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ABSTRACT

The present study was designed as an attempt to eval-
uate the effects on the Analysis of Covariance F-test of

varying combinations of degrees of violation of the homo-

geneity of variance and the homogeneity of regression assump-

tions. Measures of violation, invariant under stated con-
straints on the covariate, were derived for each of the two

assumptions. Sampling distributions of simulated ANCOVA

‘exper iments embodying combinations of values of these mea-

sures were generated. The effect of each combination on
the F-test was determined by a comparison of obtained and
theoretical percentage points. Results suggested that the
two violations tend to neutralize each other in their
effects, leaving the F-test remarkably robust with respect

to their joint presence. An attempt was made to establish

a predictive relationship between levels of violation of the

two assumptions on the one hand, and their effect o#n prob-

ability of Type 1 error on the other.
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CHAPTER 1
INTRODUCT ION

The application of statistical tests to the analysis
and interpretation of data implies that the assumed condi-
tions of the test are met in the experimental s ituation.

In practice, however, these assumptions are never fully
justified. Thus, an important area of investigation has
necessarily arisen to answer questions concerning the extent
to which actual experimental conditions can depart from
those assumed in any test before its application is render -
ed invalid. In other words, this field of research
attempts to determine how 'robust! any given test is. |If

a statistical test is not robust, and if, in actual experi-
mental practice, its underlying assumptions are not upheld,
then it becomes extremely difficult for the researcher to
isolate that component of his results which is attributable
to the violation of the assumptions, from that part which
purports to answer his experimental question.

Two ways of approaching questions concerning the ro-
bustness of statistical tests have been developed. The
first employs traditional mathemat ical analysis and attempts

to determine the behaviour of the test under less than ideal

conditions. A difficulty with this analytic approach is that
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once the assumptions of the test are relaxed the statistics
frequently become difficult to handle, and in many cases the
statistician has to resort to distributional approximations
(often asymptotic) or other simplifying procedures, which
yield results that are more indicative than definite;

The second approach is that of Monte Carlo simulation
in which the robustness of a statistical test is evaluated
by generatiﬁg an empirical sampling distribution of the
statistic, derived from the simulated sets of data embody ing
some specified degree of violation of one or more of the
test's underlying assumptions . This distribution can then
be compared with its corresponding theoretical,violation-
free distribution and the effect of that degree of violation
is determined from the comparison.

This kind of work is much more costly than the first
approach, and harbours some intrinsic limitations; whereas
there is only one way in which the assumptions can be fully
satisfied, there is no practical limit to the number of ways
in which, singly or in combination, they can be violated.

A Monte Carlo investigator must consequently choose a more
or less arbitrarily circumscribed set of possibilities to
study, without any guarantee that his findings are general-

izable to other contingencies of violation.



The present study was designed as an attempt to ascer-
tain, through the use of the Monte Carlo procedure, the
effects of the simultaneous violation of two assumptions
underlying a statistical test commonly applied to experi-
mental data in Educational and Psychological research - the
Analysis of Covariance. The two subjects of this investiga-
tion were the homogeneity of regression and the homogeneity

of variance assumptions.
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THE ANALYSIS OF COVARIANCEf

The Model and Its Application

Covariance analysis (ANCOVA) incorporates two systems
of data analysis, Analysis of Variance and Regression
Analysis, which have come to be thought of by many psycholo-
gists as distinct, but which in fact are both subsumed under
the general linear model .

The mathematical model in the Ana]ygis of Covariance

(one-way, linear, fixed effects) Is as follows{

where Y. is the measure of the dependent variable and Xij

J
is a concomitant variable or covar iatee with grand mean X..,

on which Yij has a linear regression with regression coefficient
B. The constants u and T are the grand mean of treatment
populations and the effect of the jth treatment level, re-
spectively, with T Ty < 0. The variable eij is the random
error term assumed to be normally and independently distributed
with zero mean and constant variance.

From the point of view of Analysis of Variance, the model

can be expressed as:

Yij - B(Xij_x..) = 8} + Tj + eij, -..o-(]o2)
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where a modification (due to the estimation of B) of the usual
F-test is applied to the Y-scores now adjusted for X.

On the other hand, considered from the point of view of
Regression Analysis, the treatment effects can be conceptual-
ized as dummy variables, so that the design takes on the form
of an F-test for multiple regression. These two F-tests are
equivalent.

The Covariance model is designed for the following.ex-
per imental situation; different levels of a treatment, or
independent variable, are being applied to randomly selected
groups of experimental units. The purpose of the experiment
is to determine whether or not these treatment levels differ-
entially affect some dependent response Y. Before the treat-
ments are applied, however, a measure of another variable X
is taken on the experimental units. The treatment levels
are then effected, and in each instance the measure of vari-
able Y is recorded. |In the usual Analysis of Variance situa-
tion, these data are then subjected to an F-test for differ-
ences in treatment means. In the Analysis of Covariance
situation, however, before the Y data are subjected to the F-
test, they are first adjusted to remove the influence of the
variable X.

This procedure has the advantage of increasing the pre-
cision of the treatment comparisons by reducing extraneous

variability in the experiment. Cochran (1957) reports that

LA
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the gain in precision resulting from covariance adjustment is
a function of the size of the correlation coefficient  be-
tween Y and X on experimental units that receive the same

e 2 . .
treatment. He states that "... if o; is the experimental
error variance when no covariance is employed, the adjustments

reduce this variance to a value which is effectively about

o (1= (1 + 7=, (1.3)

where f_ is the error number of degrees of freedom." (Cochran,

1957, p. 262).

Assumptions Underlying the Analysis of Covariance

The F-test for the Covariance Analysis, like all para-
metric tests, assumes for its valid application that the data
to which the model is applied behave in a certain way. The
following are the basic assumptions of Covariance Analysis.

1. The experimental units are randomly assigned
to treatment groups.

2. The dependent or criterion scores have a 1inear
regression on the covariate and the regression
coefficient is constant across treatment levels.

3. The covariate is measured without error.

L. The dependent or criterion scores are a linear
combination of independent components - an overall
mean, a treatment effect, a linear regression on

X, and an error term.

A



5. For each treatment/covariate combination, the

error term eij

distributed with a mean of zero and constant

is independently and normally

variance.
Finally, it is usual in applying the test to a set of data
to make the assumption that Tj = 0 for all treatment groups
(the null hypothesis).

If any of these six conditions is not satisfied, the
sampling distribution of the F-ratio may differ from the
central F-distribution. This means that a significant, or
for that matter, a non-significant F-ratio could result from
a failure.to fulfill any one of these assumptions. Conse-
quently, before concluding from a significant or non-
significant F that the sixth assumption is or is not sus-
tained, one must be able to satisfy oneself that failure to
meet the other five assumptions is not seriously affecting

the behaviour of the F-ratio distribution.

Effects of Departures from the Underlying
Assumptions in ANCOVA - A Selected Review

Some of the studies to be cited in this section pertain
directly to the ANCOVA design; others focus primarily on
ANOVA, but their results are in most cases directly general-

izable to the ANCOVA situation. This review consists of a

brief summary of the effects of departures from each of several
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underlying assumptions not directly connected to the subject
of the present study, and of a more elaborate documentation
of the results of studies dealing with those directly related
assumptions - homogeneity of regression and homogene ity

of variance.

The consequences of violating the assumption of .random
ass ignment of experimental units to treatment groups have
been clearly stated by Lord. He points out that "1f the
individuals are not assigned to treatments at random, then
it is not helpful to demonstrate statistically that the
groups after treatment show more difference than would be ex-
pected by random assignmenti! (Lord, 1967, p. 305) . The
ANCOVA test is particularly open to violation of this assump-
tion since in many empirical situations in psychology to
which the test is applied, randomization is not feasible.

Evans and Anastasio (1968) distinguish in this context,
three different uses of ANCOVA{

1. Random assignment of experimental units to groups

and random assignment of treatments to groups;

o. Already-existing groups used as treatment groups,

but treatments randomly assigned to them;

3. Already-existing groups used as treatment groups,

with some intrinsic attribute considered as

“treatment”.

il iiar i et e AT e TS .,.
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They conclude that only usage | leaves interpretation of re-
sults unequivocal, and that interpretation becomes less and
less meaningful as one goes from usage 2 to usage 3.

As to the assumptions related to properties of the con-
concomitant variable, Lord, (1960) examined the situation
where the covariate X contains errors of measurement, and
concluded that under these circumstances, ''... the usual ANCOVA
fails to adjust adequately for initial differences between
groups." (Lord, 1960, p. 307) . He constructed a lasgemsample
significance test in ancattempt to deal withathe:préblem} but
iimdtedo&tsfusefqlneSSginwmaeytempirﬁea%vsituétiomSebyovef
quiring two sets of measures for the covariate.

Cochran (1968) shows how the situation of X measured
with error decreases the precision of the experiment by in-
creas ing the error variance by a factor determined by the
reliability of X. Porter (]§67) developed a covariance de-
sign for the situation where X is measured with error and
incorporates the reliability of X into his model.

Atiqullah (1964) has examined the effect of non-
normality on the ANCOVA F-test. He demonstrates how in the
balanced lay-out the sensitivity of the test to non-
normality depends on the behaviour of the covariate. X.

He concludes that the test is robust to non-normal ity when

the distribution of the concomitant variable is normal.
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Atiqullah measures non-normal ity by kurtosis. He does
not deal with skewness, which as Peckham (1968) remarks, is
also relevant to non-normality in the behavioural sciences.

Scheff? (1959) has examined the effect of serial cor-
relation (violating the assumption of independence of
errors) for large samples in ANOVA. He derives probabilities
corresponding to a 95% confidence interval for various
values of p and concludes that ... the effect of serial
correlation on inferences about means can be ser ious"
(scheffé, 1959, p. 338).

Atiqullah (]964) has considered the situation where the
usual ANCOVA (linear) test is applied to data which contain
a quadratic component of regression. In the case of two
treatments, he finds that the expected value of the adjusted
difference between the two groups is unbiased only if the
covar iates in both groups are members of the same normal
population. Even this does not hold, however, for the case
of more than two groups. He concludes that the presence of
a quadratic component, if large, may have serious effects

on the ANCOVA F-test (Atiqullah, 1964, p. 372).

Homogene ity of Regression

Until quite recently, very little information was avail-
able on the effects of violating the assumption of homogeneity

of regression in ANCOVA. The assumption implies that the re-
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lationship between Y and X is a linear one, and that the re-
gression coefficient of Y on X is constant across treatment
groups.

A preliminary check on the assumpt ion of homogene ity of
regression is given by Winer'(l97]). He provides a sampling
F-distribution based on the assumption that By =By .... = Bre
This is a useful though indirect precaution, but as Evans
and Anastasio point out, '... the decision that assumptions
have been met rests on the acceptance of the null hypothesis.
Thus the user has only a roundabout procedure (using a large
value for @) to guard against the relevant class of error,

Type I1. He cannot even determine, much less control, the

probability of detecting violations which are serious enough

to affect his conclusions' (Evans and Anastasio, 1968, p. 226) .

The two sources of information on the robustness of the
test with respect to this assumption are those by Atiqullah
(1964) and Peckham (1968). The former is a theoretical paper
while the latter consists of a Monte Carlo empirical invest-
igation.

Atiqullah sets up the following two models:

M] Yij= p,'l' TJ+B(XIJ_Y“)+eij (].)"'a)
M2 Yij= U,+ 'T'j"'Bj(Xij—X..)"'eij (].)‘I’b)

and examines the effect of employing the F-test based upon
model M], when in fact model M2 is the appropriate one. He

makes use of the following notation:

[P RI SUOPSMERREIE St
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; W2 = I Wjj

His contribution may be divided into three parts.

I.

In the case of a comparison of two treatments in a two-
group experiment, he fouﬁd that when By # Bos that is
when model M2 is the appropriate one, but model M] is
applied, the expected value of the difference in ad-.
justed treatment means is biased unless either Y} = Yé,
or W]] = W22; He suggests that "... in the absence of

a prior presumption that By and B, are nearly equal,

the model M2 should be used, separate regressions fitted,
and the treatment effects estimated as a function of X.
Atiqullah next considers a comparison of two treatments
in an experiment involving more than two groups. Again,
in the case of model M2 being the appropriate one, but
model M, being applied, he finds that the expected value
of the adjusted differences between pairs of treatments
is biased unless both X, = X, and W} = Wp,-

In the case of experiments involving more than two treat-
ment groups, Atiqullah derived an asymptotic approxima-
tion to the ANCOVA F-distribution using Fisher's Z-
transformation, and then examined the consequences of
applying model M] when model M2 obtains. He concluded

that the application of the standard covariance F-test,

under these circumstances, may yield misleading results

e T s e o e ahn Rt N bt A 48 b it b At mrm et
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unless the X's are normally distributed, 0;2/6;2 y 1,

and the variance of the inhomogeneous regression co-

efficients géj2 is in the order of ig where k denotes

number of treatment groups.

Peckham (1968) conducted a Monte Carlo investigation into
the effects of violating the homogeneity of regression
assumption in ANCOVA. His method cons isted of generating a
sampling distribution of the ANCOVA F-statistic, where each
sample consisted of an ANCOVA experiment embody ing a speci-
fied degree of heterogeneity of regression, all other assump-
tions of the test being satisfied. (To avoid bias due to non-
normal ity in the concomitant variable, the values of X were
chosen to approximate a normal distribution). He then com-
pared the empirical sampling distribution with its correspond-
ing central F-distribution.

The study proceeded in two phases. In phase one, Peckham
combined varying degrees of heterogeneity of regression with
different sample sizes and numbers of treatment groups. In
this phase, he fixed Yj = 0 and M$x.= 1 for all groups. In
phase two, he used only the two-group case and arranged the
data so that the relationships among the Y, X and B were such
that the expectation of the adjusted mean for each group was

equal to the same constant.
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In both phases, Peckham found for the degree of viola-
tion studied that the analysis was not seriously affected by
departures from the assumption, and that as the degree of
heterogeneity increased, the test became more conservative

with respect to Type | error (see Table 1.1).

