
A Human-Centred Approach to Designing

Effective Large Language Model Based

Tools for Writing Software Tutorials

Avinash Bhat

School of Computer Science
McGill University

Montreal, Quebec, Canada

December 2023

A thesis submitted to McGill University in partial
fulfillment of the requirements of the degree of

Master of Science (Thesis)

©Avinash Bhat, 2023

Contents

Abstract iv

Résumé v

Acknowledgements vii

List of Figures viii

List of Tables ix

1 Introduction 1

2 Background and Related Work 4

2.1 Cognitive Models of Writing and Interaction 4

2.2 Language Models and Their Design Considerations 6

2.3 Tool Support for Software Tutorial Authoring 9

3 Method 11

3.1 Participants and Recruitment . 11

i

3.2 Study Design . 12

3.3 Data and Analysis . 14

4 Processes in Tutorial Writing 16

4.1 Understanding the information needs of the target audience 16

4.2 Researching the tutorial topics . 17

4.3 Developing tutorial artifacts . 18

4.4 Meeting Quality Standards . 20

4.5 Maintaining the published tutorials . 22

5 Interactions with LLM 24

5.1 Integrating LLMs into Existing Aspects of Tutorial Writing 24

5.2 Quality Assessment of LLM-generated Content 27

5.3 Mental Model of LLMs . 29

5.4 Usability Concerns . 32

6 Tool Design 37

6.1 Design Guidelines . 37

6.1.1 Supporting Authoring Processes and Evolving Content 37

6.1.2 Providing Control and Visibility to address Usability Issues 40

6.1.3 Facilitating Verification and Editing Capabilities to ensure Quality
and Accuracy . 41

6.2 Conceptual Design . 42

6.2.1 Design Elements . 44

ii

7 Discussion 49

7.1 Potential of LLMs in Tutorial Writing Workflows 49

7.2 Addressing Needs and Challenges in Leveraging LLMs for Tutorial
Authoring . 52

7.3 Framework for Interaction with LLM . 55

7.3.1 Four stages of the Framework . 56

7.3.2 Comparison with Norman’s Seven Stages of Action 60

7.3.3 Illustrating the Framework through an example 62

7.4 Future Work . 63

7.5 Limitations of our study . 63

8 Conclusion 65

Contributions 67

Bibliography 68

Acronyms 76

Appendix 77

8.1 Recruitment Texts . 77

8.2 Sample Demographic Survey & Screening 77

iii

Abstract

Despite the proven capabilities of Large Language Models (LLMs) across diverse tasks,
their effectiveness in technical writing – a domain that demands factual accuracy and
specificity in addition to other writing goals, such as coherence and conciseness – remains
unexplored. Moreover, a comprehensive understanding of the experiences and processes
of humans when interacting with these models is lacking. To address this gap, we
explored the opportunities in leveraging LLMs for tutorial writing from a human-centred
perspective. Our exploration involved a study with professional software tutorial authors
(N=7) on OpenAI playground to understand their existing tutorial writing practices and
their potential approach to using LLMs for tutorial writing. Our study reveals that the
interactions of the writers with these models are motivated by their existing practices of
content research, editing, and verification, often guided by self-imposed quality standards.
However, the unreliability of the LLMs and the poor usability of the interfaces leads to an
incorrect mental model about the capability of the models. Guided by these insights, we
propose design guidelines and a low-fidelity prototype emphasizing the transparency and
usability of human-LLM interaction that can be integrated into the current tutorial writing
workflows. Overall, our research underscores the significance of human-centric approach
in designing language technologies to enhance tool usability and usefulness for users.
Specifically for tutorial writing, our study identified key workflows that could be further
explored for LLM integration, indicating potential directions for future research in this
domain.

iv

Résumé

Malgré les succès récents des grands modèles de langage (LLM, de l’anglais Large
Language Models) dans diverses tâches, leur efficacité pour la rédaction de documents
techniques – une tâche qui requiert de l’exactitude et de la spécificité en plus d’autres
objectifs de style, tels que la cohérence et la concision – demeure inexplorée. De plus,
nous manquons une compréhension globale de l’expérience et des processus humains
lorsqu’ils interagissent avec les LLM. Pour combler ces lacunes, nous avons exploré des
opportunités d’utiliser les LLM pour la rédaction de tutoriels, d’un point de vue centré sur
l’humain. Notre exploration inclut une étude avec des auteurs professionnels de tutoriels
(N=7) sur OpenAI playground pour comprendre leurs pratiques de rédaction actuelles et
leur approche hypothétique quant à l’utilisation des LLM. Notre étude révèle que les
interactions des auteurs avec les LLM sont motivées par leurs pratiques courantes de
recherche, d’édition et de vérification de contenu, souvent guidées par des normes
personnelles de qualité. Cependant, les lacunes des LLM et la convivialité déficiente des
interfaces mènent à des modèles mentaux incorrects de la capacité des LLM. Guidés par
ces apprentissages, nous proposons des suggestions de conception et des schémas de
conceptions pour un prototype, mettant l’accent sur la transparence et l’ergonomie de
l’interaction humain-LLM, qui peuvent être intégrés dans les flux de travail actuels de
rédaction de tutoriels. Dans son ensemble, notre recherche souligne l’importance d’une
approche centrée sur l’humain dans la conception des technologies linguistiques pour
améliorer l’utilisabilité et l’utilité des outils pour les utilisateurs. Plus spécifiquement pour
la rédaction de tutoriels, notre étude a identifié des processus clés qui pourraient être
davantage explorés pour l’intégration des LLM, indiquant des directions potentielles pour

v

la recherche future dans ce domaine.

vi

Acknowledgement

I extend my deepest gratitude to Professor Jin Guo for her invaluable mentorship and
feedback throughout my master’s journey, which massively influenced my academic
perspective. Her consistent support and guidance were key to my work.

I thank my collaborator, Disha, without whom most of the ideas in this project would never
take shape. I thank Prof. Guo, Prof. Robillard and my labmates at the Software Technology
Lab for fostering a growth-oriented environment that greatly influenced my research. A
huge shoutout to Jazlyn, Mathieu, Deeksha and Justine, who were my go-to people for
anything related to research and beyond. I thank Mathieu for his help with the French
résumé and Deeksha for her guidance on qualitative coding. I would like to thank the
department staff, including Ann, Sheryl, Kamini, Ron and Corey, who patiently helped me
with various administrative and technical tasks throughout the past two years.

I am indebted to my parents for their constant love and support and forever grateful for the
safety net they provide that allows me to aim high. I cannot possibly list all my friends and
their role in my successes. I thank all of them for cheering me in ways they might not even
realize. A special shoutout to my roommates, Robin and Manas, who made the stress of
being in a foreign country more bearable and, to a large extent, enjoyable.

Last but definitely the most, I am truly grateful to Divya for being by my side through the
toughest times and loving me despite all my antics.

vii

List of Figures

3.1 Screenshot of the OpenAI Playground interface as used in the study 14

5.1 P7’s interaction with the LLM during tutorial generation 29

5.2 Participants refer to their previous interactions with the LLM 33

5.3 Participants deploying various strategies to align the LLM 35

6.1 Editing the LLM generated content . 43

6.2 Sketch of the prototype. 44

6.3 Sketch of the Interact Mode in Page and Source 47

viii

List of Tables

3.1 Background of the User Study Participants 12

6.1 Design guidelines distilled from the formative study. 38

ix

Chapter 1
Introduction

The rapid development of large language models (LLMs) has significantly changed the
technology landscape. LLMs have expanded capabilities essential for numerous language
tasks [61]. This rise in capability has sparked innovations like prompt engineering, which
refines how we communicate with these models [44, 37]. LLMs are now widely
implemented across various applications [30] and are now pervasive, with several daily
products integrating them1. As their influence grows, there’s an increasing need to
comprehend both their potential and the specifics of their functionality.

Regardless of the efficiency, the utility of these models is in producing human usable
outputs. LLMs can unintentionally show biases due to their training data, and a high
non-interactive effectiveness of the model does not always indicate a good human-LLM
interaction [34]. Efforts like ChatGPT use human feedback to address this [11, 2]. It’s
clear that the effectiveness of LLMs isn’t just about their capabilities but also how they’re
designed with users in mind and how they account for human input.

Human-AI collaboration and AI-assisted writing have been studied extensively [20, 47,
28]. While the focus in literature is generally on creative writing [20], professional writing
tasks, such as software tutorial writing, which combines technical writing with creativity,
are not as extensively studied. Acceptance of AI in such professional environments and
tasks hinges on creating systems that are both transparent and aligned with user needs [46,
7].

Developing software tutorials is a complex task. Writers must comprehend intricate
technical aspects, assess the knowledge level of their audience, and convey information

1https://openai.com/blog/chatgpt-plugins

1

Introduction

clearly. Additionally, with software constantly changing, tutorials need frequent updates to
remain up-to-date and accurate [27, 54]. Given the advancements in LLMs, their inclusion
in tutorial writing is promising. LLMs possess the capability to generate relevant text and
code examples, thereby streamlining the process for authors. Their capability to quickly
generate insights from a large amount of information and produce coherent, contextually
appropriate outputs can enhance the efficiency of the writing process. While LLMs seem
like a valuable addition to the writing process, their integration presents challenges. A
primary concern is their potential over-dependence on training data. This can lead to them
suggesting outdated solutions or not recognizing newer best practices. There’s also an issue
of biases that could be inherent in their training data, risking the generation of incorrect
techniques and perspectives. In order to effectively leverage the capabilities of the LLM,
it’s essential that LLMs operate interactively and allow for human input and feedback. A
human-AI collaboration ensures that the produced content is both accurate and aligned
with the author’s intent. Therefore, while LLMs can be powerful tools, their integration
necessitates a design that prioritizes human-AI collaboration.

Given the promising intersection of LLMs with tutorial writing and the evident gap in
practical insights, we tried to understand the feasibility and challenges in integrating the
LLMs in practice. Through directly interviewing software tutorial authors, we aimed to
understand the unique workflows and challenges that exist in the tutorial writing space to
identify the potential advantages offered by LLMs. Based on the reflections gathered
during the interview phase and interactions observed during the hands-on exploration
phase of the study, we propose two recommendations. First, a set of design guidelines that
account for various workflows in the tutorial authoring domain and potentially leverage
LLMs effectively and realize this in a conceptual design. Second, we discuss a framework
that can potentially assist tool developers in categorizing different user interactions that
can arise in a human-LLM interaction setting to design better LLM-based tools.

In summary, our contributions are as follows.

1. Based on direct interviews with software tutorial authors, we distill the feasibility
and potential benefits and pitfalls of human-LLM collaboration for a tutorial writing
task through an understanding of the unique workflows and challenges within the

2

Introduction

domain.

2. We incorporate the insights from the interview and hands-on exploration phases to
establish comprehensive design guidelines. These guidelines consider user
preference in tutorial authoring workflows and highlight strategies for effective
integration of LLMs, with the aim of bridging the gap between potential and
practical applications.

3. We introduce and discuss a potential framework intended to guide both tool designers
in enabling intuitive and effective LLM-based tools.

The organization of the thesis is as follows. In Chapter 2, we provide a background of
LLMs and discuss their applications in the writing space. Following this, we discuss various
cognitive models used in writing and interaction that motivate the design of AI-assisted
writing tools. We also discuss related tools for tutorial authoring and maintenance-related
activities. In Chapter 3, we discuss our study design, including the recruitment strategy,
interviews and analysis. In Chapters 4 and 5, we present our findings. We develop the
design guidelines and a conceptual design based on these findings, which we discuss in 6.
Finally, we present a comprehensive discussion of our results, and a potential framework
for designers in 7.

LLMs are reshaping the technological landscape, especially in language-related tasks.
While they possess vast capabilities, they are not always straightforward to use, especially
in producing content for human audiences. We aim to investigate the challenges and
potential of using LLMs in software tutorial writing. Finally, we offer design guidelines
derived from our findings and present a framework to help tool designers and developers
optimize LLM-based tools.

3

Chapter 2
Background and Related Work

Our work is inspired by the current body of research pertaining to the cognitive models and
processes related to writing and interaction, the use of AI in writing, design of intelligent
writing assistants, especially for software tutorial writing. In this section, we discuss how
our work is related to works in those aspects in detail.

2.1 Cognitive Models of Writing and Interaction

Much of the literature on writing assistants builds on existing cognitive models of writing.
Notably, four prominent models are the text-oriented model, the process model, the
sociocognitive model, and the social practices model [14]. Each of these models
emphasizes different aspects of writing. The text-oriented model focuses on the finished
piece of text and its linguistic attributes. In contrast, the process model highlights the
cognitive processes that an individual writer performs to produce text. The sociocognitive
model sees writing as an intricate activity system, underscoring the interactions between
the writer, technology, and the surrounding environment. The social practices model, with
its anthropological roots, often relies on ethnographic studies of literature to understand
how text production takes place at the intersection of society, culture, and language.

Given the clear implication to interaction design, HCI research primarily focuses on
the process model, in particular the Cognitive Process Theory of Writing proposed by
Flower and Hayes [19] and later refined by Hayes [26]. This theory delves deep into the
various processes of writing. It highlights the task environment, which encompasses
external elements like the writing topic, the evolving text as an output of the writing
process, the tools used, and the sources of information. It underscores the importance of

4

2.1 Cognitive Models of Writing and Interaction

the writer’s long-term memory, which acts as a repository of the writer’s knowledge on
the subject, audience awareness, and various writing strategies. Within the active writing
processes, three major components include planning – which deals with idea organization
and goal-setting, translating – where ideas are converted into text and finally, reviewing –
the stage of refining and revising the text. These processes are intertwined and can occur
out of order. Hayes [26] later extended this model, introducing the role of working
memory in the writing process and highlighting the importance of factors like motivation
and transcription methods, such as typing versus handwriting. Several studies in
intelligent assistant research [3, 49, 21, 12] draw heavily from the cognitive process
theory to devise novel interactions between the writer and the AI assistant. While we
acknowledge the importance and existence of various processes outlined by the Cognitive
Process Theory in the tutorial writing task, we want to identify any additional processes
corresponding to various additional artifacts that are developed during tutorial writing.
This motivates the interview phase of the user study.

Coming to the cognitive models for interaction design, one of the most influential
models has been the Seven Stages of Action framework [41]. The framework is a cyclical
model that begins with goal formulation, followed by action planning, specification,
execution, perception, interpretation, and finally, evaluation against the initial goal. The
framework is supported by three levels of mental processing termed visceral, behavioural,
and reflective. The visceral level captures the instinctual reactions and is often driven by a
product’s aesthetics. The behavioural level focuses on the product’s usability, where the
feedback arises from the ease or difficulty of use. The reflective level delves into
reflections on the product’s significance. In addition, seven design elements are proposed
based on this interaction model. Discoverability ensures users can identify possible
actions. Feedback provides clear action outcomes from the product to its user. A
conceptual model is a mental model that the user forms about their potential interaction
with the model. Affordances suggest potential interactions that are possible with the
product. Signifiers provide clear action indicators of the affordances. Mappings ensure
logical relationships between controls and outcomes. Constraints set user interaction
boundaries. These design elements have extensively been used in design literature.

5

2.2 Language Models and Their Design Considerations

2.2 Language Models and Their Design Considerations

Recent AI advancements in natural language tasks are accelerated with the introduction of
transformer architecture and self-attention mechanisms [52]. These, combined with the
concept of pre-training and fine-tuning for context-aware word representations [42], led to
models like BERT [13] and the GPT series [Radford et al.] of models. Scaling models
based on computation, model parameters, and training data size improves their
performance [31], and such scaled language models are termed as Large Language
Models (LLMs). One notable trait of LLMs is their emergent ability [55], where, as
models get bigger, they show new and unique capabilities not observed in smaller models.
These emergent abilities are generally useful to achieving state-of-the-art results in several
downstream natural language tasks [6]. Zhao et al. [61] identified three key emergent
abilities of LLMs – in-context learning, instruction following, and step-by-step reasoning.
The field of prompt engineering [44, 37] generally leverages these techniques to design
effective prompts, which are user inputs used to elicit relevant content from the LLM.
In-context learning involves giving the model few-shot examples [15]. For more complex
tasks, step-by-step reasoning techniques like chain-of-thought prompting [56] have been
shown to achieve good results. However, prompt engineering can also reveal biases from
the pretraining data, sometimes producing problematic content. To counter this,
researchers are incorporating human feedback into the training process [11, 2] which have
been attributed for the recent success of models like ChatGPT 1.

