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Abstract 

Population-level analyses are inherently complex due to a myriad of latent confounding 

effects that underlie the interdisciplinary topics of research interest. Despite the mounting demand 

for generative population models, the limited generalizability to underrepresented groups hinders 

their widespread adoption in downstream applications. Interpretability and reliability are essential 

for clinicians and policymakers, while accuracy and precision are prioritized from an engineering 

standpoint. Thus, in domains such as population neuroscience, the challenge lies in determining a 

suitable approach to model population data effectively. Notably, the traditional strata-agnostic 

nature of existing methods in this field reveals a pertinent gap in quantitative techniques that 

directly capture major sources of population stratification. The emergence of population-scale 

cohorts, like the Adolescent Brain Cognitive Development℠ (ABCD) Study, provides 

unparalleled opportunities to explore and characterize neurobehavioral and sociodemographic 

relationships comprehensively. We propose diversity-aware population modeling, a framework 

poised to standardize systematic incorporation of diverse attributes, structured with respect to 

intrinsic population stratification to obtain holistic insights. Here, we leverage Bayesian multilevel 

regression and poststratification, to elucidate inter-individual differences in the relationships 

between socioeconomic status (SES) and cognitive development. We constructed 14 varying-

intercepts and varying-slopes models to investigate 3 cognitive phenotypes and 5 

sociodemographic variables (SDV), across 17 US states and 5 race subgroups. SDVs exhibited 

systemic socio-spatial effects that served as fundamental drivers of variation in cognitive 

outcomes. Low SES was disproportionately associated with cognitive development among Black 

and Hispanic children, while high SES was a robust predictor of cognitive development only 

among White and Asian children, consistent with the minorities’ diminished returns (MDRs) 

theory. Notably, adversity-susceptible subgroups demonstrated an expressive association with 

fluid cognition compared to crystallized cognition. Poststratification proved effective in correcting 

group attribution biases, particularly in Pennsylvania, highlighting sampling discrepancies in US 

states with the highest percentage of marginalized participants in the ABCD Study©. Our collective 
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analyses underscore the inextricable link between race and geographic location within the US. We 

emphasize the importance of diversity-aware population models that consider the intersectional 

composition of society to derive precise and interpretable insights across applicable domains.  

 

Les analyses à l'échelle de la population sont intrinsèquement complexes en raison de la 

myriade de facteurs de confusion latents sous-jacents aux sujets de recherche interdisciplinaires 

d'intérêt. Malgré la demande croissante pour des modèles génératifs de population, la 

généralisation limitée aux groupes sous-représentés entrave leur adoption généralisée dans les 

applications en aval. L'interprétabilité et la fiabilité sont essentielles pour les cliniciens et les 

acteurs politiques, tandis que l'exactitude et la précision sont prioritaires du point de vue de 

l'ingénierie. Ainsi, dans des domaines tels que les neurosciences des populations, le défi réside 

dans la détermination d'une approche appropriée pour modéliser efficacement les données à 

l'échelle de la population. Notamment, la nature traditionnellement non-stratifiée des méthodes 

existantes dans ce domaine révèle un écart pertinent dans les techniques quantitatives qui capturent 

directement les principales sources de stratification de la population. L'émergence de cohortes à 

l'échelle de la population, comme l'étude Adolescent Brain Cognitive Development℠ (ABCD), 

offre des opportunités sans précédent pour explorer et caractériser de manière exhaustive les 

relations neurocomportementales et sociodémographiques. Nous proposons une modélisation de 

population consciente de la diversité, un cadre destiné à standardiser l'incorporation systématique 

de divers attributs, structuré en fonction de la stratification intrinsèque de la population afin 

d'obtenir des connaissances holistiques. Ici, nous tirons parti de modèles de régression bayésienne 

à multiple niveaux et de la post-stratification pour élucider les différences inter-individuelles dans 

les relations entre le statut socioéconomique (SSE) et le développement cognitif. Nous avons 

construit 14 modèles à ordonnées à l'origine et pentes variables pour étudier 3 phénotypes cognitifs 

et 5 variables sociodémographiques (VSD), à travers 17 états des États-Unis et 5 strates raciales. 

Les VSD ont montré des effets socio-spatiaux systémiques qui ont servi de moteurs fondamentaux 
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de variation dans les résultats cognitifs. Un faible SSE a été associé de manière disproportionnée 

au développement cognitif chez les enfants noirs et hispaniques, tandis qu’un SSE élevé était un 

prédicteur robuste du développement cognitif uniquement chez les enfants blancs et asiatiques, 

conformément à la théorie des rendements diminués pour les minorités. Notamment, les sous-

groupes sensibles à l'adversité ont démontré une association expressive avec la cognition fluide 

vis-à-vis à la cognition cristallisée. La post-stratification s'est avérée efficace pour corriger les biais 

d'attribution de groupe, en particulier en Pennsylvanie, soulignant les divergences 

d'échantillonnage dans les états américains avec le pourcentage le plus élevé de participants 

marginalisés dans l'étude ABCD. Nos analyses collectives soulignent le lien inextricable entre la 

race et la localisation géographique aux États-Unis. Nous soulignons l'importance des modèles de 

population conscients de la diversité qui considèrent la composition intersectionnelle de la société 

pour obtenir des connaissances précises et interprétables dans les domaines applicables. 
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Introduction 

For decades, neuroscience research has centered on dissecting the intricacies of the adult 

brain, leaving a conspicuous void in understanding preadolescent brain development, a crucial 

phase essential for cognitive growth and dynamic processes across the lifespan of brain 

maturation1. It is widely accepted that environmental enrichment and deprivation influence 

cognitive development, though their specific roles remain vaguely defined2. Demystifying how 

lived experiences shape brain-behavior trajectories is inextricably linked with early childhood 

exposure and socioeconomic sentinels1,3. Despite this knowledge, most existing studies treat 

sociodemographic variables (SDVs) as a monolithic, ignoring their stratified nature and diverse 

implications. Within this context, an ongoing question in population neuroscience is how 

differential effects of socioeconomic factors during early childhood might relate to inter-individual 

differences in human behavior4. However, there is a scarcity of comprehensive datasets providing 

empirical evidence linking sociodemographic factors and neural correlates of behavioral 

trajectories. Bridging this gap by accounting for major sources of population stratification would 

facilitate research that offers more generalizable insights across diverse subpopulations and 

research areas.  

The emergence of population-scale cohorts, like the Adolescent Brain Cognitive 

Development℠ (ABCD) Study, offers unparalleled opportunities to explore comprehensive 

neurobehavioral and sociodemographic relationships. This collaborative data initiative 

longitudinally follows a cohort of 11,880 children starting at age 9-10, recruited across 17 

American states. Meticulous in its sampling design (cf. methods), the ABCD Study© measures a 

wealth of attributes encompassing child health and development5. These include parent self-report 

metrics, child-reported support systems, and environmental factors. Here, we leverage this richly 

phenotyped data resource to characterize sociodemographic predictors of cognitive development, 

answering some of the most pressing questions in population neuroscience, using our unified 

platform for diversity-aware population modeling.  
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Within a developmental context, higher socioeconomic status (SES) is associated with 

greater access to cognitive enrichment i.e., complex environments with diverse learning materials6. 

In contrast, material poverty during early childhood is a risk factor for mental illness later in 

life7,8,9,10. In the US, 1 in 4 children are born into impoverished households, and studies suggest 

that spending more time in poverty from birth to age 9 is associated with mental illnesses, 

personality disorders, and adverse cognitive behavior trajectories as individuals grow into 

adulthood10. Furthermore, research indicates that racialized children are more likely to endure 

prolonged periods of poverty compared to their White counterparts11,12. While these findings 

provide valuable insights into the dynamics between SES, environmental conditions, and 

behavioral domains, there is an absence of intersectional perspective, accounting for inter-

individual differences. Such strata-agnostic studies miss the ever-shifting interplay between 

cognitive development and inherent population stratification. Consequently, the oversimplification 

of familial context downplays the role of systemic privileges that permeate sociodemographic 

sectors, which may, in fact, serve as direct sources of variation in cognitive outcomes13.  We assert 

that studying such mutually related factors within a holistic framework may reveal a greater 

organizational network underlying cognitive trajectories in preadolescence.  

