Sub.iect Backeround prior to the case study Tool used
#1 • researcher in software engineering V-elicit

• has experience with Statemate and Petri-Nets, but not for
modeling software processes

#2 • researcher in software engineering V-elicit

• has taken a graduate course on software processes

• has experience with business processes (as a manager)
#3 • researcher in software engineering V-elicit

• has received severa! months' industria! experience m
process modeling

• has taken a course on team software engineering
#4 • researcher in software engineering, doing PSP research Process 98

• was the teaching assistant for the PSP course at McGill
#5 • has taken a graduate course on software processes iThink
#6 • researcher in software engineering AIO

• has taken a graduate course on software processes

• has experience with process modeis and views through
his research

Table 13 - Background ofthe subjects, and the elicitation tool assigned to them

The subjects were chosen from the graduate students attending the graduate course on

software processes (Winter 1998) and from the graduate students working in the area of

software engineering at McGill. We asked each potential subject ifthey would be willing

to participate in the case study. Nobody was paid for such participation, it was just done

on a voluntary basis. Initially seven persons responded (out of 14), but one ofthem had to

resign because of his summer job. The others who did not answer were aIl from the

graduate course, and not doing any research in software engineering. We were toid that in

most cases, these people were either away and could not make it for the case study, or did

not have enough time for such study. Once they had accepted, we asked them ta commit

ta go through the entire case study.

We believe that the results we got from them are valid since this was on a voluntary basis,

and that they were not rewarded on the basis of their results (we just asked them to really

do their best in modeling the processes). We motivated them on the basis of: potentially

181

•

•

useful/exciting research results, acknowledgement (indirectly) of their participation in the

thesis research, and them learning about processes, modeIs, toois and experimental

software engineering.

Pre-case-study training

In order to ensure that the results were not affected by student's varying knowledge of

process modeling in generaI, and of the tool used in particular, all subjects were trained

prior ta the start of the case study. First, general information on processes and process

modeling was presented ta them. Then they were shawn how ta use the specifie tool

assigned to them. They had to model three simple example processes, containing ten to

fifteen entities (activities and artifacts) each: a simplified cIassic life-cycle model, a

testing process (iterations between code fixing and testing), and the general phases of a

design process (including architecture development and data design).

Before letting them work on the three case study processes, we verified their lmowledge

by checking their example modeIs and asking them specifie questions on the tools used.

The example processes progressively introduced concepts such as entities and

relationships, and the different aspects used in modeling: entity decomposition,

information flow (input and output of activities), and activity ordering (sequencing,

backtracking, and decision making). We made sure that the subjects understood these

concepts and how ta model them during the training, by checking that the appropriate

structure was used in their models, and by asking them to explain their solutions. We

were satisfied with their knowledge of the tool and their capacity in handling non-trivial

situations (the later was tested by letting them figure out how ta model controlled

iterations in the testing process example). We believe that the model quality would

generally not vary due to their knowledge of the tool or of process modeling concepts in

general.

182

•

•

Table 14 indicates the time spent in this training phase for each subject. As one can see,

the time spent in showing general modeling concepts is constant among the subjects,

except for Subject #6, who knew aIready about the concepts ofviews. This initial training

phase included an overview of the process modeling goals and concepts (an overview was

sufficient since the subjects were aIready familiar with these topies througb. their courses

and/or researeh). For the training related to the specifie tool, the subjects using V-elicit

needed signifieantly more time to leam how to use the tool, beeause of the numerous

tasIes the tool is performing, and the complexity of the concepts of constraints,

inconsistencies across views, and view merging. Notice that this later training phase (on

the specifie tools used) included examples of what a model should contain, and quaIity

issues in modeling, that were easier to introduce using example models in the specifie tool

used.

Modeling tool V-elicit Process iThink AlO
98

Subject #1 #2 #3 #4 #5 #6
Time spent showing generai 15 15 15 20 15 5
modeling concepts (in minutes)
Time spent showing how to use their 120 100 150 15 45 30
specifie modeling tool (in minutes)
Time spent trying out their specifie 110 100 105 45 90 30
modeling tool with sorne examples
(in minutes)

Table 14 - Time spent in different phases of the subject's training

Case study processes modeled

Each subject had ta model three processes. In order to ensure that the processes used were

not biased in favor ofany partieular tool, we selected the processes from external (neutral)

sources. We also made sure that these processes contain information that is not trivial ta

model (as typieally eneountered in real situations), such as management activities and

their interaction with development activities. Eaeh ofthese three processes were described

in English, from three different partiaIly-overlapping views. We are not coneemed here

183

•

•

with situations where only one source of information is available, because ofour research

hypothesis (that a view-based approach to eliciting software process models would result

in high quality models).

One ofthese processes is the ISPW635 example ofhow software changes are handied in

the development process [KFF91]. It has been designed independently by a group ofwell­

known researchers in the field in the early 1990's. The process described is small, but it

contains many complex elements that can be found in rea1 settings. We modified it 50 that

it was described from three different views, in arder ta match the elicitation setting (i.e_,

using multiple views) that V-elicit is meant for. We identified the activities where each c>f

the three given roles (project manager, design engineers, and quality assurance engineers)

were involved. Then we built each view with the set ofactivities involving the related raIe

only. No information was added or removed frOID the process during such modification.

The other two processes used in the case study come from industria1-scale processes,

elicited independently by a group ofseveral researchers in another project [Mad91a]. One

of these processes is a preliminary analysis phase of software development, and the other

one is a document review process. A transcript of the interviews made (one per source of

information or agent, for each process) was available to us. Since these processes were too

large for our case study (it would have been impossible ta ask the subjects to work on the

case study for more than a week), we had to simplify them, without loss of generality. Our

approach (ta avoid biases) was to remove details in activities that were specified in one

view only, keeping only the higher level description of such an activity. For example, in

the case an analyst described all the details on how ta produce one specifie document:

(with no such details in other views), we just kept the general idea that such a document:

had to be written.

35 ISPW6 - 6th International Software Process Workshop, Hakodate, Hokkaido, Japan, October 1990,
published by IEEE Computer Society Press.

184.

•

•

Sorne characteristics of the processes used may affect the results of the case study: the

size ofthe model, the number ofviews used, and the degree of overlap among the views.

For this case study, these characteristics are similar among the processes used. The large­

scale (unmodified) version of the industrial processes have also been exercised using

V-elicit, as part ofadditional validation (see Case study #3 below).

7.2.1.3 Data gathering for Case study #1

This section describes how the case study was executed, and how the data was gathered.

Just prior to eliciting the three processes for the case study, each subject was reminded of

the importance of trying ta do their best in modeling the processes. We specifically

insisted on the fact that they should model the entire processes provided, without adding

details not specified in the texts. The goal of such emphasis was to ensure that the

subjects do not deliberately affect the quality ofthe model, in favor ofa particular too1.

The subjects had ta model their processes independently ofeach other. For the duration of

the case study, we specifically asked the subjects not ta taIk about the case study with the

other subjects.

Communication with the author was allowed for predetermined reasons during the case

study. For example, the subjects could ask questions about the use of the modeling tao1,

or request additional information on the processes whenever they felt that sorne details

were confusing. However, the author did not answer any questions related ta the quality

of the models being developed, even if such questions were asked. Each interaction with

the subjects were recorded on paper by the author.

The author looked at how the models were actually developed, and took notes of the

elicitation process used, but did not interfere in the process, keeping a role of a discreet

observer (unless questions were asked).

185

•

•

The last elicitation step in V-elicit (mode1 verification) could not be performed in our case

study. During this step, the elicitor is supposed to show the model to the people who

provided the process information, making sure that the elicitor understood and modeled

the process correctly. Sïnce the processes come from past projects or literature, such

expert (verifier) was not available. Even though the author is quite familiar with the three

processes, she could not possibly take that role and guarantee no bias in the results of the

case study.

Data on the quality of the models produced was gathered after all subjects had finished

developing their models. We fust came up with a solution model for each process, and

then compared the models produced with the solution model. Each time a quality problem

was detected, we fust looked at the textual descriptions of the views ta see if such

understanding of the process could have been possible from the text provided. If this was

not the case, only then the error was reported under the appropriate metric, and included

in a list of quality problems found. This list was used at the end for verifying again each

model, and ensuring that quality problems were consistently identified across models.

7.2.1.4 Data analysis and results of Case study #1

In this section, the data are presented and analyzed for each core metric (Ml ta M3), each

of them being related to the specifie question Q1.1 to Q1.3 (from section 7.2.1.1),

respectively.

The technique used for analyzing our results is the "two-way ANGVAli (by process

modeled and by subject), followed by an "analysis of means" (Student-Newman-Keuls

range test) in the case that the values are significantly different, in arder ta show which

subject (and tool used) has significantly better results [Hic93] (the significance level used

throughout this section is 0.05)36.

36 The choice ofthe analysis technique has also been discussed with two experts in statistics.

186

•

•

The values obtained for each core metric is shown in Table 15. The last column indicates

the p-value obtained with the ANOVA test, for the factor "subject", and ü it is significant

enough to reject the null hypothesis. The mean value across the processes is also

provided, for each subjeet.

The results are diseussed in the following sub-sections related to the specifie questions

(Q1.1 to Q1.3).

Tooi used V-elicit TooI! Tool2 Tool3 p-value
Subject #1 #2 #3 #4 #5 #6
completeness (Ml) 0.025

process 1 0.925 0.860 0.698 0.613 0.618 0.562 (signifi-
proeess 2 1.000 0.857 1.00 0.612 0.844 0.854 eant)
process 3 0.918 0.838 0.869 0.808 0.667 0.752

mean 0.948 0.852 0.856 0.678 0.709 0.723
inconsistency (M2) 0.440

process 1 0.100 0.000 0.150 0.000 0.167 0.091
process 2 0.000 0.067 0.043 0.067 0.000 0.053
process 3 0.045 0.000 0.043 0.000 0.053 0.240

mean 0.048 0.022 0.079 0.022 0.073 0.128
inaccuracy (M3) 0.073

proeess 1 0.044 0.176 0.079 0.094 0.100 0.125
process 2 0.033 0.043 0.033 0.041 0.049 0.078
proeess 3 0.035 0.070 0.057 0.072 0.093 0.082

mean 0.037 0.096 0.056 0.069 0.081 0.095

Table 15 - Data analysis of the case study #1

Completeness

As we can see from Table 15, the difference in model completeness is significant enougb.

to reject the null hypothesis (p-value below the 0.05 significanee level).

Additional tests on the means (Student-Newman-Keuls range test) have shown that there

is no significant difference between subjects using V-elicit, or between subjects using the

187

•

•

other tools. However, there is a significant difference (at 0.05 level) between subjects

using V-elicit and the ones using other tools.

From this, we conclude that, in general, the models developed using V-elicit have less

missing information than the ones developed by using other elicitation tools. We believe

that this difference cornes from the fact that by allowing the elicitor to focus on one view

at a time during the modeling process, more information can be extracted from the

process.

Consistency

No significant difference has been found across the subjects in terms of model

consistency. However, due to the case study settings used and the significant difference in

completeness observed above, we would expect that the models produced using V-elicit

would be less consistent than the ones produced by the other tools.

First, the different parts of the processes were not of the same complexity: some were

more difficult to model than others, and so more error-prone in terms of consistency. For

example, the link between management activities and development activities was not as

obvious to model using usuai links between development activities. In the case of the

models produced with V-elicit, more ofthese complex parts were modeled, compared ta

the other models produced using other tools. It would then be normal to have an increase

in the proportion of inconsistent elements in the V-elicit models.

Second, since the last part of the elicitation process (i.e., model verification with the

people providing the process information) could not be carried out, the subjects did not

perform constraint verifications on the merged model that are included in such step. We

examined the subject's views prior to merging, and we found aImost no inconsistencies.

Most of the inconsistencies appeared only through the merging operation, which is a

complex operation compared to what the other tools support. Many of these

188

•

•

inconsistencies could bave been identified in a real setting (potentially for all subjects, not

onlythe ones using V-elicit).

The fact that the V-elicit models were not (significantly) less consistent than the ones

produced by other tools indicate that our system bandles this issue very weIl, even better

than what we would expect.

Accuracy

This quality factor represents how weIl the model produced reflects the actual process,

and is related to the elicitor's understanding of the process. With just a textual description

in band, people may be tempted to use their own knowledge of similar processes during

process modeling, which may not be true for the process at hand. We believe that the best

way of ensuring that the elicitor's understanding of the process is correct is through sorne

kind of validation with people involved in the process. As explained earlier, this was not

possible in our case study. However, we are interested to see if the tool or the view-based

approach bas an influence over such a quality factor.

The accuracy metric (M3) is not significant at the 0.05 level, but there are still sorne

significant difIerences. When applYing the Student-Newman-Keuls range test, we can see

that subject #1 has significantly more accurate models than the subjects #5 and #6 (using

other tools). What is interesting in this difference is that subject #1 is the one with the

least process-related experience among the subjects using V-elicit. It seerns that a prior

experience would affect the subject's understanding of the process to be modeled.