Improvement in language model capabilities necessitates a focus on usability research
to foster better user acceptance of intelligent systems and acknowledge their
potential [36]. AI’s usefulness depends not only on its capabilities but also on users’
willingness and ability to integrate AI into their workflow [46], which directly depends on
their perceived usability. However, there are several issues pertaining to the usability of
intelligent systems. Human-level issues, such as the need for humans to learn interaction
methods or change their existing processes while performing tasks [29], can be
challenging to address due to their overall diversity and user-specific nature. Conversely,
issues primarily at the system level, like the interface’s limited control over user

1https://openai.com/blog/chatgpt

6

2.2 Language Models and Their Design Considerations

interaction or the model’s inherent unpredictability and complexity, are more addressable.
The system-level issues generally inhibit any potential productivity gains [59]. While
some research suggests that imperfections arising due to unpredictability can encourage
creativity, it largely depends on the skill and confidence of the users and the availability of
tools and interfaces to rectify AI-generated errors [58]. Moreover, users may value the
quality of the end result over productivity and distrust the capability of the AI or its
control mechanisms to match their style, resulting in an adoption barrier [5]. This
underscores the importance of designing usable interfaces that amplify AI capabilities
while respecting diverse user needs, including productivity, accuracy, control, ethics, and
social implications.

The design of effective human-AI collaborative systems is a complex task due to the
uncertainty of the AI’s capabilities and the complexity of its output [59]. Over the years,
several studies have proposed guidelines for designing human-AI interaction [1, 48, 8, 57]
which have been received positively by the research and design community [60]. In the
context of generative systems, Weisz et al. [57] suggest proactive design principles
relating to generative AI’s inherent traits, such as imperfection, exploration, control, and
facilitating understanding through mental models and explanations. Conversely, Buschek
et al. [8] highlight nine potential pitfalls in human-AI co-creation and propose measures to
address these should they occur during collaboration with AI. Despite the contrasting
perspectives, both studies stress more responsible and user-centric frameworks for
human-AI collaboration.

Human-AI collaborative systems for writing have been studied across several
dimensions, such as types of users, writing domains, and various interaction paradigms.
Gero et al. [20] developed a design space for writing support tools guided by the level of
constraint or specificity needed by the task and cognitive processes such as planning,
translating and reviewing [19]. Their analysis of 33 systems from the literature identified a
gap in planning and reviewing aspects, particularly for highly constrained tasks. However,
their synthesis does not include tutorial writing, a domain characterized by open-ended
while highly constrained writing tasks, presenting an opportunity to explore the potential
for automation. Studying the specific processes of writing domains is essential for
tailoring appropriate intelligent support mechanisms. For instance, an investigation into

7

2.2 Language Models and Their Design Considerations

expository writing revealed its evidence-driven nature, necessitating support requirements
like evidence collection, information synthesis, and facilitated text composition [47].
Similar investigations have been conducted for poetry [23, 10] and drama scripts [38]
outlining unique support requirements. User demographics are another aspect that
contributes significantly to the decision process of intelligent system design. For example,
a study involving parents assisting their children in an AI-aided interactive story-rewriting
process underscored the potential of AI platforms to not only empower children but also
foster parent-child relationships and navigate the complexities of the narrative [34].
Understanding user needs is critical for the effective integration of AI into human
processes. Gero et al. [22] address this by focusing on writers’ needs, perceptions of
potential support actors, and their values, albeit such an approach caters to specific user
groups. Conversely, a more general strategy involves understanding the systemic
complexities that inhibit user comprehension, such as transparency, interpretability, and
explainability. By identifying the corresponding user mindsets, levels of involvement, and
expected knowledge outcomes, mechanisms to provide tailored support, broadening our
ability to facilitate AI comprehension across diverse user groups can be devised [18, 7].

In the creative writing domain, the aspects of leveraging AI for maintaining the
authorial style, improving writer inspiration, and assisting in various stages of writing
have been extensively studied. It is widely observed that AI struggles to retain the
distinctive style and voice of an author [28, 32, 5], leading to the development of novel
interfaces like line sketching to provide better narrative control to the authors [12].
Additionally, Sun et al. [50] introduced an interactive writing tool that refines text using
author-specified rhetorical tags, providing a means to maintain and accentuate the author’s
unique voice and style. Studies have investigated how leveraging AI into various writing
stages influences writers. For instance, Roemmele [45] demonstrated that writers are
generally inspired by AI-generated content, leading to improved content quality even if
the AI content isn’t directly used. This idea is further supported by Gero et al. [21], who
found that writers often use AI-generated content for inspiration, translation assistance,
and to gain diverse perspectives. In an analysis of pre-writing task, Wan et al. [53] identify
the AI being used for ideation, illumination, and implementation while drafting initial
versions of stories or slogans. Furthermore, they shed light on the division of roles and

8

2.3 Tool Support for Software Tutorial Authoring

initiatives between AI and humans, noting that humans appreciated AI’s initiative in
moments of creative blocks. The potential of AI as creative constraints, idea generators,
and even as sources of antagonistic suggestions have been recognized [9]. Such insights
have led to a recognition of AI as a collaborative and iterative partner in the creative
process rather than a one-shot solution [16].

2.3 Tool Support for Software Tutorial Authoring

Tooling support for tutorial authoring primarily tries to address the accuracy, executability
and comprehensiveness of the tutorials by generating and integrating artifacts. Current
research on text-based tutorial authoring focuses on code interspersed with textual
explanations and other artifacts like videos, images and other linked content. The
interview study performed by Head et al. [27] highlights the importance of maintaining
consistency across the code artifacts, specifically code snippets and their explanations.
They propose a tool, Torii, to simplify this process by mapping it to a source
implementation and ensuring tutorial consistency by propagating any changes in the
source code to the tutorial. Moreover, this guarantees the accuracy and executability of the
tutorial. Colaroid [54] follows an alternative approach of allowing the authors to create
content in stages rather than having to develop the reference implementation
preemptively. This approach enables the tool to offer multiple code versions and capture
snapshots for interactive reader engagement. A similar approach is followed by Ginosar
et al. [24], where they allow propagating retrospective edits across versions in order to
develop multi-stage tutorials.

Several techniques have been utilized to enrich the developed tutorials in order to
ensure comprehensiveness and reader satisfaction. HelpViz [62] automatically generates
visual elements for textual instructions using a transformer-based model [35] albeit for
simple workflows. Studies have highlighted the value of user contributions in enriching
tutorial content. FollowUs [33] emphasizes a collaborative approach, capturing video
demonstrations from the community to offer varied perspectives and enrich the tutorial.
Dubois et al. [17] focuses on textual annotations through user-contributed notes, adding
insights and workarounds. While community contributions add value, such approaches
necessitate quality control to ensure the accuracy and relevance of the added content.

9

2.3 Tool Support for Software Tutorial Authoring

Torta [39] automates tutorial generation for tasks across multiple interfaces, combining
OS-wide activity tracing with screencasts to ensure comprehensiveness. Porta [40], while
employing a similar system process tracing approach, tracks the learner’s environment as
they navigate the tutorial to identify their challenges while using the tutorial to learn
content. It provides detailed insights like mouse movement heatmaps and event markers,
aiding authors in refining content based on user interactions.

The study presents four limitations. First, the study was conducted with only seven
participants, which brings into question the generalization of the results across a broader
population of tutorial writers. We acknowledge that the insights derived might still be
influenced by the specific experiences and backgrounds of these seven tutorial writers.
However, the selected participants come from different wakes of the software engineering
discipline and have extensive expertise (see Table 3.1), bringing in a wide range of
experiences and insights. Additionally, around five users are shown to be sufficient to
capture the usability-related issues. Second, most of the participants had not used the
OpenAI playground prior to the study, indicating that the reactions might be influenced
more by the novelty of the tool and the model than by its actual utility. We let the
participants use the tool for multiple interactions and while the participants demonstrated
this initially, the novelty wore off and they revealed deeper insights into the strengths and
potential shortcomings. While being able to introduce participants to a new tool was
unintentional, we were able to capture genuine first-time user experiences, which are
invaluable for understanding the preconceived notions, initial barriers to adoption and
usability issues corresponding to learnability.

10

Chapter 3
Method

We performed a user study with software tutorial writers to investigate how to design
LLMs-enabled tutorial writing tools that can be integrated into their writing processes.
The user study has three parts: a semi-structured interview about the tutorial writer’s prior
experiences, a hands-on activity to discover the potential of using LLMs for tutorial
writing, and finally, a follow-up interview reflecting their attitude on tutorial writing with
LLMs. We discuss the recruitment and study process below, which is approved by the
research ethics board of the authors’ university.

3.1 Participants and Recruitment

We aimed to engage a diverse set of individuals with extensive practical experience in
writing and publishing technical tutorials, ensuring they could provide valuable insights
into the challenges, strategies, and opportunities in this area. Therefore, we posted
advertisements on technical writing communities (see Appendix for details) on Slack,
Reddit, and LinkedIn between August and September 2022. The selection criteria
included a prerequisite that each participant had previously published a technical tutorial
in English. Participants were requested to share links to their published tutorials and were
assessed by one of the authors to ensure they were relevant technical articles. In total, we
had 33 signups for the study, of which 19 were excluded for not sharing links to a
published tutorial. Of the 14 who shared the links, four participants were excluded after
the vetting process, while three did not proceed with the interview scheduling process.
Finally, we ended up with seven participants (henceforth referred to as P1-P7). Table 3.1
provides detailed demographic and professional information about the participants, such

11

3.2 Study Design

as their years of experience, number of tutorials written, and familiarity with AI-enabled
tools.

Participant
Years in
Software

Engineering

Tutorial
Authoring

Frequency (Past
3 Yrs)

Tutorials
Written

Experience
with AI tools

Current
Occupation

English
proficiency

P1 ă5 years Weekly/biweekly 5
Not used

previously
Lead, technical
documentation

Professional
Working

Proficiency

P2 ă5 years Once a month 2
VS Code

IntelliSense

University
Student

(Computer
Engineering)

Native/Bilingual
Proficiency

P3 11-15 years Once a month 20
Not used

previously
Technical

Writer

Professional
Working

Proficiency

P4 11-15 years 2-3 times a week 50
GPT-3 based
tools (Jasper

AI)

CEO (of a
technical

writing agency)

Native/Bilingual
Proficiency

P5 1-2 years
Once in several

months
20

VS Code
IntelliSense

Student,
Technical

Writer

Native/Bilingual
Proficiency

P6 ą15 years Once a month 50
Not used

previously
Technical

Writer
Native/Bilingual

Proficiency

P7 11-15 years Once a month 50
VS Code

IntelliSense
Software

Engineer, SRE

Full
Professional
Proficiency

Table 3.1: Background of the User Study Participants

3.2 Study Design

We design the user study as a mixed-methods investigation, structured into three parts. The
study for each participant lasted around one hour and was screen-recorded.

Semi-structured interview. The study started with a semi-structured interview where
participants shared their overall experiences and the use of existing tools for writing,
organizing and maintaining the tutorials. In particular, we asked them to contextualize
their discussion using (but not limited to) the tutorials they submitted during the
recruitment phase. This part of the study helped us gain a deep understanding of our
participants’ current workflow, important considerations when scoping, writing, and

12

3.2 Study Design

maintaining software tutorials, and primary challenges they encountered that might have
major implications for the design of LLMs-enabled writing tools.

Hands-On Exploration. We asked the participants to explore the scenario of writing a
hypothetical tutorial on topics they were familiar with, assisted by the LLM, i.e. Codex1

in this case, using the OpenAI playground (now renamed to OpenAI platform).2 We used
the Playground interface since it provides access to text and code based models which are
sufficient for an initial exploration for the tutorial writing task, without the need for fine
tuning. The ChatGPT interface3 was unavailable at the time of the study. A screenshot of
the interface during the study is showing in figure 3.1.

By default, the playground features Complete mode of interaction, which presents a
large textbox along with a panel where the users can choose the playground settings,
notably, mode (one of Complete, Edit, or Instruct) of interaction, models (like
text-davinci-003, text-curie-001)4, maximum length token (default value of 256) which
indicates the number of tokens generated by the LLM per request, and temperature
(default value 1). These settings were introduced to the participants, and they were free to
modify them at any point during the exploration.

Since most of the participants had not used OpenAI’s playground prior to this study,
we started with a brief introduction to this tool. We then asked participants to follow the
"think aloud" protocol [25] during the exploration – encouraging them to voice their
thoughts, actions, and expectations as they interacted with the tool. The interviewer
occasionally prompted participants with questions regarding their actions and impressions
of the interaction with the tool. If needed, the interviewer also clarified the tool’s features
and encouraged participants to experiment with different aspects of the interface. The
objective of this part of the study was to observe how participants might incorporate the
LLM into their tutorial writing process and to identify any challenges or benefits that
arose.

Follow-up Interview. After the hands-on exploration, we asked the participants to reflect

1https://openai.com/blog/openai-codex
2https://platform.openai.com/playground
3https://openai.com/blog/chatgpt
4https://platform.openai.com/docs/models

13

3.3 Data and Analysis

Figure 3.1: A screenshot of the OpenAI Playground interface in August and September, 2022, as
used in the study.

on their interaction with the LLM, including the perceived usefulness of the tool, any
difficulties they encountered, any advantages they considered the LLM might provide in
their writing process, or any other aspects they deem relevant. In the end, we asked the
participants about potential features they expected to have for an LLM-based tutorial
writing tool.

3.3 Data and Analysis

We used the audio transcript5 of the study to analyze the interviews before and after the
hands-on exploration stage. Our analysis is primarily qualitative6, focused on participants’
experiences and attitudes towards using LLMs in tutorial writing, their feedback on the
LLM’s performance, and how it might influence their current writing process. Special
attention was paid to areas where LLMs added value and where improvements could be
made.

5extracted using Microsoft Teams
6Performed using Atlas.ti (https://atlasti.com/)

14

3.3 Data and Analysis

We used the screen recordings in addition to the audio to observe the participants’
interactions with the playground during the hands-on exploration. Here, we leveraged a
hybrid thematic analysis approach to make rich and reflective observations [51]. First, the
first author went through the audio transcripts and screen recordings to make annotations on
the salient themes from the comments of the participants or their interaction with OpenAI’s
playground. After the first author generated the initial codes, the remaining two authors
further critiqued and joined the discussion to ensure robustness. The results are presented
in Chapter 5 which motivate our design guidelines outlined in Chapter 6.

15

Chapter 4
Processes in Tutorial Writing

This section summarizes our investigation of how tutorial writers approach their writing
tasks in practice. The task often involves the authors performing multiple iterative
workflows, including understanding the audience, researching the topic, and developing
and verifying artifacts (e.g., code or screenshots) with the goal of producing reader-centric
instructional material for a certain technology or software. The workflows are motivated
by the authors’ aspiration to create tutorials that adhere to mostly self-imposed
considerations and quality standards concerning accuracy, specificity, completeness, and
clarity. We discuss four essential workflows mentioned by our participants when writing
tutorials and how they demonstrate the interdependent and iterative nature of the writing
task.

4.1 Understanding the information needs of the target
audience

Software tutorials, whether published to the public or distributed within the software
team, have particular target readers. The information needs of those target readers directly
influence our participants to decide on the scope, writing style, and artifacts incorporated
into their tutorials. Sometimes, the tutorials stemmed from notes written for personal
consumption, e.g., to learn new technology and documentation for future reference. These
tutorials are often less detailed in nature, as mentioned by P7: "[I] keep notes ... I

document my steps basically ... so that’s it". Even when these self-targeted tutorials are
shared with others, it is with an understanding that they are best suited for individuals with
similar expertise levels (e.g., "If it’s something I’m just doing for myself [I] might be less

16

4.2 Researching the tutorial topics

worried about who exactly the audience is, it might just be people like me" (P4)).

On the other hand, writers invest additional effort in tutorials intended for a wider
audience to make the content more applicable and accessible to the reader depending on
their levels of technical skills (e.g., "What differs is the amount of detail ... With a very

junior-level reader I might want to include every step ... but with a more senior person I

might just skip step[s] ... I might jump right to the things that are a little more relevant to

them" (P4)). Ideally, writers aim to interact directly with their readers to gather a detailed
understanding of their informational needs, but obtaining such firsthand insights is often
not feasible (e.g., "the ideal situation, which I’ve rarely had is that I’ll be able to sit next

to the end-user or the target audience and say, What keeps you up at night and how can

we help you?" (P6)). Given this challenge, writers often resort to various alternate
methods to find out the information needs of their readers. For instance, when they are
part of technical writing teams in a company, they obtain tutorial requirements from other
user-oriented teams (e.g., tech support, sales, client success and user experience teams) or
reach out to software development teams anticipating a tutorial for a forthcoming product
release. Writers also engage the system as end users themselves to gain firsthand insight
into the potential difficulties other users may face so that they can address this in their
tutorials. Finally, with extensive domain knowledge, technical writers can identify gaps in
publicly available information about a concept or software feature. By proactively
working to fill these gaps, they ensure that their tutorials are both comprehensive and
relevant to their intended audience.

Tutorial authors identify information need of the target readers through feedback from
user-facing or development teams and the experience of the authors’ when using the
software and their knowledge of existing gaps in the publicly available documentation;
their understanding of the information need become dominant influence on the topics of
the tutorials.