TABLE 1.1

Effects of Violating the Assumption of Homogeneity of Regres-
sion on the ANCOVA (1-way, fixed-effects) F-test (Abridged
from Peckham, 1968, Phase 1).

Regression Probability of ex-
No. of Ceefificient ceeding
Groups Group Size Values 5% pt. 1%2 pt.
2 10 A L6 .050 .010
2 10 1.9 .029 .004
3 10 A4 .5 .6 .050 .009
3 10 .1 .5 .9 .035 .006
5 10 A .4 5 .6 .6 s0U8 .007
5 10 1.3 .5.7.9 L0471 .010

Homogeneity of Variance

ANCOVA also relies for its validity on the assumption that
the population variance cv'2 of the error term €j for each
treatment-covariate combination is a constant. As Elashoff
(1969) points out, there are two main ways in which this assump-

tion is likely to be violated:
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1. The variance o? is dependent on the covariate X,

but for a given X is constant across treatments,

2. d? is constant within each treatment group, but

differs across treatments.
For the purposes of the present study, attention will be focus-
sed exclusively on the second contingency, since it better
represents the empirical situation to which ANCOVA is usually
applied.

To date, no theoretical or empirical work has been speci-
fically devoted to studying the effects on the ANCOVA F-test
of departures from the assumption of equal variances. However,
a good deal of both kinds of work has been carried out on the
ANOVA design, and since the effect of unequal variances on
the two models is almost identical under certain conditions of
the covariate (see below page26), these ANOVA results will be
reviewed as relevant in the context of the present study.

Since the 1936'5, statisticians have considered the effects
of departures from the assumption of homogeneous variances in
ANOVA (Welch, 1937; Daniels, 1938; Horsnell, 1953). The re-
sults of these studies suggested that the test is robust with
respect to the violation of this assumption. Several tests
for homogeneity of variance have been developed (Bartlett,
1937; Cochran 1941; Hartley, 1956), but these tests suffer
from the same drawbacks as those outlined above in reference
to the fest for homogeneity of regression (see section immed-

iately preceding).

i S0
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The first important Monte Carlo study on the issue was
carried out by Norton (1952). As reported in Lindquist
(1953, p. 78), Norton obtained samples of ANOVA F's by randomly
sampling from 3 card populations, which were normally dis-
tributed with constant mean, but whose variances were 25, 100
and 225 respectively. He obtained the percentage of sample
Fdss that exceeded the theoretical 5% and 1% values (expected
under the null hypothesis), and used the discrepancy between
the expected and obtained percentages as a measure of the
effects of the violation. His results indicated that the
ANOVA F-test is remarkably insensitive to violation of the
assumption of equal variances, when equal numbers are assigned

to treatment groups (see Table 1.2).

TABLE 1.2

Norton Study - Percentage Counts of Mean-Square Ratios in
Empirical Distributions Exceeding Theoretical Percentage
Levels in Normal-Theory F-distribution. (Abridged from
Lindquist 1953, p. 84).

Percentages
No. of Groups Group Size Expected Obtained
3 3 5% - 7.26%
3 10 5% 6.56%
3 3 1% 2.13%
3 10 1% 2.00%
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Box (1954), using theorems on quadratic forms in multi-
normally distributed variables, developed a very close
approximation to the distribution of ANOVA F (one-way), when
the assumption of equal variances is relaxed. Utilizing this
approx imation he calculated the probability of Type 1 error
corresponding to the .65 level of normal theory, for various
levels of violation. His results, in the case of equal groups,
support those of Norton. In the case of unequal groups how-
ever, he showed that the violation of the homogeneity of vari-
ance assumption is drastically distufbing to the distribution

of F.(see Table 1.3). Both the results of Norton and Box

were later empirically supported by those of Boneau (1960).

FZ
TABLE 1.3

Effects of Vielating the Assumption of Homogeneity of Vari-
ance on the ANOVA (1-way) F-test (Abridged from Box 1954, p.299).

Prob. (%) of

No. of exceeding
Groups Variances Group Sizes 5% point

3 1:2:3 5:5: 5 5.78

3 1:2:3 7:5:3 9.57

3 1 5:5:5 5.82

3 1:1:3 7:5:3 9.78

5 1:1:1:1:3 5:5:5:5:5 6.86

5 1:1:1:1:3 9:5:5:5:1 15.56
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ORIGIN OF THE PRESENT STUDY

The preceding review has considered only the effects on
ANCOVA and ANOVA of violating each single underlying assump-
tion in turn. This limitation reflects the paucity of exist-
ing work evaluating the joint effects of violating two or
more of the basic assumptions in ANCOVA. The use of these
results as a guide to data analysis would seem to depend upon
the validity of the assumption that, if in any set of data to
which ANCOVA is being applied more than one assumption is
being violated (as is most 1ikely to be the case), the effects
of the violations are independent. That is, the violation of
one assumption does not ameliorate or exacerbate the effect
of another assumption's being violated.

The present study arose out of indications that such a
state of affairs does not hold for at least two of the as-
sumptions underlying the ANCOVA F-test. Peckham (1968)
found that, as the violation of the homogeneity of regression
assumption increased in severity, fewer and fewer simulated
ANCOVA F-values exceeded the theoretical percentage levels;
that is, the test became more and more conservative with re-
gard to Type | error (see Table 1.1). On the other hand,
generalizing from the results of Norton and Box (see Tables' 122
and 1.3), it seems likely that in ANCOVA, the number of F-
values exceeding nominal probability levels increases as the
degree of violation of the homogeneity of variance assumption

increases.

s g T
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The present study was therefore an attempt to evaluate
the effects on the ANCOVA F-test (1-way, linear, fixed
effects, equal group sizes) of simultaneously violating
the homogeneity of variance and the homogeneity of regres-
sion?assumptions{ to ascertain in general, the -extent
to which these violations in their varying degrees of sev-
erity, tend to cancel each other out, and to determine the
general relationship between cumulat ive percentage counts

and violation levels of the two assumptions.
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CHAPTER 2

DESIGN OF THE STUDY

The procedure was first to choose the combinations of
degrees of violation of the two assumptions to be investi-
gated;.then for each combination, to construct a pseudc-
random sampling distribution of F-ratios, derived from a
seriés of simulated ANCOVA experiments embodying the degrees
of violation of that combination. For each sampling distri-
but fon a count was then taken of the proportion of those F-
values exceeding the critical tabled F-values for the corre-
sponding central F-distribution (df, = k-1, df, = N-k-1) at
the 0.05 and 0.01 levels of significance. An estimate of the
joint effects of each combination of violation-levels of the
two assumptions on the probability of Type 1 error was thus

determined.

MEASURES OF V IOLAT:ION OF THE TWO ASSUMPT IONS

In order to proceed systematically, it was necessary at
the outset to define an index of violation for each of the two
assumptions; that is, to determine a quantitative relationship
among the k parametric values (beta's, variances) such that as
it increased in magnitude, so also did the effect on the prob-

ability of Type 1 error.
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| - For the purpose of deriving a measure of violation for
the homogeneity of regression assumption, the following models
of ANCOVA were compared. (The models are simplified so as to

ensure full rank in matrices that are to be inverted).

L I R bop (209
' _ - — i=1,2....n b
Lot Yij = 1y + BXyyr (B = BXyy ey, - (219)

where L, is the usual model for ANCOVA and Lelincorporates a set
of parameters (aj - B) to accommodate the presence of inhomogeneous
regression coefficients.

Under L2, the design matrix X, the coefficient vector B,

and the error vector E are represented as follows:

10 .. 0Xp4Xy40 - O [e]]]
10 .. 0 XpXp0 -2 O e
10 .. 0X 1X,40 -+ 0 [«r]-l e
-— -— PP — — U — —-— pu— Te -
01 .. 0X; 0%, «« 0 .. &5
01 .. 0 XppOXpy ++ O L enp
X = e ee e e en v e e B = B _ E= ...
By—B
01 ..0X 0K 5 . O B en
e e e e e e - - 62-5 ——
- T Tt 7T |.BK_EJ €1k
00 ..1X,00 .. X}, ok
00 .l X 00 oo Xp
i)o s 0 e o S0 3 e o238 Ko e
i Xy nKk
00 ..1X:0u0 .. Xk l ,
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where

Y = Xp+E and E(Y) = XB (2.2)

Now, let ModelLf be(incorrectl» applied and the following
quantities calcu]ated!
1. error sum: of squares
2. sum of squares due to treatments
Let S denote the matrix containing the first (k + 1) columns
of X
c denote the vector containing the first (k + 1) elements
of B
T denote the wector containing the (k + 1)th. column of X

d denote the seatar containing the (k + 1)th. element of B

Y - S€ be a vector of residuals.
Y - s [(s'sa"‘ S'Y]
[I - s(s'S)"s'] Y
[I - s(s's)"ss] (2.3)

Let U

Let Q

Q is a symmetric idempotent matrix since

o - 1

Q® - [l

S(s'S) 'S (2.4a)
s(s's)"s'][l - s(s-s)“s'] (2.kb)
25(s1s) Vst + 5(515) s s (srs) s
s(s's)” s
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Thus the error sum of squares is:

u'v (av)' Qv y'qy (2.5)

A
Let W = Y - Td be a vector of residuals

[I -1r'my! T'] Y

where R = | - T(T'T);]Tl is a symmetric idempotent matrix
(using 2.%a, and 2.Ub). ‘ (2.6)
Thus treatment sum of squares= Y'RY - Y'QY (2.7a)
= Y'(R = Q)Y (2.7b)
where (R - Q) is also a symmetric idempotent matrix, (2.8)

(for proof see Appendix A).

Further [(R - Q)Y]|QY = Y'(R - Q)qQY = 0 (2.9)
(foroproof see Appendix A).

Thus the two vectors are orthogonal and hence any two quantities
based on them respectively will be independently distributed.

A necessary and sufficient condition that Y'AY is distri-
buted as a chi-square:is that A is idempotent; the degrees of
freedom of such a chi-square are equal to the rank of A, and
its non-centrality parameter, ), has the value of the quadratic
form Y'AY when the variables have been substituted by their

expected values. (Rao, 1965, p. 150).
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Thus, using (2.k4a; 2.4b; 2.2), Y'QY the error sum of
squares, is distributed as a non-central chi-square with de-
grees of freedom equal to the rank of Q, and non-centrality
parameter = g'X'QXB. So, too, Y'(R-Q)Y the treatment sum of
squares, is also distributed as a chi-square with degrees of
freedom equal to the rank of (R-Q), and non-centrality para-
meter = 8'X'(R-Q)XB, (using 2.8; 2.2). Furthermore, the two
chi-square distributions are independent (using 2.9).

The ratio of these two independent chi-square distri-
butions I%é?&%li yields a doubly non-central F-distribution

whose probability density function is given byf

X BV, F R, W, 78

' © @ . S hX - 1 -
dH(y) = eI T % (%x,)r§%x2) 2Vy#r-l (-] )zV+r+s |
g r=0 s=0 rt " gt M ]+u

N (2.10)

where u = Y (REQYTYXAQY
M= B'X'(R-Q) X8
A= B'X'QXB
A=A+ Ag
V= Rank of (R-Q)
V,= Rank of Q
Vo=V, o+ Vg

(Kendall and Stuart, 1961, Vol. II, pp. 252)

e vttt e,
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From (2.10) it can be seen that the shape of the F-distribution
is uniquely determined by the values of the two non-centrality
parameters. Since the particular values of the covariate Xij
as well as those of the Bj are involved in the determinat ion
of the values of A and Aps @N invariant measure of the wiola=
tion of the homogeneity of regression assumpt ion may be ex-
pressed in terms of the Bj alone only if the values of Xij are
known. For .the purposes of convenience in this investigation
therefore, X, was set to zero and & X?j was given a constant

J
value n - 1 for all j, thereby reducing the value of

A = 0 and Ap =P - 1 [
A) .

T 5? -K BQ] (for proofs see Appendix
J
Thus under the present constraints on the covariate Xij’
2
dé., the variance of the inhomogeneous Bj becomes an invar-
J
iant measure of the violation of the homogeneity of regres-—

sion assumption.

Il - The measure of violation of the homogeneity of variiance
assumpt ion used in this study is the squared coefficient of
variation of the k population variancesf

2 2., 2
CG? = 66?/“6? (2.11)

where the numerator is the variance of the k variances and the

denominator is the squared mean of the k variances.
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Although this measure has not been directly derived for
the ANCOVA situation, Box (1954%) found in the case of ANOVA,
with equal group sdizes, under the wonditiom of unequal var-
jances, the ratio of mean squares does not follow the distri-

bution F(k-1, N-k) but is distributed approximately as:

Fofene’s (e (2.12)
where ¢' = (1 + %{% Q?)-]; e = (l+62)_] and @@ is the squared
coefficient of variation of the k variances. Thus when the
variances are unequal ¢' and ¢ are less than unity and the
nsignificance of effects is somewhat overestimated' (p. 306);
the larger the value of 02, the larger the overestimation.

Box's approximate measure of violation of the homogeneity
of variance assumption in ANOVA extends itself to the ANCOVA
situation provided that the behaviour of the covariate does
not exaceebdtee the situation. Potthoff (1965) as reported by
Elashoff (]§6§) suggests that the effect of inequality of var-
jances in the Y scores is minimized in the ANCOVA situation
when di. and n. are constant across groups. For the purposes

- J

of the present study, therefore these restrictions on the Xij

obtained.
Thus the measures of violation of the homogeneity of re-
gression and the homogeneity of variance assumptions used in

2
this study are 65_

and cgg respectively.
J J
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DETERM INAT ION OF INPUT VALUES OF 8. AND .o
CORRESPOND ING TO VALUES OF &2 _andd cZo:
P 7

For any given value of 62., the variance of the regres-
sion slopes, or of cgg, the sqdared coefficient of variation
of the variances, a correspondingly unique set of Bj or 6?
does not exist. Consequently the following non-arbitrary methods
of determining values of Bj and 6? corresponding to given walues
of 62. and cgg respectively were der ived and applied uniformly
throuéhout thé present investigation.