Additional research on this relationship is beyond the scope offuis thesis.

For reasons similar to that in our analysis of consistency, we should actually expect that

the models produced using V-elicit would have more errors related to accuracy. The main

reason is that the complex merging process alters the initial views through the selection of

the entities and relationships ta he kept, and during this selection the elicitor might not

189

•

•

keep an overall view of the process. Additional process elements would oot be inserted~

but other elernents (which were correctly modeled in the views) could become wrongly

modeled. The fact that the V-elicit modeIs are actually not less accurate than those frOID

the other tools~ and are eveo more accurate in sorne cases, is actuallyencouraging.

Additional tests performed

In arder ta confirm our results using a nonparametric test (i.e.~ not assuming any specifie

distribution)~ we aIso performed the Friedman test [Dan90] on our data. This test is

similar to the two-way ANOVA test, except that ranks are used instead ofactual values of

the metrics.

Our results from this test were similar ta those from the ANGVA tests: the null

hypothesis for metrics Ml (completeness) can be rejected at the 0.05 confidence level.

For the other metrics (consistency and accuracy), no significant difference have been

observed.

Since the models produced using V-elicit are more complete than the models produced

using other tools, and that their consistency and accuracy is not affected adversely

compared to the other tools (they could even be improved by performing the last step of

model verification)~ we conclude that, in general, the use of V-elicit can improve the

overall model quality. Thus, our research hypothesis37 has been validated through this

case study.

37 Our research hypothesis is that a view-based approach (and its technical support) to eliciting software
process models would result in high quality models, especially in terms of their completeness (see Section
1.1).

190

•

•

7.2.2 Case study #2: Comparison of elicitation processes

The goal here is ta compare the elicitation process \vhen using the V-elicit system to those

when using other tools (G2 above). More specifically, we want ta compare (a) the time

spent in eliciting the models and Ch) the additional resources used (e.g., interaction with

an expert, use ofpaper during the elicitation process, etc.).

In the following section, the measures ta be used in this case study are discussed. The

design ofthe experiment performed is integrated with that ofcase study #1. The reader is

referred to Section 7.2.1.2 for details. Section 7.2.2.2 presents how data was gathered.

Finally, the analysis and results are presented and discussed in Section 7.2.2.3.

7.2.2.1 Context for Case study #2

In arder ta define an appropriate set of measures on the elicitation process, we need to be

specifie about the process issues to be examined. The questions are:

Q2 - How much of the elicitation process is supported or managed by the tool, and

how much needs to be carried out outside the tool (e.g., on paper)? Elicitation

tasks not supported by a tooi could have more variability across multiple

eIicitation efforts than when they are managed by a too1. A standardized

elicitation process is easier ta predict.

Q3 - In general, is the elicitation process raster when using the V-elicit tooI? If the

use of an elicitation tool significantly increases the time spent eliciting a

modeI, it might become unusabie in a practical setting. Of course, the quality

of the model produced will have ta be taken into account in snch analysis: it is

normal ta take more rime in arder ta get a higher quality modeL

Q4 - Is the elicitation tooi difficult ta use? Ifthe tool is very difficult ta use, elicitors

may not see the benefits ofthe tool, and they may stop using it.

191

•

•

Based on these questions, the measures are (the related questions are shown ID

parentheses):

MIO - Total time spent in eliciting a model, in minutes. (Q2, Q3)

MIl - Time spent on elicitation tasks not performed using the tool, in minutes. Here

we are considering only the tangible tasks (e.g., deve10ping a draft model on

paper), not the time spent reading the text for each view and mentally

analyzing these views. (Q2)

MI2 - Percentage ofthe time spent in elicitation tasks not performed using the too1.

(Q2)

Ml3 - Number oftimes the elicitor has ta refer to the too1 documentation or ask an

expert in order to understand how to use the tool for a particular task. (Q4)

7.2.2.2 Data gathering for Case study #2

As the subjects were developing their mode1s, data was gathered through observation:

timing of each elicitation task, if the task was performed using the tool or not, and any

comment or question the subject had (especially any difficulty encountered with the

specific tool). Because the subjects were often working at the same time, we needed an

additional way to gather time information, in order to validate such data, and to ensure we

did not miss any critical information.

In the case of the V-elicit tool, the system has been instrumented to keep track of timing

information: rime stamps were added to a file at the beginning and end of each major

elicitation step.

For the other tools, such instrumentation was not possible. We thus asked the subjects

themselves to record time information as weIl.

192

•

•

We did not find inconsistencies between the rime recorded through observations and the

ones recorded by the subjects themselves or by the tool, although the latter approach often

provided more details than through observations.

7.2.2.3 Data analysis and results oCCase study #2

The process data collected during our case study is presented in Table 16.

Tool used: V-elicit Tooll Tool2 Tool3
Subiect: #1 #2 #3 #4 #5 #6
MIO - total elicitation time

(in minutes)
process 1 100 146 192 34 53 53
process 2 181 122 202 76 45 48
process 3 131 184 167 90 35 70

MIl - time (and proportion
oftime - M12) spent not
using the tool in minutes

process 1 0(0%) 0(0%) 0(0%) 25 (74%) 38 (72%) 0(0%)
process 2 0(0%) 0(0%) 0(0%) 15 (20%) 23(51%) 0(0%)
process 3 0(0%) 0(0%) 0(0%) 15 (17%) 15 (43%) 0(0%)

M13 - number ofrimes
elicitor refers to tool
documentation or expert 20 8 14 0 0 0

Table 16 - Information on the elicitation process performed during the case study

As one can see from Table 16 (MIO), the elicitation process takes a lot more time when

V-elicit is used than when other tools are used. On the other hand, as shown in the fust

case study, the result is of higher quality. The difference in the elicitation time is due

rnainly to the fact that with V-elicit, a11 the three views from each process have to be

modeled (separately), even if the information is repeated in multiple views. This is

necessary in order to detect any inconsistency across the different descriptions, and take

the appropriate decision on how to resolve the inconsistency. In this case study, the three

view descriptions were quite short (one page long of plain text for aU three views), so

193

•

•

combining them manually using the foreign tools (Tooi 1, 2, and 3) was not a difficult

task. We believe that with larger processes, this advantage would be diminished

significantly. AIso, the views were highly overlapping, and the elicitors using V-elicit had

to model sorne information multiple times. Again, in larger models, this overlap is usually

not that significant.

Because the other elicitation tools do not have support for views and view merging, the

elicitors (subjects #4 and #5) had to drawa first draft on paper ofwhat the model would

look like, and then transfer it to the elicitation tooL This is shawn with the metrics MIl

and M12 in Table 16. There is an exception with subject #6: the tool used in bis case

(AIO) allows one to list the different entities needed for the model (in a random arder)

before using them in the graphical modeL The graphical editor of the tool ArO is used for

specifying relationships among the listed entities only, not for specifying new entities.

With this feature, the elicitor did not feel the need to combine a1l the information fust on

paper. Such a global list of entities was produced as the elicitor read through the view

descriptions, helping in gathering complete information. An advantage of V-elicit over

AIO is that relationships can also be listed as theyare identified in the view descriptions.

After the case study, we asked the elicitors using other elicitation tools to indicate the

approach they had used for merging the different views. They admitted that the models

were constructed by fust modeling the view that seemed most central to the process, and

then by adding additional details from other views. We suspect that sorne of the quality

problems inherent in their models could have been caused by such an elicitation approach:

the views provided within a single process were sometimes inconsistent, and the most

central view did not necessarily contain the right solution to an inconsistency problem.

With the V-elicit system, such a problem is rninirnized greatly, due to its across-view

consistency analysis feature that presents to the elicitor the possible solutions ta each

inconsistency.

194

•

•

One problem we found with the V-elicit system is that it contains so many different

elicitation steps and uses so many novel (and seemingly difficult) concepts, that the

elicitors had difficulties using the too1. They asked many questions related to how to use

the tool during the elicitation process (20, 8, and 14, as indicated by metric M13 in Table

16), even after a quite extensive training period lasting four hours. In comparison, the

subjects using other elicitation tools had no apparent difficulties (no questions asked

during the elicitation process), even though they spent only one hour and a half to tw'o

hours for their training period.

In conclusion, the V-elicit system supports more elicitation activities (MIl and MI2) than

other too1s, but its concepts are more difficult to understand, and the entire elicitation

process takes more time than when non-view-based elicitation tools are used. It remains

to be seen whether this "1eaming curve" plateaus out over a 10ng-term use of the tool (or

tool ofthis type) and whether the performance ofV-elicit outweighs that of other tools at

that time.

7.2.3 Case study #3: Tool capability in a practical setting

For this case study, we want to make sure that V-elicit can handle large-scale industrial

processes (goal G3). We have to test our system in a real situation, showing that it can

• check intra-view consistency

• identify the common components across views (or at least provide help in the cases

the elicitor is required for such decision);

• identify the actual inconsistencies across views; and

• that the types of inconsistencies handled do exist in real situations.

In case studies #1 and #2 described above, it was not feasible to use industrial-scale

processes, and simplifications had ta be made to such processes. In ease study #3, an

actual industrial-scale process was used, defined from three different (aetuaI) agents.

195

•

•

The following sections describe the details ofthis case study, and the results obtained.

7.2.3.1 Context of Case study #3

The fust part of this study involves the verification of the component matching capability

ofV-elicit. The following specifie questions are asked:

Q5 - Are the expected matches really found by V-elieit?

Q6 - Are the entities not supposed to be matched really identified as such by

V-elicit?

Q7 - How mueh of the entities in the final model required assistance by the elieitor

for correetly matehing them?

The required metrics for answering these questions are the following (with the related

question in parenthesis):

M14 - percentage ofthe expected matches found by V-elicit (Q5)

M15 - percentage of the entities not supposed to be matehed, identified as such by

V-elicit (Q6)

M16 - percentage of the entities in the final model where the elicitor has been

required for correetly matching them (Q7)

In the second part of this study, we want to verify that V-elicit can identify the

inconsistencies across views, and that the inconsistencies handled do exist in real

situations.

The types of inconsistencies that we want to check are assoeiated with our view merging

algorithm (see Section 6.3). The foUowing questions provide more details on the type of

inconsistency that we are interested in:

Q8 - Is the "missing element" type of inconsistency found in real situations?

(case #1, p. 145)

196

•

•

Q9 - Is the "detail missing" type of inconsistency found in real situations? (case #2,

p. 147)

Q10 - Is the "finer decomposition" type of inconsistency found in real situations?

(case #3, p. 149)

QIl - Is the "different grouping" type ofinconsistency found in real situations?

(case #4, p. 150)

Q12 - Is the "different decomposition" type ofinconsistency found in real

situations? (case #5, p. 152)

Q13 - Is the "details taken from outside (leaf)" type of inconsistency found in real

situations? (case #6, p. 153)

Q 14 - Is the "details taken from outside (non-Ieaf)" type of inconsistency found in

real situations? (case #7, p. 155)

Q15 - Is the "different details" type ofinconsistency found in real situations?

(case #8, p. 156)

For each ofthese questions, a metric on the number of inconsistencies of each type found

during the view merging step is defined (metrics M17 to M24).

The validation of the intra-view consistency checking feature does not require specifie

questions and metrics, because we are only concemed with the capability of V-elicit to

handle this.

The metrics above (M14 to M24) were gathered in our case study. The detai1s ofthis case

study are provided in the next section.

7.2.3.2 Design of Case study #3

The example process for this case study was taken from a previous project in the Software

Engineering Lab at McGill University, where a researcher mode1ed a company's

Preliminary Analysis phase ofsoftware development [Mad91a].

197

•

•

The information we have is a transcript of the three interviews describing the point of

view of three sources of information (agents): an analyst (developing the different

documents), a pilot or client representative (providing the information ta the analyst,

validating the documents, and sometimes writing documents tao), and a project manager.

The size ofeach view and the amount ofoverlap between them is provided in Table 17.

View 1 View2 View3
Number ofactivities in each view 29 49 29
Number ofartifacts in each view 7 23 14
Number of raIes in each view 6 7 6
Number of relationships in each view 172 313 162
Total number ofonique activities (and % ofoverlap) 90 (14%)
Total number ofunique artifacts (and % ofoverlap) 36 (17%)
Total number ofunique roles (and % ofoverIap) 8 (100%)

Table 17 - Sïze and overlap of the views modeled

In our tests, the treatment (i.e., applying the V-elicit system) and the subject (i.e., the

elicitor, who was the author herseif) were kept constant. The characteristics of the subject

are not important here because the V-elicit system is used for performing the view-based

elicitation techniques of interest.

It has not been possible ta resolve the inconsistencies within or across views by going

back ta the agents, and the author had to make decisions based on her understanding of

the process. However, such an issue can only affect the accuracy of the final model, not

the results of this study (i.e., showing that V-elicit can handle inconsistencies in real

situations). From the internai validation, we made sure that for each inconsistency found,

the system was correctly merging the views, for aU possible solution of the

inconsistencies. Here we are concemed about the capacity ofV-elicit to correctly identify

all inconsistencies found in a real situation.