4.2 Researching the tutorial topics

After determining the information needs of the intended readership of the tutorial, writers
proceed to an extensive research phase surrounding the identified topics by consulting and

17

4.3 Developing tutorial artifacts

performing a deep dive into existing resources (e.g., documentation, text or video
tutorials) to strengthen their understanding of the topic (e.g., "I see some YouTube videos

about YouTubers doing it, and how it works on the internet, and on Reddit. I’ve looked for

the code [to] make it work" (P2)). Often, writers leverage their access to developers for
further insights and clarifications currently not covered in existing resources (e.g., asking
developers about design intentions for developed APIs or software).

The participants highlighted two major challenges related to the interaction with
developers. First, developers often assume that the writers already possess a foundational
understanding of background concepts during technical discussions (e.g., ""[Developers]

expect us to understand certain things in the development area ... they don’t have much

awareness that we are totally new to this"" (P3)). This expectation necessitates writers to
rapidly acquire a nuanced understanding of background concepts, which can be
considerably difficult for those new to the technology. The second challenge involves
securing time with developers for these discussions (e.g., ""Getting a developer’s time is

sometimes difficult, especially during the sprint or a deadline"" (P6)). Participants
acknowledged that the recent shifts towards remote work have facilitated convenient and
productive collaborations, with tools like Slack and Zoom ensuring quicker responses by
the developers.

Writers research existing resources and consult with developers before writing a tutorial
but face challenges in acquiring background knowledge and securing developers’ time,
the latter being mitigated by collaboration tools.

4.3 Developing tutorial artifacts

Writers produce several artifacts, often as a byproduct of research which often occurs
along with the development process. These artifacts are subsequently incorporated into
tutorials or used as a reference throughout the development process. Participants primarily
created text (e.g., tutorial outlines and software configuration steps), code, and
screenshots. They suggested that the use of videos, while valuable, is less frequent due to
the high maintenance requirements. For certain topics, participants report using artifacts
like links to GitHub repositories, plots and figures, and comparison tables for different

18

4.3 Developing tutorial artifacts

software, which demonstrate the writers’ ability to tailor content to meet specific software
and audience needs (e.g., "Typically a tutorial is gonna have text screenshots, code

samples and then ideally like a whole GitHub repo[sitory] with all the code used if that

makes sense." (P4) The primary role of source code in software documentation has been
reported in previous studies [27, 24]. Our study result reinforced those findings from the
author’s perspective – our participants reported that developing a reference code
implementation formed an integral part of their writing process and was sometimes even
explicitly requested by clients. The primary motivation for developing a reference code
implementation includes creating a guide that determines which software features to
highlight, outlining the steps to include in a tutorial, and verifying and proving the
tutorial’s accuracy and reliability.

During the implementation of source code, writers employ a reader-centric approach
to understand target implementation areas and conduct collaborative testing with
developers. One strategy that participants often employ is anticipating potential
difficulties readers may face and then crafting clear, straightforward implementations to
address these challenges. For example, P7 documents problem-solving strategies and
corresponding solutions, which then inform the structure of the tutorial. This practice
enables writers to determine the aspects of the code that need to be explained, thereby
enhancing the clarity and specificity of the tutorial. Writers allocate significant time to test
the reference implementations thoroughly to ensure accuracy. The testing is performed in
collaboration with the developers and serves dual purposes: writers report and help
developers resolve any bugs identified during the development of reference
implementations, and developers aid writers by offering solutions and workarounds to
facilitate effective reference implementation.

In developing source code, writers often encounter challenges such as complex
software configurations, interfacing with unfamiliar technologies, and steep learning
curves associated with IDEs and tools. Writers frequently have to maintain versions of
successful and even unsuccessful code implementations as a reference and rerun them to
validate their correctness. This is particularly problematic when a tutorial requires
extensive configuration; missing steps or executing code in the wrong order often
necessitates reverting to the beginning of the configuration process, which can be

19

4.4 Meeting Quality Standards

time-consuming. Another challenge arises when clients request tutorials that integrate
technologies that have not been combined previously. In such cases, writers need to
perform independent research to create a novel implementation, which introduces an
additional layer of complexity in the process for which they might not have the necessary
expertise. A further challenge pertains to the tools utilized in developing the reference
implementations. Participants reported using integrated IDEs, text editors, and in one
case, even traditional pen and paper for code development, indicating an absence of
dedicated tooling support for the tutorial authoring process. One participant indicated that
any tools used by tutorial authors are primarily designed with developers in mind and
often pose a steep learning curve that tutorial authors may find challenging. However,
authors adapt to the developers’ workflows mainly to avail themselves of developers’
assistance when difficulties arise.

Writers create artifacts such as text, code, and screenshots and ensure their accuracy
through testing, all while facing challenges like complex software configurations and
learning curves of unfamiliar technologies and tools.

4.4 Meeting Quality Standards

Consistent with prior research [27], tutorial authors include textual explanations and
narratives around the artifacts to facilitate the readers’ understanding. While creating a
tutorial, the writers focus on qualities like readability, conciseness, specificity, and a
coherent structure to produce high-quality content that meets the informational needs of
the readers. Writers modify the artifacts to improve their clarity and readability within the
tutorial (e.g., P7 noted"... I usually make some edits [to] make it more human-readable,

pretty, and easily digestible. [I] break up commands into multiple lines and stuff like

that"). Writers complement the tutorial content with illustrative examples, screenshots, or
external resources (e.g., URLs for sources and background information) to ensure the
completeness of the tutorial. When any external resource is to be integrated into the
tutorial, it is not merely referenced (e.g., by providing URLs for the readers to browse the
information themselves) or copied and pasted. Instead, writers put effort into explaining
the information and its context to the readers with the goal of minimizing the need for

20

4.4 Meeting Quality Standards

readers to look for information elsewhere for clarification. Writers invest significant effort
in structuring the tutorial to effectively deliver information, aiming to gradually build the
reader’s confidence to explore and independently navigate the software and avoid
overwhelming or confusing them. One strategy involves crafting a series of short, focused
tutorials. Each tutorial revolves around the same software or concepts and provides easily
digestible knowledge. Over the course of the series, the scope of the tutorials gradually
increases. The sequence of tutorials often begins with simpler ’Hello World’ examples to
introduce the software, with later tutorials progressively exploring more complex
concepts. Writers attempt to align the organization of information with the progression of
the reader’s understanding, often leveraging tools like Confluence to structure and present
content effectively.

Writers face several challenges while enhancing reader understanding, ranging from
making decisions about including and positioning artifacts within the tutorial, establishing
the necessary context for clarity, and tackling mental blocks. When writing tutorials,
writers need to undertake the challenging task of anticipating the optimal number of
artifacts that can facilitate learning for readers at different skill levels while providing the
necessary context. Finding the right balance between context, clarity, and conciseness
often requires multiple revisions and external feedback, making it a time-consuming
process. Writers often encounter mental obstacles, such as writer’s block and can have
difficulties translating their ideas into text. To overcome such obstacles, writers often use
tools that assist with paraphrasing or restructuring the content. Another strategy to
streamline the writing process involves using simple writing templates, often drawn from
writers’ previous experiences with writing tutorials.

Upon the completion of writing, writers perform verification of the complete tutorial
and seek feedback about the written content. Writers are aware that potential errors might
arise while adding textual explanations and narratives and often execute and verify the
content to ensure accuracy. Feedback is sought from both development teams and the end
audience, enabling writers to assess the tutorial’s effectiveness and make necessary
adjustments. In some cases, writers must also comply with legal requirements for
technical documentation, such as the translation of tutorials into different languages.
Tutorials are usually composed in English and then translated into other languages as

21

4.5 Maintaining the published tutorials

needed.

Writers aim towards fostering the reader’s understanding and confidence to explore the
software by strategically structuring the content, integrating relevant artifacts and their
explanations, and continuously revising the content for clarity, completeness and other
quality attributes.

4.5 Maintaining the published tutorials

A unique aspect of tutorial authoring is the continuous effort to maintain the accuracy and
relevance of the tutorials. The need for upkeep can arise driven by two reasons: technical
updates and feedback from developers or readers. The participants acknowledged that
maintaining the tutorial could be more challenging than initially writing it (P1, P6). The
maintenance process can sometimes become overwhelming when the writers manage
several tutorials (P6), necessitating a thoughtful approach to tutorial writing.

Writers follow several strategies for tutorial maintenance, including relying on
developers, writing a completely new tutorial in the face of major changes, and carefully
determining the scope when initially crafting the tutorial, keeping potential maintenance
in mind. Participants reported that they often rely on developers to alert them when there
are changes to the code base and the tutorials are needed to be updated (P1, P3, P4, P7).
Often in the case of minor maintenance, the responsibility is shouldered by the developers
(P3, P4). With significant technological changes, as in machine learning, where the
technical landscape changes frequently, writers often prefer to write a new tutorial rather
than edit the existing one (P4, P5). A proactive view towards maintenance is that of
developing tutorials that are robust enough to accommodate minor changes to the system
so that extensive changes are not necessary (P6, P7). The robustness can be achieved by
developing specific tutorials with short scopes to keep the maintenance minimal and
manageable (P7).

Writers design robust tutorials, seek developer assistance, and sometimes opt for
completely new tutorials when facing substantial changes in order to maintain tutorial
accuracy and relevancy amidst an evolving technology.

22

4.5 Maintaining the published tutorials

In this section, we described the five aspects of tutorial writing elicited from the study.
We find that technical tutorial writing is influenced heavily by the diverse needs of its
target audience, and assumptions regarding readers’ expertise can inadvertently neglect
their learning needs. The research phase for writers extends beyond information collection
to a deeper contextual understanding, integrating formal guidelines in the form of official
documentation and real-world insights through public channels like YouTube. Direct
access to developers provides valuable and exclusive insights into software design
intentions, and tutorials serve as a way to disseminate this information. Authors design
tutorials to guide their audience progressively, emphasizing both technical depth and user
accessibility. However, the need for post-publication maintenance prompted by the
dynamic nature of the software significantly influences tutorial structures. This
necessitates the structuring of tutorials as distinct, focused units to facilitate updates or
replacements. Building on this understanding of tutorial writing, we further discuss our
findings on the possibility of integration of LLMs in this domain and the potential
implications of this integration.

23

Chapter 5
Interactions with LLM

In this section, we discuss our observation on how the participants seeked support from
the LLM for their existing tutorial authoring workflows, and the challenges they faced in
the process. The emerging themes covered four aspects of the interaction, i.e., integration
of LLM into the exiting authoring processes, quality assessment of LLM-generated
content, mental models of the users and finally usability issues posed by the model and the
interface.

5.1 Integrating LLMs into Existing Aspects of Tutorial
Writing

The introduction of LLMs to assist in tutorial authoring offers authors the potential to
augment and enrich existing aspects discussed in the previous section. Participants
actively calibrated their existing workflows in order to optimize their outcomes using the
capabilities of the LLM.

Leveraging LLMs for tutorial writing poses a learning curve to the participants.
At the beginning of the hands-on exploration phase, the authors perceived LLMs to

complement their traditional tutorial authoring practices (outlined in Section 4).
Participants initially opted to use the LLM for the tasks that they perceived the model
might do well. For example, after deliberating on the capability of the LLM, P4 wanted to
generate code "Let’s say build a new NextJS application with a user login form" (P4) and
perceived the generated output as "This is pretty trivial stuff because you could go to

24

5.1 Integrating LLMs into Existing Aspects of Tutorial Writing

NextJS documentation and [get] the getting started [or] hello world kind of example ... At

least I’ve got some text to start"" and proceeded to refine the content. From this, it’s clear
that while LLMs can aid in the writing process, they don’t replace the need for human
intervention and refinement. As participants explored and familiarised themselves with the
capabilities of the LLM, they increasingly recognized its potential to enhance writing
aspects. By querying the model about various technologies or soliciting its input on
potentially challenging aspects, participants found themselves with a valuable tool to
quickly expand upon their insights. For example, P4 researched and compared different
technologies and anticipated the challenging aspects that the readers would need
assistance in to include in the tutorial (e.g., "... So [software A] is the backup tool, which is

less interesting. I think the interesting part would be adding [software B] for user login"

(P4)). Next, they used this information to prompt the model ("Add [Software B] for user
login to the above NextJS applications.") to generate the code example.

Participants often revise their initial content-related objectives based on evolving
written content. Integrating LLMs lets the authors generate preliminary content drafts,
which speeds up their content drafting workflows. For example, P7 initiated a web-based
tutorial as "create an AWS account and configure command line credentials for it" and
later evolved the tutorial into a more encompassing "Let’s go maybe one step further and

... let’s create an S3 bucket for hosting a static website". Such an approach not only saves
time but also brings aspects they might have previously overlooked to light (e.g., "Clean

up ... it even added clean up [section in tutorial] ... Nice" (P7)). Sometimes, different
aspects of the tutorial only surfaced when refining the content resulting from the previous
rounds of interaction. For example, after reading the model output, P7 suggested certain
edits to ensure necessary granularity in the content "... there’s multiple ways to install an

OS ... my goal here is to document how to do it on Windows and it’s gonna be easier for

Desktop because I’m on Windows right now" (P7). As participants interacted more with
the LLM, they found that the content it generated often served as a first draft. This draft
was then refined with the authors’ expertise. This human-LLM iterative collaboration
process, ensured content that was both technically accurate and contextually relevant.

Modifying the Existing Authoring Strategies to Leverage Capabilities of LLM.

25

5.1 Integrating LLMs into Existing Aspects of Tutorial Writing

As familiarity with LLMs grew, authors began calibrating their traditional workflows to
make the most of the LLM’s capabilities. They grasped the model’s limitations yet also
identified the strategies to make LLMs more helpful. By breaking down complex tasks into
simpler queries, they could extract more precise responses. For example, P6 tries to extract
precise explanations to complex code using LLM by first breaking it down, "Can I ask the

model to break the function down into parts? ... like in the components?" (a)nd later ask
for explanations of individual components.

However, their desire to maintain their unique writing style was a driving force behind
their efforts to align the LLM’s outputs with their workflows. For instance, P7 sought to
narrow down the model-generated content for specificity by editing the content generated
by the LLM "Everything that I’ve considered valid here, I’ll retain and then I’ll guide [the

model] in a slightly different direction". In efforts to steer the LLM, participants devised
multiple strategies, often inspired by their traditional content drafting approach without
the LLM. By providing an overarching structure of the target tutorial or through editing

and reformulating prompts and including topic-specific keywords in the prompts,
participants could guide the LLM’s output to resonate more closely with their own style
and the intricacies of their chosen topics. For example, P5 laid out titles of sections for
the tutorial since they "want to start with an introduction. I would probably input the title

and see [the model’s] response". Their subsequent step involved populating these sections
by crafting specific prompts. The participant further elaborated, "To avoid bias, I removed

‘NLTK‘ [from the context window], prompting it to explore ‘GloVe‘. When I excluded

‘GloVe‘ and added the word ‘choosing‘, it began suggesting alternatives. It eventually

provided three sensible options" (P5).

Participants began to place more trust in the LLM’s ability to produce relevant output
as they interacted with the LLM, as indicated by their increased delegation of content
production. However, a significant part of this trust was rooted in their confidence to refine
and improve the LLM’s suggestions. P7 demonstrated this by delegating preliminary
content generation to the model, "I’m not sure if Python is the right way to install AWS, so

I’ll just let [the model] decide that for me", later revising the content to add specific
details the model overlooked, "Seems like [the model] didn’t pick up on the fact that

there’s a specific [installer] link for Windows, so I’ll put that in"). Such interactions

26

5.2 Quality Assessment of LLM-generated Content

indicate that while participants find the LLM valuable and are keen to integrate it into
their workflows, they maintain the desire to oversee the final content, ensuring it aligns
with their standards and style.

5.2 Quality Assessment of LLM-generated Content

Participants maintain clear quality criteria for LLM-generated tutorial content and assess
it based on external resources and their own expertise.

Participants’ quality concerns are primarily towards the accuracy and coherence of
the generated content.
All participants emphasized the accuracy of the tutorial, which even reflected in their

choice of topic for the tutorial (e.g., "if I were to write it from scratch, I would want to

have the runtime for running [the steps] ... This is a Windows [OS] and I’m gonna have to

pull some new command line stuff so I’m thinking maybe I can do something more

web-based" (P7)). Participants actively fact-checked the generated content and devoted a
significant part of the time allocated for hands-on exploration to ensure the correctness of
the generated content. Even if the participants were unable to perform the planned
verification steps due to time constraints, they still expressed an intention to verify (e.g.,
"I’d have to go put this into an IDE, figure out each step, is that actually right? And

double check it" (P4)), indicating the importance of accuracy in the tutorial writing task.
Participants were invested in the user’s perception of the tutorial and wanted the content to
be specific and coherent (e.g., "I was hoping that [the generated content] would be a bit

more specific here when it says run the installer. I mean it’s pretty obvious for the end

user, but I like to make [it] impossible to do the wrong thing kind of thing" (P7)).
Participants expect agency from the model to meet their writing quality (e.g., "My ideal

world would be that it goes to the above tutorial and edits the steps required ... maybe the

other thing which may be more realistic based on just seeing how this works, I would

think it would add below ... or like update the code and then it changes some lines" (P4)

on being asked about their expectation with a prompt).