The set of Kk 3j's corresponding to a given value of dgj
were selected so that they were centred on unity and were
separated from one another by equal intervals.

S ince variances are proportional to a chi-square distribu-
tion, an attempt was made to select k variances corresponding
to k points on the abscissa of such a distribution so that the
areas bounded by their vertical projections were equal. To
do this, k points on the abscissa of the normal distribution
were chosen so that the areas bounded by their vertical projec-
tions were equal and centred on the mean. The corresponding
X? values were derived by the following approximation due to

Wilson and Hilferty (1931):

s /3 - - 1/2
(X=Ny) =1 - 2/9%v + Z(2/9%) (2.13)

where the value of ¥ was chosen to yield a desired value of

cge between the k values. The values were then transformed so
J
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as to have a mean of unity. The pair-wise sets of Bj and d?

were then combined in the same ascending order of magnitude.
(The actual values of Bj and 6? derived in the above manner
corresponding to given values of 62. and cgg for different
values of k are recorded in Appendii B) . :

THE RANDOM NUMBER GENERATOR

Necessary to the success of any Monte Carlo study is an
adequate procedure for generating random numbers described by
specific probability density functions. Computer simulation
of stochastic processes usually depends on the internal gen-
eration of 'pseudo-random' sequences of numbers. The most
common procedure is to generate sequences of numbers which are
randomly 'sampled' from a uniform distribution; samples from
other distributions are then produced by some transformation
of these uniform variates.

The McGill Random Number Package 'Super-Dupert developed
by Marsaglia, Ananthanarayanan and Paul (1972) was used to
generate random normal variates in this study. 'Super-Duper!’
capitalizes on the idiosyncrasies of the |.B.M./360 hardware
on which the present simulations were run. The Package con-
tains a fast uniform random number generator which combines a
multiplicative congruential generator and a 'shift-register!

generatori both generators were chosen so as to have the greatest
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possible period and to minimize any regularity patterns. The
random number generator, which is very fast relative to other
available generators (15,000 normal variates per secord) uses
the uniform generator to generate the normal variate 95% of the
time from a rectangular distribution which is close to the nor-
mal curve; for the remaining 5% of the time, the variate is
generated so as to compensate for the discrepancy. The result
is a sequence of variates whose distribution is described by
the normal curve. (A listing of ISuper-Duper' appears in

Appendix C).

CONTROL OF CONCOMITANT VAR IABLES

In order to evaluate the effects on the size of probability
of Type 1 error of any given violation combination, each
sampling distribution of simulated ANCOVA experiments was con-
structed so that any deviation from theoretical percentage
levels could be attributed as exclusively as possible to the
violation of the two assumptions. This implied that:

1. in each simulated ANCOVA experiment, all assumptions of
the test except those under study were upheld; and

2. a large enough series of ANCOVA experiments was simulated;
that is, the sampling distribution was sufficiently large

to keep the standard error of the probability of Type 1

error acceptably low.
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uphglg!ng the Remaining Assumpt ions of the Test

Throughout the entire study the following specifications

for each ANCOVA experiment obtained:

2)

the k error term populations, from which the k treatment
groups were randomly drawn, were independently and nor-
mally distributed with zero mean.

the fixed (for a given sampling distribution) values of
the covariate X. were transformed such that they were
approximately normally distributed with X; = 0 and

J
S . =1 for all treatment groups.

X i

Tjjwas set to zero for all treatment groups (the null
hypothesis situation obtained).

individual values on the dependent variable were deter-
mined by 'predicting' from the X values and then adding

a random error term (the additivity assumption).

3000 ANCOVA F-values constituted each sampling distribution.

This ensured that under normal Central-fF theory conditiors,

the standard error of the probability of Type 1 error = 0.004

for o =

.05 and = 0.002 for ¢ = .Ol.
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THE MONTE CARLO SIMULATION PROCESS

In addition to the above specifications, values were also

given to the following parameters in the construction of each

sampl ing distribution:

a)
b)

c)

d)

kK, the number of treatment groups per ANCOVA experiment.
n, the number of experimental units per treatment group.
the k population variances as determined by the value of
cgg and

thé K population regression slopes as determined by the

value of 62 .
P
With these specifications given as input, each sampling

distribution is constructed by the following steps{

1.

The simulation program causes k groups of random normal
variates each of size n to be generated. These values

are transformed in such a way as to conform to the speci-
fications of the covariate (see above). The values are
then used as the covariate values for each ANCOVA ex-
periment in the sampling distribution.

Next, k groups of random normal variates each of size n
are generated. The elements of the k groups are then
transformed so that the k groups constitute k random
samples from k error populations with respective variances

as specified.
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The values for the dependent variable are determined by

Y.. = Xij . Bj’+ € The data are now ready for ANCOVA

i ij°
co;putation; and thi calculation of F is carried out
using a specially written ANCOVA program.

Steps 2 and 3 are repeated 3660'times, yielding an empir-
ical sampling distribution of ANCOVA F-values for a
particular combination of degrees of violation of the

two assumptions. (A listing of the simulation program

appears in Appendix C).
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CHAPTER 3

THE EXPERIMENTS

THE SCOPE OF THE STUDY

Cons iderat ions of time and money Kept the number of
combinations of degrees of violations of the two assumptions
invest igated necessarily low, and since the primary purpose
of the study was to establish a functional relationship
between combinations of degrees of violation on the one hand,
their effects on the probability of Type 1 error (a) on
the other, it seemed desirable to sample from over a fairly
wide range of violation of each assumption. A preliminary
study was carried out to ascertain roughly the range of
effects on o level of varying degrees of violation ef each
separate assumption. The results of this pilot suggested
in the case of the homogeneity of regression assumption, a
max imum level of dg = 0.36 which yielded empirical percentages
of the order of 2% and 0.02% corresponding to 5% and 1% nom-
inal levels respectively; and in the case of the homogeneity’
of variance assumption a maximum level of cig = 1.86 which
yielded empirical percentages of the order o% 10% and 5% cor-

responding to the nominal 5% and 1% levels respectively.
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PARAMETRIC SPECIFICAT IONS

The effects of simultaneously violating the two assump-
tions under study were examined using the following levels
of vio]ation?

62_ 0.00, 0.04, 0.08, 0.12, 0.16, 0.20, 0.2%, 0.28, 0.32, 0.36
J

2o 0.00, 0.18, 0.36, 0.5%, 0.72, 0.90, 1.08, 1.26, 1.44, 1.62,
J1.80.

The investigation proceeded by constructing six blocks
of sampling distributions according to the procedure described
in Chapter 2; each of the first four blocks éontained 110
sampling distributions each of which embodied one of the 110
combinations of dg.and cgg above. Each of the last two blocks
contained 48 sampling distributions each of which embodied one
of the 48 combinations of the first eight levels of Gg. and
the first six levels of cgg. (The reason for the reduced
number of sampling distribations in the last two blocks was
due to inherent limitations on the procedure for deriving
values of 6? corresponding to higher levels of cgg in the
kK = 2 case). ’

The size of the simulated ANCOVA experiment in each block

was as follows (k is the number of treatment groups, and n is

group size)
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BLOCK 1 k=5, n=15
BLOCK 2 k=5, n= 5
BLOCK 3 k=3, n=15
BLOCK 4 k=3, n= 5
BLOCK 5 k=2, n=15
BLOCK 6 k=2, n= 5

A violation-free sampling distribution (dg. = 0.60, cig = 0.60)
was included in each block as a check on the accuracy éf

the simulation procedure. For each sampling distribution in
each block, the number of ANCOVA F-values (referred to as -
Fcounts) exceeding the F-values corresponding to nominal 5%

and 1% levels of significance respectively, were recorded.

An attempt was then made to establish a predictive relationship
between Fcounts and levels of 62_ and cgg and to examine any
changes in this relationship which occuried with changes in

a) the ANCOVA design size

by the o level of which Fcounts were taken,

RESULTS

Tables 3.2 and 3.3 contain the matrices of Fcounts (ex-
pressed in proportions) of the six blocks of sampling distri-
butions corresponding to the 0.65 and 6.6] levels of signifi-
ance respectively. Table 3.1 below shows the 95% confidence
regions for P = 6.5 and P = 0.1; they were calculated us ing the

following angular transformation to normal ity for binomial variates:
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A = % [sin ] (—N§17‘+ sin”] (%%]—) ], (3.1)

where X/N = P and A is asymptotically normally distributed

with variance within +6% of 821/(N+}). (Keeping, 1962, p. 72).

TABLE 3.1

95% Confidence Limits for Estimating P = 0.05 and
P = 0.01 for Sample Size N = 3000

Lower Limit Upper Limit P
0.043 0.058 0.05
0.005 0.014 0.01

The first entry of each matrix in Tables 3.2 and 3.3 is an
Fcount oh a violation-free sampling distribution and as can
be seen from Table 3.1 each one falls inside the 95% confid-
ence intervals for P = 0.05 and P = O.b] as the case may be,
thereby validating the accuracy of the simulation process;
these intervals are also useful in interpreting the Sexfpusness
of violation effects.

Table 3.4 contains the results of multiple regression
analysis applied to each block with Fcounts as the dependent
variable and levels of violation of the two assumptions as
predictorss. A subsequent examination of plotted residuals
suggested the inclusion of the product of the two measures
of violation.as a third predictor. The regression equations

for the three-predictor case are displayed in Table 3.5; with
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the exceptions of @3 for Block | and for Block 5, in Table
3.2, all parameter estimates proveddto be significantly
different from zero at least at the 6.65 level of signif-
icance (For details of statistical tests see Appendix D).

As can be seen from inspection of Table 3.5, the values
of the regression weights in the six equations corresponding
to ¢ = 0.05 differ substantially from those of the six
equations corresponding to o = 0.01. In order to ascertain
whether the regression equations depended on the size of Kk
(number of treatment groups), tests for differences between
the three sets of regression equations, (collapsed across
n = 5 and n = 15) at each level of o were carried out, and
yielded significant results in each case. Further, pair-
wise tests between regression equations with the same value
of k and the same ¢ level, but differing in the size of n
were carried out, and yielded significant differences in
all twelve cases. (For details of statistical tests, see

Appendix D).

PR PR SR S PRI S
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TABLE 3.2(a) . Matrix of Fcounts for Block 1. k =5, n =15, a = .05

2 |
og.J 0.00 | 0.18 | 0.36 | 0.5% | 0.72 |0.90 | 1.08 |1.26 | 1.44 | 1.62 | 1.80
J .

0.00 f.051 f .066 | w068 |wo72 | .o73 |.085:| .08% |.088 098 | .04 | .095
0.04 045 | .052 .059 .068 | .067 .677 .675 .07T7 |.082 .693 .691
6.08 .638 .646 .050 .654 .062 | .669 _.677 .068 .675 .682 .095
0.12 .ozé .032 8§ .045 | .055 | .055 §.064 .069 .06k .676 .076 .079
0.16 .033 .636 .63 5 .652 .053 .648 .052 .668 .666 .»683 .676
0.20 .626 .627 .039 .02 B .048 | .051 .656 .669 .665 .664 .676
0.2t | .0e2 | .27 | .033 |.033 | .03 §.ou9 | .00 |.051 |.051 E.o6h | .067
0.28 | .016 | .020 | .027 039 | .030 |.037 F.ous |.052 |.ou8 E.o60 | .061
0.32 o1k | .03 | 026 | .032 .632 033 | .ok2 .651 .05% 1 .055 | .ou8
0.36 .613 .016 2022 .029 .631 .034. .638 .638 .641 .648 .653




~ =
TABLE 3.2(b): Matrix of Fcounts for Block 2. k =5, n = !5, g = .65
ce2 |
°§-J 0.00 | 0.18 | 0.36 | 0.54 | 0.72 | 0.90 | 1.08 |1.26 | 1.4 | 1.62 | 1.80
J
0.00 .647 .061 .675 .673 1100 .691 , .165 .oéé ' .167 13 .llé
0.04 .652 055 | .057 § .066 | .082 .078 | .081 .6§1 .694 .Qéé .bé@
0.08 .637 o045 | .055 .652 062 | .065 | .05 |.082 .oéo .o§7 .097
012 | .o34 | .os2§ .os2 | .os4 § .060 §.055 §.o63 [.o79 |.081 |.089 | .089
0.16 .026 | .032 % .046 | .051 .055 .056 & .069 .666 .075 | .075 .686
0.20 | .027 | .027 | .038 § .06 | .o5% |.055 | .057 B.059 |.061 | .o7% | .068
0.2%4 .020 .628 034 | .ol .05 .656 .6u§' .650 .664 .065 .668
0.28 .026 | .025 | .030 .039 .035 .648 .649 .056 .656 .664 .665
0.32 .01§ .623 '.631 .627 .03§ .040" § .054 .656 .053 | .049 § .063
0.36 | .o18 | .o18 | ook | .co7 | .o3% |.039 | .om E.omk |.obk |o.50 | .050

_6£_



TABLE 3.2(c){ Matrix of Fcounts for Block 3. ¥ =3, n =15, ¢ = .05

22 .
AN 0.00 | 0.18 | 0.36 | 0.54 | 0.72 |0.90 | 1.08 [1.26 |1.44 | 1.62 | 1.80
B.
J .