The premise of race and geographic location as key discriminative structures underlying 

sociodemographic disparities is rooted in both critical race and spatial inequality theories. These 

fields describe how systemic biases manifest in societal structures and spatial organization, 

shaping unequal distributions of resources and opportunities14,15. Against this backdrop, 

researchers have described the geography of exclusion as the phenomenon by which race, and 

segregation confer risk of concentrated poverty14,16. They show macro patterns at the “place level” 

of locally concentrated poverty, primarily disenfranchising Black and Hispanic individuals16. 

Evidence also suggests that the relationships between SES and child development may differ by 

race, yet at the inter-individual level, much is yet to be pieced together about how race, geography, 

and SES interact to shape child developmental outcomes17. As such, there is a need for quantitative 

methods that can dynamically incorporate contextual information to capture the interplay of 

intrinsic hierarchical interactions within sociodemographic diversity predictors of interest.  
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Despite extensive literature outlining the importance of diversity factors, they are often 

treated secondary to core scientific queries. These attitudinal barriers have long contributed to a 

passive approach towards establishing systematic mechanisms that are best suited to incorporate 

intersectional variables for practical prediction tasks. Thus, standardizing quantitative tools 

tailored for modeling population attributes is a persistent challenge. Due to a myriad of latent 

confounding effects that work in tandem with SDVs, some of which are not directly measurable, 

population-level analyses are inherently complex. In population health research, multilevel 

modeling has been recognized as a practically useful statistical technique for integrating diverse 

attributes23. However, in the classic frequentist regime, this approach can be quite restrictive due 

to its reliance on fixed point parameter estimates. Unlike Bayesian frameworks, frequentist models 

do not account for the uncertainty that is intrinsic to real-world settings.  

To overcome these limitations, we adopt a survey estimation approach in which we 

introduce a proof of principle for novel diversity-aware models, designed to grasp intersectional 

ensembles of group identifiers. We leverage a Bayesian multilevel regression and poststratification 

(BMRP) strategy, to enable accurate and interpretable predictions of population-level data. 

Varying-intercepts and varying-slopes models are ideal for providing individualized predictions 

and seamlessly integrating common and individual sources of variance. Coupled with 

poststratification, a powerful statistical technique that incorporates census auxiliary information to 

correct model estimates for known differences between a sample and the target population, BMRP 

assumes a dynamic data generation process that enables granularity24,25. We employed 

poststratification to mitigate potential systematic sampling discrepancies of race, state, and 

sociodemographic strata. This approach ensures accurate predictions for the target population, 

minimizing the influence of subgroup representation disparities and group attribution biases in our 

diversity-aware population models. Here, we determine how a constellation of sociodemographic 

predictors drive variation in cognitive outcomes differentially across race and state subgroups. We 

utilize 3 behavioral domains as target phenotypes: mental health, personality, and cognition, 

outlined by Chen et al.77 as having shared and unique brain network features, to determine how 

their relationships with SDVs are intertwined. 
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We investigated how cognitive development varies as a function of sociodemographic 

extremes across race and state strata in the ABCD study26,27. Emphasizing BMRP as a prime 

candidate for interpreting complex population dynamics, we uniquely uncovered behavioral 

profiles that are generalizable, yet unambiguous to specific pockets of people.28,29 We demonstrate 

that BMRP can be tailored to develop diversity-aware population models, providing key insights 

that prioritize interpretability, reliability, precision, and accuracy. 

Results 

Rationale 

We set out to systematically standardize a proof of principle for diversity-aware population 

modeling, using Bayesian multilevel regression and poststratification (BMRP) to generate 

individualized predictions of neurobehavioral phenotypes. However, sampling discrepancies in the 

ABCD cohort (Fig. 1a) could lead to greater heterogeneity in demographically defined subgroups, 

potentially impeding the generalizability of these predictions to underrepresented groups. To 

mitigate this, we used the auxiliary US census social deprivation index (SDI) to show how the 

poststratification step was poised to reconcile bias and fairness in our model’s estimates. This 

approach was especially efficient for under-sampled subpopulations and for ensuring true 

representation of the target population.  

In the ABCD cohort, participants’ race is classified into a five-level ethno-racial construct: 

Hispanic, non-Hispanic Asian, non-Hispanic Black, non-Hispanic White, and Other, derived from 

the NIH Minimum Reporting guidelines and the Office of Management and Budget (OMB) 

standards used by the US Census Bureau89. While we use this race measure as part of our multilevel 

modeling structure, we are mindful that these categories are oversimplified and do not fully 

account for the depth of historical and post-colonial contexts, contributing to the erasure of 

indigenous peoples and intersectional identities in research.  

In the present study, we addressed two central questions: 1) What insights about inter-

individual differences in cognitive outcomes can we extract from state- and race-specific 
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sociodemographic variable (SDV) effects? And 2) How are the stratified SDV associations with 

cognitive development jointly distributed? Our diversity-aware population model offers a unified 

platform and enables nuanced understanding of the model’s reliability within each 

demographically defined subgroup, demystifying the complex and intertwined relationships that 

characterize cognitive phenotypes. 

 

 

 

Figure 1. The participant distribution disparities across major sources of population 

stratification exposes sampling discrepancies in the ABCD cohort. A) A comparison of 

participant distributions in the ABCD cohort against the US census SDI reveals that race and state 

strata in the ABCD are not representative of the target population. In the ABCD, Asians were 

predominantly sampled in California, with sparse representation in other states; namely, there were 

no Asian participants in Missouri. B) We employed Pearson’s cross correlation to determine the 
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strongest SDV-neurobehavior relationships to model. Based on our set threshold of |ρ| ≥ 0.2, we 

identified 14 pairs (out of 2052 candidate pairs) with the strongest positive (green) and negative 

(pink) associations, narrowing our study to 5 SDVs and 3 cognitive phenotypes. Each pair was 

then individually modeled with a varying-intercepts and varying-slopes specification to further 

elucidate how SDVs are differentially associated with cognition across race and state subgroups. 

Diversity-aware population models elucidate inter-individual differences in cognitive 

development 

To carry out our cross-sectional analysis we: 1) aggregated 21 sites into 17 US states (cf. 

methods) to ensure model stability and geographic compatibility with the US census auxiliary data, 

2) curated a shortlist of 36 neurobehavioral phenotypes and 57 SDVs, 3) employed Pearson’s cross 

correlation (Fig. 1b), to determine the strongest (|ρ| ≥ 0.2) SDV-neurobehavior relationships to 

model, identifying 14 pairs (out of 2052 candidate pairs), 4) constructed 14 varying-intercepts and 

varying slopes (VIVS) models to thoroughly investigate each SDV-neurobehavior pair (Fig. 2a-

b), and 5) performed posterior predictive checks to validate our models, then integrated the 

auxiliary US census SDI into our fitted models for the poststratification step. Given our framework 

(Fig. 2a-b), we effectively characterized sociodemographic predictors of cognitive development 

by systematically quantifying socio-spatial effects, thereby revealing inter-individual differences 

within our target population. Namely, we investigated the stratified effects of 5 SDVs—

unemployment, poverty occurrence, poverty threshold, marital status, and educational 

attainment—and their associations with fluid, crystallized, and overall cognition. 
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Figure 2. Diversity-aware population modeling schematic. A) The ABCD cohort, partitioned 

by race and state strata, provides a critical backdrop for our Bayesian multilevel regression and 

poststratification framework. B) Model specification: We defined the varying-intercepts and 

varying-slopes model with a state-specific intercept term, estimating 17 baseline cognitive 

outcomes, and a race-specific slope parameter, estimating 5 sociodemographic effects. The 

A

B

State groups:

Race groups:

Group-level 

estimators:

Individual-level

estimators:
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hyperparameters, ergo the state- and race-wide parameters, capture the group-level distribution, 

which informs the individual-level slope and intercept distributions. The model estimated the 

relative statistical strength of the state-intercepts in competition with the race-specific SDV effects 

to predict cognitive development. For the poststratification step, we integrated the auxiliary US 

census SDI dataset, performed a posterior predictive check, and calculated the data weighted 

average to correct the estimates. Poised to mitigate subgroup representation biases, we compared 

the biased predictions against the poststratification results, analyzing for uncertainty intervals, 

magnitude, and direction. 

