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ABSTRACT 

The present study was designed as an attempt to eval

uate the effects on the Analysis of Covariance F-test of 

va ry i ng comb inat ions of deg rees of v io 1 at ion of the homo

geneity of variance and the homogeneity of regression assump

tions. Measures of violation, invariant under stated con

straints on the covariate, were derived for each of the two 

assumptions. Sampling distributions of simulated ANCOVA 

'experiments embodying combinations of values of these mea

sures were generated. The effect of each combinat ion on 

the F-test was determined by a comparison of obtained and 

theoretical percentage points. Results suggested that the 

two violations tend to neutral ize each other in their 

effects, leaving the F-test remarkably robust with respect 

to their joint presence. An attempt was made to establ ish 

a predictive relationship between levels of violation of the 

two assumptions on the one hand, and their effect 9~ prob

abil ity of Type 1 error on the other. 
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CHAPTER 1 

INTRODUCTION 

The appl ication of statistical tests to the analysis 

and interpretation of data impl ies that the assumed condi

tions of the test are met in the experimental situation. 

ln practice, however, these assumptions are never fully 

justified. Thus, an important area of investigation has 

necessarily arisen to answer questions concerning the extent 

to which actual experimental conditions can depart from 

those assumed in any test before its appl ication is render

ed inval id. In other words, this field of research 

attempts to determine how "'robust l any given test is. If 

a statistical test is not robust, and if, in actual experi

mental practice, its underlying assumptions are not upheld, 

then it becomes extremely difficult for the researcher to 

isolate that component of his results which is attributable 

to the violation of the assumptions, from that part which 

purports to answer his experimental question. 

Two ways of approaching questions concerning the ro

bustness of statistical tests have been developed. The 

first employs traditional mathematical analysis and attempts 

to determine the behaviour of the test under less than ideal 

conditions. A difficulty with this analytic approach is that 



once the assumptions of the test are relaxed the statistics 

frequently become difficult to handle, and in many cases the 

statistician has to resort to distributional approximations 

(often asymptotic) or other simpl ifying procedures, which 

yield results that are more indicative than definite. 

The second approach is that of Monte Carlo simulation 

in which the robustness of a statistical test is evaluated 

by generating an empirical sampl ing distribution of the 

statistic, derived from :np simulated sets of data embodying 

some specified degree of violation of one or more of the 

testls underlying assumptions • This distribution can then 

be compared with its corresponding theoretical,vi6lation

free distribution and the effect of that degree of violation 

is determined from the comparison. 

This Kind of worK is much more costly than the first 

approach, and harbours some intrinsic limitations; whereas 

there is only one way in which the assumptions can be fully 

satisfied, there is no practical l imit to the number of ways 

in which, singly or in combinat ion, they can be violated. 

A Monte Carlo investigator must consequently choose a more 

or less arbitrarily circumscribed set of possibil ities to 

study, without any guarantee that his findings are general

izable to other contingencies of violation. 
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The present study was designed as an attempt to ascer

tain, through the use of the Monte Carlo procedure, the 

effects of the simultaneous violation of two assumptions 

underlying a statistical test commonly appl ied to experi

mental data in Educational and Psychological research - the 

Analysis of Covariance. The two subjects of this investiga

tion were the homogeneity of regression and the homogeneity 

of variance assumptions. 
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THE ANALYSIS OF COVARIANCE: 

The Model and Its Appl ication 

,Covariance analysis (ANCOVA) incorporates two systems 

of data analysis, Analysis of Variance and Regression 

Analysis, which have come to be thought of by many psycholo

gists as distinct, but which in fact are both subsumed under 

the general l inear model. 

The mathematical model in the Analysis of Covariance 

(one-way, l inear, fixed effects) is as follows: 

y .. 
1 J = Il + 'T. + 

J 
I3(X ij -X .. ) + e .. 

IJ 
.•... (1.1) 

where Yij is the measure of the dependent variable and X ij 

is a concomitant variable or covariatee with grand mean X .. , 

on which Yij has a l inear regression with regression coefficient 

13. The constants Il and 'T j are the grand mean of treatment 

populations and the effect of the jth treatment level, re

spectively, with ~ 'T. = o. The variable e iJ. is the random 
j J 

error term assumed to be normally and independently distributed 

with zero mean and constant variance. 

From the point of view of Analysis of Variance, the model 

can be expressed as: 

y .. 
IJ 

- 13 (X ij - X •. ) = Il + 'T • 
J 

+ e .. , .••.. ( l .2) 
IJ 
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where a modification (due to the estimation of ~) of the usual 

F-test is appl ied to the Y-scores now adjusted for X. 

On the other hand, considered from the point of view of 

Reg ress ion Ana 1 Y:5 i Si the t reatment effects can be conceptua 1-

ized as dummy variables, 50 that the design taKes on the form 

of an F-test for multiple regression. These two F-tests are 

equivalent. 

The Covariance model is designed for the following.ex

perimental situation: different'levels of a treatment, or 

independent variable, are being appl ied to randomly selected 

groups of experimental units. The purpose of the experiment 

is to determine whether or not these treatment levels differ

entially affect sorne dependent response Y. Before the treat

ments are appl ied, however, a measure of another variable X 

is taKen on the experimental units. The treatment levels 

are then effected, and in each instance the measure of vari

able Y is recorded. In the usual Analysis of Variance situa

tion, the se data are then subjected to an F-test for differ

ences in treatment means. In the Analysis of Covariance 

situation, however, before the Y data are subjected to the F

test, they are first adjusted to remove the influence of the 

var i ab 1 eX. 

This procedure has the advantage of increasing the pre

cision of the treatment comparisons by reducing extraneous 

variabil ity in the experiment. Cochran (1957) reports that 
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the gain in precision resulting from covariance adjustment is 

a function of the size of the correlation coefficient p be

tween Y and X on experimental units that receive the same 

h ·f 2. h . 1 t reatment • He states t at Il... 1 ay 1 ste expe r Imenta 

error variance when no covariance is employed, the adjustments 

reduce this variance to a value which is effectively about 

where fe is the error number of degrees of freedom:. 11 (Cochran, 

1957, p. 262). 

Assumptions Underlying the Analysis of Covariance 

The F-test for the Covariance Analysis, 1 ike all para

metric tests, assumes for its val id appl ication that the data 

to which the model is appl ied behave in a certain way. The 

following are the basic assumptions of Covariance Analysis. 

1. The experimental units are randomly assigned 

to treatment groups. 

2. The dependent or criterion scores have a 1 inear 

regression on the covariate and the regression 

coefficient is constant across treatment levels. 

3. The covariate is measured without error. 

4. The dependent or criterion scores are a 1 inear 

combination of independent components an overall 

mean, a treatment effect, a 1 inear regression on 

X, and an error terme 

-. , 
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5. For each treatment/covariate combinat ion, the 

error term e ij is independently and normally 

distributed with a mean of zero and constant 

variance. 

Finally, it is usual in applying the test to a set of data 

to maKe the assumption that T. = 0 for all treatment groups 
J 

(the null hypothes is) • 

If any of these six conditions is not satisfied, the 

sampl ing distribution of the F-ratio may differ from the 

central F-distribution. This means that a significant, or 

for that matter, a non-significant F-ratio could result from 

a failure,to fulfill any one of these assumptions. Conse

quently, before concluding from a significant or non

significant F that the sixth assumption is or is not sus

tained, one must be able to satisfy oneself that failure to 

meet the other five assumptions is not seriously affecting 

the behaviour of the F-ratio distribution. 

Effects of Departures from the Underlying 
Assumptions in ANCOVA - A Selected Review 

Some of the studies to be cited in this section pertain 

directly to the ANCOVA design; others focus primarily on 

ANOVA, but their results are in most cases directly general

izable to the ANCOVA situation. This review consists of a 

brief summary of the effects of departures from each of several 
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under1ying assumptions not direct1y connected to the subject 

of the present study, and of a more e1aborate documentation 

of the resu1ts of studies dea1 ing with those direct1y re1ated 

assumptions - homogeneity of regression and homogeneity 

of var iance. 

The consequences of vio1ating the assumption of .random 

assignment of experimenta1 units to treatment groups have 

been clearly stated by lord. He points out that "If the 

individuals are not assigned to treatments at random, then 

it is not helpful to demonstrate statistical1y that the 

groups after treatment show more difference than would be ex

pected by random assignment;~11 (lord, 1967, p. 305). The 

ANCOVA test is particular1y open to violation of th is assump

tion since in many empirica1 situations in psycho1ogy to 

which the test is appl ied, randomization is not feasible. 

Evans and Anastasio (1968) distinguish in this context, 

three different uses of ANCOVA: 

l. Random assignment of experimenta1 units to groups 

and random assignment of treatments to groups; 

2. Already-existing groups used as treatment groups, 

but treatments randomly assigned to them; 

3. Already-existing groups used as treatment groups, 

with some intrinsic attribute considered as 

"treatment". 
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They conc1ude that on1y usage 1 1eaves interpretation of re

su1ts unequivoca1, and that interpretation becomes 1ess and 

1ess meaningfu1 as one goes from usage 2 to usage 3. 

As to the assumptions re1ated to properties of the con

concomitant variable, Lord, (1960) examined the situation 

where the covariate X contains errors of measurement, and 

concluded that under these circumstances, " .•. the usua1 ANCOVA 

fai1s to adjust adequately for initial differences between 

groups." (Lord, 1960, p. 307). He constructed a laegeV'Vsamp1e 

s·ignifJcance test in ancattempt ta deal· w.itha~~e.':;Pfôbleml but 

1 imJ~edort.tsr usefqJrnessg i[liiJmaB~templ ni Ga~ ~s,i~tualt li'01tl5ebltotie~ 

I;!wiring two sets of measures for the covariate. 

Cochran (1968) shows how the situation of X measured 

with error decreases the precision of the experiment by in

creasing the error variance by a factor determined by the 

rel iabil ity of X. Porter (1967) deve10ped a covariance de

sign for the situation where X is measured with error and 

incorporates the rel iabi1 ity of X into his model. 

Atiqul1ah (1964) has examined the effect of non

norma1ity on the ANCOVA F-test. He demonstrates how in the 

ba1anced 1ay-out the sensitivity of the test to non-

normal ity depends on the behaviour of the covariate. X. 

He concludes that the test is robust to non-norma1ity when 

the distribution of the concomitant variable is normal. 
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Atiqullah measures non-normal ity by kurtosis. He does 

not deal with skewness, which as PecKham (1968) remarKS, is 

also relevant to non-normal ity in the behavioural sciences. 

Scheff5 (1959) has examined the effect of serial cor

relation (violating the assumption of independence of 

errors) for large samples in ANOVA. He der ives probab il it ies 

corresponding to a 95% confidence interval for various 

values of p and concludes that Il ••• the effect of ser ial 

correlation on inferences about means can be serious" 

(Scheff{, 1959, p. 338). 

Atiqullah (1964) has considered the situation where the 

usual ANCOVA (1 inear) test is appl ied to data which contain 

a quadratic component of regression. In the case of two 

treatments, he finds that the expected value of the adjusted 

difference between the two groups is unbiased only if the 

covariates in both groups are members of the same normal 

population. Even this does not hold, however, for the case 

of more than two groups. He concludes that the presence of 

a quadratic component, if large, may have serious effects 

on the ANCOVA F-test (Atiqullah, 1964, p. 372). 

Homogeneity of Regression 

Until quite recently, very 1 ittle information was avail

able on the effects of violating the assumption of homogeneity 

of regression in ANCOVA. The assumption impl ies that the re-
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1 at ionsh ip between Y and X is a 1 inear one, and that the re

gression coefficient of Y on X is constant across treatment 

groups. 

A prel iminary checK on the ass~mption of homogeneity of 

regression is given by Winer (1971). He provides a sampl ing 

F-distribution based on the assumption that ~l = ~2 .••• = ~K· 

This is a useful though indirect precaution, but as Evans 

and Anastasio point out, " ••. the decision that assumptions 

have been met rests on the acceptance of the null hypothesis. 

Thus the user has only a roundabout procedure (using a large 

value for Cl) to guard against the relevant class of error, 

Type Il. He cannot even determine, much less control, the 

probabil ity of detecting violations which are serious enough 

to affect h is conclus ions" (Evans and Anastas io, 1968, p. 226) . 

The two sources of information on the robustness of the 

test with respect to this assumption are those by Atiqullah 

(1964) and PecKham (1968). The former is a theoretical paper 

while the latter consists of a Monte Carlo empirical invest-

igation. 

Atiqullah sets up the fol1owing two models: 

y •. = 1.1. + 'T. + ~(X .. - X •• ) + e .. 
1 J J 1 J 1 J 

y •• = 
IJ 

1.1.+ 'l'. + ~.(X •. -X .. ) + e .. 
J J 1 J 1 J 

( 1.4a) 

( 1 • 4b) 

and examines the effect of employing the F-test based upon 

model Ml' when in fact model M2 is the appropriate one. He 

maKes use of the following notation: 
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. - 2 
2: (x.. - x .. ) ; W2 = 2: W •• 

1 J J J J 

His contribution may be divided into three parts. 

1 . In the case of a compar ison of two treatments in a two-

group experiment, he found that when ~1 ~ ~2' that is 

when mode1 M2 is the appropriate one, but mode1 Ml is 

app1 ied, the expected value of the difference in ad

justed treatment means is biased un1ess either Xl = X2 , 

or W11 = W22 , He suggests that Il • 
• •• 1 n the absence of 

a prior presumption that 81 and 82 are nearly equa1, 

the model M2 should be used, separate regressions fitted, 

and the treatment effects ·estimated as a function of x. 
2. Atiqullah next considers a comparison of two treatments 

in an experiment involving more than two groups. Again, 

in the case of model M2 being the appropriate one, but 

model Ml being appl ied, he finds that the expected value 

of the adjusted differences between pairs of treatments 

is biased unless both Xl = X2 and Wll = W22 . 

3. ln the case of experiments involving more than two treat-

ment groups, Atiqullah derived an asymptotic approxima

tion to the ANCOVA F-distribution using Fisher 1 s z-
transformation, and then examined the consequences of 

applying model Ml when model M2 obtains. He concluded 

that the appl ication of the standard covariance F-test, 

under. these circumstances, may yield misleading results 

i 
i 

1 
l
I 

1 
1 
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unless the X's are normally distributed, ~2/~ 2 ) l, x e 
and the variance of the inhomogeneous regression co-

efficients ~~.2 is in the order of ~ where k denotes 
J k 

number of treatment groups. 

PecKham (1968) conducted a Monte Carlo investigation into 

the effects of violating the homogeneity of regression 

assumption in ANCOVA. His method consisted of generating a 

sampl ing distribution of the ANCOVA F-statistic, where each 

sample consisted of an ANCOVA experiment embodying a speci

fied degree of heterogeneity of regress~on, all other assump

tions of the test being satisfied. (To avoLdl bias due to non

normal ity in the concomitant variable, the values of X were 

chosen to approximate a normal distribution). He th en com

pared the empirical sampl ing distribution with its correspond

ing central F-distribution. 

The study proceeded in two phases. In phase one, Peckham 

combined varying degrees of heterogeneity of regression with 

d ifferent sample s izes and numbers of treatment groups. In 

this phase, he fixed Xj = 0 and MS,x.= 1 for all groups. In 
J 

phase two, he used only the two-group case and arranged the 

data so that the relationships among the Y, X and ~ were such 

that the expectation of the adjusted mean for each group was 

equal to the same constant. 
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ln both phases, PecKham found for the degree of viola

tion studied that the analysis was not seriously affected by 

departures from the assumption, and that as the degree of 

heterogeneity increased, the test became more conservative 

with respect to Type 1 error (see Table 1.1). 

TABLE 1. 1 

Effects of Violatin~ the Assumption of Homogeneity of R~gres
sion on the ANCOVA (l-way, fixed-effects) F-test (Abridged 
from PecKham, 1968, Phase 1). 

No. of 
Groups 

2 
2 

3 
3 

5 
5 

Group S i ze 

10 
10 

10 
10 

10 
10 

Homogeneity of Variance 

Regression 
Ctbe§fœsiëo.t 

Values 

.4 .6 
• 1 .9 

.4 .5 .6 

.1 .5 .9 

.4 .4 .5 .6 .6 

. 1 .3 .5 .7 .9 

Probabil ity of ex
ceeding 

5% pt. 1% pt. 