198

•

•

7.2.3.3 Data analysis and results of Case study #3

V-elicit successfully analyzed and merged the three views from the real process given

(preliminary Analysis phase of software development). In the following two parts, details

are provided on how weil V-elicit has handled the component matching and inter-view

consistency verification steps.

Component matching (Q5 to Q7)

Table 18 shows the results of the matching process. As one cao see, the system cannot

handle ail the cases, but it can reduce significantly the number of entities to be matched

manually. AIso, in the cases where the elicitor had to check the entities and make

decisions about the appropriate matches, the use of the similarity scores has reduced

considerably the number of alternatives to be considered (for each entity checked by the

elicitor with respect to another view, only 3 to 5 possible matches were evaluated, instead

of29 for example - the total number ofentities in the other view). It is to be noted that the

incorrect identification of the matches were due to close similarity scores with other

entities in these cases.

MI4 - percentage ofthe expected matches found by V-elicit 58% (25/43)
MIS - percentage of the entities not supposed to be matched, 83% (89/107)

identified as such by V-elicit
MI6 - percentage of the entities in the final model where the elicitor 22% (30/134)

has been required for correctly matching them

Table 18 - Indication ofhow weil the matching process performed on the industrial process

U sing the matches as identified by the system, and the similarity scores computed, the

elicitor may alSO identify matches that were not obvious a priori. During our case study,

the author has fust identified the matches manually, to check them against the ones found

by the system. After considering the matches automatically identified, she realized that

two of the ones correctly identified by the system were missing from the ones identified

199

•

•

manually. This shows the usefuIness of carefully analyzing the results (matches and

similarity scores) of the system.

From the results of this case study, we have identified different situations where V-elicit

has difficulties identifying the appropriate matches:

• differentiating between general phases and meeting activities involved in such phases

(e.g., a document production phase, and the regular meetings involving ail developers)

• differentiating entities described at different levels of abstraction (e.g., if one view

contains a prototype, and another one makes the difference between a textual

prototype and a graphical prototype)

• differentiating between a general step and a sub-activity being the core part of the step

(e.g., a prototyping activity containing a planning activity and a presentation activity,

but mainly containing a prototype development activity)

We are now planning to improve the similarity score formula in these areas, and improve

the user interface in order to help the elicitor in the assessment of the matches

automatically found. Additional case studies similar to this one will be necessary in order

to find the optimum. solution to this problem. From case study #1, we now know that it is

worth exploring the problem of view merging further, because this approach can really

result in higher quality models)

Inter-view consistency checking (Q8 to Q15)

Table 19 shows the number and type of the inconsistencies detected by V-elicit. These

numbers have been validated by a manuaI detection of inconsistencies across views:

V-elicit did not miss or add inconsistencies compared to what we have found manually.

As one cao see, most ofthe types ofinconsistencies handled by V-elicit cau actually occur

in real situations. It is important to detect them all because each inconsistency that is not

resolved properly can lead to a quality problem in the final mode!. By identifying the

200

•

•

inconsistencies and providing the list of solutions based on the information provided in

each view, the elicitor can choose the right solution in a systematic way.

Type of inconsistencies found #found
(for a model with

134 entities -
see Table 17)

M14 - number of "missing element" 67
MIS - number of "detail missing" 7
M16 - number of "finer decomposition" 3
Ml7 - number of "different grouping" 8
M18 - number of "different decomposition" 1
Ml9 - number of "details taken from outside (leaf)" 0
M20 - number of "details taken frOID outside (non-Ieaf)" 0
M21 - number of "different details" I

Table 19 - Number and types of the inconsistencies found across views

The high number of "missing element" type of inconsistency is due ta the fact that the

overlap across the views is quite small (only 15% for activities for example). Entities that

are not in sorne of the views are often reported as "missing entities", except when other

types ofinconsistency apply in these cases (such as MIS, M16, and M21).

In the case of MI9 and M20, we were not expecting ta detect such inconsistencies, as

explained in Sections 6.3.1.6 and 6.3.1.7. In theory, it can happen that an entity (matched)

has all of its sub-entities under other entities in the second view, but in this case the actual

definition ofthe entity cannot be the same (close enough ta still he rnatched).

Conclusion

In this case study, we have successfully rnodeled an industrial-scale software process

using ERD, thus our assumption AI38 has been validated. The use (and analysis) of the

38 Assumption Al: A process model can be specified using an entity-relationship diagram (see Section 1.2).

201

•

•

specifie view-based techniques have also shown the validity of our assumptions A3 to

AS39
•

7.2.4 Case study #4: Parallei view elicitation

The purpose of this case study is to verify that it is indeed possible to merge views

developed by different elicitors, and still get a high quality merged model (G4). This

would mean that the overall elicitation time could be reduced significant1y by performing

the view elicitation step concurrently for each view.

Using such capability could also improve the model quality. By assigning only a part of

the process model to be developed to an elicitor, the elicitation process is then more

manageable, and the elicitor does not lose focus on time-consuming tasks. AIso, if the

elicitation process is performed over an extensive period of time, the process itself cOllld

have changed during that time, and these changes might not be reflected in the model

developed. Renee, the model quality could be increased and the elicitation time decreased

in such a case by letting multiple elicitors model sllbparts of the process in parallel, and

then merging them.

The following subsections describe our case studyand analyze the results.

39 Assumption A3: By using a language based on fust-order logic, one can define what an inconsistency is
(inside a single view or model), and the inconsistency verification cao then be
automated.

Assumption A4: The identification of similar components across views can be partIy automated through the
computation ofa similarity score across the components.

Assumption AS: By a careful identification of types of inconsistencies across views, and their possible
solutions, the view merging process can be automated using the solutions provided by the
elicitor.

(see Section 1.2)

202

•

•

7.2.4.1 Context ofCase study #4

For this case study, the following specifie questions are addressed:

Q13 - Is it possible to merge views ofone process, produced by different elicitors?

Q14 - In the ease it is possible to merge such views, do we get similar quality level

than when ail views are produced by the same elicitor?

In arder to answer the first question, we do not need a metrie: we are just checking

whether or not a merged model has been built from the given views. For the second

question, we are using the same quality metries as in case study #1 (Ml to M3).

The following section describes how this case study was performed.

7.2.4.2 Design of Case study #4

In this case study, we used the views produced by the subjects using V-elicit in the case

study #1, and theu we merged them. For each of the three processes the subjects had ta

model, three views were available. We randomly mapped each view to one of the

subjects, and built a new set of three views (aH views from our new set were from

different elicitors).

We then used the V-elicit system ta merge such randomly chosen views into a merged

model, and measured the quality of that model in the same way as in case study # 1. We

could then compare the quality of our merged model with the subject's roodels from case

study#l.

This merging task was performed by the author, but this is not expected to have an impact

on the results because the part that is expeeted ta introduce more of the quality problems

is the view elicitation part, and this was performed by the subjects ofthe case study #1 .

203

•

•

The results ofthis case study are shown in the next section.

7.2.4.3 Data analysis and results of Case study #4

For all the three processes that were modeled, the V-elicit system was successful in

merging the views frOID different elicitors. Table 20 shows the quality metrics for the

models produced in this case study, as weIl as the original models produced by each

subject in case study #1.

Subject #1 #2 #3 parallel p-value
completeness (Ml) 0.282

process 1 0.925 0.860 0.698 0.842
process 2 1.000 0.857 1.00 0.853
process 3 0.918 0.838 0.869 0.771

mean 0.948 0.852 0.856 0.822
inconsistency (M2) 0.540

process 1 0.100 0.000 0.150 0.105
process 2 0.000 0.067 0.043 0.000
process 3 0.045 0.000 0.043 0.056

mean 0.048 0.022 0.079 0.054
inaccuracy (M3) 0.209

process 1 0.044 0.176 0.079 0.118
process 2 0.033 0.043 0.033 0.012
process 3 0.035 0.070 0.057 0.031

mean 0.037 0.096 0.056 0.054

Table 20 - Quality results, when combining views from different elicitors

We applied the same statistical tests as in case study #1 (two-way ANOVA test and

Friedman's test). The last column of Table 20 indicates the p-value associated with the

two way ANOVA test. None ofthe p-values are small enough to reject the null hypothesis

(the same hypothesis as in case study #1), indicating that the models from case study #4

were not of significantly different quality than the ones produced by individual elicitors

(case study #1).

204

•

•

7.2.5 Case study #5: External validity constraints

For this case study, we want to make sure that development policies cao be defined in our

constraint language, and that a model cao be checked against them (G5). Note that

because we are only concerned with the capability of V-elicit here, no specifie

question/metrlc is necessary.

We used the book by Davis [Dav95], which describes principles ofsoftware development,

as our source of independently stated constraints. In this book, the principles are

categorized by the development phase in which they apply (e.g., requirement engineering,

design, etc.).

We selected approximately seven policies per development phase, for a total of 35

constraints, and we formally specified them in our constraint language. Each constraint

has been tested on an example process model. The constraints specified are listed in

AppendixE.

The policies were selected based on the amount of interpretation we had to make in order

to formalize them: we avoided the ones that required an interpretation that could be

different from one organization to another. For example, we did not specify a constraint

such as "trust your people", that cao be interpreted as "the manager should not be central

to ail development aetivities" or as "lower level steps should not ail be managed by the

top manager".

In sorne cases, the prineiple described was not reallya development poliey, but instead a

description ofsome lessons learned. For example, the principle that states that a prototype

reduces the risks assoeiated with the selection of the user interface. Sinee these are not

development eonstraints, they were not formally specified as sueh.

205

•

•

For the verification of such constraints on a gi:ven model, we have developed example

models containing the information to be checked. For this purpose, the modeling schema

had to be modified in order to handle the required types of information. This has shown

the adaptability of the ERD modeling schema to oners needs (independently specified,

from the given development policies), and thus the validity ofour assumption A240
•

The fact that we were able to specify the 35 constraints that were selected, and eheck the

process models against these, demonstrates the capability of V -elieit in handling this type

ofconstraints (and the validity ofour assumption. A641
).

7.2.6 Summary

From the five case studies described above, we noticed that:

• the completeness of the models produced by V -elicit is better than that in models

produced by other elicitation tools, and that the consistency and accuracy stays the

same even if it was actually expected ta be worse in the circumstances mentioned

above.

• the time spent eliciting models using V-elieit tS generally greater than when using other

elicitation tools. However, it is possible to model different views eoncurrently (by

different elicitors), and still obtain high quality models.

• V-elicit has a higher learning curve than other tools, as it contains many novel concepts

that most elicitors do not have experience with..

• V-elieit supports more of the elicitation tasks than do other tools, and the elieitors do

not need ta tirst produce drafts ofmodels on paper, unlike in other elicitation tools.

• V-elicit can properly merge views from a large-seale proeess.

• the inconsisteneies (across views) handled by V-elicit do occur in real situations.

40 Assumption A2: Using entity-relationship diagrams al10ws the elicitar ta define the types of infonnation a
model should contain (see Section 1.2).
41 Assumption A6: By using a language based on fust-order logic, one can formally describe development
policies, and their verification on a given model can be automated (see Section 1.2).

206

•

•

• development policies can be formally specified in V-elicit, and models can be checked

against them.

While replication of the case studies could lead to firmer results, our results support the

argument that V-elicit system is a tangible progress over other elicitation approaches and

tools.

From the case studies, we have identified severa! improvement opportunities:

• The subjects from the case study # 1 have found that the use of plain text files when

eliciting views had the following drawbacks: it was annoying to re-type the name of

the entities when they were involved in multiple relationships, and typing mistakes

were frequent but discovered too late (when translating back to V-elicit). More

support would be required in such phase, probably by adding a graphical interface.

• In sorne cases, the commonality analysis function does not correctly detect common

components across the views. Three situations that V-elicit has difficulties with have

been identified in Section 7.2.3.3. An analysis of the types of information to be used

in such cases, and potentially their weights, would be required to improve the

commonality analysis function in these situations.

• From the observation of the subjects in the case study #1 (during the "identification of

common components" phase), we noticed that they had difficulties in analyzing the

similarity scores. A better interface (maybe a graphical one) would be required here,

to provide better help and guidance during this task.

These issues are a subject offuture research and experimentation.

7.3 Literature comparison

In the previous section, we have compared V-elicit with existing (commercially available)

modeling tools. This comparison would not he complete without a comparison with state­

of-the-art modeling tools described in the literature.

207

•

•

As discussed in Section 2.2, many process modeling tools and process-oriented

development environments have been described in the literature in the last few years.

These tools have either been used, or could be used, in industrial elicitation efforts. For a

description of each ofthese taols, the reader is referred to the Appendix D. In this section,

we compare those tools with our V-elicit system, on the basis of the support provided for

view-based elicitation tasks.