Neighborhood unemployment exhibits varied associations with cognitive phenotypes across 

racial groups 

To investigate individual differences in cognitive phenotypes as a function of 

neighborhood unemployment, we constructed three VIVS models to predict fluid, crystallized, and 

overall cognition. The explained variance of overall cognition predictions, as measured by the 

Bayesian R2 score, was 0.37, meaning that unemployment comprised 37% of the variation in this 

model30. The race-slopes exerted greater statistical strength in the model compared to the state-

intercepts, making them the primary drivers of variability in the overall cognition predictions. 

Select states showed strong associations with overall cognition (Fig. 3a), while the posterior 

distributions of other states hovered near the group mean, displaying non-distinct cognitive 

outcomes, irrespective of unemployment severity. Upon examination of the direction, magnitude, 

and uncertainty intervals of each estimated race-specific slope parameter (Fig. 3d), we found that 

unemployment was not definitively associated with adverse cognitive outcomes for some race 

subgroups. Namely, for the Asian subgroup, the 94% posterior density interval (HDI) of slopes 

ranged from -0.2 to 1.9, with a mean of 0.98. Given that we z-scored the target phenotype, this 

indicated that neighborhood unemployment among Asian children was not as negatively linked to 

cognition comparative to the race-wide group mean outcome. 
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Further, unemployment was a robust predictor of crystallized cognition, aligning 

consistently with overall cognition patterns observed across population strata. Crystallized 

cognition, defined by the application of acquired knowledge and experience, exhibited significant 

variability between the state intercepts, primarily characterized by low-employment 

neighborhoods. In neighborhoods with higher employment rates, crystallized cognition outcomes 

were virtually indistinguishable between race and state subgroups. This finding confirmed that 

lower unemployment rates were the driving source of variation in association with crystallized 

cognition. 

 Our model of fluid cognition, described by problem-solving abilities and adaptability to 

new situations, portrayed varying associations with unemployment across race subgroups. The 

posterior distribution of slope effects for the Hispanic and Other subgroups were closely mirrored, 

with an HDI of -1.0 to 0.7, which was consistent with estimated parameters in the overall cognition 

model (Fig 3d). This range represented both the narrowest uncertainty intervals and the smallest 

deviations from the group-wide unemployment effect. Thus, our findings suggest a generalizable 

relationship between fluid cognition and unemployment in these race subgroups. Additionally, we 

explored the transregional association of unemployment effects, facilitating a comparison of race-

specific slopes across states. The evidence highlighted variations in the impact of unemployment 

at the state level, where each race group exhibited either improved or diminished cognition 

outcomes within specific states. Notably, in Wisconsin, the effects of unemployment in the Black 

and Hispanic subgroups were more positively skewed than in Pennsylvania and Maryland. Our 

results demonstrated the joint probabilities of race and state parameters, revealing a regional 

influence on the direction and magnitude of race-slope unemployment effects on fluid cognition. 

The state-intercepts for Florida, Oklahoma, Maryland, and Pennsylvania had a dominant 

influence in our models of unemployment, across all cognitive domains. As a result, in low-

employment neighborhoods, the posterior predictions of cognition were below the state-wide 

average for all race groups in the aforementioned states. These results may allude to potential 

disparities in state-level resources and interventions, underscoring a systemic interplay that can 
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amplify the adverse implications of unemployment on cognitive trajectories for children in low 

SES households.  

 

 

 

Figure 3. Race-slope effects show wide uncertainty estimates, varying significantly between 

subgroups. A-C) The posterior distributions of varying-intercepts quantified distinctions in 

cognition at the state level, with comparable uncertainty intervals, affirming the reliability of the 

model's estimates. Pennsylvania stands out as having the strongest negative cognitive outcome, 

while Wisconsin and Vermont both have strong positive associations.  D-F) The varying-slopes 

show that unemployment, poverty, and marital status exhibit stratified patterns and race-specific 

disparities in their influence on cognitive development. However, greater uncertainty intervals for 

Black and Asian SDV effects, conveys less reliability for these subgroups. Thus, SDVs, while 

robust predictors of cognition, demonstrate non-uniform effects at the race level and partial 

predictive power. 
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For the poststratification step, we employed the US census social deprivation index (SDI) 

dataset (160,436,625 households), open-sourced by the Robert Graham Center (RGC)74. In each 

fitted model, a poststratification cell, c, constituted one of 170 possible categories, delineated by 

the unique combination of 17 states, 5 races, and the binary SDV predictor. To rectify subgroup 

representation bias, poststratification adjusted each cell’s estimate to accurately reflect the true 

population composition of each category. We then compared the original and de-biased posterior 

predictive distributions of cognition scores to determine how the subgroup-representative sample 

differed at the race- and state-level. 

We refined our unemployment model’s posterior predictions of cognition, using the 

auxiliary US census SDI nonemployed variable. This represents the percentage of individuals 

between 16 and 64 years of age that are unemployed and not actively seeking work. In 

Pennsylvania, the initial mean overall cognition prediction of -0.66 was adjusted to a de-biased 

mean prediction of -0.1 (Fig. 4a). This suggested that unemployment was, in fact, not a 

distinguishable factor of childhood cognitive development in Pennsylvania (Fig. 5a), revealing 

misalignment in the real-world representation and the ABCD cohort (Fig. 7). Evidently, the mean 

crystallized cognition prediction shifted from -0.39 to 0.16, highlighting a change in the direction 

of the magnitude after poststratification. In California, accounting for 3 of the 21 sampled sites in 

the ABCD, additional discrepancies surfaced for both crystallized and fluid cognition, after the 

poststratification step. Areas with low employment rates were counterintuitively associated with 

above-average cognitive performance. Across the remaining states, differences in cognitive 

outcomes between low and high employment neighborhoods were effectively dampened. 

However, in Maryland, we observed a more pronounced cognitive decline associated with low 

employment. These findings underscore the importance of poststratification in ensuring that our 

estimates for demographically defined subgroups are reliable and interpretable. 
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Figure 4. Poststratification mitigates representation bias in state and race subgroups. The 

integration of US census SDI data enhances the robustness of our diversity-aware population 

model, effectively de-biasing the predictions. A-C) The posterior predictive distribution is 

compared against the poststratified posterior predictions of overall, fluid, and crystallized 

cognition, summarized across states. D-F) Poststratification diminishes the model’s susceptibility 

to biased predictions across race subgroups, indicating that race SDV effects can be modeled 

hierarchically without detrimental consequences to the efficacy of the framework.  

Poverty effects associated with differentiable cognitive outcomes undergo major 

poststratification corrections 

Our next objective was to quantify the predictive relationships of two poverty indicators—

one measuring the occurrence of poverty and the other gauging neighborhoods below the federal 

poverty threshold—for each of the same three target phenotypes: crystallized, fluid, and overall 



19 

 

 

 

 

 

 

 

cognition. We constructed a total of six separate VIVS models that each considered both state-

specific distributions of cognition scores and the influence of living in poverty across race 

subgroups. The models, each achieving a Bayesian R2 score of 0.37, exposed distinct state- and 

race-level differences (Fig. 3b,e). Poverty occurrence was associated with a more pronounced 

negative effect on cognition for Black children, than any other race group in similar economic 

conditions (Fig. 3e). We observed that the associated effect of poverty on cognition for Other and 

Hispanic subgroups was slightly discernible but mostly centered around the group mean. This 

indicated that neither poverty occurrence nor poverty threshold were strong predictors of their 

cognition outcomes.  