.050 

.029 

.050 

.035 

.'048 

.041 

.010 

.004 

.009 

.006 

.007 

.010 

ANCOVA also rel ies for its val idity on the assumption that 
2 

the popul at ion var iance cr of the error term e ij for each 

treatment-covariate combinat ion is a constant. As Elashoff 

(1969) points out, there are two main ways in which this assump

tion is 1 iKely to be violated: 
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2 
1 • The va ri ance (j i s dependent on the cova ri ate X, 

but for a given X is constant across treatments, 
2 

2. ~ is constant within each treatment group, but 

differs across treatments. 

For the purposes of the present study, attention will be focus

sed exclusively on the second contingency, since it better 

represents the empirical situation to which ANCOVA is usually 

app 1 i ed. 

To date, no theoretical or empirical worK has been speci

fical1y devoted to studying the effects on the ANCOVA F-test 

of departures from the assumption of equal variances. However, 

a good deal of both Kinds of worK has been carried out on the 

ANOVA design, and since the effect of unequal variances on 

the two models is almost identical under certain conditions of 

the covariate (see below page~6), these ANOVA results will be 

reviewed as relevant in the context of the present study. 

Since the 1930's, statisticians have considered the effects 

of departures from the assumption of homogeneous variances in 

ANOVA (Welch, 1937; Daniels, 1938; Horsnel1, 1953). The re

sults of these studies suggested that the test is robust with 

respect to the violation of this assumption. Several tests 

for homogeneity of variance have been developed (Bartlett, 

1937; Cochran 1941; Hartley, 1950), but these tests suffer 

from the same drawbacKs as those outl ined above in reference 

to the test for homogeneity of regression (see section immed

iately preceding). 
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The first important Monte Carlo study on the issue was 

carried out by Norton (1952). As reported in Lindquist 

(1953, p. 78), Norton obtained samples of ANOVA Fis by randomly 

sampl ing from 3 card populations, which were normal1y dis

tributed with constant mean, but whose variances were 25, 100 

and 225 respectively. He obtained the percentage of sample 

W8:$ that exceeded the theoretical 5% and 1% values (expected 

under the null hypothesi~J and used the discrepancy between 

the expected and obtained percentages as a measure of the 

effects of the violation. His results indicated that the 

ANOVA F-test is remarKably insensitive to violation of the 

assumption of equal variances, when equal numbers are assigned 

to treatment groups (see Table 1.2). 

TABLE 1.2 

Norton Study - Percentage Counts of Mean-Square Ratios in 
Empirical Distributions Exceeding Theoretical Percentage 
Levels in Normal-Theory F-distribution. (Abridged from 
L indquist 1953, p. 84). 

Percentages 
No. of G rouQs G rouQ Size EX2ected Obtained 

3 3 5% 7.26% 

3 10 5% 6.56% 

3 3 1% 2.13% 

3 10 1% 2.00% 
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Box (1954), using theorems on quadratic forms in multi

normally distributed variables, developed a very close 

approximation to the distribution of ANOVA F (one-way), when 

the assumption of equal variances is relaxed. Util izing this 

approximation he ca1culated the probabil ity of Type l error 

corresponding to the .05 leve1 of normal theory, for various 

levels of violation. His results, in the case of equal groups, 

support those of Norton. In the case of unequal groups how

ever, he showed that the violation of the homogeneity of vari

ance assumption is drastically disturbing to the distribution 

of F.(see Table 1.3). Both the resu1ts of Norton and Box 

were 1ater empirica11y supported by those of Boneau (1960). 

,. .:: 
TABLE 1 .3 

Effects of Vio1ating the Assumption of Homogeneity ofVari-
ance on the ANOVA (1-way) F-test (Abridged from Box 1954, p.299). 

P rob. (%). of 
No. of exceeding 
Groups Var iances Group S izes 5~ point 

3 1: 2: 3 5:5:5 5.78 

3 1: 2: 3 7:5:3 9.57 

3 1: 1: J 5:5:5 5.82 

3 1 : 1 : 3 7:5:3 9.78 

5 1:1:1:1:3 5:5:5:5:5 6.86 

5 1:1:1:1:3 9: 5: 5: 5: 1 15.56 
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ORIGIN OF THE PRESENT STUO~ , \ . 

The preceding review has considered only the effects on 

ANCOVA and ANOVA of violating each single underlying assump

tion in turne This 1 imitation reflects the paucity of exist

ing worK evaluating the joint effects of violating two or 

more of the basic assumptions in ANCOVA. The use of these 

results as a guide to data analysis would seem to depend upon 

the val idity of the assumption that, if in any set of data to 

which ANCOVA is being appl ied more than one assumption is 

being violated (as is most 1 iKely to be the case), the effects 

of the violations are independent. That is, the violation of 

one assumption does not amel iorate or exacerbate the effect 

of another assumptionls being violated. 

The present study arose out of indications that such a 

state of affairs does not hold for at least two of the as-

sumptions underlying the ANCOVA F-test. PecKham (1968) 

found that, as the violation of the homogeneity of regression 

assumption increased in severity, fewer and fewer simulated 

ANCOVA F-values exceeded the theoretical percentage levels; 

that is, the test became more and more conservative with re

gard to Type 1 error (see Table 1.1). On the other hand, 

general izing from the results of Norton and Box (see Tables! 1~2 

and 1.3), it seems 1 iKely that in ANCOVA, the number of F

values exceeding nominal probabil ity levels increases as the 

degree of violation of the homogeneity of variance assumption 

increases. 

! 
l' 

1 , 
! 

1 
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The present study was therefore an attempt to evaluate 

the effects on the ANCOVA F-te3t (l-way, l inear, fixed 

effects, equal group sizes) of simultaneously violating 

the homogeneity of variance and the homogeneity of regres-

5 ion:assumpt ions: to ascertain in general, the -extent 

to which these violations in their varying degrees of sev

erity, tend to cancel each other out, and to deternnine the 

general relationship between cumulative percentage counts 

and violation levels of the two assumptions. 
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CHAPTER 2 

DESIGN OF THE STUDY 

The procedure was first to choose the combinat ions of 

degrees of violation of the two assumptions to be investi

gated; then for each combinat ion, to construct a pseudo

random sampling distribution of F-ratios, derived from a 

series of simulated ANCOVA experiments embodying the degrees 

of violation of that combinat ion. For each sampl ing distri

bution a count was then taKen of the proportion of those F

values exceeding the critical tabled F-values for the corre

sponding central F-distribution (df l = K-l, df2 = N-K-l) at 

the 0.05 and 0.01 levels of significance. An estimate of the 

joint effects of each combination of violation-levels of the 

two assumptions on the probabil ity of Type 1 error was thus 

determ ined. 

MEASURES OF VIOLATJON OF THE TWO ASSUMPTIONS 

ln order to proceed systematically, it was necessary at 

the outset to define an index of violation for each of the two 

assumptions; that is, to determine a quantitative relationship 

among the K parametric values (betals, variances) such that as 

it increased in magnitude, so also did the effect on the prob

ability of Type l error. 
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1 - For the purpose of deriving a measure of violation for 

the homogeneity of regression assumption, the following models 

of ANCOVA were compared. (The models are simpl ified so as to 

ensure full rank in matrices that are to be inverted). 

L 1: y •• = '1" • + I3X .. + e .. i. - ,c't ., ~ .. (2.1a) IJ J IJ 1 J J = 1 ,2" •••. k 
i = 1 ,2 •••• n 

1:::2 : y •• = 'T'. + I3X .. + (13· - I3)X .. + e i j , 
> ' (2.1b) IJ J IJ J IJ 

where Ll is the usual model for ANCOVA and L2 ,incorporates a set 

of parameters (~j -~) to accommodate the presence of inhomogeneous 

regression coefficients. 

Under L2' the design matrix X, the coefficient vector 13, 

and the error vector E are represented as fol10ws: 

r~ 0 o Xll X11 0 ~l 0 o X 21X21 0 · . 
.. ... .. .. . . .. .. · . .. . .. 

0 o Xn1 Xn1 O 0 r :~ l 
0 1 o X12OX 12 0 
0 1 o X22OX22 · . 0 'l''k 

X = .. - .. .. .. .. . . 13 = 13 _ E = . . , 
0 1 0,X n2OX n2 0 13 1-13 

- - - 132 -13 

.. .. 
l~~~~J - - -

0 0 1 X1kO ° X1k 
o .0 • 'e 1· X2kO"O 

~~k J l~· 6· :: l' ~~~\)g ~ ! 

x;;~ 
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where 

y = XI3 + E and E(Y) = XI3 (2.2) 

Now, 1.et Model q be (incorrectly) appl ied and the following 
00 

quantit ies calculated: 

1 • e r ro r SiUm~ 0 f s q ua r e s 

2. sum of squares due to treatments 

Let 5 denote the matrix containing the first (K + 1) columns 

of X 

c denote the vector conta;irHng the first (K + 1) elements 

of ~ 

T denote the ~e~t~~ containing the (K + l)tb. Qolumn of X 

d denote the sealer containing theo(K + l)th. element of 13 

" residuals. Let U = y - 5c be a vector of 

= y - 5 [( 5 'S-) -1 5' y] 

= [1 -5(S'5)-1 5 ,] y 

Let Q = [1 -5(5'5)-1 5!] (2.3) 

Q is a symmetric idempotent matrix since 

Qf> = 1 - 5 (5 1 5) - 1 5 1 ( 2 • 4a ) 

Q2 = [1 - 5(S I 5)-1 5 '][1 - 5(S I 5)-1 5 ,] (2.4b) 

= - 2S(5 ' 5)-l S1 + 5(5IS)-lS'5(5'5)-151 

= - 5(5 15)-15 1 

= Q 
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Thus the error sum of squares is: 

ulu = (QY) 1 QY = ylQY (2.5) 

A 
Let W = y - Td be a veetor of residuals 

= 

where R = 1 - T(T'T);;;'lT ' is a symmetrie idempotent matrix 

(us ing 2.4a, and 2.4b). 

Thus treatment sum of squares= y'RY - ylQY 

= Y'(R - Q)Y 

where (R - Q) is also a symmetr ie idempotent matr ix, 

(for proof see Appendix A). 

Further [(R - Q)YJQY = Y'(R - Q)'l Qy = 0 

(for)p~oof see Appendix A). 

(2.6) 

(2.7a) 

(2.7b) 

(2.8) 

(2.9) 

Thus the two veetors are orthogonal and hence any two quantities 

based on them respeetively will be independently distributed. 

A necessary and sufficient condition that y'AY is distri

buted as a chi-square~is that A is idempotent; the degrees of 

freedom of such a chi-square are equal to the rank of A, and 

its non-central ity parameter, À~ has the value of the quadratic 

form y'AY when the variables have been substituted by their 

expected values. (Rao, 1965, p. 150). 
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Thus, using (2.4a; 2.4b; 2.2), Y'QY the error sum of 

squares, is distributed as a non-central chi-square with de

grees of freedom equal to the rank of Q, and non-central ity 

t (3 'X'QX(3. parame er = So, too, y'(R-Q)Y the treatment sum of 

squares, is also distributed as a chi-square with degrees of 

freedom equal to the rank of (R-Q), and non-central ity para

meter = (3'X'(R-Q)X(3, (using 2.8; 2.2). Furthermore, the two 

chi-square distributions are independent (using 2.9). 

The ratio of these two independent chi-square distri

butions Y'(R-Q)Y yields a doub1y'non-central F-distribution 
lI' QY 

whose probabil ity density function is given by: 

e
--!À ~ ~ ~À rC~À)'s -!Vl+r-l 1 -!V+,r+s 

dH ( IJ) = '-" '-" (~)~, 2 2 Il ( l + • .) 
r=O s=O r! s~ ~ 

where Il = ~'~Rf~T~t(~QY 

"'1= (3'X'(R-Q)X(3 

À2= (3'X'QX(3 

À = "'1 + "'2 
V 1 = Rank of (R-Q) 

V = Rank of Q 2 

V=V 1 +V 2 

du 

(Kendall and Stuart, 1961, Vol. Il, pp. 252) 

(2.10) 
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From (2.10) it can be seen that the shape of the F-distribution 

is un~quely determined by the values of the two non-central ity 

parameters. Since the particular values of the covariate Xij 

as well as those of the ~j are involved in the determination 

of the values of 11 and 12, an invariant measure of the ~dola~ 

tion of the homogeneity of regression assumption may be ex

pressed in terms of the ~j alone only if the values of Xij are 

Known. For .the purposes of convenience in this investigation 

therefore, XJ' was set to zero and ~ X~. was given a constant 
1 J 

value n - 1 for all j, thereby reducing the value of 

11 = 0 and 12 = n -

A) • 

1 Lf ~} -K ~2] (for proofs see Append ix 

Thus under the present constraints on the covariate Xjj , 

2 
~.' the variance of the inhomogeneous ~j becomes an invar-

• J 
lant measure of the violation of the homogeneity of regres-

sion assumption. 

" - The measure of violation of the homogeneity of varJance 

assumption used in this study is the squared coefficient of 

variation of the K population variances: 

c~ 
J 

(2.11) 

where the numerator is the variance of the K variances and the 

denominator is the squared mean of the K variances. 
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Although this measure has not been directly derived for 

the ANCOVA situation, Box (1954) found in the case of ANOVA, 

w i th equa 1 group srizes, under the cmmë:l:iiittihm of unequa 1 var

iances, the ratio of mean sqqares does not fol1ow the distri

bution F(K-l, N-K) but is distributed approximately as: 

F [(K-l)€ l, (N-K)€ ] ' (2. 12) 
. . .. -1 

where €I = (1 + ~:~ (è2) ; e: = (1+e2 ) -1 and ~2 is the squared 

coefficient of variation of the K variances. Thus when the 

variances are unequal el and € are less than unit y and the 

"significance of effects i,s somewhat overestimated" (p. 300); 

the larger the value of c2 , the larger the overestimation. 

Boxls approximate measure of violation of the homogeneity 

of variance assumption in ANOVA extends itself to the ANCOVA 

situation provided that the behaviour of the covariate does 

not ~~~à~ae the situation. Potthoff (1965) as reported by 

Elashoff (1969) suggests that the effect of inequal ity of var

iances in the y scores is minimized in the ANCOVA situation 
2 

when ~xt and n. are constant across groups. For the purposes 
j J 

of the present study, therefore these restrictions on the Xij 
obtained. 

Thus the measures of violation of the homogeneity of re

gression and the homogeneity of variance assumptions used in 
2 2 

this study are 6~. and è6~ respectively. 
J J 
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DETERM INAT ION OF INPUT VALUES OF f3. AND .cl:. 
CORRESPOND ING TO VALUES OF 6'g. andJ c~~ 

J J 
2 . 

For any given value of d~., the variance of the reg res-

2 J 
sion slopes, or of c6~' the squared coefficient of variation 

of the variances, a c~rrespondinglY unique set of ~j or ~ 

does not existe Consequently the following non-arbitrary methods 

of determining values of ~j and 6} corresponding to given v.alues 

2 2 
of 6~. and cd~ respectively were derived and appl ied uniformly 

J J 
throughout the present investigation. 

2 
The set of K ~jlS corresponding to a given value of d~. 

J 
were selected 50 that they were centred on unit y and were 

separated from one another by equal intervals. 

S ince variances are proportional to a chi-square distribu

tion, an attempt was made to select K variances corresponding 

to K points on the abscissa of such a distribution so that the 

areas bounded by their vertical projections were equal. To 

do this, K points on the abscissa of the normal distribution 

were chosen so that the areas bounded by their vertical projec

tions were equal and centred on the mean. The corresponding 

X2 values were derived by the following approximation due to 

W i l son ?lnd H il fe rt y (193 1) : 

1/3 1/2 
(X2 /V) = l - 2/9~ + Z(2/9~) (2.13) 

where the value of ~ was chosen to yield a desired value of 

c~ between the K values. The values were then transformed so 

J 
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as to have a mean of unity. The pair-wise sets of ~j and dj 
were then combined in the same ascending order of magnitude. 

2 
(The actual values of ~. and 6. derived in the above manner 

J J 2 2 

corresponding to given values of 6~. and c6Ç for different 
J J 

values of K are recorded in Appendix B). 