Table 21 shows the results of our comparison. The criteria used in the comparison are the

requirements for a view-based elicitation tool presented in Chapter Three. Notice that

such requirements have been validated through presentations and discussions with experts

in the field. We have added three other requirements ("model simulation", "process model

execution", and "process guidance and work coordinationrr
), to show the additional

featuIes handled by these tools, but not included in V-elicit since they are not necessary

for the elicitation process.

As one can see, although these other tools are "good" for the purposes they were built

(e.g., simulation, execution and guidance), they do not generally implement the

requirements necessary for view-based elicitation.

In sorne cases Ce.g., Adele-Tempo [BEM94], Articulator [Sca99], MarveVOz [BeK98] ,

Merlin [ScW95], Process Weaver [Fer93], and ProcessWise [BGR94]), views of the

process are provided during execution, mainly as agendas for developers. The list of

activities ta be in each of these views can be specified in the language, often as a link

between an activity and the raIe performing it.

Sorne tools (e.g., Articulator (Sca99], MVP-E [BH1vI97], Statemate [KeH89], PFV

[DPV97], and Funsoft nets [DeG98]) have functions for verifying the consistencyand

completeness of a model. Examples of such verifications include: use of undefined

elements, type mismatches, unconnected or useless elements (e.g., artifact produced that

is not used), deadIocks and race conditions, inconsistencies in the refinement of activities,

208

•

•

etc. These verifications are related to the fixed modeling schema provided by such tooIs,

and cannot be specified by the user like in V-elicit.

In the case of MVP-E, some techniques are currently being developed by Verlage [Ver96]

for heiping in the elicitation ofprocess modeis from different views: a similarity analysis

function to heip identifying the common elements across views, and a tentative set of

consistency mIes to detect inconsistencies between two views. As explained in Section

2.2, the similarity function is based on the MVP-L constructs ooly, and is not meant for

any type of information. AIso, the detection of inconsistencies does not handle the

differences in the abstraction hierarchies (i.e., the inconsistencies related to entity

decomposition).

Onlyone other tool, OPSIS [ACF96], allows the reconstruction of a model from views.

The interfaces (or common elements) of the views are specified by the user in a formaI

notation. Operators are used to specify the steps in recombining the views (which

elements should be kept, which elements should be added to link existing elements, and

which label should be kept in case of conflicts among element names). Their approach is

used in the context of the modification of an existing modeI, performed by fust

decomposing the model into views, and recomposing it after the changes are made. Such

manual view-merging approach might be viable for such situation, but it is difficult to

apply directly on a set ofnewly elicited views.

In summary, only V -elicit provides features for defining the modeling schema ta be used,

and elicit a model from different views, detecting and solving inconsistencies among

them.

209

• •
Requirements for view-based elicitation Other requirements

~~ ~ ~ ~. ~ g ~ $ 0 '" $. S· '" $. S· '" '" 8 ~ c:;l.. '" c:;l.. 8 *
~ ~8 ~8""1 1--' • 0 ~ Cl) 0 ~

~8~ gg ~ e ~ a ~
$. JJ c:;l... ~ 1 ~ 1 ~ ~ 1

~ 0 C\ a 1 c:;l.. ~~
~~

..... S' CIl ~ 1 CIl ~ 1 -= ~~= Cl) o 0
Cl) Cl) CIl ~

~~
1 grt o ~ a-cr - a1l o CIl

~~ o c:;l.. P"
Cl)

~g
~ Cl) ~Cl) $. "0

1 ~~I CIl • CIl a CI.l

CIl ~ OQ ~ 6- o r:t. SOQ S· g 8 i "El.CIl 0. .Q S.
Cl) o.g-

~
CIl 0 ~~~ 0

Cl) i' o
ct ~ r:t. o. a. ~ CIl 1 g ~ E. ao 0 Cl) o ~. o CIl g Cl)

.~Toois g"~ ~
~ ~ e P-

S ~ ~ o 0 G' ""1 H)O ~ o. ~ 0 ~ 0

Si o 0 en ~ CIl 0 ~ 8 s
~i a ~

P'. -(see Appendix D 0 S CT' ""1 ~ ~ 0 a 1:2". 0
P- o r:t. ~ CIl

~. ~ g. ~ a ~
0 p:l - - 0 en 0 ~ H) Q g. ~ OQ

l:J §for descriptions) - Cl) Cl)

~. CIl l:J 0
~ S' G'OQ

CIl OQ _0 Cl)

a CIl en en en CIl p..g CIl
H) enOQ

Adele-Tempo low med. high high
APEL high hiWi
Articulator low med. high high
EPOS high
Funsoft nets high high
JIL/Littie-JIL hiW1
Marvel / Oz low med. high high
Merlin low med. high high

MVP-E high high high high low bigh bigh bigh
OPSIS med. high low med.
Process Weaver low med. hiW1 high
ProcessWise low med. high high
PFV med. high
SPADE high higlt
Statemate high high
X-elicit high
V-elicit high high high high high high high high high high high

Table 21 - Comparison with tools described in the literature

IV-o
*R
low/med./high:

indicates a key requirement
level of support for a particular requirement RI-RIO, simulation, execution or environment

•

•

7.4 Lessons learned

We have learned severallessons related to V-elicit development and elicitation of process

models. These are listed below.

The quality ofprocess mode/s developed is affected by the perception ofthe elicitor. We

have noticed that even though a textual process description seems clear and unambiguous

a priori, different elicitors may understand it in different ways, based on their knowledge

o:f, or experience with, similar processes. Communication and model validation with

agents involved in the elicited process is critical to increase the model accuracy.

EntUies at diffèrent levels ofabstraction may have similar descriptions. For example, an

activity called "review" may be similar to the sub-activity "review meeting", because it is

the core part of the review process. In both cases, the same agents are involved, and the

input/output is similar. This kind ofsituation occurs more often than we expected, making

the process of identifying common components across views impossible to fully

automate. We believe that the elicitor will always be required for this task. However, the

system cau help by showing level ofsimilarity between entities (as provided in V-elicit).

Full description ofa given entity cannot be assumed by a single agent. Sometimes, one

agent may he so absorbed in describing details that obvious tasks or input/output might

not be mentioned in his/her view (but others interacting with this agent might be aware of

such information). The impact ofthis is that the model we get from merging the different

views may not be fully connected at the bottom level of abstraction, as we might expect.

The "internal validation constraints" applied to views should be verified again on the final

model.

Document a prototype adequately when if is large. Even though a prototype does not

necessarily require full documentation, a large one (like V-elicit, with its 60 KLOC in 275

classes) does need at least documented requirements and design, for a better

211

•

•

understanding of the system and for further development or maintenance involving

different people. We did not see that need at the beginning of the development effort,

resulting in poor documentation. This then led to difficulties in training new people on

that project. We thus decided to re-write documentation properly, in order to remedy to

the situation in later development phases.

212

•

•

Chapter Eight - Snmmary and conclusion

In this thesis, we have presented new techniques for eliciting a software process modeL

from different sources of information (or views): constraint verification, for detecting

intra-view inconsistencies (both internal and external validation); component matching,

for identifying common components across views; and view merging, for building a

single overall modeL from the views, after detecting and resolving inconsistencies across

them. These techniques have been implemented in a prototype system called "V-elicit",

which also provides support for the entire elicitation process: elicitation planning, view

elicitation, vie\v merging, and verification ofthe final mode!.

The six initial technical assumptions (Section 1.2), related to our choice of approaches

and techniques, have been verified through the case studies, in the following way:

Technical assumptions Related
case

studies
A1. A process model can be specified using an entity-relationship diagram. #3
A2. Using entity-relationship diagrams allows the elicitor ta define the types #5

of information a model should contain.
A3. By using a language based on fust-arder logic, one can define what an #3

inconsistency is (inside a single view or model), and the inconsistency
verification can then he automated.

A4. The identification of similar components across views cao be partIy #3
automated through the computation of a similarity score across the
components.

A5. By a careful identification of types of inconsistencies across views, and #3
their possible solutions, the view merging process can be automated using
the solutions provided by the elicitor.

A6. By using a language based on fust-order logic, one can formally describe #5
deveLopment policies, and their verification on a given model cao he
automated.

213

•

•

Also, our research hypothesis (Section 1.1), stating that a view-based approach to eliciting

software process model would lead to quality process models (mainly their completeness),

has been verified through our case study # 1.

Additional experimentation has shown that the time spent in modeling the different views

separately (in V-elicit) is higher than when developing one model directly (in other tools).

However, multiple elicitors can work in parallei on different views, without affecting the

quality of the final model, thus reducing the overall elicitation time. The parallel view

elicitation wouid also increase the chances of getting an accurate model in a changing

environment (with a high turn-around of agents in the process), by permitting the elicitors

ta go back quickly to the sources of information when details or input are required. Their

input might he required as early as in the intra-view consistency checking step.

Such a system helps in eliciting consistent, complete, and accurate process models in a

systematic way. The henefits of a high quality descriptive process model is that any

follow-up decisions would have a solid platform. Example decisions include: analysis of a

descriptive process model to seek improvement opportunities; generalization of multi­

project models to standardize product quality and development cycle-times; assessment

and certification ofprocesses; automation ofprocesses; etc. Thus, as can he seen, many of

the widely recognized process-oriented activities are based on the ground-work that is

presented here. These activities have a positive impact on the quality of the software

developed.

Finally, no other tool or approach, to our knowledge, provides such complete

technoiogical support for view-hased elicitation.

214

•

•

References

[ACF96] Denis Avrilionis, Pierre-Yves Cunïn, Christer Femstrom, "OPSIS: A View

Mechanism for Software Processes which Supports their Evolution and Reuse", Proc. of

18th International Conference on Software Engineering, Berlin, Germany, Springer, March

1996, pp. 38-47.

[ADH94] Jean-Marc Aumaitre, Mark Dowson, Del-Raj Harjani, "Lessons Learned from

Fonnalizing and Implementing a Large Process Model", Proc. of Third European

Workshop on Software Process Technology, Villard de Lans, France, Springer-Verlag,

LNCS #772, February 1994, pp. 227-239.

[ArK94] James W. Armitage, Mark 1. Kellner, "A Conceptual Schema for Process

Definitions and Models", Proc. of Third International Conference on Software Process,

Reston, Virginia, IEEE Computer Society Press, October 1994, pp. 153-165.

[BaW84] Victor R. Basili, David M. Weiss, "A Methodology for Collecting Valid

Software Engineering Data", IEEE Transactions on Software Engineering, SE-ID,

November 1984, pp. 728-738.

[BCH95] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, R. Selby, "Cost

models for future life cycle processes: COCOMO 2.0", Annals of Software Engineering,

vol.l no. 1, November 1995, pp. 57-94.

[BDT96] Alfred Broeckers, Christiane Differding, Gunter Threin, "The RaIe of Software

Process Modeling in Planning Industrial Measurement Programs", Proc. of Third

International Metrics Symposium, Berlin, Germany, March 1996.

215

•

•

[BeD92] K. Bemadi, J.C. Demiame, "Software Processes Modeling: What, Who, Whenn,

Proc. of Second European Workshop on Software Process Technology, Trondheim,

Norway, Springer-Verlag, LNCS #635, September 1992, pp.21-25.

[BeK98] Israel Z. Ben-Shaul, Gail E. Kaiser, npederating Process-Centered

Environments: the Oz Experience", Journal of Automated Software Engineering, voL 5

no. l, Kluwer Academie Publishers, January 1998, pp. 97-132.

[BEM94] Noureddine Belkhattir, Jacky Estublier, Walcelio Melo, "The Adele/Tempo

Experience: An environment to support Process Modeling and Enaction", Software

Process Technology, A. Fiokelstein and J. Kramer and B. Nuseibeh (Eels), Wileyand

Sons, 1994.

[BeT93] James B. Behm., Toby J. Teorey, "Relative Constraints in ER Data Models",

Proc. of 12th International Conference on the Entity Relationship Approach, Arlington,

Texas, Springer-Verlag, LNCS #823, 1993, pp.46-59.

[BFL95] Sergio Bandinelli, Alfonso Fuggetta, Luigi Lavazza, Maurizio Loi, Gian Pietro

Picco, "Modeling and Improving an Industrial Software Process", IEEE Transactions on

Software Engineering, vo1.21 no.5, May 1995, pp.440-454.

[BGR94] R. F. Bmynooghe, R. M. Greenwood, I. Robertson, J. Sa, R. A. Snowdon, B. C.

Warboys, "PADM: Toward a total process modeling systemn, Software Process Modeling

and Technology, Finkelstein Kramer and Nuseibeh editors, Research Studies Press, 1994,

pp. 293-334.

[BHM97] U. Becker, O. Hamann, J. Muench, M. Verlage, "MVP-E: A Process Modeling

Environment", IEEE TCSE Software Process Newsletter, no. 10, Technical Council on

Software Engineering, IEEE Computer Society, 1997.

216

•

•

[BMH96] T. Bruckhaus, N. H. Madhavji, J. Henshaw, L Jensen, "Impact of Toois on

Software Productivity", IEEE Software, vol. 13 no. 5, Sept. 1996, pp. 29-37.