0.00 §.056 | .057 § .061 |.066 | .00 |.076 |.o72 |.081 |.08% |.077 | .09

0.04 .645 .647 o7 .055 .059 .060 .063 .078 .081 .078 .089

0.08 |.oko § .ob4 | .053 |.o9 §.060 |.065 |.067 |.067 |.o76 |.083 |.o88

0.1z |.037 | .os1 § .o43 |.omt |.053 f.050 §.052 ook |.063 .069 | .065

0.16 .030 | .03t § .ou6 .039 & .048 |.o47 |.052 [|.051 |.058 |.0o56 E.o61

0.20 024 .029 .030 LOoh .02 oul .049 .051 .055 .067 054

0.24 .625 .021 .036 .634 .032 .0U6 | Mol N4 oL 2! .056 .060 .056

0.28 |.023 | .025 025 |.030 |.037 |.037 §.ou2 |.ou8 |.050 -051 | .050

0.32 .019 | .020 | 026 |.031 |.033 |.032 F.ou5 |.ous |.ou8 1.045 | .05

1 0.36 .019 .021 .031 .028 .031 .037 '.036 .036 .0ko .047 .046

_Of{_



TABLE 3.2(d): Matrix of Fcounts for Block 4. k=3, n=5,q = .05

2
c
%
d

2 0.00 | 0.18 | 0.36 | 0.5% | 0.72 | 0.90 | 1.08 |1.26 |1.4% | 1.62 | 1.80
ﬁ.
J

0.00 3.053 §.061 | .066 |.o70 | .073 |.073 .|.090 {.095 [.105 |.110 | .105

0.04 | .039 § .ok | .o57 |.o57 §.ot0 |.067 |.08% |.080 |.oon |.e86 |.110

0.08 | .oho § .on6 | .o55 ¥.063 | .061 |.o90 |.080 |.084 |.089 |[.097 | .097

0.12 .03% .045 .0l49 .09 .052 .061 .073 .072 .075 .093 .086

0.16 .03% .638 .639 .644 | .649 .054 .665 .067 074 .076 .086

0.20 .033 .032 .648 .048 .641 045 .059 .065 .066 .076 0TI

o.2% |.031 | .027 | .00 |.033 §.050 |.051 |.o47 |.050 |.058 §.064 | .067

0.28 .028 .032 .037 | .on0 | .ok2 &.045 | .o%4 |.055 &.059 §.058 | .056

: . — ; & — ssassaed !
0.32 026 | .027 | 029 |.os0 § .ou4 E.035 §.048 |.050 |.056 |.05% § .063

0.36 | .00 | .oo% | .025 |.038 | .03 |.038 §.ou3 §.037 §.051 |.055 | .osk
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TABLE 3.2(e) . Matrix of Fcounts for Block 5. K=2,n=15, qa .65

22 -

cg.J 0.00 | 0.18 | 0.36 | 0.54 | 0.72 | 0.90 | 1.08 |1.26 A4 ) 1.62 | 1.80
j

0.00 §.048 | .o5% | .052 |.053 | .051 §.068 .

0.0 | .om f.050 | .6 |.ou6 §.059 §.09

0.08 E.ou5 £.om2 | .ou2 f.ou6 |.052 |.052

0.12 .033' _.043 .0%0 .643 .0l5 .647 |

0.16 |.038 | .om1 | .035 §.043 §.036 |.oko

0.20 .636 .637 ol .635' .036 .63§

0.2% | .025 | .o22 | .031 028 039 |.037

0.28 030 | .025 030 | .03% 032 |.027

0.32

0.36
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TABLE 3.2(f) . Matrix of Fcounts for Block 6. k

=
°§-J 0.00 | 0.18 | 0.36 | 0.5% | 0.72 | 0.90 | 1.08 |1.26 A4 1,62 | 1.80
J
0.00 §.048 | .o55 § .061 |.063 | .o73 |.om1 .
0.0%4 .056 | .043 | .057 .059 .060 .676
0.08 | .036 § .08 | .ou7 |.058 | .056 §.06%
0.12 | .037 § .ouk | .ons |.ou8 | .ok9 |.058
0.16 | .033 | .038 £ .ous |.ou8 | .ou7 |.053
0.?0 .037 029 .038 .040 .ol3 .051
0.24 .032 .632 .033 .037 .ol .Oué
0.28 029 | .026 | .033 |.o3% | .036 |.om1
0.32 |
'0.36

- S.h_
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TABLE 3.3(a):. Matrix of Fcounts for Block 1. K 5, n 15, a .6]
2 | B
°§-J 0.00 | 0.18 | 0.36 | 0.5 | 0.72 |0.90 | 1.08 |1.26 | 1.4k | 1.62 | 1.80
J \
0.00 .611 .617 .016 | .02% .625 .028 .| .032 .o3§ .0k2 .056 .043
0.0k 006 | .01 .01é 020 | .025 |.025 | .028 .032 |.034 Lol .037
0.08 .666 .611 .617 .01§ .626 .622 .028 ].030 .634 .033 | .Ok2
0.12 .603 .ooé .010 .020 .020 .021 .oeé .025 - {.028 .031 .031
| 0.16 .665 .008 .016 .618 .6@6 .613 .015 }.023 |.026 .631 .036
| 0.20 .064 .00k .ooé .069 Ok .616 .017 [.025 j.o024% |.o27 | .023
0.24 .062- .00k .067 .616 .010 |{.014 & .015 .01§ .019 024 -.027
0.28 | .001 .§03 oot §.010 | .006 |.012 |.o1 o015 |.017 019 | .02k
0.32 | .o02 | .003 | “003 §.007 | .01 |.008 |.013 fo16 |.ot9 J.oe2 |.017
0.36 601 | .001 | .ook §.006 .009 on .o o1t [.oik 016 | .020

<>
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TABLE 3.3(b) . Matrix of Fcolints for é]ock 2. kK=5,n=5, ¢q

cgg , . . .
o2 3 ]0.00 | 0.18 | 0.36 | 0.5% | 0.72 |0.90 | 1.08 |1.26 |1.44 | 1.62 | 1.80
B
0.00 .007 }012 .023 | .023 | .032 .030 1 .035 |.ok0 |.ou8 | .ou8 | .059
o.o6 §.011| .ot § .016 | .020 | .031 | .04 | .031 |.036 |.038 | .om2 | .ou3
0.08 007 | .0133 .017 § .o12 § 020 | .02t ..629 .032 |.039 | .039 | .046
0.12 .664 .669. .013 | 011 017 .026 .018 .632 .03% | .034 .641
0.16 004 § .006 | .o10 | .om4 016 | .018 | .026 |.020 .627 ‘058 .633
0.20 .067 .006 | .010 .610 .015 E.O14 § .022 .026 024 | .028 .626
0.24 .003 .006 | .008 | .o10 | .o12 F.016 .616' .617 .024% | .025 | .023
0.28 .664 ,663 .605 .o@o .016 .614 .616 ..619 .618 .61§ .623
0.32 | .00z | .oou § 005 | .008 | .008 |.o12 §.017 E.otr §.01 018 | .oz2
0.36 | .002 | .003§ .005 | .005 | .o |.on |.o13 |.om¢ §.015 |.o15 | .0z0




.01

TABLE 3.3(c) :. Matrix of Fcounts for .B]ock 3. k=3, n-=15, g =
cgg . , ,
2N |0.00 | 0.18| 0.36 |0.5% | 0.72 |0.90 | 1.08 |1.26 |1.4% | 1.62 | 1.80
_J
0.00 .611 ,611 .015 .616 .621 .626 ] .023 .636 .634 .62§ .634
0.04 .010 ,616 011 .013 .617 018 |.022 |.026 .634 .628 .033
0.08 .068 .068 .613 014 .621 .622 ,626 .625 .031 .026 .633
0.12 .067 011 .613 010 § .016 .617 .615 017 |.025 .02} .623
0.16 .064 .604 .067 ;667 .613 .015 | .015 .616 .04 .622 .622
0.20 .665 .00k .665 .013 _.669 .615 .013 §.015 |.017 |[.023 017
0.24 § 005 ,.663 .oo4 §.009 | .007 |.013 .614, 018 |.018 |.018 _‘.blé
0.28 003 | .066 .005 | .007 | .009 |.008 |.om 013 £.016 |.015 §.012
0.32 .002 .063 006 .065 .008 |.008" |.012 |.012 .015 §.013 §f.017
0.36 .663 .062 .667 .067 .008 .0104 012 ;610 .012 | .014 | .01k
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" TABLE 3.3(d) . Matrix of Fcounts for 'Block b, x =3, n
ng .. : . .
oé.J 5.00 | 0.18 | 0.36 | 0.54 | 0.72 | 0.90 | 1.08 |1.26 1.44 | 1.62 | 1.80
J ,
0.00 .obé .015 | .016 020 .020 .625 , .631 .637 .63§ o046 | .ou3
0.04 007 | .o12 | .01k 014 .619 .blé 027 .636 .637 .634 .649
6.08 oo6 .blo .010 .615 | .018 .625 .025 .627 .034 .636 .bln
0.12 .007 007 o1 | .omk 012 017 022 026 034 | .038 034
0.16 .00k .607 .008 .616 01k .617 021 .02 |.025 .627 .632
0.20 006 606 .61i .01} 012 .616 .0&9 .021 o2kt | .029 | .022
0.24 .665 .665 .ooé .obé .616 .013 .612' .018 .61§ .024 .626
0.28 .005 .064 o010 | .ot | .008 013 | .02 015 |.018 020 | .018
0.32 .665 .663 '.666 .611 .609 .066 .612 .012 .619 .615 . f.blé
0.36 | .00k | .00k e 009 | .07 |.on | .03 |.009 .ot 017 | .020

_Lﬁ_



TABLE 3.3(e):‘ Matrix of Fcounts for Block 5. kK =2, n =15, qa
22 |

og_J 0.00 | 0.18 | 0.36 | 0.54 | 0.72 | 0.90 | 1.08 |1.26 | 1.4 | 1.62 | 1.80
J :

0.00 .66§ .008 | .011 | .01} .614 015 .

o.on §.008 | .014 | .009 | .008 § .015 §.011

0.08 .66§ .009 | .007 .009 010 | .013

0.12 .008 .666 .010 |[.012 .068 0N

0.16 8 .005 | .008 | .007 |.007 | .008 |.on1

0.20 | .ook § .07 | .007 |.007 | .005 | .007

0.2k .003 .062 .006 .006 .00k .008

0.28 .605 .‘065 .067 .005 .065_ .003

0.32

0.36

-— 81-{...
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TABLE 3.3(f): Matrix of Fcounts for Block 6. k =2, n =5, ¢ = .0l
2 | | -
cg.J 0.00 [ 0.18 | 0.36 | 0.5% | 0.72 | 0.90 | 1.08 [1.26 |1.44 | 1.62 | 1.80
J \
0.00 008 | .013| .o12 |.013 .020 | .022
0.0%4 011 .obé_- .011 §.021
0.08 § .006| .010| .on |.owk | .o13 §.017
| 0.12 .00k .ooé .010 .613 012 §.015
0.16 .607 .066 009 009 .6]1 .013
0.20 .066 .005 .667 .607 .609 .6llt
0.24 .666 .005 .ooé .608 .01 .008
0.28 006 § .00% B .006 .005 .008 .ooé
0.32

0.36

_6h_



TABLE 3.%: Multiple Regression Weights for 6 Blocks of Sampling Distrigutions.

Note: 60 = constant; é] = estimated regression weight for Cy2s
estimated regression weight for 62] J
A A A
WS . kx oa B B B R

1 .05 5 15 161.93 T4 .84 -383.87 0.976
2 .05 5 5 174.65 81.89 -421.07 0.965
3 .05 3 15 152.42 58.56 -318.50 0.964
Y .05 3 5 165.20 77.79 -355.58 0.963
5 .05 2. 15 147.09 27.86 -266.37 0.91%
6 .05 2 5 153.65 62.56 -302.33 0.959
] .01 5 15 44 .68 43.37 -167.48 0.960
2 .01 5 5 46.67 47.56 -178.44 0.946
3 .01 3 15 38.02 30.59 -123.40 0.93%
i .01 3 5 39.69 k2,55 -145.22 0.937
5 .01 2 15 30.33 10.60 - 77.18 0.831
6 .01 2 5 531.30 25.79 - 88.00 0.877

_og_



TABLE 3.5:

BLOCK

AU W N -

oWV =W NN -

Multiple Regression Weights for 6 Blocks of Sampling Distributions

A A 2
Note: B, = constant; B]—estlmated regressnon weight for Cg2s 52
estimated regression weight for 62

; B
B; 3
we ight for dg_- ig

= estimated regresdion

J J
A

o K n_ Bo By P2 B3 R

.05 5 15 156.14 81.28 -351.68 - 35.80 0.976
.05 5 5 155.74 102.91 -316.00 -116.80 0.972
.05 3 15 145.16 66.62 -278.17 - 44.80 0.965
.05 3 5 141.33 104.31 -223.00 -147.30 0.975
.05 2 15 156.14 38.06 -233.59 - T2.80 0.917
.05 2 5 155.74 77 .20 -255.29 -104.50 0.963
.01 5 15 31.53 57.99 - 94,1y - 81.20 0.974
.01 5 5 25.79 70.54 - 63.51 -127.70 0.975
.01 3 15 27.16 42 .66 - 63.08 - 67.00 0.951
01" 3 5 19.43 65.06 - 32.66 -125.10 0.973
.01 2 15 26.00 20.23 - 46.23 -~B8880 0.856
.01 2 5 25.22 39.30 - 44 .59 - 96.50 0.902

_..l;g_.
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CHAPTER 4

D_ISCUSS ION

INTERPRETAT ION_OF RESULTS

The results of this study belong to that body of
findings which attempts to apprise the scientist of the
consequences of applying statistical tests to his data
when the requirements of the underlying assumptions of
the test are not fulfilled. For the most part, previous
findings have related to situations where only one assump-
tion is being violated with all other demands of the test
satisfied. The present study arose out of the suggestion
implicd¢ in several separate findings that the s imultaneous
presence of violation of the homogeneity of regression and
homogeneity of variance assumptions in ANCOVA would tend to
cancel each other out in their effects.