THE RANDOM NUMBER GENERATOR 

Necessary to the success of any Monte Carlo study is an 

adequate procedure for generating random numbers described by 

specific probability density functions. Computer simulation 

of stochastic processes usually depends on the internal gen

eration of 'pseudo-random' sequences of numbers. The most 

common procedure is to generate sequences of numbers which are 

randomly 'sampled' from a uniform distribution; samples from 

other distributions are then produced by sorne transformation 

of these uniform variates. 

The McG ill Random Number PacKage 'Super-Duper' developed 

by Marsagl ia, Ananthanarayanan and Paul (1972) was used to 

generate random normal variates ,in this study. 'Super-Duper' 

capital izes on the idiosyncrasies of the I.B.M./360 hardware 

on which the present simulations were rune The PacKage con

tains a fast uniform random number generator which combines a 

multipl icative congruential generator and a 'shift-register' 

generator; both generators were chosen so as to have the greatest 
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possible period and to minimize any regularity patterns. The 

random number generator, which is very fast relative to other 

available generators (15,000 normal variates per second) uses 

the uniform generator to generate the normal variate 95% of the 

time from a rectangular distribution which is close to the nor

mal curve; for the remaining 5% of the time, the variate is 

generated so as to compensate for the discrepancy. The result 

is a sequence of variates whose distribution is described by 

the normal curve. (A 1 isting of 'Super-Duper' appears in 

Appendix C). 

CONTROL OF CONCOMITANT VARIABLES 

ln order to evaluate the effects on the size of probabil ity 

of Type 1 error of any given violation combinat ion, each 

sampl ing distribution of simulated ANCOVA experiments was con

structed so that any deviation from theoretical percentage 

levels could be attributed as exclusively as possible to the 

violation of the two assumptions. This impl ied that: 

1. in each simulated ANCOVA experiment, al1 assumptions of 

the test except those under study were upheld; and 

2. a large enough series of ANCOVA experiments was simulated; 

that is, the sampl ing distribution was sufficiently large. 

to keep the standard error of the probabil ity of Type 1 

error acceptably 10w. 
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~e~()1çt'nQ the ~ema}Ai~A Assumpt ions of the Te§t 

Throughout the entire study the following specifications 

for each ANCOVA experiment obtained: 

a) the K error term pppulations, from which the K treatment 

groups were randomly drawn, were independently and nor

mally distributed with zero mean. 

b) the fixed (for a given sampl ing distribution) values of 

the covariate ~ were transformed such that they were 

approximately normally distributed with Xj = 0 and 

c) 

Sx. = 1 for all treatment groups. 
:J 

T. was set to zero for all treatment groups (the null 
J 

hypothesis situation obtained). 

d) individual values on the dependent variable were deter-

mined by 'predicting ' from the X values and then adding 

a random error term (the additivity assumption). 

3000 ANCOVA F-values constituted each sampl ing distribution. 

This ensured that under normal Central-F theory condition3, 

the standard error of the probabil ity of Type 1 error ~ 0.004 

for a = .05 and ~ 0.002 for a = .01. 
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THE MONTE CARLO SIMULATION PROCESS 

ln addition to the above specifications, values were also 

given to the following parameters in the construction of each 

sampl ing distribution: 

a) K, the number of treatment groups per ANCOVA experiment. 

b) n, the number of experimental units per treatment group. 

c) the K population variances as determined by the value of 

c~ and 
J 

d) the K population regression slopes as determined by the 

value of ~ .• 
J 

With these specifications given as input, each sampling 

distribution is constructed by the following steps: 

1. The simulation program causes K groups of random normal 

variates each of size n to be generated. These values 

are transformed in such a way as to conform to the speci

fications of the covariate (see above). The values are 

then used as the covariate values for each ANCOVA ex-

periment in the sampl ing distribution. 

2. Next, K groups of random normal variates each of size n 

are generated. The elements of the K groups are then 

transformed so that the K groups constitute K random 

samples from K error populations with respective variances 

as specified. 
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3. The values for the dependent variable are determined by 

y •• = X .. ~ 13· .+ ~... The data are now ready for ANCOVA 
IJ IJ J IJ 

computation.,. and the calculation of F is carried out 

using a specially written ANCOVA program. 

4. Steps 2 and 3 are repeated 3000 times, yielding an empir

ical sampling distribution of ANCOVA F-values for a 

partic~lar combinat ion of degrees of violation of the 

two assumptions. (A listing of the simulation program 

appears in Appendix C). 
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CHAPTER 3 

THE EXPERIMENTS 

THE SCOPE OF THE STUDY 

Considerations of time and money Kept the number of 

combinat ions of degrees of violations of the two assumptions 

investigated necessarily low, and since the primary purpose 

of the study was to establ ish a functional relationship 

between combinat ions of degrees of violation on the one hand, 

their effects on the probabil ity of Type l error (~) on 

the other, it seemed desirable to sample from over a f~.irly 

wide range of violation of each assumptJon. A prel iminary 

study ~s carried out to ascertain roughly the range of 

effects on a level of varying degrees of violation ef each 

separate assumption. The results of this pilot suggested 

in the case of the homogeneity of regression assumption, a 

maximum level of ~~ = 0.36 which yielded empirical percentages 

of the order of 2% and 0.02% corresponding to 5% and 1% nom-

inal levels respectively; and in the case of the homogeneity' 

of var iance assumption a maximum level of 
2 1.80 which c#. := 

J 
10% and 5% yielded empirical percent ages of the order of cor-

responding to the nominal 5% and 1% levels respectively. 
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PARAMETRIC SPECIFICATIONS 

The effects of simultaneously violating the two assump

tions under study were examined using the following levels 
.. 

of violation: 

6~ . 0.00, 0.04, 0.08, O. 12, o. 16, 0.20, 0.24, 0 .aB, 0 <32, 0.36 

J 

c~~ 0.00, 0.18, 0.36, 0.54, 0.72, 0.90, 1.08, 1.26, 1.44, 1.62, 

J l .80. 

The investigation proceeded by constructing six bloCKS 

of sampl ing distributions according to the procedure described 

in Chapter 2; each of the first four bloCKS contained 110 

sampl ing distributions each of which embodied one of the 110 

combinat ions of 6~.and c~ above. Each of the last two bloCKS 

J J 
contained 48 sampl ing distributions each of which embodied one 

of the 48 combinations of the first eight levels of ~. and 

the fi rs t s ixl eve 1 s of c~. (The reason for the redu~ed 
J 

number of sampl ing distributions in the last two bloCKS was 

due to inherent 1 imitations on the procedure for deriving 

values of 6
2
J
" corresponding to higher levels of c22 in the 

cL 
J 

K = 2 case). 

The size of the simulated ANCOVA experiment in each bloCK 

was as fol1ows (K is the number of treatment groups, and n is 

group size) 
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BLOCK l K = 5, n = 15 

BLOCK 2 K = 5, n = 5 

BLOCK 3 K = 3, n = 15 

BLOCK 4 K = 3, n = 5 

BLOCK 5 K = 2, n = 15 

BLOCK 6 K = 2, n = 5 

A violation-free sampl ing distribution 
2 2 

(6~. = 0.00, c6~ = 0.00) 
J J 

was included in each bloCK as a checK on the accuracy of 

the simulation procedure. For each sampl ing distribution in 

each bloCK, the number of ANCOVA F-values (referred to as -

Fcounts) exceeding the F-values corresponding to nominal 5% 

and 1% levels of significance respectively, were recorded. 

An attempt was then made to establ ish 
2 

between Fcounts and levels of 6~. and 

a predictive relationship 

2 
c6~ and to examine any 

J J 
changes in this relationship which occurred with changes in 

a) the ANCOVA design size 

b) the Œ level of which Fcounts were taKen. 

RESULTS 

Tables 3.2 and 3~3 contain the matrices of Fcounts (ex

pressed in proportions) of the six bloCKS of sampl ing distri

butions corresponding to the 0.05 and 0.01 levels of signifi-

ance respectively. Table 3.1 below shows the 95% confidence 

regions for P = 0.5 and P = 0.1; they were calculated using the 

following angular transformation to normal ity for binomial variates: 
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(3.1) 

where X/N = P and A is asymptotically normally distributed 

with variance within +6% of 821/(N+t). (Keeping, 1962, p. 72). 

TABLE 3. 1 

95% Confidence Limits for Est imat ing P = 0.05 and 
P = 0.01 for Sample Size N = 3000 

Lower L im it 

0.043 

0.005 

Upper Limit 

0.058 

0.014 

-p-

0.05 

0.01 

The first eotry of each matrix in Tables 3.2 and 3.3 is an 

Fcount on a violation-free sampl ing distribution and as can 

be seen from Table 3~1 each one falls inside the 95% confid

ence intervals for P = 0.05 and P = 0.01 as the case may be, 

thereby val idating the accuracy of the simulation process; 

these intervals are also useful in interpreting the ·rseldl!)U!sness 

of violation effects. 

Table 3.4 contains the results of multiple regression 

analysis appl ied to each bloCK with Fcounts as the dependent 

variable and levels of violation of the two assumptions as 

predictopss. A subsequent examination of plotted residuals 

suggested the inclusion of the product of the two measures 

of violation.as a third predictor. The regression equations 

for the three-predictor case are displayed in Table 3.5; with 
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A 
the exceptions of ~3 for BloCK l and for BlocK 5, in Table 

3.2, all parameter estimates prov.ecldto be significantly 

different from zero at least at the 0.05 level of signif

icance (For details of statistical tests see Appendix 0). 

As can be seen from inspection of Table 3.5, the values 

of the regression weights in the six equations corresponding 

to a = 0.05 differ substantially from those of the six 

equat ions correspond ing to a. = 0.01. In order to ascerta in 

whether the regression equations depended on the size of k 

(number of treatment groups), tests for differences between 

the three sets of regression equations, (collapsed across 

n = 5 and n = 15) at each level of a. were carried out, and 

yielded significant results in each case. Further, pair

wise tests between regression equations with the same value 

of K and the same cr. level, but differing in the size of n 

were carried out, and yielded significant differences in 

all twelve cases. (For details of statistical tests, see 

Append ix 0) • 
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TABLE 3.2(a): Matrix of Fcounts for BlocK 1. K = 5, n = 15, n = .05 

A 
J 

o€J 0.00 0.18 0.36 0.54 0.72 0.90 1.08 1.26 1.44 
f3 • 

J . 
, . 

0.00 .051 .066 .1068 ;:';072 .073 '~085~; .084 • 088 .098 

0.04 .045 .052 .059 .068 .067 .077 .075 .077 .082 

0.08 .038 .046 .050 .054 .062 .069 .077 .068 .075 

O. 12 .029 .032 .045 .055 .055 .064 .069 .064 .076 ._--, ~-

0.16 .033 .036 .035 .052 .053 .048 .052 .068 .066 

0.20 .026 .027 .039 .042 .048 .051 .056 .069 .065 
, , 

0.24 .022 .027 .033 .033 .039 .049 .050 .051 .051 

0.28 .016 .020 .027 .039 .030 .037 .045 .052 • 048 

0.32 . 014 .023 
. 
.026 .032 .032 .033 .042 .051 .054 

",-' 

0.36 .013 .010 {.'022 .029 .031 .034 .038 .038 .041 

._-~ ---~ -'_'_'_"_._-~_~_-, ___ ...... ___ .. _;.,.___ == '_dO __ • -". --~ •• _.. ~ •• " __ '. ' .. _ ••• ~" ,~._.'~""r-'."'-.r! .• ~~ ..... : •. ___ ."' .... ~"'r>-'- .... ..;.. .... _ ... , ................ .....t.J • .-__ , ~ 

1.62 

.104 
. , 

.093 

.082 

.076 

.083 

.064 

.064 
, . 

.060 

.055 

.048 

;--, 
~ ., 

1.80 

· . 

.095 
· . 

.091 

.095 

.079 

.070 
· , 

.070 

.067 

.061 

.048 1 

.053 

1 
W 
00 
1 

,',' 1 
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TABLE 3.2(b): Matrix of Fcounts for BloCk 2. k = 5, n = '5, ~ = .05 

~ 
0' 

~ j 0.00 0.18 0.36 0.54 0.72 0.90 1.08 1.26 1.44 1.62 
/3 • 

. J 1 

. . .. 
0.00 .047 .061 .075 .073 .100 .091 . .105 .099 .107 .113 

.. . . 

0.04 .052 .055 .057 .066 .082 .078 .081 .091 . 094 .099 

0.08 .037 .045 .055 .052 .062 .065 .. 075 .082 .090 .097 
o, 

O. 12 .034 .042 .052 .054 .060 .055 .063 .079 .081 .089 

o. 16 .026 .032 .046 .051 .055 .056 .069 .066 .075 .075 

0.20 .027 .027 .038 .046 .054 .055 .057 .059 .061 .074 

0.24 .020 .028 .034 .041 .045 .056 .049 .050 .064 .065 

0.28 .026 . .025 .030 .039 .035 .048 .049 .Q50 .056 .064 

0.32 .019 .023 
. 
.031 .027 .039 .040' .054 .050 .053 .049 

0.36 .018 .018 .024 .027 .034 .039 .041 .044 .044 0.50 

.,:,.;.; .. , . 

~!tI 
., '1 

1.80 

. 119 

.09~1 

.097 

.089 

.080 

.068 

.068 

.065 

.063 

.050 

1 
W 
~ 
1 
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TABLE 3.2(c): Matrix of Fcounts for Block 3. ~ = 3, n = 15, a = .05 

I~ 
.-

.o? J 0.00 0.18 0.36 0.54 0.72 0.90 1.08 1.26 1.44 
13· J , 

0.00 .056 .057 .061 . 066 .070 .076 . .072 .081 .084 

0.04 .045 .047 .047 .055 .059 .060 .063 .078 .081 

0.08 .040 .044 .053 .049 .060 .065 .. 067 .067 .076 

0.12 .037 .041 .043 .044 .053 .059 .052 .064 .063 

0.16 .030 .034 .046 .039 .048 .047 .052 .051 .058 

0.20 .024 .029 .030 .041 .042 .044 .049 .051 .055 

0.24 .025 .021 .030 .034 .032 .046 .047 .044 .056 

0.28 .023 .025 .025 .030 .037 .037 .042 .048 .050 

. 
0.32 .019 .020 .026 .031 .033 .032 .045 .045 .048 

0.36 .019 .021 .031 .028 .031 .037 1.036 .036 .040 

,,~.~ .. ,' .. 

1.62 

.077 

.078 

.,083 

.069 

.056 

.067 

.060 

.• 051 

.045 

.047 ... ..~ 

P"""" , , '( 

1.80 

. " 

.090 

.089 

.088 

.065 

.061 

.054 

.056 

.050 1 

.051 1 
1 

.046 
1 

! 
.• _----------

1 
-1==" 
o 
1 

j 



;-, 
1 

, ..... '.~ .". ro<·~·'··";·'''"·'''';:J_~''':'''_:'''''~'·'''''~'''·lP-.r,,..·A .. ,,..-:~._'.-'" .",., ,.: .... "'-~ .... -. 

TABLE 3.2(d): Matrix of Fcounts for BlocK 4. K = 3, n = 5, a = .05 

~ 
.' 

2 J 0.00 0.18 0.36 0.54 0.72 0.90 1.08 1.26 1.44 1.62 
°13 • 

J , 
.. 

0.00 .053 ~~061 .066 .070 .073 .073 . .090 .095 .105 .110 
~ .. 

0.04 .039 .049 .057 .057 .070 .06~ .084 .080 .094 .0$6 

0.08 .042 .046 .055 .063 .061: • otto .. 080 .084 . 089 .097 
.. 

0.12 .034 .045 .049 .049 .052 .061 .073 .072 .075 .093 

0.16 .034 .038 .039 .044 .049 .054 .065 .067 .074 .076 

0.20 .033 .032 .048 .048 .041 .045 .059 .065 .066 .076 

0.24 .031 .027 .040 .033 .050 .051 .047 .050 .058 .064 

0.28 .028 .032 .037 .040 .042 _ .. 4 .045 .044 .055 .059 .058 

. ,. ...... 
.048 0.32 .026 .027 .029 .040 .044 .035 .050 .056 .054 

0.36 .020 .024 .025 .038 .034 .038 .043 .037 .051 .055 

,...-., 
~ 

1.80 

.105 

• 110 
.. 

.097 

.086 

.086 
! 

.071 

.067 

.056 

.063 
1 

.054 ........ 

. :. -, '. ", . : - " ~ ! 

1 
.j:::" -
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TABLE 3.2(e): Matrix of Fcounts for BlocK 5. K = 2, n = 15, ~ = .05 

~ 
.' 