[BMS95] Lionel Briand, Walcelio Melo, Carolyn Seam~ Victor Basili, "Characterizing

and Assessing a Large-Scale Software Maintenance Organization", Proc. of 17th

International Conference on Software Engineering, Seattle, Washington, ACM Press,

1995, pp. 133-143.

[BNF96] Sergio Bandinelli, Elisabetta Di Nitto and Alfonso Fuggett~ "Supporting

cooperation in the SPADE-1 Environment", IEEE Transactions on Software Engineering,

voL 22, no. 12, December 1996.

[BRB95] N.S. Barghouti, D.S. Rosenblum, D.G. Belanger, C. Alliegro, "Two Case

Studies in Modeling Real, Corporate Processes", Software Process: Improvement and

Practice, Wiley/Gauthier-Villars, Pilot Issue, voL1, August 1995, pp. 17-32.

[BrB96] Gilles Brassard, Paul Bratley, "Fundamentals of Algorithmics", Prentice Hall,

1996.

[Br095] Alfred Brockers, "Process-Based Software Risk Assessment", Proc. of Fourth

European Workshop on Software Process Technology, Noordwijkerhout, The

Netherlands, Springer-Verlag, LNCS #913, 1995, pp.9-29.

[CDP95] David C. Carr, Ashok Dandekar, Dewayne E. Perry, "Experiments in Process

Interface Descriptions, Visualizations and Analyses", Proc. ofFourth European Workshop

on Software Process Technology, Noordwijkerhout, The Netherlands, Springer-Verlag,

LNCS #913, 1995, pp.119-137.

[CK092] Bill Curtis, Mark 1. Kellner, Jim Over, "Process Modeling", Communications of

the ACM, vo1.35 no.9, September 1992, pp. 75-90.

217

• [CoW95] Jonathan E. Cook, Alexander L. Wol.f, "Automating Process Discovery through

Event-Data Analysis", Proc. of 17th International Conference on Software Engineering,

Seattle, Washington, ACM Press, 1995, pp. 73-82.

[CRS92] Eduardo Casais, Michael Ranft, Bernhard Schiefer, Dietman Theobald, Walter

Zimmer, "OBST - An Overview", technical report FZI039.1, Forschungszentrum

Informatik (FZI), Germany, June 1992.

[Dan90] WaYne W. Daniel, "Applied Nonparametric Statistics", second edition, PWS­

KENT publishing company, 1990.

[Dav95] Alan Davis, "201 principles of software development", McGrawHill, 1995.

[DEA98] Samir Dami, Jacky Estublier, Mahfoud Amiour, "APEL: a Graphical Yet

Executable Formalism for Process Modeling", Journal of Automated Software

Engineering, Kluwer Academie Publishers, vol. 5 no. 1, January 1998.

[DeG93] Wolfgang Deiters, Volker Grubn, "Software Process Technology Transfer - A

Case Study Based on FUNSOFT Nets and :rv.tELMAC", Proc. of 8th International Software

Process Workshop, Schloss Dagstuhl, Germany, IEEE Computer Society Press, March

1993, pp. 50-52.

[Dei92] Wolfgang Deiters, "A View Based Software Process Modeling Language", Ph.D.

Thesis, University ofDortmund, Dortmund, Germany, December 1992.

[De092] Agnes Devarenne, Claire Ozanne, "The Need of a Process Engineering

Method", Proc. of Second European Workshop on Software Process Technology,

Trondheim, Norway, Springer-Verlag, LNCS #635, September 1992, pp.26-30.

[DNR90] Mark Dawson, Brian Nejmeh, William Riddle, "Fundamental Software Process

Concepts", technical report no.7'-7-5, Software Design & Analysis Inc, April 1990.

218

•

•

[DPV97] Ashok Dandekar, Dewayne E. Perry, Lawrence G. Votta, "A Study in Process

Simplification", Software Process: Improvement & Practice, Wiley/Gauthier-Villars,

vol.3 no.2, June 1997.

[Dre93] Daniel W. Drew, "Deve1oping Formal Software Process Definitions", Proc. of

Conference on Software Maintenance, Montreal, Canada, IEEE Computer Society Press,

September 1993, pp.12-20.

[Eas91] Steve Easterbrook, "Handling conflict between domain descriptions with

computer-supported negotiation", Knowledge Acquisition, voL3 (1991), pp. 255-289.

[EBL96] Wolfgang Emmerich, Sergio Bandinelli, Luigi Lavazza, Jim Ar1ow, "Fine­

grained Process Modeling: an Experiment at British Airways", Proc. of Fourth

International Conference on the Software Process, IEEE Computer Society Press,

December 1996.

[EsB95] Jacky Estublier, Noureddine Belkhatir, "A Generalised Multi-View Approach",

Proc. of Fourth European Workshop on Software Process Technology, Noordwijkerhout,

The Netherlands, Springer-Verlag, LNCS #913, April 1995, pp. 179-184.

[Fav92] John Favaro, "Process Modelling at the European Space Agency", Proc. of

Second European Workshop on Software Process Technology, Trondheim, Norway,

Springer-Verlag, LNCS #635, September 1992, pp. 159-162.

[FeF85] Paul Feldman, Guy Fitzgerald, "Representing Rules Through Modelling Entity

Behavior", Proc. of Fourth International Conference on Entity-Relationship Approach,

Chicago, U1inois, IEEE Computer Society Press, October 1985, pp. 189-198.

219

•

•

[FeH93] Peter H. Feller, Watts S. Humphrey, "Software Process Development and

Enactment: Concepts and Definitions lt
, Proc. of Second International Conference on the

Software Process, Berlin, Germany, IEEE Computer Society Press, February 1993, pp.

28-40.

[FeP97] Nonnan E. Fenton, Shari Lawrence Pfleeger, "Software Metrics: A Rigorous and

Practical Approach", second edition, International Thomson Publishing, 638 pp., 1997.

[Fer93] Christer Fernstrom, "Process Weaver: Adding Process Support to UNIX", Proc.

of Second International Conference on the Software Process, Berlin, Germany, February

1993.

[FGH93] A. FinkeIstein, D. Gabbay, A. Hunter, J. Kramer, B. Nuseibeh, "Inconsistency

Handling in Mufti-Perspective Specifications", IEEE Transactions on Software

Engineering, vo1.20 no.8, August 1994, pp.569-578.

[FKN92] A. Finkelstein, J. Kramer, B. Nuseibeh, 1. Finkelstein, M. Goedicke,

"Viewpoints: A Framework for Integrating Multiple Perspectives in System

Development", Int. Journal of Software Engineering and Knowledge Engineering, World

Scientific, vo1.2 no.1, March 1992, pp.31-57.

[Fra91] Dennis J. Frailey, "Defining a Corporate-wide Software ProcessIf, Proc. of First

International Conference on the Software Process, Redondo Beach, Califomia, IEEE

Computer Society Press, October 1991, pp.113-121.

[Fra93] Dennis J. Frailey, "Concurrent Engineering and the Software ProcessIf, Proc. of

Second International Conference on the Software Process, Berlin, Germany, IEEE

Computer Society Press, February 1993, pp. 103-114.

220

•

•

[Gal92] Johan Galle~ "Applying Process ModeIling"~ Proc. of Second European

Workshop on Software Process Technology, Trondheim, Norway, Springer-Verlag,

LNCS #635, September 1992, pp. 230-236.

[GaS93] Brian R. Gaines, Mildred L. G. Shaw, "Eliciting Knowledge and Transferring it

Effectively to a Knowledge-Based System", IEEE Transactions on Knowledge and Data

Engineering, vol.5 no.l, February 1993, pp. 4-13.

[Gib94] W. Wayt Gibbs, "Software's Chromc Crisis", Scientific American, vo1.271 no.3,

September 1994, pp. 86-95.

[GrJ92] Volker Gruhn, Rudiger Jegelka, "An Evaluation of FUNSOFT Nets", Proc. of

Second European Workshop on Software Process Technology, Trondheim, Norway,

Springer-Verlag, LNCS #635, September 1992, pp. 196-214.

[GrS92] Volker Gruhn, Armin Saalmann, "Software Process Validation Based on

FUNSOFT Nets", Proc. of Second European Workshop on Software Process Technology,

Trondheim, Norway, Springer-Verlag, LNCS #635, September 1992, pp. 223-226.

[GrW96] R. M. Greenwood, B. Warboys, "ProcessWeb: Process Support for the World

Wide Web", 5th European Workshop on Software Process Technology, Nancy, France,

LNCS #1149, 1996, pp. 82-85.

[HeF94] Den Heller, PauIa Ferguson, "Motif programming manuai for OSFlMotif

Release 1.2", O'Reilly & Associates, 1994.

[Hic93] Charles R. Hicks, "Fundamental Concepts in the design of experiments", 4th

edition, Saunders College Publishing, 1993.

221

•

•

[HMB94] Dirk Holtje, Nazim H. Madhavji, Tilmann Bruckhaus, WonKook Hong,

"Eliciting Formal Models of Software Engineering Processes", Proc. of the 1994 CAS

Conference (CASCON'94), Toronto, Ontario, Cana~ mM Canada Ltd. and The

National Research Council ofCanada, October 1994, pp. 82-98.

[HuK89] Watts S. Humphrey, Mark l. Kellner, "Software Process Modeling: Principles of

Entity Process Models", Proc. of I1th International Conference on Software Engineering,

IEEE Computer Society Press, May 1989, pp. 331-342.

[Hum93] Watts S. Humphrey, "The Process Evolution Process", Proc. of the International

Workshop on the Evolution ofSoftware Processes, Montreal, Canada, January 1993.

[JaM94] David Jacobs, Chris Marlin, "Software Process Representation to Support

Multiple Views", Proc. of First Asia-Pacific Software Engineering Conference, Japan,

Dec. 1994, also published in International Journal of Software Engffieering and

Knowledge Engineering, vol.5 no.4, Dec. 1994.

[Kaw92] Peter J. Kawalek, "The Process Modelling Cookbook Orientation, Description

and Experience", Proc. of Second European Workshop on Software Process Technology,

Trondheim, Norway, Springer-Verlag, LNCS #635, September 1992, pp. 227-229.

[KeH89] Mark I. Kellner, Gregory A. Hansen, "Software Process Modeling: A Case

Study", Proc. of 22nd Annual Hawaii International Conference on System Sciences, vol II

- Software Track, IEEE Computer Society Press, January 1989, pp.175-188.

[KeI91] Mark I. Kellner, "Software Process Modeling Support for Management Planning

and Control", Proc. of First Intemational Conference on the Software Process, Redondo

Beach, California, IEEE Computer Society Press, October 1991, pp. 8-28.

222

•

•

[KFF91] Mark L Kellner, Peter H. Feller, Anthony Finkelstein, Takuya Katayama, Leon J.

Osterweil, Maria H. Penedo, H. Dieter Rombach, "ISPW-6 Software Process Example",

Proc. of First International Conference on the Software Process, Redondo Beach,

California, IEEE Computer Society Press, Oetober 1991, pp. 176-186.

[KiM93] David H. Kitson, Stephen M. Masters, "An Analysis of SEI Software Process

Assessment Results: 1987-1991 fi, Proc. of 15th International Conference on Software

Engineering, Baltimore, Maryland, IEEE Computer Society Press, May 1993, pp. 68-77.

[KoN96] Eleftherios Koutsofios, Stephen C. North, "Editing graphs with dotty", technical

report, AT&T Bell Laboratories, Murray Hill, New Jersey, June 96.

[KTL92] Herb Krasner, Jim Terrel, Adam Linehan, Paul Arnold, William H. Ett,

"Lessons Learned from a Software Process Modeling System", Communications of the

ACM, vol.35 no.9, September 1992, pp. 91-100.

[Lec89] Steven R. Leclair, "Interactive Leaming: A multiexpert paradigm for acquiring

new knowledge", SIGART Newsletter, special issue on knowledge acquisition, #108,

April 1989.

[LeF91] J. C. Leite, P. A. Freeman, "Requirements Validation Through Viewpoint

Resolution", IEEE Transactions on Software Engineering, vol.17 no.12, Decemher 1991,

pp. 1253-1269.

[LHR95] Christopher Lott, Barbara Hoisl, H. Dieter Rombach, "The Use of Roles and

Measurement to Enact Project Plans in MVP-S", Proc. ofFourth European Workshop on

Software Process Technology, Noordwijkerhout, The Netherlands, Springer-VerIag,

LNCS #913, April 1995, pp. 30-48.

223

•

•

[Mad91] Nazim H. Madhavji, "The Process Cycle", Software Engineering Journal, vo1.6

no.5, September 1991, pp. 234-242.

[Mad91a] Nazim H. Madhavji, "The Macroscope Project - Software Process Engineering

and Evolution", Research Proposai submitted to CRIM, McGill University, June 1991.