27

5.2 Quality Assessment of LLM-generated Content

Participants verify the accuracy and coherence of the content by comparing it
against their domain knowledge and existing documentation.
While participants drew upon their domain expertise or general knowledge to verify the

generated content in certain instances, the prevailing approach was either executing the
steps or corroborating the information against existing documentation. Tasks like
translation (e.g., "’getting started’ doesn’t translate to à propos de départ... [it] doesn’t

mean anything" (P1)) were evaluated based on the participant’s knowledge of the
language. Participants with extensive experience in software development were able to
leverage their knowledge to identify discrepancies in the output (e.g., P7 identifies an
issue in the content about AWS access keys, "I think there’s some missing steps here ...

Here’s the thing, because we just created the account these [AWS] access keys will not

exist at this point"). When domain knowledge is insufficient, participants choose strategies
such as cross-referencing with existing documentation, internet search or testing by
execution. Minor details of generated content (e.g., URLs) were checked for authenticity
and correctness by a browser search or against existing documentation. Aspects that
involved complex reasoning (e.g., code snippets or steps for creating an AWS account as
explored by P7, "let’s actually go ahead and test all of this") were tested through manual
execution. Participants sometimes performed a combination of these strategies, depending
on the generated information.

Participants chose to manually edit the LLM-generated content to achieve better
accuracy and clarity.

While participants acknowledged the usefulness of LLM-generated content, they
expressed a need for refinement. A perceived inability of the model and usability issues
posed by the tool to achieve better accuracy and clarity made them resort to manually
editing the generated content (e.g., P7 mentions "I would just remove extra information

[from the generated content]. Yeah, that’s my style" and proceeds to edit manually).
However, improving the tool’s usability and explicitly indicating the LLM capabilities can
improve its adoption. This was evident by P7’s use of the Insertion feature of the
Playground to add specific content based on the interviewer’s input instead of manually
editing the content, "Oh yeah, that’s a good thought there" (P7), leading to a satisfactory

28

5.3 Mental Model of LLMs

Figure 5.1: Participants often tried to get the source of the generated content from the LLM. P6
interestingly used the text editor interface in the Playground to chat with the model and identify the
source of the generated tutorial. This study was performed prior to the release of ChatGPT.

interaction "it’s repeated number one, but other than that it’s perfect".

5.3 Mental Model of LLMs

We observe that the participants’ behavior is strongly influenced by their mental model of
LLMs. Throughout the interaction, they revise their mental model to reason the capacity
of LLMs depending on the immediate outcome of their explorations.

Existing experiences and mental models of the participants dictate the approach and
expectation towards the LLM interaction and can affect their overall experience.
Participants based their interactions with the LLMs on their existing mental models of

LLMs and tutorial writing. The concept of using LLMs for tutorial writing was novel to
all the participants. Two participants (P1, P4) had used LLMs in other settings before the
study and the rest of the participants were brief introduced about LLMs and OpenAI
playground at the beginning of the hands-on exploration phase. Despite being brief, those

29

5.3 Mental Model of LLMs

information helped the participants to understand what the LLMs can do (e.g., "just

repeating whatever worked successfully before, as you showed me" (P6)). Participants
form expectations of LLMs from their existing tutorial writing experience. For example,
P6 mentioned "if I find something curious or unexpected or unintuitive, then I’ll ask the

developer about it" and started to explore the capability of the LLM to find information
about the software in a conversational way, as when asking the developer.
The existing mental models define the expectations and shaped their outlook toward LLM
usage. For example, P1 mentions "I’m a very tech-positive thinker... I don’t think it’s

gonna immediately replace everything we do, but I would love to see where AI-assisted

writing could help our writers do twice as much work faster" during the hands-on
exploration phase. In contrast, P1 mentions "I’ve seen that one example on the Internet

about securities issues ... when you would ask it about API keys and it will give you

someone’s API keys" leading to a prompt "What happens if you tell the playground to give

you AWS keys?" and critical feedback on the generated output "If it could start with not

giving out like personal details about people I don’t know when I’m trying to complete

things that would be a great start". These statements indicate that the participants are
influenced by their existing mental models which can shape their expectations, approach
and outlook towards LLMs. Familiarity and knowledge about the working of the LLM
and experience in the software documentation and writing process can help the
participants start off on a better footing in terms of leveraging LLMs for tutorial writing.

Participants form strategies to evaluate the capabilities of LLM to connect to other
software and generate up-to-date information about various technology topics and
explore the interaction techniques that can get them the best outcome.
Participants usually perform additional technical setup prior to writing and often try to

identify the capabilities of LLMs to support this exercise (e.g., "We need an Airtable base

with some real data ... in order to make that ... I don’t know if you can make OpenAI

[Playground]..., it doesn’t know how to go off to other apps, right?" (P4)). During the
actual task of writing, participants expect the model to have up-to-date and wide
technology coverage in the content it produces and therefore explored if the model
satisfies these requirements (e.g., P4 reflects on evaluating the model by prompting it to

30

5.3 Mental Model of LLMs

"tell me about the latest updates to Redis and see which version [the model] tells me

about because that kind of gives you the decay of how updated [the model] is"). They
expressed an intention to understand the model’s technical boundaries and what are the
sources of the information (e.g., "Is the model working from the information they got from

the help content like the documentation or from the source code?" (P6)).

Participants also explored different prompts and parameters and tried to optimize them
to get a better output. Participants dedicated significant effort to determining elements of a
good prompt and often talked about "phras[ing] this for the machine" (P4) or choosing
the right parameters. (e.g., P4 mentions "I guess I can up [maximum token length

parameter] and see what happens" since they expected the generated content to take more
than 256 characters in generated length). Participants also often tried to clarify, "How

short can the prompt be?" (P6) or "Is it kind of similar to Google execution ...?" (P3) to
understand how they should approach prompting. Participants tried to understand the
connections between their prompts and responses (e.g., "I want to see if I can be more

specific about the prompt and see what the model’s reaction will be" (P6)). They often
compared subsequent outputs to understand the difference in the prompting but are unable
to understand what caused the change (e.g., "I’ve modified two things in this latest query,

so it’s a little different than before. I’m not sure what made it different" (P6)). Participants
had polarized experiences with the LLM. On one hand, they expressed frustration when
the model deviated from the prompt completely (e.g., "No, no, no, no. I don’t know what it

understood, but it’s not that. That’s not what I am trying" (P2)), while on the other they
welcomed the model generating additional but relevant content (e.g., "Now [LLM] is

creating an error page. I don’t know if I need an error page, but you know it’s kind of

cool." (P4)

Participant revise their mental models on the model’s capabilities and interaction
strategies based on the relevance of generated content.
Participants constantly reasoned about the capabilities of the LLM and calibrated their

interaction strategies with the LLM and the tool based on the relevance and accuracy of
the content generated by the model. The reasoning was grounded in the pre-existing
beliefs about how the LLM operates. For example, P4 hypothesizes about the working of

31

5.4 Usability Concerns

LLM "It isn’t really contextually aware. It’s just pulling, you know, text and trying to

figure out what text makes sense around that text". The hypotheses were sometimes
incorrect (e.g., "It needs ML [as a keyword in the prompt]. It doesn’t work for any other

thing" (P5)), which eventually led to concerns about the model’s potential to assist in
tutorial writing.

To verify their hypotheses, participants actively engaged with the LLM or sought
external references (e.g., P6 refers to the software’s hosted documentation with "a

curiosity to see how it’s actually listed [on the website]. Is the [generated] text

verbatim?"). They adjusted and refined their hypotheses when the generated content did
not align with their expectations. For example, when the model did not generate any
content about the software they mentioned in the prompt P4 thought "I think for

[software], it’s even more niche, it’s not a well-known tool. So the problem is it’s probably

not much content to pull from ... It probably just ignored [software] as a tool".
Inconsistencies in LLM outputs introduced additional confusion about its capability and
therfore its utility. These shifts in understanding underscore the need for clearer guidelines
on LLM capabilities. Participants’ concerns and misunderstandings could hinder the
broader adoption and utility of LLMs in tutorial writing.

5.4 Usability Concerns

Through out the interaction with LLM, we observe that poor usability significantly affects
tool usage, mostly due to the formation of participants’ incorrect mental models about
model capability, sometimes eventually leading participants to abandon LLMs.

Participants experience challenges in understanding the input context to the LLM,
leading to a misunderstanding of the model capabilities.
OpenAI Playground provides a single textbox in the Completion mode, with the entire

content in the textbox being used as a context for future output generation. The dual usage
of this textbox leads to confusion among participants about the ways to interact with the
model as well as due to the generated output straying away from the prompts. While some

32

5.4 Usability Concerns

Figure 5.2: Participants refer to their previous interactions with the LLMs to calibrate their
understanding of prompting.

33

5.4 Usability Concerns

participants eventually understand the reason behind the deviation (e.g., "... and there’s

nothing related to deployment [in the generated content] because it’s biased by the

multitude of input before deployment" (P5)) and form strategies like removing and adding
necessary content in the textbox to prune the context, these are not intuitive to everyone
and often does not scale to the actual task of tutorial writing (e.g., "But if you want to

write a blog in continuation, how can you not have the whole next thing? As in, is it

expected to completely remove [content every time] to let this tool do the job?" (P5),
described in figure 5.3). Participants often do not discover such nuanced interaction
strategies and eventually declare the tool unusable for writing tutorials.

Participants struggle with prompting the model and choosing the right parameters
for better output.
Participants spend significant time understanding how the model behaves and crafting the

right prompt that can get them a relevant output from the model. This activity diverts
substantial hours from their core writing tasks, causing experienced users to question the
actual value derived from using the model (e.g., "it takes this art form to get it to actually

[produce relevant output] ... I have to think about what am I actually getting it to do and I

have to be really smart. When I am a developer who’s done this for many years it would

be faster for me to just like do it myself because it’s kind of dumb" (P4)). The tool lacks
clear signifiers or mappings [41] to illustrate the effect of prompts or the model
parameters causing the participants to often speculate on the model’s likely response and
the right parameters needed (e.g., "I’m sure it’s not gonna be able to create all that in just

256 characters. I guess I can up this and see what happens" (P4)). Several participants
observed the generation stopping mid-sentence due to a tool-imposed limitation on the
token length "OK, so I ran out of tokens there" (P6) and resorted to strategies like clicking
on the ’Submit’ button again to continue generation, "I guess if I hit submit, is it gonna

keep going or what? What would it do?" (P4). However, this wasn’t apparent to many
users and resulted in them raising usability requirements like "fall short, but at least

complete a sentence" (P5).

Discoverability of the features and capabilities of the model is restricted due to poor

34

5.4 Usability Concerns

Figure 5.3: P5 resorted to the strategy of removing the generated content in order to align the LLM
to generate appropriate content, however, expressed frustration with having to do so every time.

35

5.4 Usability Concerns

usability of the tool.
Participants found success in utilizing distinct tool features for specific writing use cases.

For example, the Instruct mode was employed for high-level tasks, and the Insert/Edit
mode was used for refining generated content. However, using the features
interchangeably during the writing process was tedious due to the necessity of manually
copying and pasting the target content between the modes. In the Insert mode, participants
ran into issues such as managing multiple inserts. Moreover, the intended use cases for
these features were not immediately apparent, with users often requiring the interviewer to
clue them in, indicating the restricted discoverability of LLM features due to poor tool
usability. This poses a problem for adoption, since while those who could successfully
navigate the tool frequently expressed appreciation for the model’s capabilities,
participants who could not dismissed the tool’s utility for writing tutorials, noting "I think

there’s too many issues for it to be worth working on it. I have no idea [how to make it

usable]" (P1).

In this section, we identified and described the way participants leveraged LLMs for
tutorial authoring and the several challenges and potentials that we uncovered in the
process. Based on our observations, participants employed LLMs to expedite tutorial
authoring, enhancing both pace and content quality. However, they consistently
highlighted the important role of human oversight in order to ensure accuracy and
authenticity. Participants’ prior experiences dictate their optimism or skepticism towards
LLMs, highlighting the need for transparency and proper orientation to align user
expectations. While LLMs possess extensive capabilities, they sometimes fall short in
capturing individual writing nuances. Further, navigating the LLM interface and
optimizing prompts became evident pain points, signifying a need for more intuitive
design and user guidance. Some participants encountered difficulties in discovering all the
tool’s features, implying that both technical strength and user-centric design are crucial
for broader adoption. Drawing from these observations, we will discuss the design
recommendations for optimizing the LLM-assisted tutorial authoring process in the
subsequent section.

36

Chapter 6
Tool Design

Based on our formative study, we conceptualize a set of design guidelines and a preliminary
prototype that realizes them. A summary of the guidelines and corresponding conceptual
design elements is provided in Table 6.1.

6.1 Design Guidelines

The design guidelines are derived from the insights of the formative study which are
aimed at understanding the current workflow of tutorial writing and the potential of
optimizing it the use of LLMs. In particular, the interview phase sheds light on the
complexities and strategies employed by the authors in the tutorial writing process. Two
key findings from the interview phase are the mechanisms of information sharing among
the processes and their influence on the evolution of tutorial content over time.
Subsequently, we observed how authors directly interact with LLMs for tutorial authoring
during the hands-on exploration stage and elicit their experience and perspective during
post-study interview phase. These interactions uncovered a range of interface usability
issues and emphasized the need for robust verification and editing capabilities,
considering the authors’ focus on fact-checking and maintaining content accuracy. In this
section, we categorize our findings into three central themes, and discuss the
corresponding design guidelines for potential LLM-assisted tutorial writing tools.

6.1.1 Supporting Authoring Processes and Evolving Content

Tutorial authoring involves various aspects and workflows, as outlined in Section 4.
Authors use the data they have collected during one tutorial authoring workflow in

37

6.1 Design Guidelines

Design Guidelines Evidence Potential Design Actions

DG➊:Writers should be able to
manage information dependencies
during authoring processes while
accommodating evolving content.
(Section 6.1.1)

4.2, 4.3,
4.5, 5.1

✓ Develop a dedicated writing interface to
facilitate tutorial writing processes.
✓ Facilitate the availability of pre-researched
information during writing and for prompting.
✓ Implement content traceability and
provenance mechanisms to support enhanced
editing and tutorial evolution.

DG➋:Writers should be facilitated
with enhanced control during
prompt creation and clear visibility
into variations in LLM responses
to tackle usability issues. (Section
6.1.2)

4.3, 5.3,
5.4

✓ Provide writers with control to select
relevant portions from pre-researched
information and in-session writing while
prompting.
✓ Clearly visualize the differences between
subsequent LLM prompt-output pairs.

DG➌:Writers should be equipped
with verification and editing
features to ensure the improved
quality and accuracy of content
generated by LLMs. (Section 6.1.3)

4.3, 4.4,
5.1, 5.2

✓ Provide mechanisms for accurate
verification of LLM-generated artifacts
both individually and within the overall
tutorial context.
✓ Provide the capability to switch seamlessly
between granular and holistic editing and
prompting strategies.

Table 6.1: Design guidelines distilled from the formative study.

another, demonstrating a close dependency between the workflows. To adequately support
the task-specific writing workflows and facilitate seamless information sharing among
them, there is a need for dedicated tutorial writing interface, supplemented by robust
information sharing mechanisms.

As indicated by our findings in Section 4.3, the authors prioritize the accuracy of the
tutorial content and invest significant effort to verify the precision of the artifacts and
tutorials. Researching existing tutorial topics and developing accurate artifacts are a part
of the proactive validation that the writers perform to ensure the written content is relevant
and accurate. The benefit of taking the developed artifacts and writer’s research into
account while generating suggestions is twofold: first, it helps in better alignment of

38

6.1 Design Guidelines

LLM-generated output due to the input prompt (in our context, the prompts are limited to
the user instances of prompts and not the system prompts. While the OpenAI API allows
system prompts,1 the OpenAI platform interface limits the access to user instances) being
supervised and carefully curated, and second, it boosts the writer’s perceived sense of
control over LLM generation, which has been shown to improve the sense of authorship
and trust in the generated content. Moreover, having researched content available within
the system context reduces any cognitive load resulting from having to fact-check the
content externally. Therefore, there is a need for the system to incorporate the
researched information and artifacts in the writing context and to provide users with
the control to include existing writer-developed content into the prompt.