~J 0.00 0.18 0.36 0.54 0.72 0.90 1.08 1.26 1.44 1.62 
~ . 

J , 

0.00 .048 • 054 .052 .053 .051 .068 . -- -
~ . . 

0.04 .041.~ ; .050 .046 .046 .059 .049 

0.08 .045 
~'P' 
~;.042 .042 .046 .052 .052 

0.12 
.. ~~ 

~ .043 .040 .043 .045 .047 .033 

o. 16 .038 .041 .035 .043 .036 .040 
. . 

0.20 .030 .037 .042 .035 .036 .039 

0.24 .025 .022 .031 .028 .039 .037 

0.28 .030 .025 .030 .034 .032 .027 

. 
0.32 

0.36 

~.,\ 
, 't 

1.80 

1 

1 

--- _. 

1 
-1=:" 
1\) 

1 
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TABLE 3.2(f): Matrix of Fcounts for BloCK 6. K = 2, n = 6, ~ = ~05 

~ 
.' 

a?J 0.00 0.18 0.36 0.54 0.72 0.90 1.08 1.26 1.44 1.62 
t3 • 

J , 
; 

, 

0.00 .048 . 055 .061 .063 .073 .071 . 

0.04 .056 .043 .057 .059 .060 .070 

0.08 .036 .048 .047 .058 .056 .064 

0.12 .037 .044 .044 .048 .049 .058 

o. 16 .033 .038 .044 .048 .047 .053 

0.20 .037 .029 .038 .040 .043 .051 

0.24 .032 .032 .033 .037 .041 .049 

0.28 .029 .026 .033 .034 .036 .041 
. 

0.32 

. 0.36 

.. , 

,,-.~ , ~ 

1.80 

i 

-

1 
..j:::" 

lA.) 

1 

.' i 

J 
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TABLE 3.3(a): Matrix of Fcounts for BloCk 1. k = 5, n = 15, a = .01 

~. 
." 

! ~.J 0.00 0.18 0.36 0.54 0.72 0.90 1.08 1.26 1.44 1.62 

1 J \ , 

0.00 .011 .017 .016 . 024 .025 .028 . .032 .039 .042 .050 .... , 
- . 

0.04 .006 .011 .019 .020 .025 .025 .028 .032 .034 .044 

.. 0.08 .006 .011 .017 .019 .020 .022 .• 028 .030 .034 .033 .. , .. , 
o. 12 .003 .009 .010 .020 .020 .021 .029 .025 - .028 .031 

. . .. 

0.16 .005 .008 .010 .018 . (j)()16 .013 .015 .023 .026 .031 

0.20 .004 .004 .009 .009 .014 .016 .017 .025 .024 .027 

0.24 .002- .004 .007 .010 .010 .014 .015 .019 .019 .024 

0.28 .001 .003 .004 .010 .006 .012 .014 .015 .017 .019 

. - .. . 
0·32 .002 .003 .003 .007 .011 .008 .013 .016 .019 .022 

.. 

0.36 . eal .001 .004 .006 . 0g.2 .... .011 ... 1 • .:'<21.!, .011 .014 .016 

~ .. 
, y 

1.80 

.043 

.037 

.042 
! 

.031 

.030 

.023 

.027 

.024 

.017 

.020 

1 
-+=' 
-+=' 
1 
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TABLE 3.3(b): Matrix of Fcoijnts for B10CK 2. K = 5, n = 5, a = .01 

~ 
.-

~.j 0.00 0.18 0.36 0.54 0.72 0.90 1.08 1.26 1.44 
. J , 

0.00 .007 .012 . 023 .023 .032 .030 . .035 .040 .048 

0.04 .011 .011 .016 .020 .031 .024 .031 .036 .038 

0.08 .007 .013 .017 .012 .020 .024 .• 029 .032 .039 
... 

0.12 .004 .009 .013 .011 .017 .020 .018 .032 .034 

0.16 .004 .006 .010 .014 .016 .018 .026 .020 .027 

0.20 .007 .006 .010 .010 .015 ! .014 .022 .020 .024 

0.24 .003 .006 .008 .010 .012 .016 .016 .017 .024 
.. 

0.28 .004 .O()3 .005 .O()IO .010 .014 .016 .019 .018 

.004 
. 

.008 .008 .014 0.32 .002 .005 .012 .017 .019 
. . . . . . .. 

0.36 .002 .003 .005 .005 .011 .011 .013 .014 .015 
----------- ---------- ----------- ------ -------....~-- ---

""77"-" • 

1.62 

.048 

.042 

.039 

.034 

.028 

.028 

.025 

.019 

.018 

.015 

r"~ 

1.80 1 

.059 

.043 

.046 

.041 
i 

.033 

.026 

.023 

.023 

.0.22 

.020 

. _~-::::';':l 

1 
-f:::' 
\Jl 
1 
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TABLE 3.3(c): Matrix of Fcounts for BloCK 3. K = 3, n = 15, a = .01 

~ 
.-

~ J 0.00 0.18 0.36 0.54 0.72 0.90 1.08 1.26 1.44 
13· J , 

0.00 .011 .011 .015 .016 .021 .026 . .023 .030 .034 

0.04 .010 .010 .011 .013 .017 .018 .022 .026 .034 

0.08 .008 .008 .013 .014 .021 .022 .026 .025 .031 

o. 12 .007 .011 .013 .010 .016 .017 .015 .017 .025 
~---------, 

0.16 .004 .004 .007 .007 .013 .015 .015 .016 .014 
· , · . 

0.20 .005 .004 .005 .013 .009 .015 .013 .015 .017 
.. 

· . . . . . 
0.24 .005 1t~.003 .004 .009 .007 .013 .014 .018 .018 

· -~~ · . . . .. 

0.28 . 003 'r.t .006 .005 .007 .009 .008 .011 .013 .016 

0~32 .002 .003 .006 .005 .008 .008' .012 .012 .015 

· . · . 

0.36 .003 .002 .007 .007 .008 .010 .012 .010 .012 
~-----, 

.~-'-_.~ .. - -:~., 

1.62 

.029 

.028 

.026 

.024 

.022 

.023 

.018 

.015 . ..J 

.013 1 

.014 

1"-" 
" 

1.80 

.034 

.033 

.033 

.023 

.022 1 

1 

.017 

.019 

r .012 l 
._~ 

~·~017 

~ 
.014 1 

1 

. .....J 

1 
.j::::' 

0"\ 
1 

:'; 

J 
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TABLE 3.3(d): Matrix of Fcounts for BloCK 4. K = 3, n = 5, a = .01 

~ 
.' 

o? j 0.00 0.18 0.36 0.54 0.72 0.90 1.08 1.26 1.44 

t3 • 
J " 

, 

.. 

0.00 .009 .015 .016 . 020 .020 .025 . .031 .037 .039 

0.04 .007 .012 .014 .014 .019 .019 .027 .030 .037 

· .. 

0.08 .006 .010 .010 .015 .018 .025 .• 025 .027 .034 

0'.12 .Q07 .007 .011 .014 .012 .017 .022 .026 .034 

· . . . 

0.16 .004 .007 .008 .010 .014 .017 .021 .022 .025 
' . 

- · . 

0.20 .G96 .006 .011- .01l .012 .Ol'(!) .oag .021 .O2l{.)+ 

· . .. 

0.24 .005 .005 .009 .009 .010 .013 .012 .018 .019 

0.28 .005 .004 .010 .011 .008 .013 .012 .015 .018 

· . · . .. 
._, 

0.32 .005 .003 '.006 .011 .009 .006 .012 .012 . 019 

· . . . . . .. 

0.36 .004 .004 .004 .009 .007 .011 .013 .009 .014 

• , •. ~;._.", ...... ';''';.' '";~ .... :l' •• ~", •• ,,_!;-:~ 

1.62 

.046 

.034 

.036 

.038 

.027 

.029 

.024 

.020 

.015 . 

.017 

r---". 
~ '" 

1.80 

.043 

.049 

.041 
, 

.034 

.032 

.022 

.026 

.018 

'.019 

.020 

1 
'.J:r 
-:] 
1 
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TABLE 3.3(e): Matrix of Fcounts for BloCK 5. K = 2, n = 15, a = .01 

~ 
.' 

0.00 0.18 0.36 0.54 0.72 0.90 1.08 1.26 1.44 1.62 
f3 • 

J . 
· .. 

0.00 .009 .008 .011 .0H .Ol#. .015 , 

o .0J+ .008 .014 .009 . .008 .015 .014 
· . , 

0.08 .009 .009 .007 .009 .010 .013 
.. 

0.12 .008 .006 .010 .012 .008 .011 
· . .. 

0.16 .005 '.008 .007 .007 .008 .011 
.. · . . . 

0.20 .004 .007 .007 .007 .005 .007 

0.24 .003 .002 .006 .006 .004 .008 
: .. 

0.28 .005 . .005 .007 .005 .005 .003 

0.32 

0.36 

_.~._._---_._-_._--------- '~._.~-'-~'''''''--'' -~_._--_..:.... .... 

,-...~ 
, 't 

1.80 

1 

! 

1 
-1=' 
(» 
1 

.. 1 
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TABLE 3.3(f): Matrix of Fcounts for BloCK 6. K = 2, n = 5, a = .01 

~ 
.' 

o? j 0.00 0.18 0.36 0.54 0.72 0.90 1.08 1 .26 1 .44 
(3. 

j '. . 
0.00 . 008 .013 .012 .013 .020 .022 

. , 

0.04 .011 .006 .017 .013 .011 .021 

0.08 .006 .010 .011 .014 .013 .017 

0.12 .004 .009 .010 .013 .012 .015 
... 

0.16 .007 • 006 .009 .009 .011 .013 
.. 

0.20 .006 .005 .007 .007 .009 .014 
.. 

0.24 .006 .005 .009 .008 .011 .008 

0.28 .006 .. 004 .006 .005 .008 .009 

. 
0.32 

0.36 

1.62 

,-•. , 
\ . 'f 

1 .80 

1 

1 
..J::" 
\0 
1 

.--'.;" :: 
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TABLE 3.4: 

BLOCK 
NO. 

2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

Multiple Regression Weights for 6 BloCKS of Sampl ing Distributions. 
- " ". d .. h f 2 Note: ~o = constant; ~1 = estlmate regresslon welg t or c6~; 

est imated regress ion weight for 6~. J 
J 

A A A 

....a...... K n ~o·· ~1 /32 R - - -. - -..:. 

.05 5 15 161 .93 74.84 -383.87 0.976 

.05 5 5 174.65 81 .89 -421 .07 0.9p5 

.05 3 15 152.42 58.56 -318.50 0.964 

.05 3 5 165.20 77.79 -355.58 0.963 

.05 2 .. 15 147.09 27.86 -266.37 0.914 

.05 2 5 153.65 62.56 -302.33 0.959 

.Ol 5 15 44.68 43.37 -167.48 0.960 

.01 5 5 46.67 47.56 -178.44 0.946 

.01 3 15 38.02 30.59 -123.40 0.934 

.01 3 5 39.69 42.55 -145.22 0.937 

.01 2 15 30.33 10.60 - 77.18 0.831 

.01 2 5 ..)31.30 25.79 - 88.00 0.877 

i'~'\ 
" 

1 
U1 
0 
1 
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TABLE 3.5: 

BLOCK 
NO. 

2 

3 
4 
5 
6 

2 
3 
4 
5 
6 

Multiple Regression Weights for 6 BlocKS of Sampl ing Distributions 

. " ". d .. h f 2 " Note: ~o = constant; ~l=estlmate regresslon welg t or c6~; ~2 
estimated regression weight for 6~ ; ~3 = estimated regression 

22· 
we ight for O'~ •• c6~ J 

J _ J 

" " " g 
1< n ~o ~ ~2 ..JL. ~ 

.05 5 15 156. 14 81 .28 -351 .68 - 35.80 

.05 5 5 155.74 102.91 -316.00 -116.80 

.05 3 15 145. 16 66.62 -278.17 - 44.80 

.05 3 5 141 .33 104.31 -223.00 -147.30 

.05 2 15 156. 14 38.06 -233.59 - 72.80 

.05 2 5 155.74 77.20 -255.29 -104.50 

.01 5 15 31 .53 57.99 - 94.41 - 81 .20 

.01 5 5 25.79 70.54 - 63.51 -127.70 

.01 3 15 27.16 42.66 - 63.08 - 67.00 

.01 - 3 5 19.43 65.06 - 32.66 -125.10 

.01 2 15 26.00 20.23 - 46.23 -~688ao 

.01 2 5 25.22 39.30 - 44.59 - 96.50 

,,:~-~-_.-- .... _-------_-... ...... ~-.--_._._-----_.- .~-"--' -~--- --- • - .". - - "'-'-~'''''''''''' '-.- .,. ~ ~~"- ._- -"'--"'-~""I", ................. _-_ .• ~· __ .~ ...... : ............ "~ ___ ,,.~ 

B. 

0.976 
0.972 
0.965 
0.975 
0.917 
0.963 

0.974 
0.975 
0.951 
0.973 
0.856 
0.902 

~" 't-

i 
\:n 
~ 

1 

. 'l 
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CHAPTER 4 

DISCUSSION 

INTERPRETATION OF RESULTS 

The results of this study belong to that body of 

findings which attempts to apprise the scientist of the 

consequences of applying statistical tests to his data 

when the requirements of the underlying assumptions of 

the test are not fulfilled. For the most part, previous 

findings have related to situations where only one assump

tion is being violated with all other demands of the test 

satisfied. The present study arose out of the suggestion 

impliaiœ in several separate findings that the simultaneous 

presence of violation of the homogeneity of regression and 

homogeneity of variance assumptions in ANCOVA would tend to 

cancel each other out in their effects. 

The overall findings contained in Chapter 3 show that 

this tendency is in fact the case; for all 6 bloCkS of 

sampl ing distributions the effect on probabil ity of Type 

ërror of a given degree of violation of one assumption is 

strongly dependent on the degree of violation present in the 

other. Furthermore, the two violations are seen to have a 

neutral izing effect on one another. Inspection of Tables 

..... 
1 
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3.2 and 3.3 reveals that many combinations of a~ and c~ have 

sampl ing distributions with Fcounts fall ing within the 95% 

confidence interval for P = 0.05 or P = 0.01 as the case may 

be (see Fcounts with in bold l ines). ft is only those com

binations involving a low level of violation of one assump

tion in combinat ion with a high level of violation of the 

other that yield Fcounts extending beyond the confidence 

l imits. Finally, for any given violation level of one assump

tion, the most serious departure from nominal probabil ity 

levels occurs when the other assumption is fully satisfied 

(see Column land Row l of each bloCK). 

From inspection of the multiple regression data of 

Tables 3.4 and 3.5, it is suggested that the inclusion of 

the product of the two violation measures as a third predictor 

is important not only because most of its regression esti-

mates proved statistically significant but also because the 

resultant regression equations yield values of the constant 

term g which more readily approximate the expected numbers 
o. 

2 2 of Fcounts when ~~. = 0.0 and c~ = 0.0 for both ~ levels 
. ~J J 

(150 and 30 respectively) than those emerging from the two-

predictor equations. 

The differences between the 6 regression equationscor

responding to Œ = .05 and those corresponding to Œ = 0.1 

in Table 3.5 appear to be accounted for by changes in the 
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relative weightings of ~. 
. 2 J 

tlon that the role of c6~' 
J 

2 and cd~. It is clear from inspec-
J 

the measure of violation of the 

homogeneity of variance assumption, is more important in the 

equations corresponding to ~ = .01 than in those corresponding 

to ~ = .05. This is also evident in the different locations 

of the areas circumscribed by bold 1 ines in Tables 3.2 and 

3.3 respectively. The confounding presence of the interaction 

term ~3 notwithstanding, it also appears that within each ~ 

level, significant differences between 

1. regression equations corresponding to different values 

of K (collapsed over n), and 

2. pairs of regression equations corresponding to differ

ent values of n for a given value of K, 

are also attributable to changes in the relative weightings 

of 6~. and c~. While it is difficult to interpret a trend 
J J 

in the former case, it is suggested that the latter differ-

ences are due to the increasing importance of C~2 when n is 

relatively small (compare n = 5 with n = 15). 
j 

Referring again to Table 3.5, it can be seen from the 

column of multiple correlation coefficients (R), that the 

three predictors account for a very large proportion of the 

dependent variable (Fcounts); these figures testify to the 

high degree of 1 inearity in the parameters. 
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QUALIFICATIONS TO RESULTS 

Any Monte Carlo researcher who attempts to examine the 

effects of violating some specified assumption or set of 

assumptions underlying a statistical test is invariably faced 

w ith a methodolog ical paradox: in order to eval uate the spec-

ific effects of violating the particular assumption or assump

tions of his study, he must ensure that âll other assumptions 

of the test are upheld. This precaution, however, reduces 

the general izabil ity of his results to s1tuations where some 

of the other assumptions of the test are also not upheld. 