The posterior predictions of fluid cognition scores uncovered distinguishable state profiles 

when juxtaposing high-poverty with low-poverty neighborhoods. In neighborhoods with low 

poverty occurrence, the mean predicted fluid cognition score for each state, ranged from 0.1 to 0.4, 

except for Pennsylvania and Florida (Fig. 5b).  Vermont exhibited less disparate fluid cognition 

outcomes between high- and low-poverty occurrence, suggesting a relatively homogeneous 

association between poverty and fluid cognition across race subgroups, and a more pertinent 

region-specific variation. Conversely, Florida, Maryland, South Carolina, and Pennsylvania were 

characterized by lower fluid cognition outcomes under conditions of high-poverty occurrence, 

with mean predicted scores of -0.38, -0.40, -0.38, and -0.8, respectively. These states demonstrated 

a steeper poverty-level disparity in cognition, reflecting a larger population of race groups that 

were disproportionately affected by poverty occurrence. In Pennsylvania, the mean predicted fluid 

cognition score for children living in neighborhoods below the federal poverty threshold aligned 

with the group average. This suggested that poverty threshold had a stronger association with 

crystallized and overall cognition compared to fluid cognition in Pennsylvania. 
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Figure 5. In-state sociodemographic-level disparities are a determining factor of cognitive 

development profiles. We examined whether cognitive predictions could be distinguished based 

on state-SDV strata by aggregating posterior predictive samples across 17 US states. Evidently, 

high educational attainment and two-parent households were associated with robust positive 

cognitive outcomes, whereas unemployment and poverty had adverse effects. The conditional 

effects of each SDV predictor exposed certain states with a propensity for diminished cognitive 

development or heightened vulnerability to lower socioeconomic standings. Pennsylvania 
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exhibited the most pronounced negative deviation from the group mean, while Maryland showed 

the largest absolute difference in cognitive outcomes between SDV-levels. These findings suggest 

that Maryland and Pennsylvania were disproportionately impacted by factors such as poverty, 

unemployment, and single parenthood, whereas in states like Wisconsin, Vermont and Utah, 

disparities in cognition were more strongly associated with high socioeconomic status, and less 

sensitive to low socioeconomic standing. 

 

We then integrated the SDI federal poverty level (FPL) variable, as a basis to poststratify 

our posterior predictions of cognition in each of the six models (cf. above). Across the poverty 

occurrence models, Colorado, Minnesota, Oklahoma, Oregon, Utah, and Vermont, were among 

the states with the least discrepancies after poststratification (Fig. 4b). Before de-biasing, our 

results indicated that the prevalence of poverty was linked with stronger negative fluid cognition 

outcomes across all states. Yet, in our de-biased models, children in Connecticut exhibited a higher 

mean corrected score of 0.32 in neighborhoods with high-poverty occurrence, versus 0.18 in areas 

with low poverty occurrence (Fig. 5b). This trend was not observed in any other state, showcasing 

a unique region-specific effect in Connecticut. 

Among the poverty threshold models, the poststratified crystallized cognition predictions 

stood out, showing that both Maryland and Utah deviated from the state-wide mean outcome. In 

the original model, living in neighborhoods below the federal poverty threshold did not have a 

strong association with crystallized cognition in Utah. However, the de-biased results suggested 

that Utah residents living below the poverty threshold had the lowest predicted cognition score 

after Maryland. Further, the de-biased crystallized cognition predictions suggested that 

Pennsylvania was not as negatively impacted by poverty threshold effects as was deemed in the 

original model. Thus, without poststratification, individualized predictions, particularly from 

sparsely sampled strata, could have been misleading due to group attribution biases, potentially 

impeding the efficacy of the model’s predictions. 

Our poststratification results unveiled key distinctions between our poverty occurrence and 

poverty threshold models, despite using the same SDI FPL variable. After de-biasing, the fluid 
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cognition predictions for children living in neighborhoods above the poverty threshold were non-

differentiable between race subgroups but were differentiable for those living in neighborhoods 

with low poverty occurrence, showing more varied associations between race subgroups. 

Interestingly, the most positively skewed de-biased predictions were for Asians living below the 

poverty threshold. Yet, in terms of poverty occurrence, the most negatively skewed de-biased 

predictions were for Asians living in relatively well-off neighborhoods. These results may have 

stemmed from differences in the definitions of the ABCD poverty occurrence variable and the SDI 

FPL variable, or from variations in how subgroups were affected by poverty predictors. 

 

 

 

Figure 6. Race slope parameters show overlapping, high-confidence effects of two-parent 

households on overall cognition. Kernel density estimates convey the varying influence of 

marital status (SDV) on overall cognition. Notably, we observe a strong, consistent, and 

predictable association between two-parent households and overall cognition outcomes in Black 

and Hispanic groups, represented by tightly concentrated, linear-shaped contours. This observation 

signifies that the direction and strength of this relationship can be reasonably anticipated, given 

the uniformity within their joint slope distributions, reflecting a dependable impact of marital 

status within these groups. In contrast, the wider spreads, and circular-like shapes within the joint 

distributions of the Hispanic and Asian groups denote a more diverse spectrum of outcomes. This 
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indicates that the effect of two-parent households on cognition does not exhibit the same 

consistency between Hispanics and Asians. These findings accentuate the efficacy of our BMRP 

strategy in revealing the multifaceted nuances within diverse demographic subpopulations. 

Associations linking marital status with cognitive phenotypes are contextually dependent on 

race and state subgroups 

We established two models to explore the associated impact of marital status on 

crystallized and overall cognition. Across race subgroups, single-parent households were linked to 

proportionate effects on crystallized cognition, with a mean predicted score of -0.4. The most 

notable variation occurred in two-parent settings, where the mean predicted crystallized cognition 

score was higher, particularly for Asian and White children (Fig. 3f). However, among Black 

children, this difference was marginal, being lower in a two-parent dynamic, indicating a weaker 

association between marital status and crystallized cognition. To probe our overall cognition model 

for its predictive reliability between the multilevel parameters, we performed a joint distribution 

analysis of the race-slopes. This revealed reliable effects of dual parenthood in Asian:White, 

Asian:Other, Black:Hispanic, and Other:White subgroups, with similar patterns emerging between 

these parameter pairs (Fig. 6, top). In contrast, the joint distributions of Asian:Black, Black:Other, 

Black:White, and Hispanic:Asian slope parameters depicted greater dispersion (Fig. 6, bottom), 

indicating that the effect of two-parent households on overall cognition was not comparable 

between these subgroups. 

We utilized the SDI single-parent household attribute for poststratification, a score 

quantifying the percentage of single-parent families with dependents aged 18 years or younger. 

For crystallized and overall cognition, Minnesota exhibited the most significant corrections, with 

a biased mean prediction of 0.21 and 0.33, and a de-biased mean prediction of -0.19 and -0.04, 

respectively (Fig. 4c). The mean predicted crystallized cognition score was higher in two-parent 

households across all states (Fig. 5c). However, the range of predictions were negatively skewed, 

with the highest mean predicted outcomes observed in Vermont and Wisconsin at 0.45, compared 
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to the most negative scores of -0.58, -0.57, -0.56 in Maryland, Pennsylvania, and Missouri, 

respectively (Fig. 5c). The mean predicted crystallized cognition score for children with single-

parents remained consistent after poststratification, across states. However, for two-parent 

families, the mean crystallized cognition score after de-biasing was slightly more varied. In 

Maryland, Colorado, and Michigan, the mean predicted crystallized cognition score for children 

in two-parent households was lower after poststratification. In contrast, in Florida and 

Pennsylvania, the mean predicted crystallized cognition score for children in two-parent 

households was higher, after poststratification (Fig. 5c). The de-biased predictions in Maryland 

were similar in single- and two-parent households, suggesting that in this state, marital status was 

not a strong predictor of crystallized cognition. As a whole, cognition scores after poststratification 

were generally predicted to be lower, suggesting that the biased model may have overestimated 

the relationship between marital status and cognition (Fig. 4c). Thus, poststratification helped us 

hone the predictions for precise and accurate small-area estimations. 
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Figure 7. Poststratification successfully mitigates group attribution bias, correcting overall 

cognition predictions based on unemployment in Pennsylvania. We incorporated US census 

SDI data into our diversity-aware population models, broadening the basis for parameter estimates 

and posterior predictions to ensure that our models are reliable and representative of the target 
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population. Given the known population proportions of race-state-SDV strata in the auxiliary SDI, 

we employed an average weighted sum of posterior predictive samples to adjust for subgroup 

representation bias in our models. (top) In our original (biased) model of overall cognition as a 

function of unemployment, Pennsylvania had the lowest mean predicted outcome, while 

Minnesota, Wisconsin, and Vermont had the highest. (bottom) The de-biased mean predicted 

overall cognition scores shows that Pennsylvania and Missouri exhibited the strongest 

poststratification results. This highlights variations in sampling quality across states, where well-

sampled states remain stable even after incorporating auxiliary information. 