[MBB92] N. H. Madhavji, J. E. Botsford, T. W. Bruckhaus, K. El Emam, "Quantitative

Measurements based on Process and Context Models", Proc. Workshop on Experimental

Software Engineering Issues, Lecture Notes in Computer Science, Springer-VerIag,

Dagstuhl, Germany, Sept. 1992, pp. 67-72.

[McB93] Clement L. McGowan, Shawn A. Bohner, "Model Based Process Assessment",

Proc. of lSth International Conference on Software Engineering, Baltimore, Maryland,

IEEE Computer Society Press, May 1993, pp.202-211.

[MHH94] Nazim H. Madhavji, Dirk Holtje, WonKook Hong, Tilmann Bruckhaus,

"Elicit: A Method for Eliciting Process Models", Proc. ofThird International Conference

on the Software Process, Reston, Virginia, IEEE Computer Society Press, October 1994,

pp. 111-122.

[Nej91] Brian Nejmeh, "Strategic Software Process Improvement Planning", technical

report no.7-46-1, Software Design & Analysis Inc, March 1991.

[NeR91] Brian Nejmeh, William. E. RiddIe, "Process Breakdown Structures: An Informai

Technique for Software Proeess Definition", teehnical report #7-25-7, Software Design &

Analysis Ine., Mareh 1991.

[Nej95] Brian A. Nejmeh, "Process Cost and Value Analysis'" Communications of the

ACM, vol.38 no.6, June 1995, pp. 19-24.

224

•

•

[NWC97] Minh N. Nguyen, Alf Inge Wang, Reidar Conradi, "Total Software Process

Model Evolution in EPOS", Proc. of 19th International Conference on Software

Engineering, Boston, Massachusetts, IEEE Computer Society Press, 1997, pp.390-399.

(OiB92] Markku Oivo, Victor R. Basili, IfRepresenting Software Engineering Models:

The TAME Goal Oriented Approach" IEEE Transactions on Software Engineering, voL18

no.10, October 1992, pp. 886-897.

(PCC93] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, Charles V. Weber, "Capability

Maturity Model, Version 1.1 If, IEEE Software, vol. 10 no.4, July 1993, pp. 18-27.

[pen89] Maria H. Penedo, "Acquiring experience with executable process models", Proc.

of Fifth International Software Process Workshop, Kennebunkport, Maine, IEEE

Computer Society Press, 1989, pp. 112-115.

[Pfl93] Shari Lawrence Ptleeger, "Lessons Learned in Building a Corporate Metrics

Programll
, IEEE Software, vol. 10 no. 3, May 1993, pp. 67-74.

[PhS94] Keith Phalp, Martin Sheppard, "A Pragmatic Approach to Process Modelling",

Proc. of Third European Workshop on Software Process Technology, Villard de Lans,

France, Springer-Verlag, LNCS #772, February 1994, pp. 65-68.

[pre97] Roger S. Pressman, "Software Engineering: A Practitionerrs Approach", 4th

edition, McGrravv-Flill, 1997.

[PSV94] DewaYlle E. Perry, Nancy A. Staudenmayer, Lawrence G. Votta, "People,

Organizations, and Process Improvement", IEEE Software, vol.11 no.4, July 1994, pp. 36­

45.

225

•

•

[RHM85] R. A. Radice, J. T. Harding, P. E. Munnis, R. W. Phillips, "A Programming

Process Study", mM System Journal, 24(2), 1985, pp. 91-101.

[Rom93] H. Dieter Rombach, "Practical use offormal process models: first experiences",

Proc. of 8th International Software Process Workshop, Schloss Dagstuhl, Germany, IEEE

Computer Society Press, March 1993, pp.132-134.

[SaW94] Jin Sa, Brian C. Warboys, "Modelling Processes Using a Stepwise Refinement

Technique", Proe. ofThird European Workshop on Software Process Technology, Villard

de Lans, France, Springer-Verlag, LNCS #772, February 1994, pp. 40-58.

[Sca99] Walt Scacehi, "Experience with Software Process Simulation and Modelinglf
, to

appear in Journal ofSystems and Software, 1999.

[ScM93] Walt Scacchi, Peiwei Mi, "Experiences in the Modeling, Analysis, and

Simulation ofFormalized Software Processes", Proc. of 8th International Software Process

Workshop, Schloss Dagstuhl, Germany, IEEE Computer Society Press, March 1993, pp.

135-138.

[ScW95] Wilhelm Schafer, Stefan WoIL "Cooperation Patterns for process-centred

Softw"are Development Environments", Proc. of 7th International Conference on Software

Engineering and Knowledge Engineering, Roekville, Maryland, June 1995.

[ShG89] Mildred L. G. Shaw, Brian R. Gaines, "Comparing conceptual structures:

consensus, conflict, correspondence and contrast", Knowledge Acquisition, vol.1 (1989),

pp. 341-363.

[Sid97] Saeed Siddiqui, "Measuring the impact of process models on achieving a

common understanding of a process: A case study", M.Sc. thesis, McGill University,

Montreal, Canada, 1997.

226

•

•

(SKV95] L Sommerville, G. Kotokya, S. Viller, P. Sawyer, nprocess Viewpoints", Proc.

of Fourth European Workshop on Software Process Technology, Noordwijkerhout, The

Netherlands, Springer-Verlag, LNCS #913, April 1995, pp.2-8.

(Su097] Stanley M. Sutton Jr. and Leon J. Osterweil, "The Design of a Next-Generation

Process Language", Proceedings of the Fifth ACM SIGSOFT Symposium on the

Foundations of Software Engineering, Zurich, Switzerland, Lecture Notes in Computer

Science #1301, September 1997, pp.142-158.

[Tic98] Walter F. Tichy, "Should computer scientists experiment more?", IEEE

Computer, May 1998, pp. 32-40.

[TSK95] Toshifumi Tanaka, Kushi Sakamoto, Shinji Kusumoto, Ken-ichi Matsumoto,

Tohru Kikuno, "Improvement of Software Process by Process Description and Benefit

Estimationn, Proc. of 17th International Conference on Software Engineering, Seattle,

Washington, ACM Press, 1995, pp. 123-132.

[TuM96] Josée Turgeon, Nazim H. Madhavji, "A Systematic, View-Based Approach to

Eliciting Process Models", Proc. of Fifth European Workshop on Software Process

Technology, Nancy, France, LNCS #1149, October 1996, pp. 276-282.

[TuT93] Efraim Turban, Margaret Tan, f1Methods for knowledge acquisition from

multiple experts: an assessment", Int. Journal of Applied Expert Systems, vol.1 no.2,

1993, pp.10I-l19.

[Ver96] Martin Verlage, "About Views for Modeling Software Processes in a Role­

specifie Manuer", Proc. of the Workshop on Viewpoints, San Francisco, California, USA,

ACM Press, October 1996.

227

•

•

[Vis94] Giuseppe Visaggio~ "Process Improvement Through Data Reuse"~ IEEE

Software, vol. Il no. 4, July 1994, pp. 76-85.

[Vot93] Lawrence G. Votta Jr., "Comparing One Formai to One Informai Process

Description", Proc. of 8th International Software Process Workshop, Schloss Dagstuhl,

Germany, IEEE Computer Society Press, March 1993, pp. 145-147.

[WLM98] Alexander Wise, Barbara Staudt Lemer, Eric K. McCall, Leon J. Osterweil,

and Stanley M. Sutton~ Jr., "Specifying Coordination in Processes Using Little-Ill}',

Technical Report 98-38, Department of Computer Science, University of Massachusetts

at Amherst, August 31, 1998.

[WoI89] Walter A. Wolf, "Knowledge Acquisition from Multiple Experts", SIGART

Newsletter, special issue on knowledge acquisition, #108, April 1989.

[YuM94] Eric S. K. Yu, John Mylopoulos, "Understanding Why in Software Process

Modelling, Analysis, and Design", Proc. of 16th International Conference on Software

Engineering, May 1994, pp.159-168.

228

•
Appendix A - Views used as example for Section 5.2

•

tv
tv
\0

The fol1owing figures represent the entire set of aspects for each of the three views in Section 5.2. As a reminder, these three views

were used to il1ustrate how to eHcit a software process model from different views. In Figure 25, Figure 26, and Figure 27, partial

information on these views were given. Here, the entire infonnation is presented, through different aspects, as it appears in the VRclicit

system.

• •

deliverable-plOduction deliverable_validation

des cribe_context describe_objectives describe_alternatives IT_team_Ieview modify_deliverable review_by_other_teams

IV
w
o

Figure 77 " Bob's activity decomposition aspect

•

fj1'X'!'rsp;4st~~h',,;;"" .." 'Gsis~Ëfolr"I+~'âr1'sttàC'" vift"}I~o·~'el,~··:·:tf;jn~i21jrm
,~I!~h~v.Yn."\J\>n'm.~~~1.:"~'::(' ..I'l\"".~~lff~.'j'V~VI(;'~'" .".Y~.~!m;;.~,nng.~IZlSIJ:;'''

......................u.u.u.. ,.........011.

des cribe_objectives

•

describe_alternatives review_by_othel_teams

lv
w-

Figure 78 - Bob's activity ordering aspect

• •

ilmlilêl

review_by_other_teems
duration)n_days=S.OOOOOO

....•:... ':",

system_analysis

describe context
durarion)n_daYs=15.000000

1!118F~y.~W,n..i@.~ysl~:~9~l~~Y~~:~~t!l~(m

JMï 1

Figure 79 - Bob's activity duralion aspect

IV
Vol
IV

IV
VJ
VJ

•
1!l18l;,~y;s~_analy~s:~~~,tinf~~71~V;)J~] Il êI

Figure 80 - Bob's infonnation flow aspect

•

•

l!J.18l sy~tem_anàJYsls:Bob/ml'aÎys't:'role':'assigtlment
l. . u u u........ .0.

modify_deliveI'able

•

~'[~n~f~IkI..

des cribe context 1 1IT_teern_review 1 1review_by_othe:_teerns

N
VJ
~

Figure 81 - Bob's role assignment aspect

• •

'!(lWÏ:àTIiJ"~'"';P1i
" ~ f ~t::!J"": " ~ "," -~ "', ~ .. "

othe.r_teamsJevie~ client_review 1IT_team_QA

system_analysis

mo dificationswriting.Ji:cst_version

do~ent-Production

1j1.rX"~,.'s>,$tèm anaf s~s:P8terlman ·'·èr-:àC·tivit -(it:!cQm'''osition~ 1!~I., ..;:,.Y ·:·;, _ '. y, ,:.: .~:.;.'.:::'L.' -.' Y''''H''i:"~"e,,.. :'i·
..................

Figure 82 - Peterls activity decoIllposition aspect

N
W
VI

N
W
0'1

•

writingJirst_version

IT_team_QA

othe:c_teams_review

client review

Figure 83 - Peter1s activity ordering aspect

•

•

rj1;1XJ s stem.i"âîf'·. "sis:Pet8rhOâif'\:"er:cQstL:~,t~ ,y, ",:,<_..~."~Y.::",,. ., :,'," ... ~,H".;,\OO~" . ,'" , "
.&& u................................ ..

do~ent-produ~on

co st=SOOOO .000000

:\"»'.;~~:.~ '~;'::/ ·;···..?·::::~:.F~ ·t:.~ .~':/~.::.: "('.'~ ~~:;<. ': ": :1~~:>~:: .:' :.: .~

review
cost=20000.000000

•

writing-.first_version modifications IT_team_QA other_teams_review client_review

N
w
-1

Figure 84 - Peter's cost of activity aspect

•

r~üiih 'te 'âI'~·~fi·Rëte'hn' 'l'''~if'~-;''tr'
L!U~:$Y·S ,rn._ar:t"~~t;~~";:j~I".r" ..a.n~.~I!t~,,,~~,,:~,P

do cument""production

•

writing...first_version mo difications IT team QA
du:cationJn_days ~3 .000000

other teams review
du:cation,=-in_days=6.000000

client review
du:cation_in_days =5 .000000

Nw
00

Figure 85 - Peter's activity duration aspect

N
W
\0

•
JAl rvi "ftt> '. al ... Pebfinl' °(1"'"'"''".1''' 'fi ffiil(92J:PTi
L!Jl~,SY~, m~~(,.Y~Is.:.' .,,,.~;,~~er:l" 9roU~1~.9."t .. OW~·IZrSI.~

__.~a_a_••_aa _ U 'O' U UAO......... • U....... ..

mo difications

Figure 86 - Peter's infomlation flow aspect

•

• •

!!i(lililm

client review

::'::: >=:::~. :':.:,: .~.: ..~ ,:' .~ J~.. :....... .:

other teams review- -IT team QA- -

" <:) JOI

è

'rj1:?lJ' S stem;~:anârsis:Peœrhlîâif'i" êr:role~aSsf"'ljffient::J.~I!:!J .Y ,.y~!~,,:~"·tI:\·"t;Y . '. . · _;:;;.:':;Ùi'~'-~W~~H:<",' -""""ld,Q~I"t.i'~''.'I''U.
...................................... u uuu u u ullL

Figure 87 - Peter's ro]e assigmnent aspect

~o

•

[!].•f8]",systen1i.analysis:Williamlreviewer;~t1,~.ty~decompq~,'~9P:.,,~,~ êl
~..~ _~ _._ ~ ..u........................ u....... .