Consequently he can only hope that the general trend of his 

findings obtain{(' in these latter situations. Often it is 

a hope that is not real ized as the present study has attempted 

to show for one specific situation. 

Apart from these general considerations, perhaps the 

greatest impedlments to general izability in this investiga

tion are the restrictions on the behaviour of the covariate, 

x ..• 
IJ 

1. 

2. 

These were: 

~ x.· and hence X. were set to a constant for all j. 
IJ J 

~ X~. was set equal to a constant for all j. 
1 J 

Thesettwoconstraints on the covariate permitted a derivation 

of an ,jova riant measu re of v io lat ion of the homogene i ty of re

regression assumption, while the second constraint permitted 

the extension of Box's approximate measure of violation of the 
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homogeneity of variance assumption (derived for ANOVA) to 

the present ANCOVA context. Another qual ificationi.to the 

general apl icabil ity of the present results is due to the 

arbitrary if systematic way in which, 

1. sets of ~j and 6} were derived to correspond to given 

levels of 6~. and c~ respectively, and 
J J 

2. these two sets, so derived, were matched in the simulated 

ANCOVA experiments. More generally, even though it was possible 

to der ive invariant (or nearly so) measures of violation of the 

two assumptions separately, there is no guarantee that the 

combinat ion of these two measures constitutes an invariant 

measure of their joint violation. 

APPLICATION OF RESULTS TO PRACTICAL SITUATIONS 

Despite the qual ifications outl ined in the preceding 

section, the general results of the present study strongly 

points to the neutral izing effect on the F-test in ANCOVA of 

the simultaneous violation of the homogeneity of regression 

and homogeneity of var iance assumpt ions. It is very unl iKely 

that in any practical ANCOVA situation either of these two assump

tions will be fully met, and consequently the ANCOVA F-test 

appears from the present findings to be even more robust in 

practice, than results from previous studies taKing these viola

tions one at a time have indicated. It is difficult to esti-

mate the upper 1 imits on the violations of these two assumptions 
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as they occur in practice, but they are practically certain 

to fa11 within the range of violations encompassed by the 

present study, and unless the departure from one assumption 

is very big and is accompanied by only a sl ight departure 

from the other, it is safe to conclude that the ANCOVA F

test is only inconsequently affected by the presence of 

joint violations of the two assumptions. Fina1ly, the find

ings of the present study suggest the 1 imited usefulness of 

any test of homogeneity of regression slopes carried out 

on ANCOVA data without due regard being given to possible 

differences between treatment group variances. 

i 
1 , 
i 
1 
1 

! 
j 

1 

1 

! 

l 
. 
'j , 
{ 
,i 

'. 
\ 
.~ 
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APPENDIX A 

1. Proof that (R-Q) is symmetr ic and idempotent: 

R-Q is symmetric, since 

(R-Q) , = R' - Q' 

= R - Q using (2.4a) and (2.6) 

Let L be a matrix with 1 as its 1ast e1ement and 

zero's everywhere e1se, such that SL = T. 

[ -1][ -1 ] ThEm RQ = 1 - SL(L'S'SL) L'S' 1 - S(SI S) S' 

= 
-1 -1 -1 

- S(S'S) SI-SL(LISISL) LISI+SL(L'S'SL) 
-1 

LIS'S(S'S) Si 

= 
-1 

- S(S'S) Si 

= Q (A.1) 

(R-Q) i 5 al 50 idempotent, for 

(R_Q)2 = R2 - RQ - QR + Q2 

= R - Q - Q + Q, 5 in ce R 2 =R, Q 2=Q 

and QR=Q'R'=(RQ) '=Q'=Q 

= R - Q 



APPENDIX A (cont1d) 

2 • P roo f t ha t ( R - Q) 1 Q = 0: 

(R - Q) I Q = (R _ Q)Q 

= (RQ - QQ 

= Q - Q us i ng (A 1): 

= 0 

3. Proof that under the constraints placed on the covariate 

x .. as stated in Chapter 2, 
IJ 

, - 0 1\.1 - and 

The constraints 

~ X .. = 1 J 

on X .. 
IJ 

are: 

0 for all j 

~ X~. = n - l for a 11 
IJ 

I: ~ X~. = 
•• 1 J 

(n - l)K 
1 J r 

j 

(A3) 

(A4a) 

(A4b) 

Let the design matrix X be partitioned into the following 

submat ri ces: 

X = [A i T i B] , 

where A is the nK x K submatrix whose columns correspond 

to treatment assignment, T is the already defined nK x 1 

vector of covariate values and B is the nK x K submatrix 

whose columns correspond to (~j - ~), j = 1, ••• ,K. 



( 
APPENDIX A (cont'd) 

then A'T = T'A = 0 (us ing A3) 

A'B = B'A = 0 (us ing A3) 

À1 = I3'X'(R - Q) XI3 

= I3'X' [1 - T(T'T)-l T, =.. 1 + S(S'S)-\']XI3 

= I3'X' [S(S'S)-\I - T(TIT)-\'] XI3 

Now 

S = [A ! T] and SiS = [~~~ l ~~~ ] 
T'A IT'T 

1 

(A5) 

(A6) 

[ ~~~ ! -~-], (us ing A5) 
o IT'T 

1 

-1 
(S'S) = [~~~Ao-~~~ .:: -(T-7T~-)=Tl, using a theorem on the 

inverse of partitioned 

ma tri ces ( G r a y bill , 
1969, p. 165). 

[ 

-1 1 1 (A'A) : 0 
------- 1 -------

o 1 (T ' T)-l 
1 

-1 -1 
= A(A'A) A' + T(T'T) TI 

[-~~ ] 
(A7) 

Thus 
À1 = I3 IXI [A(A ' A)-l A, + T(T'T)-\' - T(T 'T)-lT '] XI3 

- ~'X' [A(A'A)-l A,] X~ 
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APPENDIX A (cont'd) 

AiX = [A 'A A'T A 'a] 
= [A 'A 0 0] (us ing A5 and A6) 

AIA is k x K. Under the null hypothesis, Tl = T2 ••• T
K 

= 0, 

the leading K elements of ~ are zero. 

Hence A'X~ = 0 

Hence Àl = 0 

'-2 = 13'X'[' -S(S'S)-l s ,] X13 

(AB) 

(A9) 

[ -1 ] [-1 ] = ~'X'X~ ~ ~'X' A(A'A) AI X~ - ~IX' T(T'T) TI 

= 

(TIT) 

(us ing A7) 

L: ~~ . J 
J 

-1 
L: X~. - 0 - ~'XIT(T'T) TIX~, (using A9) 
i IJ 

= 1: L: X~. 
•• 1 J 
1 J 

-1 
and (TIT) = 2 1/L: L: X •• 

•• 1 J 
1 J 

-1 
Thus ~IXIT(TIT) TIX~ = 1/L: L: X~. [~'XITT'X~] 

i j 1 J 

Thus 

1 1 1 2 
~ X T = T X~ = ~ ~. L: X .. 

j J i IJ 

2 2 222 
À2 = L:~. L: X .. - 1/L: L: XiJ' (~~. L: X .. ) 

j J IJ J J IJ 

2 ~-l 2 2 = n-1 (~~ j) - n-l K (~ ~) 
J 1 

= n-l [pl - k 13
2

] 

X~, 
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APPEND IX B 

of (3. 
2 

Values and (S. corresponding 
J J 

K = 5 

62 

~ 
(3'1' (32 

0.00 1 .000000 1 .000000 
0.04 0.717157 0.858579 
0.08 0.600000 0.800000 
o. 12 0.510102 0.755051 
o. 16 0.434315 0.717157 
0.20 0.367544 0.683772 
0.24 0.307180 0.653~90 
0.28 ,0.251669 0.625 34 
0·32 O.a!OOOOO 0.60eo~0 
0.36 o. 151472 0.575736 

c~~ 6 2 62 
~ _1 ..s. 
0.00 1 .000000 1 .000000 
o. 18 0.690374 0.838605 
0.36 0.558518 0.752084 
0.54 0.457049 0.677277 
0.72 0.372529 0.608515 
0.90 , 0.302851 0.546432 
1.08 0.244267 0.489~6i 
1.26 o. 188417 0.429794 
1.44 0.143651 0.376756 
1.62 o. 104365 0.324585 
1.80 0.071038 0.273825 

( 

2 
and c~. to 1 eve l s 0 f 6(3. 

J J-' 

~ (34 

1 .000000 1 .000000 
1 .000000 1 .141421 
1.000000 1.200000 
1 .000000 1.244949 
1.000000 1.282843 
1.000000 1.316228 
1 .000000 1.346410 
1 .000000 1.374166 
1 .000000 1.4G090G 
1 .000000 1 .424264 

~2 
.:3.. 

62 
4 

1 .000000 1.000000 
0.962725 1 .098524 
0.923455 1 • 119061 
0.882294 1.124999 
0.839373 1.122283 
0.769713 1 .113687 
0.1eG8S$ 1 .1'0086}: 
0.706622 1 .082341 
0.661098 1 .061314 
0.613175 1 .036069 
0.563104 1 .006574 

!:.2 
1 .000000 
1 .282843 
1 .400000; 
1 .489898 
1 .565685 
1.632456 
1 .6~2820 
1 .7 8331 
1 .800000 
1 .848528 

62 
.:2 

1 .000000 
1 .298665 
1 .420338 
1 .512725 
1.589612 
1.65è676 
1 .70 745 
1 .763235 
1.809415 
1.853195 
1 .894650 

.1 

J 
j 
j 
1 
1 
1 
j 
'j 

j 
1 
1 
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APPENDIX B - cont'd 

62 
B • 

...::..J. 

0.00 
0.04 
0.08 
o. 12 
0.16 
0.20 
0.24 
0.28 
0·32 
0.36 

2 
c~-• 1 

--:J-'-
0.00 
0.18 
0.36 
0.54 
0.72 
0.90 
1.08 
1.26 
1.44 
1.61 
1.80 

1 .000000 
0.755051 
0.653590 
0.575736 
0.510102 
0.452278 
0.400000 
0.351926 
0.307180 
0.265153 

(52 
1 

1 .000000 
0.725208 
0.594683 
0.493581 
0.400668 
0.315367 
0.236368 
o. 163549 
0.98270 
0.041036 
0.005997 

K = 3 

1 .000000 
1 .000000 
1 .000000 
1 .000000 
1 .000000 
1 .000000 
1 .000000 
1 .000000 
1 .000000 
1 .000000 

(52 
~ 

1.000000 
0.961686 
0.918516 
0.873828 
0.823106 
0.766848 
0.704075 
0.633189 
0.551836 
0.449345 
0.325273 

1 .000000 
1 .244948 
1 .3464-10 
1.424263 
1 .489898 
1 .547722 
1 .599999 
1 .648073 
1 .692820 
1 .734846 

62 
.:.3. 

1 .000000 
1 .244632 
1 .342640 
1 .411666 
1 .470361 
1 .520687 
1 .564739 
1.60~846 
1 .63 847 
1 .672246 
1 .701224 
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APPENDIX B (cont'd) 

62 
B. 

-=:..J.. 

0.00 
0.04 
0.08 
o. 12 
o. 16 
0.20 
0.24 
0.28 
0.32 
0.36 

c~~ 
• 1 

---:r.-
O'~·oo 
o. 18 
0.36 
0.54 
0.72 
0.90 

1< = 2 

1 .000000 
0.800000 
0.717157 
0.653590 
0.600000 
0.552786 
0.510102 
0.470850 
0.434315 
0.400000 

(52 
--1. 

1.000000 
0.755864 
0.635216 
0.512068 
0.390689 
0.223631 

1 .000000 
1 .200000 
1 .282843 
1 .346410 
1 .400000 
1 .447214 
1.489898 
1 .529150 
1 .565685 
1 .600000 

2 
62 

1.000000 
1.195270 
1 .263527 
1.318251 
1 .359177 
1.396420 
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APPENDIX C 

LISTING OF SIMULATION PROGRAM 

AND SUPER-DUPER 



1 
2 
3 
4 
5 
6 
7 
e 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
2.3 
24 
25 
26 
27 
28 
29 
30 
:H 
32 
33 
3't 
35 
36 
37 
36 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

C ••• , ••••••••• · ••• , ••• 
c •• 
c • • 

5 1 ~iU~AT ION PRJGRAM 

REAL *8 SUMO,SUMXD,SMIJX2/SMJJY2,SMIJXY~TJXI/TJYJ/BIGTX/BIGTVI 
lSMTJX2,SMTJY2,SMTJXY/8IGTX2/BIGTY2IBltTXV/ADJTOT~WITHIN,F 

DIMENSION TUTAL(10000),X(100',VARX(S),Y(100), 
lSTANDE(5),BETAXY(5)/FVALUE(3000) 

DATA VARX(1),VARX(2',VARX(3),VARX(4),VARX(S)/5*i,O / 
l READ (5,100,ENO=200) NO,N,K,INTEG1,INTEG2,CRIT5,CRIT1,MUCH,NEED 

100 FORMAT (lX,I3,4X,I2,4X,ll,4X,213,5X,Fb.2,4X,F6,2,4X,I4,4X,I2) 
READ (5,40> <STANDE(I),I=l,K) 
READ (5,40) (BETAXY(L),L=l,K) 

40 FORMAT (5F9~6) 

C •• 
C,. 
C.,THE FOLLOWING BLOCK - PART 1 - USES SUPERDUPER TO GENERATE 
C.,RANDOM NORMAL VARIATES, AND THEN ARRANGES THE XIS AND yIS 
C.~ ACCORDING TO PARAMETRIC SPECIFICATIONS. 
C •• 
C • • 

SI~=N 
SK=K 
NK=N*K 
SNK=NK 
CALL START (INTEG1,lNTEG2) 
DO 18 1 = l.,t.iK 
X(I)=RNOR(O) 

18 CONTINUE 
~L:;:l 
INDEX=l 
L.=l 
NN=N 

5 SUt'1D=O, 0 
SUMXD=O.O 

6 SU~1D=SlJ~lD+X ( L.) 
SUMXD=SUMXD+X(L)*X(~) 
\.=L+1 
IF(L.LE.NN' GO TD 6 
AMEAN=SUMD/SN 
VARIAN=(SUMXD*SN-(SUMD*SUMD»)/(SN*(SN-l.O» 
FACTOR=VARX(!NDEX)/SQRT(VARIAN) 

7 X(LL)=(XCLL)-AMEAN).FACTOR 
l,L=LL+l 
lF(LL.LE.NN) GO TO 7 
INDEX=INDEX+l 
NN;::NN+I~ 

IF(NN.LE.NK) GO TD 5 
l.oT=MUCH:~NK 
MORE=MUCH 
LEAP=l 
DO 20 I=l/NEEU 
DO 19 J=l,LOT 
TOTAL(J)=RNUR(O) 

19 CONTH~UE 
JUt-1P=O 

24 lNDEX=l 
NN=N 
~=l 

-: 1 
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59 10 
60 
61 
62 
63 
6~' 
65 
66 11 
67 C,. 
68 C •• 
69 C,. 
70 C." 
7l C.~ 
72 
73 
74 
75 
76 13 
77 
78 
79 
80 
81 
82 
83 
8'~ 
85 
86 
87 
88 15 
89 
90 14 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
lOS 
109 
110 
111 
112 
113 
114 20 
115 Cu 
116 Cil 

J =L+JU1,lp 
YCL)=TOTAL(J)*STANDE(INDEX)+BETAXY(INOEX)*XCL) 
~=L+l 
IF (L,LE.NN) GO TO 10 
NN=NN+N 
INDEX=INDEX+l 
IF(NN.LE.NK) GO TO 10 
CONTINUE 