The overall findings contained in Chapter 3 show that
this tendency is in fact the case; for all 6 blocks of
sampling distributions the effect on probability of Type 1
&rror of a given degree of violation of one assumption is
strongly dependent on the degree of violation present in the
other. Furthermore, the two violations are seen to have a

neutralizing effect on one another. Inspection of Tables
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3.2 and 3.3 reveals that many combinations of dg and cgg have
sampling distributions with Fcounts falling within the 95%
confidence interval for P = 0.05 or P = 0.01 as the case may
be (see Fcounts within bold lines). It is only those com-
binations involving a low level of violation of one assump-
tion in combination with a high level of violation of the
other that yield Fcounts extending beyond the confidence
limits. Finally, for any given violation level of one assump-
tion, the most serious departure from nominal probability
levels occurs when the other assumption is fully satisfied
(see Column 1 and Row 1 of each block).

From inspection of the multiple regression data of
Tables 3.4 and 3.5, it is suggested that the inclusion of
the product of the two violation measures as a third predictor
is important not only because most of its regression esti-
mates proved statistically significant but also because the
resultant regression equations yield values of the constant
term go‘which more readily approximate the expected numbers
of Fcounts‘when oﬁj = 0.0 and Cﬁ? = 0.0 for both 4 levels
(150 and 30 respectively) than those emerging from the two-
predictor equations.

The differences between the 6 regression equations cor-

responding to q = .05 and those corresponding to ¢ = 0.1

in Table 3.5 appear to be accounted for by changes in the
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relative weightings of 62 and cgg. it is clear from inspec-

tion that the role of c§2i the measure of violation of the
homogeneity of variance éssumption, is more important in the
equat ions corresponding to ¢ = .01 than in those corresponding
to ¢ = .05. This is also evident in the different locations
of the areas circumscribed by bold lines in Tables 3.2 and

3.3 respectively. The confounding presence of the interaction
term 53 notwithstanding, it also appears that within each q
level, significant differences between

1. regress ion equations corresponding to different values

of k (collapsed over n), and

2. pairs of regression equations corresponding to differ-
ent values of n for a given value of Kk,

are also attributable to changes in the relative weightings

of dgj and Cﬁ?. While it is difficult to interpret a trend

in the former case, it is suggested that the latter differ-

ences are due to the increasing importance of C§2 when n is

relatively small (compare n = 5 with n = 15). J
Referring again to Table 3.5, it can be seen from the

column of multiple correlation coefficients (R), that the

three predictors account for a very large proportion of the

dependent variable (Fcounts); these figures testify to the

high degree of linearity in the parameters.
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QUAL IF ICAT IONS TO RESULTS

Any Monte Carlo researcher who attempts to examine the
effects of violating some specified assumption or set of
assumptions underlying a statistical test is invariably faced
with a methodological paradox; in order to evaluate the spec-
ific effects of violating the particular assumption or assump-
tions of his study, he must ensure that all other assumpt ions
of the test are upheld. This precaution, however, reduces
the generalizability of his results to situations where some
of the other assumptions of the test are also not upheld.
Consequently he can only hope that the general trend of his
findings obtaincd in these latter situations. 0ften it is
a hope that is not realized as the present study has attempted
to show for one specific situation.

Apart from these general considerations, perhaps the
greatest impediments to generalizability in this investiga-
tion are the restrictions on the behaviour of the covariate,

Xij' These were:

i. X Xij and hence Yj were set to a constant for all j.

2. DX X%j was set equal to a constant for all j.

These:two constraints on the covariate permitted a derivation
of an Jovariant measure of violation of the homogeneity of re-
regression assumption, while the second constraint permitted

the extension of Box's approximate measure of violation of the
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homogeneity of variance assumption (derived for ANOVA) to

the present ANCOVA context. Another qualification to the
general aplicability of the present results is due to the
arbitrary if systematic way in which,

1. sets of Bj and 6? were derived to correspond to given
levels of GBJ and cgﬁ respectively, and

2. these two sets, so derived, were matched in the simulated
ANCOVA experiments. More generally, even though it was possible
to derive invariant (or nearly so) measures of violation of the
two assumptions separately, there is no guarantee that the

combination of these two measures constitutes an invariant

measure of their joint violation.

APPL ICAT ION OF RESULTS TO PRACT ICAL S ITUAT IONS

Despite the qualifications outlined in the preceding
section, the general results of the present study strongly
points to the neutralizing effect on the F-test in ANCOVA of
the simultaneous violation of the homogeneity of regression
and homogeneity of variance assumptions. It is very unlikely
that in any practical ANCOVA situation either of these two assump-
tions will be fully met, and consequently the ANCOVA F-test
appears from the present findings to be even more robust in
practice, than results from previous studies taking these viola-
tions one at a time have indicated. It is difficult to esti-

mate the upper limits on the violations of these two assumptions
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as they occur in practice, but they are practically certain
to fall within the range of violations encompassed by the
present study, and unless the departure from one assumption
is very big and is accompanied by only a slight departure
from the other, it is safe to conclude that the ANCOVA F-
test is only inconsequently affected by the presence of
joint violations of the two assumptions. Finally, the find-
ings of the present study suggest the limited usefulness of
any test of homogeneity of regression slopes carried out

on ANCOVA data without due regard being given to possible

differences between treatment group variances.

SR
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APPENDIX A

1. Proof that (R-Q) is symmetric and idempotent?

R-Q is symmetric, since

()" = R' - Q
=R -Q using (2.4%) and (2.6)

Let L be a matrix with 1 as its last element and

zero's everywhere else, such that SL =T.

[l - SL(L'S'SL)—]L'S'][I - S(S'S)—]S']

-1 -1
| - s(s's) s'-sL(L's'sL) L's'+sL(L's'sL)

L's's(s's)

Then RQ
-1

-1
| -s(s's) S

= Q (A1)

(R-Q) is also idempotent, for
RZ - RQ - QR + Q°
R-Q-Q+Q, since R2=R, Q2=Q
and QR=0'R'=(RQ) '=Q'=Q

(R-0)2

=R—Q

Sl
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APPEND IX A (cont'd)

Proof that (R -Q)'Q = O:
(R -Q)'e = (R-0)Q
= (RQ - QQ

- Q-0 “using (A1)’

= 0
Proof that under the constraints placed on the covariate

Xij as stated in Chapter 2,

Ay = O and A, =R - ] [ ? B? - k B2 ]:

The constraints on Xij are{

Xy = O for all j (A3)
2 - _ .

EX5; =N 1 for all j (Ala)

sz X3y = (n- Dk (Alb)

(| e

Let the design matrix X be partitioned into the following

submatrices:

| 1
X = [AITIB],
! !
where A is the nk x k submatrix whose columns correspond
to treatment assignment, T is the already defined nk x 1

vector of covariate values and B is the nk x k submatrix

whose columns correspond to (Bj -B), J = V,..0ske



APPEND IX A (cont'd)

then A'T = T'A = © (us ing A3) (A5)
A'B=B'A = 0 (us ing A3) (A6)
v o= BX'(R-0Q) X8
ol [ ! =1 1
= g'x' [l ST(T'T) T' = 1+ s(s's) s ]xa
11 1 -1 1 1 -1 .
= g'x' |s(s'sy s' - T(T'T) T'| X8
Now
[A'A A'T]
S = [A : T] and S'S = N :—--
TA :T T
(A'A O]
—— j-—-1, (using A5)
o IT'
1 Wl o
(SIS)_ _ Sﬁ_ﬁ)___ : ______ using a theorem on the
0 :(T'T)—T " inverse of partitioned
matrices (Graybill,
1969, p. 165).
1!
-1 A'AYy 1O A'
s(s's) s' = [A 'T] (ad) | e -—
| 0 (') T
' -1 ! -1 '
= AAA) AN+ T(TT) T (AT)
Thus -1 -1 -1
X] - lel [A(AIA) Al + T(TlT) Tl - T(TIT) Tl] XB

B'x' [A(A'A)_jA'] XB



APPENDIX A (cont'd)

A'X = | A'A E A'T E A'B]

- |aa ) o | o] (using A5 and A6)
1

A'A is k x k. Under the null hypothesis, Ty = Toe
the leading k elements of B are zero.

Hence A'Xp = 0 (A8)
Hence ), = 0 (A9)

-1
v = B'x! [I - 5(s's) s'] XB
' . ' -1, 1y! ' _]I
= pg'X'Xgp = B'X [A(AA) A]XB-BX [T(TT) T]XB,
(using A7)

2 2 ‘ tyt i _]l . ‘

= pTZX5; -0 -BXT(TT) TXB, (using A9)
j i

1

(T'T) = £ X8, and (T'T) = /T x5,
iJ

-1

Thus 8'X'T(T'T) T'xe = 1/3 2 X5; [B'x'TT'xs]
i j

B'x'T = T'xp LB, % XS,

Thus

2
12 sx2. -/ x3 (zp =XB))
¥P5 T i 40Py R

Il

3

|
—
™M
™

N
~r

|
oo ) oo }

I

3

!
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e
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APPEND IX B

2
Values of Bj and 6} corresponding to

K=5

2 .

o] B B

i) = -2

0.00 1.000000 1.000000 1
0.04 0.717157 0.858579 1
0.08 0.600000 0.800000 1
0.12 0.510102 0.755051 1
0.16 0.434315 0.717157 1
0.20 0.367544 0.683772 1
0.24 0.307180 0.653390 1
0.28 0.251669 0.62583% 1
0.32 0.200000 0.600000 1
0.36 0.151472 0.575736 1
cge% 6? 62

—_— —_ -=

0.00 1.000000 1 .000000 1
0.18 0.690374 0.838605 0
0.36 0.558518 0.752084 0
0.54 0.457049 0.677277 0
0.72 0.372529 0.608515 0
0.90 . 0.30285] 0.546432 0
1.08 0.244267 0.489463 0
1.26 0.188417 0.429794 0
1.44 0.143651 0.376756 0
1.62 0.104365 0.324585 0
1.80 0.071038 0.273825 0

2
levels of 6

P3

.000000
.000000 -
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

2
%

.000000
.962725
.923455
882294
.839373
.769713
. 754368
. 706622
.661098
.613175
.563104

—r ot ——t ———t — vl —— ot

et et et et el el el il sl

and cgg}
J-

By

.000000
AU1421
.200000
.2449l9g
.282843
.316228
346410
374166
.4006000
JLoho6k

2
Oy

.000000
.09852}4
.119061
.121999
.122283
.113687
.T00861:
.08234
061314
.036069
.00657%

—t ol — ol ol ot —r — ol —

et vl ot ——d sl emacd —— ot o—

Ps

.000000
.282843
.400000
.489898
.565685
.632456
.622820
7

8331

.800000
.848528

2
S

.000000

.298665

.420338

.512725

.589612

.65%676
70

745

.763235
.209?]5
.853195
.894650
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APPENDIX B -

cont'd

eYoXoloXoNoNoNoRo Lyl

oYoXeloXoNooNe ook

.000000
.755051
.653590
575736
.510102
A52278
.100000
.351926
.307180
.265153

2
il

.000000
. 725208
.594683
.193581
400668
.315367
.236368
. 163549
.98270

.041036
.005997

it et vl el el ol e el el ol

oYeoXeoloYoXoReo oo Xo ko)

.£00000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

2
Op

.000000
.961686
.918516
.873828
.823106
. 766848
s
.63

.551836
.4ho3l5
.325273

et el el el il el ol ] il et

——t il el md vt el et ok el ol et

P

.000000
244948
346410
424263
.489898
.547;23
.59999
248073
.692820
. 734846

2
%

.000000
244632
342640
411666
470361
564739
.603846
.638847
672246
.701224
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oYeoJoYoRoNoJoRoNo]
N) -
o O
(eYoYoNoYoXoNoReoNo ko)

!

000000

O —JUTW — O
oON =000

oNoYoNoloRk 4

B

.000000
.800000
LTIT157
.653590
.600000
.552786
.510102
470850
434315
.400000

——t ! ot ——t —t o —— —— w— ot

—t el el cmmf el oot

Bo

.000000
.200000
.282843
34610
.100000
La7o1lh
. 489898
.529150
.565685
.600000

2

S,

.000000
.195270
.263527
.318251
359177
.396420
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APPENDIX C

LISTING OF SIMULATION PROGRAM
AND SUPER-DUPER
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VENVCV S W

Cu.
Cra '
REAL %8 SUMDsSUMXD,SMIJUX2sSMIJY2sSMIJUXYaTIXIaTIYIoBIGTX,BIGTY
1SMTUX2s SMTJY 2, SMTUXY2BIGTX2, BIGTY2,RIGTXY,ADJTOTAWITHINSF
DIMENSION TUTAL(10000),X{100),VARX(5),Y(100)a
LSTANDE(5),BETAXY(5)sFVALUE(3000)
DATA VARX(1),VARX(2),VARX(3)s VARX (&), VARX(5)/5%1,0 /
1 READ (5,100s,END=200) NOsMsKsINTEGLs INTEG2sCRIT5,CRITI,MUCH,NEED
100 FORMAT (1Xs13,4Xs1244Xs1106%X0213,5X0F6,2:4XsF6,2204Xs1424Xa12)
READ (5,40) (STANDE(I),I=1:K)
READ (5,40) (BETAXY(L)alk=1sK)
40 FORMAT (5F9.6)
gl'
L ]
Ce THE FOLLOWING BLOCK = PART 1 - USES SUPERDUPER TO GENERATE
C, RANDOM NORMAL VARIATES, AND THEN ARRANGES THE X!5 AND Y!'S
Ces ACCORDING TO PARAMETRIC SPECIFICATIONS,

Cll

Cll
SN=N
SK=K
NK=N*K
SNK=NK

CALL START (INTEGLl,INTEG2)
DO 18 I=1.nK
X(1)=RNQR(0O)