•

IT_team_review user review

welkthrough engineerin&....review delive.xy_review

N
~
~

Figure 88 - William's activity decomposition aspect

IV
~
IV

•

[!] 181 SYS~rn2tu1a1ysis :WiIli~lrnViewer:actiV.'Yn~rdèrjng I~H~Hm
... •••••••••• .. u u.... u................ .. .

delivery_review

us el_review

Figure 89 - William's activity ordering aspect

•

•

[!]118l·.··::·~~~<~mi.an~ys~~;:WiI~iamlrev~~wp:~:~~..nltio~ ~:

IT tearo. review
duration-=,in_days =3.000000

user review
durationjn_days =5.000000

•

walkth:tough
duration_in_days =2.000000

engineeril1.&.....review
duration_in_days =0 .500000

delivery_review
duration_in_days =0.500000

N
~
W

Figure 90 - William's activity duration aspect

•

[:!H81 systemà~3IysiS:W'illiam~V~~\IIer:info,rm~J!'~~flowIA~J!J:êl

•

engineerin~review walkthrough delivexy_review uSex'_review

N
~
~

Figure 91 - William's infomlation flow aspect

•

I!l;I8l;rsystemL~~Y~i~:YA,lIiamIreVieWer:role-ass~g~m~"(i_;j}.lït~Jêl

•

walktluough engineerin~ review delivery_review us el_review

l\J
~
Ul

Figure 92 - William's role assignment aspect

•
Appendix B - Final model after merging the views in Appendix A

•

N.pa.
0\

Figure 93 - Activity decomposition aspect of the final model

• .'

dl f~_deill/erabh
rCl/lew_b!l_other_teafTIS

uration_ln_da!;Js=5.00000'

'1'" '~);"'.!.' ';"" .;,.(,f :'lf',':'", :h i ..': ,'.. .; "~'::' ····d· /:,",.,./' ".. ' '. . 1 ['d"'I"': .0. . . ,;.)':..;·;:'1k'~j;i ,:':~' ..,;; .•.. '. . ,'. ii'••,:,,~ ,';r:;;'; ji.; '041' ,.':,,':·Lj:··lrïlP
Irt~ ,~!li!.';<,:_f.'o:_':y. " ,_'i:"';~I':',;;,IDli :.~~.""'''';' .• ; ,'0, li ~":îo(' ""~:'!:', ... " ..•).l.,.~!tn,System: ...ana YS $. Ur.Slt pn:l, ,,:.. '.' ".~'~o;:\~'..):':~ltitt~!:;;;tt:,~/ 1',. : <.;•••'h,;lJi!;i;.!..!ttthï..&~:,";,"; ..{;,tIDJ;1'l M. ~,

Figure 94 ... Activity duration aspect of the final model

N
~
-.....l

N
~
00

•
Hl',' ,_-'.';.F~'-·'iJi~"C--, " • ,-"-.",.,' /--', ',,-,1.' :;:-<!-~:~,t;t~J t~1~;: ::.J

L ~

Figure 95 - Infonnation flow aspect of the final model

•

• •

N
~
\0

Figure 96 - Role assignment aspect of the final model

•

•

Appendix C - Grammar for constraints

constraint ::= ForAll(element_in_set, constraint)
1 Therels(element_in_set, constraint)
1 condition

element_Ïn_set ::= (element_variable, list_expression)
Il element_variable E list_expression

element_variable ::= entity_variable
1 relationship_variable

list_expression ::= Sete string)
Il use ofa set variable CE or R)

SetConstruct(element_in_set, condition)
l/{aeAI···}

TypedEntSet(string, string)
Il the first string is the set variable (E) and the second is the entity type

TypedRelSet(string, string, string, string)
Il the fust string is the set variable (R) and the others make up
Il the relationship type

(list_expression list_expression_operator list_ex-pression)

list_expression_operator ::= Union
1 Intersection

entity_variable ::= string
Il entity variable name

relationship_variable ::= string(entity_variable, entity_variable, strin&-variable)
Il relationship variable name conraining entity variables and variable
Il for relationship type

strin&-variable ::= string
Il variable for a string

condition ::= True
1 False
1 Not condition
1 (condition_without_bracket)

condition_without_bracket ::= condition condition_operator condition
num_condition
strin&-condition
time_condition
list_condition
strin&-list_condition
char_condition
bool_condition

condition_operator::= And
1 Or
1 Implies

250

•

•

num_expression ::= number
1 (num_expression num_expression_operator num_expression)
1 Round num_expression
1 Trunc num_expression
1 Ma:« string, list_expression)

Il maximwn ofattribute "string" over the given list
Min(string, list_expression)
Swn(string, list_expression)
Mean(string, list_expression)
Sqrt num_expression
Card list_expression

Il number ofelements ofthe list
Card str_lïst_expression
GetInterval(time_expression, time_expression)
GetnValueOf(string, entity_variable)

Il get the value ofattribute "string" in entity_variable (number)

num_expression_operator ::= +
1 -

1 *
1 1
1 1\.

j MaD
1 DIV

num_condition_operator ::= >
[<
1 <=
1 >=
1

1 !=

char_expression ::= 'char'
1 GetcValueOf(string, entity_variable)

Il get the value ofattribute "string" in entity_variable (character)

char_condition_operator ::==
1 !=

bool_condition ::= ThereIsRel(entity_variable, entity_variable, strin~list_expression)
Il there is a single relationship between these entities ofone of
Il the relationship type specified in strin~list_expression

ThereIsPath(entity_variable, entity_variable, strin~list_expression)
/1 there is a set ofrelationships that one can use to go from one entiry
Il to the other (relationships should be of the types specified
Il in strin~list_expression)

TherelsMuliplePaths(entity_variable, entity_variable, strin~list_expression)
/1 there is more than one set ... (see above)

ThereIsDirectedPath(entity_variable, entity_variable, strin~Iist_expression)
Il (see above) should go from fust entity to second entity

251

•

•

ThereIsMultipleDirectedPaths(entity_variable, entity_variable, strin!Llist_expression)
Con~tt(sning,entity_variable)

1/ check if this entity has a value for attribute "string"
IsLeaf(entity_variable)

Il this entity does not have children (using "is-composed-or'
Il relationship type)

GetbValueOt{ string, entity_variable)
Il get the value ofattribute "string" in entity_variable (boolean)

SameEnt(entity_variable, entity_variable)
1/ the two entities have same name and same type

strin!Lcondition ::= strin!Lexpression strÏn!Lexpression_operator strÏn!Lexpression

strin!Lexpression ::=" string"
1 GetsValueOt{ string, entity_variable)

Il get the value ofattribute "string" in entity_variable (string)
GetEntName(entity_variable)
GetEntType(entity_variable)
GetEntSubType(entity_variable)
GetRelType(entity_variable)
GetRelDecompBehav(relationship_variable)
GetRelTypeKeyword(relationship_variable)

strin~eÀ-pression_operator ::= =

1 !=
1 Contains

lime_expression ::= Time(string)
Il time value (yylmmlddlmmlss)

GettValueOf(string, entity_variable)
Il get the value ofattribute "string" in entity_variable (lime)

list_condition ::= list_expression list_expression_2
1 element_variableiable IsElementOf list_expression

list_expression_2 ::= lîst_condition_operator list_expression
1 IsEmpty

lîst_condition_operator ::= =
1 t=
1 Includes

strin~list_condition ::= strin!Llist_expression strin!Llist_expression_2
1 strin!Lvariable IsVarElementOfstrin!Llist_expression

Il the value ofthis variable is in the list
snin~expression IsValElementOfstring_list_expression

Il the specifies value is in the list

strin~list_expression_ 2 ::= list_condition_operator strin!Llist_expression
1 IsEmpty

strin~list_expression::= StrïngSet(string)
Il string set variable name

252

•

•

EntType(list_expression)
Illist ofentity types used in the specified List

EntSubType(List_expression)
RelType(list_expression)
RelTypeKeyword(list_expression)
RelDecompBehav(list_expression)
AttName(entity_variable)
AttType(entity_variable)
AttDecompBehav(ennty_variable)
(str_list_expression List_expression_operator str_list_expression)
{ ,.string" enumerated_ strin!Llist

Il enumeration ofstrings

enumerared_strïn!LList ::= }
1 ,"string" enumerated_strÏn!LList

253

•

•

Appendix D - State-of-the-art process modeling tools and environments

Adele-Tempo [BEM94]:

Adele was originally a configuration management system, and has then been

adapted to a software engineering environment. It can support the modeling of

processes (through event-trigger mechanisms) and products (using extended entity­

relationship diagrams). When executing the process, each agent uses a Work

Environment, showing and controlling the part ofthe process related to that specifie

agent. Adele handles data coordination and cooperative work.

APEL [DEA98]:

APEL models are bullt on top of existing process engines and environments (such

as Adele and Process Weaver) that use formalism hard to understand for non

process experts. APEL uses a graphical notation for high-Ievel process descriptions,

and textual notation for precise details (such as tools used) necessary for the process

engine. The static aspects, such as the activities, products, and agents, are modeled

in an object-oriented language. The dynamic aspects are specified in control flow,

data flow, and state diagrams. A translator is used to generate an executable model

(in Adele or Weaver for example) from the high-Ievel descriptions and diagrams.

Articulator [Sca99]:

Articulator is a knowledge-based environment in which software processes can be

modeled, analyzed and simulated. A textual modeling notation allows the user to

specify objects (resources, agents, and tasks) with their attributes and relationships.

Rules are used to specify agent's actions (behavioral information). Two types of

simulation are available: knowledge-based simulation (KBS), implemented in

Articulator, and discrete-event simulation (DES), using another tool interfacing with

Articulator. When KBS is used, the trace ("trajectory") of the simulation is stored,

allowing for later queries and analysis, for example going forward or backward

254

•

•

from a specific state. These functionalities can be applied to the entire model or to a

subset ofa model related to a speeifie agent.

EPOS [NWC97]:

EPOS is a software proeess modeling and enactment system. It uses an object­

oriented language ealled SPELL for modeling activities, products, tools, and roles.

Pre/post-conditions and code describing the tasks (in a programming language) are

stored as attributes of the objects. The model can be instantiated into a task network,

that is then executed. Such task network can be mod.i:fied while being exeeuted. An

experience database captures the projeet history.

Funsoft nets [DeG98]:

Funsoft nets are high-Ievel Petri net notation, extended with elements useful for

modeling software processes (e.g., duration of activities, different firing behaviors

depending on the number of tokens produced and consumed, etc.). Such process

models can be simulated, and vaIidated through the anaIysis of their static and

dynamic properties. The entire approach aIso includes object models, deseribing the

structure of objects through extended entity-relationship diagrams, and

organizational models, showing the organizational entities involved in the process.

JIL / Little-JIL (Su097, WLM98]:

JIL is an executable process modeling notation similar to a programming language.

It has its roots in the modeling language Appl-A. It contains a rich set of constructs

for modeling control-flow and coordination. Little-JIL is a higher-Ievel graphical

modeling language, that is mapped to the JIL language for execution. Again, the

foeus is on activity coordination, and it assumes that the agent knows how to

perform the different aetivities (so do not need a description of such aetivities).

255

•

•

Marvel / Oz [BeK98]:

Marvel is a software development environment using a client-server architecture. A

rule-based process modeling laoguage is used to specify tasks, as weil as their

parameters, preconditions, tools to be used, and effects of their completion (post­

conditions). Forward and backward chaining on those rules is used to enforce and

automate the process.

The Oz environment is based on similar ideas, but it cao support multi-site

development. It manages the connection between multiple autonomous and

geographically distributed processes. Multiple servers are used, having their own

process model and tools. Each server cao open connections to remote servers on

demand, allowing for coordination across development sites.

Merlin [ScW95]:

Merlin is a process-centered software development environment. Each developer

performs his/her work through a working context specifying information on

activities, states and documents available. The process descriptions (documents,

roles, and activities) and the information on the instantiated process are specified

using facts in a PROLOG-like language. The behavioral information is specified in

preconditions. The working eontexts show the activities that can be executed by that

person (i.e., having an preconditions met). Specific rules can also be specified for

transactions, indieating how to resolve coordination conflicts such as concurrent

access to a document.

MVP-E [BHM97]:

MVP-E is an environment integrating multiple tools used for software process

modeling, simulation, and execution. The modeling language used is MVP-L, a

formal (textual) notation that is used to deseribe activities, products, resources, and

their attributes. Such attributes can he used in an interface to measurement tools,

allowing automatie and manual data collection. Entry and exit criteria are used to

model the control flow among activities. Because of the difficulty to view and

256

•

•

understand a model from a textual description, a graphical editor (GEM) has been

added. The structural aspects ofthe models can be analyzed, and consistency can be

checked. Functionalities are being added to support view-based modeling, where

multiple views would be elicited independently and merged: a similarity analysis

function to help identifying the common elements across views, and a tentative set

ofconsistency rules to detect inconsistencies between two views.