THE FOLLOWING BLOCK - PART 2 ~ COMPUTSS ANCOVA IN DOUBLE PRECISION 

SMIJX2=O~O 
SMIJY2=O.O 
SMIJXY::o.O 
~=1 
SMIJX2=SMIJX?+X(~)*X(L) 
SMIJXY=SMIJXY+X(L)*Y(L) 
SMIJY2=SMIJY2+Y(L)*Y(L) 
L=L+1 
IF(~,LE.NK) GO To 13 
SMTJX2=O.O 
SMTJY2=O',O 
SMTJXY=O~O 
BIGTX=O.O 
BI r;,"y=o. 0 
L=I 
NN=N 
TJYI=O.O 
TJXI=O.O 
TJXI=TJXloj·X(I,) 
TJYI=TJY!+Y(L) 
I..=L+1 
IF(LfLE.NN) GO TO 14 
SMTJX2=SMTJX2+(CTJXt*TJXI)/SN) 
SMTJXY=SMTJXY+«TJXI*TJYI)/SN) 
SMTJY2=SMTJY2+«TJVI*TJYI)/SN) 

BIGTX=BIGTX+TJXI 
BIGTY=BIGTY+TJYI 
NN=NN+N 
IF(NN.LE.NK) GO TO 15 
BIGTX2=CBIGTX*BIGTX)/SNK 
BIGTXY=(BIGTX*BIGTY)/SNK 
BI~TY2=(BIGTY*AIGTY)/SNK 
ADJTOT=CSMIJY2-BIGTY2)-«(SMiJXY-BIGTXY)*(SMIJXV~BIGTXY')I l (SMIJX2~BIGTX2») 
WITHIN=(SMIJY2-SMTJY2)~((SMIJXY~SMTJXV)*(SMIJXY-SMTJXY»/ 1 (SMIJX2~SMTJX2» 
F=«(AOJTOT-WITHIN)/(SK~l.O»/(WITHIN/(SNK~SK-l,O') 
FVA~UE(LEAP) :; F 
LEAP=LEAP+l 
J U ~1 P = J U ;., P + N K 
IF(LEAP.LE.MORE) GO TO 24 
MOR E =~10RE+MUC H 
CONTINUE 

, 
;, 
1 
1 
1 

i 
j 

1 
1 
1 

1 
l 
i 
,1 

1 

J 

l 
) 
j 
î 
J 
.~ 

i , 
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117 C •• THE FOLLOWING BLOCK - PART 3 ~ COMPARES THE 3000 F~VAlUES 
118 CI' WITH NOMINAL F-VALUES AT THE 0.05 AND 0.01 LEVELS RESPECTIVELY~ 
119 CH 
120 C .. 
121 JNDEX5=O 
122 INDEX1=O 
123 17 DO 16 K=1,3000 
124 FVAL=FVALUE(K) 
125 IF(FVAL.LT,CRIT5) GO TO 16 
126 INDEX5=INDEX5+1 
12 '7 1 F ( F V'A L • L T • C R IT l ) GOT 0 16 
128 INDEX1=INDEX1+1 
129 16 CONTINUE 
130 WRITE (0/102) NO/LEAP,INOEX5,INDEX1 
131 102 FORMAT (/III,2X,I4,4X,I9/4XII4,4X,I4) 
t3? GO TD 1 
133 200 STOP 
134 END 



(-
'-

l -* 
2 * 
3 * 
4 * 
5 * 
6 * 
7 * 
8 * 
9 * 

10 * 
11 * 
12 * 
13 * 
14 * 
15 * 
16 * 
17 * 
18 * 
19 * 
20 * 
21 * 
22 * 
23 RANDOM 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 REGB 
34 REGC 
35 REGD 
36 * 

MCGILL UNIVeRSITY SCHOOL OF COMPUTER SCIENCE 

RANDOM NUMBER GENERATOR PACKAGE - 'SUPER-DUPER' 
--;-_ .... --"--- -~------~ -~----~ ... .. -- .. ------
UNIFORM,NORMAL AND EXPONENTIAL RANDOM NUMBER GENERATOR 

G, MARSAGLIA, K.ANANTHANARAYANAN, N,PAUL. 

RANDOM NUMBER GENERATOR PACKAGE-REGISTER USAGE ;--0-_ ______ --_______ _ __ .. ___ _ ______ _ 
GPR 0 ... 
GPR 1 -
GPR 2 .. 
GPR 3 
GPR13 

STORES RESULT OF IUNI,IVNI 
lREGB) CALCULATION OF RESULTS 
{REGe) CALCULATION OF RESULTS 
fREGD) CALCULATION OF RESULTS 
ADORESS OF SAVE AREA OF CALLING 
PROGRAMSIS SAVE AREA ON CALL TD 

PROGRAM .. DR OF THIS 
RNDRTH OR REXPTH 

GPR14 
GPR15 
FPR 0 

- CUNTAINS RETURN AODRESS. 

START 
ENTRY 
ENTRY 
ENTRY 
ENTRY 
ENTRY 
ENTRY 
ENTRY 
EXTRN 
EXTRN 
EQU 
EQU 
Eau 

• USED AS BASE REGISTER. 
• RESULT OF UNI,VNI,REXP/RNOR. 

o 
START 
UNI 
VNI 
RNOR 
REXP 
IUNI 
IVNI 
RNORTH 
REXPTH 
1 
2 
3 

DEFINE ENTRV POINTS 
CALL START(Il,I2) 
U=UNI(O) 
V=VNI(O) 
X=RNOR(O) 
Y=REXP(O) 
K=IUNI(O) 
J=IVf\II (0) 
FORTRAN FU~CTIONS REQUIREO-RNDRTH(I} 

REXPTH(I) 

REGISTER EQUATES 

37 * CALL STARTlll,I2) ~l,I2 ARE USED FOR STARTING THE TWO 
SEOUENCES 'MCGNI AND ISRGN', 38 * 

39 
40 START 
41 
42 
43 
44 
45 
46 STl 
47 
48 
49 
50 
51 
52 ST2 
53 RETRNO 
54 
55 * 
56 * 
57 * 
58 

USING 
5TH 
LM 
l 
LTR 
BC 
o 
ST 
L 
LTR 
BC 
N 
o 
ST 
LM 
BeR 

START,15 
REGR,REGD,24-(13) 
REGC,REGD/0(1) 
REGC .. O(Rf.GC) 
REGe/REGC 
s"STl 
REGC,Xl 
REGC/MeGN 
REGO,O(REGO) 
REGD,REGD 
B!ST2 
REGD/X7FF 
REGD,Xl 
REGD"SRGN 
REGR"REGD/24(13) 
15" 1 't 

Ur:UNI(O) 

USING UNI,d5 

SAVE REGISTERS l/2,3 
LOAD ADDRESSES OF Il,12 INTO REGC"REGO 
LOAD VALUE OF Il INTO REGe 

IF ZERO/STJRE AT IMCGN'/ELSE 
ENSURE OOO,TO KEEP PERIOO OF 'MeGN' LARGE 
STORE AT 'MCGNI 
LOAD 12 INTD REGD 

IF ZERn, STORE AT 'SRGNI,ELSE 
TAKE RESIOUE MODULO 2048 
AND ENSURE NON-ZERO 
AND STORE AT ISRGN'. 
RESTORE REGISTERS 1,2,3 
AND RETURN 

RESULT 15 ~ORMALIZED FLOATING POINT VALUE 
UNIFORMLY DISTRIBUTEO ON (O,O,l t O). 



59 UNI 
60 RDIGT1 
61 
62 
63 
64 
65 
6b 
67 
66 
69 
70 
71 
72 
73 
74 
75 
76 
77 RETRNl 
78 
79 "oC 

80 * 
81 * 
82 
83 VNI 
84 RDIGT2 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 RETRN2 
103 
104 ':c 
105 * 
106 * 
107 * 
108 * 
109 * 1. 
110 * 
111 ::c 2. 
112 * 
113 * 3, 
114 * 
115 * 4, 
116 * 

STM 
L 
LR 
SRL 
XR 
LR 
S\..L 
XR 
ST 
L 
M 
ST 
XR 
SRI" 
AL 
ST 
LE 
AE 
LM 
BCR 

REGFL"~ECD,,24( 13) 
REGS"SRGN 
REGC,REGB 
REGC,,15 
REGB,REGC 
REGC"REGB 
REGC.d7 
REGB"REGC 
REGS"SRGN 
REG 0 ,tf1 C G N 
REGC,NULT 
REûO,MCGN 
REGD"REG8 
REGn,e 
REGD"CHAR 
REGD., FI'JO 
o"FWD 
01 Z 
REGB,REGD/24(13) 
15/14 

V=VNI(O) 

USING 
STM 
L 
LR 
SRI. 
XR 
LR 
SLL. 
XR 
ST 
L 
M 
ST 
XR 
SRA 
N 
AL. 
ST 
LE 
AE 
LM 
BeR 

VNI,,15 
REGB"REGD,,24(13) 
REGB"SRGN 
REGC"REGB 
REGC,15 
REGB/REGC 
REGC,REGB 
REGC/17 
REGB;REGC 
REGB/SRGN 
REGD, t1CGN 
REGC"MULT 
REGO/MCGN 
REGD"REGB 
REGO,7 
REGO"SIGN 
REGD"CHAR 
REGD, F\~D 
01H10 
OlZ 
REGlh REGD" 24 ( 13) 
15/14 

X=RNOR(O) 

METHOQ 
CI ___ -. 

SAVE REGISTERS·1,2~3 
LOAD SRGN INTO RE GR 
AND INro REGC 
SHIFT REGC RIGHT 15 BITS 
AND XOR INTO REGS 
COPY REGB INTO REGe 
SHIFT IT LEFT 17 BITS" 
AND XOR INTO REGB 
SAVE THE NEW ISRGN' 
LOAD MeGN INTa RE GD 
AND MuLTIPlY SV 69069 
STORE RESULT/MOOULO 2**32, AS NEW 'MeGN' 
XoR NEW !MCGNI AND 'SRGN' IN REGD 
SHIFT REGO RIGHT 8 BITS FOR F,P~ FRACTION 
ADD CHARACTERlSTIC Xl40' INTO FIRST BVTE 
STO~E AT FWD, LDAD INTO FPR 0, 
AND AOD NORMALIZED TD ZERO 
~ E A VIN GRE 5 U L T 1 UNI' 1 I~ F PRO. 

RETURN 

RESULT 15 NORMALIZED FLQATING POINT VALUE 
UNIFoRM ON (~l.Oll.O) 

SAVE REGISTERS 1/2,,3 
LOAD SRGN INTD REGB 
.4ND 1 NTD RE G.e 
SHIFT ~EGC RIGHT 15 BITS 
AND XOR INro REGB 
COPy REGB INTO REGC 
SHIFT IT LE FT 17 BITS" 
AND XOR INTO REGS 
SAVE T~E NEW 'SRGN' 
LOAD MeGN INTO REGD 
AND MU(TIPLV BV 69069 
STORE RESULT/MODULO 2**32, AS NEW 'MeGN' 
XOR NEw 'MeGN' AND ISRGNI IN REGD 
SHIFT RIGHT 7 RITS PRESERVING SIGN BIT 
ZERO OUT LAST 7 nITS OF FIRST BYTE 
ADD CHARACTERISTIC X'40 1 TO FIRST BYTE 
STORE AT FWOI LDAD INTO FPR 0 
AND ADD NoRMALIZED TO ZERO 
LEAVING RESULT IVNII IN FPR O. 

RETURN 

RESULT IS STANDARD NORMAL VARIATE. 

~ENERATE H1H2H3H4H5H6H7H8,B RANDJM HEXADECIMAL DIGITS~ 

IF H~H2 .\..T. 68" SET IRNOR' TO 
(NTBL(H1H2)+.H3H4H5H6H7H8)/16, AND QUIT, 

IF H1H2 .~T. DO, SET IRNORt TD 
(-NTBL(H1H2-68)-.H3H4H5H6H7H8)/16~ AND QUITo 

IF H1H2H3 .LT, E2F ... SET 'RNoRI TD 
(NTBL(H1H2H3~CE8)+.H4H5H6H7HB)/161 AND QUIT. 



117 * 5. 
118 * 
119 * 6. 
120 :l< 

121 * 
122 
123 RNOR 
124 RPIGT3 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 NRCT 
137 
138 
139 NOl 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 ND2 
150 
151 
152 
153 
154' 
155 
156 
157 
158 
159 
160 
161 
162 ND3 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 

IF HIH2H3 .LT~ FSE, SET 'RNOR' TO 
(-NTBL(HIH2H3~E17)w.H4H5H6H7H8)/16, AND QUIT, 

ELSE,GENERATF IRNORI FROM THE NORMAL TOOTH-TAIL SUBPROGRAM. 

USING 
STM 
L 
LR 
SRL 
XR 
LR 
St-lo 
XR 
ST 
l-
M 
ST 
XR 
SLR 
Cl. 
BC 
SLDI.. 
le 
STC 
SRL 
AL 
ST 
LE 
AE 
LM 
BCR 
CL 
BC 
SLDL 
SL 
IC 
STe 

.SRL 
AL 
ST 
LE 
SE 
LM 
BCR 
CL 
BC 
SLD~ 
s~ 
IC 
STC 
SRL 
AL 
ST 
LE 
AE 
LI-' 
BCR 

RNOP." 15 
REGB .. REGD,,24(13) 
REGB .. SRGN 
REGC/REGB 
REGC,l!) 
REGB,REGC 
REGC,RF.GB 
REGC,l? 
REGRIREGC 
REGB/SRGN 
REGO,MCGN 
REGC .. t1UL T 
REGD/MCGN 
REGO"REGB 
REGC"REGC 
REGD,.X68 
ll/N02 
REGelS 
REGC/NTBL(REGC) 
REGC"PSTWRD+1 
RECD,8 
REGO .. PCHAR 
REGO"FRAC 
QI PSHJRD 
O/FRAC 
REGB" REGD,24 ( 13) 
15/14 
REGO,XOO 
111 ~W3 
REGC18 
REGC .. X6BR 
REGC"NTP.L(REGC) 
REGC"NSTWRD+l 
REGO"a 
REGO"PCHAR 
REGO/FRAC 
0" N5T\olRO 
o .. FRAC 
REGB"REGD,24(13) 
15/14 
REGD .. XE2F 
11" ND4 
REGC,,12 
REGC .. XCEB 
REGC,I\!TBL(REGC) 
REGC .. PSTWRD+l 
REGO,a 
REGO."PCHAR 
REGD .. FRAC 
0 .. PSHIRD 
0 ... FRAC 
HEGH,REGD/24(13) 
15,14 

SAVE REGISTERS 1,2,3 
LOAD SRGN INTO REGB 
AND INTO REGC 
SHIFT REGC RIGHT 15 BITS 
AND XOR INTO REGB 
capy REGB INTO REGC 
SHIFT IT LE FT 17 BITS .. 
AND XOR INTO REGB 
SAVE THE NEW ISRGN' 
LOAD MCGN INTO REGO 
AND MULTIPLY BY 69069 
STORE RESULT,MODUlO 2**32" AS NEW IMCGNI 
XOR NEW 'MeGN! AND ISRGN' IN REGD 
ZERO OUT REGC 
IF RE GD GE 68000000lBRANCH TD 'N02' 

SHIFT FIRST 2 HEX DIGITS INTO REGC 
FETCH CORRESPONDING BYTE FROM NTBl 
STORE AS 2~D BYTE OF PSTWRD 
TAKE REMAINING 24 BITS OF REGD 
FORM FLOATING POINT FRACTION,CHAR XI 3F' 
AND STJRE AT 'FRAC' 
ADD 'PST\oIRDI AND !FRAC' 
LEAVING RESULT IN FPR 0 

RETURN 
IF RE GD GE DOOOOOOO"BRANCH TO tND3' 

SHIFT FIRST 2 IlEX DIGITS INTO REGC 
AND SUBTRACT 00000068 
FETCH CORRESPONDING BYTE FROM NTBL 
STORE AS 2~D BVTE OF NSTWRO 
TAKE REMAI~ING 24 BITS OF REGD 
FORM FLOATING POINT FRACTION~CHAR X'3F' 
AND STJRE AT 'FRAC' 
SUBTRACT !FRAC' FROM INSTWRDI 
~EAVING RESULT IN FPR 0 

RETURN 
IF REGD GE E2FOOOOO/BRANCH TO 'ND4' 

SHIFT FIRST 3 HEX DIGITS INTO REGC 
AND SUBTRACT OOOOOCE8 
FETCH CORRESPONDING BYTe FROM NTBL 
STORE AS 2ND RVTE OF PSTWRD 
TAKE REMAINING 20 BITS OF REGD 
FORM FLOATING POINT FRACTION/CHAR X'3F' 
AND STORE AT 'FRAC' 
AOD 'PSTWRDI AND 'FRAC' 
LEAVING RESU~T IN FPR 0 

RETURN 

1 

J 

1 
l 
J 
1 



175 ND4 
176 
177 
178 
179 
180 
181 
182 
183. 
184 
185 
186 
18'7 
188 NTTHTL 
:189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 RETRN3 
200 
201 * 
202 * 
203 * 
204 * 

CL 
BC 
SLDL 
SL 
le 
STC 
SRI. 
AL 
ST 
LE 
SE 
LM 
BCR 
ST 
STM 
LR 
LA 
ST 
ST 
LA 
L 
BALR 
LR 
MVI 
LM 
BCR 

REGD/XF5E 
Il,NTTHTL 
REGC .. 12 
REGC,XEl7 
REGC,NTBLCREGC:) 
RE (,c .. NSTWRD+ 1 
REGO"a 
REGD .. PCHAR 
REGO,FRAC 
0, NSH4RD 
OIFRAC 
REGB"REGD,,24(13) 
15,,14 
REGo,ARG 
14,0,12(13) 
3.d3 
13,SVAREA 
13 .. 8(0,,3) 
3 .. 4(0,13) 
l/ARGLST 
15,AONTH 
14 .. 15 
13 .. 3 
12(13) .. XIFF' 
14,REGD .. 12(13) 
15 .. 14 

Y=REXP(O) 

~1ETHOD 205 * a __ ; __ 

IF RE GD GE XF5EOOOOOJB~ANCH TO INTiHTL' 
.. 