13 CONTINUE

LL=1
INDEX=1
L=1
NN=N

5 SUMD=0.0
SUMXD=0,0

6 SUMD=SUMD+X (L)
SUMXD=SUMXD+X(L)Y*X(L)
L=L+1
IF(L,LE,NNY GO TO 6
AMEAN=SUMD/SN
VAR AN= ( SUMXD% SN ( SUMD¥SUMD) ) / (SN*(SN=1,0))
FACTORSVARX(INDEX) /SQRT(VARIAN)

7 X(LL)=(XtLL)=AMEAN)*FACTOR
Li=LL+]

IF(LL,LE NN)Y GO TD 7
INDEX=INDEX+1 .
NNeNN+N

IF(NN LENK)Y GO TO 5
LOT=MUCH#*NK

MDRE=MUCH

LEAP=]

po 20 I1=1,NEED

DO 19 J=1lp LOT
TOTAL(J)=KRNUR(O)

19 CONTINUE
JUMP=0

24 INDEX=l
NN=N
L=1

C.."".QQ!...;.IQ'.. SIMULATIDN PRDGRAM Qno;ocl'vt!oonﬁncon;volaiei

PR
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B

59
6Q
61
62
63
64
65
66
67
68
69
70
71

73
74
75
76
77
78

80
81
82
83
84
85
86
87
8e
89
20
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

106

107
108
109
110
111
112
113
114
115
116

10

11
Coo
Cuys
Coo
Con
Con

13

14

20
Ceo
Cos

JEl+JUMp
Ifti;TDTALCJ)*STANDE(INDEX)+BETAXY(INDEX)*X(L)
IF (L.LE.NN) 6O TO 10

NN=NN+N

INDEX= INDEX+1
IF(NN,LE,NK) GO Tg
CONTINUE | to

THE FOLLOWING BLOCK - PART 2 w COMPUTES ANCOVA IN DOUBLE PRECISIDN

SMIJX2=0,0
SMIJY2=0,0
SMIJXY=0,0
L=]
SMIUX2=SMIJX24+X (L )%X(L)
SMIJXY=SMIUXY+X(L)#Y(L)
SMIJY2=SMIJY24+Y (L)%Y (L)
L=l+]
IF(LsLE,NK) GO TO 13
SMTYX2=0,0
SMTJY2=0,0
SMTJXY:O;O
BIGTX=0,0
BIGTY:0.0
L=1
NN:N
TIYI=0,0
TJXI=O'O
TIXI=TJIXT4X(L 3
TUYI=TIYI+Y(L)
L=lL+l
IF(LeLELNN) GO TO 14
SMTUXY=SMTIXY+((TUXI*TJYI)/SN)
SMTJY2=SHTJY2+((TJYI*TJY!)/SN)
BIGTX=BIGTX+TJXI
BIGTY:BIGTY+TJYI
NN=NN+N
IF(NN.LE,NK) GO TO 15
BIGTXZ:(BIGTX*BIGTX,/SNK
BIGTXY=(BIGTX%*BIGTY)/SHK
EéGng=(BIGTY*BIGTv>/5MK
JTOT=(SMIJY2~BIGTY2)~ S N _
1 (SHIXz~BIGTC2) ) )= {L(SHIXY=BIGTXY)* (SHIJXYBIGTXY) )/
THIN=(SMIJY2-SMTJY2)—‘ S Y , )
L_(SMIyXamSHTJX2)) ((SHIJXY-SMTIXY)*(SMIJXY=SHTIXY))/
Fz((ADJTOT=WITHIN) /(SK~ WITH N
FVALUE(LEAP) = F K=140) 3/ (4ITHIN/ (SNK=SK=1,0))
LEAP=LEAP+]
JUMP = JUHP +NK
xF(LEAPoLE.MDRE) G0 TO 24
MORE=MORE+MUCH
CONTINUE




117
118
119

121
122
123
124
125
126
127
128
129
130
131
132
133

134

Ces THE FOLLOWING BLOCK -
Cee WITH NOMINAL F-VALUES AT

Can
Cus

17

16
102
200

INDEX5=0
INDEX1=0
DD 16 K=1,3000
FVAL=FVALUE(K)
IF(FVAL,LT.CRIT5) GO TO 16
INDEX5=INDEX5+)
IF(FVAL,LT.CRIT1) GO 7O 16
INDEX]=INDEX1+1
CONTINUE
WRITE (6,102) NOsLEAP,INDEX5, INDEX]
FORMAT (////s2Xp1404Xs1924X0104s4Xs14)
GO TO 1
sTOP
END

PART 3 ~ COMPARES THE 3000 F-VALUES
THE 0,05 AND 0,01 LEVELS RESPECTIVELY,

MR
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g

¥

VO~V WUN -~

RA

ANROM S

E

E

E

E

E

E

E

E

E

REGB E

REGC E

REGD E
%

% CALL
)
U
START §
L
L
L
B
0
ST1 5
L
L
B
N
o
ST2 S
RETRNO L,
B

- Us

U

MCGILL UNIVERSITY SCHDUL GF COMPUTER SCIENCE
RANDOM NUMBER GENERATOR PACKAGE - 'SUPER-DUPER!

ST T ey WMETIWRE NPT W CE W O E LT Ty X X T

UNTFORM,NORMAL AND EXPONENTIAL RANDOM NUMBER GENERATOR
Ge MARSAGLIA; Ko ANANTHANARAYANAN, N,PAUL,

NDDM NUMBER GENERATOR PACKAGE-REGISTER USAGE
R 0 = STORES RESULT OF IUNIsIVNI
R 1 = (REGB) CALCULATION OF RESULTS
R 2 = (REGC) CALCULATION OF RESULTS
R 3 - {REGD) CALCULATION QOF RESULTS
R13 =~ ADDRESS OF SAVE AREA DOF CALLING PROGRAM,OR OF THIS
PROGRAMStS SAVE AREA ON CALL 70O RNORTH OR REXPTH
R14 = CONTAINS RETURN ADDRESS,
R15 = USED AS BASE REGISTER,
R 0 = RESULT OF UNI,VNI,REXP,RNOR,
TART 0 DEFINE ENTRY PDINTS
NTRY START CALL START(Il,I2)
NTRY UNI UsUNI(0)
NTRY VNI V=VNI(0)
NTRY RNOR X=RNOR(0)
NTRY REXP Y=REXP(0Q}
NTRY TUNI K=IUNI(0)
NTRY VNI J=IYNI(0)
XTRN RNORTH FORTRAN FUNCTIONS REQUIRED-RNORTH(I}
XTRN REXPTH REXPTH(I)
QU 1
QU 2 REGISTER EQUATES
QU 3
START{11ls12) 11,12 ARE USED FOR STARTING THE TWO
SEQUENCES 'MCGN!' AND !ISROGN?,
SING START,15
™ REGRyREGD,24(13) SAVE REGISTERS 1,2s3
M REGCLREGD,Q (1) LOAD ADDRESSES OF 11,12 INTD REGC,REGD
REGCsO(REGC) LOAD VALUE OF 11 INTO REGC
TR REGCsREGC
C 8sST1 IF ZERD,STIRE AT I'MCGN!',ELSE '
REGCs X} ENSURE 0ODD,TO KEEP PERIOD OF 'MCGN' LARGE
T REGCsMCGN STCRE AT 'MCOGN!
REGDs O (REGD) LOAD 12 INTO REGD
TR REGD,REGD
¢ 825T2 IF ZERD, STORE AT 'SRGN',ELSE
REGDs XTFF TAKE RESIDUE MODULO 2048
REGDs X1 AND ENSURE NON~ZERD

T REGDs SRGN AND STORE AT 'SRGN',

M REGR)REGD,24(13) RESTORE REGISTERS 1,203

CR 15,14 AND RETURN

UNI(0) RESULT IS NORMALIZED FLOATING POINT YVALUE
UNIFORMLY DISTRIBUTED ON (0.0,1,0),

SING UNIs L5



. &9

60
61
62
63
64
65
66
67

69
70
71
T2
73
T4

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

106

106

107
108
109
110
11l
ile
113
114
115
116

REGRsREGD,24(13) SAVE REGISTERS 132,3

REGBsREGDs24(13)

REGBsREGDs24(13)

REGBIREGD224(13)

UNT STM

RDIGTL L REGHB» SRGN
LR REGC,REGB
SRL REGCs 15
XR REGB,REGC
LR REGC,)REGB
SLL REGCs17
XR REGBsREGC
ST REGBs SRGN
L REGD»MCGN
M REGC,MULT
ST REGND,MCGN
XR REGDsREGB
SRI. REGD, 8
AL REGD, CHAR
ST REGD, FWD
LE DeFWD
AE el

RETRN1 LM
BCR 15016

x

* V=VN1(0)

]
USING VYNI»15

VNI STM

RDIGTZ2 L REGB, SRGN
LR REGC,REGB
SR, REGCs 15
XR REGBSREGC
LR REGC,REGB
SLL REGC,17
XR REGB,REGC
ST REGB» SRGN
L REGDsMCGN
M REGC,» MULT
ST REGDsMCGN
XR REGD,REGB
SRA REGD,7
N REGDs SIGN
Al REGD,CHAR
ST REGD, FWD
LE 02 FWD
AE Oel

RETRNZ LM
BCR 15414

%

%* X=RNOR(0Q)

%

% METHDD

% @ -

%

%

% 2, IF HIH2 (LT,

3

% 3' IF H1H2 lLT'

sle

ko 4y TF HIH2H3 LT,

68, SET
(NTBL (H1HZ2) + H3H4H5H6HTHB) /160 AND QUIT,
DO:

.LOAD SRGN INTD REGR

AND INTO REGC

SHIFT REGC RIGHT 15 BITS

AND XQR INTO REGS

COPY REGB INTO REGC

SHIFT IT LEFT 17 BITS»

AND X(OR INTO REGB

SAVE THE NEW 'SRGN!

LOAD MCGN INTO REGD

AND MULTIPLY BY 6%906%

STORE RESULT,MODULO 2%%32, AS NEW 'MCGN!
XOR NEW tMCGN' AND 1SRGN' IN REGD

SHIFT REGD RIGHT 8 BITS FOR F,P, FRACTION
ADD CHARACTERISTIC X'40* INTO FIRST BYTE
STORE AT FuWDs LOAD INTO FPR O,

AND ADD NORMALIZED TO ZERD

LEAVING RESULT 'UNIT IN FPR O,

RETURN

RESULT IS NORMALIZED FLOATING POINT VALUE
UNIFORM ON (=1,0s1,0)

SAVE REGISTERS 142,53

LOAD SRGN INTD REGB

AND INTO REGC

SHIFT REGC RIGHT 15 BITS

AND XOR INTO REGSB

COPY REGB INTO REGC

SHIFT IT LEFT 17 BITS»

AND X0OR INTO REGB

SAVE THE NEW 'SRGN!

LOAD MCGN INTO REGD

AND MULTIPLY BY 69069

STORE RESULTsMODULD 2%%32s AS NEW 'MCGN!
XOR NEW 'MCGN!' AND !SRGN!' IN REGD
SHIFT RIGHT 7 BITS PRESERVING SIGN BIT
ZERO OUT LAST 7 BITS OF FIRST BYTE
ADD CHARACTERISTIC X'40!' TO FIRST BYTE
STORE AT FuDes LOAD INYO FPR O

AND ADD NDRMALIZED TO ZERD

LEAVING RESULT 'VNI! IN FPR 0O,

RETURN
RESULT 1S STANDARD NORMAL VARIATE.,

1o GENERATE HlH2H3H4H5H6HT7HB,8 RANDIM HEXADECIMAL DIGITS.

tRNOR! TO
IRNOR! TO

~NTBL(H1H2=68) =, H3H4H5HOHTH8) /162 AND QUIT,
EZF; SET 'RNORI TO
(NTBL(HLH2H3~CEB8)+H4AH5HO6HTHB) /16, AND QUIT,



=3

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

154

155
156
157
158
159
160
161
162
163
164
165
166
167
l68
169

. 170

171
172
173
174

S5e

- b

E

RNDR
RDIGT3

NRCT

ND1

ND2

ND3

IF HlH2H3 LTy F5Ees SET 'RNORY T3
(=NTBL (H1H2H3~E17) = H4H5HOHTHB) /16, AND QUIT.
ELSEs» GENERATE !RNOR' FROM THE NORMAL TOOTH-TAIL SUBPROGRAM,