Writers typically edit tutorials in two situations: when they receive feedback from
stakeholders (e.g., developers) about the written content and during tutorial maintenance
activities. Feedback is often specific, targeting certain sections of the tutorial where the
content may be incorrect or where the quality of the content does not meet desired
standards. Similarly, tutorial maintenance often involves dealing with inaccuracies (e.g.,
changes to specific included code snippets) and modifying specific tutorial parts. In both
cases, writers often need to maintain multiple versions of the tutorial, which they either
reuse or reference during editing, thereby establishing the need for maintaining
traceability and provenance of the content. Traceability helps in understanding where
and what feedback led to changes in the tutorial, capturing the reason for modifying the
content. Provenance records the tutorial’s evolution from its inception to its current form
and answers how the content was changed. The advantages of traceability and provenance
extend to the use of LLM-assisted tools. Traceability allows writers to link the changes
suggested by the LLM to the specific feedback received and ensure that the updates
accurately address the identified issues. In addition, provenance provides an
understanding of how the tutorial content has evolved with LLM assistance and allows a
clearer overview of the editing process. Implementing traceability and provenance in
LLM-assisted tools enables writers to make informed decisions during tutorial editing.

1Shown in the example: https://platform.openai.com/docs/guides/fine-tuning/example-format, the
prompts with the role of system are system prompts, and the prompts with the role of user are user instances.

39

6.1 Design Guidelines

6.1.2 Providing Control and Visibility to address Usability Issues

The hands-on exploration phase of the user study highlights two categories of usability
issues in LLM-based systems. The first category concerns issues originating from the
unpredictability of the model, often leading to a perceived lack of control over the output
and the resulting user confusion. The second category of issues arises from limitations in
the tool’s user interface, which prevent writers from exercising the desired granularity of
control over the model. Moreover, these interface-related issues can amplify the
challenges of the model’s unpredictability. This was evident in the study when the writers
encountered a critical usability issue due to the dual usage of the text field to prompt and
write while using the OpenAI playground, discussed in Section 5.4. This issue caused the
writers to fail to distinguish between the prompts and the tutorial text, often resulting in
the users devising elaborate strategies to prompt the model. Unfortunately, the developed
strategies were mostly unsuccessful, leading to dissatisfaction with the model’s inability
to produce meaningful results consistently.

Users encounter reproducibility issues when interacting with LLMs, as even slightly
different prompts yield significantly different outputs. Such variability in the model’s
responses can obstruct users’ ability to devise strategies for optimal output, resulting in a
perceived lack of control over the system. Although known techniques like setting the
temperature parameter to zero can reduce the model’s sensitivity and ensure low
randomness in output, they do not address users’ inherent need to be in control and
understand if their instructions are being followed. Given that users are primarily
concerned with the output and a high-level understanding of the model’s working rather
than detailed knowledge, a simple and passive approach of visualizing differences
between several prompt-output pairs can benefit users in constructing their mental
models of the LLMs working.

Tutorial authoring involves iteratively introducing precise information to specific
sections of the tutorial while maintaining its overall coherence and accuracy. Some parts
of the previously written tutorial text must be included in the prompt context to ensure
coherence when using an LLM. When addressing a minute but critical detail, including
the entire tutorial in the prompt might not be effective, as evidenced in the hands-on

40

6.1 Design Guidelines

exploration of the OpenAI Playground, where minor details can cause the LLM to stray
away from the topic. Therefore, writers should have the capability to select specific
sections of the content to include in the prompt context. It is also necessary that the
interface provides a clear distinction between the text that forms part of the prompt
context and the text that does not, thereby providing clear visibility on what the model is
considering as the prompt for a specific output.

6.1.3 Facilitating Verification and Editing Capabilities to ensure
Quality and Accuracy

Tutorials are designed to deliver accurate and high-quality content to facilitate the reader’s
learning process. To maintain high standards in their writing, writers engage actively with
the generated content through careful verification and editing processes. Given the potential
unpredictability of LLM outputs, these processes are especially crucial when utilizing them
for writing. By investing time in verification and editing, writers can ensure that the output
fulfills strict accuracy standards and aligns with their quality guidelines involving factors
such as clarity, readability, coherence and stylistic consistency.in

Verification of tutorial content involves careful inspection and validation of
LLM-generated artifacts, such as URLs and code snippets. Writers use different
verification techniques depending on the type of artifact. For instance, verifying a URL
requires confirming its online existence and ensuring that the information contained
within the linked web resource is relevant to the tutorial. Moreover, it is necessary to
validate the content synthesized from the web resource for accuracy and relevance before
including it in the tutorial. Tutorial development workflows involve testing the code
artifacts for accuracy when they are created. During the writing process, the complete
code is broken down into logical snippets, then supplemented with writer-provided
explanations to avoid overwhelming the readers and gradually build their knowledge.
However, LLMs can be used to combine these processes and let the writers directly
generate the code snippets. In such scenarios, it is necessary to confirm the accuracy of
individual code snippets and ensure the complete code, composed of all snippets, is
logically sound and functional. The system can facilitate both URL and code validation
use cases by providing mechanisms to ensure accuracy in an individual capacity, as

41

6.2 Conceptual Design

well as in the context of the overall tutorial.

The writers edit the tutorial content to meet their self-imposed rigorous quality
standards. The editing strategies can range from precise and granular, such as improving
sentence or word level readability, or holistic and comprehensive such as adjusting the
overall tone of the tutorial or performing a grammar check over the entire content. Even
when using LLM for editing, writers apply both types of editing strategies, resorting to
manual edits when they consider LLMs too complex for specific tasks (discussed in
Section 5.2). Evidence that writers adopted both editing strategies is demonstrated during
the interview with P7, shown in figure 6.1. While discussing the potential use cases for
LLMs, P4 mentions "A client asked me to write a similar article to what I’ve already

written but in Java. Maybe I could use this to help me bootstrap that and get it started and

get a basic version going, and then I can fill in the gaps". To account for these editing
strategies, the system must offer a flexible interface that allows seamless switching
between granular and comprehensive editing and allow prompting at a granular and
holistic level, allowing writers to leverage LLMs across varying contexts.

6.2 Conceptual Design

We aim to realize the design guidelines outlined in the previous section in a conceptual
design. The design guidelines are aimed at enhancing the overall LLM-assisted writing
experience. Writers engaged in authoring processes should have the capability to manage
evolving content while addressing information dependencies. To this end, the proposed
guidelines suggest the development of a dedicated writing interface tailored for tutorial
composition. The interface ensures that the writers can access researched information
seamlessly during both the writing and prompting phases. Further, the system should
enable mechanisms for content traceability and provenance, enhancing the editing process
and accommodating the evolution of tutorials, both during the authoring process and later
during maintenance. In addition, writers need enhanced control during prompt creation
and should have clear visibility into variations in LLM responses to address usability
issues. In order to achieve this, the interface should provide writers with the ability to
select relevant sections from their pre-researched materials and in-session writings when
prompting the LLM. It’s also crucial to clearly visualize the differences between

42

6.2 Conceptual Design

(a) Two actions performed by the participant while prompting the LLM: a) Participant provides an ‘insert‘
token with an intention directing the LLM to elaborate the steps. b) Next, they submit the prompt.

(b) Actions performed once the LLM generates content: c) Participant verifies the step generated by the LLM
and notices that LLM mentions the generated step as the first point.

Figure 6.1: Sequence of steps performed by the user (P7) to perform an edit using an LLM during
the tutorial writing task.

43

6.2 Conceptual Design

subsequent LLM prompt-output pairs. Finally, to ensure the quality and accuracy of
LLM-generated content, writers should have access to verification and editing features.
This can be facilitated by mechanisms that allow for precise verification of LLM outputs,
both as individual pieces and within the broader tutorial context. A significant aspect of
this is the capacity to switch between granular and holistic editing and prompting
strategies effortlessly. We develop four design elements that work in tandem to achieve
these interactions. A low-fidelity prototype of the design is shown in 6.2.

B I U </> Edit

There are multiple ways to write and run Python programs, but for simplicity,
we'll use the built-in Python IDE called IDLE.

Instructions

1. After installing Python, search for IDLE in your computer's program
list and open it.
2. In IDLE, click File > New File. This will open a blank editor.
3. In the script editor, type the following code:

print("Hello, World!")

4. Click File > Save and choose a location. Name your file "hello.py".
5. To run your program, click Run > Run Program. The output should
display in the IDLE shell.

Getting started with Python
In this short tutorial, we'll guide you to write your first Python program.

User CP Interaction CP

Source Code Files

Documentation Files

Reference
Implementation

code_impl.py
output.txt

data.csv

History
PanelPageSource

Panel

Figure 6.2: A sketch of the prototype. The prototype highlights the Page, Source Panel and the
History Panel elements. In the Edit mode, authors can manually edit the content without having to
invoke LLMs.

6.2.1 Design Elements

The design consists of four design elements aimed at enhancing user interaction with the
LLM while integrating LLMs into their existing writing processes. These elements work

44

6.2 Conceptual Design

in tandem to address the three design guidelines outlined in Section 6.1.

Page. Page is the system’s central area, providing affordances for two aspects of
LLM-assisted writing, first, the manual writing of the tutorials and second, interaction
with the LLMs. The Page has two modes, edit mode and interact mode. This separation
allows for better usability by distinguishing the manual authoring process and
LLM-assisted authoring. In the edit mode, the page is a black text area with a toolbar
offering common formatting capabilities provided at the top of the page to help writers
write and style their content. The Interact mode provides features to create LLM Blocks
and use them to interact with an LLM. The LLM Blocks can be structured and
reorganized as needed, allowing writers to organize blocks according to their narrative
flow or structural needs. Any restructuring of the content is maintained across both the
edit and interact modes.

The page offers two visualization strategies to illustrate the relationship between
prompts and the corresponding outputs. The first strategy highlights the LLM Blocks
selected by the user as the prompt and the resulting output generated by the LLM. The
second strategy, similar to diff mode, compares the current prompt-output pair with a
selected pair from the history panel. These visualization strategies are designed to
enhance the user’s comprehension of the impact of prompts on the LLM’s output.

LLM Blocks. LLM Blocks are UI elements that allow the writers to engage with LLM for
content generation. Each block is essentially an interactive text area for manually writing
and editing text. The blocks are visible and interactive only when the Page is set to interact

mode. By default, all the content in the edit mode of the Page is considered to be in a
single LLM Block. The block can be further divided into multiple blocks in order to be
able to address specific parts of the content using a button provided on each block. The
button splits the block into two based on where the cursor is located. The blocks can then
be dragged around and rearranged, allowing for better control of the writer to organize the
content. On returning to the edit mode, the blocks are highlighted so that authors know how
they are structured, but it is not possible to interact with them.

LLM Blocks facilitate granular editing and prompting. Each LLM Block includes a
checkbox which allows the writer to explicitly indicate whether its content should be

45

6.2 Conceptual Design

included in the prompt to the LLM, offering a greater degree of control over the AI’s
output. The interaction with the LLM within these blocks is through generation and
instruct modes. In generation mode, LLM uses the existing text within the block as a
prompt to generate additional text. The instruct mode activates a dedicated textbox
attached to the text area of the block, allowing the writer to provide explicit instructions to
the LLM. The LLM’s response replaces the content in the text area.

LLM Blocks also have the ability to be grouped together which provides for holistic
editing and prompting strategies. Multiple blocks can be selected and grouped to create a
larger unified LLM Block. The larger LLM Block has the same functionalities as a single
LLM Block entity, the only difference being the larger block’s content is the aggregated
content of the constituent blocks. This feature mimics the traditional writing process,
where the writers group the content into sections and subsections. The grouping is
reversible, therefore allowing for a seamless transition between granular and holistic
editing and prompting.

Source Panel. The source panel facilitates the use of previously researched materials by
the authors both for their personal reference and as contextual input to the LLM. The panel
allows the writers to import code and documentation files through upload or URL, serving
as a centralized location for writers to access and refer to their research materials as they
are crafting their content. Writers can also use the imported files in their prompt context,
when they are prompting the LLM. This is enabled through the use of checkboxes, similar
to those on the LLM Blocks that allow the writers to select the files they want to include
in the context when prompting the model. This mechanism ensures information sharing to
align LLM output to the researched tutorial context.

History Panel. The History Panel tracks the evolution of a writer’s work by recording the
state of LLM Blocks at specific checkpoints. These checkpoints are either automatically
created during LLM interactions or manually saved by the user. The automatically created
checkpoints are developed with the intention of allowing the writer to compare the
effectiveness of the prompts and develop a better mental model about prompting. The user
saved checkpoints is for the users to maintain versions of their writing. While all
user-saved checkpoints are preserved for future reference, only the five most recent
interaction checkpoints are retained to provide users with broad yet manageable set

46

6.2 Conceptual Design

B I U </> Interact

There are multiple ways to write and run Python programs, but for
 simplicity, we'll use the built-in Python IDE called IDLE.

Instructions

1. After installing Python, search for IDLE in your computer's program
list and open it.
2. In IDLE, click File > New File. This will open a blank editor.
3. In the script editor, type the following code:

print("Hello, World!")

4. Click File > Save and choose a location. Name your file "hello.py".
5. To run your program, click Run > Run Program. The output should
display in the IDLE shell.

Getting started with Python
In this short tutorial, we'll guide you to write your first Python program.

Source Code Files

Documentation Files

Reference
Implementation

code_impl.py
output.txt

data.csv

LLM Block

Figure 6.3: Sketch of the Interact mode. The LLM Blocks are highlighted in the Interact mode,
indicating that they can be interacted with along with a checkbox that appears on each block.
Clicking on the checkbox adds the content of the blocks to the prompt request.

records.

The panel has a horizontally scrollable layout displaying LLM Blocks as individual
rectangular nodes in a linear and vertical manner. The hierarchical relationship between
individual and grouped blocks is indicated with a larger node enclosing smaller nodes.
The panel has a user checkpoint view showing the user-saved checkpoints and an
interaction checkpoint view showing automatically created checkpoints both with
identical horizontally scrollable layout. The user checkpoint view lets the writers compare
the state of current page with state of previously saved user checkpoint. When a
checkpoint is selected, differences between the checkpoint and the current state are
visually indicated on the panel, guiding writers to the exact sections in the article where
changes have occurred. The changes are shown in detail on the Page with green and red

47

6.2 Conceptual Design

highlights respectively showing added and deleted content. On the other hand, the
interaction checkpoint view focuses on tracking the changes in the content resulting from
the LLM interactions between the most recent saved checkpoint and the current state.
Selecting a specific checkpoint in this view allows the writer to compare the prompt,
chosen LLM blocks, and the corresponding output. Any manual edits the writer has made
will be indicated in yellow.

Along with comparing state of the content, writers can also revert to a previous state.
It’s important to note that reverting leads to a ’hard revert’, implying that all subsequent
checkpoints are lost.

48

Chapter 7
Discussion

7.1 Potential of LLMs in Tutorial Writing Workflows

In this section, we synthesize and discuss the findings from the hands-on exploration
phase outlined in Chapter 4. The needs of the target audience significantly influence the
depth and style of the tutorial content. Tutorials designed for a wider audience require
greater detail and substantial effort from the participants. Despite their best intentions, the
authors make assumptions about the expertise of their readers, as reflected in P4’s
statement: “[I] might be less worried about who exactly the audience is, it might just be
people like me”. Such assumptions overlook the distinct learning needs or backgrounds of
varied readers. However, these oversights are not deliberate and often happen because
authors cannot directly connect with end-users, prompting authors to turn to external
sources or lean on their own experiences. Past research emphasizes the value and has
provided features to integrate audience feedback into the tutorials [33, 17]. However, a
potential challenge in this scenario is when the readers struggle to articulate their needs
and communicate with the authors.

The research phase in tutorial writing is not merely for information collection but for a
deeper contextual understanding of the topics. Authors draw formal guidelines from
official sources like structured professional documentation as well as practical insights
from real-world users from YouTube and Reddit. This indicates that the authors try to take
diverse perspectives into account, and a thorough understanding isn’t built purely from
formal sources but also from the practical experiences and challenges of real-world users.
A unique source of information for the authors is access to the developers. Direct
interactions with developers offer authors the opportunity to find information that is not

49

7.1 Potential of LLMs in Tutorial Writing Workflows

available in public domains, such as the design intentions behind specific software
decisions. Tutorials play a crucial role in bridging this gap in information, offering a
complete view of the topic. However, engaging with developers presents challenges.
Developers may unintentionally assume that the authors share their foundational
knowledge of the software. For tutorial writers, especially those new to technology, this
can make their job difficult since they must not only grasp new concepts fast but also
translate them into digestible content for their readers. Additionally, coordinating with
developers, especially during peak work phases, is challenging. This tension can
sometimes result in delayed or less comprehensive tutorial content. While technology
makes collaboration more accessible (e.g., videoconferencing software like Zoom), such
flexibility might pave the way for a more interactive tutorial authoring process, with
authors and developers refining content as software developments occur.