SHIFT FIRST 3 HEX DIGITS INTO REGC 
AND SU~TRAcr 0000DEl7 
FETCH CORRESPONDING BYTE FROM NTBl 
STORE AS 2NDBYTE OF NSTWRO 
TAKE REMAI~ING 20 BITS OF REGO 
FORM FLOATING POINT FRACTION/CHAR X

'
3F' AND STQRE AT ~FRAC' 

SUBTRACT IFRAC' FROM INSTWRD' 
LEAVING RESU~T IN FPR 0 

RETURN 
STORE REGD AS ARGUMENT FOR RNORTH ROUTINE SAVE ALL REGISTERS FROM 14 TO 3. 
COPY PREVIOUS SAVE AREA ADDRESS TO GPR3 LOAD ADORESS OF SVhREA INTO GPR13 
STORE ADDRESS OF SVAREA IN SAVE AREA 
STORE ADDRESS OF PREVIOUS SAVE AREA PLACE ADDRESS OF ARGUMENT LIST IN GPR 1 

BRANCH TO SUBPROGRAM 
RESTORE ADDRESS OF SAVE AREA IN GPR13 
SET RETURN INOICATOR 
RESTORE ALL REGISTERS 
RETURN 

RESULT IS STANDARD EXPONENTIAL VARIATE~ 

206 * 1. GENERATE HIH2H3H4H5H6H7H8, 8 RANDOM HEXADECIMAL DIGITS 207 * 
208 * 2. IF H1H2 .~T. 05, SET IREXP' Ta 209 * (ETBLCHIH2)+,H3H4H5H6H7HB)/16, AND QUIT. 210 * 3, IF HIH2H3 .LT. FI7, seT 'REXPI TO 211 * (ETBL(HIH2H3-CFF)+pH4H5H6H7HB)/16, AND QUIT 212 * 4. ELSEIGENERATE IREXP' FROM THE EXPUNENTIAL TOOTH-TAIL SUBPRDGRAM, 213 * 
214 • 
215 REXP 
216 RD~GT4 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 

.(,
_' 227 
_ 228 ERCT 

229 
230 
231 EDl 
232 

USING 
STI~ 
L 
LR 
SRL 
XR 
LR 
SLL 
XR 
ST 
L 
M 
ST 
XR 
SLR 
CL 
Be 
SLDI.. 
le 

REXP,,15 
REGB,REGO,,24(13) 
REGB"SRGN 
REGC .. REGB 
REGC,,15 
REGS .. REGC 
REGC,REGB 
REGe"l7 
P,E GB, REGC 
REGB,SRGN 
I~EGO,l' MCGN 
REGe"MULT 
REGO .. ~lCGN 
REGD .. REGB 
REGC .. REGC 
REGO,XD5 
1l"ED2 
REGe .. s 
REGC,ETBl(REGC) 

SAVE REGISTERS lJ2,3 
LOAD SRGN INTO REGS 
AND INTO Rf:GC 
SHIFT REGC RIGHT 15 BITS 
AND XOR INTO REGB 
COPY REGB INTD REGC 
SHIFT IT LEFT 17 BITS, 
AND XOR INTO RF.GB 
SAVE TYE NEW ISRGN' 
LOAD MCGN INTD REGD 
AND MULTIPLY BY 69069 
STORE RESULT,MODULO 2**32, AS NEW 'MCGNI x 0 R N E ~! 1 1·1 C G NIA ND' SR G N' 1 N REG D 
ZERO OUT REGC 
rF REGD GE D500QOOo,BRANCH TO 'ED2' 

SHIFT FIRST 2 HEX DIGITS INTO REGC 
FETCH CORRESPONDING BYTE FROM ETBL 



( 

( 

233 
234 
235 
236 
237 
238 
239 
240 
241 ED2 
242 
243 
244 
245 
246 
2't 7 
248 
249 
250 
25l 
252 
253 
254 ETTHT~ 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 RETRN4 
266 
267 * 
268 * 
269 * 
270 
271 XUNI 
272 RDIGT5 
273 
274 
275 
276 
277 
278 
279 
280 
2B1 
282 
283 
284 
285 
286 RETRN5 
287 
288 * 
289 * 
290 * 

STe 
SRI. 
AL 
ST 
LE 
AE 
I.M 
BCR 
CL 
BC 
SLOI. 
SL 
IC 
STC 
SRl. 
Al. 
ST 
I.E 
AE 
LM 
BeR 
ST 
STM 
LR 
LA 
ST 
ST 
LA 
L. 
BAL.R ' 
I.R 
MVI 
LM 
BCR 

REGC"PSTWRO+l 
REGD"S 
REGD .. PCHAR 
REGD"FRAC 
0 .. PSTWP,D 
Q,FRAC 
REGB"REGD .. 24'13) 
15,,14 
REGD,XF17 
11,,ETTHTL 
REGC,,12 
REGC"XCFF 
REGC"ETBl.(REGC) 
REGC" Psn~RD+l 
REGD .. a 
REGD,PCHAR 
REGO,FRAC 
0" PSH/RD 
o,fRAC 
REGB,REGD .. 24(13) 
15,,14 
REGD,ARG 
14,,0112(l3) 
3.913 
13"SVAREA 
13,,8(0,,3) 
3,.4(0,,13) 
l .. ARGLST 
lS"AOETH 
14/15 
13,,3 
12(13)"XIFF' 
14"REGD" 12( 12-) 
15,14 

K=IUNICO) 

USING 
STM 
L 
L.R 
SRL. 
XR 
L.R, 
SLL. 
XR 
ST 
L 
M 
ST 
KR 
SRI. 
LR 
\. ~1 
BeR 

IUNI,15 
REGB"REGD,,24(13) 
REGB"SRGN 
REGC"REGB 
REGC/15 
REGB"REGC 
REGC/REGB 
REGC,l7 
REGB"REGC 
REGB/SR.GN 
REGD"MCGN 
REGC .. MULT 
REGO,MCGN 
REGD"REGB 
REGD,l 
O"REGD 
REGB,REGD,,24(13) 
15,14 

J=IVNI(O) 

STORE AS 2~D BVTE OF PSTWRD 
TAKE REMAINING 24 BITS OF REGD 
~ORM FLOATING POINT FRACTION,CHAR X'3FI 
AND ST~RE AT 'FRAC' 
ADD IPSTWRDI AND 'FRAC' 
LEAVING RESU~T IN FPR 0 

RETURN 
IF REGD GE F170QOoo,BRANCH To IETTHTL' 

SHIFT FIRST 3 HEX DIGITS INTO REGC 
AND SUBTRACT OOQOOCFF 
FETCH CORRESPONDING BYTE FROM ETBL 
STORE AS 2ND BYTE OF PSTWRD 
TAKE REMAI~ING 20 BITS OF REGD 
FORM FlOATING POINT FRACTION"CHAR X'3F
AND STORE AT 'FRAC' 
ADD IPSTWROI AND !FRAC' 
LEAVING RESU~T IN FPR 0 

RETURN 
STORE REGD AS ARGUMENT FOR REXPTH ROUTINE 
SAVE ALL REGISTERS FROM 14 To 3. 
COpy PREVIOUS SAVE AREA ADDRESS TO GPR 3 
LOAD AODRESS OF SVAREA INTO GPR13 
STORE ADDRESS OF SVAREA IN SAVE AREA 
STORE ~DDRESS OF PREVIOUS SAVE AREA' 
PLACE ADDRESS OF ARGUMENT LIST IN GPR l 

BRANCH TO SVBPROGRAM 
RESTORE ADDRESS OF SAVE AREA IN GPRl3 
SET RETURN INDICATOR 
RESTORE ALl REGISTERS 
RETURN 

VNIFqRMLV DISTRIBUTED POSITIVE INTEGER~ 

SAVE REGISTERS l~2,3 

LOAD SRGN INTO REGB 
AND INTO REGC 
SHIFT REGC RIGHT l5 BITS 
AND XOR INTO REGB 
COpy REGB INTO REGC 
SHIFT IT LEFT 17 BITS, 
AND XOR INTQ REGS 
SAVE THE NEW 'SRGNI 
~OAD MeGN INTO REGD 
AND MULTIPLY SV 69069 
STORE RESULT,MODULO 2**32, AS NEW 'MCGNI 
XOR NEW 'MeGN' AND !SRGN' IN REGD 
SHIFT lEFT l BITll.EAVING SIGN BIT ZERO 
AND HOVE RESULT IIUNII TD GPR 0, 

RETURN 

UNIFOR~LV OISTRIBUTED INTEGERi 

l 
\ 

\ 
l ., 
,', , 



291 * 
292 * 293 * 
294 *. 
295 * * 296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
:310 
311 
312 
313 
314 
:315 
~16 
317 
:318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
:330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
3 l .3 
3'.4 
345 
346 
3't1 
348 

* 
1:C 

IVNI 
RDIGT6 

RETRN6 

* t~UL T 
SRGN 
X7FF 
~iCGN 
Xl 
FWD 
Z 
CHM<. 
SIGN 
XD5 
XFl7 
X.C FF 
X68 
XDO 
X68R 
XE2F 
XCE8 
XF5E 
XE17 
PSTWRD 
NSTWRD 
PCHAR 
FRAC 
ARG 
ADNTH 
ADETI-! 
I\RGLST 

SVAREA 
NTBL. 

~lETHOD THE BASIC RANDOM NUMBER IS A COM8INATIOl'I 
g--~-~ OF TWO SEPARATELY GENERATED NUMBERS, 

!SRGNI & IMCGN' AS FOLLOWS. 
1. TEMp=XOR(SRGN,SRGN SHIFTED RIGHT 15 BITS) 
2, SRGN=XOR(TEMP,TEMP SHIFTED LEFT 1? BITS) 
3, MCGN=MCGN*69069,MODULO 2**32 
4. RESULT=XOR(MCGN"SRGN) 

USING IVNI,,15 
5TH REGB,REGD,24(13) 
L RF.GBJSRGN 
LR REGC,IREGB 
SRL. RECiC"l, 
XR REGB,REGC 
LR REGC/REGB 
SLL. REGe"l? 
XR REGB"REGC 
ST REGB"SRGN 
L REGD,MCGN 
M REGC"MULT 
ST REGO .. MCGr~ 
XR REGD .. REGB 
LR O,REGD 
LM REGB,REGDI24(13) 
BCR 15,,14 

CONSTANTS SECTION 
DC F'69069' 
OC F'Ol073' 
OC X10Q0007FF' 
OC FI12345 1 

Dt ~I00000001' 
OC FIOI 
OC EIOtO! 
OC X140000000' 
OC XI60FFFFFF' 
OC XI 05000000 1 

OC XIF1700000' 
OC X!OOOOOCFFI 
OC XI68COOOOQI 
OC X10oOOOOOO' 
OC X100000068' 
OC XIE2FOOOOO' 
OC XIOOOOOCEBI 
OC XIF5EOOOOO! 
DC XIOOOOOE17! 
OC XI41AAOOOO' 
OC X1C1AAOOOOI 
OC XI3FOOOOOOI 
OC FIOI 
OS F 
OC A(RNORTH) 
OC A(REXPTH) 
OC xlao' 
OC A~3(~RG) 
OS 18F 
DC lXIOOI 
OC lX' 01' 
OC 2X'021 

SAVE REGISTERS 112,3 
LOAD SRGN INTO REGB 
AND INTO REGC 
SHIFT REGC RJGHT 15 BITS 
AND XOR INTO REGB 
COpy REGR INTa REGC 
SHIFT IT LEFT 17 BITS, 
AND XOR INTO REGB 
SAVE THE NEW ISRGN' 
LOAD MeeN INTO REGD 
AND MULTIPLV SY 69069 
STORE RESULTIMODULO 2**32" AS NEW 
XOR NEW IMCGNI AND !SRGNI IN REGD 
~EAVE RESULT 'IVNl' IN GPRO 

RETURN 

TABL.E ~SED FOR NORMAL LOOK-VP 
FIRST PART HAS 104 ELEMENTS 

'MeGN! 



349 OC 4X'031 
350 OC 5X 1041 

~~ .... 351 OC lX 1091 

1, 352 OC 5X'OA' 
353 OC 3X'OEI 
354 OC lX 1 121 
355 OC lX'17' 
356 OC 5X 1OOI START IJF SECOND PART OF NORMAL TABLE 
357 OC 5X' 01 1 223 ELEMENTS 
358 OC 4X'02' 
359 OC 2X 1 03' 
360 OC lX'04' 
361 OC 5X'051 
362 OC 5X'06' 
363 OC 5X 1071 

! 364 OC 5X'08' 
365 OC 4X'()91 
366 OC 4X 1OBI 
367 OC 4XIOC' 
368 OC 4X 1ODI 
369 OC lX'OEI 
370 OC 3X 1OFI 
371 OC 3X 11O' 
372 ·DC 3X '11' 
373 OC 2X'l21 
374 OC 2X'l3' 
375 OC 2X '14' 
376 OC 2X'l5' 
377 OC 2X'161 
378 OC lX'171 
379 OC lX 1181 
380 OC lX'l9' 
381 OC lX' H.' 
382 OC lX'lBI 
383 OC 1X'lC' 
384 OC lX 'lD 1 
385 OC 10X I051 
386 OC 7X'061 
387 OC 5X 107' 
388 OC 2X IOBI 
389 OC 9X 1OBI 
390 OC 5XI()C' 
391 OC lXIOOI 
392 OC 10X'OFI 
393 OC 7X' 101 
394 OC 3X' 11 1 
395 OC 12X'13' 
396 OC 9X I 141 
397 DC 5X 1151 
396 OC 2X'16' 
399 OC 13X'lB' 
400 OC 10X I l91 
401 OC 7X'lA' 

(' 't oz OC 5X'lB' 
- 403 OC 2X 'le' 

404 OC 15X'lEI 
405 OC 13X'lFI 
406 DC 12X'201 



.': .. 
è' 

" 

407 DC lOX 1 21! 
408 OC 9X'221 

1'" 409 OC 8X'23' 
" 410 DC 7X'241 .' 4~ 

411, DC bX'251 
'~: 

412 DC 5X'261 
,', 413 OC 4X ' 27' 
;. 414 OC 3X'28' 
~'. 415 DC 3X'291 

416 OC 2X!2AI 
[ . 417 DC 2X'2BI " ';'. 

[, 4113 ETBL DC 15X ' Oal START OF TABLE FOR EXPONENTIALS 
~: 

419 OC 13X I01 1 FIRST PART HAS 213 EL E~lENTS 
420 DC 9XI02' 
421 DC 5X'031 
422 OC 5X'061 
423 OC BXI081 
424 DC 8X ' OAI 
425 OC 6XIOCI 

}. 426 OC '2X'OE' 
\. 427 OC 2X Ill! 