USING RNDRs15

STM RECBsREGDs24(13) SAVE REGISTERS 1:2,3
L REGB, SRGN LUOAD SRGN INTO REGB
LR REGC+REGB AND INTO REGC
SRL REGC, 15 SHIFT REGC RIGHT 15 BITS
XR REGBsREGC AND XOR INTQ REGB
LR REGC,REGH COPY REGB INTD REGC
SLL REGC» 17 SHIFT 1T LEFT 17 BITS»
XR REGBs»REGC AND XOR INTO REGB
ST REGBs SRGN SAVE THE NEW !SRGN!
L REGDsMCGN LOAD MCGN INTO REGD
M REGCIMULT AND MULTIPLY BY 69069
ST REGDsMCGN STORE RESULT,MODULD 2#%%32, AS NEW $MCGN!
XR REGDpREGB XOR NEW 'MCGMN' AND ISRGNt IN REGD
SLR REGCsREGC ZERO 0OUT REGC
cL REGDy X638 IF REGD GE 68000000,BRANCH TD 'ND2!
BC 11sND2
SLDL REGC»8 SHIFT FIRST 2 HEX DIGITS INTO REGE
IC REGCsNTBL(REGC) FETCH CORRESPONDING BYTE FROM NTBL
STC REGCoPSTWRD+1 STORE AS 2ND BYTE 0OF PSTWRD
SRL, REGD, 8 TAKE REMAINING 24 BITS OF REGD
AL REGDs PCHAR FORM FLOATING PQINT FRACTINN,CHAR Xt3F!
ST REGDs FRAC AND STORE AT 'FRAC!
LE s PSTWRD ADD 'PSTWRD! AND 'FRAC!
AE 0+ FRAC LEAVING RESULT IN FPR O
LM REGBsREGDA24(13)
BCR 15s14 RETURN
cL REGDs X00 1F REGD GE DO0COO0O00O,BRANCH TO IND3
BC 11,ND3
SLDL REGC.8 SHIFT FIRST 2 HEX DIGITS INTO REGC
SL REGCa» X68R AND SUBTRACT 00000068
IC REGCANTRL(REGC) FETCH CORRESPONDING BYTE FROM NTBL
STC REGCoNSTWRD+) STORE AS 2ND BYTE OF NSTWRD
SRL REGD, B : TAKE REMAINING 24 BITS OF REGD
AL REGDs PCHAR FORM FLDATING POINT FRACTION,CHAR X!3F!
ST REGDs FRAC AND STORE AT 'FRAC!
LE 0sNSTUWRD SUBTRACT !FRAC' FROM INSTWRD!
SE ns FRAC LEAVING RESULT IN FPR O
LM REGBsREGDS24(13)
BCR 15014 RETURN
CL REGD» XE2F IF REGD GE E2F0Q000,BRANCH TO 'ND4!
BC 11sND4
SLDL REGC»12 SHIFT FIRST 3 HEX DIGITS INTO REGC
St REGCs XCES AND SUBTRACT 00000CES
o REGCsMTRL(REGC) FETCH CORRESPOMDING BYTE FROM NTBL
STC REGC,»PSTWRD+} STORE AS 2ND BYTE OF PSTWRD
SRL REGDs8 TAKE REMAINING 20 BITS OF REGD
AL REGDs PCHAR FORM FLOATING PODINT FRACTION,CHAR X13F!
ST REGDs FRAC AND STORE AT 'FRAC!
LE Qs PSTURD ADD 'PSTWRD! AND 'FRA(C!
AE 0+ FRAC LEAVING RESULT IN FPR O
LK REGBSREGD,24(13)
BCR 15,14 RETURN

imiertd

AR adpr b i D




175
176
177
178
- 179

180
181
182

183

164
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

ND4

NTTHTL

RETRN3

2
3

G

3 3 3 X I 2% 3% 36 % 3 4 1 o2

REXP
RDIGT4

ERCT

EDL

CL REGD» XF5E

BC I1ANTTHTL
SLDL REGCs1p2

SL REGCsXELIT

IC REGCANTBL(REGE)
STC REGCANSTWRD+)
SRL REGDs 8

AL REGDs PCHAR

ST REGDSFRAC

LE DsNSTWRD

SE 0+ FRAC

LM REGBsREGDs24(13)
BCR 15414

ST REGDs ARG

STM 14,0,12(13)

LR 3,13

LA 13, SVAREA

ST 13,8(0,3)

ST 324(0,13)

LA 14 ARGLST

L 15+ ADNTH

BALR 14,15

LR 1353

MV1 12(13), XIFF1
LM 14,REGDs12(13)
BCR 15,14
Y=REXP(0)
METHOD

IF REGD GE XF5EQ00CQOsBRANCH TO INTTHTL!

SHIFT FIRST 3 HEX DIGITS INTO REGC

AND SURTRACY 00000E17

FETCH CORRESPONDING BYTE FROM NTBL
STORE AS 2ND BYTE OF NSTWRD

TAKE REMAINING 20 BITS OF REGD

FORM FLOATING POINT FRACTION,CHAR X!3F!
AND STORE AT 'FRAC!

SUBTRACT 'FRAC! FROM INSTWRD!

LEAVING RESULT IN FPR 0

RETURN

STORE REGD AS ARGUMENT FOR RNQRTH ROUTINE
SAVE ALL REGISTERS FROM 14 TO 3,

COPY PREVIOUS SAVE AREA ADDRESS TO GPR3
LOAD ADDRESS OF SVAREA INTOD GPR13

STORE ADDRESS OF SVAREA IN SAVE AREA
STORE ADDRESS OF PREVIDUS SAVE AREA
PLACE ADDRESS OF ARGUMENT LIST IN GPR i

BRANCH TD SUBPROGRAM

RESTORE ADDRESS OF SAVE AREA IN GPR13
SET RETURN INDICATCR

RESTORE ALL REGISTERS

RETURN

RESULT IS STANDARD EXPONENTIAL VARIATE,

IF HIH2 LT, D5, SET IREXP! Tn

(ETBL(HLH2) +,H3H4H5H6HTHB) /165 AND QUIT.,

IF HIH2H3 LT, F17, SET 'REXP! Tn

USING
STH

L

LR
SRL
XR

LR
SLL
XR

ST

REXPys 15

(ETBL(HIH2H3~CFF)+ H4H5H6HTHB) /162 AND QUIT
ELSEsGENERATE tREXP!I

FROM THE EXPUNENTIAL TODTH-TAIL SUSPROGRAM,

REGB,REGD,24(13) SAVE REGISTERS 12,3

REGB, SRGN
REGC,REGB
REGCs 15
REGB,REGEC
REGCsREGB
REGCs17
REGB,REGC
REGBs SRGN
REGDAMCGN
REGCsMULT
REGDsMCGN
REGDJREGE
REGCoREGC
REGDs XD5
11,ED02
REGC» 8

REGC,ETBL(REGC)

LOAD SRGN INTOD REGB

AND INTO REGC

SHIFT REGC RIGHT 15 BITS

AND XOR INTO REGB

COPY REGB INTD REGC

SHIFT IT LEFT 17 BITS,

AND XOR INTQO RFEGSB

SAVE THE NEW !SRGN!

LOAD MCGN INTD REGD

AND MULTIPLY BY 69069

STORE RESULT,MODULD 2%%32, AS NEW 'MCGN!
XOR NEW $tMCGN' AND 1SRGN' IN REGD
ZEROQ 0UT REGC

IF REGD GE D5000000,BRANCH TO 'ED2!

SHIFT FIRST 2 HEX DIGITS INTD REGC
FETCH CORRESPONDING BYTE FROM ETBL
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233 STC  REGCIPSTWRO+1 STORE AS 2ND BYTE OF PSTWRD

234 SR,  REGD.8 TAKE REMAINING 24 BITS OF REGD .

235 AL REGDs PCHAR FORM FLOATING POINT FRACTINNs CHAR X'3F!
236 . ST REGD, FRAL AND STORE AT 'FRAC!

237 LE 02 PSTWRD ADD 'PSTWRD! AND !'FRAC!

238 AE 01 FRAC LEAVING RESULT IN FPR O

239 LM REGBJREGDs24(13) :

240 BCR 15514 : RETURN

241 ED2 cL REGDsXF17 1F REGD GE F1700000,BRANCH TO VETTHTL!
242 BC 11sETTHTL

243 SLDL REGC#12 SHIFT FIRST 3 HEX DIGITS INTO REGC

244 St REGC 2 XCFF AND SUBTRACT OOOOOCFF

245 IC REGCsETBL(REGC) FETCH CORRESPONDING BYTE FROM ETBL

246 STC  REGCsPSTWRD+1 STORE AS 2ND BYTE OF PSTWRD

247 SRL  REGD:8 TAKE REMAINING 20 BITS OF REGD

248 AL REGDsPCHAR FORM FLOATING PODINT FRACTIONsCHAR X'3F!
249 ST REGDFRAC AND STORE AT 'FRAC!

250 LE Qs PSTHRD ADD 'PSTWRD! AND 'FRAC!

251 AE 0s FRAC LEAVING RESULT IN FPR O

252 LM REGBJREGDs24(13)

253 BCR 15014 RETURN

254 ETTHTL ST REGDs ARG STORE REGD AS ARGUMENT FOR REXPTH ROUTINE
255 STM  1420012(13) SAVE ALL REGISTERS FROM 14 TO 3.

256 LR 3,13 cOPY PREVIOUS SAVE AREA ADDRESS TO GPR 3
257 LA 135 SVAREA LOAD ADDRESS OF SVAREA INTO GPRL3

258 ST 13,8(0,3) STORE ADDRESS 0OF SVAREA IN SAVE AREA
259 ST 324(0,13) STORE ADDRESS OF PREVIOUS SAVE AREA’
260 LA 15 ARGLST PLACE ADDRESS DF ARGUMENT LIST IN GPR 1
261 L 15, ADETH

262 BALR - 14,15 BRANCH TD SUBPROGRAM

263 LR 13,3 RESTORE ADDRESS OF SAVE AREA IN GPR13
264 MV 1 12(13),X1FF? SET RETURN INDICATOR

265 RETRN& LM 14,REGD,12(13)  RESTORE ALL REGISTERS

266 BCR  15.14 RETURN

267 %

268 * K=TUNI(0) UNIFORMLY DISTRIBUTED POSITIVE INTEGER,
269 %

270 USING IUNI»L3

271 ITUNI  STM REGBsREGD,24(13) SAVE REGISTERS 14253

272 RDIGTS L REGB, SRGN LOAD SRGN INTO REGB

273 LR REGCsREGB AND INTO REGC

274 SRL  REGC,15 SHIFT REGC RIGHT 15 BITS

275 XR REGBsREGC AND XOR INTO REGB

276 LR REGC,REGB ¢OPY REGB INTO REGC

277 SLL  REGCs17 SHIFT IT LEFT 17 BITS,

278 XR REGB,REGC AND XOR INTD REGB

279 ST REGBs SRGN SAVE THE NEW 'SRGN!

280 L REGDsMCGN LOAD MCGN INTO REGD

281 M REGCsMULT AND MULTIPLY BY 69069

282 ST REGDsMCGN STORE RESULTSMODULO 2%%*32y AS NEW. tMCGN!
283 XR REGDsREGB XOR NEW 'MCGN! AND 'SRGN!' IN REGD

284 SRl  REGDs1 SHIFT LEFT 1 BITsLEAVING SIGN BIT ZERD
285 LR 02 REGD AND MOVE RESULT 'IUNI! TO GPR O,

286 RETRNS LM REGB#REGD,24(13) :

287 BCR 15216 RETURN

288 %

289 % J=IYNI(0) UNIFORMLY DISTRIBUTED INTEGER .

290 *



291
292
263
254
295
276
297
298
299
200
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
216
317
318
319
320
321
322
323
324
325
326
327
328
329
330
33

332
333
334
3235
336
337
338
339
340
341
342
343
344
345
346
3477
348

3 3% 3¢ 3 W 3 N

-
W
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z
—

RDIGTG

RETRNE

e
MULT
SRGN
XTFF
MCGN
X1
FWD
A
CHAR
SIGN
XD5
XF17
XCFF
X68
Xpo
X68R
XE2F
XCEB
XF5E
XELT
PSTWRD
NSTWRD
PCHAR
FRAC
ARG
ADNTH
ADETH
ARGLST

SVAREA
NTBL

THE BASIC RANDOM NUMBER IS A COMBINATIONM
OF TWO SEPARATELY GENERATED NUMBERS,
1SRGNI & IMCGN' AS FOLLOWS,

TEMP=XOR(5RGN, SRGN SHIFTED RIGHT 15 BITS)
SRGN=XOR(TEMP, TEMP SHIFTED LEFT 17 BITS)

SAVE REGISTERS 12243

LOAD SRGN INTO REGSB

AND INTO REGC

SHIFT REGC RIGHT 15 BITS

AND X0k INTO REGB

COPY REGB INTO REGC

SHIFT IT LEFT 17 BITS,

AND XOR INTO REGB

SAVE THE NEW 1SRGN!

LOAD MCGN INTO REGD

AND MULTIPLY BY 69069

STORE RESULT»MODULO 2#%32, AS NEW tMCGN!
XOR NEW 'MCGN' AND 1SRGN! IN REGD
LEAVE RESULT 'IYNI! IN GPRO

RETURN

TABLE USED FOR NORMAL LOOK-UP
FIRST PART HAS 104 ELEMENTS

METHOD
Q-ﬁ—c—v
1.
2,
3, MCGN=MCON#69069,MODULDO 2%%32
4, RESULT=XOR(MCGNsSRGN)
USING IVNI»15
STM REGBIREGD24(13)
L REGBsSRGN
LR REGCAREGH
SRL REGCy 15
xR REGB,REGC
LR REGC,REGB
SLL REGCy 17
XR REGBsREGC
ST REGBs SRGN
L REGDsMCGN
M REGCs MULT
ST REGD)MCGN
xR REGDsREGB
LR 0sREGD
LM REGBsREGDA24(13)
BCR 15214
CONSTANTS SECTICN
] d F169069!
0ne Fro10731
DC XUOQ000TFF U
0¢C F1123451
DC X'00000001!
D¢ FIO!
DC Et0,0!
DC X140000000!
ne XYBOFFFFFF!
De X'Ds5000000!
ne XUF1700000°
ne X100000CFF!
DC X168C00000¢
. D¢ XtDo000000!
D¢ X100000068!
DC XVE2FQ0000!
D¢ X100000CES!
DeC XV1F5EQ0000!
pC X100000ELT!
»]d X141AA0000"
DC X1C1AAQDOOQ!
DC X13FC00000!
DC Flot
DS F
De A{RNDRTH)
DC A(REXPTH)
DC X18o¢
DC AL3(ARG)
DS 18F
nDe 1X100!
¢ 1X1011
0C 2X1021



-

L

349 .