Educational attainment demonstrates an organized pattern of predictive influence on cognition 

Educational attainment represents the proportion of individuals within a neighborhood who 

have achieved at least a high school education or higher. We constructed three models to 

investigate how residing in an area with a relatively higher level of education relates with fluid, 

crystallized, and overall cognition. The state intercepts demonstrated tighter uncertainty intervals 

of fluid and overall cognition scores, except for Pennsylvania, where the distribution of probable 

intercept values was wider and negatively skewed. Similar patterns emerged in our crystallized 

cognition model, albeit with a less variable uncertainty range, fluctuating from -2 to +2, compared 

to other models ranging from -4 to +2. A consistent race-slope estimation across the three cognitive 

phenotypes suggested that education had an organized pattern of predictive influence on cognitive 

development. Higher neighborhood educational attainment was positively linked with cognitive 

outcomes for White and Asian preadolescents. Otherwise, educational attainment showed neutral 

associations with cognition. In our overall and fluid cognition models, the mean predicted outcome 

in both lower-educated and higher-educated neighborhoods was significantly lower in 

Pennsylvania compared to other states (Fig. 5d). However, the difference between cognition scores 

in lower-educated and higher-educated neighborhoods was consistent across all states, suggesting 

that there were regional-driven stratification effects at play (Fig. 5d). 
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For the poststratification step, we used the SDI education variable, representing the 

percentage of the US census population aged 25 years or older, with less than 12 years of 

education. In our crystallized and overall cognition models, Connecticut saw the most drastic 

change, with a biased mean prediction of 0.11 and 0.07, and a de-biased mean prediction of 0.40 

and 0.34, respectively. In our de-biased fluid cognition model, the mean predicted outcome for the 

higher-educated neighborhoods of Maryland, was lower in comparison to the original model. This 

indicated less variability between neighborhoods with low- and high-educational attainment in 

association with fluid cognition (Fig. 5d). In lower-educated neighborhoods, we observed a similar 

range of predictions across race subgroups. The de-biased model showed that the association 

between lower-education and cognition was proportional across race subgroups, with a mean 

predicted cognition score of -0.3. However, the association of higher-educated neighborhoods with 

cognition was disproportionate across race subgroups, exhibiting diminished returns among Black 

and Hispanic preadolescents.  

 

The BMRP framework demonstrated its utility in capturing more complex relationships 

between SDVs and behavioral phenotypes. By means of partial pooling, the model's exploration 

of multilevel SDV predictors and state-specific outcomes revealed a higher organizational network 

of effects, quantifying how individual and group sources of variance influence childhood cognitive 

development. Poststratification emerged as a crucial technique for enhancing reliability. While 

Bayesian multilevel regression alone is advantageous for interpretability, the inclusion of 

poststratification ensures that these methods are applicable in domain-specific contexts and are 

generalizable across underrepresented populations. Our analysis highlighted that, without 

poststratification, population models could be prone to inaccuracies. Consequently, our 

standardized diversity-aware modeling approach underscores the significance of considering 

intersectional experiences in generative population models. 
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Discussion 

In population neuroscience, sociodemographic impacts on cognitive development have 

traditionally been studied under a strata-agnostic lens that neglects contextual parameters related 

to a population’s composition. Though many studies have examined the interplay of race, 

geographic location, and other sociodemographic factors by investigating their interactions, we 

took a different approach31,33,35,37. Here, we defined race and state groups in the ABCD Study© as 

multilevel strata, demonstrating that the effects of sociodemographic variables (SDVs) exhibit 

stratified patterns, even though race and state groups were not treated as predictors in our models. 

Our study extends the work of Park et al., drawing on the modeling approach used for small-area 

estimation and survey methodology to design domain-agnostic diversity-aware population 

models24. Utilizing the uniquely rich phenotyping in ~10,000 youths from the ABCD cohort, we 

aimed to systematically characterize major sources of variation in cognitive development at the 

population level, as a prerequisite to refine predictions at the single subject level. Our collective 

analyses provide evidence that cognitive predictions exhibit systemic SDV effects, highlight 

spatially concentrated poverty, and demonstrate the ability of poststratification in achieving 

reliable and interpretable insights across demographically defined strata. We demonstrate that 

Bayesian multilevel regression is well suited for capturing partially pooled effects, identifying how 

the model encodes aspects of skewed sampling bias, and providing a full specification of 

probabilistic uncertainties.  

SDVs and systemic privileges are inherently intertwined by virtue of salient societal axes; 

together, they show a well-established dependence on a diverse array of behavioral 

phenotypes31,32. The cross-cultural effects of SDVs has led to its widespread adoption as a 

covariate in statistical models, assuming a consistent impact across diverse populations33,34,35. In 

fact, SES is typically analyzed and depicted as a monolithic construct, linking low SES with 

cognitive deprivation and high SES with cognitive enrichment36,37. Such broad approaches and 

their resultant conclusions about social hierarchies imply similar cognitive trajectories for 

individuals of comparable socioeconomic status, irrespective of nuanced subgroup characteristics, 
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thus ignoring key issues of intersectionality38. However, our investigation, by explicit modeling, 

uncovered and quantified disproportionate SDV effects that render certain subgroups more or less 

impacted by facets of sociodemographic standing.  

Building upon the intersectional theory of cognitive development and stratified 

populations, Henry et al. discovered that the interplay of race and SES triggers micro-level 

processes that affect child development39. Adding quantitative support to this framework, we 

contend that the SDV-cognitive development relationship is vaguely defined and inadequately 

portrays a simple inverse relationship, despite its complexity and strata-specific nature. Disparities 

were particularly noticeable among Black children, demonstrating that low SES was a strong 

negative predictor of cognitive development, while high SES exhibited no discriminative nor 

protective effect39,40. Conversely, for White and Asian children, both high and low SES were 

associated with strong positive effects, challenging the conventional assumption that lower SES 

universally leads to diminished cognitive responses. This notion aligns with our premise that 

strata-contexts can directly inform diversity-aware population models. 

Racial segregation interacts with structural sociodemographic transformations in society, 

contributing to the spatial concentration of poverty14,16,40. The joint distributions of our model’s 

state-intercepts, and race-slopes should, in theory, support this premise, as we set out to carefully 

quantify the link between race and regional stratification in a single, coherent, varying-intercepts 

and varying-slopes estimation. Our collective findings demonstrate that we can effectively identify 

spatially concentrated poverty, by pinpointing how our probabilistic model captured key aspects 

of bias among the examined subgroups. In states with lower predicted cognitive scores, there was 

a larger population of Black and Hispanic subgroups. Conversely, in states with higher predicted 

cognitive scores, there was a larger population of White and Asian subgroups. Supporting the 

premise of spatial inequality theory, we noted that the association between low SES and cognition 

for Black and Hispanic subgroups residing in predominantly White states was less 

disadvantageous than in racially-diverse states41,42,43. Research indicates that children from low 

SES backgrounds in counties associated with high upward mobility, defined as the advancement 

to higher social class, exhibit fewer externalizing behaviors and enhanced cognitive 
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development44,45,46. The spatial inequality theory highlights the concept of unequal regional 

distribution of resources, which might explain why low SES was not a strong negative predictor 

of cognition in White and Asian families42,43,47,48. Our proposed framework illustrates how 

historical and societal biases are reflected, quantitatively, in population models. Circling back to 

the foundations of socialization—namely, critical race, social stratification, and spatial inequality 

theories—our analysis of state-specific outcomes and sociodemographic associations with 

cognition across race subgroups, helps us understand these social phenomena at the inter-

individual level. 