428 DC 4X 1 l.5 1 
r 429 DC lX'191 
i' 430 DC 2X'20' t~ 

f, 431 DC lX I2B' 
432 DC IXIOl' SECOND PART OF EXPONENTIAL TABLE 
'.33 DC 4X ' 021 455 ELt~'ENTS 
434 OC 7X I03' 
435 DC 11X'04 1 

436 OC 10X'051 
'" 437 DC 5X ' 061 

438 DC 9X'071 
439 DC IX I08! 
440 DC 8X'09! 
441 OC 7X'OBI 
4 l .2 DC IX'OC' 
443 DC 6X'ODI 
444 OC 4X OEI 
445 OC 5X OFI 
446 OC 5X 101 
447 DC 3X 11' 
448 OC 4X 121 
449 OC 4X 13 ' 
450 OC 4X 14' 
451 Dt 3X 161 
452 OC 3X 17' 
453 OC 3X 181 
'.54 OC 2X 191 
455 OC 2X lA' 
456 OC 2X lFP 
457 OC 2XI1CI 
458 OC 2X

'
IDI 

or ' t.59 OC 2X '1 El 
( 460 OC 2X IlF 1 

461 DC LX ' 21' 
462 OC lX!22 1 
463 OC lX'23 1 

464 DC lX 124' 



ï 

465 OC lX'25' 
466 OC lX'26' 
467 OC lX'27\ 
468 OC lX'2S' 
469 OC lX'29' 
470 OC lX'2AI 
471 OC SX'OSI 
472 OC 2X'071 
473 OC lX 1091 
474 OC lX10BI 
475 OC 4XIODI 
476 DC 9X ' OFI 
477 OC 3X'10' 
478 OC 10X'121 
479 OC 5X'13' 
480 OC 9X'16' 
481 OC 6X'l71 
4B2 OC 2X'18' 
483 OC 13X'lA' 
484 OC 10X11SI 
485 OC 7X 1 1CI 
486 OC SX 1 1 [) 1 

487 OC 2X'lEI 
486 OC 13X l 21 1 

489 OC llX I 22 1 

490 OC 9XI231 
491 OC 8X'241 
492 OC 6X'2S1 
493 OC 5X'26' 
494 OC 4X'27' 
495 OC 2XI2S1 
496 OC lX'291 
497 OC 15X'2CI 
498 OC 14X'2DI 
499 DC 13X l 2EI 
500 OC 12X I 2FI 
501 OC 11X'301 
502 OC llX I 31 
503 .DC 10X

'
32 

504 OC 9X
'
33 

505 OC 9X'34 
506 OC 8X'35 
507 OC 8X'36 
508 OC 7X ' 37 
509 OC 7X'38 
510 OC 6X I 39 
511 OC 6XI3A 
512 OC 6XI3B 
513 OC 5X'3C 
514 Dt 5X I 301 
515 OC 4X l 3EI 
516 OC 4X

'
3FI 

(- 517 END RANf)[JM 
518 C RNOR TOOTH FUNCTION 

>- 519 FUNCTION RNORTH(K) 
520 DIMENSIUN C(45) 
521 DATA C/Z40FD2B5F,Z40FD2B5F,Z40FAA9AD,Z40F5A646,Z40F32496, 
522 $ Z40EE2131,l4QE69C1A,Z40E198B5,Z40DA139E,Z40D28E87,Z40C887BEi 



523 
524 

"'.... 5 25 t., 526 
527 
528 
529 
530 
531. 
532 
533 
534 
535 
536 
.53 '7 
538 
539 
540 
541 
542 
543 
544 
545 
546 
547 
548 
549 
550 
551 
552 
553 
554 
555 
55b 
557 
558 
559 
560 
561 
562 
563 
564 
565 
566 
567 
568 
569 
570 
57l 
572 
573 
574 
575 
576 
577 
578 
579 
580 

3 
4 

8 

5 

c 

l 

3 

6 

7 

$ Z40C102A6,Z4()B6FBDD~Z40ACF513,Z40A2EE4AIZ4098E780,Z40916269~ 
$ Z40875BAO,Z407D5406,Z40734EOD,Z406BC8Fo,Z4061C22C,Z405A3D15; 
$ Z405287FE,Z4Q4932E7,Z4043ADDO,Z403C28A9,Z40372554,Z402FA03D, 
$ Z402A9CDB,Z40259973,Z4020960E,Z401E145C,Z401910F7,Z40168F4S; 
$ Z4Q140Q93,l4011BBEO,Z3FFOA2E4,Z3Fcaa78E,Z3FA06C98,Z3F7 851721 
$ Z3F78 5172,Z3F50364C,Z3F50364C,Z3F50 364CI 

DATA Il/ZFBC35400/,I2/ZFE79702E/ 
IF(K.GT,Il)GO TD 3 
S=UNI(O) 
T=UNI(O) 
B=AINT(7~*(S+T)+37.*ABS(S-T» 
X=UNI(0)-UN1(Ol 
RNORTH=.0625*(X+Slr,N(B~X) 
RETURN 
IF(K,GT.I2)GO TD 5 
RNORTH=2.75*VNI(O) 
J=16,*ABS(RNORTH)+1. 
IF(J-14) 6~6,7 
P=(J+J-l)*.1497466E~2 
GO TD 8 
P=(89-J~J)*.698817E-3 
IF(UNI(Q),GT.79,78846*<EXP(-.5*RNORTH*RNORTH) 

$ -C(J)~P*{J-16,*ABS(RNDRTH»))) GOT04 
RETURN 
V=VNI(O) 
IF(V,EQ,O) GO TD 5 
X=SQRT(7.~625-2,*ALOG(ABS(V») 
IF(UNI(O)*X.GT.2.75)GO TO 5 
RNORTH=SIGN(X,V) 
RETURN 
END 
REXP TOOTH FUNCTION 
FUNCTION REXPTH(K) 
DH'ENSION C(65) 
DATA C/Z40F000001Z40EIOOOO~Z40D40000IZ40C70000~Z40RBOOOO~ 

$ Z40AFOOOO,Z40A50000~Z409BOOOO,Z40910000IZ408900001Z408OOOOO~ 
$ Z40780000JZ40710000~Z406AOOOO,Z40b40000,Z405EOOOO,Z40580000; 
$ Z40530000,Z404EOOOO,Z40490000,Z40440000IZ40400000,Z403COOOO~ 
$ Z40390000,Z40350000,Z403200001Z402FOOOO,Z402COOOO,Z40290000; 
$ Z40270000,Z40240000,Z40220QOO,Z40200000,Z401EOOOO,Z401COOOO; 
$ Z401AOOOO,Z40190000,Z40170000/Z40160000~Z40150000,Z40130000; 
$ Z40120000,Z40110000,Z40100000,Z3FFOOOOO,Z3FEOOOOO,l3FDOOOOO~ 
$ Z3FCOOOOOJZ3FBOOOOOJZ3FBOOOOO,Z3FAOOOOO~Z3F900000,Z3F9000001 
$ Z3F800000/Z3FAOOOOO,Z3F700000,Z3F7000DO~Z3F600000,Z3F6oooooi 
$ Z3F600QOo,Z3F5000001Z3F500000,Z3F400QOC$Z3F400QOO,Z3F4000001 

DATA 11/ZFB4FAA911 
IF(K,GT.Il)GD TO 5 
Ul=UNI(Q) 
IFCU1.GT •• 7917049) GO TD 3 
T=1.-1,239962*Ul 
REXPTHc ... A~OG(T) 
J=16,*REXPTH+l. 
IF(UNI<O)*(,0604*T+,0039).GT.T-CeJ»GDTOl 
RETURN 
REXPTH:19,20352*Ul-15.20352 
J=16.",tREXPTH+l. 
EX=EXPC ... RfXPTH) 
IF(UNl(0)*(.0604*EX+.OD39).GT.FX~C(J))GDTOl 
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RETURN 
REXPTH=4.~ALnG(UNI(O») 
RETURN 
END 
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APPENDIX 0 

Oenotat ions ***: p « .01 

**: p -< .01 
.... 

*:: p -< .05 

TABLE 0.1: Tests of Signifiance on the Parameter Estimates 
of the 12 Multiple Regression Equations of 
Table 3.5 

BLOCK 1 a. = 0.05, K = 5, n = 15 

Regression Coefficients 
A 
[30 
A 
[31 
A 

[32 

e 3 

O.F. 

106 

106 

106 

106 

Mul t ip 1 e ~~~~iÏlJn Coeff ici ent (R) 

T-val ue 

33.99*** 

18.84*** 

-16.35*** 

- 1.77 

F = 1455.74*** OF 1 = 3 OF2 = 106 

BLOCK 2 a. = 0.05, K = 5, n = 5 

Regression Coefficients 
A 
[30 

~1 
A 

[32 

~ 3 

O.F. 

106 

106 

106 

106 

Multiple Co'~It~tïOmCoefficient (R) 

F = 1213.63*** OF 1 = 3 OF2 = 106 

T-va1 ue 

28.06*** 

19.74*** 

-12.16*** 

- 4.78** 

- , 
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APPENDIX D (cont~d) 
BLaCK 3 a = 0.05, k = 3, n = 15 

Regression Coefficients 
A 
130 
A 
13 1 

" 132 
" 133 

D.F. 

106 

106 

106 

106 

Mu 1 t ip 1 e Sœ.;Jtre1sa;tîilm Coeff ici ent (R) 

F = 983.54*** DF 1 = 3 

BLaCK 4 a = 0.05, k = 3, n = 5 

Regression Coefficients 

" 130 

" 13 1 

" 132 

" 133 

D.F. 

106 

106 

106 

106 

Mult iple Bagr'el5atîoonCoefficient (R) 

T -val ue 

32.05*** 

15.67*** 

-18. 12** 

- 2.25* 

DF 2 = 106 

T-value 

30.20*** 

23.74*** 

-10. 18*** 

- 7.16*** 

F = 1387.57*** DF = 3 1 DF 2 = 106 

BLaCK 5 ~ = 0.05, k = 2, n = 15 

Regression Coefficients 

~ o 
A. 
13 1 

~ 2 
1\ 

133 

D.F. 

44 

44 

44 

44 

Multiple Conre1;at&onCoefficient (R) 

F = 161 .26*** DF - 3 1 -

T-va 1 ue 

25.80*** 

3.76** 

- 7.08*** 

- 1.20 



APPENDIX D (cont'd) 

BLO CK 6 a. = 0.05, K = 2, n = 5 

Regression Coefficients 
A 
130 
A 

13 1 
A 

132 
A 
133 

D.F. 

44 

44 

44 

44 

Mu 1 t ip 1 e ~l9rre1sa;tîëoo Coe ff ici ent (R) 

F = 380.05*** DF 1 = 3 

BLOCK 1 a. = 0.01, K = 5, n = 15 

Regression Coefficients 
A 
130 
A 
13 1 
A 
132 
A 
133 

D.F. 

106 

106 

106 

106 

Mul t ipl e Co;rn~~ta;tîœin Coeff ic ient (R) 

F = 1330.00*** 

BLOCK 2 a. = 0.01, K = 5, n = 5 

Regression Coefficients 
A 
130 
A 
13 1 

~ 2 
A 
133 

D.F. 

106 

106 

106 

106 

Multiple Conretat~nCoefficient (R) 

F = 1356.42*** DF 1 = 3 

T-value 

31 .74*** 

9.08*** 

-' :9.22*** 

- 2.06* 

T-va 1 ue 

12.68*** 

24.8 *** 

- 8.1 *** 

- 7.4 *** 

T-value 

9·50*** 

27.69*** 

- 5.00** 

-10.70*** 

DF2 = 106 
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APPENDIX D (cont'd) 

BLaCK 3 a = 0.01, K = 3, n = 15 

Regression Coefficients 
A 
(30 
A 

(31 
A 

(32 
A 

(33 

D.F. 

106 

106 

106 

106 

Mu 1 t i p 1 e Chrg1a:Jmiœtl Coeff ici ent (R) 

F = 690.66*** DF 1 = 3 

BLaCK 4 a=O.Ol, K = 3, n = 5 

Regress ion Coefficients D.F. 
A 

106 (30 
A 
(31 106 
A 106 (32 
A 106 (33 

Mu 1 t i pl e Co=rre-la.,t7i:on Coe f fic i en t (R) 

F = 1260.22*** DF 1 = 3 

BLaCK 5 a = 0.01, K = 2, n = 15 

Regression Coefficients D.F. 
A 44 (30 
A 44 (31 
A 

44 (32 
A 

44 (33 
Mu 1 t ip 1 e aœ~rre1sa;tl hm Coe ff ici en t (R) 

F = 87.41*** DF 1 = 3 

T-value 

10.85*** 

18.15*** 

- 5.38*** 

- 6.09*** 

DF2 = 106 

T-va 1 ue 

7.91*** 

28.18*** 

- 2.84** 

-11 .57*** 

DF2 = 106 

T -va lue 

11.01*** 

4.67** 

- 3.28** 

- 2.66** 

DF2 = 44 



APPENDIX D (cont!d) 

BLOCK 6 a = 0.01, k = 2, n = 5 

Regression Coefficients 
A 
f3 0 
A 
f3 1 
A 
f3 2 
A 
f33 

D.F. 

44 

44 

44 

44 

Multiple ~e~re~atiDl1 Coefficient (R) 

F = 135.23*** DF = 3 1 

T-va 1 ue 

9.29*** 

7.89*** 

- 2.75** 

- 3.24** 

TABLE D .2: Analys is of Var iance for. Test ing the Equal ity 
of Six Regression Equations at Each Level of a 

a = .05 

Due to 

Dev. from hypothesis 

Separate regressions 
(residual) 

Common regression 
(residual) 

a = .01 

Dev. from hypothesis 

5eparate regressions 
(residual) 

Common regression 
(residual) 

DF 

20 

512 

532 

20 

512 

532 

55 

99017.96 

101434.00 

200452.00 

43913.85 

20452.55 

64366.40 

F 

480.32*** 

80.57*** 
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APPENDIX D (cont'd) 

..... 
TABLE D.3: Analysis of Variance for Testing the Equal ity 

of Three Regression Equations Corresponding to 
the Three Values of K, at each Level of ~ 

~ = .05 

Due to 

Dev. from hypothesis 

5eparate regressions 
(res idual) 

Common regression 
(residual) 

~ = .01 

Dev. from hypothesis 

5eparate regressions 
(res idual) 

Common regression 
Cres idua1) 

DF 

8 

524 

536 

8 

524 

536 

55 

36870.00 

163582.00 

200452.00 

26030.5 

38335.87 

64366.4 

F 

14.76*** 

44.47*** 
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APPENDIX D (cont 1 d) 
... 

TABLE D.4: Analysis of Var iance for Test ing the Equal ity 
of Pairs of Regression Equations Corresponding 
to the Two Values of n at Each Leve1 of K, at 
Each Leve 1 of a. 

a. = .05, K = 2 

Due to 

Dev. from hypothesis 

Separate regressions 
(residual) 

Common regression 
(residua1) 

a. = .05, K = 3 

Dev. from hypothesis 

Separate fegressions 
(residua1) 

Common regression 
(residual) 

a. = .05, K = 5 

Dev. from hypothesis 

Separate regres~ions 
(residua1) 

Common regression 
(re.s' tâua1) 

DF 

4 

88 

-
92 

4 

21.2· 

216 

4 

212 

216 

SS 

10066.66 

10477.24 

20543.90 

40227.00 

40899.50 

81126.50 

11854.30 

50057.30 

61911 .60 

F 

21.14*** 

52.20*** 

12.50*** 
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.~." . APPENDIX 0 (cont 1 d) 

ex. = .01, k = 2 

Due to 

Dev. from hypothesis 

Separate regressions 
(residua1) 

Common regression 
(residual) 

ex. = .01, k = 3 

Dev. from hypothesis 

Separate regressions 
(residual) 

Common regression 
( res idua 1) 

a. = .01, k = 5 

Dev. from hypothesis 

Separate regressions 
(residual) 

Common regressions 
(residua1) 

OF 

4 

88 
-
92 

4 

212 

216 

4 

212 

216 

SS 

1512.11 

2609.66 

4121.77 

7666.97 

11869.63 

19536.60 

1614.42 

13063.08 

14677.50 

F 

12.75*** 

34.23*** 

6.55*** 