OPSIS [ACF96]:

OPSIS is a view mechanism that permits one to extract or merge views frOID models

specified in a Petri-Net type of notation (e.g., Process Weaver). It contains a formal

notation and operators for the user to specify how a view should be extracted frOID a

model, and how multiple views should be recombined (possibly after modifying the

views). The interface between the views must be specmed.

Process Weaver [Fer93]:

Process Weaver is a software development environment providing active process

support and process automation. Communication with the developers is done

through agendas. The modeling language used has 3 levels: method, cooperative

procedures, and work context levels. At the method level, the hierarchy of activities

is specified in a graph, and forros are used to capture additional information such as

input/output and roles. The control f10w information is specified at the cooperative

procedures level, using transition nets (petri nets augmented with preconditions and

actions). The information the developer gets (i.e., documents and tools to be used

for a task) is modeled at the work context level.

ProcessWise Integrator / ProcessWeb [BGR94, GrW96]:

ProcessWise Integrator is an environment executing a process model, and providing

information to the different raIes via agendas. The modeling language used is an

object-oriented one, consisting of four main types of objects: roles, actions

257

•

•

(activities), entities (artifacts), and interactions. Modifications of the process model

can be made while the pi"OCeSS is executing.

The user interface of ProcessWise has been moved to WWW (using the Common

Gateway Interface) in a new tool called ProcessWeb.

PFV [DPV97]:

PFV (or Process Flowchart Visualization) is a set of tools for modeling software

processes in a textual notation, and then visualize them in a tlowchart (generated in

the graph drawing program "Dot"). It is based on their initial "InteractlIntermediate"

too1. The modeling notation includes features for specifying activities and their

inputloutp~decision points, roles, resources, and policies (including pre- and post­

conditions). It is also possible to specify additional types of information (e.g.,

groups and persons). In the graphs generated, colors can be specified for different

types of information, making the visualization and understanding easier. Process

analysis functions are also provided, including verification of input/output

mismatches, identification of sources and sinks, and a variety ofsummaries.

SPADE [BNF96]:

SPADE is a process-centered software engineering environment. The process is

modeled in the language SLANG, a high-Ievel Petri-Net based formalism. The

artifacts are kept and maintained in an object-oriented database. Multiple users are

supported over a network. Each user interacts with the process through a set of

integrated tools.

Statemate [KeH89]:

Statemate is a process modeling and simulation too1. 1t was original1y developed for

specifying and designing real-time reactive systems, but its functionalities could be

applied to software processes as weIl. lbree perspectives can be modeled in

Statemate: functional (activities and information flow), behavioral (through

statecharts), and organizational (representing agents and communication). Static

258

•

•

analysis permits the modeler to check the model for consistencY:t completeness:t and

correctness. Deadlocks, race conditions, and behavioral ambiguities can also be

detected through simulation.

X-elicit [MHH94]:

X-elicit is a front-end elicitation tool, used when gathering software process

information. 1t helps in structuring this information before entering it in another

modeling tool such as Statemate (for graphical visualization and analysis).

Templates are provided for entering (textual) information in attributes. For example,

the template for an activity has attributes "Goal", "Artifact-Input", "Artifact-Output",

"Enoy-criteria", "Exit-criteria", etc. The type of information to be entered is fully

user-definable.

259

•

•

Appendix E - External validity constraints specified

As part of the validation of V-elicit (see Section 7.2.5), we have formally specified
development policies from the fol1owing book:

Davis, "201 principles ofsoftware development", McGraw Hill, 1995_

Here are the 35 constraints specified, from different development phases.

General (8)

#1 - Quality is #1 (i.e., process should include SQA activities)

ThereIs((e,TypedEntSet(E, activity)), GetEntSubType(e)="SQA")

#5 - Don't try to retrofit quality (Le., link between development activities and SQA
activities should appear at each stage, starting at requirement engineering phase)

For a given stage:

Therels((r(el,e2,t),TypedReISet(R, activity, verifies, activity»,
(GetEntSubType(el) = "SQA") and
(GetsValueOf(phase,e2) = "requirement engineering"»)

#8 - Communicate with customer/user

Therels((r(el,e2,t),R), (GetEntName(el) = "custoroerll) and
(GetEntType(e2) = IIrole ll)

#18 - Should develop a short user's manual (e.g., less than 50 pages)

Therels((e,TypedEntSet(E, artifact»),
(GetEntName(e)="user manualf1

) and (GetiValueOf(nbpages,e) < 50»

#23 - Use tools, but he realistic

ThereIs((r(el,e2,t),TypedRelSet{R, activity, uses, tool), true)

#32 - Use document standards

Therels((r(el,e2,t),TypedRelSet{R, activity, uses, artifact»),
GetEntName(e2) = "document standard")

260

•

•

#33 - Every document needs a glossary

ForAll((dl,SetConstruct((e1,TypedEntSet(E,artifact»,
GetEntSubType(el) = "documentlt»,

ThereIs« d2,SetConstruct« e2,TypedEntSet(E,artifact»,
GetEntSubType(e2) = Itglossaryrr»,

ThereIsRel(dl ,d2,"artifact contains artifact"»)

#34 - Every software needs an index

ForAll«dl,SetConstruct«el,TypedEntSet(E,artifact»,
GetEntSubType(el) = "software"»,

ThereIs((d2,SetConstruct((e2,TypedEntSet(E,artifact»,
GetEntSubType(e2) = "index"»,

TherelsRel(dl ,d2,"artifact contains artifact"»)

Reguirement engineering (7)

#39 - Determine problem before writing requirements

ThereIs((al ,SetConstruct((el,TypedEntSet(E,activity»,
GetEntName(el) = "detennine problems"»,

ThereIs((a2,SetConstruct((e2,TypedEntSet(E,activity»,
GetEntName(e2) = "write requirements lf»,

GettValueOf(end_time,al) < GettValueOf(start_time,a2»)

#41 - Fix requirement specification errors now (i.e., make the modifications immediately
after finding errors - within one hour)

ThereIs«al,SetConstruct«el,TypedEntSet(E,activity»,
GetEntName(el) = "find requirement error"»,

ThereIs«a2,SetConstruct«e2,TypedEntSet(E,activity»,
GetEntName(e2) = "fix requirement error"»,

GetInterval(GettValueOf(end_time,al), GettValueOf(start_time,a2» < 60»

#43 - Record why requirements were included

ForAll((dl ,SetConstruct((el,TypedEntSet(E,artifact»,
GetEntSubType(el) = "requirement"»,

ThereIs((d2,SetConstruct((e2,TypedEntSet(E,artifact»,
GetEntSubType(e2) = "rationale"»,

ThereIsRel(dl,d2,"artifact stated-for artifactlf»)

261

•

•

#45 - Review requirements

ForAll«dl,SetConstruct«el,TypedEntSet(E,artifact»,
GetEntSubType(el) = "requirement"),

ThereIs«al,SetConstruct« e2,TypedEntSet(E,activity»,
GetEntName(e2) = "reviewn»,

ThereIsRel(dl,al,"artifact is-validated-by activity"»)

#48 - Use multiple views ofrequirements

ThereIs((e,TypedEntSet(E, activity»,
(GetEntName(e)="gather requirements") and
(Card SetConstruct«e2,TypedEntSet(E,role»,

(GetEntSubType(e2) = "user") and
(ThereIsRel(e2,el,"role communicates-with activity"»)

> 1»

#50 - Prioritize requirements

ForAll«dl,SetConstruct«el,TypedEntSet(E,artifact»,
GetEntSubType(el) = "requirement"»,

ContainsAtt(priority,dl))

#52 - Separately number every requirements

ForAll((dl ,SetConstruct«el,TypedEntSet(E,artifact»,
GetEntSubType(el) = "requirement"»,

ContainsAtt(number,dl»

Design (6)

#62 - Trace design to requirements

ForAll« e,TypedEntSet(E, module»,
Therels«r(el,e2,t),TypedReISet(R, module, comes-from, requirement»,
SameEnt(e,e1»)

#63 - Evaluate alternatives

ThereIs((e,TypedEntSet(E, activity»,
(GetEntName(e)="evaluate alternative") and
(GetsValueOf(phase,e) = "design"»

262

•

•

#64 - Design without documentation is not design (i.e., should have a design document)

Therels« e,TypedEntSet(E, artifact»),
GetEntName(e)="design document")

#66 - Don't re-Ïnvent the wheel (i.e., need an activity to evaluate opportunities to reuse)

Therels« e,TypedEntSet(E, activity»),
(GetEntName(e)="assess reusability") and
(GetsValueOf(phase,e) = "design")

#68 - Avoid numerous special cases (e.g., no more than 10)

ForAll« e,TypedEntSet(E, module»,
Card SetConstruct((e2,TypedEntSet(E,altemative)),

ThereIsRel(e,e2,"module includes alternative"»
<= 10)

#79 - Use efficient algoritbms (i.e., should have an activity tbat analyses the efficiency)

Therels« e,TypedEntSet(E, activity»,
(GetEntName(e)="analyse efficiency") and
(GetsValueOf(phase,e) = "design"»

Coding (7)

#88 - Avoid global variables

ForAlI((d1,TypedEntSet(E,variable»,
GetEntSubType(d1) != "global")

#90 - Avoid side-effects (Le., use only local variables and parameters)

ForAl1«r(fl,d1,t),TypedReISet{R, function, uses, data),
ThereIs((d2,SetConstruct((e2,TypedEntSet(E,module»,

ThereIsRel(e2,fl ,"module contains function")),
(ThereIsRel(fl,dl,"function has-parameter data"» or
(ThereIsRel(d2,dl,"module contains data"))))

#93 - Use optimal data structures (i.e., need an activity to analyze them)

ThereIs« e,TypedEntSet(E, activity»,
(GetEntName(e)="analyze data structures") and
(GetsValueOf(phase,e) = "coding"»

263

•

•

#96 - Document before you start corling

ThereIs(al,SetConstruct«el,TypedEntSet(E,activity»,
GetEntName(el) = "documenting"»,

ThereIs« a2,SetConstruct((e2,TypedEntSet(E,activity»,
GetEntName(e2) = "corling"»,

GettVallleOf(end_time,al) < GettValueOf(start_time,a2»)

#97 - Hand-execute every component

ForAll« e,TypedEntSet(E, module»,
ThereIs((a2,SetConstruct((e2,TypedEntSet(E,activity»,

GetEntName(e2) = ''hand-execute''»,
ThereIsRel(e,a2,"module used-by activity"»)

#98 - Inspect code

ForAll« e,TypedEntSet(E, module»,
ThereIs((a2,SetConstruct((e2,TypedEntSet(E,activity»,

GetEntName(e2) = "inspect code"»,
ThereIsRel(e,a2,"module used-by activity"»)

#101 - Don't nest too deep (e.g., no more than 3 levels)

ForAll«(dl,TypedEntSet(E,code-component»,
GetiVallleOf(nesting-level,dl) <= 3)

Testing (7)

#107 - Trace tests to requirements

ForAll(e,TypedEntSet(E, test»,
Therels(r(el ,e2,t),TypedRelSet(R, test, comes-from, requirement»,
SameEnt(e,e1»)

#108 - Plan tests long before it is time to test

Therels(al,SetConstruct«el,TypedEntSet(E,activity»,
GetEntName(e1) = "plan test"»,

ThereIs((a2,SetConstruct«(e2,TypedEntSet(E,activity»,
GetEntName(e2) = "testing"»,

GettValueOf(end_time,a1) < GettValueOf(start_time,a2»)

264

109 - Don't test your own software

ForAll«r(el,e2,t),TypedRelSet~raIe, validates, artifact),
not ThereIsRel(e2,e1,"artifact is-developed-by role"»))

110 - Don't write your own test plans

ForAlI«r(el,e2,t),TypedReISet~role, develops, test-plan)),
not ThereIsRel(e2,el,"test-plan is-used-by role"»)

#115 - Use black-box and white-box testing

ThereIs«e,TypedEntSet(E, activity»,
(GetEntName(e)="white-box testing") and
(GetsValueOf(phase,e) = "testing"»

ThereIs« e,TypedEntSet(E, activity»,
(GetEntName(e)="black-box testing") and
(GetsValueOf(phase,e) = "testing"»)

123 - Don't integrate before unit test

ThereIs((a1,SetConstruct((el,TypedEntSet(E,activity»,
GetEntName(el) = "unit test")),

ThereIs«a2,SetConstruct«e2,TypedEntSet(E,activity»),
GetEntName(e2) = "integrate"»,

GettValueOf(end_time,al) < GettValueOf(start_time,a2»))

125 - Analyze causes for errors

ForAll« e,TypedEntSet(E, error»,
ThereIs«r(el,e2,t),TypedReISet(R, activity, analyse-cause-of: error»),
SameEnt(e,e2))

265