A common practice in relevant literature is to draw parallels from trends in Black and 

White households to juxtapose and characterize how SDVs are intertwined with cognitive 

development49. At the centre of this discourse, the Black-White achievement gap has been cited as 

a product of race and SES in connection with early childhood development49,50. However, our 

models revealed divergent effects of SDVs on race subgroups, indicating that these effects on 

cognition are not always directly analogous. The estimated posterior joint distribution of varying-

slopes, measuring the race-specific parental marital status effect, revealed that our model’s 

predictions of cognition were unstable when directly comparing Black and White subgroups. This 

suggests that parental marital status plays a different role in cognitive development trajectories 

across race subgroups. Our models effectively quantified the weaker positive effects of high SES 

on cognitive development in systemically disadvantaged subgroups, a phenomenon known as 

marginalized-related diminished returns (MDRs)51,52,53. Therefore, making the comparison, for 

example, that children in two-parent households are more likely to be cognitively enriched, than 

in single-parent households, is not a ground truth that is universally applicable, and may propagate 

a White-centric narrative onto all race subgroups. These findings accentuate systemic drivers 

present in society, which our model captures through information from the predictive module of 

variation in population strata54,55. We show that it is distinctly informative to measure the relative 

effects of SDVs on race and state strata, to elucidate socio-spatial dynamics. In settings where 

generative models are used for decision-making in healthcare or to guide policy interventions, it's 
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important to employ a diversity-aware modeling approach to account for intersectional experiences 

that may be determinant of individual differences within the target population23,56,57. 

The adoption of generative population models in downstream applications hinges on 4 

main aspects: interpretability, reliability, accuracy, and precision58,59,60. Although the ABCD 

Study© was designed to minimize selection bias, it is not guaranteed to be nationally representative 

across all sociodemographic dimensions73. In our diversity-aware modeling framework, the 

poststratification step is poised for bias mitigation by rebalancing outcomes in view of non-

representative population sampling. Poststratification is a statistical technique used to improve the 

precision and accuracy of estimates by adjusting for known variables within predefined 

subgroups24,25,61,62. Commonly used to reconcile nonresponse bias in survey estimation methods, 

poststratification serves as a viable mechanism to ultimately enhance the reliability of our analysis, 

ensuring that the generative predictive samples are representative of our target population62,63. We 

explicitly addressed two primary forms of biases embedded in our model: sampling bias and group 

attribution bias. The first stems from sampling inefficiencies across nested strata within the ABCD 

cohort, leading to subgroup representation bias, where race groups in particular states were skewed 

with respect to their true occurrence in the general population. This caused a domino effect, 

introducing a second, group attribution bias, encoded within the model itself64. This manifested 

when race and state subgroups were overly hetero- or homogeneous, projecting an SDV profile 

that perpetuated familiar stereotypes onto those subgroups. Such can be seen in the 

poststratification results in Pennsylvania, the state that exhibited the most pronounced corrections 

across all 14 SDV-cognition models. Before poststratification, Pennsylvania, which had the 

highest percentage of recruited Black participants in the ABCD cohort (52%), was predicted to 

have lower crystallized, fluid, and overall cognition outcomes than most states. After using the 

auxiliary US census SDI for de-biasing, Pennsylvania’s predictions were consistent with the 

average outcomes across all states.  

The hierarchical structure of our models was foundational to the effectiveness of the 

poststratification step, and to deriving insights that were generalizable to underrepresented 

groups65,66,67. By considering both group-level and individual-level variance, these models enabled 
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us to correct our estimates with exceptional granularity. Standalone, Bayesian multilevel 

regression ensured that over- or underrepresented race and state subgroups in the ABCD sample 

were drawn closer to their group mean24,62,63. When coupled with poststratification, which 

involved re-weighting our probability estimates based on the known population proportions of 

each state-race-SDV subgroup, we were able to deduce more accurate conclusions about our target 

population. For instance, in Missouri, where no Asians were sampled in the ABCD study, the 

model, after poststratification, provided an estimate into expected sociodemographic effects on 

cognition for Asians living in Missouri, by pooling and borrowing knowledge from the other data 

acquisition sites. Consequently, sociodemographic representations were balanced using the US 

census SDI to ground our model’s predictions in nationally representative estimates. This also 

contributed to more precise uncertainty intervals of SDV effects on cognitive outcomes across race 

and state subgroups, contrasting with the biased models where Black and Asian SDV slope effects 

exhibited wider intervals compared to the parameters for White, Other, and Hispanic subgroups. 

Therefore, our holistic approach to diversity-aware predictions ensured the identification and 

mitigation of biases that threatened to compromise our population models. In doing so, our model 

outputs illuminated socio-spatial effects, reliably interpreting inter-individual differences in 

cognitive phenotypes, even among the smallest strata in our analysis. 

Conclusion 

Our investigation into the intricates of cognitive development and sociodemographic 

factors has yielded profound insights. Through our novel diversity-aware population modeling 

framework, our analyses revealed the multifaceted interplay between race, geographic location, 

and SES. By doing so, we've circumvented the limitations of conventional strata-agnostic 

approaches, linking the disproportionate impact of sociodemographic variables on cognitive 

outcomes across diverse populations. Our quantification of socio-spatial effects within a unified 

platform has illuminated the marginalized-related diminished returns of high SES among 

historically underserved subgroups, in line with the theory of social stratification. This underscores 
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the necessity of considering the intrinsic hierarchical structure within populations to capture and 

derive meaningful insights. Our study represents a paradigm shift in population neuroscience, 

urging researchers to adopt a more holistic and inclusive approach that encompasses systemic 

context and the complexity of human diversity. 

Our findings underscore the urgent need for future studies to delve deeper into the 

organizational network of sociodemographic influences on all aspects of population-related 

research. It is crucial to prioritize intersectionality in our methodologies, recognizing how systemic 

barriers shape individual experiences in society. A collective effort across research communities 

to improve the specificity of ethno-racial constructs, as to avoid broad racial categories would bode 

well for achieving generalizable inter-individual insights. As a proof of principle, leveraging the 

richly phenotyped ABCD cohort and BMRP to account for population stratification and sample 

biases, we've showcased the reliability, interpretability, accuracy, and precision of our diversity-

aware population models –suitable for adoption in downstream applications. This study serves as 

a catalyst for future research endeavors, propelling us toward a more comprehensive understanding 

of the sociodemographic determinants of cognitive development and beyond. 

Limitations 

 The ABCD study, while extensive, employs an oversimplified definition of race and 

ethnicity, which could impede the generalizability of our findings to underrepresented subsets of 

the population. Researchers should consider that race is a social construct that continues to evolve 

through historical and political shifts, as outlined by the Pew Research Center90. To anchor 

analyses in the modern social climate, it is imperative for the scientific community to collaborate 

on data initiatives to expand the availability of more nuanced and inclusive measurements of race. 

Acknowledging criticisms of standardized cognitive ability tests for their lack of cultural 

equivalence91 across ethnic groups, we recognize the potential for our diversity-aware population 

models to learn and perpetuate stereotypes about minorities. Moving forward, concerted efforts 

addressing the challenges outlined will improve our diversity-aware modeling framework. 
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Methods 

ABCD Study 

Neurobehavioral and socioeconomic data for this study were sourced from the Adolescent 

Brain Cognitive Development Study (ABCD; https://abcdstudy.org/) – the largest and most 

comprehensive biomedical resource on child health and brain development5. The ABCD Study© 

is a collaborative aggregation of data from 11,877 children aged 9–10 years (mean age = 9.49 

years) across 21 sites in the United States, with participant demographics comprising the following 

race subgroups: 48% girls, 57% Caucasian, 15% African American, 20% Hispanic, and 8% other 

ethnicities68,69. Baseline measurements were obtained from the ABCD curated 3.0 release, 

providing comprehensive measures across child and parent domains, including self-reports of race 

and ethnicity, physical and mental health, neurocognitive performance, sociodemographic factors, 

cultural values, and environmental conditions70. These indicators were characterized using over 

6000 deep-profiling assessments, capturing more than 17,000 individual items. (https://data-

archive.nimh.nih.gov/abcd). All protocols for the ABCD Study received approval from either a 

central or site-specific institutional review board committee70,71. Caregivers provided written, 

informed consent, and children offered verbal assent for all research protocols71. Additional details 

about the ABCD Study are available in Garavan et al., 2018. The dataset is funded and managed 

by the National Institutes of Mental Health Data Archive (NIH) and is openly accessible to 

qualified researchers. Instructions for data acquisition can be found at 

https://nda.nih.gov/abcd/request-access. 

ABCD employed a multi-stage probability sampling strategy, curating a cohort to closely 

reflect the sociodemographic composition of the general US population72. To minimize systematic 

sampling and selection biases, a stratified probability sampling method was utilized to ensure 

randomization and representativeness of selected schools across the US. However, only urban 

schools were among the 21 collaborating sites, resulting in a relative underrepresentation of rural 

youth. Despite efforts to create a nationally distributed data resource, the extent to which the 

https://abcdstudy.org/
https://data-archive.nimh.nih.gov/abcd
https://data-archive.nimh.nih.gov/abcd
https://nda.nih.gov/abcd/request-access
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ABCD cohort is representative of the US population in terms of race, sex, and SES may vary 

across different outcome measures73. 