350
351}
352
353
354
355
356
357
358
359
360
361
362
363

t 364

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

DC
DC
DC

DC
DC

DC
0C
bC
be
DC
0C
DC
DC
0] ¢
DC
bC

DC
DC
0C
0C

0C
DC
DC
bc
DC
0C
0C
DC
oc

DC
0C
DC
be
DC

DC
DC

- DC

DC
0C
0C
DC
DC
DC
DC
pC
De
DC
0C
DC
0C
DC
0C

4X 1031
5X 1041
IX1091
5X1OAM
3XYQE!
Lxevlat
1XH17
5X1001
X0
axXro2t
X103
1X1041
5X1051
5X1061
5X1071
X108t
4X 109
4X10B1
4%X10C!
4X10D
1X'0E
3X'OF1
3X110¢
3XHi
2X112!
2X1131
2X1140
2XV15¢
2Xtrle
LXYLTH
1x118¢
1X119¢
IXPIAY
1X11B
1X11C
1X11DY
10X1051
TXV061
X107
2X108!
9x'oB1t
5XH0CH
1X10D
10X10F!
TXV101
3XTLLY
12Xl
9X'1l41
5X1151
2X1lie!
13X1181
10Xxt191
THTLAY
5X'1B
2xt1c
15XV 1E
13XV1Ft
12X1201

START NF SECOND PART OF NORMAL TABLE
223 ELEMENTS



<
A
A

407
408
409
410

411

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

427

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

ETBL

10X1T21t
9xXt1221
gX1231
TX'24)
6X1251
5X1261
GX 12710
3X1281
3IX1291
2X12A0
2X' 2R
15%X1001
13Xt1011
ox1021
5X1031
EX1061
8X1081
8X10A1
6X1a¢!
"2XT0EN
2XV1l
4X115)
1X1191

2X1201

1X12B!1
1X1011
4X1021
T7X1031
11X1041
10X1051
5X106!
oxXt1omMm
1X1Q8t
BX'091
TX10B!
1X10C
6X10D1
4X1OE !
5X10F1
51101
3X'11t
4xt12
4X'131
4X1]141
3X1161
3XH1T
3xtist
2X1191
2KV 1A
2X11R1
2X1iCt
2X11D1
2XTL1EY
2AVLIFY
X2
1xt221
1X1231
1X1 241

START OF TABLE FOR EXPONENTIALS
FIRST PART HAS 213 ELEMENTS

SECOND PART OF EXPONENTIAL TABLE
455 ELEMENTS



465 0C 1X125¢

466 0C 1X126!
467 : be 1X127¢
468 De 1X'281
469 DC 1X1291
470 De 1X12A1
471 DC 5%1051
472 nc 2%1071
473 DC 1X1001
474 BC 1X1081
475 DC 4X100!1
476 DC 9X ! OF 1
477 DC 3%110!
478 De 10X'121
479 oC 5X1131
480 DC 9X'16!
481 DC 6X 1171
482 0¢ 2X118!
483 0C 13X' 1A
484 DC 1OX!1B1
485 D¢ 7X1LCH
486 DC 5X1LD!
487 DC 2X11E1
488 DC 13X1211
489 DC 1ixr2z2t
690 DC 9X1231
491 De BX1 241
492 DC 6X1251
493 DC 5X126!
494 D¢ 4X127)
495 De 2X1281
496 DC 1X1291
497 De 15X12C
498 De 14X 12D
499 ne 13X 12
500 ~0C 12X ' 2F 1
501 DC 11X1301
502 DC 11X 1311
503 .DC 10X 132!
504 De 9X 1331
505 DC 9X 1341
506 De 8X 135!
507 DC 8X 1361
508 DC 7X1 37
509 oc 7X 1381
510 DC 6X 1391
511 DC 6X13A1
512 DC 6X 1381
513 DC 5X13C!
514 ne 5X 13D
515 DC 4XV3E!
516 . DC 4XVAF
517 END  RANDUM
518 C RNOR TOOTH FUNCTIgN
519 FUNCTION RNORTH(K)
520 DIMENSION C(45)
521 DATA C/240FD2B5F,Z40FD2B5F,Z40FAA9AD, Z4OF5A648,Z40F32496,

522 S8 Z4OEE213l:24056901A:Z40E19885:2400A139E:240028E87;Z40C887BE3
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-

-

523
524
525
526
527
528
529
530

531

532
533
534
53

536

537

538
539
540
541
542
543
E44
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

R R R

$

[T R AR T G L A i

240C102A6:Z4086FBDD;Z4OACF513:ZAOAZEE4A:24098E7BO:Z409162695

-2408755A0:24o705496;240734Eoo,z4osncaFe,zaoélczzc;2405A3015;
Z405287FE:2404532E7:24043ADDO;Z403C2899:240372554;2402FAOBD:
Z402A9CDB»240259973;Z4020960E;2401E145C32401910F7:240168F45)
240140093:1401188E0:Z3FF0A2E4:23FC387BE:ZBFA06C98:23F78517ZJ
23F785172:23F50364C:ZBFSOBbéC:23F50364C/

DATA I1/2FBC35400/,12/ZFET9702E/

IF(K,GT,1)60 7O 3

S=UNTI(0)

T=UNI(O)

Bz AINT( 7, % (S+T)+37.%ABS(S~T))

X=UNI(0)=UNI(O}

RNORTH=,0625% (X+SIGN(Bs X))

RETURN

IF(K,GT,12)CGD TQ 5

RNORTH=2,75%VNI(0)

J=16,%ABS(RNORTH)+1,

IF(J=14) 6,657

Pe(J+J>1)%,140T466E=2

GO TO 8

P=(89=Ju])*e698817E~3

IF(UNI(O).GT.79.78846*(EXP(-.S*RNURTH*RNDRTH)

~C(J)—P*(J~16.*ABS(RNDRTH)))) GOTO4

RETURN

V=VNI(0)

IF(V,EQ,0) GO TO 5 :

X=SGRT(7,5625=24%ALOG(ABS(V)))

IF(UNT(OY#XeGTa2,75)60 TO 5

RNORTH=SIGN (X, V)

RETURN

END

REXP TOQTH FUNCTION

FUNCTIDN REXPTH(K)

DIMENSIQN C(65)

DATA C/zaoFooooo,140510000,240040000:24oc7ooooxzaoneoooo;
ZquFoooo;zaoAsoooo,240980000,140910000:Z4os9oaoo;zaosooooo;
240780000,140710000,zao@Aoooo,240540000,Z405E0000,1405800005
140530000:240450000;240490000,zao440000:zao400000,z4oacoooo:
240390000;140350000;240320000»2402Foooo:24ozcoooo,z4029ooooi
Z40270000)Z4OZ4OOOO:2402200001240200000:240150000:2401C00003
Z401A00004Z40190000:Z40170000:240160000:240150000:2401300005
240120000;240110000:Z401000OO:ZBFF00000;Z3FEOOOOO:23FDOOOOOé
ZBFCOOOOO;ZBFBOOOOO:ZBFBOOOOO:ZBFAOOOOOxZBF900000:13F9000003
zaFeooooo:staooooo;23F7ooooo,zaF700000azanooooo,zanoooooj
ZBF600000;ZBFSOOOOO:ZBFSOOOOO:23F4000OG:ZBF4000OO;23F400000/

DATA [1/ZFB4FAA9Y/ -

IF(K,GT,11)G0 70 5

Ul=UNT(0)

IF(Ul.0T,..7917049) GO TO 3

Tz),=1:239962%U)

REXPTH=~ALOG(T)

J=16,%REXPTH+1,

IF(UNI(O)*(e0604*T+a0039)-GT;T~C(J))GDTUl

RETURN

REXPTH=19.,20352%ULl~15,20352

J= 16 “REXPTH+1,

EX=EXP (=REXPTH)

IF(UNI(0)*('0604*EX+.0039).GT.EXaC(J))GOTﬂl



581
582
583
584

BETURN
REXPTH=4,~ALOG(UNI(0))
RETURN

END



APPEND IX D

Denotations %y p << .0l

**; p <

¥ p < .05

.01

TABLE D.1: Tests of Signifiance on the Parameter Estimates
of the 12 Multiple Regression Equations of

Table 3.5

BLOCK 1 o =0.05, kK =5,n

Regression Coefficients

wm>

(o]

w™w>

1

2
Py

>

>

15
D.F. T-value
106 33.99%%x
106 18 Blxw
106 ~16.35%%x
106 S .77

Multiple Goxrekstiton Coefficient (R)

F = 1455.Th*** DF,

=3 DF2 = 106

BLOCK2 a=o-05’k=5’n=5

Regression Coefficients

>

(o]

w>

1

>

2
B3

>

D.F. T~-value

106 28,06k **
106 19, Tl
]66 ~12.16%%%
106 _ 4.78%x

Multiple Conrelatiton Coefficient (R)

F = 1213.63%%* DF]

=3 DF2 = 106



APPEND IX D (contid)
BLOCK 3 & = 0.05, k =3, n =15

Regression Coefficients D.F. T-value
Bs 106 32,054
B 106 15.67%%%
B, 106 ~18.12%*
Bs 106 - 2.25%

Multiple Gamrekstiton Coefficient (R)
F = 983_54*** DFy = 3 DF, = 106

BLOCK 4 a = 6.65, k=3, n=5

Regression Coefficients D.F. T-value
8o 106 30.20% %
8 106 23, Thwxx
8, 106 ~10.18%%x
B 106 - T.16%xx

Multiple BeprekatdonCoefficient (R)
F = 1387.57%*%% DF] =3 DF2 = ]66

BLOCK 5 o = 6.65, K =2, n=15

Regression Coefficients D.F. T-value
Bo 1y 25, 80% %%
B 1l 3. 76%*
B, 14 - T.08%%%
B 4y - 1.20

Multiple ConrebatdonCoefficient (R)

F = 161 ,26%%% DF, =3 DF, = 4y



<

1. APPEND IX D (cont'd)
BLOCK 6 o = 0.05, k=2, n =5

Regression Coefficients D.F. T-value
By 1y 31, Thns
3 z 5.00e
B, 1 — 9. 20k
§3 1L - 2.06*

Multiple Gerekatibon Coefficient (R)

F = 380.05%*%  DF; = 3 DF, = 44

BLOCK 1 ¢ = 0.01, k=5, n =15

Regression Coefficients D.F. T-value
N 106 12.68%**
B, 106 248 *w
5 o6 - 6.1 e
63 106 - T4 %xx

Multiple CorrelatdonCoefficient (R)
F = ]336_66*** DF, = 3. DF, = 106

BLOCK 2 ¢ = 0.61, K=5,n=25

Regression Coefficients D.F. T-value
B, 106 9.59***
8, 106 o7 6g%xx
8, 106 - 5.00%
§3 106 -10.T0%¥%

Multiple ConrelatdoanCoefficient (R)

( ' F = 1356.42%%% DF] =3 DF2 = 106



APPENDIX D (cont'd)
BLOCK 3 a =0.01, k=3, n =15

Regression Coefficients D.F. T-value
B 106 10.85%%x
g, 1§6 18, 15%%%
62 106 - 5.38#x
B 106 - 6.0gk¥x
Multiple Corgredstiimn Coefficient (R)
F = 690.66+%% DF, =3  DF, = 106

BLOCK 4 ¢ = 0.01, k=3, n=>5

Regression Coefficients D.F. T-value
Bo 106 7.91%x%
B, 106 28.18%%*
8, 106 - 2.8k
§3 106 —11.57%%%
Multiple Correlat’ion Coefficient (R)
F = ]266.22*** DF] =3 DF2 = 106

BLOCK 5 o = 0.01, k=2, n =15

Regression Coefficients D.F. _ T-value
éo 4 11.01%%%
B 4y 467
B, 1 - 3.28%*
83 1 - 2.66%%

Multiple Cegrekatiton Coefficient (R)

F o= 87.41%x%x DF, = 3 DF, = 4k



APPENDIX D (cont !d)
BLOCK6 CX.=O-0],K=2,n=5

Regression Coefficients D.F. T-value
8s 44 9.2g% ¢
B, 1 7 .8gK%*
By 1 - 2.75%%
83 1 ~ 3.2kxx

Multiple Cegredation Coefficient (R)

F o= 135.23%%% DF, = 3 DF, = 44

TABLE D.2: Analysis of Variance for Testing the Equality
of Six Regression Equations at Each Level of o

a = .05
Due to DF SS F
Dev. from hypothesis 26 99617.96 486.32***
Separate regressions 512 16]434.60
(residuatl)
Common regression 532 266452.60
(residual)
o= .0l
Dev. from hypothesis 26 439]3.85 86,57***
Separate regressions 512 26452.55

(residual)

Common regression 532 64366.40
(residual)



APPEND IX D (cont'd)

TABLE D.3? Analysis of Variance for Testing the Equality
of Three Regression Equations Corresponding to
the Three Values of k, at each Level of a

o = .05
Due to
Dev. from hypothesis

Separate regressions
(residual)

Common regression
(residual)

a = .01

Dev. from hypothesis

Separate regressions
(residual)

Common regression
{residual)

DF

524

536

524

536

SS
36870.00
163582.00

200452.00

26630.5
38335.87

64366.4

F
14, TE***
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APPEND IX D (cont'd)

TABLE D.4: Analysis of Variance for Testing the Equality
of Pairs of Regression Equations Corresponding
to the Two Values of n at Each Level of k, at
Each Level of ¢

Due to DF SS F
Dev. from hypothesis b ]6666.66 21 . 1xxx
Separate regressions 88 10477 .24

(residuat) _
Common regression §2 26543.§6

(residual)

a = .05, k=13

Dev. from hypothesis b 40227.00 52 . 20%%*
Separate regressions 212 40899.50

(residual)
Common regression 216 81126.50

(residual)

Dev. from hypothesis ) 11854.30 12.50% %%
Separate regressions 212 50057.30

(residual)
Common regression 216 61911.60

(residual)



APPENDIX D (cont'd)

a = .01, k=2

Due to
Dev. from hypothesis

Separate regressions
(residual)

Common regression
(residual)

a= .01, kK =3

Dev. from hypothesis

Separate regressions
(residual)

Common regression
(residual)

¢ = .01, kK = 5

Dev. from hypothesis

Separate regressions
(residual)

Common regress ions
(residual)

DF

88

g2

212

216

212

216

SS
1512.11
2609.66

Mer.r7

T7666.97
11869.63

19536.60

1614, 42
13063.08

14677 .50

F
12.75%%%

34, 23% %%

6,55***