Artifacts, such as reference source code implementations, screenshots, and GitHub
repository links, significantly enrich the tutorials. This is most evident in
programming-focused tutorials where the reference source code is not a mere addition but
is a central component around which content is structured. Such integration not only
brings clarity to complex concepts, but also demonstrates their application in real-world
scenarios. Moreover, the tangible nature of reference source code addresses the diverse
needs of readers and serves as a marker for authors indicating areas that might benefit
from expanded explanations. Development of the reference source code is a meticulous
process. Authors frequently reference multiple sources, collaborate with developers, and
iteratively refine their implementation to ensure its accuracy. Through these refinements,
they are able to identify potential user challenges enabling them to proactively embed
solutions within the tutorial. This establishes tutorial authoring as an active
problem-solving exercise and highlights the role of tutorials as more than just knowledge
dissemination tools.

The creation of high-quality tutorials is an intricate process. Authors prioritize both
technical accuracy and a user-friendly presentation, optimizing readability and
conciseness to produce easily digestible content. Tutorials are structured to mirror a
learner’s journey, introducing basic concepts and progressively delving deeper. This
scaffolding approach ensures that learners establish a solid foundation before they move

50

7.1 Potential of LLMs in Tutorial Writing Workflows

to complex topics. By segmenting the tutorial into focused sections, the authors cater to
varied learning paces, providing flexibility in content consumption. Furthermore, while
incorporating external resources, the authors synthesize and embed them contextually to
foster a holistic understanding. The aim is to reduce the readers’ need to seek external
information by ensuring the tutorial is as self-contained as possible. Drafting an ideal
tutorial involves balancing several quality standards, including content density,
conciseness, completeness, context, clarity, and correctness. This meticulous balancing
act helps authors create an engaging learning experience, ensuring a seamless educational
journey where potential reader questions or confusions are anticipated and addressed.
However, even with expertise, writers sometimes encounter challenges in articulating
ideas, shedding light on the fact that conveying information effectively is a nuanced art.

After publishing a tutorial, continuous maintenance is necessary due to the software’s
dynamic nature and feedback from stakeholders, such as developers and end users. This
ongoing need for updates underlines the lasting value of a tutorial beyond its publication
date. In particular, tutorials demand more frequent updates than other forms of writing.
Our study indicates that the maintenance phase is often more challenging than the initial
creation, especially for authors managing multiple tutorials. The rapidly evolving tech
landscape means that even if a tutorial is accurate at the outset, changes in technology
may necessitate updates. This could be a potential reason for the preference for text-based
tutorials over video, given the ease of updating the former. Collaboration between writers
and developers is essential. Developers, being more attuned to software changes, inform
writers of necessary updates. Occasionally, developers might handle minor content
updates themselves, ensuring accuracy. This suggests that, while the initial tutorial
creation requires extensive expertise and effort, subsequent maintenance can be more
straightforward. In domains like machine learning, where rapid changes are common, it’s
sometimes more efficient to draft a new tutorial rather than update an existing one. This
mirrors software development practices where a complete rewrite can be more effective
than patching existing code. To streamline maintenance, writers often structure tutorials to
be concise and specific. Each tutorial, then, functions as a distinct unit that’s simpler to
update or replace, benefiting both authors and readers. This approach resonates with the
single responsibility design principle in software engineering, which ensures a class has

51

7.2 Addressing Needs and Challenges in Leveraging LLMs for Tutorial Authoring

just one function, making it easier to maintain. Similarly, a focused tutorial addresses one
topic, simplifying both maintenances for writers and comprehension for readers.

7.2 Addressing Needs and Challenges in Leveraging
LLMs for Tutorial Authoring

In this section, we synthesize and discuss the findings from the hands-on exploration phase
outlined in Chapter 5.

LLMs offer the potential to aid the tutorial authoring process, augmenting and
enriching the existing aspects of writing and speeding up the process. However, human
intervention remains crucial. This outlines the idea that advanced models such as LLMs
are tools rather than replacements. During early interactions, authors leverage the LLM on
tasks they felt it might handle well, such as generating code snippets. As they familiarized
themselves with the model, they realized its broader potential, such as querying it on
various technologies, generating drafts and outlines which they could later refine therefore
saving time and often finding out overlooked aspects of content. However, there is an
evident learning curve as authors move from initial experimentation to more sophisticated
and nuanced use of LLMs. This phase of acclimatization to the tool is crucial for optimal
results. An intriguing observation is how the use of LLMs can lead to the evolution of
content. For instance, a simple AWS setup tutorial could evolve into a more complex S3
bucket creation for hosting, indicating the model’s role in expanding the scope based on
iterative feedback. The collaboration process became iterative, with the LLM’s content
serving as a draft, refined later by the authors. This ensures that the final output is
technically accurate and contextually relevant. A significant portion of the provided text
focuses on how authors shape the output of the LLM to fit their unique styles and needs.
This suggests that while LLMs are powerful, their generic outputs may often require
tailoring for specific purposes. While authors grew more trusting of the LLM’s
capabilities, their desire to maintain unique writing styles and ensure content accuracy
meant they retained control over the final output. There’s an interesting tension between
the growing trust in LLMs and the persistent need for control. Even as authors delegate
more tasks to the LLM, they are aware of its limitations and continuously iterate upon its

52

7.2 Addressing Needs and Challenges in Leveraging LLMs for Tutorial Authoring

outputs.

Participants prioritize the accuracy of LLM-generated content, as evident in their
choice of tutorial topics and the extensive time they dedicate to fact-checking. This
emphasis suggests that while participants may appreciate the efficiency and breadth of
content generation through LLMs, they remain skeptical about it. Tutorials are
instructional, and any inaccuracies can impede the learning process or cause issues for the
user. This insight reinforces that while automation tools like LLMs can assist in tutorial
writing, human oversight remains indispensable to ensure the highest quality of
instruction. To verify the generated content, participants leverage their domain expertise
and also cross-reference the content against existing documentation or execute the
provided steps. This corroborative approach indicates a deep-rooted trust in established
knowledge sources and their own expertise over the LLM’s outputs. The utilization of
domain knowledge and external verification methods shows the skepticism participants
have towards machine-generated content. This skepticism indicates an understanding that
automated systems, regardless of their sophistication, can make mistakes or overlook
nuances. The diverse verification methods, whether it’s cross-referencing, execution, or
leveraging personal expertise, further elucidate the participants’ commitment to ensuring
that the generated content is both correct and applicable. Manual editing emerges as an
important step in the content generation process. This observation suggests a gap in the
LLM’s ability to discern the intricacies of the author’s style and the specific requirements
of the tutorial’s content. However, it’s also worth noting that manual editing isn’t solely a
function of LLM’s shortcomings. Every author has a unique style, and even if the LLM’s
content is technically accurate, it might still require adjustments to fit their desired tone,
style, or depth.

Participants’ prior experiences and understanding shaped their expectations and
interactions with LLMs. Some were optimistic about the potential of AI-assisted writing,
while others were more cautious or skeptical. This underlines the importance of
introductory training or orientation. Participants’ prior biases can significantly impact
their approach, making them either overly optimistic or overly critical. Addressing this
with thorough initial training can set realistic expectations and better harness LLMs’
potential. Participants were keen on understanding LLM’s scope, its up-to-date

53

7.2 Addressing Needs and Challenges in Leveraging LLMs for Tutorial Authoring

knowledge, and its connectivity with other software. They were actively trying to gauge
how recent the LLM’s knowledge was, and from where it sourced its information. This
suggests a need for transparency from the LLM’s developers about its training data, its
update frequency, and its limitations. Users seem to want a clear understanding of what
they are working with, and this clarity can boost confidence in the tool. Participants
invested significant effort in refining prompts and optimizing parameters to elicit desired
responses from the LLM. However, they often faced confusion about the connection
between their prompts and the LLM’s responses. The effort expended on prompt
optimization indicates that LLMs may have a steep learning curve for optimal usage. A
more user-friendly interface, feedback mechanisms, or guidelines on effective prompting
could streamline this process and enhance user satisfaction. Participants actively revised
their understanding of LLM capabilities based on its outputs. They formed hypotheses,
sometimes incorrectly, which led to concerns about the tool’s potential utility in tutorial
writing. This continuous calibration of understanding underscores the dynamic nature of
LLM interactions. Misunderstandings can affect user confidence and trust in the tool.
Clear communication regarding LLM capabilities, perhaps via documentation or
interactive guides, can help align user expectations and reality. Participants sought
external references to verify the LLM’s outputs and expressed concerns when they noticed
inconsistencies or when content didn’t match their expectations. Trust is a fundamental
aspect of technology adoption. The concerns raised by participants emphasize the need for
more consistent LLM outputs. Perhaps introducing a feature that cites sources or offers a
confidence level for given information could alleviate some of these concerns.

Participants’ experiences with the LLMs were tainted by poor usability. This was
evident from the fact that incorrect mental models about the LLM’s capabilities were
formed, which sometimes led to participants abandoning the tool altogether. The
participants’ struggles underscore the importance of intuitive tool design. A tool meant to
aid tutorial writing or any similar task should seamlessly integrate into the workflow.
Here, users were sidetracked trying to understand the tool instead of focusing on their
primary writing tasks. OpenAI Playground’s dual use of the textbox (both for input and
context) confused users. Participants found it hard to navigate the tool’s usability when
they wanted the model to consider previous text, which is often necessary for continuity in

54

7.3 Framework for Interaction with LLM

tutorial writing. While some users found workarounds, they were neither intuitive nor
scalable. While having a textbox that captures all interactions might provide continuity,
it’s clear that this design can confuse users. They need to be explicitly made aware of how
the context influences the model’s output. Potential solutions could involve segregating
prompts from the context or providing clearer visual cues. Crafting an effective prompt
became an art, distracting participants from their main writing task. Lack of clarity on
how model parameters (e.g., token length) influence the output led to misunderstandings
and suboptimal outputs. The LLMs’ capabilities require a learning curve. Users should be
given guidance on crafting prompts, understanding token limitations, and utilizing the
tool’s features optimally. This might come in the form of tutorials, tooltips, or inline
examples. The tool’s poor usability hindered participants from understanding and
effectively using its distinct features, such as Instruct and Insert/Edit modes. Moreover,
manual efforts like copying and pasting between modes made it tedious. For users to
appreciate and leverage the full power of a tool, its features need to be easily discoverable,
which can be achieved through an intuitive interface. Participants’ reliance on the
interviewer for guidance indicates a clear need for better onboard instructions or more
intuitive design. Features like copying content from one mode to another or managing
multiple inserts should be streamlined. A long term adoption of LLM for any task hinges
on user experience. It’s evident that while some participants who navigated the usability
challenges saw the potential of LLMs in tutorial writing, others were put off. The broader
adoption of LLMs in such settings will largely depend on how these usability concerns are
addressed. Addressing these issues can turn the tool from a potential hindrance into a
powerful asset for writers. In essence, while the underlying model and its capabilities are
powerful and promising, the interface and interaction design play a pivotal role in its
successful adoption. Addressing usability issues is not just about making the tool easier to
use but also about ensuring users form the right mental models about its capabilities.

7.3 Framework for Interaction with LLM

In this section, we present and discuss a framework for human-LLM interaction design,
informed by insights elicited from the hands-on exploration phase of our user study. The
framework groups the various intricate processes users employ when engaging with an

55

7.3 Framework for Interaction with LLM

LLM, from the initial formulation of goals, prompting the model to achieve these
objectives, to the verification of generated content and the eventual refinement of the goals
and interaction strategies based on the outputs. This sequence of user actions and
reflections can be conceptualized as distinct stages of interaction with the LLM. As a
result, we have termed this the ’Stages of Interaction with LLMs’ or the SIL
framework. Our objective of the SIL framework is to provide comprehensive guidelines,
aiding model developers and tool designers in crafting LLM-based tools that are both
efficient and optimized for user productivity.

7.3.1 Four stages of the Framework

Formulation Stage

The Formulation Stage is the initial phase in which users define their intentions and
expectations when approaching the LLM. During this stage, users solidify their
objectives, develop initial expectations based on previous knowledge or perceptions, and
actively gauge the LLM’s capabilities and limitations. This stage essentially lays a
foundation for all subsequent interactions with the LLM.

The motivation for interacting with the LLM might arise from an immediate need for
information, intention to generate content towards a broader goal, exploration of possible
ways to elicit optical content from the LLM or just curiosity towards the LLM. As users
navigate this stage, they become more concrete about their objectives, ranging from
seeking straightforward answers to constructing intricate documents and corresponding
interactions, ranging from exploratory attempts to precise and task-specific queries.
Previous interactions or secondhand knowledge about the LLM significantly shape users’
initial expectations. It is evident that misaligned expectations can lead to dissatisfaction,
as observed during the exploration phase. On one end of the spectrum, optimistic users
ambitiously probe the LLM’s potential, while on the other end, cautious users narrow
down their interactions seeking specific outcomes. These diverse approaches underscore
the importance of aligning user expectations with the LLM’s actual capabilities. The
observed unpredictability in the model’s outputs and the formation of inaccurate mental
models, often exacerbated by tool usability issues, further complicate this alignment.

56

7.3 Framework for Interaction with LLM

Ultimately, the Formulation Stage plays a pivotal role, setting the stage for users’
subsequent engagements with the LLM.

Articulation Stage

The Articulation Stage is characterized by users’ efforts to effectively communicate their
intentions to the LLM. Within this phase, participants focus on formulating and refining
prompts and ensuring that they capture their intention accurately in a query. The stage
encapsulates challenges tied to the interface design, the comprehension of model
parameters, and the overall clarity of user inputs. The success of the interaction heavily
relies on how well users can articulate their needs and how effectively the system’s design
can aid in this articulation process.

The process of forming a prompt that captures the user’s intention and ensures it is
interpreted by the LLM accurately is a nuanced and difficult task. This could be due to
several reasons. Users might not always know the best way to phrase their queries,
potentially resulting in ambiguous or misdirected prompts. Their perceptions of what the
LLM can or cannot do can skew the prompts toward either oversimplification or excessive
ambition. Moreover, when the objectives are not clear in the user’s mind, formulating a
concise prompt becomes even more complex. Moreover, complex tasks often might
necessitate elaborate prompts or even multiple iterations. However, users might either be
unaware of the need to iterate or might be reluctant to engage in such a repetitive process.
Therefore, users need to be guided during the articulation process, either by external
training resources or through the interface assisting them during the interaction process to
optimally leverage the LLM’s capability.

The usability of the interface plays a crucial role in the articulation stage. The
interface bridges the gap between the user’s intentions and the computational logic of the
LLM. A well-designed interface can help the user interact with the model. and
additionally guide and inform the user. Conversely, if an interface is not intuitively
designed or lacks clarity, users might find it difficult to interact with the LLM, leading to
user frustration, misinterpretation of user prompts by the LLM and ineffective outcomes.
Therefore, it is important that the interface actively facilitates the interactions between the
user and the LLM. The exploration phase clearly shows the consequence of poor usability

57

7.3 Framework for Interaction with LLM

of an LLM interface. The first example is the dual-purpose design of the text box in the
OpenAI playground. The use of the textbox to both prompt the model and edit the content
leads to confusion among the users. They are unsure where to input their prompts and how
to differentiate their prompts from the model’s output. Notably, many users were unaware
that the entire textbox content acted as the prompt until informed by the interviewer. This
situation demonstrates that interface design should focus on clarity and ease of use instead
of adding potentially confusing features. The second observation revolves around the
ambiguity in the model’s parameters. A specific point of confusion was the token length,
which, if exceeded, truncates the generated content. Some users, unaware of this
restriction, presumed the abruptly shortened content as a model flaw. This underscores the
need for interfaces to offer more transparent and intuitive parameter management. Lastly,
while the users found value in using both the interaction modes with the model, such as
the completion or edit mode, the interface’s provision to do so was not intuitive. Effective
interfaces should match users’ task flow, allowing easy changes between tasks. Struggling
with such basic functionalities can occupy a user’s cognitive load and shift their attention
from generating content to troubleshooting.

Observation

The Observation Stage emphasizes the engagement of the user with the LLM output. Users
do not just consume the output but rather carefully evaluate it. While accuracy is one of
the prominent factors for evaluation, users also ensure the reliability and relevance of the
generated output in relation to their initial prompts and the current context of their writing.