Auxiliary Census SDI Data 

External census information was obtained from the Robert Graham Center's Social 

Deprivation Index (SDI) dataset74,75. The SDI quantifies disadvantage in small areas to evaluate 

associations with health outcomes, and address health inequities (SDI; https://www.graham-

center.org/maps-data-tools/social-deprivation-index.html). Butler et al. (2012) developed this 

index using the 2005–2009 American Community Survey and applied factor analysis of seven 

demographic characteristics to identify latent factors of social and area deprivation74,75. Higher 

values indicate greater severity, expressed as a composite measure ranging from 0 to 100. Our 

analysis focused on census tracts among the various geographic areas covered by the SDI, 

examining 4 of the 7 available demographic characteristics: poverty (less than 100% of the federal 

poverty line), education level (population percentage with less than 12 years of education), single-

parent households, and the percentage of non-employed adults (those not seeking work) under 65 

years of age (N=160,000,000 participants). To derive a state-level variable, we mapped census 

tract codes to their respective states and excluded observations in the SDI from states not included 

in the ABCD study. To create a race variable, we extracted race percentages (Black, Hispanic, 

White, Asian, Other) from the most recent US census data for each state. Subsequently, we 

employed a weighted random choice generator to assign a race attribute to each observation in the 

SDI, ensuring alignment with real-world race-state distributions. 

Target phenotype and SDV selection 

We conducted a cross-sectional analysis of the ABCD study, investigating cognitive 

development with respect to sociodemographic variables (SDV). To decide which SDV-

neurobehavioral relationships to explore, we utilized Pearson’s cross correlation (PCC), charting 

demographic diversity factors against neurobehavioral phenotypes76. Chen et al. illuminated 

https://www.graham-center.org/maps-data-tools/social-deprivation-index.html
https://www.graham-center.org/maps-data-tools/social-deprivation-index.html


36 

 

 

 

 

 

 

 

shared brain network features explaining individual variations in childhood behavior77. Building 

upon this work, our PCC encompassed 36 target neurobehavioral phenotypes spanning personality, 

mental health, and cognitive domains. We then curated a shortlist of 57 sociodemographic 

diversity factors for inclusion in our PCC, as informed by key variables highlighted by Yip et al. 

and related ABCD studies, emphasizing their significance in shaping child brain development78,79. 

The resulting PCC was a 36 x 57 matrix, describing the relative linear association between 

neurobehavioral phenotypes and SDVs. Given correlation coefficients falling within the range of 

|ρ| ≤ 0.34, we elected to exclusively model a subset of 14 SDV-behavior pairs meeting our set 

threshold of |ρ| ≥ 0.280. 

The cognitive domain—fluid, crystallized, and overall cognition phenotypes—exhibited 

stronger associations with sociodemographic variables (SDVs) compared to phenotypes within the 

personality and mental health domains. Among the 57 demographic diversity factors charted, 

education level, poverty occurrence, poverty threshold, parental marital status, and unemployment 

were the 5 most dominant SDVs. For simplicity, we modeled each of the 14 SDV-cognitive 

phenotype pairs separately, investigating cognitive variation as a function of the SDV under study 

in each model. To ensure the robustness of our findings, our inclusion criteria comprised children 

with complete SDV information and cognitive assessment scores (N=10,900); excluded were 

participants with missing data or from site 22, as this site was sparsely sampled and discontinued 

in future ABCD releases. We consolidated 21 sites into 17 states, label encoded the race and state 

variables, and binarized each SDV based on its respective median value. This procedure was 

conducted to coherently delineate strata within our sample across state, race, and 

sociodemographic extremities. Finally, in a two-step process to enhance model interpretability, we 

applied the natural logarithm to our target cognitive variable to address skewness and performed 

z-scoring for standardization81: 

 

𝑧ln⁡(𝑦) =
𝑙𝑛(𝑦0) − 𝜇𝑙𝑛(𝑦0)

𝑠𝑙𝑛(𝑦0)
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where 𝜇𝑙𝑛(𝑦0) is the mean of the natural logarithm of our target cognitive variable, and 𝑠𝑙𝑛(𝑌𝑗) is 

the standard deviation. Effectively, we systematically quantified cognitive variation relative to the 

group mean, accounting for major sources of population stratification. Our investigation serves as 

a proof-of-principle for diversity-aware population modeling, demonstrating that Bayesian 

multilevel regression and poststratification (BMRP) is a natural candidate for deriving 

interpretable and reliable insights. 

Bayesian hierarchical model specification 

We constructed each of our diversity-aware population models by specifying a varying-

intercepts and varying-slopes (VIVS) model to predict continuous cognitive phenotypes. Our 

BMRP framework extends survey methods commonly used for small-area estimation24,25,82. In our 

VIVS model, we defined 17 state-intercept hierarchies, and 5 race-slope hierarchies. Using Theano 

shared objects, which allow for data swapping, we instantiated our race and state hierarchies and 

SDV input variables. Next, we fitted each model on the ABCD sample, then seamlessly 

incorporated external census SDI data for the poststratification step. Our BMRP approach involved 

two steps that we carried out for all 14 SDV-cognitive phenotype pairs (cf. previous section), 

denoted by 𝑦𝑖, the model outcome, and 𝑥𝑖, the model input for an individual, 𝑖, as described below: 

 

1. Fit a multilevel linear regression model for the individual cognitive prediction 𝑦𝑖, based on 

a state-specific average, 𝛼𝑗[𝑖], race-specific SDV predictor, 𝛽𝑗[𝑖]𝑥𝑖, and latent individual 

error, 𝜎2. In contrast to Gelman et al.’s (2004) logistic regression modeling strategy, in 

which the authors categorized observations to estimate mean responses for each 

demographic and state cross-classification, our method retained all observation 

information to anchor our model in a data-driven way, capturing the full depth of both 

group- and individual-level variance. 
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2. From the auxiliary US census SDI dataset, we created our poststratification cells (i.e., 

consider population strata), 𝑐, by aggregating the unique combination of states, races, and 

the binary SDV predictor, yielding the stratum sample size 𝑛𝑐, for each cell 𝑐. We updated 

our posterior predictive sample using the Theano shared object to swap in the SDI 

categorized data into our model and obtained a cell probability estimate, 𝜋𝑐 , representing 

the mean prediction for each category in the model. The estimated population average of 

the cognitive prediction 𝑦 was thus: 

 

by state, s: 𝜃𝑠 =
𝛴𝑐𝜖𝑠⁡𝑛𝑐𝜋𝑐

𝛴𝑐𝜖𝑠⁡𝑛𝑐
 

by race, r: 𝜃𝑟 =
𝛴𝑐𝜖𝑟⁡𝑛𝑐𝜋𝑐

𝛴𝑐𝜖𝑟⁡𝑛𝑐
, 

 

The state summation was performed over 10 demographic categories (5 race groups × 

binary SDV, per state), while the race summation involved 34 demographic categories (17 

state groups × binary SDV, per race). 

Model Formulation 

The cognitive scores 𝑦𝑖𝑗, for each participant, 𝑖, in a race and state strata, 𝑗, conform to a 

normal distribution, characterized by a latent individual mean, 𝜇𝑖𝑗. This mean is expressed as a 

function of the state-level intercept, 𝛼𝑗[𝑖], the race-level slope, 𝛽𝑗[𝑖], and individual error, 𝜎2, 

unexplained by our model. Effectively, to make an individualized prediction, our model estimates: 

the average cognitive outcome in a participant’s state, the effect of the SDV under study in 

participants’ race group, and the random model variance: 

 

𝑦𝑖𝑗~𝑁(𝜇𝑖𝑗 , 𝜎
2) 

𝜇𝑖𝑗 = 𝛼𝑗[𝑖] + 𝛽𝑗[𝑖] × 𝑥𝑖 , 
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where 𝑖 represents the index for individual participant observations, 𝑗 represents the index for 

group membership, 𝑥𝑖 denotes the binarized SDV attribute (e.g., education level), 𝛼𝑗[𝑖] is the 

varying-intercepts parameter, estimated for 17 state groups, and 𝛽𝑗[𝑖] is the slope parameter, 

estimated for 5 race groups. 