Interaction with a machine needs to be precise, both in terms of accuracy and
alignment with the user’s intent. Especially when we consider LLMs, which pose
significant difficulty with prompting and are traditionally prone to hallucinations, it is
necessary to evaluate the generated content. The accuracy of the content can be verified
through the user’s own domain expertise, cross-referencing with reputable external
sources, or in the case of actionable content like tutorials, testing the content’s real-world
applicability through executing it. Beyond factual accuracy, there is also a need to ensure
alignment with user intentions. A potential check is to compare the generated content
against the user’s original prompt to ensure that the output does not stray from the user’s

58

7.3 Framework for Interaction with LLM

request. Another important aspect is the tone and style of the content. Specifically, in the
context of writing support, users want the generated information delivered in a tone
consistent with their personal authorship style to make the content feel more authentic and
relatable. Furthermore, the generated output needs to be consistent with the existing
content from the previous interaction iterations. As users engage with the LLM over time,
they are not just focused on isolated outputs but rather looking at how the content evolves
and stays connected to their overarching goals. Each new interaction should build upon
and enhance the content but not deviate or become disjointed from the context.

Revision

The Revision Stage is the final step in the user-LLM interaction cycle. In this stage, users
develop and refine hypotheses about the functioning of the LLM based on a comparison of
the LLM’s outputs to their initial prompts and expectations. Acceptances or minor
adjustments to the LLM’s outputs suggest alignment of the output with users’
expectations, while revisions indicate a need for refining their understanding of the LLM’s
capabilities and subsequent interactions.

The revision stage centers on reflecting on the interaction strategies from the
Articulation stage, the LLM’s corresponding responses, and the evaluation conducted
during the Observation stage. The objective is to identify and comprehend the root causes
behind any output discrepancies. If deviations arise from user prompts, those are revised
for subsequent sessions. When the LLM’s outputs are frequently accepted or require
minimal revisions, it indicates a growing trust in the LLM’s capabilities. This can lead to
expansion in the breadth of tasks users delegate to the LLM, moving beyond simple
requests to seeking assistance with complex content creation and editing.

The expansion in the tasks delegated is influenced by three primary factors: the
updated perception of the LLM’s capabilities, enhanced knowledge of interaction
strategies, and the evolving content produced by the LLM. The first two factors
correspond to the mental models of the users and can have long-term implications for the
usage of LLM. The final factor has to do with the task that the user set out and indicates
the success of the short-term goal. In the initial stages, interactions tend to be broad or
general, reflective of users tentatively testing the LLM’s fundamental capabilities. As they

59

7.3 Framework for Interaction with LLM

witness the machine’s reactions to diverse prompts, they gain insights into its strengths,
weaknesses, and nuances. These insights, combined with an updated understanding of
effective interaction strategies, drive the users to refine their approach. This adaptability
highlights the feedback cycle between human goals and corresponding machine output.
As users become more aware of the capabilities of the LLM, their trust in the system
increases leading to them delegating more complex tasks to the LLM. Interactions that
begin out of curiosity soon evolve from basic questions to deeper insights. Users rely on
the LLM for more advanced content and complex tasks. This shift in task complexity is
due to users adjusting their goals based on a clearer understanding of the LLM’s abilities,
better ways to interact with it, and the quality of the content it provides.

Conversely, when users consistently need to make extensive revisions to the LLM’s
outputs, it signals a disconnect between the expectations of the users and the capabilities of
the LLM. Continuous revisions might lead to users doubting the clarity of their instructions
and the LLM’s capability to comprehend and deliver. This can lead to users eventually stop
relying on the LLM. They might limit its use to less critical tasks or, in more pronounced
cases, consider abandoning it due to perceived inefficiencies.

7.3.2 Comparison with Norman’s Seven Stages of Action

Our proposed framework draws inspiration from Norman’s seven stages of action
framework [41] and specifically addresses the various aspects that are specific to LLM
interactions. Starting with the various stages, both models recognize the necessity of
intent identification. The Formulation stage of our SIL framework and Norman’s Goal
Formation and Plan stages discuss the user’s intent. The Seven Stages of Action
framework identify the progression from goal identification to planning its achievement.
Similarly, in the Formulation stage, users not only identify but also implicitly navigate
how to leverage the LLM based on previous knowledge and system capabilities. The
Articulation stage in the LLM framework mirrors Specify and Perform stages, focusing on
translating intentions into actionable commands and executing these. However, the
Specify and the Perform stages, while implying interface interactions, are unclear when
distinguishing between actions like specifying and performing in LLM contexts. From our
user study, we see that clarity is, in fact, necessary. The interface and its usability play a

60

7.3 Framework for Interaction with LLM

crucial role in translating the intentions of the user to the LLM. The explicit emphasis on
the interface in the Articulation stage highlights the importance of its design in
determining the outcome of LLM interactions. Similarly, in the context of an
LLM-generated output, Perceive and Interpret are analogous. Therefore we reduce these
two stages into a single Observation stage. Finally, while the Compare stage is similar to
our Revision stage, we emphasize the user-LLM collaboration dynamics, which affects
the evolving user trust and future interactions, which is unexplored in the Seven Stages of
Action framework. Therefore a four-stage framework segregates the interaction better
than the Seven Stages of Action framework, at least in the context of LLMs.

A second distinction is the implications for design targeted by the two frameworks.
The Seven Stages of Action framework outlines three design dimensions – Visceral
(comprising Perform and Perceive), Behavioral (comprising Specify and Interpret) and
Reflective (comprising Plan and Compare). The visceral dimension corresponds to the
immediate reaction to how something looks, sounds, or feels. It’s the first impression we
get from a product based on its appearance and sensory feedback. The behavioural
dimension corresponds to the overall experience of interacting with a product, such as
ease of use. Finally, the reflective dimension corresponds to the broader implications of a
product’s value and significance. These design dimensions enable the designers to target
better experiences, often through evoking unique emotions which result in positive user
experiences. Conversely, our framework is rather focussed on ensuring better designs for
assisting the users in understanding the capability of the LLM (in the Formulation stage),
improving the usability of the interface in prompting (in the Articulation stage), allowing
for efficient evaluation and comparisons (in the Observation stage) and finally providing
affordances for easy revision of the goals (in the Revision stage).

In essence, both frameworks aim to enhance human-system interactions. While
Norman’s Seven Stage of Action framework lays down broad principles, our framework is
tailored to address unique issues of user-LLM collaboration and provide structured
guidelines for model developers and tool designers to specifically develop efficient and
productive LLM-based tools.

61

7.3 Framework for Interaction with LLM

7.3.3 Illustrating the Framework through an example

To illustrate the application of our four-stage framework, we investigate a potential
scenario1 of using LLMs for creating software tutorials, inspired by the hands-on
exploration stage of our user study.

In a typical interaction, the user begins by identifying a primary objective. Taking our
study as an example, the goal is to craft a tutorial on plotting data with matplotlib. The
user then segments this overarching aim into more actionable parts to navigate the
interactions with Codex on the OpenAI playground. For example, the goal can be divided
into producing relevant commands for library installation in different environments,
generating and explaining code snippets, and improving the readability of the tutorial.
Such segmentation demonstrates the intricacies of the Formulation Stage. Following this,
with more clarity, the user prompts Codex. They might input a specific request, such as
’Provide a code snippet for a scatter plot using matplotlib, given Python list data points,
and also explain the code.’ The user’s experience and familiarity with the topic play a
crucial role for them to design a good prompt. Additionally, interface features that offer
alternate prompt suggestions or enable prompt modifications can further enhance this
Articulation stage. The Observation stage begins once Codex delivers its output. The user,
depending on his expertise, analyzes the accuracy and relevance of the generated output.
For instance, a user experienced with matplotlib would be more adept at spotting any
unusual patterns or discrepancies in the provided code. If not, they might visit external
resources to ensure the output is correct. This stage might also involve validating the
output in real-world scenarios, like executing the returned code snippet in an Integrated
Development Environment (IDE) or testing against predefined unit tests. Finally, in the
Revision stage, the user reflects on both their interaction method and the responses from
Codex. If the initial output isn’t satisfactory, they will revise their approach, potentially
rephrasing their query or adjusting their expectations based on the feedback. This iterative
cycle, where the user revises their interactions based on the machine’s output, underscores
the continuous feedback loop that’s central to our framework.

1This example is inspired by our position paper titled "Approach Intelligent Writing Assistants Usability
with Seven Stages of Action"[4]

62

7.4 Future Work

Through this scenario, we depict the unique challenges and considerations when
collaborating with a language model, specifically in the domain of software tutorial
generation.

7.4 Future Work

The design guidelines presented in Section 6.1 are motivated as a result of our user study.
However, they need further validation to ensure that they are beneficial to users. The
conceptual design outlined in Section 6.2 serves as a way to validate these guidelines. A
future user study is currently planned to validate and refine the design before
implementation, and a final summative study to observe the practical utility of the tool.
Furthermore, while the SIL framework is discussed separately, the guidelines also
correspond to the four stages outlined in the framework. We plan to expand on this and
dedicate future user studies to validate the framework using the developed tool.

7.5 Limitations of our study

Identification of the various stages of interaction was made based on the hands-on
exploration stage, which was conducted over a brief duration and was open-ended, which
may not capture the full range of interactions that technical writers can have with the
LLM. Moreover, these interactions might differ in a specialized tool for documentation
writing rather than a general-purpose tool. However, we observed rich interactions even
within this short period, which only underscores the need for extended studies with
dedicated tasks to understand the interaction dynamics in a tutorial writing setting more
comprehensively. Our method of grouping the interaction processes with the model is
nuanced, particularly during the Goal Formation, Planning, and Compare stages. These
stages are largely internal to the user and are difficult to study directly. While the
read-aloud protocol helped capture these stages, as participants became accustomed to the
tool, these stages seemed to blend together, making them harder to distinguish. After
familiarization with the tool, some of the strategies and interactions become second nature
to the participants, which complicates the identification of distinct interaction stages. This
can also make it harder for designers to target specific stages and understand where users

63

7.5 Limitations of our study

may need assistance. Despite these limitations, our study provides a good lens for
exploring user interaction with LLMs. Having focused writing tasks, longer study
duration and specialized tools with necessary telemetry can facilitate the study to
understand the human-LLM interactions.

64

Chapter 8
Conclusion

In our study, we investigated the existing workflows of the authors in tutorial writing and
the potential benefits and challenges of leveraging LLMs. Our findings indicate that
authors prioritize the needs of their readers, blending their personal experiences with
thorough research of both official documentation and practical applications from diverse
platforms. Many authors even collaborate with developers to enrich the information and
ensure the tutorial is accurate and easy to understand. By focusing on specific subjects,
authors make their tutorials more reader-friendly and easier to update as software changes.
Once published, tutorials require continuous updates due to software-related changes, and
structuring tutorials with a focused topic can simplify this maintenance while enhancing
reader comprehension.

Our results further highlight the need for effective collaboration between humans and
AI and underscore the need for designs to facilitate it. While LLMs can streamline the
writing process, it is essential for authors to review and verify the content for its accuracy.
In their early interactions with LLMs, authors often cross-check the model’s outputs
against trusted sources. Their past experiences and initial perceptions significantly shape
how they use the LLM. Participants faced challenges in understanding the model’s
response to prompts and desired more user-friendly interfaces and clear guidelines. Poor
usability of interfaces and unclear prompting mechanisms prevented the optimal use of
LLMs, with some participants resorting to manual workarounds. For LLMs to be widely
adopted in tutorial writing or similar tasks, it’s crucial to address these usability issues,
ensuring seamless integration into writers’ workflows.

Given these insights, we present two primary recommendations. First, we distill and
present several design guidelines essential for optimizing tutorial writing with LLMs

65

Conclusion

based on the interview phase and the hands-on exploration phase of the study. These
emphasize the key factors in the tutorial authoring process, such as output accuracy,
traceability, usability, author control, rigorous verification, and flexible editing. As LLMs
contribute suggestions, they should leverage and align to the author’s prior research,
ensuring content remains both relevant and accurate. Offering traceability and a historical
overview of tutorial changes are pivotal to improving the users’ mental model. Similarly,
the distinction between writers’ prompts and LLM outputs should be clear to mitigate
confusion. Moreover, flexibility is crucial, and authors must have the control to choose
specific content sections when seeking LLM input. Rigorous verification tools, especially
for LLM-generated links and code snippets, are necessary. Additionally, the editing should
account for both granular and overarching content revisions. In essence, these guidelines
bridge the technical capacities of LLMs with the specific needs of tutorial writers.

The second recommendation offers a broader perspective, suitable for general LLM
tool design. We propose a framework that outlines the user’s interaction with LLMs into
four stages: Formulation, Articulation, Observation, and Revision. In the Formulation

stage, users define objectives and establish initial expectations based on past experiences.
The Articulation stage involves the clear expression of intentions formed to the LLM,
with emphasis on effective prompt creation and usable interface. During the Observation

stage, users examine LLM outputs for accuracy and alignment with their initial intentions,
considering factors like context. In the Revision stage, users adjust their understanding of
the LLM’s abilities by comparing results to initial expectations and prompts. Positive
interactions increase trust and encourage users to delegate more complex tasks to the
LLM. In contrast, frequent revisions suggest a gap between expectations and LLM
performance. The clarity and intuitiveness of the interface play a key role in user
experiences, and continuous feedback loops between human intentions and LLM
responses contribute to subsequent interactions.

In summary, we highlight the potential of LLMs in enhancing tutorial writing while
emphasizing the challenges related to usability and trust. As AI continues to evolve, the
integration of human expertise and machine capabilities will be pivotal in crafting
comprehensive and precise content. The discussed design guidelines and framework form
a crucial bridge between the capabilities of LLMs and the nuanced needs of authors.

66

Contributions

A preliminary version of the Stages of Interaction with LLMs framework detailed in
Section 7.3 was submitted as a position paper [4] to the In2Writing workshop.1 Major
parts of this thesis will be reworked into a submission to a human-computer interaction
conference.

The collaborators contributed to the framework and provided valuable inputs to the design
of the user study.

1https://in2writing.glitch.me/papers2023.html

67

Bibliography

[1] Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P., Suh, J.,
Iqbal, S., Bennett, P. N., Inkpen, K., Teevan, J., Kikin-Gil, R., and Horvitz, E. (2019).
Guidelines for Human-AI Interaction. In Proceedings of the 2019 CHI Conference on

Human Factors in Computing Systems, CHI ’19, pages 1–13, New York, NY, USA.
Association for Computing Machinery.

[2] Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S.,
Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk,
S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S.,
Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S.,
Olah, C., Mann, B., and Kaplan, J. (2022). Training a Helpful and Harmless Assistant
with Reinforcement Learning from Human Feedback. arXiv:2204.05862 [cs].

[3] Bhat, A., Agashe, S., Oberoi, P., Mohile, N., Jangir, R., and Joshi, A. (2023a).
Interacting with Next-Phrase Suggestions: How Suggestion Systems Aid and Influence
the Cognitive Processes of Writing. In Proceedings of the 28th International

Conference on Intelligent User Interfaces, IUI ’23, pages 436–452, New York, NY,
USA. Association for Computing Machinery.

[4] Bhat, A., Shrivastava, D., and Guo, J. L. C. (2023b). Approach Intelligent Writing
Assistants Usability with Seven Stages of Action. arXiv:2304.02822 [cs].

[5] Biermann, O. C., Ma, N. F., and Yoon, D. (2022). From Tool to Companion:
Storywriters Want AI Writers to Respect Their Personal Values and Writing Strategies.
In Proceedings of the 2022 ACM Designing Interactive Systems Conference, DIS ’22,
pages 1209–1227, New York, NY, USA. Association for Computing Machinery.

[6] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,

68

BIBLIOGRAPHY

Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C.,
Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. (2020). Language Models are Few-Shot
Learners. arXiv:2005.14165 [cs].

[7] Buschek, D., Eiband, M., and Hussmann, H. (2022). How to Support Users in
Understanding Intelligent Systems? An Analysis and Conceptual Framework of User
Questions Considering User Mindsets, Involvement, and Knowledge Outcomes. ACM

Transactions on Interactive Intelligent Systems, 12(4):29:1–29:27.

[8] Buschek, D., Mecke, L., Lehmann, F., and Dang, H. (2021). Nine Potential Pitfalls
when Designing Human-AI Co-Creative Systems. arXiv:2104.00358 [cs].

[9] Calderwood, A., Qiu, V., Gero, K., and Chilton, L. B. (2020). How Novelists Use
Generative Language Models: An Exploratory User Study.

[10] Chakrabarty, T., Padmakumar, V., and He, H. (2022). Help me write a Poem:
Instruction Tuning as a Vehicle for Collaborative Poetry Writing. In Proceedings

of the 2022 Conference on Empirical Methods in Natural Language Processing,
pages 6848–6863, Abu Dhabi, United Arab Emirates. Association for Computational
Linguistics.

[11] Christiano, P., Leike, J., Brown, T. B., Martic, M., Legg, S., and Amodei, D. (2023).
Deep reinforcement learning from human preferences. arXiv:1706.03741 [cs, stat].

[12] Chung, J. J. Y., Kim, W., Yoo, K. M., Lee, H., Adar, E., and Chang, M. (2022).
TaleBrush: Sketching Stories with Generative Pretrained Language Models. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems,
CHI ’22, pages 1–19, New York, NY, USA. Association for Computing Machinery.

[13] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805 [cs].

[14] Donahue, C. and Lillis, T. (2014). 4 Models of writing and text production. In 4

Models of writing and text production, pages 55–78. De Gruyter Mouton.

69

BIBLIOGRAPHY

[15] Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B., Sun, X., Xu, J., Li, L., and
Sui, Z. (2023). A Survey on In-context Learning. arXiv:2301.00234 [cs].

[16] Du, W., Kim, Z. M., Raheja, V., Kumar, D., and Kang, D. (2022). Read, Revise,
Repeat: A System Demonstration for Human-in-the-loop Iterative Text Revision. In
Proceedings of the First Workshop on Intelligent and Interactive Writing Assistants

(In2Writing 2022), pages 96–108, Dublin, Ireland. Association for Computational
Linguistics.

[17] Dubois, P., Dziubak, V., and Bunt, A. (2017). Tell Me More! Soliciting Reader
Contributions to Software Tutorials. In Proceedings of Graphics Interface 2017, volume
Edmonton, pages 8 pages, 632.60 KB. Canadian Human-Computer Communications
Society / Société canadienne du dialogue humain-machine. Artwork Size: 8 pages,
632.60 KB ISSN: 0713-5424 Medium: application/pdf.

[18] Eiband, M., Buschek, D., and Hussmann, H. (2021). How to Support Users in
Understanding Intelligent Systems? Structuring the Discussion. In 26th International

Conference on Intelligent User Interfaces, IUI ’21, pages 120–132, New York, NY,
USA. Association for Computing Machinery.

[19] Flower, L. and Hayes, J. R. (1981). A Cognitive Process Theory of Writing. College

Composition and Communication, 32(4):365–387. Publisher: National Council of
Teachers of English.

[20] Gero, K., Calderwood, A., Li, C., and Chilton, L. (2022a). A Design Space for
Writing Support Tools Using a Cognitive Process Model of Writing. In Proceedings of

the First Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2022),
pages 11–24, Dublin, Ireland. Association for Computational Linguistics.

[21] Gero, K. I., Liu, V., and Chilton, L. (2022b). Sparks: Inspiration for Science Writing
using Language Models. In Proceedings of the 2022 ACM Designing Interactive

Systems Conference, DIS ’22, pages 1002–1019, New York, NY, USA. Association for
Computing Machinery.

[22] Gero, K. I., Long, T., and Chilton, L. B. (2023). Social Dynamics of AI Support
in Creative Writing. In Proceedings of the 2023 CHI Conference on Human Factors

70

BIBLIOGRAPHY

in Computing Systems, CHI ’23, pages 1–15, New York, NY, USA. Association for
Computing Machinery.

[23] Ghazvininejad, M., Shi, X., Priyadarshi, J., and Knight, K. (2017). Hafez:
an Interactive Poetry Generation System. In Proceedings of ACL 2017, System

Demonstrations, pages 43–48, Vancouver, Canada. Association for Computational
Linguistics.

[24] Ginosar, S., De Pombo, L. F., Agrawala, M., and Hartmann, B. (2013). Authoring
multi-stage code examples with editable code histories. In Proceedings of the 26th

annual ACM symposium on User interface software and technology, pages 485–494, St.
Andrews Scotland, United Kingdom. ACM.

[25] Hayes, J. and Flower, L. (1981). Uncovering Cognitive Processes in Writing: An
Introduction to Protocol Analysis.

[26] Hayes, J. R. (2012). Modeling and Remodeling Writing. Written Communication,
29(3):369–388. Publisher: SAGE Publications Inc.

[27] Head, A., Jiang, J., Smith, J., Hearst, M. A., and Hartmann, B. (2020). Composing
Flexibly-Organized Step-by-Step Tutorials from Linked Source Code, Snippets, and
Outputs. In Proceedings of the 2020 CHI Conference on Human Factors in Computing

Systems, CHI ’20, pages 1–12, New York, NY, USA. Association for Computing
Machinery.

[28] Ippolito, D., Yuan, A., Coenen, A., and Burnam, S. (2022). Creative Writing
with an AI-Powered Writing Assistant: Perspectives from Professional Writers.
arXiv:2211.05030 [cs].

[29] Jameson, A. D. (2009). Understanding and Dealing With Usability Side Effects of
Intelligent Processing. AI Magazine, 30(4):23–23. Number: 4.

[30] Kaddour, J., Harris, J., Mozes, M., Bradley, H., Raileanu, R., and McHardy, R. (2023).
Challenges and Applications of Large Language Models. arXiv:2307.10169 [cs].

71

BIBLIOGRAPHY

[31] Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray,
S., Radford, A., Wu, J., and Amodei, D. (2020). Scaling Laws for Neural Language
Models. arXiv:2001.08361 [cs, stat].

[32] Kreminski, M. and Martens, C. (2022). Unmet Creativity Support Needs in
Computationally Supported Creative Writing. In Proceedings of the First Workshop on

Intelligent and Interactive Writing Assistants (In2Writing 2022), pages 74–82, Dublin,
Ireland. Association for Computational Linguistics.

[33] Lafreniere, B., Grossman, T., and Fitzmaurice, G. (2013). Community enhanced
tutorials: improving tutorials with multiple demonstrations. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, CHI ’13, pages
1779–1788, New York, NY, USA. Association for Computing Machinery.

[34] Lee, Y., Kim, T. S., Chang, M., and Kim, J. (2022). Interactive Children’s Story
Rewriting Through Parent-Children Interaction. In Proceedings of the First Workshop

on Intelligent and Interactive Writing Assistants (In2Writing 2022), pages 62–71,
Dublin, Ireland. Association for Computational Linguistics.

[35] Li, Y., He, J., Zhou, X., Zhang, Y., and Baldridge, J. (2020). Mapping Natural
Language Instructions to Mobile UI Action Sequences. arXiv:2005.03776 [cs].

[36] Lieberman, H. (2009). User Interface Goals, AI Opportunities. AI Magazine,
30(4):16–16. Number: 4.

[37] Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig, G. (2023). Pre-train,
Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language
Processing. ACM Computing Surveys, 55(9):195:1–195:35.

[38] Mirowski, P., Mathewson, K. W., Pittman, J., and Evans, R. (2023). Co-Writing
Screenplays and Theatre Scripts with Language Models: Evaluation by Industry
Professionals. In Proceedings of the 2023 CHI Conference on Human Factors in

Computing Systems, CHI ’23, pages 1–34, New York, NY, USA. Association for
Computing Machinery.

72

BIBLIOGRAPHY

[39] Mysore, A. and Guo, P. J. (2017). Torta: Generating Mixed-Media GUI and
Command-Line App Tutorials Using Operating-System-Wide Activity Tracing. In
Proceedings of the 30th Annual ACM Symposium on User Interface Software and

Technology, UIST ’17, pages 703–714, New York, NY, USA. Association for
Computing Machinery.

[40] Mysore, A. and Guo, P. J. (2018). Porta: Profiling Software Tutorials Using
Operating-System-Wide Activity Tracing. In Proceedings of the 31st Annual ACM

Symposium on User Interface Software and Technology, UIST ’18, pages 201–212, New
York, NY, USA. Association for Computing Machinery.

[41] Norman, D. A. (2002). The Design of Everyday Things. Basic Books, Inc., USA.

[42] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and
Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv:1802.05365
[cs].

[Radford et al.] Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. Improving
Language Understanding by Generative Pre-Training.

[44] Reynolds, L. and McDonell, K. (2021). Prompt Programming for Large Language
Models: Beyond the Few-Shot Paradigm. In Extended Abstracts of the 2021 CHI

Conference on Human Factors in Computing Systems, CHI EA ’21, pages 1–7, New
York, NY, USA. Association for Computing Machinery.

[45] Roemmele, M. (2021). Inspiration through Observation: Demonstrating the Influence
of Automatically Generated Text on Creative Writing. arXiv:2107.04007 [cs].

[46] Ross, S. I., Martinez, F., Houde, S., Muller, M., and Weisz, J. D. (2023). The
Programmer’s Assistant: Conversational Interaction with a Large Language Model
for Software Development. In Proceedings of the 28th International Conference on

Intelligent User Interfaces, IUI ’23, pages 491–514, New York, NY, USA. Association
for Computing Machinery.

[47] Shen, Z., August, T., Siangliulue, P., Lo, K., Bragg, J., Hammerbacher, J., Downey,

73

BIBLIOGRAPHY

D., Chang, J. C., and Sontag, D. (2023). Beyond Summarization: Designing AI Support
for Real-World Expository Writing Tasks. arXiv:2304.02623 [cs].

[48] Shneiderman, B. (2020). Bridging the Gap Between Ethics and Practice: Guidelines
for Reliable, Safe, and Trustworthy Human-centered AI Systems. ACM Transactions on

Interactive Intelligent Systems, 10(4):26:1–26:31.

[49] Singh, N., Bernal, G., Savchenko, D., and Glassman, E. L. (2022). Where to Hide
a Stolen Elephant: Leaps in Creative Writing with Multimodal Machine Intelligence.
ACM Transactions on Computer-Human Interaction. Just Accepted.

[50] Sun, S., Zhao, W., Manjunatha, V., Jain, R., Morariu, V., Dernoncourt, F., Srinivasan,
B. V., and Iyyer, M. (2021). IGA : An Intent-Guided Authoring Assistant.
arXiv:2104.07000 [cs].

[51] Swain, J. (2018). A Hybrid Approach to Thematic Analysis in Qualitative Research:

Using a Practical Example. SAGE Publications Ltd.

[52] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., and Polosukhin, I. (2023). Attention Is All You Need. arXiv:1706.03762 [cs].

[53] Wan, Q., Hu, S., Zhang, Y., Wang, P., Wen, B., and Lu, Z. (2023). "It Felt Like
Having a Second Mind": Investigating Human-AI Co-creativity in Prewriting with Large
Language Models. arXiv:2307.10811 [cs].

[54] Wang, A. Y., Head, A., Zhang, A. G., Oney, S., and Brooks, C. (2023). Colaroid:
A Literate Programming Approach for Authoring Explorable Multi-Stage Tutorials. In
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems,
CHI ’23, pages 1–22, New York, NY, USA. Association for Computing Machinery.

[55] Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D.,
Bosma, M., Zhou, D., Metzler, D., Chi, E. H., Hashimoto, T., Vinyals, O., Liang,
P., Dean, J., and Fedus, W. (2022). Emergent Abilities of Large Language Models.
arXiv:2206.07682 [cs].

74

BIBLIOGRAPHY

[56] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., and
Zhou, D. (2023). Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models. arXiv:2201.11903 [cs].

[57] Weisz, J. D., Muller, M., He, J., and Houde, S. (2023). Toward General Design
Principles for Generative AI Applications. arXiv:2301.05578 [cs].

[58] Weisz, J. D., Muller, M., Houde, S., Richards, J., Ross, S. I., Martinez, F., Agarwal,
M., and Talamadupula, K. (2021). Perfection Not Required? Human-AI Partnerships in
Code Translation. In 26th International Conference on Intelligent User Interfaces, IUI
’21, pages 402–412, New York, NY, USA. Association for Computing Machinery.

[59] Yang, Q., Steinfeld, A., Rosé, C., and Zimmerman, J. (2020). Re-examining Whether,
Why, and How Human-AI Interaction Is Uniquely Difficult to Design. In Proceedings

of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20, pages
1–13, New York, NY, USA. Association for Computing Machinery.

[60] Yildirim, N., Pushkarna, M., Goyal, N., Wattenberg, M., and Viégas, F. (2023).
Investigating How Practitioners Use Human-AI Guidelines: A Case Study on the People
+ AI Guidebook. In Proceedings of the 2023 CHI Conference on Human Factors

in Computing Systems, CHI ’23, pages 1–13, New York, NY, USA. Association for
Computing Machinery.

[61] Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang,
J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X.,
Liu, Z., Liu, P., Nie, J.-Y., and Wen, J.-R. (2023). A Survey of Large Language Models.
arXiv:2303.18223 [cs].

[62] Zhong, M., Li, G., Chi, P., and Li, Y. (2021). HelpViz: Automatic Generation
of Contextual Visual Mobile Tutorials from Text-Based Instructions. In The 34th

Annual ACM Symposium on User Interface Software and Technology, UIST ’21, pages
1144–1153, New York, NY, USA. Association for Computing Machinery.

75

Acronyms

LLM Large Language Model

SIL Stages of Interaction with LLMs

AWS Amazon Web Services

GPT Generative Pre-trained Transformer

BERT Bidirectional Encoder Representations from Transformers

76

Appendix

8.1 Recruitment Texts

These advertisements were placed on Reddit and LinkedIn forums.

I’m a part of a research team from McGill University and Université de Montréal,
recruiting participants for a study to understand how to design AI-driven tools to support
tutorial authoring. We are interested in hearing about your experience with writing
tutorials for software. Previous uses of existing AI driven tools such as GitHub
Copilot/Codex, or similar tools are preferred but not required. The study will take around
60 minutes and will be a remote study over MS Teams. You will be compensated $20
CAD in the form of a gift card as a token of appreciation for your time. If you are
interested in participating, please answer this short screener. Thank you!

8.2 Sample Demographic Survey & Screening

These questions were asked via a survey hosted on Microsoft Forms and sent to potential
participants to determine if they meet the selection criteria outlined above.

* Required

1. Please enter your full name.*

2. Please enter your email address.*

3. How long have you been involved in professional software development?*

‚ 1-3 years

‚ < 5 years

‚ 5-10 years

77

8.2 Sample Demographic Survey & Screening

‚ 10-15 years

‚ > 15 years

4. Which programming language do you primarily use?*

‚ Python

‚ Java

‚ JavaScript

‚ C/C++

‚ Other:

5. Please enter your current occupation.*

‚ Software Developer

‚ Technical Writer

‚ UI/UX Designer

‚ Program/Product Manager

‚ Student

‚ Other:

6. How often do you write/maintain software tutorials in the past three years? For the
purpose of this study, we define a "tutorial" as a file/document that is used to
provide information about a software or its features written for beginner,
intermediate or advanced users and contains both descriptions in a natural language
and code examples. A tutorial must contain more information than just an API
specification. Other names for a tutorial can be "how-to" or "walkthrough".*

‚ 2-3 times a week

‚ Once every week

‚ Once a month

‚ Once in several months

‚ I’ve never written a tutorial before

7. Can you please include a link to a tutorial that you have written and is publicly

78

8.2 Sample Demographic Survey & Screening

available?

8. How many software tutorials have you written so far (an estimate)?*

9. How comfortable are you with English? You can assess your skill level based on the
ILR Scale (https://en.wikipedia.org/wiki/ILR_scale).*

‚ Native/Bilingual Proficiency

‚ Full Professional Proficiency

‚ Professional Working Proficiency

‚ Limited Working Proficiency

‚ Elementary Proficiency

10. Have you previously used any of the following AI-driven tools (or other similar ones)
for any software engineering-related activities?*

‚ VS Code IntelliSense (https://code.visualstudio.com/docs/editor/intellisense)

‚ Codex (https://openai.com/blog/openai-codex/)

‚ Docly by Codist (https://codist-ai.com/)

‚ GPT-3 based tools (https://openai.com/blog/gpt-3-apps/)

‚ Other:

‚ I have not used such tools previously

11. Please provide the time zone you’re in (For example, EST, PST, CDT).*

12. Please indicate a day between 20th August to 30th August when you’ll be available
for the study.*

13. Please indicate another day between 20th August to 30th August when you’ll be
available for the study.*

14. Do you have any suggestions/comments to add?

79

	Abstract
	Résumé
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Cognitive Models of Writing and Interaction
	Language Models and Their Design Considerations
	Tool Support for Software Tutorial Authoring

	Method
	Participants and Recruitment
	Study Design
	Data and Analysis

	Processes in Tutorial Writing
	Understanding the information needs of the target audience
	Researching the tutorial topics
	Developing tutorial artifacts
	Meeting Quality Standards
	Maintaining the published tutorials

	Interactions with LLM
	Integrating LLMs into Existing Aspects of Tutorial Writing
	Quality Assessment of LLM-generated Content
	Mental Model of LLMs
	Usability Concerns

	Tool Design
	Design Guidelines
	Supporting Authoring Processes and Evolving Content
	Providing Control and Visibility to address Usability Issues
	Facilitating Verification and Editing Capabilities to ensure Quality and Accuracy

	Conceptual Design
	Design Elements

	Discussion
	Potential of LLMs in Tutorial Writing Workflows
	Addressing Needs and Challenges in Leveraging LLMs for Tutorial Authoring
	Framework for Interaction with LLM
	Four stages of the Framework
	Comparison with Norman's Seven Stages of Action
	Illustrating the Framework through an example

	Future Work
	Limitations of our study

	Conclusion
	Contributions
	Bibliography
	Acronyms
	Appendix
	Recruitment Texts
	Sample Demographic Survey & Screening