Varying intercepts by state-levels 

The group-level intercept 𝛼𝑗, was partially pooled across 17 states from which the ABCD 

cohort was sampled, assuming a normal distribution. This varying intercept parameter captured 

any differences in cognitive scores across different geographical regions, accounting for the shared 

information among states while allowing for individual state-specific effects on cognitive scores: 

 

𝛼𝑗~𝑁(𝜇𝛼 , 𝜎𝛼
2), 

 

where 𝜇𝛼 estimated the mean of the state-level intercepts, and 𝜎𝛼
2 estimated the variance of the 

state-level intercepts. 

Varying slopes by race-levels 

The group-level slope 𝛽𝑗 , was partially pooled across 5 race strata in the ABCD study and 

was assumed to follow a normal distribution. This parameter quantified the relationship between 

the cognitive phenotype and SDV pair under study for each race subgroup, expressing the 

confidence and reliability of the estimations. The hierarchical structuring of each binary SDV 

based on our race strata, enabled contextually dependent predictions: 

 

𝛽𝑗~𝑁(𝜇𝛽 , 𝜎𝛽
2), 

 

where 𝜇𝛽  estimated the mean of the race-level slopes, and 𝜎𝛽
2 estimated the variance of the race-

level slopes. 
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Weakly Informed Priors 

The hyperparameters  𝜇𝛼 and 𝜇𝛽  were assumed to be normally distributed, while 𝜎𝛼
2 and 

𝜎𝛽
2 were modeled as exponential distributions. These hyperparameters played a crucial role in 

governing the overall variability and shrinkage of the group-level intercepts and slopes, 

respectively. This in turn influenced the degree of pooling of information across states and race 

groups. In the spirit of a data-driven analysis, we assigned weakly informative priors to these 

hyperparameters83. Our hyperpriors, 𝜏𝛼, 𝜏𝛽, 𝜎𝜇𝛼, and 𝜎𝜇𝛽  expressed the model's prior beliefs about 

the variability and central tendencies of the hyperparameters, 𝜇𝛼, 𝜇𝛽 , 𝜎𝛼
2, and 𝜎𝛽

2. The hyperpriors 

stroke a balance between allowing the data to influence the model estimation process while 

incorporating informed expectations: 

𝜇𝛼~𝑁(𝜏𝛼 , 𝜎𝜇𝛼) 

𝜎𝛼
2~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜖𝛼) 

𝜇𝛽~𝑁(𝜏𝛽, 𝜎𝜇𝛽) 

𝜎𝛽
2~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜖𝛽), 

 

where 𝜏𝛼 and 𝜏𝛽 denote the mean (equal to zero) of the normal prior distribution and 𝜎𝜇𝛼  and 𝜎𝜇𝛽 

denote the error (5.0 and 1.0, respectively) of the prior distribution. 𝜖𝛼 and 𝜖𝛽 denote the mean 

error of the prior error distribution (1.0 and 0.5, respectively). 

MCMC Sampling and Robust Parameter Estimation 

Probabilistic hierarchical modeling was specified, implemented, and carried out in the 

PyMC3 framework (https://github.com/pymc-devs/pymc3). Joint posterior distributions were 

approximated using NUTS (No U-Turn Sampler), an efficient Markov Chain Monte Carlo 

(MCMC) algorithm, following our previous work using Bayesian statistics84,85,86. MCMC methods 

enabled robust parameter estimation, allowing the model to draw accurate posterior distributions 

for nuanced and reliable inferences. 

https://github.com/pymc-devs/pymc3
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NUTS employs an adaptive approach to determine the path of the Markov chain during 

sampling. This sampler efficiently explores high-dimensional parameter spaces by dynamically 

adjusting the trajectory, eliminating the need for manual tuning of parameters (e.g., step size). This 

results in faster convergence and more accurate approximations of joint posterior distributions, 

making this solution advantageous for complex modeling scenarios. We drew 2,000 samples from 

the joint posterior distribution over all parameters in the model, refining the estimations at each 

step to converge toward the desired target distribution. Depending on model convergence, tuning 

ranged from 2,000 to 3,000 steps. At every stage of the MCMC chain, a comprehensive estimation 

of the entire set of parameter values was carried out, sharpening their joint credibility with respect 

to the observed data. We confirmed model convergence by examining overlap in the geometry of 

posterior parameter distributions from four independent MCMC chains. Finally, we plotted our 

resulting Bayesian posterior parameter distributions using Arviz Python package 

(https://www.arviz.org/). 

Model Evaluation and Predictive Power 

Our model quality was evaluated by inspecting the i) 𝑅̂ quality criteria and ii) effective 

sample size. We further scrutinized how well the model captured the intricate complexities in 

observed cognitive outcomes by iii) performing posterior predictive checks (PPC). Simulating new 

data based on the estimated parameter posteriors, our PPCs provided a comprehensive evaluation 

of the model's predictive performance, allowing us to assess its ability to replicate the patterns 

observed in the actual data87,88. We used the Bayesian R2 score from Arviz to compare the variance 

of the observed data to the posterior predictive distribution variance30. This served as confirmation 

that the posterior predictive distribution of the model was well-fitted to the observed data, which 

is essential as a precondition for domain interpretability of the obtained model. To validate the 

poststratified model, we conducted sensitivity analyses to assess the impact of different 

poststratification scenarios on the robustness of our predictions. This comprehensive strategy 

https://www.arviz.org/
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enhances the model's utility across diverse demographic contexts, allowing for more nuanced and 

accurate predictions of cognitive outcomes. 

Poststratification Strategy 

The poststratification strategy was a crucial methodological step to enhance the precision 

and accuracy of our model’s predictions24,25,82. We aimed to rectify potential biases related to 

group attribution, such as systematic skewing in recruiting specific population strata in the ABCD 

cohort (e.g., over- or under-representation of demographically defined subgroups). Thus, 

poststratification was employed to ensure that the final posterior predictive sample was 

representative of the entire population, and equally reliable for smaller subpopulations. For this 

technique, we leveraged auxiliary US census SDI data (cf. above), then constructed a 

poststratification matrix by dividing the population into cells based on subgroup membership. An 

example race-state-SDV category would be a white, Californian, raised by married parents, for 

which we know the population proportion of individuals in that category. The cell would act as a 

placeholder for the mean prediction of that category and the known US census SDI stratum weight 

to be applied. 

Poststratification, as the name suggests, was implemented after model fitting (cf. above), 

using the set of joint posterior parameter estimates as the basis for the final analysis. Each of our 

14 models had 170 cells corresponding to the unique combination of 17 states, 5 races, and the 

binary SDV under study. To fill the poststratification matrix, we retrieved the probability estimate 

𝜋𝑐 , which is the mean model prediction of y, for a particular category stratum. Given the estimated 

joint posterior parameter distributions that make up our model (cf. above), we obtained 𝜋𝑐  by re-

instantiating our race and state hierarchies and SDV input variables. The Theano shared objects 

facilitated dynamic swapping of the ABCD data and US census SDI, enabling us to re-run our 

posterior predictions. From this drew 8000 samples for each category, yielding an 8000 x 170 

poststratification matrix. 
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Next, the stratum weights were applied to the cell probability estimates using the known 

category population proportions derived from the auxiliary US census SDI. We calculated the data 

weighted average across 10 and 34 categories for each race- and state-specific poststratification 

(cf. above), respectively. This meant that the adjusted estimates for a target population were 

slightly different when the data-weighted average focused on either the state or race summary. 

Overall, poststratification ensured that our model was not only accurate and precise, but also 

sensitive to the diversity present in different demographic subgroups. The unique quality of the 

Bayesian paradigm being able to shrink group and individual effects towards a common shared 

effect to varying degrees ensured that over or underrepresented cells were properly accounted for 

in our framework. 

This post-stratification scheme was repeated for all 14 SDV-behavior pairs (cf. above). Our 

comprehensive strategy enhanced the model's utility across diverse demographic contexts, refining 

our model parameters and predictions to reflect the distribution of sociodemographic 

characteristics in the target population. 
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